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The analogs of optical elements in light-pulse atom interferometers are generated from the interaction of
matter waves with light fields. As such, these fields possess quantum properties, which fundamentally lead to
a reduced visibility in the observed interference. This loss is a consequence of the encoded information about
the atom’s path. However, the quantum nature of the atom-optical elements also gives an additional degree of
freedom to reduce such effects: We demonstrate that entanglement between all light fields can be used to erase
information about the atom’s path and by that to partially recover the visibility. Thus, our work highlights the
role of complementarity on atom-interferometric experiments.
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I. INTRODUCTION

Light-pulse atom interferometry [1-3] is a powerful tool
with unique applications [4], such as high-precision gravime-
ters [5], gyroscopes [6], and tests of fundamental physics
[7-10]. These interferometers are implemented in a semiclas-
sical manner, where beam splitters and mirrors are realized
by diffraction from intense classical light pulses [11]. In light
of the current drive toward optical cavity-based atom interfer-
ometers [12—16], we study the effect of quantized light fields
generating the atom-optical elements [17], and we discuss
scenarios in which they are entangled with each other.

Atomic diffraction from optical fields in cavities depends
on the particular photon statistics of the light [18-20]. There-
fore, the quantum nature of light can be used as a lever
to control the diffraction and even perform quantum opera-
tions on the center-of-mass (c.m.) motion of the atom [21].
During the diffraction process, both the atom and the light
field become entangled. As a consequence, the atom can be
used for quantum nondemolition measurements on the light
field [22,23] and there are schemes to reconstruct entangle-
ment between multiple cavities [24]. In turn, there have been
proposals to generate quantum states of light through atom
interferometers [25].

Besides these single-atom considerations, Raman superra-
diant transitions [26,27] or diffraction from optical cavities
with quantized light fields are one promising route to generate
quantum states with metrological gain for atom interferom-

* tobias.asano @alumni.uni-ulm.de; tobias-asano @outlook.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2022/4(1)/013115(10) 013115-1

etry [28,29]. The sensitivity of atom interferometers can be
enhanced even further if one performs measurements on the
diffracting light fields [30-33], thus recycling the information.

However, there is also a downside to the entanglement be-
tween atom and light, and the quantized nature of light can be
detrimental for metrological applications [34]. For example,
information about an atom’s path may be encoded into light
fields and give rise to a significant drop in visibility. Such
effects on atom interferometers have already been studied
[17], and superpositions are one possible route to overcoming
such issues, where, as a prime example, intensive coherent
states give rise to the classical limit. However, another feature
of quantum light has not been studied in this context so far:
the possibility to entangle the diffracting light fields.

In our article, we study initial entanglement of atomic
beam splitters and mirrors in a Mach-Zehnder interferom-
eter to partially restore the loss of visibility arising from
quantized pulses. This way, we shed light on aspects of com-
plementarity: the connection between a reduced visibility of
the interference signal and the corresponding presence of
full welcher-Weg (which-way) information [2,11,35-37] en-
coded into the light fields. While quantum eraser experiments
[38,39] overcome this obstacle by erasing the information
after the measurement, we use initial entanglement to suppress
the physical process of imprinting welcher-Weg information.

II. INTERFEROMETER MODEL

We model the atomic diffraction used for the atom-
optical manipulation via the light-matter interaction in a
Jaynes-Cummings model [40—42]. In this description, the
Hamiltonian
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governs the system’s dynamics where a quantized light field
with frequency w interacts with a two-level system, consisting
of a ground state |g) and an excited state |e) separated by
the energy difference /iw,. In addition to the conventional
model, we include the atom’s c.m. motion and add a kinetic
term with the atom’s momentum p and mass m. The bosonic
annihilation and creation operators & and &' of the light field in
Eq. (1) obey the canonical commutation relation [, a'] = 1.
Moreover, the displacement operator exp{=%ikZ} is responsible
for the momentum transfer +/k upon an internal transition
and contains the wave number k of the light field. It depends
on the position Z of the atom, obeying the commutator relation
[z, p] = ih. In particular, we associate the annihilation of a
photon encoded in a with a momentum transfer %k, while the
creation of a photon from & is associated with the momentum
transfer —/ik, in accordance with energy-momentum conser-
vation. Here, Q = |Q|e” is the complex coupling constant of
the light-matter interaction, and it can be separated in ampli-
tude |2| and phase 6. Solving the Schrodinger equation on
resonance for this Hamiltonian, the time evolution can be
written in terms of the scattering operator
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for short pulses and monochromatic plane waves [43], similar
to Ref. [17]. In addition, we disregard the effects of a detuning
and velocity selectivity in the scattering operator. Here, we use

the abbreviations
®
) and §; = sin (E ) 3)

