
Computer Science
Department
Software Technology Group

Local-First
Enterprise Applications
Master thesis by André Wolski
Date: 17.04.2024

1. Review: Prof. Dr.-Ing. Mira Mezini
2. Review: Dr.-Ing. Ragnar Mogk
Darmstadt

Local-First
Enterprise Applications

Master thesis by André Wolski

Date: 17.04.2024

Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-270064
URL: http://tuprints.ulb.tu-darmstadt.de/27006
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

http://tuprints.ulb.tu-darmstadt.de/27006
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, André Wolski, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB
der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und
anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir
bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte
Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt,
André Wolski

i

Abstract

Local-First Software has been proposed in 2019 by Kleppmann et al. [11] to address
concerns with the growing number of cloud-only web-applications, as these move control
from the end users to the cloud providers. Local-First Software stores all necessary data
locally, and has the cloud only as an optional utility, to support cross-device synchronization
and collaboration with other users.

Enterprise Applications are traditionally implemented with a client-server architecture,
and are nowadays also following the trend of cloud-only web-applications. The move to
the cloud raises similar concerns about vendor lock-in, resilience and business continuity,
data protection, and privacy.

In this master thesis, we investigate if the ideals of Local-First Software can be applied to
Enterprise Applications. We look at three business processes to understand the business
requirements for Enterprise Applications. We then discuss how these match with the
ideals of Local-First Software, and propose 12 requirements for Local-First Enterprise
Applications. We will see that these still require centralized systems, albeit with a weaker
dependency than traditional Enterprise Applications.

We develop a prototype to further analyze and discuss if and how Enterprise Applications
can be developed based on the ideals of Local-First Software. For this, we develop
two underlying libraries as a foundation for connection management and CRDT state
replication over a hierarchical peer-to-peer network.

ii

Contents

1 Introduction 1
1.1 Enterprise Applications . 2
1.2 Business Process Management . 4

2 Identifying Requirements & Ideals 6
2.1 Business Process: Create Project Presentation 7
2.2 Business Process: Incident Report . 10
2.3 Business Process: Procure-to-Pay . 13
2.4 Stakeholder Requirements . 17
2.5 Local-First Ideals . 21
2.6 Consolidation of Local-First Ideals with Enterprise Application Requirements 22

3 Implementation 27
3.1 Overview . 28
3.2 Basic Connection Management . 30
3.3 Replication Management . 33
3.4 Advanced Connection Management . 36
3.5 Incident Report Application . 38
3.6 Asynchronous Application Design . 39

4 Evaluation 43
4.1 Connection Management and Performance Benchmark 43
4.2 Prototype Gap . 46

5 Summary and Conclusion 48

iii

1 Introduction

Enterprise Applications are software products, that are tailored to the needs of an Enter-
prise. Enterprise Applications are essential to perform standard business processes, for ex-
ample with Enterprise Resource Planning (ERP), Customer Relationship Management (CRM),
or Supply Chain Management (SCM) systems, typically available as off-the-shelf applications.
Enterprise Applications also cover specialized applications that are developed for a specific
use-case, i.e., a non-standard business process, and for a single customer, so called bespoke
applications.

Challenges in the development of Enterprise Applications are complex business require-
ments, high standards for legal compliance, inter-dependencies between different Enter-
prise Applications, and their scale – with sometimes several thousand active users at a time.
Historically, Enterprise Applications have been developed originally as mainframe/terminal
applications, evolved to client-server desktop-applications, and are nowadays following
the trend of cloud-based web-applications. The architecture of Enterprise Applications,
called enterprise architecture, is typically following a design where end devices have a
limited local state and control, and are usually requiring a constant network connection
to a central system (central in a logical sense – this ranges from a single physical server to
a highly distributed microservice architecture with several geo-distributed endpoints).

With the trend of cloud-based web applications increases the dependency on and power
of cloud (application) providers, which raises the risk of a vendor lock-in, and by giving
control over the data to the vendor, longevity and resilience are threatened – a vendor
might discontinue a service that is not profitable or no longer part of their strategy, whereas
the Enterprise depends on the service for critical business processes, and also has to keep,
for example, financial records available for several years.

Motivated by the concerns related to cloud-based applications, Local-First Software has
been proposed in Kleppmann et al. [11] by presenting seven ideals for an alternative
application design, which gives more control and data to end users and their local devices.
With data available locally, a network connection is optional, which enables users to use

1

the application offline and have a more responsive user experience. With the cloud as an
optional component and not a requirement, the control over the data is given back to the
users, which also ensures longevity of the data, and improves security & privacy. Given
a network connection, the data can be synchronized automatically and is available on
multiple devices, which also enables collaboration with other users.

The seven ideals for Local-First Software are focused on applications that are either
document-based, like text, graphic, sound, or design editors, or have a flat data structure,
like a to-do list or a calendar. The paper however explicitly excludes more complex or
interconnected applications like “banking software”, “e-commerce” – or more general
speaking: Enterprise Applications.

In this master thesis, we will explore if and how the requirements for Enterprise Appli-
cations can be matched with the ideals of Local-First Software, i.e., if these two can be
combined to Local-First Enterprise Applications. In the next section of this introduction
we will look Enterprise Applications and their architectures. In the next Chapter 2 on
page 6 we will introduce the fictional company Aperture Science Laboratories Inc. as
an abstracted exemplary company, which we will then use to investigate requirements
for Local-First Enterprise Applications. In Chapter 3 on page 27 we will solve some of
the open requirements, as we will develop a library for connection management within
ScalaLoci, a library for CRDT state replication within REScala, and an example appli-
cation to demonstrate a) how these libraries work & interact and b) how a Local-First
Enterprise Application could be constructed. In Chapter 4 on page 43 we will evaluate the
performance of the replication and compare the achieved results with the requirements.
In Chapter 5 on page 48 we will have a summary and conclusion.

1.1 Enterprise Applications

Following the origin of the word, an Enterprise is a form of an activity, that has a specific
goal. In the original sense, it is synonymous to an endeavor or a venture, and an enterprise
could be an expedition or a research & development project. Nowadays however, the
term Enterprise is used to describe organizations that have a minimal size of members or
employees, to distinguish “enterprise organizations” from Small Office, Home Office (SOHO)
organizations and from individuals. Although there is a definition of Small and Medium-
sized Enterprises (SMEs) in the EU [2] for companies up to 50 resp. 250 employees,
which would imply those are also enterprises, the colloquial usage of the standalone term

2

Enterprise refers to larger companies and corporations with more than 250 employees,
which we will follow in this thesis.

Typically, Enterprises follow a common structure, by organizing their supporting functions
into departments, like a Finance department, an IT department, or Marketing department.
Larger Enterprises may additionally be structured by region; in practice, commercial
enterprises often have at least one subsidiary in each country/legislation they operate in,
to align with the regional regulations, e.g. a GmbH in Germany and an SARL in France.
Some departments, like the finance department, may be present in each subsidiary, while
others, like the IT department, may only be suited once on the top-level entity.

Enterprise Applications are used to support the processes that occur in each department,
with a varying degree of integration with other Enterprise Applications from other de-
partments or entities. For example, each Finance department from each country could
have their own Enterprise Resource Planning (ERP) system, or they could share a common
global instance. Likewise, the Marketing department could have a standalone Customer
Relationship Management (CRM) system, or have it integrated as one application with the
ERP system.

Desktop-

Application

Application-

server

Application-

data
n m k

n' l' m' k'

Webbrowser Webserver
Application-

server

Application-

data

Figure 1.1: Two interdependent Enterprise Applications

The technical design of each
Enterprise Application and
their composition is concern
of the Enterprise Architecture
field. Traditional Enterprise
Applications are developed
with a desktop application,
that is connected over a net-
work to one or many applica-
tion servers, which store their
data in one or many database
servers. This is depicted in
the first row of Figure 1.1 on
the right side.

The second row of that figure shows the basic design of more recent Enterprise Applications:
instead of having a dedicated desktop application, the application is used in a web browser,
which loads the UI and state from a web server. This figure also shows that Enterprise
Applications are often interconnected; they may exchange some state or are performing
operations on each other.

3

This figure uses the notation as it is introduced in the bookModerne Enterprise-Architekturen
by Masak [12], which presents and analyses enterprise architectures and their topologies.

With today’s globalization, Enterprise Applications are also scaled on a global level, often
being used daily by every employee from any location across the globe. A challenge in
the design of any distributed application is the necessary tradeoff between consistency,
availability, and performance.

1.2 Business Process Management

Business Process Management (BPM) is used to organize reoccurring activities in an orga-
nization, by describing the conditions and steps of an activity as a process. The extend of
which BPM is used within an organization can vary, some processes may only be described
informally and document a high-level ideal of how the process should perform, other
processes may be analyzed and documented in detail, for example, with a graphical
notation from the Business Process Model and Notation (BPMN) or from Subject-oriented
Business Process Management (S-BPM).

A general introduction into Business Process Management (German: Geschäftsprozess-
management) is available in the book Geschäftsprozessmanagement in der Praxis: Kunden
zufriedenstellen, Produktivität steigern, Wert erhöhen by Hermann J. Schmelzer and Wolf-
gang Sesselmann [13] from 2013. A deeper perspective in how business processes can be
supported by IT systems is provided in the book Ganzheitliche Digitalisierung von Prozessen
by Albert Fleischmann et al. [10] from 2018, which also compares different modeling
notations in detail.

In this thesis we will use the S-BPM methodology, which is centered around so-called
Subjects as active entities in a process, that perform tasks and exchange messages between
them. Depending on the chosen level of detail for the process model, a Subject may
represent humans, a complete department, a specific role within a department, or a
technical system, like an active database or even a single microprocessor or sensor.

4

Business Level
Functional Process Model

End User View

Technical Level
Technical Process Model

IT-Department View

Execution Level
Executable Process Model

IT-System View

Figure 1.2: Modeling Levels,
adapted from
Abb. 10.7 in [13]

The level of detail for a process model is selected de-
pending on the intended audience; a process can also
be described from multiple views with different process
models. In Figure 1.2 a typical segmentation into three
levels is shown. First, a high-level process model is cre-
ated on the business level with domain experts, which
gathers the major steps of the business logic and involved
subjects. On this level, the involved subjects are typically
employees with a certain role or from a specific depart-
ment; if necessary for the business logic, there can also
be technical subjects, for example, if it is known that
some parts of the business logic must not or cannot be
executed by a human.

