
Electrical Engineering and
Information Technology
Department
Institut für Datentechnik
FG Rechnersysteme

Efficient Technology Mapping
Methods for Robust Genetic
Logic Circuits
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von M.Sc. Tobias Schwarz aus Bad Ems
Tag der Einreichung: 16. Januar 2024, Tag der Prüfung: 12. April 2024

1. Gutachten: Prof. Dr.-Ing. Christian Hochberger
2. Gutachten: Prof. Marc Riedel
Darmstadt, Technische Universität Darmstadt

Efficient Technology Mapping Methods for Robust Genetic Logic Circuits

Accepted doctoral thesis by M.Sc. Tobias Schwarz

Date of submission: 16. Januar 2024
Date of thesis defense: 12. April 2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-urn:nbn:de:tuda-tuprints-270241
URL: http://tuprints.ulb.tu-darmstadt.de/27024
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/27024
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Für Mina

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 16. Januar 2024
T. Schwarz

iv

Zusammenfassung

Ein Forschungsziel der Synthetischen Biologie ist die Konstruktion genetischer Logikschal-
tungen, die die Steuerung des Informationsflusses in biologischen Zellen ermöglichen.
Analog zu elektronischen digitalen Schaltungen werden Schwellwerte auf Signale an-
gewendet, um diese in boolesch 0 und 1 zu unterscheiden. Aus genetischen Bausteinen
werden Logikgatter gebildet, die primitive boolesche Funktionen implementieren und in
Gatterbibliotheken zusammengefasst werden. Diese Modularisierung ermöglicht die An-
wendung von Methoden der Entwurfsautomatisierung, um genetische Logikschaltungen
zu konstruieren und stellt die Basis für das Forschungsfeld der Genetic Design Automa-
tion dar. In Anlehnung an die Electronic Design Automation wird die Abbildung einer
funktionalen Spezifikation auf die Zieltechnologie Technology Mapping genannt.
Im Vergleich zur Elektronik besitzt die genetische Technologie Eigenschaften, die neue

Herausforderungen für Technology Mapping-Verfahren darstellen. So werden Stoffe als Si-
gnalträger verwendet, die nicht räumlich getrennt sind. Gatter in einer Schaltung müssen
daher einzigartige Träger, und somit individuelle genetische Bausteine, verwenden. Daraus
resultieren heterogene Transfer-Charakteristiken, die die Optimierung der Zuweisung von
Gattern auf die Schaltungstopologie erforderlich machen. Weiterhin unterliegen Zellen
einer starken Variabilität und unerwünschten Wechselwirkungen zwischen synthetischen
und natürlichen Komponenten, die in der Konstruktion robuster Schaltungen berück-
sichtigt werden müssen. Oft übernehmen bestehende Ansätze in diesem dynamischen
Forschungsfeld Methoden der Electronic Design Automation, die jedoch Potential für eine
verbesserte Anpassung an die Problemstruktur genetischer Schaltungen bieten.
In dieser Arbeit werden Technology Mapping-Methoden für den Entwurf kombinatori-

scher genetischer Logikschaltungen präsentiert. Im Unterschied zu existierenden Metho-
den, die die Schaltungstopologie als Nutzereingabe erwarten oder diese mit Zielfunktionen
aus dem Bereich der Elektronik synthetisieren, wird die Topologie als Freiheitsgrad im
Technology Mapping aufgefasst. Die Methode wird Anhand eines Satzes boolescher Funk-
tionen, für die bereits Schaltungen in vivo implementiert wurden, evaluiert. Durch die
Enumeration struktureller Varianten kann die Entwurfsqualität gemessen in einer tra-
ditionellen Zielfunktion um bis zu 11.3-fach und im Durchschnitt um 38% verbessert
werden. Dabei bleibt die Schaltungsgröße minimal. Weiterhin werden Methoden für die

v

Optimierung der Gatterzuweisung vorgestellt, die durch ihre Effizienz die Erkundung brei-
ter Entwurfsräume ermöglichen und den Aufwand für die Evaluation komplexer Modelle
kompensieren. Basierend auf der funktionalen Hierarchie genetischer Logikschaltungen
und fundamentalen Eigenschaften genetischer Gatter, wurden eine Simulated Annealing-
Heuristik sowie eine Branch-and-Bound-Methode mit exaktem und heuristischem Modus
entworfen. Letztere weist einen 20-fachen Speedup gegenüber erschöpfender Suche für das
Finden der exakten Lösung auf. Die Heuristiken erreichen einen 722-fachen Speedup für
das Erzeugen quasi-optimaler Lösungen mit einer maximalen Abweichung vom optimalen
Zielfunktionswert von −0.11% und übertreffen damit eine existierende Heuristik.
Zusätzlich wurde Robustheit gegenüber der Variabilität von Zellen als Entwurfsziel

in den Technology Mapping-Prozess integriert. Dafür wurde die Simulated Annealing-
Heuristik an eine alternative Zielfunktion, den E-Score, angepasst und ein heuristischer
Ansatz für Robustheit entworfen und in die Brach-and-Bound-Methode integriert. Beide
Methoden weisen eine gute Mapping-Effizienz auf. Ihr Vergleich offenbart die Überle-
genheit der globalen Optimierung für Robustheit durch den E-Score. Weiterhin wurde
ein kontextsensitives Schaltungsmodell integriert, wodurch die Generierung optimaler
Designs ermöglicht wird, selbst wenn die Schaltung unerwünschten Wechselwirkungen
unterliegt. Die Evaluation unterschiedlicher Annahmen über das Übersprechen zwischen
Gattern einer Bibliothek zeigt, dass gewisse Nichtorthogonalitäten in Gatterbibliotheken
akzeptabel sind, wenn diese im Entwurfsprozess berücksichtigt werden.

vi

Abstract

In the field of synthetic biology, one of the aims of researchers is to control the flow of
information in cells using genetic logic circuits. Similarly to digital electronic circuits,
signals are divided into Boolean 0 and 1 values through the application of thresholds.
Genetic building blocks are combined together to form logic gates that implement Boolean
functions, which are in turn combined into genetic gate libraries. This modularization
allows the application of design automation methods to construct genetic circuits and rep-
resents the basis for the field of genetic design automation. In analogy to electronic design
automation, the process of mapping a functional specification to the target technology is
called technology mapping.
Compared to electronics, genetic technology possesses characteristics that pose new

challenges to technology mapping methods. Due to the use of substances as signal
transmitters and the shared medium of the cell, each gate in the circuit is required to use
individual genetic parts. This leads to heterogeneous transfer characteristics among the
gates and requires optimizing the gate assignment to the circuit topology. Further, cells
exhibit strong variability and undesired interactions among synthetic and natural parts,
which have to be considered for constructing robust genetic circuits. Existing approaches
in this developing field often adopt methods from electronic design automation and have
the potential for further adaptation to the genetic domain.
In this work, technology mapping methods for the design of combinational genetic

logic circuits are presented. While existing methods rely on circuit topologies defined by
the user or synthesized using objective functions known from electronics, in this work
the circuit topology is incorporated as an additional degree of freedom. The method is
evaluated using a set of Boolean functions, which have previously been implemented in
vivo. By enumerating structural variants, a maximum 11.3×and a mean 38% improvement
in circuit performance can be achieved, as measured by a traditional circuit score, while
keeping the number of used gates minimal. Efficient methods for optimizing the assign-
ment of gates to the circuit are presented, which allow for the exploration of broad design
spaces and compensate for the computational burden of elaborate models. Based on the
functional hierarchy of genetic circuits and fundamental features of genetic gates, a Simu-
lated Annealing heuristic and a Branch-and-Bound scheme featuring both a heuristic and

vii

an exact mode are devised. For finding exact solutions, the methods provide a 20×speedup
compared to an exhaustive search. The heuristics achieve a 722×speedup while delivering
near-optimal solutions with a worst-case deviation of −0.11%, outperforming an existing
heuristic.
Additionally, robustness to the variability of cells is integrated into the technology

mapping process as a design objective. To this end, the Simulated Annealing method
is adapted to use a robustness-centric objective function, the E-Score, and a heuristic
approach to robustness is devised and integrated into the Branch-and-Bound scheme.
Both approaches exhibit a good mapping efficiency, and their comparison highlights the
increased robustness of designs optimized globally for the E-Score. Finally, the integration
of a context-aware circuit model enables the finding of optimal designs, even if the circuit is
subject to undesired interactions, i.e., crosstalk. By evaluating different crosstalk scenarios,
it could be shown that specific non-orthogonalities can be tolerated in genetic gate libraries,
provided that they are considered in the design process.

viii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 3
1.3. Thesis Outline . 4

Background 5

2. Technology Mapping 6
2.1. Structural Mapping . 7
2.2. Structural Bias . 9

3. Genetic Logic 11
3.1. Protein Synthesis . 12
3.2. Transfer Functions of Regulatory Systems 14
3.3. Genetic Logic Gates . 16
3.4. Combinational Genetic Circuits . 17

4. Genetic Design Automation 19
4.1. Challenges in Mapping Genetic Circuits . 20
4.2. Quantifying Circuit Functionality . 23
4.3. Quantifying Circuit Robustness . 25
4.4. Context-Aware Circuit Model . 27
4.5. ARCTIC . 30

5. Problem Definition 32
5.1. Contextualization . 32
5.2. Formal Definition . 35

6. Related Work 37
6.1. Cello . 37

ix

6.2. iBioSim . 40
6.3. Further Mapping Approaches . 42

Domain Adaptation 45

7. Structural Variants of Genetic Logic Circuits 46
7.1. Broadening the Search Space . 46
7.2. Enumeration of Structural Variants . 48
7.3. Evaluation . 54

7.3.1. Setup . 54
7.3.2. Results of the Enumeration . 55
7.3.3. Impact on Circuit Performance . 57

7.4. Discussion . 60

8. Efficient Methods for Gate Assignment 61
8.1. Exhaustive Search . 62
8.2. Proximity-Based Simulated Annealing . 63

8.2.1. General Approach . 64
8.2.2. Annealing Schedule . 66
8.2.3. Neighbor Generation . 69

8.3. Branch-and-Bound . 73
8.3.1. Search Tree . 74
8.3.2. Implicit Enumeration . 75
8.3.3. Search Strategies . 78
8.3.4. Optimistic Estimation . 80

8.4. Evaluation . 90
8.4.1. Tuning the Proximity-Measure . 90
8.4.2. Modes and Strategies of Branch-and-Bound 93
8.4.3. Comparison of the Methods . 95

8.5. Discussion . 100

Increased Meaningfulness of Designs 101

9. Technology Mapping for Robustness 102
9.1. Optimization for the E-Score . 103

x

9.2. Signal-Compatibility of Genetic Gates . 107
9.2.1. Pair-Wise Compatibility . 107
9.2.2. Compatibility of (n+1)-Tuples . 108
9.2.3. Compatibility Lookahead in Branch-and-Bound 110
9.2.4. Implications for the Gate Assignment Search 113

9.3. Comparison of the Methods . 115

10.Context-Aware Technology Mapping 120
10.1.Implications of Context Effects . 120
10.2.Context-Aware Branch-and-Bound . 122

10.2.1.Crosstalk Environments . 123
10.2.2.Compatibility and Heuristic Mode 128
10.2.3.Evaluation . 129

Synopsis 135

11. Combined Technology Mapping Flow 136
11.1.Overview of the Methods . 136
11.2.Evaluation . 139

11.2.1.Technology Mapping Scenarios . 139
11.2.2. Setup . 140
11.2.3.Results . 141

12.Conclusion and Outlook 145
12.1.Conclusion . 145
12.2.Outlook . 148

Acknowledgments 150

Appendix 151

A. Functions Used for Enumeration 152

B. Scores of Structural Variants 153

C. Contributions to Crosstalk Environments 154

xi

D. Bibliography 155

E. Publications 162

F. Supervised Theses 163

G. List of Abbreviations 165

xii

1. Introduction

In the field of synthetic biology, researchers aim to build biological systems from scratch,
which implement a desired functionality [27]. It represents an interdisciplinary area
of research in which knowledge about the mechanisms and building parts of organisms
gained in biology is captured in mathematical models and libraries of modularized building
blocks. This modularization allows for the usage of engineering approaches to construct
systems based on a functional specification. In this context, synthetic regulatory genetic
circuits represent an interesting subject and an active area of research, which focuses
on controlling the flow of information and substances in biological systems. Parallel to
electronic circuits, early instances of synthetic genetic circuits were hand-crafted and
demonstrated simple mechanisms of positive or negative feedback [23, 26]. Meanwhile,
the application of digital abstraction [66] and the construction of libraries of genetic logic
gates [53] has enabled the implementation of genetic logic circuits and sparked the field of
genetic design automation (GDA). Analog to electronic design automation (EDA), GDA
refers to an automated workflow transforming a functional specification of a system into an
implementable design [15]. By performing comprehensive evaluation and optimization of
candidate designs in silico, GDA approaches aim to reduce the number of costly experiments
in vivo, i.e., in the lab. Parallel to electronic circuits, technology mapping represents a
main task of GDA, in which the function is mapped to the target technology. To find
good implementations with respect to the given design objectives, technology mapping
processes rely on a thorough understanding of the technology’s specifics and consequent
domain adaptation. This work presents technology mapping methods for the design of
combinational genetic logic circuits.

1.1. Motivation

The motivation for this work is manifold and detailed in the following.

Improved Domain Adaptation Due to GDA being in an early stage of development,
which proceeds with an improved understanding of mechanisms, refined models, and

1

lab methods, the technology mapping processes of existing tools are very heterogeneous.
While some leave important steps in the design process to the user, others rely on methods
adopted from EDA that lack suitable adaptation to the genetic domain. For example, this
holds for the step of structuralization, in which the functional specification is transformed
into a graph representation that provides a basis for the circuit implementation. If the
graph structure has to be given by the user [31, 55, 71], or it is synthesized using
methods and design objectives from EDA [6, 43, 53], suboptimal circuit designs may be
the result. Further, the usage of general-purpose optimization methods for subsequent
design steps [53] without sufficient adaptation to the problem structure potentially leads
to inefficiencies and reduced quality of solutions. From this observation, the question
arises, how can the domain adaptation of the technology mapping methods currently used in
GDA be improved?

Critical Knowledge Transfer from EDA While GDA is rooted in the knowledge gained
in the design of electronic circuits, major differences exist between these technologies,
which have to be taken into account when designing technology mapping methods. In
EDA, tools and designers can access libraries of homogeneous building blocks that adhere
to well-established standards, e.g., for the voltage levels representing the two states in
a digital system. Libraries of genetic parts, however, are potentially heterogeneous and
hence feature limited modularity [16, 66]. The same holds for multiple instances of
the same system. While microchips, for example, underlie limited and well-understood
process, voltage, temperature (PVT) variations [57], variability among biological cells of
a population, i.e., cell-to-cell variability, can induce deviations of output signals spanning
multiple orders of magnitude [63]. Therefore, design objectives established in EDA, e.g.,
signal delay and area usage, do not represent suitable goals of a technology mapping
process in GDA. Instead, fundamental functionality of the synthetic circuits and resilience
against variability are the current main objectives [53, 58]. This raises the question, which
characteristics of the genetic technology have to be taken into account during technology
mapping to improve its domain adaptation? But also, utilizing the knowledge gained in the
design of electronic circuits, which further viable approaches exist in EDA that offer itself for
an adaptation to GDA?

Support of Refined Models In contrast to electronics, the building parts of genetic
systems are still not fully understood. It is unclear which parameters fully characterize
genetic parts and the interactions of these parts in genetic devices [58]. This is pictured by
libraries containing models of insufficient accuracy and scope. Prominent examples of this
are the limited consideration of aforementioned cell-to-cell variability [63] and context

2

effects, such as undesired interactions among components of the circuit or between the
circuit and the host organism [16]. Thus, advanced models and design objectives are
required that encompass these effects and thus provide an improved predictive power. In
the context of this work, this raises the question of how these models can be integrated into
a technology mapping process to leverage their improved predictive accuracy.

Efficient Design Space Exploration In the current state of synthetic biology, the technol-
ogy mapping process is part of the "design, build, test" cycle [5] for genetic circuits. That
is, the circuit is designed and optimized in silico, built and tested in vivo in the lab. Then,
conclusions about the design process are drawn from the measurements, representing
the basis for another potential iteration. Due to the high cost of lab experiments, a high
accuracy of the in silico prediction is desired. Further, a technology mapping process is
expected to find the (near) optimal circuit design with respect to that prediction. Thus,
computation time should be invested where it benefits most: to enable the exploration
of broad design spaces and to allow for the evaluation of candidate designs with com-
plex models that feature good predictive power. Given the combinatorial nature of the
considered technology mapping problem, these requirements necessitate methods that
explore the design space efficiently, i.e., minimize the number of required evaluations
while providing high-quality solutions. By this, the usage of these methods in the iterative
design process becomes practical, and the desired growth in circuit and library sizes can
be supported.

1.2. Contribution

The contribution of this work comprises multiple parts:

• The method of structural variants for the design of circuit topologies is devised,
which broadens the search space of technology mapping under consideration of
heterogeneous genetic gate libraries. It eliminates the structural bias introduced by
structuralizing the functional specification in traditional mapping approaches.

• Search methods are presented for efficiently solving the combinatorial problem
of assigning specific genetic gate realizations to the abstract logic network. The
stochastic method based on the Simulated Annealing (SA) heuristic leverages the
functional similarity of genetic gates to control the impact of perturbations performed
during the optimization. The deterministic method is based on the Branch-and-
Bound (B&B) paradigm and constructs solutions following the functional hierarchy

3

of genetic circuits. It leverages fundamental features of the transfer characteristics
of genetic gates to obtain exact or heuristic solutions efficiently.

• Robustness with respect to the variability of biological systems as a design objective
is integrated into the technology mapping flow. To this end, the SA search method
is adapted to an alternative, robustness-centric objective function, and a heuristic
approach to robustness is devised and integrated into the B&B scheme.

• A context-aware circuit model is integrated into the technology mapping flow. It
allows the consideration of undesired interactions of components and thus finding
optimal designs even if such crosstalk is present. The evaluation of the impact of
crosstalk on circuit performance provides insights for the design of genetic gate
libraries.

1.3. Thesis Outline

Chapters 2 to 6 provide relevant background information for understanding the remainder
of the work. Chapter 2 briefly introduces the technology mapping for digital circuits. It
focuses on structural mapping approaches and their problem of structural bias. Chapter 3
explains the fundamental mechanisms of genetic logic circuits. It covers the basic process
of protein synthesis, the mechanism of transcriptional regulation, and its application in
genetic logic gates and circuits. Chapter 4 introduces essential aspects of GDA. After
reflecting on challenges in mapping genetic circuits, approaches to quantifying circuit
functionality and robustness are presented, which are used throughout this work. Further,
a thermodynamic circuit model is introduced that considers context effects when evaluating
genetic circuits. In Chapter 5, the technology mapping problem is contextualized in the
GDA design flow and defined formally. Finally, Chapter 6 surveys related work.
Chapters 7 to 11 detail the contributions of this work. Chapter 7 presents the concept

of structural variants to broaden the design space of genetic circuits. Efficient methods for
optimizing the assignment of specific genetic gates to the circuit structure are detailed
in Chapter 8. In Chapter 9, two ways to integrate robustness as a design objective
in the technology mapping process are presented. Chapter 10 reports on integrating
context-awareness into the process, allowing for the consideration of crosstalk. Lastly, the
methods are contextualized in meaningful technology mapping scenarios and compared
in a realistic work environment in Chapter 11.
Chapter 12 contains the conclusion of the work and the outlook.

4

Background

5

2. Technology Mapping

Technology mapping is a crucial step in the hardware synthesis of digital systems. During
the process, a functional specification of a system is mapped to elements of the target
technology. The specification is typically given as Boolean formulae describing the combi-
national components of the system. Generally, these formulae are derived from a more
elaborate description, for example, a hardware description language. This elaboration step
can be carried out by open-source tools, such as YOSYS [69]. Digital systems also contain
sequential elements such as registers and circuitry providing an input/output interface.
However, these elements can be mapped to a technology by simple substitutions and are
thus not considered in elaborate technology mapping methods [21]. Figure 2.1 depicts the
mapping process in its abstract form. Target technologies such as standard-cell libraries
and gate arrays are defined by the library of available elements. Generally, this also holds
for the genetic gate technology considered in this work, while some important differences
apply (Section 4.1). In the following, the library of technology elements is called gate
library. Besides describing the function of each gate, the library contains parameters
required for the technology mapping process to optimize an objective function [18]. In the
synthesis of electronic digital systems, these objectives classically are the delay and area
of the resulting design. Recently, also the energy consumption of designs is considered
by a growing number of tools [74]. Thus, the gates in the library are annotated with
their individual propagation delay, area usage and, possibly, energy consumption. During

Boolean Formula

f = ab + c

Resulting Network

Gate Library

a b

c

f

Figure 2.1.: Abstract technology mapping process

6

mapping, these objectives are often combined into a priority relation, e.g., minimizing the
delay first, then minimizing the area while preserving the achieved delay, or a constraint
relation, e.g., minimizing the delay given a maximum energy consumption. Technology
mapping results in a network consisting only of gates available in the target technology.
The specific choice of gates and the network structure are degrees of freedom that can be
leveraged to optimize the design with respect to the objective.

2.1. Structural Mapping

The technology mapping problem in its abstract form is generally intractable [18]. To
make it accessible to algorithmic solution, the Boolean formulae are usually first translated
into a directed acyclic graph (DAG) representing the combinational Boolean network, the
subject graph [35]. A DAG is a graph with directed edges that do not form a cycle. At least
one topological order exists for a DAG, in which every node appears before its successors
as defined by its outgoing edges. The subject graph is a technology-independent DAG-
representation of the function with nodes representing simple logic gates, typically from
a limited set of gates. Technology mapping approaches using a subject graph are called
structural mapping approaches. They are the most common class of mapping algorithms
used for standard-cell, gate array, and field programmable gate array (FPGA) designs.
The structural mapping process consists of the three phases subject graph generation, cell
matching, and network covering.
For example, the academic logic synthesis tool ABC uses subject graphs consisting

solely of two input AND gates and inverters [39, 47]. Figure 2.2 depicts the mapping
process based on such an AND-Inverter Graph (AIG). First, the Boolean formula f = b̄a+bc
representing a two-input multiplexer is translated into the subject graph. Different graph
structures can represent the same function as AIGs are non-canonical. In ABC, this effect
is reduced by performing heuristic minimization of the AIG. Then, single nodes or larger
sub-graphs of the AIG are matched with elements given in the target technology’s gate
library. Two approaches for cell matching exist:

Structural matching Graph representations of the library gates exist that use the same
elements as the subject graph. This allows a graph-based structural comparison of
library gates and sub-graphs. It requires either a canonical subject graph structure
or the presence of multiple graph variants per library element to enable matching
with a non-canonical subject graph. Generally, the comparison is carried out by
checking the isomorphism of the two involved DAGs. However, the check is typically
simplified by transforming the DAGs into trees and performing tree matching.

7

Boolean Formula Resulting NetworkSubject Graph

f = ba + bc

abc

f

Matched Graph

abc

f

abc

f

Figure 2.2.: Structural mapping using an AND-Inverter Graph (AIG) as subject graph.
Blank gates represent AIG nodes, gray gates specific library gates.

Boolean matching In Boolean matching, the structural characteristics of the sub-graphs
are neglected. Nodes and sub-graphs of the subject graph and the library elements
are transferred into a Boolean representation, e.g., ordered binary descision dia-
grams (OBDDs) or truth tables. These data structures can then be compared during
matching while considering possible input variable permutations. Boolean matching
generally can find more matches than structural matching since it is independent of
structural characteristics, but it also tends to be computationally more expensive.

The result of the matching phase is the set of all possible matches of the library elements
with the subject graph. If at least one node in the graph is not part of a match, the subject
graph is not implementable with the given library. In the depicted example (Figure 2.2),
the subject graph is matched with the simple library of two input AND and OR gates and
inverters shown in Figure 2.1. Besides the trivial matches shown in orange, a complex
match of the OR gate with a sub-graph is shown in red.
The final phase of the structural mapping is the network covering. In this phase, a

subset of matches is selected that covers every node in the subject graph and optimizes
the objective of the technology mapping. Based on the selected matches, the mapped
network is constructed that consists solely of gates present in the library. In the example,
the complex match with the OR gate is chosen over the trivial matches. If equal area
and delay values for all library elements are assumed, this cover leads to an area- and
delay-optimal network.

8

2.2. Structural Bias

Irrespective of the used matching method, structural mapping approaches exhibit the
phenomenon of structural bias [18]. It expresses the correlation of the mapped network
topology with the subject graph’s structure. Due to the locality of the substitutions carried
out in the network covering phase, the structural characteristics of the subject graph are
transferred to the final network structure. This is depicted exemplary in Figure 2.3 for
the function f = ab + c. Figures 2.3a and 2.3b both show AIGs generated for f with ABC
and the respective mapped networks. While the AIG in Figure 2.3a results directly from
ABC’s AIG generation routine, the graph in Figure 2.3b has been further processed with
ABC’s heuristic minimization. Both graphs have then been matched and covered with the
objective of minimizing the delay. Yet, the locality of the matching and covering process
prevented the mapper from generating the better network structure of Figure 2.3b from
the subject graph of Figure 2.3a. The resulting networks are delay-optimal with respect to
their particular subject graph but not concerning the functional specification that served
as an input to the technology mapping process.
The implications of the structural bias depend strongly on the target technology and

objective function. When the objective is a minimal network delay, minimizing the depth
of the subject graph can be a good heuristic to get a subject graph that is biased towards

(a) Non-minimized AIG (b) Minimized AIG

Figure 2.3.: Networks resulting from different subject graphs for function f = ab + c

9

a minimal resulting network delay. The same holds for minimizing the area usage of a
design, where the number of elements of the subject graph can serve as an estimation
for the resulting network size. However, if the objective function is not based on the
network’s inherent structural characteristics, it is impossible to correlate it with features of
the subject graph. For example, this is the case for the genetic circuits considered within
this work, as the corresponding objective functions are based on the simulation of the
network as a whole (Sections 4.2 and 4.3).

10

3. Genetic Logic

The field of synthetic biology "[. . .] seeks to design and build new biology that does
useful things" [27]. It is based on the knowledge about organisms gained from classical
biology and applies it to methods from engineering disciplines. Thus, synthetic biology
represents an interdisciplinary field driven by biology, engineering, computer science,
and other disciplines. The applied methods span understanding the building parts of
biological systems, abstracting their behavior in mathematical models, combining parts
in libraries, and applying design automation methods to build new systems from these
libraries. Further, standardization of data formats for parts and systems is pursued to
enable simple exchange, but is still hampered by the complexity of the systems to be
described.
From an abstract point of view, a biological cell resembles a data processing system

[27]. It gathers information via sensors sensitive to environmental conditions like light,
temperature, and substances from its surroundings or other cells. It processes this infor-
mation with signaling pathways that are regulated by negative or positive feedback. The
resulting signals control actuators, for example, for movement, growth, or the synthesis
of substances. Regulatory genetic circuits play a vital role in this scheme by providing
the cell with means to control the flow of information and substances. A main focus
of synthetic biology is controlling this flow by constructing synthetic regulatory genetic
circuits. The aim is to mimic the behavior of electronic circuits. First demonstrations of
this approach are the genetic toggle switch [26] that exhibits a bi-stable behavior through
positive feedback and the "repressilator" [23], the output of which oscillates, driven by
negative feedback. Both circuits have been published in the year 2000 and demonstrate
that synthetic biology is a relatively new field of research.
Parts used in synthetic regulatory genetic circuits are defined by the deoxyribonucleic

acid (DNA) sequence that is used to build them. They are combined into devices, and
devices are combined into synthetic biological systems [27]. The remainder of this chapter
follows this structure and focuses on the biological systems of synthetic combinational
genetic logic circuits considered in this work. First, protein synthesis and its regulation
are introduced (Section 3.1). It is not only central to life but also an essential mecha-
nism utilized in synthetic circuits. Quantitative aspects of transcriptional regulation are

11

explained in Section 3.2. Based on this, Sections 3.3 and 3.4 describe the mechanics and
building principles of genetic logic gate devices and combinational circuits.

3.1. Protein Synthesis

DNA is the storage of information of all living organisms. It is a nucleic acid molecule
in the form of a double helix of nucleotides, which are based on the four nucleobases:
adenine, cytosine, guanine, and thymine [38]. The information contained in the DNA is
coded in the sequence of these bases. Two essential functions of the DNA are its replication
which allows for the replication of the cell itself, and the expression of genes as proteins.
These functions are so crucial for living organisms that they are called molecular biology’s
Central Dogma.

Central Dogma Figure 3.1 depicts the processes associated with the Central Dogma.
Before the cell can divide in a replication process, the DNA has to be duplicated. In
this process, a replica of the DNA is produced by multiple components summarized as
the replisome [54]. The expression of proteins based on the information stored in the
DNA is highly relevant for the mechanisms of genetic circuits. A section of the DNA that
codes one protein is called a gene. In the process of transcription, the gene is read by
a molecular machine named RNA polymerase (RNAP). While processing the DNA, it
produces a messenger-RNA (mRNA) that is a complementary copy of the DNA. The mRNA
serves as the template for the final step of translation. The ribosome, another molecular
machine, clamps the mRNA and translates triplets of nucleotides to amino acids using
transfer-RNA (tRNA). The amino acids are then appended to the growing polypeptide
chain constituting the protein.

Transcriptional Regulation Cells need to regulate which proteins are expressed at
which point in time. The bacterium Escherichia coli (E. coli), for example, which is
commonly used as a host organism in synthetic biology, features a genome of 4500 genes [3].
Expressing all genes at once would quickly drain the cell’s energy budget as each protein
synthesis burdens the cell’s metabolism. Thus, cells control the rate at which individual
proteins are synthesized by controlling the rate of transcription of the corresponding
genes. This mechanism called transcriptional regulation is organized in gene regulatory
networks (GRNs) and also represents the basis of synthetic regulatory genetic circuits.
Each gene contains a coding sequence that describes the protein, preceded by a promoter
sequence. Here, the RNAP binds to initiate the transcription. Special proteins called
transcription factors (TFs) can bind to the promoter, affect the binding of the RNAP, and

12

DNA

DNA polymerase

RNA polymerase

RNA

Replication

Transcription

Translation

RNA message

ribosome

protein

growing

polypeptide chain

Figure 3.1.: The Central Dogma of molecular biology: DNA replication, transcription and
translation (based on [54])

13

Promoter Ribosome

Binding Site

Coding

Sequence

TerminatorTF Coding

Sequence

Figure 3.2.: Inhibitory relation on a DNA sequence in SBOL Visual

thus control the transcription of the succeeding coding sequence. TFs can either promote
the binding of the RNAP to the promoter and thus have an activating effect on transcription,
or they can block the binding of the RNAP and thus have an inhibiting effect. In this
context, activating TFs are called activators, and inhibiting TFs are called repressors.
Figure 3.2 exemplifies inhibitory transcriptional regulation based on the synthetic

biology open language (SBOL) Visual [7] notation. The horizontal base line depicts the
DNA strand, and each symbol represents the sequence of an element of the regulatory
network. Additionally to the promoters and coding sequences, a ribosome binding site
(RBS) and a terminator sequence are shown. The RBS guides the ribosome for translation,
and the terminator marks the end of the gene for transcription. The connection ending
with the reversed "T" at the right promoter implies an inhibiting effect of the coded TF
on the second promoter. An activating effect would be depicted with an arrow-headed
connection. The promoter that a TF binds to with a high affinity is called its cognate
promoter.

3.2. Transfer Functions of Regulatory Systems

The mechanism of transcriptional regulation enables natural biological cells to adapt their
production of proteins to the conditions of the environment and their life cycle. In the
context of synthetic biology, it is the basis for constructing synthetic regulatory genetic
circuits. Understanding the quantitative aspects of regulatory relations is thus important
to model building parts of synthetic circuits and design circuits based on these models.
From the perspective of Boolean logic, the inhibitory relation of the repressing TF to

its cognate promoter in Figure 3.2 resembles a negation. The more TF is present, the
higher the probability that instances of it bind to the promoter and thus inhibit it. The
graphical representation of this relation is called the genetic system’s dose-response curve.
Quantitatively, the activity of the cognate promoter can be expressed as RNAP flux, the

14

"[. . .] number of polymerases per second that start transcription at that promoter" [66]. In
the following, the RNAP flux will be called promoter activity. It is a function g ∶ R≥0 → R≥0
of the concentration of repressor X ∈ R≥0. A function that realistically describes these
relations of inhibiting or activating transcriptional regulation is the Hill function. It "[. . .]
can be derived from considering the equilibrium binding of the transcription factor to
its site on the promoter" [3] and arises from the concept of mass-action kinetics. The
inhibitory Hill function

g(X) = β Kn

Kn +Xn
(3.1)

relates the output promoter activity to the input repressor concentration. Its parameter β
is the maximal output promoter activity. The repression coefficient K equals the repressor
concentration that produces an output of β/2. The Hill coefficient n describes the number
of available binding sites at the promoter and affects the steepness of the resulting function.
Analog,

h(X) = β Xn

Kn +Xn
(3.2)

represents the Hill function for an activating regulatory relation. Equations (3.1) and
(3.2) describe regulatory relations without a basal activity, i.e., a minimal output promoter
activity of 0. To account for higher basal activities, β is replaced with an interval of
minimum and maximum output promoter activity [ymin, ymax] [53], resulting in

g(X) = ymin +
(ymax − ymin)Kn

Kn +Xn
, (3.3)

h(X) = ymin +
(ymax − ymin)Xn

Kn +Xn
. (3.4)

Independent of the specific parameterization, Hill functions have characteristics relevant
to the mapping methods presented in this work. First, they are monotonic, as a higher
concentration of TF leads to an amplified effect at the cognate promoter. This holds for
inhibiting as well as activating effects. Additionally, their codomain is limited by the
interval [ymin, ymax], i.e.,

lim
X→0

g(X) = ymax, lim
X→∞

g(X) = ymin, lim
X→0

h(X) = ymin, lim
X→∞

h(X) = ymax.

The "[. . .] saturation of the Hill function at high [X] concentration is fundamentally due
to the fact that the probability that the activator binds the promoter cannot exceed 1, no
matter how high the concentration of [X]" [3]. The same holds for repressors binding
to their cognate promoter. Figure 3.3 visualizes these characteristics using exemplary
parameterizations of g(X) and h(X).

15

ymax = 3.8

ymin = 0.06

k
 =

 1
.5

n = 4

(a) Repression, g(X)

ymax = 3.8

ymin = 0.06k
 =

 1
.5

n = 4

(b) Activation, h(X)

Figure 3.3.: Exemplary parameterizations of Hill functions

3.3. Genetic Logic Gates

Based on the fundamental transfer characteristic of transcriptional regulation, synthetic
regulatory devices can be built. By applying the paradigm of digital logic abstraction
known from electronic logic circuits, these devices can be interpreted as digital logic gates.
To this end, a threshold is applied to interpret the continuous range of the transcriptional
signals in the Boolean space B = {0,1} [66]. Figure 3.4 shows schematics of different
genetic logic gates using the presented building parts of regulatory systems. A combination
of a gene coding a repressor and the repressor’s cognate promoter is the core of the genetic
inverter (Figure 3.4a). Its input promoter controlling the coding sequence’s expression is
shown in gray, as it is not a part of the gates TF-promoter system, but the cognate promoter
of another TF. By adding more input promoters in front of the coding sequence, a NOR
gate can be built (Figure 3.4b). Only if all input promoters are inhibited (i.e., Boolean 0),
the repressor is not expressed, and its cognate output promoter is thus active (Boolean 1).
Quantitatively, the input concentration of the gate results from the superimposed RNAP
flux of all input promoters. While this type of NOR gate uses tandem promoters [72], i.e.,
a chain of promoters controlling a subsequent gene, it is also possible to construct a NOR
gate using separate genes, each controlled by one promoter [19]. A simple buffer gate
can be built based on activation (Figure 3.4c). The gate transfers the input promoter’s
activity to the output promoter’s activity. Further, an activation-based AND gate can be
built (Figure 3.4d) using, for example, the principle of coregulation [48], where only the
presence of two related TFs leads to an activation of the promoter.

