
RESEARCH ARTICLE Open Access

Structural characterization of vanadium oxide
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SBA-15 using X-ray absorption spectroscopy
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Abstract

The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15) was investigated by in situ
X-ray absorption spectroscopy (XAS). Because the number of potential parameters in XAS data analysis often
exceeds the number of “independent” parameters, evaluating the reliability and significance of a particular fitting
procedure is mandatory. The number of independent parameters (Nyquist) may not be sufficient. Hence, in addi-
tion to the number of independent parameters, a novel approach to evaluate the significance of structural fitting
parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and
10.8 wt %) were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V
oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corre-
sponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under
selective oxidation reaction conditions.

Background
Mixed transitions metal oxides (e.g. MoVNbTe oxides) are
active in selective oxidation of propane to acrylic acid. In
contrast to various binary oxides (e.g. MoO3 or V2O5),
these mixed oxides exhibit a much higher selectivity. How-
ever, the origin of the promoting effect of, for instance,
vanadium in mixed oxides is largely unknown. Hence,
model systems are sought which enable conclusions on
structure activity relationships of individual metal centers
in active catalysts. For that, supported metal oxides pos-
sess two major advantages over bulk oxides. First, particu-
lar metal oxide structures which are not readily available
for investigations under reaction conditions can be stabi-
lized and studied on suitable support materials [1]. Sec-
ond, dispersed supported metal oxides simplify correlating
the local structure around the metal centers with their cat-
alytic performance. Distinguishing active metal centers at
the surface from metal centers in the bulk of conventional
oxide catalysts is no longer required.
VxOy supported on SBA-15 (nanostructured SiO2) [2]

constitutes a suitable model system to investigate the

role of vanadium during selective oxidation catalysis
[3-6]. Structural characterization of VxOy supported on
SiO2 has been subject of many spectroscopic studies
including IR [[7-9], XPS [6,10,11], Raman [10-15], UV-
VIS [11,13-16] and EXAFS [13,17-22]. A recent review
of spectroscopic investigations and structural character-
istics of various supported vanadium oxides has been
presented by Weckhuysen and Keller [23]. It is assumed,
that the structure of supported vanadium oxide depends
on both amount of vanadium and degree of hydration
[14]. Hence, most studies were performed on VxOy/SiO2

samples exhibiting low vanadium loading (< 10 wt %).
At these loadings a monolayer of supported VxOy spe-
cies is assumed and crystalline V2O5 is not detectable.
Under ambient conditions the structure of hydrated
vanadium oxide supported on SiO2 resembles that of
V2O5 [10,13,18]. Thermal treatment in oxygen results in
dehydration of the vanadium oxide species. This dehy-
drated state has been proposed to consist of isolated
VO4 tetrahedrons bond to the SiO2 support
[13,17,24,25]. However, V2O7 dimers or further
extended structures supported on SiO2 have not been
excluded [15]. In total, the structure of dehydrated vana-
dium oxide species supported on SiO2 remains under
debate.
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XAS is particularly suitable to study supported cata-
lysts under reaction conditions. The average valence, for
instance, can be readily obtained by comparison with
known reference compounds. Elucidating the geometric
structure, however, is often more difficult. In the con-
ventional approach theoretical XAFS scattering ampli-
tudes and phases are calculated for a suitable model
structure. Subsequently, a sum of theoretical XAFS
functions is refined to the experimental data. Structural
parameters like coordination numbers, nearest neighbor
distances, and disorder parameters may be determined.
However, more often than not, the number of potential
parameters exceeds the number of “independent” para-
meters. The upper limit may be calculated from Fourier
theory and must not be exceeded. Nonetheless, it
appears that even refinements employing a much smal-
ler number of freely varied parameters may yield ambig-
uous structural results. The often used Nyquist criteria
may not be sufficient to deem a fitting procedure reli-
able. Basically, one pair of strongly correlated para-
meters suffices to render a seemingly good agreement
between experimental data and theoretical model struc-
ture meaningless. While this case may be clearly indi-
cated by the correlation matrix of the refinement, other
pitfalls may be less obvious. Hence, procedure are
sought that enable evaluating the significance of each
fitting parameter individually.
Here, we have performed in situ XAS investigations of

VxOy supported on SBA-15 in the hydrated and dehy-
drated state. The same materials were already carefully
characterized by several standard techniques (i.e. physi-
sorption, TEM, IR, Raman, UV-Vis, and XPS) and the
results of these studies have been described in Ref
[9,10,14]. In particular, using UV-Vis and Raman spec-
troscopy, Hess et al. showed that the catalysts are similar
to other systems previously described in the literature.
However, the results obtained could not unequivocally
determine the local structure around the V species on
SiO2, as it was also the case in previous studies. Our
approach focused on elucidating the local structure
around the vanadium centers in the dehydrated state of
VxOy-SBA-15 model catalysts with different vanadium
loadings. A detailed XAFS data analysis, in particular of
higher V-V distances, was performed together with a
detailed evaluation of the significance of the fitting para-
meters employed. This procedure permitted detailed con-
clusions on the extended local structure of the vanadium
oxide species supported on SBA-15.

Results and discussion
Local structure of dehydrated VxOy/SBA-15 - Comparison
to V oxide references
Characterization of pore structure and surface area, and
optical spectroscopic investigations of the same model

catalysts studied here have been previously described
[9,10,14]. After surface functionalisation and ion
exchange to introduce the V precursor, the materials
were calcined at 823 K in air. Calcination results in
decomposition of both precursor and functionalisation
agent. Preparation, functionalisation, and thermal treat-
ment also have been described in Ref [9,10,14]. The
authors stated that residuals of the functionalisation
agent were no longer detectable (i.e. IR, Raman, UV-Vis,
and XPS) in the material obtained. A brief summary of
the N2 physisorption analysis described in Ref [10] is
given in Table 1.
Here, we have performed a detailed XAFS investiga-

tion of samples with different V loadings in the hydrated
and dehydrated state. In particular, we wanted to ana-
lyze the contribution of higher scattering shells to the
XAFS signal and possibly reveal the presence of V near-
est neighbors in the local structure of vanadium oxide
species supported on SiO2. A detailed XAFS analysis of
higher shells in the FT(c(k)*k3) has been largely
neglected in the corresponding literature.
During thermal treatment of as-prepared hydrated

