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Abstract
Quantum sensing using non-linear interferometers (NLIs) offers the possibility of bicolour
imaging, using light that never interacted with the object of interest, and provides a way to achieve
phase supersensitivity, i.e. a Heisenberg-type scaling of the phase uncertainty. Such a scaling
behaviour is extremely susceptible to noise and only arises at specific phases that define the optimal
working point (WP) of the device. While phase-shifting algorithms are to some degree robust
against the deleterious effects induced by noise they extract an image by tuning the interferometer
phase over a broad range, implying an operation beyond the WP. In our theoretical study, we
investigate both the spontaneous and the high-gain regime of operation of an NLI. In fact, in the
spontaneous regime using a distillation technique and operating at the WP leads to a qualitatively
similar behaviour. In the high-gain regime, however, typical distillation techniques inherently
forbid a scaling better than the standard-quantum limit, as a consequence of the photon statistics
of squeezed vacuum. In contrast, an operation at the WP still may lead to a sensitivity below shot
noise, even in the presence of noise. Therefore, this procedure opens the perspective of bicolour
imaging with a better than shot-noise phase uncertainty by working in the vicinity of the WP. Our
results transfer quantum imaging distillation in a noisy environment to the high-gain regime with
the ultimate goal of harnessing its full potential by combining bicolour imaging and phase
supersensitivity.

1. Introduction

Quantum imaging has emerged as a transformative field, pushing the boundaries of classical optical
techniques and offering innovative solutions in diverse applications [1]. At the heart of quantum imaging
techniques lies the ability to harness the unique quantum properties of light to achieve unprecedented levels
of sensitivity and precision [2–7].

Recent developments in quantum imaging have spotlighted the potential for profound advancements,
specifically in image distillation, where quantum processes are harnessed to enhance image quality by
distillation from undesired noise [8–11]. This can be realised by the use of phase-shifting holography [12, 13]
within the quantum framework, which has unlocked novel possibilities for refining images, bringing a new
dimension to the field. This advancement, when coupled with non-linear interferometers (NLIs) [14–17],
has the potential to redefine the limits of quantum imaging.

Quantum imaging setups comprised of two squeezers (SQZs) (mostly based on non-linear crystals)
generating two non-degenerate frequency modes allow for sensing objects at one wavelength, while detecting
light at the other wavelength, i.e. with light that did not interact with the object. This type of bicolour
imaging is called quantum imaging with undetected light [18, 19] and offers great potential for allowing
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Figure 1. Schematic experimental setup of (a) an MZI and (b) an NLI. (a) In an MZI the input laser beam of intensity n0 is split
by a first BS into two arms. The phase difference θ between both arms can be tuned by moving the mirror on the upper arm,
while the phase object of interest is placed in the lower arm, which in turn imprints the unknown phase φ on the lower arm. Both
arms interfere on a second BS, and the output interferometer signal is described by ⟨n̂I⟩. To model a noisy interferometer signal,
this output is incoherently superimposed with noise ⟨n̂⟩ on another BS with transmittance η. Finally, the noisy signal N(ϕ) is
detected which still depends on the total interferometer phase ϕ = φ + θ. (b) In an NLI, a laser seeds two non-degenerate
squeezers (SQZs) with two output modes, possibly of different wavelengths (orange and blue). The first squeezer has no
additional input, so that the number of generated photons n0 in both signal and idler arms solely depends on the gain, which can
be tuned from the spontaneous (low-gain) to the high-gain regime. The signal photons travel along the upper arm where one can
tune the phase difference θ, while the idler photons on the lower arm probe a phase object, which imprints its phase φ. Both
modes are redirected to seed the second squeezer, which can be operated at possibly different gain. The output in the idler mode
⟨n̂I⟩, which never interacted with the object, contains all the phase information. Again, we model the noisy signal by incoherently
superimposing the output with noise, giving rise to the detected signal N(ϕ).

sensing in spectral ranges, which are normally challenging or impossible to detect. The working principle of
this effect is a missing which-source information, which by itself induces coherence in the low-gain
regime [20] so that quantum interference can be observed. Increasing the (parametric) gain beyond the
spontaneous regime where no emission is induced still allows for quantum imaging based on induced
coherence, even though which-way information may lead to a decreased visibility [21, 22].

In fact, symmetric setups as shown in figure 1(b) where both output modes of the first SQZ are used as
an input to the second one do not suffer from these subtleties and have led to a class of NLIs [23] that are
based [24] on the Lie group SU(1,1). Their study has been met with growing interest in the last few
years [25–29]. Besides the possibility for bicolour imaging with undetected light, one of the key features of
such interferometers is—in the ideal case—a phase sensitivity at the Heisenberg limit [23, 24]. However, a
sensitivity below the standard-quantum limit (shot noise) is compromised by internal or detection loss [30,
31], which can only partially be compensated by unbalancing the gain in both SQZs [32, 33]. Hence, loss and
noise limit the range of phases where a phase supersensitivity can be achieved.

Our contribution to this burgeoning field is to combine the concept of image distillation via
phase-shifting holography within non-linear interferometry. Since image distillation requires a phase scan
that might lie outside the range where phase supersensitivity is observed, we focus on the implications for
phase sensitivity. We discuss the impact of noise on signals in both the low-gain (spontaneous) and high-gain
regime for phase imaging.

