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Abstract
We examine the prospects of utilizing matter-wave Fabry–Pérot interferometers for
enhanced inertial sensing applications. Our study explores such tunneling-based
sensors for the measurement of accelerations in two configurations: (a) a transmission
setup, where the initial wave packet is transmitted through the cavity and (b) an
out-tunneling scheme with intra-cavity generated initial states lacking a classical
counterpart. We perform numerical simulations of the complete dynamics of the
quantum wave packet, investigate the tunneling through a matter-wave cavity
formed by realistic optical potentials and determine the impact of interactions
between atoms. As a consequence we estimate the prospective sensitivities to
inertial forces for both proposed configurations and show their feasibility for serving
as inertial sensors.

Keywords: Matter-wave interferometer; Quantum tunneling; Fabry–Pérot
interferometer; Accelerometry; Gravimetry; Quantum sensing

1 Introduction
Matter-wave sensors allow for high-precision measurements of inertial forces. Promising
candidates include light-pulse atom interferometers [1–4], where beam splitters are real-
ized by diffraction from optical lattices [5], and guided interferometers [6–8] building on
atomtronic circuits [9, 10]. Both approaches are based on the interference of matter waves
propagating along two spatially separated paths. In comparison, the interference effects in-
side a cavity that generates a matter-wave Fabry–Pérot interferometer (FPI) [11–17] cause
distinct tunneling resonances. In this article, we propose two configurations of a matter-
wave FPI and study their suitability for accelerometry or gravimetry.

Optical Fabry–Pérot interferometers [18, 19] consist of two mirrors that form a cavity.
Depending on the properties of the cavity and the wavelength of the incident light, inter-
ference effects cause peaks in the transmission spectrum. These resonances can be used to
filter a specific wavelength of the incident light beam so that the FPI acts as a monochro-
mator [20]. As a consequence, FPIs can be used as accelerometers [19]: An accelerated
or falling cavity only transmits Doppler-shifted resonance frequencies. In this case, the
(massive) mirrors are accelerated (e.g., in a gravitational field), but the effects on the light
waves with their vanishing rest mass are suppressed by the inverse speed of light 1/c, as
highlighted by the gravitational redshift as a first-order effect in 1/c2. In contrast, matter
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waves couple strongly to gravity and have developed into a versatile tool for gravimetry
and accelerometry [21–24].

In order to generalize the concept of optical FPIs to matter-wave experiments [11–17],
we replace the mirrors by optical potentials that act as a barrier for the incident matter
wave. Such barriers can be generated [25, 26] or painted [27] experimentally with the help
of spatial light modulators [28, 29], digital (micro)mirror devices [26, 30], and acousto-
optic deflectors [31, 32]. Tunneling [33–35] leads to a transmission of the incident matter
wave though the barrier. It is a purely quantum effect without any counterpart in classical
mechanics that is used to conventionally describe massive particles. While optical inter-
ferometers can be used as monochromators, matter-wave FPIs can act as velocity [15] and
angular filters [13] for matter waves.

One prominent application of such interferometers in the field of atomtronics is the
use of nonlinear interactions between ultra-cold atoms to obtain a similar behavior to the
Coulomb blockade in tunnel junctions [12] or to create highly entangled many-particle
states [36]. Repulsive self-interaction and finite momentum width of the atomic cloud lead
to a suppression of the resonances of the matter-wave cavity [16, 17]. To our knowledge,
Reference [17] constitutes the only prior research in this context and has broached the
possibility of a matter-wave FPI as an acceleration sensor, based on analytical models.

In this article, we explore the feasibility of developing matter-wave FPIs for practical
accelerometry. In contrast to the previous study, we introduce realistic cavities that are
distorted by gravity and use a numerical time evolution to obtain the uncertainty of ac-
celeration measurements. We introduce experimental observables to identify and isolate
two physical effects susceptible to gravity: (i) velocity filtering of the matter-wave cavity
and (ii) distortion of the transmission spectrum itself. By that, we highlight the poten-
tial of matter-wave FPIs for applications in inertial sensing and bridge the gap between
light-pulse atom interferometry and atomtronics.

In Sect. 2 we study the scattering of a matter wave incident on a cavity made of two
optical barriers and discuss the influence of gravity on the transmission spectrum as well
as the sensitivity of such a setup to gravity. The main contribution is acceleration of the
wave packet prior to scattering. To highlight the effect of gravity on the matter-wave cavity
itself, we determine in Sect. 3 its resonances and their respective widths. In addition, we
discuss the deformation of the wave packet scattered from gravity-distorted barriers. In
Sect. 4, we study a situation where the wave packet is prepared inside the cavity in a super-
position of counter-propagating momenta. In contrast to an incident wave packet, where
the acceleration prior to the interaction dominates, such a configuration isolates the effect
of gravity on the cavity itself. As a consequence the transmission through the left and right
barriers differs and can be used as a sensing device for gravitational or inertial forces. We
conclude with a summary and future prospects of this quantum sensor in Sect. 5.