16

(a) Inverter (b) NOR gate

(c) Buffer (d) AND gate

Figure 3.4.: Genetic logic gates in SBOL Visual

The signaling pathway of a genetic gate is defined by the binding affinity of the TF to its
cognate promoter. All gates in a genetic regulatory circuit share the same medium of the
host cell, and the signal carriers, i.e., TFs, are not separated physically. This represents a
contrast to electronic circuits, where signals are separated in conducting physical channels,
and has substantial implications for libraries of genetic gates. First, they ideally contain
multiple TF-promoter implementations of gates with the same logic function as each TF
can only be used once in a synthetic regulatory circuit. These individual gate instances
should ideally be orthogonal, i.e., do not interact with each other. In other words, the TF
of each individual gate should not bind to promoters other than its designated cognate
promoter. Furthermore, the interaction of the gates with components of the host cell
should be minimal, e.g., the binding of synthetic TFs to promoters of the host genome.
These context effects are detailed in Section 4.4. The required uniqueness of TFs further
leads to heterogeneous transfer characteristics among gates of the same function, posing
a challenge to the construction of circuits (Section 4.1).

3.4. Combinational Genetic Circuits

Given a library of modular and orthogonal genetic logic gates, genetic logic circuits can
be built by cascading gates. They represent a special form of synthetic GRNs in which
the paradigm of digital abstraction is applied to all network components. Genetic logic
circuits that do not contain means to store information are called combinational genetic
logic circuits. Analog to electronic combinational circuits, their topology is that of a DAG.
The underlying basic design principles are explained using the small exemplary circuit

of two gates shown in Figure 3.5. The circuit diagram is depicted on the left, and on the

17

Figure 3.5.: Exemplary circuit topology and its SBOL representation

right, a DNA implementation of the circuit is shown in SBOL Visual notation. Ribosome
binding sites in front of the coding sequences are omitted to simplify the visualization.
The gates are color-coded to imply that individual pairs of TFs and promoters are used to
implement each gate. Synthetic promoters serve as input to the circuit. Here, they are
called pA and pB, referring to the inputs A and B. In implemented circuits, promoters such
as the Tac promoter (pTac), the Arabinose-induced promoter (pBAD) and the Tetracycline-
controlled promoter (pTet), which can be induced by TFs introduced from outside of the
system, can serve as inputs [53]. Promoter pB serves as input to the inverter, which consists
of the yellow coding sequence for a TF and its cognate output promoter, also colored in
yellow. The output promoter is placed in front of the NOR gate’s coding sequence (shown
in blue) to implement the wiring of the inverter’s output to the NOR gate’s input.
Important characteristics of digital circuits are given by the fan-in and fan-out of gates.

The fan-in defines the number of inputs of a multi-input gate and the fan-out defines the
number of subsequent gates driven by the gate. In the example, tandem promoters are
used, and thus, fan-in is implemented by placing multiple promoters in a row in front
of the coding sequence. Fan-out, which does not occur in the example circuit, can be
implemented by placing instances of the same output promoter at the input of multiple
other gates.
The circuit output is implemented by placing the last gate’s output promoter in front of

a coding sequence for a reporter protein. Here, yellow fluorescent protein (YFP) is chosen,
which allows for determining the circuit’s output by measuring the cell’s fluorescence. In
pharmaceutical applications, for example, the output coding sequence could be that of an
active agent.

18

4. Genetic Design Automation

Analog to electronic design automation (EDA), genetic design automation (GDA) refers to
an automated workflow that transforms a functional specification of a system into a finished
design implemented in the respective target technology. It represents an alternative
approach to the method of rational design that centers on the knowledge of designers
when constructing new biochemical systems. In the context of genetic logic circuits,
GDA aims to drastically reduce the number of lab experiments in vivo needed to design
new circuits. To this end, elaborate simulation and optimization are carried out in silico,
synthesizing themost promising designs to build and test in the lab. GDA can be subdivided
into three fields that all spark scientific interest and feature recent advances [15]. First,
libraries of genetic parts play an important role in the abstraction and modularization
of the design process, both crucial concepts known from EDA. Open repositories like
the iGEM library [14] and well-specified orthogonal gate libraries like those used in the
Cello GDA tool [53] allow reusing parts that have been specified in extensive lab work.
Second, standardization of data exchange formats can enable the interoperability between
research groups and tools for different abstraction levels. Prominent examples are the
synthetic biology open language (SBOL) data exchange standard [44] and the related
SBOL Visual standard [7]. They feature a unified representation for genetic systems from
the DNA sequence level to functional interactions between parts and offer a framework
for consistent visualization. Lastly, software tools for GDA provide user-friendly means
to transform a system specification into an implementable design (Figure 4.1). They
access libraries of genetic parts and perform technology mapping, ideally by optimizing

Specification Input Automated Design DNA Sequence Output

s(x)
C T C G A G G A G C T T G ...

f = ab

Figure 4.1.: Overview of a GDA software tool workflow

19

the circuit design with respect to a cost function or performance metric. Some tools
also perform the physical design, transforming the mapped network into a DNA strand.
Existing tools span different abstraction levels and different parts of the synthesis process.
The prominent GDA tools iBioSim [51] and Cello [53], for example, cover the complete
synthesis process from a high-level specification input to a DNA sequence design output.
The remainder of this chapter focuses on important aspects of the technology map-

ping step in the GDA workflow for combinational genetic circuits. First, the challenging
properties of genetic circuits in contrast to electronic circuits and their implications for
technology mapping are presented in Section 4.1. Then, a circuit model is introduced,
together with a fundamental metric for determining the functionality of a circuit design
(Section 4.2). The metric can be used as an objective function for technology mapping. In
Section 4.3, an alternative objective function is presented that allows to make robustness
to variability among cells of a population an inherent goal of the mapping process. Finally,
an alternative circuit model based on thermodynamic interactions is presented that can
be used to model context effects of genetic circuits (Section 4.4).

4.1. Challenges in Mapping Genetic Circuits

Genetic circuits pose additional challenges to the technology mapping process compared to
electronic circuits. This is caused by the underlying properties of gene regulatory systems
and the resulting building principles of genetic circuits. As shown in Chapter 3, all gates
in a circuit, even those implementing the same function, must be implemented with a
unique pair of TF and cognate promoter. This constraint is due to the fact that the reuse of
parts would result in undesired signal paths, as the connections of the circuit are defined
by the binding affinity of the TFs to the promoters. It results directly in a restriction of
the maximal circuit size by the number of unique genetic gates available in the library
and represents a contrast to electronic circuits. Standard-cell designs, for example, can
comprise an arbitrary number of copies of each cell.

Heterogeneous Gate Characteristics Each pair of TF and promoter has a unique regu-
latory behavior and transfer characteristic. In the Hill model, this results in a different
set of parameters θ = (ymin, ymax,K,n) with K and n defining the shape of the curve
and [ymin, ymax] defining the output interval spanned by basal and maximum promoter
activity. This represents a difference to electronic digital circuits, where all gates operate
within equal signal ranges, e.g., VGND and VDD, and global noise margins can be defined.
These non-uniform transfer characteristics and signal levels have two consequences for
the performance of genetic circuits and the technology mapping process.

20

(a) Functional circuit (b) Non-functional circuit

Figure 4.2.: Signal mismatch in genetic circuits (adapted from [53])

First, the output signal range of a gate may be incompatible with the input range of a
subsequent gate [66]. This is demonstrated in Figure 4.2, which shows two simple circuits
comprised of two inverters based on different TFs. In Figure 4.2a, the output of gate 1
representing a Boolean 1 (red dotted line) falls into the saturated low-output region of
gate 2. Analog, the output of gate 1 representing a Boolean 0 (green dotted line) falls
into the saturated high-output region of gate 2. As expected, the input signal of the circuit
is inverted twice, and the complementary Boolean states are differentiable at the circuit’s
output. In Figure 4.2b, the order of the two gates is swapped. Now, the output signal
of gate 1 falls into the low-output region of gate 2, irrespective of the Boolean value it
represents. Thus, the Boolean output states are not differentiable at the circuit output
as the information is lost due to the signal mismatch between the two gates. This full
loss of functionality is caused by an extreme signal mismatch, while in more nuanced
cases, the usable output interval of the succeeding gate would be reduced. Therefore, in
addition to the classical process of technology mapping that transforms the functional
specification into a subject graph and the subject graph into a network of technology
elements, genetic circuits require the step of gate assignment [53]. In this step, specific
TF-promoter implementations of gates are assigned to abstract logic gates in the network.
This problem is non-trivial since the gate assignment affects the degree of functionality of
a circuit, which has to be determined by simulating the circuit as a whole (Section 4.2).
Second, due to the non-uniform transfer characteristics of genetic gates, the circuit

topology plays an important role in the circuit’s functionality. Among multiple network
structures implementing the specified Boolean function, specific ones might allow combina-
tions of gates that work well together, while others provoke non-functional combinations.
Furthermore, genetic gate libraries typically contain a limited set of gates per logic function,

21

making exploring variants of implementations made of different types of gates worthwhile.
This is examined in more detail in Chapter 7. In contrast, electronic circuits generally
function irrespective of the topology, but it is used to optimize the delay and area of the
circuit.

Variability and Context Effects Furthermore, bio-molecular effects influence the per-
formance of genetic circuits. Stochasticity of processes in the cell and variability among
cells of a population can introduce variance in the output characteristic of a circuit [63].
Further, undesired interactions called context effects, e.g., off-target binding of TFs at
other promoters of the circuit or binding sites of the host cell, affect the predictability of
circuit performance [16]. Thus, a technology mapping process that is aware of variability
(Section 4.3 and Chapter 9) and context effects (Section 4.4 and Chapter 10) improves
the meaningfulness of the mapped designs.

Metabolic Burden The expression of synthetic components has been shown to burden
the cell’s metabolism. This "[. . .] typically reduces growth, triggers stresses and leads to
decrease in performance or failure of engineered cells" [10]. Generally, a positive relation
of the amount of expressed synthetic components to the burden can be assumed.

In summary, genetic circuits pose the following challenges for a technology mapping
method:

1. The design size is limited by the number of gates in the library and the burden
imposed on the cell.

2. Genetic gates do not feature uniform transfer characteristics and signal levels, re-
sulting in
a) the additional, non-trivial step of gate assignment.
b) the importance of the network topology for the functionality of a design.

3. Stochasticity and variability among cells introduce variance in the circuit output.

4. Context effects affect the circuit performance.

22

4.2. Quantifying Circuit Functionality

Quantifying the degree of functionality of genetic circuits is essential for technology
mapping to optimize designs for adherence to the specification. The metric applied by
the GDA tool Cello [53] represents the state-of-the art and is detailed in the following.
Other aspects of the tool are detailed in Section 6.1. In Cello’s circuit model, each gate is
represented by the transfer function of its individual TF-promoter pair. The function is a
Hill curve (Section 3.3) with parameters empirically determined in the lab. In this process
called flow cytometry, the fluorescence of individual cells of a population is successively
measured. If the cells contain single genetic gates and a fluorescent reporter output gene,
the result is a population-wide distribution of gate output values for a given input value.
The parameters characterizing the gate are then inferred based on the medians of the
distributions for both Boolean states. In Figure 4.3, resulting Hill functions are shown for
a circuit of four gates, with each gate being related to its transfer function by the color
coding. The OR gate does not have an individual transfer characteristic but represents a
simple superposition of the activities of its two input promoters (Section 6.1). All signal
levels in the circuit are given in relative promoter units (RPU), which relate the activities
of all promoters in the library to a common standard of comparison. In contrast to the
basic gate model presented in Section 3.3, the input signals in Cello’s model are given in
the RPU of the gate’s input promoters instead of repressor concentrations. The result is a
uniform quantitative representation of signals in the circuit.
The circuit output RPU value is calculated by propagating the RPU values from the

circuit input promoters through the gates’ transfer functions on each path to the output.
Each combination of circuit input promoter activities, i.e., each Boolean input assignment,
leads to a unique circuit output RPU value. This is due to the different activity levels of the
input promoters and the different signal paths in the circuit consisting of heterogeneous
gates. In Figure 4.3, the calculation of the circuit output value is visualized for the first
input assignment. Here, both circuit inputs are assumed to represent a Boolean 0, and
thus, both input promoters deliver their individual basal activity. Each further input
combination leads to a different output level, even if output values represent the same
Boolean value. For a circuit to fulfill its functional specification given by a Boolean formula,
it is required to produce output RPU levels, which are clearly assignable to a Boolean value.
To this effect, Cello rates the minimum separation of the output values representing
complementary Boolean states. Let γ and a denote the abstract circuit topology and the
assignment of genetic gates from the library to this topology. Let furthermore Y be the set
of circuit output RPU values representing a Boolean 1 and Y the RPU values representing

23

a Boolean 0. Then,

sCello(γ, a) =
miny∈Y (y)
maxy∈Y (y)

(4.1)

defines the metric applied by Cello, subsequently called the Cello score. It is given by the
ratio of the smallest output RPU value for a Boolean 1 and the largest value for a Boolean
0. In Figure 4.3, these values are labeled "lowest ON" and "highest OFF". The score rates
the degree to which a circuit produces identifiable output states and thus implements the
specification. To compute the Cello score, it is necessary to exhaustively determine a
circuit’s output RPU for all Boolean input assignments. In the following, this process is
called simulation or evaluation of a circuit.

Figure 4.3.: Determination of the CELLO circuit score (excerpt from [53])

24

4.3. Quantifying Circuit Robustness

Cello’s circuit model and the corresponding circuit score rely on median representations
of gates. As explained in Section 4.2, these are inferred from distributions measured
by flow cytometry of a population. Thus, they do not accurately capture the differences
between individual cells, the cell-to-cell variability [63]. The term refers to the behavioral
variance among cells of an isogenic population, i.e., cells with a largely identical DNA. It
is caused by, e.g., the cells being in different stages of the cell cycle and by the stochastic
nature of fundamental bio-molecular events [11]. Measuring the output signal of a genetic
circuit implemented in a population of isogenic cells thus yields distributions of output
signals. By sorting the output values with respect to the represented Boolean value,
a distribution of output values is obtained for each Boolean state. These distributions
generally feature different variances and shapes for different circuit designs. This may
even lead to an overlap of the two distributions representing complementary Boolean
states. Any overlap should be avoided by design since it results in a non-functional circuit
lacking differentiable output states [59]. This is especially important for biomedical
applications [37]. For example, malfunctioning circuits for identifying cancer cells may
damage healthy cells [70]. In the following, the term robust is used, referring to circuits
resistant to output overlap. To make robustness an objective in genetic circuit design, it
has to be quantified and incorporated into the design process. This was the goal of a joint
work [58] with the Self-Organizing Systems Lab, which contributed the alternative metric
called expectation-based score (E-Score) presented in the following.

Principle of the E-Score In contrast to the Cello score, the E-Score is not only sensitive
to the distance of the medians of the output distributions of a circuit but also to their
variance. In a design process, this enables differentiating designs with the same distance
of medians but different variances. Thus, designs less prone to overlap, i.e., robust designs,
can be selected based on their E-Score. The calculation of the score can be divided into
three phases. First, the gate models, typically based on a single set of parameters for the
Hill transfer functions, are enhanced to reflect the gates’ stochastic behavior. For each
gate, a set of random parameters is inferred from the flow cytometry data that captures
its output distribution. Second, multiple circuit simulations are carried out instead of
a single simulation. For each one, a different set of the random parameters is drawn
for each gate. By this, the stochasticity of the circuit is introduced into the simulation,
resulting in a set of simulated circuit output values. The values are then grouped by the
Boolean state they represent, yielding a distribution of output values for each Boolean
state. Finally, the circuit is scored based on a modified Wasserstein metric [28, 67]

25

Figure 4.4.: Sensitivity of the E-Score ("proposed") to the standard deviation of output
distributions in contrast to the CELLO score (excerpt from [58])

calculated for the output distributions. "The Wasserstein distance of the logarithmic
output distributions emerges as a natural measure of separation corresponding to the
population-wide expected on-off difference" [58]. It has been modified only to include
the parts of the distributions that are visually located between the medians. As this is
the distributions’ section prone to overlap, the metric represents a measure for circuit
robustness. In contrast to the original Wasserstein distance, this modification also allows
scoring the variance of symmetric distributions. Figure 4.4 visualizes the principle of the
E-Score and highlights its sensitivity to variance compared to the Cello score. On the
x-axis, the standard deviation of the output distributions is plotted, and the y-axis shows
the normed score value. The medians’ distance of the distributions is fixed. For this fixed
distance, the Cello score (red line) is constant irrespective of the distributions’ standard
deviation. In contrast, the E-Score’s value, depicted in yellow, decreases with increasing
standard deviation. Intuitively, the left output characteristic would be preferred over the
other two, which feature nearly overlapping and overlapping distributions. This notion is
quantified by the E-Score.

26

10110010-1

o
ff

o
n

E-Score 5k (opt)

Cello (opt)

10-3 10-2

Figure 4.5.: Output distributions of an exemplary circuit optimized with respect to the
E-Score and the CELLO score (excerpt from [58])

Impact of the E-Score Integrated into a circuit design process, the E-Score can lead to
more robust circuit designs than a score agnostic to output variance. That is, resulting
circuits are less prone to non-functionality caused by cell-to-cell variability. In [58], the
robustness of 20 out of 31 circuits could be improved by using the E-Score instead of the
Cello score. The median E-Score of the improved circuits increased by 71.08%. The
resulting output distributions of two circuit designs with the same function are shown
in Figure 4.5. In this depiction, which will recur throughout this work, the output RPU
is given on the x-axis and the y-axis indicates the normalized count. In blue, the output
characteristic of a design optimized with the Cello score is shown, and in yellow, a design
optimized with the E-Score is shown. The top plot shows an overlay of the distributions
representing a Boolean 0 output, and the bottom plot shows the complementary Boolean
1 output. While both designs feature comparable medians of their output distributions,
the shapes are different. This is especially visible for the Boolean 1 case, where the
design optimized with the E-Score features a narrower distribution with fewer portions
overlapping with the complementary distribution. All of the presented results have been
obtained by calculating the E-Score based on 5000 random parameterizations of the gates
in the circuit. As each of these instances is evaluated using a circuit simulation (Section
4.2), determining the E-Score is 5000× computationally more expensive compared to
determining the Cello score. However, applying parallel computation techniques can
reduce the resulting overhead in computation time.

4.4. Context-Aware Circuit Model

Besides cell-to-cell variability, interactions among parts of the genetic circuit and between
these parts and elements of the host organism affect the performance of synthetic circuits
[16]. The term context effects is used to subsume these undesired interactions, which are

27

a)

b)

c)

(a) Schematic view

10−2 10−1 100 101

Input promoter activity

10−2

10−1

100

crosstalk

titration

desired

off-target

binding sites

(+ stat. weight)

forbidden high TF regimelow TF regime

O
u
tp

u
t p

ro
m

o
te

r a
c
tivity

non-cognate TFs

(+ stat. weight)

(b) Effect on transfer functions

Figure 4.6.: Crosstalk and titration in genetic circuits (excerpt from [24])

caused by multiple mechanisms. Synthetic parts and the host, for example, rely on and
compete for energy resources of the cell, especially for translation [17]. Furthermore, the
genes located on the DNA near a synthetic part affect its function [42], and retroactivity
modulates the behavior of circuit elements based on the temporal context [33]. Two
further important interactions are directly related to the gene regulation, caused by the
fact that even though TFs exhibit the strongest binding affinity to their cognate promoter,
they generally also bind to other sites. First, TFs can bind to other promoters of the
synthetic circuit, leading to interdependencies of the circuit’s signals. Analog to electronic
circuits, this phenomenon is called crosstalk [25]. Second, TFs can bind to other non-
cognate sites at the host genome in a process called titration that limits their availability
as a functional component in the circuit [13]. Despite their effect on circuit function,
crosstalk and titration are not considered in state-of-the-art GDA workflows. However,
these phenomena can be incorporated by refining the model of gene regulation used for
simulating the circuit and adapting the synthesis process accordingly. This was the goal of
another joint work [24] with the Self-Organizing Systems Lab, which contributed the new
circuit model that is presented in the following, starting with a more detailed explanation
of the two considered effects.

Crosstalk and Titration An ideal library of regulatory parts consists of a set of TF-
promoter pairs that do not interact with each other, i.e., that are orthogonal. Each

28

TF binds only to its cognate promoter, and no interactions between other elements of
the circuit or the host occur. However, it has been shown that generally TFs bind to
other sites than their cognate promoters [25]. Both crosstalk and titration are caused
by this limited binding specificity of TFs. Despite having the same mechanism, both
phenomena are differentiated due to their individual effect on the circuit function. Figure
4.6a visualizes the biology of the desired regulation and both undesired effects in genetic
circuits. The colored lines inside the logic gates depict functional parts of the DNA strand.
Stamped sections on the strands portray promoters where fitting TFs can bind, while
solid sections depict coding sequences for TFs. The TFs itself are visualized by the small
floating elements. Their geometric similarity to the stamped parts of the strands indicates
their binding affinity to the respective promoter. Their color links them to their coding
sequences and cognate promoters. Of the three phenomena shown, (a) represents the
desired binding of TFs to their cognate promoters, (b) represents the crosstalk of a TF
(green) with a non-cognate promoter and (c) shows the titration of TFs by sites outside
of the circuit at the host genome. As shown in Section 3.3, the desired transcriptional
regulation results in a gate transfer characteristic of a Hill curve. Both crosstalk and
titration modulate the curve differently, shown in Figure 4.6b for the inhibitory case. In
the low TF regime, where none or a limited number of TF molecules bind to the cognate
promoter, its activity is maximal. The presence of a non-cognate TFs exerting crosstalk
on the promoter leads to reduced activity, depicted in green. Thus, crosstalk reduces the
output of a gate that represents a Boolean 1. The minimal output of a gate is not reduced,
as the basal promoter activity defines its lower bound. Titration reduces the availability of
TFs that can bind to the promoter, as they are drawn to binding sites outside the circuit.
Thus, a higher concentration of TF is needed to regulate the promoter when titration is
prevalent compared to the case free of titration. This results in a shift of the high output
region of the gate, shown in red. Note that the modulated transfer function is still bound
by the output interval [ymin, ymax], and its sigmoidal characteristic persists.

Thermodynamic Circuit Model A convenient way to model off-target binding effects is
that of a thermodynamic model presented in [24]. It is based on two main assumptions.
First, the input promoter activity is proportional to the concentration of TF available for
binding, which is in turn proportional to the expected occupancy of the possible binding
sites by a RNAP. Second, single binding states, i.e., "[. . .] the permutations of assignments
of available molecules to available binding sites, follow a Boltzmann distribution" [24].
Therefore, all global site occupancy states with the same energy level are equally probable.
"Thus, the model reduces the underlying complicated mechanics of gene expression to
combinatorics on the ensemble of RNAP binding states" [24]. The result is a parameter-

29

reduced model of genetic circuits that only relies on the binding energies of TFs and RNAP
to binding sites and proportionality constants. These parameters can be learned from
existing gate libraries. Crosstalk is modeled by setting the binding energy of TFs not only
for cognate promoters but also for other promoters of the library. Titration is reflected by
static binding sites and respective energies that are not part of regulatory circuit parts
but of the host organism. Through crosstalk, interactions in the circuit can arise that
represent signal feedback and, thus, cyclic dependencies of signal levels. This increases
the computational complexity significantly, since root-finding algorithms have to be used
to find the solution.

4.5. ARCTIC

The examination of technology mapping methods for genetic circuits lead to the joint
development of the GDA tool ARCTIC ("Automatic design of Robust CircuiTs in Cells")
with the Self-Organizing Systems Lab. It comprises two main parts complementing each
other (Figure 4.7). ARCTICsim represents a collection of two circuit simulators written
in Python and multiple libraries of genetic gates. The classic simulator applies Cello’s
circuit model (Section 4.2) to determine the output behavior of circuits and to calculate
circuit scores such as the Cello score and the E-Score (Sections 4.2 and 4.3). It uses
gate libraries containing classical Hill parameterizations of genetic gates and libraries
containing random perturbations of these parameters to enable the calculation of statistics-
based scores. The thermodynamic simulator is based on the context-aware circuit model
(Section 4.4) and can calculate the Cello score of circuits under consideration of context
effects. These effects are modeled in a corresponding set of gate libraries containing
binding strength configurations for different crosstalk characteristics. The second building
block of ARCTIC is ARCTICmap, a technology mapping tool written in Java. All methods
presented in this work are implemented in ARCTICmap and are detailed in the remainder
of this work. In short, ARCTICmap provides methods for synthesizing abstract circuit
topologies for a specific Boolean function based on the given genetic gate library and
problem-specific exact and heuristic optimization methods for assigning specific genetic
gates to these circuit topologies.
In a typical technology mapping flow with ARCTIC, the user enters a Boolean specifica-

tion of the desired circuit and defines settings such as the gate library, topology synthesis
constraints, gate assignment method, circuit model, and circuit score. ARCTICmap then
queries information on the genetic gate library that matches the settings. Based on this,
it generates circuit topologies and corresponding gate assignments and sends them to
the simulator. The simulator evaluates each design, calculates its score, and sends it

30

back to ARCTICmap. This feedback enables the exploration of the design space for circuit
implementations in an optimization loop. When the chosen technology mapping method
converges, ARCTICmap returns the resulting circuit implementation. Further, ARCTICsim
can be used to analyze and visualize the output behavior of the circuit.

ARCTIC

ARCTICmap ARCTICsim

Library Information

Circuit Topology

Gate Assignment

Circuit Score

Circuit Analysis

Gate Assignment

Optimization

Topology Synthesis

Toolflow

Circuit Simulator Suite

Thermodynamic Simulator

Classic Simulator

f(x)

Gate Libraries

Heuristic Methods

Exact Methods

Structural Variants

Thermodynamic Libraries

Classic Libraries

Crosstalk Configurations

Figure 4.7.: Structure and flow of ARCTIC

31

5. Problem Definition

This chapter defines the problem of technology mapping for combinational genetic logic
circuits in detail. First, the examined design steps are contextualized by locating them
in the GDA tool flow and in comparison to a typical EDA flow in Section 5.1. Then, the
problem is defined formally in Section 5.2.

5.1. Contextualization

A GDA tool flow for genetic logic circuits and a typical EDA flow are shown side to side
in Figure 5.1. The main phases of the design process are printed on the right in black
and characterize a variety of EDA flows for different target technologies. The shown
technology mapping phases are that of a structural mapping approach (Chapter 2), which
is used, for example, for standard-cell designs. The EDA flow begins with the input
of a functional specification of the system. Typically, the input is given on the register
transfer level (RTL) that defines the operations performed on the data and, in the case of
a sequential system, the registers used to hold the data. Domain-specific languages called
hardware description languages (HDLs), exist to conveniently describe systems on the
RTL. The HDL input can be entered directly by a user or result from a high-level synthesis
process that transforms a behavioral description of the system into the RTL representation.
Next, the logic synthesis generates a Boolean representation of the system from the RTL
description. Particularly, combinational paths are transformed into Boolean formulae,
which are typically minimized. In technology mapping, each formula is transformed into
a subject graph that is matched with a library of technology elements. A cover of these
elements is chosen that minimizes an objective such as delay or area, or a combination of
both. In the phase of physical design, the final layout is constructed by placing technology
elements geometrically and routing the signals between them. Again, the physical design
represents an optimization for design objectives, such as the critical path length. The
output of the EDA flow is a set of design files fully describing the implemented system
that allows, e.g., building the device in a fab or programming field programmable devices.
While the GDA flow can be subdivided into the same main phases as the EDA flow, the

32

Specification Input

Logic Synthesis

Technology Mapping

Physical Design

Design Output

RTL Description

Placed Design
Placed and

Routed Design

Boolean Formulae

f = ab + c

Subject Graph Subject Graph

Covered Network Covered Network

Assigned Network

DNA Strand Design Files

GDA Flow EDA Flow

C T C G A G G A ...

B
u

ild
,

Te
st

 a
n

d
 R

e
d

e
si

g
n

Sc
o

p
e

Subject Graph Generation

Matching and Covering,

Direct Enumeration or

User Input

Gate Assignment

Figure 5.1.: GDA tool flow and typical EDA tool flow based on structural mapping

33

processes performed in each step differ. This is caused by the fundamental differences
between electronic and genetic circuit technology and especially applies to the phase of
technology mapping considered in this work. Furthermore, the landscape of existing GDA
tools and methods is still heterogeneous. While in the following, a generalized GDA flow
is used to contextualize the examined problem, a detailed survey is given in Chapter 6.
Different approaches for structuralizing the Boolean representation of genetic circuits

exist. While some rely on traditional subject graphs, others skip it entirely and demand a
structural user input. In this work, it is shown that given the small size of genetic logic
circuits currently implementable, it is possible to directly generate a network of library
elements from the Boolean representation by enumeration. In contrast to EDA, the covered
network does not represent the final product of the technology mapping phase. It is merely
a network of abstract logic gates that can, in principle, be implemented by the given library.
That is, the network contains at most the number of gates of each logic type present in the
library as orthogonal genetic gates using individual signaling molecules. In the additional
phase of gate assignment, these genetic gates are mapped to the abstract network, and
the circuit characteristic crystallizes. Gate assignment represents a non-trivial step in the
design process, in which the specific realization of the circuit is generated and optimized
for an objective function. In the physical design phase, the selected parts are placed on
the DNA strand. Methods of combinatorial design [62] ensure that the order of genetic
elements adheres to predefined rules reflecting experiences with the compatibility of parts.
For systems implemented in a single cell or a cell-free environment, routing of signals is
not applicable since all signals, i.e., TF concentrations, share the same medium. Thus, the
routing step known from EDA has no counterpart in genetic circuit design. The output
of the GDA flow is a sequence of base pairs that can be used to synthesize a DNA strand
describing the genetic circuit. Due to the complex nature of the examined systems, the
paradigm of "Design, Build, Test" [5] is prevalent in synthetic biology. To reduce the
number of re-design cycles and thus expensive lab work, it is desirable to predict the
system behavior with high precision and conclude the synthesis flow with a (near) optimal
design with respect to that prediction.
The problem examined in this work is the technology mapping for combinational genetic

logic circuits. The presented methods transform a functional Boolean specification of a
circuit into a network of specific genetic logic gates optimized for a performance metric.

34

5.2. Formal Definition

Note: Parts of this section have already been published in [58]. Explicit self-citation is omitted
to provide an improved reading flow.

In the following, the problem of mapping a Boolean function to a combinational genetic
logic circuit is defined formally.

Prerequisites The circuit’s functional specification is input by the user or results from
logic synthesis. It is given as a Boolean formula ϕ from the space of possible specifications
F mapping an n-dimensional Boolean input vector to a Boolean output value, i.e., ϕ ∈
F ∶ Bn → B with B = {0,1}. That is, the circuits considered in this work feature a single
output. Further, a genetic gate library L is given representing a finite set of m individual
genetic logic gates, i.e., L = {θ0, θ1, . . . θm−1} which are each represented by an individual
set of Hill parameters θ = (ymin, ymax,K,n). Additionally, the set S contains the available
logical gate types, i.e., the Boolean functions implemented by gates in the library.

Search Space Let (G,Σ) be the set of all labeled DAGs where G ∈ G is a DAG with
G = (V,E), E ⊆ V × V and labeling Σ ∶ V → S. During the synthesis of the network
structure in technology mapping, the finite set of circuit topologies Γ ⊂ (G,Σ) based on the
synthesis map T from the space of specifications in terms of Boolean formulae F and the
available gate types S, i.e., T ∶ F × S → (G,Σ) is searched. To make the transformation
into a structural representation tractable, T is typically split into two phases. The first step
is synthesizing a subject graph based on a technology-independent library, and the second
step is generating a technology-dependent, covered network. Note that both phases of
T are traditionally guided by an objective function related to network properties. In the
given problem, T is assumed to be unguided since important metrics of the genetic circuit
do not crystallize before the gate assignment optimization. Thus, T does not necessarily
yield a single network implementing ϕ, but a set of networks Γ.
In the process of gate assignment, an injective functionM that takes each vertex of a

topology γ in Γ and assigns it one individual element of libraryL, i.e.,M ∶ Γ×L→ A ⊂ V ×L
is searched. The set A contains all valid assignments of genetic gates to the network,
that is, all assignments in which the type of each gate matches the type of the node it is
assigned to and each individual TF is only used once in the circuit. The set Γ×A represents
the design space of technology mapping.

Optimization Problem Topology synthesis and gate assignment jointly result in circuits
(γ, a) with γ ∈ Γ and a ∈ A. Rating a circuit is then done using a circuit score function

35

S ∶ Γ ×A → R≥0. To serve as a circuit score, a function S must quantify the compliance
of the circuit’s characteristic with the Boolean functional requirement ϕ, but may also
cover additional aspects. Proceeding from here, the process of technology mapping can
be formulated as an optimization problem of the form

(γ∗, a∗) = argmax
(γ,a) ∈Γ×A

S(γ, a) (5.1)

with (γ∗, a∗) being the optimal topology and assignment combination with respect to S.
Equation (5.1) illustrates the hierarchical nature of the problem at hand. Generally, a

circuit can only be scored if a network topology and a complete assignment of gates to
that network exist. To make the problem tractable, it is a practical approach to split it
into two phases based on the inherent hierarchy. First, the set of topologies Γ is built. In
contrast to EDA, metrics of the network structure do not necessarily correlate to the main
objective, and thus, a new approach for topology synthesis is necessary. This problem is
examined in more detail in Chapter 7. Then, the space of gate assignments A is explored
for each topology γ ∈ Γ. Problem-specific search methods can leverage characteristics
of the chosen scoring function and circuit model to traverse this space efficiently in the
search for a (near) optimal solution. Different aspects of the gate assignment problem are
examined in Chapters 8 to 10.

36

6. Related Work

In the following, existing technology mapping approaches for genetic logic circuits are
introduced and contextualized. First, the GDA tools Cello and iBioSim are presented in
detail in Sections 6.1 and 6.2 due to their high relevance to the work. Further relevant
approaches are subsumed in Section 6.3.

6.1. Cello

The GDA tool Cello [53] and its accompanying library of genetic logic gates contributed
significantly to the field of genetic logic circuit design, and many aspects of it represent
the state-of-the-art. The tool covers the complete synthesis flow from a textual circuit
specification to the output of a physical design in the form of a DNA strand (Figure 6.1).
As input, Cello takes a subset of the Verilog HDL describing a single combinational
function. The Verilog code is parsed, and the function is transformed into a truth table
representation. It serves as an input for the subsequent process called logic synthesis in the
original work, which, in fact, represents the first step of the technology mapping, namely
the subject graph generation. The technology mapping approach of Cello, spanning the
mentioned generation of the subject graph, its transformation into a network of abstract
gates, and the gate assignment optimization will be detailed below. The physical design
is implemented by a process called combinatorial design in which the genetic parts are
placed on the DNA strand following the library’s specifications.

Gate Library The genetic gate library provided with the original Cello framework [53]
is the result of extensive specification of gates in the lab, identifying modes of failure and
reducing them by re-design. It contains a set of 12 repressors based on the tetracycline
repressor (TetR) with corresponding cognate promoters implementable in E. coli. The
repressive regulatory characteristic of these TF-promoter pairs enables their usage as
NOT/NOR gates (Section 3.3). For some of the gates, the library contains variants using
different RBS, leading to different transfer characteristics. In total, 20 individual genetic
gates are present in the library. An individual strong terminator follows each coding

37

Figure 6.1.: Overview of CELLO’s tool flow (excerpt from [53])

38

sequence to prevent RNAP read-through, and individual insulator sequences insulate
promoters from the surrounding genetic context. Additionally to the gates, Cello’s library
contains four promoters that serve as circuit inputs since they are sensitive to TFs that
can be controlled by inducer molecules from outside the cell. As circuit output, the library
provides a YFP reporter gene, which allows measuring the output signal. Two promoters
can be placed in front of the YFP’s coding sequence, which results in the behavior of an
OR gate of the output gene.

