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ABSTRACT

Motivation: Cellular signal transduction involves spatial–temporal
dynamics and often stochastic effects due to the low particle
abundance of some molecular species. Others can, however, be
of high abundances. Such a system can be simulated either
with the spatial Gillespie/Stochastic Simulation Algorithm (SSA) or
Brownian/Smoluchowski dynamics if space and stochasticity are
important. To combine the accuracy of particle-based methods with
the superior performance of the SSA, we suggest a hybrid simulation.
Results: The proposed simulation allows an interactive or automated
switching for regions or species of interest in the cell. Especially we
see an application if for instance receptor clustering at the membrane
is modeled in detail and the transport through the cytoplasm is
included as well. The results show the increase in performance of
the overall simulation, and the limits of the approach if crowding
is included. Future work will include the development of a GUI to
improve control of the simulation.
Availability of Implementation: www.bison.ethz.ch/research/spatial_
simulations.
Contact: mklann@ee.ethz.ch or koeppl@ethz.ch
Supplementary/Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Existing methods to model the spatial–temporal dynamics in signal
transduction can be grouped into (i) partial differential equation
(PDE) methods (Kholodenko, 2006; Slepchenko et al., 2003); (ii)
spatially resolved Markovian population models, often simulated
with the SSA/Gillespie method (Elf et al., 2003; Gillespie, 1976;
Stundzia and Lumsden, 1996) or other lattice-based methods
(Angermann et al., 2012; Arjunan and Tomita, 2010) and (iii)
particle-based methods such as Smoldyn (Andrews and Bray,
2004), Greens function reaction dynamics (GFRD) (van Zon and
Ten Wolde, 2005) and others (Klann et al., 2011a; Lipková et al.,
2011; Plimpton and Slepoy, 2003; Pogson et al., 2006).

Naturally, more detailed methods are computationally much more
demanding, which requires careful selection of the right method
for the biological problem in focus. Note that particle numbers and
parameters are very heterogeneous in biological systems: molecule
abundances range from 1 (gene) to several thousands of proteins
of each class, similarly the size of the molecules and structures
ranges from atoms/ions (<1nm) to molecular complexes (2−25nm)
and further to cellular sub-compartments and cytoskeleton structures
(50+nm), whereas chemical interaction rate constants cover several
orders of magnitude (Alberts et al., 2002). Hybrid methods can be
employed to optimize the use of the computational resources in such
a multi-scale environment (Jeschke and Uhrmacher, 2008).
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The present article aims at coupling a Brownian dynamics
particle tracking method with the spatial Gillespie method to
preserve the stochastic nature of the underlying signaling processes.
Low-abundance species should for instance be always tracked as
individual particles and high abundance species on the Gillespie
level. Similarly subvolumes in focus of the simulation, e.g. receptor
clustering on the plasma membrane, should be on the particle level.
These two switches both on the species and the simulation volume
level have to be accommodated in one simulation accordingly.

2 SYSTEM AND METHODS
We consider a reaction system consisting of M molecular species
and K reaction channels with rate constants k= (k1,...,kK )T .
The reactions take place in reaction compartment � (the cell or
a sub-compartment thereof). In the following, we describe how
the time evolution of this system can be modeled either on the
particle or the population level as well as the relation between the
levels.

On the particle level, we track the position xj(t) of the jth molecule
(j∈P⊆Z+), where the particles follow Brownian dynamics. The
species map s(j)= i indicates that the jth molecule is of species i.

For a more coarse grained description, � can be subdivided into U
subvolumes of volume V1,...,VU . We denote the number of particles
in subvolume ν with Nν (t)= (Nν

1 (t),...,Nν
M (t))T . Time evolution on

this population level follows Markovian dynamics in our simulator.
For conversion from particle level to population level of the ith

species in ν we have to count all particles with corresponding
properties: Nν

i (t)=∑
j∈P 1{s(j)= i}1{

xj(t)∈Vν

}
. Reversely, the

underlying assumption of the population dynamics model is that
the Nν

i (t) molecules are uniformly distributed in Vν .
In our hybrid simulation, we denote for every volume ν which

species is modeled in particle or population mode. Let us denote the
subset of species tracked on the population level as Ñν

(t). For every
reaction j within ν, its waiting time τν

j is distributed exponentially

with parameter aj(Ñ
ν

(t)), called the propensity of reaction j within
ν. The waiting time τν for any reaction to occur in ν is exponentially
distributed according to parameter a0(Ñν

