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ABSTRACT

Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final
planning stages or already under construction. These upcoming vertical sensors are inherently subject to gravity and thus feature gradiometer
or multi-gradiometer configurations using single-photon transitions for large momentum transfer. While there has been significant progress
on optimizing these experiments against detrimental noise sources and for deployment at their projected sites, finding optimal configurations
that make the best use of the available resources is still an open issue. Even more, the fundamental limit of the device’s sensitivity is still miss-
ing. Here, we fill this gap and show that (a) resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal,
shot-noise limited, sensitivity if their height constitutes 20% of the available baseline; (b) this limit is independent of the dark matter oscilla-
tion frequency; and (c) doubling the baseline decreases the ultimate measurement uncertainty by approximately 65%. Moreover, we propose
a multi-diamond scheme with less mirror pulses where the leading-order gravitational phase contribution is suppressed and compare it to
established geometries and demonstrate that both configurations saturate the same fundamental limit.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0175683

I. INTRODUCTION

Observations of departures from general relativity at the scale of
galaxies, as evident in galaxy rotation curves, the dynamics of galactic
clusters, or even on cosmic scales in the cosmic microwave background,
strongly suggest1,2 the presence of both dark matter (DM) and dark
energy. As of now, both have evaded all our direct detection efforts. For
DM, potential candidates can be described3–6 as additional quantum
fields that extend the Standard Model. Any candidate might thus cou-
ple to (leptonic and baryonic) matter and hence effectively to atoms7,8

through their constituents. As atoms are by definition quantum objects,
they are a platform to implement high-precision quantum sensing pro-
tocols while at the same time being sensitive to DM.9 Typically, these
technologies rely on superpositions of internal states or atomic trajecto-
ries, as illustrated by atomic clocks10 and atom interferometers.11

Terrestrial atom-interferometric detectors with long baselines12–15

are expected to complement existing approaches to DM searches16

based on direct17 creation18 or annihilation19 of dark matter, which

have proven unfruitful up until now. These new instruments have been
proposed in both20 horizontal21,22 and vertical configurations23–25 in
synergy26 with gravitational-wave detectors. First demonstrator experi-
ments, which can already improve our constraints on dark matter,23,25

are currently under construction.27 These large-scale quantum sensors
become feasible through the suppression of common-mode noise
between (at least) two atom interferometers, each probing DM at dis-
tinct spacetime locations. Enhancing their sensitivity to both DM and
gravitational waves can be achieved by expanding the number of
atom–light interaction points.28 Consequently, large-momentum-
transfer techniques are one strategy that can be used for an optimiza-
tion of the signal. The planned implementations frequently rely on
(optical) single-photon transitions,10,29–32 which offer the added advan-
tage of suppressing laser phase noise.28,33

Possible detector sites are being currently evaluated21,27,34–36 with
a focus on their noise characteristics. In fact, gravity-gradient and other
Newtonian noise has been identified as an important issue in classical
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terrestrial gravitational-wave detectors.37–39 Similarly, these noise sour-
ces pose a major challenge for atom-interferometric DM and
gravitational-wave detectors,27,34,36 especially for detecting DM in the
sub-Hertz regime.40 The dominant contribution of gravity gradients in
a differential gradiometer setup can be suppressed by a so called two-
diamond (or figure-of-eight or butterfly) geometry, whereas a single
atom interferometer with such a geometry constitutes a gradiometer
on the scale of the arm separation.41–44 In our article, we generalize
this concept to a configuration encompassing multiple diamonds,
where the role of both interferometer arms is interchanged between
subsequent diamonds. Whereas such three-diamond configurations
have been demonstrated to suppress spurious Sagnac phases,45,46 an
even number of diamonds has a similar effect on the dominant gravi-
tational phase contributions. A multi-diamond scheme in combination
with periodically shaped test masses is also key to proposals47 aiming
at the detection of dark energy. The proposed geometry also differs
from configurations encompassing multiple diamonds where the role
of both arms is not interchanged between subsequent diamonds. Such
schemes have been shown to enhance the signal of gravitational-wave
detectors if the interrogation time of the interferometer matches the
frequency of the wave.48 This resonant-mode enhancement can also be
observed in DM detectors,26,49 where sensitivity increases with the
number of diamonds in the interferometer sequence.