N ®

Cp = COS >
Moreover, i = a'a denotes the photon-number operator, ® =
|Q2«/AT is the pulse area for the pulse duration 7, and 7 is
the average photon number of the light field. The scattering
operator S encodes resonant Rabi oscillations between the
ground and excited state based on single-photon transitions.
Depending on the pulse duration 7 for a fixed average photon
number 71 of the field, a pulse area of 7 /2 and 7 realizes a
beam splitter or mirror, respectively.

Single-photon Rabi oscillations have been implemented
for Rydberg atoms [45,46] in cavity-based setups. These
high-finesse cavities with small mode volumes are necessary
to reach a sufficiently high interaction strength. While it is
possible to drive Rabi oscillations with low photon num-
bers, it is impractical for atom interferometry: The sensitivity
of accelerometers depends on the enclosed spacetime area,
which is maximized in high-precision devices. This drive
toward large spatial separations [47] is in conflict with the re-
quirements of small mode volumes. Current developments of
cavity-based atom interferometers [12—-16] strive for a cleaner
mode structure and higher intensities. However, there will be
no application of such setups to a low-photon number regime
in the foreseeable future.

Even though the first generation of light-pulse atom inter-
ferometers with traveling waves was based on single-photon
transitions [44,48], two-photon transitions inducing Raman
or Bragg diffraction have developed into the state of the

-
-

art [1,49]. They have the benefit of working with long-lived
ground states, where the duration of the interferometer and by
that its sensitivity are not limited by severe restrictions given
by the finite lifetime of the involved atomic states. However, in
light of proposals of detectors for gravitational waves and dark
matter [50,51], single-photon clock transitions as described
by the Jaynes-Cummings model have again shifted into the
focus of research [52-54]. Yet, such schemes are limited by
the lifetime of the excited state, in the case of a strontium
clock transition [54] approximately to 0.14 ms.

Independent of this development, we emphasize that ef-
fective two-photon transitions could have been used in our
model in a similar manner. In this case, the photonic cre-
ation and annihilation operators are replaced by raising and
lowering operators of the Schwinger representation of angular
momenta [55] that encodes two radiation modes. However, we
focus in this article on single-photon transitions for clarity, but
we emphasize that a generalization is possible but leads to a
more cumbersome description.

Hence, by introducing the time evolution defined by

A2 2
U= exp{—i(zl,;—h + ;wm +a)a|e)(e|>T} (4)

between two light pulses separated by a time interval T,
we define the operator sequence that describes the evolution
through the Mach-Zehnder interferometer shown in Fig. 1 by

vz = SPOSV0S©. S

The three pulses in the sequence of Eq. (5) denote individ-
ual solutions to the Schrédinger equation for the interaction
of the fth light field with the atom. To this end, we add
a superscript £ to the scattering operator from Eq. (2) for
each pulse. In contrast to the single pulse operator S, the £th
pulse described by S contains modified operators i, = a}a,
with [a,, &z] = &y, independent mean photon numbers 7y
and pulse areas ®,, as well as individual phases 6, arising
from the coupling constant. Similar to conventional classical
fields, we use pulse areas ®; = 7 and ®y = @, = /2, that
is, beam splitters sandwiching a mirror pulse. The pulse area
of the £th pulse ®, may be realized by either adjusting the
mean photon number 71, or the pulse duration 7,, which can
be chosen independently for every light field. Note that the
phase 6, of the coupling constant might also differ from pulse
to pulse. Formally, the three pulses S act on field states |,)
that reside in individual Hilbert spaces .

