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P H Y S I C S

A unified theory of tunneling times promoted by 
Ramsey clocks
Patrik Schach* and Enno Giese

What time does a clock tell after quantum tunneling? Predictions and indirect measurements range from superlu-
minal or instantaneous tunneling to finite durations, depending on the specific experiment and the precise defini-
tion of the elapsed time. Proposals and implementations use the atomic motion to define this delay, although the 
inherent quantum nature of atoms implies a delocalization and is in sharp contrast to classical trajectories. Here, 
we rely on an operational approach: We prepare atoms in a coherent superposition of internal states and study the 
time read-off via a Ramsey sequence after the tunneling process without the notion of classical trajectories or 
velocities. Our operational framework (i) unifies definitions of tunneling delay within one approach, (ii) connects 
the time to a frequency standard given by a conventional atomic clock that can be boosted by differential light 
shifts, and (iii) highlights that there exists no superluminal or instantaneous tunneling.

INTRODUCTION
In relativity, proper time is operationally defined as the time (1) 
measured by an ideal clock (2) traveling along a specific world line 
through space-time. However, quantum mechanics, in principle, 
allows for motion in classically forbidden regions, culminating in 
quantum tunneling (3). Hence, the identification of a world line is 
intricate, to say the least. Although a region may be forbidden for 
classical motion, the arrival of particles on the other side of a bar-
rier is still observed. One can associate the so-called arrival time (4) 
with the appearance of a tunneled particle, giving rise to observa-
tions of superluminal (5–7) and even instantaneous tunnel times 
(8, 9). Because it is impossible to assign classical wordlines to tun-
neled and delocalized quantum particles, identifying the elapsed 
time seems to lie outside of the scope of a naive combination of 
quantum mechanics and general relativity. Similar to general rela-
tivity, we thus follow an operational approach: reading off the tun-
neling time directly from a quantum particle with internal structure 
that has tunneled through an optical barrier via a Ramsey sequence.

When assigning a time to the arrival of particles on the other 
side of a barrier, one has to develop concepts due to their quantum 
nature associated with the Heisenberg uncertainty principle, even 
without the intricacies of combining general relativity and quan-
tum tunneling. Particles have to be described by wave packets that 
are inherently delocalized. One strategy is to compare the center-
of-mass positions of a tunneled particle and a free particle with the 
same kinetic energy. Together with the group velocity that can be 
extracted for a wave packet, the so-called Wigner phase time (10–
12), or closely related, the group delay can be inferred. Such an 
approach is the most common way to define the arrival time, 
which diverges for small probabilities of tunneling (11), so that 
superluminal times have been observed experimentally, e.g., in 
Hong-Ou-Mandel–type experiments (6, 7).

Another technique to measure arrival times is employed in 
strong-field ionization (13). Attoclock experiments (8, 9, 14, 15) 
assign a time to the electron escape from a bound state of an atom, 
induced by elliptically polarized light and by that time-varying 

barrier potentials. In such experiments, the tunneling time can be 
inferred from the scattering angle, leading to claims of instanta-
neous tunneling (8, 9). In such experiments, the determination of 
a group delay depends on the underlying ionization model that 
incorporates the complex structure of the atom and associated 
effects (16). The inferred arrival time depends, therefore, strongly 
on the underlying theoretical modeling (15).

In contrast to assigning a time to the arrival of particles, the in-
teraction time aims at measuring the time a particle spends inside a 
forbidden region. This complementary approach gives analytical 
expressions of a dwell time (11, 12, 17) that take into account the 
average number of atoms inside the barrier and the incoming par-
ticle flux. While the Wigner phase time diverges for low tunneling 
probabilities, the dwell time takes a finite value (11, 18). One strat-
egy to measure the dwell time is sending a particle onto the barrier 
and triggering or initiating a clock inside the forbidden region. 
Here, the particle is in an internal superposition while tunneling, 
whereas there is no clock outside the barrier. The most prominent 
example is the Larmor clock (11, 19–21). Here, the degeneracy of 
two spin states is lifted by a magnetic field that spatially overlaps 
with the barrier. A time spent in the forbidden region can be read 
off by the angle of spin precession. In this case, the frequency of the 
“clock” is given by the Larmor frequency and depends on the mag-
netic field and is not connected to a frequency standard. While in-
structive for rectangular barriers, it is not clear how other barrier 
profiles, e.g., Gaussian barriers, have to be treated or truncated.