)=∑K
j=1aj(Ñ

ν
). Starting

from a given time t, the next event of reaction j in ν is according to
Gillespie’s algorithm (1976) at

tνj = t+τν
j ; τν

j ∼Exp(aj). (1)

Diffusion of species i with diffusion coefficient Di into another
volume μ is translated into a first-order transport reactions with
propensity ai(Ñ

ν
)=kν→μ

i Nν
i . The corresponding rate constant can

be expressed as follows:

kν→μ
i = Di

l2
= Di×l2

l×l3
= DiSν,μ

lVν
, (2)

where Sν,μ is the surface/interface area of the cubic subvolumes. For
convenience, we include these rates in k and thus a0(Ñν

).A transport
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reaction into μ at time t′ causes a state change Ñμ
(t)→ Ñμ

(t′),
which according to Gillespie’s algorithm would require updating the
precomputed waiting times tμ− in μ. Anderson (2007) proved that
the remaining fraction of the time to the next reaction can simply be
stretched according to the changed propensity

tμ+= t′+(tμ−−t′)× a0(Ñμ
(t))

a0(Ñμ
(t′))

. (3)

The remaining subset of Nν (t) is given by counting the
individually tracked particles that currently reside in ν. Diffusion
of the jth particle is modeled according to Brownian dynamics as a
random walk

xj(t+�t)=xj(t)+
√

2Ds(j)�t ξ (4)

with ξ a three-dimensional zero mean Gaussian random variable
with unit variance. In the present algorithm based on (Klann et al.,
2011a) the particles of radius ri are allowed to overlap because
signaling molecules normally are of low abundance, so that these
rare events can be omitted. Modeling of a physiologically crowded
cytoplasm with non-overlapping molecules is computationally much
more demanding (Ridgway et al., 2008). Obviously steps into
cellular structures (plasma membrane, nucleus, cytoskeleton, etc.)
are rejected (Klann et al., 2009). Particles can interact with each
other if their distance is smaller than their collision radius σij=ri+rj
[cf. Algorithm (1)], and a reaction based on the bimolecular rate
constant kij will be executed with probability (Lipková et al., 2011)

Pij=
kij�t

4πσ 3
ij /3

. (5)

The time tj to its first order reaction is calculated for each molecule
individually when it is created based on Equation (1) with the single
molecule propensity a1

j (a1
j =k1

j ×1, where k1
j is the sum of all first-

order rate constants involving that species). The sequence of events
of all molecules is then ordered, stored and updated as necessary
Fig. 1, Arjunan and Tomita (2010); Byrne et al. (2010), . All first-
order reactions up to current time t will be executed in that sequence
(Klann et al., 2011b). The actual reaction i that has to be executed
out of the aggregate k1

j is found based on the probabilities ki/k1
j .

Note the following equality: The minimum of the waiting time of
N molecules, where each waiting time is calculated based on Exp(1),
is Exp(N) (cf. Fig. 1). Thus, the individual method on the particle
level and the global method on the population level are equivalent.
On the population level, each of the identical Nν

i molecules would

Fig. 1. Equivalence of waiting times on the particle and population level
(here assuming a first-order reaction like exponential decay)

be the one with minimal waiting time with probability 1/Nν
i . More

generally, suppose that the waiting time for j-th reaction, τν
j , is

distributed as Exp(aj), j=1,...,K . Then the reaction i has the
minimum waiting time with probability ai/a0. To see this observe
that the required probability is given by

P(ti≤ tj,j 	= i)=
∫ ∞

0

K∏
j 	=i

(1−Fj(s))fi(s) ds=ai/a0.

Here, fk and Fk , respectively, denote the probability density function
and the cumulative distribution function of Exp(ak).

3 ALGORITHM
With respect to coupling of Gillespie volume and individual particle
tracking, we decided to partition the reaction set as follows:

1. First order reactions are stored on the species aggregation
level, which is also used on the particle level for each species
in each subvolume, i.e. one waiting time for each species. If
no first-order reaction exists for species i, the waiting time
τν

j =∞ (reaction times tνj , j=1,...,M).

2. Diffusion jumps are stored individually for each species in
each subvolume (reaction times tνj , j=M+1,...,2M).

3. Higher order reactions are stored for each of the R2 higher
order reactions in each subvolume (reaction times tνj , j=2M+
1,...,2M+R2) .

These three groups match the behavior of the particle level, where
first-order reactions are tracked along the molecules (of a species),
diffusion jumps are triggered by the random walk process, and
higher order reactions are triggered by (diffusion driven) collisions
of molecules.

