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Introduction

The effective treatment of diseases often relies on making 
early and accurate diagnoses. However, this can be highly chal-
lenging, especially for diseases with complex genetic causes. 
Microarray techniques are able to capture the expression levels 
of thousands of genes, opening up a huge source of informa-
tion about the genetic profiles of patients. While the potential 
of microarray technologies for medical purposes was repeat-
edly demonstrated,1-3 challenges arise in the computational 
handling of such data sets. Typically, approaches from statistics 
and machine learning4,5 are employed to extract disease-relevant 
information and to predict diagnostic features such as a patient’s 
disease state. Most of these approaches are supervised, mean-
ing that they rely on the availability of labeled training data.6 
Common techniques include linear discriminant analysis, near-
est-neighbor classifiers, classification trees, bagging, and boost-
ing,7 support-vector machines,8,9 neural networks,10 hierarchical 
Bayesian models11 and regularized regressions.12,13

Typically, the number of case and control samples is just a 
fraction of the number of probes on a single microarray chip, 
posing one of the main difficulties in handling such data. 
Mathematically, the corresponding inverse problems are said to 
be ill-posed or underdetermined and their solution requires spe-
cialized algorithms.

The same situation applies for the data from the first 
IMPROVER (Industrial Methodology for Process Verification 
in Research) challenge,14,15 the Diagnostic Signature Challenge. 
Only a few hundred training samples were provided for each of 
the four disease data sets, psoriasis, multiple sclerosis diagnos-
tic (MSD), chronic obstructive pulmonary disease (COPD) 
and lung cancer (LC), in order to train the classifiers. Based on 
those, the goal was to predict the disease-probabilities of addi-
tional samples from an unlabeled test data set.

In this work we lay out a computational workflow, which 
accounts for the complex nature of the high-dimensional 
microarray data sets. The validity of the approach is bench-
marked using four independent data sets within the scope of the 
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Making reliable diagnoses and predictions based on high-throughput transcriptional data has attracted immense 
attention in the past few years. While experimental gene profiling techniques—such as microarray platforms—are 
advancing rapidly, there is an increasing demand of computational methods being able to efficiently handle such data.

In this work we propose a computational workflow for extracting diagnostic gene signatures from high-throughput 
transcriptional profiling data. In particular, our research was performed within the scope of the first IMPROVER challenge. 
The goal of that challenge was to extract and verify diagnostic signatures based on microarray gene expression data in 
four different disease areas: psoriasis, multiple sclerosis, chronic obstructive pulmonary disease and lung cancer. Each 
of the different disease areas is handled using the same three-stage algorithm. First, the data are normalized based on 
a multi-array average (RMA) normalization procedure to account for variability among different samples and data sets. 
Due to the vast dimensionality of the profiling data, we subsequently perform a feature pre-selection using a Wilcoxon’s 
rank sum statistic. The remaining features are then used to train an L1-regularized logistic regression model which acts 
as our primary classifier. Using the four different data sets, we analyze the proposed method and demonstrate its use in 
extracting diagnostic signatures from microarray gene expression data.
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IMPROVER challenge. In particular, we show that the method 
is able to extract disease-relevant gene profiles and demonstrate 
its potential in making diagnostic predictions.

Results

The Diagnostic Signature Challenge encompassed four inde-
pendent classification tasks (sub-challenges), each task corre-
sponded to a particular disease and data set. Three of the four 
sub-challenges were designated to distinguish between the 

disease/non-disease (i.e., binary classification) states. The goal 
of the fourth task, the lung cancer sub-challenge, was to predict 
four disease states corresponding to two different cancer types 
(adenocarcinoma (AC) and squamous cell carcinoma (SCC)) 
and their respective stages (stages I and II). The performance of 
each classifier was assessed by estimating its prediction success 
probability.

Computational workflow
Although the L1-regularized logistic regression provides 

a natural mechanism for feature selection and prevention of 

Table1. Number of genes selected by the pre-selection algorithm that correspond to each of the sub-challenges

Sub-challenge Psoriasis MSD COPD LC (2 classes) LC (AC stage) LC (SCC stage)

# genes 
selected

15502 9591
2000*
(1152)

3260 2000* (3)
2000*
(1012)

MSD, multiple sclerosis diagnostic; COPD, chronic obstructive pulmonary disease; LC, lung cancer. For the psoriasis and 
MSD sub-challenges, a large number of genes with significant P-value scores were selected. For COPD, LC (AC) and LC (SCC), 
because the number of selected genes was low they were replaced by 2000 of the most significant genes in terms of their 
P-values. The numbers in brackets are the number of variables (the genes) with P-value less than 0.1/(total number of genes) 
in the Wilcoxon rank sum test.