In contrast to the previous approaches and in the operational 
spirit of general relativity, we propose measuring the interaction 
time with a Ramsey clock (22–24), consisting of an atom with inter-
nal structure that has clock degrees of freedom also in the asymp-
totic region far away from the barrier. In this case, no external 
trigger is necessary to start the time measurement within the barrier 
because the time delay and imprinted phase are solely caused by the 
forbidden region itself.

In the following, we refer to a quantum particle with internal struc-
ture, i.e., an atom, where the time is read off via a Ramsey sequence. 
After reflection from the barrier, the Ramsey clock consists of a su-
perposition of internal and external degrees of freedom. In particular, 
our proposed Ramsey clock represents the reference of a conventional 
atomic clock that generally also contains an oscillator, a method for 
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readout, and a counter. In the following, when we refer to a 
Ramsey clock, we keep in mind the additional elements needed to 
obtain an atomic clock. Moreover, the tunneling process itself is 
probabilistic, and performing the proposed experiments on a 
single-atom level will thus be dominated by quantum projection 
noise. Therefore, we understand that all results imply either a rep-
etition of a single-atom experiment or a preparation of a cold 
cloud of a large number of identical atoms, maybe even a Bose-
Einstein condensate. Of course, the latter implementation is more 
feasible due to the statistics, as we discuss below.

Our idealized Ramsey clock consists of two internal states ∣e/g〉 
with respective eigenenergies ℏωe/g and a frequency standard given 
by the clock frequency Δω = ωe − ωg that corresponds to the transi-
tion frequency; see the magnification in Fig.  1A. Because of the 
relativistic mass defect (25–29), the mass of an atom in internal 
state ∣e/g〉 

depends explicitly on the state, leading to relativistic effects of the 
motion and a coupling of external and internal degrees of free-
dom. Here, the mean frequency ω̄ = (ωe + ωg )∕2 = m̄c2∕ℏ can be 
connected to the mean mass that dictates the atomic motion to 
lowest order.

Both internal and external dynamics of such a Ramsey clock without 
transitions or loss channels induced by the optical potential are de-
scribed (25–29) by the two-level Hamiltonian Ĥ =

∑
j=g,eĤj ∣ j ⟩ ⟨ j∣ ,  

where

describes the motion of the atom in state ∣e/g〉. Here, the position 
and momentum operators x̂ and p̂ fulfill the commutation relation 
[�x,�p] = iℏ . The Hamiltonian from Eq. 2 consists of three parts: (i) 

the rest energy giving rise to the clock phase accumulated by each 
internal state upon time evolution; (ii) the mass defect included 
in the kinetic energy, which implies state-dependent dispersion 
relations and introduces time-dilation effects; and (iii) a possibly 
state-depended barrier Ve∕g (x̂) , e. g., induced by Stark shifts from 
far-detuned optical fields, including no gravitational contributions. 
In the following, we use this relativistic extension of standard quan-
tum mechanics to describe the motion and quantum tunneling of a 
Ramsey clock and show how to infer the tunneling time.

RESULTS
To measure the phase difference between both internal states after 
tunneling, a Ramsey sequence (30) is the method of choice and de-
picted in Fig. 1A. In such a sequence, the Ramsey clock is initialized 
by a π/2 pulse at time t = 0 that generates an equal superposition of 
both internal states, before the clock impinges on a short-range po-
tential and partially tunnels to the other side. The phase difference 
measured by the tunneled clock is read out by a second π/2 pulse 
after some time t, mixing again both internal states. The population 
in the ground state after the Ramsey sequence for perfect instanta-
neous pulses gives rise to an interference signal that is shown in 
Fig. 1C and takes the form

where ∣gT〉 and ∣eT〉 are the states of the atom transmitted in the ground 
and excited state, respectively. The amplitude of the interference signal 
is the mean number of transmitted atoms NT = (〈eT∣eT〉 + 〈gT∣gT〉)/2, 
and the contrast is described by the overlap ∣〈eT∣gT〉∣/NT.

