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Z U S A M M E N F A S S U N G

Maschinelles Lernen hat in den vergangenen Jahren zahllose Anwendungen in Industrie,
Wissenschaft sowie im alltäglichen Leben gefunden. Die Umsetzung solcher Systeme stützt
sich dabei vorwiegend auf die immer weiter steigenden Kapazitäten von digitalen Computern.
Aber auch physikalische Systeme - und im Speziellen deren Dynamik - haben bereits ihr
Potential bewiesen als mögliche Implementierungsplattformen für maschinelles Lernen zu
dienen. Ein besonderer Schwerpunkt wurde in dieser Diskussion auf optische Systeme gelegt.
Sowohl Freistrahlsysteme als auch integrierte photonische Plattformen wurden dabei als
potentielle Realisierungen für optische neuronale Netze in Betracht gezogen.

Das Ziel dieser Arbeit ist es zur Suche nach neuen physikalischen Implementierungen von
künstlichen neuronalen Netzwerken beizutragen. Auf dem Gebiet von optischen neuronalen
Netzen wird dazu eine Beschreibung von temperaturabhängiger Unterdrückung von Inten-
sitätsrauschen in Quantenpunkt-Superlumineszenzdioden entwickelt. Diese Lichtquellen
emittieren gerichtete Strahlung mit hoher Ausgangsleistung und großer spektraler Breite.
Typischerweise unterliegt das emittierte Licht solcher Dioden thermischen Fluktuationen,
charakterisiert durch den zentralen Kohärenzgrad zweiter Ordnung g (2)(0) = 2.0. Im Jahr 2011
demonstrierten Experimente in der Gruppe von Prof. Dr. W. Elsäßer an der Technischen
Universität Darmstadt, dass beim Abkühlen der Diode auf T = 190 K Intensitätsfluktuationen
auf g (2)(0) = 1.33 reduziert werden. Dieser Effekt kann durch eine Manipulation der Photo-
nenstatistik der Diodenemission, verursacht durch die Wechselwirkung mit dem gepumpten
Diodenmaterial, beschrieben werden. Dies erlaubt die Interpretation der experimentellen
Beobachtungen als temperaturgetriebenen Sättigungseffekt.

Neben puren optischen Implementierungen von künstlichen neuronalen Netzwerken legt
diese Arbeit einen speziellen Fokus auf atomare Systeme als potentielle Plattformen für ma-
schinelles Lernen. Im Speziellen werden dazu die Bewegung thermischer Atome in optisch
modellierten Potentiallandschaften sowie die nichtlineare Dynamik von kohärenten Mate-
riewellen in Bose-Einstein Kondensaten genutzt. Durch thermische Atome innerhalb eines
Boxpotentials kann ein Neuronenalgorithmus realisiert werden, indem optische Dipolpo-
tentiale als Eingabe und Messungen von Teilchenzahlen am Ende der Prozedur als Ausgabe
interpretiert werden. Dieses Neuron zeigt vergleichbare Eigenschaften zu konventionellen
Implementierungen und ist in der Lage, Standardprobleme aus dem Bereich des maschinellen
Lernens zu lösen.

Mit einem noch stärkeren Fokus auf den atomaren Aspekt einer möglichen Implementie-
rung von neuronalen Netzwerken behandelt diese Arbeit die Verwendung von intrinsischen
Nichtlinearitäten in kohärenten Materiewellen. Dazu wird eine detaillierte Beschreibung
der Vierwellenmischung von ebenen Wellen in einem homogenen Bose-Einstein Kondensat
präsentiert. Durch analytische und numerische Untersuchung der Dynamik dieses Prozesses
offenbaren sich Josephson-ähnliche Oszillationen. Die Implementierung eines komplexwer-
tigen Neurons basierend auf dem Vierwellenmischprozess wird demonstriert, indem die
komplexen Amplituden dreier Impulszustände des Prozesses als Eingabe und die verblei-
bende vierte Amplitude als Ausgabe interpretiert werden. Ein einziges dieser Neuronen ist
bereits in der Lage, das XOR-Problem zu lösen. Durch Parallelisierung und den Aufbau kom-
munizierender Schichten eines Netzwerks wird gezeigt, dass die nichtlineare Dynamik in
Bose-Einstein Kondensaten in der Tat genutzt werden kann, um atomare neuronale Netzwerke
zu implementieren.



A B S T R A C T

In recent years, machine learning techniques have found countless applications in industry,
research, as well as everyday life. The realization of such systems relies heavily on the ever-
growing capabilities of digital computing systems. However, physical systems, and especially
their dynamics, have already proved their potential to be alternative implementation plat-
forms. Especially optical systems have been a focal point of this research with proposals of
free-space and integrated photonics optical neural networks.

In this thesis, we aim to aid in the search of new physical implementation platforms of
artificial neural networks. Contributing to the field of optical neural networks, we develop a
description of temperature-dependent intensity noise suppression in quantum dot superlumi-
nescent diodes. Those light sources emit spatially directed radiation, which is high-powered,
spectrally broadband and typically subject to thermal fluctuations, described by the central
degree of second-order coherence g (2)(0) = 2.0. In 2011, the group of Prof. Dr. W. Elsäßer
at the Technical University Darmstadt observed that intensity fluctuations are reduced to
g (2)(0) = 1.33 when tuning the running temperature of the diode to T = 190K. We show, that
this effect can be described via a photon statistics manipulation of the emission due to in-
teraction with the pumped diode material. Therefore, intensity noise suppression in such
diodes can be explained as a temperature driven saturation effect.

Furthermore, we go beyond purely optical implementations of artificial neural networks
looking at atomic systems as the main focus of potential new machine learning platforms.
Specifically, we make use of the movement of thermal atoms in optically shaped potential
landscapes as well as harnessing the nonlinear dynamics of coherent matter waves in Bose-
Einstein condensates. Considering thermal atoms inside a box potential, we demonstrate
that a neuron algorithm can be implemented using optical dipole potentials as input and the
measurement of the particle number remaining at the end of the procedure as output. This
thermal cloud neuron shows similar features compared to conventional implementations
and is able to solve benchmark problems.

Moving even more towards a purely atomic implementation of an artificial neural network,
this thesis describes an implementation based on intrinsic nonlinearities of coherent matter
waves. There, we present an in-detail description of the four-wave mixing process of plane
waves in a homogeneous condensate. Analytical as well as numerical investigations of the
dynamics of this process are performed, revealing Josephson-like oscillations within the four-
wave mixing states. Interpreting the complex amplitudes of three momentum components
of the four-wave mixing process as input, and the fourth one as output, we demonstrate the
implementation of a complex-valued neuron. A single realization of such a four-wave mixing
neuron is able to solve the benchmark XOR problem. By parallelizing such neurons and setting
up communicating layers of a network, we show that nonlinear dynamics of Bose-Einstein
condensates can be used to implement an atomic neural network.





C O N T E N T S

1 I N T R O D U C T I O N 1

I A R T I F I C I A L N E U R A L N E T W O R K S
2 A R T I F I C I A L N E U R O N S 7

2.1 Biological Neurons and the Human Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Human Information Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Neural Structure and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Artificial Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 A R T I F I C I A L N E U R A L N E T W O R K S 11
3.1 Single-Layer Feedforward Networks and Error-Correction Learning . . . . . . . 12

3.1.1 Batch Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 On-Line Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Multilayer Feedforward Networks and Backpropagation Algorithm . . . . . . . 15
3.3 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Exclusive OR-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Recognition of Handwritten Digits - MNIST Dataset . . . . . . . . . . . . 17

4 P H Y S I C A L I M P L E M E N TAT I O N S O F A R T I F I C I A L N E U R A L N E T W O R K S 21
4.1 Optical Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 All-Optical Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Photonic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Further Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II T H E R M A L C L O U D N E U R A L N E T W O R K
5 S T O C H A S T I C S I M U L AT I O N O F T H E R M A L AT O M S 25

5.1 Kramers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.1 Stochastic Equations of Motion for Brownian Particle . . . . . . . . . . . 26
5.1.2 Kramers’ Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Maxwell-Boltzmann Statistics for Brownian Particles . . . . . . . . . . . . 28

5.2 Störmer-Verlet-Like Simulation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Equilibration Time in a Periodic Confinement . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Thermal Atoms in Periodic Confinement . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Simulation Results for Rubidium-87 . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Comparison with Free Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 T H E R M A L C L O U D N E U R O N 35
6.1 Optical Dipole Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Atom-Light Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Box Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Input Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Nonlinear Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Implementation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.2 Output Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 T H E R M A L C L O U D N E U R A L N E T W O R K 43
7.1 Network Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



viii C O N T E N T S

7.1.1 Parallelization and Layer Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Inter-Layer Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 Encoding of Binary Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 XOR Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III F O U R- W AV E M I X I N G N E U R A L N E T W O R K
8 C O H E R E N T M AT T E R W AV E S 51

8.1 Bose-Einstein Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.2 Bose-Einstein Condensation in Dilute Atomic Gases . . . . . . . . . . . . 52
8.1.3 Further Approaches to Bose-Einstein Condensation . . . . . . . . . . . . 53

8.2 Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.1 Effective Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.2 Many-Body Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2.3 Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 F O U R- W AV E M I X I N G W I T H P L A N E W AV E S 57
9.1 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.1.1 Four-Wave Mixing in Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . 57
9.1.2 Four-Wave Mixing in Coherent Matter Waves . . . . . . . . . . . . . . . . . 59

9.2 Ideal Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.2 Josephson Description of Four-Wave Mixing Amplitudes . . . . . . . . . 63
9.2.3 One-Dimensional Four-Wave Mixing with Multiple Internal States . . 70

9.3 Four-Wave Mixing with Background Population . . . . . . . . . . . . . . . . . . . . . 73
9.3.1 Numerical Simulation of Four-Wave Mixing on Discrete Periodic Grid 73
9.3.2 Analysis of Background Population . . . . . . . . . . . . . . . . . . . . . . . . . 74

10 F O U R- W AV E M I X I N G N E U R O N 77
10.1 Implementation of Four-Wave Mixing Neuron . . . . . . . . . . . . . . . . . . . . . . . 77

10.1.1 Identifying Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.1.2 Nonlinear Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.2 Steepest descent learning for complex-valued neurons . . . . . . . . . . . . . . . . 81
10.3 XOR Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.3.1 Input and Output Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.3 Imperfect Training and Testing Data . . . . . . . . . . . . . . . . . . . . . . . . 83
10.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 F O U R- W AV E M I X I N G N E U R A L N E T W O R K 87
11.1 Neuron Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11.1.1 Spatial Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.1.2 Stacked Four-Wave Mixing in Momentum Space . . . . . . . . . . . . . . . 88
11.1.3 Parallel Four-Wave Mixing using Internal States . . . . . . . . . . . . . . . 93

11.2 Communication Between Layers - Network Setup . . . . . . . . . . . . . . . . . . . . 94
11.2.1 Network Setup using Multiple Internal States . . . . . . . . . . . . . . . . . 94
11.2.2 Nonlinear Activation Function of Second-Layer Neuron . . . . . . . . . 96
11.2.3 Learning Capability of Four-Wave Mixing Neural Network . . . . . . . . 98
11.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



C O N T E N T S ix

IV S I L E N T W H I T E L I G H T
12 E M I S S I O N P R O P E R T I E S O F Q U A N T U M D O T S U P E R L U M I N E S C E N T D I O D E S 103

12.1 Quantum Dot Superluminescent Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
12.2 Stochastic Modelling of Emission Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 104

12.2.1 Complex Ornstein-Uhlenbeck Process . . . . . . . . . . . . . . . . . . . . . . 104
12.2.2 Stochastic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12.2.3 Modelling Arbitrary Spectra as Sums of Lorentzians . . . . . . . . . . . . 107

12.3 Emission Properties of Quantum Dot Superluminescent Diodes . . . . . . . . . 109
12.3.1 Intensity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.2 Optical Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.3 Second-Order Temporal Correlation Function . . . . . . . . . . . . . . . . . 111

13 T E M P E R AT U R E - D E P E N D E N T I N T E N S I T Y N O I S E S U P P R E S S I O N 113
13.1 Pumped Three-Level Atom Interacting with Coherent Light Field . . . . . . . . . 113

13.1.1 Diode Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.1.2 Optical Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
13.1.3 Intensity Input-Output-Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13.2 Photon Statistics Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.3 Temperature-Dependent Intensity Noise Suppression . . . . . . . . . . . . . . . . . 118

13.3.1 Temperature-Dependent Mean Intensity . . . . . . . . . . . . . . . . . . . . 118
13.3.2 Temperature-Dependent Intensity Noise . . . . . . . . . . . . . . . . . . . . 119
13.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

V C O N C L U S I O N
14 S U M M A R Y A N D O U T L O O K 123

VI A P P E N D I X
A T I M E - D I S C R E T E A P P R O X I M AT I O N O F S T O C H A S T I C D I F F E R E N T I A L E Q U AT I O N S129

A.1 Picard-Iteration of Stochastic Differential Equations . . . . . . . . . . . . . . . . . . 129
A.2 Time-Discrete Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B AT O M I C PA R A M E T E R S O F R U B I D I U M -87 131

C T W O - D I M E N S I O N A L F O U R- W AV E M I X I N G S TAT E P R E PA R AT I O N 133

D E N C O D I N G S C H E M E F O R F O U R- W AV E M I X I N G N E U R A L N E T W O R K 135

B I B L I O G R A P H Y 137

L I S T O F P U B L I C AT I O N S 153

C O N F E R E N C E C O N T R I B U T I O N S 155

L E B E N S L AU F 157

D A N K S A G U N G 159

E R K L Ä R U N G 161





1
I N T R O D U C T I O N

In the last couple of decades, machine learning techniques have seen a rapid rise to promi-
nence, finding ways to significance in nearly all aspects of current everyday life [1]. By learning
to recognize patterns in data using enormous training datasets, these techniques have proven
to be a disruptive technology in fields such as health care [2–4], finance [5, 6], manufactur-
ing [7, 8], energy generation [9–11], autonomous driving [12–14] and many more. An impact
of comparable magnitude by a technology on industry and research has not been seen since
the introduction of computers [15]. Especially deep learning techniques have been used suc-
cessfully to improve the performance of machine learning systems, going beyond classical
pattern recognition and moving more towards the realm of artificial intelligence.

Yet, the increase in complexity, and therefore capability, of machine learning systems is
starting to point out limitations and possible problems. Especially the energy consumption of
modern computing systems, on which machine learning techniques are traditionally imple-
mented, has become a point of concern. To power the artificial neural networks AlphaGo and
AlphaZero, which can beat human experts at strategy games, roughly 200 W are needed [16].
Putting this into perspective, the human brain consumes approximately 20 W of power while
performing many more parallel tasks than just playing a strategy game. Using current tech-
nology, the power consumption of an artificial neural network the size of the human brain
would be around 7.9 MW [17]. Therefore, there is a growing need for alternative implementa-
tion platforms of machine learning systems beyond digital computing systems based on the
classical von Neumann architecture.

O P T I C A L A P P R O A C H E S T O D E E P L E A R N I N G

One platform of high interest are optical implementations of neural networks [18]. With their
potential of massively parallelized data processing using free-space optics as well as integrated
photonic chips, while consuming relatively small amounts of power, optical neural networks
have gathered significant attention in recent years.

In this thesis, we aim to add to the field of optical neural network implementations by
characterizing the temperature-dependent intensity noise characteristics of a specialized light
source, the quantum dot superluminescent diode. Such diodes are already being implemented
in realizations of machine learning systems [19–23]. However, suppressing intensity noise
while conserving the broadband emission properties of the diode, yielding silent white light,
has the potential to increase the performance of such networks even further.

The basis of our discussion is given by experimental measurements of M. Blazek and W. El-
säßer from 2011 [24]. They observed a reduction of intensity noise in such diodes in terms
of the central degree of second-order coherence g (2)(0) from thermal noise g (2)(0) = 2.0 at
room temperature to about g (2)(0) = 1.33 when tuning the temperature to T = 190K. Here,



2 1 I N T R O D U C T I O N

we present a description of this effect via photon statistics manipulation of the emission due
to the interaction with the pumped diode material. In doing so, we are able to interpret the
observations as a temperature driven saturation effect inside the diode material. A better
understanding of such effects might aid the determination of optimal operating conditions of
these diodes, as well as possibly designing new diodes with optimized emission characteristics.
Both those advances would also prove to be beneficial in the implementation of optimized
diodes in artificial neural networks.

AT O M I C A P P R O A C H E S T O D E E P L E A R N I N G

In addition to investigating optical systems and their possible applications in machine learn-
ing, we focus on another approach to set up artificial neural networks using atomic systems.
Up to this point, the role of atomic systems in the realm of machine learning has usually been
restricted to certain parts of implementations, for example by introducing nonlinearity to
optical neural networks [25]. In this thesis, we investigate two systems, the thermal cloud
neural network and the four-wave mixing neural network, in which the main focus of the
implementation of the artificial neural networks lies on the atomic system itself.

In a first approach to an atomic artificial neural network, we investigate a classical thermal
gas in optically shaped potential landscapes. In the sense of the thermal cloud neural network,
a neuron is realized by implementing an input via an optical dipole potential. The externally
trapped thermal atoms equilibrate in the new landscape. By turning off the external trap, the
particle number still trapped by the input laser can be interpreted as the output of the neuron.
We investigate the nonlinear activation function of such a neuron and show that a network of
thermal cloud neurons is able to solve benchmark problems of machine learning.

Going beyond classical atomic gases, we use the highly nonlinear dynamics of coherent
matter waves in Bose-Einstein condensates to set up an artificial neural network. During
the advent of Bose-Einstein condensation in dilute atomic gases, nonlinear effects in the
condensate have been widely used to determine the occurrence of a phase transition [26, 27].
In this thesis, we focus on the process of four-wave mixing in coherent matter waves, which is
well-known from nonlinear optics [28]. There, if phase-matching conditions are fulfilled in
a third-order nonlinear medium, three frequencies of an optical field can interact in a way
such that an initially absent fourth frequency emerges. An equivalent process in coherent
matter waves was predicted theoretically [29, 30] and observed experimentally [31, 32]. There,
momentum components of the matter waves took over the role of optical frequencies from
the initial scenario.

Considering the idealized case of a homogeneous periodic Bose-Einstein condensate, we
show that the four-wave mixing process using plane waves exhibits Josephson-like oscilla-
tions [33–35]. Based on these results, we demonstrate the implementation of a complex-valued
neuron, where we identify the complex amplitudes of three momentum components of the
four-wave mixing process as input and the fourth component as output. Using an in-detail
investigation of the nonlinear activation function of this implementation, we show that steep-
est descent learning can be used to train such four-wave mixing neurons by solving the
benchmark XOR problem.

Expanding on this implementation, we subsequently investigate the parallelization ability
of the four-wave mixing neuron and search for possible ways to implement communication
between multiple layers. Especially using the extended internal structure of the condensate
atoms turns out to be beneficial in setting up a neural network structure. As a proof of principle,
we train a four-wave mixing neural network to distinguish logical six-bit sequences using the
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backpropagation algorithm. The success of this procedure shows that also larger network
structures can be constructed using the four-wave mixing neuron.

S T R U C T U R E O F T H E S I S

This thesis is structured in five parts. In Part I, an overview over artificial neural networks is
presented. After discussing the inspirational sources of machine learning, biological neurons
and the human brain, the basic concept of an artificial neuron is presented in Chapter 2.
This discussion is expanded by introducing artificial neural networks in Chapter 3. Start-
ing from simple single-layer models, training processes of deep neural networks using the
backpropagation algorithm are introduced. As performance benchmarks for neural network
implementations, we discuss the solution of the XOR problem, as well as the recognition of
handwritten digits based on the MNIST dataset. State-of-the-art physical implementations of
artificial neural networks are discussed in Chapter 4.

In Part II, an example case of a neural network implementation is given using thermal atoms
in optically shaped potential landscapes. There, the requirements of setting up such an imple-
mentation can be investigated in detail. After discussing the stochastic simulation of thermal
atoms in Chapter 5, the algorithm for implementing an artificial neuron via shaping of optical
dipole potentials is described in Chapter 6, yielding the thermal cloud neuron. Subsequently,
in Chapter 7, this neuron concept is embedded into a network structure, constituting the
thermal cloud neural network and showing the learning capabilities of this implementation.

Going beyond thermal atoms, a neural network implementation based on coherent mat-
ter waves in Bose-Einstein condensates, given by the four-wave mixing neural network, is
presented in Part III. The properties, different forms of realizations and descriptions of the
dynamics of such condensates given by the Gross-Pitaevskii equation are discussed in Chap-
ter 8. Focussing on a particular nonlinear effect in Bose-Einstein condensates, the four-wave
mixing process using a superposition of plane waves is described in detail in Chapter 9. Using
a dimensionless description of the dynamics of such a system and appropriate coordinates
reveals Josephson-like oscillations, which can be described analytically as well as numerically.
This detailed investigation of the four-wave mixing process is exploited in Chapter 10 to
develop an algorithm to implement a complex-valued neuron, the four-wave mixing neuron.
Numerically investigating the nonlinear activation function of this neuron enables subse-
quent training using steepest descent learning and solving the XOR problem with just a single
complex-valued neuron. By showing ways to parallelize four-wave mixing neurons and to set
up communicating layers of a network, the four-wave mixing neural network is introduced in
Chapter 11. Using a sample training task, the learning capabilities of this system are demon-
strated, proving that nonlinear dynamics in Bose-Einstein condensates can indeed be used to
set up trainable feedforward neural networks.

In Part IV, we present an investigation of temperature-dependent intensity noise suppres-
sion in quantum dot superluminescent diodes, yielding silent white light. Using a stochastic
model of the diode emission, its first- and second-order temporal correlation properties are
investigated in Chapter 12. In addition to optical power spectra and second-order temporal
correlation functions, this reveals an exponential probability distribution of the emitted inten-
sity. Those emission statistics can be manipulated via the interaction with the pumped diode
material. In Chapter 13, we show that describing the diode material as pumped three-level
atoms, a modulation of the central degree of second-order coherence g (2)(0) in dependence
of the system parameters can be observed. Using experimental measurements regarding the
temperature dependence of the emitted mean intensity of the diode, we are able to recon-
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struct the observed intensity noise reduction to around g (2)(0) = 1.33 at T = 190 K. Our model
enables an interpretation of the observed effect as a temperature driven saturation effect in
the diode material.

Finally, this thesis concludes with a summary of the results and an outlook to further
research opportunities and directions in Part V. Central results of this thesis are submitted for
publication or have already been published in scientific journals:

• K. N. Hansmann, R. Walser [36]
Forming complex neurons by four-wave mixing in a Bose-Einstein condensate
Physical Review A 109, 013302 (2024)
Based on Chapters 9 and 10.

• K. N. Hansmann, R. Walser [37]
Stochastic Simulation of Emission Spectra and Classical Photon Statistics of Quantum
Dot Superluminescent Diodes
Journal of Modern Physics 12, 22-34 (2021)
Based on Chapter 12.

• K. N. Hansmann, F. Dommermuth, W. Elsäßer, R. Walser [38]
Silent White Light
Submitted to Physical Review Letters (2023)
Based on Chapter 13.
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A R T I F I C I A L N E U R O N S

Artificial neural networks (ANNs) are systems, which were developed to simulate the calcula-
tion processes inside the human nervous system. The computational units of such a network,
called artificial neurons (ANs), are therefore modelled after human neurons. The aim of this
implementation is the development of artificial intelligence (AI) which performs calculations
in the same manner as the brain. Due to the enormous complexity of the human brain this is
a difficult task.

Early developments of ANNs came shortly after the proposal of the modern computer by
Alan Turing in 1936 [39]. The first model of a neuron was introduced by McCulloch and Pitts in
1943 [40]. They created algorithms called threshold logic to mimic the response characteristics
of human neurons. The next advancement was achieved by Frank Rosenblatt in 1958 when he
introduced the concept of the perceptron [41]. This network is build around a McCulloch-Pitts
neuron and was the first model to implement supervised learning in ANNs. However, the
need of big data sets, high computational demands and limited abilities of the perceptron
led to concerns about the usability of ANNs [42]. As the processing capabilities of computers
developed through the decades, more and more achievements were made regarding ANNs.
In 1974 John Werbos introduced the backpropagation algorithm for the training of multi-
layer ANNs [43]. This led to the possibility of developing larger and more complex network
structures, which have come to be known as deep learning [44].

This first part of the presented thesis introduces the basic concepts of ANs (Chapter 2)
and ANNs (Chapter 3). Subsequently, state-of-the-art physical implementations of ANNs
are reviewed in Chapter 4. In this chapter, the biological inspiration of ANs is discussed in
Section 2.1, before introducing the theoretical description of ANs in Section 2.2.

2.1 B I O L O G I C A L N E U R O N S A N D T H E H U M A N B R A I N

2.1.1 Human Information Processing

Humans and all other living organisms constantly interact with their environment. To be
able to respond properly to their surroundings, the flood of information received from the
environment has to be processed. This happens in the nervous system of a human and can be
cut down into three stages: processing of sensory inputs, sensory integration and processing

Neural
Network

Receptors EffectorsStimulus Response

Figure 2.1: Schematic depiction of information processing in the human nervous system. Graphic
adapted from [45].
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of motoric output signals (see Fig. 2.1) [46]. All these tasks in the nervous system are performed
by specialized cells called neurons.

The main part of signal processing is performed in the human brain. The brain hosts
around 86 billion neurons, where some neurons have up to 100,000 connections to their
neighbours [46]. This in total presents a calculation capacity surpassing those of state-of-the-
art supercomputers. In modelling how learning happens or could happen in the brain, the
field of learning algorithms and ANNs came to fruition [44].

2.1.2 Neural Structure and Functionality

The basic computation units of the human nervous system are specialized cells called neu-
rons [47]. They appear in a vast variety of shapes and forms. A schematic visualization of an
exemplary neuron can be seen in Fig. 2.2.

1

2

3
4

5

Figure 2.2: Schematic depiction of an exemplary neuron with soma (1), dendrites (2), axon hillock (3),
axon (4) and axon terminals (5). Graphic adapted from [47].

A neuron consists of a cell body, or soma, and a number of cellular extensions, which vary in
their functionality. The soma contains the nucleus of the neuron and is the location of protein
synthesis. Information is passed on between neurons on connection sites called synapses. On
the receiving neuron, these can either be located on the soma itself or on tree-like extensions,
called dendrites. If an electric signal arrives at the synapse, calcium ions enter the small gap
between the neurons, diffuse to the receiving side and activate receptors there. Synapses
can either increase (excitatory) or decrease (inhibitory) the activity in the target neuron. The
magnitude of influence a synapse has on the receiving neuron depends on the location of the
synapse on the neuron and strength of the synaptic connection.

All incoming signals arrive at the soma and reach a region called axon hillock. If the incoming
potential surpasses a neuron-specific activation potential, an electric signal is produced in the
axon hillock. This response has an ”all-or-none” characteristic. If the threshold is surpassed,
the neuron produces an outgoing signal at full strength. Otherwise, there is no response at all.
Therefore, neurons show a highly nonlinear response to incoming signals. The outgoing signal
propagates along the axon towards the axon terminals, where it is passed on to following
neurons [47].



2.2 A R T I F I C I A L N E U R O N S 9

Connections inside the brain can be altered depending on their importance. For example, if
the activity of one synapse is correlated to the activity of another one, changes can appear that
strengthen this synaptic connection. Furthermore, new synapses can be formed if the activity
of two neurons is correlated. Changes in the synaptic regions can also alter the strength of the
connection produced by the synapse. All these processes are a part of the neural plasticity
of the brain [46], which leads to a change in positions and strengths of connections between
neurons, and therefore learning in the brain.

2.2 A R T I F I C I A L N E U R O N S

On the basis of biological neurons, a model for ANs as the basic constituents of ANNs has been
introduced by McCulloch and Pitts in 1943 [40] and has been further developed by Rosenblatt
in 1958 [41]. These neurons posses three basic properties:

• Input signals x j reach a neuron k via synapses with scalar weights wk j ,

• a linear combiner sums up all weighted input signals,

• an activation function produces an output signal yk .

A schematic representation of the working principle of an AN can be seen in Fig. 2.3.
All inputs x j presented to a neuron k are weighted with the respective weights wk j and

produce the induced local field vk at the summing junction as

vk =
n
∑

j=0

wk j x j . (2.1)

The term wk 0, where x0 = 1 is always fixed, describes an externally applied bias, increasing
or decreasing the net input of the neuron. The output is produced by applying a nonlinear
activation function (NAF) ϕ to the induced local field

yk =ϕ(vk ). (2.2)

ϕ(·)

wk 0x0

wk 1x1

wk 2x2

wk nxn

. . .

Σ
vk yk

Figure 2.3: Model of an artificial neuron. A total of n inputs x j are weighted with respective weights
wk j . A fixed input x0 = 1 in combination with wk 0 represents a neuron-specific bias. The
weighted inputs are summed up at a summing junction to produce the local induced field
vk . This signal is processed by a nonlinear activation function ϕ(vk ) producing the output
yk . Graphic adapted from [45].
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The NAF ϕ(vk ) thus defines the output yk of a neuron. Depending on the application of the
neuron and the problem at hand, these NAFs take on vastly different forms. Some typical
examples are:

• Threshold/Heaviside function

ϕH(vk ) =

�

1, for vk ≥ 0,
0, for vk < 0.

(2.3)

• Piecewise-linear function

ϕpl(vk ) =







1, for vk ≥ 1/2,
vk +1/2, for 1/2> vk >−1/2,

0, for −1/2≥ vk .
(2.4)

• Sigmoidal function/Fermi distribution

ϕs(vk ) =
1

1+exp(−αvk )
. (2.5)

−1.0 −0.5 0.0 0.5 1.0
vk

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
(v

k
)

ϕH

ϕpl

ϕs

Figure 2.4: Nonlinear activation function response ϕ to induced local field vk . Exemplary types of
nonlinearities are threshold ϕH (green, solid), piecewise-linear ϕpl (yellow, dash-dotted)
and sigmoidal ϕs (blue, dashed; α= 5) functions.
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T Y P E S O F A R T I F I C I A L N E U R A L N E T W O R K S All neural networks have neurons as their basic
constituents. However, networks might differ in their architecture, which typically influences
the algorithm used in training the network. In a layered network the neurons are organized in
the form of layers. Computations in one layer take place at the same time. A network is called
feedforward, if the input layer projects onto the output layer but not vice versa. Accordingly,
there are no feedback connections in which outputs of neurons are fed back to themselves.
When such feedback connections are present, one has to deal with the topic of recurrent
neural networks [48–50].