VxOy/SBA-15 in oxygen (20% in He) a loss of water and
a distinct change in structure were observed. After ther-
mal treatment dehydrated VxOy/SBA-15 was cooled to
293 K in oxygen in He without exposure to air or water.
No changes in XAFS spectra were observed during cool-
ing. The EXAFS c(k)*k3 of dehydrated VxOy/SBA-15
with different V loadings are depicted in Figure 1. The
usable spectral ranged extended from 2.7 Å through
11.0 Å. The V K edge XANES spectra and the FT(c(k)
*k3) of dehydrated VxOy/SBA-15 samples measured at
293 K are shown in Figure 2. FT(c(k)*k3) are not phase
shift corrected. Thus, the distances in the FT(c(k)*k3)
are shifted by ~0.4 Å to lower values compared to crys-
tallographic distances. Compared to vanadium oxide
references, the overall XANES region of dehydrated
VxOy/SBA-15 resembled best those of NH4VO3,
Mg2V2O7, and Na3VO4 (Figure 3(a)). In the local struc-
ture of these references vanadium centers are tetrahed-
rally coordinated by four oxygen atoms. Compared to
the XANES spectrum of dehydrated VxOy/SBA-15,
NH4VO3 and Mg2V2O7 exhibit very similar pre-edge
peak heights in their XANES spectra (i.e. 0.65). Conver-
sely, the pre-edge peaks in the XANES of Na3VO4 and
Mg3V2O8 are much higher than that of dehydrated
VxOy/SBA-15 (Figure 3(a)).
In Figure 3(b) the FT(c(k)*k3) of NH4VO3, Mg2V2O7,

and Na3VO4 are compared to that of dehydrated VxOy/
SBA-15. The first V-O peak in the FT(c(k)*k3) at ~1.4
Å (not phase shift corrected) for all references shown
corresponds to a VO4 tetrahedron in the respective
structures. Apparently, the spectra of NH4VO3 and
Mg2V2O7 most closely resemble that of dehydrated
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Table 1 N2 physisorption analysis of supported vanadium oxide samples.

Vanadium loading on SBA-15 SBET dp Vp
(wt %) V atoms/nm2 (mmol/g) (m2/g) (nm) (mL/g)

SBA-15 - - - 897 7.0 1.1

2.7 wt % V/SBA-15 2.7 0.7 0.53 445 6.7 0.5

5.4 wt % V/SBA-15 5.4 1.4 1.05 440 6.6 0.5

10.8 wt % V/SBA-15 10.8 4.7 2.12 273 5.5 0.3

Vanadium loading, surface area (SBET), pore diameter (dP), and pore volume (VP) of SBA-15 and vanadium oxides supported on SBA-15. Details have been
presented in Ref [10].

Figure 1 V K edge c(k) of dehydrated VxOy/SBA-15 with different vanadium loadings (2.7 wt %, 5.4 wt %, and 10.8 wt %) and
reference NH4VO3.
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VxOy/SBA-15. In the FT(c(k)*k3) of Na3VO4 and
Mg3V2O8 the first V-O peak is significantly higher than
in the FT(c(k)*k3) of dehydrated VxOy/SBA-15. In con-
trast to the FT(c (k)*k3) of Mg3V2O8 which exhibits a
significant amplitude at distances above 2 Å, the FT(c
(k)*k3) of Na3VO4, NH4VO3, Mg2V2O7, and dehydrated
VxOy/SBA-15 show little amplitude at higher distances.
Moreover, looking at the differences between the FT(c
(k)*k3) of Na3VO4, NH4VO3, and Mg2V2O7, the latter
appears to yield the best agreement with that of dehy-
drated VxOy/SBA-15. In all reference the low amplitude
of the FT(c (k)*k3) at R > 2 Å is characteristic of the
local structure around the V centers. It is not caused by
an increased amount of disorder. In total, based on
comparing the XANES and FT(c (k)*k3) of dehydrated
VxOy/SBA-15 to those of potential references, NH4VO3

and Mg2V2O7 have been identified as suitable references
to serve as model systems for a more detailed structural
analysis.
Before we discuss the details of analyzing the XAFS

data of dehydrated VxOy/SBA-15, a suitable analysis

procedure for the higher V-V contributions in the XAFS
spectra of references NH4VO3 and Mg2V2O7 was
sought. As an example and to reduce the number of
tables here, the application of confidence limits and F
parameter to distinguish analysis fitting procedures is
described for two refinements of a suitable model struc-
ture to the experimental FT(c (k)*k3)of dehydrated
VxOy/SBA-15. The model structure consisted of a tetra-
hedral coordination of the V center by four oxygen
atoms at ~1.7 Å (NH4VO3), two vanadium atoms at dis-
tances at ~3.4 Å (NH4VO3) and 3.6 Å (Mg2V2O7), one
oxygen atom at ~2.9 Å (Mg2V2O7), and one Si atom at
~2.8 Å (Table 2). Experimental FT(c(k)*k3) of Mg2V2O7

and NH4VO3 and the corresponding XAFS refinements
are shown in Figure 4. Deviations between the theoreti-
cal and experimental spectrum of Mg2V2O7 in the range
from 2 - 4 Å are caused by the number of Mg neighbors
and nearly linear multiple-scattering paths in Mg2V2O7

that contribute in this range. These are not sufficiently
accounted for by the simplified refinement procedure.
The results of the XAFS refinement for dehydrated

Figure 2 V K edge XANES spectra (a) and FT(c(k)*k3) (b) of dehydrated VxOy/SBA-15 samples with different vanadium loadings (2.7 wt
%, 5.4 wt %, and 10.8 wt %).
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VxOy/SBA-15, NH4VO3, and Mg2V2O7 are summarized
in Table 2. Apparently, the distorted VO4 tetraeder in
NH4VO3 required two different V-O distances to be
included in the refinement, while Mg2V2O7 and dehy-
drated VxOy/SBA-15 exhibited a similar single V-O dis-
tance. It seems that the distortion in the VO4 units of
crystalline reference Mg2V2O7 could not be resolved by
the XAFS analysis procedure employed. Accordingly, a
lower s2 was obtained (0.0012 Å2) for NH4VO3 com-
pared to those of dehydrated VxOy/SBA-15 and
Mg2V2O7 (0.0075 Å2 and 0.0059 Å2, respectively). Con-
trarily, a single V-V distance at 3.47 Å (CN = 2) sufficed
for NH4VO3 (consisting of chains of VO4 units), while
two V-V distances had to be included for Mg2V2O7

(consisting of adjacent V2O7 units) and dehydrated
VxOy/SBA-15. In all three cases, a similar s2 parameter

for the V-V contributions of about 0.014 Å2 was
obtained.
The corresponding confidence limits and significance

parameters F are given in Table 3. In fitting procedure
#1 two V-O distances in the first V-O shell were
allowed to vary independently (both with a CN of 2 and
the same s2). Moreover, E0 was also allowed to vary in
fitting procedure #1. Because of Nind = 18 and Nfree =
11 refinement procedure #1 would be taken as reliable
according to the Nyquist criteria. However, confidence
limits of the first V-O distance of ± 0.1 Å and an F
parameter of 0.7 for both distance and s2 were obtained
with procedure #1. Moreover, E0 exhibited a confidence
limit of ± 9.2 and F = 0.9. Apparently, fitting procedure
#1 already exceeds the number of meaningful para-
meters and yield ambiguous structural parameters. On

