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”Quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.”

– Asher Peres, [1, p. 112]





A B S T R A C T

Driven by the need for efficient local entanglement detection for quantum information proces-
sing applications, this dissertation investigates sufficient conditions for arbitrary-dimensional
local bipartite entanglement detection based on correlation matrices and joint probability
distributions. Furthermore, the detection of quantum correlations can also be used to verify
Einstein-Podolsky-Rosen (EPR) steerable quantum states from Alice to Bob. In particular,
different classes of local informationally complete measurements are explored to determine
the detection efficiency of entanglement and EPR steering. These local measurements are
specialized to the recently introduced one-parameter class of (N , M )-positive operator valued
measures ((N , M )-POVMs).

The first part of this thesis discusses necessary or sufficient conditions for the existence
of (N , M )-POVMs in arbitrary dimensional quantum systems. A sufficient condition for the
existence of (N , M )-POVMs is derived, which guarantees that all POVM elements are positive
semidefinite for the continuous parameters below an upper bound. Furthermore, the existence
of isospectral traceless Hermitian operator bases (IHOBs) is necessary for the existence of
optimal (N , M )-POVMs. When the number of measurement results M of a POVM is less than
or equal to the dimension of the quantum system, a commutator relation of the basis elements
constructed from a single POVM can be used to extend the necessary condition to a sufficient
one. In these cases, optimal (N , M )-POVMs are necessarily projection operators of equal rank.

The second part of this dissertation utilizes local informationally complete (N , M )-POVMs
to detect bipartite entanglement. It is demonstrated that the symmetries of (N , M )-POVMs
imply a characteristic scaling relation connecting equivalent sufficient entanglement conditi-
ons. Based on the scaling relation, the efficiency of different measurement settings can be
investigated quantitatively. Furthermore, the Euclidean volume ratios between entangled and
all quantum states are computed numerically using a hit-and-run Monte Carlo algorithm. The
numerical results show that the physically feasible local (N , M )-POVMs are sufficient for entan-
glement detection. In particular, optimal (N , M )-POVMs are not needed for entanglement
detection.

The final part of this dissertation discusses the verification of EPR steerability by local
informationally complete (N , M )-POVMs. Another application of the scaling relation is to
identify the efficiency of the correlation matrix-based sufficient condition for EPR steerability
of local informationally complete (N , M )-POVMs. The Euclidean volume ratios of the EPR
steerable states quantify the efficiency of the correlation matrix-based sufficient condition.
Except for the two-qubit case, the numerical results demonstrate that the Euclidean volume
ratios significantly underestimate the EPR steerable quantum states. Moreover, these results
are compared to a recently proposed sufficient condition that determines the steerability from
Alice to Bob by detecting the entanglement of a transformed quantum state. The numerical
results demonstrate that this method is significantly more efficient. However, it is only valid if
Alice’s quantum system is a qubit.



Z U S A M M E N FA S S U N G

Die Detektion von Verschränkung durch lokale Messungen zweier möglicher räumlich getrenn-
ter Beobachter ist für Anwendungen in der Quanteninformationsverarbeitung von großer
Bedeutung. Aus diesem Grund wird in dieser Dissertation die Verschränkungsdetektion durch
Spurnormen von Korrelationsmatrizen und gemeinsame Wahrscheinlichkeitsverteilungen
von lokalen verallgemeinerten Quantenmessungen diskutiert. Darüber hinaus eignen sich
die Korrelationsmatrizen auch für die Detektion von Einstein-Poldolsky-Rosen (EPR) Steering.
Es wird insbesondere der Einfluss lokaler Messungen auf die detektierten Quantenkorrelatio-
nen untersucht. Die lokalen Messungen sind auf die kürzlich eingeführten (N , M )-Positive
Operator Value Measures ((N , M )-POVMs) spezialisiert.

Der erste Teil dieser Dissertation befasst sich mit der Existenz von (N , M )-POVMs in beliebig
dimensionalen Quantensystemen. Zunächst wird eine hinreichende Bedingung hergeleitet,
für welche kontinuierliche Parameter (N , M )-POVMs immer existieren und somit garantiert ist,
dass alle POVM-Elemente positiv semidefinit sind. Weiterhin werden notwendige Bedingun-
gen für die Existenz optimaler (N , M )-POVMs hergeleitet. Diese zeigen den Zusammenhang
zwischen isospektralen, hermiteschen, spurlosen, orthonormalen Operatorbasen (IHOBs)
und optimalen (N , M )-POVMs. Optimale (N , M )-POVMs können nur existieren, wenn eine
solche Basis existiert. Wenn die Anzahl der Messergebnisse eines POVMs M kleiner als die Di-
mension des Quantensystems d ist, wird diese notwendige Bedingung zu einer hinreichenden
Bedingung, indem eine Kommutatorrelation zwischen Basiselementen eines POVMs berück-
sichtigt wird. In diesem Fall handelt es sich bei den Elementen der POVMs um Projektionen
gleichen Ranges.

Im zweiten Teil der Arbeit werden lokale (N , M )-POVMs zur Verschränkungsdetektion
verwendet. Weiterhin wird gezeigt, dass aus den Symmetrien der (N , M )-POVMs eine Skalie-
rungseigenschaft für die Verschränkungsdetektion abgeleitet werden kann, die verschiedene
äquivalente hinreichende Bedingungen miteinander verknüpft. Mithilfe dieser Skalierungsei-
genschaft kann die Effizienz der Verschränkungsdetektion bestimmt werden, ohne die zuge-
hörigen (N , M )-POVMs konstruieren zu müssen. Ein Hit-and-Run Monte-Carlo-Algorithmus
wird verwendet, um die Effizienz der hinreichenden Bedingungen durch euklidische Vo-
lumenverhältnisse der verschränkten Zustände zu allen Zuständen zu bestimmen. Diese
Volumenverhältnisse besagen, dass konstruierbare lokale (N , M )-POVMs für die Verschrän-
kungsdetektion ausreichend sind. Im Gegensatz dazu sind optimale (N , M )-POVMs für die
Verschränkungsdetektion nicht erforderlich.

Im dritten Teil der Arbeit werden Korrelationsmatrizen lokaler (N , M )-POVMs verwendet,
um EPR steerbare Quantenzustände zu detektieren. Mit dem Hit-and-Run Monte-Carlo-
Algorithmus können auch die euklidischen Volumenverhältnisse der von Alice nach Bob
steerbaren Quantenzustände bestimmt werden. Mit Ausnahme des Zwei-Qubit-Systems
werden die euklidischen Volumenverhältnisse durch die hinreichende Bedingung fast voll-
ständig unterschätzt. Daher wird die hinreichende Bedingung für EPR Steering von Alice nach
Bob durch Verschränkungsdetektion verwendet, um die steerbaren Zustände zu detektie-
ren. Numerische Ergebnisse zeigen, dass diese Methode wesentlich effizienter ist als die auf
Korrelationsmatrizen basierende Methode. Allerdings kann diese Methode nur angewendet
werden, wenn Alice ein Qubit als lokales Quantensystem besitzt.
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1
I N T R O D U C T I O N

The development of quantum mechanics started in the early 20th century when Max Planck
published his description of black body radiation in 1900 [2, 3], followed by Albert Einstein’s
explanation of the photoelectric effect in 1905 [4]. These gave rise to the fast-expanding field
of quantum mechanics. Further, the quantum mechanical theories were able to describe the
physics of hydrogen atoms [5], the alpha decay of heavy elements like uranium through the
tunneling effect [6, 7], diatomic molecules [8, 9] and the wave-particle dualism [10].

After the first mathematical formulation of quantum mechanics by Werner Heisenberg [11],
this process cumulated in a closed mathematical description by John von Neumann and Paul
Dirac [12, 13]. The uncertainty relation between two observables has been derived from the
wave structure of quantum mechanics. Despite the success of quantum mechanics, Albert
Einstein, Boris Podolsky and Nathan Rosen raised concerns about its completeness in 1935,
pointing out that a bipartite quantum system could violate the locality condition [14]. However,
Niels Bohr argued in favor of quantum mechanics [15]. In response to the Einstein-Podolsky-
Rosen (EPR) paradox, Erwin Schrödinger introduced entangled quantum states of bipartite
quantum systems [16, 17]. Furthermore, the EPR steering was introduced as the influence on a
local quantum state from local measurements on the other party of a bipartite quantum system.
These phenomena exhibit correlations that surpass the classical correlations between local
observables. For several decades entanglement, nonlocality and EPR steering did not receive
much attention due to the lack of experimental implementations and verifications. However,
the pioneering contributions of lasers, which enable the precise trapping and control of single
atoms and ions [18–21], changed this. Since then, these new technologies have been used for
the experimental realizations of quantum optics and quantum information processing [1].

In the 1960s, John Bell picked up the EPR paradox and reformulated it for spin observ-
ables [22]. The result was the Bell inequality, which is experimentally accessible and enables
to prove the nonlocality of quantum mechanics. The equivalence between locality and hidden
variable theory made an experimental implementation of the EPR paradox possible [23]. Bell
nonlocality has been demonstrated experimentally with increasing contentment [24–26].
Loophole-free Bell inequalities have been violated in various quantum systems, like super-
conducting circuits [27], spins in nitrogen-vacancy centers [28], optical photons [29–31] and
neutral atoms [32].

The introduction of local hidden state (LHS) models allowed a rigorous definition of EPR
steering by Wisemann et al. [33]. Unlike to Bell locality the existence of a LHS model is asym-
metric for the observers. By demonstrating these quantum correlations, entanglement has
been experimentally verified in different quantum systems like polarization of photons, super-
conducting qubits, and trapped atoms. Moreover, the entanglement of two photons has been
demonstrated between two observers who were 248 km apart [34]. Despite the fundamental
interest in these non-intuitive correlations, they gave rise to applications like quantum infor-
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mation, computation, metrology, cryptography and simulation of quantum systems [35, 36].
It is advantageous to classify different types of entanglement through local operations and
classical communication [37, 38]. The quantum mechanical phenomena of entanglement,
nonlocality and EPR steering are valuable resources for applications in quantum informa-
tion processing, such as quantum cryptography [39, 40], quantum communication [41–43],
computing [44–46], simulation [47], sensing [48–51] and teleportation [52, 53]. For quantum
networks [54] or spatially separated observes [28, 34, 55] it is important to verify the entangle-
ment of quantum states by local measurements. Therefore, the focus of this thesis is set to the
detection of bipartite entanglement by local measurements.

1.1 D E T E C T I O N O F E N TA N G L E M E N T A N D E P R S T E E R I N G B Y L O -
C A L G E N E R A L I Z E D M E A S U R E M E N T S

For the development of quantum information processing applications, it is crucial to identify
the quantum states that are most suitable for the task. Positive maps that act on subsystems
are used to characterize bipartite entanglement entirely [56]. As a result, the sufficient Peres-
Horodecki condition, which serves as a criterion for qubit-qubit and qubit-qutrit systems,
can be derived to detect entanglement [57, 58]. This dissertation investigates entanglement
detection using correlation matrices and joint probability distributions of local measurements,
to enable separated observers to identify entangled quantum states. The focus is on informa-
tionally complete measurements that permit the complete quantum state reconstruction.
The local measurements used are the class of single-parameter (N , M )-POVMs [59], which in-
cludes the commonly used symmetric informationally complete POVMs (SIC-POVMs) [60, 61],
their generalization the general SIC-POVMs (GSICs) [62], maximally mutually unbiased bases
(MUBs) [63] and their generalization the mutually unbiased measurements (MUMs) [64]. The
existence of these measurements remains an ongoing research inquiry, even for the special
classes of SIC-POVMs and MUBs [65, 66]. Hence, this dissertation focuses on the existence of
(N , M )-POVMs by establishing necessary conditions and sufficient conditions. These local
informationally complete POVMs are used for detecting entanglement by local measurements.

In cases where only one party trusts their measurement apparatus, the EPR steerable quan-
tum states are valuable resources in quantum information processing. For instance, EPR
steerable quantum states are necessary for one-sided device-independent quantum key dis-
tribution [67–69]. Additionally, the EPR steerability is closely linked to the joint measurable
observables [70]. However, for the simple case of two-qubits numerically feasible necessary
and sufficient conditions for EPR steering are only known for projective measurements [71].
Therefore, the focus is on more straightforward and less demanding sufficient conditions
using local informationally complete measurements for finite-dimensional quantum systems.

1.2 O U T L I N E

This thesis is divided into four parts.
Part I explains the fundamentals of bipartite quantum systems. The concept of a single

quantum system density matrix is discussed in Section 2.1, including the Hilbert-Schmidt rep-
resentation and the trace distance as a measure for distinguishing quantum states. Section 2.2
introduces bipartite quantum systems of finite dimension and defines entangled quantum
states. The following subsections outline various techniques for detecting entanglement. They
cover the Peres-Horodecki condition, entanglement witnesses, and trace norm-based entan-
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glement detections. Quantum measurements are discussed in Section 2.3. The projective
measurements are generalized to POVMs. A hit-and-run Monte Carlo algorithm generating
random bipartite qudit density matrices over the complete state space is discussed in Sec-
tion 2.4. This algorithm is used to test the efficiency of the sufficient entanglement conditions.
Section 2.5 introduces the nonlocality of quantum mechanics and defines EPR steering.

Part II provides an in-depth analysis of (N , M )-POVMs. Chapter 3 focuses on the definition,
construction and important properties of (N , M )-POVMs in Sections 3.1 and 3.2. Section 3.3
presents the derivation of the representation of arbitrary (N , M )-POVMs in a Hermitian oper-
ator basis, forming the basis for the scaling relation of the entanglement and EPR steering
detection in Parts III and IV. Chapter 4 discusses the existence of optimal (N , M )-POVMs. The
positive semidefiniteness of Hermitian operators with a fixed trace is examined to illustrate
the challenge of constructing optimal (N , M )-POVMs in Section 4.1. Additionally, Section 4.2
derives a sufficient condition for which parameters (N , M )-POVMs can be constructed from
an arbitrary traceless Hermitian orthonormal operator basis. Furthermore, the relationship
between optimal (N , M )-POVMs and IHOBs is introduced. The existence of an IHOB is neces-
sary for the existence of optimal (N , M )-POVMs. Moreover, the state of the art of constructing
optimal (N , M )-POVMs of the special classes of SIC-POVMs and MUBs is summarized in
Sections 4.3 and 4.4.

The bipartite entanglement detection using local informationally complete (N , M )-POVMs
is discussed in Part III. The entanglement detection based on the trace norm of correlation
matrices of arbitrary local measurements is introduced. Additionally, the general sufficient
condition is applied to local Hermitian orthonormal operator bases (LOOs) and local infor-
mationally complete (N , M )-POVMs. The scaling relation shows that all local informationally
complete (N , M )-POVMs and LOOs result in the same sufficient condition. In Section 5.2, the
joint probability-based sufficient condition and its associated scaling relation, which unifies
various (N , M )-POVMs into a single class, is derived. An overview of the existing literature on
detecting entanglement with local informationally complete (N , M )-POVMs is presented in
Section 5.3. To evaluate the effectiveness of these introduced sufficient conditions, the hit-
and-run Monte Carlo algorithm from Section 2.4 is used to determine the Euclidean volume
ratios of detected entangled states. The lower bounds on the volume ratios of the identified
entangled quantum states are then compared to those of corresponding negative partial
transpose (NPT) quantum states.

The discussion on the detection of EPR steering is presented in detail in part IV. Section 6.1
provides an overview of the EPR steerability for qubit-qubit systems and presents a simple
criterion for the special class of T -states. Section 6.2 introduces the sufficient EPR steering
condition based on correlation matrices for arbitrary local quantum measurements. This
general sufficient condition is applied to LOOs and local informationally complete (N , M )-
POVMs. Moreover, the scaling relation shows the equivalence of such measurements. The
verification of EPR steerability by detecting entanglement on a transformed quantum state is
shown in Section 6.3. Additionally, sufficient conditions are used to determine the Euclidean
volume ratios of the steerable quantum states from Alice to Bob in Section 6.4. The Euclidean
volume ratios have been computed using the hit-and-run Monte Carlo algorithm of Section 2.4.

The central results of this thesis are or will be published in the following journals:

• M. Schumacher, G. Alber
Typical bipartite steerability and generalized local quantum measurements
Phys. Scr. 98, 115234 (2023)
Based on Chapters 3 and 6
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• M. Schumacher, G. Alber
Detection of typical bipartite entanglement by local generalized measurements
Phys. Rev. A 108, 042424 (2023)
Based on Chapters 3 and 5

• M. Schumacher, G. Alber
Conditions for the existence of positive operator valued measures
Canadian Journal of Physics (submitted)
Based on Chapter 4



Part I

T H E O R E T I C A L F O U N D AT I O N S





2
F U N D A M E N TA L C O N C E P T S A N D M E T H O D S

This chapter discusses the physical foundations of bipartite quantum systems of finite di-
mensions. Section 2.1 introduces the concept of the density matrix, the Hilbert-Schmidt
representation and the trace distance of quantum states. The concept of entanglement and
its detection is presented in Section 2.2. The von Neumann measurement and its general-
ization are discussed in Section 2.3. Additionally, Section 2.4 presents an effective method
for generating random bipartite qudit states. Finally, the nonlocality of quantum systems
and the asymmetric effect of EPR steering are discussed. These provide the foundation for
the discussed problems of the existence of (N , M )-POVMs and their application in verifying
entanglement or EPR steerability.

2.1 D E N S I T Y M AT R I C E S

In this section, properties of density matrices that depict the state ensembles of a quantum
system are introduced and discussed. For the discussed problems it is sufficient to assume
a quantum system of finite dimension d . The state vector

�

�φ
�

∈ Hd has been introduced
to describe the statistics of experimental measurement results. There, the Hilbert space Hd

is a complex vector space of dimension d . The vector
�

�φ
�

contains information about the
quantum state of the system and is used to compute the average value of an observable O




O
�

=



φ
�

�O
�

�φ
�

. (2.1)

The quantum state
�

�φ
�

can determine the measurement statistics but cannot predict a mea-

surement result, only its probability. We assume an ensemble of n quantum states
�

�φi

�

∈H
where the quantum systems is in the state

�

�φi

�

with a probability pi ≥ 0 and it holds
∑n

i=1 pi = 1.
The average value for the observable O for a state ensemble is given by




O
�

ens
=

n
∑

i=1

pi




φi

�

�O
�

�φi

�

= tr
�

Oρ
	

(2.2)

Here,

ρ =
n
∑

i=1

pi

�

�φi

�


φi

�

� (2.3)

is the density matrix. The properties of the density matrix are [1, 72]:

1) The normalization tr
�

ρ
	

= 1 follows from

tr
�

ρ
	

= tr

¨

n
∑

i=1

pi

�

�φi

�


φi

�

�

«

=
n
∑

i=1

pi = 1. (2.4)
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2) A density matrix is Hermitian ρ =ρ†.

3) The purity is given by

tr
�

ρ2
	

≤ 1. (2.5)

4) The positive semidefiniteness ρ ≥ 0 follows from




φ
�

�ρ
�

�φ
�

=
n
∑

i=1

pi

�

�




φ
�

�φi

��

�

2 ≥ 0, ∀
�

�φ
�

∈Hd . (2.6)

It is noted that the positive semidefiniteness of the density matrix is equivalent to the case that
all eigenvalues λi of the density matrix are non-negative [73]. Additionally, the normalization
of the density matrix restricts the eigenvalues to values smaller or equal to one. This implies
that the eigenvalues of a density matrix must satisfy 0≤λi ≤ 1. So far, it has not been shown
under which conditions a density matrix represents a pure state. Starting from a pure state
�

�φ
�

∈Hd , the density matrix is given by ρ =
�

�φ
�


φ
�

� and it follows ρ =ρ2. This implies that

tr
�

ρ2
	

= 1. Assuming a density matrix ρ that satisfies tr
�

ρ2
	

= 1. Such a density matrix fulfills

tr
�

ρ
	

=
d
∑

i=1

λi = 1, (2.7)

tr
�

ρ2
	

=
d
∑

i=1

λ2
i = 1, (2.8)

where it has been used that a Hermitian matrix can be diagonalized. By subtracting both
equations

tr
�

ρ−ρ2
	

=
d
∑

i=1

λi (1−λi ) = 0 (2.9)

and using that the eigenvalues fulfill 0≤λi ≤ 1, one obtains a sum over positive terms, which
has to vanish. This condition can only be fulfilled if the eigenvalues are either zero or one.
Furthermore, due to normalization, one eigenvalue must be equal to one while the others
are equal to zero. This implies that the density operator has rank one and belongs to a pure
state. In summary, a density matrixρ belongs to a pure quantum state if and only if tr

�

ρ2
	

= 1
or ρ2 =ρ is fulfilled.

2.1.1 Hilbert-Schmidt representation of Hermitian operators

A basis representation of Hermitian operators is introduced to visualize the state space of
quantum states or POVMs geometrically. Starting from a representation of Hermitian opera-
tors, the normalization and positive semidefiniteness restrictions are imposed. A Hermitian
matrix A acts on vectors of the Hilbert space of dimension d and satisfies A = A†. It is shown
that such matrices form a vector space over the field of real numbers: let A, B ∈Hd×d with
a , b ∈R then

(a A+ b B )† = a A†+ b B † = a A+ b B (2.10)

is a Hermitian matrix. The aim is to represent the Hermitian operators in a basis of such
a vector space in order to visualize the positive semidefinite matrices or generate random
quantum states. First, the Hilbert-Schmidt scalar product of complex matrices is introduced
by 〈A|B 〉= tr

�

A†B
	

. The definition fulfills the defining properties of a scalar product [74]:



2.1 D E N S I T Y M AT R I C E S 9

1) The symmetry 〈A|B 〉= 〈B |A〉 is shown by

〈A|B 〉= tr
�

A†B
	

= tr
�

B A†
	

= 〈B |A〉.

2) The sesquilinearity follows from the linearity of the trace

〈r1A1+ r2A2|B 〉= r 1 〈A1|B 〉+ r 2 〈A2|B 〉 ,
〈A|r1B1+ r2B2〉= r1 〈A|B1〉+ r2 〈A|B2〉 .

3) The non-negativity is shown by

0≤ 〈A|A〉= tr
�

A†A
	

,

0= 〈A|A〉=
d
∑

i=1

λ2
i ⇔∀λi = 0⇔ A = 0.

Thus, a Hermitian operator can be expanded in a basis of linearly independent Hermitian
operators

G = {G0, · · · ,Gd 2−1}, (2.11)

acting on Hd . The properties of such Hermitian operator bases are discussed in more detail
in Appendix B. These operators can always be chosen as orthonormal Hermitian operators
with respect to the Hilbert-Schmidt scalar product




Gi

�

�G j

�

= tr
�

Gi G j

	

=δi j . (2.12)

These operators form an Hermitian orthonormal basis of the Euclidean vector space Hd 2 of
linear Hermitian operators. Therefore, a Hermitian operator H can be expanded in this basis
by

H =
d 2−1
∑

i=0

hi Gi (2.13)

and the coefficients are given by

tr
�

H G j

	

=
d 2−1
∑

i=0

hi tr
�

G j Gi

	

= h j . (2.14)

When dealing with density matrices and (N , M )-POVMs, it is only necessary to consider
Hermitian operators that have a fixed trace of tr{H } = p . For this purpose, it is helpful to
choose a Hermitian orthonormal operator basis with

G̃ =
§

G̃0 =
1dp

d
,G̃1 · · · ,G̃d 2−1

ª

. (2.15)

From this definition, it follows that the operators are traceless tr
�

G̃i

	

= 0 for i = {1, . . . , d 2−1}.
Operators with a fixed trace can be represented by

H =
p

d
1d +

d 2−1
∑

i=1

hi G̃i =
p

d
1d +h ·G̃ . (2.16)
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Here the d 2 − 1 vectors h = (h1, . . . , hd 2−1)T and G̃ = (G̃1, . . . ,G̃d 2−1)T have been introduced,
where the vector h is called the Bloch vector for quantum states (p = 1). Representation (2.16)
implies that the Hermitian operators with fixed trace are elements of a d 2−1 Euclidean vector
space over the field of real numbers. Furthermore, we focus on density matrices, which have
the representation of [75]

ρ =
1

d
1d +

d 2−1
∑

i=1

hi G̃i =
1

d
1d +h ·G̃ . (2.17)

The normalization and hermiticity of a density matrix are encoded in the density matrix
representation. However, the positive semidefiniteness and purity still have to be introduced.
From Eq. (2.5) follows [74]

1≥ tr
�

ρ2
	

=
1

d
+ |h |2⇒ |h |2 ≤

d −1

d
. (2.18)

Here, the inequality states that the norm of the Bloch vector h is bounded by
p

(d −1)/d . This
restriction confirms the space of Hermitian operators with a trace equal to one to a ball with
radius

p

(d −1)/d . In addition, the positive semidefinite operators on the boundary of the
ball are the pure states. However, the positive semidefiniteness of the Hermitian operators is
not encoded in the Bloch vector. First, it is shown that the density matrices form a convex set.
Let ri ∈ [0, 1]with

∑n
i=1 ri = 1,ρi density matrices and pi j parameters of a convex combination

of pure states of ρi with
∑ni

j=1 pi j = 1 for all i . Then holds

n
∑

i=1

ri

ni
∑

j=1

pi j =
n
∑

i=1

ri (2.19)

and the operators have the convex combination into pure states
�

�φi j

�

n
∑

i=1

riρi =
n
∑

i=1

ni
∑

j=1

ri pi j

�

�φi j

�


φi j

�

� . (2.20)

This implies that density matrices form a convex set. It can be shown that all Hermitian
operator with a trace equal to one and [74]

|h |2 ≤
1

(d −1)d
(2.21)

are positive semidefinite. This minimal radius will be derived in Section 4.2 and is a sufficient
condition for positive semidefiniteness. The convex set’s interior consists of density matrices
with strictly positive eigenvalues, while the boundary consists of density matrices with at
least one eigenvalue equal to zero. The density matrices representing pure states are extremal
points of the convex set with only one non-zero eigenvalue. For any Hermitian operator with
a norm of the Bloch vector between the inner and outer radii, positive semidefiniteness must
be checked. A detailed discussion of the convex set is shown in Section 4.2 for (N , M )-POVMs,
which also holds for density matrices. For a qubit d = 2, the inner and outer radius are identi-
cal, rin = rout = 1/2. This leads to the Bloch ball, where all vectors inside the 3-dimensional
ball represent density matrices [74]. A traceless Hermitian orthonormal basis used for qubits
is

G̃1 =
σxp

2
, G̃2 =

σyp
2

, and G̃3 =
σzp

2
(2.22)
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withσi the Pauli matrices Eq. (B.8). The set of density matrices for a qubit is given by

ρ =
1

2
12+

1
p

2
h ·σ =

1

2
12+

1
p

2

�

h1σx +h2σy +h3σz

�

, (2.23)

where |h |2 ≤ 1/2. It is stated that the definition of the prefactor 1/
p

2 is a convention. In the
case of qubit density matrices, the pure states define the boundary of the state space. In d = 2,
all density matrices with an eigenvalue equal to zero must be pure. For a general qudit with
d ≥ 2, the density matrices are given by

ρ(h ) =
1

d
1d +h ·G̃ . (2.24)

Such a basis can be the generalized Gell-Mann basis, Eq. (B.10), which is a generalization of the
Pauli matrices for d ≥ 3 and can be constructed in arbitrary dimensions. Here, only the vectors
with ρ(h )≥ 0 belong to density matrices. The density matrices with at least one eigenvalue
equal to zero form the boundary of the state space in (d 2−1)-dimensional Euclidean vector
space. The convex set for qudits is more complicated than for qubits because the pure states
are only a part of this boundary. Applications for the basis representation are the simple
calculation of average values and the generation of arbitrary quantum states.

2.1.2 Distance measure between quantum states

In this section, a distance measure between two quantum states is introduced, which allows
to check if two quantum states are identical or similar. Starting from a measure for comparing
classical probability distributions, a generalization to density matrices is discussed. Consider
two probability distributions {px } and {qx } over the same index set x . What does it mean if
the two sets of probability distributions are similar to one another? There is no unique answer
to such a question. A suitable measure that can be introduced is the trace distance [1]

D (px , qx )≡
1

2

∑

x

|px −qx |. (2.25)

Its name anticipates its quantum mechanical generalization. However, it is also known more
generally as L1 or Kolmogorov distance. It turns out that Eq. (2.25) is a metric that fulfills the
following conditions [76]:

• The distance of a point to itself is zero: D (px , px ) = 0

• Positivity: D (px , qx )> 0 for px ̸= qx

• Symmetry: D (px , qx ) =D (qx , px )

• Triangle inequality: D (px , rx )≤D (px , qx ) +D (qx , rx )

for all probability distributions {px }, {qx } and {rx } over the same index set x . To motivate this
definition physically, it can be shown that the trace distance is given by

D (px , qx ) =max
S
|p (S )−q (S )|=max

S

�

�

�

�

�

∑

x∈S
px −

∑

x∈S
qx

�

�

�

�

�

, (2.26)

where the maximization is performed over all subsets S of the index set x . The maximum
is taken for the event Smax, which is ideal to distinguish the probability distributions {px }
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and {sx }. The value of the trace distance governs how well it is possible to distinguish between
two probability distributions.

In quantum information the object equivalent to the probability distribution is the density
matrix. The trace distance of two density matrices ρ andσ is given by

D (ρ,σ)≡
1

2
tr
�

|ρ−σ|
	

=
1

2



ρ−σ




tr
, (2.27)

where the absolute value of an operator is defined as |A| =
p

A†A. By definition, the trace
norm is equivalent to the sum over the singular values of ρ −σ. The trace distance of two
commuting density matrices Eq. (2.27), is a generalization of the classical result Eq. (2.25). For
two commuting density matrices, exists a common eigenbasis

ρ =
d
∑

i=1

ri |i 〉 〈i | , σ=
d
∑

i=1

si |i 〉 〈i | . (2.28)

with the eigenvectors {|1〉 , . . . , |d 〉} and the eigenvalues ri ofρ and si ofσ. From the definition,
it follows that the trace distance of two simultaneously diagonalizable density matrices is the
classical trace distance of the eigenvalues

D (ρ,σ) =
1

2

�

�

�

�

�

d
∑

i=1

(ri − si ) |i 〉 〈i |

�

�

�

�

�

=D (ri , si ). (2.29)

The invariance of the trace distance under unitary transformations is inherited from the trace
norm [73]

D (UρU †,UσU †) =D (ρ,σ) (2.30)

for all unitary transformations U . To relate the classical definition of the trace distance to
that of quantum states, the difference ρ−σ can be represented by two positive semidefinite
operators Q and S with orthogonal support

ρ−σ=Q −S . (2.31)

Therefore, the absolute value fulfills |ρ−σ|= S +Q and

0= tr
�

ρ−σ
	

= tr{Q −S}= tr{Q}− tr{S} ⇒ tr{Q}= tr{S}, (2.32)

D (ρ,σ) =
1

2
|ρ−σ|=

1

2
(tr{Q}+ tr{S}) = tr{Q}. (2.33)

Measurements to distinguish density matrices can be found by the trace distance. Con-
sider a POVM {Π1, . . . ,Πn} with

∑n
i=1Πi =1d and Πi ≥ 0 for all i ∈ {1, . . . , n}. POVMs are dis-
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cussed in detail in Section 2.3.2. The probability distributions of the measurement results
are pi = tr

�

ρΠi

	

and qi = tr{σΠi }. For the classical trace distance holds [c.f. Eq. (2.25)]

D (pn , qn ) =
1

2

n
∑

i=1

�

�tr
�

Πi (ρ−σ)
	�

�

=
1

2

n
∑

i=1

|tr{Πi (Q −S )}|

≤
1

2

n
∑

i=1

tr{Πi (Q +S )}

=
1

2

n
∑

i=1

tr
�

Πi

�

�ρ−σ
�

�

	

≤
1

2
tr
��

�ρ−σ
�

�

	

=D (ρ,σ). (2.34)

Here, it has been used that the difference between two density matrices can be separated into
two positive semidefinite operators S and Q and that the POVM elements sum to the identity.
The trace distance for density matrices is given by

D (ρ,σ) =max
Πi

1

2

n
∑

i=1

�

�tr
�

Πi (ρ−σ)
	�

� , (2.35)

where the maximization is performed over all POVMs. Therefore, a POVM that takes the
maximum is optimal to measure the distance of two density matrices. Furthermore, such
a POVM can be used to measure a classical distribution, with the same trace distance as
the two quantum states. Thus, the trace distance can be interpreted as an upper bound of
the difference between probability distributions of measurement results of the same POVM
resulting from the quantum states ρ andσ. It can be easily seen that the trace distance of two
quantum states fulfills the four defining properties of a metric

• The distance of a point to itself is zero: D (ρ,ρ) = 0

• Positivity: D (ρ,σ)> 0 for ρ ̸=σ

• Symmetry: D (ρ,σ) =D (σ,ρ)

• Triangle inequality: D (ρ,τ)≤D (ρ,σ) +D (σ,τ)

for all density matrices ρ, σ and τ. It has been shown that the trace distance defined over
the trace norm of the difference between two quantum states is a natural tool to measure the
distance between two quantum states [1]. Therefore, it is suitable to measure the distance
between separable and entangled quantum states. The invariance under unitary transfor-
mations simplifies the calculation of the distance between these objects. It is noted that the
difference between two quantum states can also be quantified by other measures, for example,
the fidelity F (ρ,σ) =

p

ρ1/2σ1/2. However, the subsequent sections will focus on trace norms
to detect entanglement.
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2.2 B I PA R T I T E S Y S T E M S A N D E N TA N G L E M E N T

Up to this point, only single-particle systems have been discussed, which will now be extended
to distinguishable bipartite quantum systems. The state space of the bipartite system is given
by the tensor product of the Hilbert spaces HAB = HA ⊗HB with dimensions dA and dB. If
the first subsystem is in a state

�

�φ
�

A
∈HA and the second subsystem in

�

�ψ
�

B
∈HB, then the

composed system is in the product state [1]
�

�φ
�

=
�

�φA

�

⊗
�

�ψB

�

. (2.36)

It is assumed that each subsystem has a local observer, Alice and Bob. Alice’s observables or
states are denoted by subscript A and Bob’s by B.

Let {|k 〉A : k = 0, . . . , dA−1} and {|l 〉B : l = 0, . . . , dB−1} be orthonormal bases of the subsys-
tems, then an orthonormal basis of the composed vector space is given by

{|k l 〉= |k 〉⊗ |l 〉 : k = 0, . . . , dA−1, l = 0, . . . , dB−1} . (2.37)

The average value of a product state and an observable OA =O ⊗1dB
on the first subsystem is

given by




φ
�

�OA

�

�φ
�

=



φA

�

�O
�

�φA

�


ψB

�

�ψB

�

=



φA

�

�O
�

�φA

�

. (2.38)

For a general state |Ψ〉 ∈HA⊗HB and an observable on the first subsystem holds




OA

�

=



Ψ
�

�O ⊗1dB

�

�Ψ
�

=
dA−1
∑

k=0

dB−1
∑

l=0




Ψ
�

�O ⊗1dB

�

�k l
�

〈k l |Ψ〉 (2.39)

=
dA−1
∑

k=0

dB−1
∑

l=0

〈k | (〈l |Ψ〉 〈Ψ|l 〉)O |k 〉 . (2.40)

This allows the definition of Alice’s reduced density matrix

ρA = trB{|Ψ〉 〈Ψ|}=
dB−1
∑

l=0

〈l |Ψ〉 〈Ψ|l 〉 , (2.41)

and analog for the second subsystem

ρB = trA{|Ψ〉 〈Ψ|}=
dA−1
∑

k=0

〈k |Ψ〉 〈Ψ|k 〉 . (2.42)

The reduced density matrix of a subsystem contains all the information necessary to calculate
the average values of a local observable of that subsystem. The Schmidt decomposition allows
to write each state |Ψ〉 ∈HA⊗HB as a finite sum of orthogonal product states

|Ψ〉=
n
∑

i=1

ai

�

�φi

�

⊗
�

�ψi

�

(2.43)

with the positive parameters ai > 0 and orthogonal vectors
�

�φi

�

and
�

�ψi

�

. The Schmidt rank
n refers to the number of product states required to represent the state vector. If a state has a
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Schmidt rank n = 1, it is called separable, while, otherwise, it is called entangled. Therefore, a
pure state is entangled if and only if the reduced density matrices are not pure.