As neural networks typically posses a significant number of layers, a depth can be assigned
to the architecture, giving rise to the term deep learning [44]. Such deep neural networks can
be further subcategorized by the way in which the layers are connected. If every neuron in
a layer is connected to every single neuron in the adjacent layers, the network is said to be
fully-connected. If there are only partial connections between the layers, one enters the realm
of convolutional neural networks [51].

H I S T O R Y A N D P E R F O R M A N C E C A PA B I L I T I E S O F A R T I F I C I A L N E U R A L N E T W O R K S Three
main periods can be identified in the history of ANNs: cybernetics in the 1940s to 1960s [40,
41, 52, 53], connectionism in the 1980s and 1990s [49, 54, 55] and deep learning from 2006
to present day [56–59]. Over recent years, faster computers with larger memories and the
introduction of hidden layers have led to a doubling of ANN sizes roughly every 2.4 years [44].

As larger networks are able to achieve higher accuracy on more complex tasks, also the
size of available datasets has grown significantly. A rough rule of thumb states, that a su-
pervised deep learning algorithm will achieve acceptable performance with around 5,000
labeled examples and will match or surpass human performance when trained with at least 10
million labeled examples [44]. Such large datasets, available for ANN training, are, for example,
MNIST [60], CIFAR-10 [61], ImageNet [62, 63], Sports-1M [64] or IBM’s dataset constructed
from the Canadian Hansard [65].

Nowadays, ANNs show excellent performance in tasks like image recognition [66], speech
recognition [67, 68], pedestrian detection [69] and traffic sign classification [70]. Many leading
companies, including Google, Microsoft, IBM, NVIDIA and others, rely on deep learning
and a lot of commercial programs and software libraries like Torch [71], TensorFlow [72] and
ChatGPT are readily available.

In this thesis, we aim to introduce new ways to implement artificial neurons and set up
neural networks. Therefore, we limit the following discussion of architecture and learning
algorithms to feedforward fully-connected neural networks, as this will be the way in which
our implementations will be realized.
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In this chapter, the concepts of input processing and learning in single-layer (Section 3.1)
and multilayer (Section 3.2) feedforward neural networks are discussed. In Section 3.3, we
introduce two benchmark problems, the XOR problem and the recognition of hand-written
digits based on the MNIST dataset, against which the implementations of ANNs will be tested
throughout this thesis.

3.1 S I N G L E - L AY E R F E E D F O R W A R D N E T W O R K S A N D E R R O R- C O R -
R E C T I O N L E A R N I N G

In a single-layer feedforward network, the input of source nodes projects directly onto the
output layer of calculation neurons. Source nodes do not count as a layer, as no computations
are performed. An exemplary block diagram of such a simple network can be seen in Fig. 3.1.
One possible definition of learning in the context of ANNs is that it "is a process by which
the free parameters of a neural network are adapted through a process of stimulation by
the environment in which the network is embedded. The type of learning is determined by
the manner in which the parameter change takes place" [73]. One popular algorithm for the
training of single-layer feedforward networks is so-called error-correction learning [45].

The signal-flow graph for error-correction learning of a single neuron can be seen in Fig. 3.2.
Consider a single-layer feedforward network with n input nodes and q output nodes. The

network is stimulated by an input vector x (i ) =
�

x (i )1 , . . . , x (i )n

�

, where i denotes the instant in
time at which the excitation is applied to the system. The external behaviour of the system is
described by the training dataset

T :
�

x (i ), d (i ); i = 1, . . . , m
	

, (3.1)

where d (i ) =
�

d (i )1 , . . . , d (i )q

�

is the desired response associated with x (i ) and m is the size of the

dataset. In response to the stimulus, the network produces an output y (i ) =
�

y (i )1 , . . . , y (i )q

�

(2.2).
Starting from an arbitrary setting of the synaptic weights W = (wk j ), k = 1, . . . , q , j = 1, . . . , n ,

the goal of the learning procedure is to adjust the weights to minimize the difference between
the desired and actual outputs, described by means of a cost function E(W ). A typical cost
function is the squared error averaged over the training sample set [45]

E =
1

m

m
∑

i=1

E (i ). (3.2)

Figure 3.1: Exemplary block diagram of a single-layer feedforward network. The squares symbolize
source nodes where no calculations are performed, while circles represent artificial neurons.
Signals flow from left to right through the network. Graphic adapted from [45].
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wk 0

wk 1

wk 2

wk n

. . .
y (i )k

ϕ
�

v (i )k

�

d (i )k

−1 1

e (i )k

∆wk jx (i )0

x (i )1

x (i )2

x (i )n

Σ Σ

Figure 3.2: Signal-flow graph for error-correction learning in a single-layer feedforward network with
one output neuron. At an instant i , the network output y (i )k is compared to a desired response

d (i )k , which together produce an error signal e (i )k . This can be used to update the neuron
weights, minimizing a cost function E(W ). Graphic adapted from [45].

There, E (i ) is the total instantaneous error measure

E (i ) =
1

2

q
∑

k=1

�

�

�e
(i )
k

�

�

�

2
, e (i )k =d (i )k − y (i )k , (3.3)

with e (i )k the error signal produced by neuron k .
This yields an unconstrained optimization problem [74], meaning to find an optimal solu-

tion W ∗ such that

E(W ∗)≤ E(W ) (3.4)

for all weight matrices W . The necessary condition for optimality is

∇E(W ∗) = 0, (3.5)

where∇ is the gradient operator in weight space.
In a steepest descent method [74], adjustments applied to the weight matrix W are in the

direction of steepest descent, that is in the direction of the negative gradient. An update rule
for an iterative procedure can therefore be formulated as

∆W (n ) =W (n +1)−W (n ) =−η∇E(W ), (3.6)

where n symbolizes one iteration and η is a positive learning rate. Depending on the way
supervised learning is actually performed, two different methods can be identified: batch
learning and on-line learning.

3.1.1 Batch Learning

In batch learning [45], adjustments to the synaptic weights are performed after all m examples
in the training sample set T have been presented to the network (see Fig. 3.3). One run through
the sample set T is called an epoch. Accordingly, adjustments are made on an epoch-by-epoch
basis. Inserting (3.2) into (3.6) and using the chain rule, (2.1) and (2.2) yields

∂ E
∂ wk j

=
1

m

m
∑

i=1

∂ E (i )

∂ e (i )k

∂ e (i )k

∂ y (i )k

∂ y (i )k

∂ v (i )k

∂ v (i )k

∂ wk j
=−

1

m

m
∑

i=1

e (i )k ϕ
′
�

v (i )k

�

x (i )j . (3.7)
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wk j

E

wk j

E

wk j

E

Figure 3.3: Visualization of steepest descent method, cost function E versus synaptic weight wk j . The
cost function is iteratively minimized by changing the synaptic weight along the negative
of the gradient ∂wk j

E . Depending on the starting point and learning rate, global or local
minima might be reached.

Consequently, the update rule for batch learning is given by

∆wk j =
η

m

m
∑

i=1

δ(i )k j x (i )j , (3.8)

with the local gradient

δ(i )k j = e (i )k ϕ
′
�

v (i )k

�

. (3.9)

Batch learning yields an accurate estimation of the gradient vector, thereby guaranteeing
convergence to a local minimum. Furthermore, a high degree of parallelization is possible
during the training process. However, batch learning is rather demanding in terms of storage
requirements.

3.1.2 On-Line Learning

In on-line learning [45], adjustments to the weights are performed on an example-by-example
basis. The cost function to be minimized is therefore the total instantaneous error measure
E (i ) (3.3). An epoch consists of m training samples. At an instant i , a pair

�

x (i ), d (i )
	

is presented
to the network and weight adjustments are performed using the method of steepest descent
according to

∆w (i )
k j =ηδ

(i )
k j x (i )j . (3.10)

Subsequently, the next sample is presented to the network. This process is repeated until all
m samples of the epoch have been presented.

Given the training samples are presented to the neuron in a random manner, the use of the
on-line learning makes the search in multi-dimensional weight space stochastic in nature [45].
This stochasticity has the desirable effect of making it less likely for the learning process to
get stuck in a local minimum. While using less storage and avoiding local minima, on-line
learning limits the possibility of parallelization in the learning process. Yet, as it is easy to
implement and it provides effective solutions to large-scale and difficult pattern-classification
problems, we will make use of on-line learning throughout this thesis.
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3.2 M U LT I L AY E R F E E D F O R W A R D N E T W O R K S A N D B A C K P R O PA G A -
T I O N A L G O R I T H M

Feedforward neural networks with additional layers between the source nodes and the output
nodes are called multilayer feedforward networks. The layers which are neither input nor out-
put layers are referred to as hidden layers, as they have no direct contact with the environment
(see Fig. 3.4). A network with m source nodes, h hidden nodes and q nodes in the output
layer is called a m-h-q -network. Training a multilayer feedforward network presents more of
a challenge than training a single-layer network, as there is no desired output signal for the
neurons in the hidden layers. Because of that, the backpropagation algorithm as introduced
by John Werbos [43] is used to train such networks.

We describe the implementation of the backpropagation algorithm in an on-line manner. If
neuron k is an output node, the local gradient (3.9) can be simply calculated, as an explicit

desired response in the form of d (i )k exists. However, if neuron l is a hidden node, there is no
explicit desired response. Yet, the local gradient for hidden neuron l can still be calculated by
determining the portion of the error signal, for which neuron l is responsible. In this case,
using (2.2), the local gradient is given by [45],

δ(i )l j =−
∂ E (i )

∂ y (i )l

∂ y (i )l

∂ v (i )l

=−
∂ E (i )

∂ y (i )l

ϕ′
�

v (i )l

�

. (3.11)

As the total instantaneous error measure of the network can be calculated according to (3.3),

the local gradient δ(i )l j can be determined using the chain rule and (2.2) as

∂ E (i )

∂ y (i )l

=
q
∑

k=1

∂ E (i )

∂ e (i )k

∂ e (i )k

∂ v (i )k

∂ v (i )k

∂ y (i )l

=−
q
∑

k=1

e (i )k ϕ
′
�

v (i )k

�

wk l . (3.12)

In consequence, the local gradient for a hidden neuron is given by

δ(i )l j =ϕ
′
�

v (i )l

�

q
∑

k=1

δ(i )k j wk l , (3.13)

enabling the training of neurons in the hidden layer according to (3.10).

Figure 3.4: Exemplary block diagram of a 5-3-2-multilayer feedforward network. The squares symbolize
source nodes where no calculations are performed, while circles represent artificial neurons.
The middle layer is called a hidden layer, as the neurons have no direct contact with the
environment. Graphic adapted from [45].
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3.3 B E N C H M A R K P R O B L E M S

The network architecture as well as the explicit form of the NAF of a multilayer feedforward
neural network are typically adapted to the purpose the network is supposed to fulfil. To
assess the performance of a neural network, benchmark problems are needed, which can be
presented to a network and used to compare its capability to other implementations.

The simplest example of such a benchmark test used in the investigation of neural networks
is the Exclusive OR (XOR) problem [75]. The XOR problem represents a logical operation
consisting of two binary inputs and one binary output. However, this problem is not solvable
using just a single neuron [42]. Therefore, a multilayer architecture is needed to solve the prob-
lem, making it a suitable benchmark test to investigate the abilities of the backpropagation
algorithm.

A more advanced problem with real-life applications is the recognition of handwritten digits
based on the Modified National Institute of Standards and Technology (MNIST) dataset [60]. In
contrast to the XOR problem, the classification of the MNIST dataset presents a much bigger
challenge as the input vectors presented to the network, the variety of input samples and
the needed network complexity are much larger. Yet, the recognition of handwritten digits
possesses real-life applications and is a good test whether the network can be applied in such
settings.

3.3.1 Exclusive OR-Problem

The XOR problem is a logical operation which is true, if and only if its arguments are different.
Expressing this using binary inputs x1 and x2, the truth table of the XOR problem can be seen
in Table 3.1. Accordingly, the XOR operation yields an output y = 0 for the input combinations
(0, 0) and (1, 1) and output y = 1 for (1, 0) and (0, 1) [75].

This problem is not linearly separable (see Fig. 3.5). Therefore, a single neuron is not suffi-
cient to solve this problem [42]. Yet, a 2-2-1 feedforward network is able to produce decision
boundaries, separating all outputs 0 and 1, thus solving the XOR problem [76]. Assuming a
sigmoidal NAFϕs according to (2.5) withα= 5 for all ANs in the network architecture shown in
Fig. 3.5, a neural network can be trained to solve the XOR problem using the backpropagation
algorithm.

In the on-line training procedure, 1,000 randomized training samples are used in each of
the 200 epochs. The learning rate is steadily decreased throughout the training procedure.
Starting fromη= 0.1 for the first ten epochs, it drops toη= 0.05 for epochs 10 to 40, toη= 0.02
for epochs 40 to 100 and to η= 0.01 for the final 100 epochs. After each epoch, the network
performance in solving the XOR problem is evaluated by calculating the averaged squared
error E according to (3.2) for all m = 4 possible input-output pairs of the XOR problem. Starting
from random weights and biases, E decreases rapidly after each epoch (see Fig. 3.6).

Table 3.1: Truth table of the XOR problem.

x1 0 0 1 1
x2 0 1 0 1
y 0 1 1 0
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Figure 3.5: (Left) Decision boundaries of XOR problem. Two boundaries are needed to separate the
possible input-output-pairs implying that the problem is not linearly separable.
(Right) Network architecture used to solve the XOR problem using artificial neurons with
sigmoidal activation function. Terms bk =wk 0 x0, where x0 = 1, symbolize neuron-specific
biases. The 2-2-1 network is able to produce decision boundaries needed to solve the XOR
problem. Graphics adapted from [45].

A test sample is categorized as being identified correctly in the case that the network output
is within a tolerance of ±0.05 of the desired value 0 or 1. At the end of the 200th epoch, the
network is able to identify every single test sample correctly.

The ability to solve the XOR problem starting from random initial weights is a proof-of-
principle for the backpropagation algorithm. Yet, this algorithm is not limited to such simple
problems. It can also be applied to more complicated tasks with higher dimensional input
and output.

3.3.2 Recognition of Handwritten Digits - MNIST Dataset

One possible application for ANNs is the automated recognition of images. A popular bench-
mark test in this area is the recognition of handwritten digits based on the MNIST dataset [60].
This set consists of 60,000 training and 10,000 test samples. Each sample is a scan of a hand-
written digit from 0 to 9, which were produced by employees of the American Census Bureau
as well as american high school students. The images are saved on a 28×28-pixel grid with

0 25 50 75 100 125 150 175 200

Epoch

10−4

10−3

10−2

10−1

E

Figure 3.6: Averaged squared error E versus epochs for solving the XOR problem using artificial neurons
with sigmoidal activation function and α= 5 in the architecture shown in Fig. 3.5.
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Figure 3.7: Examples of hand-written digits from the MNIST dataset [60].

the center of mass of the pixels positioned at the middle of the grid. Each pixel has a grayscale
value ranging from 0 to 255, which is scaled to the interval [0, 1] for implementation. Decon-
volving these images, the input vectors for an ANN are 784-dimensional [77]. An excerpt of
these samples can be seen in Fig. 3.7.

A large variety of neural networks and other machine learning techniques, ranging from
linear classifiers, support vector machines and fully-connected feedforward neural networks
to convolutional neural networks, has been used to solve this problem [78]. For the purpose
of this thesis, we constrain further investigations to fully-connected feedforward networks, as
the newly developed implementation schemes for ANNs are going to have this architecture.

In line with [78], a 784-300-10 neural network is subjected to on-line training on the MNIST
dataset using the backpropagation algorithm. There, each of the ten output neurons corre-
sponds to a digit from 0 to 9. If, for example, the fifth output neuron produces an output of 1,
while all other neurons yield 0, the network has identified a sample as the digit 4. The training
is performed over 100 epochs, where in each epoch, 6,000 random training samples from
the MNIST dataset are presented to the network. The learning rate is fixed at η= 0.05. Every
neuron in the network possesses a sigmoidal nonlinear activation function of the form (2.5)
with α= 1.

After each epoch, the performance of the network is evaluated by calculating the averaged
squared error E according to (3.2). As the number of available test input-output pairs is much
larger than in the case of the XOR problem, m = 1,000 test samples are randomly chosen after

0 20 40 60 80 100

Epoch

10−2

10−1

E

Figure 3.8: Averaged squared error E versus epochs for the recognition of handwritten digits from the
MNIST dataset using a 784-300-10 ANN. E is reduced significantly throughout the course of
the training yielding E = 2.4 ·10−3 at the end of the procedure.
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each epoch the determine E . As can be seen in Fig. 3.8, the initial averaged squared error for
random weights is quite large. Throughout the course of the training, E is steadily decreased,
yielding E = 2.4 ·10−3 at the end of the procedure.

The network is defined to identify a sample with a digit, if the corresponding output neuron
yields a value of 0.8 or higher. If no neuron reaches this threshold, the sample is categorized as
being not identified by the network. At the end of the 100th epoch, the network identifies 937
out of the 1,000 test samples. A comparison between the network and the desired responses can
be seen in Table 3.2. Apart from the samples, which were not identifiable for the network, there
are very few samples, which were identified wrongly. In total, the network shows an average
error rate of 7.13%, which is in the range of literature values [78] despite a comparatively short
training period.

The success of the network in identifying handwritten digits shows, that quite simple
network architectures are able to fulfil such tasks. Therefore, the fully-connected architectures
used throughout this thesis to realize and test new implementations of artificial neurons and
neural networks have the potential to be applied to real-world problems.

Table 3.2: Sample digit versus digits identified by a 784-300-10 network after 100 training epochs in
percent. A test sample is assigned to a digit, if the corresponding neuron produces an output
larger than 0.8. If no neuron reaches this threshold, the sample is not identified by the
network and is categorized under "-". In total, the network has an error rate of 7.13%

0 1 2 3 4 5 6 7 8 9 -

0 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7
1 0.0 96.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4
2 0.0 0.0 95.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3
3 0.0 0.0 0.0 92.7 0.0 0.0 0.0 0.9 0.0 0.0 6.4
4 0.0 0.0 0.0 0.0 90.0 0.0 0.0 0.0 0.0 2.2 7.8
5 0.0 0.0 0.0 0.0 0.0 97.0 0.0 0.0 0.0 0.0 3.0
6 1.3 0.0 0.0 0.0 0.0 0.0 95.0 0.0 0.0 0.0 3.7
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.2 0.0 0.8 8.0
8 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 90.4 0.0 8.4
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 86.8 10.5
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The concepts of architecture and learning procedures in ANNs require hardware to be im-
plemented on. Traditionally, the platform of choice were electronics-based computers as
they offered programmability, mass-fabrication, robust memory solutions and high precision.
Especially since 2012, when Krizhevsky et al. efficiently used graphics-processing units (GPUs)
to implement backpropagation training [66], enormous strides were made in this area. To this
day, implementations of ANNs on GPUs appreciate huge popularity due to their outstanding
parallelization capabilities [79, 80].

However, growing demands on ANNs in terms of dataset sizes, network complexity and
scalability start to put limitations onto GPU-based implementations. Especially the energy
consumption of ever-growing processor arrays is a key aspect in this discussion [81]. Therefore,
there is an active search for special-purpose hardware to implement ANNs on.

In this chapter, we review established realizations of ANNs based on physical systems.
In Section 4.1 we focus on optical implementations, typically referred to as optical neural
networks. Additionally we discuss further implementations like wave physics approaches, 2D
materials and mechanical systems in Section 4.2.

4.1 O P T I C A L N E U R A L N E T W O R K S

One possible approach to circumvent the shortcomings of electronic implementations of
ANNs is the usage of optical systems [18, 82]. The upside of such realizations is the ability of
optical system to perform parallel vector-matrix multiplications at very high speed [83, 84]
while showing small energy consumption [85]. The approaches in optical neural networks
are manifold. In this overview, we will focus on all-optical realizations and photonic circuit
implementations.

4.1.1 All-Optical Realizations

As early as 1985, free-space optical systems were used to realize Hopfield neural networks [86].
Over the years, many different techniques such as microlens arrays [87, 88], holography [89],
fiber interconnections [90] and diffractive networks [91] have been used to implement neural
networks in free-space optics.

While optical implementations of neural networks excel at the linear parts of the neuron
activity, implementing the crucial nonlinearity of an AN is a big challenge in optical neural
networks. Nowadays, the approaches to tackle this problem include using interactions of
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free-space optical setups with thermal atoms [25, 92], Kerr-nonlinearities [93] and saturated
absorption in semiconductor mirrors [94].

4.1.2 Photonic Circuits

Photonic systems already occupy an important role in telecommunication. With photonic
waveguides in a size range of around 500nm and information bandwidth densities in the
range of terabits per second available on fabricated photonic chips, they are also very promis-
ing platforms for the implementation of ANNs. When considering large processor sizes and
low-precision operations, photonic linear computing systems outperform electronic imple-
mentations in terms of energy requirements, speed and computational density [95].

Consequently, a number of approaches have been considered to implement ANNs based
on photonic systems [82]. These include, for example, the usage of Mach-Zehnder interferom-
eters on silicon photonic chips [96], micro-ring weight banks to implement recurrent silicon
photonic neural networks [97] and the exploitation of division multiplexing techniques on
photonic circuits and phase-change materials [98].

4.2 F U R T H E R I M P L E M E N TAT I O N S

In addition to optical approaches, other routes have been taken to provide hardware platforms
for ANNs [99, 100]. For example, in 2022, Wright et al. introduced a general approach to
implement backpropagation training in controllable physical systems [101]. They directly
train the hardware’s physical transformations to perform the desired computations. They
demonstrated the validity of their approach by applying it to optical, as well as mechanical and
electronic systems. In a somewhat similar approach, Hughes et al. identify a mapping between
the dynamics of wave physics and the computation in recurrent neural networks [102].

A vast variety of further approaches to physically implement ANNs exist today, ranging from
coupled spin-torque nano-oscillators [103] to the usage of 2D materials [104] and many more.
In this thesis, we aim to contribute to this growing field via the introduction of two approaches,
the thermal cloud neural network (Part II) and the four-wave mixing neural network (Part III).
Additionally, we investigate the emission properties of quantum dot superluminescent diodes
(Part IV), which possess beneficial characteristics to be implemented successfully in ANNs.



Part II

T H E R M A L C L O U D N E U R A L N E T W O R K
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In this part, we present an implementation of an AN and, subsequently, of an ANN based on the
motion of thermal atoms in an optically-shaped potential landscape, which in the following
we refer to as the thermal cloud neural network. As we aim to realize ANs using quantum
optical methods and systems of ultracold atoms, a sensible first approach to this problem is to
investigate possibilities to implement an algorithm based on the classical motion of thermal
atoms in optical potentials. Starting from describing the motion of thermal atoms in Chapter 5,
we develop an implementation of the thermal cloud neuron in Chapter 6. Subsequently, this
neuron is embedded in a network structure to solve benchmark problems from the realm of
ANNs in Chapter 7.

T H E R M A L AT O M S Consider a cloud of neutral atoms in thermal equilibrium at a temper-
ature T . In real gases, such atoms interact mutually via some interaction potential, which
typically is isotropic and short-ranged for neutral atoms in their electronic ground state. For
gases at sufficiently low atom densities, i.e. so-called diluted gases, these interactions can be
considered as pairwise [105]. Under these conditions the motion of such thermal atoms in
potentials, either being applied externally or as an effective potential due to the interactions,
can be described classically via the concept of Brownian motion [106, 107].

B R O W N I A N M O T I O N In 1827, while observing small pollen grains suspended in water,
Robert Brown discovered a random movement of the grains in the absence of external for-
ces [108]. An explanation of Brownian motion was independently developed in the early
twentieth century by Albert Einstein [109] and Marian von Smoluchowski [110]. They recog-
nized, that the motion of the pollen grains was caused by collisions between the grains and the
water molecules. However, the motion of the grains turned out to be of such high complexity,
that a probabilistic description in term of statistically independent impacts was necessary.

In this chapter, we first discuss the motion of Brownian particles, described by Kramers’
equation, in Section 5.1. A simulation method for the Brownian motion of thermal atoms
based on the Störmer-Verlet scheme is derived in Section 5.2. As a first application of this
simulation scheme, we investigate the equilibration time of a cloud of thermal atoms in a
periodic confinement in Section 5.3.
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5.1 K R A M E R S ’ E Q U AT I O N

5.1.1 Stochastic Equations of Motion for Brownian Particle

The starting point for the description of the dynamics of a thermal atomic gas as Brownian
particles is given by the Langevin equation [111, 112]

m
d2 x

dt 2
=−ζ

dx

dt
+
p

D X (t ). (5.1)

This equation determines the (one-dimensional) movement of a particle with mass m and
position x due to friction with coefficientζ and a stochastically fluctuating force

p
D X , thereby

imprinting the stochastic nature onto x (t ). D is called diffusion coefficient and X is a white
noise process, constructed such that its mean value and two-time correlations vanish,

〈X (t )〉=0, 〈X (t )X (t ′)〉=δ(t − t ′), (5.2)

where δ(t − t ′) is a delta distribution which is only non-zero for t − t ′ = 0. Originally, Langevin
called this fluctuating term complementary force. In 1940, Hendrik A. Kramers added a term
to this equation describing the motion of the particle due to an external force field K [113],

m
d2 x

dt 2
=−ζ

dx

dt
+
p

D X (t ) +K . (5.3)

This force field is supposed to be inferable from a potential

K =−∂x V (x ). (5.4)

Furthermore, the fluctuating force is also assumed to be inferable from a potential B as [114]
p

D X (t ) =− ∂x B , B =−
p

D X (t )x . (5.5)

Equations of Motion

The Lagrangian equation of motion equivalent to (5.3), including friction according to Rayleigh’s
dissipation function, is given by [115]

d

dt

∂ L

∂ ẋ
−
∂ L

∂ x
+
∂ DR

∂ ẋ
=0, L =

m

2
ẋ 2− (V (x ) +B ), (5.6)

with the dissipation function

DR =
k ẋ 2

2
, k =

ζ

m
. (5.7)

As DR only depends on the particle velocity ẋ , (5.6) is equivalent to

d

dt

∂ L̃

∂ ẋ
−
∂ L̃

∂ x
=0, (5.8)

with the modified Lagrangian L̃ = L e k t .
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In order to determine the Hamiltonian of the system via a Legendre transform [115]

H (x ,Π, t ) =Πẋ (x ,Π, t )−L(x ,Π, t ), (5.9)

where L(x ,Π, t ) is the generalized Lagrangian, the generalized momentum Π has to be deter-
mined as

Π=
∂ L̃

∂ ẋ
=m ẋ e k t . (5.10)

Therefore, the Hamiltonian of the system is given by

H (x ,Π, t ) =
Π2

2m
e −k t + (V (x ) +B )e k t . (5.11)

The Hamiltonian equations of motions of the particle in terms of position x and generalized
momentum Π can be determined as

ẋ =
∂H

∂ Π
=
Π

m
e −k t ,

Π̇=−
∂H

∂ x
=−

�

V ′(x )−
p

D X (t )
�

e k t .
(5.12)

Rewriting these equations in terms of the mechanical momentum

p =m ẋ =Πe −k t (5.13)

yields the dynamics of the system in terms of stochastic differential equations as [116]

dx =
p

m
dt ,

dp =−
�

V ′(x ) +k p
�

dt +
p

D dW (t ).
(5.14)

There, the stochastically fluctuating term X (t )dt is identified as the Wiener noise increment
dW (t ) [116], which satisfies

〈dW (t )〉=0, 〈dW (t )dW (t ′)〉=dtδ(t − t ′). (5.15)

Ito Stochastic Differential Equations

The set of equations (5.14) are called Ito stochastic differential equations. An arbitrary stochas-
tic quantity s (t ) is said to obey an Ito stochastic differential equation

ds (t ) = a (s (t ), t )dt + b (s (t ), t )dW (t ), (5.16)

if for all t and t0, the solution s (t ) is given by

s (t ) = s (t0) +

∫ t

t0

dt ′ a (s (t ′), t ′) +

∫ t

t0

dW (t ′)b (s (t ′), t ′). (5.17)

In this equation, the last term is identified as an Ito stochastic integral, which can be calculated
as [116]

∫ t

t0

dW (t ′)b (s (t ′), t ′) =ms-lim
n→∞

¨

n
∑

i=1

b (s (ti−1), ti−1)[W (ti )−W (ti−1)]

«

. (5.18)
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There, the mean square limit ms-lim denotes, that a sequence of random variables Sn con-
verges to S , if

lim
n→∞




(Sn −S )2
�

= 0. (5.19)

In this instance, one can write [116]

ms-lim
n→∞

Sn = S . (5.20)

5.1.2 Kramers’ Fokker-Planck Equation

The described dynamics (5.14) can be written as a multi-variable system in terms of the
phase-space coordinate

z =

�

x
p

�

, (5.21)

yielding

dz = Adt + b dW (t ) =

�

p/m
−(V ′(x ) +k p )

�

dt +

�

0 0
0
p

D

�

dW (t ), (5.22)

where dW (t )) = (dWx (t ), dWp (t ))T, A is called the drift vector and B = b b T is the diffusion
matrix . Such a stochastic differential equation for a multi-variable system is connected to
a Fokker-Planck equation, describing the dynamics of the probability distribution function
f (x , p , t ), via the relation [116]

∂t f (x , p , t ) =−
∑

i

∂i

�

Ai f (x , p , t )
�

+
1

2

∑

i , j

∂i ∂ j

�

Bi j f (x , p , t )
�

, (5.23)

with i , j ∈ [x , p ]. Applying this to (5.22) yields Kramers’ equation

∂t f (x , p , t ) =−∂x

h p

m
f (x , p , t )

i

+ ∂p

��

V ′(x ) +k p
�

f (x , p , t )
�

+
1

2
D ∂ 2

p f (x , p , t ). (5.24)

There, the diffusion matrix B can be identified as

B =

�

0 0
0 D

�

. (5.25)

5.1.3 Maxwell-Boltzmann Statistics for Brownian Particles

As Kramers’ equation describes the motion of Brownian particles, and in extension thermal
atoms, its stationary solution fs(x , p ) has to satisfy the Maxwell-Boltzmann statistics [117]

fs(x , p ) =Nexp
�

−
H

kBT

�

, H =
p 2

2m
+V (x ), (5.26)

where the normalization constant N can be chosen such that
∫

dx dp fs(x , p ) = 1. To ensure
this, the diffusion coefficient D has to be further determined. The stationary solution of (5.24)
can be calculated using the detailed balance condition [116]

εi Ai (εz ) fs(z ) =



−Ai (z ) +
∑

j

∂ j Bi j (z )



 fs(z ), (5.27)
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with the detailed balance transformation

ε

�

x
p

�

=

�

x
−p

�

, ε =

�

1
−1

�

. (5.28)

Evaluating the detailed balance condition yields

∂p fs(x , p ) =−2
ζp

mD
fs(x , p ). (5.29)

One possible solution for this condition is given by

fs(x , p ) = exp
�

−
ζ

mD
p 2
�

g (x ). (5.30)

As this has to be a solution of (5.24) as well, the term g (x ) has to satisfy

∂x g (x ) =−
2ζV ′(x )

D
g (x ). (5.31)

The full stationary solution is therefore given by

fs(x , p ) =Nexp

�

−
2ζ

D

�

p 2

2m
+V (x )

��

. (5.32)

Comparing this to the Maxwell-Boltzmann statistics (5.26), setting

D = 2ζkBT (5.33)

ensures thermal statistics for the atoms. This is known as the Einstein relation [109].