Such imaging techniques are inherently multi-mode, due to (i) the spatial extent of the object and (ii) the
intrinsic multi-mode nature of the radiation generated during (high-gain) parametric
down-conversion [34]. Assuming that a monochromatic plane wave as a pump field induces the squeezing
process, each plane-wave mode of the generated radiation can be treated as an independent SQZ [35]. If the
object is placed in the far field of the first SQZ, each one of these modes can be assigned to one point of the
object, which is subsequently imaged onto the second SQZ [36]. A detection of the interference signal in the
far field of the second SQZ with a camera can then be used to uniquely associate each pixel with a point of the
object. For such a scenario a single-mode description is sufficient, which we present below. However, we give
a more detailed perspective towards the multi-mode scenario and discuss further details in the conclusions.

Since it is a central part of our work, we model noisy signals by incoherently overlaying noise ⟨n̂⟩ onto the
signal of an interferometer ⟨n̂I⟩ as depicted in figure 1. The total detected phase ϕ = φ + θ can be scanned by
varying θ via a movable mirror, such that an object with its phase φ can be sensed. We compare our findings
with the performance of a Mach–Zehnder interferometer (MZI) as a bench-marking system, inherently
limited by shot noise. As figure 1(a) shows, in the MZI, a laser at intensity n0 serves as the interferometer
input. This input is split into two arms, which then interfere with each other after probing the object. Along
these lines, figure 1(b) shows the case of an NLI. Here, two SQZs are coherently pumped by a laser. The first
SQZ generates two modes (possibly of different colour) each with intensity n0 through parametric
down-conversion. While the interferometer phase θ is scanned in one mode, the object with phase φ is
sensed by the other mode. Both modes are used as an input to the second SQZ, resulting in a phase-sensitive
amplification or absorption.
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Figure 2.Model for the generation of noisy signals and their resulting statistics. (a) An interferometer signal ⟨n̂I⟩ is incoherently
superimposed with noise ⟨n̂⟩ on a BS of transmittance η. Afterwards the noisy interferometer signal N(ϕ) is detected, which
depends on the total interferometer phase ϕ = φ + θ that is tunable. (b) A fringe scan for an exemplary noisy interferometer
signal (solid green line) for Poissonian statistics of the interferometer and thermal statistics of the noise. We also show the
individual contributions after the BS, noise nn = (1− η)⟨n̂⟩ (dotted yellow line) and interferometer nϕ = η⟨n̂I⟩ (dashed blue
line), and illustrate their respective uncertainties (standard deviation) by shaded regions (due to their symmetry with respect to
π, we draw∆nϕ and∆nn for ϕ < π, as well as∆N(ϕ) for ϕ > π). A Poissonian interferometer output arises for example in an
MZI with a laser as input. (c) Contributions to the noisy interference signal, where now the respective uncertainties are given for
thermal statistics of the interferometer output and noise. Since squeezed vacuum has a thermal photon statistics, this case
corresponds to the observed signal in quantum imaging.

2. Interference signal superimposed with noise

For the single-mode description of a noisy interference signal, we assume that the information of the imaged
object, i.e. its phase φ and transmittance T, is completely contained in the output ⟨n̂I⟩ of the interferometer.
To describe imaging of a spatially extended object, one could assign an index to all quantities in the following
calculations, representing the signal detected by one pixel of the camera, which is connected to one
plane-wave mode of radiation and one point of the object. For such a description, all modes of radiation
have to be squeezed independently. In the following we omit such an index, but keep in mind that a
multi-mode generalisation is possible under certain assumptions.

To model the influence of noise, we incoherently superimpose this perfect signal with an additional noise
source ⟨n̂⟩ on a beam splitter (BS), see figure 2(a). Here, we introduced the operators n̂I and n̂ describing the
photon numbers of one exit port of the interferometer and a corresponding noise mode, respectively. In the
usual fashion, we describe the superposition of two modes on a BS or SQZ by linear transformations [33].
Consequently, the detected signal

N(ϕ) = nϕ + nn (1)

consists of two contributions: (i) The transmitted fraction of the interferometer output nϕ = η⟨n̂I⟩ for a BS
with transmittance η. Likewise, as the interferometer output, its detected fraction again contains all of the
object’s information, in particular the interferometer phase ϕ. (ii) The fraction of noise nn = (1− η)⟨n̂⟩
coupling into the detector. Since typically the signal and noise have no common source, we can rule out any
interference between the interferometer output and the noise source. Figures 2(b) and (c) show typical
detected interference patterns with individual contributions of interferometer output, noise, and the detected
signal for Poissonian and thermal interferometer statistics, respectively. The latter is of relevance for
quantum imaging, since it resembles the statistics of squeezed vacuum. Exactly this noise model has already
been studied experimentally [11] in quantum imaging distillation, even though one can also develop a
description where noise couples into the interferometer itself. Moreover, detection loss can be added trivially
by adding another BS before detection with vacuum input [33].

As we observe in figures 2(b) and (c), noise not only reduces the detected fraction of the interferometer
output, but also affects its uncertainty. We quantify the uncertainty of the detected signal by its variance and
find

∆N2 (ϕ) = ∆n2ϕ +∆n2n + 2nϕ nn +(1− η)nϕ + ηnn + 4Cov(nϕ,nn) . (2)

Apparently, it consists of more contributions than the sum of the individual uncertainties, i.e. the variance of
the detected interferometer signal∆n2ϕ = η2⟨n̂2I ⟩− n2ϕ, and the variance of the detected noise
∆n2n = (1− η)2⟨n̂2⟩− n2n. In addition, the covariance Cov(nϕ,nn) = η(1− η)⟨n̂In̂⟩− nϕ nn and further
terms enter. These additional terms are caused by the bosonic commutation relations of the photon creation
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and annihilation operators used to describe the input modes of the BS that is modelled by an SU(2)
transformation, which has a direct impact on the observed photon statistics. In fact, even when considering
vanishing noise, i.e. nn = 0, the additional term (1− η)nϕ survives and modifies the detected statistics. This
effect can be interpreted as a direct consequence of vacuum fluctuations coupling into the signal and can also
be observed for photon detectors with imperfect detection efficiency [33]. We provide further details on the
mathematical origin in appendix A.