The phase difference measured by the tunneled clock

contains the laboratory time t given by the separation time of Ramsey 
fields. It is measured by the clock frequency Δω. Relativistic time 

me∕g = m̄
(
1 ±

Δω

2ω̄

)
(1)

Ĥe∕g = me∕gc
2 +

p̂2

2me∕g

+ Ve∕g (x̂) (2)
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Fig. 1. Tunneling progress of a Ramsey clock. (A) The first π/2 pulse of a Ramsey sequence initializes the clock by creating an equal superposition of the internal states 
∣gin/ein〉 of a two-level system. Both states are associated with different rest masses mg/ec2, and the energy structure is given by the clock frequency Δω (see the magnifica-
tion). (B) During tunneling, each internal state acquires a state-dependent phase shift encoded in the complex transmission amplitudes tg/e. After the scattering process, 
a second π/2 pulse reads out the accumulated phase that includes contributions from the lab time t, time dilation δt and tunneling time τ [see (A)]. For different lab times, 
the population in the ground state is detected and an interference signal between both internal states (C) is obtained, characterized by the contrast ∣〈eT∣gT〉∣/NT with the 
total number of transmitted atoms NT and mean transmission coefficient T̄ = N

T
∕2 . (D) For a rectangular barrier, this transmission coefficient shows distinct features for 

different scaled kinetic energies ε and dimensionless barrier parameters ̄.
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dilation (1, 31, 32) induced by the state-dependent dispersion relation 
results in a modification of the laboratory time by δt. However, our 
focus lies on the third contribution caused by tunneling through the 
potential barrier itself: the tunneling time τ. Additional phase contri-
butions ϕ(t) arise from the laser pulses that can be used to lock the 
Ramsey fields to the transition frequency and read out the signal.

Assuming that both internal states ∣gin〉 and ∣ein〉 have the same 
initial momentum, the transmitted states are depicted in Fig. 1B and 
are given by

See Materials and Methods for details. The transmission ampli-
tudes te/g contain all information on the tunneling process and are 
complex quantities with ∣te/g∣ ≤ 1. In addition to the phases arg(te/g) 
induced by tunneling, other contributions are associated with the 
internal energy and the kinetic energy of the atom.

The phase imprinted by kinetic energy depends explicitly on the 
mass of the atom and, by means of the mass defect introduced in 
Eq. 1, implies time dilation. To lowest order, this contribution leads 
to a time delay

It arises independently of tunneling and is measured by any 
moving Ramsey clock (32).

Before turning to more general barriers, we study the phase mea-
sured by a clock that tunnels through a rectangular barrier with 
height V0 and length a. To highlight the relevant quantities, we 
introduce a dimensionless kinetic energy ε̄ = Ē∕V0 = p2 ∕ (2m̄V0) 
that is smaller than unity if the clock is tunneling. Moreover, we de-
fine the dimensionless barrier parameter as ̄ = � dx

√
2m̄V (x)∕ℏ . 

For ̄ ≫ 1 , we have an opaque barrier, while, for ̄ ≪ 1 , the barrier 
is transparent. In the case of rectangular barriers, the expression 
simplifies to ̄ = a

√
2m̄V0 ∕ℏ . We observe that the product m̄V0 al-

ways enters both parameters. Thus, state-dependent barrier heights 
or the relativistic mass defect will induce similar effects on tunnel-
ing. This feature connects our work to the concept of Larmor clocks 
(11) and already shows that the effect of a mass defect can be mim-
icked by state-dependent barriers.

By expanding the transmission amplitudes of ground and excited 
states to first order in Δω∕ω̄ , we find the tunneling time

It is proportional to the mean transmission coefficient

shown in Fig. 1D for different ε̄ and ̄ , which causes shorter tunnel-
ing times far below the barrier where tunneling processes are less 
likely. In contrast, for ε̄≫ 1 , that is for traveling clocks that hardly 
feel the barrier and do not tunnel, the delay τ vanishes. Connecting 
both asymptotics shows that there exists a maximal tunneling time, 

as highlighted in Fig. 2A by the dashed line in parameter space. For 
transparent barriers ̄ < 1.5 , the maximum is achieved for ε̄ < 1 , 
while, for opaque barriers ̄ ≫ 1 , the maximal delay is achieved for 
ε̄ = 1 . Nevertheless, the density plot shows a smooth transition from 
ε̄ < 1 to ε̄ > 1 . Thus, there is no clear distinction between a tunneling 
clock and one that travels classically above the barrier. Moreover, 
Fig. 2A shows that the tunneling time increases for opaque barriers.