Technology Mapping Cello’s technology mapping process consists of three phases: a
subject graph is generated, transformed into a network of NOT and NOR gates, and finally
assigned with library gates. To generate a structural representation of the input truth
table, an AIG is built using the tool ABC [12]. Being an EDA tool, ABC optimizes the
depth of the graph by applying a heuristic minimization to the AIG since this would reduce
the delay in resulting electronic circuits. As a secondary objective, the number of AND
nodes is minimized. Cello then transforms the AIG into a NOR-Inverter Graph (NIG) by
local substitutions of AND nodes according to DeMorgan’s rule. By this, the technology-
independent subject graph is transformed into a network of NOT and NOR gates in the
library. In a final modification of the topology, Cello tries to substitute sub-graphs of
the NIG by pre-computed circuit motifs. This step aims to further minimize the heuristic
output of ABC and serves as an interface for entering potential gate types other than NOT
and NOR. If the resulting circuit topology is implementable with the gate library, i.e., the
number of gates of each type does not exceed the number of gates in the library, Cello
continues with the gate assignment.
To solve the assignment problem, a Simulated Annealing (SA) [56] heuristic is applied.

It represents a general-purpose optimization algorithm for combinatorial problems and
is explained in more detail in Chapter 8. In short, a random initial assignment of gates
to the circuit structure is optimized iteratively. In each iteration, an assigned gate is
replaced by another gate from the circuit or the library. While changes improving the
solution quality are always accepted, worsening changes are accepted with a certain
probability that decreases based on an annealing scheme. SA features a set of parameters
that influence the optimization efficiency and solution quality. These parameters’ values
must be found in a meta-optimization since they are problem-specific. Furthermore,
parameters may be tied to certain features of the specific problem to allow the algorithm
to work efficiently for various problems, e.g., with varying sizes. Cello, however, uses
fixed values for critical parameters such as the starting temperature of the annealing
scheme and the number of iterations (Section 8.4.3). The circuit model and objective
function used in the optimization scheme are described in Section 4.2. That is, Cello

39

optimizes the separation of the complementary Boolean output states of the circuit based
on the functional specification. Additionally, the burden ("toxicity") of each assigned
circuit is calculated based on empirical values contained in the library. It rates the degree
to which a synthetic circuit hampers cell growth. Circuit candidates exceeding a certain
toxicity threshold are discarded during the optimization. Further, Cello offers a heuristic
check for the robustness of circuits to signal perturbations by "[. . .] ensuring that the
minimum and maximum output values of a gate lead to an output of the subsequent gate
that is higher than half the maximum or lower than twice the minimum output value"
[24]. The problem of signal value compatibility is examined in greater detail in Section
9.2.
Of 60 Boolean three-input functions synthesized with Cello, 45 were fully functional

when verified in vivo [53]. Of all output states produced, 92% featured the predicted
Boolean signal value. Since the publication of Cello, the successor Cello 2.0 [34] has
been published. It is based on a new, more modular software architecture aimed towards
design automation for other organisms than E. coli such as yeast [19]. However, it features
the same technology mapping methods present in Cello.

6.2. iBioSim

The GDA tool iBioSim [51], currently available in its third version [68], represents an
actively developed collection of models, simulation methods, and interfaces for standards
such as SBOL. In contrast to Cello it operates on the lower abstraction level of biochemical
reaction network models and is thus not limited to genetic logic circuits. The tool also
allows the modeling of "[. . .] metabolic networks, cell signaling pathways, and other
biological and chemical systems [. . .]" [51] with a range of different analysis methods,
including the simulation of temporal behavior. However, iBioSim contains a technology
mapping scheme for genetic logic circuits [55], detailed in the following. It is in parts
based on the general idea of the branch-and-bound paradigm, similar to the method
presented in Section 8.3.
As input, iBioSim’s technology mapping method takes a structural model of the GRN

instead of a Boolean specification. iBioSim possesses no notion of the expected functional
behavior of the resulting circuit as a whole. A functional specification is only present on
the level of interactions between components of the input network. These are annotated
either as activating or inhibiting relations. In the first phase of the scheme called graph
construction, a subject DAG of the network is constructed with nodes representing pro-
moters and coding sequences for TFs. Figure 6.2 shows an exemplary resulting DAG on
the left. Diamond-shaped nodes represent promoters, and ellipse-shaped nodes represent

40

A B

P4 P5

C

M N

P6

5

30

15 20

50

65

Figure 6.2.: Technology mapping scheme of IBIOSIM (adapted from [55])

coding sequences. Edges drawn from coding sequences to promoters depict the binding
affinity of a coded TF to a promoter, and edges drawn from promoters to coding sequences
depict control of transcription by the promoter. The graph construction is carried out
for the input model and all library components. Thus, the system specification and the
technology elements are present in structural form, making the examined technology
mapping scheme a structural mapping method using structural matching (Section 2.1).
As a final step in the first phase, all DAGs representing library elements are annotated
with their size in the number of base pairs (Figure 6.2, center).
If the created problem DAG features nodes with more than one outgoing edge, it is split

into multiple rooted DAGs representing a network with a maximum fan-out of one in a
step called partitioning. These sub-problems are then solved separately. Consequently, the
global solution that combines the sub-solutions is not guaranteed optimal with respect
to iBioSim’s objective, the number of base pairs. All rooted graphs of the problem and
the library are then decomposed into a canonical form consisting only of NOT and NOR
interactions. This allows structural matching, which is carried out in topological order of
the problem DAG. For each node, the rooted sub-graph starting at that node is matched
with all graphs in the library. Each match is recorded with the minimal cost in base pairs of
the partial solution, serving as a lower bound. After matching, a minimal cover of matches
is searched by depth-first search beginning at the root of the problem DAG. As potential
crosstalk caused by the repeated usage of the same TFs is not considered during covering,
the algorithm has to perform backtracking as soon as such an illegal combination occurs.
This results in a branch-and-bound scheme that generates a valid solution in the sense

41

Table 6.1.: Tool flow of the examined GDA tools

Input

Tool Type Structural Functional Abstraction Output

Cello HDL - ✓ gates DNA
iBioSim GRN ✓ - parts DNA
MatchMaker GRN ✓ - parts DNA
SBROME abstr. GRN ✓ ✓ parts GRN
Parts&Pools truth table - ✓ parts GRN
GeneTech algebraic - ✓ gates GRN

that each TF is only used once in the circuit (Figure 6.2, right). Furthermore, the solution
for each rooted DAG is minimal with respect to the number of base pairs. iBioSim outputs
structural information for the resulting network, including a DNA sequence that can be
used to build the circuit in vivo.
iBioSim’s scheme represents one of the first technology mapping methods for genetic

circuits guided by a cost function. It optimizes the design regarding the number of base
pairs necessary to implement it. However, there is no mechanism to evaluate the circuit’s
functionality during technology mapping. This lack of notion of functionality represents a
strong limitation of the approach.

6.3. Further Mapping Approaches

In this section, further technology mapping approaches used in GDA tools are subsumed.
The early stage of development of GDA is reflected by the heterogeneous tool flow of
the examined tools. While some tools transform a functional specification into a circuit
topology before mapping components to it, others expect a GRN to be input by the user.
Early GDA tools operate on the abstraction level of genetic parts, e.g., promoters, RBS,
and coding sequences. In contrast, more recent tools adapt the gate level abstraction
from EDA. The flow of some tools ends with the output of a GRN, while others perform
physical design and generate a linearized design in the form of a DNA strand. Table 6.1
provides an overview of the different tool flows. Further, the optimization performed
during technology mapping differs significantly. In most of the tools, the assignment of the
considered building blocks to the network is subject to optimization, and none of the tools
optimizes the network topology with respect to the main objective. The objectives range

42

Table 6.2.: Design optimization performed by the examined GDA tools

Subject Method

Tool Topology Assignment Objective Scope Type

Cello -a ✓ Cello score global heuristic
iBioSim - ✓ # of base pairs local heuristic
MatchMaker - ✓ signal compat. global exhaustive
SBROME - ✓ functional error local heuristic

Parts&Pools -a ✓ - - one-shot
GeneTech -a ✓ - - enumeration
a One topology is generated in the mapping process, optimized with respect to the
size instead of the main objective.

from the number of base pairs needed to implement the design to global scores for circuit
functionality like the Cello score. Lastly, the optimization methods applied either have a
local scope limited to modules of the circuit or a circuit-wide global scope and are either
heuristic or exhaustive. Table 6.2 contrasts the optimization approaches with each other.

MatchMaker The tool MatchMaker [71] transforms a network of abstract biological
parts, i.e., an abstract GRN, into a specific implementation on a DNA strand. Thus, it
does not cover the first step of technology mapping, the structuralization of a functional
specification. Mapping to the abstract network is broken into three phases. In the feature
matching phase, regulatory parts are mapped to the network in a structural mapping
approach similar to iBioSim. Signal matching ensures that the quantitative input and
output behavior of subsequent parts is compatible, similar to Cello’s signal compatibility
criterion. MatchMaker offers a basic exhaustive optimization step to minimize the worst-
case pair-wise noise margin present in the network. However, the tool does not have a
notion of the desired global circuit functionality. In the final phase of part matching, the
design is linearized to map it on a DNA strand.

SBROME Similarly, SBROME [31] expects the user to enter the topology of the circuit
in the form of a GRN. However, the topology may consist of components of a higher
abstraction level, such as elementary logic functions. In a structural mapping approach,
SBROMEmatches modules of genetic parts from a library with the components of the input
network. The used library consists of modules gathered from prior publications. After

43

matching, the tool optimizes the modules locally by replacing genetic parts with similar
mutants. It can be seen as a predecessor to Cello, operating on the lower abstraction
level of parts instead of gates, lacking a uniform library of gates specified in the lab, and
performing no global optimization of the circuit.

Parts&Pools Parts&Pools [43] features a technology mapping process transforming a
truth table specification into a network of genetic parts. It generates a set of two-level
logic implementations from the truth table and rates them with a score for biological
complexity. The simplest network is then mapped and rated with a metric similar to the
Cello score to predict circuit performance. However, no optimization is performed to
improve the circuit characteristic, making Parts&Pools’ approach a one-shot mapping.

GeneTech The tool GeneTech [6] is based on Cello’s library of genetic gates. It
takes a two-level Boolean expression in sum-of-products form, performs heuristic logic
minimization, and transforms the expression to match the NOT and NOR logic functions
present in the gate library. In contrast to Cello, GeneTech enumerates and outputs all
possible gate assignments to the structure of the function. The assignments are not rated,
and thus, no optimization of the circuit is performed.

44

Domain Adaptation

45

7. Structural Variants of Genetic Logic
Circuits

In technology mapping schemes, the resulting network topology typically crystallizes in
two steps of the mapping process. Firstly, the minimized Boolean formulae are transformed
into a subject graph, defining the basic structure of the network. Secondly, the topology
is altered locally by covering sub-graphs of the subject graph with library elements. In
theory, the topology represents a degree of freedom useful to optimize a design for a given
metric. In practice, however, the design space is limited by the structural bias introduced
by the subject graph. If the main objectives of the mapping process are correlated to the
structure of the subject graph, the bias can partially be mitigated by optimizing the subject
graph accordingly. This is the case in EDA, where the depth and size of the graph provide
reasonable estimations of the depth and size of the resulting network. In GDA, however,
complex metrics for functionality are the main objectives of technology mapping, which
do not correlate directly to features of the subject graph. Irrespective of this difference,
existing approaches in the field either copy approaches of EDA and synthesize a subject
graph minimal in depth or size or leave the specification of the network structure to the
user. In this chapter, structural variants are proposed to leverage network topology as a
degree of freedom in the technology mapping for genetic logic circuits. The approach
is presented in Section 7.1, followed by details about the implementation (Section 7.2).
Finally, the method is evaluated using an existing gate library to enumerate and score
structural variants (Section 7.3).

7.1. Broadening the Search Space

Compared to electronic circuits, genetic circuits are strongly limited in size. Firstly, this is
mainly caused by the fact that libraries of genetic gates contain a relatively small number
of individual gates. The characteristic of every gate has to be specified in the lab, as well as
its interactions with other gates in the library and the host organism. Thus, numerous time-
and cost-intensive experiments are needed for library specification. Further, finding large

46

Boolean Formula

f = abc + a(b + c)

Resulting Circuit

Structural Enumeration

Gate Assignment

Result Selection

Assigned Circuits

...

Structural Variants

...

Figure 7.1.: Modified technology mapping process with structural variants

sets of gates with sufficiently orthogonal functionality is hard. During the specification
of Cello’s gate library, for example, the number of TFs had to be reduced from 16 to 12
to "[. . .] eliminate toxic or cross-reacting repressors [. . .]" [53]. Secondly, circuit size is
limited by the burden each synthetic part represents on the cell’s metabolism (Section
4.1).
This limited size enables the enumeration of circuit variants implementing the functional

specification. A related approach has been proposed in the context of logic synthesis for
electronic circuits [41]. However, the presented enumeration is limited to circuit structures
minimal in size and based on primitive gates to serve as technology-independent subject
graphs. In the approach presented in this work, all network structures that adhere to the
given synthesis constraints and that are implementable with the given gate library are
enumerated and matched globally with the input function. Thus, subject graph generation,
local matching, and covering with library elements are replaced. The result is the set of
structural circuit variants implementing the function. The set contains minimal circuit

47

structures but is not limited to them. It thus allows exploring the search space with
respect to different objective functions. In theory, the total number of variants is only
limited by the size of the library. In practice, however, the enumeration may be guided by
sensible constraints like the maximum number of excess gates compared to the circuit with
minimal size. The approach eliminates the structural bias of typical mapping methods by
not relying on a technology-independent subject graph. Figure 7.1 depicts the modified
technology mapping process. A consequence of taking structural variants into account
is that the subsequent gate assignment step has to be carried out for each candidate
structure.

7.2. Enumeration of Structural Variants

Note: Parts of this section have already been published in [58]. Explicit self-citation is omitted
to provide an improved reading flow.

Generally, enumerating all combinational circuit structures implementable with a given
gate library is a DAG-enumeration problem. A main task when enumerating circuits is
checking for isomorphism among candidates to prune the search space during enumeration
and guarantee the resulting circuits’ uniqueness. Two graphs G1 = (V1,E1) and G2 =
(V2,E2) are isomorphic if there exists a bijection ρ ∶ V1 → V2 such that (u, v) ∈ E1 if and
only if (ρ(u), ρ(v)) ∈ E2 [32]. Isomorphism of these graphs is noted G1 ≃ G2. To simplify
isomorphism checking and thus enumeration, the intermediate representation of in-trees
is chosen. An in-tree is a graph with a root node and exactly one directed path from
any other node to the root node [45]. Here, the root node represents the output gate of
the circuit. For the tree to represent a logic circuit, the nodes of the in-tree are labeled
with a gate type s ∈ S from the set of types available in the library. This representation
corresponds to a circuit structure without fan-out. In such a fan-out-free circuit, every gate
is connected to exactly one subsequent gate. Generally, this structure is biased towards
the functional redundancy of gates. It can be eliminated in a post-processing step that
identifies the redundancies and merges corresponding gates into gates with fan-out. Thus,
the proposed enumeration method comprises two phases. In the first phase, a set of
unique labeled in-trees is enumerated based on the gate library. In the second phase, each
tree is matched with the Boolean functional specification, redundant gates are removed,
and final constraint and isomorphism checks are performed.

Tree Enumeration Algorithm 1 details the recursive enumeration routine for in-trees.
It is called with an empty tree γ ← ∅ as the start element and an empty set C ← ∅ of

48

input :A circuit γ, gate types S, maximum circuit weight ω and height η, the
required support size n

inout :A a set of fan-out free circuits C

1 Function enumerate(γ,S, ω, η, n,C)
2 new h← height(γ);
3 new Iγ ← get_unconnected_inputs(γ)

/* Abort criterion */
4 if h > η then
5 return;
6 end if

/* Iterate gate permutations that match the number of open inputs */
7 foreach r ∈ R ⊂ {S,∅}! ∶ ∣R∣ = max(∣Iγ ∣,1) do

/* Build γ′ from γ and r */
8 new γ′ ← γ ∪ r;
9 new Iγ′ ← get_unconnected_inputs(γ′);

/* Prune circuits that are too big */
10 if weight(γ′) > ω then
11 return;
12 end if

/* Check, if γ′ supports ϕ and prune isomorph circuits */
13 if ∣Iγ′ ∣ ≥ n ∧ ¬∃γ′′ ∈ C ∶ γ′ ≃ γ′′ then
14 C ← C ∪ γ′;
15 end if

/* Recurse */
16 enumerate(γ′,S, ω, η, n,C)
17 end foreach

Algorithm 1 : Recursive enumeration routine

circuit structures. Further, the gate types S available in the library, the support size n of
the function ϕ ∶ Bn → B and the user constraints maximum circuit weight ω and height η
are given. In this work, the metric for circuit weight used in [53] is applied, assigning
each gate a weight of 1. The maximum height serves as the abort criterion (Line 4). In
each iteration of the main loop (Line 7), a new circuit γ′ is built by adding a new level to

49

γ and assigning it with another permutation of gate types. The permutations R are drawn
from the set of gate types and a terminal element indicating the end of a branch, i.e.,
R ⊂ {S,∅}!, such that the number of elements equals the number of unconnected circuit
inputs. Three checks are performed on each generated circuit in the domain of in-trees.
First, the weight constraint is applied (Line 10). Second, it is checked whether the number
of circuit inputs is equal or greater than the support size of ϕ, a necessary condition for
γ′ to implement ϕ (Line 13). Third, the isomorphism of γ′ with other candidate circuits
is checked (Line 13, detailed below). If all checks pass, the circuit is added to the set of
candidate circuits and serves as the basis for another recursion. The result of the routine
is the set of unique fan-out free circuits that are built of gate types S, adhere to the
constraints ω and η, and possess enough inputs to potentially implement ϕ. Note that the
circuits do not yet feature primary inputs, and thus, their function is not determined.

Isomorphism Checking Using rooted trees as an intermediate representation for circuit
structures allows for efficient checking of isomorphism among candidates, a core operation
during enumeration. The Aho, Hopcroft and Ullman (AHU) algorithm can be used to
determine isomorphism among unlabeled trees [1]. It features a linear time complexity
with respect to the number of nodes m, i.e., O(m). To check isomorphism among un-
ordered, labeled trees such as the circuit candidates, a modification of the algorithm has
been proposed [32]. The modified version features a complexity of O(md log(d)) with
d being the maximum out-degree of the tree. The out-degree equals to the maximum
fan-in of the gate library. For the library considered throughout this work, d = 2 and thus
O(2 log(2)m).
The algorithm is exemplified in the following based on two circuit candidate trees

(Figure 7.2). It processes one level at a time, starting from the lowest level. For each node,
a list is built (shown in blue) based on which the equivalence class of the node will be
determined. The list contains the node label, followed by a sorted list of the child nodes’
equivalence classes. In the case of leaf nodes, no children are present, and instead, the
integer value of 0 is added to the list. Each unique equivalence class is assigned an integer
value in ascending order (shown in red). In the example, all nodes on level 0 are leaf
nodes with the label NOR. Thus, all nodes on this level feature the same list [NOR,0]
that is assigned the equivalence class 0. On level 1, both trees feature one parent node,
each with equal equivalence classes of their children. Having different labels, however,
their lists differ in the first position, leading to different equivalence classes. Since the
other nodes on this level are equal among both trees, the combined equivalent classes
at this level are different ((1,2) vs. (2,3)). An implementation of the algorithm would
abort after examining level 1 since isomorphism between the trees has been falsified. An

50

Level 0

Level 1

Level 2 OR

NOR INV

NOR NOR

OR

ORINV

NORNOR

0

[NOR, 0]

0

[NOR, 0]

0

[NOR, 0]

0

[NOR, 0]

1

[NOR, 0, 0]

2

[INV, 0]

2

[INV, 0]

3

[OR, 0, 0]

4

[OR, 1, 2]

5

[OR, 2, 3]

Figure 7.2.: Determining isomorphism of labeled trees

exemplary evaluation of level 2 shows that the different equivalence classes propagate and
lead to different classes of the root nodes. Two rooted trees are proven to be isomorphic
if their root nodes feature the same equivalence class.

Finalization The final steps of the enumeration are the functional evaluation of each
circuit candidate, the removal of redundancies introduced by the tree structure, and
the final checking of constraints. By this, the set of incomplete fan-out free circuits is
transformed into a set of unique, irredundant implementations of the input function ϕ. This
process is detailed in Algorithm 2. First, the set of primary circuit inputs P = {p0, . . . , pn−1}
according to support size n is instantiated and all possible mappings from primary inputs
to unconnected circuit inputs I, i.e., P × I, are iterated for every circuit γ ∈ C (Line
3). The circuit is wired according to the input mapping, its function is evaluated and
matched with ϕ (Line 5). If the circuit is not discarded, redundancy among gates is
determined by evaluating their function f ∈ B with respect to the primary inputs and
comparing them pairwise (Line 8). If two gates are unique and implement the same
function, one of the gates is substituted by a fan-out of the other. This process is repeated
until all redundant gates have been substituted. The circuit graph is then in its final form,
allowing for concluding checks. First, it is ensured that the number of gates of each type
s ∈ S is not greater than the number of individual genetic gates of type s available in the
library (Line 16). Further, the isomorphism of the final circuit with circuits from the set of
implementations Cϕ is checked, and the final dynamic weight constraint e is applied. It

51

specifies the number of allowed excess gates compared to the minimum circuit found. Not
shown here, the set Cϕ has to be updated when a new minimum solution with weight
ωmin has been found by removing circuits with a weight greater than ωmin+e. If the circuit
passes all checks, it is added to the set Cϕ and ωmin is updated.

52

input :A set of fan-out free circuits C, a gate library L containing gate types S, a
Boolean function specification ϕ, the maximum number of excess gates e

output :A set Cϕ of circuits implementing ϕ covered by L
1 Function evaluate(C,L, ϕ, e)
2 new Cϕ ← ∅, γm ← ∅, b ∈ B, ωm, ωmin ←∞;

/* Wire combinations of primary inputs P and circuit inputs I */
3 foreach γ ∈ C,m ∈ P × I do
4 γm ← wire_inputs(γ,m);

/* Evaluate circuit and match with target function */
5 if ¬(γm â ϕ) then
6 continue;
7 end if

/* Remove redundancies by functional comparison of gates */
8 foreach v ∈ V (γm) do
9 foreach u ∈ V (γm) do

10 if v ≠ u ∧ f(v) = f(u) then
11 substitute_gate(v, u)
12 end if
13 end foreach
14 end foreach

/* Check library feasibility, isomorphism and circuit weight */
15 b← true;

16 foreach s ∈ S do
17 if ∣{v ∈ V (γm) ∶ sv = s}∣ > ∣{θ ∈ L ∶ sθ = s}∣ then
18 b← false;
19 break;
20 end if
21 end foreach

22 ωm ← weight(γm);
23 if b ∧ ¬∃γ′ ∈ Cϕ ∶ γm ≃ γ′ ∧ ωm ≤ ωmin + e then
24 Cϕ ← Cϕ ∪ γm;
25 ωmin =min(ωmin, ωm);
26 end if
27 end foreach

28 return Cϕ;
Algorithm 2 : Circuit building and evaluation routine

53

7.3. Evaluation

Note: Parts of this section have already been published in [58]. Explicit self-citation is omitted
to provide an improved reading flow.

The enumeration of structural variants has been integrated into the GDA tool ARCTIC
developed in collaboration with the Self-Organizing Systems Lab (Section 4.5). This
allows to evaluate the impact of structural variants in genetic circuit synthesis. In the
following, the conducted evaluation method and chosen parameters are detailed. Then,
the results of circuit enumeration (Section 7.3.2) and its impact on the quality of mapped
circuits (Section 7.3.3) are presented.

7.3.1. Setup

The three main parameters that need to be defined for a meaningful evaluation of the
presented method are the library of genetic gates to use, the Boolean functions to map,
and the set of synthesis parameters to constrain the enumeration. Further, a performance
metric has to be chosen to examine the impact on circuit performance. The library used
throughout this work is that published with the GDA tool Cello for E. coli (Section 6.1)
[53]. It represents one of the most extensive libraries of orthogonal logic gates currently
available that have been specified and tested in the lab. Thus, it provides a good basis for
evaluating technology mapping methods through simulation. Further, it allows comparing
results to those of the state-of-the-art tool Cello, provided that surrounding conditions are
chosen fairly. As benchmark functions, the set of 33 3-input functions detailed in [53] is
selected. This set is calledΦ in the following. Again, circuits synthesized for these functions
have previously been built and measured in vivo, indicating their practical feasibility and
relevance. The functions ϕn ∈ Φ with n ∈ [1..33] are defined in Table A.1 using their truth
tables. To constrain the enumeration sensibly, the maximum height η, maximum weight
ω, and the allowed number of excess gates e must be chosen. Enumeration runs with
different values for η showed that the set of functions is implementable with the given
library with η ≥ 4. Thus, η = 5 is chosen for the evaluation to broaden the search space
while maintaining a manageable enumeration performance. The number of maximum
excess gates e = 2 is chosen to enable the examination of the trade-off between circuit
performance and circuit size. The maximum weight of any enumerated circuit ωmax results
from the minimum weights ωmin among the set of functions and e, i.e.,

ωmax =max
ϕ∈Φ
(ωmin,ϕ + e).

For the given library and functions, ωmax = 9. Based on this, a maximum circuit weight

54

of ω = 12 is chosen as a constraint, allowing fan-out to be introduced after the tree
enumeration phase. Note that the output OR gate contained in the considered library is
implemented by combining two output promoters preceding the coding sequence of the
output reporter. Thus, no additional genetic part is needed for implementing this gate,
and it is thus not counted when calculating the weight of the circuits in the following
results.
To evaluate the impact of structural variants on circuit performance, the step of gate

assignment has to be carried out, optimizing for a performance metric. Being state-of-the-
art and allowing for a direct comparison of the approach with Cello, the Cello score
(Section 4.2) is used as metric. To eliminate the influence of Cello’s stochastic gate
assignment method, all circuit structures, including the ones generated by Cello, are
assigned using exact search methods. First, exhaustive search has been used, which has
then been replaced by the exact branch-and-bound approach presented in Section 8.3 once
it was available. The exactness of the gate assignments guarantees that the differences in
the observed circuit scores are exclusively caused by the different circuit topologies and
thus allows assessing the proposed approach independently of gate assignment quality.
Additionally, Cello’s fixed assignment of input promoters to circuit inputs is adapted in
this work (A: pTac, B: pTet, C: pBAD). Further, a fair comparison to Cello’s approach
of circuit topology synthesis is ensured by calculating the toxicity of all generated circuit
designs and rejecting designs that exceed the threshold applied in Cello. Additionally,
gate assignments are rejected containing specific pairs of promoters as inputs to a gate
that are considered incompatible by Cello.

7.3.2. Results of the Enumeration

Table 7.1 shows the enumeration results for the 33 Boolean functions. For each function
ϕ, the minimum encountered circuit weight ωmin, and the number of circuit variants with
the minimum weight (min.), one excess gate (+ 1) and two excess gates (+ 2) is listed.
The minimum weight of the implementations ωmin ranges from 2 to 7 gates. The number
of structural variants differs greatly between the functions. The minimum number of 7
variants has been found for function ϕ13. The maximum number of 640 variants has been
enumerated for function ϕ16. Collectively, a mean number of ~217 variants has been
synthesized per function. The minimum-weight variants are of special interest since they
render possible choosing between topologies in technology mapping, even if circuit weight
represents a primary objective. For 26 of the 33 functions, multiple circuits with minimum
weight have been found. The maximum number of minimal variants has been generated
for functions ϕ7 and ϕ27, amounting to 28 different circuit topologies. Per function, a
mean number of 6.8minimal variants, 31.2 variants with one excess gate, and 179 variants

55

Table 7.1.: Number of structural variants for the 33 functions with minimum circuit size,
one and two excess gates.

Variants

Function ωmin min. + 1 + 2

ϕ1 3 2 0 6

ϕ2 4 11 14 201

ϕ3 3 1 6 25

ϕ4 5 2 12 118

ϕ5 6 13 33 226

ϕ6 3 2 2 25

ϕ7 5 28 80 475

ϕ8 4 1 12 59

ϕ9 5 2 20 96

ϕ10 4 5 18 1289

ϕ11 3 3 3 58

ϕ12 5 4 16 132

ϕ13 2 1 0 6

ϕ14 5 1 15 58

ϕ15 6 12 85 535

ϕ16 7 22 108 510

ϕ17 6 15 104 365

Variants

Function ωmin min. + 1 + 2

ϕ18 7 3 77 311

ϕ19 4 5 13 110

ϕ20 7 22 106 501

ϕ21 3 2 0 14

ϕ22 5 1 16 56

ϕ23 5 2 18 95

ϕ24 4 1 11 57

ϕ25 5 3 24 208

ϕ26 3 3 6 75

ϕ27 5 28 98 501

ϕ28 4 3 9 86

ϕ29 6 7 71 298

ϕ30 6 4 20 228

ϕ31 3 1 5 25

ϕ32 4 11 25 251

ϕ33 3 2 2 36

56

with two excess gates have been found.
On a standard desktop PC, a run time of 188min was measured for the enumeration

with η = 5, carried out in parallel with three threads. In comparison, runs with η = 4 and
η = 3 featured run times of 292 s and 0.7 s, respectively, emphasizing the combinatorial
nature of the enumeration method.

7.3.3. Impact on Circuit Performance

After enumerating the structural variants, the optimal gate assignment with respect to the
Cello score has been determined for every synthesized circuit structure and the structures
synthesized by the tool Cello. Then, for each function, the highest scoring circuit from the
set of minimal variants, from the set of all variants with up to one excess gate, and from the
set of all variants with up to two excess gates has been selected. The results are visualized
in Figure 7.3 and detailed in Table B.1. Considering only the set of minimal variants, the
score of 15 of the 33 functions is improved compared to Cello’s topologies, while none of
the sets of variants performs worse than the structures synthesized by Cello. The circuits
in this set of minimal variants feature the same weight as the topologies synthesized by
Cello. A maximum 11.31×improvement in the score is achieved for function ϕ4, while
the mean score improves by 37.86%. Relaxing the considered circuit weight to include
up to one excess gate, the circuit score for 17 of the 33 functions improves up to 11.37×,
leading to an overall improvement of 38.82% on average compared to Cello’s topologies.
Relaxing the weight by two excess gates, this trend continues with an improvement for 29
of 33 functions up to 18.91×and 181.09% on average.
Figure 7.4 depicts exemplary results of the modified technology mapping process for the

functions ϕ23 (Figure 7.4a) and ϕ2 (Figure 7.4b). On the left, the topology synthesized
by Cello for each function is given. The respective structural variant with the highest
score from the set of minimal variants is shown on the right. The genetic gates assigned
to the structures are coded in the colors of the gates, which are defined in Figure 7.4c.
Below each circuit diagram, its simulated distribution of output values is depicted. The left
histogram encompasses all output values representing a Boolean 0 output, and the right
histogram all values for a Boolean 1. Potential overlap of the distributions is visualized by
a darker color. Each of the variants features the same weight as the topology generated
by Cello, but improves the score 8.36×(ϕ23) and 2.05×(ϕ2), respectively. In both cases,
the network height of the variants is increased by one compared to Cello’s topologies.
This hints at a limitation of Cello’s approach of circuit synthesis, which is based on the
EDA tool ABC, where network height is the primary optimization objective. In the case of
the function ϕ23, the increased height allows replacing the output OR gate with a NOR
gate. The NOR gate provides a better separation of output states and, thus, a higher score.

57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Relative score

Variants
(+2 gates)

Variants
(+1 gate)

Variants
(minimal)

2.81

1.39

1.38

18.91

11.37

11.31

Figure 7.3.: CELLO scores of the sets of circuit variants relative to the topologies synthe-
sized by CELLO. The blue crosses mark the relative mean score, the black
bars the range of minimum and maximum relative scores.

This can also be seen in the histograms, where the median of the 0-distribution is lower,
and the median of the 1-distribution is higher, comparing the variant to Cello’s topology.
Further, the 1-distribution of the variant features a reduced variance, leading to a clear
separation of both distributions. On the other hand, the variant’s 0-distribution features
a higher variance but is skewed towards low output values and thus does not provoke
an overlap. In the case of function ϕ2, both topologies are composed of the same gate
types. Here, the higher score is caused by allowing the gate assignment optimization to
draw a different set of specific gates from the limited library. The shapes and variances of
the output histograms of both circuits are comparable, but the variant’s distributions are
moved towards lower output values. This displacement is higher for the 0-distribution,
leading to an increased separation and score.

58

A

B

C

X

Topology by Cello

Cello Score: 39.01

Structural Variant

Cello Score: 326.25

A

B

C

X

(a) Function ϕ23

Topology by Cello

Cello Score: 327.87

Structural Variant

Cello Score: 671.49

A

B

C

X

A

B

C X

(b) Function ϕ2

H1_HlyIIR

S3_SrpR

E1_BetIB3_BM3R1

S2_SrpR

A1_AmtR

P3_PhlF

P1_PhlF

Output OR

(c) Gate legend

Figure 7.4.: Circuit topologies generated by CELLO and structural variants with optimal
gate assignment and respective output characteristics

59

7.4. Discussion

The presented results show that the circuit topology represents an essential degree of
freedom in the technology mapping for genetic logic circuits. Synthesizing the topology
without regard to the objective function introduces a strong structural bias since it narrows
the search for well-functioning combinations of specific gate implementations. Compared
to EDA, the introduced bias has a greater impact, as standard objective functions used
in GDA do not correlate directly to features of the subject graph. In the current state of
GDA, the effect is aggravated by the gate libraries containing small numbers of gates with
heterogeneous transfer functions. Existing technology mapping approaches for genetic
circuits do not leverage the circuit topology by leaving its specification to the user or
borrowing methods and tools from EDA. These tools optimize designs for objectives that
are not necessarily suitable or primary for GDA, for example, circuit height. The presented
enumeration based on Cello’s gate library showed that the design quality benefits from
considering structural variants of circuits, even when minimality with respect to circuit
weight is the main objective. In that case, evaluating variants of minimal topologies
allows improving on secondary objectives, e.g., scores rating the circuit’s functionality. If
minimality is no strict requirement, the approach allows trading off circuit weight and
other objectives by considering non-minimal designs.
The approach of exhaustive enumeration of circuit variants allows for finding the optimal

topology for a given problem. It is feasible for the currently available small libraries of
genetic gates and small circuits that are implementable in vivo. However, its strong
combinatorial nature could be shown in the evaluation. Thus, the exact approach will
become infeasible once the implementation of larger genetic circuits is possible or libraries
gain functional variety. However, the enumeration core can serve as a basis for hybrid
approaches, such as the supergate method proposed to reduce structural bias in EDA
[18]. In this approach, small sub-circuits are built based on the gate library and are
stored together with their function in a library of supergates. These building blocks can
be mapped on the subject graph in a classical structural mapping scheme, reducing the
locality of the substitutions and thus reducing the structural bias introduced by the subject
graph. As this approach does not represent an exact method like the one presented,
structural variants are not explored exhaustively, and the structural bias is not completely
eliminated. However, it allows trading off exactness for computational feasibility if the
size of the genetic circuit to map necessitates it.

