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Metric descriptions of gravitation, among them general relativity as today’s established theory, are
founded on assumptions summarized by the Einstein equivalence principle (EEP). Its violation would hint
at unknown physics and could be a leverage for the development of quantum gravity. Atomic clocks are
excellent systems to probe aspects of EEP connected to (proper) time and have evolved into a working
horse for tests of local position invariance (LPI). Even though the operational definition of time requires
localized and idealized clocks, quantum systems like atoms allow for spatial superpositions that are
inherently delocalized. While quantum experiments have tested other aspects of EEP, no competitive test of
LPI has been performed or proposed allowing for an intrinsic delocalization. We extend the concepts for
tests of the universality of clock rates (one facet of LPI) to atom interferometry generating delocalized
quantum clocks. The proposed test depends on proper time with a favorable scaling and is, in contrast to
fountain clocks, robust against initial conditions and recoil effects. It enables optical frequencies so that the
projected sensitivity exceeds the one of state-of-the-art localized clocks. These results extend our notion of
time, detached from classical and localized philosophies.

DOI: 10.1103/PhysRevD.107.064007

I. INTRODUCTION

Fundamental physics research strives for ever more
precise tests of the Einstein equivalence principle (EEP),
a cornerstone of general relativity (GR) [1–3], to verify the
universality of the gravitational coupling to test bodies [4],
translating into three basic assumptions [5]: local Lorentz
invariance (LLI), universality of free fall (UFF), and local
position invariance (LPI); see Fig. 1 that visualizes these
aspects as well as their differences, and highlights current
state-of-the-art tests.
Of these aspects, LLI is the basis for special relativity as

a special case of GR when sufficiently small spacetime
regions are considered. By that, it is not inherently
connected to gravity. LLI can be tested by searching for
preferred reference frames, for example by comparing
transition frequencies of atoms (and the associated natural
constants) measured in different reference frames [6].
Analogous setups to test other constants of nature have
been implemented as well [7]. Even atom-interferometric
tests of LLI [8] relying on an intrinsic delocalization of
quantum objects have been performed. Contrarily, UFF
(or weak equivalence principle) is a purely gravitational
principle and states that the motion of different test bodies

in a gravitational field is the same, independent of their
composition. Quantum tests of UFF based on atom
interferometry [9] make use of the delocalization of the
atom and have evolved into a competitive alternative to
classical drop experiments [10].
Whereas both LLI and UFF have been verified to high

precision [7,10], this statement is true for LPI only to a
lesser degree [11,12]. LPI states that (local) experiments
with test bodies are independent of where (and when) they
are performed in a gravitational field. As a consequence,
the results are independent of the test objects’ composi-
tions. It has two prominent facets [4]: universality of the
gravitational redshift (UGR) and universality of clock rates
(UCR). We focus on UCR which states that ticking rates
defined by two different physical systems moving along
the same worldline are universal, i.e., independent of the
composition of the systems and their spatial location.
Contrarily, UGR demands that ticking rates defined by
two identical systems placed by different heights are
universal. For a UGR test, two (local) experiments at
different positions have to be synchronized (e.g., by
classical communication). The result has to be compared
to a theoretical prediction (usually GR), which requires
measurements of distances or similar. In contrast, UCR is a
null test where no classical communication and measure-
ments of distances are necessary. Since different species at
the same location are compared, such tests possibly allow*fabio.di-pumpo@uni-ulm.de; fabio.di-pumpo@gmx.de
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for larger effects and may a priori test other theories than
UGR tests. Both principles are based on different couplings
of internal energies to gravity [13,14,15,16]. Although
traditionally associated with localized1 systems such as
clocks, localization is not a crucial factor for such tests.
Indeed, UGR tests based on delocalized schemes such as
quantum-clock interferometry and atom interferometry
with internal transitions [17–19] have been proposed but
not performed. However, their estimated sensitivity is not
yet competitive to their localized counterparts [11].

A. Overview and main results

Here, we combine the underlying concepts of both
atomic clocks [20–23] and light-pulse atom interferometry
[24,25] to propose the first quantum sensor for UCR which
allows for delocalized superpositions, extending our under-
standing of ticking rates of clocks. Thus, we complement

UGR and UFF tests based on such delocalized quantum
superpositions to test GR. Even more, because the UCR test
can be made robust against experimental imperfections, its
projected sensitivity exceeds the one of state-of-the-art
fountain clocks [12] and therefore represents the first EEP
test based on atom interferometry that has the potential to
outperform its localized counterpart, see Fig. 1.