Up to now, entanglement for mixed states has yet to be discussed. A separable mixed state
is defined by a convex combination of product density matrices [74]

ρ =
n
∑

i=1

piρA,i ⊗ρB,i , (2.44)

where 0≤ pi ≤ 1 and
∑n

i=1 pi = 1. Ifρ is not separable, it is entangled. To verify that a quantum
state is entangled, it has to be shown that the representation Eq. (2.44) does not exist for this
state. Even for the simple case of two qubits, it is difficult to determine if such a representation
exists. Therefore, sufficient conditions for entanglement detection are needed to circumvent
the search for such a representation. For two-qubits, the Bell states are an example of entangled
states

|Ψ±〉=
1
p

2
(|0〉⊗ |1〉± |1〉⊗ |0〉) ,

|Φ±〉=
1
p

2
(|0〉⊗ |0〉± |1〉⊗ |1〉) (2.45)

with two basis elements of the qubit subsystem |0〉 and |1〉. The four Bell states also form a
basis for all pure two-qubit quantum states. Another way to think of entanglement is in terms
of state preparation. A separable state can be prepared separately in both systems without
communicating between the subsystems. However, preparing an entangled quantum state
requires global operations on the quantum system.

2.2.1 The negative partial transpose

In the previous section, bipartite entanglement has been defined, but no simple condition has
been given if a quantum state is entangled. The entanglement of bipartite quantum systems
can be equivalently characterized by positive but not completely positive maps. A quantum
state is separable if and only if

(1dA
⊗ΦB)ρ ≥ 0 (2.46)

for all positive but not completely positive maps ΦB [56, 58]. Restricting the positive maps to
the matrix transpose leads to the negative partial transpose (NPT) condition. To formulate
the sufficient NPT condition a closer look at the representation of a density matrix is required.
A bipartite density matrix in the Hilbert space HA⊗HB can be represented in a product basis
by [57, 58]

ρ =
dA−1
∑

i , j=0

dB−1
∑

k ,l=0

ρi j ,k l |i 〉



j
�

�⊗ |k 〉 〈l | . (2.47)

In this basis, the partial transposition of the subsystems is defined by

ρTA = (T ⊗1dB
)ρ =

dA−1
∑

i , j=0

dB−1
∑

k ,l=0

ρ j i ,k l |i 〉



j
�

�⊗ |k 〉 〈l | , (2.48)

ρTB = (1dA
⊗T )ρ =

dA−1
∑

i , j=0

dB−1
∑

k ,l=0

ρi j ,l k |i 〉



j
�

�⊗ |k 〉 〈l | , (2.49)
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where T is the local transposition operator. For the partial transpose on the first subsystem,
the indices i and j have been exchanged; for the second system, the indices k and l . A state is
called positive partial transpose (PPT)if [57, 58]

ρTA ≥ 0⇔ρTB ≥ 0. (2.50)

If the matrix is not PPT, or the partial transposed matrix has at least one negative eigenvalue,
such a matrix is called NPT. For a separable bipartite density matrix holds [57, 58]

ρTA =
n
∑

i=1

piρ
T
A,i ⊗ρB,i =

n
∑

i=1

pi ρ̃A,i ⊗ρB,i ≥ 0. (2.51)

If a density matrix is NPT, it is entangled. The NPT quantum states are independent of the
basis representation of the density matrix.It has been demonstrated by the Horodeckis that
the PPT quantum states are separable for two-qubit and qubit-qutrit systems [58]. In these
particular dimensions, the sufficient condition is also necessary. It is often also called the
Peres-Horodecki criterion. A disadvantage of the sufficient NPT condition is the difficulty in
implementing the partial transpose for arbitrary quantum states. Thus, the emphasis is on
detecting entanglement through local measurements that observers can conduct even at far
distances.

2.2.2 Entanglement witnesses

In this section, the concept of the entanglement witness is discussed. The separable states are
defined in Eq. (2.44) as a convex combination of product density matrices and such states also
form a convex set within the convex set of all quantum states. The set of separable states can be
characterized geometrically by average values of entanglement witnesses. An entanglement
witness is an operator that has to have at least one negative eigenvalue and the average value
for pure product states is non-negative




ψA

�

�




ψB

�

�W
�

�ψA

� �

�ψB

�

≥ 0 (2.52)

for all
�

�ψA

�

∈HA and
�

�ψB

�

∈HB . The separable states have to fulfill

tr
�

W ρsep

	

≥ 0 (2.53)

for all entanglement witnesses W [58, 77]. The proof utilizes the Hahn-Banach theorem [78].
However, it is important to note that the description of the entanglement witnesses does
not require finite dimensional subsystems. A geometric representation of the entanglement
witness is shown in Fig. 2.1. The green area denotes the convex set of separable quantum states,
while the blue area represents entangled quantum states. The lines outline the hyperareas
defined by the entanglement witness W and Wopt. An entanglement witness W ′ is called finer
than W if it can certify all the entangled states detected by W [79]. In Fig. 2.1 the entanglement
witness Wopt is both finer and optimal compared to W . An entanglement witness is called
optimal if no finer witness exists. The optimal witness’s solid line in Fig. 2.1 intersects with the
set of separable quantum states. An example of an entanglement witness for bipartite systems
with local dimensions d is given by [56, 80]

V =
d−1
∑

i , j=0

|i 〉



j
�

�⊗
�

� j
�

〈i | . (2.54)
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It satisfies



ψA

�

�




ψB

�

�V
�

�ψA

� �

�ψB

�

=
�

�




φA

�

�φB

��

�

2 ≥ 0 and has the eigenvalue minus one. En-
tanglement witnesses are practical in identifying the entanglement of a specific quantum
state. Furthermore, they can be implemented as an average value of a Hermitian operator W .
However, a single entanglement witness cannot verify all entangled states. At least one en-
tanglement witness can detect each entangled state. Therefore, to overcome this problem,
sufficient entanglement conditions, including more than a single average value of a Hermitian
operator, have to be considered.

Figure 2.1: The geometric representation of a convex set of quantum states [56]: The green area marks
the convex set of separable states surrounded by the entangled states (blue area). The
hyperareas belonging to the entanglement witnesses are illustrated by lines. The quantum
states on the left of the lines or the hyperplane itself, including the separable states fulfilling
tr
�

W ρ
	

≥ 0. The quantum states on the right of the lines are witnessed as entangled by

tr
�

ρentW
	

< 0. The solid line denotes an optimal entanglement witness Wopt.

2.2.3 Entanglement detection by local measurements

In this section, a first method is shown how to detect entanglement of a bipartite quantum state
by local measurements. It is assumed that Alice and Bob measure a Hermitian orthonormal
basis GA and GB in their subsystems. This set of local measurements is called local orthonormal
Hermitian operators basis (LOO). Here, the sets GA and GB are defined by Eq. (2.11). An
arbitrary density matrix can be represented in the Hilbert-Schmidt vector space by

ρ =
d 2

A−1
∑

k=0

d 2
B−1
∑

l=0

ρk l G A
k ⊗G B

l (2.55)

with ρk l = 〈G A
k ⊗G B

l 〉= tr
�

ρG A
k ⊗G B

l

	

. For further discussions, it is assumed that dA ≤ dB. By
using the Schmidt theorem, it can be shown that a basis ḠA on Alice’s subsystem exists, as
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well as an orthonormal system ḠB on Bob’s subsystem exists, such that any bipartite density
matrix can be written as

ρ =
d 2

A−1
∑

k=0

λk Ḡ A
k ⊗ Ḡ B

k , λk = 〈Ḡ A
k ⊗ Ḡ B

k 〉= tr
�

ρḠ A
k ⊗ Ḡ B

k

	

(2.56)

where λk ≥ 0. By using that separable density matrices are convex combinations of product
density matrices [Eq. (2.44)], follows that all separable states have to fulfill [81]

d 2
A−1
∑

k=0

λk ≤ 1. (2.57)

This is the so-called computable cross norm realignment (CCNR) condition and a violation
of this inequality is a sufficient condition for entanglement detection [82, 83]. An optimal
representation of the form of Eq. (2.56) is required to determine whether a quantum state
is entangled. This method of entanglement detection is closely related to the entanglement
witness [84]

W =1dA
⊗1dB

−
d 2

A−1
∑

k=0

Ḡ A
k ⊗ Ḡ B

k . (2.58)

A quantum state ρ is entangled if the average value of the entanglement witness is nega-
tive 〈W 〉= tr

�

W ρ
	

< 0. The entanglement witness is a measurement operator and can easily
test if a quantum state is entangled. However, the detected entanglement depends on the
chosen LOO. The next step is to unify this family of entanglement witnesses derived from
different LOOs into a single inequality. The trace norm has previously been employed in
Section 2.1.2 to quantify the dissimilarity between quantum states. Therefore, the trace norm
can be used to detect entanglement. For this purpose, the joint probability matrix P is defined
by

[P ]k l =



G A
k ⊗G B

l

�

= tr
�

G A
k ⊗G B

l ρ
	

= pk l . (2.59)

The components of such a matrix for a separable quantum state Eq. (2.44) can be represented
by

pk l =
n
∑

i=1

pi




ρA
i ⊗ρ

B
i G A

k ⊗G B
l

�

=
n
∑

i=1

pi




ρA
i G A

k

�


ρB
i G B

l

�

=
n
∑

i=1

pi ai ,k bi ,l . (2.60)

By introducing the vectors a i = (ai ,0 . . . ai ,d 2
A−1)

T and b i = (bi ,0 . . . bi ,d 2
B−1)

T, the joint probability
matrix can be written as sum of dyadic products

P =
n
∑

i=1

pi a i b T
i . (2.61)
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The trace or 1-norm defined by the sum of the singular values of such a matrix can be used to
derive an inequality to detect entanglement. Moreover, the trace norm of the joint probability
distribution is bounded by [85]

∥P ∥tr =











n
∑

i=1

pi a i b T
i











tr

≤
n
∑

i=1

pi



a i b T
i





tr

=
n
∑

i=1

pi ∥a i ∥∥b i ∥

=
n
∑

i=1

pi

√

√

√

√

d 2
A−1
∑

k=0

a 2
i ,k

d 2
B−1
∑

l=0

b 2
i ,l

=
n
∑

i=1

pi

r

tr
¦

ρA
i

2
©

tr
¦

ρB
i

2
©

≤
n
∑

i=1

pi = 1 (2.62)

On the first lesser equal sign, the triangle inequality has been used, followed by the cross norm
property of the trace norm for dyadics. At the last line, the purity condition of density matrices
has been used. This implies that all separable states have to fulfill

∥P ∥tr ≤ 1. (2.63)

Violating this inequality detects a quantum state as entangled. An important property of the
trace norm is the invariance under local orthogonal transformations OA and OB [73]

∥OAP OB∥tr = ∥P ∥tr (2.64)

with O T
A OA =1dA

and O T
B OB =1dB

. This means that two LOOs, which can be transformed into
each other by orthogonal transformations (B.4)

(G A
0 , . . . ,G A

d 2
A−1
)T =OA(Ḡ

A
0 , . . . ,Ḡ A

d 2
A−1
)T (2.65)

(G B
0 , . . . ,G B

d 2
B−1
)T =OB(Ḡ

B
0 , . . . ,Ḡ A

d 2
B−1
)T (2.66)

have joint probability matrices with identical trace norms. Therefore, the trace norm-based
inequality Eq. (2.63) is basis independent. By using the basis of Eq. (2.56), the trace norm is
given by

∥P ∥tr =
d 2

A−1
∑

k=0

λk ≤ 1. (2.67)

This example illustrates the applicability of trace norms in entanglement detection. These
equivalent sufficient conditions based on LOOs [Eqs. (2.57), (2.58) and (2.63)], have been
discussed in this section. However, it is important to note that the first two conditions depend
on the selected LOOs for a given density matrix. The entanglement witness offers an advantage
as it can be measured directly. However, the LOO has to be optimized to detect the most
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entangled quantum states. The basis-independent trace norm-based sufficient condition
does not require an optimized measurement, making it well-suited for detecting entanglement
of arbitrary density matrices without the need to select an optimal LOO. Therefore, the focus
on entanglement detection in Chapter 5 is on trace norms of correlation or joint probability
matrices.

2.3 M E A S U R E M E N T S I N Q U A N T U M M E C H A N I C S

The state of a quantum system can only be figured out by performing measurements. To do
this, the observer must couple their external system to the quantum system of interest [72]. As
a consequence, the quantum system is not necessarily closed anymore and can experience a
non-unitary evolution. Thus, the postulates for quantum measurements are presented. In the
first subsection, projective measurements are described. These definitions are extended to
generalized measurements in the second subsection.

2.3.1 Projective measurements

In quantum mechanics, a projective or von Neumann measurement in a d -dimensional
quantum system is described by a Hermitian operator X [1]. A Hermitian operator has the
spectral decomposition of

X =
n
∑

j=1

Pjλ j (2.68)

with the real-valued eigenvalues λ j , the spectral projections Pj and the number of different
eigenvalues n . If the spectrum of the measurement operators is non-degenerate, it can be
written with rank one spectral projectors

X =
d
∑

j=1

λ j

�

� j
�


j
�

� . (2.69)

The following six points summarize how the measurement affects the state and distribution
of the outcomes [72]:

1. The projectors are complete
∑n

j=1 Pj =1d .

2. The spectral projections of a measurement operator fulfill Pi Pj = Piδi j . Therefore, their
eigenvalues are zero and one.

3. The measurement results of X are the eigenvalues λi .

4. The quantum state after performing the measurement after an initial preparation
�

�φ
�

or ρ and recording the result λ j is

�

�φ j

�

=
Pj

�

�φ
�

q




φ
�

�Pj |φ
�

,

ρ j =
PjρPj

tr
�

Pjρ
	 .
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5. The probability to measure λ j is given by

pj =



φ
�

�Pj Pj

�

�φ
�

=



φ
�

�Pj

�

�φ
�

,

pj = tr
�

Pjρ
	

.

6. If the measurement is performed but the state is not recorded, the post-measurement
quantum state is

ρ̃ =
n
∑

j=1

pj

�

�φ j

�


φ j

�

� ,

ρ̃ =
n
∑

j=1

pjρ j .

For postulates 4.-6., pure and mixed states have been discussed. Summarizing the postu-
lates 1.-3., for a given von Neumann measurement and a quantum state, the average value
and the probability of a particular outcome are known. However, the occurrence of a specific
measurement outcome is unpredictable. The statistical behavior of repeating measurements
on copies of an initial quantum state is described by the quantum state

�

�φ
�

or density ma-
trix ρ. The measurement result can only be predicted for outcomes with a probability of one.
Moreover, the eigenvalues λ j and the probabilities pj can be used to determine the average
values of an observable

〈X 〉=
n
∑

j=1

λ j pj =
n
∑

j=1

λ j tr
�

Pjρ
	

= tr
�

Xρ
	

. (2.70)

Furthermore, higher moments can be calculated for k ≥ 2 by

〈X k 〉=
n
∑

j=1

λk
j pj =

n
∑

j=1

λk
j tr

�

Pjρ
	

= tr
�

X kρ
	

(2.71)

and most importantly, from such moments is the second moment k = 2, which is related to
the variance by

V (X ,ρ)2 = 〈(X −〈X 〉)2〉= 〈X 2〉− 〈X 〉2. (2.72)

The variance or standard deviation is a measure that describes the deviation of measurement
results from their average value. If a measurement for a given state us repeated multiple times,
the standard deviation is given by

p

V (X ,ρ). The number of possible different eigenvalues
limits the outcomes of a von Neumann measurement. In the case of a Hermitian operator
with a non-degenerate spectrum, the maximum number of different measurement results is
the dimension d . In the subsequent section, von Neumann measurements are generalized to
support any number of possible outcomes.

2.3.2 Positive operator valued measures (POVM)

In the previous section, the von Neumann measurement has been introduced. The number of
distinct measurement outcomes λ j is limited by the dimension of the Hilbert Space d , since
the maximum number of orthogonal projections satisfying Pi Pj =δi j Pi is restricted to d . It
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is desirable to perform measurements with more results. To achieve this the postulates of
projective measurements are applied to compute the probability distribution of 0≤ pj ≤ 1 with
∑M

j=1 pj = 1. In postulate 5, it is observed that the positive semidefiniteness is only required

for P 2
j and can be relaxed for Pj . Therefore, a new probability distribution is proposed with

positive semidefinite operators Π j ≥ 0 by

pj = tr
�

Π jρ
	

. (2.73)

From the definition of probability distributions follows

1=
M
∑

j=1

pj =
M
∑

j=1

tr
�

Π jρ
	

= tr

(

M
∑

j=1

Π jρ

)

, (2.74)

⇒
M
∑

j=1

Π j =1d . (2.75)

Here, M denotes the number of measurement results. Therefore, the operatorsΠ j have to sum
up to the identity so that the parameters pj form a probability distribution for any quantum
state ρ. A generalized measurement is defined by a decomposition of the identity operator
into M positive semidefinite operators. These operators are called a positive operator valued
measure (POVM). For projective measurements, the Pj describing the post-measurement
states (postulate 4) are generalized for POVMs. Assuming arbitrary operators A j , which de-
scribe the post-measurement state by

�

�φ j

�

=
A j

�

�φ
�

s

D

φ
�

�

�A†
j A j

�

�

�φ
E

. (2.76)

The operators are related to positive semidefinite operators by Π j = A†
j A j . Additionally, it

is seen that the form A j = UjΠ
1/2
j maintains the positive semidefinite operator invariant,

where Uj is an arbitrary unitary matrix. From the positive semidefiniteness of Π j , it follows
that the square root of such operators exists. The same POVM may generate various mea-
surement operators A j . Thus, the POVM elements are not described by unique measurement
operators A j . For POVMs, the measurement operators have been generalized from Pj to A j

and the probability defining operators from P 2
j to Π j . The following postulates summarize

the definition of a POVM [72]:

(i) The POVM elements Π j ≥ 0 are complete, i.e.
∑

j Π j =1d .

(ii) The POVM elements can be generated by operators A j with Π j = A†
j A j , which have a

polar decomposition A j =UjΠ
1/2
j . The unitary operators Uj keep the POVM elements

Π j invariant.

(iii) The measurement yields alternatives belonging to one of its elements.

(iv) The quantum state belonging to the measurement output Π j is given by

�

�φ j

�

=
A j

�

�φ
�

s

D

φ j

�

�

�A†
j A j

�

�

�φ j

E

,

ρ j =
A jρA†

j

tr
�

A jρA†
	 .
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(v) The probability to measure Π j is given by

pj =



φ
�

�Π j

�

�φ
�

=
D

φ j

�

�

�A†
j A j

�

�

�φ j

E

,

pj = tr
�

Π jρ
	

.

(vi) If a measurement is performed but the result is not recorded, the post-measurement
quantum state is

ρ̃ =
M
∑

j=1

pjρ j =
M
∑

j=1

A jρA†
j .

Often, it is enough to know only the probability distribution of the outcomes, in which case
only postulates (i), (iii) and (v) are needed. Moreover, the operators A j are not uniquely
defined by the POVM, as various measurement operators A j can create POVMs with identical
probability distributions for arbitrary quantum states. For instance, operators A j and Uj A j ,
where Uj represents an arbitrary unitary operators, produce identical POVM elements Π j .
The operator A j represents a physical implementation of the POVM Π j . The POVM elements
do not need to be orthogonal to fulfill the postulates. This implies that the dimension of the
quantum system d does not limit the number of measurement results M . By coupling the
quantum system to an ancilla system HA⊗HB, the equivalence between a POVM {Π j } and von
Neumann measurement on the composite system can be shown by Neumark’s theorem [72].

An advantage of POVMs over projective measurements is demonstrated by an example.
Suppose there are two linearly independent non-orthogonal quantum states

�

�




φ1

�

�φ2

��

�> 0. In
an experiment, one of the two states is randomly prepared. An observer wants to measure
which of these two states has been prepared. In order to unambiguously discriminate between
the two pure states, the observer cannot make an error. It is forbidden to announce that

�

�φ1

�

has been measured if in reality
�

�φ2

�

has been prepared or vice versa. Firstly, it is demonstrated
that this task cannot be accomplished with absolute certainty. Assuming a POVM with two
measurement results Π1 and Π2, which fulfills

Π1+Π2 =1d (2.77)

Π1

�

�φ2

�

= 0, (2.78)

Π2

�

�φ1

�

= 0. (2.79)

From the completeness relation of the POVMs follows that

p1 =



φ1

�

�Π1|φ1

�

= 1, (2.80)

p2 =



φ2

�

�Π2|φ2

�

= 1. (2.81)

Both probabilities are equal to one, which means that this represents perfect state discrimina-
tion, but multiplying Eq. (2.77) by




φ1

�

� and
�

�φ2

�

leads to

0=



φ1

�

�Π1|φ2

�

+



φ1

�

�Π2|φ2

�

=



φ1

�

�φ2

�

. (2.82)

This can only be fulfilled if the states are orthogonal, which is inconsistent with the assumption
of non-orthogonal quantum states. It is impossible to obtain a perfect state discrimination for
two non-orthogonal quantum states. For error-free identification of the two quantum states,
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an additional measurement result is necessary, so that the observer is uncertain about which
state has been prepared. Thus, the modified POVM is given by

1d =Π1+Π2+Π0 (2.83)

so that the Eqs. (2.78) and (2.79) are still fulfilled. The probability distributions for the two
quantum states are given by

p1 =



φ1

�

�Π1|φ1

�

, (2.84)

q1 =



φ1

�

�Π0|φ1

�

, (2.85)

p2 =



φ2

�

�Π2|φ2

�

, (2.86)

q2 =



φ2

�

�Π0|φ2

�

. (2.87)

The state
�

�φ1

�

can be identified with a success probability of p1, while the observer remains
uncertain which state has been prepared with a probability of q1. Analog for q2 and p2 if state
�

�φ2

�

was prepared. By defining an inconclusive detection outcome, a POVM can identify
the prepared state without an error. Thus far, unambiguous discrimination has solely been
explored for POVMs and has not been analyzed on projective measurements. Let’s consider
the projection P1 =

�

�φ1

�


φ1

�

� of the subspace spanned by
�

�φ1

�

and P 1 = 1−
�

�φ1

�


φ1

�

� the

projection on the subspace orthogonal to
�

�φ1

�

. The projection operators have to fulfill

1= P1+P 1. (2.88)

If the observer detects the measurement result for P 1, then the state
�

�φ2

�

must be prepared. It is
important to note that the measurement result for P1 can belong to both states. However, these
measurement settings cannot certify that

�

�φ1

�

has been prepared. Nonetheless,
�

�φ1

�

can be cer-

tified with an analogous result achieved from projections P2 =
�

�φ2

�


φ2

�

� and P 2 =1−
�

�φ2

�


φ2

�

�.
Identifying both quantum states through a single projective measurement without an error
is impossible. However, POVMs have an advantage in identifying both states with non-zero
probability.

2.4 R A N D O M LY G E N E R AT E D D E N S I T Y M AT R I C E S

The efficiency and statistical features of the discussed sufficient conditions will be analyzed by
calculating the Euclidean volume ratios of detected entangled quantum states. To efficiently
generate bipartite qudit density matrices, a Monte Carlo algorithm is utilized through a hit-
and-run approach [86, 87]. It is important to note that a bipartite density matrix can be by
Eq. (2.17)

ρ =
1

p

dAdB

G̃ A
0 ⊗ G̃ B

0 +
d 2

A−1
∑

i=1

ai G̃ A
i ⊗ G̃ B

0 +
d 2

B−1
∑

j=1

b j G̃ A
0 ⊗ G̃ B

j +
d 2

A−1
∑

i=1

d 2
B−1
∑

j=1

ti j G̃ A
i ⊗ G̃ B

j (2.89)

=
1

dAdB
1dAdB

+
d 2

A−1
∑

i=1

ai
p

dB

G̃ A
i ⊗1dB

+
d 2

B−1
∑

j=1

b j
p

dA

1dA
⊗ G̃ B

j +
d 2

A−1
∑

i=1

d 2
B−1
∑

j=1

ti j G̃ A
i ⊗ G̃ B

j . (2.90)
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The correlation matrix is defined by [T ]i j = ti j and the vectors a and b describe the reduced
density matrices of Alice’s and Bob’s subsystems

ρA =
1

dA
1dA
+

d 2
A−1
∑

i=1

ai G̃ A
i =

1

dA
1dA
+a ·G̃ A

, (2.91)

ρB =
1

dB
1dB
+

d 2
B−1
∑

j=1

b j G̃ B
j =

1

dB
1dB
+b ·G̃ B

. (2.92)

Thus, the bipartite density matrices belong to a convex subset of a real vector space of dimen-
sion d 2

Ad 2
B −1= d̄ 2−1. However, a vector can represent a density matrix only if it represents

a positive semidefinite matrix. The positive semidefiniteness of a matrix ρ is equivalently
defined by [73]:

1. A matrix ρ ≥ 0 is positive semidefinite.

2. The eigenvalues λi ≥ 0 of ρ are non-negative.

3. The average value



φ
�

�ρ
�

�φ
�

≥ 0 is non-negative for all
�

�φ
�

∈Hd̄ .

4. The matrix ρ can be decomposed by ρ = A†A.

5. The matrix ρ can be decomposed by ρ = B B .

Calculating the eigenvalues is the easiest way to check if a matrix is positive semidefinite
because it does not require checking the average values 〈φ|ρ|φ〉 for an infinite number of
vectors or constructing the matrices A or B . The characteristic polynomial pρ(λ) is given by

pρ(λ) = det
�

ξ1d̄ −ρ
�

=
d̄
∑

k=0

(−1)k c (d̄ )k λd̄−k (2.93)

with

c (d̄ )0 = 1,

...

c (d̄ )1 =
d̄
∑

i=1

λi ,

c (d̄ )
d̄
=λ1λ2 . . .λd̄ . (2.94)

The coefficients can be calculated with the Cayley-Hamilton theorem, which first was intro-
duced by [88]. The positive semidefiniteness of the matrix ρ is equivalently characterized by
Descartes’ rule of signs [86]

ρ ≥ 0⇔ c (d̄ )k ≥ 0,∀k ∈ {0, 1, . . . , d̄ }. (2.95)
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Therefore, the coefficients c (d̄ )k can be related to the trace of the powers of the matrix θk = tr
�

ρk
	

by the Newton identities [89]

θ1 = c (d̄ )1

θk =
k−1
∑

i=1

(−1)i+1c (d̄ )i θk−1+ (−1)k+1c (d̄ )k , 1< k ≤ d̄

θd̄ =
k−1
∑

i=1

(−1)i+1c (d̄ )i θk−1, k > d̄ . (2.96)

Moreover, for a Hermitian matrix with tr
�

ρ
	

= 1, all the coefficients c (d̄ )k can be obtained from
the Newton identities. The first four Newton coefficients are

c (d̄ )1 = 1,

c (d̄ )2 =
1

2
−

1

2
θ2,

c (d̄ )3 =
1

6
−

1

2
θ2+

1

3
θ3,

c (d̄ )4 =
1

24
−

1

4
θ2+

1

3
θ3+

1

8
θ 2

2 −
1

4
θ4. (2.97)

The non-negativity of the coefficients ci ≥ 0 completely characterizes the positive semidefinite-
ness of the matrix ρ [86]. This effective method is used to verify whether a generated matrix is
positive semidefinite. Furthermore, a generated positive semidefinite matrix is a density matrix.
The bipartite quantum state is completely described by the vector r = (a ,b , vec(T ))T ∈Hd̄ 2−1

within the convex set of quantum states. This provides a comprehensive description of bipar-
tite quantum states. A hit-and-run Monte Carlo algorithm can produce quantum states that
are uniformly distributed [86, 87]. Additionally, this algorithm is applicable to general convex
sets [90]. The formalism can be outlined in 5 steps:

(1) Initialize the start point r j , for j = 1.

(2) Generate a random direction ê ( j ) in dimension d̄ 2−1.

(3) Define the maximum distance to the boundary rb = 2
p

d̄ −1/
p

d̄ Eq. (2.18) and set the
interval I = [−r, r ].

(4) Generate a uniformly random variable l in the interval I .

(5) Check if r j + l ê ( j ) represents a density matrix, then r j+1 = r j + l ê ( j ) and go back to
step (2). Otherwise, set the interval to I = [−r, l ] or I = [l , r ], so that zero is included
inside the interval and go back to (4).

A simulation begins with the maximally mixed density matrix, represented by the zero vec-
tor 0. This algorithm reaches convergence in polynomial time [91]. Consider lb as the closest
distance from the starting point to the boundary of the convex set, the algorithm converges in
O (d̄ 4 ln3(d̄ /lb )) steps [92]. When the convex set is in a near-isotropic position [93], the time
of convergence is O (d̄ 3) [92]. It is assumed that a uniform distribution occurs after a sample
size between O (d̄ 3) and O (d̄ 4 ln3(d̄ )). The hit-and-run Monte Carlo algorithm enables the
efficient generation of low-dimensional bipartite density matrices for testing the effectiveness
of sufficient conditions for entanglement and EPR steering detection.
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2.5 L O C A L R E A L I S M A N D B I PA R T I T E E I N S T E I N - P O D O L S K Y- R O S E N

S T E E R A B I L I T Y

The concept of entanglement has been defined in Section 2.2, along with the first set of
inequalities that can detect entanglement. However, the influence of entanglement on the
results of local measurements on a bipartite quantum system still has to be discussed. Einstein
had already pointed out the occurrence of "spooky action at a distance" during the collapse of
the entire wave function during a local measurement. Therefore, Einstein, Podolsky and Rosen
questioned the reality and locality of quantum mechanics [14]. Modifying this gedankenexper-
iment to spin-1/2 particles enabled an experimental verification of the locality of quantum
mechanics [94]. Thus, in the first part of this section, the nonlocality of quantum mechanics
and potential verifications are discussed. Another nonlocal quantum effect is the EPR steer-
ability of quantum systems, in which case local measurements can affect the results of local
measurements on a composite system. This asymmetric effect is introduced in the second
section, including possible verifications, followed by the relation between EPR steerability
and joint measurability of POVMs.

2.5.1 Nonlocality of quantum mechanics

The theory of special relativity distinguishes between space-like and time-like events, which
are governed by local realism. This led Einstein, Podolsky and Rosen to question the complete-
ness of quantum mechanics. They defined physical reality as follows: ”If without in any way
disturbing a system, we can predict with certainty (i.e. with probability equal to unity) the value
of a physical quantity, there exists an element of physical reality corresponding to this physical
quantity” [14]. The principle of locality states that two objects must be in proximity to interact
with each other. Even in the interaction between a transmitter and receiver by long-range
forces like electromagnetic waves, the signals can maximally travel with the speed of light. A
far-distant separated system cannot be instantaneously disturbed by local measurement. In
order to describe this physical phenomenon, two spatially distant observers, Alice and Bob, are
considered. A source emits bipartite particles, with one particle traveling to Alice and the other
to Bob, as shown in Fig. 2.2. Both parties can perform measurements on their local systems.
Furthermore, Alice can choose a measurement setting α ∈OA and Bob can choose β ∈OB

with the results a ∈MA for Alice’s measurements and b ∈MB for Bob’s. The labels of the
measurements are of a macroscopic nature to distinguish the different measurement outputs.
Only the measurement statistics are important. In general, the joint probability distribution
of choosing a measurement and receiving the outputs does not necessarily fulfill

P (a , b |α,β ) = P (a |α)P (b |β ), (2.98)

implying that the statistics of both parties are not independent. For example, this can be phys-
ically realized by performing local measurements on two spin 1/2-particles. This statistical
behavior can be explained by particles that have interacted in the past and are observed by
distant observers. If the two particles have been emitted from a common source, the correla-
tion can be established at the source. A local theory implies that during the interaction in the
past, a correlation between the two particles has been established. The emission process’s
state can be described by the variable λ, which influences the outcomes of Alice’s and Bob’s
local measurements. The parameter λ describes uncontrollable physical parameters of the
system that can vary between experiment repetitions. If the hidden parameter λwould be
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Figure 2.2: Schematic representation of Alice’s and Bob’s bipartite quantum system: Alice and Bob can
perform measurements on their local quantum system with settings α and β , and their
associated results a and b . A common source S emits a bipartite quantum state.

known, the results of Alice’s and Bob’s measurements could be predicted with certainty. For a
local hidden variable, the outcomes of the systems decouple

P (a , b |α,β ,λ) = P (a |α,λ)P (b |β ,λ). (2.99)

The different values ofλ are characterized by a probability distribution p (λ). The separability of
the joint probability distribution for a given λ allows writing the joint probability distribution
as

P (a , b |α,β ) =
∑

λ∈Λ
p (λ)P (a |α,λ)P (b |β ,λ), (2.100)

while the normalization gives

1=
∑

λ∈Λ
p (λ) (2.101)

with the hidden parameters λ belonging to the index set Λ. This explanation of joint proba-
bilities is called a local hidden variable model (LHV). Correlations that a LHV model cannot
explain are said to be nonlocal.

The statistical behavior of quantum systems can differ from that of classical systems. Thus,
the joint probability distributions of local POVMs are examined and compared to those of LHV
models. Consider Alice and Bob sharing a Hilbert space HA⊗HB with local dimensions dA

and dB. Furthermore, they can perform local POVMs their respective subsystems {Πα,a ≥ 0}
and {Πβ ,b ≥ 0}with

∑

a

Πα,a =1dA
,

∑

b

Πβ ,b =1dB
. (2.102)

For more details about POVMs, see Section 2.3.2. For a given quantum state ρ, the joint
probability distribution is given by

P (a , b |α,β ) = tr
�

Πα,a ⊗Πβ ,bρ
	

. (2.103)

The joint probability distribution of a separable quantum state can be calculated by inserting
Eq. (2.44) into Eq. (2.103)

P (a , b |α,β ) =
n
∑

i=1

pi tr
�

Πα,aρA,i

	

tr
�

Πβ ,bρB,i

	

. (2.104)
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It is immediately evident that a LHV model can explain the correlations of a separable quantum
state. Therefore, separable quantum states are local. In order to verify if the correlations
of entangled quantum states can be explained by a LHV model from Eq. (2.100), the Bell
inequalities can be derived [22, 95]. Consider that each observer performs two local quantum
measurements on their subsystem with settings α0 and α1 for Alice and β0 and β1 for Bob.
The possible outcomes are limited to two values a , b ∈ {−1,1}. The average value of a joint
measurement of Alice and Bob is given by

〈αiβ j 〉=
∑

a ,b

a b p (a , b |α,β ) =
∑

a ,b

∑

λ∈Λ
a b p (λ)P (a |α,λ)P (b |β ,λ). (2.105)

These average values allow the definition of

S = 〈α0β0〉+ 〈α0β1〉+ 〈α1β0〉− 〈α1β1〉

=
∑

λ∈Λ
p (λ)Sλ, (2.106)

Sλ = 〈α0〉λ〈β0〉λ+ 〈α0〉λ〈β1〉λ+ 〈α1〉λ〈β0〉λ−〈α1〉λ〈β1〉λ. (2.107)

It has been used that for a LHV model, the joint probability distribution for a given λ factorizes
and the local average values are given by

〈αi 〉λ =
∑

a

a P (a |αi ,λ), (2.108)

〈β j 〉λ =
∑

b

b P (b |β j ,λ). (2.109)

The allowed values of S can be calculated by

|Sλ| ≤ |〈α0〉λ||〈β0〉λ+ 〈β1〉λ|+ |〈α1〉λ||〈β0〉λ−〈β1〉λ|
≤ |〈β0〉λ+ 〈β1〉λ|+ |〈β0〉λ−〈β1〉λ|= 2. (2.110)

It has been used that |〈αi 〉λ| ≤ 1 holds. Therefore, the value of S is bounded by

−2≤ S =
∑

λ∈Λ
p (λ)Sλ ≤ 2. (2.111)

This inequality is called the Clauser-Horne-Shimony-Holt (CHSH) inequality [96]. The values
inside the bounds are the allowed values under consideration of a LHV model.

In the quantum mechanical case, Alice and Bob have a qubit as a local quantum system and
the measurements are denoted by 3-dimensional unit vectors αi and β j , which describe the
quantum measurements αi =αi ·σ and β j =β j ·σ with the Pauli matricesσ = (σ1,σ2,σ3)T

Eq. (B.8). The CHSH operator is given by

S =α0⊗β0+α0⊗β1+α0⊗β1−α1⊗β1 (2.112)

and the average value is

〈S〉= tr
�

ρS
	

= 2〈α0, Tρ(β 0+β 1)〉+2〈α1, Tρ(β 0−β 1)〉. (2.113)

The representation of a quantum state in a LOO has been used, as introduced in Eq. (2.90).
By utilizing the orthogonality of the vectors β 0+β 1 and β 0−β 1, it has been shown that the
CHSH inequality is violated if and only if the following condition is fulfilled [86]

µ1+µ2 > 1/4 (2.114)
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where µ1 and µ2 are the two largest eigenvalues of T T
ρ Tρ , defined in Eq. (2.90). This implies

that a set of measurement operators defined by the four vectors α0, α1, β 0 and β 1 exists so
that the CHSH inequality is violated. For example, the Bell diagonal quantum state

|Φ〉=
1
p

2
(|01〉− |10〉) (2.115)

with the measurements α0 = ê1, α1 = ê2, β 0 =−(ê1+ ê2)/
p

2 and β 1 = (−ê1+ ê2)/
p

2 results in

S = 2
p

2> 2. (2.116)

This inequality demonstrates the nonlocality of bipartite quantum systems. In Eq. (2.104),
it has been established that only entangled quantum states display nonlocal behavior. The
violation of Bell inequalities was shown for the first time in 1972 by Freedman and Clauser [24].
Over the years, many impressive experiments with increasing degrees of sophistication have
been performed [25, 26]. These experiments demonstrate that quantum mechanical correla-
tions can exceed those allowed by classical mechanics, and that the LHV model is unable to
account for such strong correlations. Therefore, it is concluded that a quantum system cannot
satisfy either locality or reality.