An alternative strategy for noise suppression and, consequently,
sensitivity enhancement involves incorporating multiple atom interfer-
ometers along the sensor’s baseline.50 In this context, the quantity of
interferometers and their distribution across the baseline can be fine-
tuned and tailored to the specific environmental conditions, providing
additional means to create versatile setups.40

In contrast to these approaches, our article outlines how to exploit
a vertical baseline in two different schemes of a multi-diamond gradi-
ometer configuration, namely a geometry where the role of both arms
remains the same between subsequent diamonds26,49 and a geometry
where their role is interchanged. While the optimal dimensions may
vary depending on the specific characteristics of the prevailing noise,
our considerations show that sensors for coherent DM waves, limited
by shot noise, should allocate 20% of the baseline to each atomic-
fountain height to attain peak sensitivity. Given that shot noise repre-
sents the fundamental limit for such detectors, the demonstrated sensi-
tivity saturates the ultimate limit of such an experiment.

Furthermore, this sensitivity bound is independent from the fre-
quency of the DM oscillation, i.e., its mass, and is dictated by the DM
energy density confined within the volume of the detector baseline.
Doubling the detector’s baseline results in an approximate 65% reduc-
tion in the uncertainty associated with DM measurements. Finally, we
find that these results are identical for both schemes.

II. INTERFEROMETER PHASE INDUCED BY DARK
MATTER

We begin by deducing the principal DM contribution to the
phase of a Mach–Zehnder atom interferometer whose atom-optical
operations are performed via single-photon transitions.10,29–32 A gen-
eralization to large momentum transfer is discussed in Sec. III. Our
simple example serves to clarify and underscore the operational princi-
ples of this sensor type, without introducing excessive theoretical com-
plexities. In this spirit, we model ultralight scalar DM6 by a classical
field.

Atoms are manipulated by atomic beam splitters or mirrors
implemented via optical single-photon transitions between two inter-
nal atomic states. The energy gap between both states corresponds to
the atomic transition frequency X and is perturbed by the coupling of
the atoms to the DM background. Based on2 galactic observations
and the assumed DM velocity distribution, we consider DM momen-
tum as negligible and model the field as a position-independent plane
wave with long coherence time. Neglecting the spatial dependence of
DM implies49 a mass range where the wavelength of the DM field is
negligible on the length probed by the envisioned atom gradiometer.
While dropping this assumption is in principle possible, it leads to an
additional potential probed by the sensor.51 Even though such addi-
tional potentials may cause further phase contributions, similar to
kinetic and gravitational ones,52 the dominant phase originates in the
rest mass-energy of the atom and is strictly associated with the internal
transition frequency. Similarly, a time-dependent modulation52,53 of
the local gravitational acceleration due to a dressing of Earth’s mass by
the DM field may be included and used as an indicator for remnants
of DM. However, we assume in the following that this contribution is
not the dominant one, which seems justified considering the respective
energy scales.52

The interaction with the DM wave causes the atomic transition
frequency to oscillate at frequency x, given by the mass of DM, which
takes the form26,49

XðtÞ ¼ Xþ �edX cos xt þ /ð Þ: (1)

Here, �e � 0 is the dimensionless coupling of both internal states to
DM.52 This quantity is the parameter that is measured or bounded
by the DM detector. Beyond pure phenomenology, it may be linked
to coupling parameters of fundamental particles and atomic con-
stituents that do not depend on the specific atomic species
involved.9

The phase / of the DM wave is in general a free parameter and
can vary between different shots. The oscillation amplitude of the
atomic transition frequency54,55

dX ¼ X
mPc2

�hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p

.DML
3
P

mPc2

s
(2)

can be connected to the local energy density .DM ffi 0:4GeV/cm3 of
DM and its frequency x. The energy scale is given the Planck mass
mP, and the characteristic volume is given by the cube of the Planck
length LP ¼ �h=ðmPcÞ. Here, c denotes the speed of light, and �h
Planck’s constant.