2 Transmission spectroscopy
2.1 Setup
Figure 1(a) shows the matter-wave Fabry–Pérot cavity consisting of two Gaussian barriers
of height Vb and width σb located at z± = ±(3σb + d/2), such that for a vanishing cavity
length d = 0, the overlap between both barriers is negligible. Gaussian-shaped barriers
represent a realistic approximation of optical potentials that can be generated [25, 26] or
painted [27] experimentally. We consider the case where the initial wave packet is tightly
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Figure 1 Gravitationally distorted matter-wave cavity and wave packet (a) prior to scattering and (b) after
scattering. The matter-wave cavity consists of two Gaussian barriers with height Vb and width σb , at positions
z = z± , chosen such that the overlap between both barriers is negligible for vanishing cavity length d. (a) The
initial wave packet ψ0 is located at z0 and has an initial momentum p0 that corresponds to the kinetic energy
E0 = p20/(2m). The gravitational field disturbs the propagation of the wave packet and the matter-wave cavity.
To account for the influence of the gravitational field g, we take the kinetic energy E = E0 –mg|z0| at the
center of the matter-wave cavity as reference. (b) The initial wave packet scatters from the matter-wave cavity,
resulting in a superposition of reflected and transmitted wave packet |ψL|2 and |ψR|2. To obtain the number
of transmitted atoms, we introduce the operator P̂2R = P̂R that projects on the region to the right of the cavity
(shaded in red)

confined in the transverse direction within a quasi one-dimensional waveguide, where the
transverse length scale is smaller than the Rayleigh range of the light beams generating the
Gaussian barriers. Perturbations of the cold atomic cloud associated with the transverse
confinement are therefore neglected in our treatment. When the matter-wave cavity is
disturbed by a gravitational field leading to the acceleration g , the Gaussian barriers be-
come asymmetric and the motion of the wave packet is affected. The transmission of a
guided wave packet through the gravitationally disturbed matter-wave cavity is modeled
by the time-dependent one-dimensional Schrödinger equation
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where � denotes the reduced Planck constant and m the mass of the atoms described by
the wave packet 〈z|ψ〉 at time t. The position and momentum operators ẑ and p̂ fulfill
the commutation relation [ẑ, p̂] = i �, where the corresponding position and momentum
eigenstates are defined by ẑ|z〉 = z|z〉 and p̂|p〉 = p|p〉.

For the initial state, we assume a Gaussian wave packet with position variance �z and
position z0 = –3�z – 6σb – d/2 defined via

ψ0(z) = 〈z|ψ0〉 =
1
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4�z2 + i
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in position representation. As a consequence, the overlap between the initial wave packet
and the matter-wave cavity is exponentially small and thus negligible. The initial momen-
tum p0 of the wave packet can be imparted, e.g., via Bragg or Raman diffraction [37] and
the small momentum width �p = �/(2�z) required for the interferometer can be prepared
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via Delta-kick collimation [4, 38]. Figure 1(b) shows the scattered wave packet represented
as superposition of reflected and transmitted wave packets that depend on the properties
of the matter-wave cavity as well as gravitational acceleration.

2.2 Transmission spectra
To describe the fraction of transmitted atoms, we introduce the operator P̂2

R = P̂R that
projects on the space to the right of the matter-wave cavity, shown in Fig. 1(b). Using the
projector P̂R, the fraction of transmitted atoms becomes [39]

TR = 〈ψsc|P̂R|ψsc〉 =
∫ ∞

z+

dz
∣∣ψsc(z)

∣∣2 =
∫ ∞

–∞
dp

∣∣τ (p)
∣∣2∣∣ψ0(p)

∣∣2 (3)

where ψsc(z) = 〈z|ψsc〉 describes the scattered wave function after a finite time t, which
is long enough so that no population is observed inside the cavity. The last equality only
holds in the limit t → ∞ for vanishing gravitational acceleration g = 0. If the wave packet
is launched against gravity, i.e., for g > 0, the transmitted wave packet will eventually im-
pinge a second time on the cavity after passing the apex of its trajectory. We exclude such
bouncing effects by choosing an appropriate finite time in our simulations, where any pop-
ulation that remains in the cavity can be neglected (< 1%) and the transmitted wave packet
has not yet returned. In position representation the projector reduces to an integral of the
scattered wave function from the position z+ of the second barrier to infinity. For the de-
scription in momentum representation without gravity we consider the decomposition of
the initial wave packet into momentum eigenstates p with individual transmission ampli-
tudes τ (p) that give rise to the transmission spectrum |τ (p)|2. Thus, the total transmission
coefficient TR of a wave packet reduces to the transmission coefficients for individual mo-
mentum eigenstates weighted by the initial momentum distribution |ψ0(p)|2. Both repre-
sentations coincide in the asymptotic limit t → ∞ while the numerical simulation ends
after a sufficiently large but finite time. The details of the implementation are discussed
below.

2.2.1 Plane waves
The transmission spectrum in Fig. 2 for vanishing accelerations is obtained via the trans-
fer matrix ansatz following Refs. [40, 41] that allows for the determination of transmission
coefficients for momentum eigenstates. The transfer matrix relates the wave function to
the left of the cavity with the wave function to the right of the matter-wave cavity. Conse-
quently, its elements contain information about the transmission process. The Gaussian
barriers are approximated by step-wise potentials, each described by a transfer matrix that
can be determined analytically. The total transfer matrix is given by concatenation of the
substeps, as a consequence of the semi-group property of transfer matrices [41]. Increas-
ing the accuracy of the approximation, the number of transfer matrices increases and,
in the limit of infinite number, the approach becomes exact. For our simulation, we in-
creased the number of steps so that the result converged. Our set of parameters gave rise
to a step size of 0.27 μm. An additional possibility to obtain the transmission spectrum
of the matter-wave cavity is given by the WKB approximation [14, 42] that uses a semi-
classical expansion to obtain an approximate wave function. However, this semi-classical
technique is only valid close to the top of the barrier and is therefore not suited to treat the
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Figure 2 Transmission spectrum of a matter-wave cavity for a momentum eigenstate (solid blue) with kinetic
energy E and for a momentum distribution (dashed blue, �z = 12 μm) as well as vanishing gravitational
acceleration g = 0. The peaks in the transmission spectrum give rise to resonances whose widths increase for
larger kinetic energies. We scale the distance between two resonances by the cavity length (here d = 15 μm)
and the width of the individual resonances is related to the width of the barriers (here σb = 1 μm,
Vb = 1.42× 10–25 J). The spectrum is obtained by the transfer matrix approach and discretizing the total
transfer matrix into 102 sub-matrices

tunneling of the narrow resonances at low energies, which are at the focus of this article.
We therefore refrain from presenting a comparison.