2.5.2 Definition of EPR steerability

Inspired by the work of Einstein, Podolsky and Rosen [14], questioning the completeness of
quantum mechanics and discussing the well-known EPR paradox, another quantum concept
was originally introduced by Schrödinger [16, 17], the so-called Einstein-Podolsky-Rosen
steering. It can be viewed as a generalization of the experimental scenario of the EPR paradox.
The scenario assumes a bipartite quantum system with two observers, Alice and Bob, as shown
in Fig. 2.3. The Hilbert space of the combined systems is given by HAB =HA⊗HB with local
dimensions dA and dB. Similar to the nonlocal scenario, Alice and Bob can perform local
measurements on their respective systems, using settings α and β to obtain results a and b .
In EPR steering, Alice attempts to convince Bob that they share a bipartite entangled quantum
state, but Bob does not trust Alice. Two sets of local POVMs {Πα,a ≥ 0} and {Πβ ,b ≥ 0} are
defined as in Section 2.3.2. After preparing a bipartite quantum state, Bob tries to explain the
quantum mechanical joint probability distribution

P (a , b |α,β ) = tr
�

Πα,a ⊗Πβ ,bρ
	

(2.117)
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Figure 2.3: Schematic representation of Alice’s and Bob’s bipartite quantum system: Alice and Bob
can perform measurements on their local quantum system with settings α and β , and
their associated results a and b . A common source S emits a bipartite quantum state.
The measurements on Alice’s side are not further specified, while Bob performs quantum
measurements on the conditional state ρα,a depending on Alice’s measurement settings
and results.
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by a local hidden state model (LHS) [33, 97]. For Alice’s measurements αwith the result a , Bob
remains with an unnormalized conditional quantum state

ρB
α,a = trA{Πα,a ⊗1ρ} (2.118)

and from the completeness relation of the POVM follows (Eq. (2.102))

ρB = trA{ρ}=
∑

a

trA{Πα,a ⊗1ρ}. (2.119)

Bob tries to explain his conditional state by some initially prepared hidden stateσλ with a
probability p (λ). It can be seen that Alice’s measurements give him additional information
about the hidden state. So, the conditional state is given by [33, 97]

ρB
α,a =

∑

λ∈Λ
p (λ)p (a |α,λ)σλ. (2.120)

This representation can be interpreted as Alice simulating the drawing of the conditional states
ρB
α,a by choosing a hidden stateσλ with probability p (λ)while simultaneously announcing

her measurement setting and result. Therefore, the initial bipartite quantum does not need to
be entangled. If all conditional states can be explained by LHS models, then the state is called
unsteerable from Alice to Bob. Otherwise, the state is called EPR steerable from Alice to Bob.
The joint probability distribution of an unsteerable state is given by

P (a , b |α,β ) =
∑

λ∈Λ
p (λ)P (a |α,λ)P (b |β ,λ),

P (b |β ,λ) = tr
�

Πβ ,bσλ
	

. (2.121)

From this definition, it is apparent that an unsteerable quantum state is also local [c.f. Eq. (2.100)]
and that a separable quantum state is unsteerable [c.f. Eq. (2.104)]. This implies that a LHV
model can also explain joint probability distributions, which a LHS model can explain. How-
ever, the opposite is not necessarily true. Using the completeness relation of POVMs Eq. (2.102)
and Eq. (2.119) we obtain

∑

a

P (a , b |α,β ) = trB{Πβ ,bρB}= trB

¨

Πβ ,b

∑

λ∈Λ
p (λ)σλ

«

, (2.122)

∑

b

P (a , b |α,β ) = trA{Πα,aρA}=
∑

λ∈Λ
p (λ)P (a |α,λ). (2.123)

This means that Bob’s POVMs {Πβ ,b } cannot distinguish the reduced quantum state ρB from
a LHS model

∑

λ∈Λp (λ)σλ.
By interchanging the observers, EPR steering from Bob to Alice can be defined analogously

P (a , b |α,β ) =
∑

λ∈Λ
p (λ) tr

�

Πα,aσλ
	

P (b |β ,λ)

ρA = trB{ρ}=
∑

b

trB{1⊗Πβ ,bρ},

ρA
β ,b =

∑

λ∈Λ
p (λ)p (b |β ,λ)σλ. (2.124)

Einstein-Podolsky-Rosen steering is an asymmetric property. Quantum states can be EPR
steerable from Alice to Bob but not from Bob to Alice, and vice versa. Similar to nonlocality and
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entanglement, EPR steerability can be detected by inequalities. Also, like nonlocality, whether
a quantum state is EPR steerable from Alice to Bob or not it depends on the available local
measurements on Alice’s and Bob’s subsystems. For example, consider that Alice performs N
local measurements Ak with results {ak = ±1} and Bob performs local measurements on
arbitrary observables Bk . As a result, a straightforward inequality can be derived in which all
unsteerable quantum states fulfill [98]

N
∑

k=1

�

�tr
�

Ak ⊗Bkρ
	�

�≤max
{ak }

�

λmax

�

N
∑

k=1

ak Bk

��

, (2.125)

where λmax is the maximum eigenvalue of the operator
∑N

k=1 ak Bk . In this section, the defini-
tion of EPR steering has been discussed and a first inequality to verify quantum states which
can be used for EPR steering from Alice to Bob has been shown. Even in the simplest bipartite
quantum system of two-qubits, finding the EPR steerable quantum states is challenging. The
two-qubit case is discussed in detail in Section 6.1. Einstein-Podolsky-Rosen steering has been
verified in several experiments [98–100]. Furthermore, the existence of one-way steerable
quantum states has been shown experimentally as well [101–105].

2.5.3 Joint measurability and EPR steerability

In this subsection, the link between joint measurability and EPR steering is presented. A set of
POVMs {Πα,a ≥ 0} is jointly measurable if there exists another POVM {Π̄λ}λ∈Λ with classical
conditional probabilities {P (a |α,λ)} such that [70, 106]

Πα,a =
∑

λ∈Λ
p (a |α,λ)Π̄λ. (2.126)

The POVM {Π̄λ ≥ 0} is called the joint observable for the POVMs {Πα,a }. This definition reveals
similarities between EPR steerability from Alice to Bob and joint measurability. It has been
shown that a set of measurements {Πα,a } on Alice’s side is not jointly measurable if and only if
these measurements can be used to demonstrate EPR steering from Alice to Bob [107, 108].
For example, a joint measurable POVM {Πα,a } can construct a LHS model for a given quantum
state by

ρB
α,a = trA{Πα,a ⊗1dB

ρ}=
∑

λ∈Λ
p (a |α,λ) trA{Π̄λ⊗1dB

ρ}=
∑

λ∈Λ
p (a |α,λ)σλ (2.127)

with the local hidden states σλ = trA{Π̄λ ⊗1dB
ρ}. A similar statement has been shown for

POVMs on Bob’s side. Namely, that a state ensemble {ρα,a } is steerable if and only if the POVMs

{Π̃α,a =ρ
−1/2
B ρB

α,aρ
−1/2
B } are not jointly measurable [109]. If the matrix ρB cannot be inverted,

its pseudoinverse replaces ρ−1/2
B . These conditions imply an interesting relationship between

the criterion for joint measurability and EPR steering. Thus, a joint measurability criterion
can be utilized to verify whether quantum states can be used for EPR steering or a steering
criterion can be used to find joint measurable POVMs.
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P R O P E R T I E S O F (N , M ) - P O V M S

In this part, the recently introduced special class of (N , M )-POVMs is discussed, which includes
several classes of POVMs, such as MUMs, MUBs, GSICs and SIC-POVMs [59]. Due to the
symmetry and the informational completeness of (N , M )-POVMs, these POVMs can be used
to detect the entanglement of bipartite quantum states by local measurements and verify EPR
steerable quantum states from Alice to Bob.

Section 3.1 provides the definition, properties, and primary proofs for the allowed param-
eter regions and informational completeness. The construction of (N , M )-POVMs from a
given Hermitian orthonormal operator basis is discussed in Section 3.2. The foundation for
determining the efficiencies of the sufficient conditions for entanglement and EPR steering
from Alice to Bob is derived as a main result in Section 3.3. This scaling relation is necessarily
fulfilled by (N , M )-POVMs regardless of the positive semidefiniteness of the POVM elements.

3.1 D E F I N I T I O N O F (N , M )- P O V M S

This section introduces the (N , M )-POVMs and the condition for informational completeness.
The basic proofs are presented to clarify the definitions and conditions of (N , M )-POVMs.

A set of N POVMs is considered, with each POVM containing M measurement results, and
the POVM elements acting on a d -dimensional Hilbert space. The POVMs can be represented
by a tuple of positive semidefinite operators Π = (Π1, · · · ,ΠN M ). The tuple’s elements can
be identified by the bijective map i : (α, a )|α ∈ {1, . . . , N }, a ∈ {1, . . . , M }→ {1, . . . , N M } with
i (α, a ) = (α−1)M +a . The POVM is described by α and the associated measurement result
by a . Each POVM fulfills the characteristic completeness relation

M
∑

a=1

Πi (α,a ) =1d (3.1)

for all α. Details of the definition and properties of POVMs are discussed in Section 2.3.2. For
(N , M )-POVMs the additional restrictions are imposed [59]

tr
�

Πi (α,a )
	

=w (3.2)

tr
�

Πi (α,a ) Πi (α,a )
	

= x (3.3)

tr
�

Πi (α,a ) Πi (α,a ′)
	

= y (3.4)

tr
�

Πi (α,a ) Πi (β ,b )
	

= z (3.5)

for a , a ′, b ∈ {1, . . . , M }, α,β ∈ {1, . . . , N }, a ̸= a ′ and α ̸= β . It will be demonstrated that the
real-valued coefficients x , y , z and w can only take specific values, which are restricted by
the positive semidefiniteness of the POVM elements and the completeness relation (3.1). In
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the case of N = 1, only the relations (3.2)–(3.4) are defined. The completeness relation (3.1)
calculates the parameters w ,y and z of Eqs. (3.3)–(3.5)

d = tr{1d }=
M
∑

a=1

tr
�

Πi (α,a )
	

=w M , (3.6)

w = tr
�

Πi (α,a )
	

=
M
∑

b=1

tr
�

Πi (α,a )Πi (α,b )
	

= x + (M −1)y , (3.7)

w = tr
�

Πi (α,a )
	

=
M
∑

b=1

tr
�

Πi (α,a )Πi (β ,b )
	

=M z . (3.8)

These equations limit the parameters to

w =
d

M
, y =

d −M x

M (M −1)
, z =

d

M 2
. (3.9)

The next step is to calculate the boundaries of the parameter x . For a given parameter x the
POVM elements can range from operators that are proportional to the identity operator to
rank one matrices

Πi (α,a ) =
d

M
|α, a 〉 〈α, a | (3.10)

for a given unit vector |α, a 〉. For rank one operators holds

x = tr
¦

Π2
i (α,a )

©

=
d 2

M 2
tr{|α, a 〉 〈α, k |}=

d 2

M 2
(3.11)

and the lower bound follows from the Cauchy-Schwarz inequality

d

M
= tr

�

Πi (α,a )
	

= tr
�

Πi (α,a )1d

	

<
r

tr
¦

Π2
i (α,a )

©

tr{1d }=
p

d x

⇒
d

M 2
< x . (3.12)

The non-negativity of the trace of the product of two positive semidefinite matrices implies

0≤ tr
�p
Πi (α,a )Πi (α,b )

p
Πi (α,a )

	

= tr
�

Πi (α,a )Πi (α,b )
	

=
d −M x

M (M −1)
,

⇒ x ≤
d

M
(3.13)

for a ̸= b . By combining Eqs. (3.11)–(3.13) the (N , M )-POVM’s parameter x , is limited to

d

M 2
< x ≤min

�

d 2

M 2
,

d

M

�

. (3.14)

This is necessary for the existence of (N , M )-POVMs. Furthermore, it has to be shown that
for an x -value inside the interval a (N , M )-POVM can be constructed. By using Eq. (3.9), the
definition for a (N , M )-POVMs reads

tr
�

Πi (α,a )
	

=
d

M
, (3.15)

tr
�

Πi (α,a ) Πi (α,b )
	

= x δa ,b + (1−δa ,b )
d −M x

M (M −1)
, (3.16)

tr
�

Πi (α,a ) Πi (β ,b )
	

=
d

M 2
(3.17)
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for a , b ∈ {1, . . . , M }, α,β ∈ {1, . . . , N } and α ̸= β . The value of parameter x is constrained by
Eq. (3.14). In the case of N = 1, only Eqs. (3.15) and (3.16) are defined. If x reaches the upper
boundary of the allowed values, the (N , M )-POVM is called optimal.

Informationally complete measurements are of special interest because they allow the com-
plete reconstruction of a density matrix. Therefore, the values of (N , M ) for a fixed dimension
are determined such that the (N , M )-POVMs are informationally complete. A (N , M )-POVM
is informationally complete if its elements span the set of all Hermitian linear operators. This
definition is equivalent to the (N , M )-POVMs containing d 2 linearly independent operators.
A (N , M )-POVM is informationally complete if

N (M −1) +1= d 2 (3.18)

is fulfilled. The proof of this condition is given in the following lines. For simplicity, the
traceless (N , M )-operators πi (α,a ) =Πi (α,a )−1d /M are introduced. The defining relations of
the traceless (N , M )-operators are derived from Eqs. (3.15)-( 3.17)

tr
�

πi (α,a )
	

= 0, (3.19)

tr
�

πi (α,a ) πi (α,b )
	

=
�

x −
d

M 2

�

δa ,b + (1−δa ,b )
d −M 2 x

M 2(M −1)
, (3.20)

tr
�

πi (α,a ) πi (β ,b )
	

= 0 (3.21)

for a , b ∈ {1, . . . , M }, α,β ∈ {1, . . . , N } and α ̸= β . In case of N = 1, only Eqs. (3.19) and (3.20)
are imposed. From the completeness relation of POVMs (3.1) follows

M
∑

a=1

πi (α,a ) = 0. (3.22)

To prove the informational completeness it is necessary to demonstrate that the set of (N , M )-
POVMs contains d 2 linearly independent operators. It suffices to show that the set of the
traceless (N , M )-operators {πi (α,a ) : α ∈ {1, . . . , N }, a ∈ {1, . . . , M }} contains d 2 − 1 linearly
independent operators. The completeness relation (3.22) reduces the number of linearly
independent elements to N (M −1)

πi (α,M ) =−
M−1
∑

a=1

πi (α,a ). (3.23)

To prove the linear independence of the remaining operators, it has to be shown that from

N
∑

α=1

M−1
∑

a=1

rα,aπi (α,a ) = 0 (3.24)
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follows that all real numbers are zero rα,a = 0. Multiplying Eq. (3.24) by πi (β ,M ) and using
Eq. (3.20) lead to

0= tr

¨

N
∑

α=1

M−1
∑

a=1

rα,aπi (α,a )πi (β ,M )

«

=
N
∑

α=1

M−1
∑

a=1

rα,a tr
�

πi (α,a )πi (β ,M )
	

=
M−1
∑

a=1

rβ ,a tr
�

πi (β ,a )πi (β ,M )
	

=
d −M 2 x

M 2(M −1)

M−1
∑

a=1

rβ ,a . (3.25)

The prefactor (d −M 2 x ) vanishes only for x = d /M 2, which is outside the definition space
of x . Therefore, the sum has to vanish

M−1
∑

a=1

rβ ,a = 0 (3.26)

for all β . Multiplying Eq. (3.24) by πi (β ,b ) for b ∈ {1, . . . , M −1} and using the definition of the
(N , M )-operators Eqs. (3.20) and (3.21) lead to

0= tr

¨

N
∑

α=1

M−1
∑

a=1

rα,aπi (α,a )πi (β ,b )

«

=
N
∑

α=1

M−1
∑

a=1

rα,a tr
�

πi (α,a )πi (β ,b )
	

=
M−1
∑

a=1

rβ ,a tr
�

πi (β ,a )πi (β ,b )
	

= rβ ,b x +
d −M 2 x

M 2(M −1)

M−1
∑

a=1,a ̸=b

rβ ,a

= rβ ,b

�

x −
d −M 2 x

M 2(M −1)

�

+
d −M 2 x

M 2(M −1)

M−1
∑

a=1

rβ ,a

︸ ︷︷ ︸

=0

= rβ ,b
M 3 x −d

M 2(M −1)
. (3.27)

Within the limits of x , the prefactor cannot vanish. Therefore, rβ ,b = 0 for all β and b . This
implies that the remaining N (M − 1) operators are linearly independent. Thus, they are
informationally complete if N (M −1) = d 2−1 is fulfilled, which matches Eq. (3.18). Siudzińska
has provided a similar proof [59].

For (N , M )-POVMs in dimension d ≥ 3, there are at least four classes of different informa-
tionally complete (N , M )-POVMs.
The possible solutions of Eq. (3.18) are (N , M ) ∈ {(1, d 2), (d +1, d ), (d 2−1, 2), (d −1, d +2)} [59].
The solution (N , M ) = (1, d 2) characterizes the special case of a one-parameter family of
GSICs [62], which is parameterized by the parameter x . SIC-POVMs correspond to the special
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case of GSICs with x = 1/d 2. The solution (N , M ) = (d +1, d ) describes MUMs [64], which in
the special case of x = d 2/M 2 = d /M = 1 further reduce to projective measurements of rank
one with maximal sets of d +1 MUBs. In the special case of a qubit, i.e. d = 2, the four possible
solutions of Eq. (3.18) reduce to two cases, namely GSICs for (N , M ) = (1,4) and MUMs for
(N , M ) = (3, 2). The first informationally complete (N , M )-POVMs, which do not belong to the
four classes of solutions, exist in dimension d = 5 with the additional solutions (N = 8, M = 4),
(N = 3, M = 9), (N = 2, M = 13) and (N = 12, M = 3).

This section discussed the definition of (N , M )-POVMs and the condition of informational
completeness. The existence of (N , M )-POVMs for certain parameters N , M and x has not yet
been addressed and will be discussed in detail in Chapter 4. Local informationally complete
(N , M )-POVMs will be used to detect entangled quantum states in Chapter 5 and to verify
EPR steerable quantum states in Chapter 6. The following section outlines techniques for
constructing informationally complete (N , M )-POVMs using a given traceless Hermitian
orthonormal operator basis.

3.2 C O N S T R U C T I O N O F (N , M )- P O V M S

The previous section introduced (N , M )-POVMs. In this section, the construction of infor-
mationally complete (N , M )-POVMs in dimension d from a given traceless Hermitian or-
thonormal operator basis is discussed. Two different methods are analyzed. The first has been
introduced by [59, 62, 64] and the second is motivated by a recursive construction. These pro-
cedures allow the construction of informationally complete (N , M )-POVMs for some x -values
in arbitrary dimension d .

3.2.1 Construction of (N , M )-POVMs by Siudzińska

The subsequent procedure has been introduced by Siudzińska [59] to construct informa-
tionally complete (N , M )-POVMs for all solutions (N , M ) of Eq. (3.18), including the special
cases of GSICs [62] and MUMs [64]. The starting point of the construction is an orthonormal
Hermitian operator basis of the form

G̃ =
§

G̃0 =
1dp

d
,G̃i ; i = 1, . . . , d 2−1

ª

(3.28)

with tr
�

G̃i

	

= 0 for 1 ≤ i ≤ d 2 − 1, G̃ †
i = G̃i and tr

�

G̃i G̃ j

	

= δi j . The indices of the traceless
elements of the basis must be linked to the (α, a ) indices identifying the elements of (N , M )-
POVMs for α ∈ {1, . . . , N } and a ∈ {1, . . . , M −1}. A possible map connecting these indices is
i (α, a ) = (α−1)M +a . It is important to note that this map is not unique and can influence
the constructed (N , M )-POVMs. The basis used for the construction is enumerated by

G̃ =
�

G̃0,G̃i (α,a )
	

. (3.29)

The operator

G̃α =
M−1
∑

a=1

G̃i (α,a ) (3.30)

is defined and used for the construction of the traceless (N , M )-operators

πi (α,a ) = t

¨

G̃α−
p

M (
p

M +1)G̃i (α,a ) , a = 1, . . . , M −1

(
p

M +1)G̃α , a =M .
(3.31)
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The possible (N , M )-POVM elements are given by

Πi (α,a ) =
1d

M
+πi (α,a )

=
1d

M
+ t

¨

G̃α−
p

M (
p

M +1)G̃i (α,a ) , a = 1, . . . , M −1

(
p

M +1)G̃α , a =M .
(3.32)

The admissible range of the parameter t , for which the positive semidefiniteness of all POVM
elements is guaranteed, is given by

−
1

M

1

λmax
≤ t ≤

1

M

1

|λmin|
, (3.33)

where λmax and λmin are the maximal and minimal eigenvalues of all normalized traceless
(N , M )-operators πi (α,a )/t . The relation between x and t is given by

x =
d

M 2
+ t 2(M −1)(

p
M +1)2. (3.34)

By construction, the matrices πi (α,a ) fulfill Eqs. (3.19) and (3.21). It has to be shown that this
construction also satisfies Eq. (3.20). It holds

tr
�

πi (α,M )πi (α,M )
	

= t 2(
p

M +1)2 tr
�

G̃α,G̃α
	

= t 2(
p

M +1)2
M−1
∑

a ,b=1

tr
�

G̃i (α,a ),G̃α,b

	

= t 2(
p

M +1)2(M −1)

= x −
d

M 2
(3.35)

and for 1≤ a <M

tr
�

πi (α,a )πi (α,a )
	

= t 2
�

tr
�

(G̃α,G̃α)−2
p

M (
p

M +1)G̃i (α,a )G̃α+M (
p

M +1)2G̃i (α,a )G̃i (α,a )
	�

= t 2
�

M −1−2
p

M (
p

M +1) +M (
p

M +1)2
�

= t 2(
p

M +1)2(M −1)

= x −
d

M 2
. (3.36)

For 1≤ a , b <M and a ̸= b follows

tr
�

πi (α,a )πi (α,b )
	

= t 2(M −1−2
p

M (
p

M +1))

=
x − d

M 2

(M −1)(
p

M +1)2
(M −1−2

p
M (
p

M +1))

=
d −M 2 x

M 2(M −1)
(
p

M +1)2

1−M +2
p

M (
p

M +1)

=
d −M 2 x

M 2(M −1)
(
p

M +1)2

1+2
p

M +M

=
d −M 2 x

M 2(M −1)
(3.37)
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and

tr
�

πi (α,a )πi (α,M )
	

= t 2
�

(M −1)(
p

M +1)−
p

M (
p

M +1)2
�

=
x − d

M 2

(M −1)(
p

M +1)2
�

(M −1)(
p

M +1)−
p

M (
p

M +1)2
�

=
d −M 2 x

M 2(M −1)
(1−M )(

p
M +1) +

p
M (
p

M +1)2

(
p

M +1)2

=
d −M 2 x

M 2(M −1)
. (3.38)

The calculation shows that Eq. (3.16) is also fulfilled and the constructed set of Πi (α,a ) is
a (N , M )-POVM. The (1, d 2)-POVMs only need to satisfy conditions (3.19) and (3.20). If x
belongs to a constructed (N , M )-POVM, then for all x ′ ∈ (d /M 2, x ), the constructed operators
are also (N , M )-POVMs. This ansatz allows the construction of informationally complete
(N , M )-POVMs for any dimension d and all solutions of Eq. (3.18) for some values of x . The
selected traceless Hermitian orthonormal operator basis restricts the parameter x of the
constructed (N , M )-POVM.

3.2.2 Recursive construction of (N , M )-POVMs

This section shows a recursive construction of informationally complete (N , M )-POVMs. This
ansatz provides a better geometric understanding of (N , M )-POVMs as N ×M points within
the convex set of positive semidefinite operators with a trace equal to d /M . The discussed
formalism allows the construction of normalized traceless Hermitian (N , M )-operators

π̂i (α,a ) =
Πi (α,a )−1d /M

r

tr
¦

�

Πi (α,a )−1d /M
�2©
=

πi (α,a )
r

tr
¦

π2
i (α,a )

©

=
πi (α,a )

p

x −d /M 2
(3.39)

and the definition of the traceless (N , M )-operators, as in Eqs. (3.19)–( 3.21), are reformulated
to

tr
�

π̂i (α,a )
	

= 0, (3.40)

tr
�

π̂i (α,a ) π̂i (α,b )
	

= δa ,b + (1−δa ,b )
1

1−M
, (3.41)

tr
�

π̂i (α,a ) π̂i (β ,b )
	

= 0. (3.42)

A recursive construction of the normalized traceless (N , M )-operators is performed with an
orthonormal basis G̃ defined in Eq. (3.29)

π̂(M )i (α,1) = G̃i (α,M−1)

π̂(M )i (α,a ) =
1

1−M
G̃i (α,M−1)+

√

√

1−
1

(1−M )2
π̂(M−1)

i (α,a−1) (3.43)

for 2≤ a ≤M and the operator π̂(1)i (α,1) = 0 is set to zero. The construction has to be performed

for 2≤ M̃ ≤M to construct the (N , M )-POVMs. By definition, this approach fulfills Eqs. (3.40)
and (3.42). By complete induction, it is proven that the operators of Eq. (3.43) fulfill Eq. (3.41).
For M = 2, the operators are given by

π̂(2)i (α,1) = G̃i (α,1) and π̂(2)i (α,2) =−G̃i (α,1) (3.44)
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and fulfill Eq. (3.41). The statement is true for M = 2, and in the following calculation, it
has been assumed that the statement holds for a single value of M . For M ′ = M + 1, the
construction of Eq. (3.43) reads

π̂(M+1)
i (α,1) = G̃i (α,M )

π̂(M+1)
i (α,a ) =−

1

M
G̃i (α,M )+

√

√

1−
1

M 2
π̂(M )i (α,a−1) (3.45)

and for identical operators, it holds

tr
n
�

π̂(M+1)
i (α,1)

�2o

= tr
�

G̃i (α,M )G̃i (α,M )
	

= 1 (3.46)

tr
n
�

π̂(M+1)
i (α,a )

�2o

= tr

(

�

−
1

M
G̃i (α,M )+

√

√

1−
1

M 2
π̂(M )i (α,a−1)

�2)

=
1

M 2
+
�

1−
1

M 2

�

tr
n
�

π̂(M )i (α,a−1)

�2o

=
1

M 2
+1−

1

M 2
= 1. (3.47)

For different operators with 2≤ a , b ≤M and a ̸= b , it holds

tr
¦

π̂(M+1)
i (α,1) π̂

(M+1)
i (α,a )

©

=−
1

M
tr
�

G̃i (α,M )G̃i (α,M )
	

=
1

1−M ′
(3.48)

tr
¦

π̂(M+1)
i (α,a ) π̂

(M+1)
i (α,b )

©

= tr

¨�

−
1

M
G̃i (α,M )+

√

√

1−
1

M 2
π̂(M )i (α,a−1)

��

−
1

M
G̃i (α,M )+

√

√

1−
1

M 2
π̂(M )i (α,b−1)

�«

=
1

M 2
−
�

1−
1

M 2

�

1

1−M

=−
1

M
=

1

1−M ′
. (3.49)

It has been shown that Eq. (3.43) fulfills the defining equations of the normalized trace-
less (N , M )-operators, as in Eqs. (3.40-3.42). An informationally complete (N , M )-POVM is
constructed by

Πi (α,a ) =
1d

M
+

√

√

x −
d

M 2
π̂(M )i (α,a ) (3.50)

if (N , M ) is a solution of Eq. (3.18) and x is chosen so that Πi (α,a ) is positive semidefinite
for all α ∈ {1, . . . , N } and a ∈ {1, . . . , M }. For M = 3 and M = 4, the constructed normalized
traceless (N , M )-operators are given by

π̂(3)i (α,1) = G̃i (α,2),

π̂(3)i (α,2) =−
1

2
G̃i (α,2)+

√

√3

4
π̂(2)i (α,1) =−

1

2
G̃i (α,2)+

√

√3

4
G̃i (α,1),

π̂(3)i (α,2) =−
1

2
G̃i (α,2)+

√

√3

4
π̂(2)i (α,2) =−

1

2
G̃i (α,)2−

√

√3

4
G̃i (α,1) (3.51)
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and

π̂(4)i (α,1) = G̃i (α,3),

π̂(4)i (α,2) =−
1

3
G̃i (α,3)+

√

√8

9
π̂(3)i (α,1) =−

1

3
G̃i (α,3)+

√

√8

9
G̃i (α,2),

π̂(4)i (α,2) =−
1

3
G̃i (α,3)+

√

√8

9
π̂(3)i (α,1) =−

1

3
G̃i (α,3)+

√

√8

9

�

−
1

2
G̃i (α,2)+

√

√3

4
G̃i (α,1)

�

,

π̂(4)i (α,2) =−
1

3
G̃i (α,3)+

√

√8

9
π̂(3)i (α,1) =−

1

3
G̃i (α,3)+

√

√8

9

�

−
1

2
G̃i (α,2)−

√

√3

4
G̃i (α,1)

�

. (3.52)

These examples illustrate how construct (N , M )-POVMs. In the case of M = 3, the elements
of a single POVM are represented by the vertices of an equilateral triangle with its centroid
at the origin of a vector space over the field of real numbers. The centroid of the real vector
space represents the matrix 1d /M . The basis vectors are given by G̃i (α,a ) for a = {1,2}. The
distance of the vertices from the origin defines the parameter x . In the case of M = 4, the
elements of a single POVM are the vertices of a tetrahedron with its centroid at the origin of
the 3-dimensional vector space over the real numbers spanned by G̃i (α,a ) for a = {1,2,3}. In
general, the elements of a single POVM are given by the vertices or extreme points of a (M −
1)-simplex. Geometrically, the Hilbert space Hd 2−1, which represents the linear Hermitian
operators with a trace equal to d /M , has to be divided into N = (d 2−1)/(M −1) subspaces of
dimension M −1. In each subspace, a (M −1)-simplex has to be constructed within the set
of positive semidefinite operators with a trace equal to d /M . For an optimal (N , M )-POVM,
the distance of the vertices of the (M −1)-simplex from the origin has to be maximized. The
geometry of positive semidefinite operators is visualized in Section 4.1. The constructed
traceless (N , M )-operators of a single POVM span identical linear subspaces for a given basis
and enumeration, regardless of the construction method. However, the directions of the (M−1)-
simplexes differ, which can affect the positive semidefiniteness of the constructed operators.
Rotations within the subspaces can affect the obtained x -values but they do not alter the
defining Eqs. (3.40)-(3.42).

This section covers the construction of (N , M )-POVM from a given traceless Hermitian
orthonormal operator basis. In the subsequent section, the representation of a given (N , M )-
POVM in an arbitrary Hermitian orthonormal bases is discussed.

3.3 R E P R E S E N TAT I O N O F (N , M )- P O V M S I N A R B I T R A R Y H E R M I -
T I A N O P E R AT O R B A S E S

In this section, the linear map between (N , M )-POVMs and arbitrary Hermitian orthonormal
operator bases is discussed. This property will be essential to analyze the efficiency of different
types of (N , M )-POVMs for entanglement and EPR steering detection. The informationally
complete (N , M )-POVMs are linear Hermitian operators acting on the Hilbert space Hd and
can be expanded into an arbitrary basis of Hermitian operators {G } defined in Eq. (2.11). In
this section, it is assumed that a (N , M )-POVM with parameter x exists. The positive semidefi-
niteness of the POVM elements is not used to derive the following statements. An arbitrary
(N , M )-POVM can be expanded in an arbitrary Hermitian operator basis by

Π=G TS , (3.53)
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where G is a d 2-dimensional vector and each component is a basis element of the basis {G }.
The components of the N M -dimensional vectorΠ are given by the POVM elementsΠi (α,a ). The
linear map S : Hd 2→HN M maps basis elements from the Hilbert space Hd 2 to the possibly
higher dimensional Hilbert space HN M . The dimension of the Hilbert space is an upper
bound for the relation N M +N − 1 ≤ d 2. The structure of this map is examined under the
assumption that a (N , M )-POVM exists. In particular, the influence of the conditions (3.15)-
(3.17) is imposed, but positive semidefiniteness of the POVM elements is not required. The
linear map can be associated with a d 2×N M dimensional matrix. The connection between
the constraints (3.16) and (3.17), and the matrix elements is given by

tr
�

Πi (α,a ) Πi (α,b )
	

= tr
�

(G TS )i (α,b )(G
TS )i (α,a )

	

=
d 2−1
∑

k ,l=0

Sk ,i (α,a )Sl ,i (α,b ) tr{Gk Gl }

=
d 2−1
∑

k=0

Sk ,i (α,a )Sk ,i (α,b )

=
�

S TS
�

i (α,a ),i (α,b )

= xδa ,b + (1−δa ,b )
d −M x

M (M −1)

= Γδa ,b −
Γ

M
+

d

M 2
, (3.54)

tr
�

Πi (α,a ) Πi (β ,b )
	

= tr
�

(G TS )i (β ,b )(G
TS )i (α,a )

	

=
d 2−1
∑

k ,l=0

Sk ,i (α,a )Sl ,i (β ,b ) tr{Gk Gl }

=
d 2−1
∑

k=0

Sk ,i (α,a )Sk ,i (β ,b )

=
�

S TS
�

i (α,a ),i (β ,b )

=
d

M 2
(3.55)

for N ≥ 2, α,β ∈ {1, . . . , N }, a , b ∈ {1, . . . , M } and α ̸= β . Compactly, the matrix elements can
be written as

�

S T S
�

i (α,a ), j (α′,a ′) = Γδi (α,a ), j (α′,a ′)−
Γ

M

� N
⊕

α=1

Jα

�

i (α,a ), j (α′,a ′)

+
d

M 2
Ji (α,a ), j (α′,a ′) (3.56)

with

Γ =
M 2 x −d

M (M −1)
. (3.57)

The all-ones matrices J of dimension N M ×N M and Jα of dimension M ×M are used to write
the result compactly, i.e. (Jα)i (α,a ), j (α′,a ′) =δα,α′ . The spectral representation of the matrix S is
derived from the symmetric real-valued matrix S TS . The rank of the N M ×N M matrix S TS is
bounded by [73]

rank(S TS )≤min(rank(S T, rank(S ))≤min(d 2, N M )≤ d 2. (3.58)
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Therefore, the maximum number of non-zero eigenvalues is d 2. The matrix fulfills

S TS J =

�

1N M Γ −
Γ

M

� N
⊕

α=1

Jα

�

+
d

M 2
J

�

= Γ J −
Γ

M
M Γ +

d

M 2
N M J

=
d N

M
J , (3.59)

and consequently, the first eigenvalue is Λ1 = d N /M with the corresponding eigenvec-
tor X i ,1 = 1/

p
N M for all i ∈ {1, . . . , N M }. To compute the remaining eigenvalues and corre-

sponding eigenvectors, a tensor product structure is introduced

X k = xN ,α(k )⊗ xM ,a (k ), (3.60)

S TS = Γ1N ⊗1M −
Γ

M
1N ⊗ JM +

d

M 2
JN ⊗ JM . (3.61)

The sum of the three matrices is simultaneously diagonalizable. Only the all-ones matrices JN

and JM have to be diagonalized. The eigenvalues and corresponding eigenvectors of JN are

λ1 =N , xN ,1 =
1
p

N
(1, . . . , 1), (3.62)

λα = 0, xN ,α with
N
∑

l=1

xN ,α,l = 0, (3.63)

for α= {2, . . . , N } and analog for JM

µ1 =M , xN ,1 =
1
p

M
(1, . . . , 1), (3.64)

µa = 0, xN ,a with
N
∑

l=1

xM ,a ,l = 0, (3.65)

for a = {2, . . . , M }. The eigenvectors of S TS in Eq. (3.60) can be divided into three groups with
different eigenvalues. The first eigenvalue Λ1 = d N /M with the eigenvector x N ,1⊗x M ,1 has
already been calculated in Eq. (3.59). The second set of eigenvectors is

Λk = Γ X k = x N ,α⊗x M ,a (3.66)

with k (α, a ) =α−M +a N −1 forα ∈ {1, . . . , N } and a ∈ {2, . . . , M }. The degeneracy of this eigen-
value is N (M −1). The informational completeness of the (N , M )-POVM d 2 =N (M −1) +1
states that the remaining eigenvalues have to be zero

ΛN M−N+α = Γ −
Γ

M
M = 0, X N M−N+α = x N ,α⊗x M ,1 (3.67)

forα ∈ {2, . . . , N }. A complete set of N (M −1)+1+N −1=N M eigenvectors has been calculated
and the spectrum is fully characterized. From the definition of the eigenvectors follows that
for k ≥ 2 the sum over the components vanishes

N M
∑

ν=1

Xk ,ν = 0. (3.68)
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The spectrum for N ≥ 2 reads

Sp(S T S ) =

�

Γ (N (M−1)),
d N

M

(1)

, 0(N−1)
�

. (3.69)

The numbers in the round brackets indicate the multiplicity of the eigenvalues. For the case
of N = 1, the matrix has to be replaced by

S TS =1M Γ +
�

−
Γ

M
+

d

M 2

�

JM =1M Γ +
d −M x

M (M −1)
JM . (3.70)

The eigenvalues and corresponding eigenvectors of S TS for N = 1 and a ≥ 2 are given by

Λ1 =
d

M
, X a = x M ,1 (3.71)

Λ1 = Γ , X a = x M ,a . (3.72)

The spectrum reads

Sp(S T S ) =

�

Γ (M−1),
d N

M

(1)�

(3.73)

and the eigenvalue zero no longer appears. The spectral representation of the components of
the symmetric operator map is given by

�

S T S
�

i , j
=

d 2
∑

µ=1

X i ,µΛµX T
µ, j (3.74)

X i ,µ = v̂i ·
�

X µû T
µ

�

(3.75)

with the canonical bases {v̂i , i ∈ {1, . . . , N M }} of HN M and {ûµ,µ ∈ {1, . . . , d 2}} of Hd 2 . From
Eq. (3.68) follows that the sum over the components of X i ,µ has to vanish

M
∑

a=1

X i (α,a ),ν = 0. (3.76)

The N M ×d 2 matrix X i ,µ fulfills the orthogonality condition

N M
∑

i=1

�

X T
�

µ,i
X i ,ν =δµν (3.77)

for µ,ν ∈ {1, · · · , d 2}. As a consequence of Eq. (3.18), the most general form of the d 2×N M
matrix Sµ,i , which is consistent with the Eqs. (3.16) and (3.17) is given by

Sµ,i =
d 2
∑

µ′=1

O T
µ,µ′

Æ

Λµ′X
T
µ′,i (3.78)

with the arbitrary real-valued orthogonal d 2×d 2 matrix O , i.e. O O T =O T O = Pd 2 . Here, Pd 2

denotes the projection operator onto the d 2-dimensional eigenspace of non-zero eigenvalues
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of the linear operator S T S in the Hilbert space HN M . The additional condition (3.1), which
characterizes any POVM, is obtained from

1d =
M
∑

a=1

Πi (α,a ) =
p

d
d 2
∑

µ=1

GµO T
µ,1, (3.79)

where the vanishing of the sum over the components of the eigenvectors of S T S has been
used [Eq. (3.76).] This implies that condition (3.1) is fulfilled and ensures that the elements of
a single POVM sum to identity. Therefore, the relations (3.15)-(3.17) and the informational
completeness relation (3.1) are encoded in the map S : Hd 2→HN M . This map can be repre-
sented in a basis of traceless Hermitian operators, G̃ =OG , where O is defined in Eq. (3.79),
by Π=G TS = G̃ TS̃ . The components of the linear map are given by

S̃ν,i =
p

ΛνX T
ν,i . (3.80)

In this new basis G̃ , it is clear that the map S injectively maps Hd 2 onto a d 2-dimensional
subspace ofHN M , while preserving orthogonality. All basis operators G̃ν withν ∈ {1, · · · , d 2−1}
are conformally mapped onto a (d 2−1)-dimensional subspace ofHN M by stretching the norms
of all operators by a factor of

p
Γ , according to Eq. (3.69) or (3.73). As these basis operators

are orthogonal to G̃0, they are characterized by the basis-independent propertytr{G̃ν} = 0
for ¨ν ∈ {1, · · · , d 2 − 1}. Only the basis operator G̃0 is stretched by a different factor, namely
p

Λ1 =
p

d N /M . Additionally, it is important to note that the matrix S̃ S̃ T = Λ is diagonal
for (N , M )-POVMs.