B. Proper time of a freely falling particle

The geometric formulation of GR implies that the
parametrization of a worldline is not unique. However, a
comoving observer has a distinguished notion of time,
namely proper time recorded by a comoving idealized
clock, which is inherently connected to spacetime. Thus,
proper time can be used to test the universality of the
gravitational coupling to test bodies assumed by EEP. It is
determined by the spacetime geometry and varies with the
path length along the worldline. When expressed in terms
of laboratory coordinates, proper time in the weak-field and
low-velocity limit [4] reduces to

τ ¼
Z

T

0

dt

�
1 −

_r2

2c2
þ gr
c2

�
¼ T −

g2

3c2
T3 ¼ T − Δτ ð1Þ

FIG. 1. Key fundamental assumptions that constitute the Einstein equivalence principle (EEP). It rests on three pillars: local Lorentz
invariance (LLI), the universality of free fall (UFF), and local position invariance (LPI). Whereas LPI and UFF are inherently connected
to gravity, LLI only entails special relativity as a special case of GR. The right part visualizes prominent experiments together with
bounds set by localized and delocalized schemes, where the asterisks indicate projected values. The corresponding violation parameters
can be found in the references given in brackets. Tests of LLI search for a dependence on the choice of temporal and spatial coordinates,
probing for preferred reference frames as implied by deformed coordinate systems. The provided bound value is given by lunar laser
ranging, whereas the less restrictive bound of delocalized tests is based on atom interferometry. UFF states that the behavior of test
bodies in gravitational fields does not depend on their composition. It can be tested by drop experiments, where the acceleration of
different objects is compared. Here, the localized experiment gives the bound set by space missions, whereas the delocalized test is based
on atom interferometry with different species. Tests of LPI search for a dependence on the absolute position (or starting time) of the
performed experiment and has two prominent facets: the universality of the gravitational redshift (UGR) and the universality of clock
rates (UCR). For UGR, this dependence is probed by comparing the time difference of two identical clocks at different heights in a
gravitational field to the prediction of GR. No delocalized version of such an experiment has been performed, but only a lower sensitivity
seems to be feasible with quantum-clock interferometry. In contrast, UCR can be tested by comparing the time of two clocks with
different compositions on the same height. As the only principle, UCR allows for a delocalized test proposed in this work that is based
on atom interferometry, where the projected sensitivity exceeds the one of classical or localized experiments.

1In the context of GR and EEP, the term local refers to
sufficiently small spacetime regions connected to a local (proper)
reference frame. In contrast, a localized object is centered around
a single spacetime point. These two terms are not equivalent,
since also experiments with delocalized quantum objects can be
performed locally (in a local reference frame).
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for a classical particle along the trajectory rðtÞ ¼ −gt2=2 in
a linear gravitational field with acceleration g. Here, c is the
speed of light and t is the laboratory time ranging from 0 to
T. In addition to T we find a contributionΔτ ¼ T3g2=ð3c2Þ
that scales cubically with the laboratory time [26,27].
Pointlike two-level atoms are the simplest physical

realization of clocks. However, real atoms exhibit quan-
tized center-of-mass (c.m.) motion, such that even a narrow
wave packet probes the vicinity of the worldline.
Consequently, the evolution of quantum systems encodes
information about the initial c.m. wave packet, internal
degrees of freedom, and the spacetime geometry into
quantum observables, like the phase in interference experi-
ments. Observables isolating proper time in a (quantum)
experiment are sufficient to introduce the notion of clocks
and are susceptible to UCR violations, e.g., if internal states
are affected differently by gravity. Based on UCR violating
models [17–19,28–32], modified gravitational accelera-
tions for each internal atomic state are reflected in a
violation parameter α as detailed below.

II. PHASES OF CLOCKS AND PROPOSED
INTERFEROMETER SCHEME

As a prime example for UCR tests, we present the phase
measured by atomic fountain clocks and identify its
dependence on initial conditions. Moreover, we introduce
an atom interferometer and show that its phase also
contains UCR-violating contributions, however, being less
sensitive to initial conditions.

A. Phase of fountain clocks

In aRamsey sequence [33], a superposition of two internal
states initiated by a π=2 pulse is read out by anotherπ=2 pulse
after a time interval T. By measuring interference fringes
encoded into the population of the excited state, one obtains
the phase difference acquired between both internal states.
The phase of a freely falling clock, e.g., implemented in
fountains [12,34,35], takes the form (see the Appendix)

ð2Þ

whereΩ is the frequency of the clock transition and the light
field is resonant to it.2 Here, recoil effects and finite pulse
durations have been neglected. We observe the phase
contribution ΩΔτ ∼ΩT3g2=c2, and a UCR-violating factor
1þ α=2. In GR we find α ¼ 0, so this phase difference
reduces to a measurement of proper time including initial
conditions r0 and v0, complemented by wave-packet effects.

The latter arise from different dispersion relations of internal
states and enter via the second moment of the initial velocity
hv20i, that includes contributions from the second-order
Doppler shift [21,36]. The initial conditions may vary
between experimental runs of such clock-based tests and
consequently limit their accuracy.

B. Proposed UCR-sensitive atom interferometer

We propose an alternative geometry based on atom
interferometry, see Fig. 2. Apart from recoilless transitions
[37], the π=2 pulses used in atom interferometers not only
generate internal superpositions, but also superpositions of
two momenta separated by the (effective) photon recoil ℏk
[38,39] and lead to two separated branches. This spatial
superposition highlights the delocalization and quantum
nature of atom interferometers: a single worldline cannot be
connected to the atom even for narrow wave packets. We
include two π pulses that invert momenta and internal states
at times T=4 and 3T=4 so that the geometry closes in phase
space at the end of the sequence [40]. This scheme, known
also as butterfly or figure-eight interferometer [39,41–43],
is susceptible to quadratic potentials like gravity gradients,
while linear accelerations are suppressed. Neglecting finite
pulse durations, laser phase noise, and other parasitic
effects, we find the phase (see the Appendix)

