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Abstract

Lithium-ion (Li-ion) battery cell simulation models have several vital uses in the develop-
ment of new battery systems. These uses range from assisting in cell and battery system
design, to estimating a cell’s state of health and charge, as well as developing charging
and operating strategies. Thus, it is crucial that any simulation model accurately predicts
the modelled cell’s system dynamics. An accurate model is also important to developers
due to the ever growing demands on Li-ion battery systems in the areas of safety, energy
density, and power density.
Current models include the Newman model (a first principle model based on physical

insights), equivalent circuit models, and data-driven models. To complement these,
an equivalent circuit model with electrochemical consideration was developed within
the scope of this work to simulate the electrical and thermal dynamics of Li-ion cells.
All aspects of the model—i.e., the development, modeling effort, simulation time, and
implementation effort—required measurement technology and parameterization to be
considered collectively. This facilitated the formulation of an overall approach meeting
both industrial and scientific objectives.
The developed electrochemical equivalent circuit is based on impedance measurements.

In general, the impedance of electrochemical systems, such as Li-ion cells, describes the
time-dependent electrical resistance in the frequency domain and enables a deeper insight
into the system dynamics. The impedance is the quotient of voltage and current. It is
typically used to simulate the voltage response and the irreversible heat released when the
electrochemical system is excited by a current. To consider the temperature distribution
and the geometric impact of the cell components, a thermal model is coupled with the
electrical model, which is also realized as an equivalent circuit model. In addition to
irreversible heat, reversible heat is also modeled to reproduce cell dynamics. Furthermore,
the electrical cell model describes the open-circuit voltage.
Tailored measurement methods, systems, and algorithms were designed for this work

to identify electrical and thermal model parameters and the specific electrochemical
processes of the modelled cell. One example is a new calorimetric measurement method
based on double pulse measurements which was developed to measure reversible heat.
Another is the automated parameter identification method which was designed for fast
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and reliable model generation. For this purpose, a measurement system was developed
that performs automated impedance measurements for Li-ion cells with large- and small-
signals with high accuracy in the relevant frequency range. A generic cell model was
generated to determine suitable initial parameters for parameter identification.
To validate the cell models, simulations that imitate real-world problems were per-

formed. The results show that the cell specific parameterized model can successfully (i.e.,
accurately) simulate the cell dynamics over a wide operating range.
The cell model developed for this work enables dynamic time-domain and frequency-

domain simulations of the relevant electrical and thermal quantities. The model is suitable
for the simulation of battery systems, enabling optimizations of the overall system by
rapidly mapping the interactions between interconnected cells. In addition, the model
can be used in a battery management system to estimate the state of charge, state of
health, aging, internal resistance, energy content, and open-circuit voltage. This is possible
because the model captures: the open-circuit voltage hysteresis, transition curves between
charge and discharge directions, and relaxation processes. Further, the model can be
used in the development of optimal operating strategies, i.e., to increase efficiency, usable
energy, and lifetime. The simulation of cell impedance in the frequency domain is needed
in the development of charging technology and electronics. In addition, the model can
be used in cell development to extrapolate results from small experimental level cells to
large-scale industrial cells.
Early battery development phases require estimations of cell dynamics which can be

simulated using the generic model. In addition, the model can be used in tailored versions
for power supplies to emulate the dynamics of a battery as often needed to validate system
components in early development phases. Use cases of the model are the simulation of the
temperature distribution and its dynamics within the battery and the cell, which allows
e.g., for the evaluation of cooling and fast charging concepts.
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Deutsche Kurzfassung

Simulationsmodelle für Lithium-Ionen-Zellen (Li-Ionen-Zellen) sind für die Entwicklung
neuer Batteriesysteme von entscheidender Bedeutung. Sie werden in immer weiteren
Einsatzgebieten verwendet, von der Entwicklung der Zellen und Batteriesystemen über die
Abschätzung des Gesundheitszustands und Ladezustands bis hin zu Lade- und Betriebsstra-
tegien. Wachsende Anforderungen an die Sicherheit, Energiedichte, Leistungsdichte und
dem Preis von Li-Ionen Batteriesystemen erfordern eine immer bessere Vorhersagequalität
der Systemdynamik, um optimale Batteriesysteme zu entwerfen.
Zur Ergänzung bestehender Modellansätze, wie die auf physikalischen Erkenntnissen

basierenden First-Principle-Modelle, wie z.B. das Newman-Modell, Ersatzschaltbildmodel-
le und datengetriebene Modelle, wurde im Rahmen der Arbeit ein Ersatzschaltbildmo-
dell mit elektrochemischer Betrachtung entwickelt, um die elektrische und thermische
Dynamik von Li-Ionen-Zellen zu simulieren. Bei der Modellentwicklung wurden der Mo-
dellierungsaufwand, die notwendige Simulationszeit, der Implementierungsaufwand,
die Messtechnik und die Parametrierung betrachtet. Dies erlaubte die Erarbeitung eines
fundierten Gesamtkonzepts, das sowohl industriellen als auch wissenschaftlichen Zielen
gerecht wird.
Das entwickelte elektrochemische Ersatzschaltbild basiert auf Impedanzmessungen.