If we convert a subvolume from particle to Gillespie at t,
all diffusion jump times and higher order reaction times will be
initialized based on Equation (1). First-order reactions are treated
differently, because each particle carries its next reaction time. The
next reaction time of each species is therefore simply found by
the minimum reaction time of all respective particles (cf. Fig. 1).
The converted particles are then deleted.

The reverse conversion from Gillespie to particle creates Nν
i

particles uniformly distributed in the volume of the subvolume ν

with individual properties inherited from the species properties. All
predefined diffusion jump times and higher order reaction times are
deleted because they will be triggered by the random walk of the
molecules. The first-order reactions are, however, preserved in the
following way:

• Arbitrarily, the first new particle of species i inherits the next
reaction time tνi . Note that all particles of one species are

if particles ‖xi(t)−xj(t)‖≤σij then
if ξ2 <Pij with ξ2∼U [0,1] then

execute reaction
end

end
Algorithm 1: Second-order (bimolecular) reactions on the particle
level
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if ξi≤1/Ni,ν with ξ2∼U [0,1] then
/* next reaction time goes with particle */

tμi ←min(tμi ,tνi )
tνi ← tνi +τ (aν

i (Nν
i −1))

else
/* next reaction time stays in subvolume */

tμi ←min(tμi ,tνi +τ (aν
i (1)))

tνi remains unchanged
end

Algorithm 2: Update scheme for the next first-order reaction after
a jump from ν to μ, where the exponentially distributed waiting
time is calculated by the indicated number of particles: either the
remaining particles in ν or the one jumping from ν to μ

identical, so the term ‘first particle’ just refers to the memory
location.

• All other particles of that species initialize their next reaction
times as tj= tνi +τ (a1

j ) because their reaction has to be after
the reaction of the first molecule accordingly.

The same approach is also followed for partial conversions of
subvolumes, if not all but just a subset of the species is converted
between the methods. All affected jump/higher order reaction
waiting times on the Gillespie level are then updated based on
Equation (3).

To be compatible with the above conversion approach, diffusion
jumps also can carry the next first-order reaction time from
subvolume ν to the new subvolume μ. The next time tνi belongs to
the jumping particle of species i with probability 1/Nν

i . If a random
number ξi≤1/Nν

i (ξi∼U [0,1]), then the jumping particle is the next
reacting particle. Algorithm 2 describes the executed process. The
transferred time becomes the new time in the target volume μ if it is
the minimum time. All affected jump/higher order reaction waiting
times in both volumes on the Gillespie level are again updated based
on Equation (3).

If particle i walks into a Gillespie level subvolume μ, then the
next first-order reaction time there is likewise obtained by tμi ←
min(tμi ,ti). And if the diffusion jump out of Gillespie subvolume ν

leads into a particle volume, then accordingly a particle is created
which obtains the next reaction time tνi with probability 1/Nν

i and
otherwise calculates its time as in Algorithm 1. However as the target
subvolume is particle based, no global waiting time is tracked there.

Especially, if we have just one particle in the system, its initially
assigned first-order reaction time will be preserved throughout the
simulation. This approach also ensures that frequent switching
between particle and Gillespie volume tracking do not require too
many re-initializations of the waiting times. Otherwise frequent
switching could accumulate to a substantial error in the reaction
rate if the switching intervals are in the range of the waiting times.

Thus, the suggested tracking and updating method on the Gillespie
level ensures the compatibility with the particle tracking level but
is not necessarily optimal with respect to its own performance due
to the large number of stored reaction times and the time necessary
to access and order them. As the Gillespie level still integrates time
much faster than the particle level, this performance loss is, however,
not relevant for the overall performance of the simulation.

Eventually also bimolecular reactions across the levels might
occur in the simulation: let us assume that Nν

j molecules of species
j are in the Gillespie subvolume with volume Vν and we have a
bimolecular reaction with rate constant kij with species i, which
is tracked on the particle level. Concentration-based mass action
kinetics requires that the reaction rate is kijcjci= (kijN

ν
j /Vν )ci, so

the reaction can be treated as a first-order reaction with rate constant
ki,ν=kijN

ν
j /Vν . As this rate ‘constant’ depends on the time varying

Nν
j , we simulate these quasi first-order reactions in the classical

particle-based scheme [cf. Andrews and Bray (2004); Klann et al.
(2011a)]: each molecule i in the volume ν reacts with probability