In addition to a modification of the atomic transition fre-
quency, a coupling to DM affects the center-of-mass motion of the
atom. In principle, this interaction introduces additional phases53

in atom interferometers, since they represent inertial sensors and
are by that routinely employed as accelerometers.56 However, the
dominant contribution arises from the clock phase originating
from the time intervals during which the atom is in different inter-
nal states26 along each interferometer arm. Hence, we neglect
effects from these sub-dominant and higher-order couplings to
DM in the following.

Due to the inherent time symmetry between the branches of the
Mach–Zehnder sequence making up the first diamond of the atom
interferometer, shown in Fig. 1(a), the unperturbed clock phase
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cancels. Such a sequence consists of a p=2 pulse that coherently splits
the atomic beam, a p pulse that reflects both branches, and a second
p=2 pulse that interferes them. The cancelation only arises when all
three pulses are separated by equal interrogation times T.

The coupling to DM breaks this inherent symmetry by inducing
a time-dependent atomic transition frequency. Hence, any remaining
clock phase can serve as a direct probe for the coupling of DM to the
atom, provided all additional phases resulting, e.g., from motional
effects or the finite speed of light on the scale of the interferometer
branch separation are either of higher order or can be sufficiently well
characterized. Under these assumptions, the induced phase difference

uðt0Þ ¼ ��edX
ðt0þT

t0

dt cos xt þ /ð Þ �
ðt0þ2T

t0þT

dt cos xt þ /ð Þ

2
64

3
75 (3)

acquires a dependence on the initial time t0 of the Mach–Zehnder
sequence. The sign flip in the second half of the interferometer stems
from the interchanged role of both internal states after the action of
the p pulse at time t0 þ T .

While this phase contains a signature of DM, other, more domi-
nant contributions can arise, e.g., from the motion of the atom in
external potentials like gravity present in terrestrial setups. However, a
differential setup as sketched in Fig. 1(a) serves to isolate the phase
from Eq. (3). This procedure is discussed in Sec. III after generalizing
the scheme to multiple diamonds instead of a plain Mach–Zehnder
interferometer.

III. MULTI-DIAMOND GRADIOMETER SIGNAL

So far, we have demonstrated that the phase of a Mach–Zehnder
interferometer is susceptible to DM oscillations. We now discuss two
possible generalizations to multi-diamond schemes that enhance the
sensitivity: (i) In a first scheme (�), the second p=2 pulse that inter-
feres both branches is omitted. To keep the distance between them suf-
ficiently small and subsequently overlap them at the end of the light-
pulse sequence, the atom is periodically redirected by subsequent p
pulses separated by a period 2T, as shown in Fig. 1(a) by the dotted red
lines. This procedure creates a geometry with additional Mach–
Zehnder diamonds after the first Mach–Zehnder interferometer. After
a total duration of Ttot ¼ 2QT , where Q describes the number of dia-
monds, a second p=2 pulse finally interferes both branches. (ii) The
second scheme (þ) redirects both arms whenever they begin to cross
each other by introducing additional p pulses shown in Fig. 1(a) by
orange dotted lines. As a consequence, all pulses are separated by the
interrogation time T. Such a configuration has been demonstrated to
resonantly enhance the signal of gravitational-wave detectors48 by a
factor of Q and has been adapted for the detection of DM.26,49

Similarly to the symmetry in a single Mach–Zehnder interferom-
eter, the role of the arms is interchanged between two subsequent dia-
monds in the first scheme. In this case, the sign of the acquired phase
also flips,47 while in the second scheme, the role of both arms is not
reversed, so that there is no change of sign. As a consequence, we find
for Q diamonds a phase contribution for the first (�) and second (þ)
scheme,

U7ðt0Þ ¼
XQ
q¼1

71ð Þq�1u t0 þ 2ðq� 1ÞTð Þ; (4)

which depends on the initial time t0 of the multi-diamond sequence.
While Eq. (4) describes the dominant phase induced by DM, the over-
all phase is still sensitive to other and possibly larger phase contribu-
tions as well as their associated noise.