Im Allgemeinen beschreibt die Impedanz eines elektrochemischen Systems, wie z. B.
Li-Ionen-Zellen, den zeitabhängigen elektrischen Widerstand im Frequenzbereich und
ermöglicht einen tieferen Einblick in die Systemdynamik. Die Impedanz ist der Quo-
tient aus Spannung und Strom. Sie wird typischerweise bei einer Stromanregung des
elektrochemischen Systems verwendet, um die Spannungsantwort und die irreversible
Wärmefreisetzung zu simulieren. Um die Temperaturverteilung und den geometrischen
Einfluss der Zellkomponenten zu berücksichtigen, wurde ein thermisches Modell aufge-
baut, welches mit dem elektrischen Modell gekoppelt ist. Das thermische Modell wurde
hierbei ebenfalls als Ersatzschaldbildmodell realisiert. Neben der irreversiblen wird auch
die reversible Wärme modelliert, um die Zelldynamik zu reproduzieren. Weiter beschreibt
das elektrische Zellmodell die Leerlaufspannung.
Es wurden geeignete Messmethoden, Messsysteme und Algorithmen entworfen, um

die elektrischen und thermischen Modellparameter und elektrochemischen Prozesse
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zu identifizieren. Beispielsweise wurde für die Vermessung der reversiblen Wärme eine
neue kalorimetrische Messmethode basierend auf Doppelpulsmessungen etabliert. Für
eine schnelle und zuverlässige Modellerstellung wurde eine automatisierte Paramete-
ridentifikation entwickelt. Hierzu wurde ein Messsystem entworfen, das automatisiert
Impedanzmessungen für Li-Ionen-Zellen mit großen und kleinen Signalen mit hoher
Genauigkeit im relevanten Frequenzbereich durchführt. Um geeignete Startparameter für
die Parameteridentifikation zu ermitteln, wurde ein generisches Zellmodell formuliert.
Zur Validierung der Zellmodelle wurden Simulationen, die praxisrelevanten Frage- und

Problemstellungen nachempfunden sind, durchgeführt. Die Ergebnisse zeigen, dass das
zellspezifisch parametrierte Modell die Zelldynamik über einen weiten Betriebsbereich
reproduzieren kann. Hingegen zeigte das generische Modell bei tiefen Temperaturen und
hohen Strömen größere Fehler.
Das entwickelte Zellmodell ermöglicht dynamische Zeitbereichs- und Frequenzbereichs-

simulationen der relevanten elektrischen und thermischen Größen. Durch die Möglich-
keit die Interaktionen zwischen zusammengeschalten Zellen abzubilden und der hierbei
schnellen Rechenzeit, eignet sich das Modell für die Simulation von Batteriesystemen,
wodurch Optimierungen des Gesamtsystems möglich werden. Zudem kann das Modell
im Batterie-Management-System verwendet werden, um den Ladezustand, die Alterung,
den Innenwiderstand, den Energieinhalt und die Leerlaufspannung zu schätzen. Dies ist
möglich, da das Modell die Leerlaufspannungshysterese, Übergangskurven zwischen Lade-
und Entladerichtung sowie Relaxationsprozesse abbildet. Weiter kann das Modell bei
der Entwicklung optimaler Betriebsstrategien eingesetzt werden, um beispielsweise den
Wirkungsgrad, nutzbare Energiemenge und die Lebensdauer zu erhöhen. Die Simulation
der Zellimpedanz im Frequenzbereich wird bei der Entwicklung der Ladetechnik und der
Elektronik benötigt. Darüber hinaus kann das Modell bei der Zellentwicklung einsetzt
werden, um Ergebnisse von Experimentalzellebene auf großformatigen Zellen zu extrapo-
lieren. Bereits in frühen Batterieentwicklungsphasen sind Abschätzungen zur Zelldynamik
erforderlich, die mittels des generischen Modells simuliert werden können. Weiter kann
das Model in angepasster Form in Stromnetzteilen verwendet werden, um die Dynamiken
einer Batterie nachzubilden. Diese Stromnetzteile werden benötigt, um bereits in frühen
Entwicklungsphasen Systemkomponenten zu valideren. Weitere Anwendungsfälle des
Modells sind die Simulation der Temperaturverteilung und dessen Dynamik innerhalb der
Batterie und der Zelle, wodurch beispielsweise Kühl- und Schnellladekonzepte bewertet
werden können.
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1. Introduction