5.2 S T Ö R M E R- V E R L E T- L I K E S I M U L AT I O N S C H E M E

To simulate the Brownian motion of thermal atoms, a simulation scheme for the stochastic
differential equations (5.14) has to be derived. For this, we develop a Störmer-Verlet-like
simulation scheme.

Störmer-Verlet Scheme

A general solution to Hamiltonian equations of motion for the generalized phase-space coor-
dinates

χ =

�

x
Π

�

(5.34)

is given by [118]

χ (t ) = exp



t
2
∑

j=1

{χ0, j , H (χ0)}∂χ0, j



χ0, (5.35)

with the Poisson bracket

{χ0, j , H (χ0)}=
∂ χ0, j

∂ x0

∂H

∂ Π0
−
∂H

∂ x0

∂ χ0, j

∂ Π0
. (5.36)
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Introducing the kinetic and potential part of the dynamics as

T ={x0, H (χ0)}∂x0
, U ={Π0, H (χ0)}∂Π0

, (5.37)

respectively, the time evolution of χ (t ) can be rewritten as

χ (t ) = exp [t (T +U )]χ0. (5.38)

Now, there exists a set of numbers (c1, . . . , cn ) and (d1, . . . , dn ) such that

exp[t (T +U )] =
n
∏

i=1

exp[ci t T ]exp[di t U ] +O(t n+1). (5.39)

The integer n is called the order of the integrator [119]. For n = 2, this procedure yields

χ (t ) = exp[c1t T ]exp[c2t T ]exp[d1t U ]exp[d2t U ]. (5.40)

The coefficients c1, c2, d1 and d2 can be calculated by expanding the exact solution and the
approximation (5.40) into Taylor series up to an order of n = 2 and subsequently verifying (5.39).
This results in the set of equations

1=c1+ c2, 1=d1+d2, 1=(c1+ c2)
2, 1=(d1+d2)

2, 1=(c1+ c2)(d1+d2). (5.41)

One exemplary solution to these equations is given by the set of coefficients

c1 =
1

2
, c2 =

1

2
, d1 =1, d2 =0. (5.42)

Applying this set to (5.40) yields the Störmer-Verlet scheme [120]

χ (t ) = S2(t )χ0 = exp
�

t

2
T
�

exp[t U ]exp
�

t

2
T
�

χ0. (5.43)

Störmer-Verlet-Like Scheme for Brownian Motion

This method can be applied to the Hamiltonian of Brownian motion (5.11) by assuming in-
stantaneous values for the stochastically fluctuating force X (t ). Hence, evaluating the Poisson
brackets in (5.37), the kinetic and potential parts of the Störmer-Verlet scheme are given by

T =
Π0

m
e −k t ∂x0

, U =− (V ′(x0)−
p

D X (t ))e k t ∂Π0
. (5.44)

Thus, using the explicit forms of T and U , while taking into account only first-order terms in
the expansion of S2(t ), the time derivative of the phase-space coordinate ż (t ) can be calculated
as

ż (t ) =

�

p0/2m
0

�

+

�

0
−(V ′(x0) +k p0) +

p
D X (t )

�

+

�

p0/2m
0

�

. (5.45)

Discretizing the set of differential equations for time step ∆t yields a Störmer-Verlet-like
simulation scheme for Brownian motion of thermal atoms

xi+1/2 =xi +
∆t

2

pi

m
,

pi+1 =pi −∆t
�

V ′(xi+1/2) +
ζ

m
pi

�

+
p

2ζkBT∆W (t ),

xi+1 =xi+1/2+
∆t

2

pi+1

m
.

(5.46)
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There,∆W (t ) is a Gaussian random process with 〈∆W 〉= 0 and 〈∆W 2〉=∆t . The simula-
tion scheme for the stochastic differential equations can be interpreted either as an Euler- or
a Milstein-scheme, as both are equivalent in this case. For more information on time-discrete
approximation of stochastic differential equations see Appendix A.
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5.3.1 Thermal Atoms in Periodic Confinement

As an application of the stochastic simulation of a thermal gas, the characteristic timescales
of the dynamics of such a system are investigated. The system under investigation is a one-
dimensional thermal gas in a confinement of length L with periodic boundary conditions,
that is (x , p ) = (x + L , p ). Inside the confinement no potential gradient is present, V ′(x ) = 0.
Therefore, the stochastic differential equations describing the dynamics of this system are
given by

�

dx
dp

�

=

�

0 1/m
0 ζ/m

��

x
p

�

dt +

�

0 0
0
p

D

��

dWx (t )
dWp (t )

�

. (5.47)

We define this system to be in equilibrium, if the positions of the atoms are uniformly
distributed along the confinement. To verify this condition, the variance

Var(x ) =



(x −〈x 〉)2
�

(5.48)

of the thermal gas, where 〈·〉 denotes the average over all particles, is compared to the value
for a uniform position distribution described by

fu(x ) =

¨

1/L , for x ∈ [0, L ],

0, otherwise.
(5.49)

In the uniform case, the moments of the distribution can be calculated analytically as




x n
�

=

∫ ∞

−∞
dx x n pu(x ). (5.50)

Accordingly, the variance for uniformly distributed particles in the confinement is given by

Varu(x ) =
1

L

∫ L

0

dx
�

x −
L

2

�2

=
L 2

12
. (5.51)

5.3.2 Simulation Results for Rubidium-87

The investigation of the timescales is performed for Rubidium-87 (87Rb) atoms with an atomic
mass of m = 1.443 · 10−25 kg [121]. The atoms are assumed to be cooled to their Doppler
temperature TD = 145.57µK [122] and a total of N = 10,000 atoms are trapped in a confinement
of length L = 10µm [123]. For an estimation of the diffusion coefficient D = 2ζkBT , the friction
coefficient ζ = 6πηa [111, 112], with η the viscosity and a the particle diameter, has to be
determined. For a dilute ideal gas, the shear viscosity can be calculated as [124]

η=
2

3π3/2

p

mkBT

a
. (5.52)
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With a particle diameter for 87Rb of a ≈ 600 pm [125], the friction coefficient can be estimated
to ζ= 5.65 ·10−17 kg/s. The atomic parameters of 87Rb are summarized in Appendix B.

The thermal de Broglie wavelength of these particles can be determined as [126]

λdB =

√

√

√ 2πħh 2

mkBT
≈ 7.66 ·10−12 m. (5.53)

Compared to the mean free path of the particles l = L/N = 10−10 m, the extent of λdB is rather
small. Therefore, the system is expected to behave like a cloud of classical particles. Initially,
the particle positions are drawn randomly from a Gaussian distribution with mean 〈x0〉= L/2
and variance Var(x0) = L 2/64. To be conform with the Maxwell-Boltzmann distribution for
thermal atoms (5.26), the initial momentum distribution is also Gaussian with a vanishing
mean 〈p0〉= 0 and variance Var(p0) =mkBT .

The particle position distributions at initialization and after t = 400 ms, as well as the time
evolution of the variance Var(x ) can be seen in Fig. 5.1. From the initial Gaussian distribution,
the variance of the position distribution rises and corresponds to the one of the uniform
distribution within one percent after te = 344 ms.
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Figure 5.1: (a) Density of particle positions n (x ) for position discretization∆x = 0.1µm at t = 0 ms and
t = 400 ms. The initial Gaussian distribution with 〈x0〉= 5µm and Var(x0) = 1.56µm2 evolves
into a uniform distribution along the confinement. (b) Variance Var(x ) versus time t . The
variance of the thermal gas (green, solid) corresponds to the one of the uniform distribution
Varu(x ) = 8.33µm2 (yellow, dashed) within one percent after te = 344 ms.

5.3.3 Comparison with Free Particles

To investigate the influence of the periodic boundary on the equilibration time of the system,
the evolution of the variance is compared to the case of free particles, the dynamics of which
are described by (5.47). In this case, a general solution for the particle positions is given by

x (t ) = x0+
1

ζ

�

e −ζt /m −1
�

p0+

∫

dWp (t
′)

p
D

ζ

�

e −ζ(t−t ′)/m −1
�

. (5.54)

The statistical properties of this solution can be investigated using Ito calculus. There, two
main results are of interest here. Firstly, terms of the form

∫

dW (t )G (t ′) = 0 (5.55)
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vanish for nonanticipating functions G (t ) [127]. A function is nonanticipating if its dynamics
are independent of the behaviour of the Wiener process dW (t ) in the future of t . This condition
is fulfilled for physical processes due to the principle of causality [116]. Secondly, doubly-
stochastic integrals can be evaluated for nonanticipating functions G (t ) via the relation [127]

∫ t

t0

�

dW (t ′)
�2

G (t ′) =

∫ t

t0

dt ′G (t ′). (5.56)

Therefore, the variance for free particles can be calculated as

Varf(x ) =Var(x0) +
1

ζ2

�

e −τ−1
�2

Var(p0) +
2

ζ

�

e −τ−1
�

Cov(x0, p0)

+
D m

ζ3

�

1

2

�

1− e −2τ
�

−2
�

1− e −τ
�

+τ
�

, (5.57)

with the covariance Cov(x0, p0) = 〈(x0−〈x0〉)(p0−〈p0〉)〉 and τ= ζt /m . Hence, for large τ and
the given parameters for 87Rb, the free particles reach the variance for a uniform distribution
in the confinement of length L after tf ≈ 95ms. Consequently, the variance of a set of free
particle rises faster than for particles confined in periodic boundaries. This implies, that the
presence of a periodic confinement indeed influences the dynamics of a thermal atomic gas.
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T H E R M A L C L O U D N E U R O N

On the basis of the movement of thermal atoms in an optically produced potential landscape,
we introduce the implementation of an AN, the thermal cloud neuron. This realization relies
on algorithmic changes of optical dipole potentials and the subsequent equilibration of the
thermal atoms in these new environments. By interpreting optical potential depths as input
and remaining particle numbers as output of an AN, the NAF of the thermal cloud neuron can
be determined. Through a careful choice of shapes and depths of the optical dipole potentials,
we are able to implement an AN with a sigmoidal-like NAF.

After introducing the concept of optical dipole potentials with a focus on basic atom-light-
interaction and the realization of box potentials in Section 6.1, the algorithmic procedure to
prepare the inputs of the thermal cloud neuron is presented in Section 6.2. Subsequently, the
NAF of the thermal cloud neuron is investigated in Section 6.3.

6.1 O P T I C A L D I P O L E P O T E N T I A L S

6.1.1 Atom-Light Interaction

The situation of interest is a cold dilute gas of neutral atoms moving much slower than speed
of light and interacting with one or several lasers in the visible or near-infrared range. The
intensity of the laser is chosen to be sufficiently low such that no ionization or higher-order
effects occur. Therefore, non-relativistic quantum mechanics can be used to describe the
atom and its center-of-mass motion.

Dipole Interaction between Two-Level Atom and Quantized Electromagnetic Field

Restricting the description to a single atom, the Hamiltonian of the system is [106]

Ĥ = Ĥa+ Ĥr+ Ĥi, (6.1)

where Ĥa, Ĥr and Ĥi are the Hamiltonians of the atom, the radiation field and the interaction
between them, respectively. For the atom, only two electronic states, the ground |g 〉 and
excited state |e 〉, are assumed to be relevant. Taking into account the external and internal
degrees of freedom of the atom, its Hamiltonian can be written as

Ĥa =
p̂ 2

2m
+ħhωg |g 〉〈g |+ħhωe |e 〉 〈e | , (6.2)

where p̂ is the center-of-mass momentum of the atom and ħhωi is the energy of state |i 〉.
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The quantized electromagnetic field is expanded on the complete set of plane wave modes
with frequenciesω j , yielding

Ĥr =
∑

j

ħhω j â †
j â j , (6.3)

where â j is the annihilation operator of the j -th mode. In this section, modifications of the
incident radiation due to the interaction with the atom are not taken into account.

To describe the interaction between atom and radiation field, it is assumed that the extent
of the atom is much smaller than the wavelength of the electromagnetic field, which typically
holds for radiation in the visible or near-infrared spectrum. This assumption is called the
dipole approximation [128]. Accordingly, the interaction Hamiltonian is given by

Ĥi =−d̂ · Ê (r ), (6.4)

where d̂ is the atomic dipole moment and Ê (r ) is the transverse electromagnetic field operator
evaluated at the center-of-mass position r of the atom. For the two-level-atom, the dipole
moment operator can be written as

d̂ = d e g |e 〉 〈g |+d g e |g 〉 〈e | , (6.5)

with the dipole matrix elements d i j = 〈i |d̂ | j 〉.
In the electromagnetic field of a laser, very few modes contain the vast majority of all photons,

while all other modes are basically unoccupied. Hence, the field Ê can be approximated as a
combination of a classical monochromatic external field

E c(r , t ) = E(r )e −iωt +E∗(r )e iωt , (6.6)

with complex amplitude E and frequencyω, and the vacuum field Ê v.

Light Forces

The classical light field exerts a force on the atom. This mechanical effect of light on an atom
is described by the force operator F̂ [107]. It can be calculated using Heisenberg’s equation of
motion for the atomic momentum operator, yielding

F̂ = ∂t p̂ =
i

ħh
�

Ĥ , p̂
�

=
i

ħh
�

Ĥi , p̂
�

. (6.7)

The quantity describing the actual motion of the atom is the expectation value F = Tr{F̂ ρ̂},
where ρ̂ is the density operator of the total system consisting of the atom as well as the
radiation field. Partial traces over the radiation field and the atomic degrees of freedom can
be performed subsequently F = Tra {Trr {F̂ ρ̂}} = Tra {F̂ %̂}, where %̂ is the reduced density
operator of the atomic system.

Assuming the atomic wave function is strongly localized around its center of mass and that
its extent is small compared to the spatial variation of the electric field, the partial trace over
the atomic degrees of freedom can be executed. This yields the expectation value of the force
operator in terms of the Rabi frequency Ω= d e g E/ħh = |Ω|e iφ [106, 129]

F ≈%e g ħh∇Ω∗+%g eħh∇Ω

=2ħh |Ω|2Im
�%e g

Ω∗

�

∇φ+ħhRe
�%e g

Ω

�

∇|Ω|2, (6.8)
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where %i j = 〈i |%̂| j 〉 are elements of the atomic density matrix. The first term describes the
radiation pressure, which acts along the wave vector k of the light field. The second term is
the optical dipole force, which points along the gradient of the Rabi frequency, and therefore
along∇I , where I = 2ε0c |E |2 is the intensity of the light field.

Atomic Equations of Motion

To further evaluate these expressions, the density matrix element%e g has to be calculated. The
dynamics of the atomic density operator are given by the master equation [130]. In the case
that the light field is not extremely detuned |∆|= |ω−ωe g | �ωe g from the atomic transition
ωe g =ωe −ωg and not exceedingly strong, Ω�ω, rapidly oscillating terms can be neglected.
This approach is known as the rotation wave approximation [131]. Therefore, the equations of
motion for the elements of the atomic density matrix can be written in a suitable co-rotating
frame as [128]

∂t%e e =− Γρe e + iΩ∗%g e − iΩ%e g ,

∂t%g g =Γρg g − iΩ∗%g e + iΩ%e g ,

∂t%e g =−
�

Γ

2
− i∆

�

%e g − iΩ∗(%e e −%g g ),

∂t%g e =−
�

Γ

2
+ i∆

�

%g e + iΩ(%e e −%g g ).

(6.9)

The term Γ describes the decay of the excited state due to spontaneous emission.
As the internal dynamics of the atom are much faster than those of the electric field, the

stationary solution ∂t %̃e g = 0 of the internal dynamics can be used. This yields

%̃e g =
iΓ −2∆

4Ω

s (∆)
1+ s (∆)

, s =
2|Ω|2

∆2+ (Γ/2)2
. (6.10)

Strongly Detuned Regime - Optical Dipole Force

In the investigation of optical dipole forces, we consider cases where the light field is strongly
detuned from the atomic transition, |∆| �Ω,Γ . In this case, also Doppler corrections of the
frequencies due to the motion of the particles can be neglected. The dissipative and dipole
forces from (6.8) can be written as

F dis =
ħh |Ω|2Γ
∆2

∇φ, F dip =−
ħh
∆
∇|Ω|2. (6.11)

As F dis scales with∆−2 and F dip scales with∆−1, the dipole force dominates for large detunings.
Furthermore, the dipole force is conservative and can therefore be inferred as the negative
gradient of the optical dipole potential [132] given by

Vdip(r ) =
µ

∆
I (r ), (6.12)

where µ = 3πc 2Γ/2ω3
e g . The sign of the detuning determines the main behaviour of the

potential. In the blue detuned case (∆> 0) the potential is repulsive, while in the red detuned
case (∆< 0) it is attractive.
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6.1.2 Box Potentials

The ability to trap atoms in optical dipole potentials according to (6.12) has made these
systems a popular platform to study many-body physics [133, 134]. In early experiments in
this field, optical dipole traps predominantly possessed harmonic shapes with the opportunity
to create low-dimensional traps, double wells and optical lattices [27, 135–137].

In recent years, optical box traps have become increasingly popular [123]. As such box traps
typically have flat bottoms and sharp walls, they are able to produce uniform particle distri-
butions inside the trap [138–140]. This homogeneity of the gas, being quantum or classical,
has allowed the study of a wide range of effects [141–145].

To produce box potentials, sculpted blue-detuned laser beams are used to generate a repul-
sive potential, constructing the box walls and confining the atoms in the process (see Fig. 6.1).
Initially, such box traps are typically three-dimensional. To produce lower-dimensional boxes,
tight confinements along a direction are used to freeze out the atom motion in an additional
dimension. Attractive box potentials, produced by red-detuned laser beams, can also be
used to confine atoms. However, this method is experimentally more demanding than using
repulsive walls [123, 146].

x

y

z

x

y

z

x

y

z
Figure 6.1: Box potentials constructed out of blue-detuned light sheets, confining particles in 3D, 2D

and 1D (left to right).

Popular methods to produce specifically sculpted laser beams for box traps are spatial light
modulators (SLMs) and digital micromirror devices (DMDs). Liquid-crystal-based SLMs are
typically rectangular arrays of up to 106 pixel elements with individually controllable indices of
refraction [147]. The intensity pattern in the vicinity of the Fourier plane of a SLM is controlled
by spatially modulating the phase delay of a single laser beam. This method can be used to
create multiple beams needed to realize a box trap from only one laser [138].

On the other hand, DMDs are typically rectangular arrays of around 106 mirrors, which can
individually be turned ’on’ or ’off’ by changing their tilt angle [148]. In doing so, the amplitude
of a laser beam can directly be spatially modulated and arbitrary intensity patterns can be
imaged onto atomic clouds [149]. Therefore, DMDs are very convenient devices to produce
arbitrarily shaped box traps, such as squares in 2D and cubes in 3D. These shapes can also be
dynamically changed during the experiments due to the high refreshing rates of DMDs [150].

It has to be noted, that state-of-the-art box traps are not perfect. The sharpness of the
box walls are limited by the optical wavelength of the used laser beams. This is typically not
negligible compared to the box dimensions of interest [123]. Yet, as experimental methods are
always evolving and new technologies become available, we assume perfect box potentials in
the following discussion of the implementation of the thermal cloud neuron.
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6.2 I N P U T P R E PA R AT I O N

To use thermal atoms to implement an AN, such a gas is considered to propagate in an
optically produced potential landscape. There, the input of a neuron is prepared by shaping
this potential. This is possible as a classical light field generates a dipole potential according
to (6.12). The implementation of the neuron input is described for atoms being confined in
one dimension as the concept is easily transferable to higher dimensions.

The synaptic weights of a neuron w are assumed to be stored externally. When presented
with an input vector x , the induced local field v of the thermal cloud neuron is calculated as

v =
n
∑

i=0

wi xi . (6.13)

As weights wi , as well as inputs xi can be both, negative and positive, the value range of the
induced local field is v ∈ [−∞,∞].

The input potential for the thermal cloud neuron is produced by a laser beam generating a
Gaussian intensity distribution I (x ) along the x -direction where the atoms are confined

I (x ) = I exp

�

−
(x − x0)2

2σ2

�

. (6.14)

The width, described by the standard deviation σ, and the central position x0 are always
identical, independent of the neuron input. The resulting optical dipole potential is given by

V (x ) =V0 exp

�

−
(x − x0)2

2σ2

�

, V0 =
µI

∆
. (6.15)

As v is a real number, the amplitude of the optical dipole potential V0 is set to be determined
by the induced local field of the neuron v according to

V0 = v kBT . (6.16)

While the central intensity I is always positive, the detuning∆ can be negative as well. There-
fore, the whole value range of v can be implemented using this procedure.

In an experimental realization, two lasers are needed for the input preparation, one being
blue- and one being red-detuned to the atomic transition. The input of the thermal cloud
neuron is then implemented by tuning the peak intensity of a single laser, a red-detuned one
for positive v and a blue-detuned one for negative v .

6.3 N O N L I N E A R A C T I VAT I O N F U N C T I O N

6.3.1 Implementation Algorithm

A nonlinear response to the input v is produced by changing the potential landscape seen by
the atoms using an algorithmic procedure (see Fig. 6.2). First, the atomic gas is trapped in
an one-dimensional box potential of width L = 10µm. This trapping potential is realized via
periodic boundary conditions (x , p ) = (x + L , p ), resulting in an unitary position distribution
of the particles, which is characteristic for box traps.

Subsequently, the input to the neuron v is implemented via a laser, producing an additional
potential with amplitude V0 along the x -direction according to (6.15) and (6.16). Depending
on the sign of v , a red- or a blue-detuned laser has to be used.
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Figure 6.2: Procedure to implement the nonlinear activation function of the thermal cloud neuron.

(a) The particles are initially trapped in an one-dimensional box potential with a width of
L = 10µm, yielding an unitary position distribution along the x -direction. (b) The input
of the neuron is realized via an optical potential (6.15) with central position x0 = 5µm,
standard deviationσ= 1.25µm and amplitude V0 = v kBT . The sign of v determines whether
a red- or blue-detuned laser has to be used. After equilibration in the new potential, the
position distribution is given by (6.17) (yellow). (c) The number of particles in the region
[x0−2σ, x0+2σ] is detected and identified as output of the neuron.
Numerical simulations are performed using the procedure described in (5.46) for N = 10,000
87Rb atoms cooled to the Doppler temperature (atomic parameters see Appendix B). The
input is set to v = 1. The histograms show the densities of particle number positions n (x )
for a discretization∆x = 0.1µm.

According to the Maxwell-Boltzmann distribution (5.26), the position distribution in equi-
librium is determined by the external potential V (x ). Therefore, under the influence of the
input potential, the particles will distribute according to

n (x ) =N N exp
�

−v e −(x−x0)2/(2σ2)
�

, (6.17)

where N = 1/
∫

dx exp
�

−v e −(x−x0)2/(2σ2)
�

(see Fig. 6.2 (b)). For an attractive potential, the
particles will accumulate at the central position of the laser x0, while they will evacuate this
region for a repulsive potential. The amount of particles trapped by an attractive potential
depends on the depth of the potential as well as the temperature of the gas.
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6.3.2 Output Calculation

After equilibration in the new potential landscape, a detection of the number of particles in
the region [x0−2σ, x0+2σ] is performed. This can, for example, be done via an absorption
measurement [151–153]. The result, normalized with regard to the total particle number N , is
identified as the output of the neuron y ∈ [0, 1]. Hence, y can be calculated in dependence of
the input v as

y =N
∫ x0+2σ

x0−2σ

dx exp
�

−v e −(x−x0)2/(2σ2)
�

. (6.18)

As two equilibration processes are performed during this implementation, the timescale of
the neuron process using N = 10,000 87Rb atoms cooled to the Doppler temperature (atomic
parameters see Appendix B) can be estimated to tN ≈ 688 ms (see Section 5.3).

The NAF y (v ), as well as its derivative ∂v y (v ) with respect to the input v can be seen in
Fig. 6.3. Similar to standard implementations of ANs, the activation function has a sigmoidal-
like shape. The availability of an input-output-relation y (v ), as well as the partial derivative
∂v y (v ) enables the implementation and training of a neural network.
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Figure 6.3: (a) Output of thermal cloud neuron y versus input v as described by (6.18) for x0 = 5µm
andσ= 1.25µm. (b) The derivative of y with respect to v is calculated numerically.
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To construct a feedforward neural network out of thermal cloud neurons, the output of a
neuron has to be translated into an input for the adjacent layer. The output of a thermal cloud
neuron is given by the measurement of the relative particle number remaining at the end of
the neuron activity. This, in turn, determines the amplitude of the input laser of the next layer,
described by the peak intensity and detuning. By repeatedly converting measured particle
numbers to laser parameters, deep networks can be set up using the thermal cloud neuron.
With this, exemplary network architectures can be realized and trained to perform different
benchmark tasks as introduced in Section 3.3.

The implementation of the thermal cloud neural network is described in Section 7.1. Fol-
lowing that, this network is subjected to training on the XOR problem in Section 7.2 and on the
recognition of handwritten digits based on the MNIST dataset in Section 7.3. Subsequently,
the performance capabilities of the thermal cloud neural network are discussed in Section 7.4.

7.1 N E T W O R K I M P L E M E N TAT I O N

7.1.1 Parallelization and Layer Setup

A large number of thermal cloud neuron implementations can be run in parallel simply by
choosing different central locations for the input lasers as well as by creating neighboring
box traps for the thermal atoms. As these sites will be well separated, the individual neuron
implementations will not influence each other. Additionally, adjacent layers of the network
will be well separated, as the thermal cloud neuron algorithm terminates with a measurement,
allowing for sequential realization of the layers.

7.1.2 Inter-Layer Communication

As described in the previous chapter, the output of a thermal cloud neuron j is given by the
measurement of a relative particle number yj . The value range of such an output is therefore
given by yj ∈ [0,1]. Assuming a total of m neurons in a layer of the network, the input for a
neuron k in the following layer is calculated externally as

vk =
m
∑

j=0

wk j yj . (7.1)

Accordingly, the amplitude V0 of the input optical dipole potential (6.15) for neuron k can be
determined according to (6.16) with v = vk . Due to the value range of the synaptic weights
wk j , the input amplitude can again be positive as well as negative.
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This conversion from measured particle number portions to laser parameters enables
forward propagation of signals through the network, thus allowing for the possibility to build
large and deep neural networks. In thermal cloud neural networks training is performed
according to the backpropagation algorithm described in Section 3.2, as the synaptic weights
of the network are stored externally.

7.1.3 Encoding of Binary Outputs

To be able to use the NAF of the thermal cloud neuron (see Fig. 6.3) to its full extent, an
encoding scheme for inputs and outputs is required. Keeping the value range of the NAF in
mind, we introduce the following encoding scheme for binary outputs, which are encountered
for the benchmark examples introduced in Section 3.3: a binary output 0 is identified with a
thermal cloud neuron output y = 0.2, while 1 is realized by y = 0.8. The input encodings are
defined for the XOR problem and the recognition of handwritten digits separately.

7.2 X O R P R O B L E M

The first investigated problem is the XOR problem as introduced in Section 3.3.1. To process
this problem using a thermal cloud neural network, a fully-connected feedforward 2-2-1-
network is used (cf. Fig. 3.5).

Taking into account the characteristics of the NAF of the thermal cloud neurons, inputs
to the network are implemented as xi = 0.1 for inputs 0 and as xi = 1 for inputs 1 of the XOR
problem. The complete encoding scheme can be seen in Table 7.1.

Table 7.1: Input-output mapping for the XOR problem using the thermal cloud neural network.

Input 1 Input 2 x1 x2 Output y
0 0 0.1 0.1 0 0.2
0 1 0.1 1.0 1 0.8
1 0 1.0 0.1 1 0.8
1 1 1.0 1.0 0 0.2

The backpropagation algorithm described in Section 3.2 can be used to train the network to
solve the XOR problem. In agreement with the procedure in Section 3.3.1, the on-line training
is performed over 200 epochs with 1,000 randomized training samples per epoch. The learning
rate of the training is set to η= 0.1 for the first epoch, η= 0.01 for the following 49 epochs and
to η= 0.005 for every epoch from this point onwards. After each epoch, the performance of
the network in solving the XOR problem is tested by calculating the averaged squared error E
according to (3.2) for all m = 4 possible input-output pairs of the XOR problem.

Starting from random initial values for the weights and biases of the network, E decreases
rapidly over the course of the training procedure (see Fig. 7.1). A sample is classified as being
identified correctly, if the network response is within ±0.1 of the desired value. At the end of
the training procedure, the thermal cloud neural network is able to identify every test sample
correctly.

While not reaching the same performance as the network implementation presented in
Section 3.3.1,the thermal cloud neural network in the presented architecture can be trained
to solve the XOR problem. Therefore, there is proof-of-principle that thermal cloud neurons
can be used to set up trainable feedforward neural networks.
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Figure 7.1: Averaged squared error E versus epochs for solving the XOR problem using thermal cloud
neurons. Starting from random values for weights and biases, E decreases rapidly.

7.3 M N I S T D ATA S E T

In line with Section 3.3.2, thermal cloud neurons are also used to set up a network for the recog-
nition of handwritten digits based on the MNIST dataset. The network architecture is chosen
to be a fully-connected 784-300-10-network. The grayscale values of the 784-dimensional
input vector are normalized to the range [0, 1]. The inputs to the thermal cloud neural network
are chosen accordingly, lying in the range xi ∈ [0, 1].