To connect to a possible experimental implementation, we ex-
tend our study to Gaussian barriers, experimentally achievable, e.g., 
by spatial light modulators, painted potentials, or digital micromir-
ror devices (33). To ensure a proper comparison between such bar-
riers and rectangular potentials, we always choose the same barrier 
parameter ̄ . For Gaussian barriers, we fix its height and vary the 
width to adjust the barrier parameter, as shown in the pictograms on 
top of Fig. 3. The figure compares the transmission probability and 
the tunneling time for different rectangular and Gaussian barriers, 
where the transmission amplitudes are determined semi-analytically 
by a transfer matrix ansatz (34, 35). For ε̄ > 1 , we observe resonances 
in the transmission probability resulting from partial reflection and 
transmission of the initial state. This structure washes out for 
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Fig. 2. Tunneling time for a rectangular barrier. (A) Scaled tunneling time ω̄τ for 
different kinetic energies ε̄ and barrier parameters ̄ . For opaque barriers, the maximal 
tunneling time (orange dashed line) moves from the tunneling regime ( ̄ε < 1 ) to 
the classical regime ( ̄ε > 1 ) and then approaches the barrier height ( ̄ε = 1 ). (B) The 
maximal tunneling time increases for an increasing barrier parameter.

Fig. 3. Transmission and tunneling time for different types of barriers. Com-
parison of the mean transmission coefficient T̄  and scaled tunneling time ω̄τ of two 
rectangular (solid line) and Gaussian barriers (dashed line) for different scaled kinetic 
energies ε̄ . The transmission amplitude for plane waves scattered on Gaussian bar-
riers is obtained by the transfer matrix approach. For the calculations, we have 
assumed Gaussian barriers of height kB × 200  nK (20) and 87Rb atoms with mass 
m = 86.91 u. For Gaussian barriers, the maximal tunneling time is smaller than for
rectangular barriers and is shifted to smaller initial kinetic energies.
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Gaussian barriers, and no prominent resonances in transmission 
are observed. Of course, this behavior is also reflected in the phase 
obtained during tunneling and, by that, also in the tunneling time. 
The tunneling delay induced by Gaussian barriers is smaller than for 
rectangular barriers with the same barrier parameter. Moreover, the 
maximal tunneling time moves to lower initial energies.

So far, we considered tunneling times associated to specific 
momentum eigenstates. However, because Ramsey clocks are local-
ized quantum objects, the Heisenberg uncertainty relation implies 
that we have to consider a momentum distribution, e.g., in simple 
cases, a (Gaussian) wave packet ψ0(p) = 〈p∣e/g(0)〉. As a conse-
quence, the tunneling time becomes explicitly momentum depen-
dent, i.e., we replace τ → τ(p), because the kinetic energy ε̄→ ε̄(p) , 
and, by that, the transmission probability T̄ → T̄(p) both depend on 
momentum. Considering the mass defect to first order, we still ob-
serve perfect contrast ∣〈eT∣gT〉∣/NT = 1 of the Ramsey fringe. How-
ever, the induced time dilation for of a tunneled wave packet takes 
the form

Following the same line of argument, the tunneling time, defined 
in Eq. 7 for a momentum eigenstate, is generalized to

Both times describe a momentum average of the eigenstate solu-
tion over the tunneled momentum distribution. Consequently, the 
average tunneling time is smaller for wave packets than for momen-
tum eigenstates. Hence, to measure a large time delay in an experi-
mental implementation, collimated wave packets with ultralow 
expansion rates and momenta that correspond to energies slightly 
above the barrier height are desirable. Techniques like delta-kick col-
limation that achieve momentum widths in the order of picokelvin 
(36), in combination with magic (37) Bragg diffraction (38), might 
be one option to observe these tunneling times experimentally.

