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Abstract: Cells are highly organized objects containing millions of molecules. Each
biomolecule has a specific shape in order to interact with others in the complex machinery.
Spatial dynamics emerge in this system on length and time scales which can not yet be
modeled with full atomic detail. This review gives an overview of methods which can be used
to simulate the complete cell at least with molecular detail, especially Brownian dynamics
simulations. Such simulations require correct implementation of the diffusion-controlled
reaction scheme occurring on this level. Implementations and applications of spatial
simulations are presented, and finally it is discussed how the atomic level can be included
for instance in multi-scale simulation methods.
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1. Introduction

At the beginning of this century Tomita [1] wrote the article “Whole-cell simulation: a grand
challenge of the 21st century”. With the present contribution, we want to review how far we progressed
after one decade. Clearly, the cell is not an unstructured bag of enzymes but highly organized in
space [2]. Some structures or compartments can be readily seen under the microscope [3], others emanate
more subtle, for instance by the clustering of molecules leading to a microcompartmentalization of the
cell [4–6]. This organization gives rise to spatial-temporal dynamics in the cell [7–9].
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Figure 1. (a) Visualization of the cytoplasm from a Brownian dynamics simulation including
cytoskeleton filaments and just the signaling molecules of one pathway. For visualization,
all molecules and cytoskeleton filaments have been replaced by their atomic structure and
rendered by raytracing (ScienceVisuals [10,11]); (b) Physiological level of crowding, i.e.,
a representative molecular size distribution and abundance, modeled either with spheres or
real molecule shapes by Ando and Skolnick [12] in a cubic subvolume of the cytoplasm.
Reproduced with permission of PNAS. Due to the high density of molecules it is impossible
to see through the cytoplasm. These crowding conditions affect diffusion and reactions in
the cell.

(a)

(b)

Depending on the chosen description of the cell, the cellular state is encoded by the amount of
molecules of each molecular species, but also by the distribution of molecules in the cell and the actual
state (e.g., phosphorylation level) or conformation of each molecule [3]. Thus also on the molecular



Int. J. Mol. Sci. 2012, 13 7800

level the spatial organization of the atoms or the electron density respectively controls the state of the
cell [13]. If we want to track how a conformational change of a single molecule can influence the state
of the cell, we therefore have to bridge scales from 10−10 to 10−5 m and 10−12 to 103 s [14].

For each individual level many simulation methods exist, as reviewed in [15–19]. For instance, the
overall temporal dynamics in the cell can be simulated with ordinary differential equations (ODE), and
the spatial component can be included if partial differential equations (PDE) are used [7]. In order to
include stochasticity due to low particle numbers, stochastic differential equations (SDE) have to be used,
and Gillespie [20] developed an efficient way to simulate the outcome of the chemical master equation,
describing the evolution of the population of molecule species. On the molecular level, the dynamics
can be investigated in detail using molecular dynamics simulations (MDS) [21,22].

Despite the increasing computational power of workstations and supercomputers, simulation of
the whole cell at the atomic level remains prohibitively expensive. For example a small yeast cell
contains “only” 50 million proteins [23], however there are more relevant molecules (DNA, RNA, lipids,
metabolites), and especially all the ions and water molecules in the cell. In addition, each macromolecule
itself consists of thousands of atoms, such that the number of states for each object in the simulation has
to be reduced for a simulation [24]. The cell could for instance be simulated at a more coarsely grained
level, while only relevant parts could still be tracked on the atomic level in a multi-scale simulation [25].

Particle-based methods can be a useful tool to analyze cellular dynamics. The particles in these
methods can represent atoms as in MDS, molecular subunits [26,27], whole molecules [28], sub-volumes
of the cell [29,30] or even a whole cell each [31,32]. The particle interactions and actions then have to
be defined according to the chosen level of granularity. Especially if the actions of the objects in the
simulation are determined by their own internal state or dynamics, e.g., if they represent individual cells,
the term cellular-automata or agent-based becomes more appropriate [33].

In the present review we first describe a particle-based mesoscopic level which can serve as a basis
for whole cell simulations (cf. Figure 1). Then we show possible applications of such simulations and
finally we discuss how it can be extended in several directions in a multi-scale approach.

2. The Mesoscale Level

In order to track the dynamics for instance of signaling molecules in the cell, each molecule is
represented by a particle in the simulation. This level is often called mesoscale, because it is between
the microscopic atomic resolution of MDS and the macroscopic resolution of ODE/SDE/PDE methods.
The following sections describe how the molecules move and interact in the cell at this level.

2.1. Diffusion in the Cell

Obviously the solvent cannot be included explicitly in a whole cell simulation [34]. Langevin
dynamics describe the motion of particle j (position vector xj) with mass Mj in such a case based
on [22]

Mj
d2xj
dt2

= −∇U(xj)− γjMj
dxj
dt

+
√

2kBTγjMjR(t) (1)
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within the interaction potential U(x), at temperature T and subject to friction γj with the Boltzmann
constant kB and (zero mean) white noise vector R(t), which represents the force induced by collisions
with solvent molecules. According to the fluctuation-dissipation theorem the energy added by R is
dissipated by γj such that the system reaches and fluctuates around T [22].

The overdamped case (i.e., the damping is so strong that inertia can be neglected) reduces Langevin
dynamics to Brownian dynamics

dxj
dt

= −∇U(xj)/ζj +
√

2DjR(t) (2)

where the damping is expressed by ζj = γjMj and the diffusion coefficient Dj = kBT/ζj . Especially
if the particles are connected, e.g., because they represent sub-segments of a cellular filament, great care
has to be taken on the definition of the corresponding interaction potentialU between them [26,27,31,35].