Figure 3 V K edge XANES spectra (a) and FT(c(k)*k3) (b) of dehydrated VxOy/SBA-15 (10.8 wt %) (dashed on right side) compared to
those of various references (i.e. NH4VO3, Mg2V2O7, Na3VO4, and Mg3V2O8).
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the one hand, the reduced amplitude of the FT(c(k)*k3)
of dehydrated VxOy/SBA-15 compared to that of refer-
ences consisting of undistorted VO4 units (Figure 3)
suggested the presence of more than one V-O distance,
including a short “vanadyl” V = O distance. On the
other hand, however, the resolution in the experimental
FT(c(k)*k3) and the available degree of freedom did not
permit refining more than one V-O distance in the pro-
cedure used. Therefore, the fitting procedure was modi-
fied. In the following, E0 was kept invariant in the
refinement and only one V-O distance at ~1.75 Å was
used. In contrast to procedure #1, procedure #2 yielded
reasonable confidence limits and acceptable F
parameters.
The s2 parameter of the V-O contribution at 2.9 Å

exhibited a rather high confidence limit and F = 0.7.
Apparently, both V-O and V-Si neighbors in the dis-
tance range from 2.5 Å to 2.9 Å are required for a good
refinement of the model structure to the experimental
data. This is indicated by the confidence limits and F
parameters calculated for the corresponding distances
(Table 3). Nevertheless, the high s2 obtained for the V-
Si contribution and the rather low s2 obtained for the
V-O at 2.9 Å indicate a certain ambiguity of the corre-
sponding fitting results. The reason may be a consider-
able static disorder and, thus, a broadened V-Si distance
distribution. Hence, calculating and evaluating confi-
dence limits and F tests permitted to arrive at a mean-
ingful and reliable fitting procedure. In that, the
approach employed appears to be superior to only cal-
culating the Nyquist criteria. In total, procedure #2
worked very well for XAFS data analysis of dehydrated
VxOy/SBA-15 and Mg2V2O7. In contrast, the local

structure around V centers in NH4VO3 was best
described by assuming two different V-O distances in
the first coordination shell and only one V-V distance at
3.47 Å (CN = 2) (Table 2). A V-O distance at 2.8 Å was
found to be insignificant.

Local structure of dehydrated VxOy/SBA-15 - XAFS
refinement of “VO4“ based model structures
After having identified two suitable references as model
structures for XAFS refinements to the experimental FT
(c(k)*k3) of dehydrated VxOy/SBA-15 (Figure 3(b)), the
XAFS analysis approach chosen shall be described in
more detail. In addition to using confidence limits and F
tests as introduced above, the suitable XAFS fitting pro-
cedure was developed stepwise as outlined in the
following.
First, we started with an often repeated assumption

from the literature. DR-UV-Vis or Raman measurements
revealed that dehydration of VxOy/SBA-15 resulted in a
characteristic change from a distorted square pyramidal
to a distorted tetrahedral coordination [10,13,16]. The
local structure of vanadium oxide species supported on
SiO2 was assumed to correspond to isolated VO4 units.
Hence, in a first tetrahedron approach the theoretical
XAFS function of a VO4 tetrahedron consisting of two
slightly different V-O distances was refined to the FT(c
(k)*k3) of dehydrated VxOy/SBA-15 (Figure 5, top)
together with the Fourier transformed c(k)*k3 of the
individual scattering paths). Because of the similar
height of the pre-edge peak in the XANES (Figure 3(a))
and the first V-O peak in the FT(c(k)*k3), phases and
amplitudes employed in the refinement were calculated
using the model structure of NH4VO3 (ICSD 1487 [26])
and Mg2V2O7 (ISCD 2321 [27]). Figure 5, top shows a
good agreement between theoretical and experimental
FT(c(k)*k3) of dehydrated VxOy/SBA-15 for the first V-
O peak below 2 Å. Naturally, the amplitude between 2
Å and 4 Å in the FT(c(k)*k3) could not be accounted
for. Hence, a structural model assuming only isolated
VO4 species cannot adequately describe the local struc-
ture around the V centers in dehydrated VxOy/SBA-15.
Therefore, we assumed that higher coordination shells

around the vanadium centers significantly contribute to
the FT(c(k)*k3) of dehydrated VxOy/SBA-15. These
shells have to be included in the refinement. A see-
mingly expected contribution may arise from silicon
backscatterers in the SiO2 support at distances of less
than 3.0 Å. This has been previously proposed by Keller
et al. [20]. Thus, in extension of the tetrahedron
approach a silicon atom at a V-Si distance of 2.8 Å was
included in the theoretical model. In the corresponding
“O3V-O-Si” unit a Si-O distance of 1.62 Å is assumed
(inset in Figure 5, bottom)), as it is found in various sili-
cates. The result of the XAFS refinement of the “O3V-

Table 2 EXAFS refinement results obtained for
experimental FT(c(k)*k3) of dehydrated VxOy/SBA-15,
NH4VO3, and Mg2V2O7.

Model VxOy-SBA-15 Mg2V2O7 NH4VO3

Type N R [Å] R [Å] s2 [Å2] R [Å] s2 [Å2] R [Å] s2 [Å2]

V-O 1 1.63 1.78 0.0075 1.74 0.0059 1.68 0.0012

V-O 1 1.70 1.78C 0.0075C 1.74C 0.0059C 1.68C 0.0012C
V-O 2 1.76 1.78C 0.0075C 1.74C 0.0059C 1.84 0.0012C
V-O 1 2.87 2.89 0.0017 2.77 0.0165 - -

V-V 1 3.36 3.30 0.0135 3.28 0.0134 3.47 0.0147

V-V 1 3.62 3.62 0.0135C 3.56 0.0134C 3.47C 0.0147C
V-Si 1 2.80 2.54 0.0121 - - - -

Type and number (N) of atoms at distance R from the absorbing V atom in a
model system assuming an ordered arrangement of V2O7 units (Figure 7)
compared to experimental distances and XAFS disorder parameters (s2).
Parameters were obtained from the refinement of this model structure to the
experimental V K edge XAFS FT(c(k)*k3) of dehydrated VxOy/SBA-15 (10.8 wt
%), Mg2V2O7, and NH4VO3 (k range from 2.7-11.0 Å-1, R range 0.8-4.0 Å, Nind =
18, E0 = 0 eV in all cases, fit residual 3.6 (dehydrated VxOy/SBA-15) (Nfree = 9),
11.2 (Mg2V2O7) (Nfree = 7), 8.9 (NH4VO3) (Nfree = 5)) (Subscript C indicates
parameters that were correlated in the refinement). Confidence limits and
significance of fitting parameters are given in Table 3.
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Figure 4 Experimental (solid) V K edge FT(c(k)*k3) of NH4VO3, Mg2V2O7 reference together with a theoretical XAFS function (fitting
results are given in Table 2). Also shown are the Fourier transformed c(k)*k3 of the individual scattering paths together with corresponding
coordination number in brackets. brackets.
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O-Si” model to the FT(c(k)*k3) of dehydrated VxOy/
SBA-15 is depicted in Figure 5, bottom). The additional
Si backscatterer resulted in a better agreement between
theoretical and experimental FT(c(k)*k3) at distances of
about 2.4 Å (not phase shift corrected). The resulting V-
Si distance amounted to 2.54 Å, comparable to the dis-
tance obtained by Keller et al. (2.61 Å [20]). However, it
can be easily seen from Figure 5, bottom) that the
amplitude in the FT(c(k)*k3) of dehydrated VxOy/SBA-
15 between 2.4 and 4.0 Å is still not accounted for.