φ ¼ ΩT3g2

16c2

�
1þ α

2

�
−
3ωkT3g2k
32c2

þ ωkvr½r0 þ rT �
2c2

: ð3Þ

The last two terms arise from the finite speed of light
[44–46], including the midpoint trajectory rT ¼ r0 þ v0T þ
vrT=2 − gT2=2 at time T and the gravitational acceleration
gk ¼ kg=jkj in direction of light propagation. Here, vr ¼
ℏk=m is the recoil velocity, with m being the atom’s mean
mass between both internal states. For single- and two-
photon transitions, we identify ωk ¼ cjkj. Contrarily, using
recoilless transitions with k ¼ vr ¼ 0 ¼ ωk, all finite-
speed-of-light effects vanish. In this case, the geometry
isolates the phase ΩΔτð1þ α=2Þ that scales with T3. It
effectively corresponds to a falling clock, not operated in
a typical Ramsey sequence, and can be associated with
UCR tests.
Interferometer phases scaling with T3 have been pro-

posed [47–49] to detect differential accelerations between
both interferometer branches. While any branch-dependent
acceleration displays such a scaling [50], nonrelativistic
state-dependent differential accelerations are isolated in the
discussed geometry and are used to determine magnetic
field gradients [51]. In this case, the measured phase is not
caused by spacetime but by a differential motion between
internal states. In contrast, the gravitational acceleration g
in GR is independent of the internal state. The relativistic
T3-phase [27] is solely caused by states with different
mass-energy coupling to gravity. However, differential
accelerations, for example induced by magnetic fields,

2The preparation of identical clocks on different heights
separated by a distance r0 with same initial velocity leads to
tests of the universality of gravitational redshift [19], which
emerges directly from Eq. (2).
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black body radiation, rotations or gravity gradients, may
cloak UCR violations [40,49,52–56], as discussed below.

III. TESTS OF UCR

To establish a common framework for UCR tests, we
compare the phases of two nonidentical fountain clocks and
derive a consistent UCR violation parameter, which, how-
ever, is masked by the dependence on initial conditions.
We identify the same violation parameter in a differential
measurement of our atom interferometer configuration with
two different atomic species, and show that the dependence
on initial conditions can be suppressed.

A. UCR tests with two fountain clocks

UCR tests can be performed by comparing two Ramsey
phases , each one associated with a transition frequency
Ωj and obtained from a measurement of different species or
isotopes at approximately the same location. The differ-
ential measurement between two fountain clocks is

ð4Þ

where the first two contributions depend on the initial
colocation difference δr0, as well as the difference of the
second moments of velocities hv2ji associated with species
j. These contributions limit the accuracy of UCR tests. To
avoid this issue, one has to require perfect initial colocation
[57]. In Fig. 3(a) we highlight these effects for two clocks
with different initial conditions. We observe that both
interference signals experience a dephasing relative
to each other due to imperfect colocation.

FIG. 3. Comparison of interference signals (top) and exper-
imental sequences (bottom) for a fountain-clock UCR test (panel
a) and the atom-interferometric UCR test (panel b). On the
bottom of (a) we showcase the classical trajectories in a clock-
based UCR test for an initial colocation mismatch of ðδr0; δv0Þ
between two clocks together with the initial and final π=2 pulse of
the Ramsey sequence. For both clocks we indicate the excited
state by a dashed line and the ground state by a solid line,
traveling along the same trajectory. The top part displays the
signals corresponding to the probability to detect clock 1 or
2 in the excited state after time T. Because of the initial conditions
we observe a dephasing between the signals increasing with T. In
the bottom part of panel (b) we showcase the classical trajectories
of the atom-interferometric UCR test together with the joint
sequence of π=2‐π‐π‐π=2 (recoilless) pulses creating two inter-
ferometers. We have included an initial colocation mismatch
ðδr0; δv0Þ between the interferometers for both species. The
dashed segments represent the atom in the excited state, whereas
the solid ones correspond to the ground state. The grayed
trajectories are created by pulses including a momentum recoil
and are given for comparison. Contrary to tests with clocks and
due the missing dependence on the initial conditions when using
recoilless transitions, we observe no dephasing between the
signals at the top of panel (b), if both species have the same
transition frequencyΩ. The signals only contain a chirp due to the
dependence on Δτ ∝ T3. Because of the finite speed of light, this
result would change for single-photon transitions.

FIG. 2. Spacetime diagram of the atom interferometer suitable
for UCR tests. An atom enters in its ground state. A first π=2
pulse (red) generates a superposition of ground state jgi (blue
solid line) and excited state jei (green dashed line) and may
impart a momentum difference ℏk between both states (e.g.,
induced by two-photon Raman or optical single-photon transi-
tions). Both internal states are entangled with the c.m. motion of
the atom, and consequently it travels in a superposition of two
branches. They are redirected by two π pulses (purple) which
invert the momenta and internal states, so that both branches
overlap perfectly and interfere at the final π=2 pulse. The finite
propagation velocity of the laser pulses is indicated by inclined
lines. For comparison, the first pulse is also drawn as a straight
line representing an infinitely fast pulse. The population of the
excited state is detected. During the experiment, the atom is
accelerated by the gravitational acceleration g, modified by
possible violations of the equivalence principle encoded in
prefactors 1� αℏΩ=ð2mc2Þ with violation parameter α, transi-
tion frequency Ω, and atomic mass m.
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The term A includes UCR violations and is defined as