Calculating the fraction of transmitted atoms for different momenta corresponding to
the momentum eigenstates p leads to the transmission spectrum depicted in Fig. 2. The
distinct peaks in the spectrum give rise to resonances that depend on the properties of
the matter-wave cavity. Compared to the optical FPI, the reflectivity of the mirrors corre-
sponds to the barrier width and the distance between the mirrors to the distance separat-
ing the Gaussian barriers. In the transmission spectrum we observe sharp resonances for
low kinetic energies and broader peaks for larger energies, leading to an overlap of sev-
eral resonances at larger kinetic energies. Resonances corresponding to larger energies are
bound more weakly due to their vicinity to the continuum and the decreasing width of the
barriers, resulting in shorter lifetimes and subsequently broader resonances. In analogy
to the optical cavity, the matter-wave cavity filters specific momenta of the initial wave
packet, and acts as a monochromator for sufficiently narrow resonances.

Approximating a gravitationally distorted matter-wave cavity by rectangular barriers
with asymmetric heights allows to define the transmission of a momentum eigenstate an-
alytically similar to an optical FPI [17]. With the help of Eq. (3), these results can be used
to find the transmission of a broad wave packet. Finite momentum widths and interatomic
interaction of atomic clouds suppress the resonances, conversely reducing the interaction
and the momentum width improves the resonant peaks.

2.2.2 Wave packets
We determine the numerical time-evolution of a wave packet scattered from a matter-
wave cavity consisting of two realistic barriers by a Fourier-split step method. The upper
limit of integration in position as well as the lower and upper limit in momentum coincide
with the end of the position and momentum grids. Moreover, the final time of the numer-
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ical evolution is chosen such that a negligible fraction of atoms is left inside the cavity
(< 1%) and the overlap of reflected and transmitted waves with the matter-wave cavity is
negligible.

The gravitational field disturbs the motion of the wave packet and consequently influ-
ences the fraction of transmitted atoms. To give greater insight into the resonances of
the matter-wave cavity, we study the effect of the gravitational acceleration g on the wave
packet close to microgravity [4] as well as the influence of the initial momentum p0. As
reference scale, we chose the kinetic energy E at the center of the matter-wave cavity and
as a consequence acceleration and deceleration of the wave packet, depending on the sign
of the gravitational acceleration, are included in the initial kinetic energy E0 = E + mg|z0|.
In particular, this choice sets a lower bound to the initial momentum for negative gravita-
tional accelerations.

The transmission spectrum for a wave packet, in a gravitational field, scattered from the
matter-wave cavity is shown in Fig. 3. We observe no significant shift of the resonances
due to the gravitational field, but for g > 0 the resonances wash out, in contrast to g < 0
where the resonances become more prominent. Due to gravity, the barriers of the matter-

Figure 3 Transmission (top) of two wave packets with different initial positions z0 (left and right) under the
influence of gravity and the relative uncertainty (bottom) of these gravimeters. Initially, the wave packet
(initial width �z = 12 μm) receives the momentum kick p0 and subsequently scatters from the matter-wave
cavity (σb = 1 μm, Vb = 1.42× 10–25 J, and d = 15 μm). We chose the final time of numerical evolution tf = 1 s
to ensure a negligible fraction of atoms remain inside the cavity. To take into account the influence of the
gravitational field g prior to scattering, we take the kinetic energy E = E0 –mg|z0| as reference where
E0 = p20/(2m) describes the initial kinetic energy and z0 the initial position of the wave packet. The resonances
in transmission (top) occur for the same momenta as for momentum eigenstates, but are less prominent due
to the finite width �z of the wave packet. A similar effect is induced by gravity, so that the resonances wash
out for g > 0, while they are more prominent for g < 0. The relative uncertainty (bottom) estimates the
sensitivity of the matter-wave cavity with respect to gravity by a measurement of the fraction of transmitted
atoms. For small gravitational accelerations the relative uncertainty diverges. This effect is represented by
white, visualizing relative uncertainties that exceed the maximum value of the colorbar. The regions of
minimal uncertainty (dark blue) define the desired working points of the sensor. While δgR denotes the
relative uncertainty for an experiment with N particles and ν repetitions, we plot the quantity

√
N
√

νδgR
which is the single-particle uncertainty without repetitions, assuming shot-noise limited measurements with
non-interacting particles
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wave cavity are asymmetric and thus the wave packet experiences a different slope while
coupling into the cavity. Consequently, the momentum width of the wave packet gets dis-
torted depending on the value of g and modifies the transmission. In the next section we
study the effects of wave packet deformations in more detail. The matter-wave cavity still
acts as a monochromator, that is, only a specific class of momenta is transmitted and there-
fore the propagation prior to the interaction is severely affected. In summary, the mean
kinetic energy and the width of the wave packet are crucial when coupling into the matter
wave cavity.

2.3 Sensitivity to accelerations
To quantify the uncertainty of an acceleration measurement, we use Gaussian error prop-
agation [43] and find for the error of TR = TR(g,E) the relation

�T2
R = |∂gTR|2�g2

R + |∂ETR|2�E2, (4)

where �gR is the uncertainty of the gravitational acceleration obtained from a transmis-
sion measurement and �E the error of E = E0 – mg|z0|. If we assume that the initial po-
sition and initial kinetic energy are known with certainty, we can connect �E = |mz0|�gR

to the uncertainty of the acceleration and hence obtain

δgR =
�gR√
N

√
νg

=
�TR√

N
√

ν
√|g∂gTR|2 + |mgz0∂ETR|2 . (5)

Here, we have included the number of measurements ν as well as the number of atoms N in
the atomic cloud. If we use the variance of the observable as a measure for the uncertainty
of the transmission, i.e., �T2

R = 〈ψsc|P̂2
R|ψsc〉 – 〈ψsc|P̂R|ψsc〉2, and use the idempotence of

the projector P̂2
R = P̂R, we obtain the relative uncertainty δgR directly from the transmission

spectrum with the help of Eq. (5) and �T2
R = TR(1 – TR).