For the development of Enterprise Applications, the pro-
cess models from the business level are used as a refer-
ence and are refined into more detailed process models
on the technical level, which will contain technical details and implementation decisions.
For example, technical subjects are introduced to represent the necessary data sources &
storages and communications with other IT systems and Enterprise Applications.

The implementation of a business process can done with two exclusive or complementary
directions: via software development as code and/or with a fine-grained executable
process model, that is interpreted by an execution engine, which is usually available as
part of an ERP system.

The business process models that will be presented in this thesis are situated on the
business level and will contain some technical subjects if needed. For the scope of this
thesis, the Parallel Activity Specification Schema (PASS) of the S-BPM methodology is used,
as it is presented in [15, 16, 17]. Only the high-level Subject Interaction Diagram (SID) is
relevant and the more detailed Subject Behavior Diagram (SBD) will not be used in this
thesis.

5

2 Identifying Requirements & Ideals

Throughout this work, we will look at the fictional company Aperture Science Laborato-
ries Inc. as an abstracted exemplary company, which represents aspects of real-world
companies, so that examples and requirements are easy to demonstrate and are not too
generalized. We construct Aperture Science Laboratories Inc. as a company, that is inter-
ested to invest in Local-First Software for their own internal usage, which is motivated by
some unique properties that sets them apart from typical office-based corporations.

Aperture Science Laboratories Inc. is a globally operating research and development cor-
poration with 50.000 employees, providing their know-how on advanced technologies to
other companies and government agencies. Overall, they have about 500 offices, research
& development centers, laboratories, and research outposts. Their global headquarter
has 5.000 employees and is located in a major city in North America. Their German
headquarter is located in Darmstadt, Hesse with an office for 500 employees.

Aperture Science Laboratories Inc. is interested in a good public image and efficient
internal processes, to be an attractive employer and to win profitable projects without
much overhead in their administrative functions. To continue their good relationship with
government agencies, they are very keen to comply with any legal requirements. Legally,
Aperture Science Laboratories Inc. is structured as a corporate group, with at least one
daughter company in each country they are operating in, leading to heterogeneous legal
frameworks to comply with.

As many projects are classified, using public clouds and external vendors is challenging. On
the other hand – to maintain productivity – are employees allowed to work on unclassified
projects from home or while traveling. This unique combination motivated the IT depart-
ment of Aperture Science Laboratories Inc. to review their existing application portfolio,
which not only contains typical commercial off-the-shelf software but also several bespoke
applications, of which some are externally and others internally developed. Thereby,
they are reviewing their IT architecture and are investigating Local-First Software as an
alternative concept.

6

Controlling Head of
Department

Project
Manager Marketing Sales / All

Employees

ERP System

Project Presentation System

-1. Create Project
-6. Close Project

-4A. Yes, Publish
-4B. No, Don't Publish

-9. Project
Photos

-12. Search
Query

-11. Project
Presentation

-2. Project Metadata
-7. Project Metadata

-5. Collect
Project Photos
-8b. Project
Closed

-10. Create Project
Presentation

-13. Search
Results

-3. Project Created
-8a. Project Closed

Figure 2.1: Process Model: Create Project Presentation

2.1 Business Process: Create Project Presentation

When the sales department approaches a new potential client, submits a bid on an
Invitation to Tender (ITT) or a proposal on a Request for Proposal (RFP), they want to
demonstrate that Aperture Science Laboratories Inc. is a competent partner and has
experience in the area of interest of the client and with the expected work.

For this, the Sales department is using a bespoke application to create and manage
marketing presentations of selected successfully completed non-confidential projects,
which highlight the performed work in each project. To always have the latest information
about all projects and to not miss any new project, this Project Presentation System is
connected to the Enterprise Resource Planning (ERP) system and automatically receives
any changed metadata of each project.

Happy Path Description

The process to fill and maintain this database is shown on a high-level as a Subject-
Interaction-Diagram (SID) in Figure 2.1. The process starts in the controlling team
of the finance department, when a new project is created and entered (1.) into the
ERP system. For each project, the ERP system stores the project number, status, client,
and confidentiality level. This data is transmitted from the ERP system to the Project

7

Presentation System (2.). Once the project is available in the Project Presentation System,
the head of the corresponding department (HoD) will receive a notification (3.) about
this new project. Given the project classification and considering the effect on the public
image, the HoD may decide to request the creation of a presentation file (4A.) or not (4B.).

The corresponding Project Manager (PM) is informed that interesting photos from the
project should be made (5.), which will later be used in the presentation file. Once the
project is completed, the PM will receive a notification (8b.) to review and submit the
collected photos (9.). Once the photos of the project are submitted, and if a presentation
file needs to be created, the system will send a notification (10.) to the marketing
department. They will create a presentation file out of the available metadata and photos
and upload it to the system (11.).

At the end of the process, the sales department can query (12.) the database and re-
ceive (13.) all details about the project. In fact, all employees are able to submit queries
to the database – however, the search results have to respect the project classification and
the employee’s role.

Variations and Exceptions

Deviating from the shown happy path, variants and exceptions have to be considered.
This very high level description serves as an entry point to be further refined, in case
development of a new implementation is commenced. Optional steps has been left out of
the happy path, to reduce the complexity of the presented process model.

As a variation from the happy path, the Head of Department can revert the decision to
create a presentation or not, for example, when a project that seemed irrelevant becomes
a good candidate, or if the classification level changes during the project execution. The
Project Manager may upload and delete photos as long as the presentation has not been
finalized by the Marketing department.

As an exception, members of the Sales department may act on-behalf of the Head of
Department or the Project Manager, for example in cases where a change needs to be
made ad-hoc if a person is unavailable or cannot access the system. This is usually justified
based on external information or approvals and needs to be documented.

8

Business Requirements

Business Requirement 1.1: ERP Integration
The application needs to be able to receive data from other applications, like an
Enterprise Resource Planning (ERP) system. This is not time critical and could be
pull-based.

Business Requirement 1.2: Notifications
The application needs a mechanism to notify employees about new tasks. This may
be a system notification when the application is running in background, or may be
email based. For the Head of Department and the Project Manager, this is not time
critical and may be a delayed email that aggregates several notifications in a daily
summary.

Business Requirement 1.3: Tasklist
User who have outstanding tasks, for example a Head of Department who has to
decide if some projects need a presentation or not, need to see all their outstanding
tasks with a way to navigate to them.

Business Requirement 1.4: Group-based Permission Management
Employees of both the Sales and the Marketing department need general access
to the application. This may be implemented as part of the application with a user
management system, or may be dynamically connected to Active Directory groups.

Business Requirement 1.5: Entry-based Permission Management
The Head of Department and the Project Manager differ in each project and have to
be derived from the ERP data. A Head of Department can only make decisions for
projects of their department, a Project Manager can only manage photos of their
own projects.

Business Requirement 1.6: State-based Permission Management
Only after publication of the final presentation are All Employees able to see the
entry and the presentation file. Entries, photos and files of confidential projects are
not visible for All Employees.

Business Requirement 1.7: Document Storage
The application needs to be able to handle many large files, like photos and the final
presentation. The application may store the files in its own database, or may be
integrated with an external storage or Document Management System (DMS).

9

2.2 Business Process: Incident Report

Like any other company, Aperture Science Laboratories Inc. is responsible for the well-
being of their employees and visitors. This responsibility is given to the Health & Safety
department; on a global level to steer and on each country to perform and align with local
regulation. A key business process, that the global H&S department has developed as a
scheme for all daughter companies, is the “Incident Report” process, which standardizes
how the reporting of incidents, that affect the health or the safety of employees or visitors,
is done.

The primary goal of the “Incident Report” process is to comply with legal requirements.
For some incidents, local authorities may need to be notified within a certain deadline.
The definition of which incidents need to be reported and the respective deadlines depends
on local regulations. For example, in Germany an incident needs to be reported to a
Berufsgenossenschaft (BG) (employer’s liability insurance), if an insured person is unable
to work for three or more calendar days due to the incident, within three calendar days
after receiving word of the incident [7]. In the US, work related incidents need to be
reported to the Occupational Safety and Health Administration (OSHA) within 7 calendar
days [4].

A secondary goal of the “Incident Report” process is to investigate the cause of the incident,
to avoid similar incidents in the future, for example, by updating work instructions and
improving H&S training materials. Reporting on regular intervals, aggregated across all
daughter companies, shows to the management trends and highlights which areas need
improvement the most.

Due to the varying local regulations, each country Aperture Science Laboratories Inc. op-
erates in has developed their own country-specific application. The global H&S leadership
wants to rationalize their IT portfolio and welcomes the IT department’s investigation of
Local-First Enterprise Applications as an opportunity to harmonize the Incident Report
process globally.

Happy Path Description

The “Incident Report” process, shown in Figure 2.2 on the facing page, starts, when a
reporter fills out and submits (1.) an initial incident report. The initial incident report
contains a preliminary classification about the severity of the incident, which determines

10

Reporter Line
Manager

Safety
Officer

Manage-
ment

-1. Initial
Incident Report

-2a. Confirmed Major Incident
-3. Enriched Incident Report

-4. Regular
Reporting

-2b. Confirmed
Major Incident (copy)

Figure 2.2: Process Model: Incident Report

the deadlines for notification of the authorities. The reporter can be any employee of
Aperture Science Laboratories Inc., and is typically affected by the incident or witnessed
it.

To ensure 1. that the proper deadlines are met and 2. the incident report contains all
relevant information, the Line Manager (LM) of the reporter performs two subsequent
reviews. In the first review, the Line Manager confirms or updates the severity of the
incident; in case of an incident with major severity a notification is send to the Safety
Officer (2a.) and to the Management team (2b.), who will arrange the proper notification
of the respective local authority.

In the second review, the Line Manager is responsible to further document the incident
and send an enriched incident report (3.) to the Safety Officer. The Safety Officer
will periodically aggregate all received enriched incident reports and prepare a compact
report (4.) to the Management, which summarizes all incident reports of the period, and
highlights suggestions to avoid future incidents.

11

Variations and Exceptions

To meet the legally mandated ‘deadlines, when an initial incident report does not receive
the first review within a certain time, a reminder will be send to the Line Manager and also
to the Safety Officer. The Safety Officer can step in at any time for any action of the Line
Manager, especially to perform the first review, but also to complete the documentation
and enriched incident report.