The authors understand the importance of all intramolecular forces, and especially electrostatic and
hydrodynamic interactions [12,36–38]. Still, if all forces are neglected, the Brownian dynamics motion
can be easily integrated with a discrete time EulerMaruyama scheme as a random walk [39]:

xj(t+ ∆t) = xj(t) +
√

2Dj∆t ξ (3)

with ξ a three-dimensional zero mean Gaussian random variable with unit variance (the difference of the
Wiener process R(t+ ∆t)− R(t) ∼ N (0,∆t); for convenience the ∆t has been included in the square
root in Equation (3) such that readily available standard normal random numbers can be used).

As long as intramolecular potentials/forces are included, they prevent the overlap of particles [40].
Otherwise the new position will have to be rejected if the particle jumped to an excluded
position [41–43]. Thus intracellular structures and all the other molecules hamper the diffusion of each
molecule. While the expected mean squared displacement (MSD)

〈(x(t)− x(0))2〉 = 2dDt (4)

should depend linearly on D, t and the dimension d, it is found that it only grows with a reduced
D′ if diffusion is hindered by other objects. Several Monte Carlo or Brownian dynamics simulations
evaluated the effect of fixed crowding structures on the diffusion of tracer molecules in the cytoplasm
or cellular compartments [30,42,44–48]. Especially the intracellular matrix built by the cytoskeleton
and proteins bound to it (microtrabecular lattice) looks like porous media and can cover up to 20% of
the intracellular volume [49,50]. Diffusion through such structures leads to similar effective diffusion
coefficients [42,43,51], like the predicted D/D′ from Weissberg [52] for porous media (Note that
the comparison can require volume averaging [53]). In general, bigger molecules are hindered more
strongly in their mobility, and at the same excluded volume fraction many small obstacles lead to a
stronger hindrance compared to a few big ones [37,42,49]. Large diffusing objects with respect to
the mesh size of the cytoskeleton network can be caged/trapped in these meshes and are restricted to
their subvolume, which means that their MSD is limited [42,49]. Several theories have been developed
to describe diffusion through polymer solutions like the cytoplasm [54–58]. The complexity of the
cytoplasm requires to use approximations or to rely on empirical formulas to compute the expected
effective diffusion depending on the molecular radius (and the shape), the free/excluded volume fraction,
and the size (distribution, shape...) of the crowding objects [49,59,60].
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Other studies also revealed subdiffusion or at least transient anomalous behavior [58]. This
means, that the MSD did grow only ∝ tα with α < 1 [40,42,61], a fact that can also be
observed with Fluorescence Correlation Spectroscopy (FCS) [40] The degree of subdiffusion also
is a measure of the crowding level in the cell [40,62]. Such studies with mobile crowding
objects require much more computation time than simulations with static objects [63]. In addition,
the obstacles hinder the test molecules, while the test molecules influence the mobility of the
obstacles. This feedback requires to model molecular crowding as exactly as possible in order to
analyze the effective diffusion in the cell, for instance by using an obstacle size and abundance
distribution similar to the in vivo conditions [41,60]. Table 1 shows relations between molecular
weight and hydrodynamic radius of the molecules as used in such detailed simulations. Thus
mesoscale simulations can be used to calculate the mobility of biomolecules on the cellular level,
although techniques like MDS [59], dissipative particle dynamics [64] or multiparticle collision
dynamics [65] have been employed as well. Connected Brownian particles can also represent polymer
chains like in the Brownmove package [34]. Such simulations allow the analysis of filament shapes
and diffusion [26,66] and the rheology of biopolymer networks [27,29,35,67]. Simulations with motor
proteins furthermore show how network patterns emerge [68].

Table 1. Empiric approximations for the hydrodynamic radius rh based on the molecular
weight MW in kDa. (i) is a fit to experimental data, e.g., from [69,70]. The other equations
assume that the mass is (re-)distributed in a sphere, for instance with a specific volume
of 1 cm3/g in (ii) [41,71]. Due to the in general nonspherical shape and the “holes” of
the molecule, an exponent larger than 1/3 as in (i) is reasonable. The hydrodynamic radii
reported by [60] fall between (i) and (ii).

Hydrodynamic Radius [nm] Reference

(i) rh = 0.6169×MW 0.4226 [72]
(ii) rh = 0.7468×MW 1/3 [41]

(iii) rh = 0.5429×MW 1/3 [40]

In addition to undirected diffusion, cells also contain motor proteins that can pull molecules along the
cytoskeleton [73]. This effect can either be included in the model as a general drift term in U(xj) or
by switching the transport mode if molecules bind to a cytoskeleton filament and moving the molecules
linearly in their direction [74,75]. Of course also the action and properties of the motors have been
studied extensively in detail using MDS [76,77]. Eventually, also the effect of the dynamic cytoskeleton
and cell shape has to be included in the simulations [78].

Most biomolecules are not inert, which means that they interact with the others. This interaction
is for instance required to bind to the motor proteins for the directed transport. But molecules can
also unspecifically bind to the cytoskeleton [79]. This sequesters molecules from the cytosol making it
less crowded, forms the microtrabecular lattice in the cell and can co-localize molecules which belong
together [4]. Transient binding of course reduces the mobility of the molecules, because bound molecules
are immobile [79,80].
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2.2. Reactions in the Cell

Reactions between molecules require that these molecules come into contact. Since the motion
of the molecules is mostly determined by diffusion, all reactions between molecules are diffusion
controlled. Smoluchowski [81] calculated the collision “rate constant” of spherical molecules (here
between molecule i and j with the respective radii ri, rj and diffusion coefficients Di, Dj):

γij = 4π(ri + rj)(Di +Dj) (5)

and obviously no reaction can occur with a faster rate than this collision process. For example two
molecules with ri = rj = 2.5 nm (corresponding to a molecular weight of about 25 kDa, cf.
Table 1) and diffusion coefficient Di = Dj = 80 µm2/s have a diffusion limit for their reaction of
γij = 6.05 × 109 M−1s−1. Probably enzymes cannot react that efficiently, and thus this limit is in
agreement with observed biomolecular reaction rate constants.