Another measure beyond Gaussian error propagation is the classical Fisher informa-
tion [44] that gives rise to the sensitivity obtained for a specific measurement and ob-
servable. For pure states and analytical expressions, the Fisher information can be com-
puted straightforwardly. However, there is no analytical solution for the quantum state
after tunneling through gravitationally distorted Gaussian barriers. One approach to treat
the problem in an analytical manner [17] is to approximate the cavity by two perfectly
rectangular barriers of different heights. This height difference is chosen to correspond
to the potential difference caused by gravity over the cavity length so that the linear po-
tential inside the cavity can be neglected. In this way one can obtain an expression for the
classical Fisher information of momentum eigenstates. One can also include the effects of
wave packets by averaging over such eigenstates, in analogy to the semi-analytical model
introduced above. In this case, optimizing the cavity length depending on the initial wave
packet leads to an increased sensitivity. The overall sensitivities in such a simple model
are of the same order of magnitude as those observed below. Moreover, we will show that
the width of the wave packet is affected by realistic Gaussian barriers so that the results of
the optimization procedure cannot be easily transferred to our setup.
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Inspection of Eq. (5) shows that two different effects contribute to the relative uncer-
tainty: (i) The dependence of the transmission spectrum on accelerations itself is included
in |g∂gTR|. (ii) The contribution |mgz0∂ETR| is caused by the propagation prior to impact
and scales with the initial position z0.

For one experimental run, the cold atomic cloud of width �z is prepared at position
z0 and experiences a momentum kick p0, e.g., imparted by Bragg diffraction [37]. Subse-
quently, the atoms propagate in the gravitational field causing a shift of the momentum
distribution, as expected from a drop experiment. When the atoms impinge on the barri-
ers, the filtering properties of the resonances therefore provide a measure for the shift of
the momentum distribution. In this sense, the experiment can be seen as a conventional
drop experiment that measures a momentum distribution in the near field. However, the
resonances in the transmission spectrum themselves are also distorted by gravity, an effect
that has no analogy in a drop experiment.

2.3.1 Estimates and comparison to light-pulse atom interferometers
The sensitivity of the matter-wave FPI obtained from Eq. (5) is shown in Fig. 3 and reaches
sensitivities up to

√
N

√
νδgR ≈ 2 for a single particle and single run. To compare the sensi-

tivity of the FPI to Mach-Zehnder atom interferometers (MZI), we assume a preparation
time of approximately 300 ms and 107 atoms of rubidium 87 [45]. Close to the optimal
working point at E/Vb = 0.77 and g = –0.8 mm s–2 for z0 = –49.5 μm, the sensitivity of the
FPI is 500 nm s–2 Hz–1/2 with the corresponding duration of the experiment of 350 ms. In
current experiments [45] with MZIs, sensitivities of approximately 500 nm s–2 Hz–1/2 with
a repetition rate of 2 Hz have been achieved. For comparison, the sensitivity of classical
sensors based on MEMS [46, 47] are around 1 μm s–2 Hz–1/2 depending on the experiential
design. The estimated sensitivities of the FPI and the experimentally achieved sensitivities
of the MZI are of the same order. However, we have omitted any uncertainty of prepara-
tion of the initial wave packet that limits the sensitivity in our analysis and compared a
theoretical analysis to an actual experiment. In fact, the initial conditions have to be veri-
fied by separate measurements akin to drop experiments. Hence, the estimates underline
the potential of the presented technique, highlighting only its intrinsic limitations without
claiming a competitiveness to an atomic MZI.

While the sensitivity of the MZI to accelerations scales quadratically with interferom-
eter time, the required free-fall distance of the matter waves scales the same way. Some
terrestrial atom interferometer experiments now operate with matter waves spanning on
the order of tens of meters [48]. In contrast, the interaction region of the FPI considered
in our study is relatively small, namely around 30 μm. In fact, in Ref. [17] the size of the
interaction region was used as a figure of merit for a comparison of both concepts, but
this is only one factor. For example, comparing experiments of the same duration can still
lead to a different result.

Since the beam splitters and mirrors of a standard MZI are implemented by diffraction
of the matter waves from counterpropagating light fields, where the laser phase differ-
ence is imprinted onto the diffracted component, such devices are sensitive to laser phase
noise. On the other hand a matter-wave FPI measures the fraction of transmitted atoms,
and since the optical potentials depend on the intensity of the optical field, they are insen-
sitive to laser phases. Therefore, the matter-wave FPI is a robust sensor with respect to
laser-phase instabilities associated with the optical barriers and is operated in a compact
interaction region that is favorable for miniaturized quantum sensors [49].
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2.3.2 Connection to Bragg spectroscopy
We have demonstrated that the matter-wave cavity acts as a monochromator and that this
velocity filtering has a major impact on its sensitivity to accelerations. The effect can be
seen as a measurement of the momentum distribution in the near field, after a certain
time of acceleration. To compare the monochromator properties of the matter-wave FPI
to Bragg spectroscopy [50–52], we consider the same experimental setup as before: A cold
atomic cloud of width �z at position z0 is released in a gravitational field with initial mo-
mentum p0. After a certain time of free fall, we apply long velocity-selective Bragg pulses
with an effective Rabi frequency 
 to diffract a fraction of the expanded wave packet with
a momentum transfer �kB. For our set of parameters and a gravitational acceleration of
0.5 mm s–2 a time of free fall of about 60 ms corresponds to the distance used for trans-
mission spectroscopy. Because the diffraction process is sensitive to the Doppler detuning,
it can also be used to determine the momentum distribution after some acceleration. For
a mirror pulse neglecting higher-order diffraction, we define the velocity width through
a Doppler detuning νFW, which has the dimensionless form εFW = νFW/
 = 1.597 and is
determined by 1/2 = (π/2)2 sinc2(π/2

√
1 + εFW), i.e., by the full width at half maximum.