In the following, we assume a vanishing covariance (since the interferometer output and noise are
uncorrelated) and Poissonian or thermal statistics for both BS inputs, i.e.∆n̂2i = ⟨n̂i⟩ or∆n̂2i = ⟨n̂i⟩⟨n̂i + 1⟩,
respectively. With these assumptions and for low interferometer output as well as noise, i.e. ⟨n̂I⟩,⟨n̂⟩ ≪ 1, the
variance reduces to∆N2(ϕ) = nϕ + nn, independent of the statistics.

3. Phase distillation

In this section, we present a method to extract and reconstruct the phase φ of the object from the detected
noisy signal. To obtain an explicit expression, we have to specify the way the information on the object is
contained in the detected signal. For an interference signal, the general form

nϕ =A [1−C cosϕ] (3)

of the detected fraction of the interferometer output (without noise) is determined by an amplitudeA that
already includes the transmittance η of the BS, a contrast C, and the total interferometer phase ϕ. The
contrast contains information on the transmittance of the object, the setup of the interferometer, which
might include unbalanced BSs or gains of the SQZs, as well as internal loss. While the latter is not modelled
in our article, its effects can be included straightforwardly, i.e. by introducing additional BSs. The phase φ of
the object is contained in the total interferometer phase via

ϕ = φ + θ, (4)

where θ is the tunable phase controlled by the experimenter and plays a key role for the distillation
procedure. In fact one collects data for at least three different values of θ, see figure 3, which is sufficient to
distil the object’s phase.

While there exists a variety of algorithms to infer the phase by weighting and combining the collected
data [13], we focus on the procedure with a set ofM⩾ 3 measurements of equally spaced phases
θj := j2π/M, with j = 1,2, . . . ,M see figure 3. In this case and for a signal of the form of (3), the phase
information of the object can be reconstructed by weighing the measured results for the individual settings
by trigonometric functions, and one finds

φ =−arctan

(∑M
j=1N

(
ϕj

)
sinθj∑M

j=1N
(
ϕj

)
cosθj

)
with ϕj := φ + θj. (5)

To quantify the quality of this distillation technique, we analyse the phase uncertainty through Gaussian
error propagation

∆φ2 =
M∑
j=1

( ∂φ

∂N
(
ϕj

))2

∆N2
(
ϕj

)
+

(
∂φ

∂θj

)2

∆θ2j

=: ∆φ2
N +∆φ2

θ, (6)

which consists of two contributions: (i) The inherent phase uncertainty due to the algorithm∆φ2
N depends

on the intensity fluctuations∆N2(ϕj) of the individual measurements. (ii) The scanning uncertainty∆φ2
θ is

caused by the uncertainty of the experimentally tunable phase θ. In the following, we assume that the first
term dominates, while we discuss some requirements on the precision∆θ2j of the tunable phase θj in
appendix B. Besides, the impact of errors due to an inaccurate adjustment of θ on phase-shifting algorithms
has already been discussed [37]. With the help of the relation ∂φ/∂N(ϕj) = 2sinϕj/(MAC) and using
trigonometric addition theorems, we arrive at the phase uncertainty

∆φ2
N =

4∆φ2
0

MC2
+

1+ C2/4

MC2
2λϕ (7)

of the distillation technique, where we have defined the intrinsic phase uncertainty

∆φ2
0 :=

1

2

[
1+ ξ

A
+ 2ξ + ξ2λn

]
. (8)
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Figure 3. Phase scan of a noisy interferometer signal N(ϕ) = N(φ + θ) for quantum imaging distillation. We plot the detected
interference signal (solid line) against the tunable phase θ. A typical fringe has an amplitudeA, contrast C, and offset phase φ to
be determined by the experiment. In our model the fringe oscillates around nn +A, where nn is the detected fraction of noise.
The distillation technique consists ofM measurements of the noisy signal N(ϕj) at different phases, i.e. ϕj = φ + θj, and is
associated with an uncertainty∆N(ϕj), which in turn gives rise to a phase uncertainty∆ϕj highlighted in the figure.

Here, the parameter ξ := nn/A is the ratio of the introduced noise and the amplitude of the interference
signal.

To keep a general expression, we allowed for different statistics of the interferometer output encoded in
λϕ, while the statistics of the introduced noise is encoded in λn. For Poissonian statistics these parameters
vanish, while for thermal statistics they are unity. With this notation, we find the relation
∆nϕ 2 +(1− η)nϕ = nϕ (1+ nϕλϕ ) as well as∆n2n + ηnn = nn(1+ nnλn).

Without noise, we observe from (8) that the intrinsic phase uncertainty∆φ2
0 scales as 1/A. Moreover, it

is suppressed by the number of measurementsM, as one would expect from independent measurements. In
section 5 we demonstrate that∆φ2

0 exhibits a shot-noise scaling for an MZI operated with coherent light,
while for an NLI we observe Heisenberg scaling. Moreover, this scaling behaviour is modified and masked in
a noisy environment, degrading the quality of the distillation procedure.