The observed interference signal of the interferometer de-
picted in Fig. 1 takes the form

e A
[ = (¥|® (gl Uy, [1,0mz 1g) ® W) = S+ Veos @)
(©6)

and results from a postselection on the ground state [43]
through the projector IT ¢ = 18)(gl. The expectation value is
taken for an atom initially in the ground state |g) and an initial
state |¥) containing the c.m. motion and the three light fields.

The transition element of the evolution operator that de-
scribes an atom entering and exiting the interferometer in the
ground state takes the form (g|Unz|g) = O; + O, and can be
divided [43] into a superposition of two relevant branches, as
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FIG. 1. Spacetime diagram of a closed Mach-Zehnder atom in-
terferometer based on single-photon transitions. A first 7 /2 pulse
creates an internal and c.m. superposition of the atom that enters
the interferometer in the ground state |g) (blue). This superposition
generates two branches. The excited state |e) (green) evolves for a
time 7' on the upper branch, whereas the ground state is associated
with the lower branch. A 7 pulse reverts the respective populations,
and both branches are exposed to a time evolution for another time
interval 7. They are then mixed by a final 7 /2 pulse giving rise to
the interference signal / depicted on the right side of the figure that
can be measured by postselecting on the ground-state population.
The interference fringes generated by the phase @ can be observed
with visibility V and amplitude A, shown in the inset. In general,
imperfect pulses give rise to atom losses that decrease the detected
signal and are highlighted by dotted lines. The dashed line circling
the laser sources indicates an initial entanglement of the three light
fields. Even though the figure shows single-photon transitions as also
employed in the Bordé-interferometer [44], an analogous diagram
for two-photon Raman diffraction gives rise to similar effects, as
explained in the main body of the article.

shown in Fig. 1 and derived in Appendix. The operators O;
and O, act on the c.m. motion of the atom and on the light
fields, and they describe the propagation along the lower and
upper branch. They contribute to the interference signal from
Eq. (6) through the visibility V and phase ® defined by

2(0/0u)w

Ve'® = ATA AT A
(01 Ol + Ouou)\ll

(N

as well as the amplitude A = 2(0? O+ OAIOAU)\I,. Here, the
index W underlines that all expectation values are taken with
respect to |W), which describes the initial c.m. motion and
initial light fields. We emphasize that V may flip its sign due
to negative values of the trigonometric functions 55, and ¢&;,.
In contrast to that, we include phases encoded in the states of
the light fields always in ®. The three possible combinations
of operators take the form

AT A ) ) )
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because the field and the atomic operators commute. The
c.m. motion cancels in Egs. (8a) and (8b). However, in the
overlap from Eq. (8c) it reduces to a pure phase factor given
by AO = 6y — 260, + 6, if the interferometer closes in phase
space [56]. In the following discussion, it therefore suffices to
solely consider light field states |¢) € Ho @ H| @ H, when
computing the expectation values in Eq. (7), as the expectation
values are independent of the initial c.m. state included in |¥).

For instance, light fields in a Fock state give rise to a
vanishing visibility [57], because they carry full welcher-Weg
information of the atom, as discussed later in Fig. 3(a). Con-
trary to coherent states whose phases can be inferred from
the interference signal, atom interferometers cannot be used
to infer the phase of Fock states. In fact, Fock states lead to a
vanishing visibility so that a phase measurement is meaning-
less.

In any case, the vanishing visibility can be partially com-
pensated by involving superpositions of Fock states, whose
phase difference can be inferred from the interference signal
[17]. For example, a superposition of two Fock states in each
field gives rise to a nonvanishing visibility that reaches 1/8
for high photon numbers. Moreover, coherent states that are a
good quantum-mechanical approximation for classical laser
pulses lead to unit visibility for high photon numbers and
introduce the known laser-phase contribution into the classical
interference signal [17,46].