In the derivation it has been assumed that for the parameters (N , M , x ) there exist a (N , M )-
POVM. These relations hold for all Hermitian operators that fulfill the defining equations
of (3.15)-(3.17) and (3.1), regardless of their positive semidefiniteness. For entanglement
detection and EPR steering verification from Alice to Bob, this map leads to a scaling relation
that allows the calculation of the efficiency of a (N , M )-POVM without the need to construct
(N , M )-POVMs. This is the foundation of the results of the Chapters 5 and 6. The connection
between (N , M )-POVMs and arbitrary Hermitian operator bases is used to derive the following
relations, which are then employed to establish EPR steering and entanglement detection
inequalities. The first relation is

N
∑

α=1

M
∑

a=1

Π2
i (α,a ) = tr

�

ΠΠT
	

= tr
¦

G̃
T

S̃ S̃ TG̃
©

=
d N

M
G̃ 2

0 + Γ
d 2−1
∑

k=1

G̃ 2
k

=
�

d N

M
− Γ

�

G̃ 2
0 + Γ

d 2−1
∑

k=0

G̃ 2
k

=

�

d 2−1

M (M −1)
−
Γ

d
+

d 2−1

d
Γ

�

1d

=
d 2−1

(M −1)M d
(d +M 2 x −d )1d

=
(d 2−1)M x

(M −1)d
1d . (3.81)

In the first line, the representation Eq. (3.53) has been used and in the third line, has been
used that S̃ S̃ T is diagonal in the basis of G̃ . Furthermore, the definition of Γ [Eq. (3.57)] and the



48 3 P R O P E R T I E S O F (N , M )- P O V M S

invariant Eq. (B.18) has been used. For a given density matrix ρ = G̃
T

r , the second important
relation is the index of coincidence [59]

C(ρ) =
N
∑

α=1

M
∑

a=1

tr
�

Πi (α,a )ρ
	2

=
N
∑

α=1

M
∑

a=1

�

r T S̃ i (α,a )
�2

=
N
∑

α=1

M
∑

a=1

r T
�

S̃ i (α,a ) S̃
T
i (α,a )

�

r

= r S̃ S̃ Tr

= r 2
0

d N

M
+ Γ

d 2−1
∑

i=1

r 2
i

= r 2
0

�

d N

M
− Γ

�

+ Γ
d 2−1
∑

i=0

r 2
i

=
N

M
−
Γ

d
+ Γ tr

�

ρ2
	

=
d 3−M 2 x +d (M 2 x −d ) tr

�

ρ2
	

d M (M −1)
(3.82)

with r0 = 1/
p

d . For pure states, C reaches its maximum

C(ρ)≤
d 3−M 2 x +d (M 2 x −d )

d M (M −1)

=
d −1

d

d 2+M 2 x

M (M −1)
. (3.83)

The purpose of these relations is to derive the entanglement and EPR steering detection
inequalities without imposing the positive semidefiniteness of the POVM elements. This
section’s main result is the scaling relation, which simplifies the calculation of such inequali-
ties by eliminating the need to construct (N , M )-POVMs. The scaling relation is valid for all
parameters x within its definition space, but it does not answer whether a (N , M )-POVM exists
for a given parameter x . The reason for this is that the scaling relation has been derived from
the positive semidefinite operator S TS , instead of S . It is important to note that the positive
semidefinite operator S TS can also be generated from Hermitian operators, which are not
necessarily positive semidefinite. The existence of (N , M )-POVMs remains an open question
and is discussed in detail in Chapter 4.
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In the previous chapter, the properties of (N , M )-POVMs have been discussed in detail. Fur-
thermore, the characteristics of the linear map S connecting (N , M )-POVMs to Hermitian
operator bases have been derived. Thereby, this is the foundation to derive sufficient condi-
tions for entanglement or EPR steering detection regardless of the positive definiteness of the
POVM elements. Section 3.2 construction methods ensure that the relations Eqs. (3.15)-(3.17)
are fulfilled but do not guarantee the positive semidefiniteness of the constructed operators.
This limits the possible parameters x of informationally complete (N , M )-POVMs constructed
from a given orthonormal basis of traceless Hermitian operators. For example, in order to
violate the derived entanglement detection inequalities (5.33), (5.48) and (5.49) in an experi-
ment, it is necessary to know which local informationally complete (N , M )-POVMs can be
implemented. Therefore, an investigation is required to identify the parameters x for which
informationally complete (N , M )-POVMs exist.

In Section 4.1, the positive semidefinite operators spanned by a given traceless Hermitian
orthonormal operator basis and its partitioning are analyzed. The goal is to show the de-
pendence of the positive semidefiniteness from a given basis and its partitioning, in order
to identify the constructible (N , M )-POVMs by the chosen approach. The area or volume of
the positive semidefinite operators with an equal trace is shown for dimensions d = {2, 3, 4}
and possible (N , M )-POVMs with parameter M = 3 in Section 4.1.1 and M = 4 in Section 4.2,
respectively. Furthermore, in Section 4.2, a MUB is constructed from the Clifford basis, where
the basis elements spanning a single POVM are commutative for all POVMs. Necessary and
sufficient conditions for the existence of informationally complete optimal (N , M )-POVMs are
given in Section 4.2. First, a sufficient condition is shown for which x -values (N , M )-POVMs
can be constructed from arbitrary traceless Hermitian orthonormal operator bases in arbi-
trary dimensions d . The connection between an isospectral traceless Hermitian orthonormal
operator basis (IHOB) and optimal (N , M )-POVMs is introduced in Sections 4.2.1-4.2.4. The
existence of such an IHOB is sufficient for the existence of optimal informationally complete
(N , M )-POVMs. Furthermore, in Section 4.2.2 for M < d , the sufficient condition is general-
ized to a necessary condition by including two additional relations of the basis elements. In
Section 4.2.3, it is shown that the existence of an optimal (N , M )-POVM is both necessary and
sufficient for (N , 2)-POVMs. Sections 4.3 and 4.4 discuss the current state of the art regarding
the existence and construction of SIC-POVMs and MUBs.

4.1 P O S I T I V E S E M I D E F I N I T E N E S S O F P O V M E L E M E N T S

In this section, the positive semidefiniteness of POVM elements is discussed. The approach to
construct (N , M )-POVM in Section 3.2.2 is sufficient to fulfill the relations (3.15)-(3.17). How-
ever, the positive semidefiniteness has to be checked for all POVM elements for a given x -value.
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Therefore, the set of positive semidefinite operators with fixed trace spanned by a given or-
thonormal basis of traceless Hermitian operators and its partitioning is analyzed in detail.

Consider a (N , M )-POVM Π = {Πi (α,a } where α ∈ {1, . . . , N } denotes the POVM and the
measurement results are denoted by a ∈ {1, . . . , M }. Such POVM elements can be represented
by Eq. (3.78)

Πi (α,a ) =
1d

M
+
p
Γ

d 2−1
∑

µ=1

X i (α,a ),µG̃µ (4.1)

for each POVM element with Γ = (M 2 x −d )/(M (M −1)). The set {G̃µ} is an arbitrary traceless
Hermitian operator basis, where µ ∈ {1, . . . , d 2−1}. The basis elements are only determined
up to an orthogonal transformation O (d 2 − 1). Furthermore, the d 2 ×N M matrices X i (α,a )
can be freely chosen as long as they fulfill relation (3.76). It is apparent that restricting these
choices of freedom severely reduces the parameter ranges x for which (N , M )-POVMs can be
constructed.

The completeness relation (3.18) states that the POVM elements consist of d 2−1=N (M −1)
linearly independent Hermitian operators. To ensure that condition (3.17) is met, the (d 2−1)-
dimensional vector space over the field of real numbers is partitioned into N basis tuples Bα
of M − 1 elements, using the traceless Hermitian orthonormal operator basis {G̃µ}. Each
tuple Bα corresponds to a single POVM, denoted by α. This restricts the general definition of
Eq. (4.1) to the ansatz

Πi (α,a ) =
1d

M
+
p
Γ
∑

µ∈Bα

X i (α,a ),µG̃µ. (4.2)

This method restricts transformations to O (M − 1) for each partition of basis elements Bα,
while the construction methods outlined in Section 3.2 fix the coefficients entirely for a given
partition. Therefore, the attainable (N , M )-POVMs depend on the chosen traceless Hermitian
orthonormal operator basis {G̃µ} and its partitioning. Examples for M = 3 and M = 4 are
discussed to illustrate the restrictions of the positive semidefiniteness of the POVM elements
imposed by a given basis and its partitioning.

4.1.1 Positive semidefiniteness of MUM elements for qutrits

In the previous sections, it has been discussed that positive semidefiniteness limits the ex-
istence of (N , M )-POVMs. In dimension d = 3 and for (4,3)-POVMs (MUMs), the positive
semidefiniteness of a single POVM and its dependence on the chosen basis is investigated.
For this purpose, three traceless Hermitian operator bases are examined: the Gell-Mann basis
and two IHOBs constructed from a MUB and a SIC-POVM. For the construction of a MUM,
the 8-dimensional real vector space must be decomposed into four 2-dimensional subspaces.
The origin of the vector space represents the identity matrix divided by the dimension 1d /d .
The basis elements of each subspace are given by G̃i (α) and G̃ j (α), and the coefficient asso-
ciated with a single POVM are given by g i (α,a ) and g j (α,a ). A POVM element has the basis
representation

Πi (α,a ) =
13

3
+ g i (α,a )G̃i (α)+ g j (α,a )G̃ j (α) =

13

3
+ g α,a ·G̃ α. (4.3)

Analogous to the Bloch vector of a qudit, a real vector g α,a representing the POVM element is
defined and called the (N , M )-vector. For a MUM, all (N , M )-vectors have the same length of

�

�g α,a

�

�=
p

x −1/d (4.4)
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and fixed angles to each other. As explained in Section 3.2, the three (N , M )-vectors that
represent a single POVM have to be the vertices of an equilateral triangle with its centroid at
the origin. A necessary condition for the positive semidefiniteness follows from Eq. (3.16)

1= tr
¦

Π2
i (α,a )

©

=
1

3
+ g 2

i (α,a )+ g 2
j (α,a )

⇒g 2
i (α,a )+ g 2

j (α,a ) ≤
2

3
. (4.5)

The discussed examples show that the set of positive semidefinite operators with a trace equal
to one contains a circle of radius

�

�g α,a

�

�≤ rin =
1
p

6
. (4.6)

The details for deriving this boundary for arbitrary (N , M )-POVMs will be discussed in Sec-
tion 4.2 and its expression can be found in Eq. (4.29). All the operators Πi (α,a ) whose (N , M )-
vectors fulfill this condition are positive semidefinite for any vector direction. The sufficient
condition guarantees that MUMs fulfilling Eq. (4.6) can be constructed by the methods of
Section 3.2 for arbitrary traceless Hermitian operator bases. The construction of MUMs in
dimension d = 3 can be interpreted geometrically as a construction of equilateral triangles
in each 2-dimensional subspace. The centroid of each triangle is located at the origin of the
real vector space and the edge length is 2

p
3
p

x −1/d . The vertices of the triangle represent
the POVM elements. To maximize the x -value of a (N , M )-POVM generated from a given
basis, the distance from the vertices to the origin has to be maximized inside the positive
semidefinite operators Eq. (4.3) generated from the partitions Bα. To archive this, the triangle
can be rotated by O (2) transformations as long as the Hermitian operators remain positive
semidefinite. The O (2) transformations do not change the orthogonality condition of Eq. (3.17)
for (N , M )-vectors of different POVMs. To be a (N , M )-POVM, the x -values have to be identical
for all generated POVMs.

The positive semidefinite matrices are visualized in Figs. 4.1-4.3 to show the restrictions on
the positive semidefiniteness from a chosen basis and its partitioning. Visualizing the set of
positive semidefinite operators in the 2-dimensional subspaces enhances the construction
methods in Sections 3.2.1 and 3.2.2. First, the Gell-Mann basis, enumerated as in Eq. (B.10),
is evaluated. The partition of the basis elements is Bα = {(1,8), (3,4), (2,5), (6,7)}. The area
for which the coefficients lead to positive semidefinite operators is shown in Fig. 4.1. The
yellow circle shows the necessary condition defined by the outer circle Eq. (4.5) and the green
circle shows the basis-independent sufficient condition for positive semidefiniteness Eq. (4.6).
The blue area shows the convex set of positive semidefinite operators spanned from the two
basis elements. The first POVM is spanned by the two basis elements of G̃ GM

1 and G̃ GM
8 in

Fig. 4.1a. Regarding this POVM alone, it is possible to fit in a maximal triangle inside the
positive semidefinite elements, which intersects with the boundary of the necessary condition
(yellow circle) [c.f. Eq. (4.5)]. The vertices of the blue equilateral triangle represent an optimal
POVM, these points are also the extreme points of the convex set of the positive semidefinite
operators with a trace equal to one. The second POVM is described by the (N , M )-vector with
the basis elements G̃ GM

3 and G̃ GM
4 and shown in Fig. 4.1b. The area of positive semidefinite

operators generated by the two basis elements changes compared to the first POVM, which
is no longer an equilateral triangle. It only has two intersections with the boundary of the
necessary condition. The set of positive semidefinite operators has a curved and a straight
boundary. The boundary intersections cannot be used to fit in an equilateral triangle with
a centroid at the origin. The last two POVMs have geometrically identical sets of positive
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semidefinite operators, a circle of radius rp =
p

2/3 in Fig. 4.1c. All elements have to be
positive semidefinite to form a (N , M )-POVMs. The maximum value of x for the Gell-Mann
basis and the chosen partition is denoted by the vertices of the red and purple triangles in
Fig. 4.1. The vertices of the red triangle in Fig. 4.1c represent the POVM spanned by the Gell-
Mann matrices G̃ GM

2 and G̃ GM
5 , while the vertices of the purple triangle represent the POVM

spanned by G̃ GM
6 and G̃ GM

7 . It is shown that the red and purple triangles do not have to be
aligned like in the construction methods of Section 3.2. The triangles can be rotated freely for
the partitions B3 an B4 in Fig. 4.1c. For the partition B1 in Fig. 4.1a, there are some rotations
that leave the positive semidefiniteness of the POVM elements invariant. In contrast, the
orientation of the triangle of partition B2 in Fig 4.1b cannot be altered. The set of realizable
MUMs is slightly larger than the sufficient condition for arbitrary bases Eq. (4.6). The red
triangle belongs to a MUM with maximal xGM = 5/9≈ 0.556> 0.5= xin, which can be achieved
by the cutting of 8-dimensional vector space induced by the Gell-Mann basis. This is a slight
increase of the parameter x over the always achievable MUMs. The orientation of the red
triangle is not unique for Gell-Mann matrices. The size of the triangles cannot be increased
because it already intersects with the boundary of the circle of positive semidefinite operators
in Fig. 4.1. Permutation of the basis elements cannot improve the maximum x -values of the
constructed POVMs. The positive semidefinite operators spanned by all combinations of two
Gell-Mann basis elements have been calculated [110].

The next orthonormal basis is the MUB basis G̃ MUB constructed from a given MUB (B.22).
This traceless Hermitian orthonormal operator basis is isospectral, which means that all basis
elements have an identical spectrum Eq. (4.52), and it is given by

Sp
�

G̃ MUB
i

�

=

�

3−
p

3

6
,
−3−
p

3

6
,

1
p

3

�

. (4.7)

By construction, this basis can construct a MUB (optimal MUM), as seen in Eq. (3.32). The
positive semidefiniteness of the operators spanned in the 2-dimensional subspaces is shown
in Fig. (4.2a). For all POVMs, the area of positive semidefinite operators (red triangle) is
identical and the intersection points with the outer yellow circle describe the MUB elements.
The identical positive semidefinite convex set for different partitions is explained by the
isospectrality of the basis elements and for the particular case of MUBs, the Hermitian basis
elements of a single POVM have to be simultaneously diagonalizable.

The region of positive semidefiniteness changes if two or more basis elements are exchanged
between different partitions, such that the basis elements within a partition are not simul-
taneously diagonalizable (Fig. 4.2b). The red triangle in the figure represents the possible
POVMs constructed from the partition Bα = {(1, 3), (2, 4), (5, 7), (6, 8)}. Positive semidefiniteness
limits the MUMs that can be constructed to a maximum parameter, which is close to the
always achievable limit. This example shows that the selecting of the traceless Hermitian
orthonormal operator basis and its partitioning is essential for constructing optimal MUMs.

A SIC-POVM in dimension d = 3 is an optimal (N , M )-POVM for N = 1 and M = 9, as
defined in Section 3.1. Therefore, the SIC basis, derived from the SIC-POVM in Eq. (A.8), is
isospectral (B.19) with

Sp
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G̃ SIC
i
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§

1

12
(−
p

3−3
p

7),
1

12
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p

3+3
p

7),
1

2
p

3

ª

. (4.8)

and the exact enumeration is given in Eq. (B.20). The positive semidefiniteness of possible
MUM elements is examined to check if knowledge of the SIC basis can be used to construct
a MUB. Fig. 4.3 displays the positive semidefinite regions of the 2-dimensional subset. The
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(a) Shows the region of positive semidefiniteness
for (i , j ) = (1, 8).

(b) Shows the region of positive semidefiniteness
for (i , j ) = (3, 4).

(c) Shows the region of positive semidefiniteness for
(i , j ) = {(2, 5), (6, 7)}.

Figure 4.1: Regions of positive semidefinite operators corresponding to the four different parti-
tions Bα,α ∈ {1, . . . , 4} of the four POVMs of an informationally complete MUM: The yellow
region represents the necessary condition for positive semidefiniteness Eq. (4.5), while the
green area is the sufficient condition Eq. (4.6). The region depicted in blue comprises the
positive semidefinite operators generated by the Gell-Mann basis and its partitioning. The
vertices of the red and purple triangles are the POVM elements of a maximal achievable
MUM of x = 5/9.
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asymmetric regions of positive semidefiniteness only allow for fitting in equilateral triangles
close to the always achievable limit. Therefore, the SIC basis has no important properties for
constructing MUMs.

The graphical illustrations of the area of positive semidefiniteness in Figs. 4.1-4.3 show how
to construct MUMs with a maximal x -value for a given basis. The area of the positive semidef-
inite operators can significantly change depending on the traceless Hermitian orthonormal
operator basis used and its partition Bα. The construction process begins with a given traceless
Hermitian orthonormal operator basis and its partitioning into four tuples of two elements.
This divides 8-dimensional vector space into four 2-dimensional subspaces. The cutting of the
subspaces affects the area of positive semidefiniteness. Therefore, the approach of selecting a
traceless Hermitian orthonormal operator basis and its partitioning influences the achiev-
able (N , M )-POVMs with parameter x . First, the Gell-Mann basis has been discussed, showing
that it is possible to construct MUMs with x ≥ xin using this basis. However, a MUB (optimal
MUM) has not been achieved. The second basis discussed is the MUB basis, constructed from
a given MUB. By definition, this basis can construct an optimal MUM. The partitioning of the
basis elements is crucial for constructing optimal MUMs. Only by changing the partitions
the generated MUMs can be changed from MUBs to far from optimal MUMs, which are near
the always achievable limit. The SIC basis can only construct MUMs that are close to the
always achievable limit. Therefore, the SIC basis and its partitioning are not well-suited for
constructing optimal MUMs. These three bases demonstrate the importance of selecting the
appropriate basis and its partitioning for constructing MUMs. From a geometric point of view,
it is essential to cute the vector space of Hermitian operators with a fixed trace into the appro-

(a) Shows the region of positive semidefiniteness of
a MUB for (i , j ) ∈ {(1, 2), (3, 4), (5, 6), (7, 8)}.

(b) Shows the region of positive semidefiniteness of
a MUB for (i , j ) = {(1, 3), (2, 4), (5, 7), (6, 8)}.

Figure 4.2: Regions of positive semidefinite operators corresponding to the MUB basis Eq. (B.22): The
yellow region represents the necessary condition for positive semidefiniteness Eq. (4.5),
while the green area represents the sufficient condition Eq.( 4.6). The region depicted
in blue comprises the positive semidefinite operators generated by the MUB basis and
its partitioning. The vertices of the red triangles represent the POVM elements. The first
partition forms an optimal MUM (MUB), while the second only forms a MUM with a
parameter close to Eq. (4.5).
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(a) Shows the region of positive semidefiniteness
for (i , j ) = (1, 2)

(b) Shows the region of positive semidefiniteness
for (i , j ) = {(3, 4), (5, 6), (7, 8)}.

Figure 4.3: Regions of positive semidefinite operators corresponding to the four different parti-
tions Bα,α ∈ {1, . . . , 4} of the four POVMs of an informationally complete MUM: The yellow
region denotes the necessary condition for positive semidefiniteness Eq. (4.5), while the
green area representing the sufficient condition Eq.( 4.6). The blue area encompasses the
positive semidefinite operators spanned by the SIC basis and its partitioning. The vertices
of the red triangles are the POVM elements of a MUM, which are outside of the green area.

priate subspaces. The positive semidefiniteness of the operators is not a basis-independent
property of the vector space, making it difficult to ensure the positive semidefiniteness of
the POVM elements. The visualization of the positive semidefiniteness is extended in the
subsequent section by considering (N , 4)-POVMs.

4.1.2 Positive semidefiniteness of POVM elements for M = 4

In Section 4.1.1, the dependence of the positive semidefiniteness of the constructed operators
from the chosen traceless Hermitian orthonormal operator basis and its partitions, has been
visualized for the case of M = 3 but only in dimension d = 3. This section expands on this topic
by examining the positive semidefiniteness for M = 4 but for different dimensions d . A special
case of positive semidefinite operators is those acting on qubits. The change of the positive
semidefiniteness is shown for a (N , 4)-POVM by increasing the dimension from d = 2 to d = 4.
Firstly, the (1, 4)-POVM (GSIC in dimension d = 2) is discussed and followed by a (5, 4)-POVM
(MUM) in dimension d = 4. Two different Hermitian orthonormal bases are discussed for the
(5, 4)-POVM.

For the case of d = 2, the inner and outer radii of the (N , M )-POVMs Eqs. (4.29) and (4.30)
are identical

r 2
in = r 2

out =
2

M 2
. (4.9)

for GSICs and MUMs, the only possible (N , M )-POVMs. This means that the positive semidefi-
nite operators with a trace of 2/M can be represented by all points inside the ball with a radius
of
p

2/M around the origin. For MUMs the set of positive semidefinite operators is equivalent
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to the Bloch ball, which represents qubit quantum states. However, the (3,2)-POVMs are
described by three orthogonal lines inside the ball with a centroid at the origin. The endpoints
of the lines must have the same distance from the origin. The lines’ endpoints represent a
single POVM, while the lines intersecting with the boundary are optimal MUMs (MUBs). In
contrast, a density matrix is only represented by a single point inside the Bloch ball, and the
pure states are located on the boundary.

For M = 4, the POVM elements form a regular tetrahedron (3-simplex) with its centroid at
the origin of real vector space in Fig. 4.4. The edges of the tetrahedron represent the POVM
elements. Since sufficient and necessary conditions are identical for d = 2, the tetrahedron
can be oriented in any direction for any value of the parameter x . The construction of GSICs
and MUMs is trivial for d = 2 due to the simple condition of positive semidefiniteness.

The change of the necessary and sufficient conditions of the positive semidefiniteness for
MUMs (M = d = 4) is examined. The vertices of the tetrahedron represent the single POVM
elements like GSICs in d = 2 and the elements are given by

Πi (α,a ) =
14

4
+ g i (α,a )G̃i (α)+ g j (α,a )G̃ j (α)+ gk (α,a )G̃k (α) =

14

4
+ g α,a ·G̃ α =

14

4
+
∑

i∈Bα

g i ,a G̃i (4.10)

The basis elements Gi (α), G j (α) and Gl (α) are used to construct a single POVM, denoted by α.
Here, G̃ is a traceless Hermitian orthonormal operator basis, which is partitioned into five
tuples with three elements (i , j , k ). Geometrically, this means that the 15-dimensional real-
valued vector space is cut into five subspaces of dimension three. Each partition Bα generates
a single POVM. The (N , M )-vector g α,a describes the POVM elements and the norm of the

0.2

0.2

0.2

0.0

0.0

0.0

-0.2

-0.2

-0.2
Figure 4.4: Positive semidefiniteness of the Hermitian operators in d = 2 with a trace equal to 1/2:

The green ball represents the positive semidefinite operators, while the elements of the
SIC-POVM are the vertices of the red tetrahedron. The red tetrahedron can rotate freely
inside the volume of positive semidefiniteness.



4.1 P O S I T I V E S E M I D E F I N I T E N E S S O F P O V M E L E M E N T S 57

vectors must be identical for all α ∈ {1, . . . , N } and a ∈ {1, . . . , M }. The inner and outer radii are
given by Eqs. (4.29) and (4.30)

rin =

√

√1

6
, (4.11)

rout =

√

√3

4
. (4.12)

The trivial construction of (5,4)-POVM is only possible for x ≤ xin = 1/3 [c.f. Eq. (4.32)]
because all vectors of

�

�g α,a

�

�≤ rin describe positive semidefinite operators. For larger x -values,
it is necessary to examine the volume of positive semidefiniteness spanned from a given
basis and its partition. First, the generalized Gell-Mann basis {G̃ GM

i } in Eq. (B.11) with the
enumeration of Eq. (B.12) is used. The Gell-Mann basis is used to divide the 15-dimensional
vector space into five 3-dimensional subspaces. The POVMs are placed within the subspaces.
The positive semidefinite volumes are shown in Fig. 4.5. Analogous to the case of d = 3, the
volume of positive semidefiniteness spanned by the diagonal Gell-Mann matrices allows the
construction of a single optimal POVM Fig. 4.5a. The set of three POVMs is bounded by a
sphere of radius

r 2
b =

1

8
(4.13)

which includes the minimal ball Fig. 4.5b. The tetrahedron of the last POVM has to fit into the
bicone shown in Fig. 4.5c. Constructing a (5, 4)-POVM requires the positive semidefiniteness
of all POVM elements. The vertices of the red tetrahedrons in Fig. 4.5 are the (5,4)-POVMs
with the maximum value of x that can be constructed from the Gell-Mann basis. The POVM
elements correspond to the vertices of the tetrahedrons. In this example, all tetrahedrons
are all oriented in the same direction. The orientation of all tetrahedrons does not need to
be identical. In any subspace, they can be transformed by the group O (3) as long as they
remain within the blue volumes of the positive semidefinite operators. For simplicity, only
one tetrahedron is shown in Fig. 4.5b, representing the positive semidefinite volumes for
three partitions. These POVMs intersect with the boundary of the positive sphere of radius
rb . The positive semidefiniteness of the partitioning to construct a MUM by the generalized
Gell-Mann basis in d = 4 shows the similarities to the Gell-Mann basis in d =M = 3 Fig. 4.1.
This example shows that the partitioning of the generalized Gell-Mann basis is not suitable
for constructing MUBs.

To construct MUMs, another operator basis is utilized, which inherits important properties
from the 2-dimensional case. The question arises whether these properties are adequate to
construct a MUB. In dimension d = 4, the Clifford basis can be used, which is a tensor product
of Pauli matrices Eq. (B.8)

Gi =
1

2
12⊗σi , (4.14)

G3+i =
1

2
σi ⊗12, (4.15)

G3+3 j+i =
1

2
σ j ⊗σi (4.16)

for i , j = {1,2,3}. The subsequent discussion shows which of the essential properties of the
positive semidefinite operators generated by the Pauli matrices can be transferred to the
Clifford basis. The chosen partition of the Clifford basis is

B1 = (1, 2, 3), B2 = (4, 5, 6), B3 = (8, 9, 10), B4 = (14, 13, 12), and B5 = (7, 11, 15). (4.17)
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(a) Shows the region of positive semidefiniteness

for (i , j , k ) = (1, 2, 3).
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(b) Shows the region of positive semidefiniteness

for (i , j , k ) = {(4, 5, 6), (10, 11, 12), (13, 14, 15)}.
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(c) Shows the region of positive semidefiniteness
for (i , j , k ) = {(7, 8, 9)}.

Figure 4.5: Regions of positive semidefinite operators corresponding to the five different parti-
tions Bα,α ∈ {1, . . . , 5} of the five POVMs of an informationally complete MUM: The yellow
ball is the necessary condition for positive semidefiniteness Eq. (4.12), while the green ball
is the sufficient condition Eq.( 4.11). The blue volume is the positive semidefinite operators
spanned by the Gell-Mann basis and its partitioning. The vertices of the red tetrahedron are
the POVM elements of the maximal x -value constructed from the generalized Gell-Mann
basis and this partitioning. The size of the tetrahedrons cannot be increased because they
intersect with the boundary of positive semidefiniteness in Fig. 4.5b.
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The positive semidefinite volumes spanned by these partitions is shown in Fig. 4.6. The first
two tuples, B1 and B2, represent partitions of single-particle Pauli matrices. However, the
volume is computed with single-particle Pauli matrices. It is only bounded with a sphere of
radius 1/

p
2 and does not intersect with the boundary of the sufficient condition with rout in

Fig. 4.6a. Therefore, the single-particle Pauli matrices are insufficient for constructing optimal
MUMs. The third POVM in Fig. 4.6b is defined by the three basis elements of tensor products of
identical Pauli matrices. The volume of the positive semidefinite operators is equivalent to the
set of the Bell diagonal quantum states. While the tetrahedron edges form an optimal single
POVM, the other POVMs restrict the positive semidefiniteness to much smaller x -values. The
volume of the positive semidefinite operators of the remaining operators is shown in Fig. 4.6c,
which is slightly larger than the minimal sphere. To construct a (5,4)-POVM, all element
of the POVMs must be positive semidefinite. The edges of the red tetrahedrons represent
a possible (5,4)-POVM outside the volume of the always positive semidefinite operators.
Cutting the 15-dimensional vector space into five 3-dimensional subspaces defined by this
partitioning has not succeeded in constructing optimal (5, 4)-POVMs. Relation (3.16) for two
different elements of an optimal MUM is given by Eq. (3.16)

tr
�

Πi (α,a )Πi (α,b )
	

= 0 (4.18)

for all α ∈ {1, . . . ,5} and a , b ∈ {1, . . . ,4} with a ̸= b and can be used to construct a MUB.
Furthermore, the POVM elements have rank one. Therefore, the elements of a single POVM
can be simultaneously diagonalized. Thus, the basis elements of a single tuple representing
a POVM must also be simultaneously diagonalizable and commuting. The partitioning of
Eq. (4.17) only contains simultaneously diagonalizable basis elements in the third tuple.
Another way to choose the partitions is

B1 = (1, 4, 7), B2 = (2, 5, 11), B3 = (3, 6, 15), B4 = (8, 12, 13), and B5 = (9, 10, 14). (4.19)

These partitions contain only tuples of commuting basis elements. Even the tuples of simulta-
neously diagonalizable basis elements differ from those in Eq. (4.17). The Hermitian operators
defined from this partition are

2Πi (l ,a ) =
14

2
+ g i (l ,a )12⊗σl + g j (l ,a )σl ⊗12+ gk (l ,a )σl ⊗σl (4.20)

2Πi (4,a ) =
14

2
− g i (4,a )σ1⊗σ2+ g j (4,a )σ2⊗σ3+ gk (4,a )σ3⊗σ1 (4.21)

2Πi (5,a ) =
14

2
− g i (5,a )σ1⊗σ3+ g j (5,a )σ2⊗σ1+ gk (5,a )σ3⊗σ2 (4.22)

for l = 1, 2, 3. The eigenvalues of the operators are independent of α and the eigenvalues are
only denoted by a

λ1 =
1

4
(1+ g (1,a )−2g (2,a )−2g (3,a )), λ2 =

1

4
(1− g (1,a )+2g (2,a )−2g (3,a ))

λ3 =
1

4
(1− g (1,a )−2g (2,a )+2g (3,a )), λ4 =

1

4
(1+ g (1,a )+2g (2,a )+2g (3,a )). (4.23)

The subset of positive semidefinite operators defined by this partition of the basis elements is
geometrically equivalent to Fig. 4.6b up to a 3-dimensional rotation. The solution for optimal
(5, 4)-POVMs or MUBs is given by the (N , M )-vectors

2g a = {(1,−1,−1), (−1, 1,−1), (−1,−1, 1), (1, 1, 1)} (4.24)
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which represent the edges of the convex set of positive semidefinite operators within the
subspaces. The Hermitian operators’ simple eigenvalue relation allows the construction of a
MUB. The POVM element of the solution 2g 4 = (1, 1, 1) aligns with the POVM element (a =M =
d ) constructed from Eq. (3.32). However, the other remaining constructed matrices do not
belong to the positive semidefinite operator subspace. The fixed position of the tetrahedron
in Eq. (3.32) prohibits the construction of an optimal MUM. This highlights the significance
of permitting O (3) transformations of the basis elements within a tuple Bα.