Local structure of dehydrated VxOy/SBA-15 - XAFS
refinement of “V2O7“ based model structures
Figure 5 shows that an “isolated VO4“ model did not
properly describe the local structure between 2 Å and 4
Å around vanadium centers in dehydrated VxOy/SBA-
15. Hence, we assumed that at least “V2O7 dimers”
would be needed to achieve a good agreement between
theoretical and experimental XAFS FT(c(k)*k3). V2O7

units are present in the structures of the references
NH4VO3 and Mg2V2O7 whose spectra resembled best
the XANES and EXAFS spectra of dehydrated VxOy/
SBA-15 (Figure 3). Therefore, a V-V scattering path at
3.4 Å was included in the model used in the XAFS
refinement. This distance corresponds to the shortest V-
V distance between two corner-sharing VO4 tetrahe-
drons in “V2O7 dimers” of NH4VO3 and Mg2V2O7. The
result of the corresponding XAFS refinement is shown
in. Apparently, a structural model based on isolated
V2O7 dimers was equally unsuited to describe the local

structure around V centers in dehydrated VxOy/SBA-15.
The agreement between theoretical and experimental
FT(c(k)*k3) in the range from 2 to 4 Å is still not suffi-
cient (Figure 6). Also, adding a V-Si distance to this
“isolated V2O7 dimer model” only resulted in a minor
improvement of the refinement.
Figure 5 and Figure 6 clearly show that neither an

“isolated VO4“ model nor an “isolated V2O7“ model
properly describe the local structure of the majority of
V centers in dehydrated VxOy/SBA-15. Hence, in the
next step an ordered arrangement of neighboring V2O7

units was assumed. Because of their similar XANES and
EXAFS spectra, we again referred to NH4VO3 and
Mg2V2O7 as references. V2O7 units form chains in
NH4VO3 with one V-V distance. Conversely, V2O7 units
are neighboring but more separated in Mg2V2O7 result-
ing in two distinct V-V distances (ICSD 2321 [27]).
Accordingly, two additional scattering paths were added
to the previous “isolated V2O7“ model. These two paths
correspond to V-O (2.8 Å) and V-V (3.6 Å) distances
between two neighboring V2O7 units in the structure of
Mg2V2O7. The result of the corresponding XAFS refine-
ment to the FT(c(k)*k3) of dehydrated VxOy/SBA-15 is
shown in Figure 7 together with the various V-O and
V-V distances used. Apparently, assuming neighboring
V2O7 units in an ordered arrangement supported on
SBA-15 yielded a good agreement between theoretical
and experimental FT(c(k)*k3) of dehydrated VxOy/SBA-
15 over the extended R range from 1 Å to 4 Å. The
structural and fitting parameters obtained from the
XAFS refinement to the experimental FT(c(k)*k3) of
dehydrated VxOy/SBA-15 and Mg2V2O7 are given in
Table 2. The similar V-O distances, V-V distances, and
s2 parameters of dehydrated VxOy/SBA-15 and
Mg2V2O7 corroborate our choice of model system to
describe the local structure around V centers dehydrated
VxOy/SBA-15.

Schematic structural representation of dehydrated VxOy/
SBA-15
A schematic structural representation of the ordered
arrangement of V2O7 units in dehydrated VxOy/SBA-15
is depicted in Figure 8. In contrast to previous results
on low loaded (< 1 V/nm2) VxOy/SiO2 samples [17,21]
we conclude that isolated VO4 units are not the major
vanadium oxide species present on the dehydrated
VxOy/SBA-15 samples studied here. From the different
loadings studied, only the 2.7 wt % VxOy/SBA-15 sample
possessed a vanadium content of less than 1 V/nm2.
The three dehydrated VxOy/SBA-15 samples exhibited
only minor differences in their XANES spectra
(Figure 2), FT(c(k)*k3) (Figure 9), and XAFS fitting
results (Table 4). Hence, independent of the V loading

Table 3 Evaluation of EXAFS refinement of dehydrated
VxOy/SBA-15.

Type
R [Å]
s2 [Å2]

Procedure #1 Procedure #2

N Z ± z F Z ± z F

R(V-O) 4(2) 1.81 0.11 0.7 1.78 0.005 0

s2(V-O) 4 0.0066 0.0047 0.7 0.0075 0.0004 0

R(V-O) -(2) 1.75 0.04 0.4 - -

R(V-O) 1 2.89 0.01 0.5 2.90 0.011 0

s2(V-O) 1 0.0014 0.0017 0.9 0.0017 0.0018 0.7

R(V-V) 1 3.29 0.017 0 3.29 0.016 0

s2(V-V) 2 0.0135 0.0203 0.7 0.0135 0.00035 0.3

R(V-V) 1 3.61 0.019 0 3.62 0.024 0

R(V-Si) 1 2.54 0.01 0 2.54 0.011 0

s2(V-Si) 1 0.0115 0.0011 0.3 0.0121 0.0011 0

E0 - -0.9 -0.3 0.8 - - -

V K edge XAFS parameters (Z for distances R and disorder parameter s2)
obtained from two different procedures of fitting a model structure (i.e.
“ordered V2O7 dimers” on SiO2 support) to the experimental XAFS FT(c(k)*k3)
of dehydrated VxOy/SBA-15 (10.8 wt %) (details of fit given in Table 2)
together with confidence limits (± z, referring to 95% of fit residual) and
significance parameters F (details given in text). Fit residual 3.1 for Procedure
#1 and 3.6 for Procedure #2.
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Figure 5 Experimental (solid) V K edge FT(c(k)*k3) of dehydrated VxOy/SBA-15 (10.8 wt %) together with theoretical XAFS functions
(top: “isolated VO4“ model, bottom: addition of V-Si path to “isolated VO4“ model). Insets show the VO4 tetrahedron (top) and a
schematic representation of the V-Si path employed (bottom). Also shown are the Fourier transformed c(k)*k3 of the individual scattering paths
together with corresponding coordination number in.
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in the range 2.7 - 10.8 wt % the local structure of the
majority of V centers in dehydrated VxOy/SBA-15 is
described best by an ordered arrangement of neighbor-
ing V2O7 units (Table 4, Figure 9). Decomposition of
the decavanadate precursor during calcinations of the
as-prepared materials will most likely result in the for-
mation of dehydrated VxOy/SBA-15. Any description of
the formation mechanism of ordered V2O7 units on the
surface of SiO2, however, is beyond the scope of this
work. Exposure of the calcined material to ambient con-
ditions apparently results in re-hydration and formation
of the hydrated VxOy species supported on SBA-15.
This transformation already suggests a reversible hydra-
tion-re-hydration behavior of vanadium oxide species
supported on SBA-15 which should be the subject of
further studies.
The presence of non-monomeric VxOy species in