60

8. Efficient Methods for Gate Assignment

After topology synthesis, gate assignment is the second phase in the technology mapping
for genetic logic circuits. It has no analogy in EDA flows since it is necessitated by the
libraries of heterogeneous, unique genetic logic gates used in GDA. During gate assignment,
a mapping from the library’s gates to the circuit topology’s abstract gates is generated.
Only in this crucial step does the circuit function crystallize, as the output characteristic
of the circuit is defined by the interactions of the unique transfer characteristics of the
selected gates. Objective functions quantitatively match the circuit characteristic to the
desired function (Section 4.2) or cover additional features, e.g., robustness (Section 4.3).
Thus, the gate assignment represents a combinatorial optimization process that is, in
contrast to the topology synthesis, guided by an objective function.
The desirable characteristics of a gate assignment method are efficiency and (near)

optimality. Here, efficiency refers to the number of gate assignments that must be evaluated
until the process finishes in relation to the total number of possible different assignments.
The efficiency is relevant to the run time of the design process since the evaluation of
each assignment requires a circuit simulation, which represents the computationally most
expensive part of the optimization. An efficient optimization enables the exploration of
broad search spaces, such as the structural variants. It furthermore reduces the penalty
introduced by complex simulation methods and thus contributes to a refined prediction
of the circuit behavior. The designs generated during gate assignment should be (near)
optimal since the implementation and testing of circuits in the lab are expensive. It is thus
desired to enter the lab phase of a design process with a (near) optimal circuit design for
the chosen objective.
In this chapter, gate assignment methods are proposed to optimize designs efficiently

for the Cello score that relates the circuit function to the functional specification. First,
the exhaustive search for the optimal gate assignment and the underlying combinatorics
are detailed in Section 8.1. Due to its exploration of the whole space of assignments,
it is of limited usefulness in a practical GDA process. However, it allows to produce
exact reference values for the number of possible assignments and solution quality. In
Section 8.2, a gate assignment method based on the general purpose optimization scheme
Simulated Annealing (SA) is presented. It performs a heuristic search that is guided by a

61

neighborhood structure based on the functional similarity of genetic logic gates. Finally, a
method based on the Branch-and-Bound (B&B) approach is presented in Section 8.3 that
features an exact and a heuristic mode. It is based on fundamental features of the transfer
functions of genetic gates and performs an implicit enumeration of possible solutions,
pruning parts of the search space containing solutions proven to be sub-optimal. In
Section 8.4, specific aspects of the presented methods are evaluated in detail, followed by
a comprehensive comparison of the methods in terms of efficiency, runtime, and solution
quality.

8.1. Exhaustive Search

In the exhaustive approach for gate assignment optimization, all possible mappings from
library gates to abstract gates of the circuit topology are enumerated. For each assignment,
the objective function is evaluated by circuit simulation, and the assignment leading to
the best objective function value is stored. By this, the exact solution to the problem
is determined. The exhaustive search illustrates the combinatorial complexity of the
problem. It does not represent a practical approach to the gate assignment problem,
apart from mapping very small circuits. However, it is used in this work to generate a
baseline for the comparison of more elaborate approaches for two reasons. First, it is
guaranteed to deliver exact results for every choice of objective function. Thus, it serves
as a basis to rate the solution quality of heuristic approaches and enables the empirical
validation of exact approaches. Second, it explicitly traverses the whole space of possible
gate assignments and with the number of visited assignments provides a baseline for
comparing the efficiency of more elaborate methods.
Generally, the size of the set of all gate assignments traversed in an exhaustive search is

defined as follows. Let L be the library of genetic logic gates containing gate types, i.e.,
available Boolean functions, S. Let further ns be the number of individual genetic gates
of type s ∈ S in the library and ks the number of abstract logic gates of type s ∈ S in the
circuit topology γ. The number of possible mappings from the library to the circuit for
each gate type is defined by the number of k-permutations. This is due to the fact that
the circuit function is not only determined by the assigned combination of library gates
but also by their permutation that defines which gate from the combination is mapped to
which abstract gate of the circuit. Thus, the size of the set A of possible gate assignments
for the whole circuit is defined as the product of the number of k-permutations for each
gate type, i.e.,

∣A∣ =∏
s∈S
(ns

ks
)ks!. (8.1)

62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Circuit size, ks

103

106

109

1012

1015

1018
|

|

Library size, ns

20
15
10

Figure 8.1.: Number of assignments for different library and circuit sizes

Figure 8.1 depicts ∣A∣ for circuit sizes ranging from 1 to 20 gates and libraries containing
10, 15 and 20 gates, respectively. Here, each gate from the libraries is assumed to be
mappable to each gate in the circuit topology, i.e., all gates are of the same type s. Given
a library of 20 gates, a circuit containing 8 gates can be assigned 5 × 109 k-permutations
of individual genetic gates. Assuming the exemplary run time of one simulation to be
1ms, performing exhaustive gate assignment for that circuit sequentially would require
~1400 h. Note that specific libraries of genetic gates may have additional characteristics
that influence the number of possible assignments. Cello’s library, for example, is based
on 12 different TFs. However, some of these gates are present as variants with different
RBS, amounting to a total of 20 gates [53]. Thus, the total number of assignments possible
with this library exceeds the one corresponding to ns = 12.

8.2. Proximity-Based Simulated Annealing

Note: Parts of this section have already been published in [58, 61]. Explicit self-citation is
omitted to provide an improved reading flow.

Simulated Annealing (SA) is a general-purpose approach for combinatorial optimization.
It is based on the analogy between the search for an optimum solution and the simulation

63

of physical systems reaching a low energy state [56]. In theory, the approach itself is
proven to determine the global optimum of a problem. However, a trade-off between
efficiency and solution quality has to be found in practical applications of the method.
Thus, typical instances of SA represent heuristic optimization methods. The approach has
widely been used for solving circuit design problems in EDA. Even the first publication
of the method by Kirkpatrick et al. [36] is focused on the partitioning, placement, and
routing of digital circuits with SA. Since then, it has been used and adapted constantly,
for example, for the placement of logic cells on FPGAs [8, 73] and the logic synthesis for
memristive crossbars [65]. Further, a very basic instance of SA has been applied to the
gate assignment problem in GDA [53].
In the remainder of this section, an instance of SA is presented to solve the gate

assignment problem efficiently based on the functional proximity of the genetic logic gates
in the library. In Section 8.2.1, the general approach and basic algorithmic framework of
SA are explained in detail. Based on this, the general parameterization of the scheme for
solving the gate assignment problem is detailed in Section 8.2.2. Finally, the proximity
measure for genetic gates and its integration into the SA scheme, which results in a
proximity-based neighbor generation, are presented in Section 8.2.3.

8.2.1. General Approach

The general idea of SA is based on an approach by Metropolis et al. [46] to simulate the
behavior of a collection of atoms in condensed matter. In each step of the algorithm, a
small change to the grid structure of the system is applied, e.g., the displacement of a
single atom. Then, the change in energy ∆E compared to the previous state is computed.
If the perturbation reduces the energy, i.e., ∆E ≤ 0, the changed state is accepted as a new
system state. If the displacement leads to increased energy, i.e.,∆E > 0, a random decision
on the acceptance is made. Let T denote the current temperature of the system and kB
the Boltzmann constant, then the change leading to the increased energy is accepted with
probability

P (∆E) = exp(− ∆E

kBT
). (8.2)

The process is repeated iteratively with decreasing temperature to simulate the annealing
process. If the number of perturbations per temperature level is sufficient to allow the
system to reach equilibrium at each temperature, the system will eventually evolve into a
Boltzmann distribution [36].
Generally, systems subject to combinatorial optimization do not feature a temperature,

and objectives other than the energy level are prevalent. Thus, these physical properties
are abstracted in applications of SA for optimization. While the term temperature is

64

kept in typical SA implementations, it represents a general parameter for controlling
the optimization process not necessarily rooted in a physical property of the system.
The energy is typically replaced by the respective objective function. However, essential
properties of the Metropolis method can be found in all instances of SA. First, the iterative
nature of the method with gradual changes to the system in every iteration makes them
methods of iterative improvement. Second, the probabilistic acceptance of higher energy
states, i.e., solutions with worse objective function values, enables SA approaches to leave
local minima and represents a significant advantage compared to simple hill-climbing
methods. An instance of SA generally consists of two building blocks. One is the basic
algorithmic structure that characterizes most instances, and the other is the set of functions
and parameters setting the algorithm up for a specific problem, called annealing schedule
[56].

1 Function simulated_annealing()

2 n← 0, k ← 0;
3 T0 ← get_initial_temperature();
4 a0 ← get_initial_solution();

5 while outer-loop criterion is not satisfied do
6 while inner-loop criterion is not satisfied do
7 aj ← generate(ak);
8 if accept(aj , ak, Tn) then
9 ak+1 ← aj;

10 else
11 ak+1 ← ak;
12 end if
13 k = k + 1;
14 end while
15 Tn+1 ← update(Tn);
16 n← n + 1;
17 end while

Algorithm 3 : Basic structure of the SA algorithm (adapted from [56])

The basic framework of SA, which is also used as a basis for the presented gate assign-
ment method, is detailed in Algorithm 3. Here, n ∈ N and k ∈ N are counters for the outer
and inner loops, respectively. Tn and ak represent the temperature of outer loop iteration
n and the current solution of inner loop iteration k, respectively. The current solution is a

65

potentially sub-optimal but valid and complete assignment of library gates to the circuit
from the set of possible assignments, i.e., ak ∈ A. At the beginning of the annealing, both
Tn and ak are initialized with an initial value corresponding to the annealing schedule.
Every iteration of the outer loop (Line 5) represents one annealing phase with constant
temperature, in which the system subject to optimization is sought to reach equilibrium.
At the end of every outer loop iteration, the temperature value is updated according to
the annealing schedule. In the inner loop (Line 6), a perturbed solution aj is generated
based on the current solution ak. Solution aj is called a neighbor of ak, referring to the
desired similarity between these two solutions. Then, the objective function value of aj is
evaluated and, based on an acceptance function, aj is accepted as ak+1 or rejected (Line
8).

8.2.2. Annealing Schedule

The SA method is adapted to the gate assignment problem by choosing appropriate
functions and parameters for the annealing schedule. In detail, the schedule consists of
functions determining the initial solution and temperature, criteria for leaving each of the
loops, the function for generating a neighboring solution, the acceptance function, and a
function determining the update strategy for the temperature. The schedule elements are
based on existing approaches that have been proven empirically to deliver good results
and have been adapted to the gate assignment problem. The scheme represents a dynamic
annealing schedule, as its parameters are derived from the specific optimization problem
[56]. Compared to a static schedule, this allows optimizing a broader range of problems
of, for example, different sizes. Note that the presented annealing schedule refers to a
maximization problem, based on typical objective functions used in GDA like the Cello
score. However, the schedule can be easily adapted to a minimization problem.

Initial Solution The initial solution, i.e., the initial assignment of library gates to the
circuit, is generated randomly [8]. This is implemented by starting with an empty
assignment a0 ← ∅ and subsequently drawing random gates from the library and assigning
them to the circuit until it is fully assigned. An SA scheme that is well adapted to the
problem enables leaving any local optimum, and thus the random starting point of the
optimization is adequate.

Initial Temperature The initial temperature T0 is determined based on the spectrum of
objective function values of randomly generated solutions to allow for a high mobility of
the search in the early phase. Denote by s(γ, a) the objective function value for circuit

66

topology γ and gate assignment a ∈ A. Let further

Y = {s(γ, a0), s(γ, a1), . . . , s(γ, an−1)}

be a sample of n objective function values based on randomly drawn assignments
a0, . . . , an−1. Then, similar to [8], the initial temperature is given by the scaled stan-
dard deviation of Y , i.e.,

T0 = 20 ∗ sd[Y].
By this, most of the perturbations of the solution are accepted at the beginning of the
annealing process, even those leading to a clear worsening of the objective function value.
Sample sizes of n = 10i, i ∈ 1..4 have been tested and n = 1000 proved to provide stable
temperature values. Thus, this sample size is chosen in the given implementation.

Inner-Loop Criterion The inner-loop criterion defines the number of iterations per
temperature level and is chosen to enable the process to reach equilibrium at each level.
It has been shown that this behavior can be reached by selecting a dynamic criterion
that considers the problem size [64]. For the given problem, a good estimation for the
complexity is given by (8.1), as it defines the design space size for a fixed circuit topology
and gate library. Similar to [8], the problem size ∣A∣ is transformed into the number of
iterations of the inner loop kmax. However, an adapted multiplier and exponent have been
determined in a sweep to provide a good solution quality for all occurring problem sizes.
The number of iterations

kmax = 50 ∗ 4
√
∣A∣

results in an inner-loop abort criterion of k ≥ kmax.

Outer-Loop Criterion The outer-loop criterion determines when the annealing process
is terminated and the current best solution is returned as the overall solution. During the
tuning of the parameters for the gate assignment problem, a combined criterion has proven
to deliver good results. First, the acceptance rate is determined for each temperature level
[8]. Let Nacc be the number of accepted perturbations at a temperature level, then

α = Nacc

kmax
(8.3)

denotes the acceptance rate. It provides a metric for the current state of the annealing
process. High values of α signify a random walk characteristic, describing a process
in which most perturbations are accepted. Low values, on the other hand, signify a
hill-climbing characteristic coined by the rejection of perturbations leading to a worse

67

objective function value. Generally, high-temperature values lead to high values of α, and
thus α tends to decrease during the annealing process. The first part of the outer-loop
criterion is defined as α < 0.2, preventing the process from terminating in an early phase.
Additionally, a new criterion is devised to keep track of changes in the yielded objective

function values throughout the annealing. Let Z = {s(γ, a0), s(γ, a1), . . . , s(γ, am−1)} be
the sample containing the last m objective function values. Let further U ⊂ Z be the
subset containing the m

10 highest values of Z and smax the best currently known objective
function value. Then, the second outer-loop criterion is defined as

sd[U] < 0.001 ∗ smax,

providing a measure for the plasticity of the annealing with respect to the best solution
encountered. The factor of 0.001 and the sample size of m = 2000 have been determined
by a sweep similar to the initial temperature. They have been chosen to ensure that the
solution quality of the SA is stable across multiple runs.
Both criteria are used in conjunction to form the outer-loop criterion.

Acceptance Function As an acceptance function, the commonly applied modified version
of the Metropolis criterion (8.2) is used [56]. Let∆s = s(γ, ak)−s(γ, aj) be the difference
of objective function values of the current solution ak and generated neighbor aj . Then,
at current temperature Tn, the neighbor is accepted as the new current solution with a
probability

P (∆s) =
⎧⎪⎪⎨⎪⎪⎩

exp(−∆s
Tn
), if ∆s ≥ 0

1, otherwise.

The two cases are also distinguished in the code to avoid the unnecessary evaluation of
the exponential function and to provide legal probability values.

Cooling Scheme In each iteration of the outer loop, the new temperature Tn+1 is deter-
mined based on the current temperature Tn and the acceptance rate α (8.3). An adaptive
scheme adapted from [8] is applied that allows the process to quickly cross temperature
ranges characterized by very high and low acceptance rates.

Tn+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.8 ∗ Tn if α > 0.9
0.99 ∗ Tn if α > 0.2
0.9 ∗ Tn, otherwise.

The last component of the annealing schedule, the neighborhood generation, is ex-
plained in detail in the following section.

68

r

Figure 8.2.: Scheme of VPR’s radius based placement of logic cells

8.2.3. Neighbor Generation

The neighbor generation is a crucial part of the annealing schedule. It is a function that
takes the current solution ak, performs a perturbation to it, and returns this perturbed
solution as a new current solution aj . By this, the neighbor generation determines how
the heuristic search traverses the search space. If only marginal changes are performed,
leading to a small number of solutions reachable, i.e., a small neighborhood size, the
search tends to be stuck in local optima. Suppose the changes are too extensive, ak and
aj become increasingly unrelated, leading to the characteristic of a random walk. It has
been shown before that the size of the neighborhood affects the solution quality and
efficiency of SA [29]. Generally, "[in] early applications [of metaheuristics], the impact
of the neighborhood selection has been underestimated" [2]. Therefore, an adaptive
neighbor generation strategy from the design automation for FPGAs is introduced in the
following. Inspired by this, a strategy for the gate assignment problem based on the
functional proximity of genetic gates is devised.

Proximity-based Neighbor Generation in FPGA Placement

The academic tool for the physical design for FPGAs Versatile Place-and-Route (VPR)
uses an optimization scheme for the placement of logic cells on the chip based on SA [8].
In each iteration of the method, the position of one or two two cells is changed by, e.g.,
swapping their position. The neighborhood of a given placement thus consists of all the
placements that are reachable by performing one swap of any of the cells. As an objective
function, the routing cost of each placement is estimated. Generally, minor changes to
the placement, i.e., swaps with a short distance between the involved cells, lead to small
changes to the estimated routing cost. On the other hand, swaps with longer distances
tend to have a bigger impact on the objective function value. It has been shown that for
the placement problem, it is desirable to keep the acceptance rate α (8.3) at a value of 0.44
for large parts of the annealing process. In VPR, this is achieved by adaptively controlling

69

the impact of perturbations allowed in the neighbor generation. As an additional control
parameter, a radius of operation for performing swaps is introduced (Figure 8.2). The
radius limits the distance at which cells are considered for a swap. At the beginning
of the annealing, it covers the whole FPGA, allowing the search to cross large portions
of the search space quickly. Towards the end of the optimization, it limits the swaps to
directly neighboring cells. This reduces the evaluation of significantly worse solutions,
which is beneficial for the scheme’s efficiency since these solutions would be rejected in
the late stage of the annealing with a high probability due to the low temperature. In
each iteration of the outer loop, the new radius rn+1 is determined based on the previous
radius and the acceptance rate of the previous iteration, i.e.,

rn+1 = rn(1 − 0.44 + αn).

Functional Proximity of Genetic Gates

In contrast to the placement of logic cells, the gate assignment problem does not possess a
geometrical dimension that may be leveraged to control the neighbor generation. However,
an analogy can be drawn between the two problems, allowing for a transfer of the radius-
based neighbor generation approach. As shown in Section 4.1, genetic gates in a circuit
are built of individual genetic parts in favor of functional orthogonality. This results in an
individual transfer characteristic for each gate, expressed by individual parameters for the
Hill transfer function. Objective functions applied in genetic circuit design, e.g., the Cello
score or the E-Score, relate the circuit function to the functional specification and thus
are based on the circuit output characteristic. When optimizing a gate assignment in an
iterative scheme swapping single gates, the impact of a swap on the circuit characteristic
and the objective function value depends on the functional similarity between the involved
gates. This is analog to the placement problem for logic cells, in which the local similarity
between two swapped cells impacts the estimated routing cost. Thus, the possibility of
controlling the neighbor generation can be transferred to the gate assignment problem by
quantitatively determining the functional similarity between genetic gates. To this end,
characteristic features of the transfer functions are presented in the following. These are
then combined into a proximity-measure, allowing the control by a radius of operation.
For readability, the inhibitory Hill function introduced in Section 3.2 is repeated (8.4),

with parameters θ = (ymin, ymax,K,n).

g(x) = ymin +
(ymax − ymin)Kn

Kn + xn
(8.4)

The sigmoidal Hill transfer functions of genetic gates resemble the transfer curves of
electronic buffers and inverters. A feature with impact on the characteristic of electronic

70

ymax

ymin

ym

xm x

g(x)

g'(xm)

Figure 8.3.: Inhibitory Hill curve with characteristic features

inverters is the switching threshold voltage Vm where Vin = Vout that can be found near
the transfer curve’s inflection point for well-built devices. Since there are no global signal
levels in genetic circuits, the switching threshold is redefined for genetic gates to be the
point on the Hill curve where the output signal value is halfway between the minimum
and maximum output values, ymin and ymax. Based on (8.4) and exemplified for the
inhibitory case, the output value at the switching threshold

d1 ∶= ym =
ymax + ymin

2

and the corresponding input value

d2 ∶= xm =K (
ymax − ymin

ym − ymin
− 1)

1
n

are defined as the first two characteristic features of the proximity-measure, d1 and d2.
Further examination of parameterizations of genetic gates shows that they differ greatly
in their gradient at the switching threshold, which is defined as the third feature

d3 ∶= g′(xm).

Figure 8.3 depicts the three selected characteristic features for an exemplary parameter-
ization of an inhibitory Hill curve. Similarly, the features can be derived from the Hill
function describing activating interaction.

Proximity-Measure for Neighbor Generation

The characteristic features are combined into a proximity-measure to calculate the func-
tional proximity of two gates during a swap operation in the SA scheme. Consequentially,

71

CA B

r

0.0 0.1 0.2 0.3 0.4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

129.7

66.0

2.4

g'(xm)

xm

y m

Genetic Gate Library

Pi

1 - Pi

Figure 8.4.: Neighbor selection scheme based on proximity of genetic gates

for each gate q, the features are combined into the three-dimensional feature vector
dq ∶= (d1,q, d2,q, d3,q). By this, the Euclidean distance between two gates in the feature
space emerges naturally as a proximity-measure. Additionally, each dimension in the
feature space is assigned an individual weight, which enables tuning the measure for a
specific gate library. To this end, the diagonal weighting matrixW ∈ R3×3 with entries
Wnm = wn/δn for n =m is defined. Here, wn ∈ [0,1] is the adjustable weight for feature
n and δn the maximal absolute difference in the n-th feature between two gates across
the whole library. Then the similarity between any two gates q and p in library can be
quantified by theW-norm

Dqp = ∣∣dq − dp∣∣2W.

Section 8.4.1 details the tuning of the weight factors for a specific gate library.
The proximity-measure is integrated into the neighbor generation analog to VPR. The

process is depicted in Figure 8.4. First, the abstract gate of the circuit subject to the
perturbation is selected randomly, visualized by the red highlight. Then, it is randomly
decided whether an in-circuit swap is performed, i.e., two gates currently assigned to
the circuit are swapped, or an external swap is performed, in which the selected gate is
swapped with a currently unused gate from the library. The probability of an in-circuit
swap is given by Pi = ∣a∣∣L∣ , with ∣a∣ the number of gates in the assignment and ∣L∣ the
number of gates in the library. If such an in-circuit swap is performed, another gate is
randomly selected from the circuit (indicated by the gray highlight), and the assignment
of the two selected gates is swapped. For external swaps, the proximity-metric is applied
by first calculating the proximity of the genetic gate currently assigned to the selected
gate to the other gates in the library. In the visualization, the distribution of the gates of

72

Cello’s gate library in the feature space is depicted. All gates within the current radius
rn are candidates for the swap, from which one gate is drawn. At the beginning of the
annealing, the radius is initialized with the maximum distance of any two gates in the
library, allowing for maximum mobility of the search. In a scheme similar to VPR, but
with modified dynamic and desired acceptance rate, the radius is updated according to
the current acceptance rate α, i.e.,

rn+1 =
⎧⎪⎪⎨⎪⎪⎩

0.95 ∗ rn if α > 0.4
1.05 ∗ rn, otherwise.

To enable movement of the search in the late stage of the annealing with rn possibly being
very small, a minimum number of gates taken into account for a swap has to be set. In
the given implementation, the 5 nearest gates are considered during neighbor generation
irrespective of the current radius.
The SA scheme is evaluated in Section 8.4 together with the B&B method presented

next.

8.3. Branch-and-Bound

Note: Parts of this section have already been published in [61]. Explicit self-citation is omitted
to provide an improved reading flow.

When examining the gate assignment optimization for circuit functionality in detail, it
becomes clear that the single gates exhibit a functional hierarchy. In the cascade of
genetic gates representing a circuit, the last gate determines the maximum range of
the circuit’s output. This is caused by the interval of each gate being limited by its
inherent basal and maximum promoter activities. From this, it follows that the choice
of preceding gates in the circuit only determines which range of the last gate’s output
interval is used. Thus, a constructive optimization approach suggests itself, in which the
gate assignment is successively built according to this inherent hierarchy. Algorithms
based on the Branch-and-Bound (B&B) paradigm are well known for solving (mixed)
integer programming as well as combinatorial optimization problems efficiently [20, 49].
While various specific algorithms adhere to the paradigm, their shared core is the implicit
enumeration of the search space. In contrast to exhaustive search, parts of the search
space are not explicitly evaluated. Instead, a bounding function or estimator is used to
identify solutions inferior to the current best solution, which can, in turn, be ignored. If
the estimator is strictly optimistic, B&B is guaranteed to be exact. However, finding an
optimistic and realistic estimator, which minimizes the number of solutions evaluated,

73

requires the incorporation of problem-specific knowledge. Thus, algorithms based on the
B&B paradigm are typically highly problem-specific. In the following, a gate assignment
method based on B&B is presented. Its estimator relies on fundamental features of genetic
gates, selectively allowing for the generation of optimal or near-optimal gate assignments.
In Section 8.3.1, the general approach for mapping the gate assignment problem to

a search tree traversable by the B&B scheme is presented. The successive construction
of partial solutions is detailed, in which empty solutions are progressively extended to
complete solutions. In Section 8.3.3, strategies for the traversal of the search tree that
have been examined are presented. The problem-specific optimistic estimator for partial
solutions is the core of the method, which is detailed in Section 8.3.4. First, desired
properties of estimators are presented, followed by the general approach and a detailed
examination showing that the estimator allows for an exact search in the B&B scheme.

8.3.1. Search Tree

To enable the application of the B&B method to the gate assignment problem, its search
space is mapped to a tree. Generally, a search tree is a rooted tree in which every path
from the root to a leaf node defines a complete solution. The nodes on one level of the tree
represent the choices that can be made regarding a specific part of the solution. Together
with the search strategy, the problem’s mapping to the search tree determines how a B&B
algorithm navigates the search space. For the gate assignment problem, the mapping
emerges naturally from the inherent hierarchy of the problem. When circuit functionality
is the main objective of the assignment optimization, it is beneficial to construct the gate
assignment starting from the circuit’s output gate. In this context, the root node of the
search tree represents the empty gate assignment a∅. The circuit topology, given by a
DAG, is then traversed in reverse topological order, i.e., an abstract gate is visited not
before all subsequent gates have been visited. When a gate is visited, the search tree
is expanded by one level, with nodes corresponding to the possible choices of genetic
gates available in the library. That is, a polytomic branching strategy [20] is applied,
corresponding naturally to the choices offered by the library. While a path from the root
node to a leaf node determines a complete assignment a ∈ A, a path from the root to an
intermediate node determines a partial gate assignment with some unassigned gates in the
circuit topology. In the following, such a partial assignment ap ⊂ a ∈ A is called a partial
solution. An essential feature of partial solutions generated in the presented, ordered way
is that each partial solution represents a valid sub-circuit. Every partial solution is a cone
of assigned gates starting from the output gate with no unassigned gates constituting gaps
in the assignment. This is important for the estimation of the quality of partial solutions
presented in Section 8.3.4.

74

A

B

O

Gate Library

Root
NOR2_0

NOR2_1

NOR2_2

NOT_1

NOT_0

NOR2_0

NOT_0 NOT_1

NOR2_1

NOT_0 NOT_1

NOR2_2

NOT_0 NOT_1

Search TreeCircuit

Figure 8.5.: B&B search tree for a given circuit and gate library

Figure 8.5 exemplifies the search tree for a simple circuit topology consisting of two
gates and a library containing five individual genetic gates. First, the output NOR gate is
visited, and the search tree is expanded by one level, starting from the root node. On this
level, three nodes exist, each representing an assignment choice from one of the three
NOR gates in the library to the output gate. Then, the remaining NOT gate in the circuit is
visited since it is the next gate in the reverse topological order. Again, the tree is expanded
by one level, containing nodes for the choices of NOT gates from the library. Below the
leaf nodes, the complete assignments that result from following the corresponding path
are depicted by color coding. It becomes clear that the leaf nodes exhaustively enumerate
the search space. Thus, following each path from the root to the leaf nodes and evaluating
the corresponding complete solutions results in an exhaustive search. The B&B paradigm
allows leveraging the search tree’s structure by building and traversing it only partly,
resulting in an implicit enumeration (Section 8.3.2). The order in which the tree nodes
are visited is determined by the search strategy (Section 8.3.3).

8.3.2. Implicit Enumeration

The algorithmic framework used for the guided search tree traversal and implicit enumer-
ation is detailed in Algorithm 4. It represents a typical B&B scheme in which nodes to be
potentially visited are either stored in a buffer or discarded, based on the comparison of
their individual upper bound to the current global lower bound [20]. Note that the terms

75

upper and lower bound refer to the maximization problem at hand. In this context, the
lower bound bl ∈ R is the best, i.e., highest, score value of any complete solution evaluated
so far. The upper bound bu ∈ R, on the other hand, is an optimistic estimation of the
score value that is reachable for a complete solution if the corresponding partial solution
is part of it. Its determination is detailed in Section 8.3.4. Accounting for the given
gate assignment problem, the buffer q holds elements (a, bu) with partial or complete
assignment a and its respective upper bound value bu. The specific implementation of
the buffer can be adapted to implement different search strategies (Section 8.3.3). For
example, a first in - first out (FIFO) implementation results in a breadth-first search (BFS),
while a stack implementation results in a depth-first search (DFS). Here, the functions
pop and add are used to denote the retrieval and addition of elements, irrespective of
the specific buffer implementation.

Algorithm At the beginning of the search process, the lower bound is initialized with
an arbitrary negative number (Line 2), and the element (a∅,0) is added to the buffer
(Line 4), representing the root node of the search tree. While there are elements in
the buffer, one element at a time is retrieved (Line 6), its associated upper bound is
compared to the current lower bound (Line 7) and the element is discarded if its upper
bound does not exceed the lower bound. By this, the branching on nodes is avoided if
an updated lower bound has surpassed their upper bound. For all other elements, the
branch operation is performed on the retrieved assignment acur (Line 10). As explained
in Section 8.3.1, the branch operation takes the next unassigned gate from the circuit
topology in reversed topological order and generates a new set of assignments a1, . . . , an.
In each new assignment, one of n matching genetic gates left unassigned in the library is
assigned to the selected circuit gate. For each assignment ai with i ∈ 1, . . . , n, its individual
upper bound bu is calculated by applying the bounding function (Line 12). Only if the
upper bound exceeds the current lower bound, ai is processed further (Line 13). That
is, partial solutions proven to be inferior to the current best solution are discarded by
not adding them to the buffer. In other words, the sub-tree of the search tree springing
from ai is pruned. The further processing of undiscarded solutions depends on whether
they represent complete or partial solutions. Complete solutions ai ∈ A are saved as new
best known solution ares, and their upper bound is adopted as new lower bound (Line
14). This is possible because the bounding function value of complete solutions does not
represent an estimation but an exact objective function value, i.e., score, of the complete
assignment. Partial solutions ai ⊂ a ∈ A are added to the buffer together with their upper
bound. They could not be proven inferior, and thus, the search has to further traverse the
search tree springing from ai (Line 18). After the implicit enumeration is complete, ares is

76

1 Function branch_and_bound()

2 bu, bl ← −∞;
3 acur, ares;
4 q ← {(a∅,0)};
5 while q ≠ ∅ do
6 (acur, bu)← pop(q);

7 if bu ≤ bl then
8 continue;
9 end if

10 a1, . . . , an ← branch(acur);

11 for i = 1, . . . , n do
12 bu ← bound(ai);

13 if bu > bl then
/* Superior complete solutions are saved */

14 if ai ∈ A then
15 bl ← bu;
16 ares ← ai;

/* Potentially superior partial solutions are added to q */
17 else
18 add(q, (ai, bu));
19 end if
20 end if
21 end for
22 end while

23 return ares;
Algorithm 4 : Implicit enumeration scheme of B&B (adapted from [20])

returned as the result of the search.

Eager and Lazy Branch-and-Bound The presented algorithm implements an eager B&B
scheme, characterized by the fact that each (partial) solution resulting from a branching
operation is immediately evaluated using the bounding function. The decision about
adding the solution to the buffer is made based on the individual upper bound. In contrast,
in a lazy B&B approach, the upper bound is only determined as soon as an assignment

77

is subject to a branching operation [20]. Until then, it is annotated in the buffer with
the upper bound of its parent node. While lazy B&B potentially avoids the evaluation of
partial solutions that are discarded when the lower bound is updated, eager B&B provides
more information in the buffer to implement search strategies based on the upper bound
value. Both variants of B&B have been implemented in the presented method.

8.3.3. Search Strategies

The search strategy determines the order in which the nodes of the search three are visited
in a B&B scheme. Thus, it impacts which node a branching operation is performed on
next and which (partial) solutions are evaluated. Ideally, it quickly guides the search
to a complete solution with a high objective function value, which can then be set as a
new lower bound. Generally, the higher the lower bound and the earlier it is raised in
the search process, the more parts of the search tree can be pruned. In the presented
B&B scheme, the search strategies breadth-first search (BFS), depth-first search (DFS),
best-first search (BeFS), and cyclic BeFS have been implemented and adapted to the gate
assignment problem.

Breadth-First Search and Depth-First Search

BFS and DFS are common strategies for graph traversal. In BFS, a node is only visited
after all nodes on the prior level have been visited. By this, BFS traverses the tree level by
level from the root node until it reaches the leaf nodes. In the given buffer-based B&B
scheme, a BFS behavior is accomplished by implementing the buffer as a FIFO. That is,
the add operation adds new elements at the end of the buffer, while the pop operation
retrieves the first element. In contrast, a DFS traverses each branch to the leaf node
and then performs backtracking to traverse the next branch. In the B&B scheme, this
is implemented by realizing the buffer as a stack. That is, the add operation adds new
elements at the end of the buffer, and the pop operation retrieves the last element.
In these general instances of BFS and DFS, no other information than the hierarchy of

the tree is taken into account. Thus, the exact order in which nodes are visited arbitrarily
depends on the order in which the nodes resulting from a branching operation are added
to the buffer. However, visiting nodes with a high associated upper bound is desirable
since these will more likely lead to good complete solutions. Thus, an order is introduced
in which nodes are added to the buffer based on their upper bound. This is accomplished
by first determining the upper bound of all nodes resulting from a branching operation,
sorting the set of nodes based on their upper bound, and adding the sorted set of nodes
to the buffer. A descending order is applied in BFS, as the FIFO preserves the order of

78

Root (1)

30 (3)

20 (6) 5 (7)

35 (2)

10 (5) 25 (4)

(a) Breadth first search

Root (1)

30 (5)

20 (6) 5 (7)

35 (2)

10 (4) 25 (3)

(b) Depth first search

Figure 8.6.: Traversal order of BFS and DFS for an exemplary search tree

nodes. The stack used in DFS reverses the order of added nodes, and thus, added nodes
are sorted in ascending order. Figure 8.6 depicts the traversal order for both strategies on
an exemplary search tree. The nodes are annotated with their respective upper bound
value. The order is denoted by the values given in parentheses. It becomes clear that BFS
(Figure 8.6a) visits all nodes on one level before proceeding to the next. Further, in each
set of nodes resulting from a branch, the nodes are visited in descending order of their
upper bounds. DFS, on the other hand, traverses the rightmost branch to the leaf node
before tracking back (Figure 8.6b). Again, the next branch to traverse is chosen based on
the order of upper bound values.
In eager B&B, partial solutions are stored with their corresponding upper bound in the

search tree. In lazy B&B, however, the upper bound of the parent node is transferred
to the children during the branching operation. Thus, lazy B&B lacks individual upper
bound values at the time nodes are added to the buffer. The following approximation is
performed to allow the sorting of nodes before adding them to the buffer. Instead of the
upper bound, the ratio ymax/ymin of the genetic gate added to the assignment during the
branching is used to sort the nodes. By this, solutions containing gates with a wide output
interval are preferred during traversal, providing an estimation for the reachable Cello
score.

Best-First Search and Cyclic Best-First Search

BeFS [22] and its extension cyclic BeFS [50] deviate from the traditional graph traversal
strategies by ignoring any hierarchical information given by the search tree. Instead, BeFS
operates on a list with a global node order. Analog to BFS, this order is given by the
descending upper bound values of the (partial) solutions for eager B&B and the ratio

79

Root (1)

30 (3)

20 (5) 5 (7)

35 (2)

10 (6) 25 (4)

(a) Best first search

Root (1)

30 (4)

20 (5) 5 (7)

35 (2)

10 (6) 25 (3)

(b) Cyclic best first search

Figure 8.7.: Traversal order of BeFS and cyclic BeFS for an exemplary search tree

ymax/ymin of added gates for lazy B&B. The behavior of BeFS is demonstrated in Figure
8.7a using the exemplary search tree introduced before. In contrast to BFS, BeFS can jump
between levels of the tree and between sets of child nodes on the same level, exemplified
by the order of visited leaf nodes.
Cyclic BeFS represents an extension of BeFS by maintaining an ordered list of nodes for

each level in the search tree. Nodes are retrieved from the set of lists in a round-robin
scheme, querying one list after the other in a cyclic manner. Figure 8.7b depicts an
exemplary resulting traversal order. On each level, the nodes are visited in descending
order of their upper bounds, corresponding to the ordered list implementation. The
strategy jumps between the two levels in the tree according to the round-robin scheme
until both nodes on the upper level have been visited. Then, the remaining nodes on the
lower level are processed.