Let kij denote the macroscopic (observable) reaction rate constant between molecule i and j, i.e.,
the rate constant which is also used in ODE/PDE models, assuming (locally) well mixed conditions.
Obviously, the microscopic situation of two molecules being in contact is fundamentally different. The
corresponding microscopic rate constant κij describes the fraction of collisions that lead to reactions.
These microscopic rates can be observed e.g., in MDS or BD where the reaction dynamics is solely
described by interaction potentials [82–84]. In three dimensions, the macroscopic rate constant related
to the microscopic one is given by [85,86]

1

kij
=

1

γij
+

1

κij
(6)

Therefore, if diffusion is fast enough (1/γij → 0), the microscopic rate equals the macroscopic one.
The possible difference between these rates should however be considered, when comparing MDS and
ODE models: while ODE models use the macroscopic descriptions, in MDS the simulation volume is
so small that the molecules are basically always in contact, i.e., the microscopic description is more
applicable [82].

The physiological conditions in the cell can have a strong effect on such reactions, and render them
different from in vitro kinetics obtained in test tubes [87,88]. Of course all kinds of co-factors and
allosteric modifiers can alter the functionality of an enzyme and the “pressure” by the surrounding
crowding molecules can change the molecular conformation [87,89]. But in addition molecular crowding
alters the collision frequency of the molecules [88].

Let us assume we have Ni and Nj molecules in the cell with volume V and the reaction is described
by mass action kinetics. Then the (ODE) reaction rate is given based on the concentrations cm = Nm/V ,
wherem is species i or j: rij = kijcicj (the stochastic propensity is aij = kijNiNj/V respectively). This
rate/propensity changes due to excluded volume effects, because only a smaller volume is accessible for
the molecules. The molecules effectively have a higher concentration, but based on the original volume,
the rate constant will appear to be increased (compared to the in vitro case in diluted conditions) [80,88].

In contrast, the reduced diffusion leads to a reduced collision frequency, as can be seen from
Equation (5). As long as we assume that the microscopic reaction rate constant remains constant (no
allosteric change due to crowding), the macroscopic reaction rate constant appears to be decreased
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(cf. Equation (6)) [80]. Moreover, if diffusion becomes nonlinear due to crowding, the reaction rate
constant can appear to be time dependent. Several in silico studies have observed such fractal kinetics
for instance due to compartmentalization or crowding, when the obstacles hamper the restoration of the
well mixed molecule distribution that is critical for spatially non-resolved population level descriptions
of the dynamics [17,90,91]. Several studies therefore targeted reaction diffusion processes under
crowding [37,41,63,80,92]. Further studies also investigated reactions within tubular interconnected
reaction compartments such as the ER [93,94] or reactions that are enhanced by transport with motor
proteins [95,96].

Finally it should be noted that the dimensionality of the system plays an important role for reactions.
The collision rate constant γij has different expressions in one, two, and three dimensions [97,98]. Thus
it was for instance discussed whether signaling molecules are bound to the plasma membrane to make
use of the resulting 2D kinetics [5,99]. Also the membranes can be crowded and structured, and in 2D
caging effects occur much faster, leading to complex reaction diffusion behavior [100].

2.3. Reactions in the Simulation: Implementation Issues

Especially for the description of biological processes several nonlinear reaction schemes and kinetics
have been developed. Examples are Michaelis–Menten and Briggs–Haldane enzyme kinetics [101]
but also Hill kinetics to describe cooperativity and additional effects [102]. These schemes provide
one reaction rate for the whole process (under the quasi-steady state assumptions [103]), while the
individual steps of the process are described by mass action kinetics [101]. The effective rate constant
for Michaelis–Menten kinetics describing the process

E + S
kf−→←−
kr

ES
kcat−−→ E + P

or in terms of balance Equations

−d[S]

dt
=

d[P ]

dt
= k([S])[E][S]

(with [E] = const) depends on the overall current substrate concentration [S] [101]

k([S]) =
kcat

Km + [S]
(7)

and the two parameters kcat and Km. This means that information is lost from the original description
with three reactions (Km = (kr + kcat)/kf ). With respect to particle based simulations, where reactions
are triggered by collisions of molecules, this means that each colliding pair would have to know the
current overall concentration [S] in order to determine the rate applicable to its own reaction, which
is unphysical. Therefore the authors suggest to only use plain mass action kinetics in particle based
simulations on the molecular level.

The corresponding reaction rates and rate constants for mass action kinetics count/determine the
(average) number of events per time unit. These rates can also be observed in MDS or BD where
the dynamics is solely described by interaction potentials [82–84]. However with respect to a whole
cell simulation, an event based algorithm using the macroscopic rate constants as parameters is
more desirable.
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The highest order of reaction which can be reasonably modeled are second order/bimolecular
reactions, because third order reactions mean that three particles collide simultaneously. This is
extremely unlikely and mostly such reactions form intermediary dimers which collide with the third
particle instead. Accordingly third order reactions should be modeled as a set of second order reactions.

First order reactions with the rate ri = kici or propensity ai = kiNi require to execute (on average)
ai events per time unit on the population level. In a discrete time particle based simulation, each particle
will react in the time interval (t, t+ ∆t] with probability [28]

Pi = 1− exp (ki∆t) ≈ ki∆t (8)

In the simulation therefore in each time step and for each particle involved in this reaction a uniform
random number ξ1 has to be compared with Pi. The particle will react if ξ1 ≤ Pi with ξ1 ∼ U [0, 1] (and
of course Pi < 1).

A lot of random numbers and computation time can be saved, if instead the time to the next
event is pre-computed when the molecule is created in analogy to Gillespie’s stochastic simulation
algorithm [20]. The waiting times ti for all molecules are exponentially distributed (Exp(ki)), and in
this context it is worth noting that the minimum time min (ti) ∼ Exp(kiNi). Thus this description is
compatible with the chemical master equation description on the population level. The trade-off is that
all individual waiting times have to be stored and ordered, executed in their sequence, and especially
updated if other processes interfere with the assigned reaction channel [104–106].