A ¼ δα

�
gð2r̄0 þ v̄0TÞ

c2
−
Δτ
T

�
þ ᾱ

gð2δr0 þ δv0TÞ
c2

: ð5Þ

It depends on the difference δα of the violation parameters of
both clocks and on their mean ᾱ. Here, r̄0 and v̄0 are themean
initial position and velocity, respectively, and δv0 is the
difference of initial velocities. Apart from these means, the
UCR-violation parameter δα is multiplied with Δτ. If UCR
tests were not performedwith fountain clocks but rather with
trapped clocks, theywould not be limited by the free-fall time
or recoil effects, but by the dynamics in the trap.
In contrast to UCR tests that measure δα between two

different species, tests of UGR are based on a comparison
of proper times measured by clocks composed of identical
atoms at different heights. In fact, a violation is observed if
this proper-time difference is modified by a factor (1þ α).
Alternatively, such a test can be performed by comparing a
freely falling clock with a stationary clock using identical
atoms [17]. Although this setup gives access to Δτ from
Eq. (1), the measured phase is proportional to ΩΔτð1þ αÞ.
Thus, despite using the same fundamental violation model,
both types of experiments test different facets of local
position invariance and by that of the Einstein equivalence
principle.

B. Atom-interferometric UCR test

For our scheme shown in Fig. 2 we find from a
differential measurement

φð1Þ

Ω1T
−
φð2Þ

Ω2T
¼3Δτ
16T

δα

2
þ v̄r½δr0þδrT �

2Tc2
þδvr½r̄0þ r̄T �

2Tc2
; ð6Þ

if we assume Ω ¼ ωk for both species and an equal
propagation direction of the light beams.3 Here, v̄r and
δvr are the mean and differential recoil velocities between
both species. Using recoilless transitions with k ¼ vr ¼ 0,
this phase gives direct access to the UCR-violation param-
eter δα and solely depends on Δτ without initial conditions.
Thus, our proposal uses internal transitions to encode the
proper-time difference Δτ with respect to a stationary laser
in the laboratory, and compares the phases for two different
atoms to read outΔτδα. We illustrate this result in Fig. 3(b).
The observed interference signals IðjÞ stay in phase for both
isotopes, highlighting the robustness of our scheme against
different initial conditions.

IV. EXPERIMENTAL CONSIDERATIONS

Our scheme can be performed with state-of-the-art
Raman [58–60] setups. However, the transition frequency

of a few gigahertz for rubidium [61] isotopes is not
favorable, even though copropagating setups suppress
parasitic recoil effects that enter in phases from finite
speed of light, gravity gradients or rotations. Contrarily,
for optical E1-M1 [37] or single-photon [62] transitions
between clock states the frequency is in the terahertz range.
To discuss different experimental implementations, we
focus on the case of two ytterbium [63] isotopes (174Yb
and 176Yb) with Ω ¼ 2π · 522 THz and the case of two
strontium [64] isotopes (87Sr and 88Sr) with Ω ¼ 2π ·
430 THz. Assuming shot-noise-limited differential phase
measurements4 and taking the free-fall time of soon
operating 10-m fountain experiments [67] as a rough
estimate, we find for T ¼ 3 s, 107 atoms [62], and 2 ×
106 repetitions with an overall cycle time of 6 s [67] an
uncertainty bounding the violation parameter to δα ≤ 10−7

for ytterbium and to δα ≤ 1.2 × 10−7 for strontium in 138-
day campaigns, if colocation poses no restrictions (see
below). This duration can be further reduced by specifically
designed interleaved schemes [60]. For reference, current
limits posed by UCR tests obtained from measurements
over a 14-year period between hydrogen and cesium are at
2.2 × 10−7 [12], but other species have been tested as well
[34]. A lower bound of 10−7 between ytterbium and cesium
can be inferred from a combination of several violation
parameters [35], even though δα and its uncertainty has not
been explicitly discussed. Our estimates rely on established
technology and benefit from the T3 scaling of the phase.
Using larger atom numbers, longer measurement cam-
paigns or squeezing techniques, this uncertainty can be
improved, outperforming tests based on fountain clocks.
Besides the parasitic effects discussed below, these

estimates hold for recoilless transitions with sufficiently
similar isotopes. In contrast, the finite propagation speed of
the driving laser pulses cloaks UCR-violating phases for
single-photon transitions, see the second term of Eq. (3),
but drops out in a differential measurement with Ω ¼ ωk
for both species. For a test based on Eq. (6) that goes below
δα < 10−7, initial colocation and velocity difference for
single-photon transitions have to be ensured up to δr0 <
4.2 mm and δv0 < 1.4 mm=s for ytterbium and up to δr0 <
2.5 mm and δv0 < 0.8 mm=s for strontium, which are not
ambitious requirements. Given that δvr is two orders of

3For recoilless transitions, the conditionΩ ¼ ωk does not hold.
However, Eq. (6) is correct, since vr ¼ 0.