DISCUSSION
To isolate the phase accumulated during tunneling, we propose a 
differential measurement scheme, visualized in Fig. 4. As a first step, 
we prepare an atomic cloud with finite momentum width. Subse-
quently, the Ramsey clock is initialized by generating an internal 
superposition of each atom in the cloud, using preferably recoilless 
transitions like E1M1 (39, 40) or operating in the Lamb-Dicke re-
gime (41) and releasing the clock after initialization. Subsequently, 
we create a superposition of the clock moving with opposite mo-
menta, e.g., realized via double Bragg diffraction (38, 42) at the 
magic wave length (37) to ensure that both internal states are dif-
fracted equally. While one clock tunnels, the second one serves as a 
reference to cancel common phase contributions, e.g., time dilation, 
the laboratory time, and phase noise of interrogating Ramsey fields. 
As a result, the differential phase measurement between the tun-
neled and reference clock provides the tunneling time.

Because we measure the ground-state populations of the tun-
neled and reference Ramsey clocks, position uncertainties of the 
atomic cloud and thus different arrival times play no role for detec-
tion. Nevertheless, velocity uncertainties due to the finite momentum 

width δp of the wave packet have to be considered and, in principle, 
lead to contributions in Eqs. 9 and 10. However, for an atomic cloud 
centered around a momentum p0, a Taylor expansion shows that, for 
∣ ∂pT̄ ∣p0δp∣≪ 1 , the transmission coefficient T̄ of the integrand can-
cels due to the normalization NT. In this case, both the tunneled 
Ramsey clock and the reference clock observe the same time dila-
tion δt, so that only the phase contribution caused by the finite tun-
neling time survives in a differential measurement. Figure 1D allows 
us to identify a parameter regime ε̄ > 1 where T̄ ≈ 1 is maximal and, 
by that, approximately constant, so that the condition ∣∂pT̄ ∣p0δp∣≪ 1 
is satisfied for feasible momentum distributions. Luckily, according 
to Fig.  2, this is the parameter regime where, for opaque barriers 
̄ ≳ 2 , the tunneling time is maximal, and the experiment is opti-
mally operated. Because techniques like delta-kick collimation (43–
45) have achieved momentum uncertainties that correspond to the
picokelvin temperatures, time dilation contributions can be sup-
pressed by such a differential measurement.

However, while such a setup may isolate the tunneling time, ad-
ditional phases may arise in an actual experimental realization; see 
Materials and Methods for analytical expressions of some of the 
spurious effects. For example, imperfect preparation of the center-
of-mass motion of the Ramsey clock, like an initialization without 
recoilless transitions or outside the Lamb-Dicke regime, may lead to 
state-dependent initial momenta. If both clock states have different 
polarizabilites or couple differently to the optical potential, they may 
experience state-dependent barrier heights. Both effects are dis-
cussed in the following.

Phase contributions arising from state-dependent initial mo-
menta take the form of a differential Doppler shift. Key to a suppres-
sion is, as mentioned above, that the excited state has exactly the 
same momentum as the ground state. When initializing the clock, 
the photon recoil imparted onto the atom upon absorption directly 
introduces such an effect. For microwave transitions, this effect is 
negligible due to the dispersion relation; however, the clock fre-
quency is also decreased by this factor. In contrast, the photon recoil 
of optical clock transitions is nonnegligible and actually used for 
atom interferometry (46, 47). One way to suppress the recoil 

δt =
t

2NT
∫
dp T̄(p)∣ψ0(p)∣

2
( p

m̄c

)2

(9)

τ =
1

NT
∫
dp T̄(p)∣ψ0(p)∣

2 τ(p) (10)

Fig. 4. Differential measurement-scheme for isolating the tunneling phase. To start 
the protocol, we prepare an atomic cloud and initialize a Ramsey clock by generating a 
superposition of two internal states ∣g/e〉. Subsequently, we create an equal superposi-
tion of two Ramsey clocks with opposite momenta ± p, realized by (magic) double 
Bragg diffraction as shown in the inset. While one clock tunnels, the other one is used as 
reference to cancel common phase contributions, e.g., the clock phase Δωt and the time-
dilation phase Δωδt. From the remaining phase, one can deduce the tunneling time τ.
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imparted during initialization of the clock is that the experiment has 
to be performed in a sufficiently confining trap within the Lamb-
Dicke regime (41). Following such a strategy, one still has to analyze 
the trap release to avoid imprinting additional clock phases or ac-
celerating the atom. As a second step, one has to impart the same 
momentum to both states. One possibility are Bragg gratings that 
have the benefit that the transferred momentum depends on the ef-
fective wave vector of the grating and is independent of the state. 
One only must ensure that the effective Rabi frequency is the same 
for both internal states, e.g., by operating at the magic wavelength. 
Another approach is to apply Doppler-insensitive and recoilless 
two-photon transitions to an atom at rest or moving in the ground 
state, such as E1M1 transitions, so that the release from the trap 
does not pose an issue. However, the differential Doppler effect be-
tween both internal states gives additional insight into the tunneling 
process. We show in Materials and Methods that it is directly con-
nected to a measurement of the arrival time (4) on the scale of the 
differential Doppler frequency. In contrast to existing models that 
track the peak of a wave packet, e.g., through Hong-Ou-Mandel in-
terference (6, 7), our proposed scheme does not rely on a measure-
ment of the peak itself because the group delay is encoded in the 
Ramsey fringes. It actually does rely neither on the notion of peaks 
nor on assigning a classical velocity to wave packets or a clock.