Zero order reactions ∅ → I with rate ri = k
(0)
i or propensity ai = ki can be implemented

similarly. New molecules of the product species I are created (out of nothing) after the waiting time
min (ti) ∼ Exp(ki), where the position of the new molecule is drawn from a given spatial distribution.
Alternatively they can be generated by a first order reaction based on a dummy species D with fixed
concentration cD and the scheme D → D + I and rate constant k′ = k

(0)
i /cD [75]. Since the number of

molecules is changing, a buffer of empty particles is required for the simulation [107].
Second order reactions require a more elaborate description [39]. As stated above, bimolecular

reactions are triggered by (diffusion-controlled) collisions of molecules, i.e., the simulation has to
identify the pairs currently in contact. In a discrete time simulation the number of pairs which will
be found in a time interval thus depends on ∆t, i.e., how frequently it is checked. The true number of
collisions remains unknown, because the path of the molecules between t and t + ∆t is undetermined.
Clifford and Green [108] suggested a Brownian bridge to interpolate the paths of the molecules in order
to find all collisions. Lapin et al. [109] in turn used the Fokker–Planck equation in order to determine
the probability of a reaction within ∆t given the current distance ‖xi(t) − xj(t)‖, microscopic rate
constant κij and diffusion coefficient Dij = Di + Dj (see Figure 2). Note that in this framework the
new particle position is not updated according to Equation (3) but according to the probability density
distribution (pdf) such that the particles will never overlap. Obviously this description has to be applied
only if the particles are within the interaction range. For separated particles, the pdf converges to the
normal distribution.

Again, most steps will not result in reactions. Similarly to the treatment of first order reactions using
Gillespie’s approach also here the time to the event can be computed instead of checking and wasting
random numbers each step. The reaction-diffusion equation for the probability density function (see
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Figure 2) can be solved analytically using Green’s functions from which the probability of a reaction
between particle i at xi(t) and j at xj(t) and if so also the time t + τ ∗ and position x∗ of it can be
deduced [110]. The resulting Green’s function reaction dynamics (GFRD) is in agreement with the
corresponding analytical solutions for diffusion limited reactions [111–113].

Figure 2. (a) Two diffusing molecules can collide and will be reflected if they do not react;
(b) Corresponding probability density function (pdf) for the distance of j relative to i as
described by the Fokker–Planck equation; (c) Reaction probability depending on the initial
distance; (d)–(f) Fokker–Planck equation and boundary conditions. The pdf for the distance
r between two diffusing molecules as described by (d) starting from W (0) = δ(xi − xj)
is shown in (b). In this description, particles react if they diffuse “into” the reaction
partner, which is accounted for by the flux across the collision surface and depends on the
microscopic rate constant κ. Therefore the boundary condition (e) is partially reflecting. For
κ = 0 (e) becomes completely reflective, describing two inert particles. Note the “blister”
in (b) which deforms the normal distribution at the boundary caused by the reflection. Due
to incomplete reflection, the total probability

∫
WdV < 1. The loss corresponds to the

reaction probability. Hence the reaction probability (c) for a given initial distance is found
as P reaction

FP = 1−
∫∞
r∗
WdV [75,109,114].

The challenge in the underlying theory is that it can only be solved analytically for pairs, but in the
cell we have much more molecules [115]. Therefore the step length or event horizon respectively in
GFRD has to be set such that no additional molecule enters the vicinity of a pair [110]. For low particle
concentrations, in turn, GFRD allows a great speedup of the simulation.

Several methods aim at a simpler model based on a critical radius r∗ij(kij,∆t) such that molecules
will react if their distance is smaller than r∗ij [28,80,116–118]. Such an algorithm will compute reactions
faster than GFRD or the Fokker–Planck method because it does not need complex look-up tables.
However, in order to reach the same accuracy, a shorter time step than in GFRD might have to be chosen,
which requires more steps in total to complete the simulation [111]. In addition, the computation of a
suitable critical radius r∗ij(kij,∆t, . . . ) is not straightforward, requiring numerical calculations before
the simulation can start and can be implementation dependent [28,39,118].



Int. J. Mol. Sci. 2012, 13 7807

A stable and rather simple derivation is given in [80] for particles that can overlap:

• set the critical reaction radius to the physical collision radius

r∗ij = ri + rj

• and execute reactions for particles with ‖xi(t)− xj(t)‖ ≤ r∗ij with probability

P ∗ij =
κij∆t

4π(ri + rj)3/3
(9)

Obviously P ∗ij < 1, which limits ∆t. From tests we found that this approach works reliably up to
P ∗ij < 0.2 even for significant degrees of diffusion control. Theoretical limits of this approach or
respective correction factors for the reaction probability are calculated in [39].

It is especially important for this approach to work correctly, that the critical radius is the same
as the radius used to determine the diffusion limit γij Equation (5) in order to obtain the expected
macroscopic rate constant. Note, that bimolecular rate constants (for reactions in 3D volumes) have
units volume/time (conversion from M−1s−1 to µm3/s using 1015/6.022 × 1023 Mµm3). This can be
interpreted as reaction volume per molecule and time [116]. The present approach uses the ratio of the
microscopic reaction volume to the interaction volume as reaction probability given that a collision has
happened, which is a mechanistic analogy to diffusion controlled reaction scheme where the microscopic
rate constant describes how efficiently collisions are turned into reactions. Based on this formalism
also reactions with other geometries can be defined, for instance binding/adsorption to membranes or
cytoskeleton filaments [75]. If the reacting objects are not allowed to overlap, obviously the reaction
volume has to be wrapped around the collision radius rather than being distributed within their collision
radius. If the thickness of this reaction volume layer compared to the collision radius is negligible,
the constraint that the critical reaction radius should match the collision radius in Equation (5) will be
satisfied without using a reaction probability [75].