We find that the velocity selectivity of the Bragg pulse is comparable to that of a matter-
wave cavity if the condition �
j = �j�kB/(2

√
2mEr,jεFW ) is satisfied. Here, Er,j is the en-

ergy of a particular resonance and �j its width. The numerical procedure to find these
resonances is discussed in Sect. 3. For resonances comparable to the matter-wave cav-
ity considered in this article we obtain the Bragg Rabi frequencies shown in Table 1. If
compared to typical Bragg pulses, which have Rabi frequencies on the order of kilohertz,
the frequencies shown in Table 1 correspond to extremely long pulse durations. More-
over, such a measurement scheme also suffers from the uncertainty of the initial condi-
tions.

2.3.3 Exclusion of propagation effects
We have omitted so far any errors of the initial conditions, which severely deteriorate
the sensitivity of the sensor. The matter-wave cavity filters the momentum distribution
at impact and thus the influence of the gravitational acceleration on the wave packet
prior to scattering can be determined. However, the initial position and by that the du-
ration of the acceleration period needs to be known with sufficient precision, in anal-
ogy to drop experiments. To estimate the intrinsic sensitivity of the matter-wave cav-
ity, we omit the contribution |mgz0∂ETR| to the denominator in Eq. (5). The obtained
sensitivities together with the transmission spectra of two wave packets with different

Table 1 Resonance energies Er,j , and widths �j of a matter-wave FPI which gives the same velocity
selectivity of a Bragg pulse with effective Rabi frequency 
j (barrier width σb = 1 μm, barrier height
Vb = 1.42× 10–25 J, dimensionless Doppler width εFW = 1.597, massm = 1.4431609× 10–25 kg of
87Rb and cavity length d = 15 μm)

Er,j/Vb �j/Vb 
j/(2π )

0.03 2.23× 10–5 0.04 Hz
0.10 2.61× 10–4 0.24 Hz
0.23 1.44× 10–3 0.89 Hz
0.39 5.22× 10–3 2.45 Hz
0.60 0.02 6.46 Hz
0.83 0.05 15.45 Hz
1.11 0.11 31.99 Hz
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Figure 4 Transmission (top) of two wave packets of different initial widths �z (left and right) under the
influence of gravity and the relative uncertainty (bottom) of such a gravimeter. Initially, the wave packet
receives a momentum kick p0 and subsequently scatters from the matter-wave cavity (σb = 1 μm,
Vb = 1.42× 10–25 J, and d = 15 μm). We chose the final time of numerical evolution tf = 1 s to ensure a
negligible fraction of atoms remain inside the cavity. To take into account the influence of the gravitational
field g prior to scattering, we used the kinetic energy E = E0 –mg|z0| at the center of the cavity as a reference,
where E0 = p20/(2m) describes the initial kinetic energy and z0 the initial position of the wave packet. The
resonances in the transmission (top) occur for the same momenta as for momentum eigenstates, but are less
prominent due to the finite width �z of the wave packet. A similar effect is induced by gravity, so that the
resonances wash out for g > 0, while they are more prominent for g < 0. The relative uncertainty (bottom)
estimates the sensitivity of the matter-wave cavity with respect to gravity by a measurement of the fraction of
transmitted atoms. Here, we omitted the term |mgz0∂ETR| in Eq. (5) to isolate the effect of the matter-wave
cavity. For small gravitational accelerations the relative uncertainty diverges. This effect is represented by
white, visualizing relative uncertainties that exceed the maximum value of the colorbar. The regions of
minimal uncertainty (dark blue) define the desired working points of the sensor. While δgR denotes the
relative uncertainty for an experiment with N particles and ν repetitions, we plot the quantity

√
N
√

νδgR
which is the single-particle uncertainty without repetitions, assuming shot-noise limited measurements with
non-interacting particles

initial widths are shown in Fig. 4. The position of the resonances is independent of the
wave packet’s width, but the resonances are more prominent for narrower initial mo-
mentum distributions. The sensitivity of the matter-wave FPI contains regions of min-
imal uncertainty with an optimum

√
N

√
νδgR ≈ 6 defining possible working points of

a sensor. Here, the best sensitivity is 1.8 μm s–2 Hz–1/2 at the working point E/Vb =
0.3 and g = –0.8 mm s–2 for �z = 12 μm as well as the duration of the experiment
of 700 ms, a preparation time of approximately 300 ms, and 107 atoms of rubidium
87. As expected, omitting the contribution that stems from the propagation and scales
with the initial condition decreases sensitivity by approximately one order of magni-
tude.