In view of rapid climate change, volatile fossil fuel supply and cost, and the increasing
health burden caused by pollutant emissions, environmentally neutral energy storage
technologies have become essential. These new technologies must meet the demand for
high renewable energy efficiency, low emissions, and safety [41]. Underscoring the need
to reduce local emissions is the significant smog and particulate matter pollution which
occurs regularly in metropolitan areas and large cities.
Batteries are an important component in meeting these requirements and make a

significant contribution to the rapid integration of renewable energy sources. Batteries
have become an indispensable part of our everyday lives. They are used in mobile devices,
power tools, electric vehicles, drones, boats, and aircraft, all the way up to industrial energy
storage. In the development of future applications, the focus is no longer exclusively on the
individual application, but rather on its networking and interaction in the entire ecosystem.
Examples are vehicle to grid, and battery as storage in a ‘second life’ application. Dynamic
simulation models are essential for the development of these complex dynamic systems.
Highlighting the importance of this topic for society and science is the fact that the

Nobel Prize for Chemistry in 20191 went to researchers in the field of lithium-ion (Li-ion)
batteries and the Prize for Physics in 20212 went to researchers in complex systems with
a focus on climate change. The origins of electrochemical energy storage date back to the
18th century. Based on the research of the Italian physician Luigi Galvani, Alessandro Volta
invented the first primary battery [42]. Johann Wilhelm Ritter developed the rechargeable
battery [67] in 1802. Sony introduced the first Li-ion cells to the market in 1991 and
within a few years they were well established as the market leader [67]. The main reason
for this was the development of laptops, cell phones, and power tools and their need for
high energy density [67]. The increasing demand led to a steady optimization of energy
density and performance as well as cost minimization [67, 80]. These are decisive factors
contributing to the acceptance of this cell technology for automotive applications [80].
1John B. Goodenough, M. Stanley Whittingham and Akira Yoshino "for the development of lithium-ion
batteries".

2Syukuro Manabe and Klaus Hassleman "for the modelling of Earth’s climate, quantifying and reliably
predicting global warming".
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Competitive pressure in the marketplace leads to increasing demands on battery systems:
i.e., in increasing charging speed, improving safety, minimizing costs, and reducing the
effects of cell aging. In order to develop and optimize a battery system, an accurate
prediction of the cell dynamics is required. However, cell behavior depends on the state
of charge, temperature, current, and cell aging. To meet these requirements, dynamic
battery simulation models are used. The effort to create such models is extremely labor
intensive. The variance of cells is very high, especially in the automotive sector. At the
moment, it is not possible for major vehicle manufacturers to equip all vehicles with one
battery type from just one supplier. Even Tesla no longer relies exclusively on cells from
Panasonic, but has to switch to other cell manufacturers. Again, this emphasizes the
importance of efficient and fast battery characterization and modeling.
Battery models may describe the electrical, thermal, mechanical, and possibly aging

dynamics and include a model of the battery management system. The goal of this work
is to develop a thermal-electrical battery cell model, which enables dynamic time-domain
and frequency-domain simulations. To make the model suitable for demanding industrial
applications, the necessary measurement technology and parameterization should be taken
into account as much as possible during the model development. As a result, the areas
of modeling, measurement methods, and parameterization are closely interlinked, thus
enabling the models to be created quickly and cost-effectively. Furthermore, the developed
methods should apply to different cell sizes, formats, and cell types. The parameterization
of the cell model should be possible without opening the cell, i.e., only non-invasive
measurement methods can be applied. In particular, a suitable electrochemical impedance
spectroscopy measurement setup has been developed for this purpose.
Models should be scalable from small experimental cells to large industrial series cells.

Even in early battery development phases, estimations of cell dynamics are required. For
this purpose, a generic model had to be developed. It is essential that the model can
represent the dynamics of the interactions between connected cells in order to perform
simulations of battery systems. This enables optimizing the entire battery system instead of
optimizing the individual components separately. Another use case of such dynamic models
is the development of optimal operating strategies, e.g., to increase the cell’s efficiency,
usable energy, and lifetime. Furthermore, the model can be used to improve battery
management system functions that estimate state of charge, aging, internal resistance,
energy content, and open-circuit voltage. For this purpose, the model has to reproduce the
open-circuit voltage hysteresis, the transition curves between charging and discharging
directions, and the relaxation processes. To develop and improve charging technology
and electronics, a calculation of cell impedance in the frequency domain is required.
To test components of a battery system, programmable power supplies are used as the

energy source instead of a real battery. This offers the advantages of reproducibility of
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tests, targeted and fast setting of desired operating points, and an easy adjustment of
capacity, system voltage, and wiring of the battery. In particular, in early development
phases when the battery is not yet available, testing, optimization and validation of the
system components can take place. The computation time of the model should be fast to
use the model in programmable power supplies to emulate battery dynamics.
Another use case for the model is the simulation of the temperature distribution and its

dynamics within the battery and the cell. This enables the assessment of cooling concepts,
fast charging ability, and electrical performance.