From these examples, it has been demonstrated that regardless of the chosen dimension,
the shape of the POVM elements in the real vector space is a tetrahedron for M = 4. In the
case where d = 2 and GSICs, a criterion for positive semidefiniteness exists, making the
construction trivial. Constructing (N , M )-POVM with large x -values for d > 2 is more difficult
when there is a significant difference between the outer and inner radius. Additionally, the
shape of the positive semidefinite operators can be greatly influenced by the selected traceless
Hermitian orthonormal operator basis and its partitioning. The example shows that the
Clifford basis with the correct partitioning can construct an optimal MUM. The commonly
used basis of the generalized Gell-Mann matrices can only construct (N , M )-POVMs that are
close to the limited by xin. To construct optimal (N , M )-POVMs, it is important to first select
a suitable traceless Hermitian orthonormal operator basis, partition it, and then orient the
tetrahedrons inside the positive semidefinite operators. The examples presented clarify the
challenge of constructing optimal (N , M )-POVMs induced by the positive semidefiniteness.
The subsequent section will explore necessary and sufficient conditions for the existence of
optimal (N , M )-POVMs in arbitrary dimensions.
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(a) Shows the region of positive semidefiniteness
for (i , j , k ) = {(1, 2, 3), (4, 5, 6)}
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(b) Shows the region of positive semidefiniteness
for (i , j , k ) = (7, 11, 15).
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(c) Shows the region of positive semidefiniteness
for (i , j , k ) = {(8, 9, 10), (14, 13, 12)}.

Figure 4.6: Regions of positive semidefinite operators corresponding to the five different parti-
tions Bα,α ∈ {1, . . . , 5} of the five POVMs of an informationally complete MUM: The yellow
ball marks the necessary condition for positive semidefiniteness Eq. (4.12), while the green
ball is the sufficient condition Eq.( 4.11). The blue volume comprises the positive semidefi-
nite operators that are spanned by the Clifford basis and its partitioning. The vertices of the
red tetrahedrons describe POVM elements of a MUM whose x -value surpasses the bound
of the always achievable limit.
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4.2 N E C E S S A R Y C O N D I T I O N S F O R C O N S T R U C T I N G (N , M )- P O V M S

In the previous section, the construction of (N , M )-POVMs from a given basis has been dis-
cussed. It has been shown in Section 3.3 that the fulfillment of relations (3.15)–(3.17), regardless
of the positive semidefiniteness of the POVM elements, is always possible. However, the con-
struction of (N , M )-POVMs from a traceless Hermitian orthonormal operator basis and its
partitioning is limited by positive semidefiniteness, which restricts the eligible x -values. Al-
ready in the figures of the previous section, the condition for the (N , M )-POVMs, which can be
constructed from arbitrary traceless Hermitian orthonormal operators and their partitioning
has been visualized. A sufficient condition is derived that all constructed operators are (N , M )-
POVMs independent of the chosen traceless Hermitian orthonormal operator basis. The
derivation of the condition under which all POVM elements are positive semidefinite relies on
the general properties of positive semidefinite matrices [74, 75]. This relation is established
by considering a single POVM element. For this purpose, a single POVM in a d -dimensional
Hilbert space is considered and its spectral representation

Πi (α,a ) =
1d

d
+ g α,a ·G̃ =

d
∑

σ=1

λσPσ. (4.25)

withG̃ the vector of traceless Hermitian orthonormal basis elements and the (N , M )-vector g α,a

defining the POVM elements. The spectral decomposition is given by the non-negative eigen-
values and the one-dimensional orthogonal projection Pσ with PσPσ′ = Pσδσσ′ , which sum
up to the identity

∑d
σ=1 Pσ =1d . The vectors g α,a , describing positive semidefinite operators,

form a convex set. The constraint (3.15) yields

tr
�

Πi (α,a )
	

=
d

M
=

d
∑

σ=1

λσ. (4.26)

Therefore, for a given set of projection operators Pσ, the positive semidefinite operators
with a trace equal to d /M form a (d − 1)-dimensional simplex ∆d−1. The boundary of the
simplex is given by the positive semidefinite operators. These operators have at least one
eigenvalue equal to zero. The surface areas of the simplex∆d−1 are given by (d−2)-dimensional
simplexes∆d−2 := ∂∆d−1. The centroid of the simplex is given by

Cd−1 =
tr
�

Πi (α,a )
	

d

d
∑

σ=1

Pσ =
1

M
1d . (4.27)

The simplex∆d−1 is visualized in Fig. 4.7. The closest distance from the centroid of the sim-
plex∆d−1 to the boundary is the distance between the centroids of∆d−1 and∆d−2 = ∂∆d−1

and is calculated by

r 2
in = tr

�

(Cd−1−Cd−2)
2
	

=
�

tr
�

Πi (α,a )
	�2

�

(d −1)
�

1

d
−

1

d −1

�2

+
1

d 2

�

=

�

tr
�

Πi (α,a )
	�2

d (d −1)
=

d

M 2(d −1)
. (4.28)

This distance rin defines the radius of the largest possible circle with center Cd−1, which lies
within∆d−1 and touches∆d−1 in one of its d centroids Cd−1. A sufficient condition for positive
semidefiniteness of a single operator follows from using Eqs. (3.15) and (3.16)

0<
�

�g α,a

�

�

2
= x −

d

M 2
= tr

�

(Πi (α,a )−1d /M )
2
	

≤ r 2
in =

d

M 2(d −1)
. (4.29)
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The centroid of the simplex Cd−1 Eq. (4.27) and the radius rin are independent of the chosen
spectral projections Pσ. Therefore, the condition for positive semidefiniteness can be applied
to all POVM elements and guarantees the existence of (N , M )-POVMs with x ≤ r 2

in+d /M 2. The
radius rin has already been visualized in the figures of Section 4.2 and is a basis and partition-
independent value. A necessary condition for the positive semidefiniteness is derived from
Eq. (3.16)

�

�g α,a

�

�

2
= x −

d

M 2
≤min

�

d M −d

M 2
,

d 2−d

M 2

�

= r 2
out. (4.30)

The term (d M −d )/M 2 arises from the non-negativity of Eq. (3.16) for two different POVM
elements. This expression is the upper bound for (N , M )-POVMs with M < d . Therefore, the
possible elements of (N , M )-POVMs are a subset the k -simplex, see Fig. 4.7b. This figure shows
that for d = 3 and M = 2, the optimal (N , M )-POVMs cannot have rank one.

To be an optimal (N , M )-POVM, all the (N , M )-vectors have to take the upper bound

�

�g α,a

�

�= rout. (4.31)

These necessary and sufficient conditions are independent of the chosen basis of traceless
Hermitian orthonormal operators G̃ . For density matrices, this is a common result and can
be seen in [74, 75]. An arbitrary (N , M )-POVM can be constructed for all x -values bounded by

x ≤
1

d −1

d 2

M 2
= xin, (4.32)

(p, 0, 0)
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(0, 0, p)

rout
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(b) M = 2

Figure 4.7: The 2-simplex of the eigenvalues of d = 3: The red area depicts the positive semidefinite
operators, while the blue circle illustrates the boundary of the necessary condition for posi-
tive semidefinite operators, Eq. (4.30). The violet circle represents the sufficient condition
Eq. (4.29). The green dot represents the centroid of the simplex. The intersection of the
simplex with the coordinate axis is at p = d /M .
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independent of the chosen orthonormal basis of traceless Hermitian operators. The ratio
of the interval length of the always achievable x -values to their maximum interval length is
given by

R (d ) =
xin− d

M 2

xmax− d
M 2

=
1

d−1
d 2

M 2 − d
M 2

xmax− d
M 2

=

¨

1
(d−1)2 , M ≥ d

1
(d−1)(M−1) ≤

1
d−1 , 2≤M < d

. (4.33)

The interval length ratio is plotted against the dimension in Fig. 4.8. It is apparent that as the
dimension of the quantum system increases, the interval length ratio steadily approaches zero.
Consequently, the length of the x -intervals rapidly converges towards zero. The case where
2<M < d lies between the two curves and also approaches zero. In the qubit scenario where
d = 2, the inner and outer radii are identical rin = rout. This implies that the set of positive
semidefinite operators with a trace tr

�

Πi (α,a )
	

= d /M is described by a 3-dimensional ball of
radius r = 2/M 2. For M = 2, the set of positive semidefinite operators is known as the Bloch
ball. A density matrix is represented by a single point, while (N , M )-POVMs are represented
by a set of N M points with a fixed distance to the centroid. Optimal (N , M )-POVMs, such
as SIC-POVMs, have been found in dimensions up to d = 151 and beyond [65]. This means
that the discussed construction methods in Sections 3.2.1 and 3.2.2 depend significantly on
the selected traceless Hermitian orthonormal basis. The existence of optimal (N , M )-POVMs
induces restrictions on the traceless Hermitian operator bases that can be used to construct
optimal (N , M )-POVMs with the ansatz of Sections 3.2.1 and 3.2.2. Furthermore, necessary and
sufficient conditions for the existence of optimal (N , M )-POVMs are derived by establishing a
connection between optimal (N , M )-POVMs and traceless Hermitian orthonormal operator
bases in the subsequent subsections.
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Figure 4.8: Interval ratio of the constructible (N , M )-POVMs in arbitrary bases to the maximum al-
lowed interval: The ratio of the interval lengths decays to zero for increasing dimensions d .
The 2<M < d case is between the two cases.
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4.2.1 Optimal (N , M )-POVMs for M ≥d

The construction methods outlined in Sections 3.2.1 and 3.2.2 demonstrate how to con-
struct informationally complete (N , M )-POVMs using a given basis of traceless Hermitian
operators {G̃i (α,a )}. Conversely, it is also possible to construct a set of orthonormal traceless
Hermitian operators from a given (N , M )-POVM by

G̃i (α,a ) =

p
M −1

p

x −d /M 2M (
p

M +1)

�

1d +
p

MΠi (α,M )−
p

M (
p

M +1)Πi (α,a )
�

. (4.34)

It can easily be shown that the operators are orthonormal, i.e. tr
�

G̃i (α,a )G̃i (β ,b )
	

=δαβδa b for
allα,β ∈ {1, . . . , N } and a , b ∈ {1, . . . , M −1} [59]. The influence of optimal informationally com-
plete (N , M )-POVMs on the constructed traceless Hermitian operator elements is examined in
this section. The derivations are restricted to informationally complete (N , M )-POVMs where
N (M −1) = d 2−1. Cases of N (M −1)< d 2−1 can be derived analogously. Optimal (N , M )-
POVMs reach their upper bound of x = d 2/M 2 for M ≥ d . The eigenvalues λi of an optimal
(N , M )-POVM element Πi (α,a ) fulfill the defining relations (3.15-3.17) and must be positive
semidefinite. Therefore, the spectrum of informationally complete optimal (N , M )-POVMs
has to fulfill:

(1) tr
�

Πi (α,a )
	

=
∑d

i=1λi =
d
M

(2) tr
¦

Π2
i (α,a )

©

=
∑d

i=1λ
2
i =

d 2

M 2

(3) λi ≥ 0 for i ∈ {1, . . . , d }.

Combining conditions 1) and 2) leads to

d
∑

i=1

λ2
i =

�

d
∑

i=1

λi

�2

=
d
∑

i=1

λ2
i +

d
∑

i=1,i< j

λiλ j (4.35)

⇒
d
∑

i=1,i< j

λiλ j = 0. (4.36)

Due to the positive semidefiniteness, it follows that one eigenvalue has to be d /M and the
remaining eigenvalues have to be zero. This leads to the conclusion that the (N , M )-POVM
elements are rank one operators and there are unit vectors |α, a 〉 so that the (N , M )-POVM
elements can be written as

Πi (α,a ) =
d

M
|α, a 〉 〈α, a | . (4.37)

The overlap of the vectors is given by

�

�




α, a
�

�α, a ′
��

�=

√

√

√

M
d −1

M −1
, (4.38)

�

�




α, a
�

�β , b
��

�=
1
p

d
(4.39)

for α,β ∈ {1, . . . , N } and a , a ′, b ∈ {1, . . . , M } with α ≠ β and a ≠ a ′. The traceless Hermitian
orthonormal basis of an optimal POVM for M ≥ d is given by Eq. (4.34)

G̃i (α,a ) =

p
M −1

(
p

M +1)
p

d 2−d

�

1d +
p

MΠi (α,M )−
p

M (
p

M +1)Πi (α,a )
�

. (4.40)
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The spectrum of G̃i (α,a ) is examined by calculating the eigenvalues of the matrix

Ai (α,a ) =
p

MΠi (α,M )−
p

M (
p

M +1)Πi (α,a ) (4.41)

=
d
p

M
|α, M 〉 〈α, M | −

d (
p

M +1)
p

M
|α, a 〉 〈α, a | . (4.42)

By definition, this matrix has maximal rank two, indicating that the eigenvalue zero has a
multiplicity of at least d −2. The characteristic polynomial for the rank two matrix Ai (α,a ) is
given by

0=Λd + cd−1Λ
d−1+ cd−2Λ

d−2. (4.43)

For the calculation of the coefficients cd−2 and cd−1, the following properties are needed

tr
�

Ai (α,a )
	

=
d
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M
−

d (
p

M +1)
p

M
=−d (4.44)
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MΠ2
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M +1)Πi (α,M )Πi (α,a )+M (
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M
−2(
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M +1)
d −d 2/M

M −1
+ (
p

M +1)2
d 2
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=
d (d
p

M +d −2)
p
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. (4.45)

The Cayley-Hamilton theorem can be used to calculate the coefficients of the characteristic
polynomial [88]

cd−1 =− tr
�

Ai (α,a )
	

= d (4.46)
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tr
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Ai (α,a )
	2− tr
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©�

=
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d 2−
d (d
p
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=−
d 2−d
p
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(4.47)

and the polynomial is given by

0=Λd +dΛd−1−
d 2−d
p

M −1
Λd−2 (4.48)

=

�

Λ2+dΛ−
d 2−d
p

M −1

�

Λd−2. (4.49)

The non-zero eigenvalues of the matrix Ai (α,a ) are given by

Λ± =
1

2

�

−d ±
√

√

d 2+4
d 2−d
p

M −1

�

. (4.50)

With these results, the eigenvalues Λi of G̃i (α,a ) can be calculated easily by Eq. (4.40)

Λ j =

p
M −1

(
p

M +1)
p

d 2−d

Λd−1 =

p
M −1

(
p

M +1)
p

d 2−d
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Λd =

p
M −1

(
p

M +1)
p

d 2−d
(1+Λ−) (4.51)
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for { j = 1, . . . , d − 2}. These results are independent of the chosen basis elements, so their
spectrum is given by

Sp(G̃i (α,a )) =

p
M −1

(
p

M +1)
p

d 2−d

�

1(d−2), (1+Λ+)
(1), (1+Λ−)

(1)	 , (4.52)

where the number in brackets denotes the degeneracy of the eigenvalues. Thus, the basis
{G̃i (α,a )} is an IHOB. This result has already been derived for the special case of informationally
complete GSICs (N = 1, M = d 2) [62]. If an optimal (N , M )-POVMs is not informationally
complete, the IHOB is replaced by an isospectral traceless Hermitian orthonormal system of
N (M −1)< d 2−1 operators, which are defined in Eq. (4.40). Therefore, the existence of such
an orthonormal system is necessary for the existence of optimal (N , M )-POVMs which are
not informationally complete.

Two examples of IHOBs have been used in Section 4.1.1. The first is the SIC basis constructed
from the SIC-POVM in Eq. (A.7), which leads to basis elements with the spectrum Eq. (B.19)

Sp
�

G̃ SIC
i

�

=
§

1

12
(−
p

3−3
p

7),
1

12
(−
p

3+3
p

7),
1

2
p

3

ª

. (4.53)

The exact numeration and structure of these basis elements are shown in Eq. (B.20). The
second basis is constructed from the MUB in Eq. (A.3) and has the spectrum Eq. (B.21)

Sp
�

G̃ MUB
i

�

=

�

3−
p

3

6
,
−3−
p

3

6
,

1
p

3

�

. (4.54)

The exact numeration and structure of these basis elements are shown in Eq. (B.22). The subse-
quent subsections derive equivalent necessary conditions for (N , M )-POVMs with 2≤ d <M .

4.2.2 Optimal (N , M )-POVMs for 2<M <d

In this subsection, a necessary and sufficient condition for the existence of optimal (N , M )-
POVMs for 2<M < d is proposed. The following derivations are restricted to informationally
complete (N , M )-POVMs with N (M −1) = d 2−1, while the cases of N (M −1)< d 2−1 can be
derived analogously. It will be demonstrated that the elements of optimal (N , M )-POVMs with
2<M < d are projection operators of rank d /M . The necessary condition also holds for M = 2.
However, this case will be discussed in detail in Section 4.2.3. An optimal (N , M )-POVM has a
maximum value of x = d /M and its elements fulfill

tr
�

Πi (α,a )
	

=
d
∑

σ=1

λσ =
d

M
> 1 (4.55)

tr
¦

Π2
i (α,a )

©

=
d
∑

σ=1

λ2
σ =

d

M
> 1 (4.56)

with non-negative eigenvalues λσ ≥ 0 of Πi (α,a ). The spectrum of these operators is further
restricted by relation (3.16). Any pair of elements of a single optimal (N , M )-POVM has to
fulfill

0= tr
�

Πi (α,a )Πi (α,b )
	

= tr
�Æ

Πi (α,a )Πi (α,b )
Æ

Πi (α,b )Πi (α,a )
	

=




Æ

Πi (α,b )Πi (α,a )





2

HS
(4.57)
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for all α ∈ {1, . . . , N } and a , b ∈ {1, . . . , M } with a ̸= b . The Hilbert-Schmidt scalar product
induced norm in Eq. 4.57 vanishes and therefore, the matrices have to be zero

Æ

Πi (α,b )Πi (α,a ) = 0,
Æ

Πi (α,a )Πi (α,b ) = 0. (4.58)

Thus, the product of two different elements of a single POVM has to be zero Πi (α,a )Πi (α,b ) = 0
for all α ∈ {1, . . . , N } and a , b ∈ {1, . . . , M } with a ̸= b . From the completeness relation (3.1)
follows

Πi (α,a ) =Πi (α,a )

M
∑

b=1

Πi (α,b ) =Π
2
i (α,a ). (4.59)

Thus, all (N , M )-POVM elements have to be of rank d /M orthogonal projections and can only
exist if d is an integer multiple of M . Furthermore, for optimal (N , M )-POVMs with 2<M < d
the defining relation (3.16) is equivalent to

tr
�

Πi (α,a )Πi (α,b )
	

=
d

M
δa b⇔Πi (α,a )Πi (α,b ) =δa bΠi (α,a ) (4.60)

while the conditions (3.15) and (3.17) remain unchanged. The spectrum of optimal (N , M )-
POVM elements is given by

Sp(Πi (α,a ) =
�

1(d /M ), 0(d−d /M )� . (4.61)

The number in the brackets indicates the degeneracy of the eigenvalues. Following the neces-
sary condition, the (21, 4)-POVM in dimension d = 8 with x = 2 is the smallest dimension in
which such an informationally complete optimal (N , M )-POVM can exist. The POVM elements
are rank two projections.

Analog to the case of M ≥ d , a traceless Hermitian orthonormal operator basis can be
constructed from an optimal (N , M )-POVM with 2<M < d by Eq. (4.40)

G̃i (α,a ) =
1

(
p

M +1)
p

d

�

1d +
p

MΠi (α,M )−
p

M (
p

M +1)Πi (α,a )
�

. (4.62)

The POVM elements Πi (α,a ) and Πi (α,b ) commute for all α ∈ {1, . . . , N } and a , b ∈ {1, . . . , M },
indicating that they share a common eigenbasis. Therefore, the POVM elements of a single
POVM can be represented by

Πi (α,a ) =
a d /M
∑

k=(a−1)d /M+1

|α, k 〉 〈α, k | , (4.63)

where {|α, k 〉 |k ∈ {1, . . . , d }} is a common eigenbasis of all elements of a single POVM, denoted
by α. By using this representation, the spectrum of Eq. (4.62) reads

Sp(G̃i (α,a )) =

¨

�

1

(
p

M +1)
p

d

�(d−2d /M )

,
�

1
p

d

�(d /M )
,

�
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M (
p

M +1)

(
p

M +1)
p

d

�(d /M )«

=
�

(Λ1)
(d−2d /M ), (Λ2)

(d /M ), (Λ3)
(d /M )	 . (4.64)

The number in the brackets indicates the degeneracy of the eigenvalues. The eigenvalue Λ1,
which belongs to the eigenvectors |α, k 〉 orthogonal to both POVM elements is degenerated by
a factor d −2d /M . The second eigenvalue Λ2 has a multiplicity of d /M and has the eigenvec-
tors |α, k 〉 for k ∈ {(M −1)d /M +1, . . . , d }. The third eigenvalue, Λ3, has the eigenvectors |α, k 〉
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for k ∈ {(a −1)d /M +1, . . . , a d /M } and has multiplicity of d /M . Such a basis exists for each
POVM, which means all the basis elements have an identical spectrum. The basis elements
constructed from a single optimal POVM for a given αmust commute. This means that the
basis elements fulfill the additional relations

G̃i (α,a ) |α, l 〉=
1−
p

M (
p

M +1)

(
p

M +1)
p

d
|α, l 〉 ,

G̃i (α,a ) |α, k 〉=
1
p

d
|α, k 〉 ,

[G̃i (α,a ),G̃i (α,b )] = 0 (4.65)

for all a , b ∈ {1, . . . , M −1}, α ∈ {1, . . . , M −1}, k ∈ {(M −1)d /M +1, . . . , d /M }
and l ∈ {(a −1)d /M +1, . . . , a d /M }. This result shows that the isospectrality of the traceless
Hermitian orthonormal operator basis and its partitioning is important for constructing
optimal informationally complete (N , M )-POVMs with 2<M < d . Furthermore, if the IHOB
exists according to Eq. (4.64) and fulfills additionally the relations (4.65) for a partitioning
then the construction method, Eq. (3.32), leads to an informationally complete (N , M )-POVM

Πi (α,a ) =
1d
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+

p
d

M (1+
p
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p

M (
p

M +1)G̃i (α,a )

�

Πi (α,M ) =
1d
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+

p
d

M
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∑
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G̃i (α,b ). (4.66)

More than one POVM can only be simultaneously diagonalizable if relation (3.17)

tr
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b d /M
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2
=

d

M 2
∈N (4.67)

is a natural number for all a , b ∈ {1, . . . , M } and α,β ∈ {1, . . . , N }with α ̸=β . It is summarized
that the elements of an optimal (N , M )-POVM are projections of rank d /M and the elements
of a single POVM share a common eigenbasis and satisfy Πi (α,a )Πi (α,b ) =δa bΠi (α,a ) for all α, a
and b . Additionally, the existence of an IHOB {G̃i (α,a )}, whose common spectrum is given by
Eq. (4.64) and the basis elements fulfill (4.65), is a necessary and sufficient for the existence of
an optimal informationally complete (N , M )-POVM. If an optimal (N , M )-POVM is not infor-
mationally complete, the IHOB is replaced by an isospectral traceless Hermitian orthonormal
system of N (M −1)< d 2−1 operators, which are defined in Eq. (4.62).

In the subsequent subsection, optimal (N , 2)-POVMs are discussed in detail.

4.2.3 Optimal (N ,2)-POVMs

In this subsection, the existence of optimal (N , 2)-POVMs of d -dimensional quantum systems
with x = d /2 is analyzed. The additional properties of such POVMs can be used to extend the
necessary condition of the existence of an IHOB to a sufficient condition. This criterion holds
for all POVMs with N ≤ d 2−1, including the informationally complete ones for N = d 2−1.
For M = 2, the construction methods described in Sections 3.2.1 and 3.2.2 are identical and
the elements of the POVMs are given by

Πi (α,1) =
1d

2
+πi (α,1) (4.68)

Πi (α,2) =
1d

2
+πi (α,2) =

1d

2
−πi (α,1). (4.69)
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The completeness relation of POVMs (3.1) has been used for Πi (α,2). The eigenvalues of the
POVM elements λσ = 1/2+ησ are analyzed to understand the existence of such POVMs
with the eigenvalues of ησ of traceless Hermitian operators πi (α,a ). According to the result of
Section 4.2.2, the eigenvalues have to fulfill

�

�ησ
�

�= 1/2 so that the eigenvalues are λσ = {0, 1}.
In addition to fulfill

0= tr
�

πi (α,a )
	

=
d
∑

σ=1

ησ (4.70)

the value d /2 ∈N has to be a natural number, which can only be achieved if the dimension of
the quantum system is even. The spectrum of the POVM elements is given by

Sp(πi (α,a )) =

�

+
1

2

(d /2)
,−

1

2

(d /2)
�

(4.71)

for each i (α, a ) ∈ {1, . . . , 2N }. From the POVM elements isospectral traceless Hermitian opera-
tors can be derived by G̃α =πi (α,1)2/

p
d . The common spectrum is

Sp(G̃i (α,a )) =

�

+
1
p

d

(d /2)
,−

1
p

d

(d /2)
�

(4.72)

for each α ∈ {1, . . . , N }. Thus, the existence of an isospectral traceless Hermitian orthonormal
system of N elements is both sufficient and necessary for constructing (N , 2)-POVMs. In the
case of informational completeness N = d 2−1, the isospectral traceless orthonormal system
is a complete basis. This generalizes the recently derived result of Siudzińska [59].

The IHOB can easily be constructed from the Clifford algebra for quantum systems of
dimension d = 2k for k ∈N. This basis is generated by the tensor product of the Pauli matrices
Eq. (B.8) andσ0 =12. Furthermore, the (M , 2)-POVMs in dimension d = 2k are given by

Πi (α,1) =
1d

2
+

1

2
σi1
⊗ · · ·⊗σik

(4.73)

Πi (α,2) =
1d

2
−

1

2
σi1
⊗ · · ·⊗σik

(4.74)

with (i1, . . . , ik ) ̸= (0, . . . , 0). For k = 2, the result has been shown as an example in [59]. It is still
uncertain whether optimal informationally complete (N , 2)-POVMs exist in even dimensions
that are not a power of two. In this section, the existence of an IHOB, whose spectrum is given
by Eq. (4.72), is necessary and sufficient condition for the existence of optimal informationally
complete (N , M )-POVMs. The common spectrum of the basis elements depends solely on
the dimension d and the number of POVM elements M .

4.2.4 Conclusion

In the previous subsection, it has been derived that optimal (N , M )-POVMs require the exis-
tence of an IHOB, and their spectrum relies solely on d and M for all informationally complete
(N , M )-POVMs Eqs. (4.52), (4.64) and (4.72). Additionally, it has been shown that informa-
tionally complete optimal (N , M )-POVM elements are rank one operators for M ≥ d and
orthogonal projections of rank d /M for M ≤ d . This implies that optimal (N , M )-POVMs
with M < d can only exist if M /d ∈N is a natural number. However, for the special case of
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MUBs the POVM elements are rank one projections and any traceless Hermitian orthonormal
operator basis fulfilling the commutator relation

[G̃i (α,a ),G̃i (α,b )] = 0 (4.75)

for all α ∈ {1, . . . , N } and a ∈ {1, . . . , M −1} can be used to construct a MUB because for each α,
it consists of the maximum number of orthogonal and simultaneously diagonalizable traceless
Hermitian operators. Therefore, a set of d −1 commuting traceless Hermitian basis elements
will generate an identical set of positive semidefinite matrices regardless of their spectrum. An
example has been presented in Section 4.1.2 for d = 4=M and the Clifford basis. Examples
of informationally complete optimal POVMs have been presented for cases where M = d ,
M = d 2 and M = 2. However, the existence of optimal informationally complete (N , M )-
POVMs for other values of M still needs to be demonstrated. The isospectrality of the basis
elements indicates that there exists d 2−1 unitary matrices Ui (α,a ) so that the basis elements
can be written as

G̃i (α,a ) =U †
i (α,a )DUi (α,a ) (4.76)

with D = diag(Λ1, . . . ,Λd ) with Λi the eigenvalues of the IHOB elements. The orthogonality
relation of such a basis reads

δα,βδa ,b = tr
�

G̃i (α,a )G̃i (β ,b )
	

= tr
¦

U †
i (α,a )DUi (α,a )U

†
i (β ,b )DUi (β ,b )

©

(4.77)

for α,β ∈ {1, . . . , N } and a , b ∈ {1, . . . , M −1}. For 2<M ≤ d , the basis elements constructed
from a single optimal POVM are commuting, Eq. (4.65). The required unitary transformations
can be reduced to Uα for α ∈ {1, . . . , N −1} and diagonal matrices Da , which are permutations
of the diagonal entries Λ1 and Λ2 [Eq. (4.64)], so that holds

tr{Da Db }=δa ,b (4.78)

for a , b ∈ {1, . . . , M }. For the case of 2<M < d , it is sufficient and necessary for the existence of
optimal (N , M )-POVMs if an IHOB exists with a spectrum of Eq. (4.64) and fulfills the relations
in Eq. (4.65). For the case of M = 2, the existence of an IHOB is a necessary and sufficient
condition for the existence of optimal informationally complete (N , M )-POVMs. The connec-
tion between optimal (N , M )-POVMs and IHOBs has been established. The construction of
optimal (N , M )-POVMs can be transformed to the construction of such basis elements or a
finding the Ui (α,a ) for α ∈ {1, . . . , N } and a ∈ {1, . . . , M −1}. The next two sections deal with the
existence of SIC-POVMs and MUBs, which means that in all dimensions where these POVMs
can be constructed, IHOBs also exist.

4.3 O V E R V I E W S I C - P O V M S

The special case of (1, d 2)-POVMs or GSICs introduced in 2014 by Kalev and Gour [64] is a
generalization of the SIC-POVMs while SIC-POVMs have been widely discussed over the
last 20 years. The SIC-POVMs have been introduced to the general community of quantum
information by Renes in 2004 [60]. This started the main interest of the current research of
SIC-POVMs. This section briefly summarizes the existence of SIC-POVMs, the current state of
the art and applications are presented.
The idea of quantum measurements represented by SIC-POVMs has been introduced in-
dependently by Zauner [111] and Caves [112]. Zauner has found the connection between
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the Weyl-Heisenberg group and the existence of SIC-POVMs up to a dimension of d = 5. He
also conjectured that for any dimension d , the d 2 vectors describing the SIC-POVM can be
generated from a fiducial vector acting on unitary matrices belonging to the Weyl-Heisenberg
group. The construction of SIC-POVMs in finite dimensions remains an open research subject
and has been named one of the five important problems of quantum information theory [66].
In the last two decades, the dimension of numerically obtained SIC-POVMs has increased.
In 2004, Renes could construct SIC-POVMs of dimension d ≤ 45 [60]. Scott and Grassl ex-
tended the found dimension to d ≤ 67 [113]. Scott extended his results up to d ≤ 121 [114].
Using the supercomputer Chimera at UMass Boston and the previous formalism, SIC-POVMs
have been constructed for d ≤ 151 [65]. In dimension d ≤ 193 and for the special dimensions
d = 204,224,255,288,528,725,1155,2208 SIC-POVMs have been determined [66]. Numeri-
cal results of the fiducial vectors are published in [115–117]. Analytical solutions have been
found for dimensions up to d ≤ 53 [60, 113, 118]. Outside this boundary, the construction of
analytical SIC-POVMs is known for [116, 119–121]

d =57, 61−63, 65, 67, 73, 74, 76, 78−80, 84, 86, 91, 93, 95, 97−99,

103, 109, 111, 120, 122, 124, 127, 129, 133, 134, 139, 143, 146, 147,

151, 155, 157, 163, 168, 169, 172, 181−183, 193, 195, 199,

201, 228, 259, 292, 323, 327, 364, 399, 403, 487, 489, 628, 787, 844, 964,

1027, 1228, 1299, 1447, 1684, 1852, 2404, 2707, 4099, 5779, 19603, 39604. (4.79)

Despite continuous research, the Zauner conjecture remains unproven [66]. The SIC-POVMs
also have important applications outside quantum information, quantum communication,
entanglement detection and EPR steering detection. They are also relevant for signal process-
ing in high-precision radars [122] and speech recognition [123]. In mathematics, SIC-POVMs
are connected to algebraic number theory [124]. An overview of important applications and
connections of SIC-POVMs can be found in [65]. Examples of SIC-POVMs in dimension d ≤ 4
are shown in Appendix A.2.

4.4 O V E R V I E W M U T U A L LY U N B I A S E D B A S I S

The existence of optimal MUBs is often discussed in current literature rather than from the
point of view of optimal informationally complete MUMs. This approach drops completeness
and focuses solely on counting the number of bases. The main objective is to examine the
maximum number of MUBs.
Definition
A set of of N orthogonal bases {|α, a 〉} (1≤α≤N , 1≤ a ≤ d ) in d -dimensional complex Hilbert
space which fulfills

〈α, a |α, b 〉=δa ,b (4.80)
�

�




α, a
�

�β , b
��

�

2
=

1

d
(4.81)

for all (1≤ a , b ≤ d ), (1≤α,β , N ) and α ≠β . The maximum number of different bases is given
by N = d + 1 , which is equivalent to the existence of an optimal MUM [66]. It is currently
unknown whether d +1 MUBs exist for any dimension. For a representation by products of

powers of primes d = p k1
1 . . . p kl

l with p k1
1 ≤ p k2

2 ≤ · · · ≤ p kl
l it has been shown that there exist at

least p k1
1 +1 MUBs [111]. Therefore, the minimum number of MUBs is three. For the special
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case where dimensions are powers of primes d = p k , it has been proven that d +1 MUBs exist.
For other cases, the number of maximal bases remains unknown [125]. It has been shown
that a collection of d MUBs can always be extended to d +1, which means that the maximal
number of MUBs is either d +1 or less or equal to d −1 [126]. The lowest dimension for which
the question of complete MUB of d + 1 is not known is d = 6. The maximum number of
seven bases has not been found, only three have been discovered [127, 128]. The proof of
the number of the maximal set of MUBs in d = 6 is one of the five key questions in quantum
information [66]. Examples of MUBs in dimensions d ≤ 4 are provided in Appendix A.1.
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E N TA N G L E M E N T D E T E C T I O N B Y L O C A L
M E A S U R E M E N T S

This chapter addresses the need to verify the entanglement of bipartite quantum states using
local measurements that can be carried out by observers at a great distance. For quantum
information applications, such as quantum key distribution, it is necessary to detect entangled
states by local measurements. Therefore, only quantum states where entanglement can be
detected are suitable for these applications. In this chapter, the focus is on generalized local
measurements. Sufficient conditions for entanglement detection by local informationally
complete (N , M )-POVMs are discussed. The research on entanglement detection with these
measurements is two-fold. In the first part, sufficient conditions based on correlation matrices
and joint probability distributions are derived. The intricate dependence of such inequalities
on the parameters of the used (N , M )-POVMs is analyzed analytically. The efficiency of entan-
glement detection can be easily determined by the scaling relation, which follows from the
detailed discussions about (N , M )-POVMs in Chapter 3. The scaling relation is necessarily
fulfilled for all (N , M )-POVMs. Positive semidefiniteness of the POVM elements is not nec-
essary for the scaling relation. This part concludes with an overview of the current research
on entanglement detection using local (N , M )-POVMs, as well as the well-known subclasses,
including SIC-POVMs, GSICs, MUBs and MUMs.

The second part numerically evaluates the efficiency of the derived sufficient entanglement
conditions over the entire state space, surpassing existing research that concentrates mainly
on special single-parameter families of quantum states and isotropic quantum states. The
statistical properties of the detected entangled states are examined for this purpose. With the
help of the hit-and-run algorithm, discussed in Section 2.4, the Euclidean volume ratios of
the detected entangled quantum states over all quantum states are discussed in low qudit
dimensions. The volume ratio of the sufficient conditions based on local measurements is
compared to that of the NPT states in Section 2.2.1. Additionally, the dependence of joint
probability-based sufficient conditions on the (N , M )-POVM is evaluated, providing insight
into which (N , M )-POVMs are the most suitable for entanglement detection.

This chapter is structured as follows. A correlation matrix-based sufficient condition is
derived for arbitrary Hermitian operators as measurements in Section 5.1. The general corre-
lation matrix is applied to LOOs as measurements in Section 5.1.1. Additionally, the sufficient
condition is compared to the LOO-based sufficient condition of Section 2.2.3. The correlation
matrix condition with LOOs as measurements is necessary to establish the scaling relation
for (N , M )-POVMs. The general correlation matrix-based sufficient condition is specialized
to local informationally complete (N , M )-POVMs in Section 5.1.2. The results of Section 3.3
are used to unify the sufficient condition of LOOs and (N , M )-POVMs by introducing the
scaling relation. In Section 5.2, entanglement detection through joint probability distributions
with (N , M )-POVMs is discussed. Similar to the correlation matrix condition, the results of
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Section 3.3 have been used to establish a more subtle scaling relation. An overview of recent
publications of sufficient entanglement conditions using (N , M )-POVMs as local measure-
ment is given in Section 5.3. Finally, by comparing the Euclidean volume ratios of the entangled
quantum states for low qubit dimensions with the sufficient Peres-Horodecki conditions, we
demonstrate the efficiency of the discussed entanglement detection in Section 5.4.