In addition to this intrinsic behaviour, a second term contributes to (7) whenever the interferometer
displays a thermal photon-number statistics with λϕ = 1. Due to the properties of the generated squeezed
light, this case applies in particular to an NLI. In contrast to∆φ2

0, this contribution does not depend on the
amplitudeA of the interferometer signal and therefore cannot be suppressed by increasing the intensity. It
also arises for perfect contrast and even without any superimposed noise, so that its effect can only be
reduced by increasing the numberM of measuring points.

In fact, this contribution is inherent to the distillation technique and a consequence of the fact that one
averages over measurements at different ϕj, each of which is connected to an uncertainty∆ϕ2

j . Using
∂φ/∂N(ϕj) = 2sinϕj/(MAC) in the first step, we can therefore represent (7) by

∆φ2
N =

4

M2A2C2

M∑
j=1

sin2ϕj

(
∂N
(
ϕj

)
∂ϕj

)2

∆ϕ2
j =

4

M2

M∑
j=1

sin4ϕj∆ϕ2
j . (9)

For an NLI, the uncertainty∆ϕ2
j strongly depends on the value of ϕj itself, so that the average leads to a

mediocre sensitivity. However, since NLIs are known to exhibit Heisenberg scaling, this effect can be avoided
by solely measuring at a phase setting that is chosen optimally.

4. Working point

As explained above, the distillation technique estimates φ by performing measurements at different phases ϕj

that are set by θj. Because each phase setting is associated with its individual uncertainty∆ϕ2
j that may vary

strongly between different measurements, averaging will not necessarily be optimal. We therefore minimise
the phase uncertainty for a single measuring point ϕj in this section.
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Recalling that the phase of the object is inferred from φ = ϕj − θj, the uncertainty observed at one phase
setting within one measurement takes the form

∆φ2
j =∆ϕ2

j +∆θ2j =
∆N2

(
ϕj

)
|∂ϕjN

(
ϕj

)
|2
+∆θ2j . (10)

Similar to the distillation technique, we assume that∆θ2j is negligible compared to∆ϕ2
j , see appendix B for

further details. Minimising∆ϕ2
j , we identify a phase θWP at which the interferometer is ideally operated,

referred to as the (optimal) working point (WP). For an interference signal of the form of (3), superimposed
with noise and measuredM times at the same setting, such an optimisation gives rise to the minimal phase
uncertainty

∆ϕ2
WP =

∆φ2
0

MC2
+

1−C2

2MC2
λϕ +

√
φ1

2MC2
, (11a)

where we have introduced for compactness the notation

φ1 : = ξ

(
1

A
+ ξλn

)[
4∆φ 2

0 + 4λϕ − ξ

(
1

A
+ ξ λn

)]
+
(
1−C2

)[( 1

A
+ 2ξ + 2λϕ

)2

−λϕ

(
4∆φ2

0 + C2 + 3
)]

. (11b)

The phase uncertainty∆ϕ2
WP observed at the WP consists of three contributions: (i) The first one is again

given by the intrinsic phase uncertainty∆φ2
0 and four times smaller compared to the corresponding

contribution in the presented distillation technique. It therefore results in the same shot-noise or Heisenberg
scaling for different types of interferometers, as detailed below. (ii) For an interferometer signal with thermal
statistics, this behaviour is deteriorated by the second term that is not suppressed by intensity and
independent of the superimposed noise. While such an effect also arises in the distillation technique, see (7),
it vanishes for perfect contrast. This feature is a manifestation of the fact NLIs are extremely susceptible to
loss. (iii) The third contribution to (11a) has no counterpart in the distillation procedure. It is determined
by (11b) and vanishes in a setup without noise and for perfect contrast, highlighting once more that
increasing noise and imperfect contrast both deteriorate the phase uncertainty.

Overall, the phase uncertainty∆ϕ2
WP at the WP benefits from a perfect setup making it almost

independent of the photon statistics of the interferometer signal. Only this feature makes an operation below
shot-noise possible. However, some of this advantage is lost in presence of noise, which is one of the main
reasons to apply the distillation procedure.

5. Mach-Zehnder versus non-linear interferometer

To study the metrological benefit of quantum-optically manipulated light and its viability in the distillation
procedure, we compare two types of interferometers: an MZI, where the object is interrogated by a coherent
state, and an NLI without seed, where the object is interrogated by a squeezed state.

Since the input to the MZI depicted in figure 1(a) is a coherent state with photon number n0, the overall
statistics of the interference signal is also Poissonian, i.e. we choose λϕ = 0. A first BS with transmittance T1

generates two arms, where one of them passes through the object that imprints the phase φ to be determined
by the measurement. The phase difference of both arms can be tuned by adjusting the path length of the
other arm, encoded in θ, which is key to the distillation technique. Both arms then interfere on a second BS
with transmittance T2, whose output is superimposed with noise as described in section 2. Without internal
losses, the amplitudeA= ηγn0 of the signal scales with the input photon number n0, where we have
introduced the factor γ := T1T2 +(1−T1)(1−T2) that describes the imbalance of both BSs. The contrast
C = 2

√
T1T2(1−T1)(1−T2)/γ of the signal reduces to unity for T1 = 1/2= T2. The scaling of the

amplitude with n0 is a direct signature of shot noise, as we show below.
For an NLI, both BSs are replaced by non-linear optical elements that generate squeezed light, see

figure 1(b). In the following discussion, we assume that the NLI is not seeded, so that the first SQZ generates
two-mode squeezed vacuum induced by a pump beam, even though a generalisation to squeezed coherent
states is in principle possible. After the non-linear process, each output mode of the SQZ that represents an
arm of the NLI carries n0 photons. The output modes may be non-degenerate in frequency, which allows for
quantum and bicolour imaging in both the low- (n0 ≪ 1) and high-gain (n0 ≫ 1) regimes of squeezing.
After interacting with a (pure phase) object in one mode, i.e. assuming no internal losses, both modes are
used as a seed of a second SQZ, that either squeezes the state further or leads to anti-squeezing, depending on