1.1. Outline and Structure

This thesis is divided into seven Chapters including the Introduction and Conclusion.
The Fundamentals, Chapter 2, outlines explanations of the working principle and the
structure of Li-ion cells, typical charging protocols, and a description of cell-specific terms.
This is followed by Chapter 3, an outline of existing modeling approaches, providing an
overview of electrical modeling of Li-ion cells and an explanation of the equations used to
model dynamics. A comparison is made between the established representations of the
characteristic cell processes in the time domain, frequency domain, and the distribution
of relaxation times or the distribution of time constants.
Electrochemical impedance spectroscopy of the small- and large-signal behavior of Li-ion

cells is applied to parameterize the electrical cell model. An overview of the measurement
and parameterization methods used is given in Chapter 4. In addition, the methods for
measuring and parameterizing the open-circuit voltage and hysteresis are presented. In
order to accelerate the model generation procedure, reduce the workload, and lower
the cost of the battery model, an automated electrochemical impedance spectroscope
called AutoEIS and a new automated parameter identification method based on a generic
cell model are outlined. To develop this generic cell model, measurements on cells with
different active materials, formats, capacities and manufacturers were studied and are
presented.
This is followed by an outline of the modeling of the cell’s temperature dynamics in

Chapter 5. After modeling the electrical dynamics, a thermal equivalent circuit model was
developed to reproduce the temperature dynamics. For this purpose, measurement setups
and the parameterization were developed and are presented.
The simulation and evaluation of the cell model and its implementation in the time

domain are presented in Chapter 6. Several real-world simulation examples demonstrate
the performance and suitability of the model. The work concludes in Chapter 7 with a
summary of the findings. Additional information and figures are provided in Appendix A.
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1.2. Contributions

Sections of this thesis have been previously published [15, 61, 81, 109, 110, 111, 156,
157].
The opportunities and challenges of dynamic models for the diagnosis and operation

of Li-ion batteries, focusing on the main processes and their dynamics, parameters, and
time constants are discussed in the article ‘Review—dynamic models of Li-ion batteries for
diagnosis and operation: a review and perspective’ [81]. The model classes: mechanistic
models, equivalent circuit models, and data-drivenmodels are reviewed in terms of physical
insight and capabilities. Guidance is provided for selecting an appropriate model for the
particular diagnostic and operational area of interest. In addition, combining existing
modeling approaches can help realize their full potential while integrating first-principles
physical insights and measurement data.
A new methodology and measurement setup for determining the nonlinear Butler-

Volmer behavior of electrochemical systems based on time domain pulses is introduced in
the article ‘A new approach to measure the non-linear Butler–Volmer behavior of electrochem-
ical systems in the time domain’ [110]. The newly developed Fast-Fourier transform using
the derivative of the measured current and responding voltage enables the evaluation of
the electrochemical impedance. By varying the amplitude of the excitation current, the
nonlinear Butler-Volmer behavior can be characterized. Comparison of the impedance
spectra determined by the new time domain approach with the frequency domain method
using sinusoidal excitation shows the superiority of the new method.
The behavior of Li-ion cells at low frequencies as well as measurement influences are

investigated in the article: ‘Investigation of the low frequency Warburg impedance of Li- ion
cells by frequency domain measurements’ [109]. The measurements are performed using
frequency domain electrochemical impedance spectroscopy with sinusoidal excitation.
The resulting spectra revealed a significant influence of the charge state setting current,
the rest time after charge state setting, the sinusoidal excitation amplitude, and the charge
and discharge history of the cell. A correction method is presented to remove hysteresis
effects from the measured low-frequency impedance.
A study of the low frequency impedance of Li-ion cells using the time domain pulse