For this reason, one usually resorts to common-mode operation
in a gradiometer-type configuration.30 In these configurations, com-
mon light pulses drive the transitions of two atom interferometers sep-
arated by a distance L, distributed along a baseline B of the detector.
The situation is shown in Fig. 1 for a vertical configuration with
atom-fountain interferometers. In this case, the differential phase
dU7 ¼ U7ðt0 þ sLÞ � U7ðt0Þ removes the dominant inertial phases
as well as most of the noise, even though gravity-gradient noise is
expected27,34,36 to be a severe but ultimately solvable50 challenge. Here,
the first (�) scheme suppresses leading-order gravitational phases and
the associated noise, while the second (þ) scheme does not feature
such an intrinsic symmetry. The delay time sL ¼ L=c that arises from
the propagation of the light between the atom interferometers is crucial
for the scheme: only due to the finite propagation speed of light, the
DM field is probed at two different instances in time.

Fig. 1. (a) Spacetime diagram of two multi-diamond gradiometer configurations con-
sisting of two interferometers separated by a distance L ¼ csL and generated by
single-photon pulses (dotted, red and orange) sent at appropriate multiples of the
interrogation time T. The first scheme (�) is generated by the pulses indicted in
red, while the additional p pulses shown in orange are only present in the second
(þ) scheme. The overall duration of the interferometer Ttot ¼ 2QT scales with the
number of diamonds Q. We indicate the alternating sequence of ground state jgi
(blue) and excited state jei (green) of the atomic clouds during the interferometer
along their respective trajectories. The phase difference acquired during one dia-
mond uðt0Þ depends on the initial time t0 and is identical but shifted in time in the
second (þ) scheme. In the first (�) scheme, it alternatingly flips its sign in subse-
quent diamonds, since the role of both arms is interchanged. (b) Spatial extension h
and midpoint trajectory (dashed) of the two atomic fountains that are used as multi-
diamond interferometers AI1 (blue) and AI2 (red). They are separated by a distance
L distributed on the baseline B of the detector, and their start (and end) is delayed
by a time sL ¼ L=c originating in the propagation of the light between the two
atomic ensembles. The additional extension originating from the atomic recoil and
subsequent wave-packet propagation is illustrated by the shaded area surrounding
the respective midpoint trajectories. Adapted VLBAI model in (b), courtesy of the
VLBAI team of the Institute of Quantum Optics, Leibniz University Hannover.
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However, the phase / of the DM field will change from shot to
shot. Consequently, it is only possible to measure the amplitude of the
stochastic background induced by DM on the differential phase, i.e.,
the sensor detects US ¼ ½2 Ð 2p0 d/ dU2

7=ð2pÞ�1=2. This signal ampli-
tude takes the form

US ¼ �e
8dX
x

���� sin xsL
2

Q7ðxT;QÞ
���� (5)

and is determined by the interrogation-mode functions

QþðxT;QÞ ¼ 1
2
sinðQxTÞ tan xT

2
; (6a)

which is in agreement with previous treatments,49 and

Q�ðxT;QÞ ¼
sin 2 xT

2
cos QxTð Þ= cosxT forQ odd;

sin 2 xT
2

sin QxTð Þ= cosxT forQ even

8>><
>>: (6b)

that includes all dependence on T and Q. In particular, the
interrogation-mode function Q� differs for odd and even numbers of
diamonds, as visualized in Fig. 2(b), whileQþ shows no such behavior
as shown in Fig. 2(a). This distinction is a direct consequence of the
factor ð�1Þq�1 in the sum of Eq. (4) that arises because the role of
both interferometer arms is interchanged between two subsequent
diamonds.

For a Mach–Zehnder interferometer with Q¼ 1, we find
Q7 ¼ sin 2ðxT=2Þ. In this case, the signal amplitude reduces to the
expression also found for large-momentum-transfer single-diamond
setups.26,35 The respective multi-diamond signal of the second (þ)
scheme in gravitational-wave detectors48 also leads to the interrogation-
mode function given by Eq. (6a). Moreover, the DM signal for this con-
figuration has been derived previously.49

To study resonant-mode enhancement,48 we observe the
relations

jQ�ðp=2;QÞj ¼ Q=2 and jQþðp;QÞj ¼ Q; (7)

and, hence, we refer in the following to xT ¼ p=2 and xT ¼ p,
respectively, as the resonant mode, where the signal amplitude is
amplified by the number of diamonds. In this case, the interrogation
time T is adapted to the frequency x of the DM field. For ultralight
DM of any given mass, one can find such a time, only being limited by
experimental constraints. While the maxima differ by a factor of two,
we show here that the optimal sensitivity is the same for both schemes.