Again, the backpropagation algorithm introduced in Section 3.2 is used to train the network
in an on-line manner. Starting from random weights and biases, the training procedure is
performed over 100 epochs with a fixed learning rate of η= 0.05. In every epoch, the network
is subjected to 6,000 random training samples. The performance capability of the network is
investigated by determining the averaged squared error E according to (3.2) using m = 1,000
randomly chosen test samples after each epoch (see Fig. 7.2). Throughout the course of the
training, E is decreased, reaching E = 2.3 ·10−3 at the end of the 100th epoch.

We define the network to identify a sample with a digit, if the output of the corresponding
neuron is within a margin of±0.2 of the desired output value of y = 0.8. If none of the neurons
is within this range, the sample is categorized as being not identifiable by the network. After

0 20 40 60 80 100

Epoch

10−2

10−1

E

Figure 7.2: Averaged squared error E versus epochs for the recognition of handwritten digits based
on the MNIST dataset using a 784-300-10 thermal cloud neural network. At the end of the
procedure, E is reduced to E = 2.3 ·10−3.
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Table 7.2: Sample digit versus digits identified by a 784-300-10 thermal cloud neural network after
100 training epochs in percent. A test sample is assigned to a digit, if the corresponding
neuron produces an output y = 0.8±0.2. If no neuron is within this range, the sample is not
identified by the network and is categorized under "-". In total, the network has an error rate
of 16.45%

0 1 2 3 4 5 6 7 8 9 -

0 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7
1 0.0 97.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4
2 0.0 0.0 81.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.9
3 0.0 0.0 0.0 75.9 0.0 1.1 0.0 0.0 0.0 0.0 23.0
4 0.0 1.0 0.0 0.0 83.5 0.0 1.0 0.0 0.0 0.0 14.6
5 0.0 0.0 0.0 0.0 0.0 75.0 0.0 0.0 0.0 0.0 25.0
6 0.0 0.2 0.0 0.0 0.0 0.0 77.2 0.0 0.0 0.0 22.8
7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 85.6 0.0 0.0 14.4
8 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 85.3 0.0 12.7
9 0.0 0.3 0.0 0.0 2.0 0.0 0.0 0.0 0.0 81.0 17.0

the training procedure, the network identifies 847 out of the 1,000 test samples. A comparison
between the network responses and the actual digits of the test samples can be seen in
Table 7.2.

While the network is not able to identify all test samples, very few samples are identified
incorrectly. In total, the network has an average error rate of 16.45%. This is significantly larger
than the exemplary implementation using ANs and a sigmoidal NAF shown in Section 3.3.2
despite comparable values of E at the end of the training procedure. This hints at the fact, that
the NAF of the thermal cloud neuron might not be very well suited for this problem. Yet, the
network is still able to identify the majority of the test samples correctly, showing that there is
the possibility for real-world application of the thermal cloud neural network.

7.4 D I S C U S S I O N

The thermal cloud neural network demonstrates the possibility to use cold atoms in an optical
setup to implement a neural network. Using an algorithmic procedure, a nonlinear response
to a weighted input can be produced. Additionally, multiple neuron realizations can be run in
parallel as well as in adjacent layers, enabling the setup of deep neural networks.

However, there are two main disadvantages in the presented implementation. Firstly, the
thermal cloud neural network is not fully integrated. After each layer, the information encoded
in the thermal atoms has to be extracted via a measurement to produce the inputs for the
next layer. Therefore, one has to interact actively with the network during the processing of a
signal, constantly converting between electronic and optical signals.

Secondly, due to the nature of thermal 87Rb atoms cooled to their Doppler temperature,
which we suggest to use in the implementation, the whole process is rather slow. As shown
before, one neuron implementation takes a couple of hundreds of milliseconds. Even under
the assumption that neurons in one layer can be run perfectly in parallel without any delay and
that the timespan for the measurement of the particle numbers as output and implementation
of the new laser parameters as input can be neglected, a run through a two-layer thermal
cloud neural network takes more than one second. In comparison to state-of-the-art physical
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implementations of artificial neural networks (see Chapter 4), this is quite slow, possibly
preventing the applicability in the real world.

Yet, the thermal cloud neural network is a good platform to understand the intricacies in
the implementation of an artificial neural network. One has to have very good control over
the NAF and has to be able to encode a problem for the network in such a way that makes full
use of the NAF input and output range.





Part III
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In this part, the implementation of an AN and an ANN based on the four-wave mixing (FWM)
process in coherent matter waves is presented. In contrast to thermal atoms, Bose-Einstein
condensed gases show an intrinsic nonlinearity. We aim to harness this characteristic to set
up a nonlinear activation function of an AN, subsequently culminating in the description of
the FWM neuron. Bose-Einstein condensates (BECs), as well as their dynamics in terms of the
Gross-Pitaevskii equation (GPE), are discussed in Chapter 8. In Chapter 9, the FWM process
with plane waves in coherent matter waves is investigated in detail, yielding a Josephson-like
description of the dynamics. On the basis of the population and phase oscillations in FWM, the
implementation of the FWM neuron is introduced in Chapter 10, also showing its capability
to solve the XOR problem. Finally, parallelization opportunities and possible ways to set up
communicating layers using the FWM neuron are discussed in Chapter 11, manifesting the
FWM neural network.

In this chapter the basic properties of BECs are discussed. After a review of BECs and
their state-of-the-art realizations and applications in Section 8.1, the dynamics of coherent
matter waves in the context of a mean-field theory are analyzed in Section 8.2, yielding the
Gross-Pitaevskii equation.

8.1 B O S E - E I N S T E I N C O N D E N S AT E S

8.1.1 Bose-Einstein Condensation

The theoretical prediction of Bose-Einstein condensation dates back nearly 100 years to the
work of Satyendranath Bose [154] and Albert Einstein [155]. They showed that in a gas of non-
interacting, massive bosons a finite fraction of the total number of particles would occupy the
lowest-energy single-particle state below a critical temperature.

Superfluid liquid Helium-4 is a prototype BEC as pointed out by Fritz London in 1938 [156].
Yet, due to the strong interaction between helium atoms, the number of atoms in the zero-
momentum state is reduced even at absolute zero temperature. Therefore, the occupancy of
the zero-momentum state is difficult to measure directly.

The fact that interactions reduce the occupation of the lowest-energy single-particle state
dramatically led to the search for weakly interacting Bose gases to achieve a higher condensate
fraction. As such a possible candidate, spin-polarized hydrogen was identified [126]. A gas
of hydrogen atoms in a magnetic field would be stable against the formation of molecules
and would remain in a gaseous phase to arbitrarily low temperatures. Indeed, Bose-Einstein
condensation of atomic hydrogen was achieved in 1998 [157].

However, at this point in time, atomic hydrogen was not the most promising candidate for
Bose-Einstein condensation anymore. Due to the dramatic advances made in laser cooling of
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alkali atoms, such systems became prime candidates to achieve Bose-Einstein condensation1.
In 1995, the groups of Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman reported the
observation of Bose-Einstein condensation in trapped, dilute, weakly interacting atomic gases
of Rubidium-87 and Sodium-23, earning them the Nobel prize in 20012.

8.1.2 Bose-Einstein Condensation in Dilute Atomic Gases

Bose-Einstein condensation in an ideal gas sets in when the temperature falls below a critical
temperature Tc, such that the thermal de Broglie wavelength

λdB =

√

√

√ 2πħh 2

mkBT
(8.1)

is comparable to the mean interparticle spacing

d = n−1/3, (8.2)

where n is the particle density [126]. Thus,

λdB(Tc) =d , Tc ' 3.3125
ħh 2n 2/3

mkB
. (8.3)

A general definition of a BEC, also including interactions, is given by Penrose and Onsager [160].
This states, that a BEC occurs for the case that Nc, the largest eigenvalue of the single particle
density matrix

ρ(x , x ′) = 〈ψ†(x )ψ(x ′)〉, (8.4)

is of the order of the total particle number in the system. Equivalently, this criterion corre-
sponds to the existence of off-diagonal long range order,

ρ(x , x ′)→nc 6= 0, |x − x ′| →0, (8.5)

in the system [161].
A typical starting point for experimental realization of a BEC is an atomic gas at room

temperature. The atoms are trapped and cooled by laser cooling methods to about 10µK [132].
Subsequently, the cooled down cloud is trapped magnetically via the Zeeman interaction of the
electron spin with an inhomogeneous magnetic field. In the magnetic trap, the cloud of atoms
is cooled down further by evaporative cooling. There, the highest-energy atoms evaporate
from the trap by converting their spin to an untrapped state via external radiation. With the
escape of those atoms, the average energy of the remaining atoms is reduced. Using these
methods, atomic clouds can be cooled to the nano-Kelvin range while achieving densities of
about 1015 cm−3. For dilute gases in a three-dimensional harmonic trap, those values cause
the phase space density

ρ = nλ3
dB (8.6)

1 The Nobel prize in physics 1997 was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips ”for
the development of methods to cool and trap atoms with laser light” [158]

2 The Nobel prize in physics 2001 was awarded to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman ”for the
achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of
the properties of the condensates” [159]
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to exceed the critical value for the transition towards a BEC of [126]

ρc ' 2.612. (8.7)

After the first realization of a BEC in cold atomic gases, research focused on equilibrium
properties, elementary and nonlinear excitations (e.g. vortices) and effects of thermal fluctua-
tions [162]. Subsequent work moved towards enhanced control of the interaction strengths
via Feshbach resonances [163], exploring the dimensionality of the BECs [135] and setting up
quantum simulators of solid states e.g. via optical lattice potentials [134].

Nowadays, there is a plethora of active experimental research regarding Bose-Einstein con-
densation in atomic systems [162]. Those range from BECs in guided or controlled geometries,
e.g. atom chips [164], ring-traps [165] and box-like potentials [138], to multicomponent and
spinor BECs [166] and nonlinear effects including dark and bright solitons [167]. Further fields
of high interest are the superfluid-Mott insulator transition [168], observations of the Joseph-
son effect [169, 170], the use of atoms in optical lattices to create strongly correlated systems
as quantum simulators of condensed matter systems [171] and atom interferometry [172].
Ongoing theoretical investigations concern the justification and applicability of the GPE [173],
nonequilibrium thermodynamics, effects of disorder [174, 175], and many more.

8.1.3 Further Approaches to Bose-Einstein Condensation

While Bose-Einstein condensation in atomic gases is well-studied and still provides a thriving
research field, the universal phenomenon exhibits a multitude of diverse manifestations.
Already in the early 1990s, excitons in semiconductors were thought of as a good candidate
for Bose-Einstein condensation. Excitons are quasiparticles formed by an electron and an
electron hole attracted via the Coulomb force inside a semiconductor. Due to their property
of being a boson, Bose-Einstein condensation is within the realm of possibility. Recently, two
main methods to achieve condensation in excitonic systems were explored. Firstly, magnetic
fields and electronic gating were used to control the densities of electrons and holes in a
coupled quantum well system. The pairing of electrons and holes in such systems yields
thermodynamically stable excitons, enabling condensation [176]. The alternative approach is
to place excitons in a high-Q optical cavity3, creating strong coupling between the cavity and
the exciton state. Eigenstates of such systems are known as polaritons. Through coupling, the
effective mass of the exciton is reduced, implying a larger de Broglie wavelength and therefore
larger quantum effects at typical densities and temperatures [178, 179].

The usage of high-Q cavities can also be exploited to achieve Bose-Einstein condensation
in photons [180]. While the cavity provides an increased lifetime of the photons, repeated
absorption and re-emission into dye molecules inside the cavity enables thermalization of
the photons.

Similarly, Bose-Einstein condensation of magnons created as a nonequilibrium population
in a ferromagnet can be realized [181]. There, magnons are quasiparticles corresponding to
quantized spin waves describing the collective motion of spins.

Additionally, the question of Bose-Einstein condensation in even more exotic systems is
of high interest. This includes BECs of neutrons in neutron stars [182], kaon condensation
across the whole universe [183], axion condensation as a candidate for cold dark matter [184,
185] and graviton BECs as a new approach to quantum gravity [162, 186].

3 The Q factor of a resonant cavity is given by Q =ω0E /P , where ω0 is the resonant frequency, E is the energy
stored in the cavity and P =−∂ E /∂ t is the dissipated power. The average lifetime of a resonant photon inside the
cavity is proportional to the cavity’s Q factor [177].
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Hence, Bose-Einstein condensation is a vast field in modern research. As such, a theoretical
description of the equilibrium and dynamical properties of such systems is needed. In this
thesis, we focus on a mean-field description of the condensate yielding the GPE.

8.2 G R O S S - P I TA E V S K I I E Q U AT I O N

The system under consideration is a bosonic fluid of neutral atoms of mass m without spin
confined in space by an external potential U (r ) at T = 0 K. This can be described by a Hamil-
tonian of a pairwise interacting many-body system

Ĥ =
∑

i

Ĥ0(r i , p i ) +
1

2

∑

i , j

V̂ (r i − r j ), Ĥ0 =−
ħh 2

2m
∇2+U (r ). (8.8)

As this is a system of identical particles, it is convenient to rewrite the Hamiltonian in second
quantization [105, 187]

Ĥ =

∫

d3r d3r ′ ψ̂†(r ′)〈r ′|Ĥ0|r 〉ψ̂(r )

+
1

2

∫

d3r ′1 d3r ′2 d3r1 d3r2 ψ̂
†(r ′1)ψ̂

†(r ′2)〈r
′
1r ′2|V̂ |r 1r 2〉ψ̂(r 2)ψ̂(r 1). (8.9)

The field operators ψ̂(r ) and ψ̂†(r ) destroy or create bosonic particles at position r in Fock
space

|r 〉= ψ̂†(r )|0〉. (8.10)

They satisfy the bosonic commutator relations
�

ψ̂(r ),ψ̂†(r ′)
�

=δ(r − r ′),
�

ψ̂(r ),ψ̂(r ′)
�

=0. (8.11)

8.2.1 Effective Interactions

In dilute gases interaction strengths are small for typical atomic separations. Only if two atoms
approach each other, the many-body wave function shows rapid spatial variations. To avoid
the calculation of short-range correlations between atoms, it is convenient to introduce an
effective interaction. Using this approximation, one enters the realm of a mean-field theory.

Considering two particles of equals mass without internal degrees of freedom, the wave
function for the relative motion of the particles is given as the sum of an incoming plane wave
and a scattered waveψsc(r ) [126]

ψ(r ) = e ik r +ψsc(r ). (8.12)

In momentum representation, this is equivalent to

ψ(k ) = (2π)3δ(k −k ′) +ψsc(k ). (8.13)

This wave function satisfies the Schrödinger equation in momentum space

ħh 2

m

�

k 2−k ′2
�

ψsc(k
′) =V (k −k ′) +

1

V

∑

k ′′
V (k ′−k ′′)ψsc(k

′′), (8.14)
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where V is a volume. Thus, the scattered wave is given by

ψsc(k
′) =

�

ħh 2

m
(k 2−k ′2) + iδ

�−1

T

�

k −k ′;
ħh 2k 2

m

�

. (8.15)

The infinitesimal imaginary part iδ,δ > 0, is introduced to ensure that only outgoing waves are
present in the scattered wave [187]. The scattering matrix T satisfies the Lippmann-Schwinger
equation [126]

T (k −k ′; E ) =V (k −k ′) +
1

V

∑

k ′′
V (k ′−k ′′)

�

E −
ħh 2k ′′2

m
+ iδ

�−1

T (k −k ′′; E ). (8.16)

At large distances and for zero energy (E = k = 0), the scattered wave in coordinate space is
given by

ψsc(r ) =−
mT (0; 0)

4πħh 2

1

r
. (8.17)

Here, one can identify the s-wave scattering length

as =
m

4πħh 2 T (0; 0). (8.18)

In Born approximation only the first term on the right hand side of the Lippmann-Schwinger
equation (8.16) is taken into account. Hence, an effective interaction potential is given by

V (0) = T (0; 0) =
4πħh 2as

m
:= g . (8.19)

In coordinate space, this result corresponds to a contact interaction

V (r − r ′) = gδ(r − r ′) (8.20)

where r and r ′ are the positions of the two particles. Already in 1936, Enrico Fermi introduced
this concept of a pseudopotential to describe the s-wave scattering of a free neutron by a
nucleus [188].

8.2.2 Many-Body Schrödinger Equation

Using the contact potential (8.20), the Hamiltonian (8.9) simplifies to

Ĥ =

∫

d3r ψ̂†(r )

�

−
ħh 2

2m
∇2+U (r )

�

ψ̂(r ) +
g

2

∫

d3r ψ̂†(r )ψ̂†(r )ψ̂(r )ψ̂(r ). (8.21)

A general many-body state may be written as

|ψ〉=
∞
∑

N=0

∫

dr 3N |r1 . . . rN 〉〈r1 . . . rN |ψ〉N , (8.22)

with the particle number N and the order of the assignmentψ(r1, . . . , rN ) = 〈r1 . . . rN |ψ〉N . The
equations of motion of this state can be recovered using the Lagrangian density [189, 190]

L= 〈ψ|iħh∂t − Ĥ |ψ〉. (8.23)
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From this, the canonical momentum can be determined as

π=
δL
δψ̇
= iħhψ∗. (8.24)

According to the Hamiltonian equations of motion,

π̇=
δL
δψ

. (8.25)

The Euler-Lagrange equations yield the Schrödinger equation in Fock space

iħh∂t |ψ〉= Ĥ |ψ〉. (8.26)

8.2.3 Gross-Pitaevskii Equation

In a BEC, the atoms in the system occupy the same quantum states macroscopically. Therefore,
the state of the system can be approximated by a coherent state [191]

ψ̂(r )|ψ〉c =ψ(r )|ψ〉c, (8.27)

where the eigenvalue ψ(r ) is called the order parameter of the coherent state of bosons.
Combining (8.21) and (8.27), the Lagrangian functional for the condensate is given by

L =

∫

d3r
�

iħhψ∗∂tψ−E(r )
�

(8.28)

with the energy density

E(r ) =
ħh 2

2m
|∇ψ|2+U (r )n (r ) +

g

2
n 2(r ). (8.29)

Here, n (r ) = |ψ(r )|2 denotes the particle density.
Evaluating the Euler-Lagrange field equation using functional differentiation

d

dt

δL

δψ̇
=
δL

δψ
(8.30)

yields the Gross-Pitaevskii equation [192, 193]

iħh∂tψ(r , t ) =

�

−
ħh 2∇2

2m
+U (r ) + g n (r )

�

ψ(r , t ). (8.31)

The total particle number of the system is conserved N =
∫

d3r n (r ).
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In this chapter, we present an in-detail discussion of the FWM process with plane waves
based on [36]. So far, theoretical investigations of FWM in coherent matter waves typically
considered slowly-varying envelope approximations of three-dimensional wave packets due
to the experimental possibilities at the time [30, 194]. With the development and subsequent
refinement of optical box traps (cf. Section 6.1.2), arbitrary-dimensional homogeneous BECs
became experimentally accessible [138, 139]. Therefore, an in-depth description of FWM with
plane waves in homogeneous BECs is of theoretical as well as experimental interest.

After introducing the FWM process in optical systems as well as in coherent matter waves
in Section 9.1, we discuss the ideal FWM process in homogeneous BECs in Section 9.2. This
investigation yields a Josephson-like description of the population and phase dynamics of the
coherent matter waves participating in the process. In the discussion of ideal FWM, two setups
are considered: two-dimensional FWM and one-dimensional FWM with multiple internal
states of the atoms. In Section 9.3, the influence of population in additional momentum states
on the FWM dynamics is investigated using numerical simulations of the GPE on a discrete
periodic grid.

9.1 F O U R- W AV E M I X I N G

9.1.1 Four-Wave Mixing in Nonlinear Optics

Nonlinear Optics

The process of FWM is well-known in nonlinear optics [28]. Nonlinear optics studies the
modification of optical properties of a material in the presence of light and the phenomena
that occur as a consequence. In conventional (linear) optics, the polarization P (1)(t ) induced
in a medium depends linearly on the applied electric field strength E (t ) according to

P (1)(t ) = ε0

∫ t

−∞
dt ′ χ (1)(t − t ′)E (t ′). (9.1)

There, the proportionality constant χ (1) is the linear susceptibility of the medium. The inte-
gration range from −∞ to t reflects the fact, that the polarization depends only on past and
not on future values of the electric field strength. This expression can be Fourier transformed
to the frequency domain, yielding

P (1)(ω) = ε0χ
(1)(ω)E (ω). (9.2)
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An extension to include nonlinear responses of the medium to presented electric field
strengths is possible. For an isotropic medium, the polarization P (ω) can be expressed using
a power series in E (ω), as

P (ω) = ε0

�

χ (1)(ω)E (ω) +χ (2)(ω)E 2(ω) +χ (3)(ω)E 3(ω) + . . .
�

. (9.3)

χ (2)(ω) and χ (3)(ω) are called second- and third-order nonlinear susceptibility, respectively.
In typical media, the value of the susceptibilities decreases by orders of magnitudes with in-

creasing susceptibility order. Well-known second-order nonlinear effects are second-harmonic,
sum- and difference-frequency generation. Third-order processes include third-harmonic
generation, self-focusing and optical mixing processes.

Degenerate Optical Four-Wave Mixing

In this thesis, we are interested in a particular third-order optical mixing process, namely FWM.
In optical systems, this process is often realized as degenerate FWM where all four interacting
waves have the same frequency. In this process, a lossless nonlinear medium characterized by
χ (3) is illuminated by two strong counter-propagating pump waves E 1 and E 2 and a signal
wave E 3. As a result of the nonlinear interaction between those waves, a fourth wave E 4 is
generated. The geometry of degenerate FWM can be seen in Fig. 9.1.

An in-detail calculation of the degenerate FWM process can e.g. be found in [28]. Here, we
present a shortened version to highlight to generation of the fourth wave. The four waves can
all be assumed to be plane waves represented as

E i (r , t ) =

∫ ∞

−∞

d3k

(2π)3/2
dω

(2π)1/2
δ(k −k i )δ(ω−ωi )E (k ,ω)e i(k r−ωt ) = E i e i(k i r−ωi t ), (9.4)

where i = 1, . . . , 4 and E i are slowly-varying amplitudes. In addition to a large number of other
terms, the nonlinear polarization P nl produced within the medium will have a term of the
form

P nl = 6χ (3)E 1E 2E ∗3e i(k 1+k 2−k 3)r (9.5)

in the degenerate case (ω1 =ω2 =ω3 =ω4). As the two pump waves are counter-propagating,
the relation between their wave vectors is given by

k 1+k 2 = 0, (9.6)

yielding

P nl = 6χ (3)E 1E 2E ∗3e −ik 3r . (9.7)

E1

E2

E3

E4 χ (3)

medium

Figure 9.1: Geometry of degenerate FWM in a χ (3) nonlinear medium. Graphic adapted from [28].
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This contribution acts as a phase-matched source term for a conjugate wave E 4 with wave
vector

k 4 =−k 3. (9.8)

The amplitude of the generated fourth wave will be proportional to E 1E 2E ∗3.
There is also an alternative explanation of the degenerate FWM process. The incoming signal

wave E 3 together with e.g. the pump wave E 1 forms a spatially varying intensity distribution.
This interference pattern causes a change in the refractive index due to the nonlinear response
of the medium. The second pump wave E 2 is scattered on the resulting diffraction grating,
producing the outgoing conjugate wave E 4.

The FWM process exists beyond the degenerate case. Then, to satisfy the phase matching
conditions in the nonlinear polarization

P nl = 6χ (3)E 1E 2E ∗3e i[(k 1+k 2−k 3)r−(ω1+ω2−ω3)t ], (9.9)

two relations have to hold:

k 1+k 2 =k 3+k 4, ω1+ω2 =ω3+ω4. (9.10)

Therefore, the dispersion relationω(k ) of the medium has to be taken into account. For the
special case of linear dispersion

ω(k ) = c |k |, (9.11)

holding for electromagnetic waves in vacuum, a one-dimensional realization of FWM can be
found where all wave vectors are parallel.

9.1.2 Four-Wave Mixing in Coherent Matter Waves

Following the advent of the BEC in cold atomic gases (cf. Section 8.1), theoretical investigations
as well as experiments demonstrated a process equivalent to FWM in optical systems. There,
momentum components of the BEC took over the role of optical frequencies.

In 1998, Trippenbach et al. [29]first investigated the feasability of realization of FWM in BECs
using numerical simulations of the GPE with three interacting wave packets. Already then,
they pointed out a key difference to the optical case: whereas the dispersion relation is linear
in k for the case of light, it is quadratic in k for massive particles. As the creation of a fourth
wave packet through FWM is limited to cases where momentum and energy conservation are
simultaneously satisfied, not all geometries (for example a one-dimensional implementation)
from the optical case are readily available using BECs.

Shortly after the theoretical proposal of the process, FWM in matter waves was realized by
the group of William D. Phillips in 1999 [31]. Using Bragg diffraction, they simultaneously
created three overlapping wave packets with different momenta in a BEC of sodium atoms.
Using a half-collision geometry, they observed a fourth wave packet after separation of the
momentum components produced by the nonlinear interaction inside the BEC. Further
experiments by the group of Wolfgang Ketterle showed that FWM can e.g. also be used to
create pair-correlated atomic beams [32].

Subsequent research on FWM in coherent matter waves was quite diverse. While early the-
oretical investigations continued to focus on numerical calculations, specifically considering
wave packets [30, 195], also exact quantum theories of collinear FWM in a multi-component
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BEC were developed [196]. Such setups were also utilized in the realm of the GPE, showing that
collinear FWM in BECs with multiple spin states enables the realization of one-dimensional
geometries [197, 198]. Additionally, work has been dedicated to FWM in periodic optical
potentials, showing that the specific dispersion relation can also be used to implement one-
dimensional FWM [199].

Due to the experimental availability of homogeneous BECs in arbitrary dimensions [138,
139], a theoretical investigation of FWM with plane waves should now be of particular interest.
Therefore, we present such an investigation, showing that the population and phase dynamics
of the momentum components can be described via Josephson-like oscillations.

9.2 I D E A L F O U R- W AV E M I X I N G

9.2.1 General Description

Plane Wave Ansatz

The dynamics of a weakly interacting BEC described by the order parameterψ(r , t ) are given
by the GPE (8.31). The Lagrangian functional of the GPE is given by [189, 190]

L =

∫

d3r (iħhψ∗∂tψ−E(r )), (9.12)

with the expression for the energy density

E(r ) =
ħh 2

2m
|∇ψ|2+U n +

g

2
n 2. (9.13)

In the following, we consider the case of a homogeneous BEC with U = 0 and periodic
boundary conditions. Then, a wave function |ψ〉= |ψα〉+ |ψβ 〉 is a coherent superposition of
plane waves |k j 〉with complex amplitudes α j and β j . It consists of a FWM state

�

�ψα
�

=
4
∑

j=1

p
Nα j

�

�k j

�

(9.14)

and a residual wave
�

�ψβ
�

=
∑

j>4

p
Nβ j

�

�k j

�

, (9.15)

which is orthogonal 〈ψα|ψβ 〉= 0 to the FWM state.
The complex amplitudes α j , in terms of absolute value and phase, are given by

α j =
p

n j e −iϕ j . (9.16)

Thus, n j = |α j |2 is the probability to be in the momentum state |k j 〉. The mode functions




r
�

�k j

�

=
1
p

V
e ik j r (9.17)

are normalized in a cuboid with lengths (L1, L2, L3) and a volume V = L1L2L3. For periodic
boundary conditions, the wave-numbers k j = 2πκ j /L j are quantized with κ j ∈ Z and the
plane wave states are orthonormal 〈k i |k j 〉=δi j .



9.2 I D E A L F O U R- W AV E M I X I N G 61

Four-Wave Mixing Conditions

The conditions for FWM are momentum and energy conservation [31]

p 1+p 2 =p 3+p 4, E1+E2 =E3+E4. (9.18)

In the plane wave ansatz, these conditions can be written as

k 1+k 2 = k 3+k 4, ω1+ω2 =ω3+ω4, (9.19)

which are identical to the conditions derived in the optical case (9.10), however now under
the consideration of the dispersion relation of free massive particles

ω j =ω(k j ) =
ħh |k j |2

2m
. (9.20)

Hence, the frequency scales quadratically with the wave number in contrast to the linear
relation in optics (9.11).

To satisfy the conditions (9.19), three wave vectors, e.g. k 1, k 2 and k 3, can be chosen
arbitrarily, while the fourth vector follows as the linear superposition k 4 = k 1+k 2−k 3. For
visualization, the wave vectors can be chosen to lie on a two-dimensional plane in three-
dimensional space as the dynamics of the system will not be influenced by the orientation of
the vectors, as long as the conditions (9.19) are satisfied. Possible constellations of the wave
vectors of a FWM setup in 2D can be seen in Fig. 9.2.

Due to the quadratic nature of the dispersion relation (9.20), the conditions (9.19) cannot
be satisfied by wave vectors from one dimension, as energy and momentum conservation
cannot be fulfilled simultaneously. However, in Section 9.2.3 we show that one-dimensional
FWM can be realized by using the internal energy structure of neutral atoms.

Experimentally, momentum states fulfilling the FWM conditions can be prepared using
atomic beamsplitters based on Bragg diffraction [200–202]. The developed initialization se-
quence to avoid population outside of the FWM states can be seen in Appendix C.
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Figure 9.2: Possible configurations of wave vectors k 1 (green), k 2 (yellow), k 3 (blue) and k 4 (red), where
k j = 2πκ j /L j , satisfying the FWM conditions (9.19). Due to the FWM momentum condition,
the wave vectors participating in FWM can be visualized on a two-dimensional plane in
three-dimensional space.
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Euler-Lagrange Dynamics

In the ideal FWM scenario, the residual wave is absent, βl = 0. Consequently,
∑4

j=1 n j = 1. The
physical Lagrangian functional of the system can be determined by inserting the ansatz (9.14)
into (9.12), while ensuring (9.19). This yields

L =iħh
4
∑

j=1

α∗j ∂tα j −N ħh
4
∑

j=1

ω j n j +
g N 2

2V

4
∑

j=1

n 2
j −2

g N 2

V
(α∗1α

∗
2α3α4+ c.c.)