In addition to imperfect preparation of the initial momenta, an-
other spurious phase contribution may arise from state-dependent 
barriers. This phase is inherently connected to the concept of Larmor 
clocks (11, 19–21), which describe the tunneling of a superposition 
of spin states with degenerate eigenenergies. This degeneracy is lifted 
by a magnetic field only present in the barrier region, which initiates 
or triggers the Larmor clock. In an alternative description, the differ-
ent eigenenergies are equivalent to a spin-dependent barrier heights, 
i.e., the process is equivalent a perturbation for our proposed experi-
ment. While the degeneracy is lifted by the magnetic field, that is,
during the tunneling process, spin precession induces a phase. In this 
case, the Larmor frequency at which the interaction time is probed
can be tuned by the magnetic field. In contrast to our treatment,
there are no relativistic corrections included in such a treatment.

So far, only experiments (19, 20) realizing the analog of Larmor 
clocks have been implemented. In these cases, the two spin states are 
replaced by two internal atomic states and the magnetic field by an 
external electromagnetic field that induces Raman transitions inside 
the barrier region, so that the Rabi frequency plays the role of the 
Larmor frequency and can be tuned by the intensity of the Raman 
beams. As a consequence, the analog of spin precession is the effec-
tive Rabi oscillation between both internal states. However, no 
superposition of internal states is prepared initially, so that the 
implementation of such a Larmor clock does not correspond to a 
Ramsey clock scheme in a strict sense. Moreover, a Ramsey clock 
ticks at the intrinsic frequency given by the energy difference of 
both states, whereas the Larmor-clock analog ticks typically at Rabi 
frequencies in the microwave regime and thus does not correspond 
to a good frequency standard.

As described above, the interaction time τL can be measured by 
spin-dependent barriers. We therefore compare the magnitude of 
the phase contribution measured in Larmor-clock experiments to 
the ones that arise from the mass defect and find the ratio

where the expansion coefficients in both cases are the same and 
cancel, as discussed in Materials and Methods. On the basis of the 
experimental implementation (20), we use the clock frequency of 
Δω = 2π × 6.8  GHz related to the F = 1 to F = 2 transition of the 
state 5S1/2 of 87Rb with mass m = 86.91  u and the atomic mass unit 
u. The mean barrier height is V̄ = 1.3 × 10−31 J (20), and the differ-
ential barrier height corresponds to the Rabi frequency ΔV/ℏ = ωL =
2π × 200   Hz (20). In the experiments performed, the main phase
contribution comes from the Larmor clock that is artificially im-
printed and triggered by the state-dependent barrier.

On the other hand, the clock frequency between two hyperfine 
states of rubidium is in the gigahertz regime and, by no means, an 
optical frequency that enhances the measured phase. Ideally, one 
should perform the proposed experiment on such an optical clock 
transition. In our setup, imperfections and perturbations induced 
by state-dependent barriers lead, in analogy to Larmor clocks, to an 
additional phase that depends on the tunneling time. Potential bar-
riers where each state of the clock transition experiences a different 
light shift and by that potential will induce such a phase. Because 
both contributions have the same expansion coefficient, an effective 
clock frequency can be identified