Figure 1. Diagnostic signatures for each of the four sub-challenges. Bar heights indicate how each probe is weighted in the final regressor.
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overfitting (see Materials and Methods), 
it would require massive amounts of 
computational resources when directly 
applied to the high-dimensional data 
set. Thus, further preprocessing and data 
reduction had to be performed. More 
specifically, we followed a workflow 
that consisted of three main steps. In 
step one, we normalized the pooled data 
(comprising both the training and test 
data sets) for each of the sub-challenges 
using a standard robust multi-array aver-
age (RMA) normalization procedure.16 
In step two, we significantly reduced the 
dimensionality of the feature space using 
a nonparametric method based on the 
Wilcoxon rank sum test statistic.17,18 In 
step three, the remaining features were 
used to train an L1-regularized logistic 
regression model. As indicated above, 
this approach allows to further reduce 
the number of features used in the final 
model.4,5 The overall predictor for each 
disease is a monotonic function of the 
pre-processed and weighted feature inten-
sities corresponding to the diagnostic sig-
natures. Detailed descriptions of the three 
individual building blocks can be found 
in Materials and Methods.

Experimental results
The numbers of significantly 

expressed genes revealed by the feature 
pre-selection algorithm at a 10% level 
of significance are shown in Table 1. To 
some extent, the number of pre-selected 
genes reflects the richness of the dis-
ease signature in the expression profiles. 
Although a large number of pre-selected 
genes may improve the predictability of the disease state, the 
complexity of the subsequent classification task increases: the 
dimensionality becomes large compared with the sample size 
and standard approaches will inherently suffer from overfitting. 
Appropriate regularization strategies, such as provided by the 
L1-regularized logistic regression, can handle such problems to 
produce more reliable predictions.

The selected probe names and their corresponding weights 
for all four sub-challenges are shown in Figure  1. For each of 
those, the pre-selection algorithm was able to substantially 
reduce the number of features and hence, the dimensionality of 
the resulting data set. Because all the variables were standard-
ized before training, the absolute weights represent the signifi-
cance of the corresponding regressor.

Performance measures of our predictions were based on the 
score values of three IMPROVER standard quality metrics; 
namely, the belief confusion metric (BCM), the correct class 
enrichment metric (CCEM), and the average of the area under 

the precision recall curve (AUPR) across the classes (AUPR_
Avg). Table 2 shows the performance of our predictions accord-
ing to those score values and the corresponding rank obtained 
for each of the sub challenges. Psoriasis was predicted well, 
while the other diseases were not. This might be partially 
explained by differences in the amount of available training 
data (Fig.  2). The graphic shows that most training samples 
where available for the psoriasis data set, which ranked best in 
our study. In contrast, the worst performance was achieved for 
the MS diagnostic data set, associated with a particularly small 
sample size.

However, a variety of other causes might have contributed to 
the variability in the performance. The tissue used to perform 
the microarray experiments did not always originate from a loca-
tion primarily affected by the disease. This might cause strong 
qualitative differences between the training and test data sets, 
which might in turn have significant impact on the classifica-
tion performance.

Table 2. The quality score values for the three standard quality metrics for each of the  
sub-challenges

Quality score (BCM) (CCEM) (AUPR_Avg) Rank obtained

Psoriasis 0.99 0.99 1.00 2

MSD 0.54 0.52 0.62 12*

COPD 0.66 0.68 0.66 4

LC (2 classes)** 0.82 0.84 0.94 N/A

LC (4 classes) 0.43 0.48 0.50 5

BCM, belief confusion metric; CCEM, correct class enrichment metric; AUPR_Avg, average of the area 
under the precision recall curve (AUPR) across the classes; MSD, multiple sclerosis diagnostic; COPD, 
chronic obstructive pulmonary disease; LC, lung cancer. *The original rank was 37. The training data 
set that we used for the MSD sub-challenge reported in this paper is different (basically a subset of the 
one used in the challenge) from that was used in the IMPROVER challenge. **LC (2classes) was not part 
of the IMPROVER challenge.