4For each individual clock operated with n atoms to be shot-
noise limited by itself, a fractional stability of ðΩT ffiffiffi

n
p Þ−1 is

necessary. With our parameters, we arrive at 3 × 10−20, which
would require an improvement by about two orders of magnitude
over current state of the art [20,65]. While limiting factors arising
from the trapping or the lattice are irrelevant for our proposal of
freely falling clocks, the stability of interest is not the one of an
individually operated clock, but the differential stability between
both clocks. Using the same laser to address both isotopes or
relying on phase locking, a differential stability between both
clocks in the order of 10−20 appears to be realistic and is also
required for detectors of gravitational waves or dark matter [66].
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magnitude smaller than v̄r, no additional restrictions arise
from the last term of Eq. (6) if the mean initial position and
velocity are known to the precision stated above. Even
though recoilless transitions are favorable, single-photon
transitions do not intrinsically lead to ambitious require-
ments, so that the scheme is robust against initial conditions.
Besides, no further UCR violations arise from light propa-
gation in gravity in a UCR-violating background [32].
Additional parasitic perturbations may involve different

accelerations for both internal states for example caused
by coupling to electromagnetic fields [51], i.e., the Zeeman
and/or Stark effect. Other contributions are given by gravity
gradients [40,49,54–56] or other harmonic potentials, which
give rise to relevant phases for a significant momentum
transfer. Both state-dependent accelerations and harmonic
potentials cause different accelerations on the two branches
of the interferometer and, therefore, cloak UCR violations.
Additional deleterious effects are introduced by rotations
[52,53]. See the Appendix for a derivation of these phase
contributions.
As a consequence of the linearity of first-order pertur-

bation theory, δα in Eq. (6) is replaced by δαþ ϵ for
differential UCR tests, where the perturbations are included
in a dimensionless parameter ϵ. We observe that for both
ytterbium and strontium no contributions from rotations
occur, assuming that a nonperturbative, leading-order
influence of rotations is already compensated [52,53] by
adjusting the wave vector in case of single-photon tran-
sitions or via tip-tilt mirror systems for E1-M1 or counter-
propagating Raman transitions. Even though residual
rotations do not contribute in this differential scheme, it
is necessary to mitigate the dominant contribution to justify
our perturbative treatment.
Residual accelerations δa between isotopes with suffi-

ciently similar polarizability and black-body-radiation
shifts (like 174Yb and 176Yb or 87Sr and 88Sr considered
in our estimates) result in a nonvanishing effect gδa=g2. For
such state-dependent forces the projection gδa has to be
limited at the same level as the required precision of g2δα.
This condition gives rise to jδaj < 10−6 m=s2 both for
ytterbium and strontium for ϵ < 10−7. In fact, these residual
accelerations pose a limit for both recoilless and single-
photon transitions.
A quadratic potential in turn leads to an additional

dependence on initial conditions, setting more demanding
requirements on the initial velocity difference δv0 between
the isotopes under consideration. While no spatial separa-
tion is generated from recoilless transitions with k ¼ 0 and
consequently no phase difference is introduced by quad-
ratic potentials, we find the ambitious constraint jδv0j <
10−8 m=s both for ytterbium and strontium for a limit of
ϵ < 10−7 in Earth-based setups when relying on single-
photon transitions. However, one can apply mitigation
schemes [40,49,54–56] to further suppress gravity gra-
dients. In this case, the residual gradient is not the original

gravity gradient of Earth but has to be replaced by its
uncertainty remaining after compensation and is further
suppressed [57] by several orders of magnitude. Gravity
gradients therefore pose the main limitation to measure-
ments performed with single-photon transitions, also com-
pared to finite-speed-of-light effects, while they are
irrelevant for E1-M1 transitions.
Isotopes or species with considerably differing transition

frequencies lead to generalized expressions and can be
easily obtained based on our analytical treatment (see the
Appendix). However, no additional terms arise for phase
contributions that scale linearly with the transition fre-
quency and that are independent of the recoil, due to the
form of the differential measurement from Eq. (6). In
contrast, other contributions are suppressed by the ratio of
transition frequency difference and mean transition fre-
quency. Additional phase fluctuations, e.g., caused by
mirror vibrations in retroreflective setups and E1-M1
transitions or by laser phase jitter, contribute but are
suppressed by this factor. Working with sufficiently similar
species or isotopes circumvents these issues entirely.

V. COMPARISON AND CONTEXTUALIZATION

Some of these parasitic effects also affect UCR tests with
fountain clocks and give rise to similar modifications as
discussed for our interferometer geometry. Moreover,
Eq. (4) does not include recoil effects which dominate
for single-photon transitions and for long time intervals T,
leading to displaced wave packets and diminishing contrast
[40] when applied to clocks. Usual UCR tests in fountain
clocks are not performed with such optical transitions in
free fall, since they would require traps to suppress recoil
effects in the Lamb-Dicke regime. Consequently, such tests
are only accessible in the gigahertz range of the internal
transition. In contrast to deleterious effects in atom inter-
ferometers, the contributions arising from initial conditions
and second moments in Eq. (4) cannot be straightforwardly
compensated even for recoilless transitions.
Violations of the Einstein equivalence principle are also