Mandatory Business Requirements

Business Requirement 2.1: Notifications
The application needs a mechanism to notify employees about new tasks. In case of
severe incidents, this is time critical and needs to be reliable.

Business Requirement 2.2: Entry-based roles
The Line Manager is determined via the Reporter. The Management is determined
via the region, e.g., per country. The Safety Officer is determined via the location,
e.g., the office or facility.

Business Requirement 2.3: Data Protection
Incident Reports contain sensitive personal information, which are subject to a
higher level of protection under GDPR Article 9 [3]. Incident Reports, or at least the
sensitive part of a report, must only be accessible on a need-to-know basis, i.e., the
Reporter, their Line Manager, their Safety Officer and in case of severe incidents the
Management. For reporting and analysis, reports must be sufficiently redacted, at
least but not only exclude the name and photos.

Business Requirement 2.4a: Regional Variations
The application needs to be customizable per region. Different deadlines for notifi-
cations per country are a must-have.

Business Requirement 2.5: Reporting
To identify trends, the Safety Officers need to categorize, filter and visualize the
number of reports, for example, a graph of trip hazard related incidents over time
and per location.

Business Requirement 2.6: Document Storage
The application needs to be able to handle many large files, like photos of the

12

incident location. The application may store the files in its own database, or may be
integrated with an external storage or Document Management System (DMS).

Optional Business Requirements

Business Requirement 2.4b: Regional Variations
Different regions want to have different fields for the incident report, as they have
to provide different information to the authorities when reporting severe incidents.
Custom notification templates are nice-to-have, so that these can refer to the regional
procedure for reporting incidents to the authorities.

Business Requirement 2.7: Offline Creation
Ideally, the initial incident report can be prepared without a network connection, as
incidents occur not only in location with good network availability like offices, but
also during travel or in remote facilities with limited or no network connectivity.

Business Requirement 2.8: ERP Integration
The incident report may contain optional fields to link an incident to an ongoing
project, to identify and report project or client related trends.

2.3 Business Process: Procure-to-Pay

With the Procure-to-Pay process, we will look at one of the standard core processes of
traditional Enterprise Resource Planning (ERP) systems. This business process is owned
by the Finance department and involves their Procurement and their Accounts Payable
(AP) team. It is the major way to spend money, from ordering small physical goods like
personal protective equipment (PPE) to long-running & high-volume service contracts.

From an economic perspective, the finance department has to ensure that the enterprise
has sufficient cash at any given time, to fulfill any financial obligation in time – otherwise
it would be considered as insolvent, even though they might have sufficient other current
assets and fixed assets. From a legal perspective, the finance department needs to have a
correct accounting at all times, needs to document every transaction, and has to provide
regular financial statements. From a management perspective, the finance department
has to ensure, that every spend is authorized.

13

Requester
Receiver

Approver

Approval Engine

Supplier Accounts
Payable

Procure-
ment

-1. Purchase
Requisition (PR) -3. PR Approval

Response

-2. PR Approval
Request

-6a. Delivery

-6b. Invoice

-7a. Goods
Receipt (GR)

-7b. Payment

-4. Approved PR

-5. Purchase
Order (PO)

Figure 2.3: Process Model: Procure-to-Pay

The Procure-to-Pay process supports these high-level requirements, by channeling all or-
ders through an review and authorization process, thereby documenting all commitments
and giving an overview of upcoming payments.

Happy Path Description

The process model of the Procure-to-Pay process is shown on a high-level as a Subject-
Interaction-Diagram (SID) in Figure 2.3.

The process starts when a Requester enters a new Purchase Requisition (PR) (1.), which
contains a description or reference of goods or services that are needed, their expected
price, the desired supplier, the expected payment terms, the desired delivery information
and receiver, and an assignment to a project or department which will cover the expense.
Based on the assigned project or department and the expected price, the Approval En-
gine will select one or more approvers and sends them a notification (2.) which they
will acknowledge or reject (3.). Once the Approval Engine received all the necessary
approvals, it will forward the approved PR (4.) to the Procurement team. A member of the
Procurement team will review the request and thereby may change the supplier, delivery
information, expected price, or payment terms, for example, after checking the availability

14

on the supplier side. Multiple PRs from different Requesters may be combined into a
single order, to reduce the number of deliveries. The last step of the Procurement team is
to finalize and then send a legally binding Purchase Order (PO) (5.) to the supplier.

The supplier will deliver the goods or services (6a.) to the receiver, that is stated in
the delivery information, who then will validate and confirm the proper fulfillment of
the order, and document this by sending a Goods Receipt (GR) (7a.) to the Accounts
Payable (AP) team.

The supplier will also send an Invoice (6b.) to the Account Payable (AP) team; depending
on the payment terms, this may happen before, at the same time, or after fulfilling the
order. Once the AP team receives the Invoice, a member of the team reviews if the invoice
matches the order and the agreed payment terms.

When the GR happens before the AP team received and booked the Invoice, then the
system will automatically account an accrual; once the Invoice is entered, the payment will
be initiated (7b.) and booked against the accrual. If however the Invoice arrived before a
GR, the behavior depends on the payment terms agreed in the PO. If a prepayment has
been agreed, the payment will be initiated (7b.). Otherwise, the payment is held back
until the GR is received as a confirmation of the fulfilled order, and a liability is booked.

Related Processes

Aperture Science

Laboratories Inc.

Aperture Science

Germany GmbH
Aperture Science US Inc.

credit

Bank

credit

credit

Accounts

Receiveable
Accounts

Payable

cash flow

Figure 2.4: Cash-Management,
adapted from Bild 2 in [14]

The Procure-to-Pay process
interacts with many different
business processes and ERP
modules. Purchase Requisi-
tions (PRs) can only be cre-
ated for a project that is ac-
tive; on the other hand, a
project cannot be closed as
long as not all Purchase Or-
ders (POs) have been com-
pleted. Another interaction
with the Project Management
module is that the Approval
Engine uses the Project Man-
ager as approver. To reduce

15

the number of exceptional approvals, the Approval Engine is connected to the Human
Resource Management module and follows absence delegations. Further, Purchase Orders
can only be send to Suppliers that are enabled in the Supplier Management module.

A more complex interaction exists with the Cash Management module. In large enterprises,
that are organized with multiple legal entities, the entities are participating in a so called
Cash Pooling, with which entities are giving each other credits to balance out fluctuations
between deposits and payments of each entity. This is visualized in Figure 2.4: the US
daughter is expecting an incoming payment, that is scheduled to be transferred to the
parent company, which will forward it to the German company, which will in turn use it
to pay an invoice – no credit needs to be taken from the bank. For the Cash Management
process to work optimal, deposits and payments flows not only need to be predicted
reliably, but also need to be steered – payments can be re-scheduled depending on the
payment terms, allowing to potentially gain a cash discount or to utilize trade credits.

Variations and Exceptions

In case an Approver is unavailable and has not set an absence delegation, any of their
superiors can alternatively perform the approval. However, in any case and especially
with absence delegations and overruling superiors, the Approval Engine has to ensure that
Requesters cannot approve their own requests, so that always someone else is authorizing
the expenditure.

As a variation to a single Good Receipt (GR) and a single invoice, it is typical to split large
or long-running orders up into multiple deliveries or down payments. The GR can also
be automated, for example before the beginning of each month to trigger an installment
for a rent or a regular contract. In case of framework contracts, the unit price may be
reduced retroactively after reaching a threshold, yielding a bonus.

The Accounts Payable (AP) team can change the payment terms or release a payment even
without a received GR, to always be able to fulfill financial obligations, even if mistakes
were made in earlier process steps. The AP team can also reject invoices, or request
amends.

16

Business Requirements

Business Requirement 3.1: ERP Integration
The Procure-to-Pay process is part of the ERP system, and needs to be interconnected
with several other ERP modules.

Business Requirement 3.2: General Accounting Standard Compliance
The Procure-to-Pay process is subject to accounting standards like the International
Financial Reporting Standards (IFRS) internationally or the Handelsgesetzbuch (HGB)
in Germany. These require, not only but especially, that all business transactions
have to be booked continuously, completely, correctly, timely, and orderly, and have
to be stored properly.

Business Requirement 3.3: Multiple Accounting Standards
The Procure-to-Pay process must support multiple accounting standards, for example,
a German GmbH reports according to HGB to the German authorities, but according
to IFRS to the international mother company.

Business Requirement 3.4: Immutability
Certain data, like a PR or PO, starts in a draft state and becomes immutable upon
submission. In specific cases, changes may be possible by amends, that have to be
approved and communicated explicitly.

Business Requirement 3.5: Internationalization
The application needs to handle various currencies, date & time formats, address
formats, etc.

Business Requirement 3.6: Regional Variations
The Procure-to-Pay process needs to be customizable per region. Different rules
exist for the Approval Engine, as per regional regulations some additional checks
may need to be performed. For example, before contracting a freelancer in Germany,
the previous and upcoming engagements need to be reviewed, to avoid false self-
employments (“Scheinselbstständigkeit”).

2.4 Stakeholder Requirements

After collecting business process related requirements from the business owners, we
proceed to collect requirements from other internal and external stakeholders. We will

17

focus on requirements related to the fundamental design of Enterprise Applications.

Information Security Requirements

The Information Security (InfoSec) discipline covers and consolidates requirements from
internal and external stakeholders with respect to the handling of information.

In general, the Information Security Management System (ISMS) family of standards,
ISO/IEC 27000 and following, provides guidelines for implementing information security
controls. Any implementation has further to follow more specific regulations; for example,
the General Data Protection Regulation (GDPR) regulates handling of personal data in the
EU.

Aperture Science Laboratories Inc. performs cutting-edge research projects with many
government agencies, which includes projects commissioned by defense departments.
Information about and from these projects has to be protected specially, for example, the
handling of confidential material is regulated in Germany based on the Sicherheitsüber-
prüfungsgesetz (SÜG).

To avoid intentional or accidental data loss, information needs to be retained; for example,
certain financial data needs to be retained in Germany for 10 years, but personal data
must be stored as short as needed. Further, changes need to be recorded, so that earlier
revisions can be restored. The granularity of changes may decrease over time, so that for
example all recent changes are accessible but only explicitly marked versions are recorded
for a long duration.