Even though these estimates are purely academic, they highlight that the properties of
the matter-wave cavity itself are susceptible to accelerations beyond the filtering effect
that can be interpreted as an analogue of a drop experiment. We therefore study in the
next section the distortions of the matter-wave cavity before we devise a setup in Sect. 4
that isolates this effect.
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3 Distortions induced by gravity
In the previous section we have seen that the acceleration of the wave packet prior to the
interaction with the matter-wave cavity contributes significantly to the sensitivity of the
sensor. However, the distortion of the cavity by gravity gives rise to an additional contri-
bution. Before we propose a setup to isolate the effect in Sect. 4, we first shed light on the
resonances of the cavity under the influence of gravity. Although the asymptotics of the
matter-wave cavity permits no bound states independent of the presence of a gravitational
potential, resonances manifest themselves in quasi-bound states [33, 53] that have finite
lifetimes and thus finite decay widths. In general, the Hamiltonian Ĥ(ẑ, p̂) is hermitian and
subsequently possesses a real spectrum. To find finite lifetimes of quasi-bound states, we
introduce a phase θ and apply the complex scaling [54]

ẑ → ẑ ei θ , p̂ → p̂ e– i θ . (6)

As a consequence, the Hamiltonian Ĥ(ẑ ei θ , p̂ e– i θ ) ceases to be hermitian and possesses
complex eigenvalues Ej = Er,j – i�j/2 as well as non-orthogonal eigenstates. We identify Er,j

with the energy and �j with the width associated with the resonances, in addition �–1
j de-

notes the lifetime of the corresponding quasi-bound state. To describe quasi-bound states,
we select specific solutions of the time-independent Schrödinger equation in position rep-
resentation

[
–

�
2

2m
∂2

∂z2 e– i θ +V
(
z ei θ

)]
ψϕj (z) = (Er,j – i�j/2)ψϕj (z). (7)

Moreover, we impose boundary conditions to obtain states with exponentially decaying
tails, independent of the gravitational background potential. For that, we assume

ψϕj (z) =

⎧⎨
⎩

aL e– i kjz ei θ , z → –∞,

aR ei kjz ei θ , z → +∞
(8)

with amplitudes aL and aR as well as the free wave vector �kj =
√

2mEj. To find an explicit
condition for the phase θ , we express the free wave vector �kj =

√
2mEj =

√
2m|Ej| eiϕj/2

with the complex eigenvalues Ej = |Ej| e– iϕj where ϕj = arctan(�j/(2Er,j)) denotes the an-
gle enclosed with the real axis. We find that for 2θ > ϕj the states ψϕj (z) satisfy vanishing
boundary conditions, subsequently the states describe quasi-bound states with finite life-
times.

Figure 5(a) shows the eigenvalues of the non-hermitian Hamiltonian obtained via
the Lagrange-mesh method [54] which diagonalizes the Hamiltonian that describes the
matter-wave cavity. To compare the obtained resonances with the transmission spectrum
in Fig. 2, we assume that the shape of a individual resonance j is given by a Lorentzian [53]

fj(E) =
(�j/2)2

(E – Er,j)2 + (�j/2)2 , (9)

where full width half maximum (FWHM) of the Lorentzian corresponds to the width of
the resonance �j and the expectation value to the energy Er,j associated with the resonance.
Comparing the Lorentzian profiles to the transmission spectrum, as shown in Fig. 5(b),
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Figure 5 (a) Resonances and bound states of the distorted matter-wave cavity (top) and a triangular
potential (bottom). The resonances (green solid lines) of the matter-wave cavity (green) are modeled by
quasi-bound states whose lifetime correspond to the width (shaded line) of the respective resonance. In
contrast, the asymptotic of the triangular potential (orange) allows bound states (orange solid lines). To
compare both cases, the left boundary of the triangular potential (orange) is chosen such that it correspond
to the center of the left barrier of the matter-wave cavity (green). For a strong acceleration, we expect the
lower resonances of the matter-wave cavity to approach the eigenenergies of the triangular potential.
(b) Comparison between the transmission spectrum (red solid line) from Fig. 2 and Lorentzian profiles (blue
solid lines), defined in Eq. (9), associated with the individual resonances for g = 0. The eigenenergies and
widths are obtained by a Lagrange-mesh method which diagonalizes the Hamiltonian that describes the
matter-wave cavity (σb = 1 μm, Vb = 1.42× 10–25 J, and d = 15 μm). The Lorentzian profiles show good
agreement with the transmission spectrum while the overlap between resonances is negligible

Figure 6 Influence of gravity on the resonances (a) and their widths (b) of a matter wave cavity (σb = 1 μm,
Vb = 1.42× 10–25 J and d = 15 μm). The plotted values correspond to the real and imaginary parts of the
eigenvalues of the complex-scaled Hamiltonian, obtained by the Lagrange-mesh method. In addition to the
resonances (solid lines), the eigenenergies of the triangular potential shown in Fig. 5(a) are included (dashed
lines). If the gravitational acceleration is sufficiently strong, we expect that the right barrier becomes less
important and bound states arise solely from the left barrier and the linear potential. As a consequence, the
energies associated with the resonances approach the eigenenergies of the triangular potential (dashed
lines). Moreover, for larger gravitational accelerations the resonances are closer to the continuum resulting in
shorter lifetimes and subsequently larger widths of the resonances

we find good agreement for the expectation values and widths of the Lorentzian profiles.
This simple method does not consider the overlap of several resonances but the relevant
features of the lower resonances are captured well.

The influence of accelerations on the resonances and their widths is shown in Fig. 6
together with bound state energies of the triangular potential sketched in Fig. 5(a). The
gravitational acceleration induces an asymmetry between both barriers and modifies the
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energies of the resonances. Already a single barrier in a gravitational potential leads to
(gravitationally) bound states. Hence, if the variation of the gravitational potential is of
the order of the barrier height over the length of the cavity, the effect of the second barrier
becomes irrelevant. As a consequence, we expect the resonance energies to approach the
eigenenergies of the ideal triangular potential for large accelerations. Indeed, we observe
this effect in Fig. 6. Moreover, for larger accelerations the width of all resonances increases,
even though the effect is more dominant for resonances that correspond to larger energies.
This behavior can be understood the following way: The width of a resonance increases if
it is closer to the continuum of unbound states. Moreover, for higher energies the states are
not as strongly bound, since the observed Graussian barrier becomes smaller. Therefore
the lifetime decreases, which in turn leads to an increased width of the resonance. The
gravitational acceleration effectively changes the height of the barriers and introduces an
asymmetry so that all resonances are closer to the continuum of unbound states.