However, the choice of xT ¼ p=2 does not necessarily maximize
the signal for small Q, as shown in Fig. 2(c). In fact, the maximum of
jQ�j approaches Q=2 from above, even though already at Q> 5, the
difference drops below 5% and soon becomes negligible. So instead of
discussing the optimal choice of xT for each configuration, we simply
resort to the resonant mode as defined above. Note that in the other
scheme the choicexT ¼ p is always optimal.

While noise might enter the signal differently for odd or even Q,
as apparent from the two-diamond setup, also the DM signal changes
due to the form of Q�. This difference cannot be observed for
resonant-mode detection. However, for a sensor operated in far-off
resonant detection mode with a total duration Ttot ¼ 2QT � 1=x,

Fig. 2. (a) and (b) Visualization of the interrogation-mode functions Q7ðxT ;QÞ of
a DM sensor with Q diamonds based on the second scheme (þ) or the first
scheme (�), and its dependence on the product xT of DM frequency x and half-
diamond duration T, respectively. For the second scheme (þ), the interrogation
mode function Qþ always attains its maximum Q at xT ¼ p. In the case of the
first scheme (�), the interrogation-mode function Q� attains its peak value close
to the horizontal dashed lines determined by xT ¼ p=2 or odd integer multiples
thereof with increasing Q. (c) Optimization of the signal amplitude of a Q-loop
multi-diamond DM sensor by maximizing the interrogation-mode function
Q�ðxT ;QÞ with respect to xT at fixed Q. In comparison to the simplified case of
choosing xT ¼ p=2 with jQ�ðp=2;QÞj ¼ Q=2, we obtain a deviation of the
maximal value Qmax ¼ maxxT jQ�ðxT ;QÞj from Q=2 in the limit of small Q.
The exact deviation Qmax � Q=2, obtained by numerical optimization, is plotted in
the inset (d) of panel (c) as a function of Q. It attains the peak deviation 0.5 for the
Mach–Zehnder interferometer with Q¼ 1. Consequently, in this case, one can
double the interrogation-mode function and hence the signal amplitude by perform-
ing such an optimization. However, starting at Q� 5, this additional benefit rapidly
vanishes, and the interrogation-mode function becomes indistinguishable from the
now dominating Q=2 scaling originating from the resonant-mode enhancement for
larger Q.
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the signal amplitude scales as 1=Q2. As a consequence, a multi-
diamond configuration operated in this mode has no benefit over the
Mach–Zehnder setup. This limit arises naturally if the peak sensitivity
is not reachable within the experimentally available durations for the
interferometer. In this case, even numbers of diamonds are more
strongly suppressed by increasing Q than odd numbers, which can be
directly seen from an expansion of Eq. (6b). Nevertheless, this regime
is anyways not favorable for operation, and we focus on resonant-
mode detection in the following.

As a further simplification, we can assume that the phase of DM
varies slowly on the time scale of the propagation delay, that is
xsL � 1, which is well justified for ultralight DM. Expanding Eq. (5)
to first order in xsL, the signal amplitude reduces to the compact
expression US ¼ �e4dXsLjQ7j.

One of the techniques routinely applied to enhance the sensitivity
of atom interferometers is the transfer of large momenta.31 In fact,
most gravitational-wave and DM detectors are planned21,23,27,46 with a
design that includes such large-momentum-transfer technologies as
one key component. An additional benefit of an even number of trans-
ferred momenta is that the atom travels in the same internal state for
most of the interrogation time T, which lifts some of the requirements
on the lifetime of the excited state. Moreover, it suppresses differential
phases that may arise for an atom being in different internal states on
both branches, e.g., induced by spatially varying Zeeman shifts.