method is presented in the article ‘Analysis of low frequency impedance hysteresis of Li-ion
cells by time- and frequency domain measurements and its relation to the open-circuit voltage
hysteresis’ [111]. To do this, the current pulses that were measured and the resulting
voltage are transformed into the frequency domain to obtain the impedance. The results
show that for low frequencies (i.e., below 10 mHz) an increasing error is observed which
is strongly dependent on the following measurement parameters: excitation direction,
charge amount, and charge history.
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The influence of cell geometry and construction on the low frequency behavior of Li-ion
cells is investigated in the article ‘Lithium flow between active area and overhang of graphite
anodes as a function of temperature and overhang geometry’ [61]. In general, the anode of
Li-ion cells is slightly larger than the cathode. This leads to an additional lithium flow at
the anode during a long rest period without external current excitation. As a result, an
apparent capacity fade can be observed. This work shows that the lithium that flowed
into the anode overhang can be recovered and used for further cycling. This leads to an
increase in cell capacity. Measurements on different Li-ion cell types and their simulation
of the anode overhang using a transmission line model gave a deeper insight into the
dynamics of the lithium flow and its temperature and state of charge dependence.
A novel calorimetric measurement method—namely the ‘Double Pulse Method’—to

measure reversible heat in Li-ion battery cells is introduced in the article ‘Measuring the
reversible heat of lithium-ion cells via current pulses for modeling of temperature dynamics’
[15]. The proposed method measures the reversible heat as a highly resolved function of
the state of charge. The determination of the reversible heat is based on the evaluation
of the temperature difference generated by two current pulses of opposite polarity. The
accuracy of the Double Pulse Method is demonstrated for a lithium iron phosphate (LFP)
cell and compared with measurements using the established potentiometric method.
Simulation results indicate that the cell temperature is more accurate when determined
by the reversible heat measurement obtained by the Double Pulse Method than from the
potentiometric method.
To model and simulate the nonlinear relationship between voltage and current of

Li-ion cells, two nonlinear infinite-dimensional models are introduced in the articles
‘Verteiltparametrische Modelle zur Beschreibung des nichtlinearen fraktionalen Verhaltens
von Lithium-Ionen-Zellen’ (Eng. Distribution parametric models for the description of the
nonlinear fractional behavior of lithium-ion cells)[156] and ‘A new approach to modeling
and simulation of the nonlinear, fractional behavior of Li-ion battery cells’ [157]. The
proposed models interpolate linear fractional models obtained from an equivalent circuit
model. The linear models are parameterized using impedance measurements at multiple
operating points. In each operating point, the fractional input-output behavior is recovered
by an infinite-dimensional state space description. For numerical implementation, the
introduced models require a suitable approximation. Therefore, a Krylov subspace method
and a finite element approach are proposed. The nonlinear lumped parameter models are
validated on the basis of experimental data.
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2. The Fundamentals of Lithium-Ion Cells

This chapter begins with an explanation of the functional principle and fundamental
construction of lithium-ion (Li-ion) cells. This is followed by an overview of typical Li-ion
cell types and materials, which have a significant impact on the performance, energy
density, aging, and safety of Li-ion cells. Typical charging protocols and cell-specific terms
used in this work are then introduced.

2.1. The Functional Principle

The functional principle of Li-ion cells can be described as a galvanic cell which converts
chemical energy into electrical energy and heat [74]. A cell represents the smallest unit
of an accumulator. There is a distinction between non-rechargeable primary cells and
rechargeable secondary cells. The basic chemical reaction is a redox reaction, whereby
the reduction and oxidation processes occur separately in the cell.
Galvanic cells consist of two electrodes: the separator and the electrolyte. During cell

discharge, the active material oxidizes at the negatively charged electrode (i.e., the anode)
and the released electrons passes through an outer conductor into the positively charged
electrode (i.e., the cathode), which absorbs electrons by reduction of active material
[67]. The resulting electron flow represents the electrical current. An ion-permeable
separator segregates the anode and the cathode both mechanically and electrically. The
ion-conducting electrolyte allows ions to pass from the anode to the cathode, thus ensuring
charge neutrality. The terms cathode and anode are also used for charge currents.

2.2. The Lithium-Ion Cell

The basic cell components and the working principles for the discharge and charge
processes of a Li-ion cell are shown in Fig. 2.1. To discharge a Li-ion cell, the lithium
atoms move from within the anode to the boundary between the active material and
electrolyte [63]. To exit the anode, every lithium atom has to release one electron. The
resulting Li-ion is covered with a solvation shell [63]. During the process, the Li-ion moves
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Figure 2.1.: The fundamental construction and functional principle of a Li-ion cell with
respective electron and ion flux. Adapted from [43, 45, 63, 140].

to the cathode and arrives at the electrolyte-cathode interface, the electron also moves
from the anode to the cathode. At the interface, the Li-ion removes the solvation shell and
recombines with the electron to enter the so-called ‘host structure’ [67]. After entering
the cathode, the intercalation process starts to store the lithium in the host structure.
The lithium atom diffuses from the surface into the bulk material to balance the lithium
concentration [63].
The voltage difference between the cathode and the anode results from the electro-

chemical potential of these substances. A comparison of the potential ranges of different
electrode materials is visualized in Fig. 2.2. Depending on the active materials chosen
for the electrode, the following factors can vary: capacity, lifetime, safety, performance,
nominal voltage, and cost.
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Figure 2.2.: The chemical potential of common active materials. Redrawn from [67].