Reversible reactions like A + B � C require a special treatment in this context [28,111,119,120].
Not only the association but also dissociation can be diffusion limited [121]. For strong association and
slow diffusion, a pair of just dissociated particles can hardly diffuse away from each other before they
will recombine. In order to obey detailed balance therefore also a microscopic dissociation reaction has
to be introduced such that the dissociation constant

Kd =
[A][B]

[C]
=

kc
kab

=
κc
κab

(10)

is preserved [111]. Similar to the microscopic binding reaction rate constant, which was introduced
above, the microscopic rate constant κc counts all dissociation events, while the macroscopic rate
constant kc only includes the successful events where the molecules could escape from each other
and reach a macroscopically observable distance. From Equation (10) follows that the backward first
order reaction rate constant has the same scaling like the forward second order rate constant, which is
determined by Equation (6) in 3D: κc = kc × γab/(γab − kab).

In order to reach the correct geminate recombination rate also the initial condition of the
new pair A and B upon dissociation has to be chosen carefully. In the Smoldyn framework of
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Andrews et al. [28,119,120] as well as in GFRD [110,111] therefore an unbinding radius outside of
the critical binding/reaction radius has to be used. Since space and time are related, the onset of the
geminate recombination process can likewise be delayed by blocking reactions for particles that just
reacted. If the particles A and B are placed at identical positions xA = xB (= xC from which they were
created from) this delay term is

τi =
1

10
(ra + rb)

2/(Da +Db) , i = a, b (11)

which is the maximum likelihood of the (diffusion-controlled) escape process [122]. Placing the
molecules overlapping can be necessary in simulations with crowding objects, because the dissociation
C → A + B might occur at a position where no valid separated positions for A and B exists. Note
that such crowding structures which reduce diffusion keep the molecules together and therefore push
equilibrium towards the associated C state.

Depending on the implementation for parallelized execution in multi-threaded CPU or GPU
applications anyway a flag might be necessary to execute each reaction for each molecule not more
than once [107]. This flag can be implemented using the same memory like the necessary functional
delay term Equation (11) by preventing that molecules react in any reaction, which have a delay > t

assigned, and setting the minimum delay for each particle that reacted to t+ 0.5∆t. Note that the global
delay for reversible reactions does not affect the overall reaction process because it is so small [122].

Such a delay term can also be used in order to mimic Michaelis–Menten enzyme kinetics[75,107].
In the reduced reaction scheme E +S → E +P the enzyme E is blocked for a certain time τ after each
reaction, leading to a saturation of the reaction rate. Let us use the standard notation kcat and kr for the
first order reactions and kES instead of kf for the second order E + S → ES reaction [101]. If only kcat
and Km are given, kES can be set to kES = kcat/Km [75,107].

The delay term introduced here for reversible reactions is also in agreement with the overdamped
Langevin regime discussed here. Upon dissociation we would expect that the two molecules have to
pick up and maintain impulses which separate them for a given time. The reversion of these impulses
such that the molecules can re-associate certainly requires additional time, which is not covered by the
plain random walk implementation. In the detailed dissociation process, the molecule will first have to
accumulate the necessary energy in order to overcome the potential energy of the bond and to dissociate.
Once it has this energy, the fate of the molecule is already dissociation, but only with a delay the bond
will be actually broken. A similar discussion, however in terms of the adjoint dissociation distance, is
found in Andrews et al. [120].

Future work has to find ways to include more detailed description on such a simplified simulation
scheme or at least bridge the detailed and simplified approach. Especially nonspherical molecules
and specific binding sites on the surface of the molecules are relevant for biomolecular reaction
kinetics [123–128].

2.4. Performance and Accuracy

The performance of a particle based simulation strongly depends on the efficiency of the used pair
finding and collision detection algorithms [129]. In order to cover a sufficient time span with the
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simulation, also a large ∆t is desirable to reduce the number of steps. Constraints on the accuracy
limit the choice of ∆t.

Within a crowded intracellular environment the random walk steps have to comply with the
boundaries of the obstacles. Steps can either be rejected (completely or retried) if they end in an
obstacle [42,43,75,80] or reflected [110,130]. However, if complex surfaces are considered, calculation
of the reflected endpoint can become time consuming and suffer from numerical imprecisions. Especially
for densely crowded regions, one step might interfere with more than one obstacle. Thus obstacle density
and size give upper bounds for the step length, similar to the condition in GFRD that a particle must
interact with at maximum one particle within the next time step [110]. As such, the step size could be
adjusted individually for each particle depending on its distance to the closest object.

The random number distribution for diffusion simulations (Equation (3)) should be a normal
distribution with µ = 0, σ2 = 1. These random numbers can be obtained by several algorithms
based on uniformly distributed pseudo random numbers [131]. From our observations, a normally
distributed random number costs at least 20% more than a uniformly distributed one. However, the
repeated application of the uniform distribution will lead to a normal distribution due to the central limit
theorem [132], and the convergence sufficient for simulation occurs within 5 steps. The authors also
are very faithful that a repeated rejection sampling of steps from the uniform distribution will converge
to a reasonable distribution within a crowded intracellular environment, even without using complex
reflection calculations [130].

In addition, the uniform distribution does not have long tails. For a σ2 = 1 uniform random variable
the distribution has to have a width of

√
12. Taking into account the scaling factor of Equation (3), the

maximum step length ∆xmax, u = 1/2
√

12× 2D∆tu =
√

6D∆tu. The maximum step length in space
becomes important for instance if only the end point of a step is checked with all obstacles/boundaries.
In order to not just jump across boundaries, ∆xmax has to be smaller than the smallest object (similar
to microscopes, where the wavelength determines the spatial resolution). The normal distribution, in
contrast, should not be truncated to less than 3σ, which means that ∆xmax, n = 3

√
2D∆tn =

√
18D∆tn.

If the step length decision is determined by the spatial aspects as indicated above, then a normal
distribution requires ∆tn ≤ 1/3∆tu (depending on the truncation). Taking also the higher costs of
normally distributed random numbers into account, a simulation with uniformly distributed random
numbers could run about 4 times faster along the simulated time.