Although we observe resonances in the transmission spectra, shown in Fig. 7(a), mainly
the width of the resonances varies and the corresponding energy is not shifted. That is,
the structure of the transmission spectrum washes out for g > 0 and becomes more con-
centrated for g < 0. In addition, large negative accelerations lead to initial kinetic energies
larger than the Gaussian barriers and consequently no resonances are observable. We note
that the approximately quadratic asymptotic dependence of the resonance widths �j as a
function of gravitational acceleration g is not surprising and can be understood as a direct
consequence of Fermi’s golden rule applied to the case of a fixed energy state decaying into
the surrounding continuum [55].

To gain more insight into the asymmetry between positive and negative accelerations,
we study the momentum width of the wave packet. The widths of the momentum distri-
bution of the time-evolved wave packet, up to the impact on the matter-wave cavity, is

Figure 7 (a) Transmission of a wave packet (initial width �z = 12 μm) with initial momentum p0 scattered
from the matter-wave cavity (σb = 1 μm, Vb = 1.42× 10–25 J, d = 15 μm). To take into account the influence of
the gravitational field g prior to scattering, we use the kinetic energy E = E0 –mg|z0| as reference where E0
describes the initial kinetic energy and z0 the initial position of the wave packet. Without considering the
self-interaction of the atomic cloud, the resonances wash out for g > 0 (g = 1.3 mm/s2) and become more
prominent for g < 0 (g = –0.8 mm/s2). A repulsive self-interaction γ > 0 (here γ = 3.51× 10–38 m,
g = 0 mm/s2) leads to a suppression of the resonances (dashed line). (b) Momentum width of the
time-evolved wave packet. The individual plots end at the time of the turning point of a classical particle with
same momentum E/Vb = 0.77. The momentum width �p is scaled by pL =mvR with the recoil velocity
vR = 5.8845 mm/s of the 87Rb D2-transition. The slope of the barriers is affected by gravity and in turn deforms
the wave packet upon propagation. The effect of the direction of gravity is shown in the insets to the right. As
a consequence, the wave packet contracts in momentum for g < 0, while the width is increased for g > 0
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shown in Fig. 7(b). For g > 0 the momentum width is larger and for g < 0 smaller than in
the case of no gravitational acceleration, attributed to different slopes of the asymmetri-
cally distorted barriers. Since, during the coupling into the cavity, the momentum width
determines the resolution of the transmission spectrum of a wave packet, the resonances
wash out for g > 0 and become prominent for g < 0.

A similar effect can be observed for a self-interacting quantum gas like a Bose–Einstein
condensate. For that, we describe the time-evolution by the one-dimensional Gross-
Pitaevskii equation

i �
∂ψ(z)

∂t
=

[
–

�
2

2m
∂2

∂z2 + V (z) + γ
∣∣ψ(z)

∣∣2
]
ψ(z) (10)

using the mean-field approximation, where γ is the strength of the self-interaction and
V (z) described the potential used in Eq. (1). Figure 7(a) includes the fraction of transmit-
ted atoms of a wave packet governed by the Gross-Pitaevskii equation. Considering repul-
sive self-interaction γ > 0 during propagation, the self-energy of the quantum gas converts
to kinetic energy, resulting in an increase of the wave packet’s momentum width. Conse-
quently, the structure of the transmission spectrum washes out, as observed in Fig. 7(a).
The reverse effect can be observed for sufficiently small attractive self-interaction if its
spatial extend is larger than the soliton size [56].

4 Asymmetric tunneling
To highlight the effect of gravitational fields on the matter-wave cavity, we remove the
wave packet’s propagation prior to the scattering and prepare a Gaussian wave packet
in the center of the cavity, as shown in Fig. 8(a). The width of the initial wave packet is
chosen so that the overlap of the wave packet and the Gaussian barriers is negligible. It
is therefore completely confined inside the cavity. Moreover, we create a superposition of
wave packets with opposite momenta ±p0, e.g., via double Bragg diffraction [5, 37, 57],
modeled by displacing the wave packet in momentum representation.

The fraction of atoms transmitted to the left and right differs because of the asymme-
try of the matter-wave cavity in the gravitational field. In analogy to the projector P̂R, we
introduce the operator P̂2

L = P̂L that projects on the left space of the cavity, visualized in
Fig. 8. We define the projectors

P̂± = P̂L ± P̂R (11)

and the corresponding expectation values

T± = 〈ψsc|P̂±|ψsc〉 =
∫ z–

–∞
dz

∣∣ψsc(z)
∣∣2 ±

∫ ∞

z+

dz
∣∣ψsc(z)

∣∣2. (12)

where z– and z+ are the position of the left and right barriers, respectively. The total trans-
mission T+ approaches unity for times t → ∞ independently of gravity, contrarily the
asymmetric transmission T– depends on the gravitational acceleration. In addition, the
variance of the asymmetric transmission �T2

– = T+ – T2
– depends on T– in a quadratic

manner and thus the effect of gravity is enhanced, while the behavior T+ → 1 reduces it.
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Figure 8 (a) Gaussian wave packet (�z = 3 μm) prepared in the center of the gravitationally distorted
matter-wave cavity (σb = 1 μm, Vb = 1.42× 10–25 J, d = 15 μm). A double Bragg pulse creates a superposition
of the wave packet with opposite momenta ±p0. Due to gravity, the transmission of the kicked wave packet
through the left (blue region) and right barrier (red region) differs. The operators P̂L and P̂R project on the
fraction of transmitted atoms through the left (blue shaded region) and right barrier (red shaded region)
where the regions either end at z– or start at z+. (b) Motion of the symmetrically kicked wave packet (initial
width �z = 3 μm, initial kick p0 =±0.5× √