+
2g N 2

V
(n1n2+n1n3+n1n4+n2n3+n2n4+n3n4). (9.21)

Accordingly, the Euler-Lagrange equations, describing the dynamics of the FWM amplitudes
α j , are given by [30, 194, 195]

iħh∂tα1 =ħhω1α1+
g N

V

�

(n1+2(n2+n3+n4))α1+2α∗2α3α4

�

,

iħh∂tα2 =ħhω2α2+
g N

V

�

(n2+2(n1+n3+n4))α2+2α∗1α3α4

�

,

iħh∂tα3 =ħhω3α3+
g N

V

�

(n3+2(n1+n2+n4))α3+2α∗4α1α2

�

,

iħh∂tα4 =ħhω4α4+
g N

V

�

(n4+2(n1+n2+n3))α4+2α∗3α1α2

�

.

(9.22)

Dimensionless Description

It is convenient to switch to a dimensionless description of the problem. For this, a dimen-
sionless time is introduced as τ= γt , with the frequency

γ=
g N

ħhV
. (9.23)

The self-frequencies are also scaled with this constant, yielding ω̄ j =ω j /γ. Furthermore, the
Lagrangian function is shifted by a constant and scaled according to L= 1+V L/g N 2. Thus,
the mathematical Lagrangian functional reads

L=
4
∑

j=1

iα∗j α̇ j −E , (9.24)

with the dimensionless energy of the system

E =
4
∑

j=1

ε j +2(α∗1α
∗
2α3α4+ c.c.). (9.25)

There, α̇ j denotes the partial derivative with respect to dimensionless time ∂τα j and the
mean-field shifted single particle energies are defined as

ε j = ω̄ j n j −
n 2

j

2
, µ j =

∂ ε j

∂ n j
= ω̄ j −n j . (9.26)
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Accordingly, a compact form of the equations of motion for the complex amplitudes is given
by

iα̇1 =µ1α1+2α∗2α3α4,

iα̇2 =µ2α2+2α∗1α3α4,

iα̇3 =µ3α3+2α∗4α1α2,

iα̇4 =µ4α4+2α∗3α1α2.

(9.27)

Clearly, these equations are highly symmetrical, which can be explored using the polar
decomposition of the complex amplitudes (9.16). As can be seen in Fig. 9.3 (a), the relative
particle numbers n j perform periodic oscillations. Due to the source terms in the equations of
motion (9.27), the initially unpopulated fourth momentum state sees an increase in population
during the oscillation. Furthermore, the simulations reveal, that the total particle number, as
well as the energy of the system, are conserved.

The interaction term in (9.25) coherently couples the subspaces {|k 1〉 , |k 2〉}↔{|k 3〉 , |k 4〉}
through the relative phase difference

φ =ϕ1+ϕ2−ϕ3−ϕ4 (9.28)

and the population imbalance

m = n1+n2−n3−n4. (9.29)

Therefore, the oscillatory dynamics of the system can be investigated in m-φ-phase-space.
Depending on the choice of the quantities

m12 =n1−n2, m34 =n3−n4, (9.30)

periodic as well as aperiodic orbits of the mathematical pendulum with a separatrix in between
occur. For m12 =m34 = 0 (see Fig. 9.3 (c)) only closed trajectories can be observed. The covered
area in phase space depends on m0 =m (t = 0). Choosing instead m12 = 0.4 and m34 = 0.02,
also transient trajectories appear. Furthermore, the possible value range becomes limited,
depending on the choice of m12 and m34.

To obtain an analytical description of the FWM process in addition to numerical solutions,
a coordinate transformation is performed. This will reveal the possibility to describe the FWM
dynamics as Josephson oscillations.

9.2.2 Josephson Description of Four-Wave Mixing Amplitudes

Coordinate Transformation

With the help of Lagrangian field theory, the time-independent Hamiltonian energy (9.12)
and the FWM state ansatz (9.14), we obtain a discrete nonlinear set of four Hamiltonian
equations with a number of symmetries. This constrains the dynamics to a two-dimensional
phase-space, analogous to the mathematical pendulum. Due to the phase-invariant structure
of the self-energy g n 2, typical Josephson oscillations emerge. This analogy enables the search
for an analytical description of the FWM oscillations. We introduce new coordinates by

α1 =
p

n1e −i(Φ+φ/4+ϕ), α2 =
p

n2e −i(Φ+φ/4−ϕ),

α3 =
p

n3e −i(Φ−φ/4+θ ), α4 =
p

n4e −i(Φ−φ/4−θ ).
(9.31)
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Figure 9.3: Dynamics of FWM amplitudes in terms of (a) relative particle numbers n j and (b) phases
ϕ j versus dimensionless time τ for momentum components |k 1〉 (green), |k 2〉 (yellow),
|k 3〉 (blue) and |k 4〉 (red) and ω̄ j = 1. (c) & (d) FWM dynamics in m-φ-phase-space. For
m12 =m34 = 0 (c) only closed trajectories occur, while aperiodic solutions are present for
m12 = 0.4 and m34 = 0.02 (d). (c) green: m0 = 0.2, yellow: m0 = 0.4, blue: m0 = 0.6, red:
m0 = 0.8; (d) green: m0 = 0.52, yellow: m0 = 0.68, blue: m0 = 0.84, red: m0 = 0.92. For all
trajectories,φ0 = 0 was set.
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From the global phase invariance of (9.24), one finds that the total occupation in the FWM
state

∑4
j=1 n j is conserved. This can be used to construct a generating function as

R =
i

2
e 2iΦ

�

α2
1e 2i(φ/4+ϕ)+α2

2e 2i(φ/4−ϕ)+α2
3e 2i(−φ/4+θ )+α2

4e 2i(−φ/4−θ )
�

. (9.32)

According to the rules of Hamiltonian mechanics [203], this generating function relates old
coordinates (α1,α2,α3,α4) to new coordinates (Φ,φ,ϕ,θ ). In turn, one can obtain the old
momenta

π j =
∂ R

∂ α j
= iα∗j , (9.33)

as well as the new momenta

PΦ =−
∂ R

∂ Φ
= n1+n2+n3+n4, (9.34)

Pφ =−
∂ R

∂ φ
=

n1+n2−n3−n4

4
≡

m

4
, (9.35)

Pϕ =−
∂ R

∂ ϕ
= n1−n2 ≡m12, (9.36)

Pθ =−
∂ R

∂ θ
= n3−n4 ≡m34. (9.37)

In terms of the new coordinates the dimensionless Lagrangian L reads

L=Φ̇+
m

4
φ̇+m12ϕ̇+m34θ̇ −H (m ,φ), (9.38)

with a generic Josephson Hamiltonian energy

H (m ,φ) =
η

4
cosφ−

m 2

8
+C, (9.39)

η=
Ç

�

(1+m )2−4m 2
12

� �

(1−m )2−4m 2
34

�

. (9.40)

Here, we have denoted an energy offset

C =
4
∑

j=1

ω̄ j

4
+
ω̄12m12+ ω̄34m34

2
+

m 2
12+m 2

34

4
−

7

8
. (9.41)

and transition energies ω̄12 = ω̄1− ω̄2 and ω̄34 = ω̄3− ω̄4. As L does not depend on Φ, ϕ or θ ,
these phases are cyclic [204]. Therefore, the conjugate momenta, total particle number N and
population differences m12 (9.36) and m34 (9.37) are conserved. Consequently, the equations
of motion for Φ, ϕ and θ can be solved in quadrature.

As can be seen by calculating the Legendre transform of (9.38), H (m ,φ) (9.39) is the Hamil-
tonian of the system and m andφ are the canonical variables of the system. Accordingly, the
dynamics of the system are given by the two coupled Josephson-like differential equations [33–
35]

ṁ =−4∂φH =ηsinφ, φ̇ = 4∂m H =−m + cosφ∂mη. (9.42)
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Comparison to Josephson effect in superconductors

The Josephson effect was predicted theoretically by Brian Josephson in 1962 [205]. He con-
sidered a thin insulating layer separating two superconductors, predicting the existence of a
tunnel current I (t ) carried by Cooper pairs through the junction. The two basic Josephson
equations for such a junction are given by [206]

I (t ) =Ic sinϕ, ϕ̇ =
2e V

ħh
, (9.43)

where Ic is the maximum critical current, ϕ =ϕ1−ϕ2 is the phase difference between the two
superconducting electrodes and V is the voltage across the junction.

In the absence of an external voltage V = 0, a direct current across the insulator can be
observed due to tunnelling. This current is constant as it is proportional to the sine of the
Josephson phase ϕ, which itself is constant. This is called the DC Josephson effect.

For a finite voltage V 6= 0, the Josephson phase varies in time according to

ϕ(t ) =ϕ0+
2e V

ħh
t (9.44)

yielding an alternating current through the junction

I (t ) = Ic sin
�

ϕ(t )
�

. (9.45)

This is called the AC Josephson effect. Also, an inverse effect can be observed [207]. In the
presence of microwave radiation with frequencyω, current steps at constant voltages

Vn =
nħh
2e
ω, (9.46)

where n =±1,±2, . . . , appear. These steps are known as Shapiro steps.
Comparing (9.42) and (9.43), there are similarities. However, the nonlinear nature of (9.42)

will lead to more complex expressions than e.g. is the case for the AC Josephson effect.

General Solution

In simple classical mechanics problems of particles, with position x and momentum p ,
Hamiltonian energies H (x , p ) = T (p ) +V (x ) separate into kinetic T (p ) and potential V (x )
energy. At the turning points ẋ = ∂p H = 0, the Hamilton function is purely determined by
potential energy H (x , p = 0) =V (x ). A similar investigation can be performed in the given case
[208–210]. Through canonical transformation, the role of position and momentum variables
can be exchanged. Therefore, m can be considered as the position andφ as the momentum
variable. Thus, at the turning points ṁ =−4∂φH = 0, two momenta

φ+ =0, φ− =π (9.47)

are possible. In turn, this defines two potentials

V ±(m ) =H (m ,φ±) =−
1

8
(m 2∓2η) +C. (9.48)

Visualizations of such potentials for varying system parameters can be seen in Fig. 9.4.
Physical solutions with energies ε =H (m ,φ)must be constrained by these two potentials,

V − < ε < V +. This limits the value range of m and φ depending on the system parameters
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Figure 9.4: Potentials V + (green) and V − (yellow) versus population difference m (9.48). (a) For
m12 =m34 = 0, m has a possible value range from −1 to 1 governed by V − < ε <V +. (b) The
value range of m is reduced for differing values (m12 =m34 = 0.2). (c) The potentials remain
unchanged when changing the sign m12 =m34 =−0.2. (d) Altering the values of ω̄ j (here
ω̄ j = 1.1; all other subfigures ω̄ j = 1) shifts the potentials along the V ±-axis. (e) Choosing
different values for m12 and m34 (m12 = 0, m34 = 0.2) lifts the symmetry of the potentials
around the m-axis. (f) Changing the values of m12 and m34 (m12 = 0.2, m34 = 0) mirrors the
potentials on the m-axis.
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m12 and m34 (see Fig. 9.4). As the energy of the system is conserved, the equation of motion
(9.42) for m (τ) can be expressed using the potentials V ± as

ṁ =±4
p

(V +(m )− ε)(ε−V −(m )). (9.49)

Accordingly, the dynamical solution can be calculated as

τ−τ0 =

∫ m

m0

±dζ

4
p

(V +(ζ)− ε)(ε−V −(ζ))
. (9.50)

This relation can be inverted piecewise to obtain m (τ).

Analytical solution for m12 =m34 = 0

For the special case m12 =m34 = 0, implying n1 = n2 and n3 = n4, an analytical expression for
the dynamical solution m (τ) can be given in terms of the elliptic cosine cn(u , v ) [211] as

m (τ) =±

√

√µ+2

3
cn
�

ξ(τ−τ0),ρ
2
�

, (9.51)

where µ = m 2
0 + 2(m 2

0 − 1)cosφ0, ξ =
p

6−3µ/2 and ρ2 = (µ+ 2)/(6− 3µ). With that, the
dynamical solution of the phaseφ(τ) can be calculated by integration of (9.42), yielding

φ(τ) = 2 arctan
�p

3 tanh
�

arctanh
�

tan(φ0/2)/
p

3
�

+ ln
�

1−ρ
�

− ln
�

dn
�

ξ(τ−τ0),ρ
2
�

−ρ cn
�

ξ(τ−τ0),ρ
2
���	

, (9.52)

with the delta amplitude dn(u , v ) [211]. Visualizations of the Jacobian elliptic functions can
be seen in Fig. 9.5.

The period of the motion can be calculated as

T =
4 K(ρ2)
ξ

. (9.53)

There, K is the complete elliptic integral of first kind [211]. The basic frequency of the oscillation
T0 = T (m0 = 0) can be calculated as

T0 =
4π
p

12
. (9.54)

The analytical solutions for m (τ) andφ(τ), as well as the dependence of T on the parameter
m0 can be seen in Fig. 9.6. The period of the FWM oscillation diverges when nearing the
regime of aperiodic solutions.
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Figure 9.5: Visualizations of the Jacobian elliptic functions (a) cn(u , v ) and (b) dn(u , v ) versus real
variable u for v = 0 (green), v = 0.5 (yellow), v = 0.9 (blue) and v = 0.99 (red).
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Figure 9.6: Analytical solution of FWM dynamics for m12 =m34 = 0. (a) Population difference m (9.51)
and (b) phase differenceφ (9.52) versus dimensionless time τ for m0 = 0.5 andφ0 = 0.
(c) Period of the FWM oscillation T versus initial population difference m0 (9.53), normed
to T0 = T (m0). The period diverges when nearing the regime of transient trajectories in
m-φ-phase-space.



70 9 F O U R- W AV E M I X I N G W I T H P L A N E W AV E S

9.2.3 One-Dimensional Four-Wave Mixing with Multiple Internal States

Lower-dimensional systems are of high interest in the investigation of BECs. A good platform
to investigate phenomena in one-dimensional systems is the realization of trapped atoms in
ring-shaped optical lattices [212]. Such a realization yields a one-dimensional implementation
with periodic boundary conditions very close to common theoretical descriptions.

Using BECs in ring traps, a variety of interesting problems has been investigated including
persistent flow and vortices [165, 213], realizations of the Bose-Hubbard model [214] and
entanglement between two states with different circulation [215]. Also, the rotational response
of two-component BECs in ring traps has been the subject of investigations [216].

We aim to find a realization of FWM with plane waves in one dimension, circumventing the
restriction brought on by energy and momentum conservation (9.19) due to the dispersion re-
lation (9.20). For this, we consider a one-dimensional trap with periodic boundary conditions,
i.e. a ring trap, populated by a homogeneous two-component BEC, similar to [198]. We show
that by introducing internal structure of the trapped atoms, FWM can indeed be realized in
one dimension.

Two-Component Gross-Pitaevskii Equation

The onset point for the discussion of a BEC with two internal states |1〉 and |2〉 is the two-
component GPE. This is given by the coupled equations for the order parametersψ(i )(r , t ),
with i ∈ {1, 2}, [198]

iħh∂tψ
(i ) =

 

−
ħh 2

2m
∇2+U (i )+

∑

j∈{1,2}
g i j n ( j )

!

ψ(i ), (9.55)

where n (i ) =
�

�ψ(i )
�

�

2
, g i j = 4πħh 2ai j /m and a11, a22 and a12 are the intra- and inter-state scat-

tering lengths, respectively. As before, we assume a shallow lattice limit, implying U (i ) = 0. The
complete set of coupled equations can be written in matrix form as [217]

iħh∂t

�

ψ(1)

ψ(2)

�

=

�

− ħh
2

2m∇2+ g11n (1)+ g12n (2) 0

0 − ħh
2

2m∇2+ g22n (2)+ g12n (1)

�

�

ψ(1)

ψ(2)

�

. (9.56)

87Rb Hyperfine States

As the two internal states, interacting according to (9.56), we consider the |1〉= |F = 1, mF =−1〉
and |2〉= |F = 2, mF = 1〉 hyperfine states of the 52S1/2

87Rb ground state. The energy splitting
due to the hyperfine structure, resulting from a coupling of the total electron angular momen-
tum J = L + S , where L is the orbital angular momentum of the outer electron and S is its
spin angular momentum, with the total nuclear angular momentum I , for the ground state is
given by [218]

∆Ehfs =
1

2
Ahfs [F (F +1)− I (I +1)− J (J +1)] . (9.57)

There, Ahfs is the magnetic dipole constant and |J − I | ≤ F ≤ J + I . For the 52S1/2
87Rb ground

state, L = 0 and S = 1/2. Therefore, J = 1/2 and additionally I = 3/2. Hence, possible values
for F are 1 and 2.
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Each of the F hyperfine levels contains 2F +1 magnetic sublevels, which are degenerate in
the absence of an external magnetic field. If a weak external field Bz is applied, for instance
along the z -direction, the hyperfine levels split up linearly according to the anomalous Zeeman
effect [218]

∆E|F,mF 〉 =µBgF mF Bz . (9.58)

There, µB is the Bohr magneton, mF ∈ [−F, F ] is the magnetic quantum number and gF is the
hyperfine Landé g -factor [219]

gF ' g J
F (F +1)− I (I +1) + J (J +1)

2F (F +1)
, (9.59)

with the Landé factor

g J ' 1+
J (J +1) +S (S +1)− L (L +1)

2J (J +1)
. (9.60)

A visualization of the energy splitting due to a weak external magnetic field of the F = 1 and
F = 2 hyperfine states of the 52S1/2

87Rb ground state can be seen in Fig. 9.7 (a). Accordingly,
the states |1〉 and |2〉 show a constant frequency separationω0 in presence of such a field.

An advantage in considering those specific hyperfine states lies in the characteristic that
the intra- and inter-state scattering lengths are almost identical [220]

a12 =(5.5±0.3)nm, a11 =1.03a12, a22 =0.97a12. (9.61)

For our purpose, this justifies the approximation of setting

g = g11 ' g22 ' g12. (9.62)

With that, the coupled GPEs, describing the dynamics of the system, can be written as

iħh∂t

�

ψ(1)

ψ(2)

�

=

�

− ħh
2

2m∇2+ g n 0

0 − ħh
2

2m∇2+ g n

�

�

ψ(1)

ψ(2)

�

, (9.63)

where n = n (1)+n (2).

Four-Wave Mixing Conditions

Similar to the previous discussion, we introduce a plane wave ansatz for the FWM state |ψα(t )〉.
However, in this new geometry with multiple internal levels, the momentum components
constituting this state are sets of two in the respective internal states. Accordingly, the FWM
state is given by the coherent superposition

�

�ψα(t )
�

=
2
∑

i=1

2
∑

j=1

p
Nα(i )j (t )

�

�k j , i
�

, (9.64)

where i denotes the internal state, j denotes the momentum state, N is the total particle
number and α(i )j (t ) are the time-dependent complex amplitudes of the plane waves |k j 〉 in
internal state |i 〉.
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Figure 9.7: (a) Energy splitting due to the anomalous Zeeman effect of the F = 1 (lower) and F = 2
(upper) hyperfine states of the 52S1/2

87Rb ground state. In the presence of a weak external
magnetic field Bz , the |F = 1, mF =−1〉 (green) and |F = 2, mF = 1〉 (yellow) states show a
constant separation ofω0 in terms of frequency. (b) Suggested FWM setup to satisfy the
FWM conditions (9.18). By populating two internal states at the same momentum states
|k 1〉 and |k 2〉, the FWM conditions can be fulfilled according to (9.66).

In this scenario, a setup can be found, which satisfies the general FWM conditions (9.18).
This is given by

p (1)1 +p (2)2 =p (1)2 +p (2)1 , E (1)1 +E (2)2 =E (1)2 +E (2)1 . (9.65)

A visualization of the suggested geometry can be seen in Fig. 9.7 (b). The problem of not being
able to satisfy energy and momentum conservation simultaneously in the original setup is
circumvented by using equal momenta in the two internal states. Thereby, momentum and
energy conservation are fulfilled by pairing opposite momenta in the different internal states
together. Accordingly, the conditions (9.18) are satisfied by

k 1+k 2 =k 2+k 1, ω1+ω2+ω0 =ω1+ω0+ω2, (9.66)

where the dispersion relation (9.20) still holds.

Euler-Lagrange Dynamics

Combining the coupled two-component GPEs (9.56), the plane wave ansatz (9.64) and the
suggested geometry, the Lagrangian of the system can be determined as

L =iħh
∑

i , j

�

α(i )j

�∗
∂tα

(i )
j −N ħh

∑

i , j

ω j n (i )j +
g N 2

2V

∑

i , j

�

n (i )j

�2
−

2g N 2

V

��

α(1)1

�∗ �
α(2)2

�∗
α(1)2 α

(2)
1 + c.c.

�

+
2g N 2

V

�

n (1)1 n (1)2 +n (1)1 n (2)1 +n (1)1 n (2)2 +n (1)2 n (2)1 +n (1)2 n (2)2 +n (2)1 n (2)2

�

. (9.67)
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Accordingly, the dynamics of the FWM amplitudes are given by the Euler-Lagrange equations

iħh∂tα
(1)
1 =ħhω1α

(1)
1 +

g N

V

��

n (1)1 +2
�

n (1)2 +n (2)1 +n (2)2

��

α(1)1 +2
�

α(2)2

�∗
α(1)2 α

(2)
1

�

,

iħh∂tα
(1)
2 =ħhω2α

(1)
2 +

g N

V

��

n (1)2 +2
�

n (1)1 +n (2)1 +n (2)2

��

α(1)2 +2
�

α(2)1

�∗
α(1)1 α

(2)
2

�

,

iħh∂tα
(2)
1 =ħhω1α

(2)
1 +

g N

V

��

n (2)1 +2
�

n (1)1 +n (1)2 +n (2)2

��

α(2)1 +2
�

α(1)2

�∗
α(1)1 α

(2)
2

�

,

iħh∂tα
(2)
2 =ħhω2α

(2)
2 +

g N

V

��

n (2)2 +2
�

n (1)1 +n (1)2 +n (2)1

��

α(2)2 +2
�

α(1)1

�∗
α(1)2 α

(2)
1

�

.

(9.68)

These equations of motion are equivalent to (9.22). This implies, that the complete investiga-
tion performed in Subsections 9.2.1 and 9.2.2 can also be applied here. Therefore, introducing
an additional internal state, FWM with plane waves can also be realized in one dimension.
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In the ideal FWM setting, the residual wave |ψβ 〉 is absent. However, additional momentum
states might be populated accidentally during the initialization procedure or system evolution.

9.3.1 Numerical Simulation of Four-Wave Mixing on Discrete Periodic Grid

To investigate this scenario, the dynamics of the system, described by the GPE (8.31), are
simulated using a Runge-Kutta scheme and Fast Fourier Transforms (FFT) on a discrete
periodic grid. For this, a two-dimensional grid with 16×16 sites is used while setting γ= 1/s
and discretizing dimensionless time with ∆τ = 10−6. For implementation the geometry of
FWM states described in Appendix C is chosen, yielding ω̄ j = 1 for j = 1, . . . , 4. The populations
are set to n1 = n2 = 0.375 and n3 = n4 = 0.125, resulting in m12 =m34 = 0 and m0 = 0.5. All
phases are set to ϕ j = 0, yielding φ0 = 0. Also, multiple internal states can be taken into
consideration in the developed simulation method.

As can be seen in Fig. 9.8, the numerical results of the GPE simulation start to deviate
noticeably from the four-mode approximation (9.27) already after a few cycles. Looking at

−0.5

0.0

0.5

m

0 5 10
τ

−1

0

1

φ

Figure 9.8: Population imbalance m (τ) and relative phase φ(τ) versus dimensionless time τ from
analytical solution (green, dashed) and numerical simulation of the GPE on a discrete
periodic grid (yellow, solid).
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Figure 9.9: Histograms of populations on discrete 16×16 grid in kx -ky -plane atτ= 0 (a) andτ= 5.0 (b).

m (τ) and φ(τ), the numerical results show a larger period of the oscillation. However, the
general shape of the oscillations remains unchanged.

9.3.2 Analysis of Background Population

This behaviour is caused by an instability of the simulation due to numerical noise of the FFT
producing population on the grid outside of the FWM states. As depicted in Fig. 9.9 (a), the
system is prepared at τ = 0 with population only present in the FWM states. However, the
histogram in Fig. 9.9 (b) at τ= 5 clearly shows that additional states in the vicinity of the FWM
states have been populated. As this background population is located at the center of the
lattice, the chosen grid is large enough such that no edge effects occur during the simulation.

Yet, the instability caused by accidental population of additional momentum states is not
destructive in nature. Looking at Fig. 9.10 (a), the total background population

nB =
∑

l>4

|βl |2 (9.69)

grows rapidly at the beginning of the oscillation. Subsequently, the dynamics of nB(τ) stabilize
and show oscillations with a maximum value of around nB ' 5 · 10−4. As can be seen in
Fig. 9.10 (b), the frequency of the ensuing oscillation is about 50 times larger than the FWM
frequency

νF =
1

T (m0 = 0.5)
' 0.244. (9.70)
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Figure 9.10: (a) Background population nB starts oscillating and quickly reaches maximum value.
(b) Oscillation frequency of nB is about 50 times bigger than the FWM frequency νF.
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Figure 9.11: Deviations δm = (mn−ma)/max(ma) and δφ = (φn−φa)/max(φa) versus dimensionless
time τ from numerical (mn,φn) to analytical solutions (ma,φa). All population outside of
FWM states is eliminated after each simulation step.

The non-negligible background population is the cause of change in the dynamics of the
FWM process. Because of

nF+nB =1, nF =
4
∑

j=1

|α j |2, (9.71)

growing nB reduces the population in the FWM states nF in comparison to the ideal case. As
the FWM process is caused by the density-density-interaction terms in the GPE (8.31), even
small changes in the particle number participating in the process have profound effects on
the dynamics.

The analytical solution can be recovered by eliminating all numerical noise produced by
FFT after each simulation step. Using such masks in k -space, the numerical simulation and
analytical solution agree within about 10−5 (see Fig. 9.11). However, this procedure yields a
loss in total particle number of about∆N /N = 10−6, far surpassing typical numerical noise.

For the implementation of the FWM neuron, we are interested in rather short time scales
and more qualitative behaviour of the system. Therefore, we accept the change in frequency of
the FWM oscillations and use the simulation on a discrete periodic lattice in the investigations
without additionally applying a filter mask in k -space. This is beneficial due to the high
flexibility of the simulation regarding initial conditions of the FWM states. However, the
deviation between the ideal case and with present background population should be kept in
mind, especially when looking at increasing simulation times.
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F O U R - WAV E M I X I N G N E U R O N

In this thesis, we aim to harness the dynamics of the ideal FWM process described in the
previous chapter to set up an AN. In addition to the processing of real numbers, ANs are
also able to operate with complex-valued inputs and outputs [221]. As the FWM process is
described in terms of complex amplitudes α j , the presented implementation of the FWM
neuron constitutes a complex-valued neuron. Due to the experimental accessibility of particle
numbers and phases, we choose to describe the nonlinear activation function and the learning
process in terms of absolute values and phases, rather than using real and imaginary parts of
the complex amplitudes α j [221]. The discussion of the FWM neuron is based on [36].

In Section 10.1, the implementation of an AN using the ideal FWM process is presented,
describing the algorithmic procedure and the resulting nonlinear activation function. After
describing steepest descent learning for complex-valued neurons in Section 10.2, the FWM
neuron is used to solve the benchmark XOR problem in Section 10.3. In this context, the
robustness of the FWM neuron against noise in the input data is also investigated.

10.1 I M P L E M E N TAT I O N O F F O U R- W AV E M I X I N G N E U R O N

In general, analogously to the description of ANs in Chapter 2, complex-valued neurons
process an n-dimensional (complex-valued) input

x j =|x j |e iκ j , j =1, . . . , n , (10.1)

by multiplying individually with weights

w j = |w j |e iϑ j , (10.2)

summing up the weighted inputs v j =w j x j and yielding an output y via a nonlinear activation
function Ω,

y =Ω(u ), u =
n
∑

j=1

v j . (10.3)

10.1.1 Identifying Input and Output

We implement such a computational unit with the ideal FWM process of coherent matter-
waves. The phase-flow

α̃=Φ(α;τF), (10.4)
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maps the initial state α= (α1, . . . ,α4) to the evolved state α̃= (α̃1, . . . , α̃4) after the duration τF

of the FWM process. Identifying the three amplitudes α1, α2 and α3 as weighted inputs v j and
α̃4 as output y , a similar, though not identical, rule to (10.3) can be established

α̃4 =Φ4(α1,α2,α3, 0;τF). (10.5)

The fourth component of the phase-flow map constitutes a nonlinear activation function
of a complex-valued FWM neuron with three input channels. In an experiment, we suggest to
use externally stored weights w j of the neuron and the classical input data x j to prepare the
weighted input amplitude

α j =w j x j (10.6)

by a sequence of Bragg pulses (see Appendix C). A diagrammatic visualization of the described
implementation algorithm of the FWM neuron can be seen in Fig. 10.1.

x1

x2

x3

w1

w2

w3

α1

α2

α3

Φ4(α1,α2,
α3, 0;τF )

α̃4

Figure 10.1: Initialisation sequence for a FWM neuron. Classical inputs x j are weighted with w j , yield-
ing amplitudes α j . The nonlinear relation Φ4(α1,α2,α3, 0;τF) yields the output α̃4.

10.1.2 Nonlinear Activation Function

In order to quantify the nonlinear activation function, τF has to be determined. To do so, we
fix the total particle number of every neuron implementation by setting γ= 1/s and choose
n1 = n2 = 0.45 and n3 = 0.1, whileϕ j = 0. The resulting FWM oscillation can be seen in Fig. 10.2.
To maximize the output in terms of ñ4 for this scenario, we set

τF = T /2, (10.7)

where T is the oscillation period as in (9.53).
To obtain a quantitative value for tF =τF/γ, experimental parameters have to be taken into

account. In their paper, Chomaz et al. [139] consider a quasi two-dimensional box trap with
N = 100,000 87Rb atoms inside. They are able to produce traps with an area of A = 200µm2

while enclosing the BEC on a length scale of h = 0.3µm along the third direction, yielding
a volume of V = 60µm3. With the scattering length a (9.61) and mass m (cf. Appendix B) of
87Rb, the FWM neuron duration can be determined as

tF ' 43.2µs. (10.8)

The FWM neuron’s response to varying weighted inputs is calculated numerically (cf. Sec-
tion 9.3.1). The population probabilities n j are tuned from 0 to 1 while enforcing the constraint



10.1 I M P L E M E N TAT I O N O F F O U R- W AV E M I X I N G N E U R O N 79

0 1 2 3 τF

τ

0.0

0.2

0.4

n
j

(a)

0 1 2 3 τF

τ

0.0

0.5

1.0

1.5

2.0

ϕ
j/
π

(b)

Figure 10.2: FWM dynamics in terms of (a) population probabilities n j and (b) phases ϕ j versus di-
mensionless time τ for γ= 1/s, n1 = n2 = 0.45 and n3 = 0.1, whileϕ j = 0 (α1: green, dashed;
α2: yellow, solid; α3: blue; α4: red). Neuron algorithm duration τF = T /2 is determined as
a half-oscillation period leading to maximal response.