Depending on the implementation of the reaction scheme(s), further constraints on ∆t can occur. For
instance the reaction probability from Equation (9) has to be smaller than 1 (or better 0.2), which leads to

∆tr ≤ min

(
4π(ri + rj)

2/3

κij

)
(12)

Except for strongly diffusion controlled reactions ∆tr can be much bigger than the constraints from
the random walk steps ∆tn > ∆tu. In order to save computation time on the expensive pair finding
for bimolecular reactions, reactions can thus be executed with a lower frequency, while diffusion steps
executed with uniformly distributed random walk steps at higher frequency can converge to the normal
distribution and correctly sample the details of the spatial structures in the cell. Likewise this approach
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allows refilling of reaction volumes between two reaction steps to the local concentration, which is
necessary to obtain the correct reaction rate [75].

Table 2. Spatial simulations on the cellular level.

Name/Authors Features Website/References

Smoldyn
S. Andrews et al.

Particle based simulator
for reaction diffusion processes
in arbitrarily shaped compartments.
(point particles, no crowding).

www.smoldyn.org
[28,48,119,120,133,134]

ChemCell
Particle based simulator
within realistic cell shapes.

chemcell.sandia.gov
[93,135,136]

E-Cell
Complete software environment
for simulations on several levels.
Contains further analysis tools.

www.e-cell.org
[137–139]

(GFRD,eGFRD)
ten Wolde et al.

Green’s function reaction dynamics
will be included in the E-Cell project [110,111,140,141]

FLAME
Agent-based multi-scale simulation
(also beyond the cellular level).

www.flame.ac.uk
[32,116,117]

MCell
Monte Carlo simulator of reaction diffusion
processes. Reactions can only happen at
membranes

www.mcell.cnl.salk.edu
[142]

MesoRD
Spatial derivative of Gillespie’s algorithm to
solve the Reaction-Diffusion Master Equation
(RDME) with the “next subvolume method”

mesord.sourceforge.net
[143,144]

SmartCell
Serrano et al.

Spatial derivative of Gillespie’s algorithm
in arbitrarily shaped compartments.

software.crg.es/smartcell
[145]

STEPS
Tetrahedral mesh based spatial derivative
of Gillespie’s algorithm

steps.sourceforge.net/STEPS
[146]

STSE
S.Stoma

PDE based simulator with compartments
and direct linking to microscope images.

www.stse-software.org
[147]

V Cell
ODE/PDE or SDE based simulator
within realistic cell shapes.

www.nrcam.uchc.edu
[148,149]

M. Klann et al.

Agent-based Brownian dynamics
including cytoskeleton, crowding
and vesicle transport.

www.bison.ethz.ch/
research/spatial simulations

[75,80,106,107,122,150]

3. Applications and Results of Spatial Simulations

3.1. Current Spatial Simulation Frameworks for the Cellular Level

Table 2 lists current spatial simulation packages. The methods employed are mostly particle based
(Brownian/Smoluchowski or Green’s function reaction dynamics), or lattice based using ODE/PDE/SDE
methods. Due to its relevance, we will describe Gillespie’s stochastic simulation algorithm for the
chemical master equation (CME) or the spatial version thereof (reaction diffusion master equation,
RDME) in the next section.

http://www.smoldyn.org/
http://chemcell.sandia.gov/
http://www.e-cell.org/ecell/
http://www.e-cell.org/ecell/
http://www.flame.ac.uk
http://www.mcell.cnl.salk.edu/
http://mesord.sourceforge.net/
http://software.crg.es/smartcell/
http://steps.sourceforge.net/STEPS/Home.html
http://www.stse-software.org/
http://www.nrcam.uchc.edu/vcell_software/intro_cap.html?current=three
http://www.bison.ethz.ch/research/spatial_simulations
http://www.bison.ethz.ch/research/spatial_simulations
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Further methods that have been used for cell simulations are for instance: dissipative particle
dynamics [151], an Ising model to calculate the ability of gradient sensing in the presence of multiple
competitive ligands [152], cellular Potts models [153], or lattice based methods where the lattice sites
have the size of molecules [105]. Special multi-scale methods have been developed to accommodate
the heterogeneous process of the cells like crowding with small and large molecules [154] or slow and
fast reactions [155], which also involves for instance local mean field closures for interactions [156] and
coupling of several simulation methods [14].

Parallelization for all these methods has been investigated, in order to increase the
performance [107,133,157,158]. Note that the computational particle object does not necessarily have to
coincide with an atom, molecule, or other cellular object. It can also represent a subvolume of the cell or
the membrane, exchanging mass or other content with neighbours, interact and evolute as described by
additional rules [150]. Thus particle or agent based simulations can be used for many simulation tasks
in biology [30].

3.2. The Reaction Diffusion Master Equation and Gillespie’s Algorithm

The chemical master equation CME or reaction diffusion master equation RDME if space is
considered describes the changes in a reaction system consisting of M molecular species and K

reaction channels with rate constants k = (k1, . . . , kK)T [20]. The reactions take place in reaction
compartment Ω. For a spatially resolved description Ω can be subdivided into U subvolumes of
volume V1, . . . , VU [144,157,159–161]. Here we denote the number of particles in subvolume ν with
N ν(t) = (N ν

1 (t), . . . , N ν
M(t))T . Time evolution on this level is driven by Markovian population

dynamics. More specifically, the probability distribution P (N 1(t) = n1, . . . ,NU(t) = nU) =

p(n1, . . . ,nU , t) satisfies the RDME
∂

∂t
p(n1, . . . ,nU , t) = (R+D)p(n1, . . . ,nU , t)

where R and D are the reaction and diffusion operators, respectively. The definition of the reaction
operator follows from the classical master equation and thus reads

R =
U∑
ν=1

K∑
j=1

(E−δjν − 1)aj(n
ν)

where δj denotes the stoichiometric change vector associated with the j-th reaction. This change
is performed by the shift operator Eν that applies to everything to its right-side. It is defined as
E
δj
ν f(n1, . . . ,nU , t) = f(n1, . . . ,nν − δj, . . . ,nU , t) for any function f of appropriate domain—in

particular f(n1, . . . ,nU , t) = aj(n
ν)p(n1, . . . ,nU , t). Diffusion of species i with diffusion coefficient

Di into another volume µ is translated into a first-order transport reactions with effective propensity
kν→µi nνi . The corresponding rate constant can be expressed as

kν→µi =
Di

l2
=
Di × l2

l × l3
=
DiSν,µ
lVν

(13)

where Sν,µ is the surface/interface area of the cubic subvolumes. Thus, the diffusion operator D reads

D =
U∑
ν=1

∑
µ∈N (ν)

M∑
i=1

(E∆i
ν E−∆i

µ − 1)kν→µi nνi
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where ∆i is the vector of change caused by the transport of a single molecule of type i from one volume
to another one. The set N (ν) denotes the volumes µ in the neighborhood of volume ν.