Figure 2. Sizes of the data sets that were available for each of the sub-challenges. Dark bars cor-
respond to training data sets, light bars to test data sets.
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In order to test for such differences, we evaluated our classi-
fier against the test sets of the respective sub-challenges using 
a leave-one-out cross-validation.a Those results were compared 
with the original predictions obtained from the training data 
sets by means of the AUPR_Avg metric (Fig. 3). The remaining 
performance scores are listed in Table 3. In case of the psoria-
sis data, we observed only minor differences in the performance, 
even though the classifier was obtained from significantly fewer 
samples.

In accordance with our hypothesis, a considerable improve-
ment was obtained for the MSD data set, indicating strong dif-
ferences between the training and test data set. Furthermore, 
when using the latter, the number of available training samples 
(i.e., N = 59) was higher than the original sample size of the 
training data set (i.e., N = 41).

For the COPD sub-challenge, the performance of the clas-
sifier trained solely on the test data set was no better than 

a coin flip (i.e., the success probability was around 0.5). This 
result suggests that either the available data set does not contain 
enough disease-relevant information or the proposed approach 
is unable to unravel the complexity of the underlying expression 
patterns. Although COPD is manifested in small airways, the 
goal was to identify a COPD signature valid for large airways 
(such as, in this case, the test data set) for which sample collec-
tion is less complex. In case of the training data set, consisting 
of samples from both large and small airways, it seems that the 
classifier was indeed able to extract predictive gene signatures for 
large airways data.

For the LC sub-challenge, the size of the training set (N = 
145) and the size of the test set (N = 150) were roughly the same. 
However, when LC was considered as a binary classification 
problem (i.e., classes AC and SCC irrespective of their stage), we 
found that the classifier performed well in both cases, while for 
the initial four-class problem (i.e., discriminating between their 
corresponding stages) the performance was only moderate.

Discussion

In this work we proposed a three-stage computation work-
flow for extracting diagnostic gene signatures from microar-
ray gene expression data. In order to account for technical and 
biological variations between individual samples, we first pre-
processed the data using a robust multi-array normalization 
scheme. In order to reduce the dimensionality of the data sets, 
we applied a feature pre-selection algorithm using a Wilcoxon’s 
rank sum statistic.

The primary classification algorithm is based on an 
L1-regularized logistic regression model, which on the one hand 
is able to prevent overfitting and on the other hand, provides 
a simple strategy to identify predictive gene signatures. More 

Figure 3. Performance of the Classifier based on the AUPR_Avgmetric scores. Dark bars correspond to training data sets, light bars to test data sets.

Table 3. The quality score values for the three standard quality metrics for 
the leave-one-out cross validation study

Quality score (BCM) (CCEM) (AUPR_Avg)

Psoriasis 0.99 0.98 1.00

MSD 0.995 0.998 1

COPD 0.47 0.48 0.41

LC (2 classes) 0.77 0.80 0.93

LC (4 classes) 0.48 0.54 0.58

The test data corresponding to each of the sub challenges was used. BCM, 
belief confusion metric; CCEM, correct class enrichment metric; AUPR_Avg, 
average of the area under the precision recall curve (AUPR) across the 
classes; MSD, multiple sclerosis diagnostic; COPD, chronic obstructive pul-
monary disease; LC, lung cancer. aThis check was possible only after the 
gold standard labels of the test samples were published online.
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specifically, the regression weights of the model directly indicate 
the significance of each gene and thus, allow a straightforward 
interpretation of the obtained results.

We demonstrated the usefulness of the approach using micro-
array data sets from four different disease areas, i.e., psoriasis, 
multiple sclerosis, chronic obstructive pulmonary disease and 
lung cancer. For most of the prediction tasks, the classification 
algorithm performed reasonably well. In particular, the psoria-
sis data sets were handled surprisingly well. In cases where weak 
scores were achieved, we performed additional analyses to pin-
point the factors that may have led to a decreased performance. 
For instance, in case of the MSD data set, our results from the 
leave-one-out cross-validation study indicate significant qualita-
tive differences between the training and test data sets.

Our results demonstrate that statistical methods in con-
junction with modern microarray gene expression technology 
provide powerful and important means to accurately diagnose 
complex diseases.