To suppress the Larmor phase and isolate the relativistic clock con
tribution, one has to generate the optical barrier from light at the 
magic wavelength, so that we have (ΔV∕V̄)≪ (Δω∕ω̄) ≅1.33 × 10−11 . 
Here, we have assumed a cold cloud of 174Yb (48) atoms with the 
clock transition Δω = 2π × 522 THz and Compton frequency 
ω̄ = 2π × 3.92 × 1025 Hz . An experimental realization of the differ-
ential measurement would be performed in regions of large tun-
neling times and high transmissions, which is achieved at ̄ ≈ 4 
and ε̄ ≈ 1.4 . Consulting Figs. 1 and 2, we obtain T̄ ≈ 1 and ω̄τ ≈ π 
at the optimal working point, resulting in the miniature tunneling 
time τ ≈ 1.3 × 10−26  s, or tunneling phase τΔω ≈ 4.2 × 10−11, re-
spectively. Obviously, such timescales are, to date, inaccessible to 
high-precision clocks. For instance, if we assume a shot-noise lim-
ited sensitivity and 105 atoms in the ytterbium cloud, then one 
would need repetitions of order 1015 to resolve the tunneling 
phase, beyond any feasible implementation. Although relying on 
squeezing (49) constitutes one way to reduce the number of runs, 
it still is enormous even for ambitious assumptions. However, the 
tunneling phase can be increased considerably by boosting the 
clock frequency artificially. As shown in Eq. 12, the effective clock 
frequency depends on the differential barrier heights, which can 
be experimentally realized by differential light shifts. The mean 
barrier barrier height V̄ ≈ 3.8 × 10−30 J is fixed through our choice 
of the working point and the effective wave number k = 1.7 × 
107   1/m of the magic two-photon double Bragg transition at the 
magic wavelength 759.35 nm (50). Differential light shifts in the 
order of hertz (50) will already boost the clock frequency by factor 
2 × 106, resulting in a tunneling phase of τΔωeff ≈ 10−4. Assuming
a shot-noise limited sensitivity, we obtain a feasible number of 
runs, i.e., of order 103 suitable to resolve the miniature tunnel-
ing time.

In conclusion, on the basis of an operational approach and in 
analogy to general relativity, we demonstrated that a tunneled 
Ramsey clock acquires a phase shift and tells a time that can be 

τ
L
ω
L

τΔω
=

ℏω̄

V̄

ω
L

Δω
≈ 3.1 × 1014 (11)

ωeff = Δω

(
1 +

ω̄

Δω

ΔV

V̄

)
(12)
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associated with the tunneling process. This time is read out by a 
preferably optical frequency standard that is independent of any 
fields triggering the measurement inside the barrier and originates 
from relativistic effects and properties of the atoms. Moreover, 
the clock frequency can be artificially increased by differential light 
shifts to resolve the tunneling time. Other approaches to identify a 
dwell time and an arrival time are also contained in our proposed 
experiment and can be enhanced by introducing perturbations.

MATERIALS AND METHODS
Neglecting the rest-energy term from Eq. 2, the time-independent 
Schrödinger equation for two decoupled internal states is given by

where Ej = pj2/(2mj) is the eigenenergy of particle ∣j〉 that can be as-
sociated with an eigenmomentum pj and mass mj. Here,

is a, possibly, state-dependent, rectangular barrier. To obtain the 
transmission amplitude associated with tunneling through the bar-
rier, we solve the Schrödinger equation in the three regions defined 
by Eq. 14 for each internal state independently and apply the bound-
ary and continuity conditions to connect the individual solutions. 
As a result, for tunneling with energies Ej < Vj, we obtain the trans-
mission amplitude

where we introduced the wave numbers κ0,j =
√
2mjEj ∕ℏ and

κ1,j =
√

2mj(Vj − Ej)∕ℏ associated with the initial kinetic energy 
and the tunneling process. To find the transmission amplitude for 
Ej > Vj, we replace κ1,j → i

√
2mj(Ej − Vj)∕ℏ in the equation above.

For convenience, we introduce the dimensionless kinetic energy
εj = Ej/Vj and the barrier parameter j = a

√
2mjVj ∕ℏ . To study

perturbations induced by the mass defect (51), we introduce 
state-dependent masses me∕g = m̄ ± Δm∕2 . Moreover, we take into 
account imperfections in the preparation of the initial state, result-
ing in state-dependent momenta pe∕g = p̄ ± Δp∕2 and, possibly, 
state-dependent barrier heights Ve∕g = V̄ ± ΔV∕2 . Together with 
the mass defect, possible state-dependent momenta and barrier 
heights are visualized in Fig. 5. Here, we assume that Δm∕m̄ , Δp∕ p̄ , 
and ΔV∕ V̄  can be treated as perturbations.