2.3. Cell Types

Battery cells currently on the market can be divided into four categories: cylindrical cells
(i.e., round cells), prismatic cells (i.e., hard-case cells), pouch cells (i.e., soft-case cells),
and coin cells (see Fig. 2.3) [158].
In general, the housing materials are not involved in the cell’s electrochemical reaction,

however, the casing shape has a significant impact on the power and energy density of the
cell as well as its lifetime, safety, and high power capability [136]. The most widely used
geometry of cylindrical cells is the so-called ‘18650 cell’, which stands for a diameter of
18.0mm and a length of 65.0mm. The housing is made of stainless steel or aluminum.
The advantages of this design are: mechanical stability, low cost, ease of production, and
safety. The cells are highly safe due to the rather small energy content per cell and the
safety devices to prevent external short circuits, such as the current interruption device
(CID), the relief valve, and the positive temperature coefficient resistor (PTC) (see Fig.
2.3). However, effective cooling for high power applications is rather difficult due to the
round cell shape and the low surface-to-volume ratio. The primary application areas of
round cells are laptops, power tools, electric bicycles, and electric vehicles. Prismatic cells
also have a solid housing and similar safety devices. In contrast to round cells, prismatic
cells can be connected more easily to a cooling plate or a heat sink. Pouch cells have a
flexible housing made of plastic-coated aluminum foil. As a result, an extremely flat design
can be realized and due to the low case weight, high energy densities are possible. The
problems with this are the fragile housing and potential damage to the active materials
by external mechanical stress. Pouch cells have no internal security devices.
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Figure 2.3.: Types of cell design and their internal structure, (a) cylindrical cell (i.e., round
cell), (b) prismatic cell (i.e., hard-case cell), (c) pouch cell (i.e., soft-case cell).
Redrawn from [80, 158]. Coin cells are not the focus of this work and therefore
are not discussed.

2.4. Cell Materials

The cell’s performance, energy density, aging, and safety is mainly determined by its
components and the materials of the anode, cathode, separator, electrolyte, carbon black
and binder, and current collectors. Understanding the properties of these materials and
components is very important for the modeling itself.

2.4.1. The Anode

The vast majority of commercially used Li-ion batteries have an anode made of graphite
due to: the low potential versus Li/Li+ (see Fig. 2.2), the small volume expansion of about
10.3% for the insertion of lithium, the high electrical conductivity, and the low cost [116].
For the fast insertion of lithium, the anode structure has a reactive surface area that is as
large as possible. This leads to a porosity of between 30% and 50% [67]. The reaction of
the charge and discharge process of a graphite anode can be expressed as [67]:

Li1C6 ↔ Li1−xC6 + xLi+ + xe−, (2.1)

where LiC6 represents a fully charged anode.
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To further explain the intercalation process, the anode voltage with the respective
graphite stages for a full cycle is shown in Fig. 2.4. Idealized, it can be separated into four
stages. The stage number indicates how many free graphite layers are located between
the Li-ion occupied layers [64]. These stages are clearly visible in the anode voltage, as
each stage change leads to a voltage step.
In the first stage, the Li-ion cell is completely charged and consists of LiC6 only. Any

additional charge would lead to damage of the Li-ion cell due to so-called ‘lithium plating’.
When this occurs, lithium cannot enter into the active material and lithium metal grows
on the anode surface. This leads to lithium loss and safety issues due to the risk of short
circuits.
Depending on the charge direction and the current amplitude, different stages occur,

which leads to several effects such as voltage hysteresis, thickness hysteresis, and imped-
ance hysteresis [46, 47, 109, 111]. The voltage hysteresis of a commercial graphite anode
is shown in Fig. 2.4.
In addition to the established graphite anodes, silicon doped graphite anodes are

becoming increasingly important due to their higher specific capacity. However, the
number of cycles is drastically lower compared to pure graphite anodes due to the extreme
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Table 2.1.: An overview of common anode active materials [62, 67, 138].