Our treatment can be generalized to large-momentum-transfer
schemes in analogy to other approaches.35,46,49 In such a sequence, the
(even) number N of transferred momenta further enhances the signal
amplitude. For xsL � 1, we find

US ¼ �e4dXsLNjQ7j (8)

as a generalization of Eq. (5), so that also the case N¼ 1 is correct.
Note that the second scheme (þ) corresponds to the same pulse
sequence used in previous treatments.26,49 However, to our knowledge,
the first scheme (�) has not been discussed in this context.

There is in general a difference between the propagation delay
sL ¼ L=c that is given by the initial distance L between both interfer-
ometers and the length B of the baseline. In addition, one can consider
the propagation delay between the position of the lasers and the lower
interferometer as well as the propagation delay between the reflectors
at the other end of the baseline and the atom interferometer. However,
even in this case, only sL enters the signal amplitude to the lowest
order.48,49 Similarly, the light propagation delay is neglected on the
scale of the distance between both branches of a single interferometer,
also assumed for the case N¼ 1 studied so far.

IV. SENSITIVITY TO DARKMATTER

A measurement of the amplitude of the stochastic background
induced by DM on the differential phase yields data to estimate the
dimensionless DM-coupling parameter �e. However, all experiments
are prone to noise, be it a fundamental one (like shot noise), intro-
duced by experimental imperfections, or inevitable fluctuations like
gravity-gradient noise. From the signal amplitude given in Eq. (8), we
find through Gaussian error propagation that the uncertainty of �e has
the form

D�e ¼ DUS

4dXsLNjQ7j (9)

and depends on the fluctuations DUS of the signal amplitude. By intro-
ducing the signal-to-noise ratio SNR ¼ ð�e=D�eÞ2 as an estimator for
the signal strength, we directly observe

�e ¼ D�e
ffiffiffiffiffiffiffiffiffi
SNR

p
¼

ffiffiffiffiffiffiffiffiffi
SNR

p

4dXsLNjQ7jDUS; (10)

which can also be derived via arguments about the power spectral den-
sity.49 Equation (10) sets an upper limit on the coupling �e for a given
SNR and experiment and is usually estimated in theoretical studies.57

Since it is directly proportional to D�e, we focus in the following discus-
sion on its optimization.

The explicit form of the fluctuations DUS will depend on the local
environment, the specifics of the experimental realization and setup, as
well as intrinsic constraints. While it is possible to maximize the signal
amplitude by operating in resonant mode, this choice might not be
optimal to minimize D�e. In fact, DUS will depend in many cases on
the interrogation time T. Thus, it is insufficient to maximize the
interrogation-mode function jQ7j alone. Instead, the best strategy is
to find an interrogation time where the fraction DUS=jQ7j is mini-
mized. Since such a procedure strongly depends on the experimental
site and a detailed noise analysis, such a full discussion is beyond the
scope of this article. However, we will derive a limit for the sensitivity
to�e in the following that is imposed by the fundamental detection shot
noise and optimize the exploitation of the baseline of the detector.

In a first step, we assume that DUS is independent of T. In this case,
the minimal uncertainty D�e indeed arises for resonant-mode detection,
where the signal amplitude is maximized by jQ�j ¼ Q=2 with xT
¼ p=2 or jQþj ¼ Q with xT ¼ p, respectively. Even if there is a small
dependence of DUS on T, the following treatment may hold if the neces-
sary conditions jQdDUS=dTjxT¼p=2 � 1 or jQdDUS=dTjxT¼p � 1
are fulfilled. Combined with Ttot ¼ 2QT , we arrive at the uncertainty

D�e ¼ p
2

DUS

NdXxsLTtot
(11)

for both types of pulse sequences. Even though the maxima for both
schemes differ by a factor of one half, the duration of resonant-mode
detection also differs by a factor of two, so that the value for D�e is inde-
pendent of the specific implementation.