Based on the guidelines of ISO/IEC 27002, Aperture Science Laboratories Inc. has es-
tablished the following minimal requirements related to Information Security for the
implementation of any new Enterprise Application:

InfoSec Requirement 1: Identification and Authentication
The user of an application needs to be identified and has to be authenticated.
Authentication may only be possible from company-owned and compliant devices.
Anonymous or pseudonymous access is only possible if explicitly allowed.

InfoSec Requirement 2: Authorization
Access to data is only possible if the acting identity has been granted permission.
Access is managed with different access levels, to separate read-only access from edit
and delete access. Authorization may be granted selectively per database entry for

18

certain users, or may be granted widely to all entries of a database for all members
of a department. Authorizations can be revoked.

InfoSec Requirement 3: Classification of Information
Files and database entries can be labeled with one of four classification levels: PUB-
LIC, INTERNAL, RESTRICTED, SECRET.
Only PUBLIC information can be accessed without authentication. INTERNAL infor-
mation can be accessed by every employee. Access to RESTRICTED information has
to be authorized. SECRET information must not leave the country of origin, and
must only be handled on isolated systems, that have no access to the company-wide
network or the internet.

InfoSec Requirement 4: Retention and Removal
Files and database entries can be labeled with both a minimum retention period and
an automatic removal period. Information within the the retention period cannot be
removed; it may be hidden and require administrative authorization to be accessed
or restored. Data will automatically be removed after the given removal period.

InfoSec Requirement 5: Backup and Restore
Information is regularly backed-up, to be able to restore a known good state after
an incident that involved data loss. All explicitly marked revisions are kept in every
backup; unmarked and draft revisions may be kept out of backups.

IT Requirements

The implementation and operation of Enterprise Applications falls under the responsibility
of the IT department; for the internal software development, the IT department of Aperture
Science Laboratories Inc. has a dedicated Development and Operations (DevOps) team.
The operation of externally developed applications is typically contracted to the vendor or
a partner of them and covered with a Service-Level Agreement (SLA).

For the internal software development, the DevOps team tries to limit the number of used
externally developed dependencies, as each new dependency needs to be understood by
the developers, requires maintenance in case of updates, has overhead to resolve issues,
and increases the risk of supply chain attacks. Further, the license of each dependency
and their dependencies needs to be reviewed, as some licenses like the GNU General
Public License (GPL) are restrictive and prohibit certain usage, or like the Business Source
License (BSL) costly, which in case of Akka can be up to three thousand USD per CPU core

19

per year [1], which is unreasonable for desktop applications that are deployed to each
employee.

The IT landscape of Aperture Science Laboratories Inc. is dominated by Microsoft, their
Office products are used by every employee on a daily bases, and Microsoft Entra ID1 is
used for identity management and single sign-on. Microsoft Azure Cloud is used for the
hosting of less critical and less sensitive applications, but own regional data centers and
local servers in each office are operated for critical and sensitive applications.

IT Requirement 1: Licensing
The license of any externally developed software has to be respected. Licensing of
commercial software requires approval beforehand.
Software dependencies must not use the GPL or AGPL license. Dependencies licensed
with the Apache or MIT License can be used without pre-approval; software that is
licensed with any other license, including LGPL and other modified GPL licenses,
needs to be reviewed and approved before it is used.

IT Requirement 2: DevOps
Internally developed software has to use using Continuous Integration (CI), which au-
tomates build, test, review, and deployment steps. During review, dependencies are
scanned for incompatible licenses or reported vulnerabilities. Isolated environments
for development, testing and production must be used.

IT Requirement 3: IT Landscape Integration
Internally developed software has to integrate well with the existing IT infrastructure.
This includes the use of the company wide single sign-on mechanism, use of existing
identities and group management, and the possibility to deploy the application and
its updates to end devices.

IT Requirement 4: IT Infrastructure Integration
Enterprise Applications must scale for an application-specific expected number of
simultaneously active users, where the load shifts globally over the duration of a day.
Externally developed applications may be operated in a cloud that is managed by
the vendor. If the criticality and sensitivity of an internally developed applications
permits it, it may also be deployed to a cloud, else it has to be deployed to the
own data centers, where it could be on bare metal or virtual machines. Hybrid
deployments may be possible.

1previously called Microsoft Azure Active Directory

20

IT Requirement 5: Application Integration
Internally developed software should have interfaces to integrate with other appli-
cations. These interfaces may also be used for backup and restore operations.

2.5 Local-First Ideals

After collecting requirements for Enterprise Applications in the previous sections, we will
now look at the characteristics of Local-First Software.

The notion of Local-First Software has been introduced in 2019 by Kleppmann et al. [11]
with “seven ideals to strive for”, that we will summarize here briefly without reflection.
We will not yet mark these as a requirement, as we will discuss how these ideals match
with the requirements of Enterprise Applications in the following Section 2.6.

Local-First Ideal 1: No spinners: your work at your fingertips
The primary copy of the data is kept locally, therefore the user does not observe a
latency that would be induced by a network. Synchronization with other devices
occurs transparently in the background.

Local-First Ideal 2: Your work is not trapped on one device
Users who have access to multiple local devices can switch working between them
seamlessly.

Local-First Ideal 3: The network is optional
The application can be started and used without a network connection.

Local-First Ideal 4: Seamless collaboration with your colleagues
Both real-time and asynchronous collaboration is possible. Strategies to avoid or
resolve conflicts are implemented. This may be based on Conflict-free Replicated
Data Types (CRDTs).

Local-First Ideal 5: The Long Now
Using an application is possible even when their vendor stops supporting the product,
changes the terms & conditions, or when the contract with the vendor is canceled.
The data is stored in a format that can be accessed even without the original
application.

21

Local-First Ideal 6: Security and privacy by default
Untrusted third parties, like a cloud operators, may be used to store and exchange
data, by employing end-to-end encryption, so that the third party does not gain
access to the content of the data.

Local-First Ideal 7: You retain ultimate ownership and control
The end user has full control over the data that is used with the application; no
company controls or restricts how data is stored or processed.

2.6 Consolidation of Local-First Ideals with Enterprise Application
Requirements

The seven ideals of Local-First Software have been proposed in [11] for application that
are document-based or have a flat data structure, with the underlying assumptions that
each document or dataset is self-contained and has a single end user as owner. This is
opposite to the underlying assumptions of Enterprise Applications, that are owned by an
organization and interconnected.

In this section, we will discuss the implication of the opposing underlying assumptions
and transfer the seven ideals of Local-First Software to novel requirements for Local-First
Enterprise Applications.

Ownership and Control

In “Local-First Ideal 7: You retain ultimate ownership and control”, the end user is considered
as owner of the data. In case of Enterprise Applications, the enterprise takes over the role
of the end user, as the enterprise ultimately owns the data. Thereby, the role of the end
user shifts to act on-behalf of the enterprise, and has no ownership anymore on the data.

The idea of the seventh ideal remains however: as the owner of the data, no third party
should control or restrict usage of the data. While some measures like automatic scanning
and flagging of content as abusive or illegitimate is undesired for end users, it may be in the
interest of an enterprise. This includes for example the automatic detection of malware
in uploaded files, which may be performed by a vendor of a cloud-based Document
Management System (DMS). In these cases, such measures still need to be fully controlled
by the enterprise, to minimize disruptions of legitimate operations.

22

Local-First Enterprise Application Requirement 1: Ultimate Ownership
The enterprise has the ultimate ownership and all responsibilities. Third parties must
not control or restrict how data is stored or processed without explicit assignment,
in which case the control remains at the enterprise. The enterprise controls and
restricts how end users can use the data.

Trusted Access

The basic motivation of “Local-First Ideal 6: Security and privacy by default” is applicable
to Enterprise Applications, as an enterprise may rely on third parties for the operation
of their applications, and data breaches or rouge employees on the side of those third
parties have to be considered and are occurring in practice. The proposed mechanism
of end-to-end-encryption may be a strategy to implement some aspects from “InfoSec
Requirement 2: Authorization” and “InfoSec Requirement 3: Classification of Information”,
especially to allow the exchange of RESTRICTED information over the network and with
devices of employees that may not have permission to access the exchanged information.

The assumption of avoiding large centralized datasets contradicts however the reality of
Enterprise Applications, where certain operations are performed on large datasets and
need access to all entries. Encrypting different entries with different secrets just moves
the problem from the primary copy to the operating instance, with an induced overhead
of the encryption. In practice, the primary copy and the operating instance are typically
placed in the same environment, i.e., either both are in the same data center or in the
same cloud.

Encrypting different entries with different secrets also makes “InfoSec Requirement 5:
Backup and Restore” harder or even contradicts it: in order to be able to backup and
restore all information, all secrets need to be able to be backed-up and restored.

Lastly, using the available data as a source of machine learning systems is in case of
Enterprise Applications not something to avoid, but a desired feature – given that the
trained model is used solely for the originating enterprise and not for competitors.

Local-First Enterprise Application Requirement 2: Security
Data must be encrypted when it is exchanged with less trusted entities.

Local-First Enterprise Application Requirement 3: Full Access
Centralized trusted entities with full access may exist.

23

Local Data versus Centralized Data

Given that for Enterprise Applications the ultimate control does not lay at the end users, but
at the enterprise. The primary copy cannot be on a local device as idealized in “Local-First
Ideal 1: No spinners: your work at your fingertips” and “Local-First Ideal 3: The network
is optional”, but has to be at a centralized and secured location under the control of the
enterprise. This also eases the fulfillment of the requirements of InfoSec Requirement 1 to
InfoSec Requirement 4. Further, the amount of data of an Enterprise Application is of a
different scale than in [11] considered. It is not feasible to always synchronize the full
state with all devices, as end users are typically working only on a limited set of entries at
a time, and untouched entries loose relevance over time.

The underlying ideas of the first and third Local-First ideals are however applicable. With
data locally available as a secondary copy, the latency can be reduced, and some operations
may not need to be synchronized with any other device, for example writing an Initial
Incident Report. These changes can still be synchronized with other nearby devices.
Other operations, for example finalizing and submitting an Enriched Incident Report, do
require a coordination with other users to avoid and consolidate conflicts and therefore a
synchronization with the primary copy, to ensure the report is based on the most recent
state and will be recorded and communicated properly.

Local-First Enterprise Application Requirement 4: Primary Copy
The primary copy is stored at a secured centralized location.