8.3.4. Optimistic Estimation

The bounding function, or estimator, represents the core of a B&B scheme. It provides
upper bound values on the objective function for partial solutions and thus impacts the
efficiency of the search and determines whether it delivers the optimum, i.e., exact, result.
For exactness, the estimation has to be strictly optimistic, as this guarantees that only
inferior branches of the search tree are pruned. On the other hand, the estimation of a
partial solution has to be as close to the objective function value of the corresponding
complete solution as possible, allowing for effective pruning. Thus, the estimator is highly
problem-specific and has to consider the problem structure and objective function. In the
following, the estimator used in the implemented B&B scheme is presented. It estimates
the quality of partial assignments representing sub-circuits of the original problem with

80

respect to the Cello score. First, general requirements for the estimator are presented,
followed by the approach taken to compose optimistic input intervals for sub-circuits.
Then, it is shown that the Cello score can be generally bound from above by considering
the parameters of the circuit’s output gate. This is generalized to cascades of single-input
gates by showing that optimistic values assumed for the inputs propagate through the
cascade. Finally, it is shown that this propagation does not hold for multi-input gates,
and a solution for this limitation is presented, making the estimator strictly optimistic for
general logic circuits.

Desired Properties

Let sCello(γ, a) ∈ R denote the Cello score for circuit topology γ and gate assignment
a ∈ A. Then the heuristic e(γ, ap) ∈ R with partial or complete assignment ap ⊆ a is called
an estimator, if

e(γ, ap) ≥ sCello(γ, a) ∀ ap ⊆ a, a ∈ A. (8.5)

That is, the heuristic overestimates or equals the score of the complete assignment a when
a partial assignment ap is given that represents a subset of a. This optimistic estimation
guarantees that only branches of the search tree are pruned, which lead to complete
solutions proven to be inferior to the current best known solution determining the lower
bound. Thus, it guarantees the exactness of the B&B scheme. Further, the estimator
should deliver exact objective function values if it is given a complete solution a, i.e.,

e(γ, a) = sCello(γ, a) ∀ a ∈ A (8.6)

This enables the estimator’s unified usage to rate partial and complete solutions, respec-
tively. Finally, the criterion for optimistic estimation should not only be fulfilled for partial
and complete solutions but also for partial solutions built on each other. Let ap,2 denote a
partial solution resulting from refining ap,1. Then

e(γ, ap,1) ≥ e(γ, ap,2) ∀ ap,1 ⊆ ap,2 ⊆ a ∈ A. (8.7)

In the context of the search tree, this means that the upper bound values of partial solutions
on a path from the root node to a leaf node decrease monotonically.

Approach

As shown in Section 8.3.1, the partial solutions subject of the estimation represent sub-
circuits of the original problem. Due to the successive addition of genetic gates to the
assignment in the reversed topological order of the circuit, these sub-circuits are cones

81

C

A

B

A

m1

m2

m3

m3 ∈ [0.3; 8.0]

Gate

Library

ymin ymax

0.3 5.0

0.5 8.0

Figure 8.8.: Optimistic input interval composition approach for estimation

ending at the output gate that do not feature gaps. That is, every path from the inputs of the
sub-circuit to the output traverses only logic gates that have been assigned specific genetic
gates. That allows simulating the output values of the sub-circuits similar to completely
specified circuits as introduced in Section 4.2. Figure 8.8 exemplifies the estimation of a
partial solution and is referenced in the following to introduce the approach. The complete
circuit topology consists of one NOT gate, four NOR gates, and three primary inputs: A, B,
and C. The shown partial solution is an assignment to the three last gates in the circuit,
depicted by their fill color. In the search tree, this partial solution could be found by
traversing a path from the root node to the third level of the tree. First, the sub-circuit
is constructed by discarding the unassigned gates of the original circuit, as depicted by
the dashed red line. By this, a new set of inputs arises, which represented intermediate
signals in the original circuit but constitutes primary inputs in the sub-circuit. In the given
example, these new primary inputs are named A, m1, m2 and m3. For the simulation of
complete circuits, promoter activity values representing Boolean 0 and 1 are given for
each primary input. For the newly introduced inputs, however, it is a non-trivial question
which signal values to assume for the estimation.
The approach taken to determine the promoter activity values representing Boolean 0

and 1 for added inputs is called optimistic input interval composition. It is based on the fact
that newly introduced inputs into the sub-circuit are sourced by other genetic gates in the
complete circuit. As shown in Section 3.2, transcriptional genetic gates are characterized
by a fixed output interval given by the basal and maximum promoter activity and specified
in the parameters ymin and ymax of their Hill transfer curve. By considering the genetic
gates left in the library, i.e., not assigned to the circuit, assumptions can be made about
the minimum and maximum values to be expected at the sub-circuit’s inputs. Figure 8.8

82

shows this exemplarily for input m3. In the original circuit, this input is sourced by a NOT
gate. To determine the interval of expected values, the widest possible output interval of
matching gates left in the library is composed. In the example, two genetic NOT gates
are applicable, and the values to be expected at m3 are in the interval [0.3,8.0]. Thus, 0.3
is a lower bound for values representing a Boolean 0 at m3 and 8.0 is an upper bound
for values representing a Boolean 1. When simulating the circuit output with respect to
all Boolean input combinations as required to determine the Cello score, these bounds
can be used as input values. Caused by the monotonous Hill transfer characteristic of the
genetic gates, they are propagated through the circuit. As a result, the simulated circuit
output values also represent lower bounds for Boolean 0 and upper bounds for Boolean
1. If the Cello score is calculated based on these values, it represents an optimistic
estimation of the score reachable with this partial solution. This is shown in detail in
the next section. Further, the propagation of optimistic input values through cascades of
single-input and multi-input gates is detailed below.
When evaluating a sub-circuit, the feasibility of Boolean input combinations must be

considered. In the given example, the original circuit features three primary inputs, while
the sub-circuit features four inputs. Naturally, not all 16 combinations of Boolean values
for the four inputs of the sub-circuit can be evoked by the 8 combinations of the original
circuit. More specifically, expressions A = m1 = 1, A = m2 = 1 and m1 ≠ m2 all yield
false and thus represent Boolean combinations which cannot occur in the circuit. These
illegal combinations may lead to output values not achievable with the original circuit.
Since these values can reduce the worst-case output interval rated by the Cello score, a
non-optimistic estimation could be the result. Thus, they are explicitly excluded when
evaluating sub-circuits.

Bounding the Cello Score from Above

The following shows that an upper bound can be found for a circuit’s Cello score by only
considering the gate producing the output signal. Let this gate be represented by its Hill
parameters θj and either be based on transcriptional repression, with the inhibitory Hill
function gj(x) being its transfer function, or based on activation with Hill function hj(x).
Further, let x and y denote the gate’s input and output promoter activities, respectively.
The Cello score presented in Section 4.2 is reintroduced in (8.8a) and (8.9a). Here,
Y denotes the set of circuit output values representing a Boolean 1 and Y the values
representing a Boolean 0. The score is determined by simulating the circuit with respect
to all Boolean input combinations, sorting the output values into Y and Y and calculating

83

the ratio of the minimum value y ∈ Y and the maximum value y ∈ Y .

sCello(γ, a) =
miny∈Y (y)
maxy∈Y (y)

(8.8a)

=
minx∈X(gj(x))
maxx∈X(gj(x))

(8.8b)

≤ ymax,j

ymin,j
(8.8c)

Equation (8.8a) can be transformed into (8.8b) by inserting the gate’s transfer function.
Due to its monotonically decreasing characteristic, the numerator is given by the minimiza-
tion of the transfer function value gj(x) over the set of input values x ∈X representing a
Boolean 0. Analog, the denominator can be transformed into a maximization of gj(x) over
the input values x ∈X for a Boolean 1. From Section 3.2, it is known that the codomain
of the Hill function is defined by [ymin, ymax]. It follows that quotient (8.8c) is an upper
bound for (8.8b), because

ymax,j ≥ gj(x) ∧ ymin,j ≤ gj(x) ∀ x,x ∈ R.

The same upper bound for the Cello score can be derived by assuming an output gate
based on activation, as shown in (8.9b). Since hj(x) is monotonically increasing, the sets
of input values used for minimization and maximization are swapped.

sCello(γ, a) =
miny∈Y (y)
maxy∈Y (y)

(8.9a)

=
minx∈X(hj(x))
maxx∈X(hj(x))

(8.9b)

≤ ymax,j

ymin,j
(8.9c)

Propagation of Optimistic Input Values

In the previous section, it has been shown that the score of a circuit can be bound from
above based on the output interval of its final gate. In the following, the propagation of
optimistic input values through a cascade of gates will be detailed, which enables the
optimistic estimation of the cascade’s score. It represents the basis for the optimistic input
interval composition approach presented above.

84

O? θi
θj

(a) Indentities known

θ∅
θj O?

(b) Indentity of first gate unkown

Figure 8.9.: Cascades of single-input gates with unknown input values

Assume a cascade of two assigned single-input gates based on repression, represented
by their set of parameters θ. Let gate θi deliver the input signal of gate θj , which represents
the output gate analog to the previous section, and let the the input values of gate θi
be unknown (Figure 8.9a). Let further [ymin,i, ymax,i] be the output interval of gate θi.
Denote by (8.10a) the repetition of the Cello score with inserted transfer function gj(x).

sCello(γ, a) =
minx∈X(gj(x))
maxx∈X(gj(x))

(8.10a)

≤ gj(ymin,i)
gj(ymax,i)

(8.10b)

Then (8.10b) is an upper bound of the score achievable with these two gates, because

gj(ymin,i) ≥ gj(x) ∧ gj(ymax,i) ≤ gj(x) ∀ x,x ∈ [ymin,i, ymax,i].

That is, without any knowledge of the specific sets of output values X,X of gate θi, the
score achievable with the cascade of gates can be bound from above, i.e., estimated
optimistically. The estimation is based on the output interval of the first gate in the
cascade and the known transfer function of the subsequent gate. It holds transitively for
an arbitrarily long cascade of single-input gates. For completeness, the same holds for
gates based on activation, i.e.,

sCello(γ, a) =
minx∈X(hj(x))
maxx∈X(hj(x))

≤ hj(ymax,i)
hj(ymin,i)

To further approach the situation that can be found during the estimation of partial
solutions in B&B, assume that not only the specific sets of output values of gate θi are
unknown, but also the identity of the gate, i.e., θi = θ∅ = ∅ (Figure 8.9b). In the context
of the B&B scheme, gate θi then represents the first gate in reversed topological order
of the circuit structure that is not assigned. Therefore, particularly its output interval is
unknown and not available for the estimation performed in (8.10b). However, in every

85

phase of the gate assignment process, the set C of gates representing candidates for an
assignment available in library L is known, i.e., C = {θ ∈ L ∶ θ ∉ a}. Thus, also the output
intervals of these gates are known. Let ymin,C denote the smallest ymin of all candidate
gates left in the library and ymax,C the highest ymax of these gates. Then, irrespective of
the assignment choice for gate θi, it holds that

ymin,C ≤ ymin,i ∧ ymax,C ≥ ymax,i. (8.11)

Taking into account (8.11), the optimistic estimation (8.10b) can be adapted to the
presented optimistic input interval composition, i.e.,

sCello(γ, a) ≤
gj(ymin,i)
gj(ymax,i)

≤ gj(ymin,C)
gj(ymax,C)

Again, the same holds transitively for an arbitrarily long cascade of single-input gates as
well as for gates based on activation. Consequentially, the values at each site of the cascade
evaluated with these optimistic input values represent optimistic estimations. Specifically,
values for a Boolean 0 represent lower bounds, and values for a Boolean 1 represent upper
bounds with respect to the values at these sites when all gates in the cascade are assigned
specific genetic gates and specific input values into the cascade are known.

Propagation Through Multi-Input Gates

In the previous section, it has been shown that the optimistic input interval composition
approach is guaranteed to bound the Cello score from above that can be reached with a
cascade of single-input gates preceded by a gate of unknown parameters. However, general
combinational logic circuits feature multi-input gates that combine n signal paths into
one by applying a n-ary Boolean operation. Thus, it has to be shown that the presented
approach for estimation also holds for multi-input gates. In the following, a counter-
example is given that shows how the approach is violated by a simple two-input NOR gate.
Consequentially, a general solution is presented that restores the guarantee of optimistic
estimation, called substitution of invalid bounds.

Counter-Example Assume a two-input NOR gate with inputs x1 and x2 and output
y (Figure 8.10a). On the level of digital abstraction, a Boolean 1 output is expected
only in case both inputs represent a Boolean 0. On the genetic technology level, this
behavior is accomplished by superposing both input promoter activities and the inhibitory
relation of the superimposed signal to the output promoter, modeled by the inhibitory
Hill function. Figure 8.10b depicts this decomposition of the NOR gate with intermediate

86

x1

x2

y

(a) External view

+
x1 = 0 (L)

x2 = 1 (U) x = 1 (U)

y = 0 (L)

(b) Decomposition with exemplary Boolean signals

Figure 8.10.: External and internal signals of two-input NOR gate

signal x and exemplary Boolean values for all signals. Assume that the gate is part of a
partial assignment in the B&B scheme, such that the input values represent estimated
upper or lower bounds, respectively, gained from optimistic input interval composition. In
parentheses, it is given for each signal whether it is expected to be an upper bound (U) or a
lower bound (L) to the values possible at this site for the signals to adhere to the paradigm
of optimistic estimation. Exemplarily, the value of input x1 represents a valid lower bound,
and the value of x2 is a valid upper bound. According to the given input combination of
mixed Boolean valency, a Boolean 0 output of the NOR gate is expected to represent a
lower bound. Thus, given the monotonicity of the Hill function, the intermediate signal x
is expected to represent an upper bound. However, the superposition of x1 and x2 does
not yield a valid upper bound because x1 represents a lower bound to the values possible
at this site. That is, according to the presented estimation scheme, x1 will not feature
lower values irrespective of how the specific assignment of gates leading to x1 materializes.
Thus, x1 may feature higher values for refined partial or complete assignments. Therefore,
x = x1+x2 may also feature higher values, and y = g(x)may feature lower values, violating
the expected lower bound at y. Note that this also holds for implicit genetic OR gates,
which feature only the superposition operation, and multi-input gates with an arbitrary
number of inputs.

Substitution of Invalid Bounds To restore the guarantee of optimistic estimation and
thus exactness of the B&B scheme, it has to be ensured that the output values of multi-input
gates represent valid bounds according to their logically implied Boolean values. In the
given example, the value of x1 has to be substituted with a guaranteed upper bound so
that x represents a valid upper bound and y a valid lower bound, respectively. Generally,
if the result of a superposition of promoter activities is a Boolean 1, all input signals of this
superposition have to represent valid upper bounds. The value of each signal, which is no
upper bound, has to be substituted accordingly. Table 8.1 shows the input signals subject
to substitution for all combinations of a Boolean superposition of two input signals. As a a
substitute, a value that is guaranteed to be an upper bound to the concerning signal must
be determined. Additionally, the substitute has to be as realistic as possible to reduce the

87

Table 8.1.: Boolean superposition of input signals and required substitutions

x1 x2 x = x1 + x2 substitution

0 0 0 -
1 0 1 x2 → ymax(,C)
0 1 1 x1 → ymax(,C)
1 1 1 -

impact of the substitution on the estimation’s accuracy. Values that fulfill both criteria
are given by the fundamental parameters of the genetic gates. Therefore, analog to the
optimistic input interval composition, the upper bound is taken from the preceding gate’s
output range [ymin, ymax]. If the gate sourcing the input subject to substitution is known,
i.e., assigned, the appropriate upper bound is given by the gate’s maximal output ymax.
If the input is sourced by a gate that has not yet been assigned a specific genetic gate,
the maximum output of the gates left in the library ymax,C is determined and used as a
substitute.

Exact andHeuristicMode Substituting invalid bounds restores the guaranteed optimistic
estimation of partial solutions and thus the exactness of the B&B scheme. As shown above,
however, values representing a Boolean 0 have to be substituted with the maximum
value possible for the given signal. Naturally, this reduces the tightness of the estimation
by introducing substitute values that differ strongly from the original values. Thus, a
reduction of the search efficiency has to be assumed. Consequentially, the substitution is
implemented in the presented B&B method as an optional feature. This gives rise to an
exact mode, in which the substitution is carried out, and a heuristic mode, in which the
substitution is omitted. The heuristic mode is characterized by a more accurate estimation
of partial solutions’ quality, which is not strictly optimistic. Therefore, it is expected to
traverse the search tree more efficiently but runs the risk of pruning the tree branch
containing the exact solution.
In the exact mode, the estimator complies with the desired properties stated at the

beginning of the section. First, the estimation for every partial solution ap ⊆ a, i.e., sub-
circuit of assigned gates with preceding unassigned gates, provides an upper bound to the
Cello score of a (8.5). This has first been shown for cascades of single-input gates and
then generalized for multi-input gates, giving rise to the substitution of invalid bounds.
Second, the estimator yields exact values for complete solutions (8.6). This criterion
is fulfilled naturally since the estimator is based on the same calculation as the Cello

88

score. The more estimated input values are replaced by outputs of assigned gates in the
course of the B&B scheme, the more the estimation converges to the exact score. Finally,
when rating partial solutions that are built on each other, the estimator never rates the
refined solution higher than the original solution (8.7). When an assignment is refined,
i.e., extended by one gate, the choices in the library for composing the optimistic input
intervals are reduced, and the sub-circuit is extended by one gate with an individual
transfer function. Both refinements lead to an equal or reduced output interval of the
refined sub-circuit compared to the original sub-circuit.

89

8.4. Evaluation

Note: Parts of this section have already been published in [58, 61]. Explicit self-citation is
omitted to provide an improved reading flow.
The presented methods for gate assignment have been implemented in the GDA tool
ARCTIC (Section 4.5). For evaluating the methods, a set of 66 circuit structures has
been compiled, which is used as a benchmark set. One half of the set encompasses the
circuit topologies synthesized by Cello for 33 Boolean functions that have already been
implemented in-vivo [53]. The other half represents structural variants of these circuits
synthesized using the enumeration method presented in Chapter 7. More specifically,
for each function, the best-performing variant with respect to the Cello score has been
selected from the set of minimal variants. The result is a set of 66 circuit topologies with
sizes ranging from 2 to 8 logic gates.
The remainder of this section begins with an examination of specific aspects of the

two presented gate assignment methods using subsets of the set of circuits. First, the
proximity-measure of the SA heuristic is tuned for the specific gate library used (Section
8.4.1). Then, the different modes and search strategies of the B&B scheme are evaluated
(Section 8.4.2). Considering the results of these analyses, the methods are compared in
terms of efficiency and solution quality using the whole set of benchmark circuits (Section
8.4.3).

8.4.1. Tuning the Proximity-Measure

The proximity-measure presented in Section 8.2.3 is used to generate neighboring solutions
in the SA scheme based on a dynamically controlled radius. Characteristic features of the
genetic gates’ transfer functions are mapped to a feature space in which their Euclidean
distance defines the proximity of two gates. Compared to analog applications of this
technique, e.g., the placement of logic cells on a chip, the dimensions in the feature
space do not stem from geometric features of the problem. However, they are based on
characteristics that are assumed to impact the similarity of solutions in terms of their
objective function value. Thus, a diagonal weighting matrix has been introduced in the
referenced section. Each weight factor allows scaling one dimension in the feature space.
By this, the proximity-measure can be further adapted to the gate assignment problem
and to the specific gate library to be used. Let w ∶= (ωym , ωxm , ωg′) denote the vector
of weight factors from the diagonal of the weighting matrix, referring to characteristic
features d1 ∶= ym, d2 ∶= xm, and d3 ∶= g′(xm) (Section 8.2.3). In the following, the process
of finding values for the weight factors that lead to a maximum increase in the SA scheme’s
efficiency is detailed.

90

Table 8.2.: Mean number of simulations needed per circuit for gate assignment with SA
using different weight configurations

Configuration ωym ωxm ωg′ Simulations Speedup

none 0.0 0.0 0.0 639855 1.00
equal 1.0 1.0 1.0 396763 1.61
best 0.1 0.9 0.0 280844 2.23

First, topologies with 5 gates or more have been selected from the set of 66 circuits.
These form a subset of 32medium and large circuits, for which the optimal gate assignment
cannot easily be found by exhaustive search. Then, the SA heuristic has been used to
assign the gates of Cello’s gate library (Section 6.1) to these circuits. Since SA represents
a stochastic method, its convergence and yielded solution can vary between multiple runs
with the same parameters. Thus, all gate assignment optimization runs have been carried
out ten times, allowing for aggregating resulting data and resulting in a total of 320 SA
runs for assigning the selected circuits. These runs have been carried out with various
values for the weight factors to examine the impact of the proximity-measure on the
method’s convergence.
As a baseline, the configurations w = (0.0,0.0,0.0) and w = (1.0,1.0,1.0) have been

chosen, leading to a deactivation of the proximity-measure and an equal weighting of all
dimensions, respectively. The results for these configurations are depicted in the first two
rows of Table 8.2, named "none" and "equal". For each configuration, the mean number
of simulations per circuit topology required for the SA scheme to converge is shown.
Furthermore, the speedup compared to the basic SA scheme without proximity-measure
is noted. It can be seen that the usage of the proximity-measure without further tuning
provides a speedup of 1.61 over the basic SA. A parameter sweep over a total of 66 different
combinations of weight factors has been performed to tune the proximity-measure to
the specific problem and gate library. The combinations are obtained by sweeping each
parameter in the interval [0.0,1.0] in steps of 0.1 and requiring the sum of all factors to
equal 1.0. The resulting convergence behavior of the SA scheme is depicted in Figure 8.11.
In the shown plane, each factor is maximal in the corner its label is placed in and minimal
at the opposite of this corner. Each colored hexagon represents the result of one gate
assignment run with its color coding the mean number of simulations needed. The lighter
the color, the lower the number of simulations needed. It can be seen that in the worst case,
for configuration w = (0.2,0.0,0.8), the efficiency is slightly worse compared to the "none"
configuration with ~6.44 × 105 simulations needed, compared to ~6.4 × 105 simulations.

91

Number of

simulations

×105

Optimum

Figure 8.11.: Convergence of SA for 66 weight configurations

For all other configurations, the efficiency exceeds the method without proximity-measure.
The optimum, which is marked in red, is given by w = (0.1,0.9,0.0) with a mean number
of ~2.8 × 105 simulations needed. Compared to the "none" configuration, a speedup of
2.23 is achieved with the "best" configuration.
The parameter sweep results allow for conclusions about the choice of characteristic

features. The optimal configuration of weight factors heavily emphasizes feature xm,
while omitting g′(xm). Thus, for the given gate library, the similarity in the steepness of
the transfer functions of two gates does not represent a good indicator of their swap’s
impact on the circuit output characteristic. The opposite holds for their input value xm
evoking the transfer curves inflection point. This can be explained by the fact that for an
individual swap during the annealing scheme, the gates providing the input for the gate
subject to the swap remain the same. Thus, the input values of the swapped gate remain
the same, and a strong shift in its xm may lead to portions of the input values falling into
a different region of the transfer curve, provoking a changed output behavior of the gate.
For the remainder of this work, the SA method is examined using the optimum weight

configuration.

92

(a) Exact mode (b) Heuristic mode

Figure 8.12.: Efficiency of B&B modes and search strategies

8.4.2. Modes and Strategies of Branch-and-Bound

For the B&B method presented in Section 8.3, a range of modes of operation and search
strategies have been implemented. These are examined exhaustively in the following to
determine the best setup of the method for the gate assignment problem. A subset of 6
circuits has been selected from the complete set, consisting of small and medium-sized
circuits ranging from 2 to 6 gates. Then, the gate assignment optimization has been
carried out for these circuits using Cello’s gate library and 16 different B&B setups. They
result from combining the two B&B modes lazy and eager with the four search strategies
depth-first search (DFS), breadth-first search (BFS), best-first search (BeFS) and cyclic
BeFS. Each of these combinations has been evaluated for the exact mode of B&B, in which
the substitution of invalid bounds is performed, and the heuristic mode, respectively. The
metrics examined in the following are the efficiency of the search tree traversal, measured
in circuit simulations needed, and the efficiency in terms of memory usage, measured in
the maximum number of elements in the search buffer.
Figure 8.12 shows the evaluation results regarding the search efficiency. In the exact

mode (Figure 8.12a), BFS performs considerably worse than all other search strategies
for both eager and lazy B&B. The other search strategies deliver comparable results,
while the best-performing setups are DFS with eager B&B and BeFS with eager or lazy
B&B (10035 simulations). In heuristic mode (Figure 8.12b), the efficiency is generally
increased, but the comparison of setups yields results similar to the exact mode. While

93

(a) Exact mode (b) Heuristic mode

Figure 8.13.: Maximal element buffer sizes for B&B modes and search strategies

BFS again performs worst, the other strategies are on the same level. The best efficiency
in heuristic mode is achieved by BeFS and cyclic BeFS with lazy B&B (528 simulations).
Figure 8.13 depicts the maximum number of elements in the search buffer encountered

during the gate assignment. The results are plotted on the logarithmic scale due to the wide
range of resulting buffer sizes. For this metric, a considerable difference can be observed
for lazy and eager B&B, with eager B&B being much more memory efficient. Again, BFS
performs worst for both lazy and eager B&B in exact (Figure 8.13a) and heuristic (Figure
8.13b) mode (up to ~3× 105 elements). DFS features the best efficiency in terms of buffer
elements for all combinations of modes. BeFS and cyclic BeFS yield comparably good
results, if eager is chosen as B&B mode. The best-performing setup is DFS with eager B&B
for both exact and heuristic modes (243 and 244 elements, respectively).
It can be concluded from the examination of both aspects that BFS is not suited for

the gate assignment problem. This is caused by the fact that the search tree is perfectly
balanced, i.e., the paths from the root to every leaf node are equally long. Thus, BFS
evaluates all partial solutions before visiting the first complete solution that sets the lower
bound and enables pruning. All other search strategies provide means to visit the leaf
nodes, i.e., complete solutions, earlier in the search process. Further, it can be observed
that the choice of eager or lazy B&B has no considerable effect on the search efficiency.
However, it impacts the memory efficiency, especially when BeFS or cyclic BeFS are used.
The maximum number of elements in the buffer is lower for eager B&B because the upper
bound is determined before adding elements to the buffer. By this, the addition of inferior

94

Table 8.3.: Search efficiency and runtime of the gate assignment methods

Search Efficiency Runtime

Method Simulations Gain Trav. (%) Runtime (h) Speedup

B&B (heuristic) 858874 611.2× 0.2 13.8 721.9×
Simulated Annealing 6642130 79.0× 1.3 92.7 107.5×
B&B (exact) 34039365 15.4× 6.5 505.2 19.7×
Exhaustive Search 524937849 1.0× 100.0 9962.3 1.0×

partial solutions to the buffer is avoided. For the remainder of this work, eager B&B
with BeFS is chosen as B&B configuration since it provides a good combination of search
efficiency and memory efficiency for both the exact and the heuristic search.

8.4.3. Comparison of the Methods

A comprehensive comparison of the gate assignment methods has been carried out by
assigning Cello’s library of genetic logic gates to the complete set of 66 circuit topologies
with each method. For each single gate assignment process, the number of needed
simulations, the runtime, and the quality of the resulting assignment in terms of the
objective function value, i.e., the Cello score, has been determined. As a baseline, an
exhaustive search (Section 8.1) has been carried out. It provides information on the
size of the space of possible assignments and the exact solution for each circuit. The SA
scheme (Section 8.2) has been set up with the optimal proximity-measure configuration
(Section 8.4.1). All gate assignment runs with SA have been repeated ten times, taking
into account its stochastic nature and allowing for aggregating the resulting data. Further,
the B&B method (Section 8.3) is evaluated using the combination of eager B&B and BeFS,
that is efficient in terms of runtime and memory usage (Section 8.4.2). Both the exact
and heuristic modes of B&B are considered for the evaluation. At the end of the section,
the methods are compared to the gate assignment scheme of the GDA tool Cello. All
runs have been carried out on an AMD EPYC server supporting 128 threads.

Search Efficiency

Figure 8.14a depicts the search efficiency of the methods in terms of needed circuit
simulations for assigning all 66 circuits. Note that the results are plotted on the logarithmic
scale starting at 1 × 105 to improve the clarity of the figure. Columns 2 to 4 of Table 8.3

95

(a) Number of simulations

(b) Sequential runtime (h)

Figure 8.14.: Efficiency and runtime measurements of the gate assignment methods

additionally show the underlying number of simulations, the efficiency gain compared
to exhaustive search, and the percentage of the search space traversed. When searching
for the exact solution, B&B requires ~3.4 × 107 simulations, providing a 15.4×efficiency
gain compared to exhaustive search, which finishes after ~5.2 × 108 simulations. Thus,
to find the exact solution, B&B traverses only 6.5% of the search space. The mean
number of simulations required for the SA heuristic to converge is ~6.6 × 106, providing
a 79×efficiency gain compared to exhaustive search and traversing 1.3% of the search
space. Heuristic B&B again reduces the number to ~8.6× 105 simulations, evaluating only
0.2% of the possible assignments. Compared to the other heuristic SA, B&B provides an
efficiency gain of 7.7×. Compared to exhaustive search, the gain comprises 611.2×.

Runtime

The measured runtime in hours is plotted in Figure 8.14b on the logarithmic scale. Note the
different scaling of the axis compared to Figure 8.14a. Further, columns 5 and 6 of Table 8.3
show the underlying measurements and the speedup compared to the exhaustive search,
respectively. To use the server to capacity, the runs have partly been carried out in parallel,
and the measured runtimes have been added up, corresponding to a sequential, single-
threaded execution. The results parallel those for the number of required simulations.
However, the obtained speedup surpasses the observed efficiency gain. When searching

96

2 3 4 5 6 7 8
Number of gates

102

103

104

105

106

107

108

M
ea

n
nu

m
be

r o
f s

im
ul

at
io

ns

Exhaustive
B&B (exact)
Simulated Annealing
B&B (heuristic)

Figure 8.15.: Mean number of simulations by circuit size

for the exact solution, B&B requires ~505 h, providing a 19.7×speedup compared to
exhaustive search, which requires ~1 × 104 h. The heuristic methods SA and heuristic
B&B require 92.7 h and 13.8 h, respectively. Thus, for finding a heuristic solution, B&B
provides a 6.7×reduction in runtime compared to SA and a 721.9×speedup compared to
exhaustive search. The speedup surpasses the efficiency gain because the absolute number
of simulations that can be spared grows with the circuit size, and bigger circuits generally
require more runtime per simulation.

Impact of Circuit Size

The mean number of simulations needed with respect to the circuit size is depicted in
Figure 8.15. It can be observed that all methods exhibit an exponential complexity. Exact
B&B parallels the characteristic of exhaustive search but with the number of simulations
needed reduced by one to two orders of magnitude. The same holds for heuristic B&B

97

Table 8.4.: Solution quality of the gate assignment methods

Method Exact solutions Mean deviation (%) Max. deviation (%)

B&B (heuristic) 62/66 −1.5 × 10−3 −0.11
Simulated Annealing 59/66a −0.02 −3.15
B&B (exact) 66/66 0.00 0.00

a Circuits for which SA returned the exact solution in all 10 runs.

compared to exact B&B for circuits with 6 gates or more, while it approaches the exact
variant for smaller circuits. SA exhibits excess simulations for small circuits but features a
reduced dependency on the circuit size. For the biggest circuits assigned comprising 8
gates, SA approaches the efficiency of heuristic B&B.

Solution Quality

Besides the runtime, the solution quality plays a major role when evaluating heuristic
methods. Further, comparing the quality of the solutions provided by the exact B&B
method to those obtained from exhaustive search allows for a verification of B&B’s ex-
actness. Table 8.4 shows the results regarding the solution quality based on the results
from an exhaustive search. For each method, the number of exact solutions found for
the set of 66 circuits, the mean deviation from the score of the exact solution, and the
maximum deviation from this score are depicted. For SA, two of these metrics are based on
a worst-case evaluation of the 10 runs. First, a solution is only counted as exact if SA found
it in all 10 runs. Second, the maximum deviation is determined based on the complete set
of 10 × 66 SA gate assignment runs. A first important observation is that the results verify
the exactness of the exact B&B method. It obtains the optimum solutions for all 66 circuits
and thus does not exhibit a deviation from the score obtained by exhaustive search. The
SA heuristic does not find the exact solution for 7 circuits, features a mean deviation of
−0.02% and a worst-case deviation of −3.15%. B&B in its heuristic mode misses the exact
solution for 4 circuits. It also features a smaller deviation from the optimum than SA with
a minuscule mean deviation of −1.5 × 10−3% and a worst-case deviation of −0.11%.

Comparison to Cello

Finally, the methods are compared to the gate assignment scheme of the GDA tool Cello.
Since the software does not support alternative circuit topologies, this comparison is based

98

Table 8.5.: Comparison of the gate assignment methods to CELLO based on a reduced
set of 33 circuits

Method Simulations Exact solutions Mean dev. (%) Max. dev. (%)

B&B (heuristic) 156075 31/33 −4.8 × 10−5 −2.7 × 10−3

SA 2994648 30/33a −0.02 −2.03
B&B (exact) 6905142 33/33 0.00 0.00

Cello’s SA 990000 24/33a −1.6 −64.94
a Circuits for which SA returned the exact solution in all 10 runs.

on the subset of 33 circuit structures stemming from Cello itself and does not include
the 33 structural variants. Cello applies a simple SA method with a static annealing
schedule [53] (Section 8.2.2). In this scheme, 50 separate optimization runs are carried
out subsequently, each starting at an individual random initial solution. The outer-
loop criterion is given by the fixed limit of 600 outer-loop iterations. The temperature is
initialized with a fixed value and decreased in every iteration, irrespective of the acceptance
rate. The schedule does not feature an inner-loop, i.e., the inner-loop criterion s given by
kmax = 1. Consequentially, on each temperature level, only one perturbation is performed
to the solution. In total, 30000 circuit simulations are performed during a gate assignment
optimization, irrespective of the problem size. Due to the quick annealing schedule, the
scheme resembles 50 hill-climbing runs, starting at random points in the search space.
The neighbor generation equals the scheme of single swaps used in the presented SA
method, without the proximity-metric (Section 8.2.3).
Table 8.5 lists important metrics of the presented gate assignment methods and Cello’s

SA scheme. Based on the number of circuit simulations needed for assigning the 33 circuits,
Cello features a ~3×improved efficiency compared to the presented SA scheme, while
the heuristic B&B method again features a ~6.3×improvement over Cello. Since Cello’s
SA is a stochastic method, too, it has been run 10 times to aggregate data regarding its
solution quality. In these runs, it converged on the exact solution in every run for ~73% of
the 33 circuits, compared to ~90.9% achieved by the proximity-based SA and~94%by the
heuristic B&B. Its mean deviation from the optimum score is 80×and ~3.3 × 104×higher
compared to the proximity-based SA and the heuristic B&B, respectively. Most substantially,
the worst-case deviation measured with Cello’s SA of ~−65% is by an order of magnitude
higher compared to the presented SA and multiple orders of magnitude higher than the
one of heuristic B&B.

99

8.5. Discussion

In this chapter, gate assignment methods for optimizing the adherence of genetic circuits
to the functional specification, expressed by the Cello score, have been presented. All
methods consider characteristics of the considered technology of genetic logic gates. In
the SA scheme, similarity between the transfer functions of genetic gates is used to control
the impact of perturbations performed during the generation of neighboring solutions. By
gradually enforcing increased similarity of the neighbors during the annealing, the conver-
gence of the method is improved. The presented B&B method is based on fundamental
features of transcriptional regulation. It leverages the natural hierarchy of the problem that
originates from the bounded output intervals of genetic gates and that results in the last
gate of the circuit having the most significant impact on the output characteristic. Based
on this observation, partial solutions are built successively in the reversed topological
order of the circuit. The monotonicity of the gates’ transfer functions is used to estimate
the quality of these sub-circuits. This enables pruning branches of the search tree and
traversing the search space efficiently. If the strictly optimistic estimation mode is chosen,
the method is guaranteed to be exact. If the criterion of optimistic estimation is relaxed,
the B&B scheme represents an alternative heuristic method.
Suppose optimality of the gate assignment with respect to the Cello score is a strict

requirement of the GDA process. In that case, the exact B&B is guaranteed to obtain this
exact solution with a ~20×speedup compared to exhaustive search. If exactness is not
strictly required, the SA method and the heuristic variant of B&B provide gate assignments
with good quality while providing a further ~5.4×and a ~36.6×speedup compared to
the exact B&B, respectively. The heuristic B&B method delivers exact solutions for 94% of
the tested circuits and near-optimal results for the remaining circuits with a maximum
deviation from the optimum score of −0.11%. Given the natural variability of biological
systems, it is questionable whether this observed minuscule worst-case deviation has any
practical implications for the synthesized circuit. Thus, heuristic B&B is the most practical
choice for mapping genetic circuits of sizes currently implementable. Its efficiency enables
exploring extended design spaces, such as structural variants of circuits (Chapter 7) and
allows for using more complex circuit models that increase the computational complexity
of circuit simulations. Further, it outperforms the heuristic gate assignment method of the
GDA tool Cello in both efficiency and quality of generated assignments. The advantage of
the proximity-based SA scheme is its flexibility concerning the circuit score used. Due to
its observed efficiency being less dependent on the circuit size, it may become a relevant
alternative if circuits or libraries grow.