material specific capacity potential vs. lifetime safety
in mAh

g Li/Li+ in mV

lithium metal 3860 0 - - - -
graphite 372 50-300 + +
amorphous carbon 200 100-700 + +
lithium titanate 150 1400-1600 ++ ++
lithium oxide 1500 50-600 - +
silicon 3600 50-600 - +

volume expansion of silicon of over 320% [103, 138].
Other groups of anode materials are metal oxides. They are ideal for the use of ultra-fast

or low-temperature charging. A widely used metal oxide is lithium titanate Li4Ti5O12.
The material is characterized by a negligible volume change at full charge. Due to the
mechanical stress-free material, and being chemically stable against the electrolyte, several
thousand charging cycles are possible [73]. However, Li4Ti5O12 has a high electrode
potential of 1.55V versus Li/Li+ [67]. The specific capacity in practice is 150 mAhg . Both
result in a lower specific energy density compared to graphite. Common anode active
materials and their properties1 are listed in Tab. 2.1.

2.4.2. The Cathode

Lithium transition metals are typically used for the cathode (see Fig. 2.2). They can be
divided into three classes according to their different crystal structures. There are the
phospho-olivines (LiMPO4), layered metal oxides (LiMO2), and spinel oxides (LiM2O4),
where M stands for the transition metal [80]. These metals are Ni, Mn, Al, Co, Fe. De-
pending on the selected material, the properties of Li-ion cells can be varied. For example,
cobalt provides a high capacity, nickel provides a high current capability, and manganese is
inexpensive and particularly stable in overcharge [67]. Suitable material combinations and
their properties are listed in Tab. 2.2. The values for the specific capacity only represent

1The specific capacities of the materials are calculated without the lithium content. In practice, the lithium
has to be added.
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Table 2.2.: An overview of common cathode active materials, wherein the mixing ratio of the
transition metals x + y + z = 1 applies. Redrawn from [48, 80].

material specific capacity potential vs. lifetime safety
in mAh

g Li/Li+ in V

LiNixCoyAl1−x−yO2 200 3.70 + o
(NCA)
LiCoO2 (LCO) 160 3.90 - -
LiNixMnyCo1−x−yO2 160 3.80 + +
(NMC)
LiFePO4 (LFP) 160 3.43 ++ ++
LiMn2O4 (LMO) 100 4.10 - - o

the cathode material without the reversible lithium content for the charge or discharge
process. To prevent damage to the transition metals, a complete discharge is prohibited.
Without lithium, the structure would deform and become irreversibly damaged. The
reaction for the charge and discharge can be expressed as:

LiyMO2 + xLi+ + xe− ↔ Liy+xMO2. (2.2)

Recent research has focused on reducing the Co content in batteries due to its high price,
questionable supply chain, and very limited resources. Ni-rich lithium nickel manganese
cobalt oxides (NMC) and lithium nickel cobalt aluminium oxides (NCA) electrodes (see
Tab. 2.2) seem to be a very promising alternative. However, electrochemical and thermal
stability are critical issues that need to be improved [5]. A complete Co free alternative
is lithium iron phosphate (LFP). It has very good thermal stability, which contributes to
excellent safety performance, a high specific capacity of approximately 160 mAhg and a
small volume change of 6.8% during lithium storage [64]. It is also inexpensive and a
readily available raw material. However, LFP only has a nominal voltage of 3.43V versus
Li/Li+, which leads to a low energy density. Besides that, LFP has a low electrical and
ionic conductivity, which reduces the high-current accomplishment compared to NMC
[64].
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2.4.3. The Separator

The so-called ‘separator’ between the positive and negative electrodes separates the
electrodes from each other (see Fig. 2.1). It provides both a mechanical and an electrical
separation. Yet, the separator has to be permeable for Li-ions. It consists mainly of the
materials polyethylene (PE), polypropylene (PP), or ceramic to achieve good electrical
insulation and a sufficient permeability for Li-ions [67, 73]. To keep the power loss of
Li-ion cells low, a very thin separator and its structure can improve the permeability for
Li-ions. In applications, layer thicknesses of 15-25µm are possible with a porosity of 50%
[67]. Furthermore, the layer should have a uniform structure to ensure a homogeneous
current distribution. A thermal runaway of the cell can be prevented by the so-called ‘shut
down’ security mechanism [99]. From a critical temperature, a controlled melting of the
separator pores occurs, whereby the internal resistance of the cell increases enormously
and the current flow through the cell can be stopped [67, 99].