Local-First Enterprise Application Requirement 5: Local Copies
Secondary local copies of the primary data can be created and synchronized with
the primary copy. This can be restricted or limited, for example, based on the
classification of the data and the authorization of the device’s owner.

Local-First Enterprise Application Requirement 6: Local Operations
Operations, that do not require a synchronization with the primary copy, can be
performed locally, even with a degraded network connection or with none at all.

Local-First Enterprise Application Requirement 7: Relevant Copies at Hand
Only relevant portions of the state are available locally. This state is kept up-to-date
automatically. Data that is unavailable can be fetched over the network.

Local-First Enterprise Application Requirement 8: Awareness for Synchronization
The user is made aware of a pending synchronization, especially before closing the

24

application. The user may have a possibility to prepare for a phase of offline working,
for example by fetching desired portions of the state in advance.

Roaming and Collaboration

The ideas of “Local-First Ideal 2: Your work is not trapped on one device” and “Local-First
Ideal 4: Seamless collaboration with your colleagues” apply to Enterprise Applications, limi-
tations arise however when confidential information is involved, as “InfoSec Requirement 3:
Classification of Information” mandates that certain information is limited geographically
or per device type. Similarly, collaboration has to respect the “InfoSec Requirement 2:
Authorization”, which restricts the circle of persons to collaborate with.

An aspect to consider with collaboration is that real-time collaboration, e.g., having a
shared text document and seeing the cursor position and changed text of every participant
with minimal delay, is not always the desired workflow. While that can be desired to
distribute the workload and to support creativity, other situations require a single user to
have exclusive access and to work uninterruptedly, perhaps to restructure a longer text, to
finalize a document before submission, or to avoid conflicts when working offline.

Local-First Enterprise Application Requirement 9: Nearby Copies
Secondary copies can be synchronized with each other, even without a connection
to the primary copy. This can be restricted or limited, for example, based on the
classification of the data and the authorization of the devices’ owner.

Local-First Enterprise Application Requirement 10: Collaboration
Both real-time and asynchronous collaboration is possible. Exclusive access is possible
to restrict collaboration. Collaboration respects the classification of the data and the
authorization of the participants.

The Long Now

The idea of “Local-First Ideal 5: The Long Now” also applies to Enterprise Applications,
and is further supported by “InfoSec Requirement 4: Retention and Removal” and “InfoSec
Requirement 5: Backup and Restore”. This is however limited by legal requirements and
“IT Requirement 1: Licensing” – not every externally developed software permits using it
after end of the contract, even if it would be technically possible.

25

This can be avoided by purchasing usage rights of the externally developed software,
for example by having bespoke applications developed as contract work, or by entering
license agreements that permit a continued use after the end of the contract.

Local-First Enterprise Application Requirement 11: The Long Usage
Externally developed software is purchased or licensed with indefinite and irrevoca-
ble usage rights. The application itself can be stored in a state that allows future
usage.

Local-First Enterprise Application Requirement 12: The Long Storage
The data is stored in a format that can be accessed even without the original
application.

Reflection

In summary, we see in a shift from the idealized decentralized data storages with control
for the end users over to centralized systems with centralized control, which is exactly
what Local-First Software aimed to avoid in the first place and is similar to traditional
enterprise architectures.

This raises the question, if the requirements of Enterprise Applications are compatible
with the ideas Local-First Software, i.e., if the requirements developed in this section
are satisfiable, and underlying if the combination can still be considered as Local-First
Software. Assuming that the combination is possible, the next question that arises is if it
beneficial, i.e., if the effort that has to be spend for the initial development of Enterprise
Applications to support the remaining ideas of Local-First Software will yield a sufficient
improvement over the traditional enterprise architectures.

Only from looking at the requirements, we cannot arguewhether the proposed combination
is possible or not, and need an artifact to examine this further.

26

3 Implementation

In the previous chapter, we have looked at three business processes of the fictional company
Aperture Science Laboratories Inc. and established requirements for potential Local-First
Enterprise Applications. Reflecting the identified requirements, we see two primary
differences between Enterprise Applications and the original ideals of Local-First Software:
Enterprise Applications have a much larger scope, with thousands of users that interact
with the same shared state, and Enterprise Applications require centralized control of the
data.

We presume, that Aperture Science Laboratories Inc. wants to investigate if and how Local-
First Software fits into their enterprise architecture and business strategy, by investing
in the development of a prototype. The prototype is called Incident Report Applica-
tion and is inspired by the business process “Incident Report”, which was presented in
Section 2.2 on page 10. This business process was selected over the other two presented
business processes, as it is the least complex process and still has representative require-
ments regarding the authority over data, which includes challenges about confidentiality
and privacy.

The investigation and development is motivated by the central question “Is it possible
to develop Local-First Enterprise Applications?”, which we will break down into two
more concrete questions:

1. Can Local-First Software be scaled for hundreds or thousands of clients?

2. Can Enterprise Applications be developed based on the principles and ideals of
Local-First Software?

27

3.1 Overview

A keystone in the design of this implementation is, that the Incident Report Application
should continue operating with no or limited network connections, as per “Local-First
Enterprise Application Requirement 5: Local and Nearby Copies” and “Local-First Enterprise
Application Requirement 6: Local Operations”. When for example a local network is
available, but (temporarily) no connection to the primary copy is available, it should still
be possible to replicate the state within the local network and perform basic operations.
Based on this, the connection and replication management is designed based on the idea
of a peer-to-peer network, and only later on extended to scale out and to synchronize
with the central primary copy.

The Incident Report Application is based on the REScala project [5, 6], which has
an existing library for state-based Conflict-free Replicated DataTypes (CRDTs) and pro-
vides several examples for Local-First Software. Like the existing REScala examples, the
Incident Report Application bases its network communication on the Communicator
modules from the ScalaLoci project [8, 9], which provide direct peer-to-peer connections
for Remote Procedure Calls (RPC) between so-called Registries.

REScala

Incident Report

Application

RDTNetwork

TieredConnectionManager

Replication

ReplicatedObject

ReplicationManager

RDTs

Lattice, Bottom, Dots

ScalaLoci

Registy

Communicator

TCP

ConnectionManager

Hub, Node, Bundle

Figure 3.1: Architecture

In Figure 3.1 on the side
the high-level overview of the
overall architecture is shown.
The Incident Report Ap-
plication is highlighted in
light purple; it uses all other
components directly or indi-
rectly. The previously ex-
isting components are high-
lighted in light green. From
the ScalaLoci project, the
Registry class is used to bind
values and RPC-endpoints to,
and serves as an anchor for
incoming and outgoing con-
nections. Connections are
established using the TCP-
Communicator.

28

Newly created libraries are highlighted in light blue. Within the ScalaLoci project, a
new module for connection management has been added, which will be presented more
detailed in Section 3.2 on the following page. The ConnectionManager trait and the
Bundle class provide abstractions for connection management, the Hub & Node classes
provide an implementation to directly connect Registries one-to-one.

Within the REScala project, a Replication module has been added, this will be presented
more in detail in Section 3.3 on page 33. The ReplicatedObject trait provides a general
abstraction for developing applications that use state-based CRDTs. The ReplicationMan-
ager class provides an implementation, that is based on the ConnectionManager from
ScalaLoci. The module RDTNetwork will be presented in Section 3.4 on page 36. It
provides extensions of the ConnectionManager, that organize the peers in a tiered tree
hierarchy and dynamically exchanges the network topology and connector information
with an RDT.

29

0..*

Initiator

0..*

0..*

0..*

0..*

0..1

<<Trait>>

ConnectionManager

+ val registry: Registry

+ def sendToEnabledNeighbors

<<Interface>>

ListeningConnectionManager

+ def getListening

<<Interface>>

ConnectingConnectionManager

+ def updateCandidates

<<Abstract>>

ConnectionManagerCommon

var enabledConnections

var pendingConnections

def shouldEnableConnection

ConnectionManagerHub

- var listeningTo

- def listenTo

- def onNewConnection

ConnectionManagerNode

- var candidates

- var connectingTo

- val reconnectTimer

- def connectTo

def desiredAdditionalConnections

def getNCandidatesToConnect

ConnectionManagerBundle

+ val listeningConnectionManagers

+ val connectingConnectionManagers

<<Object>>

RegistryUtil

+ val connectionManagerVersion

+ def setupRegistry

+ def getRemoteID

+ def getRemoteVersion

Figure 3.2: ConnectionManager Class Diagram (reduced)

3.2 Basic Connection Management

For connection management, an extensible library is added to ScalaLoci. The primary
design goal of this library is to be flexible, so that it can be used in many different scenarios,
ranging from simple client-server to complex peer-to-peer topologies.

As visualized in Figure 3.2, the ConnectionManager trait is at the root, and has a Listening
and a Connecting specialization. These traits, highlighted in light green, provide a topology-
agnostic interface to connect Registries and send messages between them. The method
name sendToEnabledNeighbors includes “neighbors” to emphasize that on this low level,
only single-hop delivery between directly connected Registries is supported, and “enabled”
to emphasize that implementations are free two have different implementation-defined
kinds of connections, of which only the “enabled” connections should be used by default
to communicate on from an upper level. With this, an implementation could mark a
connection as “enabled” only when certain criteria are met, for example, after a handshake
between neighbors.

30

The getListening method returns a sequence of “Listening” objects, that (if the underlying
communicator supports it) can be converted and serialized to a String, passed to another
device, and be converted to a set of “Connector” objects, that then can be used for the
updateCandidates method, so that this other device can establish a new connection to it.
The passing of the Connector information between devices is not implemented as part of
this ScalaLoci module, but will be presented later in Section 3.4 on page 36 as part of the
REScala project.

Each ConnectionManager instance is tied to a single Registry, but a Registry can have
multiple ConnectionManager instances, which allows for example a Registry to have
several different ListeningConnectionManagers. For convenience for the implementation
of more complex and dynamic topologies, each Registry gets assigned a Universally Unique
Identifier (UUID), called the RegistryID. The first ConnectionManager that is being set up
on a Registry can decide this ID while calling the setupRegistry method of the RegistryUtil
object; in production this should be a random ID, but for testing & evaluation purposes
a predefined ID may be used. This ID is stored within the Registry alongside a version
field, both can be looked up remotely from a different Registry. To easier handle having
multiple ConnectionManager instances on a Registry, these can be composed together
with the ConnectionManagerBundle class, which delegates all calls and messages to all of
its underlying ConnectionManagers.