Materials and Methods

Data normalization
For all sub-challenges, only training data stemming from 

Affymetrix® GeneChip Human Genome U133 Plus 2.0 micro-
arrays were used, since all test data sets were generated on this 
platform. This was done to avoid any bias to our model that 
could have been introduced by including data from other chips 
in the training phase. Thus, normalization between different 
types of microarray chips was not needed, but normalization 
to remove batch effects between different experiments was still 
essential to make the data sets comparable. We normalized the 
pooled data sets (comprising both the training and test data 
sets for each of the individual sub-challenges) using a standard 
RMA normalization procedure.16

Feature pre-selection
Before we used the data sets to train the classifier, the dimen-

sionality of the feature space was reduced substantially by apply-
ing a feature pre-selection method. The aim was to select only 
those features that were significantly up or downregulated 
between case and control groups. We applied a nonparametric 
method based on the Wilcoxon ranksum test statistic.17,18

For each feature, we tested the null hypothesis that the distri-
butions of its expression value over the case and control probes 
in the microarray data sets are equal, against the alternative that 
one distribution is stochastically larger than the other. This test 
is equivalent to the Wilcoxon two-sample test (also known as 
the Mann-Whitney U test). For each gene g, we obtain,

where x
j
(g) is the expression value of gene g for an individual i 

and N
m
 represents the set of indices having a response in m ∈ {0, 

1}. The score function counts the number of instances where an 
expression value corresponding to a response 1 is smaller than 
an expression value corresponding to a response 0. Therefore, 
the score would be close to the maximum score |N

0
| |N

1
| for any 

gene that tends to be under-expressed in response 1 and close to 
0 for a gene that tends to be overexpressed in individuals in N

1
.

Clearly, the aim was to identify genes with small P-values for 
the corresponding Wilcoxon two-sample test, which is based 
on the test statistic Score(g). At 10% level of significance, we 
selected only the genes that had P-values less than 0.1/(total 
number of genes), using the Bonferroni correction under the 
multiple comparison setup.

Although this method of pre-selection can filter out genes 
that are predictive individually, it does not help to identify the 
best predictive combination of genes. For this reason, if the 

Figure 4. Cross-validated estimates of the deviance and confidence bound of the LASSO fit.
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resultant data set contains very few genes with P-values less than 
0.1/(total number of genes), the resultant data set will no more 
be reliable since some valuable information might have already 
been thrown away. In addition, the Bonferroni significance level 
is quite conservative. To avoid an excessive loss of features, the 
first 2000 genes, ordered by their P-values were picked if the 
pre-selection method initially yielded less than 2000 genes.

Training the primary classifier
We used a logistic regression model to fit the training data 

and to classify the test data. Despite the feature pre-selection, 
the feature space was yet 4–28% of the total number of probes 
on the chip (54,675). This was still high compared with the 
training data sample size. A simple logistic regression model19 
would lead to overfitting.4 We therefore used an L1-regularized 
logistic regression model to drive a large number of less signifi-
cant parameters to 0 and filter out only those genes that played 
a significant role in classifying the data into case and control 
groups.

Let Y
i
 ∈ {0,1} be the random variable that represents the 

response of the ith individual. Now we define the standardized 
expression value of gene g for individual i by 

 
with 

 and

 Then, our model is

where p is the total number of genes under consideration. Hence, 
the likelihood of the observed data are

Therefore, an estimate of the parameter-vector θ = (α,β
1
,…, 

β
p
)′ can be obtained by maximizing the log-likelihood function 

as

As mentioned earlier, we had to avoid overfitting, and thus 
optimized a penalized log-likelihood with an L1 penalty in β

g
 as

The regularization or tuning parameter λ was fixed to 
the value that yielded the lowest L1-regularized deviance  
(−2 J(θ)), out of a 30-fold cross-validation on the training data 
set. Figure 4 shows the cross-validated deviance estimates and 
confidence bounds for each proposed λ, as well as the selection 
of the optimal regularization parameter for the LC (2 classes) 
task.

Note that this is a convex optimization problem that can be 
solved efficiently. We used the MATLAB lassoglm() function, 
which uses the coordinate descent algorithm20 to solve the opti-
mization problem for a given regularization parameter l.  After 
obtaining the estimates of the parameter vector, the probability 
that an individual with expression value x (g) for gene g, belongs 
to class 1 (i.e., has the response 1), is given by
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