III. CLASSES OF ENTANGLEMENT

While there are established approaches to quantifying
entanglement of multipartite two-level systems [58,59], the
situation becomes more subtle for the entanglement of mul-
tiple Fock spaces [60,61]. However, we select a subset of
two orthogonal states || ¢) and |1,) € H, for each pulse £ =
0, 1, 2. In particular, we require orthogonality (|¢|1¢) =0
and normalization (}, | ¢) = (1¢ | T¢) = 1. Consequently,
we restrict ourselves to fields

W) = i liojik:) ©)
ijk
for ijk € {{, 1} that can be expressed through these subsets.
To shed more light on different categories of tripartite
entanglement, we briefly discuss two prime examples of en-
tangled states: The Greenberger-Horne-Zeilinger (GHZ) state

[62]

1
V2
has the property of a separable reduced density operator
P&, = Tr,|GHZ)(GHZ| independent of the light field ¢
traced over. This type of entanglement is referred to as resid-

ual entanglement. On the other hand, the W state [63] is
defined as

€
3

IGHZ) = —=({0, 41, {2) + 10, 11, 12))  (10)

W) =—(l4o, 41, T2) + o, T1, 42} + 10, 41, 42)),  (AD)
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FIG. 2. One possibility to categorize the entanglement of tripar-
tite states. The four classes are denoted by 2-j, where the number
j indicates the amount of light fields that can be traced out of the
tripartite system, so that the two-party system remains entangled.
We identify the 2-0 class with GHZ-like states and the 2-3 class
with W-like states. The circles around the three systems (denoted by
squares) correspond to general tripartite entanglement, while the con-
nection through wiggly lines between two parties represents pairwise
entanglement. Example states for these classes are shown in the table
below and are constructed by adding all components of the desired
class. For every class, all coefficients have to be nonvanishing except
in the W-like class, where we can choose a vanishing 8 and/or &.

where the reduced density operator remains entangled for any
partial trace over one light field. This class of entanglement is
also known as pairwise entanglement [58].

Both states are inseparable and thus share tripartite entan-
glement. However, they differ by the amount of light fields
that can be traced out of the tripartite system, while the
remaining two-party systems continue to be entangled. This
feature can be used to distinguish and quantify tripartite en-
tanglement [64], as illustrated in Fig. 2. For example, states
like the W state from Eq. (11) carry tripartite entanglement,
denoted by the circle. Tracing over any of the three subsys-
tems (visualized by squares) leaves the other two subsystems
pairwise entangled (symbolized by wiggly lines). In contrast,
tracing over any subsystem of a GHZ-like state leaves the
other two separable (and thus not connected by wiggly lines).
We denote the different classes of states by 2-3 and 2-0 for
three possible pairwise entangled combinations after the trace,
or no combinations at all.

It is also possible to find situations in between: When
we consider a 2-1 state, that is, a GHZ-like state adding
& |10, 41, 42), the reduced density operator remains entangled
only if we trace out one light field, but a trace over the
other two subsystems leads to a separable state. An analogous
scenario is shown in Fig. 2 for the 2-2 state.

Since we use a two-state subset, we can rely on established
measures of tripartite entanglement. Following Ref. [58], we
introduce the measure

3= 2 E Aijk Qi jmOnpk' An' p'm €iir € j j €k’ €Emm’ Enn’ Epp! | » (12)

where the sum is over all combinations of indices that take
the values {], 1}. Here, the Levi-Civita symbol ¢;; takes the
valuese;| = €44 = O0and €4 = —ey; = 1. The measure 73 €
[0, 1] grows with the amount of residual entanglement within
the system, i.e., it is maximal for the GHZ state and minimal

for the W state. The residual entanglement reduces to
73 = 4lap’ (13)
for all states defined in the table of Fig. 2.

IV. INITIALLY ENTANGLED LIGHT FIELDS

In the previous section, we introduced different entangled
states that differ by the amount of residual entanglement ex-
pressed through t3. In the following, we investigate how this
difference influences the resulting visibility V' of the interfer-
ence signal.