2mVb) prepared in the center of the matter-wave cavity for
different gravitational accelerations. After a short period of time both wave packets are delocalized over the
whole cavity where the white lines represent the position of the barriers. The amplitude of the resulting
oscillations decreases due to periodic outcoupling of the trapped atoms

Figure 9 Asymmetric transmission (a) and relative uncertainty (b) of a wave packet starting in the center of
the gravitationally distorted matter-wave cavity (σb = 1 μm, Vb = 1.42× 10–25 J, d = 15 μm). The wave packet
(initial width �z = 3 μm) experiences a double Bragg pulse, resulting in a superposition of two wave packets
with opposite momenta ±p0 and kinetic energies E = p20/(2m). The asymmetric transmission corresponds to
the difference between the transmission through the left and right barrier of the matter-wave cavity. (a) No
resonances are observed in the asymmetric transmission because of the large initial momentum width of the
(localized) wave packet. (b) The relative uncertainty associated with the asymmetric transmission contains a
local maximum for small momentum kicks and shows the best sensitivity for the largest initial momentum
and largest acceleration. While δg– denotes the relative uncertainty for an experiment with N particles and ν

repetitions, we plot the quantity
√
N
√

νδg– which is the single-particle uncertainty without repetitions,
assuming shot-noise limited measurements with non-interacting particles

Figure 9 shows the asymmetric transmission T– and considers momentum transfers cor-
responding to kinetic energies larger than the energy Er,2 associated with the third reso-
nance of the matter-wave cavity. Therefore, we set the end of the simulation to twice the
lifetime �–1

2 of the third resonance and thus only a negligible fraction of atoms are left in-
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side the cavity. Figure 8(b) shows a motion that resembles quantum carpets [58–60]. The
initial wave packets are periodically reflected by the barriers leading to a standing wave
inside the cavity whose amplitude decreases due to periodic outcoupling of the trapped
atoms. Moreover, the structure of the transmission spectrum washes out since the initial
momentum width of the wave packet is larger than the distance between two resonances
leading to an overlap of multiple resonances. Consequently, we observe no peaks in the
asymmetric transmission and obtain the largest asymmetries for the largest momentum
transfer and largest acceleration, as shown in Fig. 9.

In analogy to the previous configuration, we consider for a perfectly centered wave
packet with z0 = 0 in analogy to Eq. (5) the relative uncertainty

δg– =
�g–√
N

√
νg

=
√

T+ – T2
–√

N
√

νg|∂gT–| (13)

associated with the asymmetric transmission, shown in Fig. 9 and observe the best sen-
sitivity for the smallest initial momentum. In addition, the structure of the transmission
spectrum washes out and we obtain relative uncertainties one order of magnitude larger
than preparing the wave packet outside the cavity.

So far we have assumed that the wave packet is initially centered inside the matter-wave
cavity, consequently the contribution |mgz0∂ET–| to the relative uncertainty vanishes for
z0 = 0. However, in an actual experiment the centering will not be perfect. If we assume
that an initial displacement is smaller than 2 μm for our set of parameters, the contribution
|mgz0∂ET–| is much smaller than |g∂gT–| and can be neglected. In addition, the displace-
ment influences wave packet effects induced by the nonlinear potential and subsequently
affects the asymmetric transmission. For small momentum kicks such wave packet defor-
mations are more prominent since they arise from different slopes of the Gaussian barriers
in a linear potential. A low velocity leads to a longer interaction time with these barriers.
However, this effect does not significantly change the sensitivity of the sensor and is sup-
pressed for an increasing momentum transfer.

5 Discussion
We have proposed two setups that employ quantum tunneling in gravimetric applications.
Since the cavity acts as a monochromator, the mean momentum and the momentum width
at the time of scattering are crucial. Gravity influences the propagation of the wave packet
prior to scattering and by that the momentum distribution at the time of interaction. In
addition, the slopes of the gravitationally distorted barriers affect the wave packet’s width.
To remove the effect from propagation prior to the interaction, we have prepared the wave
packet inside the matter-wave cavity and considered the asymmetric transmission as a
measure for gravity. As a consequence, no optical counterpart exists. Furthermore, the
device has a relative uncertainty one order of magnitude larger than the one obtained
from the monochromator setup, but also has a much lower susceptibility to a variation of
the initial positions.

In addition to the momentum width of the wave packet, further effects limit the sen-
sitivity of the gravimeter, including laser intensity fluctuations of the potential, different
barrier heights, atom loss inside the gravimeter, heating, and nonlinear interactions of the
atomic cloud. In particular, tight transverse confinement of the wave packet in the wave-
guide can give rise to additional contributions to the longitudinal motion depending on the
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scattering length as well as the length scales in longitudinal and transverse direction of the
waveguide. In addition, large dwell times and slow tunneling of a wave packet prepared
inside the matter-wave cavity leads to low spatial densities of the tunneled wave packet
and therefore limits the signal-to-noise ratio achievable at detection. Moreover, imperfect
preparation of the wave packet results in an uncertainty in the initial position and mo-
mentum. In turn this leads to perturbations of the transmission and the corresponding
sensitivity. This effect arises even if the wave packet is prepared inside the cavity.

To conclude, we have performed preliminary studies and have shown the feasibility of
using matter-wave FPIs for accelerometry, using realistic cavities including gravitational
distortions and the exact propagation of wave packets. We have identified different effects
that cause a susceptibility to gravity and laid the groundwork for quantum-technology
based inertial sensors of this type.
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