dehydrated VxOy/SBA-15 samples was also recently con-
cluded based on NEXAFS studies combined with

theoretical calculations [28]. Eventually, structural evolu-
tion and catalytic activity of dehydrated VxOy/SBA-15
were studied by combined in situ XAS-MS under selec-
tive propene oxidation reaction condition. Onset of cat-
alytic activity was detected at about 573 K. The in situ
XAS data measured indicated, that the characteristic
ordered arrangement of V2O7 dimers in the local struc-
ture of dehydrated VxOy/SBA-15 persisted under cataly-
tic reaction conditions. A more detailed analysis of
structure activity correlations of VxOy/SBA-15 under
selective oxidation reaction conditions will be presented
elsewhere.
Oxygen and silicon atoms of the SiO2 support are not

depicted in the schematic representation depicted in
Figure 8. In particular Si atoms in the topmost layer of
SiO2 belong to the second coordination sphere of the V
centers. Previous reports have indicated that V-Si dis-
tances may contribute to the experimental FT(c(k)*k3)
of dehydrated VxOy/SBA-15 [19]. Therefore, a single

Figure 6 Experimental (solid) V K edge FT(c(k)*k3) of dehydrated VxOy/SBA-15 (10.8 wt %) together with a theoretical XAFS function
(i.e. “isolated V2O7“ model). Inset shows the V2O7 dimer. Also shown are the Fourier transformed c(k)*k3 of the individual scattering paths
together with corresponding coordination number in brackets.
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Figure 7 Experimental (solid) V K edge FT(c(k)*k3) of dehydrated VxOy/SBA-15 (10.8 wt %) together with a theoretical XAFS function
(i.e. “ordered arrangement of V2O7“ model). Fitting results are given in Table 2. Inset shows a schematic representation of arrangement of
V2O7 units in Mg2V2O7. Also shown are the Fourier transformed c(k)*k3 of the individual scattering paths together with corresponding
coordination number in brackets.

Figure 8 Schematic structural representation of dehydrated VxOy/SBA-15. The most prominent distances employed in the XAFS refinement
procedure are indicated.
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Figure 9 Experimental (solid) V K edge FT(c(k)*k3) of dehydrated VxOy/SBA-15 (2.7 wt %, 5.4 wt %, and 10.8 wt %) together with a
theoretical XAFS function (structural model depicted in Figure 7). Fitting results are given in Table 4.

Table 4 EXAFS refinement results obtained for different V loadings on VxOy/SBA-15 in the dehydrated state.

Model 10.8 wt % 5.4 wt % 2.7 wt %
Type N R [Å] R [Å] s2[Å2] R [Å] s2[Å2] R [Å] s2[Å2]

V-O 1 1.63 1.78 0.0075 1.77 0.0069 1.78 0.0075

V-O 1 1.70 1.78 0.0075 1.77 0.0069 1.78 0.0075

V-O 2 1.76 1.78 0.0075 1.77 0.0069 1.78 0.0075

V-V 1 3.36 3.30 0.0135 3.33 0.0114 3.37 0.0113

V-O 1 2.87 2.90 0.0017 2.87 0.0022 2.86 0.0015

V-V 1 3.62 3.62 0.0135 3.62 0.0114 3.65 0.0113

V-Si 1 2.80 2.54 0.0121 2.53 0.0139 2.54 0.0081

Type and number (N) of atoms at distance R from the absorbing V atom in a model system assuming an ordered arrangement of V2O7 units (Figure 7) compared
to experimental distances and XAFS disorder parameter (s2). Parameters were obtained from the refinement of this model structure to the experimental V K
edge XAFS FT(c(k)*k3) of dehydrated VxOy/SBA-15 with different V loadings (i.e. 10.8 wt %, 5.4 wt %, 2.7 wt %) (Figure 9) (k range from 2.7-11.0 Å-1, R range 0.8-
4.0 Å, Nind = 18, Nfree = 9, E0 = 0 eV in all cases, fit residual 3.6 (10.8 wt %), 7.0 (5.4 wt %), 7.8 (2.7 wt %)) (Subscript C indicates parameters that were correlated
in the refinement). Confidence limits and significance of fitting parameters correspond to those given in for the 10.8 wt % sample.
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V-Si scattering path was included in the refinement of
the “neighboring V2O7“ model described above (Figure
7). The structural parameters and refinement details are
given in Table 2 and Table 4. Comparing fit residuals,
confidence limits, and F parameters a significant
improvement was visible. Apparently, both local struc-
ture in VxOy species and interaction with SiO2 support
are required to describe the FT(c(k)*k3) of dehydrated
VxOy/SBA-15 samples.

Limitations of XAFS analysis of dehydrated VxOy/SBA-15
Eventually, the limitations of the XAFS analysis of dehy-
drated VxOy/SBA-15 presented here should be dis-
cussed. XAFS is not a very sensitive technique with
respect to distinguishing and identifying additional min-
ority species. Experimental XAFS spectra are clearly
dominated by the signal of the majority phase. Hence,
the presence of minority vanadium oxide species in
dehydrated VxOy/SBA-15 with concentrations of less
than ~5% cannot be excluded. Only if the contribution
of additional phases amounts to more than ~5-10%, dis-
tortion of the FT(c(k)*k3) and deviation from the model
structure assumed will be detectable. This holds in par-
ticular, if these minority species happen to be less
ordered than the majority phase.
Moreover, XAFS is an averaging technique. Certainly,

higher shells should be properly taken into account and
various references should be measured for comparison.
Even then, however, it may remain difficult to unam-
biguously distinguish between mixtures of various spe-
cies or structures. Hence, alternative scenarios with
different vanadium oxide species need to be considered
and discussed. An equal mixture of isolated VO4 and
neighboring V2O7 units, for instance, may exhibit a
XAFS FT(c(k)*k3) similar to that presented here. For
two reasons this assumption is not very likely. First, the
V-O distances in the first “VO4“ shell of the two species
would have to be the same. Otherwise a strong reduc-
tion in amplitude of the first V-O peak in the FT(c(k)
*k3) caused by destructive interference would be dis-
cernible. Second, isolated VO4 would not contribute to
the FT(c(k)*k3) in the range from 2 Å to 4 Å. Thus,
reduction in amplitude and much higher s2 parameters
compared to reference Mg2V2O7 would be detectable.
Both are not observed in the EXAFS analysis of dehy-
drated VxOy/SBA-15 presented here (Figure 3(b), Table
2). A similar statement holds for isolated V2O7 units or
a less ordered arrangement of neighboring V2O7 units.
Both would result in a reduction in FT(c(k)*k3) ampli-
tude because of missing contribution in the 2-4 Å range
or destructive interference caused by a broadened distri-
bution of distances, respectively. Moreover, for isolated
or less ordered V2O7 units a single V-V distance would
suffice to describe the experimental XAFS spectrum.