Referring to the setup shown in Fig. 1(b), this expression can be
connected to the spatial dimensions of a vertical detector. For optimal
usage of the available resources and space, we assume that the vertical
baseline B ¼ Lþ h is given by the initial separation L of the atoms
and the height h of an individual atomic fountain, where the atoms are
launched and imaged at the same location. Hence, this height can be
roughly estimated by the midpoint trajectory following a parabola.
Instead of an atomic fountain with an initial launch, the treatment can
also be adopted to describe an operation in drop mode, that could in
principle allow for interleaved interferometers.58 However, for a foun-
tain setup, the duration of the atom-interferometer sequence Ttot

ffi ffiffiffiffiffiffiffiffiffiffi
8h=g

p � 2vr=ðgQÞ can be connected to the fountain height and
the velocity vr transferred by atomic recoil to the atoms during the
light-pulses. As a consequence, the gravitational acceleration g enters
for vertical, terrestrial detectors. For simplicity, we assume that the
deviation from the midpoint trajectory can be neglected for sufficiently
large Q. Moreover, the propagation delay sL ¼ ðB� hÞ=c depends on
the dimensions of the baseline as well.

To optimize the exploitation of the baseline, we start by the
restrictive assumption that DUS is not only independent of T but, in
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addition, also independent of Ttot. In this case, the uncertainty D�e
from Eq. (9) is minimized for a choice of h ¼ B=3 and takes the opti-
mal value

D�e ¼ 3
ffiffiffiffiffi
3p

p
DUS

32N
mPc2

�hX
LP
RE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEc2

.DMB3

s
: (12)

Here, the radius RE of Earth and its massmE enter through the gravita-
tional acceleration g at its surface. Moreover, we have used the explicit
form of dX given in Eq. (2).

The uncertainty still depends on the fluctuations of the signal
amplitude DUS, so that low noise is necessary for the determination of
�e with high precision. One can increase the sensitivity by choosing a
larger atomic transition frequency X, even though this direct propor-
tionality is an artifact of our assumption that both internal states cou-
ple equally to DM. The precision is enhanced by increasing the
baseline of the interferometer, with a scaling behavior of B�3=2, which
is better than inversely proportional. In particular, Eq. (12) highlights
that the energy density of DM is effectively probed by a volume deter-
mined by the length of the baseline. Furthermore, this limit of
resonant-mode detection is independent of the frequencyx of the DM
wave and by that independent of its mass.

In a next step, we make less restrictive assumptions on the noise
and derive the fundamental limit on the sensitivity. It is saturated if
both atom interferometers are shot-noise limited and the integration
time Tint is smaller than the coherence time of the DM wave.49,59 For a
differential measurement, shot noise adds in, and we find
DUS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð�natÞ

p
. Here, nat is the number of atoms and the number

of repetitions � is connected to the integration time through
Tint ¼ �Ttot, assuming ideally a vanishing dead time between subse-
quent runs. We therefore implicitly assume that the next run of the
experiment can be prepared while the previous atom-interferometer
sequence is ongoing. In principle, one could also increase this factor by
resorting to interleaved schemes. In any case, if DUS is independent of
T but only depends on Ttot, we arrive at

D�e ¼ pffiffiffiffiffiffiffiffi
2nat

p
NdXxsL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TtotTint

p (13)

for resonant-mode detection. Assuming that the overall integration
time is fixed and limited by long-term drifts of the detector, we find in
analogy to the discussion above an optimal height h ¼ B=5, i.e., 20%
of the baseline. This choice leads to the uncertainty

D�e ¼ 5
64N

ffiffiffiffiffiffiffiffi
10p
nat�

r
mPc2

�hX
LP
RE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEc2

.DMB3

s
; (14)

which constitutes the fundamental limitation for the sensitivity. The
height of the two atom fountains is adjusted in such a way that the
baseline of the resonant-mode detector is exploited optimally. This
fundamental limit is independent of the mass of DM, i.e., its frequency,
and is suppressed by the number of repetitions and atoms used per
run. Again, we observe a scaling behavior of B�3=2.

V. CONCLUSIONS

In this article, we derived a general expression for the uncertainty of
the dimensionless constant �e that describes the coupling of both internal
states of an atom to a (coherent) DM field,52 as measured by an atomic
multi-diamond gravimeter operated with single-photon transitions.