∑4
j=1 n j = 1. Due to probability (number) conservation, all admissible combinations of n j

form a plane in n1-n2-n3-space. The input phases ϕ j are varied from 0 to 2π.
The resulting nonlinear activation function can be seen in Fig. 10.3. The output particle

number

ñ4 = |Φ4(α1,α2,α3, 0;τF)|2 (10.9)

is independent of the input phases ϕ j . Hence, only the input particle numbers n j determine
this part of the output. While we were not able to recover an analytical expression for the
relation, it can be extracted from Fig. 10.3 (a), that there has to be an exchange symmetry
regarding n1 and n2.

The output phase

ϕ̃4 = arg [Φ4(α1,α2,α3, 0;τF)] (10.10)

exhibits a remarkably simple behaviour. By analyzing Fig. 10.3 (b), one finds

nϕ =3n1+3n2+5n3, ϕϕ =ϕ1+ϕ2−ϕ3. (10.11)

Accordingly, the input-output-relation reads

ϕ̃4 = s nϕ +ϕϕ +d , (10.12)

where the slope and offset of phase were determined from a fit as s = (−1.77± 0.01) and
d = (2.67±0.04).

The numerical results in Fig. 10.3 can be used to determine the partial derivatives ∂ ñ4/∂ n j ,
∂ ϕ̃4/∂ n j and ∂ ϕ̃4/∂ ϕ j . These are needed to be able to train the neuron according to a
steepest descent method.
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Figure 10.3: Nonlinear activation function Φ4(α1,α2,α3,0;τF) of the FWM neuron in terms of
(a) ñ4 (10.9) versus n1, n2 and n3 and (b) ϕ̃4 (10.10) versus nϕ and ϕϕ (10.11).
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10.2 S T E E P E S T D E S C E N T L E A R N I N G F O R C O M P L E X - VA L U E D

N E U R O N S

The steepest descent learning method for single-layer feedforward networks, in this case
for a single output neuron, has been introduced in Section 3.1. Here, the developed training
method via iterative weight updates is extended to complex-valued neurons.

As weights, inputs and outputs are complex-valued quantities, this characteristic is also
imposed on the cost function E of the training procedure. Again, we consider the squared
error averaged over a training sample set (3.2) as the cost function. For the FWM neuron, the
total instantaneous error measure is given by

E (i ) =
1

2

�

�

�α̃
(i )
4 − α̂

(i )
4

�

�

�

2
. (10.13)

There, α̂(i )4 is the desired response associated with x (i ) and α̃(i )4 is the neuron response to this
stimulus.

As before, we perform the training procedure in an on-line manner (cf. Section 3.1.2). The
absolute values and phases of the weights can be updated independently [221]

∆|w (i )
j |=−ηa∂|w j |E

(i ), ∆ϑ(i )j =−ηp∂ϑ j
E (i ), (10.14)

where ηa and ηp are the learning rates for absolute value and phase, respectively. The required
gradients for the update rules (10.14), keeping in mind the variable dependencies of the
nonlinear activation function, are calculated using the chain rule as

∂ ñ4

∂ |w j |
=
∂ ñ4

∂ n j

∂ n j

∂ |w j |
= |x j |

∂ ñ4

∂ n j
,

∂ ϕ̃4

∂ |w j |
=
∂ ϕ̃4

∂ n j

∂ n j

∂ |w j |
= |x j |

∂ ϕ̃4

∂ n j
,

∂ ϕ̃4

∂ ϑ j
=
∂ ϕ̃4

∂ ϕ j

∂ ϕ j

∂ ϑ j
=
∂ ϕ̃4

∂ ϕ j
.

(10.15)

Hence, the update rules for |w j | and ϑ j are

∆|w (i )
j |=−ηa

��

ñ (i )4 − n̂ (i )4 cos
�

ϕ̃(i )4 − ϕ̂
(i )
4

��

∂n j
ñ (i )4 + ñ (i )4 sin

�

ϕ̃(i )4 − ϕ̂
(i )
4

�

∂n j
ϕ̃(i )4

�

|x (i )j |, (10.16)

∆ϑ(i )j =−ηpñ (i )4 n̂ (i )4 sin
�

ϕ̃(i )4 − ϕ̂
(i )
4

�

∂ϕ j
ϕ̃(i )4 . (10.17)

10.3 X O R P R O B L E M

To test its learning capabilities, the FWM neuron is used to solve the XOR problem as intro-
duced in Section 3.3.1. As discussed before, a single real-valued neuron is not sufficient to
solve this problem, i.e. hidden layers are required [42]. However, a single complex-valued
neuron is indeed able to solve this problem [222].
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10.3.1 Input and Output Encoding

To use the full value range of the nonlinear activation function of the FWM neuron to solve
the XOR problem, an encoding scheme for the inputs and the output has to be developed.
The inputs x1,2 are chosen to lie on the positive real axis (κ j = 0). While an input 0 is identified
by |x j |= 0.3, an input 1 is given by |x j |= 0.45.

The weights w j of the neuron are still allowed to possess non-vanishing phasesϑ j . Therefore,
the weighted inputs presented to the FWM neuron will be given by

p

n j =|w j ||x j |, ϕ j =ϑ j . (10.18)

As two input particle numbers, chosen to be n1 and n2, of the FWM neuron are set using
this encoding, the third, in this case n3, is automatically determined to ensure

∑

j n j = 1.
Consequently, the combinations of inputs n1 and n2 are constrained by 0≤ n1+n2 ≤ 1.

The particle number response of the FWM neuron to the inputs is completely determined
by the input particle numbers ñ4(n1, n2). The neuron response in terms of the phase follows

ϕ̃4(n1, n2,ϕ1,ϕ2) = ϕ̃4(n1, n2, 0, 0) +ϕ1+ϕ2 (10.19)

These input-output relations can be seen in Fig. 10.4.
The possible outputs of the XOR problem are encoded in a similar fashion. An output 0 is

encoded via ñ4 = 0.125 and ϕ̃4 = 1.5 or ñ4 = 0.435 and ϕ̃4 = 2.5 for the input cases [0,0] and
[1,1] respectively. The output 1 is always encoded as ñ4 = 0.155 and ϕ̃4 = 2. The complete
encoding of the XOR problem for the FWM neuron can be seen in Table 10.1. The presented
encoding is completely equivalent to the original XOR problem. Hence, it can be used to solve
the problem by means of the FWM neuron.

10.3.2 Training Results

Starting from random initial weights, the update rules (10.16) and (10.17) are used to train the
FWM neuron to solve the XOR problem. Training epochs are performed with 1,000 random
samples. The learning rate of the phase ηp = 10−8 is kept constant for all epochs while the
absolute value learning rate ηa is gradually reduced from 10−3 to 10−4 during the training.
After each epoch, the performance of the neuron is evaluated by calculating the averaged
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Figure 10.4: Input-output relations (a) ñ4(n1, n2) and (b) ϕ̃4(n1, n2, 0, 0) of the FWM neuron to solve the
XOR problem. (c) By choosing the outputs of the individual cases according to Table 10.1
(green, output 0; red, output 1), the XOR problem is solvable using a single FWM neuron.
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Table 10.1: Encoded input-output mapping for the XOR problem using the FWM neuron.

Input 1 Input 2 |x1| |x2| Output ñ4 ϕ̃4

0 0 0.3 0.3 0 0.125 1.5
0 1 0.3 0.45 1 0.155 2.0
1 0 0.45 0.3 1 0.155 2.0
1 1 0.45 0.45 0 0.435 2.5

squared error E according to (3.2) using all m = 4 possible input-output pairs of the XOR
problem.

As can be seen in Fig. 10.5, the FWM neuron is able to learn to solve the XOR problem. After
100 training epochs, the initial error is reduced to E = 7.8 ·10−6. A sample is categorized as
being identified correctly, if the neuron output is within ±0.01 in terms of particle number
and within ±0.1 in terms of phase of the desired value. At the end of the training procedure,
every test sample is identified correctly.

0 20 40 60 80 100

Epoch

10−5

10−4

10−3

10−2

E

Figure 10.5: Averaged squared error E (3.2) over all four possible input-output pairs of the XOR problem
versus number of training epochs.

10.3.3 Imperfect Training and Testing Data

In real-world application, input data tends to be imperfect. To take this aspect into account,
random noise is added to the neuron inputs. At first, this will be limited to test samples to
investigate the influence of such noisy data on test results for a neuron trained with ideal data.
Subsequently, the neuron is also subjected to noisy data during the training process.

Noisy Testing Data

The FWM neuron trained on the XOR problem as described in Section 10.3.2 is to be tested in
terms of robustness against noise in the input data. To do this, the network setup at the end of
the training procedure is presented with noisy test samples. This additive noise is assumed to
be Gaussian with zero mean and standard deviationσ, influencing both inputs |x1| and |x2|.

The standard deviation is tuned from σ = 0 to σ = 0.05. For each standard deviation,
the averaged squared error E is calculated according to (3.2) for m = 10,000 noisy inputs.
Additionally, the percentage of correctly identified test samples pc is determined for each
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Figure 10.6: (a) Averaged squared error E and (b) percentage of correctly identified samples pc versus
standard deviationσ for testing with noisy data on the FWM neuron trained for 100 epochs
with ideal data to solve the XOR problem. The additive noise on the inputs is Gaussian
with zero mean and standard deviationσ.σ is normed to the mean input |x̄ |=0.375.

standard deviation. As in Section 10.3.2, a sample is categorized as being identified correctly
if the neuron output is within ±0.01 in terms of particle number and within ±0.1 in terms of
phase of the desired value.

As can be seen in Fig. 10.6, both E and pc indicate a decrease in performance with increasing
σ. Looking at pc, 90% of the test samples are identified correctly for σ ' 0.05|x̄ |, where
|x̄ |= 0.375 is the mean input. For a standard deviation of 1% of the mean inputσ= 0.01|x̄ |,
the neuron identifies 79.9% of the samples correctly, dropping to 31.1% forσ= 0.05|x̄ | and
11.3 % forσ= 0.1|x̄ |.

Noisy test data clearly yields a loss in performance of the FWM neuron. However, typically
not only testing data is subject to noise. Such noisy inputs will also be present during the
training procedure.

Training and Testing on Noisy Data

To investigate the influence of noisy training inputs on the performance of the FWM neuron
in solving the XOR problem, an additive Gaussian noise with zero mean and standard devia-
tionσtrain is applied on every training sample. Equivalently to Section 10.3.2, the training is
performed over 100 epochs with 1,000 noisy samples per epoch.

As before, the performance of the FWM neuron in solving the XOR problem is tested after the
training procedure on noisy data in terms of the averaged squared error E and the percentage
of correctly identified samples pc using m = 10,000 test samples. The additive noise applied
to the testing inputs is Gaussian with zero mean and standard deviationσtest.

As can be seen in Fig. 10.7, training on noisy data has a similar effect on the performance
of the FWM neuron as testing with such data. For constant testing noise, pc decreases with
increasingσtrain. In particular, forσtest = 0, pc is constant at 100% up to a certain degree in
training noise and subsequently exhibits a sharp drop.

From the calculated results, there does not seem to be an exceptional point where noise
in training and testing data constructively produce better performance. This intuition is
reinforced by the results in Fig. 10.8. For equal noise in training and testingσ=σtrain =σtest,
the FWM neuron shows nearly identical performance as in testing on noisy data after training
on ideal samples. This reveals a robustness of the training procedure of the FWM neuron
against noise.
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Figure 10.7: Percentage of correctly identified samples pc versus standard deviations of the testing
σtest and the training inputs σtrain. Standard deviations are normed to the mean input
|x̄ |=0.375.

10.3.4 Discussion

The FWM neuron proves that coherent matter waves and their intrinsic nonlinear interactions
can be used to set up an AN. Identifying three complex amplitudes of the FWM setup as input
and the fourth amplitude as output, a new implementation for a complex-valued neuron can
be introduced. Through in-detail investigation of the nonlinear response of the FWM neuron
to complex-valued input data, its learning capabilities can be tested using steepest descent
learning for complex-valued neurons.

Due to its complex nature, the FWM neuron is able to solve the XOR problem with just
a single neuron. At the end of a learning procedure, the FWM neuron is able to identify all
test samples correctly. Even when presented with noisy data, the FWM neuron shows decent
performance up to a certain degree of noise.
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Figure 10.8: (a) Averaged squared error E and (b) percentage of correctly identified samples pc versus
standard deviationσ. Training on ideal samples and testing on noisy data (green, dotted)
yields nearly identical results as applying equal noise during training and testing (yellow,
solid).
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Additionally, with a duration of the FWM neuron implementation of tF = 43.2µs, the input
processing is much faster than it was the case for the thermal cloud neuron. Hence, an actual
implementation of the FWM neuron seems within the realm of possibility.

To be able to tackle more sophisticated problems, other than the XOR problem, one has to
go beyond a single FWM neuron. Therefore, a logical step forward is the implementation of a
FWM neuron in a feedforward neural network architecture.



11
F O U R - WAV E M I X I N G N E U R A L N E T W O R K

To implement the FWM neuron in a deep feedforward neural network, two key aspects have to
be investigated: parallelization ability and communication between layers of the network. As
two-dimensional FWM and one-dimensional FWM with multiple internal levels are equivalent
(cf. Section 9.2.3), both variants are taken into account for network implementation.

To parallelize multiple FWM neuron implementations, different pathways can be con-
sidered: spatial parallelization, parallelization in momentum space or using the extended
internal structure of the atoms. Those investigations are performed in Section 11.1. It is shown,
that especially parallelizing FWM neurons using multiple internal states lends itself well to
set up a network. A scheme to implement communicating layers of a network is shown in
Section 11.2, realizing a tree-like neural network. Subsequently, this implementation is trained
on an example dataset using a six-dimensional input, three FWM neurons in a hidden layer
and one FWM neuron in the output layer to display the learning capabilities of the FWM
neural network.

11.1 N E U R O N PA R A L L E L I Z AT I O N

In an ANN, the individual neurons inside one layer are supposed to operate independently of
each other. Therefore, the goal of parallelization is to find a setup such that the dynamics of a
single neuron are not disturbed by the presence of other neurons.

11.1.1 Spatial Separation

A convenient way to parallelize the FWM neuron is to implement spatially separated real-
izations of the neuron to form a layer of a network. In this case, the coherent matter waves
participating in the FWM process of the individual neurons do not overlap and, as a result, do
not interact with each other. Hence, the neurons act completely independent of each other.

In the two-dimensional realization of the FWM setup, spatial separation can be achieved
by spatially stacking two-dimensional box traps (cf. Section 6.1.2). Analogously, the one-
dimensional implementation with multiple internal states can be parallelized spatially by
using individual ring potentials for the individual neurons. A visualization of spatially stacking
two-dimensional box traps can be seen in Fig. 11.1.

The downside of spatially separating individual neuron implementations lies in the next
step of setting up a network, transporting the output information into the next layer. As the
neurons are spatially separated, the output information of a single neuron (complex amplitude
α̃4 of the fourth momentum component of the FWM process) would have to be transported
through space and merged with outputs from other neurons to implement the input of the
next layer. This seems to be quite cumbersome and experimentally difficult to achieve. Hence,
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y
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Figure 11.1: Visualization of box traps in the x -y -plane spatially stacked along the z -direction.

alternative approaches to obtain neuron parallelization are considered where the individual
FWM processes do not show spatial separation.

11.1.2 Stacked Four-Wave Mixing in Momentum Space

An alternative to spatially separating FWM neuron setups is to implement multiple realizations
stacked in momentum space. To investigate this scenario, consider a two-dimensional FWM
configuration with wave vectors k 1, k 2, k 3 and k 4, satisfying the FWM conditions (9.19). This
configuration can be arbitrarily chosen to lie in the kx -ky -plane. For parallelization, we stack
a second FWM configuration with wave vectors k 5, k 6, k 7 and k 8 on top of the original one
in k -space by setting

k j+4 =k j +∆kz , j =1, . . . , 4, (11.1)

where∆kz is the separation of the two configurations along the kz -axis. A visualization of the
proposed geometry can be seen in Fig. 11.2. The wave vectors of the second FWM configuration
also satisfy the FWM conditions (9.19).

k x

ky

k
z

Figure 11.2: Visualization of geometry of the FWM configurations stacked in momentum space. The
second FWM configuration (yellow) is a copy of the original one (green), shifted along the
kz -axis by∆kz .



11.1 N E U R O N PA R A L L E L I Z AT I O N 89

Dynamics of Stacked Setup

The dynamics for the complex amplitudes α j (t ), j ∈ [1,8], can be recovered by determining
the Lagrangian L according to (9.12) for the stacked FWM ansatz

�

�ψα
�

=
8
∑

j=1

p
Nα j

�

�k j

�

. (11.2)

Evaluating the dimensionless Euler-Lagrange equations (see Section 9.2.1) reveals, that the
system of differential equations describing the dynamics of the amplitudes can be written in
block structure as

iα̇=

�

H` 0
0 Hu

�

α, (11.3)

where α = (α1, . . . ,α8)T. The matrices governing the dynamics of the lower H` and upper
configuration Hu, respectively, are given by

H` = 2









ω̄1
2 +m1 α∗6α5 α∗2α4+α∗6α8+α∗7α5 α∗6α7+α∗8α5

α∗5α6
ω̄2
2 +m2 α∗5α8+α∗7α6 α∗1α3+α∗5α7+α∗8α6

α∗4α2+α∗5α7+α∗8α6 α∗6α7+α∗8α5
ω̄3
2 +m3 α∗8α7

α∗5α8+α∗7α6 α∗3α1+α∗7α5+α∗6α8 α∗7α8
ω̄4
2 +m4









(11.4)

and

Hu = 2









ω̄1+ω̄z
2 +m5 α∗2α1 α∗2α4+α∗3α1+α∗6α8 α∗2α3+α∗4α1

α∗1α2
ω̄2+ω̄z

2 +m6 α∗1α4+α∗3α2 α∗1α3+α∗4α2+α∗5α7

α∗4α2+α∗1α3+α∗8α6 α∗4α1+α∗2α3
ω̄3+ω̄z

2 +m7 α∗4α3

α∗3α2+α∗1α4 α∗3α1+α∗2α4+α∗7α5 α∗3α4
ω̄4+ω̄z

2 +m8









, (11.5)

where

mi =
8
∑

j=1

n 2
j −

ni

2
, ω̄z =

ħh |∆kz |2

2mγ
. (11.6)

The block structure of (11.3) implies that the total particle numbers in the individual con-
figurations

N` =
4
∑

j=1

n j N , Nu =
8
∑

j=5

n j N (11.7)

are conserved. Hence, there is no effective particle interchange between the two configurations.
However, there are terms present in H` as well as in Hu which generate coherent coupling
between the two configurations. Consequently, the dynamics of the configurations have the
potential to influence each other, which is supposed to be avoided in the setup of a network
structure.
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Analysis of Independence of Stacked Configurations

The aim of parallelization is that the dynamics of a FWM neuron remain undisturbed in the
presence of another neuron. Hence, we can define an ideal target state |ψid〉, which is given
by the state of an individual neuron, described by the wave function in the kx -ky -plane at
time τF, and depends on the input amplitudes α1, α2 and α3 (see Section 10.1). Analogously,
we define test states |ψte〉 as the state of an identical neuron in the kx -ky -plane, however
now in the presence of a second neuron stacked in momentum space. This second neuron is
characterized by the same implementation algorithm described in Section 10.1. In particular,
this implies, that the total particle number of the second neuron is the same as the one of the
reference neuron. However, the second neuron might show varying ratios of particle number
inputs nu,1, nu,2 and nu,3. Additionally, the separation of the neurons along the kz -axis∆kz

might be varied.
To quantify possible deviations between the ideal and test states, we introduce the fidelity

F =
�

�




ψid|ψte

��

�

2
. (11.8)

This is a measure which characterizes the overlap between the two states. The value range of
the fidelity is F ∈ [0,1], where F = 1 if the two states perfectly overlap. Hence, if the neuron
activity is completely undisturbed by the presence of an additional neuron, the ideal |ψid〉
and test state |ψte〉 should yield F = 1.

PA R A M E T E R S O F N U M E R I C A L S I M U L AT I O N Throughout this section, we investigate nu-
merical simulations of the GPE on a three-dimensional discrete grid with 16×16×16 sites. In
the simulations, dimensionless time is discretized with∆τ= 10−4, while the simulation time
is taken to be τF from Section 10.1. Again, the geometry described in Appendix C is chosen,
yieldingω j = 1/s, j = 1, . . . ,4, for the momentum components in the kx -ky -plane. For the
isolated reference neuron, we choose γ= 1/s and set n1 = n2 = 0.45 and n3 = 0.1 while keeping
all phases atϕ j = 0. To compensate for the increased total particle number in the investigation
of the test neuron due to the presence of the stacked neuron, the frequency is accordingly set
to γ= 2/s.

I N F L U E N C E O F S E PA R AT I O N I N M O M E N T U M S PA C E As a first benchmark, we consider
the case, where the stacked FWM neuron is identical to the reference neuron. This implies
nu,1 = nu,2 = 0.45 and nu,3 = 0.1 while ϕu, j = 1. The two configurations are separated by
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Figure 11.3: Dynamics of FWM neuron setup with (yellow) and without (green) the presence of an
additional identical stacked neuron with separation∆κz = 8 in terms of (a) population
imbalance m and (b) phase differenceφ versus dimensionless time τ.
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Figure 11.4: Fidelity F versus separation along the kz -axis in terms of grid sites∆κz between the ideal
case of an isolated FWM neuron and a FWM neuron in the presence of an additional
identical stacked neuron.

∆κz = 8, where ∆κz is the separation of configurations along the kz -direction in terms of
discrete grid sites. The dynamics of the reference and test FWM neurons are compared in
terms of population imbalance m (9.29) and phase difference φ (9.28). As can be seen in
Fig. 11.3, the dynamics of the FWM neuron with and without the presence of a second neuron
differ visibly. At time τF, the fidelity is given by F = 0.797.

Clearly, the dynamics of the FWM neuron are influenced by the presence of the second
configuration. To investigate whether this influence is dependent on the separation of the
two configurations along the kz -direction, the fidelity F is calculated for varying∆κz . As can
be seen in Fig. 11.4, the fidelity decreases with increasing separation, however not in a drastic
manner. Yet, there is no separation at which the influence of the second configuration can be
neglected.

I N F L U E N C E O F PA R T I C L E N U M B E R R AT I O S Already from the first example in the previous
paragraph, the presence of a stacked neuron seems to influence the dynamics of a test neuron.
However, in a neural network, the input states of two neurons in a layer will typically not be
identical. To investigate the effect of varying input states of a stacked neuron on a test neuron,
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Figure 11.5: Fidelity F versus relative particle number ratios nu,1, nu,2, nu,3 of stacked FWM neuron.
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we vary the relative particle number ratios nu,1, nu,2, nu,3 and calculate the fidelity between
the state of the test neuron and an isolated reference neuron.

As can be seen in Fig. 11.5, the fidelity changes heavily with varying combinations nu,1, nu,2,
nu,3. Spanning a range from F ≈ 0.2 to near perfect matching between test and ideal state,
the fidelity is typically higher for particle number ratios which are similar to the one of the
reference neuron (n1 = n2 = 0.45, n3 = 0.1). This implies that the more different the input state
of the stacked neuron is compared to the reference neuron in terms of particle number ratios,
the more it will influence the dynamics of the latter.

Discussion

The presented investigation shows, that the dynamics of a FWM neuron are clearly influenced
by the presence of a second FWM neuron stacked in momentum space. The severity of this
influence in terms of the fidelity F after a neuron implementation time τF depends on the
ratios of relative particle numbers of the stacked neuron. However, as all combinations should
be realizable to set up a layer of a functioning neural network, any influence at all prohibits
an ANN setup using this implementation method.

While the coupling of the FWM configurations stacked in momentum space prevents the
usage of this setup in terms of deep feedforward neural networks, the mutual influence of the
configurations might be exploited as a feature in an alternative approach to machine learning,
namely reservoir computing [223–225]. In reservoir computing, the input data can be encoded
in the dynamics of a physical system [226–229]. A pattern analysis is performed in the readout
of the system. In contrast to neural networks, input weights win and weights w of possible
recurrent connections inside the system are not updated during the training procedure. Only
the output weights wout of the readout are changed during the training, for example by linear
regression. This implies, that the parameters of the physical system are kept fixed. Hence,
hardly any control over the system dynamics is required. A schematic visualization of reservoir
computing can be seen in Fig. 11.6.

A setup of d stacked FWM configurations offers the possibility to realize reservoir computing
with up to 4d inputs. The more FWM configurations are stacked in momentum space, the
more mutual interaction is introduced into the system, implying more possible recurrent
connections inside the system. Performing a readout after some time of system evolution and
using established methods from reservoir computing, this approach might offer an interesting
implementation opportunity for reservoir computing worth investigating.

. . .
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x0

xn

y0

y1

. . .

ym

win

Physical system
w wout

Input Readout

Figure 11.6: Schematic visualization of reservoir computing. The n-dimensional input is prepared as
the state of a physical system, where a m-dimensional readout is performed after some
time of system evolution. During the training procedure, only the output weights wout

are modified such that the required control over the physical system is minimal. Graphic
adapted from [226].
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11.1.3 Parallel Four-Wave Mixing using Internal States

Another approach to parallelize the FWM neuron implementation is to utilize the extended
internal structure of the BEC. As seen in Section 9.2.3 the dynamics of a two-component BEC
can be described by a two-component GPE (9.55). By analyzing the matrix representation
(9.56) of this equation, one can identify a way to decouple the dynamics of the two compo-
nents: for vanishing inter-component scattering length a12 = 0 no coupling between the two
components arises and the dynamics will be independent of each other.

We envision a situation of two two-dimensional overlapping FWM configurations with
identical geometry (see Appendix C), one in internal state |1〉 and the other in internal state
|2〉. In an ideal scenario, the intra-component scattering lengths are equal a11 = a22, while the
inter-component scattering length vanishes a12 = 0. To find such a configuration, either one
has to make use of a favorable configuration in the hyperfine structure of, for example, 87Rb,
or tune the intra- and inter-component interaction strengths via Feshbach resonances.

PA R A M E T E R S O F N U M E R I C A L S I M U L AT I O N To investigate the feasibility of this decou-
pling ansatz, we compare the dynamics of an isolated reference FWM neuron with those
of an identical test neuron in the presence of another FWM configuration in an additional
internal state, similar to the procedure in Section 11.1.2. In this section, we use numerical
simulations of the two-component GPE on a two-dimensional discrete grid with 16×16 sites.
Again, dimensionless time is discretized with∆τ= 10−4 while the simulation time is taken to
be τF from Section 10.1. Using the two-dimensional FWM geometry from Appendix C yields
ω j = 1/s, j = 1, . . . , 4. For the isolated reference FWM configuration we set γ= 1/s and choose
n1 = n2 = 0.45 and n3 = 0.1 while keepingϕ j = 0. In investigating the test neuron, the increased
particle number in the presence of a second FWM configuration has to be taken into account
regarding γ only if the inter-component scattering length is non-vanishing. Accordingly, we
set γ= (1+ ã12)/s, where ã12 = a12/a11.

I N F L U E N C E O F I N T E R- C O M P O N E N T S C AT T E R I N G L E N G T H At first, we consider the case
where the second FWM configuration is identical to the test neuron, yielding n2,1 = n2,2 = 0.45
and n2,3 = 0.1 with ϕ2, j = 0. To investigate the influence of the relative inter-component
scattering on the dynamics of the test neuron, we vary ã12. The dynamics of the reference and
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Figure 11.7: (a) Population imbalance m and (b) phase difference φ versus dimensionless time τ
for an isolated reference FWM neuron (green) and a test FWM neuron with a second
configuration present in an additional internal state with varying relative inter-component
scattering lengths: ã12 = 0 (yellow, dashed), ã12 = 0.1 (blue), ã12 = 0.5 (red), ã12 = 1 (orange)
and ã12 = 2 (lime).
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Figure 11.8: Mean (green), maximum (yellow) and minimum (blue) fidelity F versus relative inter-
component scattering length ã12 for the combinations of input relative particle numbers
n2,1, n2,2 and n2,3 from Fig. 11.5.

test FWM configurations in terms of the population imbalance m and the phase differenceφ
can be seen in Fig. 11.7.

Clearly, for non-negligible inter-component scattering, the dynamics of the test FWM
neuron are influenced significantly. However, with ã12 nearing lower values, the dynamics of
the test neuron approach those of the reference neuron. To possibly confirm this impression,
we deepen the present investigation by calculating the fidelity F (11.8) for varying relative
inter-component scattering lengths ã12 and varying relative particle numbers n2,1, n2,2 and
n2,3 of the FWM configuration in the second internal state.

As can be seen in Fig. 11.8, the fidelity F is generally reduced below the desired value F = 1
for non-vanishing ã12. However, for ã12 = 0, the fidelity is F = 1 for every combination of
relative particle numbers n2,1, n2,2 and n2,3. Hence, in this case, the dynamics of the test FWM
neuron are indeed undisturbed by the presence of a second configuration.

Using two-dimensional FWM in multiple internal states with vanishing inter-component
scattering yields the possibility to parallelize the FWM neuron while ensuring that the dynam-
ics of the individual neurons remain undisturbed. Hence, we use this parallelization method
to set up a network of FWM neurons with multiple layers.

11.2 C O M M U N I C AT I O N B E T W E E N L AY E R S - N E T W O R K S E T U P

To test whether the FWM neuron can be implemented in a network structure, we examine an
example case, namely a two-layer tree-like feedforward network. In contrast to fully-connected
networks, neurons are not connected to every neuron in the adjacent layers in tree-like
networks (see network structure in Fig. 11.9). They rather form branches leading to one or
multiple roots. We realize a 9-3-1 network, implying a six-dimensional input, three neurons
in the hidden layer and one neuron in the output layer.