A. Entangled Fock states

As we solely require orthogonality and normalization of
the two-state subset from Sec. III that defines the state |¢) of
the three light fields, there are many possibilities in its specific
choice. In the simplest case, we use Fock states || ;) = |ng)
and |1¢) = |my) for all three light fields with photon numbers
ng # my. We already saw that we can characterize entangled
states according to their amount of residual entanglement.
Therefore, we start with the largest possible residual entan-
glement given by a GHZ-like state,

[Ya—0) = e’ |ng, ny, ma) + Be " lmo, my,ma) . (14)

Here, the real constants o and § satisfy a4+ p2=1,and ¥
denotes the phase difference between the two components.
While there are approaches to generate GHZ-entangled pho-
tonic states of a discrete or continuous nature, the fields have
to interact with the atom at different times. Hence, the three
pulsed modes have to be delayed, e.g., through optical fibers
and beam lines, or by using spatially separated cavities. The
latter requires an extension of our description by one dimen-
sion, adding a longitudinal velocity to the atomic beam [65]
or relying on fountain-type experiments [47]. However, the
generation of three entangled and spatially separated modes
or introducing a temporal delay comes with major issues like
the deterioration of such difficile quantum states due to losses.
Producing such states is therefore challenging and beyond the
scope of this article.
The overlap

o n .
(O] Ou)a-0 = € B Cury S,y 125m, 41Cng— 150, X A/T3/2 (15)

results, for example, from the choice my =ny — 1, m; =
ny + 2, and my = ny — 1, and we replaced af = /73/2 from
Eq. (13). In the interference signal, we observe the resulting
interferometer phase

d = A0+ 7, (16)

where ¥ enters instead of the familiar laser phase [2,56].

For g =0 (13 =0), the state from Eq. (14) reduces to
separable Fock states in each light field, and we observe a
vanishing visibility. As illustrated in Fig. 3(a), the photon
numbers remaining after a propagation along the upper and
lower branch differ. Consequently, the light field contains full
welcher-Weg information about the atom’s path, wiping out
the interference signal.

Conversely, for 8 # 0 we observe a nonvanishing visibil-
ity. In particular, for « = g = 1/4/2 (i.e., 73 = 1) and in the
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FIG. 3. Modification of Fock states due to diffraction in a Mach-Zehnder interferometer. For separable Fock states (a), the evolutions along
lower and upper branch are associated with unique photon numbers in all three fields. Measuring the state of any field unveils the atom’s path,
giving access to complete welcher-Weg information. A GHZ state (b) is a superposition of two such components. The photon numbers from the
first component that resulted from a propagation along the upper branch are identical to the ones from the second that arose from a propagation
along the lower branch. The identical photon numbers are highlighted by purple boxes, and the respective propagation is denoted by purple
dashed lines. Because they are indistinguishable, these components interfere and make it impossible to determine the atom’s path with absolute
certainty. For the example of a W state (c), we see that each possible combination of output photon numbers can be associated uniquely with

either the upper or the lower branch. Hence, a measurement of all three fields gives access to the atom’s path with absolute certainty.

limit of high photon numbers, where the difference between
ng and ny & 2 becomes negligible [17], it takes the value
V=1/2>0. an
Recovering the visibility through entanglement corresponds
to erasing welcher-Weg information, as shown in Fig. 3(b).
The GHZ state is a superposition of two separable compo-
nents. For each component, one can infer individually full
welcher-Weg information as described above. However, the
propagation caused by diffraction from two different com-
ponents becomes indistinguishable. For our specific choice
of photon numbers, the photon numbers after propagation
along the upper branch of the first component and along
the lower branch of the second component (highlighted by
purple boxes) are identical. Therefore, they lead to interfering
contributions. A trace over all fields results in only half of the
cases in a distinct determination of the atom’s path. This fact
explains the improvement of the visibility to 1/2 but not to
unity for high photon numbers, because there is still partial
welcher-Weg information encoded into the light fields.
In contrast to the GHZ state, a W-like state,

iv it
[Y—_3) = e |ng, ni, my) + Be'™* |ng, my, ny)
N (18)
+&e" |mg, ny, na)

is a superposition of three tripartite Fock states and con-
tains the least amount of residual entanglement. A pairwise
comparison of these superposed states reveals that there is
one photon number in common. As the overlap operator in
Eq. (8c) contains annihilation and creation operators, the ex-

pectation value always vanishes, and we find

(0{0y)2—3 = 0. (19)

Even though the light fields were initially entangled, we still
observe no interference signal. The reason is illustrated in
Fig. 3(c): We have again full welcher-Weg information about
the atom’s path, since a potential measurement of all three
light fields uniquely reveals whether the atom has propagated
along the upper or lower branch, respectively.