6
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Table 1. Comparison of phase uncertainties for vanishing noise between an MZI and NLI, as well as between the distillation technique
∆φ2

N and an operation at the WP∆ϕ2
WP. For both interferometer types, we assumeM measuring points and a contrast C. In the MZI,

n0 describes the intensity of the incoming laser beam and γ the imbalance of both BSs, while in the NLI we have two gains n0 and n ′
0 of

the SQZs, which can be interpreted as a hypothetical photon number generated without any seed. While we always observe for the MZI
shot-noise scaling, the sensitivity of the distillation technique in the NLI is limited by a gain-independent term. However, an operation
at the WP only gives rise to a Heisenberg-type scaling for perfect contrast.

MZI NLI

∆φ2
N

2
MC2γn0

2
MC2(n0+n ′

0 +2n0n ′
0 )

+ 2+C2/2
MC2

∆ϕ2
WP

1

2Mγn0
(
1−
√

1−C2
) 1

2MC2

(
1

n0+n ′
0 +2n0n ′

0
+(1−C2)+

√
(1−C2)

[(
1+n0+n ′

0 +2n0n ′
0

n0+n ′
0 +2n0n ′

0

)2
−C2

])

the phase difference between both arms that can be tuned by θ. The gain of this SQZ can be identified with a
theoretical photon number n ′

0 that is generated without any seed. Because the output of the second SQZ is
again a two-mode squeezed vacuum, it obeys a thermal photon statistics, i.e. we choose λϕ = 1. The
amplitudeA= η(n0 + n ′

0 + 2n0n ′
0) of the interference signal depends on both gains n0 and n ′

0, and its
contrast takes the form C = 2η

√
n0n ′

0(n0 + 1)(n ′
0 + 1)/A [33]. For equal gain, that is for n0 = n ′

0, we observe
the signature of Heisenberg scaling since the amplitude becomes proportional to n20 for n0 ≫ 1.

The contrast, the amplitude, as well as the intensity fluctuations of both MZI and NLI can be further
modified, i.e. by internal and detection loss, an imperfect transmittance of the object, or by mode mixing
during the squeezing process itself. While such effects can be included in our treatment, we refrain from this
discussion to focus on the essence of the distillation technique. For that, we focus in the following on three
cases: (i) imperfect contrast without noise, (ii) perfect contrast with superimposed noise, and (iii) the
spontaneous regime.

5.1. Imperfect contrast without noise
For a first comparison, we discuss the effects of imperfect contrast, i.e. C < 1, to highlight the intrinsic
differences between both setups. Hence, we assume that the signal is not superimposed with noise, i.e. we
choose η= 1 and ξ= 0. Since our model includes no internal loss or similar mechanisms, the only way to
reduce contrast is to use unbalanced BSs (MZI) or different gains in the SQZs (NLI), respectively. However, a
reduction in contrast may be caused by other effects, such that our results may be generalised to other
situations. The phase uncertainties of the distillation procedure and at the WP for vanishing noise and
arbitrary contrast are summarised in table 1 as a special case of (7) and (11).

For perfect contrast C = 1, implying γ = 1/2 and n0 = n ′
0, we already gain two general insights: (i)

Operating an MZI at the WP has a phase uncertainty of a factor 1/4 lower than found for the distillation
procedure, yet both modes of operation are shot-noise limited and show a scaling with 1/n0 of the variance.
(ii) In contrast, operating an NLI at the WP leads to a Heisenberg scaling, i.e. a scaling with 1/n20 of the
variance. However, the distillation procedure suffers from including less-than-optimal measuring points as
discussed in (9). Therefore, it is limited by the second term whose contribution can only be reduced by more
measuring points and is not suppressed by increasing the gain.

For imperfect contrast, i.e. C < 1 the phase uncertainty increases in all configurations. In an MZI the
difference between the imaging distillation procedure and measuring at the WP manifests only in a
numerical advantage of the WP, while the scaling with intensity is not affected. The reason lies in the
Poissonian output statistics of the MZI see (7) and (11), where λϕ = 0. However, the NLI is more drastically
affected by imperfect contrast. In the high-gain regime, i.e. 1≪ n0, the distillation procedure has a major
drawback due to the thermal interferometer output statistics. Only the first term of∆φ2

N shows a Heisenberg
scaling, while in fact the uncertainty is dominated by the second term independent of any gain and arises for
both perfect and imperfect contrast. This contribution can only be reduced by increasing the number of
measuring points. While in a perfect configuration, operating at the WP leads to a Heisenberg scaling of the
uncertainty, this advantage gets diminished by imperfect contrast. Similar to the distillation procedure,
additional terms arise that can only be reduced by increasingM and are independent of the gain or intensity.

In fact, if imbalanced gains are the cause of imperfect contrast, the phase uncertainty at the WP
reduces to

∆ϕ2
WP =

1

4Mnmin (nmin + 1)
with nmin :=min(n0,n

′
0) . (12)

This established result [33] highlights that in fact the lower gain of both SQZs limits the sensitivity of the
result. In fact, the additional appearance of

√
ϕ1 defined by (11b) causes this change in the scaling behaviour.
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Table 2. Comparison of phase uncertainties for perfect contrast between an MZI and NLI, as well as between the distillation technique
∆φ2

N and an operation at the WP∆ϕ2
WP including noise. For both interferometer types, η describes the transmitted fraction of the

interferometer signal andM the number of measuring points. Noise enters via its detected fraction nn, where we allow for a Poissonian,
i.e. λn = 0, or thermal, i.e. λn = 1, noise statistics. While the intrinsic phase uncertainty∆φ2

0 features a shot-noise scaling (MZI) and
Heisenberg scaling (NLI), this behaviour cannot be exploited for the distillation technique in an NLI. However, an operation at the WP
gives rise to uncertainties below shot noise, even in the presence of noise.