11.2.1 Network Setup using Multiple Internal States

Every FWM neuron is realized via a two-dimensional FWM process in a distinguished internal
state |i 〉. Analogously to the investigations in Section 11.1.3, the intra-component scattering
lengths ai i are assumed to be equal for all internal components, while all inter-component
scattering lengths ai j are assumed to vanish. Using the wave vector constellations shown in
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Figure 11.9: Setup of a tree-like feedforward FWM neural network. Inputs are prepared as described
in Section 10.1 in three internal states |1〉, |2〉 and |3〉. For the case of vanishing inter-
component scattering lengths ai j , those neurons are independent of each other. The
momentum components of the two-dimensional FWM process constituting the inputs
and output are cyclically permuted to ensure a proper FWM configuration for the output
layer. Outputs α̃1,4, α̃2,1 and α̃3,2 of the hidden layer are transported to the output layer via
a conversion to internal state |4〉 using Rabi oscillations. The total output of the network
is given by α̃4,3 with the implementation algorithm of the neuron in the output layer
described in Section 11.2.2.

Fig. 11.9, a propagation from the output signals of the neurons in the hidden layer to an input
of the output neuron is possible. There, transport of population between different internal
states can be achieved via Rabi oscillations [128].

The three neurons in the hidden layer are implemented according to the algorithm described
in Section 10.1. Accordingly, the total particle number of the input of one neuron is always
fixed (all particle numbers in the implementation of the FWM neural network are normalized
to this total input particle number of an individual neuron in the hidden layer). Therefore,
by setting two particle numbers, the third one is implicitly determined to ensure

∑

j ni , j = 1,
i = [1,2,3]. Hence, the network is able to process six independent inputs. While the phase
output of a FWM neuron, realized according to Section 10.1, has a value range ϕ̃4 ∈ [0,2π]
which is equal to the input value range of a FWM neuron, the output particle number value
range is ñ4 ∈ [0, 0.43].

The roles of the momentum components of the FWM process as input and output of the
neurons are cyclically permuted to ensure that the neuron in the output layer receives input in
three different momentum states, again enabling FWM. This cyclic permutation leads to slight
changes in the implementation algorithm of the FWM neurons in some internal states. For the
case of internal state |1〉, where the fourth momentum component is identified as output, the
formulation of the FWM neuron is exactly given by the description in Section 10.1. For internal
states |2〉 and |3〉, where the output is given by the first and second momentum component,
respectively, minor adjustments have to be taken into account. The particle number outputs
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ñ2,1 and ñ3,2 show an exchange symmetry regarding ni ,3 and ni ,4, i ∈ [2,3]. Additionally, the
phase outputs ϕ̃2,1 and ϕ̃3,2 respond to the linear combinations

nϕ,2 =3n2,3+3n2,4+5n2,2, ϕϕ,2 =ϕ2,3+ϕ2,4−ϕ2,2 (11.9)

and

nϕ,3 =3n3,3+3n3,4+5n3,1, ϕϕ,3 =ϕ3,3+ϕ3,4−ϕ3,1, (11.10)

respectively. Otherwise, the implementations are completely equivalent.

11.2.2 Nonlinear Activation Function of Second-Layer Neuron

The FWM neuron in the output layer has to be implemented using a modified algorithm as, in
contrast to the neurons in the hidden layer, the total input particle number will not be fixed.
To maximize the output of the FWM neuron in the output layer in terms of ñ4,3 for the case of
maximum particle number input, n4,1 = n4,2 = n4,4 = 0.43, the implementation duration τF,4

of this neuron is redetermined as

τF,4 = T4/2, (11.11)

where T4 is the oscillation period for the given configuration. The resulting FWM oscillation
can be seen in Fig. 11.10. Considering the same experimental parameters as in Section 10.1.2
yields

tF,4 ' 23.4µs. (11.12)

The nonlinear activation function of a FWM neuron in the second layer of a 9-3-1-network
can be seen in Fig. 11.11. Again, the output particle number ñ4,3 is independent of the input
phases ϕ4, j . As was the case before, we were not able to extract an analytical expression from
the data. However, the exchange symmetry regarding n4,1 and n4,2 persists. The output phase
ϕ̃4,3 shows the same linear dependence from (10.12) with

nϕ,4 =3n4,1+3n4,2+5n4,4, ϕϕ,4 =ϕ4,1+ϕ4,2−ϕ4,4, (11.13)

and parameters s = (−0.97±0.01) and d = (3.50±0.04) determined via a least square fit. The
numerical results can be used to determine the partial derivatives ∂ ñ4,3/∂ n4, j , ∂ ϕ̃4,3/∂ n4, j

and ∂ ϕ̃4,3/∂ ϕ4, j needed to train the network using the backpropagation algorithm.
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Figure 11.10: Dynamics of population probabilities n4, j versus dimensionless timeτ for a FWM neuron
in the second layer of a network. The initial state is given by n4,1 = n4,2 = n4,4 = 0.43, while
ϕ4, j = 0 (α1: green, dashed; α2: yellow, solid; α3: blue; α4: red). The neuron duration τF,4

is determined as a half-oscillation period leading to maximal response.
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Figure 11.11: Nonlinear activation function of a FWM neuron in the second layer of a 9-3-1-network in
terms of (a) ñ4,3 versus n4,1, n4,2 and n4,4 and (b) ϕ̃4,3 versus nϕ,4 and ϕϕ,4.
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11.2.3 Learning Capability of Four-Wave Mixing Neural Network

To test the learning capabilities of the FWM neural network described in the previous section,
an exemplary task is presented to the network. A six-dimensional input to the network is given
by a sequence of six logical bits xi ∈ [0, 1], i = 1, . . . , 6. The goal of the training procedure is to
perform classification tasks such as ”Has the sequence an even/odd number of ones?” or other
examples of that kind. To do so, the network is trained to distinguish the different possible
input patterns. The complexity of the training is reduced by restricting inputs, weights and
outputs to real values given by relative particle numbers n . The presented procedure is a proof
of concept and readily expandable to complex numbers.

To make use of the full range of the nonlinear activation functions of the neurons, a logical
input 0 is encoded as a particle number n = 0.35, while a logical 1 is given by n = 0.45. As
input channels for the FWM neurons in the hidden layer, those relative particle numbers are
chosen under which the output particle numbers of the respective neurons show an exchange
symmetry. Hence, the input channels are n1,1, n1,2, n2,3, n2,4, n3,3 and n3,4. Also, the desired
output values ñ4,3 have to be chosen carefully to make use of the nonlinear activation function
of the FWM neuron in the second layer. The complete encoding scheme used for training and
testing of the network can be seen in Appendix D.

The network is trained using the backpropagation algorithm from Section 3.2, with the
update rule for the absolute value of a complex weight from Section 10.2, in accordance with
the proposed real-valued implementation using relative particle numbers. On-line training is
performed over 1,000 epochs with 1,000 random samples per epoch. The learning rate is set to
ηa = 10−3 for the first 100 epochs, to ηa = 5 ·10−4 for epochs 100 through 500, to ηa = 2.5 ·10−4

for epochs 500 through 850 and to ηa = 10−4 for the final 150 epochs. After each epoch, the
performance of the network in distinguishing the different bit sequences is evaluated by
calculating the averaged squared error E according to (3.2) for m = 1,000 random samples.

As can be seen in Fig. 11.12, the FWM neural network is able to improve its performance
in distinguishing the presented samples via backpropagation training. Starting from ran-
dom weights, the averaged squared error is reduced to E = 9.01 ·10−6 after 1,000 epochs. By
increasing its performance, the network can be applied to a variety of classification tasks.

0 200 400 600 800 1000

Epoch

10−5

10−4

10−3

E

Figure 11.12: Averaged squared error E (3.2) over m = 1,000 random samples versus epochs for training
the FWM neural network to distinguish a logical 6-bit sequence.
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11.2.4 Discussion

In the pursuit of setting up a FWM neural network, we investigated different possible ways to
achieve this. While spatially separating FWM neurons yields a perfect parallelization possibility,
this same spatial separation prevents transport of output information of one layer to the next
and therefore the establishment of a feedforward network.

In contrast, FWM configurations stacked in momentum space do not show spatial sepa-
ration and overlap perfectly. However, interactions between the stacked configurations are
non-negligible. Accordingly, the FWM dynamics are influenced by the presence of stacked
configurations, preventing parallelization in the sense of neural networks. Yet, the presented
constellation might still find an application in the realm of machine learning, specifically in
reservoir computing. There, one only has to have control over readout weights and recurrent
interactions inside the physical system might actually be beneficial. As the FWM setup stacked
in momentum space possesses clearly defined input and output channels, it might be a good
candidate to implement reservoir computing.

A suitable method yielding independent parallel FWM neurons and the possibility to trans-
port output information to the next layer is given by using multiple internal states of the
BEC. In an ideal scenario, the intra-component scattering lengths ai i are equal for all states
constituting the network and all inter-component scattering lengths ai j vanish. As noted
before, we assume such a configuration can be found in the extended internal structure of a
BEC isotope or can be artificially produced using, for example, Feshbach resonances. Given
one finds such a configuration, we are able to set up a tree-like feedforward neural network
with six inputs and one output using four internal states. The backpropagation algorithm
can be used to train this network to distinguish different patterns of a logical 6-bit sequence,
demonstrating the learning capabilities of the network. This example serves as a proof of
concept that FWM neurons can indeed be embedded and trained in a network structure,
yielding the FWM neural network.
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E M I S S I O N P R O P E R T I E S O F Q U A N T U M D O T
S U P E R L U M I N E S C E N T D I O D E S

Characteristic emission properties have made superluminescent diodes (SLDs) an attractive
light source for optical implementations of artificial neural networks [19–23]. Their combi-
nation of high output power, broad optical spectra and spatially directed emission can be
utilized efficiently in such setups.

In this thesis, we aim to aid the investigation of such light sources, and in particular quantum
dot superluminescent diodes (QDSLDs), by investigating first- and second-order temporal
correlation properties of these emitters. Especially their behaviour of showing temperature-
dependent intensity noise suppression, as demonstrated by Blazek et al. [24], is of interest.
Adding suppressed intensity noise to the characteristics of such diodes, implying emission
which is first-order incoherent and second-order coherent, introduces a new class of light
sources.

In Chapter 12 we investigate the emission properties of QDSLDs at room temperature. We
show, that first- and second-order temporal correlation properties of these diodes can be
described by a superposition of independent stochastic emitters, enabling access to statistical
properties of the emitted light. Subsequently, in Chapter 13, we investigate the transformation
of photon statistics of the QDSLD emission through interaction with a pumped atomic three-
level-system. Introducing temperature dependence into our description via measured output
intensities, we are able to reproduce experimentally observed intensity noise suppression.

12.1 Q U A N T U M D O T S U P E R L U M I N E S C E N T D I O D E S

QDSLDs are semiconductor-based light sources that can be classified between coherent
laser diodes (LDs) and incoherent light emitting diodes (LEDs). Using specialized waveguide
geometries and an active medium consisting of inhomogeneously broadened InAs/InGaAs
quantum dot (QD) layers, they are able to combine high output intensities, spatially directed
emission and spectral widths in the THz regime [230].

The setup of QDSLDs is very comparable to all other sorts of opto-electronic semiconduc-
tor light sources. The active medium of the diode is positioned inside a waveguide and is
embedded in a forward biased p-n-junction. Under the emission of a photon, electrons from
the n-doped region and holes from the p-doped region recombine in the active region of the
material [147]. In contrast to LDs and LEDs, QDSLDs emit amplified spontaneous emission
(ASE). In this process, an initially spontaneously emitted photon gets amplified due to stimu-
lated emission along its propagation through the waveguide. The consequence is emission
with large optical bandwidth, small coherence length, yet enhanced output power compared
to LEDs [231].
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Since being proposed by Lee et al. in 1973 [230], the emission properties of QDSLDs have
become an intensely researched topic in recent years. This was made possible after Boitier
et al. enabled the direct measurement of coherence times in the femtosecond regime us-
ing two-photon absorption in semiconductors in 2009 [232]. From a theoretical point of
view, the understanding of light generation processes inside the diode is a main focus. Ap-
proaches utilized in those investigations include rate equation models [233–235], travelling
wave approaches [236], finite element methods [237] and quantized treatments [238, 239]. Also
experimentalists put a lot of effort into analyzing first- and second-order temporal correlation
properties of QDSLDs [240, 241].

In 2011, Blazek et al. were able to observe a temperature-dependent suppression of intensity
fluctuations using a broadband emitting QDSLD [24], thereby introducing the term "hybrid
light". At around 190 K, they measured the intensity fluctuations in terms of the second-order
correlation coefficient g (2)(0) = 〈I 2〉/〈I 〉2 to be g (2)(0) = 1.33. Such emission being first-order
incoherent (implying a broadband emission spectrum) and second-order coherent (implying
reduced intensity fluctuations more similar to the photon statistics of a laser), might also be
called "silent white light". Previous theoretical investigations of this behaviour focused on the
quantum nature of the diode material [238, 242].

In this chapter, based on [37], we analyze the emission properties of QDSLDs in terms of
optical emission spectrum and the second-order temporal correlation function by means of a
stochastic model of the diode emission. For this, a general approach of modelling arbitrary
emission spectra via independent stochastic processes is introduced in Section 12.2. Subse-
quently, this model is applied to the QDSLD in Section 12.3, also determining the intensity
distribution and second-order temporal correlation function of the emission.

12.2 S T O C H A S T I C M O D E L L I N G O F E M I S S I O N S P E C T R A

12.2.1 Complex Ornstein-Uhlenbeck Process

The classical electric field emitted by a diode is modelled as a superposition of stochastic
fields. Therefore, the electric field outside of the diode can be written as

εd(t ) =
M
∑

m=1

εm (t ), (12.1)

where M is the number of stochastically fluctuating fields involved in the emission and εm (t )
is the complex field amplitude of the m-th field.

An individual classical field ε ∈ C is modelled as a complex Ornstein-Uhlenbeck pro-
cess [243], which is described by the Ito stochastic differential equation (see Section 5.1.1) [116]

dε(t ) = (iν0−γ)ε(t )dt +
p

γI dW (t ), (12.2)

where ν0 is the carrier frequency of the field, γ is the linewidth, I = limt→∞〈|ε(t )|2〉 is the
mean intensity of the electric field and dW (t ) ∈C is a complex Wiener noise increment with
〈dW (t )〉= 0 and 〈|dW (t )|2〉= dt . Due to the complex nature of the quantities, this description
is identical to a two-dimensional Ornstein-Uhlenbeck process for the real and imaginary
parts of the electric field amplitude.
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To calculate temporal correlation properties of the electric field, the definitions and calcula-
tion rules for stochastic integrals introduced in Section 5.3 are used. The stationary first-order
temporal correlation function of the process reads [116, 244]

G (1)(τ) = lim
t→∞




ε∗(t )ε(t +τ)
�

= I e −γ|τ|−iν0τ. (12.3)

In accordance to the Wiener-Khintchine theorem [245, 246], the spectral power density is
given by the Fourier transform of the stationary first-order temporal correlation function.
Accordingly, the spectral power density for the complex Ornstein-Uhlenbeck process can be
calculated as

S (ν) =

√

√ 2

π

I γ

(ν−ν0)2+γ2
. (12.4)

The spectral power density shows a Lorentzian shape and is normed to the mean intensity

I =
1
p

2π

∫ ∞

−∞
dν S (ν). (12.5)

The stationary normalized second-order temporal correlation function can be determined
using the Siegert relation as [244, 247]

g (2)(τ) = lim
t→∞

〈ε∗(t )ε∗(t +τ)ε(t +τ)ε(t )〉
〈ε∗(t )ε(t )〉 〈ε∗(t +τ)ε(t +τ)〉

= 1+

�

�

�

�

G (1)(τ)
G (1)(0)

�

�

�

�

2

= 1+ e −2γ|τ|. (12.6)

12.2.2 Stochastic Simulation

In addition to analytical investigations, numerical simulations of (12.2) can be used to deter-
mine temporal correlation features of the emission field. For the benefit of efficient simulation,
the rapidly oscillating carrier frequency is separated from the dynamics of the field via the
transformation ε(t ) =η(t )e −iν0t . This yields the Ito stochastic differential equation

dη(t ) =−γη(t )dt +
p

γI dW (t ). (12.7)

As the diffusion coefficient
p

γI is independent of the electric field amplitude η itself, the
Euler scheme can be used to achieve strong convergence of order 1.0 (see Appendix A.2).
Therefore, an iterative time-discrete simulation scheme for the electric field amplitude can be
constructed as [127]

η(ti+1) =η(ti )−γη(ti )∆t +
p

γI∆W . (12.8)

The discrete time step of the simulation scheme is∆t = ti+1−ti . The term∆W ∈C symbolizes
a complex Gaussian random process with mean 〈∆W 〉= 0 and variance 〈|∆W |2〉=∆t .

By sampling over N realizations of the electric field amplitude, the first-order temporal
correlation function can be computed using this simulation scheme as

G (1)(τ) =
1

N

N
∑

n=1

ε∗n (ts)εn (ts+τ), (12.9)

where εn is the n-th realization of the field and ts� 1/γn is a point in time, long after an initial
transient phase is surpassed. Using a Fast Fourier Transform, (12.9) can be used to calculate
the spectral power density of the field.
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Figure 12.1: (a) First-order temporal correlation function G (1)(τ) versus time τ, (b) spectral power
density S (ν) versus frequency ν for central frequency ν0 = 10γ and (c) normalized second-
order temporal correlation function g (2)(τ) versus time τ for the electric field described by
(12.2). Simulation results (green, solid) match the analytical expression from (12.3), (12.4)
and (12.6) (yellow, dashed). The numerical simulations were performed with∆t = 0.01/γ,
while the correlation functions were calculated using N = 10,000 realizations.
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The normalized second-order temporal correlation function (12.6) can be determined by
separate calculations for the denominator and the numerator. While the first-order temporal
correlation functions in the denominator can be simulated according to (12.9), the second-
order correlation function in the numerator can be calculated as

G (2)(τ) =
1

N

N
∑

n=1

|εn (ts+τ)εn (ts)|2. (12.10)

The normalized second-order temporal correlation function results as

g (2)(τ) =
G (2)(τ)

G (1)(0)G (1)(τ)
. (12.11)

A comparison between analytical expression and simulation results of the first- and second-
order temporal correlation properties of an individual field can be seen in Fig. 12.1.

12.2.3 Modelling Arbitrary Spectra as Sums of Lorentzians

All individual classical electric fields εm contributing to a total emission according to (12.1) are
assumed to be independent and to be described by a complex Ornstein-Uhlenbeck process
according to (12.2). Meanwhile, each individual field is characterized by a specific linewidth
γm , mean intensity Im and central frequency νm . As all fields are independent, the stationary
first-order temporal correlation function is given by

G (1)d (τ) = lim
t→∞




ε∗d(t )εd(t +τ)
�

= lim
t→∞

M
∑

m=1




ε∗m (t )εm (t +τ)
�

. (12.12)

Thus, the spectral power density is the incoherent sum of the individual spectra

Sd(ν) =
M
∑

m=1

Sm (ν). (12.13)

For the case that the emission of a diode is described as the sum of complex Gaussian fields,
this implies, that arbitrary emission spectra St(ν) of the diode can be modelled as the sum
of Lorentzian lineshapes with individual central frequencies, amplitudes and widths. For
example, this can be done via the adjustment of the 3M free parameters of the model using a
least square fit, minimizing the error functional

e =
∑

i

(St(νi )−Sd(νi ))
2 (12.14)

at discrete frequencies νi . The capabilities of this approach are demonstrated on different
important line shapes (all spectra are normalized to

∫∞
−∞dν S (ν) =

p
2π):

• Gaussian spectrum (center ν0, standard deviationσ) [211]:

Sg(ν) =
1
p
σ2

e −
(ν−ν0)

2

2σ2 (12.15)

• Lorentzian spectrum (center ν0, half width at half mean γ) [211]:

Sl(ν) =

√

√ 2

π

γ

(ν−ν0)2+γ2
(12.16)
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Figure 12.2: Gaussian spectrum Sg(ν) (12.15), Lorentzian spectrum Sl(ν) (12.16), Voigt profile Sv(ν)
(12.17), bandwidth limited box shape Sb(ν) (12.18) and experimental optical power spec-
trum of QDSLD Se(ν) (experimental data from [248, 249]; all spectra green, solid) versus
frequency ν. All spectra are modelled with M = 30 individual Lorentzian-shaped Ornstein-
Uhlenbeck spectra (yellow, dashed). For the experimental spectrum, the individual line-
shapes contributing to the model are illustrated (blue, solid).
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• Voigt profile (z = (ν+ iγ)/σ
p

2, complementary error function erfc(z )) [211]:

Sv(ν) =
1
p
σ2

Re
�

e −z 2
erfc(−iz )

�

(12.17)

• bandwidth limited box shape

Sb(ν) =

�p
2π/γ, for |ν| ≤ γ/2m
0, else.

(12.18)

Using this approach, also the optical power spectrum of the QDSLD can be modelled as
the sum of individual Lorentzian lineshapes. The linewidths, mean intensities and central
frequencies of M = 30 individual Ornstein-Uhlenbeck spectra are determined using a least
square fit. The results of modelling arbitrary spectra as well as the optical power spectrum of
a QDSLD can be seen in Fig. 12.2.

12.3 E M I S S I O N P R O P E R T I E S O F Q U A N T U M D O T S U P E R L U M I N E S -
C E N T D I O D E S

Using the linewidths γm , mean intensities Im and central frequencies νm gathered from
modelling the optical power spectrum of a QDSLD [248, 249] as a sum of Lorentzian lineshapes,
the temporal correlation properties and the statistics of the emission can be investigated
using stochastic simulation. The individual fields εm are calculated numerically according
to (12.8). The electric field emitted by the diode εd results as a superposition of the individual
fields as described by (12.1). All statistical and temporal correlation properties are calculated
using N = 10,000 realizations.

12.3.1 Intensity Distribution

A first quantity of interest is the intensity distribution of the QDSLD emission. For each
realization, the intensity I (t ) = |ε(t )|2 is calculated and the distribution after an initial transient
period is determined. As can be seen in Fig. 12.3, numerical results agree very well with an
exponential distribution

p (I ) =
1

Ī
e −I /Ī , (12.19)

where Ī =
∑M

m=1 Im is the sum of all individual mean intensities. This distribution follows
consequently from the fact, that the complex Gaussian field, as the name suggests, shows a
Gaussian distribution for the real and the imaginary part of the field, implying an exponential
distribution of the intensity [116].

12.3.2 Optical Power Spectrum

The spectral power density of the emission Sd(ν) is determined using the Fourier transform of

the stationary first-order temporal correlation function G (1)d (τ) calculated according to (12.12).
The results of the simulation (see Fig. 12.4) show good agreement with the experimental
optical power spectrum [248, 249].
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Figure 12.3: Probability density p (I ) versus intensity I of the QDSLD emission according to (12.19)
(green, solid) and calculated numerically using stochastic simulation (yellow, dashed).

The width of an optical power spectrum can be defined via the Süssmann measure [250,
251]

b =
1

∫∞
0

dν s 2(ν)
, (12.20)

where s (ν) = S (ν)/
∫∞

0
dν S (ν) is the normed spectral power density. This yields bd = 4.85 THz,

implying a coherence time of τc,d = 1/bd = 206.34fs, which matches experimental results of
be = 4.29 THz and τe = 233 fs [248] very well. The method of modelling emission spectra as a
superposition of individual oscillators is therefore suitable to describe the first-order temporal
correlation properties of QDSLDs.

234 236 238 240 242 244 246

ν/THz
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S
(ν
)
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Figure 12.4: Experimental optical power spectrum Se(ν) (green, solid) versus frequency ν and simula-
tion results Sd(ν) (yellow, dashed) for M = 30 individual oscillators resulting as the Fourier
transform of the stationary first-order temporal correlation function G (1)d (τ) calculated
using N = 10, 000 realizations.
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12.3.3 Second-Order Temporal Correlation Function

In addition to the investigation of the optical power spectrum, the classical photon statistics
of the QDSLD emission can be investigated using the stochastic model. For this, the station-

ary normalized second-order temporal correlation function g (2)d (τ) is calculated according
to (12.11).

As can be seen in Fig. 12.5, the simulation shows qualitative agreement with experimental

data [248, 249]. The central degree of second-order temporal coherence g (2)d (τ= 0)' 2 implies a
Gaussian photon distribution, which was also shown experimentally. Therefore, the described
formalism of modelling QDSLD emission as a superposition of individual stochastic oscillators
is also suited for the investigation of classical photon statistics.
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Figure 12.5: Experimental stationary normalized second-order temporal correlation function g (2)e (τ)
(green, solid) versus time τ [248, 249] and simulation results g (2)d (τ) (yellow, dashed) using
M = 30 individual oscillators and N = 10,000 realizations of the electric field.
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In this chapter, based on [38], we introduce a theoretical investigation of the temperature-
dependent intensity noise suppression in QDSLDs as reported in [24] by Blazek et al.. The
results from Chapter 12 regarding the statistical properties and temporal coherence charac-
teristics are taken as reference values at room temperature. By introducing an interaction
between the complex electric field propagating through the diode and a system of pumped
three-level atoms in Section 13.1, the statistical properties of the emission can be manipulated
via saturation inside the medium as described in Section 13.2. This includes the classical
photon statistics as described by the central degree of second-order coherence

g (2)(0) =




I 2
�

〈I 〉2
. (13.1)

In the sense of g (2)(0), varying degrees of coherence can be defined [252]. While g (2)(0) = 2.0
indicates incoherent (thermal) light, the corresponding value indicating coherent emission is
given by g (2)(0) = 1.0. In the range between these two values, one speaks of partially coher-
ent light. Exceeding the two boundaries the terms superbunched light for g (2)(0) > 2.0 and
antibunched light for g (2)(0)< 1.0 can be introduced.

In Section 13.3, we show that by extracting the temperature-dependent features of the
system from experimental measurements of the output intensity, we are able to reproduce
the intensity noise suppression. Hence, we can interpret the reduction of the central degree
of second-order coherence g (2)(0) from 2.0 to around 1.33 as a temperature driven saturation
effect.

13.1 P U M P E D T H R E E - L E V E L AT O M I N T E R A C T I N G W I T H C O H E R-
E N T L I G H T F I E L D

13.1.1 Diode Model

According to the Maxwell-Bloch equations [128, 253, 254], the complex electric field amplitude
after travelling through a polarizable medium for a distance L along the z -direction is given
by

ε(L , t ) = ε(0, t − L/c ) +
ik

2ε0

∫ L

0

dz P (+)(z , t − (L + z )/c ), (13.2)

where k is the wave number of the electric field, P(r , t ) =P (+)(r , t ) +P (−)(r , t ) is the complex
polarization density andP (+)(r , t ) = |P (+)(r , t )| is the positive frequency part of the polarization
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density. Here, we assume, that P (+)(r , t ) is orientated parallel to the polarization vector of the
incident electric field. Assuming the interaction takes place in an infinitesimally thin layer and
taking into account a loss rate 0<γ< 1, which arises due to scattering and coupling out of the
diode, an input-output-relation for the complex electric field amplitude can be formulated as

εout(t ) =ηεin(t ) +
ik L

2ε0
P (+)(t ), (13.3)

where η= 1−γ and P (+)(t ) = |P (+)(t )| is the positive frequency part of the polarization. Due
to the specialized waveguide geometry and anti-reflection coated facets of the QDSLD, no
feedback mechanism has to be considered [248].

The QDs inside the active medium of the diode are modelled as pumped three-level systems
(see Fig. 13.1). The incident electric field coherently drives the transition between levels |1〉
and |2〉with the Rabi frequency

Ω(t ) =
d21εin(t )
ħh

, (13.4)

where d21 = |d 21|= 〈2|d̂ |1〉 is the dipole matrix element of this transition and d̂ is the dipole
operator. Again, d̂ is assumed to be orientated parallel to the incident light field.

To determine the polarization P (t ), consider a volume V inside the diode, which is much
smaller than the wavelength of the incident light (V <λ3) and contains N QDs. The polariza-
tion density inside of V is given by [190]

P̂(r , t ) =
1

V

N
∑

j=1

d̂ jδ(r − r j ), (13.5)

|2〉

Ω
γ21

∆
|1〉

|0〉
γ10

R
εin εout

L

Figure 13.1: Schematic depiction of an incident complex electric field εin interacting with a layer of
diode material of thickness L producing εout. The QDs inside the diode are modelled as
pumped three-level systems with levels |0〉, |1〉 and |2〉. The transition between levels |0〉
and |2〉 is incoherently pumped with rate R . The transition between |1〉 and |2〉 is driven
coherently with Rabi frequency Ω(t ) and detuning∆=ω−ω12, whereω andω12 are the
angular frequencies of the driving source and the transitions respectively. γ10 and γ21 are
the decay rates of the respective transitions.
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where d̂ j and r j are the dipole operator and position of the j -th QD respectively. As V <λ3,
all QDs react to the same incident field and the density operator ρ̂, describing the populations
and coherences of the QDs, factorizes as ρ̂ =

∏N
j=1 ρ̂ j . Therefore, the polarization yields

P (t ) =
1

V

∫

V

d3r



P̂(r , t )
�

=
N

V

∫

V

d3r Tr
�

ρ̂(t )d̂
	

=n (d12ρ21(t ) +d21ρ12(t )), (13.6)

where n is the density of interacting QDs and ρi j = 〈i |ρ̂| j 〉 are the elements of the individual
density matrix. Accordingly, the positive frequency part of the polarization can be identified
as

P (+)(t ) = nd12ρ21(t ). (13.7)

13.1.2 Optical Bloch Equations

To calculate ρ21(t ), the dynamics of the QDs have to be determined. For the given pumped
three-level system, these are described by the optical Bloch equations [128]

ρ̇00 =− (R +γ10)ρ00+Rρ22,

ρ̇11 =γ10ρ00−γ21ρ11−
i

2
Ω∗ρ21+

i

2
Ωρ∗21,

ρ̇22 =Rρ00+γ21ρ11−Rρ22+
i

2
Ω∗ρ21−

i

2
Ωρ∗21,

ρ̇21 =−
�

i∆+
Γ

2

�

ρ21−
i

2
Ω(ρ11−ρ22),

(13.8)

where Γ = γ21 +R . As the coherence ρ21 decays much faster than the populations [128], it
can be adiabatically eliminated. In this limit, the coherence ρ21 is connected to the inversion
w =ρ11−ρ22 via

ρ21 =−
i

2
ΩDw , (13.9)

where D = 1/(i∆+ Γ/2). Inserting this into (13.8) yields the rate equations

ρ̇00 =− (R +γ10)ρ00+Rρ22,

ρ̇11 =γ10ρ00− (γ21+ζ)ρ11+ζρ22,

ρ̇22 =Rρ00+ (γ21+ζ)ρ11− (R +ζ)ρ22,

(13.10)

where ζ= |Ω|2L/Γ and L= (Γ/2)2/(∆2+ (Γ/2)2).
Due to the stochastic nature of εin(t ), this characteristic is also imposed on the elements of

the density matrixρi j . Consequently, the equations (13.10) are Ito stochastic differential equa-
tions. However, this fact can be neglected in the presented investigation. By assuming that the
atomic dynamics are much faster than the stochastically fluctuating electric field amplitude
ε(t ), the latter can be kept constant for every calculation of the atomic parameters. Therefore,
the populations of the QD-levels are assumed to be in instantaneous equilibrium and the
stationary solution of the rate equations (13.10) can be used to determine the instantaneous
atomic coherence as

ρ21 =−
i

2
Ω

w0D
1+ s

. (13.11)
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There, w0 = (R (γ10−γ21)−γ10γ21)/(Γγ10+2Rγ21) is the unsaturated inversion and s =LIin/Is

is the saturation parameter, where Iin = |εin|2 and Is = ħh 2Γ (Γγ10+2Rγ21)/|d21|2(3R +2γ10) is
the saturation intensity.