This was also not observed in the XAFS analysis proce-
dure employed. Eventually, higher V-Si distances may
have to be considered in addition to a V-Si distance of
~2.5 Å (Table 2). However, a significant contribution of
V-Si distances at more 3.0 Å range in the FT(c(k)*k3)
would require a highly ordered arrangement of VxOy

species on the SiO2 support and a very narrow distance
distribution. This seems to be unlikely.
In total, assuming a structural arrangement of vana-

dium centers in dehydrated VxOy/SBA-15 that has
already been established for reference vanadium oxides
(i.e. Mg2V2O7) is simple and results in a good agree-
ment with experimental data. More complex and artifi-
cially constructed arrangements of VxOy species
supported on SiO2 may be conceivable but appear to be
less likely. Both XANES and EXAFS analysis corroborate
a local structure around the majority of V centers in
dehydrated VxOy/SBA-15 similar to the ordered
arrangement of neighboring V2O7 dimers in the struc-
ture of Mg2V2O7.

Local structure of hydrated VxOy/SBA-15 Comparison to V
oxide references
The EXAFS c(k)*k3 of hydrated VxOy/SBA-15 (as-pre-
pared) with different V loadings are depicted in Figure
10. The usable spectral ranged extended from 2.7 Å
through 10.5 Å. The V K edge XANES spectra and the
FT(c(k)*k3) of hydrated VxOy/SBA-15 are shown in
Figure 11. The Fourier transformed c(k)*k3 and the V K
near edge spectra of hydrated VxOy/SBA-15 are com-
pared to those of vanadium oxide references in Figure
12. The XANES spectrum of hydrated VxOy/SBA-15
resembles that of MgV2O6, [H3N(CH2)4]6V10O28, and
V2O5 (Figure 12(a)). In these vanadium oxide references
vanadium centers exhibit a distorted octahedral or dis-
torted square pyramidal coordination. The XANES spec-
tra of hydrated VxOy/SBA-15, V2O5, MgV2O6, and [H3N
(CH2)4]6V10O28 show a similar height of the pre-edge
peak. Because the pre-edge peak height is determined by
the coordination of the vanadium centers [29], hydrated
VxOy/SBA-15 also appears to exhibit a distorted square
pyramidal coordination of V centers. This has also been
observed by Bell et al. [18] and others.
The range of potential model structures describing the

local structure of hydrated VxOy/SBA-15 can be further
narrowed when comparing the corresponding FT(c(k)
*k3) (Figure 12(b)). Considering peak positions and rela-
tive peak heights in the FT(c(k)*k3), it appears that from
the references available the FT(c(k)*k3) of V2O5 resem-
bles that of hydrated VxOy/SBA-15. Because of the
lower intensity in the FT(c(k)*k3) hydrated VxOy/SBA-
15 may possess a more disordered structure compared
to that of crystalline V2O5. This is in good agreement
with a detailed comparison of the corresponding
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XANES spectra. On the one hand, the positions of the
various peaks in the XANES of hydrated VxOy/SBA-15
are similar to that of V2O5 (Figure 12(a)). On the other
hand, the lower peak intensities are also indicative of a
disordered V2O5 like structure of the vanadium oxide
species in hydrated VxOy/SBA-15.

Local structure of hydrated VxOy/SBA-15 XAFS refinement
of “V2O5“ based model structure
Comparison of the XANES and FT(c(k)*k3) of hydrated
VxOy/SBA-15 to those of various references identified

V2O5 as most suitable model structure for a detailed
EXAFS analysis. Ammonium decavanadate decomposes
to V2O5 during treatment in air at temperatures above
773 K. Calcination of the materials studied here will
most likely result in formation of the dehydrated species
as described above. Re-hydration upon exposure to
ambient conditions resulted in vanadium oxide species
supported on SBA-15 with a local structure similar to
that of V2O5. A detailed discussion of the underlying
formation mechanisms is beyond the scope of this work.
Therefore, a theoretical XAFS function calculated on

Figure 10 V K edge c(k) of hydrated VxOy/SBA-15 samples with different vanadium loadings (2.7 wt %, 5.4 wt %, and 10.8 wt %) and
reference V2O5.
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the basis of a V2O5 model structure (ICSD 60767 [30])
was refined to the experimental FT(c(k)*k3) of hydrated
VxOy/SBA-15. Details of the XAFS refinement proce-
dure and the structural parameters obtained are given in
Table 5. In addition, the V2O5 model structure was
refined to the FT(c(k)*k3) of V2O5 to validate the proce-
dure chosen. Good agreement between the theoretical
XAFS function of a V2O5 model structure and the FT(c
(k)*k3) of hydrated VxOy/SBA-15 and V2O5 was
obtained (Figure 13).
As described above, the validity of the XAFS analysis

approach chosen was evaluated by calculating confi-
dence limits and F parameters (Table 5). The model
structure employed corresponds to the local structure
around V centers in bulk V2O5 (Table 6). In fitting pro-
cedure #1 there V-O distances (1.6 Å, 1.8 Å, and 2.0 Å)
and two s2 (one for R = 1.6 Å and one for all other V-
O distances) in the first V-O shell were allowed to vary
independently. Additionally, three V-V distances (3.1 Å,
3.4 Å, and 3.6 Å) with the same s2 were refined. More-
over, E0 was also allowed to vary in fitting procedure #1.

Again because of Nind = 18 and Nfree = 10 refinement
procedure #1 would be considered reliable according to
the Nyquist criteria. Reasonable confidence limits and F
= 0 were calculated for the V-V distances and s2(V-V)
parameter. However, rather high confidence limits of
the V-O distances of ± 0.05 Å and F parameters of 0.8
for both s2(V-O) parameters were obtained with proce-
dure #1. Moreover, E0 exhibited a confidence limit of ±
17.0 and F = 0.9. Hence, fitting procedure #1 clearly
exceeds the number of meaningful parameters. There-
fore, the fitting procedure was modified and the number
of free parameters was reduced. E0 was kept invariant
again in the refinement, two V-O distances at ~1.6 Å
and 1.9 Å, and one s2(V-O) parameter were used. In
contrast to procedure #1, procedure #2 yielded reason-
able confidence limits (e.g. ± 0.02 for V-O distances)
and acceptable F parameters (mostly F = 0).
Table 5 indicates a small increase in the various V-O

and V-V distances from V2O5 to hydrated VxOy/SBA-
15. Intercalation of water in hydrated VxOy/SBA-15 may
be accompanied by increasing nearest neighbor

Figure 11 V K edge XANES spectra (a) and FT(c(k)*k3) (b) of hydrated VxOy/SBA-15 samples with different vanadium loadings (2.7 wt
%, 5.4 wt %, and 10.8 wt %).
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Figure 12 V K edge XANES spectra (a) and FT(c(k)*k3) of hydrated VxOy/SBA-15 (10.8 wt %) compared to those of various references
(i.e. V2O5, [H3N(CH2)4]6V10O28, and MgV2O6).