5.1 C O R R E L AT I O N M AT R I C E S O F L O C A L M E A S U R E M E N T S

In this section, an inequality for detecting entanglement through correlation matrices with
arbitrary local quantum measurements is derived, similar to the case of EPR-steering [129].
Consider Alice and Bob share a composed quantum state ρ of dimension d = dAdB, where
Alice’s Hilbert space has the dimension dA and Bob’s dB. Two general sets of Hermitian op-
erators are considered for Alice A= {Ai ; i = 1, . . . , M } and Bob B = {B j ; j = 1, . . . , N } and the
correlation matrix associated with these measurements is given by

�

C (A,B|ρ)
�

i j
= ci j = tr

�

(Ai ⊗B j )(ρ−ρA⊗ρB)
	

(5.1)

with the reduced local density matrices of Alice and Bob, ρA = trB{ρ} and ρB = trA{ρ}. An
arbitrary density matrix ρ is separable if and only if the quantum state can be written as a
convex combination of product states Eq. (2.44)

ρ =
∑

k

pkρA,k ⊗ρB,k with pk ≥ 0,
∑

k

pk = 1. (5.2)

The average values can be calculated by

tr
�

Ai ⊗B jρ
	

=
∑

k

pk tr
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AiρA,k

	

tr
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B jρB,k

	

(5.3)
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B jρB,l
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, (5.4)

where the definitions of the local density matrices ρA =
∑

k pkρA,k and ρB =
∑

k pkρB,k have
been used. The elements of the correlation matrix can be represented by

ci j = tr
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(Ai ⊗B j )(ρ−ρA⊗ρB)
	

(5.5)
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(5.6)
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The correlation vectors
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(5.8)

are defined to represent the correlation matrix by

C (A,B,ρ) =
1

2

∑

k ,l

pk pl V k ,l W T
k ,l . (5.9)
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The trace norm of the correlation matrix fulfills



C (A,B|ρ)
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The first inequality follows from the triangle inequality and the last equality from the trace
norm of the dyadic product of two vectors. Using the Cauchy-Schwarz inequality leads to
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(5.11)

The two terms inside the square roots will be dealt with separately for clarity. The inequality
for the terms with Bob’s operators reads
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Here, the fact that
∑N

j=1 tr
�

B jρk

	2 ≤maxσB

∑N
j=1 tr
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B jσB

	2
holds has been used. By an anal-

ogous derivation follows
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tr{AiσA}2−
M
∑

i=1

tr
�

AiρA
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. (5.13)
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Therefore, the trace of the correlation matrix for separable states is upper-bounded by


C (A,B|ρ)




tr
≤
p

ΣAΣB (5.14)

These upper bounds involve maximizing over all local quantum states of Alice and Bob,σA

and σB. In particular, the upper bound of the inequality depends on the chosen local Her-
mitian measurement operators A and B. Inequality (5.14) is a general consequence of the
bipartite separability of an arbitrary dimensional quantum state ρ. However, calculating the
boundary of inequality (5.13) for arbitrary local Hermitian measurementsA andB is quite chal-
lenging. Furthermore, the focus is on informationally complete measurements, which allow
the complete reconstruction of a quantum state. A set of linear operators acting on elements
of Hd is informationally complete if and only if it contains d 2 linearly independent operators.
In the context of local measurements, in theory, the set A can reconstructρA and the set B can
reconstructρB. The set of the tensor products A⊗B = {Ai ⊗B j ; i = 1, . . . , M , j = 1, . . . , N } is also
informationally complete for the linear operators acting on the Hilbert space HA⊗HB. The
following sections discuss local informationally complete Hermitian measurement operators,
which allow for analytical calculation of the upper bound. This sufficient condition is applied
to LOOs discussed in Section 2.2.3 and (N , M )-POVMs discussed in detail in Chapters 3. and 4.

5.1.1 Correlation matrices of local orthonormal Hermitian operators

In this subsection, the arbitrary measurements involved in Eqs. (5.13) and (5.14) are specialized
to arbitrary LOOs, say G A = (G A

0 , . . . ,G A
d 2

A−1
) and G B = (G B

0 , . . . ,G B
d 2

B−1
) as defined in Section 2.2.3.

The number of the measurements on the subsystems is d 2
A and d 2

B. The upper bound of
inequality (5.13) is calculated with the Hilbert-Schmidt representation of the reduced density
matrices Eq. (2.16)
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and the purity of a density matrix
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Using this relation leads to the upper bound (5.13) for LOOs
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The maximum of the upper bounds is taken for an arbitrary pure quantum state of the sub-
systems. Therefore, inequality (5.14) reduces to
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G A,G B|ρ
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tr
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)(1− tr
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ρ2
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). (5.19)

This is already known as the special form of the covariance condition from Gittsovich et
al. [130, 131]. Furthermore, it is identical to the enhanced realignment criterion of Zhang et
al. [132]. The upper bound of such an inequality is independent of the chosen LOOs. Consider
two LOOs (B.4)

OA(G
A
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)T (5.20)
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d 2
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)T. (5.21)

and the inequality (5.19) is independent of the chosen LOOs


C
�
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This implies that arbitrary LOOs are equally efficient for entanglement detection with correla-
tion matrices. For an arbitrary quantum state ρ the representation of ρ−ρA⊗ρB in a LOO
G̃ A and G̃ B with G̃ A

0 =1/
p

dA and G̃ B
0 =1/

p

dB is

ρ−ρA⊗ρB =
d 2

A−1
∑

i=1

d 2
B−1
∑

j=1

(ti j −ai b j )G̃
A
i ⊗ G̃ B

j . (5.23)

The parameters ti j , ai and b j are defined as in Eq. (2.90). This operator is by definition traceless
and the average values of the local basis elements also vanish. Therefore, the correlation matrix
fulfills the relation

�

C
�

G̃ A,G̃ B|ρ
��

0ν
=
�

C
�

G̃ A,G̃ B|ρ
��

µ0
= 0 (5.24)

for µ ∈ {1, . . . , d 2
A − 1} and ν ∈ {1, . . . , d 2

B − 1}. This implies that the correlation matrix for the
LOOs G̃ A and G̃ B has a block diagonal structure consisting of a 1×1 block of zero and a second
block of dimension (d 2

A −1)× (d 2
B −1). Only the second block contributes to the trace norm,

while the zero eigenvalue that belongs to the first block is negligible. In Section 2.2.3, the
CCNR condition for entanglement detection has been discussed. This inequality also includes
LOOs as measurement operators, but instead of the trace norm of the correlation matrix,
the joint probability distribution has been considered. The CCNR inequality (2.63) has to be
related to the correlation matrix sufficient condition (5.14) by
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In the second line, the triangle inequality has been used and the fact that the quantum
state ρ fulfills inequality (5.14). The CCNR condition is fulfilled if a quantum state fulfills the
correlation matrix inequality (5.14). The CCNR condition cannot detect more entanglement
than the correlation matrix condition (5.14). Furthermore, both conditions are also unaffected
by the LOOs selected. To check if the correlation matrix-based inequality is violated, it is
necessary to know the purities of the reduced density matrices ρA and ρB, making their
application more complex.
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5.1.2 Correlation matrices of (N , M )-POVMs

The general sufficient condition for entanglement, as described in Eq. (5.14), is applied to
local informationally complete (N , M )-POVMs as measurements. The properties and exis-
tence of the (N , M )-POVMs are discussed in Chapters 3 and 4. In the first part of this section,
the sufficient condition for entanglement detection is derived, while the second part dis-
cusses the efficiency of different local informationally complete (N , M )-POVMs by relating
the correlation matrix of local informationally complete (N , M )-POVMs to that of LOOs. The
local informationally complete (N , M )-POVMs ΠA = (ΠA

1 , . . . ,ΠA
NAMA

) and ΠB = (ΠB
1 , . . . ,ΠB

NBMB
)

are performed by Alice and Bob. These positive semidefinite operators fulfill the defining
equation of the (N , M )-POVMs (3.15-3.17) and the informational completeness relations
d 2

A −1=NA(MA−1) and d 2
B −1=NB(MB−1). For the sake of convenience, the single index of

the (N , M )-POVMs is introduced by i (α, a ) = (α−1)MA+a and j (β , b ) = (β −1)MB+ b . These
definitions of the single indices allow a unique identification of the POVMs by α or β and
the resulting measurement results a and b . The upper bound of the entanglement inequal-
ity (5.13) is calculated by utilizing the index of coincidence and its upper bound Eqs. (3.82)
and (3.83)
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with

ΓA =
M 2
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. (5.28)

As a consequence, the correlation matrix-based inequality of informationally complete (N , M )-
POVMs obeys
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for all separable bipartite quantum states. This inequality has been independently derived by
Lai and Luo [133]. Special instances of GSICs and MUMs as local measurements have been
discussed recently [134]. A detailed overview of different sufficient entanglement conditions
with local measurements is shown in Subsection 5.3. Inequality (5.29) depends on the local
(N , M )-POVMs and their parameters xA, xB, NA, NB, MA, MB, which complicates the direct
comparison of the efficiency of different types of (N , M )-POVMs. The correlation matrix has a
dimension of NAMA×NBMB, which makes it difficult to compare (N , M )-POVMs with different
values of N and M . Moreover, the comparison of the upper bounds of the inequalities for local



5.1 C O R R E L AT I O N M AT R I C E S O F L O C A L M E A S U R E M E N T S 83

(N , M )-POVMs (5.29) and LOOs (5.19) shows that the boundaries are proportional to each
other by the factor

p

ΓAΓB. Therefore, the correlation matrix of (N , M )-POVM will be related
to that of LOOs. This relationship avoids the apparent complexity of the correlation matrix’s
dependence on the (N , M )-POVMs.

For this purpose, the local informationally complete (N , M )-POVM elements are expanded
in arbitrary LOOs, say G A for Alice and G B for Bob, i.e. ΠA = (G A)TS A and ΠB = (G B)TS B. The
real-valued expansion coefficient matrices S A and S B are defined in Section 3.3. These matrices
have dimensions of d 2

A ×NAMA and d 2
B ×NBMB, respectively. The local basis expansions of

the (N , M )-POVMs can be used to rewrite the correlation matrix as

C (ΠA,ΠB|ρ) = (S A)TC (G A,G B|ρ)S B. (5.30)

The trace norm of the correlation matrix of local informationally complete (N , M )-POVMs is
calculated by relating the correlation matrix to that of arbitrary LOOs. This leads to the scaling
relation of the trace norm
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Here, ΛA is the diagonal matrix of non-zero eigenvalues of (S A)TS A with ΛA
1 =NAMA/dA and

ΛA
i = ΓA for i = 2, . . . , d 2

A and analogous for Bob’s diagonal matrixΛB of the non-zero eigenvalues
of (S B)TS B with ΛB

1 =NBMB/dB and ΛB
j = ΓB for j = 2, . . . , d 2

B, given in Eq. (3.69). In addition to
the detailed results of Section 3.3, leading to Eq. (3.80), have been used to define the traceless

Hermitian operators bases G̃
A = O AG A and G̃

B = O BG B with the orthogonal transforma-
tions O A and O B. Furthermore, the restriction on the LOOs G̃ A and G̃ B on the correlation
matrix Eq. (6.50) has been used to extract the prefactors

p

ΓA and
p

ΓB. The equality of
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tr
(5.32)

is called the scaling relation, which has to be necessarily fulfilled by (N , M )-POVMs. As a
result the sufficient entanglement condition with (N , M )-POVMs simplifies to the inequality
of arbitrary LOOs
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The main result of this section is that the correlation matrix-based sufficient condition for
arbitrary local informationally complete (N , M )-POVMs is the same as that for arbitrary LOOs.
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Thus, it is apparent that the inequality (5.33) is entirely independent of the local information-
ally complete (N , M )-POVMs. This is a direct consequence of the symmetry of the relations
that define the (N , M )-POVMs (3.15)-(3.17). The positive semidefiniteness of the local POVM
elements has not been utilized in this derivation. Therefore, the scaling relation can be es-
tablished using sets of informationally complete Hermitian operators that fulfill the defining
conditions (3.15)-(3.18) and (3.1), regardless of their positive semidefiniteness.

5.2 J O I N T P R O B A B I L I T Y D I S T R I B U T I O N S

This subsection discusses the entanglement detection of joint probability distributions of local
informationally complete (N , M )-POVMs. This inequality is the analog of the CCNR condition
discussed in Section 2.2.3 for local informationally complete (N , M )-POVMs instead of LOOs
as local measurements. First, the general inequality is derived, followed by an analytical
discussion of the efficiency of different (N , M )-POVMs for arbitrary quantum states. Consider
two local informationally complete (NA, MA) and (NB, MB)-POVMs ΠA and ΠB and the joint
probability distribution is defined by

P
�

ΠA,ΠB|ρ
�

= tr
¦

�

ΠA
�T⊗ΠBρ

©

(5.34)

for an arbitrary density matrix ρ of Alice’s and Bob’s combined system. We assume that the
quantum state is separable

ρsep =
∑

n

pnρA,n ⊗ρB,n (5.35)

with
∑

n pn = 1 and pn ≥ 0 and the local states of Alice’s and Bob’s system ρA,n and ρB,n . For
the derivation of the sufficient entanglement condition, the following vectors are needed
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¦

ρB,nΠ
B
NBMB

©�T
. (5.37)

For separable states the trace norm of the joint probability distribution is bounded by [59]
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with the index of coincidence C Eq. (3.82)

CA(ρA) =
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. (5.39)

For the derivation, the triangle inequality and the cross norm property for dyadic products
have been used. Additionally, the index of coincidence C in Eq. (3.82) provides the sums over
the square average values of the POVM elements. Furthermore, the upper bound is taken
for arbitrary pure states (3.83), such as for LOOs as local measurements. A quantum state
that violates this inequality is detected as entangled. This inequality has been previously
discussed in [59, 135]. Simple examples, such as one-parameter families of quantum states
or isotropic states have been analyzed. Furthermore, for the special case of GSICs and SIC-
POVMs (M = d 2), this inequality has been discussed in [134, 136]. A detailed comparison with
current literature is provided in Section 5.3. The advantage of this inequality is that it does not
depend on the purity of the reduced density matrices of Alice’s and Bob’s systems, tr

�

ρ2
A

	

and

tr
�

ρ2
B

	

, as does inequality (5.33). The next step is to compare the joint probability distribution-
and correlation matrix-based sufficient entanglement conditions. The linear dependence of
the joint probability distribution from the density matrix ρ is used to connect the trace norm
of such a matrix to that of the correlation matrix based on the same measurements. Using the
triangle equality leads to
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This inequality constrains the trace norm of the joint probability distributions of the local in-
formationally complete (N , M )-POVMs. The boundary of this inequality includes the purities
of Bob’s and Alice’s reduced states for separable quantum states. The general inequality

p

ΣAΣB+
Æ

CA(ρA)CB(ρB)≤
Æ

ΣA+CA(ρA)
Æ

ΣB+CB(ρB) (5.41)

is used to relate inequality (5.40) with inequality (5.38)
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However, this inequality detects less entanglement as inequality (5.40) and the correlation
matrix-based sufficient condition (5.33). As shown in the previous section, the correlation
matrix-based sufficient condition is entirely independent of chosen local informationally com-
plete (N , M )-POVMs. The determination of the efficiency of joint probability distributions for
different types of (N , M )-POVMs is complicated by the dimensionality of the joint probability
matrix P (ΠA,ΠB|ρ) of NAMA×NBMB. Its intricate dependence on different (N , M )-POVMs with
parameters xA, NA, MA, xB, NB, MB can be circumvented by relating the joint probability matrix
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to those of LOOs with the help of the linear map S . In contrast to the correlation matrix-based
inequality, Eq. (6.50) is not fulfilled for the joint probability distribution and it holds

�

P
�

G̃ A,G̃ B|ρ
��

0ν
= bν,

�

P
�

G̃ A,G̃ B|ρ
��

µ0
= aµ,
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��

00
=

1
p

dadB

(5.43)

for arbitrary quantum states and for µ ∈ {1, . . . , d 2
A −1} and ν ∈ {1, . . . , d 2

B −1}. Only quantum
states with 0 = tr

�

G̃µρA

	

= aµ and 0 = tr
�

G̃νρB

	

= bν fulfill the first two equalities, i.e. Bell
diagonal states. The final equality is always fulfilled, resulting in a more subtle scaling relation.
The sufficient condition resulting from the inequalities (5.38) and (5.40) for the joint prob-
ability distribution of local informationally complete (N , M )-POVMs also exhibits scaling,
which relates them to the corresponding joint probability matrix P

�

G̃ A,G̃ B|ρ
�

of dimension
d 2

A × d 2
B. However, the scaling relation differs from that of correlation matrices, derived in

Section 5.1.2, because the matrix components shown in Eq. (5.43) do not vanish anymore.
Thus, the parameters

p

ΓA and
p

ΓB cannot be extracted from the trace norm. To derive the
scaling relation the left-hand sides of inequalities (5.38) and (5.40) are related to LOOs G̃ A and
G̃ B. Using the properties derived in Sec. 3.3 the joint probability distribution can be replaced
by a matrix of dimension d 2

A×d 2
B with identical trace norm in an analogous way as in Eq. (5.31)
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Here, ΛA is the diagonal matrix of non-zero eigenvalues of (S A)TS A with ΛA
1 = NAMA/dA

and ΛA
i = ΓA for i = {2, . . . , d 2

A} and analogous for Bob’s diagonal matrix ΛA of non-zero eigen-
values of (S B)TS B with ΛB

1 = NBMB/dB and ΛB
j = ΓB for j = {2, . . . , d 2

B}, given in Eq. (3.69).

Due to Eq. (5.43) being unfulfilled, the factors
p

ΓA and
p

ΓB cannot be extracted from the
trace norm. According to Eq. (3.69) the common factors γA = (dA(dA − 1))/(MA(MA − 1))
and γB = (dB(dB−1))/(MB(MB−1)) can be extracted from the diagonal non-zero eigenvalue
matrices
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for ν ∈ {2, . . . , d 2
A} and µ ∈ {2, . . . , d 2

B}with rescaled parameters
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The same factors can be extracted from the upper bounds on the right-hand side of the
inequalities (5.38) and (5.40). Consequently, the rescaled d 2

A×d 2
B-dimensional joint probability

matrix is introduced
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which only depends on the rescaled parameters x̃A and x̃B. Therefore, inequality (5.38) can be
rewritten in the rescaled form
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tr
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and inequality (5.40) reduces to
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The main results of this subsection is that these inequalities only depend on the rescaled
parametersx̃A and x̃B characterizing Alice’s and Bob’s (N , M )-POVMs for given dimensions
dA and dB of their quantum system. Testing for violations of the inequalities (5.38) and (5.40)
for (N , M )-POVMs with parameters MA, xA, MB and xB yield identical results as arbitrary
(N , M )-POVMs with parameters M ′A, x ′A = xAM 2

A/M
′2
A , M ′B and x ′B = xBM 2

B/M
′2
B . For example

two local MUMs (NA = dA+1, MA = dA, xA, NB = dB+1 and MB = dB, xB) lead to the identical
inequality as two GSICs with (N ′A = 1, M ′A = d 2

A, x ′A = xA/d
2
A, N ′B = 1, M ′B = d 2

B, x ′B = xB/d
2
B).

The sufficient conditions (5.38) and (5.40) have been derived solely from the spectral prop-
erties of the linear maps S A and S B. The constraint of positive semidefiniteness on the local
informationally complete (N , M )-POVMs ΠA and ΠB is irrelevant for introducing the rescaled
matrix P (x̃A, x̃B). Therefore, an explicit construction of the (N , M )-POVMs is not required to
relate different sufficient entanglement conditions. The use of the rescaled parameters x̃A

and x̃B has allowed the unification of various types of local informationally complete (N , M )-
POVMs with identical efficiencies for the entanglement detection based on joint probability
distributions. However, the question of identifying the optimal pair of parameters x̃A and x̃B

to detect the most entangled quantum states remains unanswered. Thus, the efficiency of
entanglement detection using (N , M )-POVMs will be numerically analyzed to identify optimal
rescaled parameters for low qudit dimensions. This issue will be addressed in Section 5.4.

5.3 C O M PA R I S O N W I T H L I T E R AT U R E

Entanglement detection by local (N , M )-POVMs and especially the subclasses of GSICs, SIC-
POVMs, MUMs and MUBs are commonly discussed in the current literature. Therefore, an
overview of publications of sufficient entanglement conditions of such local measurements
is given in this subsection and is summarized in Table 5.1. First, the most efficient inequal-
ity (5.29) is analyzed
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This inequality has been derived simultaneously to us by Lai and Luo [133] and has been
discussed for GSICs and MUMs [134]. However, these publications do not address the scaling
relation, which means that the inequality is entirely independent of the used local informa-
tionally complete (N , M )-POVMs and is identical to that of arbitrary LOOs Eq. (5.33). It has
been shown in Eqs. (5.40) and (5.42) that the inequality based on joint probability distributions
Eq. (5.38) is slightly weaker than Eq. (5.50)
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This inequality has been addressed for (N , M )-POVMs [59, 133, 135] and for the special case of
GSICs [136] and SIC-POVMs [85]. In addition to these publications, it has been shown that the
efficiency of the inequality only depends on the rescaled parameters x̃A and x̃B. Furthermore,
the efficiency for different rescaled parameters is determined numerically in Section 5.4.
Finally, some weaker inequalities can be derived for identical dimensions of Alice’s and Bob’s
subsystem and local informationally complete (N , M )-POVMs with identical parameters. With
the help of the inequality

∑N M
i=1 |Mi i | ≤ ∥M∥tr, valid for arbitrary N M ×N M square matrices,

the following inequalities can be derived from inequality (5.50) and (5.51)
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Furthermore, it can be shown that inequality (5.52) is more efficient than (5.53)
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In the first line, the triangle inequality has been used and in the second line, the fact that the
quantum state ρ fulfills inequality (5.52). The Cauchy-Schwarz inequality is applied in the
third line and the definition of the index of coincidence Eq. (3.82) is used. The final result is
obtained after applying the general inequality (5.41). An overview of the inequalities (5.52)
and (5.53) is also given in Table 5.1. References in the round brackets only discuss entangle-
ment detection with optimal (N , M )-POVMs, such as SIC-POVMs and MUBs. The trace norm
involving inequalities (5.50) and (5.51) are the most efficient sufficient condition for given
local informationally complete (N , M )-POVMs. The optimization to find optimal parameters
for the joint probability-based inequality is simplified by the scaling relation. This is because
only a single class of local (N , M )-POVMs, defined by the rescaled parameters x̃ , is needed to
determine the efficiencies for a chosen measurement. Thus, the following section presents a
numerical analysis of detection efficiencies using trace norm-based inequalities.

5.4 S I M U L AT I O N R E S U LT S

In this section, numerical results are presented, exploring the statistical features of the dis-
cussed sufficient entanglement conditions for (N , M )-POVMs and LOOs. Only the trace norm-
based sufficient conditions are tested for the detection of entanglement, as they are the most
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Equation (N , M )-POVMs GSICs (SIC-POVMs) MUMs(MUBs)
(5.50) [133] [134] [134]
(5.51) [59, 133, 135] [136] ([85])
(5.52) [133, 137] [138] [138]
(5.53) [59, 133, 135, 139] [140] [141] ([142])

Table 5.1: The overview of references discussing sufficient entanglement conditions (5.50-5.53) with
(N , M )-POVMs as local measurements: References in the brackets discuss only optimal
(N , M )-POVMs like SIC-POVMs and MUBs.

effective inequalities. The scaling relation allows for a simple optimization of the parameters
of the local informationally complete (N , M )-POVMs to increase the efficiency of the sufficient
conditions.

The hit-and-run Monte Carlo algorithm discussed in Section 2.4 has been utilized to sam-
ple N = 108 random quantum states throughout the complete state space to examine the
effectiveness of sufficient entanglement conditions. The algorithm enables the calculation
of the lower bounds on Euclidean volumes of entangled states over all quantum states for
dimensions 2 ≤ dA, dB ≤ 4 of Alice’s and Bob’s subsystems. Table 5.2 presents volume ra-
tios obtained for the entangled quantum states over all quantum states R . For each pair of
dimensions (dA, dB), there are five different sufficient conditions. The volume ratio of the
detected entangled states RNPT resulting from NPT states is a sufficient condition that relies
on nonlocal operations, as discussed in Section 2.2.1. The volume ratio determined by the
sufficient condition based on correlation matrices RCor Eq. (5.33) is identical for arbitrary
informationally complete (N , M )-POVMs and LOOs. These volume ratios are compared to
the joint probability-based sufficient condition for (N , M )-POVMs RN M (x̃A, x̃B) Eq. (5.40) and
RN M ,2(x̃A, x̃B) Eq. (5.49), and for arbitrary LOOs RCCNR Eq. (2.63). Due to the scaling relation,
selecting a single class of local informationally complete (N , M )-POVMs is sufficient to de-
termine the efficiency of different types of (N , M )-POVMs. In Table 5.2, local GSICs have
been chosen NA =NB = 1, MA = d 2

A, MB = d 2
B. Furthermore, the GSICs have been specialized

to SIC-POVMs with xA = 1/d 2
A and xB = 1/d 2

B, which belong to the class of (N , M )-POVMs
of rescaled parameters x̃A = 1 = x̃B. The volume ratios are given by RSIC1 = RN M (1,1) and
RSIC2 =RN M ,2(1, 1). It is apparent that for identical dimensions of Alice’s and Bob’s quantum
systems dA = dB the volume ratios RSIC1 and RLOO are consistent with recently obtained re-
sults [85]. The results show that all sufficient conditions with local measurements significantly
underestimate the volume ratio RNPT of the sufficient NPT condition. Furthermore, increasing
the dimensions of Alice’s and Bob’s subsystems causes the volume ratio of the NPT states
to approach unity, which is a lower bound for the volume ratio of the entangled quantum
states. However, the volume ratios based on local measurements do not exhibit this tendency.
As the dimensions of Alice’s and Bob’s local subsystems increase, the volume ratios based
on local measurements increasingly underestimate the volume ratio of the entangled states.
Nevertheless, as expected from the analytical discussion in Sections 5.1 and 5.2, the volume
ratios fulfill the inequalities RSIC1 ≤RSIC2 ≤RCor and RCCNR ≤RCor consistent with the results
from Eqs. (5.33), (5.40), (5.41), (5.48), (5.49) and (5.25). Furthermore, the numerical results
indicate RCCNR ≤RSIC1, which agrees with [134] for identical subsystem dimensions. It should
be noted that RSIC1is closer to RCor when the local quantum systems have identical dimensions.
The gap between them increases when Alice’s and Bob’s local quantum systems have different
dimensions.

The numerical results presented so far have focused on optimal (N , M )-POVMs with x̃A = 1
and x̃B = 1, which is only achievable when dA ≤ MA and dB ≤ MB. However, the optimal
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(dA , dB ) RNPT RSIC1 RSIC2 RCor RCCNR

(2, 2) 0.75784 0.67060 0.67947 0.68860 0.65481
±1.7(4) ±2.2(4) ±2.1(4) ±2.1(4) ±2.2(4)

(2, 3) 0.97303 0.39732 0.42998 0.43853 0.36787
±7(5) ±5.6(4) ±5.5(4) ±5.5(4) ±5.6(4)

(2, 4) 0.998696 0.02710 0.04361 0.04504 0.0182
±1.6(5) ±2.7(4) ±3.4(4) ±3.5(4) 2.2(4)

(3, 3) 0.999895 0.75680 0.75754 0.76364 0.74264
±4(6) ±8.2(4) ±8.2(4) ±8.1(4) ±8.4(4)

(3, 4) 1 0.3605 0.3742 0.3795 0.3332
±1.8(3) ±1.8(3) ±1.8(3) ±1.8(3)

(4, 4) 1 0.6378 0.6380 0.6419 0.6255
±7.7(3) ±7.7(3) ±7.7(3) ±7.8(3)

Table 5.2: Lower bounds on volume ratios between entangled and all bipartite quantum states for
different dimensions dA and dB of Alice’s and Bob’s quantum systems: Bipartite NPT states
RNPT, bipartite states detectable by violations of Eq. (5.48) RSIC1, of Eq. (5.48) RSIC2, Eq. (2.63)
RCCNR, and of Eq. (5.33) RCor. The numbers in brackets after the statistical errors indicate the
relevant powers of 10−1. The errors have been calculated by the procedure in Appendix C.
For dimensions (3,4) and (4,4), the algorithm generated only NPT states. Therefore, the
corresponding values of RN P T do not involve any statistical uncertainties.

(N , M )-POVMs for d >M can only achieve the rescaled parameter x̃ =M /d < 1. To address
this, the restriction of optimal (N , M )-POVMs is relaxed to (N , M )-POVMs with arbitrary x̃ for
inequality (5.48). Figures 5.1 and 5.2 display the volume ratios detected by inequality (5.48)
or all combinations of 2 ≤ dA, dB ≤ 4, depending on the rescaled parameters x̃A and x̃B of
Alice’s and Bob’s local quantum systems. These results are based on N = 107 quantum states
generated by the hit-and-run Monte Carlo algorithm of Sec. 2.4. The figures show the volume
ratio of the detected entangled states to all quantum states and the dependence of the allowed
range of x̃A ∈ (1/dA, min(1, MA/dA)] and x̃B ∈ (1/dB, min(1, MB/dB)]. The left-hand side of
Figures 5.1 and 5.2 displays the dependence for arbitrary parameters x̃A and x̃B, while the
right-hand side shows the value centered along the maximum values and compares is it
with RSIC1 and RCor. For d = 2, all the allowed (N , M )-POVMs are (N , M ) ∈ {(1,4), (3,2)} and
the scaled parameter interval is always 1/2 ≤ x̃ ≤ 1. In the case of a qutrit d = 3, there are
four different (N , M )-POVMs, three with (N , M ) ∈ {(1,9), (4,3), (2,5)} and 1/3 ≤ x̃ ≤ 1, and
one with (N , M ) = (8,2) and 1/3≤ x̃ ≤ 2/3. In dimension d = 4, there are also four different
informationally complete (N , M )-POVMs. The solutions are (N , M ) = {(1, 15), (5, 4), (3, 6)} with
maximal intervals 1/4≤ x̃ ≤ 1 and (N , M ) = (15, 2)with restricted interval 1/4≤ x̃ ≤ 1/2. The
black dashed straight lines in Figures 5.1c and 5.1e mark the upper bound of x̃B for MB = 2.
Values above the dashed line can only be achieved by (N , M )-POVMs with MB ≥ dB. The
boundaries of the (N , M )-POVMs with MA = 2 and MB = 2 are indicated by vertical and
horizontal dashed lines in Figures 5.2a, 5.2c and 5.2e. Parameters outside the dashed line can
only be achieved by (N , M )-POVM with MA ≥ dA or MB ≥ dB. The figures show that (N , M )-
POVMs with pairs of (x̃A, x̃B) for all x̃A exist, whose volume ratio is close to the maxima (dark
red area). This shows that optimal (N , M )-POVMs with x̃A = 1 and x̃B = 1 are not necessary to
maximize the volume ratio of the detected entangled states. Entanglement detection with
optimal (N , M )-POVMs represents the SIC-POVM condition of Shang et al. [85]. It is apparent
from Figures 5.1c, 5.1e and 5.2c that the volume ratios detected by SIC-POVMs are not close to
the maximal amount that can be detected by local informationally complete (N , M )-POVMs.
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This is consistent with the enlarged gaps between RSIC1 and RCor for unequal dimensions of
Alice’s and Bob’s quantum systems dA < dB in contrast to identical dimensions dA = dB in
Table 5.2. Every pair (x̃A, x̃B) in the dark red area can be used for nearly optimal entanglement
detection with (N , M )-POVMs. On the right-hand side of Figures 5.1 and 5.2, the volume
ratio of the entangled states along the center of the dark red area is shown and compared
with RSIC1 and RCor. In the case of identical dimensions, RSIC1 is a lower bound for RN M (x̃ , x̃ ),
which represents the maxima of the dark red area, and for decreasing x̃ , the volume ratio
of the entangled approaches RCor. Similar behavior is seen for unequal dimensions of the
subsystems, but RSIC1 underestimates the volume ratios along the maxima RN M (x̃A, x̃B(x̃A)) or
as other pairs of optimal (N , M )-POVMs. This demonstrates that (N , M )-POVMs with well-
chosen parameters xA and xB are capable of detecting more entangled quantum states than
SIC-POVMs. Additionally, there are parameters that are close to their lower bounds, located
at the lower left corner of the left-hand side in Figures 5.1 and 5.2, which have volume ratios
close to the maximum value. In Section 4.2, it has been shown that local (N , M )-POVMs with

xA ≤
1

dA−1

d 2
A

M 2
A

and xB ≤
1

dB−1

d 2
B

M 2
B

(5.55)

can be constructed from arbitrary traceless Hermitian orthonormal operator bases[c.f. Eq. (4.32)].
Therefore, it is not necessary to use optimal (N , M )-POVMs for near-optimal entanglement
detection with local (N , M )-POVMs.

In this chapter simple sufficient conditions involving local informationally complete (N , M )-
POVMs without the need to optimize over the measurement setting have been discussed. It has
been shown that the most efficient of such conditions are trace norm-based. These conditions
fulfill the scaling relation, which necessarily groups the local informationally complete (N , M )-
POVMs into classes of the same efficiency for arbitrary quantum states. The positivity of
the (N , M )-POVM elements is not required for the entanglement detection. This allows for a
discussion of the entanglement detection efficiencies without constructing such POVMs. The
correlation matrix-based condition is completely independent of the nature of the chosen
(N , M )-POVMs and is identical to that of LOOs. The joint probability distribution is weaker
than the correlation matrix condition and the scaling relation is more subtle than that of the
correlation matrix. The entanglement detection efficiency depends only on the pair of rescaled
parameters x̃A and x̃B, which describe the class of the used local (N , M )-POVMs. The numerical
results for low qudit dimensions 2≤ dA, dB ≤ 4 allow identifying the optimal parameters x̃A

and x̃B for the entanglement detection by joint probability distributions. Furthermore, it
has been shown that always a pair of parameters close to the optimal detection exists for
constructible (N , M )-POVMs. It has been shown that the Euclidean volume ratio of the NPT
states is increasingly underestimated by increasing local dimension by the volume ratio of the
entangled states detected by local (N , M )-POVMs. Additional research is required to increase
the Euclidean volume ratios of entangled quantum states detected by local measurements.
One potential approach to increase the number of detected entangled quantum states is to
preprocess the quantum states through local operations and classical communication [37, 38].
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(a) Volume ratio of entangled states over all
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(b) Maxima of the detected entangled states
for (dA, dB) = (2, 2)with x̃A = x̃ = x̃B.
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(c) Volume ratio of entangled states over all quantum
states for (dA, dB) = (2,3).The black dashed line indi-
cates the upper bound for x̃B ≤ 2/3 for (N , M )-POVMs
with MB = 2.
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(d) Maxima of the detected entangled states for
(dA, dB) = (2, 3)with x̃B = 2(x̃A−1/2)(0.78−1/3) +1/3.
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(e) Volume ratio of entangled states over all quantum
states for (dA, dB) = (2,4). The black dashed line indi-
cates the upper bound for x̃B ≤ 1/2 for (N , M )-POVMs
with MB = 2.
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(f) Maxima of the detected entangled states
for (dA, dB) = (2, 4)with x̃B = 2(x̃A−1/2)(0.68−1/4)+1/4.

Figure 5.1: Dependence of volume ratios RN M (x̃A, x̃B) (5.48) between detected entangled and all bipar-
tite quantum states on the scaled parameters of x̃A and x̃B of Alice’s and Bob’s informationally
complete (N , M )-POVMs. This figure shows the results for qubit-qudit systems with dimen-
sion of Bob’s system up to dA ≤ 4. Figures (b),(d) and (f) show the volume ratios of the
entangled states RN M (x̃A, x̃B) along the maxima of the associated Figures (a),(c) and (e)
(blue line). The green line represents the volume ratio RCor Eq. (5.33) and the orange line
represents the volume ratio RSIC1 of local SIC-POVMs Eq. (5.48.)
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(b) Maxima of the detected entangled states
for (dA, dB) = (3, 3)with x̃A = x̃ = x̃B.
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(c) Volume ratio of entangled states over all
quantum states for (dA, dB) = (3, 4).
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(d) Maxima of the detected entangled states for
(dA, dB) = (3, 4)with x̃B = 3/2(x̃A−1/3)(0.88−1/4)+1/4.
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(e) Volume ratio of entangled states over all
quantum states for (dA, dB) = (4, 4).
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(f) Maxima of the detected entangled states
for (dA, dB) = (4, 4)with x̃A = x̃ = x̃B.