included in Mach-Zehnder [19,68] setups performed with
Raman diffraction or single-photon transitions. In analogy
to above such effects are suppressed by the small transition
frequency in Raman-based schemes. Moreover, any Mach-
Zehnder geometry with transitions between internal states
at each pulse is open at the end of the sequence [17,19].
Consequently, initial conditions contribute even without the
deleterious effects and finite speed of light studied in our
article. Besides, the dominating [24] contribution −kgT2 in
the Mach-Zehnder configuration makes it challenging to
isolate the desired phase. Nevertheless, this configuration
can be used for tests of different aspects of the equivalence
principle [19].
Tests of UGR with atom interferometers are limited by

the dimensions of the experiment so that (trapped) atomic
clocks have an inherent advantage [19]. Our proposed test
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of LPI based on atom interferometry has a sensitivity
competitive to atomic fountain clocks and the first one with
the potential to outperform a classical, localized EEP test.
The technology enabling such experiments, possibly com-
bined with large-momentum-transfer techniques, can be
also used for tests of the universality of free fall, so that
such an experimental facility may be fit to test two facets of
the Einstein equivalence principle.
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APPENDIX

1. Formalism to describe atom interferometry

A two-level atom consists of a ground state jgi and an
excited state jei, fulfilling the completeness relation
1int ¼ jeihej þ jgihgj. Driving transitions between these
internal states, for example by the interaction with a laser,
may give rise to a momentum transfer �ℏk based on
energy-momentum conservation [38]. This way, one gen-
erates beam splitters and mirrors for matter waves. The
interaction with pulse l is effectively described [39,69] by

ÛðlÞ
BS ¼ 1ffiffiffi

2
p ð1int − ieikl r̂jeihgj − ie−ikl r̂jgihejÞ ðA1aÞ

ÛðlÞ
M ¼ −ieikl r̂jeihgj − ie−ikl r̂jgihej; ðA1bÞ

which transfers a momentum �ℏkl due to the photonic
recoil upon an internal transition. Here, r̂ is the position
operator and we have omitted effects of laser phases and

finite pulse durations. The operator ÛðlÞ
BS describes a π=2

pulse, while ÛðlÞ
M acts as a π pulse.

An arbitrary interferometer sequence Ûseq is given by

combinations of ÛðlÞ
BS and ÛðlÞ

M and the evolution of
the atom in external potentials between those pulses.
The latter is diagonal in the internal degrees of freedom
for long-lived states. Hence, the pulse sequence Ûseq is
acting on the internal states as well as the center-of-mass
(c.m.) motion. For the setups discussed in this article, the
relevant observable is given by a projection Π̂ ¼ jjihjj
on the internal states j ¼ e, g, leading to the interference
signal [19,39,69]

I ¼ Trc:m:TrintðÛ†
seqΠ̂Ûseqρintð0Þ ⊗ ρc:m:ð0ÞÞ: ðA2Þ

Here, we assumed that the initial state of the internal
degrees of freedom ρintð0Þ and the initial state of c.m.
motion ρc:m:ð0Þ are uncorrelated. We further assume that all
atoms are initially in the ground state ρintð0Þ ¼ jgihgj and
that a measurement of the excited-state population is
performed at the end of the sequence, hence we identify
Π̂ ¼ jeihej. Carrying out the partial trace

Trint½Û†
seqΠ̂Ûseqρintð0Þ� ¼ hejÛseqjgi†hejÛseqjgi; ðA3Þ

we find that the matrix element hejÛseqjgi ¼ ðÛ1 þ Û2Þ=2
consists of a superposition of two branches σ ¼ 1, 2 acting
on the c.m. motion. Each branch can be assigned to a
unitary time evolution Û†

σÛσ ¼ 1c:m:, associated with an
effective Hamiltonian ĤðσÞ for a branch-dependent descrip-
tion. With this insight, we directly obtain the interference
signal

I ¼ 1

4
½2þ Trc:m:ðÛ†

1Û2ρc:m:ð0Þ þ H:c:Þ� ¼ 1

2
ð1þ C cosφÞ

ðA4Þ

with the expectation value hÛ†
1Û2i ¼ C expðiφÞ of the

overlap operator Û†
1Û2. Here, we defined the contrast C

and phase φ.

The effective, branch-dependent Hamiltonian ĤðσÞ ¼
ĤðσÞ

0 þ ĤðσÞ can be divided into the dominant contribution

ĤðσÞ
0 ¼ mc2 þ p̂2

2m
þmgr̂ − ℏ

X
l

ðkðσÞl r̂ − ωðσÞ
l tÞδðt − tlÞ

ðA5Þ

and a term ĤðσÞ that describes state-dependent effects and
other perturbations. Here, m is the atom’s mean mass
between ground and excited state, g the gravitational
acceleration, p̂ ¼ ðp̂x; p̂y; p̂zÞT the momentum operator,
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and r̂ ¼ ðx̂; ŷ; ẑÞT the position operator, fulfilling ½r̂i; p̂j� ¼
iℏδij with Kronecker delta δij. Moreover, ℏkðσÞl describes
the momentum transfer induced by the lth pulse at time tl
on branch σ, associated with the (effective) wave vector of

the diffracting light field. Similarly, ωðσÞ
l denotes the

(effective) frequency of the pulse, where its sign depends
on the pulse and branch and can be derived from the
expression of the laser phase.