Table 5 Evaluation of EXAFS refinement of dehydrated VxOy/SBA-15.

V2O5, procedure #1 V2O5, procedure #2 Hydrated VxOy-SBA-15
Type N Z ± z F Z ± z F Z ± z F

V - O 1 1.58 0.05 0.3 1.58 0.011 0 1.65 0.014 0

s2(V-O) 3(1) 0.011 0.0055 0.8 0.0104 0.0069 0 0.0126 0.0003 0

V - O 3(2) 1.87 0.06 0.3 1.88 0.014 1.92 0.018 0

s2(V-O) -(3) 0.0098 0.004 0.8 - - - - - -

V - O -(1) 1.93 0.03 0.5 - - - - - -

V - V 2 3.12 0.006 0 3.11 0.003 0 3.08 0.0075 0

s2(V-V) 3 0.0047 0.00032 0 0.0047 0.00035 0 0.013 0.0006 0

V - V 1 3.39 0.044 0 3.38 0.046 0 3.42 0.046 0.3

V - V 2 3.60 0.024 0 3.59 0.024 0 3.65 0.028 0

E0 - 0.38 17.0 0.9 - - - - - -

V K edge XAFS parameters (Z for distances R and disorder parameter s2) obtained from two different procedures of fitting a model structure (i.e. V2O5) to the
experimental XAFS FT(c(k)*k3) of reference V2O5 and hydrated VxOy/SBA-15 (10.8 wt %) (details of fit given in Table 6) together with confidence limits (± z,
referring to 95% of fit residual) and significance parameter F (details given in text). Fit residual 6.0 for V2O5 procedure #1, 6.3 for V2O5 procedure #2, and 13.6 for
hydrated VxOy-SBA-15.
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distances. More pronounced, though, is the increase in
the disorder parameter s2 for the V-O and V-V scatter-
ing scattering paths used in the XAFS refinement for
hydrated VxOy/SBA-15 (Table 5). In particular, V-V
contributions are strongly damped in the FT(c (k)*k3) of
hydrated VxOy/SBA-15 indicating an increased disorder
in the local structure of hydrated VxOy species sup-
ported on SBA-15 compared to bulk V2O5.
The structural similarity between hydrated vanadium

oxide species supported on SiO2 and V2O5 has pre-
viously been observed by Raman spectroscopy [10].

Evidently, the local structure of hydrated VxOy/SBA-15
used here is very similar to other materials previously
described in the literature. Dehydration should therefore
result in a similar structure of the dehydrated phase. In
addition to 10.8 wt % VxOy/SBA-15, samples with lower
loadings of 2.7 wt % and 5.4 wt % V were measured
(Figure 10 and Figure 11) and analyzed according to the
procedure described above. Very similar results were
obtained for the hydrated state of the low-loading sam-
ples compared to 10.8 wt % hydrated VxOy/SBA-15.
Apparently, in the range of V loadings from ~3 to 11 wt

Figure 13 Experimental (solid) V K edge FT(c(k)*k3) of hydrated VxOy/SBA-15 (10.8 wt %) (bottom) and of V2O5(top) together with
theoretical XAFS functions (V2O5 model).
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% the local structure of both hydrated and dehydrated
VxOy/SBA-15 is largely independent of the amount of
vanadium oxide supported on SBA-15.

Conclusions
X-ray absorption spectroscopy is a very suitable techni-
que for studying the local structure of dispersed metals
or metal oxides on various support materials. Conven-
tional XAFS analysis consists of finding a suitable model
structure and fitting the corresponding theoretical XAFS
functions to the experimental data. Because the number
of potential parameters often exceeds the number of
“independent” parameters, evaluating the reliability and
significance of a particular fitting procedure is manda-
tory. Therefore, the number of independent parameters
(Nyquist) alone is not sufficient. Here, we have
employed confidence limits and F parameters to identify
suitable analysis procedures. The local structure of vana-
dium oxide supported on nanostructured SiO2 (SBA-15)
was investigated. Three samples with different vanadium
loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt %) were
employed. Thermal treatment in air at 623 K resulted in
characteristic structural changes of the V oxide species.
The local structure of dehydrated VxOy/SBA-15 was
described best by assuming a model structure consisting
of an ordered arrangement of neighboring V2O7 units.
This is in good agreement with recent NEXAFS studies
and theoretical calculations that also concluded the pre-
sence of V-V bonds in the VxOy species supported on
SBA-15 [28]. Moreover, the local structures of both
hydrated and dehydrated VxOy/SBA-15 were found to
be independent of the V loading over the range
employed. With respect to XAFS data previously pre-
sented in the literature and interpreted in terms of

isolated VO4 units it can be suggested that including
contributions of higher shells would also lead to con-
clude polymeric VxOy units. Comparing the influence of
surface properties and structure of various support
materials will be the subject of future work. Eventually,
onset of catalytic activity in selective propene oxidation
was detected at about 573 K. In situ XAS data measured
under reaction conditions indicated, that the characteris-
tic ordered arrangement of V2O7 dimers in the local
structure of dehydrated VxOy/SBA-15 persisted. Future
studies on VxOy species supported on SBA-15 as model
systems for vanadium based selective oxidation catalysts
will have to take the presence of V2O7 species rather
than isolated VO4 units into account.

Experimental
Sample preparation
Silica SBA-15 was prepared according to literature pro-
cedures [2]. Details of preparation and characterization
of the same catalysts were described elsewhere [9,10,14].
Briefly, SBA-15 was functionalized by adding 3-amino-
propyltrimethoxysilane (APTMS) to a suspension of
SBA-15 in toluene at 338 K. The suspension was stirred
for 12 hours. The contents were filtered, washed and
finally stirred in 0.3 M HCl for 12 hours. The contents
was filtered again, washed with water and dried in air
overnight (functionalized SBA-15). The vanadium oxides
supported on SBA-15 were prepared by adding appro-
priate amounts of butylammonium decavanadate [31] to
a suspension of functionalized SBA-15 in water. The
resulting powder was calcined at 823 K for 12 hours.
The results of the N2 physisorption analysis of the SBA-
15 and the SBA-15 supported vanadium oxide samples
are given in and have been discussed in detail previously
together with detailed structural characterization [10].
Importantly, in the presence of vanadium oxide the hex-
agonal structure of SBA-15 is preserved, the mesopores
remain accessible to reactants, and the vanadia species
are located inside the pores of SBA-15.
The vanadium oxides supported on SBA-15 obtained

are denoted as hydrated VxOy/SBA-15 (as-prepared) or
dehydrated VxOy/SBA-15 (after thermal treatment). In
addition to VxOy/SBA-15 several vanadium oxide refer-
ence compounds with an average valance of +5 were
measured. These were either used as-purchased (V2O5

(Alfa Aesar 99.8%), NH4VO3 (Riedel de Haën, 99.5%)
and Na3VO4 (Alfa Aesar, 99.9%)) or were prepared
according to literature procedures (Mg2V2O7, MgV2O6,
Mg3V2O8 [32], and [H3N(CH2)4]6V10O28 [31]).