In terms of simulating the reactions the waiting time τ νj for every reaction j within volume ν is
distributed exponentially with parameter aj(nν), called the propensity of reaction j within ν. The
waiting time τ ν for any reaction to occur in ν is exponentially distributed according to parameter
a0(n

ν) =
∑K

j=1 aj(n
ν). Starting from a given time t, the next event of reaction j in ν is according

to Gillespie’s algorithm [20] at
tνj = t+ τ νj ; τ νj ∼ Exp(aj) (14)

A transport reaction into µ at time t′ causes a state change Nµ(t) → Nµ(t′), which according to
Gillespie’s algorithm would require updating the precomputed waiting times tµ− in µ. Anderson [162]
proved that the remaining fraction of the time to the next reaction can simply be stretched according to
the changed propensity

tµ+ = t′ + (tµ− − t′)×
a0(N

µ(t))

a0(N
µ(t′))

(15)

Of course there exist other ways in implementing the simulation, because the next reaction time
Equation (14) can either be calculated cumulatively for all reaction based on a0 or individually
for aνj for each subvolume and reaction channel. Note that the minimum waiting time of all
individual waiting times will be distributed as Exp(a0) such that both descriptions are equivalent, and
actually any partitioning/grouping of reaction channels is possible in order to improve the execution
performance [155]. Individual reactions have to be executed in their order in time, while the resulting
changes in N ν(t) can require updates in other waiting times as in Equation (15). If the waiting time is
calculated based on the cumulative a0 instead, the reaction channel and compartment of the next reaction
have to be found based on their individual probabilities aνj /a0. Simulators based on Gillespie’s algorithm
for the RDME are for example MesoRD [143] or STEPS [146] (cf. Table 2). The discretization into the
subvolumes should not be too small such that the chance of two reactants being in the same subvolume
goes to zero. In that case simulations of the RDME become diffusion limited [163–165].

Note that for a conversion from particle based simulations to population level of the ith species in ν
all particles of that species with x(t) ∈ Vν have to be counted. Conversely, the underlying assumption
of the population dynamics model is that the Nν

i (t) molecules are uniformly distributed in Vν .

3.3. Rule-based Modeling

The different phosphorylation levels as well as the localization of signaling molecules creates a
multitude of states in a species/population based description of the system. The number of reactions
and rate constants that have to be determined increases even more dramatic, because two interacting
proteins each with n possible states can have up to n2 different reaction rate constants. In order to be
able to generate and analyze detailed models of signal transduction despite this combinatorial explosion,
rule based modeling strategies have been developed [166,167]. The syntax/input scheme of such models
minimizes/structures the information that has to be entered by using state dependent rules. Based on
these rules the models can also be further abstracted, decomposed or reduced for a comprehensive
analysis of the complex system [168,169].
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The rule-based concept can be easily extended for spatial models, where the particle interactions are
now determined by their internal state and the rules assigned [170,171]. Spatial rule-based models can
be for instance used to track how simple molecular units self-assemble into large structures [172].

3.4. Applications and Results

The following list shows the importance of the mesoscale level in the cell. These applications cover
time and length scales above molecular dynamics simulations, though not necessary on the cellular level.
Thus they can be used to analyze important questions in molecular and cell biology, ranging from more
detailed descriptions of reaction process to the spatial organization of the cell.

• Binding kinetics and binding sites: depending on the description level, protein-protein association
can become quite complex [36]. For instance if multiple binding sites and diffusion-controlled
reactions are considered. Biomolecules can have several binding sites for the same ligand, for
instance receptors forming multimers or antibodies [128]. Kang et al. [173] analysed this and
Park et al. [174] developed a theory for reversible reactions under these circumstances. For
instance, two binding sites on a molecule would mean that the microscopic reaction rate constant
κij is doubled, while the reaction radius is the same as for a molecule with just one binding
site. Equation (6) shows that the macroscopic rate constant will not necessarily double under
these circumstances.
• Scaffolds and Channeling: Both in signaling and metabolic pathways co-localization of related

molecules has been observed. Obviously co-localization has advantages because the local
high concentration boosts the reaction rate [4,80,106,175,176]. Specific and even nonspecific
binding interactions which modify the localization properties of molecules can thus enhance
reactions [177]. Note, that the localization requires that molecules do not diffuse around/away,
such that there is a trade-off between advantages due to co-localization and disadvantages due to
the reduced mobility [75,80].
• Protein DNA interactions: Transcription factors have to find their target site on the DNA amongst

millions of binding sites, and they do it surprisingly efficiently, e.g., by combining 1D sliding
and 3D diffusion [178]. For instance nonspecific interactions could enhance association rates
respectively [177]. Note that even DNA is well organized in space [6]. The spatial organization of
DNA strands plays an important role, but long DNA strands can obviously not be modeled with
full atomic detail in a MDS simulation such that multi-scale approaches have to be employed [25].
The observed bursting kinetics of transcription rates is likewise explained using open and closed
chromatin states, which involve large-scale transitions of the DNA state [179].
• Assembly and fusion processes: Large polymer structures such as the cytoskeleton filaments