13.1.3 Intensity Input-Output-Relation

In this case, the input-output-relation (13.3) loses its time-dependence and can be expressed
using atomic parameters as [254]

εout = (η+α)εin, (13.12)

with the complex nonlinear absorption coefficient α= κΓD/(1+ s ), the nonlinear saturation
parameter κ = α0k L and the linear, resonant absorption coefficient α0 = n |d21|2w0/4ħhε0Γ .
In the limit of a thin interaction layer, all terms exceeding linear order in κ can be neglected.
Additionally, as a consequence of the broad THz-bandwidth of the emission, the detuning
∆= 0 can be chosen to vanish. The input-output-relation for the intensity Iout = |εout|2 then
reads

Iout(Iin) =
�

η2+
4ηκ

1+ s

�

Iin+O(κ2). (13.13)

Consequently, the input-output-relation only has three independent parameters η, κ and Is.
As can be seen in Fig. 13.2, all parameter combinations produce nonlinear behaviour. While
for some combinations, the input-output-relation is superlinear for small input intensities,
they all show saturation and therefore sublinear behaviour for increasing input intensities.

13.2 P H O T O N S TAT I S T I C S T R A N S F O R M AT I O N

Due to the nonlinear connection between input and output intensity, implying saturation,
the statistical properties of the output will differ from those of the input. As described in
Section 12.3, the intensity distribution of the QDSLD emission is given by an exponential
probability distribution according to (12.19), where the mean is 〈Iin〉= Ī . The output photon
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Figure 13.2: Output intensity Iout versus input intensity Iin according to (13.13) for varying (a) saturation
parameter κ (Is = 5, η= 0.68; green: κ= 0.1, yellow: κ= 0.35, blue: κ= 0.55), (b) saturation
intensity Is (κ = 0.35, η = 0.68; green: Is = 1, yellow: Is = 5, blue: Is = 9) and (c) loss
coefficient η (Is = 5, κ= 0.35; green: η= 0.5, yellow: η= 0.68, blue: η= 0.9).
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Figure 13.3: Mean output intensity 〈Iout〉 versus mean input intensity Ī for η= 0.68, Is = 5 and κ= 0.1
(green), κ= 0.35 (yellow) and κ= 0.55 (blue).

statistics are determined by the moments of the transformed intensity distribution. The n-th
moment, where n ∈N, is given by




I n
out(Iin)

�

=

∫ ∞

0

dIin I n
out(Iin)p (Iin). (13.14)

Accordingly, the mean output intensity (see Fig. 13.3) can be calculated up to linear order
in κ as

〈Iout〉= Īη2+4Isηκ [1−Iu (I)] , (13.15)

where I = Is/Ī , u (I) = e IΓ (0,I) and Γ (a , z ) =
∫∞

z
dt t a−1e −t is the incomplete gamma func-

tion [211]. In the given situation, the interaction between light field and diode material takes
place in a thin layer. Furthermore we concentrate the investigation on a spatial part of the
diode near the output facet, where all transient behaviour can be neglected. Hence, gain
through interaction and loss by means of scattering compensate each other and the mean
intensity of the emission remains unchanged. This implies the self-consistent equilibrium
condition

〈Iout〉= 〈Iin〉= Ī (η). (13.16)

Using (13.15), the inaccessible loss rate η(Ī ) can be determined in favor of the equilibrium

intensity Ī . The central degree of second-order coherence g (2)out(0) can be calculated analytically
according to (13.1) in dependence of κ and Is. Considering only contributions up to O(κ2),
one finds

g (2)out(0) = 2−8κI
�

1+I (1−2u (I))−I2u (I)
�

. (13.17)

As can be seen in Fig. 13.4 the central degree of second-order coherence is reduced from

an initial value of g (2)out(0) = 2.0 with increasing Ī for a set saturation intensity Is and different

positive values of κ. This implies, that intensity noise associated with g (2)out(0) is suppressed
while increasing Ī , thereby entering a more saturated regime of the pumped three-level system.
Hence, increasing saturation inside the diode suppresses intensity noise.
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Figure 13.4: Central degree of second-order coherence g (2)out(0) versus mean input intensity Ī for Is = 5
and κ= 0.1 (green), κ= 0.35 (yellow) and κ= 0.55 (blue).

It has to be noted, that this effect is not present for negative κ, which would be the case
if there is no inversion present in the medium. In fact, the central degree of second-order

coherence surpasses g (2)out(0) = 2.0 in this case, which implies that intensity fluctuations are
actually enhanced if there is no inversion in the gain medium.

13.3 T E M P E R AT U R E - D E P E N D E N T I N T E N S I T Y N O I S E S U P P R E S S I O N

The nature of the QDSLD opens up a lot of possibilities to introduce temperature dependence
into this system via the semiconductor physics of the diode and the gain medium consisting
of inhomogeneously broadened QDs. In essence, at around 190K a maximum in radiative
recombination occurs in the QD systems. This redistribution of carriers modifies the optical
gain properties of the diode, which can be quantified via the measurement of the temperature-
dependent mean intensity Ī . At the temperatures of increased recombination, a peak in output
intensity occurs, implying larger amplification and in turn affecting the photon emission
properties. For further details on the semiconductor physics responsible for the temperature
dependence of the QDSLD system refer to [38]. In this thesis, we focus on the quantum optical
aspects of the observed intensity noise suppression.

13.3.1 Temperature-Dependent Mean Intensity

The aim of the presented discussion is the description of a temperature-dependent central
degree of second-order coherence g (2)out(0, T ). As discussed in the previous section, quantum

optical methods enable a description of g (2)out(0) in dependence of the mean emission intensity Ī .
It was shown experimentally, that the mean intensity of the emission has a distinct dependence
on the temperature of the diode [231]. This behaviour of the emitted power can be modelled
as a function of temperature by a Gaussian function

Ī (T ) = Ī e −(T−T0)2/σ2
T +δI . (13.18)

Approximating the experimental data using a least square fit, there is good agreement for peak
mean intensity Ī = 1.51±0.13, central temperature T0 = (197.1±0.9)K, temperature standard
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Figure 13.5: Mean intensity Ī versus temperature T . Both experimental data from [231] (green) and
the Gaussian model (13.18) (yellow) attain a maximum in intensity at around 190 K.

deviationσT = (13.1±1.0)K and offset intensity δI = 0.15±0.03 (see Fig. 13.5). The peak of
emission intensity at T0 implies an increase in diode efficiency at this temperature, which in
turn signals the transition to a more saturated regime.

13.3.2 Temperature-Dependent Intensity Noise

The data gathered from fitting the experimental data for Ī (T ) with (13.18) and describing

g (2)out(0) according to (13.17) for varying saturation parameters can be used to construct the

temperature-dependent behaviour g (2)out(0, T ). As can be seen in Fig. 13.6, all saturation parame-
ters combinations show a suppression of intensity fluctuations around 190 K. With parameters
set to Is = 5 and κ = 0.35, we reach good agreement with experimental data from [24]. The

calculations using the fitted data from Fig. 13.5 do not reach a plateau of g (2)out(0) = 2.0 for high
and low temperatures. This is due to the finite offset δI = 0.15±0.03 of Ī (T ).

13.3.3 Discussion

Having developed a suitable description of the experimentally observed g (2)out(0) reduction of
hybrid light enables the search towards even more reduction of intensity fluctuations while
keeping the broadband character of the emission. Adjusting the model parameters, for ex-

ample to Is = 5 and κ= 0.55, a suppression of intensity noise to about g (2)out(0) = 1.09 can be
observed. This is very close to Poissonian statistics, however in this case not for a laser but
for a broadband hybrid superluminescent diode. While the experimental and technologi-
cal challenges in realizing such a light source, like finding an appropriate QD level system
and sustaining the delicate balance of non-lasing, i.e. preventing a collapse of the spectral
linewidth [255], are high, the potential in a broad area of applications is appealing.

In conclusion, we have demonstrated that a reduction of the central degree of second-

order coherence g (2)out(0) of the emitted light of a QDSLD towards the Poissonian limit can be
described by statistics manipulation due to the joint mechanism of the nonlinear gain inside
the medium and the QD emission properties. Using experimental findings for the temperature
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Figure 13.6: Central degree of second-order coherence g (2)out(0) versus temperature T . For Is = 5 and
κ= 0.35 (yellow), there is good agreement between the presented model and experimental
data from [24] (black). This agreement deteriorates for κ = 0.1 (green). Intensity noise
suppression beyond g (2)out(0) = 1.33 to approximately g (2)out(0) = 1.09 can be observed for
κ= 0.55 (blue).

dependence of the emitted power, observed intensity noise suppression at around 190 K can
be reproduced. As the diode enters a more saturated regime for higher mean intensities, our
investigation allows to interpret the effect as a temperature driven saturation effect inside the
diode.

The characteristics of silent white light, high output power, a broadband optical spectrum,
spatially directed emission and low intensity noise, are very favorable in a plethora of applica-
tions [256–259]. In particular, in the realm of artificial neural networks such light source could
be used to realize efficient setups and improve the performance levels of implementations
based on similar emitters [21, 260].
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S U M M A R Y A N D O U T L O O K

In this thesis, we study atomic and optical approaches to deep learning. These include using
the movement of thermal atoms in optically shaped potential landscapes, harnessing the
nonlinear dynamics in coherent matter waves and describing the temperature-dependent
intensity noise suppression in quantum dot superluminescent diodes via statistics manip-
ulation due to interaction with the pumped diode material. With these diverse approaches,
we aim to contribute to the ongoing search for physical implementations of artificial neural
networks with a special focus on optical and atomic systems.

T H E R M A L C L O U D N E U R A L N E T W O R K

In a first approach to atomic implementations of artificial neural networks, we develop an
algorithmic procedure using thermal atoms in optical dipole potentials to implement a neuron.
Considering thermal atoms trapped in an external box potential, far-detuned lasers offer the
possibility to shape the potential landscape in which the atoms move, constantly colliding
with each other and eventually reaching thermal equilibrium. This dependence of the particle
movement on the externally applied optical field enables the identification of inputs and
output of a neuron.

Assuming a thermal cloud equilibrated in a box potential, a neuron input can be imple-
mented using a single optical potential produced by a laser, yielding, for example, a Gaussian
shaped intensity distribution according to (6.14). Depending on the sign of the input, a red-
detuned laser for positive inputs or a blue-detuned laser for negative inputs has to be used.
The absolute value of the input is implemented via the peak intensity of the laser. After equili-
bration of the thermal atoms in the new potential landscape, now dominantly determined by
the input laser, the external box trap is turned off. The number of atoms still trapped by the
input laser can be identified as output of the neuron. This algorithm yields a sigmoidal-like
nonlinear activation function for the thermal cloud neuron, enabling training via steepest
descent methods and the backpropagation algorithm.

As shown in Chapter 7, the thermal cloud neural network is able to solve the XOR problem
after a reasonable training period, being able to identify every test sample correctly within
set error margins. Additionally, the network can be used in the recognition of hand-written
digits based on the MNIST dataset. For this real-world problem, requiring a larger network
architecture, the thermal cloud neural network reaches an average error rate of 16.45% at
the end of the training. This value exceeds the one using an identical network architecture
with artificial neurons showing sigmoidal activation functions (average error rate 7.13%, see
Section 3.3.2). This hints at the fact, that the activation function produced by the described
implementation is not very well suited for such problems.
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The thermal cloud neural network shows two mayor drawbacks. Firstly, it is not completely
integrated. For communication between layers, output given by measurements of particle
numbers has to be converted into inputs for the next layer, which are laser parameters. This
requires to constantly interfere with the system, analyzing measurements and adjusting the
laser setup. Secondly, the whole implementation is rather slow. As two equilibration processes
are performed in the described algorithm, the duration of a neuron implementation for
reasonable experimental parameters can be estimated as tN ≈ 688ms. Comparing this to
calculation speeds of modern computers, this is far too slow for reasonable implementation.
Therefore, while being a good platform to understand the intricacies of implementing an
artificial neural network, the drawbacks of the thermal cloud neural network weight too heavy
to pursue an implementation, unless improvements to the algorithm can be found.

F O U R- W AV E M I X I N G N E U R A L N E T W O R K

In another approach to atomic implementations of artificial neural networks, we focus on the
four-wave mixing process of coherent matter waves in Bose-Einstein condensates. Describing
the condensate in mean-field theory using the Gross-Pitaevskii equation, we perform a de-
tailed investigation of a superposition of four plane waves in a homogeneous condensate. By
introducing appropriate coordinates and choosing a suitable dimensionless description, we
show that the dynamics of the relative particle numbers and phases of the momentum compo-
nents participating in the process are given by Josephson-like oscillations. Choosing certain
parameters for two constants of motion, we are able to derive analytical expressions for those
dynamics in terms of Jacobian elliptic functions. These results can be equally applied to two-
dimensional four-wave mixing with four distinguished momentum states or one-dimensional
four-wave mixing with two distinguished momentum states and two internal hyperfine states
of the condensate atoms.

In addition to deriving analytical expressions of the four-wave mixing dynamics, we also
investigate numerical solutions using simulations of the Gross-Pitaevskii equation on a dis-
crete periodic grid. An instability in the simulation, arising due to numerical noise from Fast
Fourier Transforms producing population outside of the four-wave mixing states, changes
the frequency of the observed oscillations. Yet, their main characteristics persist. Hence, the
analytical solution can be recovered using filter masks in momentum space.

With these results and the in-depth understanding of the four-wave mixing process in matter
waves, we implement a complex-valued neuron, the four-wave mixing neuron. Identifying
the complex amplitudes of three momentum components of the process as input and the
remaining component as output, a nonlinear activation function can be established by setting
a fixed duration τF of the neuron implementation. Due to the experimental accessibility of
relative particle numbers and phases, we analyze the nonlinear response of the neuron to
varying inputs in terms of those variables. This yields numerical results for the nonlinear
activation function and its partial derivatives. Those can be used to train the neuron using
steepest descent methods. To test the learning capabilities of the four-wave mixing neuron, we
train it to solve the XOR problem. As the four-wave mixing neuron is a complex-valued neuron,
a single realization is indeed able to solve this problem [222]. By developing an encoding
scheme of the XOR problem to make good use of the value range of its nonlinear activation
function, the four-wave mixing neuron is able to learn to solve the XOR problem, showing
similar performance compared to conventional implementations and being able to identify
every test sample correctly at the end of the training procedure.
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In pursuit of setting up a four-wave mixing neural network, two critical problems have to be
solved: multiple neurons have to be run in parallel without influencing each other and output
information of one layer has to be converted to input for the next layer. While spatially separat-
ing the neurons provides a perfect parallelization opportunity, this also prevents an efficient
transport of the output information without using a measurement and re-implementation.

A promising way to implement parallel neurons is to stack four-wave mixing configurations
in momentum space. In this scenario, the neurons overlap perfectly and a communication
of output to the next layer is feasible. However, as shown in Section 11.1.2, the dynamics of
the stacked four-wave mixing configurations are not independent of each other. While the
particle numbers in the individual configurations are conserved, coherent coupling between
them leads to changes in the dynamics compared to the isolated case.

While this behaviour is disruptive in the realm of neural networks and prevents an effi-
cient implementation, the mutual interactions are actually desirable in another approach to
machine learning, namely reservoir computing. With the ability to stack multiple four-wave
mixing configurations, one could realize a reservoir computing setup with precisely defined
input and output channels and highly nonlinear dynamics. This kind of implementation
seems to be well suited for coherent matter waves in Bose-Einstein condensates and offers a
research direction worth pursuing.

Yet, we are able to find an alternative way to realize parallelizable four-wave mixing neurons
and set up a neural network. Making use of the extended internal structure of the condensate
atoms, four-wave mixing neurons in multiple internal components can be perfectly paral-
lelized if all intra-component scattering lengths are equal and the inter-component scattering
lengths vanish. In this case, two-dimensional four-wave mixing configurations in different
components do not interact and show equal dynamics. With that, tree-like networks can be
set up, ensuring that outputs of one layer can be used as input for the next layer by cyclically
permuting the roles of the momentum components as input and output. We show that such
a four-wave mixing neural network is able to learn to distinguish patterns in a logical 6-bit
sequence via training using the backpropagation algorithm.

An advantage of the four-wave mixing neural network in comparison to the thermal atom
implementation is a dramatic increase in speed. Using experimental parameters from [139],
the duration of one run through a two-layer network can be estimated to be in the realm of
100µs. Also, the complex-valued nature of the four-wave mixing neuron provides potential to
extract more information from a single run through the network. Yet, there are parts of the
proposed implementation demanding delicate attention. While the four-wave mixing neuron
shows solid robustness against noise in the training process, the initialization sequence has
to be performed very precisely to warrant good performance of the neuron. Additionally,
searching for appropriate hyperfine levels or Feshbach resonances yielding the idealized
scenario from Section 11.1.3 is of high importance. In the case that the four-wave mixing
neural network is deemed reasonable for experimental implementation, an investigation of
the power consumption would be of high interest.

S I L E N T W H I T E L I G H T

Based on experimental measurements and with the potential of being applied as light sources
in optical neural networks, we investigate the temperature-dependent intensity noise sup-
pression of quantum dot superluminscent diodes. The first- and second-order temporal
correlation properties of the emission of such diodes are modelled by a superposition of inde-
pendent stochastic emitters. We show that such an approach is able to reconstruct the optical



126 14 S U M M A R Y A N D O U T L O O K

power spectrum of the diode using stochastic simulations, enabling access to other quantities
such as the intensity probability distribution and second-order temporal correlation function.

By considering the interaction between such emission and the pumped diode material, we
show that photon statistics manipulation occurs in dependence of the system parameters.
Using experimental data for the temperature dependence of the mean intensity emitted from
the diode, we are able to reconstruct a temperature-dependent suppression of intensity noise
in terms of the central degree of second-order coherence from thermal noise g (2)(0) = 2.0 at
room temperature to around g (2)(0) = 1.33 at T = 190 K. Our model allows us to interpret the
observations as a temperature induced saturation effect in the pumped diode material.

Being able to tune intensity noise can prove to be beneficial in various applications such as
optical coherence tomography [256] and rotation sensing [257]. Also in the implementation
in optical neural networks, light sources with spatially directed, high-powered, broadband
emission with low intensity noise are desirable. Our model of intensity noise suppression
might be used in determining optimal operation conditions of such diodes or be of usage in
the design of new light sources.
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A
T I M E - D I S C R E T E A P P R O X I M AT I O N O F S T O C H A S T I C
D I F F E R E N T I A L E Q U AT I O N S

A.1 P I C A R D - I T E R AT I O N O F S T O C H A S T I C D I F F E R E N T I A L E Q U AT I O N S

The integral form of the stochastic differential equation [116]

dx (t ) = a (x (t ))dt + b (x (t ))dW (t ) (A.1)

is given by

x (t ) = x0+

∫ t

t0

dt ′ a (x (t ′))+

∫ t

t0

dW (t ′) b (x (t ′)). (A.2)

Approximation schemes for this general solution can be developed using a Picard-type itera-
tion

x [0] =x0,

x [l+1] =x0+

∫ t

t0

dt ′ a
�

x [l ](t ′)
�

+

∫ t

t0

dW (t ′) b
�

x [l ](t ′)
�

. (A.3)

This yields for the first iterations of (A.1)

x [0] =x0, (A.4)

x [1] =x0+a (x0)

∫ t

t0

dt ′+ b (x0)

∫ t

t0

dW (t ′), (A.5)
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dt ′ a
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+
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x0+a (x0)

∫ t ′

t0

dt ′′+ b (x0)
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dW (t ′′)

�

. (A.6)

From the second iteration onwards the terms inside the integrals have to be Taylor expanded
to second-order to take all necessary integrals into account. The relevant terms from this
expression yield, for example,

a

�

x0+a (x0)

∫ t ′

t0

dt ′′+ b (x0)

∫ t ′

t0

dW (t ′′)

�

= L 0a (x0)

∫ t ′

t0

dt ′′+ L 1a (x0)

∫ t ′

t0

dW (t ′′), (A.7)
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with L 0 = a (x0)∂x+
1
2 b 2(x0)∂ 2

x and L 1 = b (x0)∂x . Therefore, (A.6) reads

x [2] =x0+ b (x0)

∫ t

t0

dW (t ′) +a (x0)

∫ t

t0

dt ′+ L 1b (x0)

∫ t

t0
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t0

dW (t ′)dW (t ′′)

+ L 1a (x0)
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t0

∫ t ′

t0

dt ′dW (t ′′) + L 0b (x0)

∫ t

t0

∫ t ′

t0

dW (t ′)dt ′′+ L 0a (x0)
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t0

∫ t ′

t0

dt ′dt ′′.

(A.8)

For higher-order iterations, increasingly more encapsulated expressions have to be expanded.

A.2 T I M E - D I S C R E T E A P P R O X I M AT I O N

A time-discrete approximation scheme x (ti ) is said to converge strongly with order γ> 0, if
for the final time instant T and N = T /∆, there is a finite ε and∆0 > 0 such that [127]

〈|x (T )− x (tN )|〉 ≤ ε∆γ (A.9)

for any time-discretization 0<∆<∆0. A so-called strong Taylor scheme can be constructed
from the iteration above.

A criterium [127] for the terms of the iteration series required for the associated strong
Taylor scheme to achieve a desired order of strong convergence γ can be given as follows. The
scheme converges to order of an integer γ if it includes all combinations of integrals up to this
order, with time differentials dt being of order 1 and Wiener noise increments dW (t ) being
of order 1/2. Simulation schemes of half-integer γ additionally require the inclusion of the
pure time integral of order γ+ 1/2. The well-known lowest-order simulation schemes, the
Euler- and Milstein-schemes, can be constructed in this manner. The Euler scheme, being of
order 1/2 of strong convergence, results by discretizing the time step in (A.5), yielding

xi+1 = xi +a (xi )∆t + b (xi )∆W , (A.10)

with xi = x (ti ), ∆t = ti+1 − ti and ∆W a Gaussian random process with 〈∆W 〉 = 0 and
〈∆W 2〉=∆t .

The order 1.0 Milstein scheme [261] can be constructed by considering all integrals from (A.6)
up to the order of 1.0, yielding

x (t ) = x0+a (x0)

∫ t

t0

dt ′+ b (x0)

∫ t

t0

dW (t ′) + L 1b (x0)

∫ t

t0

∫ t ′

t0

dW (t ′)dW (t ′′). (A.11)

The double stochastic integral can be calculated as [116]

∫ t
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∫ t ′
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2
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yielding the iteration rule

xi+1 = xi +a (xi )∆t + b (xi )∆W +
1

2
L 1b (xi )

�

∆W 2−∆t
�

. (A.13)
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The atomic parameters used in stochastic simulations of 87Rb gases are listed in Table B.1

Table B.1: Atomic parameters for stochastic simulations of 87Rb atoms.

Quantity Symbol Value Ref.
atomic mass m 1.443 ·10−25 kg [121]

Doppler temperature TD 145.57µK [122]
particle diameter a 600 pm [125]

friction coefficient β 5.65 ·10−17 kg/s
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The desired state after initialization for FWM is a superposition of plane waves with wave
vectors k 1, k 2, k 3 and k 4, fulfilling the conditions (9.19). There, all possible combinations for
relative populations n1, n2, n3 and n4 with

∑4
j=1 n j = 1 should be realizable.

We suggest to use atomic beamsplitters based on Bragg diffraction to populate the momen-
tum states. This method is based on the interaction between the BEC in its internal ground
state and two counterpropagating laser beams. In this scenario, energy and momentum
conservation have to hold [202],

ħhω1+
ħh 2k 2

i

2m
=ħhω2+

ħh 2k 2
f

2m
, k i+k 1 = k f+k 2, (C.1)

with the initial k i and the final k f wave vector of the BEC and the frequenciesω1 andω2 and
wave vectors k 1 and k 2 of the laser beams, respectively. If the two laser beams are perfectly
anti-collinear, the momentum transfer in the BEC can be characterized as

k f−k i = k 1−k 2 = 2k L, (C.2)

where k L = (k 1+k 2)/2.
For a shallow lattice U (r ) = 0, the ground state energy ħhωg of the BEC scales quadratically

with the wave number according to (9.20). Hence, the laser frequencies have to be chosen

kx

ky

k4

k2

k3

II
I

III

k

ωg

(a) (b)

2kL0

k1

Figure C.1: (a) Energy diagram for Bragg-diffraction versus wave number k . A ground-state BEC initially
at rest experiences population transfer to a state with 2k L (green). Population transfer to
other momentum states does not appear (red), as the conditions (C.1) are not fulfilled.
(b) Proposed initialization sequence for FWM setup fulfilling (9.19). Three Bragg pulses are
used to set up any combination of populations between the FWM states, while ensuring
that no population is transferred outside of the FWM states.
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carefully, such that population transfer between momentum states is energetically permitted
(see Fig. C.1 (a)).

With that, a controlled initialization of momentum states can be performed, as initial
states can be targeted individually and final states are given by the momentum and energy
conditions (C.1). In Bragg diffraction, the portion of the population 0 ≤ pj ≤ 1 transferred
between the momentum states can be controlled via the interaction duration between the
BEC and the laser beams [202]. To avoid unwanted transitions outside of the FWM states, the
preparation sequence shown in Fig. C.1 (b) and Table C.1 is developed. For visualization, we
choose k 1 = k̂ x , k 2 =−k̂ x , k 3 = k̂ y and k 4 =−k̂ y . However, all combinations fulfilling (9.19)
can be prepared by the described procedure.

After the pulse sequence, the total particle number is transferred into the FWM states,

(1−p3)(1−p2) +p3(1−p2) + (1−p4)p2+p4p2 = 1, (C.3)

and all desired combinations can be realized (see Fig. C.2).

Table C.1: Relative particle numbers in the FWM states after each Bragg pulse.

pulse n0 n1 n2 n3 n4

0 0 1 0 0 0
I 0 (1−p2) 0 p2 0
II 0 (1−p3)(1−p2) p3(1−p2) p2 0
III 0 (1−p3)(1−p2) p3(1−p2) (1−p4)p2 p4p2

0 1p2

0

1

p 3
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0

1
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Figure C.2: Resulting relative particle numbers (a) n1, (b) n2, (c) n3 and (d) n4 for the initialization
sequence described by Fig. C.1 and Table C.1. All probabilities range from 0 to 1, conserving
the total probability (particle number) (C.3).
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The example presented in Section 11.2.3 to train and test a FWM neural network is given by
a logical 6-bit sequence. To make use of the full nonlinear activation functions of the FWM
neurons embedded in the network, an encoding scheme for the inputs and outputs has to be
developed. While logical 0 is represented by a particle number input n = 0.35, a logical 1 is
given by n = 0.45. The desired outputs used for training and testing are chosen to enable the
network to distinguish different input patterns. The complete encoding scheme can be seen in
Table D.1. As the input channels are chosen such that the output particle numbers of the FWM
neurons in the hidden layer shown an exchange symmetry regarding those input particle
numbers, the permutations of logical inputs of an individual FWM neuron are omitted.
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Table D.1: Input and output encoding of a logical 6-bit sequence for training and testing on the FWM
neural network described in Section 11.2.3.

Logical sequence n1,1 n1,2 n2,3 n2,4 n3,3 n3,4 ñ3,4

000000 0.35 0.35 0.35 0.35 0.35 0.35 0.106
100000 0.45 0.35 0.35 0.35 0.35 0.35 0.121
001000 0.35 0.35 0.45 0.35 0.35 0.35 0.131
000010 0.35 0.35 0.35 0.35 0.45 0.35 0.131
110000 0.45 0.45 0.35 0.35 0.35 0.35 0.147
101000 0.45 0.35 0.45 0.35 0.35 0.35 0.149
100010 0.45 0.35 0.35 0.35 0.45 0.35 0.149
001010 0.35 0.35 0.45 0.35 0.45 0.35 0.164
111000 0.45 0.45 0.45 0.35 0.35 0.35 0.174
110010 0.45 0.45 0.35 0.35 0.45 0.35 0.174
001100 0.35 0.35 0.45 0.45 0.35 0.35 0.182
000011 0.35 0.35 0.35 0.35 0.45 0.45 0.182
101010 0.45 0.35 0.45 0.35 0.45 0.35 0.184
101100 0.45 0.35 0.45 0.45 0.35 0.35 0.197
100011 0.45 0.35 0.35 0.35 0.45 0.45 0.197
111100 0.45 0.45 0.45 0.45 0.35 0.35 0.206
110011 0.45 0.45 0.35 0.35 0.45 0.45 0.206
111010 0.45 0.45 0.45 0.35 0.45 0.35 0.210
001110 0.35 0.35 0.45 0.45 0.45 0.35 0.232
001011 0.35 0.35 0.45 0.35 0.45 0.45 0.232
101110 0.45 0.35 0.45 0.45 0.45 0.35 0.250
101011 0.45 0.35 0.45 0.35 0.45 0.45 0.250
111110 0.45 0.45 0.45 0.45 0.45 0.35 0.261
111011 0.45 0.45 0.45 0.35 0.45 0.45 0.261
001111 0.35 0.35 0.45 0.45 0.45 0.45 0.348
101111 0.45 0.35 0.45 0.45 0.45 0.45 0.368
111111 0.45 0.45 0.45 0.45 0.45 0.45 0.376
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