Pi,ν=1−exp(ki,ν�t)≈ki,ν�t (6)

in every timestep. This means, that a random number ξi∼U [0,1]
is compared with Pi,ν for all molecules in every time step. This

/* requires ordered list of all subvolumes ν,

ordered smallest to largest by min(tνj ) */

while first_reaction_time() < tsim do
ν= first_subvolume()
j = first_reaction_in(ν)
t′ = tνj = first_reaction_time()
update numbers in ν based on scheme of j
for all products of j do

if product species i is particle in ν then
create_particle(i,ν,t′)
/* species, location, initial time for

its own first order reaction */

end
end
if reaction j is a diffusion jump then

/* surfaces can have different weights */

select μ based on Sν,μ/
∑6

n=1Sν,μ(n)

update numbers in μ: Nμ
i ←Nμ

i +1
transfer first order reaction time of that species i
/* see Algorithm 2. */

if species i is particle in μ then
create_particle(i,μ,t′)

else
update affected waiting times in μ,
except for the first order reaction of species i
update the position of μ in the ordered list

end
update affected waiting times in ν,
except for the first order reaction of species i

else
/* after reaction */

update affected waiting times in ν

end
set tνj = t′+τ (aj)
update the ordered list of volumes

end

Algorithm 3: Algorithm of the Gillespie block. Note that particle
conversions into Gillespie also change Nν , which requires to update
reaction times and the position of the volume in the ordered list.
The exponentially distributed waiting time can be simply computed
as τ (aj)=1/aj log(1/ξ ) using ξ∼U (0,1)
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scheme also resembles the scheme of bimolecular reactions, where
the probability is given by Equation (5), and Klann et al. (2011b)
have extended it for dependent bimolecular reactions in a scaffold
accordingly.

Algorithm 4 gives an overview of the complete simulation.
Note that the steps (1)-(4) could be executed in any order.
Visualization of the particles/volumes was done with BioInspire
from ScienceVisuals, Lausanne, Switzerland (de Heras Ciechomski
et al., 2008) and POVray (www.povray.org).

4 IMPLEMENTATION AND PERFORMANCE
The method is implemented in Fortran, integrated into the
functionality of the previously published particle-based methods
(Klann et al., 2011a, b, 2012). This includes first order (A→
...) and second order (A+B→ ...) mass action kinetics reactions,
Michaelis–Menten enzyme kinetics (E+S→E+ ...) and binding
and dissociation to/from plasma membrane, cytoskeleton and the
nucleus. In particle mode, molecules can diffuse along the plasma
membrane, the nucleus, through the cytoplasm or walk along the
cytoskeleton. So far the simulation is not parallelized, but a parallel
version in C/C++ is in preparation.

Here, we show the testcase A+B→0, where A starts from the
plasma membrane and B from the nucleus with 20 000 molecules
each in Figure 2. We run the simulation with both species in
particle mode, both in the population-based Gillespie mode, and
A as particle, whereas B is in Gillespie mode. Figure 2 shows no
differences between the simulations however, the larger figure in
the supplementary material shows that the particle-based simulation
leads to slightly faster reaction rates in the initial mixing phase
around 1.5 s. This could be an effect of local fluctuations that do not
cancel out due to the nonlinearity and nonstationarity of the mixing

Fig. 2. Testcase with A+B→0, where A starts from the plasma membrane
and B from the nucleus. The grid shows the discretization in x direction used
for evaluation of the spatial distribution

Setup: get parameters 
(Cell, Molecules, Reactions, ) 

Insert Particles into Cell 
Based on initial distribution 

Set 1st order reactions 

Convert particles Gillespie 
if type/position is Gillespie 

 Update next event list 

while ( t  < tend ) Update time:  t  t + t 

(1) Move Particles
xi   xi + xi 
if no collision with structure 

(2) Execute Reactions
- 2nd order Reactions
- 1st  order Reactions

(3) Advance Gillespie
- Execute all reaction and

diffusion events up to t

(4) Additional Reactions
- e.g. between particles

and Gillespie volumes

Convert Particles Gillespie 
if type/position is Gillespie/particle 

 Update next event lists  

At certain intervals: 
- Check whether particle simulation area has changed

(and convert particles  Gillespie accordingly)
- Output of numbers, positions, states, statistics

Algorithm 4: Overview of the simulation steps

process. More test cases and performance numbers are presented in
the supplementary material, testing the different reaction schemes
and combinations of the particle- and Gillespie-based molecules.
Further performance numbers (for the system discussed in the next
section) are given in Table 1.