2. Perturbations

The perturbative term

ĤðσÞ ¼ λðσÞðtÞ ℏΩ
2c2

�
c2 −

p̂2

2m2
þ ð1þ αÞgr̂

�
þ V̂ðσÞ

FL þ V̂ðσÞ
del

ðA6Þ

includes a coupling of the internal degrees of freedom to
the c.m. motion with a factor ℏΩ=c2, which represents a
consistent treatment of relativistic corrections due to the
mass-energy relation [14,70,71]. The parametrization of
violations of the Einstein equivalence principle is given by
a modified gravitational acceleration �ð1þ αÞg for differ-
ent internal states and can be derived for example from
dilaton models [17–19,28–32]. This modification implies
violations of the Einstein equivalence principle in its
different facets: (i) Assuming energy conservation, this
factor can be connected to violations of UFF [4,19].
However, in such a setting it constitutes a test that compares
the gravitational acceleration of atoms in different internal
states, rather than two different species or test objects.
(ii) Inferring the factor (1þ α) from two clocks composed
of the same species at different heights leads to tests of
UGR. (iii) Measuring a difference δα of two parameters α,
each one associated with a different species positioned at
the same height, gives rise to the UCR tests at the heart of
our proposal. Although the factor α itself appears in all of
these tests based on different internal states, it is the exact
form and combination in the phase of interest which defines
what kind of test is performed. Moreover, the time- and
branch-dependent function λðσÞðtÞ is given by λðσÞðtÞ ¼ 1
while the (unperturbed) atom propagates in the excited state
and by λðσÞðtÞ ¼ −1 when propagating in the ground state.
Effects of the finite propagation velocity of laser pulses

[44–46] are encoded in

V̂FL ¼ −ℏ
X
l

ðklr̂ − ωltÞ½δðt − tl − δtlÞ − δðt − tlÞ�;

ðA7Þ

where we suppressed the superscripts σ of k, ωl and δtl.

Here, δtðσÞl is the time delay due to the finite propagation
time of light from the origin of the laser to the branch, see
Fig. 4, and is treated as a perturbative quantity. Additional

branch-dependent phase contributions �ΩδtðσÞl =2 arise
from the leading term of Eq. (A6) including finite speed
of light.
We include further deleterious effects that act as a

perturbation in V̂ðσÞ
del , which is given by

V̂ðσÞ
del ¼ λðσÞðtÞℏΩ

2

ar̂
c2

þm
2
r̂TΓr̂ − ωrotðr̂ × p̂Þ; ðA8Þ

where a is a differential acceleration between both internal
states, for example caused by Zeeman or Stark effects.
Here, Γ is a matrix containing squares of frequencies of a
harmonic potential, which could be caused by (partially
compensated) gravity gradients [40,49,54–56]. Moreover,
ωrot is the rotation frequency of the laboratory, where
nonperturbative contributions are assumed to be already
mitigated [52,53]. Effects from relativistic corrections to
the c.m. motion, such as terms including p̂4=c2 and
ðg ẑÞ p̂2=c2, lead to contributions which are further sup-
pressed and thus can be neglected. Similar arguments also
apply for the influence of modified wave vectors [32] in
case of the schemes considered in this article.
We derive the phase φ ¼ φ0 þ φ1 þ φWP from pertur-

bative methods [72,73], where φ0 is the unperturbed phase

shift generated by ĤðσÞ
0 and can be obtained from trajecto-

ries rðσÞðtÞ generated by the classical counterpart of ĤðσÞ
0 .

Inserting these classical trajectories into the perturbation
ĤðσÞ leads to the phase

φ1 ¼ −
1

ℏ

Z
T

0

dtðHð1Þ −Hð2ÞÞ: ðA9Þ

Wave-packet effects φWP are generated by different defor-
mations of wave packets due to perturbations, leading to a
nonperfect overlap at the end of the interferometer.
Generalizing the technique from Refs. [72,73] to perturba-
tions consisting of kinetic terms and rotations, we find

φWP ¼ −
1

2ℏ

I
dtf∂2rHðσÞ

ij hr̂icr̂ jci þ ∂
2
pH

ðσÞ
ij hp̂i

cp̂
j
ci

þ ∂r∂pH
ðσÞ
ij hfp̂i

c; r̂
j
cgig ðA10Þ

where the line integration goes along branch (1) from initial
time to final time and then back in time along path (2).
The centered time-dependent operators r̂cðtÞ ¼ r̂ − r0 þ
ðp̂=m − v0Þt and p̂c ¼ p̂ −mv0 have vanishing expectation
values. The derivatives in Eq. (A10) are defined by

∂
2
pH

ðσÞ
ij ¼ −δijλðσÞðtÞℏΩ=ð2m2c2Þ, ∂r∂pH

ðσÞ
ij ¼ −ωm

rotϵmij

with ϵmij being the Levi-Civita tensor, and ∂
2
rH

ðσÞ
ij ¼

mΓij. The latter two do not contribute to the signal of
clocks and atom interferometers because −ωm

rotϵmij and
mΓij as well as r̂cðtÞ and p̂c do not depend on the internal
state or branch, and cancel upon integration. Hence, only
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wave-packet contributions from the derivative with respect
to momenta arise.