100

Increased Meaningfulness
of Designs

101

9. Technology Mapping for Robustness

The gate assignment methods presented in Chapter 8 provide means to optimize genetic
circuits efficiently for the Cello score. Its calculation is based on median representations of
gates obtained by flow cytometry (Section 4.2). Thus, a population of cells implementing
a circuit is represented by one instance of the circuit built from these median-based gates.
In some applications, such as biotechnology, quantifying and optimizing the separation of
output states of this representative circuit instance may provide a suitable means to control
processes adequately. In biomedical applications, however, the behavior of individual
circuit instances, i.e., individual cells, plays a vital role in avoiding undesired damage
to the patient. Thus, a design process for genetic circuits destined for such sensitive
applications has to consider cell-to-cell variability and ensure that outliers in terms of
functionality are reduced or avoided. In this work, the term robust is used to describe
circuits that retain their functionality even under assumed cell-to-cell variability (Section
4.3). A technology mapping process that delivers robust circuits makes robustness its
primary or secondary objective.
In this chapter, two methods to integrate robustness as an objective in the technology

mapping for genetic circuits are presented. First, an alternative circuit score is used that
integrates robustness and circuit functionality, the E-Score (Section 4.3). To optimize
circuits for it, the flexibility of the SA gate assignment method presented in Section 8.2
with respect to the used objective function is leveraged. The results in terms of efficiency,
runtime, and solution quality are presented in Section 9.1. Second, a way to integrate
robustness as an additional constraint into the technology mapping process is presented
in Section 9.2. It is based on a new criterion for the compatibility of gates, taking into
account their transfer characteristics, and allows considering robustness when traditional,
non-statistical scores such as the Cello score are used. It has been integrated into and
evaluated with the B&B method from Section 8.3. Finally, both methods are compared
in Section 9.3 regarding runtime and solution quality based on the assumption that the
E-Score represents the ground truth quantifying the robustness of circuits.

102

9.1. Optimization for the E-Score

The E-Score introduced in Section 4.3 represents an alternative circuit score for genetic
logic circuits. Its calculation is based on a statistical description of gates from which
random samples are drawn. By this, n random instances of the circuit are simulated to
obtain output distributions rooted in the statistical description of the gates. This allows
a comprehensive statistical evaluation of the output characteristic instead of rating the
distance of medians as done by the Cello score. The statistical measure used by the
E-Score is based on the Wasserstein metric and penalizes overlapping output distributions.
If the statistical description of the gates takes cell-to-cell variability into account, a circuit
optimized for the E-Score is less prone to evoke instances with non-differentiable output
states in a population of cells exhibiting variability.
Generally, the SA heuristic for gate assignment presented in Section 8.2 is flexible

regarding the used objective function. Thus, it is possible to exchange the Cello score
applied in Chapter 8 for the E-Score and perform technology mapping for robust circuits.
In this section, the performance of the SA method is evaluated in terms of search efficiency,
runtime, and solution quality when the E-Score is chosen as the objective function. To
this end, the method is used to assign the set of 66 circuit structures (33 functions, two
circuit variants per function) the genetic logic gates of Cello’s gate library, analog to
Section 8.4. The number of drawn samples and circuit instances per scoring of n = 5000 is
chosen. To account for SA’s stochastic behavior, the process has been repeated 10 times,
allowing for aggregating the resulting data. Note that the E-Score is not quantitatively
comparable to the Cello score, as it is based on a different calculation.

Adaptation of the Inner-Loop Criterion

First, the SA scheme has been used to optimize circuits for the E-Score with the parameters
presented in Section 8.2.2. These original parameters have been obtained by tuning the
method for the Cello score, and it showed that the E-Score is of a more complex nature,
leading to a degradation in solution quality for large circuits. Across the set of circuits,
a mean deviation compared to the optimal solution of −0.2% has been measured with
the E-Score. This represents a 10×degradation compared to mapping with the Cello
score (−0.02% mean deviation). Further, a worst-case deviation of −24.9% could be
found among the 10 repeated SA runs. The number of 60 circuits for which the exact
solution could be found in all runs is similar to that of using the Cello score (59 circuits).
The worsened deviation only occurred for circuits featuring 7 or more gates, hinting at
an insufficient impact of the problem size on the annealing schedule for mapping with
the E-Score. The parameter that introduces the problem size to the annealing schedule

103

Table 9.1.: Search efficiency and runtime of Simulated Annealing (SA) compared to an
exhaustive search (Exh.) with the E-Score and the CELLO score

Search Efficiency Runtime

Method Score Simulations Gain Trav. (%) Runtime (h) Speedup

SA E-Score 11580687 45.3× 2.2 128.7 127.4×
Exh. 524937849 1.0× 100.0 16398.9 1.0×

SA Cello 6642130 79.0× 1.3 92.7 107.5×
Exh. 524937849 1.0× 100.0 9962.3 1.0×

is the inner-loop criterion kmax, which defines the number of iterations spent on each
temperature level (Section 8.2.2). Since the degradation only occurs for large circuits,
increasing the weight of the problem size suggests itself, instead of increasing kmax for all
problem sizes. Thus, the inner-loop criterion is adapted to the E-Score by increasing the
exponent of ∣A∣ the problem size from 0.25 to 0.5, i.e.,

kmax =
⎧⎪⎪⎨⎪⎪⎩

50 ∗ 4
√
∣A∣, if the Cello score is used,

1 ∗
√
∣A∣, if the E-Score is used.

Further, the leading factor is decreased to reduce the overhead for small circuits. The
impact of the modified criterion on the number of simulations with respect to the circuit
size is visualized in Figure 9.1. For circuits with 7 or more gates, the adapted criterion
increases the number of simulations compared to the original criterion. The evaluation
presented in the following regarding efficiency and solution quality considers the adapted
criterion.

Search Efficiency and Runtime

Table 9.1 shows the results for the search efficiency of the SA method compared to
exhaustive search. For reference, the lower two rows repeat the results of Section 8.4.3
obtained with the Cello score. All results for the SA scheme are mean values of the 10
performed runs. The SA method needed ~11.6 × 106 circuit simulations to optimize the
set of circuits with the E-Score. Compared to exhaustive search, this equals a ~45×gain in
efficiency, which translates to 2.2% of the search space explored. Analog, the runtime of SA
amounts to a mean ~129 h, representing a ~127.4×speedup over exhaustive search. Two

104

2 3 4 5 6 7 8
Number of gates

103

104

105

106

107

108

M
ea

n
nu

m
be

r o
f s

im
ul

at
io

ns

Exhaustive
SA (adapted kmax)
SA (original kmax)

Figure 9.1.: Mean number of simulations by circuit size for mapping with the E-Score
with SA (adapted and original kmax), compared to an exhaustive search

important observations can be made by comparing these results to the results obtained
for mapping with the Cello score.
First, SA provides a gain in search efficiency and runtime in roughly the same order of

magnitude for both scores. In detail, the efficiency gain with the E-Score is reduced by
~42% compared to the Cello score, caused by the adapted inner-loop criterion. However,
the speedup is improved by ~19%. This hints at an increased impact of the circuit size on
the simulation runtime for the E-Score since the share of spared simulations is larger for
circuits with more gates. This hypothesis is verified by the fact that the mean runtime for
both scores is comparable for up to 6 gates and diverges for larger circuits. For example,
the E-Score requires up to 3.4×the runtime of the Cello score for circuits with 8 gates.
Second, despite the E-Score with n = 5000 samples being approximately

5000×computationally more complex than the Cello score, the absolute measured run-
time for exhaustive search increased only by ~64.6%. This is due to the fact that an

105

Table 9.2.: Solution quality of SA with the E-Score and the CELLO score

Score Exact solutionsa Mean deviation (%) Max. deviation (%)

E-Score 60/66 −0.05 −7.9
Cello 59/66 −0.02 −3.15
a Circuits for which SA returned the exact solution in all 10 runs.

optimized version of the circuit simulator has been used, in which parallel computation
techniques are consistently used. In Figure 9.1, the mean number of simulations needed
with respect to the circuit size in the number of gates is depicted. Besides the results
for SA with both the original and adapted kmax, the results of an exhaustive search are
shown.

Solution Quality

Another important aspect when evaluating heuristic methods is the quality of delivered
solutions. To this end, the scores of the SA gate assignment runs have been compared
to those obtained by exhaustive search. Table 9.2 shows three metrics for the quality of
solutions obtained with SA for the E-Score and the Cello score, repeated from Section
8.4.3. On the one hand, the heuristic finds the exact solution in all 10 repetitions for one
more circuit when the E-Score is used. More specifically, this is the case for ~91% of the
circuits, compared to ~89% for the Cello score. The circuits for which the optimum
could not be found in every run comprise at least 7 gates and thus are a subset of the
largest circuits tested. On the other hand, the solutions feature roughly doubled mean
and maximum deviations from the optimum score when the E-Score is used.

Conclusion

In conclusion, the results confirm the flexibility of the SA method concerning the used
objective function. However, they also highlight SA’s highly parameterized nature. On
the one hand, changes to the problem structure, e.g., the score function, require adapted
parameters to retain the qualities of the method regarding efficiency and solution quality.
On the other hand, changes to the parameters can easily be conducted once the problem
has been identified. In the given case, the more complex nature of the E-Score compared
to the Cello score leads to a reduced solution quality for large problems. By adapting the
inner-loop criterion, the worsened quality could again be improved without changing the

106

scheme fundamentally. The result is a suitable method for the technology mapping for
robust genetic circuits.

9.2. Signal-Compatibility of Genetic Gates

Note: Parts of this section have already been published in [24]. Explicit self-citation is omitted
to provide an improved reading flow.

The E-Score (Sections 4.3 and 9.1) provides a means to rate the robustness of a complete
circuit design. The same holds for the heuristic noise margin check of the GDA tool Cello
(Section 6.1), which is detailed in Section 9.2.1. Inspired by this, a way to integrate
robustness into constructive gate assignment methods such as B&B (Section 8.3) based on
information available in libraries of genetic gates is presented in Sections 9.2.2 to 9.2.4.
Instead of simulating completely assigned circuits, local compatibility checks between
groups of gates are performed during the assignment optimization. By this, combinations
of gates sensitive to signal perturbations caused by cell-to-cell variability can instantly be
rejected, making constructing robust circuits more efficient. The method has been devised
in cooperation with the Self-Organizing Systems Lab.

9.2.1. Pair-Wise Compatibility

Cello offers a routine for checking the noise margin for pairs of gates in a circuit [53].
It requires the simulation of the circuit characteristic to be completed, as it relies on the
values of all signals in the circuit for all Boolean input assignments. Generally, the check
ensures that the minimum and maximum output values of a gate lead to an output of the
subsequent gate that is higher than half the maximum or lower than twice the minimum
output value of that subsequent gate. Formally, denote by X the set of input values of
the subsequent gate representing a Boolean 0, and by X the set of values representing a
Boolean 1. Further, let g be the inhibitory Hill function describing the transfer characteristic
of said gate and g−1 its inverse. Be the output interval of the gate limited by [ymin, ymax].
Then, the noise margin criterion introduced used in [53] can be stated formally by the
criteria

∀x ∈X ∶ x < g−1(1
2
ymax) (9.1)

and
∀x ∈X ∶ x > g−1(2 ymin). (9.2)

Both criteria have to be fulfilled for every pair of gates in the circuit, with the preceding
gate contributing the input values X,X and the subsequent gate contributing the set

107

of parameters θ that defines the transfer function g. Note that the criteria can also be
formulated for gates based on activation with Hill function h. The method is a post-
simulation check and thus is not applicable for avoiding the construction and simulation of
circuits that fail the criteria. Further, it considers only pairs of gates, even if the subsequent
gate has multiple inputs. By this, it potentially excludes circuit designs that actually fulfill
both criteria. Assume a genetic NOR gate with two inputs, x1 and x2, defined by its Hill
transfer function and input superposition g(x1 + x2). Assume further that input x1 holds
the highest signal value from the set of values for a Boolean 1, i.e.

x1 ∶=max
x∈X

x.

While criterion (9.2) may be violated when taking into account only x1 in a pair-wise
check, i.e.,

x1 ≯ g−1(2 ymin),

it may be fulfilled when taking into account the other input of the gate, x2, and assuming
it to be non-zero, i.e.,

x1 + x2 > g−1(2 ymin), x2 > 0.

The assumption x2 > 0 is valid for genetic logic gates since their basal output promoter
activity is generally non-zero. Thus, in a circuit containing multi-input gates, the pair-wise
checking of noise margins can lead to the rejection of designs that actually fulfill the
criteria.
An alternative approach is devised in the following that considers the compatibility

of (n + 1)-tuples of gates, depending on the maximum number of inputs n of gates
present in the library. By this, false negatives are avoided when rejecting combinations
of gates. Further, the method is based solely on information available in genetic gate
libraries. Therefore, no simulation of the circuit is needed to apply the criteria. This
allows integrating the check into the constructive B&B gate assignment method so that
incompatible combinations of gates can be pruned directly in the search tree (Section
9.2.3).

9.2.2. Compatibility of (n+1)-Tuples

The advanced compatibility measure is based on individual threshold points for low and
high output values of genetic gates. These thresholds are inspired by the 3 dB noise margins
commonly applied in communication systems and are calculated using the individual
output interval of each gate. In a circuit, the thresholds are then used to determine the
compatibility of connected gates.

108

ymin

ymax

in

out

i1

i0

j0 j1

upper threshold

lower threshold

Figure 9.2.: Thresholds applied by the compatibility measure and forbidden regions (red)

First, the calculation of the individual input and output values representing the two
threshold points on the transfer function is detailed. All involved variables are depicted in
Figure 9.2 with an exemplary parameterization of an inhibitory Hill curve. Let [ymin, ymax]
be the output interval of the genetic gate under consideration, then

i1 ∶= ymin +
√

1

2
(ymax − ymin)

defines the output value of the gate at the upper threshold. This output value corresponds
to the input value j0 = g−1(i1), with g−1 being the inverse of the inhibitory Hill function.
Analog, the output value at the lower threshold is defined as

i0 ∶= ymin + (1 −
√

1

2
)(ymax − ymin)

and it corresponds to the input value j1 = g−1(i0).
The thresholds can be used to define criteria ensuring that a genetic gate never operates

in the transition region marked in red in Figure 9.2. These criteria solely use the thresholds
of the considered gate and all its input gates. For a given library of genetic gates, the
number of input gates is defined by the fan-in of the subsequent gate. Thus, the criteria
are generalized for an arbitrary number of gate inputs n, considering groups of n gates
contributing input signals and one subsequent gate. These gate groups are subsequently
called (n+1)-tuples. Denote by i0,k with k ∈ [1..n] the output values of the gates providing
their lower threshold to the subsequent gate and by j0,t the lower input threshold of this

109

subsequent gate. Then, the first criterion
n

∑
k=1

i0,k ≤ j0,t

ensures that the superposition of the highest possible input values representing a Boolean 0
does not push the target gate over its input threshold j0 into the transition region. Further,
let ymin,k denote the minimum output value of input gates k ∈ [1..n], then the second
criterion

∀l ∈ [1..n] ∶ i1,l +
n

∑
k=1
k≠l

(ymin,k) ≥ j1,t

ensures that all minimal input value combinations representing a Boolean 1 do not push
the target gate below its input threshold j1. In each combination of input values, one
input gate is assumed to provide the lowest possible value representing a Boolean 1, i.e.,
i1, and all other input gates provide their minimal output value, ymin. By enforcing these
criteria for every gate in the circuit during the construction of a gate assignment, it can be
asserted that signal levels in a circuit of cascaded compatible gates do not cross the defined
thresholds and thus exhibit a defined perturbation margin. Note that the criteria are
formulated for genetic gates based on repression, which represent NOR gates if multiple
inputs are present. However, a similar formulation is possible for gates based on activation,
e.g., AND gates based on coregulation.
The genetic gate library of Cello has exemplarily been examined with the presented

compatibility criteria. As it features NOR gates with a maximum fan-in of n = 2, maximally
3-tuples of gates, consisting of two source gates and one target gate, have to be considered.
In total, 21% of the triples that can be formed by the library feature transfer characteristics
which are compatible according to the criteria. Figure 9.3 depicts the results in detail. For
a fixed source gate, the number of compatible successor gates varies depending on the
second source gate. This highlights the more exact compatibility check compared to a
pair-wise approach.

9.2.3. Compatibility Lookahead in Branch-and-Bound

Since the criteria for compatibility are solely based on information available in genetic
gate libraries, they can be used to pre-compute a (n + 1)-dimensional matrix of Boolean
elements that signify if a combination of gates adheres to the criteria. This allows for a
straightforward compatibility check of gate assignments during the optimization (Chapter
8). The approach integrates naturally into constructive methods such as the B&B method
(Section 8.3). With every branching operation (Section 8.3.1), the gate assignment is

110

0

Figure 9.3.: Number of compatible successor gates for each pair of gates from CELLO’s
gate library

extended by one gate in the reversed topological order of the circuit. From this, a new
combination of gates with a predecessor-successor relation arises, which is subject to the
compatibility check. Suppose this new combination is deemed to be incompatible. In
that case, the new branch of the search tree can instantly be pruned since all refined gate
assignments based on this partial assignment will contain the incompatible gates. Further,
a more elaborate pruning approach is possible, which performs a compatibility lookahead.
It is based on the observation that a choice for assigning a specific gate may be valid in
terms of compatibility with its successors but may impede the construction of a complete
compatible gate assignment later in the B&B process. Consequentially, this branch may
also be pruned to avoid exploring dead-ends in the search tree.

Formulation of the SAT Model

The lookahead approach is formulated as a Boolean satisfiability problem (SAT) [9]. This
allows the application of specialized SAT solvers online during the branching operation
to decide whether the branch should be kept or pruned. The problem consists of four
clauses, one of which is optional. Let g ∈ G be a gate from the set G of all abstract gates

111

in the circuit topology. Further, let θ ∈ R ⊂ L be a specific genetic gate represented by its
set of parameters θ, grouped in R with gates using the same TF and being part of the
gate library L. Then aθ→g ∈ B = {0,1} is the Boolean variable indicating the mapping of
implementation θ to gate g. Let further s ∈ S be a logic type from the types S present in the
library and t(g) ∶ G→ S, t(θ) ∶ L→ S the functions mapping gates and implementations
to their logic type, respectively. Then the first clause of the SAT problem

∀g ∈ G,∀θ ∈ L ∶ ∃aθ→g ∶ aθ→g = 1 ∧ t(g) = t(θ)

ensures that every gate in the circuit is assigned at least one specific gate implementation
of the same type. Further, the second clause

∀R ⊂ L ∶ ∣{∀θ ∈ R,∀g ∈ G ∶ aθ→g} = 1∣ ≤ 1

states that every TF must be part of maximally one assignment, avoiding direct crosstalk
in the circuit. Let furthermore n be the maximum number of inputs of any gate in
the library. Then (θ1, θ2, . . . , θn, θt) ∈ T represents an (n + 1)-tuple of n specific gates
providing the inputs of gate θt from the set T of such tuples in the circuit. Denote by
c(θ1, θ2, . . . , θn, θt) ∶ Ln,L → B the function that queries the compatibility matrix for a
given (n + 1)-tuple of gates. Then, the third clause

∀(θ1, θ2, . . . , θn, θt) ∈ T ∶ c(θ1, θ2, . . . , θn, θt) = 1

ensures that every tuple present in the circuit adheres to the compatibility criteria. The
final clause

∀g ∈ G,∀θ ∈ L ∶ ∃aθ→g = 1 ∧ ∀τ ≠ θ ∈ L ∶ ∄aτ→g = 1

states that every gate in the topology is assigned maximally one specific genetic gate. It is
optional for evaluating the compatibility but can be useful as it enables retrieving valid
assignments from the SAT model. To speed up the evaluation of the SAT problem, it is set
up before the technology mapping process based on the circuit structure and the library of
gate implementations. When it is used to evaluate a (partial) assignment, only the values
of the variables a have to be set according to the existing assignment.

Refinement of the Exact Mode

As shown in Section 8.3.4, the B&B method requires the substitution of invalid bounds for
a guaranteed exactness. In the B&B scheme, signals representing a Boolean 0 are assumed
to be lower bounds to the values possible at the respective site. Thus, for a superposition
at a multi-input gate involving such a signal to represent a valid upper bound, the value

112

Table 9.3.: Refined substitution of invalid bounds based on compatibility criteria

x1 x2 x = x1 + x2 substitution

0 0 0 -
1 0 1 x2 → i0(,C)
0 1 1 x1 → i0(,C)
1 1 1 -

has to be substituted with the highest possible signal at this site. For the lack of any other
valid upper bound, this is ymax for an assigned gate. If it is not assigned, this is the highest
output possible, i.e., ymax,C, of all candidate gates C = {θ ∈ L ∶ θ ∉ a} left in the library,
with a being the gate assignment.
However, if an assignment of genetic gates adheres to the presented compatibility

criteria, all signals are guaranteed to operate within the defined ranges. As this includes a
maximum output value for signals representing a Boolean 0, i.e., i0, the substitution can be
refined as shown in Table 9.3 for the superposition of two inputs. Analog to the approach
for substitution without compatibility criteria, the maximum guaranteed output of the
specific gate, i.e., i0, or the maximum guaranteed output of all gates being candidates for
the assignment, i.e., i0,C , is chosen as a substitute.

9.2.4. Implications for the Gate Assignment Search

The implications of applying the presented compatibility criteria for the gate assignment
process are evaluated in the following. Analog to Section 8.4, the set of 66 circuit topologies
is assigned the genetic gates of Cello’s library. The process has been carried out with
the B&B method (Section 8.3) using the SAT-based compatibility lookahead and refined
estimator for the exact mode (Section 9.2.3). For comparison, an exhaustive search has
been carried out, also with enforced compatibility criteria.
For one of the 66 circuit topologies, which contains 5 NOR gates and 2 NOT gates, no

gate assignment that adheres to the compatibility measure exists. This visualizes the
strictness of the criteria and represents a difference to the E-Score-based optimization.
Both methods are compared in detail in Section 9.3. Table 9.4 shows the gate assignment
results regarding search efficiency and runtime. While the upper two rows correspond to
the usage of the compatibility criteria, the lower two rows are repeated from Section 8.4.3
to allow for a comparison to the gate assignment without applying the criteria. Considering
the exhaustive search results, the enforced compatibility dramatically reduces the space

113

Table 9.4.: Search efficiency and runtime of exact Branch-and-Bound (B&B) and exhaus-
tive search (Exh.) with and without enforced compatibility

Search Efficiency Runtime

Method Compatibility Simulations Gain Trav. (%) Runtime (h) Speedup

B&B
✓

142584 1.4× 73.3 5.0 83.3×
Exh. 194591 1.0× 100.0 416.6 1.0×

B&B - 34039365 15.4× 6.5 505.2 19.7×
Exh. 524937849 1.0× 100.0 9962.3 1.0×

2 3 4 5 6 7 8
Number of gates

102

103

104

105

106

107

108

M
ea

n
nu

m
be

r o
f s

im
ul

at
io

ns

Exhaustive
B&B
Exhaustive (compat.)
B&B (compat.)

Figure 9.4.: Mean number of simulations by circuit size for exhaustive search and exact
B&B, with and without enforcing the compatibility criteria

114

of valid gate assignments ~2.7 × 103×. Given this reduced search space, B&B exhibits a
reduced 1.4×gain in efficiency when the compatibility criteria are used, corresponding to
a traversal of 73.3% of the search space.
Note that the absolute numbers in runtime are not comparable between the rows with

compatibility and those without since another version of the circuit simulator has been
used for the former, based on a thermodynamic circuit model (Chapter 10). However,
the depicted speedups are valid, as they refer to the corresponding exhaustive search,
which has been carried out with the same simulator. While the search efficiency of B&B
decreases, the speedup increases considerably to 83.3×when the compatibility criteria are
used. This diverging behavior is caused by the lookahead pruning implemented in B&B.
While the exhaustive search traverses the whole search space of ~5.2 × 108 assignments
and determines the compatibility of the genetic gates for each of the assignments, the
lookahead pruning of B&B avoids the compatibility evaluation of large parts of the search
space. Figure 9.4 shows the mean number of simulations for the four gate assignments
methods with respect to the number of gates in the circuit. With enforced compatibility
criteria, shown by the dashed lines, the reduced efficiency advantage of B&B in circuit
simulations becomes visible.

9.3. Comparison of the Methods

After the isolated evaluation of both methods for integrating robustness into technology
mapping in Sections 9.1 and 9.2.4 regarding efficiency, runtime, and solution quality,
they are compared in this section. First, efficiency and runtime are compared, followed
by a comparison of the mapping results regarding the central objective in this chapter,
robustness.

Search Efficiency and Runtime

Table 9.5 repeats the main results of assigning Cello’s gates to the set of 66 circuit
topologies with SA and the E-Score as an objective function (Section 9.1), as well as with
B&B using the compatibility criteria and the Cello score as objective function (Section
9.2.4). While SA requires ~11.6 × 106 circuit simulations to assign gates to all topologies,
B&B needs ~14.3 × 104. This equals a gain in search efficiency of B&B compared to SA
of ~81×. The improved traversal of the search space translates to a runtime of 5 h of
B&B, compared to ~129 h of SA. Note, however, that the runtimes have been measured
with different versions of the circuit simulator. While for SA and the E-Score, the classical
simulator has been used, B&B with compatibility criteria has been evaluated using the

115

Table 9.5.: Number of simulations and runtime of SA using the E-Score and B&B using
the compatibility criteria

Method Number of simulations Runtime (h)a

SA with E-Score 11580687 128.7
B&B with compatibility 142584 5.0

a Measured with different versions of the circuit simulator and
thus allowing a qualitative comparison.

thermodynamic simulator. Since the thermodynamic simulator performs more complex
computations than the traditional one, the shown runtime of B&B represents a pessimistic
upper bound. Nonetheless, the runtime advantage of B&B, even in this pessimistic case,
highlights its improved efficiency compared to SA.

Robustness

The quantitative comparison of the robustness of circuit designs generated by both methods
requires a common metric. To this end, the E-Score is chosen, as it represents a measure
for both adherence to the functional specification and robustness, grounded on a statistical
evaluation of the circuit (Section 4.3). Since the presented SA method optimizes designs
directly for the E-Score, the resulting score values can immediately be used for the
comparison. However, the B&B method optimizes circuits with respect to the Cello
score and introduces robustness heuristically by constraining the search space with the
compatibility criteria. Thus, the resulting designs are re-scored with the E-Score, allowing
for a comparison to SA’s results. Figure 9.5 summarizes this comparison for the 65 circuits
that could be mapped using the constrained B&B method. It categorizes each circuit
topology assigned with B&B regarding its relative deviation of E-Score compared to the
same circuit mapped with SA. The worst E-Score encountered in any of the 10 runs
performed with SA has been chosen for every circuit. For 8 circuits, assigning gates using
the compatibility criteria and B&B leads to the same E-Score as using SA. Further, 26
circuits exhibit a minor relative deviation of up to −10%. A deviation in the range of −30%
to −10% can be observed for another 22 circuits. Finally, 9 circuits represent outliers with
a worse deviation than −30%, two of which exhibit the measured worst-case of ~−70%.
Figure 9.6 exemplifies the output characteristic of two resulting circuit designs for

one topology. It consists of 7 NOR gates and implements function ϕ15 defined in Table
A.1. In Figure 9.6a, the characteristic of the circuit mapped with SA and the E-Score is

116

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Relative deviation of E-Score

0

2

4

6

8

10

12

14

N
um

be
r o

f c
irc

ui
ts

Figure 9.5.: Relative deviation of E-Score of circuits assigned with B&B and compatibility
criteria compared to SA with E-Score

shown. Figure 9.6b depicts the characteristic of the circuit mapped with B&B, the Cello
score and the compatibility criteria. The SA-circuit achieves an E-Score of 141.1 and the
B&B-circuit an E-Score of 41.4 (rescored, originally a Cello score of 75.5). Thus, the
B&B-circuit features a relative deviation of ~−70% in E-Score, representing one of the
outliers in Figure 9.5. Both circuit designs have in common that their respective output
characteristics do not feature an overlap of the Boolean 0 and 1 states. This represents
a key feature of robust circuit designs. However, the separation of output distributions
is higher for the design generated with SA and the E-Score. This is especially caused by
the distribution representing the Boolean 1 state, which is shifted by approximately one
order of magnitude. Thus, both designs are robust regarding non-overlapping output
distributions. However, the circuit optimized directly for the E-Score features a higher
margin for unforeseen perturbations to the circuit characteristic, e.g., caused by cell-to-cell
variability. This highlights the heuristic nature of the compatibility criteria. On the one
hand, they avoid overlapping output distributions by introducing perturbation margins

117

(a) SA (E-Score)

(b) B&B (CELLO score and compatibility criteria)

Figure 9.6.: Output characteristics of circuits for function ϕ15 assigned with different
methods for robustness

locally among gates. On the other hand, they are based on strict thresholds, limiting the
optimizer’s opportunities to cross these thresholds and explore solutions that represent
good trade-offs.

Conclusion

In this section, two methods for the technology mapping for robust genetic circuits have
been compared. One method leverages the flexibility of the SA gate assignment scheme
concerning the used objective function and optimizes circuits for the E-Score. The other
constrains the search space for gate assignments by enforcing perturbation margins,
i.e., signal compatibility, among gates in the circuit and is integrated into the B&B gate
assignment method. Its efficiency in traversing the search space and application of the
computationally simple Cello score results in an at least 25.7×advantage in runtime
compared to themethod based on the E-Score. For 34 of the 66 tested circuits, a comparable
quality in E-Score is obtained using the compatibility heuristic. Further, an outlier for
which the B&B method yielded a 70% worse E-Score compared to SA was analyzed in
detail. It was shown that both designs do not exhibit overlapping output distributions.
However, the circuit optimized directly for the E-Score features a larger separation of

118

output distributions, i.e., an increased margin for potential perturbations. In summary,
the compatibility criteria can enforce non-overlapping output distributions and constrain
the search space efficiently in that regard. In approximately half of the tested cases, the
designs obtained in this way are comparable to those obtained by direct optimization for
the E-Score. However, the results for the other half hint at the exclusion of good solutions
by the strict, local criteria.

119

10. Context-Aware Technology Mapping

In synthetic genetic circuits, context effects can lead to undesired interactions of parts
of the circuit with each other or the host organism (Section 4.4). If the circuit model
does not consider these effects, its predictive power is limited. Using such a limited model
in a technology mapping process may lead to non-optimal designs, as the context the
design is embedded into is ignored during its optimization. The thermodynamic circuit
model presented in Section 4.4 allows taking into account two important context effects
directly related to gene regulation, i.e., titration and crosstalk. Titration modulates the
transfer characteristic of genetic gates but has a minor impact on the technology mapping
process. Crosstalk, however, introduces additional signal paths and thus affects the problem
structure. The implications of both effects are detailed in Section 10.1. The introduction
of crosstalk disrupts some of the assumptions on which the B&B gate assignment method
(Section 8.3) is based. The adaptation of the method to these new conditions is presented
in Section 10.2, aiming to transfer the efficient and exact technology mapping method
to circuits under crosstalk. First, the paradigm of optimistic input interval composition
(Section 8.3.4) is extended to crosstalk environments in Section 10.2.1. A refinement of
crosstalk estimation in B&B’s heuristic mode is detailed in Section 10.2.2. Finally, the
effect of assumed crosstalk on the functionality of circuit designs and the efficiency of
B&B is evaluated in Section 10.2.3.

10.1. Implications of Context Effects

The effects of titration and crosstalk on the transfer function of genetic gates have been
introduced in Section 4.4. The implications arising from this for technology mapping are
detailed in the following.

Titration As depicted in Figure 4.6b for a gate based on repression, titration modulates
the low-input regime of the function. This is caused by the binding of TFs to non-cognate
binding sites, e.g., at the host genome, which is undesired in the context of the circuit
function. By this, the availability of the TF as a functional component of the circuit is

120

reduced, leading to higher required TF levels to regulate the gate. This can be modeled as a
static effect since it depends solely on the binding sites present in the circuit’s environment.
Thus, it can be computed prior to technology mapping using the thermodynamic model
and information of the gate library and environment. The result is a modified gate library
with modulated transfer characteristics reflecting the current titration in the circuit’s
environment. The problem structure of gate assignment, as well as important features of
the transfer curves leveraged in the methods presented in Chapter 8, i.e., monotonicity
and bounded output interval (Section 3.2), remain unchanged. Consequentially, titration
can be integrated into the presented technology mapping methods by simply using an
adapted gate library.

Crosstalk The binding of functional TFs at non-cognate promoters that are part of the
circuit leads to the effect of crosstalk. Again, this is reflected in a modulation of the
transfer curve (Figure 4.6b). The gate, which is subject to crosstalk, exhibits an undesired
regulation, potentially reducing the output in the low-input regime in the case of repression.
From this gate-to-gate crosstalk, two significant consequences follow. First, its effect is
dynamic since the degree of regulation of non-cognate promoters scales with the abundance
of the crosstalk-inducing TF. Thus, its influence on the circuit characteristic cannot be
reflected statically in the library but must be determined during circuit simulation. Second,
it introduces regulatory cycles in the circuit since a TF can potentially exert crosstalk on
promoters belonging to preceding gates. This is exemplified in Figure 10.1 for a simple
circuit consisting of a NOT gate and a NOR gate. Figure 10.1a depicts the additional
signal paths that are introduced by potential crosstalk of the NOR gate’s TF as dashed
lines. If any of these three crosstalk-relations are present, the TF’s concentration or flux is
subject to a cyclic dependency. This is shown in more detail in Figure 10.1b, using the
SBOL Visual representation of the circuit. The dashed line below the diagram depicts the
repressing effect of the TF on both primary input promoters and the NOT gate’s output
promoter. When repressing the NOT gate’s output promoter or pA, the TF attenuates its
own synthesis, while it increases it when repressing pB. Note that also the TF of the NOT
gate can potentially induce crosstalk at all promoters present in the circuit.
Like titration, crosstalk does not affect the fundamental properties of monotonicity and

bounded output of genetic gates’ transfer functions. In principle, the presented optimiza-
tion methods for gate assignment are still applicable if crosstalk is present. However, the
possible introduction of arbitrary interactions in the circuit necessitates an extension of
the optimistic input interval composition of the B&B method (Section 8.3.4). In its basic
version, it only considers inputs wired in the circuit diagram, i.e., desired interactions,
and estimates the values of these input signals optimistically with respect to the circuit

121

A

B

O

(a) Additional signal paths

pB pA YFP

(b) Additional regulatory relations

Figure 10.1.: Potential crosstalk exerted on non-cognate promoters exemplified by the
NOR gate’s TF

score. To support crosstalk, the contribution of other TFs must also be estimated opti-
mistically. To this end, beneficial and detrimental crosstalk must be distinguished, and
only the former has to be included in favor of an optimistic estimation. Further, potential
cyclic dependencies of signals must be opened up, and upper bounds for signals subject to
cycles must be found. This is detailed in Section 10.2. Lastly, the presence of cycles makes
the determination of the circuit characteristic, i.e., its operating point in steady state, a
root finding problem. Thus, the simulation of circuits with crosstalk is potentially much
more computationally complex than the crosstalk-free case.