5 DISCUSSION
Spatial and temporal effects can play a major role in signal
transduction (Kholodenko et al., 2010). This holds especially
for the transport of active signaling molecules from the plasma
membrane where the signal is detected by receptors toward the
nucleus, where it has to trigger gene activation. A common motive
in signal transduction is the mitogen-ctivated protein kinase
(MAPK) cascade, where the receptor and upstream components
cluster together at the plasma membrane, and MAPK enters the
nucleus. The active, phosphorylated form of MAPKpp is constantly
deactivated in the cytoplasm. The fraction of active molecules
reaching the nucleus, therefore, depends on the relationship between
the speed of transport (diffusion) and the speed of the deactivation
(reaction) (Kholodenko, 2006).

We simulated this process in a spherical cell with diameter 10μm
with a spherical nucleus (diameter 3μm, located in the cell center)
A total of 10 000 MAPKpp molecules start initially from the plasma
membrane with DMAPK=10μm2/s and can enter the nucleus with
a rate constant of 1.8μm/s (given the ‘concentration’ of the nuclear
membrane in the cytoplasm, this leads to an effective nuclear import
rate constant of 0.1s−1). A total of 30 577 phosphatase molecules
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A B

C D

Fig. 3. (A) Mean of the MAPKpp molecules that reached the nucleus. (B)
Initial phase of (A). (C) Spatial distribution of the MAPKpp molecules—
counting only the particle molecules (the conversion from cubic areas to the
spherical symetric radial distribution hides the sharp cutoff from the particle
to the Gillespie area). (D) Distribution of the number of MAPKpp molecules
that reached the nucleus within 10s

([P]=1×10−7M) dephosphorylated MAPKpp→MAPK with kp=
1×107M−1s−1. We simulated this process for 10s with �t=2.6×
10−5s for various combinations and discretization levels (L=10,
20 or 30 subvolumes along the cell diameter) of the hybrid particle
and Gillespie method (cf. Table 1). The results are shown in Figure
3. Depending on the size/number of the Gillespie subvolumes,
the runtime could be reduced by more than 90%. However,
large subvolumes propagate the molecules slightly faster in the
initial phase (Fig. 3B). The improved performance of the hybrid
simulation allows us to compute the distribution of the fraction of
active signaling molecules that entered the nucleus (Fig. 3D). The
discretization error is also visible in the distribution, which is shifted
to higher particle numbers for lower L. The area close to the nucleus
was always modeled in particle mode. Figure 3C shows that also the
hybrid Gillespie simulation leads to the correct concentration there.

With respect to other works, analyzing the importance of receptor
clustering and the spatial organization at the membrane for signaling
(Costa et al., 2009; Geier et al., 2011; Mugler et al., 2012),
our method allows to focus the computational resources to the
membrane, whereas still the complete cell is tracked in 3D (Fig. 4).
similarly, our method allows including membrane trafficking and
recept-mediated endocytosis (Klann et al., 2012).

In the following, we want to analyze how far molecular crowding
can be modeled on the Gillespie level. This was also investigated by
Nicolau and Burrage (2008), Jeschke and Uhrmacher (2008) and

Lampoudi et al. (2009). Let φ denote the free volume fraction of the
cytoplasm (i.e. the fraction which is accessible to the molecules of
interest). Crowding leads to φ<1 and the reactants in the remaining
volume V ′ν=Vνφ have an effectively higher concentration, such

Fig. 4. Visualization of a slice of a cell with particle tracking along (1)
plasma membrane and (2) nucleus and (3) in an extra section of the
cytoplasm, while (4) the remaining cytoplasm is simulated in Gillespie mode
(rendered with POVray)

that they react in bimolecular mass action kinetics with a faster
rate (Klann et al., 2011a; Lampoudi et al., 2009). This effect is
correctly included in our simulation, because bimolecular rate
constants given in [M−1s−1] have to be divided by V ′ν anyway
for the Gillespie level (and an additional factor to convert from the
liter in M=mol/l to the used length scale and single particles). For
substrates h and i and length in μm

aν
j (t)= kj

V ′ν
Nν

h (t)Nν
i (t)

6.022×1023

1015
.