MZI NLI

∆φ2
0

1
ηn0

[
1+ 2nn +

2nn(1+λnnn)
ηn0

] 1
4ηn0(n0 + 1)

[
1+ 2nn +

nn(1+λnnn)
2ηn0(1+ n0)

]
∆φ2

N
4∆φ2

0

M
4∆φ2

0

M
+

5
2M

∆ϕ2
WP

∆φ2
0

M
+

2
√

nn(1+λnnn)

M(ηn0)2

×
√

nn(1+λnnn)+ ηn0(1+ 2nn)

∆φ2
0

M
+

√
nn(1+λnnn)

8M[ηn0(1+ n0)]2

×
√

nn(1+λnnn)+ 4ηn0(1+ n0)[1+ 2nn + 4ηn0(1+ n0)]

Figure 4. Advantage of operating at the WP over the distillation technique for an MZI (a) and for an NLI (b). We plot the ratio
∆φ2

N/∆ϕ2
WP depending on η, describing the transmitted fraction of the interferometer signal, as well as n0 corresponding to the

input photon number (MZI) and gain of both squeezers (NLI). We assume perfect contrast, i.e. C = 1, and choose
nn = (1− η)n0 as well as thermal noise, i.e. λn = 1. Recall that for the amplitude of the interferometer signal we haveA= ηn0/2
andA= 2ηn0(n0 + 1) in the case of an MZI and an NLI, respectively. (a) In the case of an MZI, the advantage of operating at the
WP over the distillation technique ranges from 1/4 to 1/2. The greatest advantage (∆φ2

N/∆ϕ2
WP = 1/4) is achieved in the

limiting case of vanishing noise, i.e. η → 1. This advantage decreases for increasing noise and reaches the value 1/2 in the limiting
case. (b) In the case of an NLI we see that for increasing n0 the phase uncertainty at the WP becomes arbitrarily better than for the
distillation procedure. Moreover, we show by the dashed white line where the phase uncertainty at the WP corresponds to shot
noise, i.e.∆ϕ2

WP = 1/n0. With that, we can identify the region in which the operation at the WP achieves a sensitivity below shot
noise, which is true for any η > 1/3 in the limiting case of n0 →∞.

Hence, operating an NLI at the WP is only favourable, if the contrast is sufficiently close to unity. Only in
this case one has a chance of observing a Heisenberg scaling of the sensitivity. Principally, the imaging
distillation technique benefits from perfect contrast as well, however, it never displays a Heisenberg scaling.
In fact, the main advantage of operating at the WP is lost when working with imperfect contrast.

5.2. Perfect contrast superimposed with noise
In the remainder of this article we assume perfect contrast, i.e. C = 1. Now we focus on the implications of
noise for the phase measurement, one of the reasons why an image distillation technique is performed.
Therefore, we choose 0< ξ and η < 1 in our model. Consequently, noise enters via nn = (1− η)⟨n̂⟩. We
compare the resulting phase uncertainties in table 2.

We observe that the intrinsic phase uncertainties get diminished by noise for both MZI and NLI, generally
degrading their scaling behaviour. Comparing the operation of an MZI at the WP to the imaging distillation
technique reveals that its phase uncertainty is no longer better by a factor of four. Hence, the advantage of
operating at the WP over the distillation technique decreases. Turning to the NLI, we see in table 2 the earlier
discussed gain-independent contribution to the phase uncertainty∆φ2

N of the distillation technique, which
cannot be suppressed by increasing the interrogating photon number n0. Operating at the WP enhances the
sensitivity significantly, since terms introduced by noise can still be suppressed by increasing the gain n0. We
visualise the ratio∆φ2

N/∆ϕ2
WP in figure 4 for both an MZI and NLI. For the NLI, we additionally highlight

the region in which the phase uncertainty at the WP is better than shot noise, i.e.∆ϕ2
WP ≤ 1/n0.

8
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Table 3. Phase uncertainties in the spontaneous regime up to orderO(1/M) for an MZI and NLI obtained using the distillation
technique∆φ2

N or operating at the WP∆ϕ2
WP. We assume perfect contrast, η describes the transmitted fraction of the interferometer

signal, andM the number of measuring points. Noise enters by setting nn = (1− η)n0 such that η determines the fraction of detected
noise. Note that these phase uncertainties are independent of the noise statistics.

MZI NLI

∆φ2
N 4

2− η

Mη2n0

1+ η

2Mη2n0

∆ϕ2
WP

2+ 2
√
1− η− η

Mη2n0

1+ η+
√

(1− η)(1+ 3η)

8Mη2n0

From figure 4, we find the following features: (i) Operating an MZI at the WP gives a numerical
advantage over the distillation technique. The advantage is at most a factor of 1/4, but its exact value is
determined by the fraction of noise. For a large fraction of noise, this ratio reduces to 1/2, so that even this
advantage decreases in a noisy setup. Needless to say, the phase uncertainty of an MZI is never below shot
noise. (ii) However, when comparing the operation of an NLI at the WP to the distillation procedure, its
phase uncertainty is arbitrarily smaller for increasing gain n0, even in the presence of noise. This behaviour is
expected since a noiseless NLI shows Heisenberg scaling in the high-gain regime, i.e. n0 ≫ 1. Besides this
general trend, we also see for which parameter regime the phase uncertainty at the WP becomes better than
shot noise, which is indicated in figure 4(b) by the white dashed line where∆ϕ2

WP = 1/n0, whose limit is
η = 1/3 for n0 →∞. In the special case of nn = (1− η)n0 and η > 1/3, we can be better than shot noise for
sufficiently large n0. Thus, our results show operating the NLI at the WP opens the possibility for
sub-shot-noise phase uncertainties even in the presence of noise.