10.2. Context-Aware Branch-and-Bound

Note: Parts of this section have already been published in [24]. Explicit self-citation is omitted
to provide an improved reading flow.

As marked out in Section 10.1, genetic gate transfer characteristics are monotonic and
bounded, even if titration and crosstalk are considered. Thus, the propagation of optimistic
input values through the circuit applied in the B&Bmethod (Section 8.3.4) to optimistically
estimate the Cello score of a partial assignment is generally feasible when considering

122

m1

m2

Input Interval

Composition

θ1

θ2

θ3

θ4

θ5

Crosstalk

Environment

θ3

θ1

θ2θ4

θ5

Figure 10.2.: Generalization of the optimistic input interval composition to crosstalk
environments

context effects. However, the estimation has to be adapted since the inputs of a gate are
not only given by the desired connections shown in the wiring diagram but potentially
by all gates present in the circuit. Furthermore, the introduction of cyclic dependencies
breaks the assumption of the undisturbed propagation of optimistic values through the
circuit. Potentially, an assumed optimistic output value at any site of the circuit can
deteriorate the circuit characteristic by inducing crosstalk at other gates. Thus, these
cycles have to be handled by an estimator to allow for an optimistic estimation and
eventually guarantee the exactness of the method. In the following, the adaptation of
the estimator is presented, which generalizes the optimistic input interval composition
approach to crosstalk environments.

10.2.1. Crosstalk Environments

In the optimistic input interval composition approach for estimation presented in Section
8.3.4, a partial assignment of genetic gates to a circuit topology is embedded into an
optimistic complete solution. This principle is visualized in Figure 10.2 on the left. In the
shown circuit of 5 gates, gates θ1 to θ3 are assigned specific genetic gates, and gates θ4 and
θ5 are unassigned. This represents an exemplary partial solution to the gate assignment
problem from B&B’s search tree (Section 8.3.1). A set of optimistic input values is then
assumed for each input into the sub-circuit defined by the partial assignment. In the
example, this is marked out exemplarily for inputs m1 and m2 of gate θ3. Based on the
gates left in the library, the minimal possible input value is assumed if the signal represents
a Boolean 0, and the maximal possible value is assumed if it represents a Boolean 1. In the
substitution step of invalid bounds, the considered gate’s desired Boolean output value is

123

considered when composing its input values during the estimation to guarantee optimistic
values and exactness of the search. Then, the effect of the gate’s TF on its cognate output
promoter is estimated by applying the gate’s transfer function to the estimated input
promoter activities.
This composition of input values for signals defined in the circuit schematic, i.e., desired

interactions, has to be generalized to a global view to estimate the quality of partial
assignments if crosstalk is present. In the thermodynamic circuit model, no qualitative
difference exists in the relation of TFs to cognate and non-cognate promoters. Merely, every
TF potentially binds to all promoters, and each relation is characterized quantitatively by
an individual binding affinity. Thus, every TF present in the circuit must be considered
when estimating a gate’s output value since it potentially regulates the considered gate.
This is implied on the right side of Figure 10.2. Note that all gates in the circuit potentially
contribute to the crosstalk environment of gate θ3, including θ3 itself. Consequentially, the
crosstalk environment of a gate consists of all possible contributions of other gates, which
benefit its desired output value concerning the Cello score. In the following, the crosstalk-
environments for a desired Boolean 0 and 1 output of a gate are called 0-environment and
1-environment, respectively. Concisely, for each environment, an optimistic input interval
composition and estimation of produced TF has to be carried out for all gates in the circuit
to estimate their effect on the output promoter of the considered gate. This process is
detailed in the following.

Definitions

Let θ denote an individual genetic gate with a unique TF and cognate promoter, and L a
library of gates, i.e., θ ∈ L. In addition to the previous model, denote by b ∶ L ×L→ R the
function retrieving the binding affinity of one gate’s TF to another gate’s cognate promoter.
For example, b(θ2, θ3) > 0 implies a non-zero binding affinity of the yellow gate’s TF to
the output promoter of the orange gate in Figure 10.2. Let further m ∈ N be the number
of gates in the considered circuit. Let the target gate, for which the crosstalk-environment
shall be composed, be called θj with j ∈ [1..m] and all other gates, i.e., source gates,
be called θi with i ∈ m, i ≠ j. To calculate the effect of one gate on another gate, the
thermodynamic circuit model requires two values. The first component is the total activity
of the source gate’s input promoters c ∈ R, which defines the quantity of produced TF. The
second component is the binding affinity of the produced TF to the target gate’s output
promoter b ∈ R. In the following, this tuple c = (c, b) is called the contribution of a source
gate to the target gate’s crosstalk environment. The 0-environment of a gate is composed
of all contributions that benefit its 0-output, and the 1-environment is composed of all
contributions that benefit its 1-output. In the case of gates based on repression detailed

124

θjθi

bij
[cmin,i, cmax,i]

Figure 10.3.: Crosstalk exerted by assigned gates and components of their contribution
to the crosstalk environments

below, the contributions that constitute the 0-environment represent an upper bound on
the repressing effect of the source gates. Vice versa, the contributions in the 1-environment
represent a lower bound on their exerted repression.

Contribution of Assigned Gates

In the following, the contribution of gates that are part of the partial assignment, i.e., are
assigned a specific genetic gate, is detailed. This setup is visualized for a pair of source
gate θi and target gate θj in Figure 10.3. First, lower and upper bounds for the total input
promoter activity of θi must be found to estimate the minimum and maximum quantities
of produced TF. For every input of θi, it is differentiated whether the identity of the input
promoter is defined, i.e., the gate serving as an input is assigned or not. If the input
promoter is known, its basal and maximum activity, i.e., [ymin, ymax], provide valid bounds.
If the input promoter is of unknown identity, these bounds have to be determined by finding
the minimum and maximum promoter activity in the set C = {θ ∈ L ∶ θ ∉ a} of candidate
gates left in the library, with a the current partial assignment. The resulting extremal
combined input promoter activities of gate θi, called cmin,i and cmax,i, are obtained by
summing up the minimum and maximum values of all its input promoters, respectively.
In the 0-environment of θj , cmax,i is assumed since the highest possible input promoter
activity of gate θi leads to the highest quantity of produced TF and thus to the most
impactful repression of gate θj . Vice versa, cmin,i is assumed in the 1-environment. Since
cmin,i and cmax,i represent extremal values rooted in the characteristics of transcriptional
regulation, the estimation of induced crosstalk is also extremal. Further, the estimation is
not based on activity values obtained during the circuit simulation and thus eliminates
the cyclic dependencies introduced by crosstalk.
The second component necessary to estimate the effect of the source gate on the target

gate is the binding affinity of the crosstalk-inducting TF to the target gate’s output promoter.
Since both gates are assumed to be assigned a specific genetic gate, the affinity can be
retrieved by querying the library, i.e., bij ∶= b(θi, θj). The second column of Table 10.1

125

Table 10.1.: Contributions of source gates to the target gate’s crosstalk environments for
exact B&B

Source gate θi
Target gate θj Assigned Unassigned

0-environment (cmax,i, bij) (cmax,i, bmax,j)
1-environment (cmin,i, bij) (cmin,i, bmin,j)

summarizes the contributions for both the 0-environment and the 1-environment.

Contribution of Unassigned Gates

If gates are not part of the partial assignment, i.e., not assigned a specific genetic gate, the
identity of the gates’ expressed TF is unknown. This setup is visualized in Figure 10.4. To
estimate their contribution to the crosstalk environment, lower and upper bounds for the
binding affinity to the output promoter of θj must be found. Based on the set of candidate
gates C for an assignment to θi, the minimum affinity bmin,j and the maximum affinity
bmax,j can be found by querying the library, i.e.,

bmin,j ∶=min
θi∈C

b(θi, θj),

bmax,j ∶=max
θi∈C

b(θi, θj).

The maximum affinity is assumed in the 0-environment of θj , and in its 1-environment, the
minimum affinity is assumed (Table 10.1, third column). The input promoter activity of
unassigned gates is determined analog to assigned gates. Since the gates serving as input
to unassigned gates are also unassigned in a partial solution of B&B, the input promoter
activity must always be estimated based on C.

θjθi

[bmin,j, bmax,j]
[cmin,i, cmax,i]

Figure 10.4.: Crosstalk exerted by unassigned gates and components of their contribution
to the crosstalk environments

126

θj

bjj
[cmin,j, cmax,j]

Figure 10.5.: Contribution of the target gate itself to its crosstalk environments

Contribution of the Gate Itself

The target gate θj contributes to the regulation of its output promoter via its own TF
(Figure 10.5). Since the crosstalk environments are composed only for gates part of
the partial assignment, the identity of their TF is known. Thus, their contribution can
be composed analog to other assigned gates. That is, the binding affinity is given by
the affinity of their TF to its cognate promoter, i.e., bjj ∶= b(θj , θj). Further, if the
gate inputs are sourced by unassigned gates, the minimum and maximum activities
of the gate’s input promoters are given by the extremal output values of gates left in
the library. However, a significant difference applies in the case of inputs sourced by
assigned gates. Then, the input values stem from gates, which are also part of the partial
assignment subject to the estimation. Thus, the simulated output values of these gates
are forwarded and assumed as input promoter activity of the target gate. By this, the
optimistically estimated values are propagated through the cascade of logic gates, similar
to the estimation presented in Section 8.3.4. This includes substituting invalid bounds, in
which valid bounds replace input values obtained by simulation that violate the optimistic
estimation. For completeness, the contributions of the target gate itself are given in Table
C.1.

Application for Estimation

For estimating the quality of partial solutions during B&B if crosstalk is present, each
gate is embedded into its individual crosstalk environment. First, the desired Boolean
output value of the considered gate is determined based on the functional specification
of the circuit and the currently simulated Boolean input assignment. Then, either the
0-environment or the 1-environment is composed by superimposing all contributions to the
regulation of the gate’s output promoter. As presented above, this includes contributions
of unassigned gates not contained in the partial assignment, other assigned gates of the
partial assignment, and the gate itself. Based on the superimposed contributions, the
output value of the gate is determined. Analog to the estimation presented in Section

127

8.3.4, but considering potential crosstalk, the estimation is optimistic with respect to the
Cello score. That is, values representing a Boolean 0 are lower bounds to values possible
at the gate’s output in refined partial assignments, and values representing a Boolean 1
are upper bounds.

10.2.2. Compatibility and Heuristic Mode

Analog to the basic B&B scheme that does not consider crosstalk, the compatibility
criteria presented in Section 9.2 can be applied in the crosstalk-aware B&B. This allows
for optimizing circuit designs that exhibit context effects with a robustness constraint.
Additionally, the information provided by the compatibility criteria can be used to refine
the crosstalk estimation. While the refinement presented in Section 9.2.3 for the basic
B&B is applicable for B&B’s exact mode, the refined estimation of crosstalk detailed in
the following is applicable for the heuristic mode. It requires a differentiation between
the output states of the source gates, which exert crosstalk. Thus, besides differentiating
the target gate’s 0-environment and 1-environment, the environment in which the source
gate is assumed based on the circuit function must be differentiated.

Refinement for Assigned Gates

First, assume the source gate θi to be part of the partial assignment, i.e., assigned a specific
genetic logic gate. Then, its contribution to the crosstalk environments of target gate θj
can be refined based on the compatibility thresholds j0 and j1 calculated for every gate
(Section 9.2.2) for two of four combinations of the target gate’s and the source gate’s
assumed Boolean outputs. Table 10.2 shows the four combinations resulting from each
gate being in one of its crosstalk environments. If the target gate θj is assumed in its
0-environment, maximum repression by crosstalk must be estimated. If, additionally,
the source gate θi is in its 1-environment, its maximum input promoter activity can be
estimated more realistically by j0,i instead of cmax,i, reducing the estimated crosstalk.
The second possibility for refinement arises if θj is in its 1-environment and θi in its
0-environment. Then, minimum crosstalk has to be assumed to estimate the output
optimistically. Analog to the first case, the minimum input of θi in its 0-environment can
be estimated by j1,j instead of cmin,i, potentially increasing the estimated crosstalk. Note
that these refinements are only applicable in B&B’s heuristic mode, even if compatibility
of gates is enforced, because j0 and j1 do not represent valid thresholds if crosstalk is
present.

128

Table 10.2.: Contributions of assigned source gates to the target gate’s crosstalk envi-
ronments for heuristic B&B

Source gate θi
Target gate θj 0-environment 1-environment

0-environment (cmax,i, bij) (j0,i, bij)
1-environment (j1,i, bij) (cmin,i, bij)

Refinement for Unassigned Gates

If the source gate is unassigned, i.e., not part of the partial assignment, its contribution to
the crosstalk environment can be refined similarly. However, the identity of its TF and
thus the binding affinity of that TF to the target gate’s promoter is unknown. Thus, it
has to be estimated based on the gates left in the library analog to Section 10.2.1. The
resulting contributions are given in Table C.2 for completeness.

10.2.3. Evaluation

To evaluate the impact of crosstalk on technology mapping and predicted performance of
genetic logic circuits, a set of gate assignment runs has been carried out for the 66 circuit
topologies introduced in Section 8.4. For Cello’s [53] library of genetic gates, 35 different
crosstalk configurations have been generated and supplied by the Self-Organizing Systems
Lab. Then, context-aware gate assignment has been carried out using an exhaustive search,
exact B&B (Section 10.2.1) and heuristic B&B (Section 10.2.2) as optimization methods,
the Cello score (Section 4.2) as objective function and the thermodynamic circuit simula-
tor (Section 4.4). To make the execution of the high number of gate assignment runs with
different crosstalk configurations feasible, the compatibility criteria (Section 9.2.2) have
been applied to constrain the search space. The exhaustive search results have been used
to successfully verify the exactness of the B&B method under crosstalk. In the remainder
of this section, the used crosstalk configurations are detailed, and the impact of crosstalk
on the technology mapping process and circuit performance is analyzed.

Assumed Crosstalk Configurations

The assumed crosstalk configurations used for evaluation have been generated randomly,
based on two parameters characterizing crosstalk distribution across a library of genetic
gates [24]. For each promoter in the library, random values have been sampled from a

129

Dirichlet distribution for each non-cognate TF. From these values, normalized relative
binding affinities for non-cognate TFs have been obtained relative to the binding affinity of
the cognate TF. One concentration hyperparameter is used for controlling the distribution,
determining how sparse the random crosstalk is distributed across the non-cognate TFs.
The second parameter controls the overall intensity of the binding affinity of non-cognate
TFs, while an intensity of 1 equals the affinity of the cognate TF.
By controlling these two parameters, 35 crosstalk configurations have been generated

for Cello’s library of genetic gates. In total, 7 different Dirichlet configurations have been
used, with Configuration 0 representing a very peaked distribution, i.e., strong crosstalk by
few TFs, and Configuration 7 representing a very noisy distribution, i.e., evenly distributed
crosstalk across all TFs. Further, the intensity has been scaled in 5 steps of 0.05, 0.1,
0.15, 0.25 and 0.5. Figure 10.6 visualizes the different crosstalk configurations with 6
examples. The three Dirichlet configurations 0, 3, and 6 are shown from left to right. Each
configuration is depicted with an intensity of 0.05 in the top row and an intensity of 0.5
in the bottom row. Vertically in each matrix, the promoters of Cello’s gate library are
listed, while its TFs are listed horizontally. Each color-coded square in the grid represents
the binding affinity of one TF to one promoter relative to the affinity of the corresponding
cognate TF. It can be observed that the distribution of crosstalk is indeed very peaked for
Configuration 0, with single binding affinities of non-cognate TFs exceeding those of the
other configurations in the high-intensity case. On the other hand, Configuration 6 leads
to a noise floor of evenly distributed crosstalk of varying intensity.

Impact on Search Efficiency

The presence of crosstalk in a genetic circuit is expected to impact the efficiency of B&B
since all crosstalk relations have to be estimated optimistically, and feedback loops have
to be opened up in that estimation (Section 10.2.1). The more crosstalk is estimated
in a partial solution, the more the estimation is expected to deviate from the circuit
characteristic with intact crosstalk cycles. Figure 10.7 shows the loss of search efficiency
for all tested crosstalk configurations for exact (Figure 10.7a) and heuristic (Figure 10.7b)
B&B. Each square in the grid depicts the relative overhead of B&B in the respective
configuration, measured in the number of simulations required for mapping the set of
circuits divided by the number required without crosstalk. Purple colors signify a positive
overhead, with increased color saturation illustrating increased overhead. Light yellow,
on the other hand, signifies an overhead below 1, i.e., improved efficiency. Generally,
the overhead increases for both B&B modes with rising crosstalk intensity and rising
noisiness, respectively. In exact mode, the baseline is given by ~1.6 × 105 simulations
without crosstalk. For one crosstalk configuration (Dirichlet configuration 0, intensity

130

Configuration 0 Configuration 3 Configuration 6

N
o

rm
a

liz
e

d
 b

in
d

in
g

 s
tr

e
n

g
th

N
o

rm
a

liz
e

d
 b

in
d

in
g

 s
tr

e
n

g
th

Transcription factor

Ta
rg

e
t

p
ro

m
o

te
r

Figure 10.6.: Characteristics of assumed crosstalk: peaked to noisy distribution (left to
right), low to high intensity (top: 0.05, bottom: 0.5)

131

0.05 0.1 0.150.25 0.5
Crosstalk intensity

0

1

2

3

4

5

6

D
iri

ch
le

t c
on

fig
ur

at
io

n

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

ov
er

he
ad

(a) Exact mode

0.05 0.1 0.150.25 0.5
Crosstalk intensity

0

1

2

3

4

5

6

D
iri

ch
le

t c
on

fig
ur

at
io

n

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

ov
er

he
ad

(b) Heuristic mode

Figure 10.7.: Loss in B&B efficiency in number of simulations for the different crosstalk
configurations, relative to the crosstalk-free case

0.1), the search efficiency improved to ~1.58 × 105 simulations, while it worsened for
all others. The worst-case is measured for Dirichlet configuration 4 and intensity 0.5,
amounting to ~5.14 × 105 simulations. This equals a maximum 3.2×loss in efficiency
compared to the crosstalk-free case. A similar characteristic with increased divergence can
be observed for the heuristic mode. Here, four configurations lead to increased efficiency,
with the best-case again obtained for Dirichlet configuration 0 and intensity 0.1. In that
case, ~0.22 × 105 simulations have been required, compared to the crosstalk-free baseline
of ~0.28 × 105. The worst-case in heuristic mode is given by ~1.08 × 105 simulations for
Dirichlet configuration 5 and intensity 0.5, equaling a 3.8×reduction in efficiency.

Impact on Circuit Performance

Besides impacting the efficiency of technology mapping, crosstalk can degrade the pre-
dicted circuit performance since undesired interactions potentially work against desired
regulatory relations. Figure 10.8 shows the degradation of predicted circuit performance
for the circuits generated with exact (Figure 10.8a) and heuristic (Figure 10.8b) B&B for
all tested crosstalk configurations. Each square depicts the relative mean degradation of
the circuits mapped with the corresponding configuration, measured in the mean Cello

132

0.05 0.1 0.150.25 0.5
Crosstalk intensity

0

1

2

3

4

5

6

D
iri

ch
le

t c
on

fig
ur

at
io

n

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

m
ea

n
de

gr
ad

at
io

n

(a) Exact mode

0.05 0.1 0.150.25 0.5
Crosstalk intensity

0

1

2

3

4

5

6

D
iri

ch
le

t c
on

fig
ur

at
io

n

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

m
ea

n
de

gr
ad

at
io

n

(b) Heuristic mode

Figure 10.8.: Degradation of the mean CELLO score for the different crosstalk configura-
tions, relative to the crosstalk-free case

score of the circuits without crosstalk divided by the mean score of the circuits mapped
with the given crosstalk configuration. In other words, the color codes the multiplier
required to obtain the baseline score from the score determined with crosstalk. Again, pur-
ple colors signify a positive quotient, with increased color saturation illustrating increased
degradation. Light yellow signifies a degradation below 1, i.e., improved predicted circuit
performance. Paralleling the efficiency loss, the circuit performance generally degrades
with rising crosstalk intensity and rising noisiness of its distribution. In exact mode, the
worst-case degradation of ~2.7×has been measured for Dirichlet configuration 6 and
intensity 0.5, with a mean score of 114.2 compared to 307.2 without crosstalk. In heuristic
mode, the same configuration leads to a similar worst-case degradation of ~2.6×, with a
mean score of 112.9 compared to 296.4 without crosstalk. For Dirichlet configuration 0
and intensity 0.1, even a slight improvement in predicted performance can be observed,
with a ~0.98×degradation. This improvement, however, is an artifact of the heuristic gate
assignment optimization.

133

Conclusion

The context-aware B&B gate assignment method allows for the exact and heuristic tech-
nology mapping for genetic circuits that exhibit crosstalk. If the undesired interactions
are distributed sparsely across the gate library, i.e., non-zero binding affinities of TFs to
a limited number of non-cognate promoters exist, the efficiency of the optimization is
maintained even for high intensities of crosstalk. The same holds for evenly distributed,
noise-like crosstalk with limited intensity. With the rising intensity of noisy crosstalk,
B&B’s estimator becomes increasingly non-descriptive with respect to the prediction of
the final score, leading to a loss in mapping efficiency.
The evaluation showed that the predicted circuit performance is similarly impacted

by crosstalk. Crosstalk of low intensity does not substantially harm the circuit function,
irrespective of its distribution. Even strong undesired binding affinities in the gate library
are manageable if they are distributed sparsely among TFs and promoters. Their impact
can be mitigated by considering them during the gate assignment optimization and
constructing context-aware circuit designs. As expected, noisy crosstalk of high intensity
harms the circuit performance since it degrades the performance of all gates and thus
cannot be avoided by clever design. These results have an important implication for the
design of genetic gate or part libraries. The paradigm of strict functional orthogonality can
be relaxed to allow limited undesired interactions if these relations are sparse or of low
intensity. As shown, good circuit designs can be found despite such non-orthogonalities if
they are considered during technology mapping. This may open up new opportunities for
constructing larger genetic gate and part libraries.

134

Synopsis

135

11. Combined Technology Mapping Flow

In the previous chapters, methods covering specific aspects of the technology mapping
process for genetic circuits have been presented and evaluated in detail. In this chapter,
the methods are embedded into the context of a comprehensive technology mapping flow
(Section 11.1). Based on this, meaningful scenarios for technology mapping are composed
and evaluated exemplary (Section 11.2).

11.1. Overview of the Methods

Figure 11.1 depicts the technology mapping flow and subsumes the methods presented
and applied in this work.

Topology Synthesis First, a Boolean formula defining the desired function of the circuit
is transformed into a structural representation in the step of topology synthesis. In Chapter
7, the principle of structural variants has been presented, allowing the synthesis of multiple
circuit structures adhering to given synthesis constraints. Compared to classic technology
mapping approaches known and adopted from EDA, the search space for circuit designs
is broadened, taking into account heterogeneous genetic gate libraries. Since purely
combinational circuits are considered in this work, the resulting structures are DAGs with
nodes representing logic gates of the types given in the gate library. The topology synthesis
is undirected and only limited by the gate library and constraints.
In the next step of gate assignment optimization, the circuits are optimized for different

objectives. In the overview chart, the methods that can be applied in this phase of the
technology mapping flow are separated into four categories.

Optimization of Functionality First, the adherence of the circuit to the functional specifi-
cation can be measured either by the Cello score (Section 4.2), which rates the worst-case
distance of the medians of the circuit’s output distributions, or the E-Score (Section 4.3).

136

Boolean Formula

Toplogy Synthesis

E-Score

Gate Assignment

Optimization

Functionality

Robustness

Context-

Awareness

Search

Method

f : 𝔹n → 𝔹

Circuit Design

Exact

B&B

Heuristic

B&B

Simulated

Annealing

Thermodynamic

Circuit Model

Structural

Variants

Cello

Score

Compatibility

Criteria

Figure 11.1.: Overview of technology mapping methods presented in this work (green),
contributed by the Self-Organizing Systems Lab (blue) and adopted from the
literature (gray)

137

Optimization for Robustness Since the E-Score performs a statistical evaluation of the
circuit characteristic, it allows rating not only the distance but also the shape and overlap of
the distributions. Thus, it enables the design of robust circuits and additionally covers the
second category, robustness. As an alternative to this global optimization for robustness,
compatibility criteria have been presented, which are based on local perturbation margins
of signals and represent a heuristic for robustness that integrates into the B&B gate
assignment method (Section 9.2).

Context-Awareness Third, context effects can be considered by using the thermody-
namic circuit model to simulate and determine the output characteristic (Section 4.4).

Search Methods Lastly, multiple methods for efficiently traversing the search space
of gate assignments have been presented, enabling the exploration of variants and the
application of complex circuit models and scores. In Chapter 8, the proximity-based SA
heuristic, as well as exact and heuristic versions of the B&B method, have been presented,
based on the state-of-the-art circuit model and score of Cello. In Chapters 9 and 10,
the methods have been further developed to support the design of robust circuits and to
consider context effects. The result of the flow is the circuit design, i.e., topology and gate
assignment, found to deliver the highest score by the chosen search method.

Limitations Not all presented methods can be combined freely due to limitations detailed
in the following. First, the B&B search method only supports optimization for the Cello
score due to its highly problem-specific estimator and the increased complexity of the
E-Score. Thus, robust circuits can be designed either by optimizing for the E-Score using
SA, or by optimizing for the Cello score with applied compatibility criteria using either
of the search methods. Second, the thermodynamic circuit simulator only supports rating
circuits with the Cello score. An alternative for designing robust circuits while considering
context effects is given by combining the thermodynamic evaluation with the compatibility
criteria.

138

11.2. Evaluation

Based on the overview given in Section 11.1, combinations of the methods are composed
in Section 11.2.1 to meaningful technology mapping scenarios. Then, these scenarios are
evaluated exemplary and compared to each other.

11.2.1. Technology Mapping Scenarios

With the methods presented in this work, many different technology mapping flows can
be implemented. In the following, those combinations are identified which represent
meaningful scenarios with respect to a given mapping objective. Table 11.1 provides an
overview of the considered scenarios. All scenarios commonly make use of the enumeration
of structural variants since it has been shown to broaden the search space effectively and
thus is applicable irrespective of the mapping objective or search method.

Scenario A: Classic Technology Mapping

The first scenario parallels the base configuration used to construct and evaluate the basic
search methods (Chapter 8). That is, the Cello score is used to optimize gate assignments,
robustness is not explicitly taken into account, and the classic circuit simulator which
applies Cello’s circuit model (Section 4.2) is used. Since the heuristic B&B method has
been shown to deliver quasi-optimal results and an outstanding efficiency (Section 8.4.3),
it is used as a search method in this scenario.

Table 11.1.: Overview of considered technology mapping scenarios

Structural
Variants

Context-
Effects

Search
MethodScenario Functionality Robustness

A: Classic ✓ Cello score - - heur. B&B
B.1: Robustness ✓ E-Score E-Score - SA
B.2: Robustness ✓ Cello score Compat. - heur. B&B
C.1: Context-Aware ✓ Cello score - ✓ heur. B&B
C.2: Context-Aware ✓ Cello score Compat. ✓ heur. B&B

139

Scenarios B.1 and B.2: Technology Mapping for Robustness

Scenarios B.1 and B.2 are centered around designing robust genetic circuits and represent
alternative approaches to this problem. Scenario B.1 applies the E-Score as objective,
which covers both functionality and robustness of circuit designs. Since this score is only
supported by the SA scheme, it is used as a search method with the inner-loop criterion
configured for the E-Score (Section 9.1). Scenario B.2 represents an alternative approach
aimed towards a reduced mapping runtime, which uses the simpler Cello score and the
compatibility criteria to heuristically optimize the robustness of the design. This allows
the use of the heuristic B&B search method, which is highly optimized for the score and
the compatibility criteria (Section 9.2.3).

Scenarios C.1 and C.2: Context-Aware Technology Mapping

Finally, scenarios C.1 and C.2 allow for considering context effects during technology
mapping. Scenario C.1 uses the thermodynamic circuit simulator to model context effects
and calculate the Cello score of designs. Again, the heuristic B&B search method is used in
its context-aware version (Section 10.2.2) to reduce the number of costly simulations of the
thermodynamic model. Based on this, scenario C.2 incorporates robustness heuristically
by selecting gate assignments based on the compatibility criteria.

11.2.2. Setup

To evaluate the different technology mapping flows comparatively, they are subsequently
carried out on a standard desktop PC for an exemplary Boolean function. This allows
assessing their runtime in a realistic work environment. Both steps in the flow, i.e., the
enumeration of structural variants and the gate assignment optimization, are carried out in
parallel with four threads on a 3.2GHz processor with four cores. As gate library, Cello’s
[53] collection of repressor-based NOT and NOR gates is used. The Boolean function
f = ¬A¬B ∨A(B ∨C) has been chosen as functional specification. It is implementable
in the given technology with a minimum of 5 gates, with one of these gates being an
implicit OR gate at the output. Thus, it leads to medium-sized circuits in the context of
circuits considered in this work. For the enumeration of structural variants, the maximum
weight ω = 8 is chosen to allow for exploring non-minimal circuit structures. However, the
search space is constrained by setting the number of allowed excess gates to e = 1. That is,
all structures featuring more than one excess gate compared to the minimum structure
are filtered out during the enumeration. This enables a limited trade-off of optimization
objectives and circuit size. For evaluating the context-aware scenarios, one of the crosstalk

140

configurations presented in Section 10.2.3 is assumed. Specifically, Dirichlet configuration
2 and an intensity of 0.15 is chosen.

11.2.3. Results

In this section, the runtime of the different technology mapping scenarios, as well as the
resulting circuit designs, are detailed.

Runtime

Table 11.2 shows the runtime of each mapping scenario for both the enumeration of
structural variants and the optimization of the gate assignment. Since the topology
synthesis is not controlled by the mapping objective, it is invariant among all scenarios. In
total, 11 circuit topologies have been synthesized that adhere to the given constraints in
~23min. The number of gate assignments that are evaluated on these structures differs by
approximately two orders of magnitude in the different scenarios. While the heuristic B&B
search method, if constrained by the compatibility criteria, evaluates only ~11.5 × 103

(B.2) and ~16.7 × 103 (C.2) designs, the SA method evaluates ~1.45 × 106 assignments
when optimizing for the E-Score (B.1). The unconstrained usage of the heuristic B&B
method (A and C.1) leads to numbers of evaluated circuits between these two orders of
magnitude. The resulting runtimes additionally depend on the used circuit model and
score. Compared to the classic scenario, in which Cello’s circuit model and score are
applied, both the E-Score (B.1) as well as the thermodynamic circuit model (C.1 and
C.2) increase the computational complexity of circuit evaluation. The total runtime for
technology mapping spans from ~0.5 h (A, B.2 and C.2) to ~5 h (B.1).

Table 11.2.: Runtime of mapping function f = ¬A¬B ∨A(B ∨C) in different scenarios

Structural Variants Assignment Optimization

Scenario Number Runtime Simulations Runtime Total (h)

A: Classic

11
22min
42 sec

111049 11min 4 sec 0:34
B.1: Robustness 1451252 276min 13 sec 4:59
B.2: Robustness 11490 6min 43 sec 0:29
C.1: Context-Aware 299236 117min 56 sec 2:21
C.2: Context-Aware 16731 9min 15 sec 0:32

141

Circuit Designs

Figures 11.2 and 11.3 depict the circuit topologies, gate assignments, and achieved score
values for all technology mapping scenarios. Figure 11.2 also shows the circuits’ simulated
population-wide output characteristic. It can be observed that in scenarios A, B.1, and
B.2 (Figures 11.2a, 11.2b and 11.2c), the same circuit topology is selected from the set
of 11 structures. It consists of four NOR gates and one OR gate. In the context-aware
scenarios C.1 and C.2 (Figures 11.3a and 11.3b), however, the mapping process makes
use of the allowed excess gate. Two different topologies featuring an additional NOT gate
are selected in these cases. Furthermore, it can be observed that each mapping scenario
leads to an individual selection and assignment of genetic gates from the library to the
circuit structures.
Comparing the output characteristics of the circuits mapped for robustness (B.1 and

B.2) to the one obtained in the classic scenario (A), a strong separation and an eliminated
overlap of the output distributions is visible. Both robustness-centric solutions B.1 and B.2
feature comparable E-Score values and nearly identical output characteristics. That is, the
heuristic approach to robustness, based on the compatibility criteria and heuristic B&B,
delivers a result of similar quality compared to the direct optimization for the E-Score.
However, it has been previously shown that this heuristic is not guaranteed to provide
such good results (Section 9.3). The results for scenarios C.1 and C.2 show that under
assumed crosstalk, wholly different circuit designs prove advantageous. Scenario C.1
parallels scenario A and C.2 parallels B.2 concerning the mapping parameters, other than
assumed context effects. In both cases, however, different circuit topologies and gate
assignments are selected, providing the best performance under crosstalk.

Conclusion

In this section, a Boolean function with three inputs has been mapped to a library of
genetic NOT and NOR gates. The mapping has been performed with different parameters,
i.e., scenarios, for the technology mapping flow. The runtimes measured on a desktop PC
showcase the mapping methods’ feasibility in a standard working environment. Further,
they highlight the computational burden of statistical scoring and thermodynamic model-
ing and thus emphasize the necessity of efficient search methods. The resulting circuit
designs differ among the scenarios and demonstrate the benefits of taking structural vari-
ants into account, making robustness a design objective, and performing a context-aware
evaluation of the circuit if crosstalk is present among gates in the library.

142

Cello Score: 41.79

A

B

C

O

(a) Scenario A: Classic Technology Mapping

E-Score: 29.65

A

B

C

O

(b) Scenario B.1: Technology Mapping for Robustness

E-Score: 29.58

A

B

C

O

(c) Scenario B.2: Technology Mapping for Robustness

S4_SrpR

L1_LitRI1_IcaRA

S2_SrpRP3_PhlF

A1_AmtR P1_PhlF

Output OR

H1_HlyIIR

Q2_QacR

E1_BetI

Q1_QacR

(d) Gate legend

Figure 11.2.: Circuits implementing function f = ¬A¬B ∨A(B ∨C) resulting from classic
and robustness-aware technology mapping

143

Cello Score: 33.88

A

B

C

O

(a) Scenario C.1

Cello Score: 29.79

A

B

C

O

(b) Scenario C.2

Figure 11.3.: Circuits implementing function f = ¬A¬B∨A(B∨C) resulting from context-
aware technology mapping (gate legend in Figure 11.2d)

144

12. Conclusion and Outlook

In this chapter, the work is concluded in Section 12.1, followed by a discussion of potential
future work in Section 12.2.

12.1. Conclusion

Within this work, the problem of technology mapping for genetic circuits was examined
from multiple perspectives. First of all, methods of existing GDA tools were analyzed to
identify the potential for improved domain adaptation. Further, the problem structure was
examined in detail to identify characteristics that can be leveraged for efficient mapping.
Lastly, a critical knowledge transfer from EDA was performed, deducing analogies between
the two fields but also considering their differences.
Revisiting the motivation for the research presented in this work, one can formulate three

central objectives which follow from the current state of GDA. First, existing technology
mapping methods often exhibit a limited adaptation to the problem structure and thus
leave out important parts of the design space or deliver solutions with sub-optimal quality.
However, achieving a high quality of designs generated in technology mapping is necessary
to use the given models to their fullest potential and to enter the lab with the best possible
design. Second, the exploration of broad design spaces, application of complex models,
integration into the "design, build, test" cycle, and the potential growth of circuit and
library sizes all demand efficient technology mapping methods. Third, GDA design flows
suffer from the limited predictive power of the used models, and the support of refined
models can improve the meaningfulness of mapped designs.