We have already discussed the visibility for the maximal
(GHZ state with 73 = 1) and the least amount (W state with
73 = 0) of residual entanglement. In between, we investigate
the class 2-1 and 2-2 states defined according to the table in
Fig. 2 with a symmetric choice of coefficients.

We use Eq. (13) to determine the amount of residual entan-
glement for these states. Similar to the W-like state, additional
components in the states 2-1 and 2-2 cannot contribute to ad-
ditional terms in the overlap so that we arrive again at Eq. (15).
Figure 4 illustrates the visibility where the circles denote the
results for symmetric coefficients. Increasing the coefficients
continuously while keeping the overall state normalized to
unity corresponds to tuning 73 and gives rise to the continuous
line in Fig. 4. For simplicity, the visibility is shown for values
corresponding to the high photon limit, where we replace the
trigonometric functions that arise, for example in Eq. (15),
by the ideal values of 1/+/2 for a beam splitter pulse and by
unity for the mirror pulse. We see that the visibility rises as
we increase the amount of residual entanglement within the
states and reaches its maximum for the GHZ state.

Beyond the limit of high photon numbers, we can exploit
the asymmetric property of beam splitters and mirrors in the
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FIG. 4. Visibility V in the high photon limit as a function of
residual entanglement 7;. We specify the two-state subset through
Fock states (red) and observe V = ,/73/2. The states with equal
superpositions are denoted by dots and show that the GHZ state
gives rise to the best visibility, whereas it vanishes for the W state.
For superpositions of Fock states (blue) in each component of the
entangled state, the GHZ state again displays the best visibility. If we
vary the coefficient & without changing Fock numbers, we find the
blue dashed curve. The behavior is qualitatively similar to the results
for one Fock state. However, for 73 — 0 the visibility approaches 1/8
as expected for a separable superposition [17]. Expanding the GHZ
state by adding more components, selecting equal superpositions,
and choosing optimal photon numbers, the 2-1, 2-2, and W states
give rise to the visibility denoted by blue crosses. The blue curve
corresponds to a continuous scan of t3, i.e., not to an equal superpo-
sition. For each value of 73, the combination of photon numbers was
chosen to maximize the visibility.

regime of quantized light fields to maximize the visibility. For
instance, in Fig. 3(b) we saw that only one path of each com-
ponent is able to interfere. Consequently, by increasing the
amount of population in these branches, it is possible to attain
a higher visibility than the presented results, in particular for
low photon numbers [17]. However, since the overlap reduces
to the same expression for all the states, the improvement
is a scaling factor independent of the initial state, and the
qualitative behavior of Fig. 4 remains the same.

B. Entangled superposed Fock states

We saw that entanglement can erase welcher-Weg informa-
tion under certain conditions. A similar effect can be observed
for superpositions of Fock states [17]. Therefore, we expect
that a combination of superpositions and entanglement will
improve the visibility even further. To this end, we choose the
subset

|¢»szij and  |1)

€% |r;) + € |s;)

V2

(20)

that consists of a superposition of Fock states with photon
numbers m;, n;, r;, and s; that are pairwise different. Moreover,
we introduce the phases y;, €;, §;, n; that we specify later.

TABLE I. Two-state subsets consisting of superpositions of Fock
states for the GHZ and W states. The photon numbers and phases
specified here are chosen such that we find nonvanishing overlaps
and an effective phase ¢ = ¥y + ] + ¥, observed in the interfer-
ence signal.

State GHZ W
14o) [ng)+¢2%0 [ng+2) 7072 |ng)+¢=00/2|ng—1)
0 T2 V2
110) [ng—1)+¢2%0 ng+1) €390/2 |ng+1)+¢=3%0/2ny—2)
V2 V2
1) I )+e271 iy —4) NP2 1ny) e 12y 1)
1 7 s
111) Iny +2>+ef;’l () 12y —2>+fe—"3"1/2|nl +4)
2 2
112) [n2)+€272 |np+2) €72/2|ny)+¢7 02/ |ny — 1)
2 5 —
112) [y —1)+¢292 |ny+1) €302/2 |y 1) e 392/2 1y —2)
2 V2 V2

In the following discussion, we restrict ourselves to the
regime of high photon numbers. As before, we introduce the
GHZ state