5.3. Spontaneous regime
We conclude our analysis by explicitly investigating the spontaneous regime for both interferometer types,
i.e. n0 ≪ 1. As before, we again set C = 1 which is in our model equivalent to T1 = 1/2= T2 and n0 = n ′

0 for
the MZI and NLI, respectively. Quantum imaging distillation with two different colours has been
demonstrated with an NLI in the spontaneous regime, where noise in complete analogy to our study can be
introduced [11, 16, 18]. Once more, we set nn = (1− η)n0, such that the fraction of noise is tuned by η.
Table 3 summarises the resulting phase uncertainties.

Noticeably, the phase uncertainties do not depend on the noise statistics in either interferometer in the
spontaneous regime and the benefit of a Heisenberg scaling ceases to exist. Moreover, the difference between
the distillation technique and operating at the WP is again only a numerical factor. Nevertheless, it is
beneficial to work at the WP due to∆φ2

WP ⩽∆φ2
N but there is no fundamental difference between the

behaviour of the phase uncertainty. Besides the phase uncertainties, it is important to point out that only
NLIs allow for bicolour imaging contrary to MZIs. Thus, our findings support already performed
experiments in the spontaneous regime [11, 16].

6. Conclusions

Besides allowing for bicolour imaging with undetected photons, an operation of NLIs at the WP leads to a
phase sensitivity below shot noise, approaching the Heisenberg limit for perfect contrast and without noise
or loss. In our article, we investigated the impact of noise on an established phase distillation technique [13]
which has recently been used in quantum imaging distillation [11, 14–16] using NLIs. We demonstrated that,
not surprisingly, operating the interferometer at the WP plays a significant role in minimising the phase
uncertainty resulting from the introduced noise. For current setups operating in the spontaneous regime, we
have shown that there is no fundamental difference between working at the WP or applying the distillation
procedure. However, this behaviour drastically changes when moving to the high-gain regime, where a
Heisenberg-like scaling of the phase uncertainty can in principle be achieved.

In this regime of operation, the distillation technique inherently does not allow Heisenberg-like scaling,
even for NLIs with perfect contrast and vanishing noise, solely caused by the thermal photon statistics of the
squeezed light probing the object. The situation is different for an operation at the WP, where we observe a
phase uncertainty scaling better than shot noise, but which does not saturate a Heisenberg-type limit due to
noise. In fact, since imperfect contrast also has a deleterious effect on the sensitivity, it has to be sufficiently
close to unity in order to yield a phase uncertainty below shot noise. We furthermore show that the phase
uncertainty achieved at the WP is always better compared to the distillation technique.

Even though our results demonstrated that the distillation procedure relying on equidistant phase steps
uniformly distributed over the 2π interval prevents below-shot-noise sensitivities, the insights gained in our
study may serve as a blueprint to nevertheless harness the potential of NLIs. One approach could be to devise

9
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a phase-shifting algorithm for image distillation, where the device is operated in the vicinity of the WP to still
achieve supersensitivity.

In perspective, it is straightforward within our formalism to include internal loss in the interferometer
and extend our study for contrast imaging with objects of imperfect transmittance. Presumably, whether a
scaling of the phase uncertainty is better than shot noise depends strongly on the fraction of internal losses
and the object’s transmittance. In the latter case one has to develop novel concepts for imaging in the
high-gain regime, in analogy to asymmetric schemes [22].

Moreover, we have only discussed a single-mode description, which might be a good approximation for
imaging one pixel of an object, even though the high-gain regime is inherently multi-mode [34, 38, 39]. If a
monochromatic plane wave is used as a pump field, the plane-wave modes in the SQZ decouple and are
squeezed independently. This feature allows us to view the imaging process independently per pixel. In this
case, not only perfect imaging of the output modes onto the second SQZ is necessary [35, 36], but the WP
may differ from pixel to pixel, which leads to further complexity. Consequently, great flexibility is required in
the second arm to adjust the WP per pixel individually. For this purpose, spatial scans of the object or using
phase-shifting algorithms or spatial light modulators for adaptive measurements [40] might be useful. If, on
the other hand, no monochromatic plane wave is used as a pump field, the modes of the non-linear process
may couple, adding more complexity to a theoretical description. In fact, the eigenmodes of squeezing are in
general no plane waves, so that the entire imaging process requires a multi-mode description, which can be
subtle due to time-ordering effects [41] and the spatial profile of the pump [35]. Thus, our results can also be
transferred to the multi-mode scenario under appropriate conditions, although a precise multi-mode
treatment is necessary as mentioned above.
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Appendix A. Uncertainty of the detected signal

Here we revisit the uncertainty of the detected signal (2) and provide details on the origin of the additional
terms besides the variances of the interferometer signal and noise. In the main body of the article, we
introduced the photon number operators of one exit port of the interferometer as well as a noise source by n̂I
and n̂, respectively. These are related to their respective annihilation operators âI and ân, i.e. n̂I = â†I âI as well
as n̂= â†nân fulfilling the bosonic commutation relations [âi , â