Domain Adaptation The methods presented in this work improve the domain adaptation
of the technology mapping compared to state-of-the-art GDA approaches twofold.
First, incorporating structural variants in the design process broadens the search space

for circuit designs. The circuit topology thereby also becomes a subject of optimization
instead of demanding it as an input from the user or adopting the topology synthesis
from EDA. This approach is motivated by the restricted and heterogeneous genetic gate

145

libraries and the reduced correlation between features of the circuit topology and mapping
objectives. It could be shown that it improves the quality of mapped designs substantially
by up to 11.3×and a mean 38%, while keeping the circuit size minimal. The currently
applied enumeration of variants delivers exact results for the given synthesis constraints.
Enumeration is feasible for the circuit sizes implementable at present but is expected to
become impractical when dealing with considerably larger circuits. Thus, approximate
methods could be applied to leverage the concept of structural variants if genetic circuits
grow in size (Section 12.2).
Second, the discussed optimization methods reliably deliver high-quality solutions based

on thorough problem adaptation. If optimality is a strict requirement in the GDA flow,
the exact B&B method provides exact solutions substantially faster than an exhaustive
search. This is achieved by considering the functional hierarchy of genetic circuits and
fundamental features of genetic gates based on transcriptional regulation. The devised
heuristic methods apply well-founded approximations and deliver near-optimal results.
In detail, the SA method exhibits a worst-case deviation of −3.15% and the B&B method
of −0.11%, outperforming an existing heuristic in both efficiency and quality. Applying
heuristic methods and trading off exactness for the possibility of exploring broad design
spaces may represent a practical choice in many scenarios, given the natural variability of
biological systems.

Mapping Efficiency All presented optimization methods for the gate assignment substan-
tially reduce the number of needed circuit evaluations compared to an exhaustive search.
The reduction is particularly large for the heuristic methods, which exhibit a 79×(SA)
and a 611×(B&B) gain in efficiency, respectively. The increased efficiency translates to a
comparable speedup of the technology mapping process (108×with SA, 722×with B&B).
In the context of this work, this speedup allows for the exploration of structural variants
and the evaluation of elaborate circuit models in a standard computing environment. In
a general GDA flow, it further enables the practical integration of the methods into an
iterative design process and the support of potentially growing circuit and library sizes.

Support of Refined Models This work improves the meaningfulness of circuit designs
generated by technology mapping twofold.
First, the SA gate assignment scheme has been adapted to an alternative robustness-

centric objective function that considers cell-to-cell variability, the E-Score. On the one
hand, this highlights the flexibility of the SAmethod concerning the used objective function.
On the other hand, the required adaptation of a parameter of the annealing schedule
shows the highly parameterized nature of the method. Since the used E-Score is more

146

complex than the traditional median-based score, mapping efficiency and solution quality
are slightly reduced. Alternatively, a heuristic approach to robustness has been devised
based on local perturbation margins of signals. Integrating these compatibility criteria into
the B&B method with a lookahead scheme leads to a higher mapping efficiency compared
to the E-Score. The separation of output distributions, however, is reduced for some of
the tested circuits. Thus, the global optimization for robustness with the E-Score is a
worthwhile investment in applications where a high tolerance to cell-to-cell variability is
a central design objective, e.g., in biomedical applications.
Second, the integration of a context-aware circuit model into the technology mapping

flow allows for the exact and heuristic mapping for circuits that exhibit crosstalk. To
this end, the B&B gate assignment scheme is adapted to this model by embedding each
gate into its individual optimistic crosstalk environment during estimation. This improves
the predictive power of the mapping process and enables the designer of genetic gate
libraries to conclude the implications of potential crosstalk for the quality of designs. For
the library considered in this work, it could be shown that evenly distributed crosstalk of
high intensity degrades design quality. Crosstalk of low intensity or sparsely distributed
crosstalk, however, proved to be tolerable in the technology mapping process. Thereby, the
potential for relaxing the orthogonality criterion arises, simplifying the future extension
of libraries.

147

12.2. Outlook

The technology mapping for genetic circuits offers a multitude of opportunities for further
research. Some arise from the experience gained in implementing and evaluating the
methods presented in this work and are directly associated with these methods. Others
represent opportunities evolving from the broader context of GDA and the progress in
this field.

Heuristic for Structural Variants The enumeration of circuit topologies is exact with
respect to the given synthesis constraints but exhibits a combinatorial nature. It spans
a broad search space for the currently implementable small genetic logic circuits but
is expected to become infeasible for larger circuits. Thus, approximate methods are
necessary to benefit from structural variants if the size of circuits increases. A possible
approach is using supergates [18], i.e., pre-computed building blocks consisting of multiple
gates. These can be applied in a traditional structural mapping scheme, in which variants
are generated by covering the subject graph with different supergates. To adapt the
approach for genetic circuits, these building blocks can be selected based on their output
characteristic in the context of the considered gate library.

E-Score in Branch-and-Bound The B&B gate assignment methods have been developed
for the median-based Cello score for circuit functionality. Their ability to prune large
parts of the search tree is based on the optimistic estimation of the score for partial
solutions. It can be assumed that the functional hierarchy of genetic circuits leveraged
in the B&B scheme also holds for optimization with the E-Score. Thus, support for the
E-Score could improve the efficiency of technology mapping for robustness compared to
the SA scheme. It is questionable if an optimistic estimator for this more complex score
can be found, which enables finding the exact solution. However, heuristic B&B has been
proven to provide a near-optimal solution quality.

Energy-Aware Technology Mapping Cells are known to exhibit a trade-off between
function and energy [30]. Thus, the mutual exclusivity of both objectives must be assumed
when designing synthetic genetic circuits. In the context of technology mapping, this
implies a multi-objective optimization, allowing the designer to constrain one of the
objectives or explore the Pareto set. First, compact models that enable evaluating the
energy consumption of genetic circuits must be found.

148

In Vivo Implementation of Designs The presented methods allow for the automated
design and evaluation of genetic circuits in silico. They are based on fundamental features
of genetic gates, i.e., their heterogeneous, bounded, and monotone transfer characteristics.
Further, they have been evaluated empirically using an existing library of genetic gates,
which has been extensively tested in the lab and has been used for in vivo implementations.
However, since the technology mapping methods are part of the iterative "design, build,
test" cycle, implementing the generated designs and measuring their characteristic can
provide further insight into the technology mapping flow and spark potential future
research.

Sequential Circuits This work is focused on the technology mapping for combinational
genetic circuits. However, approaches for implementing sequential logic circuits exist [4,
40, 52]. These are mostly based on constructing latches from genetic gates to provide
memory elements. Whether this approach is the key to sequential genetic circuits or
whether more energy-efficient solutions can be found for storing information is unclear.
Nonetheless, sequential logic represents a new challenge for technology mapping meth-
ods since the temporal behavior of such designs has to be considered in modeling and
optimization.

149

Acknowledgments

I am deeply grateful to my supervisor Christian Hochberger for giving me the opportunity
to follow my research interests and for providing invaluable guidance and support.

I am also thankful to Marc Riedel for reviewing this work and for participating
in the defense committee.

Special thanks to Nicolai Engelmann and Erik Kubaczka of the Self-Organizing
Systems Lab for the fruitful collaboration on genetic design automation that enabled the
research presented in this work.

I express my profound thankfulness to my parents Christel and Thomas, who al-
ways believed in me and supported me in every possible way.

Lastly, words cannot express my gratitude to my wife Christin, who cheered me
up in challenging times and celebrated the beautiful moments with me.

150

Appendix

151

A. Functions Used for Enumeration

Table A.1 details the Boolean functions used for evaluating the enumeration of structural
variants.

Table A.1.: Truth tables of the 33mapped three input functions with output values ordered
from A = 1,B = 1,C = 1 to A = 0,B = 0,C = 0

Function Truth table

ϕ1 00000001

ϕ2 00000010

ϕ3 00010011

ϕ4 00010100

ϕ5 00010111

ϕ6 00011111

ϕ7 00100000

ϕ8 00101010

ϕ9 00101011

ϕ10 00101111

ϕ11 00110001

ϕ12 00111110

ϕ13 01010100

ϕ14 01010110

ϕ15 01100010

ϕ16 01111101

ϕ17 10000000

Function Truth table

ϕ18 10000001

ϕ19 10001010

ϕ20 10010000

ϕ21 10101000

ϕ22 10101001

ϕ23 10110010

ϕ24 10110011

ϕ25 10111001

ϕ26 11001110

ϕ27 11011111

ϕ28 11100010

ϕ29 11100110

ϕ30 11100111

ϕ31 11101100

ϕ32 11111101

ϕ33 11111110

152

B. Scores of Structural Variants

Table B.1 contains the Cello scores reached with Cello’s circuit structures and with
structural variants encompassing a different number of excess gates allowed.

Table B.1.: CELLO score reached with CELLO’s topologies and structural variants with
different number of excess gates allowed.

Variants

Funct. Cello e = 0 e = 1 e = 2

ϕ1 610.96 654.26 654.26 671.49

ϕ2 327.87 671.49 671.49 671.49

ϕ3 46.90 46.90 46.90 598.99

ϕ4 43.19 488.51 491.24 610.95

ϕ5 46.90 46.90 46.90 597.17

ϕ6 47.14 47.14 47.14 599.01

ϕ7 327.87 671.47 671.47 671.47

ϕ8 43.53 43.53 43.47 595.80

ϕ9 43.39 43.39 43.39 597.46

ϕ10 47.14 47.14 47.14 598.78

ϕ11 671.34 671.34 671.34 671.43

ϕ12 43.41 43.72 43.72 597.21

ϕ13 611.04 611.04 611.04 611.04

ϕ14 37.74 307.17 324.38 593.85

ϕ15 43.08 324.70 324.70 324.70

ϕ16 40.04 44.92 44.92 593.85

ϕ17 327.66 327.90 328.16 328.18

Variants

Funct. Cello e = 0 e = 1 e = 2

ϕ18 308.68 308.44 327.28 327.31

ϕ19 327.86 327.87 327.86 595.85

ϕ20 316.00 327.30 327.45 327.45

ϕ21 327.87 327.87 327.87 327.91

ϕ22 31.34 31.34 36.94 592.75

ϕ23 39.01 326.25 327.39 596.14

ϕ24 44.76 308.48 327.28 597.10

ϕ25 39.82 39.82 39.82 597.12

ϕ26 458.31 458.31 458.31 678.07

ϕ27 418.52 418.53 418.54 678.07

ϕ28 327.63 327.66 327.65 595.96

ϕ29 37.79 39.11 39.17 595.78

ϕ30 39.25 41.79 41.79 596.63

ϕ31 207.04 327.93 327.93 678.05

ϕ32 319.21 469.35 469.35 678.08

ϕ33 183.04 183.04 183.04 677.91

153

C. Contributions to Crosstalk Environments

In the following, tables detailing contributions to crosstalk-environments are listed, which
have been left out in Section 10.2. Table C.1 shows the contribution of the target gate to
its own crosstalk environments. Table C.2 shows the contribution of unassigned gates to
crosstalk environments for heuristic B&B.

Table C.1.: Contributions of the target gate itself to its crosstalk-environments for optimal
B&B

Target gate θj Contribution

0-environment (cmax,j , bjj)
1-environment (cmin,j , bjj)

Table C.2.: Contributions of unassigned source gates to the target gate’s crosstalk-
environments for heuristic B&B

Source gate θi
Target gate θj 0-environment 1-environment

0-environment (cmax,i, bmax,j) (j0,i, bmax,j)
1-environment (j1,i, bmin,j) (cmin,i, bmin,j)

154

D. Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Ullman D. Jeffrey. The Design and Analysis
of Computer Algorithms. 1st. USA: Addison-Wesley Longman Publishing Co., Inc.,
Jan. 1, 1974. isbn: 0201000296.

[2] Saed Alizamir, Steffen Rebennack, and Panos Pardalos. “Improving the Neigh-
borhood Selection Strategy in Simulated Annealing Using the Optimal Stopping
Problem”. In: Global Optimization: Focus on Simulated Annealing. Ed. by Cher Ming
Tan. I-Tech Education and Publication, Sept. 2008, pp. 363–382. isbn: 978-953-
7619-07-7. doi: 10.5772/5571.

[3] Uri Alon. An Introduction to Systems Biology: Design Principles of Biological Cir-
cuits. Chapman & Hall/CRC Computational Biology Series. CRC Press, 2019. isbn:
9781000001327. doi: 10.1201/9781420011432.

[4] Lauren B. Andrews, Alec A.K. Nielsen, and Christopher A. Voigt. “Cellular checkpoint
control using programmable sequential logic”. In: Science 361.6408 (2018).

[5] Evan Appleton et al. “Design Automation in Synthetic Biology”. In: Cold Spring
Harbor Perspectives in Biology 9 (Feb. 2017). doi: 10.1101/cshperspect.
a023978.

[6] Hasan Baig and Jan Madsen. “A Top-down Approach to Genetic Circuit Synthesis
and Optimized Technology Mapping”. English. In: Proceedings of 9th International
Workshop on Bio-Design Automation. 9th International Workshop on Bio-Design
Automation, IWBDA 2017. 2017.

[7] Jacob Beal et al. “Communicating Structure and Function in Synthetic Biology
Diagrams”. In: ACS Synthetic Biology 8.8 (2019), pp. 1818–1825. doi: 10.1021/
acssynbio.9b00139.

[8] Vaughn Betz and Jonathan Rose. “VPR: a new packing, placement and routing tool
for FPGA research”. In: Field-Programmable Logic and Applications. Ed. by Wayne
Luk, Peter Y. K. Cheung, and Manfred Glesner. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 213–222. isbn: 978-3-540-69557-8.

155

https://doi.org/10.5772/5571
https://doi.org/10.1201/9781420011432
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1021/acssynbio.9b00139
https://doi.org/10.1021/acssynbio.9b00139

[9] Armin Biere et al., eds.Handbook of Satisfiability - Second Edition. Vol. 336. Frontiers
in Artificial Intelligence and Applications. IOS Press, 2021. isbn: 978-1-64368-160-
3. doi: 10.3233/FAIA336.

[10] Olivier Borkowski et al. “Overloaded and stressed: whole-cell considerations for
bacterial synthetic biology”. In: Current Opinion in Microbiology 33 (2016). An-
timicrobials • Microbial systems biology, pp. 123–130. issn: 1369-5274. doi:
10.1016/j.mib.2016.07.009.

[11] Clive G. Bowsher and Peter S. Swain. “Identifying sources of variation and the flow
of information in biochemical networks”. In: Proceedings of the National Academy of
Sciences 109.20 (2012), E1320–E1328. doi: 10.1073/pnas.1119407109.

[12] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-Strength
Verification Tool”. In: Computer Aided Verification. Ed. by Tayssir Touili, Byron Cook,
and Paul Jackson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 24–40.
isbn: 978-3-642-14295-6.

[13] Robert C. Brewster et al. “The transcription factor titration effect dictates level of
gene expression”. In: Cell 156.6 (2014), pp. 1312–1323.

[14] J. Brown. “The iGEM competition: building with biology”. English. In: IET Synthetic
Biology 1 (1 June 2007), 3–6(3). issn: 1752-1394.

[15] Lukas Buecherl and Chris J. Myers. “Engineering genetic circuits: advancements in
genetic design automation tools and standards for synthetic biology”. In: Current
Opinion in Microbiology 68 (2022), p. 102155. issn: 1369-5274. doi: 10.1016/
j.mib.2022.102155.

[16] Stefano Cardinale and Adam Paul Arkin. “Contextualizing context for synthetic biol-
ogy – identifying causes of failure of synthetic biological systems”. In: Biotechnology
Journal 7.7 (2012), pp. 856–866. doi: 10.1002/biot.201200085.

[17] Francesca Ceroni et al. “Quantifying cellular capacity identifies gene expression
designs with reduced burden”. In: Nature Methods 12.5 (May 2015), pp. 415–418.
issn: 1548-7105. doi: 10.1038/nmeth.3339.

[18] Satrajit Chatterjee et al. “Reducing structural bias in technology mapping”. In:
ICCAD, 2005. Nov. 2005, pp. 519–526. doi: 10.1109/ICCAD.2005.1560122.

[19] Ye Chen et al. “Genetic circuit design automation for yeast”. In: Nature Microbiology
5.11 (2020), pp. 1349–1360.

[20] Jens Clausen. Branch and Bound Algorithms – Principles And Examples. 1999.

156

https://doi.org/10.3233/FAIA336
https://doi.org/10.1016/j.mib.2016.07.009
https://doi.org/10.1073/pnas.1119407109
https://doi.org/10.1016/j.mib.2022.102155
https://doi.org/10.1016/j.mib.2022.102155
https://doi.org/10.1002/biot.201200085
https://doi.org/10.1038/nmeth.3339
https://doi.org/10.1109/ICCAD.2005.1560122

[21] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. Electrical and
Computer Engineering Series. McGraw-Hill, 1994. isbn: 9780070163331.

[22] Rina Dechter and Judea Pearl. “Generalized Best-First Search Strategies and the
Optimality of A*”. In: J. ACM 32.3 (July 1985), pp. 505–536. issn: 0004-5411.
doi: 10.1145/3828.3830.

[23] Michael B. Elowitz and Stanislas Leibler. “A synthetic oscillatory network of tran-
scriptional regulators”. In: Nature 403.6767 (Jan. 2000), pp. 335–338. issn: 1476-
4687. doi: 10.1038/35002125.

[25] Tamar Friedlander et al. “Intrinsic limits to gene regulation by global crosstalk”.
In: Nature Communications 7.1 (Aug. 2016), p. 12307. issn: 2041-1723. doi:
10.1038/ncomms12307.

[26] Timothy S. Gardner, Charles R. Cantor, and James J. Collins. “Construction of a
genetic toggle switch in Escherichia coli”. In: Nature 403.6767 (Jan. 2000), pp. 339–
342. issn: 1476-4687. doi: 10.1038/35002131.

[27] Kathryn L. Garner. “Principles of synthetic biology”. In: Essays in Biochemistry 65.5
(Nov. 2021), pp. 791–811. issn: 0071-1365. doi: 10.1042/EBC20200059.

[28] Alison L. Gibbs and Francis Edward Su. “On Choosing and Bounding Probability
Metrics”. In: International Statistical Review 70 (2002). doi: 10.1111/j.1751-
5823.2002.tb00178.x.

[29] Larry Goldstein and Michael Waterman. “Neighborhood Size in the Simulated An-
nealing Algorithm”. In: American Journal of Mathematical and Management Sciences
8.3-4 (1988), pp. 409–423. doi: 10.1080/01966324.1988.10737247.

[30] Jean Hausser et al. “Central dogma rates and the trade-off between precision and
economy in gene expression”. In: Nature communications 10.1 (2019), p. 68.

[31] Linh Huynh et al. “SBROME: A Scalable Optimization and Module Matching Frame-
work for Automated Biosystems Design”. In: ACS Synthetic Biology 2 (Mar. 2013).
doi: 10.1021/sb300095m.

[32] Florian Ingels. “On the similarities of trees : the interest of enumeration and
compression methods”. Theses. Ecole normale supérieure de lyon - ENS LYON, Sept.
2022. url: https://theses.hal.science/tel-03908078.

[33] Shridhar Jayanthi, Kayzad Soli Nilgiriwala, and Domitilla Del Vecchio. “Retroactivity
Controls the Temporal Dynamics of Gene Transcription”. In: ACS Synthetic Biology
2.8 (2013), pp. 431–441. doi: 10.1021/sb300098w.

157

https://doi.org/10.1145/3828.3830
https://doi.org/10.1038/35002125
https://doi.org/10.1038/ncomms12307
https://doi.org/10.1038/35002131
https://doi.org/10.1042/EBC20200059
https://doi.org/10.1111/j.1751-5823.2002.tb00178.x
https://doi.org/10.1111/j.1751-5823.2002.tb00178.x
https://doi.org/10.1080/01966324.1988.10737247
https://doi.org/10.1021/sb300095m
https://theses.hal.science/tel-03908078
https://doi.org/10.1021/sb300098w

[34] Timothy S. Jones et al. “Genetic circuit design automation with Cello 2.0”. In:
Nature Protocols 17.4 (2022), pp. 1097–1113.

[35] Kurt Keutzer and Kaushik Ravindran. “Technology Mapping”. In: Encyclopedia of
Algorithms. Ed. by Ming-Yang Kao. Boston, MA: Springer US, 2008, pp. 944–947.
isbn: 978-0-387-30162-4. doi: 10.1007/978-0-387-30162-4_420.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Anneal-
ing”. In: Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.
4598.671.

[37] Tasuku Kitada et al. “Programming gene and engineered-cell therapies with syn-
thetic biology”. In: Science 359.6376 (2018).

[38] William S. Klug et al. Essentials of genetics. 10th ed. Pearson Education, 2019.
608 pp. isbn: 9780134898414.

[39] Andreas Kuehlmann and Florian Krohm. “Equivalence Checking Using Cuts and
Heaps”. In: Proceedings of the 34th Annual Design Automation Conference. DAC ’97.
Anaheim, California, USA: Association for Computing Machinery, 1997, pp. 263–
268. isbn: 0897919203. doi: 10.1145/266021.266090.

[40] Matthew Lebovich, Min Zeng, and Lauren B. Andrews. “Algorithmic Programming
of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration
in a Probiotic Bacterium”. In: ACS Synthetic Biology (2023). doi: 10.1021/
acssynbio.3c00232.

[41] Siang-Yun Lee et al. “Enumeration of Minimum Fanout-Free Circuit Structures”. In:
IWLS-2019. International Workshop on Logic & Synthesis, 2019. 2019.

[42] Chunbo Lou et al. “Ribozyme-based insulator parts buffer synthetic circuits from
genetic context”. In: Nature Biotechnology 30.11 (Nov. 2012), pp. 1137–1142. issn:
1546-1696. doi: 10.1038/nbt.2401.

[43] Mario Andrea Marchisio. “Parts & pools: a framework for modular design of syn-
thetic gene circuits”. en. In: Front Bioeng Biotechnol 2 (Oct. 2014), p. 42.

[44] James Alastair McLaughlin et al. “The Synthetic Biology Open Language (SBOL)
Version 3: Simplified Data Exchange for Bioengineering”. In: Frontiers in Bioengi-
neering and Biotechnology 8 (2020). issn: 2296-4185. doi: 10.3389/fbioe.
2020.01009.

[45] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer Berlin, Heidelberg, June 23, 2008, p. 300. isbn: 978-3-540-77977-3. doi:
10.1007/978-3-540-77978-0.

158

https://doi.org/10.1007/978-0-387-30162-4_420
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1145/266021.266090
https://doi.org/10.1021/acssynbio.3c00232
https://doi.org/10.1021/acssynbio.3c00232
https://doi.org/10.1038/nbt.2401
https://doi.org/10.3389/fbioe.2020.01009
https://doi.org/10.3389/fbioe.2020.01009
https://doi.org/10.1007/978-3-540-77978-0

[46] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing Ma-
chines”. In: The Journal of Chemical Physics 21.6 (Dec. 1953), pp. 1087–1092. issn:
0021-9606. doi: 10.1063/1.1699114.

[47] Alan Mishchenko et al. FRAIGs: A unifying representation for logic synthesis and
verification. Tech. rep. ERL Technical Report, 2005.

[48] Tae Seok Moon et al. “Genetic Programs Constructed from Layered Logic Gates in
Single Cells”. In: Nature 491 (Oct. 2012). doi: 10.1038/nature11516.

[49] David R. Morrison et al. “Branch-and-bound algorithms: A survey of recent advances
in searching, branching, and pruning”. In: Discrete Optimization 19 (2016), pp. 79–
102. issn: 1572-5286. doi: 10.1016/j.disopt.2016.01.005.

[50] David R. Morrison et al. “Cyclic best first search: Using contours to guide branch-
and-bound algorithms”. In: Naval Research Logistics (NRL) 64.1 (2017), pp. 64–82.
doi: 10.1002/nav.21732.

[51] Chris J. Myers et al. “iBioSim: a tool for the analysis and design of genetic circuits”.
In: Bioinformatics 25.21 (July 2009), pp. 2848–2849. issn: 1367-4803. doi: 10.
1093/bioinformatics/btp457.

[52] Tramy Nguyen et al. “Design of Asynchronous Genetic Circuits”. In: Proceedings of
the IEEE 107.7 (2019), pp. 1356–1368. doi: 10.1109/JPROC.2019.2916057.

[53] Alec A. K. Nielsen et al. “Genetic circuit design automation”. In: Science 352.6281
(2016). issn: 0036-8075. doi: 10.1126/science.aac7341.

[54] Rob Phillips et al. Physical Biology of the Cell. 2nd ed. Garland Science, Oct. 2012.
isbn: 9780429168833. doi: 10.1201/9781134111589.

[55] Nicholas Roehner and Chris J. Myers. “Directed Acyclic Graph-Based Technology
Mapping of Genetic Circuit Models”. In: ACS Synthetic Biology 3.8 (Aug. 15, 2014),
pp. 543–555. doi: 10.1021/sb400135t.

[56] Fabio Romeo and Alberto Sangiovanni-Vincentelli. “A theoretical framework for
simulated annealing”. In: Algorithmica 6.1 (June 1991), p. 302. issn: 1432-0541.
doi: 10.1007/BF01759049.

[57] Selahattin Sayil. “PVT Variations”. In: Noise Contamination in Nanoscale VLSI Cir-
cuits. Cham: Springer International Publishing, 2022, pp. 131–134. isbn: 978-3-
031-12751-9. doi: 10.1007/978-3-031-12751-9_8.

[59] Christopher Schneider et al. “ROC’n’Ribo: Characterizing a Riboswitching Expres-
sion System by Modeling Single-Cell Data”. In: ACS Synthetic Biology 6.7 (2017),
pp. 1211–1224. doi: 10.1021/acssynbio.6b00322.

159

https://doi.org/10.1063/1.1699114
https://doi.org/10.1038/nature11516
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1002/nav.21732
https://doi.org/10.1093/bioinformatics/btp457
https://doi.org/10.1093/bioinformatics/btp457
https://doi.org/10.1109/JPROC.2019.2916057
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1201/9781134111589
https://doi.org/10.1021/sb400135t
https://doi.org/10.1007/BF01759049
https://doi.org/10.1007/978-3-031-12751-9_8
https://doi.org/10.1021/acssynbio.6b00322

[62] Michael J. Smanski et al. “Functional optimization of gene clusters by combinatorial
design and assembly”. In: Nature Biotechnology 32.12 (Dec. 1, 2014), pp. 1241–
1249. issn: 1546-1696. doi: 10.1038/nbt.3063.

[63] Berend Snijder and Lucas Pelkmans. “Origins of regulated cell-to-cell variability”.
In: Nature Reviews Molecular Cell Biology 12.2 (Feb. 2011), pp. 119–125. issn:
1471-0080. doi: 10.1038/nrm3044.

[64] William Swartz and Carl Sechen. “New algorithms for the placement and routing
of macro cells”. In: 1990 IEEE International Conference on Computer-Aided Design.
Digest of Technical Papers. Los Alamitos, CA, USA: IEEE Computer Society, 1990,
pp. 336–339. doi: 10.1109/ICCAD.1990.129918.

[65] Phrangboklang L. Thangkhiew and Kamalika Datta. “Scalable in-memory mapping
of Boolean functions in memristive crossbar array using simulated annealing”.
In: Journal of Systems Architecture 89 (2018), pp. 49–59. issn: 1383-7621. doi:
10.1016/j.sysarc.2018.07.002.

[66] Prashant Vaidyanathan et al. “A Framework for Genetic Logic Synthesis”. In: Pro-
ceedings of the IEEE 103.11 (2015), pp. 2196–2207. doi: 10.1109/JPROC.2015.
2443832.

[67] Cédric Villani. Topics in Optimal Transportation. Graduate studies in mathematics.
American Mathematical Society, 2003. isbn: 9780821833124.

[68] LeandroWatanabe et al. “iBioSim 3: A Tool for Model-Based Genetic Circuit Design”.
In: ACS Synthetic Biology 8.7 (2019), pp. 1560–1563. doi: 10.1021/acssynbio.
8b00078.

[69] Clifford Wolf, Johann Glaser, and Johannes Kepler. “Yosys-a free Verilog synthesis
suite”. In: Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip).
2013, p. 97.

[70] Zhen Xie et al. “Multi-input RNAi-based logic circuit for identification of specific
cancer cells”. In: Science 333.6047 (2011), pp. 1307–1311.

[71] Fusun Yaman et al. “Automated Selection of Synthetic Biology Parts for Genetic
Regulatory Networks”. In: ACS Synthetic Biology 1.8 (2012), pp. 332–344. doi:
10.1021/sb300032y.

[72] Richard A. Young and Joan A. Steitz. “Tandem promoters direct E. coli ribosomal
RNA synthesis”. In: Cell 17.1 (1979), pp. 225–234. issn: 0092-8674. doi: 10.
1016/0092-8674(79)90310-6.

160

https://doi.org/10.1038/nbt.3063
https://doi.org/10.1038/nrm3044
https://doi.org/10.1109/ICCAD.1990.129918
https://doi.org/10.1016/j.sysarc.2018.07.002
https://doi.org/10.1109/JPROC.2015.2443832
https://doi.org/10.1109/JPROC.2015.2443832
https://doi.org/10.1021/acssynbio.8b00078
https://doi.org/10.1021/acssynbio.8b00078
https://doi.org/10.1021/sb300032y
https://doi.org/10.1016/0092-8674(79)90310-6
https://doi.org/10.1016/0092-8674(79)90310-6

[73] Junqi Yuan et al. “RBSA: Range-based simulated annealing for FPGA placement”.
In: 2017 International Conference on Field Programmable Technology (ICFPT). 2017,
pp. 1–8. doi: 10.1109/FPT.2017.8280114.

[74] Sunan Zou et al. “PowerSyn: A Logic Synthesis Framework With Early Power
Optimization”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 43.1 (2024), pp. 203–216. doi: 10.1109/TCAD.2023.3297069.

161

https://doi.org/10.1109/FPT.2017.8280114
https://doi.org/10.1109/TCAD.2023.3297069

E. Publications

[24] Nicolai Engelmann et al. “Context-Aware Technology Mapping in Genetic Design
Automation”. In: ACS Synthetic Biology 12.2 (2023), pp. 446–459. doi: 10.1021/
acssynbio.2c00361.

[58] Tobias Schladt et al. “Automated Design of Robust Genetic Circuits: Structural
Variants and Parameter Uncertainty”. In: ACS Synthetic Biology 10.12 (2021),
pp. 3316–3329. doi: 10.1021/acssynbio.1c00193.

[60] Tobias Schwarz and Christian Hochberger. “Memristor Based FPGAs: Understand-
ing the Effect of Configuration Memory Faults”. In: Architecture of Computing
Systems. Ed. by Martin Schulz et al. Cham: Springer International Publishing, 2022,
pp. 167–180. isbn: 978-3-031-21867-5.

[61] Tobias Schwarz and Christian Hochberger. “TechnologyMapping of Genetic Circuits:
From Optimal to Fast Solutions”. In: Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design. ICCAD ’22. San Diego, California: Association
for Computing Machinery, 2022. isbn: 9781450392174. doi: 10.1145/3508352.
3549344.

162

https://doi.org/10.1021/acssynbio.2c00361
https://doi.org/10.1021/acssynbio.2c00361
https://doi.org/10.1021/acssynbio.1c00193
https://doi.org/10.1145/3508352.3549344
https://doi.org/10.1145/3508352.3549344

F. Supervised Theses

Project Seminars

Lukas Freiberger. "Fehlertolerante Nutzung von Memristor-basierten LUTs". Technische
Universität Darmstadt, Jul. 2021.

Tobias Steinbach. "Fehlertolerantes Technology Mapping". Technische Universität
Darmstadt, Jul. 2021.

Erik Kubaczka. "Branch-and-Bound-basiertes Technology Mapping für Genetische
Schaltungen". Technische Universität Darmstadt, Oct. 2021.

Christoph Flothow. "QRBDD-based LUT Mapping". Technische Universität Darm-
stadt, Apr. 2023.

Bachelor’s Theses

Katja Münch. "Optimierung von Schaltungs-Bibliotheken für das Technology Mapping in
der Synthetischen Biologie". Technische Universität Darmstadt, Nov. 2019.

Tobias Steinbach. "Implementierung eines fehlertoleranten Technology Mapping-
Verfahrens in VPR". Technische Universität Darmstadt, Jan. 2022.

Lukas Freiberger. "Evaluation des FPGA-Routings mit fehlerbehafteten Elementen".
Technische Universität Darmstadt, Feb. 2022.

Jonas Schoenen. "Entwurf fehlertoleranter Logik-Elemente für NV-FPGAs". Tech-
nische Universität Darmstadt, Sep. 2022.

Mohamed Saleh. "Optimierung einer Bibliothek zur Erzeugung von Binary Deci-

163

sion Diagrams". Technische Universität Darmstadt, Oct. 2023.

Stefan Reichel. "Entwurf und Evaluation einer fehlertoleranten Architektur für
FPGA-Switchbox-Elemente". Technische Universität Darmstadt, Jan. 2024.

Master’s Theses

Lucas Gaia de Castro. "Fehlertolerante Routing-Elemente für Non-Volatile Field-
Programmable Gate Arrays". Technische Universität Darmstadt, Oct. 2022.

Christoph Flothow. "Technology Mapping für Lookup-Tables auf Basis von Binary
Decision Diagrams". Technische Universität Darmstadt, Oct. 2023.

164

G. List of Abbreviations

AHU Aho, Hopcroft and Ullman

AIG AND-Inverter Graph

BFS breadth-first search

BeFS best-first search

B&B Branch-and-Bound

DAG directed acyclic graph

DFS depth-first search

DNA deoxyribonucleic acid

E. coli Escherichia coli

E-Score expectation-based score

EDA electronic design automation

FIFO first in - first out

FPGA field programmable gate array

GDA genetic design automation

GRN gene regulatory network

HDL hardware description language

mRNA messenger-RNA

NIG NOR-Inverter Graph

165

OBDD ordered binary descision diagram

PVT process, voltage, temperature

RBS ribosome binding site

RNA ribonucleic acid

RNAP RNA polymerase

RPU relative promoter units

RTL register transfer level

SA Simulated Annealing

SBOL synthetic biology open language

SAT Boolean satisfiability problem

TetR tetracycline repressor

TF transcription factor

tRNA transfer-RNA

VPR Versatile Place-and-Route

YFP yellow fluorescent protein

166

	Introduction
	Motivation
	Contribution
	Thesis Outline

	Background
	Technology Mapping
	Structural Mapping
	Structural Bias

	Genetic Logic
	Protein Synthesis
	Transfer Functions of Regulatory Systems
	Genetic Logic Gates
	Combinational Genetic Circuits

	Genetic Design Automation
	Challenges in Mapping Genetic Circuits
	Quantifying Circuit Functionality
	Quantifying Circuit Robustness
	Context-Aware Circuit Model
	ARCTIC

	Problem Definition
	Contextualization
	Formal Definition

	Related Work
	Cello
	iBioSim
	Further Mapping Approaches

	Domain Adaptation
	Structural Variants of Genetic Logic Circuits
	Broadening the Search Space
	Enumeration of Structural Variants
	Evaluation
	Setup
	Results of the Enumeration
	Impact on Circuit Performance

	Discussion

	Efficient Methods for Gate Assignment
	Exhaustive Search
	Proximity-Based Simulated Annealing
	General Approach
	Annealing Schedule
	Neighbor Generation

	Branch-and-Bound
	Search Tree
	Implicit Enumeration
	Search Strategies
	Optimistic Estimation

	Evaluation
	Tuning the Proximity-Measure
	Modes and Strategies of Branch-and-Bound
	Comparison of the Methods

	Discussion

	Increased Meaningfulness of Designs
	Technology Mapping for Robustness
	Optimization for the E-Score
	Signal-Compatibility of Genetic Gates
	Pair-Wise Compatibility
	Compatibility of (n+1)-Tuples
	Compatibility Lookahead in Branch-and-Bound
	Implications for the Gate Assignment Search

	Comparison of the Methods

	Context-Aware Technology Mapping
	Implications of Context Effects
	Context-Aware Branch-and-Bound
	Crosstalk Environments
	Compatibility and Heuristic Mode
	Evaluation

	Synopsis
	Combined Technology Mapping Flow
	Overview of the Methods
	Evaluation
	Technology Mapping Scenarios
	Setup
	Results

	Conclusion and Outlook
	Conclusion
	Outlook

	Acknowledgments

	Appendix
	Functions Used for Enumeration
	Scores of Structural Variants
	Contributions to Crosstalk Environments
	Bibliography
	Publications
	Supervised Theses
	List of Abbreviations