To first order in all perturbations, the state-dependent transmis-
sion amplitude

fulfills the relations TeTg ≈ T̄ and (Te + Tg )∕2 ≈ T̄ due to the intrin-
sic symmetry, where we defined the mean transmission coefficient

Hence, the visibility of the Ramsey fringe is not affected to lowest 
order of the perturbations. In a similar manner, we expand the 
phase φj = arg (tj) of the transmission amplitude given by

and obtain, up to the first order in all perturbative parameters, the 
expression

The expansion coefficients associated with the mass defect and dif-
ferent potential heights coincide and take the form

In particular, the contribution is negative for all values of ε̄ and ̄ , so 
that Φm = −∣Φm∣. Imperfections in the initial preparation of mo-
menta lead to the expansion coefficient

The phase induced by two different state-dependent momenta cor-
responds to a differential Doppler shift p̄Δp∕m̄ , which is apparent 
from the relation

Additional phase contributions arise when moving to a tunneled 
Ramsey clock described by the two internal states with frequencies 
ωj = ω̄ ± Δω∕2 and their difference Δω. Including the respective 
rest energy and relying on the time-dependent Schrödinger equa-
tion, the transmitted internal states are given by

�
−

ℏ
2

2mj

∂2

∂x2
+ Vj(x)

�
∣ j⟩ = Ej ∣ j⟩ (13)

Vj(x) =

{
Vj 0≤x≤a

0 otherwise
(14)

tj =
4iκ0,jκ1,je

iaκ0,j

(κ0,j+ iκ1,j)
2eaκ1,j − (κ0,j− iκ1,j)

2e−aκ1,j
(15)

Te∕g =∣te∕g∣
2 = T̄±Tm

Δm

2m̄
±TV

ΔV

2V̄
±Tp

Δp

2p̄
+ … (16)

T̄ =

�
1−

1

4ε̄(ε̄−1)
sinh2(̄

√
1−ε̄)

�−1
(17)

φj= arctan

�
(2εj−1)tanh(j

√
1−εj)

2
√
εj
√
1−εj

�
−j

√
εj (18)

φe∕g =φ̄±Φm
Δm

2m̄
±ΦV

ΔV

2V̄
±Φp

Δp

2p̄
+ ⋯

(19a)

Φm=ΦV = −
1

8

T̄

ε̄(ε̄−1)

�
2̄

√
ε̄(2ε̄−1)−

�
ε̄

1−ε̄
sinh(2̄

√
1−ε̄)

�

(19b)

Φp=
− ̄ T̄

8(ε̄−1)
√
ε̄

�
1−4ε̄−cosh(2̄

√
ε̄−1)+

2sinh(2̄
√
ε̄−1)

̄

√
ε̄−1

�

(19c)

Φp

Δp

p̄
= Φp

1

2ε̄

p̄Δp

m̄

1

V̄
(20)

A B C

Fig. 5. Perturbations contributing to the interference signal. These phase con-
tributions may occur from imperfect preparation of the initial momenta Δp (A), the 
relativistic mass defect Δm (B), or state-dependent barrier heights (C). While the 
mass defect is an intrinsic property, state-dependent momenta and barriers can be 
mitigated with proper schemes, see the Discussion.
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and include phases from the internal states, the motion of the atoms, 
and tunneling. After a Ramsey sequence, we measure the phase

where possible state-dependent initial momenta and potentials are 
taken into account. The tunneling time arises for small mass defects

As a consequence of the dispersion relation, we obtain a modifica-
tion of the laboratory time related to time dilation, i.e.

Moreover, imperfect preparation of the initial state may lead to 
state-dependent initial momenta and gives rise to the differential 
Doppler time

with the Wigner phase time τP = ℏ∂ Ēφ̄ = ℏΦp ∕ (2Ē) . Consequent-
ly, the proposed scheme can be used to measure the Wigner phase 
time (10) with a Ramsey clock when preparing internal states with 
different momenta. Similarly introducing a Larmor frequency ωL = 
ΔV/ℏ connected to the height difference of the state-dependent bar-
riers, barrier imperfections lead to the Larmor time τL of the form
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