Diffusion, in contrast, is reduced by crowding. The jump rate
constant on the Gillespie level [Equation (2)] likewise contains the
properties of the volume. If the size of the obstacles becomes much
smaller than l, such that the objects are uniformly/homogeneously
distributed in the volume, however, both Vν and Sν,mu will be scaled
by the same φ. Thus, the effect cancels in Equation (2). Only if we go
to a fine discretization of space, such that Sν,mu becomes a random
number with mean l2φ, then the crowding effect becomes visible in
the resulting diffusion (cf. Fig. 5). These networks and the resulting
diffusion can also be analyzed with percolation clusters (Gefen et al.,
1983).

Table 1. Performance of the hybrid simulation for the model system

MAPKpp Phosphatase Volumes (U) TCPU

Always particle Always particle 5592 (L=20) 174 min
Always particle Always Gillespie 872 (L=10) 94 min
Always particle N/A a 5592 (L=20) 41 min
Particle at membranes Always Gillespie 17 488 (L=30) 49 min
Particle at membranes Always Gillespie 5592 (L=20) 13 min
Particle at membranes Always Gillespie 872 (L=10) 15minb

Tested on a Win 7 Pro Intel i7 2600K at 3.5 GHz, 8GB RAM.
aDephosphorylation is modeled by a first-order reaction with k′p=1.0 s−1 instead, which
is the effective rate of the bimolecular reaction. This shows that the pair finding of the
bimolecular reaction dominates TCPU .
bBecause of the more coarse grained grid, a bigger volume fraction along the plasma
membrane was in particle mode, compared with the settings with more subvolumes.
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A B C

Fig. 5. A Obstacles in the cell (from Transmission electron microscopy
image) and simulation grid. B Resulting graph/network of the diffusion
system, where the node and edge weight corresponds to the local free volume
fraction. Note that the diffusion rate constant is given as the fraction of
edge/source node weights, such that it can be different in the two directions
along an edge. C Limit cases depending on the chosen discretization: all
nodes/edges have the same (average) weight, e.g. if l is much larger than the
length scale of the obstacles, or the resulting network becomes binary with
weights 1 or 0 respectively if the obstacles have the same size like l

We tested this in an intracellular environment as shown in
Figure 6, where the total diameter of 4.928μm was divided into 94
subvolumes in each direction (4 million subvolumes in the sphere,
requiring 1 GB of memory in the simulation).At this scale [l=52nm,
which is 3 pixel of the original binarized transmission electron
microscopy (TEM) image of Hiroi et al. (2011)] we see a reduction
in diffusion (cf. Fig. 6D). Still, the diffusion is only reduced to
Deff =0.9D0, whereas with particle tracking, we find Deff =0.7D0
(Hiroi et al., 2012). The strong deviations in Figure 6D arise from
the locally varying Vν , apparently at x=3μm a big object reduces
the available volume. This result underlines the fact that the reduced
diffusion originates from the tortuosity of the structured volume: the
particles do not move slower but have to go longer ways around the
obstacles, which delays their arrival (Klann et al., 2011a).

Finally, it should be noted that reactions can be diffusion
controlled (Morelli and Ten Wolde, 2008; Rice, 1985). Molecules
cannot react faster than kD=4πσD (where D is the sum of both
diffusion coefficients). If kj is close to kD, the observed rate is
determined by the rate of collisions. Thus, if the subvolumes of the
Gillespie method are too small, the method will not find enough pairs
and underestimate the true reaction rate (Gillespie, 2009). Gillespie
(2009) calculated the necessary correction factor.

In this low concentration and diffusion-controlled regime,
particle-based methods still give correct results (Klann et al., 2011a;
Morelli and Ten Wolde, 2008). Therefore, we are planning to
introduce a controller which switches from Gillespie to particle if
the local concentration falls below the threshold. Note that particle
tracking also is not expensive if just a few molecules have to be
tracked, whereas the mean jump frequency grows with 1/l [cf.
Equation (2)], making high-resolution spatial Gillespie simulations
even more expensive.

In addition, we will develop a user interface to allow
a better control of the simulation. This will also include
interactive visualization of the molecules in the simulation
(de Heras Ciechomski et al., 2008; Falk et al., 2010).
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Fig. 6. A Based on the statistics of binarized Transmission electron
microscopy (TEM) images from (Hiroi et al., 2011) B realistically looking
intracellular obstacle geometries were generated (Hiroi et al., 2012). C shows
a 3D section of a generated volume, which looks similar like other 3D
observations of membrane enclosed compartments like e.g. ER or Golgi
(rendered with BioInspire from ScienceVisuals). D Diffusion through such a
structured volume, simulated on the Gillespie level. Apparently at x=3μm
a high obstacle density leads to a lower particle density
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