A basic implementation is provided with the (abstract) classes highlighted in light blue in
the Figure 3.2 on the preceding page: the abstract class ConnectionManagerCommon offers
common methods to keep track of the state of connections, and supports enabling and ter-
minating connections. The shouldEnableConnectionmethod provides a basic equality check
between the own and the remote version, to safeguard against older clients misbehaving
in a network with future implementations. The check is performed asynchronously, and
the method is indented to be overwritten by more complex implementations, which may
want to validate more conditions before marking a connection as “enabled” – or refuse to
enable it, in which case the connection will be terminated. Until a connection has been
marked as “enabled”, it is referenced as a “pending” connection, to keep track of those
until termination, when they are automatically disconnected.

This common class is used as a base by both the ConnectionManagerHub and Connection-
ManagerNode classes, which are used complementary. The hub listens on a given Listener,
marks all new connections on it as “pending”, and then tries to enable the connection,
or disconnect it otherwise. The node however has a more complex implementation. By
default, it tries to connect to all given candidates, and is periodically trying to (re-)connect
to all of them, in case a connection could not be established or has been terminated. To

31

increase the potential use cases and allow more complex topologies, the node has a config
parameter desiredEnabledConnections, which is controlling to how many of candidates a
connection is tired to be established. The behavior of the node is further customizable, as
the methods desiredAdditionalConnections and getNCandidatesToConnect can be overwrit-
ten to tailor it to the needs of more complex topologies, or to favor specific candidates
over others.

C

Node

B

Hub

Node

A

Hub

Node

↯

Figure 3.3: Topology
Example

In Figure 3.3 on the side, a simple topology with three peers
is shown as an example. The peers A and B are each using a
Bundle of a single Hub and a single Node, the peer C just has a
Node. All Nodes are having desiredEnabledConnections=1, i.e.
a single connection that they want to maintain. The listeners
for the Hubs and the candidates for the Nodes are assumed
to be manually provided; where A has no candidates, B has
A as candidate, and C has both A and B as candidates.

Initially, both B and C are having one established connection
to A. As A has no candidates, its reconnection timer is not
active. As B and C both have as many connections enabled
as desired, they also have no reconnection timer active, even
if C has another candidate it could connect to.

Once the connection between C and A fails, indicated with the
lightning strike �, the Node of C schedules its reconnection
timer, and then Node C will pick a random candidate to
connect to. In case of such a connection failure, a node does

not immediately try to reconnect, to avoid overloading the peers and the network with
a constant loop of establishing new connections in a case where the connection gets
terminated shortly after being established.

32

RefreshableReplicatedObject

- var _currentState

+ def refresh

DerivedReplicatedObject

- var _currentState

+ def close

<<Trait>>

ReplicatedObject[RDT]

+ def currentState

+ def applyLocalDelta

+ def refreshableView

+ def derive

ReplicationManager

- var _currentState

- val localDeltaBuffer

- val remoteDeltaBuffer

+ def applyLocalDelta

<<Interface>>

java.io.Closeable

+ void close

ReplicationManagerRegistry

- var managedObjects

+ def register

0..*

1

Figure 3.4: ReplicatedObject Class Diagram (reduced)

3.3 Replication Management

The state-based Conflict-free Replicated Data Types (CRDTs) of the REScala library are
based on the principle, that a state is changed by mutation functions, that generate deltas,
which are merged back with the state to yield the updated state. Deltas are actually of
the same data type as the state, which means several deltas can be merged together to
yield a possibly more compact delta, i.e., deltas can be aggregated. Both states and deltas
can be serialized and exchanged over the network with other peers.

We introduce a new class ReplicatedObject to work with instances of an RDT, a reduced class
diagram is shown in Figure 3.4. To coordinate how the locally generated deltas are send
to neighbors and to merge remote deltas back to the local state, a new ReplicationManager
class has been implemented. Each Replication Manager instance manages a single object;
to have the possibility to replicate multiple (independent) objects, an ObjectId is used to
refer to each with a well-known String. The singleton object ReplicationManagerRegistry
has been developed to keep track of which ObjectId is managed on which Registry by
which Replication Manager, and facilitates a subscribe mechanism between the peers.

Access to a Replicated Object has to be synchronized, as changes are occurring both locally
from the application and by receiving remote updates. On top of that, the application may
be multithreaded or use an Replicated Object in multiple different locations. Otherwise
there would be race conditions, for example, if the application code would check two
conditions, but in between the state would be changes by a remote update – the first
condition may now be false, i.e., the state of the Replicated Object is different from what

33

the application logic assumes. A second challenge occurs especially with the design of
Graphical User Interface (GUI) applications: often, RDTs are deeply nested, for example,
the base might be a Map, which contains a class, which contains a field that should
be displayed or edited. For RDTs to work, the mutation of the text field needs to be
transported back to the original object, building up the delta of the text box first, then a
delta of the containing class, then a delta to the Map, which then can be applied to the
local state and also be replicated to other peers.

These two challenges are solved by introducing refreshable views and derivations of
Replicated Objects. A refreshable view creates a copy of the current state that is not
affected by updates from outside of it, i.e., when another peer changes the state, that
change is not visible, as if the peer would be offline. The refreshable view however keeps a
reference to its original object, and will apply any mutation that are generated from within
the view to itself and the original object. A derivation is done with a pair of functions:
the first function transforms a state, for example looks up one entry in a list, and the
second function transforms deltas from the transformed state back to deltas of the original
state, for example, wraps the change of a map entry to a delta that mutates the map.
The derivation is always kept in-sync with the original state, i.e., external updates are
updating the derived object and may invalidate the derivation, for example, when another
peer deletes an entry.

The Replication Manager collects and applies deltas that are generated locally or received
from externally. In both cases, the deltas are buffered in an ArrayBlockingQueue, so
that the thread from the application / GUI and network can quickly continue with their
operation and are not blocked by each others operation or by any callbacks that are
fired when the Replicated Object is changed. To avoid overloading the network or the
application with too many changes, the handling of buffered deltas is debounced; deltas
collected during runs are aggregated to further reduce the network load and number of
local callbacks. To avoid duplicated delta messages and possible broadcast storms, for
example when neighbors form a ring, are all received deltas compared with the local state
and only handled if they contain new information.

In Figure 3.5 three independent sequences are shown. The first sequence shows the initial
state synchronization, when a second neighbor connects. The second sequence shows
how a received delta from the second neighbor is received, compared with the local state,
further distributed to the first neighbor, and then applied to the local state and finally
applied to the UI. The third sequence shows how an action from the UI performs a local
state change, that will update the UI and will be communicated to both neighbors.

34

UI

updateBindings
runLater

return

fun

ReplicationManager

mutate(fun)

return

Local

UpdateBuffer
_currentState

onClick

FX Thread

RDT

currentState

delta2

merge(delta2)

latestState

take

LocalUpdate

Dispatcher

delta2

return

return

return

Neighbor1

updateBindings

sleep
take

put(latestState, delta2)

Neighbor2

Remote

UpdateBuffer

merge(delta1)

latestState

take

RemoteUpdate

Dispatcher

delta1

sleep
take

latestState

delta1

delta1

runLater(updateBindings)

delta2
delta2

subscribe

requestState

return

currentState

latestState

latestState

Figure 3.5: ReplicationManager Sequence Diagram

35

3.4 Advanced Connection Management

The basic connection management presented earlier in Section 3.2 provides the foundation
to connect to other peers and exchange data with directly connected neighbors, but has no
preferred topology nor mechanisms to exchange connector information. With the default
setting of connecting to all known candidates, a full mesh topology would form, when all
peers have every other peer as a candidate. This might be beneficial for small networks
due to low latency and high resilience, but does not scale with a growing number of peers,
as the number of connections grows quadratic.

Typically, Enterprise Applications are used in two scenarios: employees working in the
office or employees working remotely, for example, at a client site, in the field, during
travel, or from home.

In general, peer-to-peer networks are scaled by introducing an overlay network, that is
based on a given topology and reduces the number of direct connections. For example,
with homogeneous peers1, a ring-based topology could be used, which needs just a few
direct connections, and is easy to setup for ad-hoc networks. A ring-based topology
however comes with growing size with an increased latency as the overlay network does
not follow the structure of the underlying network and the availability is threatened by
peers leaving the network (churn).

In case of Enterprise Applications, the peers are however not homogeneous: employees
are using desktop and mobile devices, where the latter often operate on battery power
due to which resources have to be used carefully. Even with the principles of Local-First
Software, some application logic and especially long-term data storage is not placed on
the end-user devices, but more centrally on servers.

1similar hardware (CPU, memory, network), similar energy constrains, similar availability, similar logical
roles

36

↯1

↯2

R
o

o
t

Hub

X

Node

Hub

Y

Node

Hub

A

Node

B

Node

C

Node

Figure 3.6: Tiered Topology

We presume that Aperture Science Labo-
ratories Inc. has decided to use a tiered
tree-based topology, that is shown in Fig-
ure 3.6 on the side: a powerful server at
the root (in purple) can serve as a single-
point of truth. Underneath of the root, in-
termediary peers (in green) form a tier that
distributes the load, these intermediaries
can be scaled out and could for example
be placed in each office, data center, and
near the VPN endpoints. The end-devices
of the employees are then forming the leaf-
tier (in blue) and are connecting to the
intermediary-tier.

This topology has been implemented with
the TieredConnectionManager class in the REScala project, which extends the Hub and
Node classes. For the implementation two design decisions have been made, that are
not ideal for use in practice, but benefit the use in a demo / prototype setting: 1. peers
can only connect connect to peers located on a directly upper tier, i.e., A can connect
to X but not to Root, 2. peers desire & enable only 1 connection, and 3. peers have no
preference to which of the possible other peers they connect to, i.e., B can connect to
either X or Y (but not to both at the same time). The implementation has no preference
for the number of tiers. For evaluation and for practical use the three design decisions can
be overwritten, for example, it would make sense to organize peers geographically and
have an intermediary that is located in an office only be available for clients within that
office.

When the connection from the peer Y to the Root fails, as indicated with the first lightning
strike �1, then will the right branch form a partition that is not connected to the rest of
the network, as peers can only connect to upper tiers and so Y cannot connect to X. When
the connection from B to X fails, as indicated with the second lightning strike �2, then
will B attempt to connect to Y.