†
j ] = δi,j1̂, and [âi, âj] = 0. The BS with

transmittance η ∈ [0,1] acts as an SU(2) transformation such that the mode operator b̂, describing the
output of the BS that mixes the interferometer signal with noise is given by b̂=

√
ηâI +

√
1− ηân. Thus, the

detected photon number N(ϕ) is

N(ϕ) = ⟨b̂†b̂⟩= η⟨n̂I⟩+(1− η)⟨n̂⟩+√
η
√
1− η⟨â†I ân + â†nâI ⟩= nϕ + nn, (A1)

where we set the interference term ⟨â†I ân⟩ to zero, since we assume that the interferometer signal and noise
are incoherent to each other. Using the mode operators, we define the variance

∆N2 (ϕ) = ⟨(b̂†b̂)2⟩− ⟨b̂†b̂⟩2 = ⟨b̂†b̂b̂†b̂⟩−N2 (ϕ) . (A2)
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of the detected signal. To calculate ⟨b̂†b̂b̂†b̂⟩, the SU(2) transformation of the BS is applied, such that

⟨b̂†b̂b̂†b̂⟩= η2⟨â†I âI â
†
I âI ⟩+(1− η)

2 ⟨â†nânâ†nân⟩+ η (1− η)
[
2⟨â†I âI â

†
nân⟩+ ⟨â†I ânâ

†
nâI ⟩+ ⟨â†nâI â

†
I ân⟩

]
+ other contributions (A3a)

= η2⟨n̂2I ⟩+(1− η)
2 ⟨n̂2⟩+ 2η (1− η)⟨n̂In̂⟩+ η (1− η)

[
⟨n̂I(n̂+ 1̂)⟩+ ⟨n̂(n̂I + 1̂)⟩

]
, (A3b)

where the ‘other contributions’ are of the form ⟨â†pI âqI â
†r
n âsn⟩ with p,q, r, s ∈ N0 and r ̸= s. Since we assume

that the interferometer signal and noise are incoherent to each other, these ‘other contributions’ vanish.
Using (A3) and (A2) together with the abbreviations introduced in the main body directly leads to (2).

Appendix B. Uncertainty of tunable phase

In section 3 we made the assumption that contributions∆φ2
θ, which originate in the uncertainty∆θ2j of the

tunable phase in (6) and (10), are negligible. In this appendix, we present the explicit expression and give
some estimates for different experimental schemes of tuning the phase. Moreover, we discuss for an NLI
under which conditions such contributions are negligible.

To express∆φ2
θ in terms of∆θ2j we use the relation ∂φ/∂θj =−2N(ϕj)cosϕj/(MAC). Moreover, it is

reasonable to assume that the uncertainty of the tunable phase is equal for all measuring points, i.e.
∆θj =∆θ. This relates the scanning uncertainty

∆φ2
θ =

2

MC2

(
1+ 3C2/4+ 2ξ + ξ2

)
∆θ2 (B1)

directly to∆θ2. We see that the scanning uncertainty is independent of the noise statistics, but increases for
an increasing ratio of noise to interferometer signal ξ = nn/A.

In the absence of noise, a contribution remains even for perfect contrast, similarly to (7). Hence, the only
possibility to suppress the scanning uncertainty is by requiring a sufficiently small∆θ2. For this we give some
experimental estimates, assuming a wavelength of 730nm and consider two cases: (i) In setups in which
piezoelectric elements scan the phase, the accuracy of the adjustment can be 1nm in the worst case. This
leads to∆θ ∼= 10mrad. (ii) In setups where the phase is scanned by spatial light modulators with a typical
modulation depth of 4π in 256 steps we get∆θ ∼= 50mrad.

These considerations are supported by already performed experiments, which have observed an overall
uncertainty of∆φN in the order of radians in the spontaneous regime [11], which is several orders of
magnitude larger than the limit given by∆φ2

θ. Of course, this observation is a consequence of the operation
in the spontaneous regime, i.e. n0 ≪ 1. Table 3 shows that for both interferometer types∆φ2

N scales with
1/n0, in contrast to the scanning phase (B1) that is independent of n0 orA to lowest order. Thus, it is
reasonable to assume that this term is the leading order contribution of the overall phase uncertainty and
∆φ2

θ as well as∆θ2 are negligible. In fact, in the spontaneous regime we expect no limitation of the
achievable sensitivity that arises from the uncertainty of the tunable phase.

For quantum imaging distillation in the high-gain regime, the phase sensitivity is limited by the
gain-independent contribution 2(1+ C2/4)/(MC2), so that it is realistic that (B1) is smaller, especially since
both show the same scaling inM. Hence, we assume that the uncertainty of the tunable phase is no limiting
factor.

However, performing a phase measurement at the WP has the intrinsic benefit of exhibiting a
sub-shot-noise sensitivity. In this case, we find the requirement that∆φ2

θ is smaller than the targeted
sensitivity. In principle, the uncertainty∆φ2

θ can be minimised by independent measurements. But to find
the WP with minimal phase uncertainty, one has to characterise the signal by independent measurements
prior to the experiment. In fact, not only θ, but alsoA and C have to be determined with sufficient accuracy
to find the WP. For a fair comparison, the required time and resources for a characterisation must be
included in the total error budget. Often, though, this time is omitted in purely interferometric setups, which
use continuous operation, since it amounts to only a small fraction of the total averaging time. Whether it is
necessary to include the characterisation time in imaging experiments depends on the specific setup, the
required phase uncertainties, and the overall averaging times. However, for imaging applications with
frequently changing phase objects, such an assessment ought to be included in the overall resources.
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