The key ingredient was the identification of an interrogation-mode
function Q7 that highlights the benefits of operation in resonant
mode. This result can be used to optimize the detector for specific
noise characteristics, which in turn depend on the site of the detector.
In principle, the fraction DUS=jQ7j of the fluctuations of the signal
amplitude and the interrogation-mode function has to be minimized
to find the optimal interrogation time T. Such an optimum will gener-
ally depend on the frequency of the DM field and typical frequencies
of the noise characteristics.

However, for shot-noise limited atom-fountain interferometers,
where the integration time is smaller than the coherence time of the
DM wave, we derived an optimal fountain height of 20% of the base-
line. The observed sensitivity for resonant-mode operation is indepen-
dent of the mass of DM, i.e., its frequency, and constitutes the ultimate
limit of such a configuration. In the future, it could be further
enhanced by relying on quantum-metrological techniques like squeez-
ing or entangling the atomic input states60,61 once these techniques
have sufficiently matured for application in large-momentum-transfer
interferometers. In this case, the scaling with respect to the atom num-
ber changes to n�1

at instead of n�1=2
at . However, the remainder of the

expression is not affected, and the optimal choice of the fountain
height does not change. Overall, we observe a scaling of the uncertainty
with B�3=2 so that doubling the baseline leads to a decrease in the
uncertainty by roughly 65%. In fact, the energy density of DM is effec-
tively probed by a volume determined by the length of the baseline.
The uncertainty D�e of the coupling parameter has been obtained from
Gaussian error propagation, so that 5D�e corresponds to a five-sigma
discovery. With the help of Eq. (10) using five times the uncertainty,
the value

�e5r ¼ 25
64N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10pSNR
nat�

r
mPc2

�hX
LP
RE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEc2

.DMB3

s
(15)

has to be observed in a measurement.
Our results can be applied to different situations such as drop-

mode operation instead of using a symmetric fountain setup where the
atoms are launched and imaged at the same location so that the height
is given by the apex of the trajectory. While the free-fall time Ttot and
number of possible diamonds decreases in drop mode, an interleaved
operation58 might be possible. It would introduce a more favorable
scaling behavior with the integration time, so that the optimization of
the drop height will lead to a different result. Moreover, one can gener-
alize our study to multi-gradiometry40 with more than two atom inter-
ferometers placed in the baseline of the detector. In this case, not only
the drop height but also the spacing and the number of interferometers
can be optimized.

Moreover, we have discussed two schemes where (i) the role of
both arms changes between subsequent diamonds and (ii) the arms
are redirected at the end of each diamond. Both schemes have different
interrogation times in resonant-mode detection but lead to the same
optimal sensitivity for the coupling parameter. While the first scheme
is intrinsically insensitive to the dominant gravitational phase contri-
bution41–44 for even Q and therefore leads to a suppression of gravity-
gradient noise by relying at the same time on less pulses, the second
scheme has been already discussed in the context of DM or
gravitational-wave detection.26,48,49

So far, we have neglected further corrections due to a non-
negligible recoil, which becomes more important with increasing
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numbers of large-momentum-transfer pulses. In such situations,
finite-speed-of-light effects on the scale of the distance between the
interferometer branches might become relevant as well. However, this
separation decreases with an increasing number of diamonds, sup-
pressing such effects. This suppression therefore depends on the fre-
quency of the DM field for resonant detection and for fixed Ttot.
Moreover, terrestrial, vertical long baselines require a significant
amount of chirping in the laser frequency62 to compensate the
Doppler detuning, which should be accounted for in a more detailed
treatment.

For a comprehensive analysis, one can also include DM couplings
that lead to phase contributions beyond the leading-order effects dis-
cussed in this article. In particular, one can include the motion of the
atoms53 as common for conventional gradiometers or gravimeters,
where a perturbative operator approach63 seems to be well-suited to
incorporate effects of DM on the atoms’motion.

In this article, we have used a scalar field described by plane
waves to model DM. This model can be extended to include
effects like the presumed velocity distribution of DM, i.e., a spa-
tial dependence of the wave,51 as well as a finite coherence time
of the DM wave.49,59 Moreover, one can go beyond the limiting
case of ultralight, scalar, and classical DM fields to observe differ-
ences in the signal amplitude depending on the particular candi-
date of DM.1,16
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