1 . .
|GHZ) = E(e“’/2 1o, b1, 42) + €72 1o, 11, 1)), (21)

Similar to Fock states, only certain choices of photon numbers
lead to a nonvanishing interference signal. One specific choice
is listed in Table I. In the table, we also made a specific choice
for the phases 1; of the superposition, which are connected
to ¥ through the relation ¥ = ¥y + ¥ + ¥». The resulting
interferometer phase corresponds to the one from Eq. (16),
and the visibility takes the value

V=9/16 > 1/2. (22)

As expected, initially entangled states reach a higher visibility
once we replace the Fock states with suitable superpositions.

For the W state consisting of Fock states, we did not ob-
serve any interference because full welcher-Weg information
was still encoded into the light fields. However, for

1
V3
involving superpositions of Fock states from Eq. (20), we
can overcome this obstacle. With a suitable choice of photon
numbers and phases listed in Table I, we find the interfer-
ometer phase from Eq. (16), where again the phases %; from

Table I define ¥ = 9 + ¥ + 9. The visibility for this subset
of states resolves to

W) = —=Jo, 41, 12) + o, 11 42) + 1o, b1, 42) (23)

V=1/4 <9/16. (24)

In contrast to Fock states, the superpositions are able to par-
tially erase welcher-Weg information that was encoded into
the light fields before. However, the maximum visibility for
entangled superposed Fock states is still larger for GHZ states
than for W states.

To gain more insight into the behavior of the visibility
under the influence of both entanglement and superpositions,
we first use the GHZ state with Fock numbers as defined in
Table I and find the blue dashed line when varying o and 8.
We observe again a square-root-like behavior similar to Fock
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states. However, since we use a superposition as a two-state
subset, we arrive in the limit 73 — 0 at a separable state that
is a superposition, which has ¥V = 1/8 as already shown in
Ref. [17]. This limit can be motivated as follows: The choice
of photon numbers similar to Eq. (14) with entangled Fock
states yields a nonvanishing overlap. An even superposition
in each of the three fields implies that only one-half of each
field contributes to the interference signal and thus it decreases
by (1/2)* = 1/8. Similar to the discussion above, we expand
the GHZ state by adding more components and choosing the
same equal superpositions to study the 2-1 and 2-2 state. If we
use in the subset of Eq. (20) the photon numbers of the GHZ
state from Table I, the visibility of the dashed curve cannot
be enhanced as the additional components will vanish in the
overlap trivially. Thus, we improve the visibility by selecting
suitable Fock numbers to reduce the amount of vanishing
components in the overlap. Using this strategy, we find the
visibilities for the 2-1 and 2-2 state in Fig. 4 that are marked
by crosses together with the GHZ and W state.

In addition, the 2-3 state from the table of Fig. 2 is a
generalization of all the other discussed states. Similar to the
discussion above, we now continuously vary 73 by scanning
the coefficients given in the table of Fig. 2. As mentioned
before, for each value of 73 we can enhance the visibility by
an optimal choice of Fock numbers of the subsets defined
in Eq. (20). The resulting solid blue curve in Fig. 4 denotes
the upper bound [66]. The discontinuous parts originate from
points where different Fock numbers yield better visibilities.
While the GHZ state again stands out with the best visibil-
ity (r3 = 1), once we involve superpositions in the two-state
subset, we do not necessarily observe a continuous decrease of
the visibility (73 < 1) anymore due to the competing effects of
entanglement and superpositions that both diminish welcher-
Weg information.

V. CONCLUSIONS

We have determined the interference signal of a Mach-
Zehnder interferometer where quantized light fields serve as
atom-optical elements. Within a two-state subset of possible
states, we used 73 to quantify tripartite entanglement. In fact,
the loss in visibility due to welcher-Weg information can be
erased partially by resorting to initially entangled light fields.
In the simplest case of Fock states in the two-state subset
and a GHZ state, initial entanglement can be used to prevent
the encoding of complete welcher-Weg information that sup-
presses the interference signal. We were able to show that a
visibility of V = 1/2 is possible in the high-photon limit. We
found an analytical dependence of the visibility V o /73 on
the amount of residual entanglement for all investigated initial
states. In addition, we already knew from previous works that
involving separable superpositions yields an improvement in
the visibility. Consequently, we were able to demonstrate that
a combination of both initial entanglement and superpositions
leads to the best interference signal for our choice of possible
states. Indeed, our results underline that it is not mere entan-
glement or superpositions that cause an increase in visibility,
but in fact the amount of welcher-Weg information encoded
into the light fields.