3. Atomic clocks

For clocks, we choose kðσÞl ¼ 0 (neglecting recoils) for
all pulses, as well as λð1ÞðtÞ ¼ 1 and λð2ÞðtÞ ¼ −1 for the
whole duration of a Ramsey sequence, see Fig. 4(a) on
the top.
The figure shows on the bottom the unperturbed classical

trajectory through space for freely falling atoms. It is given
by rðtÞ ¼ r0 þ v0t − gt2=2 and the velocity vðtÞ ¼ v0 − gt
for both internal states with initial position r0 and initial
velocity v0. We find φ0 ¼ 0 except for laser phases that may
arise from chirping or vibrations and hence omit this term.
Because λð1ÞðtÞ − λð2ÞðtÞ ¼ 2 for all times, we find on

resonance

φ1 ¼ −
Ω
c2

Z
T

0

dt

�
−
v2ðtÞ
2

þ ð1þ αÞgrðtÞ
�

ðA11Þ

if we neglect the influence of any further deleterious effects
for clocks. In principle, those contributions can be incor-
porated. We observe that φ1 corresponds exactly to

−Ωðτ − TÞ, if the proper-time difference from Eq. (1) is
modified by a parameter α and taking nonvanishing initial
conditions into account. The integration along the classical
trajectories gives rise to

φ1

−ΩT
¼

�
1þ α

2

��
gð2r0 þ v0TÞ

c2
−
Δτ
T

�
−
gr0
c2

−
v20
2c2

:

ðA12Þ

With the same method, we find for the wave-packet effects

φWP ¼
Ω
2c2

Z
T

0

dt
Δp20
m2

¼ ΩT
2c2

ðhv20i − v20Þ; ðA13Þ

from which we obtain the result presented in Eq. (2) by
adding ϕ1 and ϕWP.

4. Atom interferometer

The atom interferometer introduced in the article corre-
sponds to a butterfly or figure-eight geometry [39,41–43].
Figure 4(b) shows on the bottom a spacetime diagram of
this scheme and both branch-dependent trajectories [19]

FIG. 4. State-dependent functions λðσÞðtÞ (top) and trajectories in spacetime diagrams (bottom) for the calculation of the phase shifts.
Panel (a) shows an atomic clock in a Ramsey sequence, where a π=2 pulse (red) initiates a superposition of internal states (ground state
in blue and excited state in green) and another π=2 pulse after a time T that interferes them. The finite propagation speed of both light

pulses is highlighted by inclined lines and leads to time delays δtð1=2Þl common for both internal states. During the sequence, the
(unperturbed) atom remains in a superposition of both internal states so that both λðσÞðtÞ are constant. Since there is no momentum
transfer, both wave packets corresponding to the two internal states are centered along the same spacetime trajectory. Panel (b) shows the
atom interferometer, where a π=2 pulse (red) initiates a superposition of both internal states entangled with corresponding c.m. states by
transferring a momentum ℏk in addition to the internal transition. Two π pulses (purple) at times T=4 and 3T=4 invert momenta and
internal states, before a last π=2 pulse at time T interferes both branches. We showcase the finite speed of light by inclined lines for the

pulses, which leads to time delays δtðσÞl that differ for both branches. The top shows the (unperturbed) sequence of internal states of both
branches encoded in the functions λðσÞðtÞ that jump by �2 during the π pulses. In contrast to atomic clocks, both internal states travel
along different branches.
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rðσÞðtÞ ¼ rðσÞðtlÞ þ
�
_rðσÞðtlÞ þ

ℏ
m
kðσÞl

�
ðt − tlÞ

−
1

2
gðt2 − t2lÞ ðA14Þ

valid in the segment tlþ1 > t ≥ tl. This expression is more
involved compared to clocks due to the momentum recoil
that generates a spatial superposition. Both branches have
the same initial conditions right before the first pulse, i.e.,
rð1Þð0Þ ¼ rð2Þð0Þ ¼ r0 and _rð1Þð0Þ ¼ _rð2Þð0Þ ¼ v0. From the
figure, we identify the momentum transfer of the individual

pulses k ¼ kð1Þ1 ¼ −kð1Þ2 ¼ kð1Þ3 ¼ kð2Þ2 ¼ −kð2Þ3 ¼ kð2Þ4 of

the sequence, where the laser frequencies ωðσÞ
l are defined

analogously. Due to the symmetry of these transfers, and by

that due to the trajectories, no contributions to φ0 arise. The
functions λðσÞðtÞ that describe the two internal states and
their transitions are plotted in Fig. 4(b) on the top. The time

delays δtðσÞl ¼ krðσÞðtlÞ=ðcjkjÞ that arise from the finite
speed of light propagation are also shown in the figure.
Table I summarizes the results of the integration of each

of the individual terms that contribute to φ1 and give rise to
the equations used in the main body of the article. The
results for finite speed of light have been obtained from an

expansion to linear order in δtðσÞl . No contributions from
wave-packet effects are contributing because the atom
remains in each internal state for the same time on each
branch, which can also be seen from

R
T
0 dtλðσÞðtÞ ¼ 0, as

apparent from Fig. 4(b).
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