Figure 5.2: Dependence of volume ratios RN M (x̃A, x̃B) (5.48) between detected entangled and all bi-
partite quantum states on the scaled parameters of x̃A and x̃B of Alice’s and Bob’s infor-
mationally complete (N , M )-POVM. This figure shows the results for dimension (dA, dB) =
{(3,3), (3,4), (4,4)}. The vertical and horizontal dashed lines are the boundaries of the x̃A

and x̃B for (N , M )-POVMs with MA = 2 and MB = 2. Figures (b),(d) and (f) show the volume
ratios of the entangled states along the maxima of the associated Figures (a),(c) and (e)
(blue line). The green line represents the volume ratio RCor Eq. (5.33) and the orange line
represents the volume ratio RSIC1 of local SIC-POVMs Eq. (5.48) .
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D E T E C T I O N O F E P R S T E E R I N G

Einstein-Podolsky-Rosen steering is a resource for quantum communication applications.
Therefore, identifying EPR steerable quantum states is of great interest. The criteria for EPR
steering [71, 143, 144] require an intricate optimization to verify EPR steerable quantum states
from Alice to Bob. First, the critical radius criterion for a qubit-qubit system is discussed.
Additionally, it has a closed integral form for the two-qubit T -states [71]. Furthermore, a
sufficient condition for EPR unsteerability from Alice to Bob for arbitrary two-qubit states
is presented, utilizing the insights gained from the unsteerable T -states. This discussion
highlights the challenge of identifying the EPR steerable quantum states from Alice to Bob in
a two-qubit system.

Simple sufficient conditions are needed to identify the EPR steerable quantum states of
the state ensemble over the entire qudit-qudit state space. A sufficient condition for EPR
steerability from Alice to Bob, based on correlation matrices of arbitrary local measurements,
is discussed [129]. This sufficient condition is applied to LOOs and local informationally com-
plete (N , M )-POVMs. The efficiency of detecting EPR steerability from Alice to Bob using such
measurements is determined analytically by the scaling relation without the need to construct
the local (N , M )-POVMs. The positive semidefiniteness of the local POVM elements is not
required to derive the scaling relation. The second sufficient condition presented verifies EPR
steering from Alice to Bob by detecting a preprocessed quantum state as entangled [145]. One
disadvantage of this condition is that Alice’s quantum system is restricted to a qubit. However,
an advantage is that well-understood sufficient conditions for entanglement detection can be
used. The volume ratios of the detected EPR steerable quantum states from Alice to Bob are
calculated by these sufficient conditions.

This chapter is structured as follows: The EPR steerability of two-qubit states is discussed in
detail by using the critical radius in Section 6.1. Section 6.2 discusses the correlation matrix-
based sufficient condition for EPR steerability from Alice to Bob for arbitrary measurements.
The following two subsections apply this condition to LOOs or local informationally complete
(N , M )-POVMs as measurements. Furthermore, the efficiency of such measurements is deter-
mined by the scaling relation. Then, in Section 6.3, the detection of EPR steering from Alice to
Bob through entanglement is discussed. In Section 6.4, the volume ratios of EPR steerable
quantum states for low qudit dimensions are determined using these sufficient conditions.

6.1 E P R S T E E R A B I L I T Y F O R Q U B I T- Q U B I T S Y S T E M S

Detecting EPR steerability from Alice to Bob can be challenging because the set of steerable
quantum states depends on the local measurements of both Alice and Bob. To discuss the EPR
steerability from Alice to Bob in the simplest bipartite quantum system, a two-qubit system is
considered. Necessary and sufficient conditions are known [71, 143, 144]. In general, these
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criteria require intricate optimization to decide whether a quantum state is EPR steerable from
Alice to Bob. An exact analytical formula exists for the critical radius criterion for two-qubit
T -states and projective measurements [71]. Suppose that Alice and Bob share a two-qubit
quantum state. For each of Alice’s measurement settings α and results a , Bob remains with a
conditional unnormalized quantum state ρB

α,a . From the completeness of the measurement
results, it follows that Bob’s reduced quantum state ρB must satisfy

ρB =
M
∑

a=1

ρB
α,a (6.1)

for M measurement results. In the case of EPR steering from Alice to Bob, Bob tries to explain
the measurements using a LHS model. The detailed definition of EPR steering from Alice to
Bob is given in Section 2.5.2. Bob assumes that his quantum state was initially in a hidden
stateσλ with probability p (λ) and the hidden parameter λ. Alice’s measurement selections
and results provide him with additional information about the probability distribution of the
hidden states. Therefore, the conditional state has an updated probability distribution of the
initial state

ρB
α,a =

∑

λ∈Λ
p (λ)p (a |α,λ)σλ. (6.2)

To decide if a quantum state is EPR steerable, one has to find a measurement setting that a LHS
model cannot explain. The critical radius for a two-qubit system and projective measurements
is given by [71]

R (ρ) =max
µ

min
C

1
p

2∥ trB{ρ(12⊗C )}∥

∫

σ∈B
dµ(σ)| trB(Cσ)|. (6.3)

The state ρ =ρ−12⊗ρB/2 is introduced. The minimization is performed over all qubit ob-
servables C that act on Bob’s systems. The integration is performed over Bob’s Bloch ball B, the
norm is given by ∥X ∥=

p

tr{X †X } and the probability measure µ of the LHS model. A quan-
tum state is EPR steerable from Alice and Bob if and only if the critical radius fulfills R (ρ)< 1.
The geometric interpretation of the critical radius is that 1−R (ρ) is the distance of ρ to the
boundary of the unsteerable states along the line to ρ. An important property of the critical
radius is the invariance

R (ρ̃) =R (ρ). (6.4)

The transformed state ρ̃ is defined by

ρ̃ =N
�

UA⊗VBρU †
A ⊗V †

B

�

, (6.5)

where U is a unitary matrix and V is an invertible matrix. The factor N ensures the normal-
ization of the density matrix. This invariance allows a simplification of the quantum state.
Specifically,ρ can always be transformed into a state where Bob’s reduced local quantum state
is the maximal-mixed state. Additionally, the representation of a canonical state is simplified
from the general representation Eq. (2.90) to

ρ̃ =
1

4
14+

1

2

�

3
∑

i=1

aiσi ⊗12+
3
∑

i=1

tiσi ⊗σi

�

(6.6)
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with the Pauli matricesσi [c.f. Eq. (B.8)]. Even for the canonical quantum state, evaluating the
critical radius Eq. (6.3) is difficult due to the intricate optimization required in Eq. (6.3). For
an arbitrary two-qubit quantum state, the critical radius is bounded by

2πNT̄ ≥R (ρ)≥
2πNT̄ |det

�

T̄
�

|
1+ ∥T̄ −1ā∥

(6.7)

with the diagonal matrix T̄ = 2diag(t1, t2, t3) and Alice’s Bloch vector ā = 2(a1, a2, a3)T. The
normalization constant NT̄ is determined by the relation

N −1
T̄ =

∫

S2

dS (n )[n · T̄ −2n ]−2 (6.8)

with the unit vector n being integrated over the surface of the unit sphere S2. These upper
and lower bounds can determine whether a quantum state can be used for EPR steering from
Alice to Bob or not

R (ρ)≤ 2πNT < 1 ⇒ρ is steerable, (6.9)

R (ρ)≥
2πNT|det

�

T̄
�

|
1+ ∥T̄ −1ā∥

≥ 1 ⇒ρ is unsteerable. (6.10)

The first relation is a sufficient condition for EPR steering from Alice to Bob, while violating
the second inequality is a sufficient condition to verify a quantum state as unsteerable from
Alice to Bob.

The detection of steerability is best understood for T -states, which are quantum states where
the reduced density matrices are maximally mixed ρA = trB{ρ}=12/2 and ρB = trA{ρ}=12/2.
For T -states (a = 0), the inequality (6.7) becomes an equality and the critical radius is given
by [146]

R (ρ) = 2πNT̄ . (6.11)

The boundary of the unsteerable states is given by R (ρ) = 1 and can be equivalently defined
by [146]

2π=

∫

S2

dS (n )
p

n · T̄ 2n . (6.12)

This boundary can also be determined from inequality (2.125) by taking the limit of infinite
measurements [99]. Furthermore, EPR steering becomes symmetric for T -states. This means
that a quantum state that is steerable from Alice to Bob is also steerable from Bob to Alice and
vice versa. For Bell diagonal quantum states, a subset of T -states, the EPR steerable states are
shown in Figure 6.1 and compared with the correlation matrix-based EPR steering inequality
with local informationally complete (N , M )-POVMs [c.f. Eq. (6.59)] or LOOs [c.f. Eq. (6.49)] as
measurements. In the canonical representation Eq. (6.6), the T -states are represented by Bell
diagonal quantum states. In Figure 6.1 the tetrahedron with the vertices (−1/2,−1/2,−1/2),
(−1/2,1/2,1/2), (1/2,−1/2,1/2) and (1/2,1/2,−1/2) represents the Bell states. The yellow re-
gions indicate the EPR steerable states detected by inequality (6.59). The complete set of the
steerable states by projective measurements is given by the blue and yellow regions (6.3). The
uncolored area inside the tetrahedron represents the unsteerable quantum states. Moreover,
numerical results demonstrate that restricting measurements to projective ones does not



100 6 D E T E C T I O N O F E P R S T E E R I N G

Figure 6.1: Bell diagonal two-qubit quantum states which are steerable with respect to different mea-
surements: Steerable states with respect to local measurements involving (N,M)-POVMs
due to violations of inequality (6.59) or equivalently (6.49) based on correlations matrices
(yellow regions); steerable states with respect to projective measurements due to the cri-
terion (6.3), (6.11) and (6.12) (yellow and blue regions); unsteerable states with respect to
projective measurements due to the criterion (6.3), (6.11) and (6.12) (uncolored central
convex region).

alter the number of EPR steerable states detected from Alice to Bob [71]. Thus, POVMs cannot
detect more steerable states than projective measurements for arbitrary two-qubit states. The
critical radius has been utilized to experimentally verify the EPR steerability of two-qubit
quantum states [147].

The knowledge of the EPR steerability of two-qubit T -states and complete positive maps
can be used to decide whether an arbitrary two-qubit state is unsteerable. To archive this, a
set of complete positive maps acting on Alice’s qubit transforms a T -state into a quantum
state with a non-zero a .

We assume that Alice and Bob share an unsteerable two-qubit quantum state from Alice to
Bob. If a complete positive map ΦA is applied to Alice’s qubit then the final state (ΦA⊗12)ρ
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will also be unsteerable from Alice to Bob [148] for all projective measurements. In the basis of
Pauli matrices, a complete positive map acting on Alice’s qubit can be characterized by [149]

Φ(σν) =
3
∑

µ=0

Mµνσµ (6.13)

M=

�

1 0T

m Λ

�

=









1 0 0 0
m1 λ1 0 0
m2 0 λ2 0
m3 0 0 λ3









. (6.14)

The convexity of the complete positive maps on a single qubit makes it sufficient to consider
extremal maps Φε, which are given by

Mε
u ,v =









1 0 0 0
0 cos u 0 0
0 0 cos v 0

sin u sin v 0 0 cos u cos v.









(6.15)

for u ∈ [0, 2π) and v ∈ [0,π). Letting this family of complete positive maps act on Bell diagonal
states leads to quantum states of the form

a ′ =m , T ′ =ΛT . (6.16)

For a given unsteerable T -state it is known that all the states defined in Eq. (6.16) and their
convex combinations are EPR unsteerable from Alice to Bob. For example, complete positive
maps can be used to derive a sufficient condition for EPR unsteerability from Alice to Bob for
displaced T -states with a ′ = a êz and T ′. The displaced T -states are X -states in the canonical
form. For a given quantum state, the boundary of the steerable states is given by

1=
1

2π

∫

S2

dS (n )
q

n (Λ−1
u ,v T̄ ′2)n (6.17)

with a = sin u cos v . Consider a displaced T -state of the form




t ′1
t ′2
t ′3



= r





sinαcosβ
sinαsinβ

cosα



 (6.18)

for α ∈ [0,π] and β ∈ [0, 2π] and given value a . The maximum radius calculates to

rmax = 2π



min
u ,v

∫ ∫

dx̂ 2

√

√sin2αcos2β

cos2 u
x 2

1 +
sin2αsin2β

cos2 v
x 2

2 +
cos2α

cos2 u cos2 v
x 2

3





−1

(6.19)

with the integral performed over the two dimensional unit sphere. The minimization is con-
strained by a = sin u sin v . For a given state, defined by the tuple (α,β , a ), the maximum radius
rmax can be calculated. Thus, two-qubit displaced T -states with r ≤ rmax are unsteerable from
Alice to Bob. Despite the use of the well-understood T -states, the necessary condition still
requires an intricate optimization. Thus, a straightforward and adequate criterion is required
to verify the EPR steerable quantum states from Alice to Bob. The computational workload
should be capable of addressing the statistical characteristics of the state ensembles.
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6.2 E P R S T E E R I N G D E T E C T I O N T H R O U G H C O R R E L AT I O N M AT R I -
C E S

In the previous section, necessary and sufficient conditions for two-qubit systems have been
discussed. These criteria require intricate optimization, which can be challenging to determine
even for arbitrary two-qubit states. Therefore, the focus is on sufficient conditions for detecting
EPR steering from Alice to Bob without requiring an intricate optimization. The sufficient
condition recently derived by Lai and Luo [129] for arbitrary local measurements can detect
EPR steerable states for local qudit systems. This sufficient condition can be straightforwardly
applied to GSICs, MUMs and LOOs as local measurements. In this section, this steering
inequality is applied to the more general class of (N , M )-POVMs as local measurements,
including GSICs and MUMs. Furthermore, this study determines the effectiveness of various
(N , M )-POVMs and LOOs in detecting EPR steering from Alice to Bob. This thesis provides an
overview of EPR steering inequalities that are derived from local informationally complete
measurements in the current literature.

Consider Alice and Bob share a composite quantum state ρ of dimension d = dAdB, where
Alice’s Hilbert space has dimension dA and Bob’s has dimension dB. Two general sets of Her-
mitian operators are considered for Alice A= {Ai ; i = 1, . . . , M } and Bob B = {B j ; j = 1, . . . , N }
and the correlation matrix associated with these measurements is given by

[C (A,B|ρ)]i j = ci j = tr
�

(Ai ⊗B j )(ρ−ρA⊗ρB)
	

(6.20)

with the reduced local density matrices of Alice and Bob, ρA = trB{ρ} and ρB = trA{ρ}. The
possible measurement results of these operators are given by their spectra a ∈ Sp(Ai ) and
b ∈ Sp(B j ). A density matrix ρ is unsteerable if and only if the conditional joint probabilities
can be expressed with a LHS model Eq. (2.121)

P (a , b |Ai , Bi ,ρ) =
∑

λ∈Λ
p (λ)P (a |Ai ,λ) tr

�

Pj ,bσλ
	

(6.21)

for an ensemble of Bob’s local quantum states {σλ} and a hidden parameter {λ ∈ Λ}. The
orthogonal projection onto the eigenspace of b corresponding to B j is given by Pj ,b . The
spectral decomposition of Bob’s operators is given by

B j =
∑

b∈Sp(B j )

b Pj ,b . (6.22)
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The components of the correlation matrix for an unsteerable quantum state from Alice to Bob
can be calculated with the help of

tr
�

Ai ⊗B jρ
	

=
∑

a∈Sp(Ai )

∑

b∈Sp(B j )

a b P (a , b |Ai , B j ,ρ)

=
∑

a∈Sp(Ai )

∑

b∈Sp(B j )

�

∑

λ∈Λ
a b p (λ)P (Ai |a ,λ) tr

�

Pj ,bσλ
	

�

=
∑

λ∈Λ
p (λ)

∑

a∈Sp(Ai )

a P (a |Ai ,λ)
∑

b∈Sp(B j )

b tr
�

Pj ,bσλ
	

=
∑

λ∈Λ
p (λ)〈Ai 〉λ tr

�

B jσλ
	

, (6.23)

tr
�

AiρA

	

=
∑

a∈Sp(Ai )

a P (a , Ai ,ρA) =
∑

λ∈Λ
p (λ)

∑

a∈Sp(Ai )

a P (a , Ai ,λ)

=
∑

λ∈Λ
p (λ)〈Ai 〉λ, (6.24)

tr
�

B jρB

	

=
∑

b∈Sp(B j )

b P (b , B j ,ρB) =
∑

λ∈Λ
p (λ)

∑

b∈Sp(B j )

b tr
�

Pj ,bσλ
	

=
∑

λ∈Λ
p (λ) tr

�

B jσλ
	

. (6.25)

The definitions of Alice’s local classical average values 〈Ai 〉λ =
∑

a∈Sp(Ai )
a P (a , Aiλ) and Bob’s

quantum mechanical average values tr
�

B jσλ
	

=
∑

b∈Sp(B j )
b tr

�

Pj ,bσλ
	

are used. The ele-

ments of the correlation matrix can be represented by

ci j = tr
�

(Ai ⊗B j )(ρ−ρA⊗ρB)
	

= tr
�

(Ai ⊗B j )ρ
	

− tr
�

AiρA

	

tr
�

B jρB

	

=
∑

λ∈Λ
p (λ)〈Ai 〉λ tr

�

B jσλ
	

−
∑

λ∈Λ
p (λ)〈Ai 〉λ

∑

λ′∈Λ
p (λ′) tr

�

B jσλ′
	

=
∑

λ,λ′∈Λ

�

p (λ)p (λ′)〈Ai 〉λ tr
�

B jσλ
	

−p (λ)〈Ai 〉λp (λ′) tr
�

B jσλ′
	�

=
1

2

∑

λ,λ′∈Λ
p (λ)p (λ′) (〈Ai 〉λ−〈Ai 〉λ′ )

�

tr
�

B jσλ
	

− tr
�

B jσλ′
	�

. (6.26)

The correlation vectors

V λ,λ′ =









V1

V2
...

VM









=









〈A1〉λ−〈A1〉λ′
〈A2〉λ−〈A2〉λ′

...
〈AM 〉λ−〈AM 〉λ′









, W λ,λ′ =









W1

W2
...

WN









=









tr{B1σλ}− tr{B1σλ′}
tr{B2σλ}− tr{B2σλ′}

...
tr
�

BNσλ
	

− tr
�

BNσλ′
	









(6.27)

are defined to represent the correlation matrix by

C (A,B,ρ) =
1

2

∑

λ,λ′∈Λ
p (λ)p (λ′)V λ,λ′W

T
λ,λ′ . (6.28)
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For the trace norm of the correlation matrix holds



C (A,B|ρ)




tr
=











1

2

∑

λ,λ′∈Λ
p (λ)p (λ′)V λ,λ′W

T
λ,λ′











tr

≤
1

2

∑

λ,λ′∈Λ
p (λ)p (λ′)



V λ,λ′W
T
λ,λ′





tr

=
1

2

∑

λ,λ′∈Λ
p (λ)p (λ′)∥V λ,λ′∥∥W λ,λ′∥. (6.29)

The first inequality follows from the triangle inequality and the last equality from the trace
norm of the dyadic product of two vectors. Applying the Cauchy-Schwarz inequality leads to



C (A,B|ρ)




tr
≤

1

2

√

√

√

∑

λ,λ′∈Λ
p (λ)p (λ′)∥V λ,λ′∥2

√

√

√

∑

λ,λ′∈Λ
p (λ)p (λ′)∥W λ,λ′∥2 (6.30)

=
1

2

√

√

√

√

M
∑

i=1

∑

λ,λ′∈Λ
p (λ)p (λ′) (〈Ai 〉λ−〈Ai 〉λ′ )2

×

√

√

√

√

N
∑

j=1

∑

λ,λ′∈Λ
p (λ)p (λ′)

�

tr
�

B jσλ
	

− tr
�

B jσλ′
	�2

. (6.31)

The two terms inside the square roots will be dealt with separately for better comprehension.
The term with Bob’s operators reads

N
∑

j=1

∑

λ,λ′∈Λ
p (λ)p (λ′)

�

tr
�

B jσλ
	

− tr
�

B jσλ′
	�2

=
N
∑

j=1

∑

λ,λ′∈Λ
p (λ)p (λ′)

�

tr
�

B jσλ
	2−2 tr

�

B jσλ
	

tr
�

B jσλ′
	

+ tr
�

B jσλ′
	2�

=
N
∑

j=1

�

∑

λ′∈Λ
p (λ′)

∑

λ∈Λ
p (λ)(tr

�

B jσλ
	2−2

�

∑

λ∈Λ
p (λ) tr

�

B jσλ
	

��

∑

λ′∈Λ
p (λ′) tr

�

B jσλ′
	

�

+
∑

λ∈Λ
p (λ)

∑

λ′∈Λ
p (λ′)(tr

�

B jσλ′
	2

�

= 2
∑

λ∈Λ
p (λ)

N
∑

j=1

tr
�

B jσλ
	2−2

N
∑

j=1

tr
�

B jρB

	2

≤ 2

 

max
σB

N
∑

j=1

tr
�

B jσB

	2−
N
∑

j=1

tr
�

B jρB

	2

!

= 2VB. (6.32)
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The fact that
∑N

j=1 tr
�

B jσλ
	2 ≤maxσB

∑N
j=1 tr

�

B jσB

	2
holds has been used. The term con-

taining only Alice’s observable is derived by

M
∑

i=1

∑

λ,λ′∈Λ
p (λ)p (λ′) (〈Ai 〉λ−〈Ai 〉λ′ )2 =

M
∑

i=1

∑

λ,λ′∈Λ
p (λ)p (λ′)

�

〈Ai 〉2λ−2〈Ai 〉λ〈Ai 〉λ′ + 〈Ai 〉2λ′
�

≤
M
∑

i=1

∑

λ,λ′∈Λ
p (λ)p (λ′)

�

〈A2
i 〉λ−2〈Ai 〉λ〈Ai 〉λ′ + 〈A2

i 〉λ′
�

= 2
M
∑

i=1

�

∑

λ∈Λ
p (λ)〈A2

i 〉λ−

�

∑

λ∈Λ
p (λ)〈Ai 〉λ

��

∑

λ′∈Λ
p (λ′)〈Ai 〉λ′

��

= 2
M
∑

i=1

�

tr
�

A2
iρA

	

− tr
�

AiρA

	2�

= 2
M
∑

i=1

V(Ai ,ρA) = 2VA. (6.33)

The non-negativity of the variance has been used V(A) = 〈A2〉− 〈A〉2 ≥ 0. The trace norm of
the correlation matrix for unsteerable quantum states from Alice to Bob is upper bounded
by [129]



C (A,B|ρ)




tr
≤
p

VAVB. (6.34)

The upper bound involves a maximization over all local quantum states of BobσB. A quantum
state that violates this inequality is detected as EPR steerable from Alice to Bob. In partic-
ular, the upper bound depends on the chosen local Hermitian measurement operators A
and B. Inequality (6.34) is a general consequence of the unsteerability of an arbitrary di-
mensional quantum state ρ. For arbitrary local Hermitian measurements B, the inequality’s
boundary Eq. (6.32) is rather complicated to calculate. The factor VB is defined identically
to ΣB for entanglement detection in inequality (5.13). However, the term derived from Al-
ice’s measurements differs VA ̸=ΣA. Furthermore, the focus is on informationally complete
measurements that enable a complete reconstruction of a quantum state. A set of linear
operators that act on elements of Hd is informationally complete if and only if it contains d 2

linearly independent operators. In the context of local measurements, this means that the
set A can reconstruct ρA and the set B can reconstruct ¸ρB. The set of the tensor products
A⊗B = {Ai ⊗ B j ; i = 1, . . . , M , j = 1, . . . , N } is informationally complete for the composite
Hilbert space HA⊗HB. In the following subsections, local informationally complete Hermitian
measurement operators will be discussed, which allow the analytical calculation of the upper
bound. The first type of operators are the LOOs discussed in Section 2.2.3. The second type are
the (N , M )-POVMs, which have been discussed in detail in Chapters 3 and 4. The sufficient
condition based on inequality (6.34) may be improved further by changing Alice’s Hermitian
operators to the Hermitian operators Ã= {Ã1, . . . ÃM } by

Ãi = hi Ai (6.35)
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for all i ∈ {1, . . . , M } and hi ∈R. This new set of Hermitian operators also fulfills the steering
inequality (6.34)



C (Ã,B|ρ)




tr
≤
Æ

VA(hi )VB (6.36)

VA(hi ) =
M
∑

i=1

h 2
i V(Ai ,ρA) =

M
∑

i=1

h 2
i

�

tr
�

A2
iρA

	

− tr
�

AiρA

	2�

. (6.37)

For a given quantum state ρ, it is possible to test whether there exists a parameter set {hi }
that violates the inequality (6.36) and detects the state as steerable. If all hi = 1, the steering
inequality for the initial measurement is recovered. This improves the number of steerable
states from Alice to Bob that can be detected by a given measurement A. There may exist
a set of parameters {hi } for which the inequality (6.36) is violated but the inequality (6.34)
is not. Applying this procedure to Bob’s measurements is more challenging because VB re-
quires an optimization over all of Bob’s quantum states for all tested parameter sets {hi }. The
family of inequalities (6.36) can be used to derive further sufficient conditions. Similar to the
entanglement detection, a sufficient condition involving the joint probability distribution

�

P
�

Ã,B|ρ
��

i j
= tr

�

Ai ⊗B jρ
	

(6.38)

can be derived. An unsteerable quantum state ρ fulfills.



P (Ã,B|ρ)




tr
≤


C (Ã,B|ρ)




tr
+


P (Ã,B|ρA⊗ρB)




tr

≤
Æ

VA(hi )VB+

√

√

√

√

M
∑

i=1

h 2
i tr

�

AiρA

	2

√

√

√

√

N
∑

j=1

tr
�

B jρB

	2

≤

√

√

√

√VA(hi ) +
M
∑

i=1

h 2
i tr

�

AiρA

	2

√

√

√

√VB+
N
∑

j=1

tr
�

B jρB

	2

=

√

√

√

√

M
∑

i=1

h 2
i tr

�

A2
iρA

	

√

√

√

√max
σB

N
∑

j=1

tr
�

B jσB

	2

=
Æ

ΩA(hi )ΩB (6.39)

with

ΩA(hi ) =
M
∑

i=1

h 2
i tr

�

A2
iρA

	

(6.40)

ΩB =max
σB

N
∑

j=1

tr
�

B jσB

	2
. (6.41)

In the first line, the triangle inequality has been used. The second line follows from inequal-
ity (6.36) that an unsteerable state fulfills. In the third line, inequality Eq. (5.41) has been used.
For ΩB the same maximization over all quantum states of Bob’s systems has to be calculated.
If Alice and Bob perform the same number of measurements M =N , two additional sufficient

conditions can be derived. With the help of the inequality
∑M

i=1 |Mi i | ≤ ∥M∥tr, valid for arbi-
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trary M ×M square matrices, the following inequalities can be derived from inequality (6.36)
and (6.39)

M
∑

i=1

�

�tr
�

hi Ai ⊗Bi (ρ−ρA⊗ρB)
	�

�≤
Æ

VA(hi )VB (6.42)

M
∑

i=1

�

�tr
�

hi Ai ⊗Biρ
	�

�≤
Æ

ΩA(hi )ΩB. (6.43)

Furthermore, it can be shown that inequality (6.42) is more efficient than inequality (6.43)

M
∑

i=1

�

�tr
�

hi Ai ⊗Biρ
	�

�≤
M
∑

i=1

�

�tr
�

hi Ai ⊗BiρA⊗ρB

	�

�+
M
∑

i=1

�

�tr
�

hi Ai ⊗Bi (ρ−ρA⊗ρB)
	�

�

≤
M
∑

i=1

�

�tr
�

hi AiρA

	�

�

�

�tr
�

BiρB

	�

�+
Æ

VA(hi )VB

≤

√

√

√

√

M
∑

i=1

h 2
i

�

tr
�

AiρA

	�2

√

√

√

√

M
∑

i=1

�

tr
�

BiρB

	�2
+
Æ

VA(hi )VB

≤

√

√

√

√

M
∑

i=1

h 2
i

�

tr
�

AiρA

	�2
+VA(hi )

√

√

√

√

M
∑

i=1

�

tr
�

BiρB

	�2
+VB

=
Æ

ΩA(hi )ΩB. (6.44)

In the first line, the triangle inequality has been used and in the second line that the quantum
state ρ fulfills inequality (6.42). The Cauchy-Schwarz inequality is applied in the third line.
The final result is obtained after applying the general inequality (5.41). The inequalities (6.42)
have been recently derived by [150]. The efficiencies of the inequalities (6.36), (6.42) and (6.43)
without inequality (6.39) have been discussed in [129]. The most efficient inequality is the
correlation matrix-based sufficient condition. Therefore, this condition is further discussed
and specialized for informationally complete measurements of LOOs and local (N , M )-POVMs.

6.2.1 EPR Steering detection with local Hermitian operator bases (LOOs)

In this subsection, the arbitrary Hermitian measurement operators involved in Eq. (6.34) are
specialized to arbitrary LOOs, say G A = (G A

0 , . . . ,G A
d 2

A−1
) and G B = (G B

0 , . . . ,G B
d 2

B−1
) as defined in

Section 2.2.3. The number of the measurements on the subsystems is d 2
A and d 2

B. The upper
bound of the inequality (6.34) is calculated using the Hilbert-Schmidt representation of a
density matrix Eq. (2.16)

ρ =
d 2−1
∑

i=0

Gi tr
�

Giρ
	

=
d 2−1
∑

i=0

Gi ri = r ·G (6.45)
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and the purity of a density matrix

tr
�

ρ2
	

= tr

(

d 2−1
∑

i=0

Gi ri

d 2−1
∑

j=0

G j r j

)

=
d 2−1
∑

i=0

ri r j

d 2−1
∑

j=0

tr
�

Gi G j

	

=
d 2−1
∑

i=0

r 2
i =

d 2−1
∑

i=0

tr
�

Giρ
	2

. (6.46)

These relations are used to calculate Eq. (6.32)

VB =max
σB

d 2
B−1
∑

j=0

tr
�

G jσB

	2−
d 2

B−1
∑

j=0

tr
�

G jρB

	2
=max

σB
tr
�

σ2
B

	

− tr
�

ρ2
	

= 1− tr
�

ρ2
B

	

. (6.47)

The maximum of the upper bound is taken for arbitrary pure quantum states of Bob’s subsys-
tem. The invariant (B.18) is used to calculate Eq. (6.33)

VA =
M
∑

i=1

�

tr
�

A2
iρA

	

− tr
�

AiρA

	2�

= dA− tr
�

ρ2
A

	

. (6.48)

Therefore, the inequality (6.34) reduces to



C
�

G A,G B|ρ
�



tr
≤
Ç

(dA− tr
�

ρ2
A

	

)(1− tr
�

ρ2
B

	

). (6.49)

For LOOs, this inequality has already been discussed [129]. The upper bound is independent of
the chosen LOO and the trace norm of the correlation matrix is also independent of the chosen
LOO [c.f. Eq. (5.22)]. This implies that arbitrary LOOs have an identical steering inequality.
For an arbitrary quantum state and LOOs G̃ A and G̃ B with G̃ A

0 =1/
p

dA and G̃ B
0 =1/

p

dB the
correlation matrix fulfills the relation

�

C
�

G̃ A,G̃ B|ρ
��

0ν
=
�

C
�

G̃ A,G̃ B|ρ
��

µ0
= 0 (6.50)

for µ ∈ {1, . . . , d 2
A −1} and ν ∈ {1, . . . , d 2

B −1}. This implies that the correlation matrix for such
LOOs has a block diagonal structure consisting of a 1× 1 block of zero and a second block
of dimension (d 2

A −1)× (d 2
B −1). Only the second block contributes to the trace norm, while

the eigenvalue zero belonging to the first block can be neglected. In Section 2.2.3, the CCNR
condition for entanglement detection has been discussed. This inequality includes LOOs as
measurement operators. However, instead of using the trace norm of the correlation matrix, it
considers the joint probability distribution. Similar inequalities can be used to detect EPR
steering from Alice to Bob. The joint probability inequality for LOOs is given by Eq. (6.39)



P
�

G A,G B|ρ
�



tr
≤
p

dA. (6.51)

From the steering inequalities in Eqs. (6.49) and (6.51) by setting dA to one the sufficient
entanglement conditions for LOOs [c.f. Eqs. (5.19) and (5.25)] are recovered. Using the Schmidt
decomposition of a density matrix Eq. (2.56)

ρ =
d
∑

k=1

λk Ḡ A
k ⊗ Ḡ B

k , λk = 〈Ḡ A
k ⊗ Ḡ B

k 〉= tr
�

ρḠ A
k ⊗ Ḡ B

k

	

(6.52)
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for d =min(dA, dB) the steering inequality

d
∑

k=1

λk ≤
p

dA (6.53)

can be derived by inserting the Schmidt decomposition into the inequality (6.51). Similar to
entanglement detection with LOOs, a family of EPR steering inequalities can be derived. The
EPR steering inequalities (6.49) and (6.51) and their analogous entanglement inequalities (5.19)
and (2.67) have a similar structure. The entanglement inequalities can be recovered by setting
the value of dA to 1 at the upper bound of the steering inequalities.

6.2.2 EPR steering detection with (N , M )-POVMs

The general sufficient condition Eq. (6.34) for EPR steering from Alice to Bob is applied to local
informationally complete (N , M )-POVMs as local measurements. The properties and existence
of the (N , M )-POVMs are discussed in Chapters 3 and 4. The section starts by deriving a
correlation matrix-based sufficient condition for EPR steering from Alice to Bob using (N , M )-
POVMs as local measurements based on the condition for arbitrary local measurements.
The second part discusses the efficiency of various local informationally complete (N , M )-
POVMs by comparing their correlation matrix to that of LOOs. Alice and Bob measure the local
informationally complete (N , M )-POVMsΠA = (ΠA

1 , . . . ,ΠA
NAMA

) andΠB = (ΠB
1 , . . . ,ΠB

NBMB
). These

positive semidefinite operators fulfill the defining relations of (N , M )-POVMs [c.f. (3.15-3.17)]
and the informational completeness relations d 2

A −1=NA(MA−1) and d 2
B −1=NB(MB−1) [c.f.

Eq. (3.18)]. For the sake of convenience, the single index of the (N , M )-POVMs is introduced
by i (α, a ) = (α−1)MA+a and j (β , b ) = (β −1)MB+ b . The coefficients of the upper bound of
the EPR steering inequality are given by Eqs. (6.32) and (6.33). They are calculated by using
Eqs. (3.81) and (3.82)

VA =
NAMA
∑

i=1

�

tr
n
�

ΠA
i (α,a )

�2
ρA

o

−
�

tr
¦

ΠA
i (α,a )ρA

©�2�

=

�

(d 2
A −1)MA xA

(MA−1)dA
−

d 3
A −M 2

A xA+dA(M 2
A xA−dA) tr

�

ρ2
A

	

dAMA(MA−1)

�

= ΓA(dA− tr
�

ρ2
A

	

) (6.54)

VB =max
σB

NBMB
∑

i=1

�
�

tr
¦

ΠB
j (β ,b )σB

©�2
−
�

tr
¦

ΠB
j (β ,b )ρB

©�2�

=max
σB

�

d 3
B −M 2

B xB+dB(M 2
B xB−dB) tr

�

σ2
B

	

dBMB(MB−1)
−

d 3
B −M 2

B xB+dB(M 2
B xB−dB) tr

�

ρ2
B

	

dBMB(MB−1)

�

= ΓB(1− tr
�

ρ2
B

	

) (6.55)

with

ΓA =
M 2

A xA−dA

MA(MA−1)
, ΓB =

M 2
B xB−dB

MB(MB−1)
. (6.56)

As a consequence, the correlation matrix-based inequality of informationally complete (N , M )-
POVMs obeys



C (ΠA,ΠB|ρ)




tr
≤
p

ΓAΓB

Ç

(dA− tr
�

ρ2
A

	

)(1− tr
�

ρ2
B

	

) (6.57)
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for all EPR unsteerable quantum states from Alice to Bob. A quantum state that violates
this inequality is detected as EPR steerable from Alice to Bob. This general inequality has
already been applied to the special instances of GSICs and MUMs as local measurements [129].
Inequality (5.29) depends on the local (N , M )-POVMs and their parameters xA, xB, NA , NB,
MA and MB, which complicates the direct comparison of the efficiency of different types
of (N , M )-POVMs for arbitrary quantum states. The correlation matrix has a dimension of
NAMA×NBMB, which makes it difficult to compare (N , M )-POVMs with different values of
N and M . Additionally, the upper bounds of the inequalities for local (N , M )-POVMs (5.29)
and LOOs (5.19) are proportional to each other by the factor

p

ΓAΓB. Therefore, the correlation
matrix of (N , M )-POVMs will be related to that of LOOs. This relation avoids the apparent
complexity of the correlation matrix’s dependence on (N , M )-POVMs and their parameters.