For this to work, each peer needs to know the connector information of the peers on their
upper tier. This is solved by storing the connector information of each peer in an RDT and
replicating it to all peers and implemented with the TieredReplicatedConnectionManager
class. To ease the bootstrapping, intermediaries can seed their current RDT state to any
peer, regardless of their tier. Each peer adds its own connector information, alongside

37

some more fields for debugging, to the RDT. Whenever a peer receives updates for the
RDT, it refreshes its available candidates.

3.5 Incident Report Application

Looking back at the original motivating question “Is it possible to develop Local-First En-
terprise Applications?”, we now have the underlying libraries for connection management
and replication management, so that we can build on those and develop an application
for the further evaluation of that question. We are not interested in a fully functional
Enterprise Application – to evaluate and discuss how the requirements of Enterprise
Applications fit with the ideals of Local-First Software, we only need a representation of
the basic principles.

The Incident Report Application has been developed as such a prototype, targeted
for the internal DevOps team of Aperture Science Laboratories Inc. It is inspired by the
business process “Incident Report”, which was presented in Section 2.2 on page 10. The
current implementation is focused on the evaluation of the connectivity and replication,
and to serve as a discussion artifact for the remaining requirements.

The Incident Report Application is developed in Scala and uses JavaFX for the Graphical
User Interface (GUI). Two screenshots are taken at the same time, the Figure 3.7 on page 40
shows the state of the peer AAAA and Figure 3.8 of the peer BBBB. The differences in
the displayed date & time fields comes from applied internationalization: the peer AAAA
has been started with the local German timezone, the peer BBBB has been started with
setting the “user.timezone” property of the JVM to “Asia/Tokyo”. The main window of
the GUI is shown behind, it is organized in three columns: on the left side is a general
menu, from which a new blank incident report can be created. In the center is a table of
all incident reports, the table can be sorted and one entry can be selected. The selected
entry is shown on the right side in a read-only live state.

With the “Edit” buttons on the right panel, an edit dialog can be opened, which is visible
on top of the main window in each screenshot. As REScala offers no specialized datatype
for text fields, LastWriterWins[String] has been chosen for text fields. This is not optimal,
as conflicting changes overwrite each other and do not preserve any history. The difference
between the several “Edit” buttons will be discussed in the following Section 3.6, which
will also explain why the field “Investigation” in the edit window of the peer BBBB is
empty.

38

3.6 Asynchronous Application Design

The Incident Report Application as a prototype of a Local-First Enterprise Applica-
tion gives a framework to discuss how some of the remaining requirements could be
implemented.

As discussed in Section 2.6 with the Local-First Enterprise Application Requirements 4 to 8,
certain actions in Enterprise Applications require an explicit synchronization with a central
entity. Looking at the the Incident Report Application, the confirmation of the severity
of an Initial Incident Report by the Line Manager is such an action, as this confirmation can
be done only once, has to be based on the latest revision of the report, needs to be recorded
and retained, and is the trigger for other actions. If the confirmation were to be send
without any central synchronization, it could be factually wrong as the confirmed severity
might not match the latest description, there could be multiple conflicting confirmations,
or the confirmation could get lost due to network issues.

To match the ideas of Local-First Software, it should however be possible perform actions
asynchronously, for example, to confirm the severity even when the device has no or
an unreliable network connection, and have this confirmation processed at a later time.
Processing actions asynchronously raises two challenges: first, the user must be kept
informed about the progress of their action, and second, an action might become no longer
desired after some time, or become invalid due to conflicting other changes.

Related to this, collaboration can be real-time and asynchronous, as outlined with “Local-
First Enterprise Application Requirement 10: Collaboration”. Conflicting changes could be
avoided with exclusive access for a single user.

We have started to investigate possible implementations to address the requirements
for asynchronous work, but not have come to a complete solution and leave this to be
picked-up by a future work.

In a first step, we propose that the User Interface (UI) should allow the user to choose
a desired collaboration mechanism. The Figure 3.7 on the following page shows on the
right side for a selected entry three options for editing:

Edit Live opens the edit modal with a bidirectional connection. If this is done by multiple
users that are connected, the change of any user will be visible for the other users,
and someone else can continue editing based on the change. We propose this mode
for real-time collaborative work, but the current implementation is limited by the

39

Figure 3.7: Screenshot of the INCIDENT REPORT APPLICATION – Peer AAAA

40

Figure 3.8: Screenshot of the INCIDENT REPORT APPLICATION – Peer BBBB

41

chosen underlying LastWriterWins data type, which simply resolves conflicting
changes to the latest one.

Edit Fixed opens the edit modal with a unidirectional connection. Externally created
changes will not arrive at the edit modal, i.e., the user sees only their own changes.
Changes created in this modal are however propagated to other users, so that
they can see the progress. We propose this mode as first option for uninterrupted
work, but again the current implementation is limited by the chosen underlying
LastWriterWins data type, with which the problem of conflicting changes is even
amplified, as other user’s changes are never displayed.

Lock & Edit is not implemented. It is supposed as a second option for uninterrupted work,
by requesting exclusive access for an entry.

In the aforementioned two screenshots, both users opened the edit modal at the same time.
On Peer AAAA it was opened in the live mode, on peer BBBB in the fixed mode. Changes
from peer BBBB are visible in the window of peer AAAA. The addition of “Investigation
written by AAAA“ from peer AAAA arrived on peer BBBB, as it is visible in the main
window, but is not presented in the edit modal.

As a second step to address asynchronous work, we looked at potential mechanisms to
submit actions asynchronously and to request exclusive access. We encountered challenges
related to exclusive access and have not integrated this work into the Incident Report
Application, but have already developed some test cases, to be further developed by a
future work.

42

4 Evaluation

In the previous chapter, we have looked at the implementation of the Incident Report
Application and its underlying libraries, which we have developed to bring us closer
to an answer for the motivating question “Is it possible to develop Local-First Enterprise
Applications?”, that we broke down into the two more detailed questions “Can Local-First
Software be scaled for hundreds or thousands of clients?” and “Can Enterprise Applications
be developed based on the principles and ideals of Local-First Software?”.

Even in the broken down form, these questions are still too big to answer positively with
the current state of the implementation, but we can also not rule out the opposite. In
this chapter, we will look closer at some parts of the implementation and look at some
important remaining challenges.

4.1 Connection Management and Performance Benchmark

To investigate if the connection management and replication management implemen-
tations are suited as base for large-scale deployment, we have developed a benchmark
application.

During the implementation of the ReplicationManager, we assumed that a debounce
period could beneficial for the overall performance, and had to estimate values for the
period. In a first step, we are looking at how to tune the values for the debounce period,
and to get a general feeling of the unoptimized performance.

The benchmark is constantly creating new Incident Reports on one instance, and on a
second instance every new Incident Report is marked as “completed”. The first instance
measures the delay between the creation and the “completed” mark. The second instance
is measuring the number of marked reports. Both instances are connected over the Root
intermediate. All three replicas have the same debounce values. In the benchmark, we

43

vary the debounce period and the rate by which the first instance creates new reports,
by having a delay between each creation. The benchmark is performed with all three
instances on a single device. the benchmark is executed for 10 seconds as a warmup
without taking measurements, followed by 10 seconds in which the measurements are
taken. The benchmark is performed first without a dedeuplication check and then with a
deduplication check that is based on “lattice.lteq”.

Without any overhead, the number of requests would be 1
pause , i.e., 10 requests per second

when waiting 100ms between each creation, and 1.000 requests per second when waiting
1ms between each creation.

We can see the results of the benchmark in Figure 4.1. The number of requests that are
created with a delay of 100ms and 10ms match for all three debounce values the expected
value of 10 resp. 100 requests. With a pause of just 1ms between the requests we however
see a significant difference between the debounce values; an optimum of 1,000 would
be expected without any overhead. In this case, the debounce period of 500ms with an
average of 774.00 requests per second is by far outperforming the debounce period of
50ms which achieves 298.00 requests per second and the debounce period of 5ms which
achieves only 147.44 requests per second. We see in all three cases, that the measured
delay significantly increases in the case of waiting 1ms between the requests.

The test case of debounce period of 5ms with a pause time of 1ms was unable to complete
due to serialization errors with duplication check. We assume, that the added computation
with “lattice.lteq” for every delta leads to more requests being buffered during that time,
which may lead to the message getting too large for the serialization. We therefore
supplemented this with a pause time of 2ms.

From these results we can see, that a larger debounce period can handle more requests,
at the cost of a higher delay.

During the execution of the benchmark, we have had the impression that the benchmark
is limited by single CPU core performance. A more realistic benchmark with more devices
is needed to further investigate how many requests can be handled reliably, and if the
load can be scaled on the root node for several thousand active users at a time.

In more realistic settings, the peers would not necessarily be connected to the same
intermediary. The chosen topology of a tiered tree leads to a potentially high latency
between leafs as every intermediate adds not only the delay of the network but also for
the debounce period. This can accumulates especially when the changes have to replicate
through the root – which is also a single point of failure, threatening availability.

44

110100

10

100

1,000

10,000

Pause [ms]

Average Delay [ms], without lteq

110100

10

100

1,000

10,000

Pause [ms]

Average Delay [ms], with lteq

500ms
50ms
5ms

110100

10

100

1,000

Pause [ms]

Average Requests [s−1], without lteq

110100

10

100

1,000

Pause [ms]

Average Requests [s−1], with lteq

500ms
50ms
5ms

Figure 4.1: Replication Performance Evaluation

45

The tiered tree could be enhanced with connections between peers. For example, all
members of a tier could additionally form a ring; this could be beneficial on the top-
most tier below the root, especially when this tier is spread out globally and is used
to interconnect continents, to potentially reduce load and increase resilience. Direct
connections could also be established between the leafs: when two users are editing the
same incident report, a direct connection between their devices would be a shortcut to
avoid the latency incurred by intermediates.

The introduction of topologies with direct connections is already supported by the Replica-
tionManager, as it avoids the replication of duplicate deltas by comparing every received
delta with “lattice.lteq” with the current state, so that broadcast storms are avoided.