Even though cavities with high finesse can drive Rabi
cycles with low photon numbers, they are impractical for
atom interferometry, where large separations and therefore
large mode volumes are required. Nonetheless, cavity-based
schemes are currently explored for atom interferometry
[12-16], but they do not target a regime where quantization
effects are observable. However, realizing three entangled
fields adds another level of complexity. Entangling three spa-
tially separated modes or introducing a temporal delay comes
with severe issues for the experimental implementation, not
covered in our article. Moreover, single-photon transitions
limit the duration of the experiment to the lifetime of the
excited state. In conventional interferometers, this limita-
tion is circumvented by the help of Bragg- or Raman-based
traveling-wave setups. In principal, our treatment could be
generalized to such two-photon transitions.

Our article highlights that entangled light fields can be used
to mitigate some of the deleterious effects of field quantiza-
tion. Still, perfect visibility, and by that, optimal sensitivity,
is obtained for classical fields or sufficiently strong coher-
ent states. Hence, there is no direct benefit from working
in the considered regime. However, we only discussed a
first-quantized matter wave. The nonlinear interaction and
entanglement of second-quantized many-particle atomic and
optical fields are expected to enhance the interferometric sen-
sitivity beyond the shot-noise limit [28-33]. Thus, we expect
further studies of quantized beam splitters and mirrors acting
on second-quantized atomic systems to demonstrate a true
metrological gain.

The quantization of the diffracting light fields is still
irrelevant in today’s devices with intense laser pulses. How-
ever, the evolution of the field toward cavity-based atom
interferometers is a first step toward regimes where such
quantization effects and the encoding of which-Way informa-
tion may become non-negligible. Our results highlight new
leverage points to circumvent these problems and once more
emphasize the role of complementarity in interferometric ex-
periments.
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APPENDIX: BRANCH-DEPENDENT OPERATORS

Assuming that the atom enters the interferometer in the
ground state |g), the interference signal observed in the exit
port defined by the ground state

1= (¥ (g Uy, 11,0uz |g) ® |W)

arises from the expectation value of the projection opera-
tor ﬁg = |g) (gl|. Hence, the interferometer can be effectively
described by the postselected operator O = (g| Upz |g) that
only acts on the c.m. motion as well as the light fields. The
scattering operators S have a matrix representation with ele-
ments Si(f) = (i| 8 | j) according to Eq. (2) with i, j € {g, ¢}.
Similarly, the evolution from Eq. (4) is diagonal,

A2 2
0= exp{—i<2‘;—h n ;wm)r}<|g><g| +e T le)e]),
(A2)

(AD)

and its matrix elements can be defined analogously. Switching
to this matrix representation, the effective operator is deter-
mined by

0= (g SP0SVTSV 1) (A3)

(Y (E 80 oSy Sy
“ s s2/lo o \sp s

) 5(0) 5(0)
« Ug O ‘?gg ‘ige !
0 U )\SQ SPJ\0)°

After the matrix multiplication, we arrive at four possible
paths

A — Sy Sy &) Sy Sy &)

O = 85 UeeSpg UggSgy’ + Sgg"UggSp ' UeeS,g 45)

+ 800, 80480 + 820, 80,80
through the interferometer. However, the two paths in the
second line of Eq. (AS) correspond to the dotted lines in Fig. 1
and will be spatially separated from the other two paths. As a
consequence, they do not contribute to the interference signal
and can be disregarded, which is the origin of the atom loss
occurring during the mirror pulse. This procedure can be for-
malized by a postselection on a spatial region. Comparing the
remaining two paths through the interferometer in Eq. (A5)
with Fig. 1, we identify
0, = 830,83 Ug S (A6a)

as the operator describing the motion along the lower path,
and the operator

0, = 8D0,, 80,80 (AG)

is the propagation along the upper path.
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