For this purpose, the local informationally complete (N , M )-POVM elements are expanded
in arbitrary LOOs, say G A for Alice and G B for Bob, i.e. ΠA = (G A)TS A and ΠB = (G B)TS B.
The real-valued expansion coefficient matrices S A and S B are defined in Section 3.3. They
are d 2

A ×NAMA and d 2
B ×NBMB dimensional matrices. The local basis expansions of the (N , M )-

POVM elements can be used to rewrite the correlation matrix to

C (ΠA,ΠB|ρ) = (S A)TC (G A,G B|ρ)S B. (6.58)

Similar to the sufficient entanglement condition Eq. (5.33), the scaling relation can also be
applied for the steering inequality Eq. (6.57). The sufficient EPR steering condition from Alice
to Bob with (N , M )-POVMs as local measurements can be simplified to the inequality of LOOs
Eq. (6.49)



C (G A,G B|ρ)




tr
=



C (ΠA,ΠB|ρ)




tr
p

ΓAΓB
≤
Ç

(dA− tr
�

ρ2
A

	

)(1− tr
�

ρ2
B

	

). (6.59)

The main result of this subsection is that the correlation matrix-based sufficient condition
for arbitrary local informationally complete (N , M )-POVMs is identical to that of arbitrary
LOOs. The scaling relation can be derived without requiring the positive semidefiniteness of
the POVM elements. Therefore, the steering inequality can be calculated without construct-
ing (N , M )-POVMs. It is apparent that the inequality (6.59) is entirely independent of the
parameters x , N and M of Alice’s and Bob’s (N , M )-POVMs. This is a direct consequence
of the symmetry of the relations defining the (N , M )-POVMs Eqs. (3.15)-(3.17). This simple
steering inequality shows that all local informationally complete (N , M )-POVMs are equally
well-suited for the EPR steering detection with trace norms of correlation matrices. The in-
equality detects the EPR steerable quantum states from Alice to Bob, which are steerable for
all (N , M )-POVMs and LOOs. The typicality of EPR steerable quantum states from Alice to Bob
detected by correlation matrices of local informationally (N , M )-POVMs will be examined in
Section 6.4.

6.3 E P R S T E E R I N G D E T E C T I O N T H R O U G H E N TA N G L E M E N T D E -
T E C T I O N

For the investigation of the typicality of the EPR steerable states, sufficient conditions without
intricate optimization are needed. Additionally, the similarity in structure between the correla-
tion matrix-based sufficient condition for EPR steering Eq. (6.59) and entanglement detection
Eq. (5.33) motivates an investigation into detecting EPR steerability through entanglement
detection. Consider the EPR steerability from Alice to Bob for the case where Alice has a qubit
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and Bob’s subsystem has an arbitrary finite dimensions dB. For this particular case, it has been
shown that the detection of entanglement can be used to identify an EPR steerable state from
Alice to Bob. This sufficient condition has been derived by Das et al. [145]. The authors show
that for a bipartite mixed quantum state

τA→B :=µρ+
1−µ

2
12⊗ trA{ρ}=µρ+

1−µ
2
12⊗ρB (6.60)

for µ ∈ (0,1/
p

3] it is sufficient to detect the entanglement of τA→B to verify that ρ is EPR
steerable from Alice to Bob. The advantage of this sufficient condition is that it allows to
detected entanglement by well-studied sufficient conditions, such as the Peres-Horodecki
condition, to detect the entanglement off τA→B [57, 58]. The Peres-Horodecki condition is
even a criterion in the cases of dB = 2, 3. However, the Peres-Horodecki condition is not based
on local measurements. In Chapter 5, general sufficient conditions for detecting entangle-
ment based on local measurements have been derived. To detect whether τA→B is entangled,
one can use inequality (5.31) with LOOs or local informationally complete (N , M )-POVMs as
measurements. The reduced quantum states of Alice and Bob τA→B are given by

τA = trB{τA→B}=µρA+
1−µ

2
12, (6.61)

τB = trA{τA→B}=ρB (6.62)

withρA andρB Alice’s and Bob’s reduced quantum states of the initial stateρ. For the elements
of the correlation matrix with LOOs as local measurements hold

ci j (τA→B) = tr
�

Gi ⊗G j (τA→B−τA⊗τB)
	

= tr
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Gi ⊗G jτA→B

	

− tr{GiτA} tr
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=µ tr
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tr{Gi12} tr
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G jρB

	

−
�

µ tr
�

GiρA
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1−µ

2
tr{Gi12}

�

tr
�

G jρB)
	

=µ
�

tr
�

Gi ⊗G jρ
	

− tr
�

GiρA)
	

tr
�

G jρB)
	�

=µci j (ρ). (6.63)

Furthermore, the upper bound defined by Eqs. (5.17) and (5.18) can also be connected to the
reduced density matrices of ρ

VA(τA) = 1− tr
�

τ2
A

	

= 1− tr

�

µ2ρ2
A+µ(1−µ)ρA+

(1−µ)2

4
12

�

= 1−µ(1−µ)−
(1−µ)2

2
−µ2 tr

�

ρ2
A

	

=
1+µ2

2
−µ2 tr

�

ρ2
A

	

. (6.64)

Inserting the results into inequality (5.31)
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leads to a new EPR steering inequality for µ ∈ (0, 1/
p

3]. For the maximum value of µ= 1/
p

3
the steering inequality (6.59) is recovered



C
�

G A,G B|ρ
�



tr
≤
Ç

(2− tr
�

ρ2
A

	

)(1− tr
�

ρ2
B

	

) (6.66)

with dA = 2. The scaling relation implies that this inequality for detecting EPR steering from
Alice to Bob through entanglement detection of the state τA→B also applies to local informa-
tionally complete (N, M)-POVMs as measurements. The verification of the EPR steerability
of ρ by entanglement detection of the state τA→B with correlation matrices based on local
(N , M )-POVMs or LOOs leads to the identical inequality as the steering inequality based on
correlation matrices with identical measurements Eq. (6.59). The advantage of the general
inequality (6.59) is that this relation is not restricted to a qubit on Alice subsystems and holds
for arbitrary dimensions dA. The derivation of Das et al. [145] relies on qubit properties. It
remains an open question whether this condition can be generalized to arbitrary dimensions
of Alice’s subsystem dA. The verification that a quantum state can be used for EPR steering by
detecting the entanglement of τA→B has been shown experimentally [151].

6.4 S I M U L AT I O N R E S U LT S

The numerical investigation of this section is motivated by the need to identify which quan-
tum states can be used for EPR steering from Alice to Bob. The typicality of the detected
EPR steerable states for bipartite qudit systems is largely unexplored. Additionally, sufficient
conditions for EPR steerability from Alice to Bob have only been applied to restricted classes
of quantum states, which form a zero-measure within the convex set of all quantum sets [152].
In this section the Euclidean volume ratios from the EPR steerable states from Alice to Bob are
determined for low dimensional qudit systems. For this purpose the hit-and-run Monte Carlo
algorithm from Section 2.4 is used to generate N equally distributed density matrices over the
complete state space. For each of these generated quantum states it is tested whether the EPR
steering detection inequality is violated. If a quantum state violates such an inequality, the
state is counted, otherwise, it is discarded. This formalism allows the numerical computation
of lower bounds for the Euclidean volume ratios of the steerable quantum states from Alice to
Bob RA→B. This procedure will be used to determine the efficiency of different EPR steering
inequalities for various qudit dimensions of Alice’s and Bob’s quantum systems.

The typicality of EPR steering detection through correlation matrices with local measure-
ments is investigated in this section. The numerical investigations are restricted to local
dimensions 2≤ dA, dB ≤ 4 of Alice’s and Bob’s quantum systems. To compute the Euclidean
volume ratios RA→B the hit-and-run algorithm has generated N = 108 random quantum states.
The Euclidean volume ratio RA→B is determined by the correlation matrix-based inequal-
ity (6.59), which is identical for LOOs or local informationally complete (N , M )-POVMs. The
detected volume ratios can be further increased by optimizing the parameters {hi } in inequal-
ity (6.36) for LOOs or local informationally complete (N , M )-POVMs as measurements. The
optimized volume ratios serve as an upper bound for RA→B.

The numerical results are summarized in Table 6.1 and the investigated dimensions of
the local quantum systems are 2 ≤ dA, dB ≤ 4. Cases not shown in the table are below the
numerical accuracy. For non-qubit-qubit systems, the detected Euclidean volume ratios of
the EPR steerable states from Alice to Bob, based on a violation of Eq. (6.36) with LOOs or
local informationally complete (N , M )-POVMs, take values close to zero. The scaling relation
of Section 3.3 implies that the number of quantum states violating this inequality cannot
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be increased by changing the type of LOOs or (N , M )-POVMs. Furthermore, the determined
volume ratios are an upper bound for the EPR steering inequalities (6.39), (6.42) and (6.43).
Thus, these inequalities also underestimate the volume ratios beyond qubit-qubit systems.
The underestimated volume ratios can be explained by the scaling relation, which implies that
the detected steerable states from Alice to Bob are steerable for all LOOs and (N , M )-POVMs.
For example, quantum states that are only EPR steerable from Alice to Bob by a single pair of
local (N , M )-POVMs cannot violate this inequality.

In order to quantify the typicality of the steerable quantum states from Alice to Bob for
qubit-qudit quantum systems, the sufficient EPR steering condition through entanglement
detection, discussed in Section 6.3, is used. However, this condition can only be applied if
Alice’s local quantum system is a qubit. When combined with the Peres-Horodecki condition
described in Section 2.2.1, it becomes a potent sufficient condition for EPR steerability from
Alice to Bob. The Peres-Horodecki condition affirms that all quantum states whose partial
transpose has a negative eigenvalue are entangled (NPT states). Recall that a quantum state ρ
is EPR-steerable from Alice to Bob if the state Eq. (6.60)

τA→B =
1
p

3
ρ+
p

3−1

2
p

3
1⊗ρB (6.67)

is entangled. Table 6.2 shows the volume ratios of the detected EPR steerable quantum states
from Alice to Bob as Bob’s quantum system dimension increases 2≤ dB ≤ 7. Comparing these
results with those of the correlation matrix-based inequality of Table 6.1, it is evident that the
volume ratios of the detected steerable quantum states are of the same order for the two-qubit
case. However, for increasing dimensions, the volume ratio of the EPR steerable quantum states
increases while the correlation matrix-based sufficient condition declines to zero. This can be
explained by the fact that for higher dimensional quantum systems, the volume ratio of the
NPT states converges to unity [87]. However, the Peres-Horodecki condition for entanglement
detection transcends local quantum measurements. Instead, the correlation matrix-based
sufficient condition for entanglement is applied to the state τA→B, leading to the correlation
matrix-based steering inequality (6.66) for LOOs and (N, M)-POVMs. The local entanglement
detection using these measurements is not efficient enough to detect entanglement of the
quantum state τA→B. The correlation matrix-based sufficient condition is not suitable for
identifying EPR steerable quantum states from Alice to Bob beyond the qubit-qubit case. The
similarity between the EPR steering and entanglement sufficient conditions motivates further
research into EPR steering detection through entanglement detection for arbitrary quantum
systems. Such a condition would have the advantage of utilizing the powerful Peres-Horodecki
condition.

Case dB = 2 dB = 3
dA = 2 5.011×10−2 1.92×10−5

±1.5×10−4 ±4.1×10−6

dA = 3 5.72×10−5 0
±6.4×10−6

Table 6.1: Numerical estimates of lower bounds of the Euclidean volume ratios RS :A→B between EPR
steerable quantum states from Alice to Bob and all bipartite quantum states for different
dimensions dA and dB of Alice’s and Bob’s quantum systems: These estimates are based on a
violation of inequality (6.36) with Alice’s local measurement being optimized by rescaling.
The numerical errors have been estimated with the procedure described in Appendix C.
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dB 2 3 4 5 6 7
0.05167 0.10936 0.17278 0.24009 0.3119 0.3842
±1.5×10−4 ±3.4×10−4 ±5.6×10−4 ±8.3×10−4 ±1.3×10−3 ±1.5×10−3

Table 6.2: Numerical lower bounds on the Euclidean volume ratios RA→B between EPR steerable quan-
tum states from Alice to Bob for all bipartite quantum states for dA = 2 and different dimen-
sions 2 ≤ dB ≤ 7 of Bob’s quantum system: These estimates are based on the approach of
Das et al. [145]. The Peres-Horodecki condition has been used as a sufficient condition for
bipartite entanglement of τA→B for dB ≥ 3. The numerical errors have been estimated with
the procedure described in Appendix C.
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C O N C L U S I O N

Entanglement is an important resource for quantum information processing, computation,
communication and quantum key distribution. Especially in cases of quantum key distribu-
tion and information processing, it is crucial to reliably detect entanglement through local
quantum measurements by two possible spatially separated observers. It has been shown that
local informationally complete (N , M )-POVMs are appropriate measurements for detecting
entanglement and EPR steering from Alice to Bob.

In the course of our research, sufficient and necessary conditions for the existence of optimal
informationally complete POVMs have been derived. A sufficient condition has been derived
for (N , M )-POVMs that guarantees the positive semidefiniteness of the POVM elements for
small values of the continuous parameter x . This condition yields an upper bound for x
and ensures that (N , M )-POVMs with a parameter x below the upper bound can always be
constructed. The connection between IHOBs and the existence of optimal informationally
complete (N , M )-POVMs has been established. It has been stated that the existence of such
a basis is necessary for the existence of optimal (N , M )-POVMs. This necessary condition
generalizes a recently derived property for GSICs [62]. In particular, the necessary condition
is also sufficient for the case of d ≤M . This is achieved by ensuring that the basis elements
constructing a single POVM are commuting and that their eigenvalues are ordered in a specific
way in a common eigenbasis. Furthermore, for the cases d ≤M , the optimal informationally
complete (N , M )-POVMs are rank d /M projections. Therefore, they can only exist if d /M is a
natural number. For example, it has been shown that the Clifford basis can be used to construct
optimal (N ,2)-POVMs in dimensions that are powers of two. The sufficient and necessary
conditions for optimal (N , M )-POVMs have been discussed, but only (N , 2)-POVMs, (d +1, d )-
POVMs (MUB) and (1, d 2)-POVMs (SIC-POVMs) have been constructed in some dimensions.
The construction of optimal (N , M )-POVMs remains an open question and further research is
necessary in this direction.

Another focus of this work is the characterization of the measured correlations between
local informationally complete (N , M )-POVMs. For this purpose, the linear map between
(N , M )-POVM and a Hermitian orthonormal operator basis has been examined. The prop-
erties of this map give rise to the scaling relation, which allows for the calculation of the
trace norm of correlation matrices without the need to construct (N , M )-POVMs. The scaling
relation is solely derived from the defining relations of (N , M )-POVMs. However, the positive
semidefiniteness of POVM elements is not required for the derivation. This necessarily valid
relation connects equivalent measurement settings for the trace norm of correlation matrices
and joint probability distributions. The correlation matrices of such local measurements can
be used to detect bipartite entanglement or EPR steerability from Alice to Bob.

The focus has been on bipartite entanglement detection through correlation matrices
and joint probability distributions of local informationally complete (N , M )-POVMs. The
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scaling relation states that the correlation matrix-based entanglement detection is entirely
independent of the chosen local informationally complete (N , M )-POVMs and identical to
that of LOOs as measurements. The scaling relation implies that a single class of local (N , M )-
POVMs is sufficient to compute the trace norm of joint probability distributions for a given
dimension. For example GSICs can be used as local measurements, which can be constructed
in local Hilbert space dimensions up to d = 151. These sufficient conditions have been
quantitatively explored on random density matrices over the complete state space generated
by the hit-and-run Monte Carlo algorithm. The numerical results indicate that the sufficient
conditions become less efficient as the Hilbert space dimensions increase, compared to
the Peres-Horodecki condition. Additionally, our numerical results demonstrate that local
optimal informationally complete (N , M )-POVMs are not required for optimal entanglement
detection. Instead, the always constructible (N , M )-POVMs can be utilized for this purpose.
Well-chosen (N , M )-POVMs can detect more entanglement than optimal (N , M )-POVMs, such
as SIC-POVMs, in unequal dimensions of the local Hilbert spaces. For practical applications,
it is desirable to improve the detection efficiency of arbitrary quantum states. One possible
method to achieve this may be by including local operations and classical communication.

The trace norm of correlation matrices can be used to verify EPR steerable quantum states
from Alice to Bob, similar to entanglement detection. The correlation matrix-based sufficient
conditions for EPR steerability from Alice to Bob are also simplified by the scaling relation.
This relations states that all (N , M )-POVMs are equally efficient and identical to LOOs. A
hit-and-run Monte Carlo algorithm has been used to quantify the Euclidean volume ratio of
the steerability quantum states. Outside the qubit-qubit case, the detected steerable quantum
states from Alice to Bob are significantly underestimated. Furthermore, the EPR steering
detection from Alice to Bob through entanglement detection has been examined. This suf-
ficient condition is valid when Alice’s subsystem is a qubit. This condition, with correlation
matrix-based entanglement detection, is identical to correlation matrix-based sufficient EPR
steering condition. Combining this condition with the Peres-Horodecki condition signifi-
cantly enhances the detection of EPR steerable quantum states from Alice to Bob. In this case
the volumes of the steerable quantum states increase as the dimensions of Bob’s subsystem
increase. However, the Peres-Horodecki condition exceeds local measurements. Therefore,
further research is needed to formulate efficient and straightforward sufficient conditions for
the detection of EPR steerability from Alice to Bob. A possible next step is the generalization
of the verification of EPR steerability from Alice to Bob through entanglement detection for
arbitrary dimensions of Alice’s subsystem.
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A P P E N D I X





A
I M P O R TA N T (N , M ) - P O V M S

This appendix presents examples of optimal informationally complete (N , M )-POVMs. The
optimal (N , M )-POVMs have been used to calculate the IHOBs of Eq. 4.40 (see Appendix B.1).
The discussed dimensions are d = 2, 3, 4.

A.1 M U T U A L LY U N B I A S E D B A S E S

The first class of (N , M )-POVMs discussed as example are the MUBs with N = d +1 and M = d
in dimension d . The basis elements are defined byBαd and the associated POVM elements are

Πα,a = |α, a 〉 〈α, a | (A.1)

for all α ∈ {1, . . . , d + 1} and |α, a 〉 ∈Bαd . The first index α denotes a single POVM, while the
parameter a = {1, . . . , d } denotes the measurement results of the POVM. Additionally, the
vectors of each setBαd form an orthonormal basis. Also, the orthonormal basis {|0〉 , . . . , |d −1〉}
is used to represent the POVM elements. A qubit (d = 2) MUB is given by [153]

B1
2 = {|0〉 , |1〉},

B2
2 =

§

1
p

2
(|0〉+ |1〉),

1
p

2
(|0〉− |1〉)

ª

,

B2
2 =

§

1
p

2
(|0〉+ i |1〉),

1
p

2
(|0〉− i |1〉)

ª

. (A.2)

The parameterω= exp(2πi/3) is used for the qutrit (d = 3) MUB [153]

B1
3 = {|0〉 , |1〉 , |2〉},

B2
3 =

§

1
p

3
(|0〉+ |1〉+ |2〉),

1
p

3
(|0〉+ω |1〉+ω2 |2〉),

1
p

3
(|0〉+ω2 |1〉+ω |2〉)

ª

,

B3
3 =

§

1
p

3
(|0〉+ω |1〉+ω |2〉),

1
p

3
(|0〉+ω2 |1〉+ |2〉),

1
p

3
(|0〉+ |1〉+ω2 |2〉)

ª

,

B4
3 =

§

1
p

3
(|0〉+ω2 |1〉+ω2 |2〉),

1
p

3
(|0〉+ |1〉+ω |2〉),

1
p

3
(|0〉+ω |1〉+ |2〉)

ª

. (A.3)



120 A I M P O R TA N T (N , M )- P O V M S

A MUB for a Hilbert space of dimension (d = 4) is given [153]

B1
4 = {|0〉 , |1〉 , |2〉},

B2
4 =

§

1

2
(|0〉+ |1〉+ |2〉+ |3〉) ,

1

2
(|0〉− |1〉− |2〉+ |3〉) ,

1

2
(|0〉+ |1〉− |2〉− |3〉) ,

1

2
(|0〉− |1〉+ |2〉− |3〉)

ª
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(|0〉− i |1〉− i |2〉− |3〉) ,

1

2
(|0〉+ i |1〉− i |2〉+ |3〉) ,

1

2
(|0〉− i |1〉+ i |2〉+ |3〉)

ª

,

B4
4 =

§

1
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2
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1

2
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,

B5
4 =

§

1

2
(|0〉− i |1〉+ |2〉+ i |3〉) ,

1

2
(|0〉+ i |1〉− |2〉+ i |3〉) ,
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(|0〉+ i |1〉+ |2〉− i |3〉)

1

2
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ª

. (A.4)

It is noted that the first two basis setsB1
4 andB2

4 only contain vectors with real-valued coeffi-
cients.

A.2 S I C - P O V M S

The second important class of optimal informationally complete (N , M )-POVMs are the SIC-
POVMs with N = 1 and M = d 2. The vectors |1, a 〉 represent the SIC-POVMs by

Π1,a =
1

d
|1, a 〉 〈1, a | (A.5)

where a denotes the measurement result of the POVM. A qubit SIC POVM is given by [60]

|1, 1〉= |0〉 , |1, 2〉=
1
p

3
|0〉+

√

√2

3
|1〉 ,

|1, 3〉=
1
p

3
|0〉+ω

√

√2

3
|1〉 , |1, 4〉=

1
p

3
|0〉+ω2

√

√2

3
|1〉 (A.6)

withω= exp(i 2π/3). The second example is a qudrit (d = 3) SIC-POVM [60]

|1, 1〉=
1
p

2
(|1〉− |2〉), |1, 2〉=

1
p

2
(ω |1〉−ω2 |2〉), |1, 3〉=

1
p

2
(ω2 |1〉−ω |2〉),

|1, 4〉=
1
p

2
(|0〉− |1〉), |1, 5〉=

1
p

2
(ω |0〉−ω2 |1〉), |1, 6〉=

1
p

2
(ω2 |0〉−ω |1〉),

|1, 7〉=
1
p

2
(|2〉− |0〉), |1, 8〉=

1
p

2
(ω |2〉−ω2 |0〉), |1, 9〉=

1
p

2
(ω2 |2〉−ω |0〉). (A.7)
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A SIC-POVM for (d = 4) is given by [60]

|1, 1〉=N (x |0〉+ |1〉+ |2〉+ |3〉) , |1, 2〉=N (x |0〉+ |1〉− |2〉− |3〉) ,
|1, 3〉=N (x |0〉− |1〉+ |2〉− |3〉) , |1, 4〉=N (x |0〉− |1〉− |2〉+ |3〉) ,
|1, 5〉=N (i |0〉+ x |1〉+ |2〉− i |3〉) , |1, 6〉=N (i |0〉+ x |1〉− |2〉+ i |3〉) ,
|1, 7〉=N (−i |0〉+ x |1〉+ |2〉+ i |3〉) , |1, 8〉=N (−i |0〉+ x |1〉− |2〉− i |3〉) ,
|1, 9〉=N (i |0〉+ i |1〉+ x |2〉− |3〉) , |1, 10〉=N (i |0〉− i |1〉+ x |2〉+ |3〉) ,
|1, 11〉=N (−i |0〉+ i |1〉+ x |2〉+ |3〉) , |1, 12〉=N (−i |0〉− i |1〉+ x |2〉− |3〉) ,
|1, 13〉=N (i |0〉+ |1〉− i |2〉+ x |3〉) , |1, 14〉=N (i |0〉− |1〉+ i |2〉+ x |3〉) ,
|1, 15〉=N (−i |0〉+ |1〉+ i |2〉+ x |3〉) , |1, 16〉=N (−i |0〉− |1〉− i |2〉+ x |3〉) , (A.8)

where the normalization constant N = 1/
p

5+
p

5 and the parameter x =
p

2+
p

5 are used.





B
H E R M I T I A N O P E R AT O R S B A S E S

In this appendix, properties of Hermitian operator bases are shown. These properties are
important for the derivation of the sufficient condition for entanglement and EPR steering
detection and their invariances. Furthermore, the generalized Gell-Mann matrices are in-
troduced as a Hermitian orthonormal operator basis that can be constructed in arbitrary
dimensions d . Section 2.1.1 discusses the representation of an arbitrary Hermitian operator A
in a Hermitian operator basis G = (G0, . . . ,Gd 2−1)T

A =
d 2−1
∑

i=0

Gi tr{Gi A}=
d 2−1
∑

i=0

ri Gi = r ·G (B.1)

with the real vector r ∈ Rd 2
. To examine the mathematical structure of a basis change, a

second Hermitian operator basis Ḡ is considered. The basis expansion of Ḡ j is given by

Ḡ j =
d 2−1
∑

i=0

Gi tr
�

Gi Ḡ j

	

=
d 2−1
∑

i=0

Gi Oi j . (B.2)

with Oi j = tr
�

Gi Ḡ j

	

. From the orthogonality of the basis elements follows

δi j = tr
�

Ḡi Ḡ j

	

= tr

(

d 2−1
∑

k=0

Gk tr
�

Gk Ḡi

	

d 2−1
∑

l=0

Gl tr
�

Gl Ḡ j

	

)

=
d 2−1
∑

k=0

d 2−1
∑

l=0

tr
�

Gk Ḡi

	

tr
�

Gl Ḡ j

	

tr{Gk Gl }

=
d 2−1
∑

k=0

d 2−1
∑

l=0

Ok i Ol j tr{Gk Gl }
︸ ︷︷ ︸

δk l

=
d 2−1
∑

k=0

Ok i Ol i . (B.3)

This implies that the matrix O relating two Hermitian operator bases by

Ḡ =OG (B.4)

is an orthogonal matrix O TO = 1d = O O T. A Hermitian operator basis G̃ can always be
chosen, with the first basis element proportional to the identity matrix G̃0 = 1d /

p
d . From

the orthogonality of the basis elements follows that the remaining d 2−1 basis elements are
traceless

tr
�

G̃i

	

=
p

d tr
�

G̃0G̃i

	

= 0 (B.5)
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for i = {1, . . . , d 2 − 1}. This basis is useful for representing Hermitian operators with a fixed
trace value, such as density matrices or (N , M )-POVMs. An arbitrary Hermitian operator basis
can be used to define an invariant

d 2−1
∑

i=0

G 2
i =

d 2−1
∑

i=0

d 2−1
∑

j=0

d 2−1
∑

k=0

Ḡ j tr
�

Ḡ j Gi

	

Ḡk tr
�

Ḡk Gi

	

=
d 2−1
∑

j=0

d 2−1
∑

k=0

Ḡ j Ḡk tr

(

Ḡ j

d 2−1
∑

i=0

Gi tr
�

Ḡk Gi

	

)

=
d 2−1
∑

j=0

d 2−1
∑

k=0

Ḡ j Ḡk tr
�

Ḡ j Ḡk

	

=
d 2−1
∑

j=0

Ḡ 2
j . (B.6)

This invariant is important for the sufficient conditions for entanglement detection in Chapter
5 and EPR steering detection in Chapter 6. Thus, calculating the invariant for a single Hermitian
operator basis is sufficient. In the case of a qubit, a basis is given by

σ=
§

12p
2

,
σxp

2
,
σyp

2
,
σzp

2

ª

(B.7)

and the Pauli matrices are given by

σx =σ1 =

�

0 1
1 0

�

, σy =σ2 =

�

0 −i
i 0

�

, σz =σ3 =

�

1 0
0 −1

�

. (B.8)

The invariant (B.6) in d = 2 has the value

3
∑

i=0

G 2
i =

1

2

3
∑

i=0

σ2
i = 212. (B.9)

It has been used thatσ2
i =12 holds for the Pauli matrices. Generalizations of the Pauli matrices

for higher dimensions are the generalized Gell-Mann matrices, which can be constructed in
any finite dimension. The Gell-Mann matrices for d = 3 are given by

G̃ GM
1 =





0 1p
2

0
1p
2

0 0

0 0 0



 , G̃ GM
2 =





0 − ip
2

0
ip
2

0 0

0 0 0



 , G̃ GM
3 =





1p
2

0 0

0 − 1p
2

0

0 0 0



 ,

G̃ GM
4 =





0 0 1p
2

0 0 0
1p
2

0 0



 , G̃ GM
5 =





0 0 − ip
2

0 0 0
ip
2

0 0



 , G̃ GM
6 =





0 0 0
0 0 1p

2
0 1p

2
0



 ,

G̃ GM
7 =





0 0 0
0 0 − ip

2
0 ip

2
0



 , G̃ GM
8 =





1p
6

0 0

0 1p
6

0

0 0 −
q

2
3



 . (B.10)
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The canonical orthonormal basis {|i 〉 , i = 1, . . . , d } of the Hilbert space Hd is used to represent
the generalized Gell-Mann matrices in dimensions d > 3 by [154]

G̃ GM
i =

1
p

i (i +1)

�

i
∑

k=1

|k 〉 〈k | − i |i +1〉 〈i +1|

�

, for i = 1, . . . d −1,

G̃ GM
i1(m ,n ) =

1
p

2
(|m〉 〈n |+ |n〉 〈m |) , for 1≤m < n ≤ d ,

G̃ GM
i2(m ,n ) =

i
p

2
(|m〉 〈n | − |n〉 〈m |) , for 1≤m < n ≤ d (B.11)

and is enumerated by

i1(m , n ) = (d −2)m +n −
(m −1)(m −2)

2

i2(m , n ) =
d 2−d

2
+ (d −2)m +n −

(m −1)(m −2)
2

.. (B.12)

A complete basis of the Hermitian operators is given by G̃ = {G̃0,G̃ GM
1 , . . . ,G̃ GM

d 2−1}. The invariant
Eq. (B.6) can be calculated by

d 2−1
∑

i=0

G 2
i =

d 2−1
∑

i=0

G̃ 2
i

=
1d

d
+

d−1
∑

i=1

�

G̃ GM
i

�2
+

d−1
∑

m=1

d
∑

n=m+1

�
�

G̃ GM
i1(m ,n )

�2
+
�

G̃ GM
i2(m ,n )

�2�

=
1d

d
+ c1+ c2. (B.13)

The matrix coefficients c1 and c2 are calculated independently. The first coefficient

c1 =
d−1
∑

i=1

1

i (i +1)

�

i
∑

k=1

|k 〉 〈k |+ i 2 |i +1〉 〈+1|

�

(B.14)

is a diagonal matrix and its entries are given by

〈d | c1 |d 〉=
d −1

d
,

〈1| c1 |1〉=
d−1
∑

i=1

1

i (i +1)
= 1−

1

d
=

d −1

d
,




j
�

� c1

�

� j
�

=
d−1
∑

i= j

1

i (i +1)
+

j −1

j

=
d−1
∑

i=1

1

i (i +1)
−

j−1
∑

i=1

1

i (i +1)
+

j −1

j

= 1−
1

d
−1+

1

j
+

j −1

j
=

d −1

d
(B.15)
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for j = {2, . . . , d −1}. This implies that the first coefficient is proportional to identity matrix
c1 = (d −1)/d1d . The second coefficient, derived from the non-diagonal Gell-Mann matrices,
is also a diagonal matrix

c2 =
d−1
∑

m=1

d
∑

n=m+1

�
�

G̃ GM
i1(m ,n )

�2
+
�

G̃ GM
i2(m ,n )

�2�

=
d−1
∑

m=1

d
∑

n=m+1

(|n〉 〈n |+ |m〉 〈m |) . (B.16)

The matrix elements are given by

〈d | c2 |d 〉=
d−1
∑

m=1

1= d −1

〈1| c2 |1〉=
d
∑

n=2

1= d −1




j
�

� c2

�

� j
�

=
d
∑

n= j+1

1+
j−1
∑

m=1

1= d − j + j −1= d −1 (B.17)

for j = 2, . . . , d−1. The second coefficient is again proportional to the identity matrix c2 = (d −1)1d .
The invariant (B.6) is given by

d 2−1
∑

i=0

G 2
i =

1d

d
+ c1+ c2

=
�

1

d
+

d −1

d
+ (d −1)

�

1d

= d1d . (B.18)

B.1 I S O S P E C T R A L O P E R AT O R S B A S I S

Section 4.2.1 demonstrates that an IHOB can be constructed from an optimal informationally
complete (N, M)-POVM with M ≥ d . Such bases have been used as examples to visualize
the positive semidefiniteness of Hermitian operators with a fixed trace in Chapter 4. For
d = 3, the bases constructed from a SIC-POVM and MUB have been used to visualize positive
semidefinite matrices in Section 4.1.2. The SIC-POVM in Eq. (A.7) is used to construct the
IHOB G̃ SIC = {G̃ SIC

1 , . . . ,G̃ SIC
d 2−1}. The spectrum of each basis element is given by

Sp
�

G̃ SIC
i

�

=
§

1

12
(−
p

3−3
p

7),
1

12
(−
p

3+3
p

7),
1

2
p

3

ª

(B.19)
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for i = {1, . . . , 8}. The spectrum of the basis elements is independent of the chosen SIC-POVM.
The orthonormal basis constructed of the SIC-POVM is

G̃ SIC
1 =







− 1
4
p

3
−
p

3
4 −

i
2 0

−
p

3
4 +

i
2 − 1

4
p

3
0

0 0 1
2
p

3






, G̃ SIC

2 =







− 1
4
p

3
−
p

3
4 +

i
2 0

−
p

3
4 −

i
2 − 1

4
p

3
0

0 0 1
2
p

3






,

G̃ SIC
3 =







p
3

4 − 1
4
p

3
0

− 1
4
p

3
− 1

4
p

3
1p
3

0 1p
3
− 1

2
p

3






, G̃ SIC

4 =







p
3

4 − 1
4
p

3
0

− 1
4
p

3
− 1

4
p

3
− 1

2
p

3
− i

2

0 − 1
2
p

3
+ i

2 − 1
2
p

3






,

G̃ SIC
5 =







p
3

4 − 1
4
p

3
0

− 1
4
p

3
− 1

4
p

3
− 1

2
p

3
+ i

2

0 − 1
2
p

3
− i

2 − 1
2
p

3






, G̃ SIC

6 =







− 1
4
p

3
− 1

4
p

3
1p
3

− 1
4
p

3

p
3

4 0
1p
3

0 − 1
2
p

3






,

G̃ SIC
7 =







− 1
4
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3
− 1

4
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3
− 1

2
p

3
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2

− 1
4
p

3

p
3

4 0

− 1
2
p

3
+ i

2 0 − 1
2
p

3






, G̃ SIC

8 =







− 1
4
p

3
− 1

4
p

3
− 1

2
p

3
+ i

2

− 1
4
p

3

p
3

4 0

− 1
2
p

3
− i

2 0 − 1
2
p

3






. (B.20)

The second basis G̃ MUB, used for the visualization of the positive semidefiniteness of Hermitian
operators, is constructed from the MUB in Eq. (A.3). The spectrum of the basis elements is
given by

Sp
�

G̃ MUB
i

�

=

�

3−
p

3

6
,
−3−
p

3

6
,

1
p

3

�

(B.21)

for i ∈ {1, . . . , 8} and the basis elements are given by

G̃ MUB
1 =





1
6

�

3−
p

3
�

0 0
0 1

6

�

−
p

3−3
�

0
0 0 1p

3



 ,

G̃ MUB
2 =





1
6

�

−
p

3−3
�

0 0
0 1

6

�

3−
p

3
�

0
0 0 1p

3



 ,

G̃ MUB
3 =









0 ( 1
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i
6 )(
p

3+3)p
3+1

( 1
6+

i
6 )(
p

3+3)p
3+1

( 1
6+

i
6 )(
p

3+3)p
3+1

0 ( 1
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i
6 )(
p

3+3)p
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( 1
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i
6 )(
p
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( 1
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i
6 )(
p

3+3)p
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0
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4 =
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i
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p
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i
6 )(
p

3+3)p
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i
6 )(
p

3+3)p
3+1

0 ( 1
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i
6 )(
p

3+3)p
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( 1
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i
6 )(
p
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i
6 )(
p

3+3)p
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0
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G̃ MUB
5 =
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i
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p
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1
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(−1)2/3p
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G̃ MUB
6 =









0 ( 1
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. (B.22)

The pairs of basis elements (1, 2), (3, 4), (5, 6) and (7, 8) are defining the 2-dimensional real sub-
space of the traceless elements of a single POVMs. The basis element forming a single POVM
commuting for MUBs, which means these basis elements are simultaneously diagonalizable.



C
S TA N D A R D D E V I AT I O N S O F T H E M O N T E C A R L O
A L G O R I T H M

The estimation of the statistical errors of the Euclidean volume ratio of the entangled or
EPR steerable quantum states is presented in this appendix. The procedure to obtain the
standard deviation is performed identically to that of Sauer et al. [86]. The total number of
N = 108 generated quantum states is divided into NI = 100 blocks of size NB = 106. Within a
block, violations of the entanglement or steering inequality can be viewed as a Bernoulli trial
with a success rate R , assuming all points are sampled equally distributed over the set of all
quantum states. The quantum states that violate the inequality of a single block NBi

can be
approximated by a Gaussian distribution with a mean R NB and a standard deviationσB for
large block sizes. The standard deviation for the mean R is given by

σ2
R
=
σ2

B

NI
. (C.1)

This procedure is used to estimate the variance of the volume ratios and the standard deviation
is given byσR . The statistical uncertainty of the values in the Tables 5.2, 6.1 and 6.2 have been
calculated using this method.
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