We further performed manual tests, by running the application on a local network and
over the internet. In these tests, we noticed that the (re-)connection logic of Connection-
ManagerNode is sufficient, but not optimal. It leaves times where no enabled connection
is available for longer than necessary, for example, when a connection fails a reconnec-
tion is scheduled instead of immediately trying to establish a new connection. To avoid
overloading peers and the network, and to avoid connecting to a reoccurring failing
hub, candidates should be blacklisted for a certain time. The downtime can further be
reduced, by establishing “standby” connections, that are being kept alive, but not marked
as “enabled”.

4.2 Prototype Gap

Looking at the gap between the Incident Report Application as a simplified prototype
with requirements for realistic Enterprise Applications, we see the biggest open challenge
in the design of the underlying data structure.

The data structure of the Incident Report Application is based on an RDT of a single
GrowOnlyMap. In that form, it is a standalone dataset, that is not integrated with other
Enterprise Applications. Realistically, and especially to support “Business Requirement 2.8:
ERP Integration”, an interconnected data structure would be needed. This raises questions
on how this integrates and scales with many different Enterprise Applications, and with
how the interdependencies can be kept in a consistent state.

To address the scale of Enterprise Applications, even in the current form without a
interconnected data structure, changes to the ReplicationManager and underlying RDTs

46

are needed, to allow for partial replication and lazy-fetching, as it has been described with
“Local-First Enterprise Application Requirement 7: Relevant Copies at Hand”.

Other important requirements that have not been addressed by the Incident Report
Application are less related to Enterprise Applications, but more to Local-First Software
in general and REScala in particular.

For collaboration, a specialized RDT for text fields is needed that decomposes and merges
the individual changes, alongside an editor in the User Interface (UI) that may be used
also to resolve conflicts. Further, the UI has to be extended for “Local-First Enterprise
Application Requirement 8: Awareness for Synchronization” to indicate the replication status
to the user, possibly by highlighting entries in the list if it is not known that the local entry
matches the state of the primary copy.

47

5 Summary and Conclusion

In this master thesis, we have investigated how the ideals of Local-First Software match
with the Requirements of Enterprise Applications.

In Chapter 2 we have first looked at the business requirements of three business processes,
followed by analyzing more general requirements for the development and implementation
of Enterprise Applications. We then discussed in detail how the seven ideals of Local-First
Software from [11], which are based on the perspective of individual end users and
standalone documents and repositories, apply to the context of Enterprise Applications,
which have to serve the needs of an organization with several thousand employees. During
this discussion, we presented a total of 12 more specific requirements for Local-First
Enterprise Applications, which centralize the primary data storage and control, while
using the ideas of Local-First Software to still reduce the dependency from centralized
systems compared to traditional enterprise architectures.

In Chapter 3 we gradually build up a prototype, to further examine the feasibility of Local-
First Enterprise Applications. We started by implementing a ConnectionManager for the
ScalaLoci project, which automatically establishes and maintains peer-to-peer connections
between neighbors. On top of that, we implemented a peer-to-peer topology based on a
tiered tree, to scale this network out. We then implemented a ReplicationManager, that
aggregates and distributes changes of an RDT with its neighbors in a peer-to-peer network,
which will then propagate throughout the peer-to-peer network. In the evaluation, we
have performed a benchmark to analyze the tradeoff between throughput and latency for
the replication.

We proceeded to develop a prototype of an Local-First Enterprise Application, that is
inspired by the Incident Report business process, to see how such an application would look
and behave, and to have an artifact to further examine and discuss. The implementation is
limited by missing features to support asynchronous work or real-time collaboration, and
cannot scale sufficiently as the full state is replicated with every replica. Many requirements

48

have not yet been considered with the implementation, notably requirements related to
Information Security (InfoSec).

Although the InfoSec Requirements are a must-have for real-world Enterprise Applications,
the general idea of encrypting the RDT or parts of it is not specific to Enterprise Applications
and applies in general to Local-First Software. Looking specifically at Local-First Enterprise
Applications, we see the biggest open challenges in more complex and interconnected
datastructures, and with how different Enterprise Applications, Local-First and traditional,
can be integrated with each other.

In summary, we cannot conclude whether future Enterprise Applications can be based,
or even should be based, on the ideals of Local-First Software or not. The combination
seems however realistic and should be further investigated.

49

List of Figures

1.1 Two interdependent Enterprise Applications 3
1.2 Modeling Levels,

adapted from
Abb. 10.7 in [13] . 5

2.1 Process Model: Create Project Presentation 7
2.2 Process Model: Incident Report . 11
2.3 Process Model: Procure-to-Pay . 14
2.4 Cash-Management,

adapted from Bild 2 in [14] . 15

3.1 Architecture . 28
3.2 ConnectionManager Class Diagram (reduced) 30
3.3 Topology

Example . 32
3.4 ReplicatedObject Class Diagram (reduced) 33
3.5 ReplicationManager Sequence Diagram . 35
3.6 Tiered Topology . 37
3.7 Screenshot of the Incident Report Application – Peer AAAA 40
3.8 Screenshot of the Incident Report Application – Peer BBBB 41

4.1 Replication Performance Evaluation . 45

51

Bibliography

[1] Lightbend, Akka Production Pricing, . URL https://www.lightbend.com/
akka/pricing. Last accessed on: 2024-04-17.

[2] European Commission: SME definition, . URL https://
single-market-economy.ec.europa.eu/smes/sme-definition_en.
Last accessed on: 2023-11-28.

[3] GDPR, Article 9, . URL https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2051-1-1. Last ac-
cessed on: 2024-04-17.

[4] OSHA – 29CFR 1904 Recording and Reporting Occupational Injuries and Ill-
nesses, . URL https://www.ecfr.gov/current/title-29/subtitle-B/
chapter-XVII/part-1904. Last accessed on: 2024-04-17.

[5] REScala, . URL https://www.rescala-lang.com/. Last accessed on: 2024-
04-17.

[6] GitHub: REScala, . URL https://github.com/rescala-lang/REScala.
Last accessed on: 2024-04-17.

[7] § 193 Sozialgesetzbuch - SGB VII, . URL https://www.gesetze-im-internet.
de/sgb_7/__193.html. Last accessed on: 2024-04-17.

[8] ScalaLoci, . URL https://scala-loci.github.io/. Last accessed on: 2024-
04-17.

[9] GitHub: ScalaLoci, . URL https://github.com/scala-loci/scala-loci/.
Last accessed on: 2024-04-17.

[10] Albert Fleischmann, Stefan Oppl, Werner Schmidt, and Christian Stary. Ganzheitliche
Digitalisierung von Prozessen. Springer, 2018. ISBN 978-3-658-22647-3.

52

https://www.lightbend.com/akka/pricing
https://www.lightbend.com/akka/pricing
https://single-market-economy.ec.europa.eu/smes/sme-definition_en
https://single-market-economy.ec.europa.eu/smes/sme-definition_en
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2051-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2051-1-1
https://www.ecfr.gov/current/title-29/subtitle-B/chapter-XVII/part-1904
https://www.ecfr.gov/current/title-29/subtitle-B/chapter-XVII/part-1904
https://www.rescala-lang.com/
https://github.com/rescala-lang/REScala
https://www.gesetze-im-internet.de/sgb_7/__193.html
https://www.gesetze-im-internet.de/sgb_7/__193.html
https://scala-loci.github.io/
https://github.com/scala-loci/scala-loci/

[11] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan.
Local-first software: you own your data, in spite of the cloud. In Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2019, pages 154–178, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369954.
doi: 10.1145/3359591.3359737. URL https://doi.org/10.1145/3359591.
3359737.

[12] Dieter Masak. Moderne Enterprise-Architekturen. Xpert.press. Berlin, 2005. ISBN
3540229469. URL http://scans.hebis.de/HEBCGI/show.pl?12716853_
kap-1.pdf.

[13] Hermann J. Schmelzer and Wolfgang Sesselmann. Geschäftsprozessmanage-
ment in der Praxis: Kunden zufriedenstellen, Produktivität steigern, Wert erhöhen.
Hanser, München, 8., überarbeitete und erweiterte Auflage edition, 2013. ISBN
9783446434608. URL http://d-nb.info/1028829019/04.

[14] Uwe H. Schneider. Das Recht der Konzernfinanzierung. Zeitschrift für Unternehmens-
und Gesellschaftsrecht, 13(3):497–537, 1984. doi: doi:10.1515/zgre.1984.13.3.497.
URL https://doi.org/10.1515/zgre.1984.13.3.497.

[15] André Wolski. Spezifikation einer Ausführungssemantik für das Subjektorientierte
Prozessmanagement mit CoreASM. Bachelor’s thesis, TU Darmstadt, Darmstadt,
October 2019. URL http://tuprints.ulb.tu-darmstadt.de/8360/.

[16] André Wolski, Stephan Borgert, and Lutz Heuser. An extended Subject-Oriented
Business Process Management Execution Semantics. In Stefanie Betz, Matthes
Elstermann, and Matthias Lederer, editors, S-BPM ONE 2019, 11th International
Conference on Subject Oriented Business Process Management, ICPC published by ACM
Digital Library, pages 69–81. Association of Computing Machinery (ACM), June
2019.

[17] André Wolski, Stephan Borgert, and Lutz Heuser. A CoreASM based Reference Imple-
mentation for Subject Oriented Business Process Management Execution Semantics.
In Stefanie Betz, Matthes Elstermann, and Matthias Lederer, editors, S-BPM ONE
2019, 11th International Conference on Subject Oriented Business Process Management,
ICPC published by ACM Digital Library, pages 83–97. Association of Computing
Machinery (ACM), June 2019.

53

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
http://scans.hebis.de/HEBCGI/show.pl?12716853_kap-1.pdf
http://scans.hebis.de/HEBCGI/show.pl?12716853_kap-1.pdf
http://d-nb.info/1028829019/04
https://doi.org/10.1515/zgre.1984.13.3.497
http://tuprints.ulb.tu-darmstadt.de/8360/

	Introduction
	Enterprise Applications
	Business Process Management

	Identifying Requirements & Ideals
	Business Process: Create Project Presentation
	Business Process: Incident Report
	Business Process: Procure-to-Pay
	Stakeholder Requirements
	Local-First Ideals
	Consolidation of Local-First Ideals with Enterprise Application Requirements

	Implementation
	Overview
	Basic Connection Management
	Replication Management
	Advanced Connection Management
	Incident Report Application
	Asynchronous Application Design

	Evaluation
	Connection Management and Performance Benchmark
	Prototype Gap

	Summary and Conclusion