play an important role for the spatial organization of the cell. Guo et al. modeled the actin
assembly using Brownian dynamics [180]. Langevin dynamics have been used to simulate the
assembly of virus polymers [181]. A rule-based description was likewise used to analyze the
emergence of complex structures [172]. Likewise the fusion of membrane enclosed structures
like vesicles is important for the functionality of the cell [64,151,182]. Note that the interplay of
cytoskeleton filaments, motor proteins and vesicles can enhance their fusion process [150], while
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the cytoskeleton structure is for instance organized by the aforementioned growth processes but
also motors pulling them together and creating spatial patterns [68].
• Non-uniform molecule distributions in space: In order to grow/move in specific directions cells

have to polarize into front and back, which is associated with nonsymmetric particle distributions
across the cell [134,183]. In addition receptors on the membrane can cluster together [9,184], and
the output of spatial simulations shows the importance of the spatial organization in the cell [9].
Note that again reversible binding and/or unspecific binding interactions influence these reaction
rates [177,184].

4. Towards Multi-Scale Simulations from Atoms to Cells

Simulations on the molecular and cellular level are available and have been used extensively to better
understand biological processes [15–19,39]. At least theoretically the different levels can be included
in a multi-scale simulation, where all levels are executed in parallel. Starting from a coarse grained
Brownian dynamics simulation, more detailed levels could be invoked as soon as two particles are closer
than a threshold, e.g., switching from spheres to more realistic shapes [60,185] and eventually resolving
each collision on the MDS level.

A sequential execution would probably be easier to implement and thus more relevant in order to
model a signaling pathway “ab initio”, starting from the protein sequences of all involved molecules.
The corresponding molecular structures can be predicted (at least for small signaling molecules) if
not yet known from structure analysis by molecular simulation/analysis tools based on the atomic
level [22,186–189].

If possible from these structures the hydrodynamic radii [60,190], binding rates and reaction
kinetics can be calculated/estimated [82,188,189,191–198]. Especially important with respect to signal
transduction are the conformational changes and their rates associated with “active” and “inactive” states,
mostly regulated by the phosphorylation level of the proteins [199]. Based on the diffusion model
and the crowding level of the cell, the effective diffusion coefficient can then be estimated (e.g., if
crowding should only be modeled implicitly) [12]. The number/concentration of signaling molecules
can nowadays be quantified [200] and likewise serves as an input for the simulation [12].

Thus all necessary parameters are available to simulate the spatial and temporal dynamics of a
signaling pathway in the cell. The relation of transport and reaction rates beforehand gives an estimator
how well mixed the system will be and if the spatial dynamics have to be resolved explicitly [7]. If
not, even a population based ODE/SDE model with the effective reaction rates might be sufficient for
simulation (of the respective well-mixed subset of the system). But of course the compartmentalization
and thus transport rates through nuclear pores/membranes should be included [201].

Given the challenges involved with parameter estimation and model discrimination from
experimental results [179,202–205], such a bottom-up simulation approach might bring invaluable
insights for the signaling pathway under consideration. Simulations tracking all particle positions
inside the cell allow analysis of particle distributions, e.g., to find receptor clusters in the
membrane [9,184,206]. Based on such simulations the cell can also be visualized interactively
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at the desired resolution [11,74,107,129,207], for instance showing local variations in molecule
concentrations [207] or even showing the molecules with their atomic structure as in Figure 1.

The described bottom-up simulation approach as such cannot include all relevant effects on all levels.
Leaving out solvent molecules is the most obvious fact, but intermediary effects like crowding and
hydrodynamic forces [12,37] seem to be important. Thus especially efficient yet correct multi-scale
simulation algorithms for the mesoscale resolution have to be further developed, and a consensus on the
necessary levels of details has to be found.
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118. Lipková, J.; Zygalakis, K.C.; Chapman, S.J.; Erban, R. Analysis of Brownian dynamics
simulations of reversible bimolecular reactions. SIAM J. Appl. Math. 2011, 71, 714–730.

119. Andrews, S.S.; Addy, N.J.; Brent, R.; Arkin, A.P. Detailed simulations of cell biology with
Smoldyn 2.1. PLoS Comp. Biol. 2010, 6, doi:10.1371/journal.pcbi.1000705.

120. Andrews, S.S. Serial rebinding of ligands to clustered receptors as exemplified by bacterial
chemotaxis. Phys. Biol. 2005, 2, 111–122.

121. Berg, O.G. On diffusion-controlled dissociation. Chem. Phys. 1978, 31, 47–57.
122. Klann, M.; Koeppl, H. Escape times and geminate recombinations in spatial simulations of

chemical reactions. Biophys. J., submitted for publication, 2012.
123. Wade, R.C.; Luty, B.A.; Demchuk, E.; Madura, J.D.; Davis, M.E.; Briggs, J.M.;

McCammon, J.A. Simulation of enzyme–substrate encounter with gated active sites. Nat. Struct.
Mol. Biol. 1994, 1, 65–69.

124. Shoup, D.; Lipari, G.; Szabo, A. Diffusion-controlled bimolecular reaction rates. The effect of
rotational diffusion and orientation constraints. Biophys. J. 1981, 36, 697–714.

125. Dudko, O.K.; Berezhkovskii, A.M.; Weiss, G.H. Rate constant for diffusion-influenced ligand
binding to receptors of arbitrary shape on a cell surface. J. Chem. Phys. 2004, 121, 1562–1565.

126. Traytak, S.D. Diffusion-controlled reaction rate to an active site. Chem. Phys. 1995, 192, 1–7.
127. Wu, Y.T.; Nitsche, J.M. On diffusion-limited site-specific association processes for spherical and

nonspherical molecules. Chem. Eng. Sci. 1995, 50, 1467–1487.
128. Bongini, L.; Fanelli, D.; Piazza, F.; de los Rios, P.; Sanner, M.; Skoglund, U. A dynamical study

of antibody–antigen encounter reactions. Phys. Biol. 2007, 4, 172–180.
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