X-ray absorption spectroscopy (XAS)
In situ transmission XAS experiments were performed
at the V K edge (5.465 keV) at beamline E4 at the Ham-
burg Synchrotron Radiation Laboratory, HASYLAB,

Table 6 EXAFS refinement results obtained for
experimental FT(c(k)*k3) of hydrated VxOy/SBA-15 and
V2O5.

RModel [Å] V2O5 hydrated VxOy-SBA-15
Type N RModel [Å] R [Å] s2 [Å2] R [Å] s2 [Å2]

V - O 1 1.58 1.58 0.0104 1.65 0.0126

V - O 1 1.78 1.88 0.0104C 1.92 0.0126C
V - O 2 1.88 1.88C 0.0104C 1.92C 0.0126C
V - O 1 2.02 1.88C 0.0104C 1.92C 0.0126C
V - V 2 3.08 3.11 0.0047 3.08 0.0129

V - V 1 3.43 3.39 0.0047C 3.43 0.0129C
V - V 2 3.56 3.59 0.0047C 3.65 0.0129C

Type and number (N) of atoms at distance R from the V atoms in a V2O5

system compared to experimental distances and XAFS disorder parameter
(s2). Parameters were obtained from refinement of a V2O5 model structure
(ICSD 60767) to the experimental V K edge XAFS FT(c(k)*k3) of hydrated VxOy/
SBA-15 (10.8 wt %) and bulk V2O5(). (k range from 2.7 - 11.0 Å-1, R range 0.9 -
3.8 Å, E0 (VxOy/SBA-15) = 0.0 eV/E0 (V2O5) = 0.0, fit residual 13.4 (VxOy/SBA-15)
and 6.3 (V2O5), Nind = 18, Nfree = 7) (Subscript C indicates parameters that
were correlated in the refinement). Confidence limits and significance of
fitting parameters are given in Table 5.
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using a Si(111) double crystal monochromator. The
energy range used for V K near edge scans (XANES)
and extended XAFS scans (EXAFS) was 5.4-5.7 keV (~3
min/scan) and 5.4-6.0 keV (~20 min/scan), respectively.
For in situ and ex situ XAFS measurements samples
were mixed with BN and PE, respectively, and pressed
into self-supporting pellets (5 mm and 13 mm in dia-
meter, respectively). In order to obtain an edge jump, Δ
μx, at the V K below 1.0, 2 mg of 10.8 wt % and 5.4 wt
% VxOy/SBA-15, 3 mg of 2.7 wt % VxOy/SBA-15, ~1 mg
for bulk vanadium oxides (NH4VO3, V2O5, [H3N(CH2)4]

6V10O28, Na3VO4) diluted with BN (~15 mg), and 3-6
mg for bulk vanadium oxides (Mg3V2O8, MgV2O6)
diluted with PE (~200 mg) were employed. Transmis-
sion XAS measurements were performed in an in situ
cell described previously [33]. Dehydration of VxOy/
SBA-15 was conducted in 20% O2 and He (total flow 30
ml/min) in a temperature range from 293 K to 623 K at
a heating rate of 5 K/min and a holding time of 30 min
at 623 K. Reaction tests were performed in 5% propene
and 6% O2 in He in the temperature range from 293 K
to 723 K (5 K/min, total flow 30 ml/min). The gas
atmosphere was analyzed using a noncalibrated mass
spectrometer in a multiple ion detection mode
(QMS200 from Pfeiffer). Ex situ XAFS measurements
were performed in He atmosphere at room temperature.
X-ray absorption fine structure (XAFS) analysis was

performed using the software package WinXAS v3.2
[34]. Background subtraction and normalization were
carried out by fitting linear polynomials to the pre-edge
and 3rd degree polynomials to the post-edge region of
an absorption spectrum, respectively. The extended X-
ray absorption fine structure (EXAFS) c(k) was
extracted by using cubic splines to obtain a smooth
atomic background μ0 (k). The FT(c(k)*k3), often
referred to as pseudo radial distribution function, was
calculated by Fourier transforming the k3-weighted
experimental c(k) function, multiplied by a Bessel win-
dow, into the R space. EXAFS data analysis was per-
formed using theoretical backscattering phases and
amplitudes calculated with the ab-initio multiple-scatter-
ing code FEFF7 [35]. EXAFS refinements were per-
formed in R space simultaneously to magnitude and
imaginary part of a Fourier transformed k3-weighted
and k1-weighted experimental c (k) using the standard
EXAFS formula [36]. This procedure strongly reduces
the correlation between the various XAFS fitting para-
meters. Structural parameters allowed to vary in the
refinement were (i) disorder parameter s2 of selected
single-scattering paths assuming a symmetrical pair-dis-
tribution function and (ii) distances of selected single-
scattering paths. Coordination numbers (CN), E0 shifts,
and amplitude reduction factor S0

2 were kept invariant
in the final fitting procedures. Correlations of specific

parameters to reduce the number of free running para-
meters and to improve the stability of the refinement
are described below.
The statistical significance of the fitting procedure

employed was carefully evaluated in three steps. First,
the number of independent parameters (Nind) was calcu-
lated according to the Nyquist theorem Nind = 2/π*ΔR*
Δk + 2. In all cases the number of free running para-
meters in the refinements was well below Nind. Second,
confidence limits were calculated for each individual
parameter. In the corresponding procedure, one para-
meter was successively varied by a certain percentage (i.
e. 0.05% for R and 5% for s2) and the refinement was
restarted with this parameter kept invariant. The para-
meter was repeatedly increased or decreased until the fit
residual exceed the original fit residual by more than
5%. Eventually, the confidence limit of the parameter
was obtained from linear interpolation between the last
and second last increment for an increase in fit residual
of 5%. This procedure was consecutively performed for
each fitting parameter. Third, a so-called F test was per-
formed to assess the significance of the effect of addi-
tional fitting parameters on the fit residual. The
corresponding procedure was adopted from the well-
known library “Numerical Recipes in C” where it is
described in detail [37]. In short, one parameter was
varied by a certain percentage (i.e. between 2 and 8% for
R and between 10 and 80% for s2) and the refinement
was restarted with this parameter kept invariant. Subse-
quently, the difference between experimental and theo-
retical function (i.e. magnitude and imaginary part of FT
(c(k)*k3) for a refinement in R space) was calculated
and compared to that of the original refinement. The
corresponding F parameter ranges between 0.0 and 1.0,
where F = 1.0 indicates an insignificant change in the fit
residual, while F = 0.0 indicates a highly significant
change in fit residual. The iterative procedure was ter-
minated when the corresponding F parameter was
below 0.7. Fit parameters with F = 0.8 or higher are
most likely strongly correlated and may be statistically
insignificant. These parameters should be kept invariant
in the refinement. Eventually, this procedure was also
consecutively performed for each fitting parameter.
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