2.4.4. The Electrolyte

The electrolyte acts as an ionic conductive medium between the electrodes. This work is
focused on Li-ion cells with an organically anhydrous electrolyte. In addition to the organic
electrolyte, inorganic and solid electrolytes also exist. Xu presented and discussed different
electrolytes in detail [177]. The organically anhydrous electrolyte consists of three main
components, lithium salt for ionic conductivity, polar solvent for dissolving lithium salt,
and nonpolar solvent for increasing the viscosity of the electrolyte [64]. In commercial
cells, LiPF6 is almost always applied as salt. The polar solvent is ethylene carbonate
(EC) or propylene carbonate (PC) and the nonpolar solvent consists of substances such
as dimethyl carbonate (DMC) or diethyl carbonate (DEC) [64]. The electrolyte should
be thermally and electrochemically stable over the voltage range of the cell to preclude
decomposition of the electrolyte [67]. In this work, the mass of the electrolyte was
estimated by weighing the disassembled and dried cell components and comparing them
with the mass of the entire cell. The results indicate that industrial cells contain 2-4 g
electrolyte per Ah. The amount of electrolyte depends on the active material as well as
the geometry and type of the cell. The different cell types are presented in Sec. 2.3. The
tests conducted indicate that round cells contain less electrolyte compared to pouch cells
and hard-case cells.
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2.4.5. The Carbon Black and Binder

In addition to the anode’s and cathode’s active materials, carbon black and binders are
used to manufacture electrodes which are then used in Li-ion cells. Carbon black is added
to the active materials to increase the electric conductivity of the electrode. Usually, a
black carbon content of 1-5% is used to ensure high energy density [80]. The binder
coheres the electrode particles and adheres them to the current collector. It is added
directly to the electrode powder [140]. For Li-ion cells, polyvinylidene difluoride (PVDF)
dissolved in N-methyl-2-pyrrolidone (NMP) is used. The advantages of NMP are that it
dries without leaving any solvent residue, and the PVDF forms a needle structure which
stabilizes the electrode [134]. The proportion of added PVDF is about 2-8% [80].
Although the binder and carbon black are so-called ‘inactive’ cell materials, both influ-

ence the electrochemical behavior and the thermal stability of the Li-ion cell [38].

2.4.6. The Current Collector

Current collectors are thin metal foils, which are manufactured with a thickness of 8-30µm
[67]. According to the electrical potential of the active materials, the current collector
materials must be chosen to prevent reactions with lithium and the electrolyte. For the
anode, copper is commonly used to avoid corrosion at the cathode. Aluminium is mostly
used as a collector material which reacts with lithium at the anode. To compensate for
the lower conductivity of aluminum, the cathode collectors are usually made one-third
stronger [67]. Nickel could also be used as an alternative to aluminum but its high price
is a deterrent [67].

2.5. Typical Charging Protocols and Important Terms

Important terms as well as an outline of Li-ion cell properties are provided in the following
sections.

2.5.1. Capacity and Charging Profiles

One of the key objectives in cell design and operation are the achievable and sustainable
capacity—i.e., the amount of charge that can be stored. In order to determine the nominal
capacity (Cn) of batteries, different methods and definitions exist [67, 127]. The charge
amount depends on the cell type, charge current, and temperature. The unit C-rate
describes the current, which is required to reach the charge amount of the cell capacity in
one hour. The current and voltage charging curves of a Li-ion cell are shown in Fig. 2.5.
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Several standard charging methods are currently available. In this work, constant
current (CC) charge and constant current constant voltage (CCCV) charge are used (see
Fig. 2.5). Other charging methods are pulse charge, stepwise charge, and charge with
constant power [90]. The methods have a great impact on cell life and the actual charge
quantity or capacity of the cell. To prevent damage to the cell, such as lithium plating
or overheating, power is adjusted during the charging process. CC charge describes a
charging process in which the cell is charged with a constant current up to the cutoff
charge voltage. This means the charging process stops immediately after reaching the end-
of-charge voltage. The advantage of this method is its simple implementation. However,
only a partial charge of the cell capacity can be achieved without violating the current
and voltage charge limits.

Figure 2.5.: The current and voltage curve of a CCCV charge profile of a Li-ion cell at 25°C.
Redrawn from [14].

This cell type enables a partial CC-charge of about 95%. For a full charge, a CV charge
starts after the end-of-charge voltage is reached. During the CV-charge, the end-of-charge
voltage is kept constant while the current decreases down to a defined cutoff current. The
disadvantage is a longer charging time. For the cell in Fig. 2.5, the remaining capacity of
5% requires about 20% more time than the CC charge for full charging.

2.5.2. The Open-Circuit Voltage (OVC)

The open-circuit voltage (OCV) of Li-ion cells describes the equilibrium potential between
the anode and the cathode. The OCV depends on the state of charge of the electrodes.
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At equilibrium, lithium is distributed into the electrodes so that no diffusion occurs and
the sum of the chemical and electrical potential is zero [67]. In this case, no charging or
discharging processes take place, and the cell is not excited by an external current. The
period of time it takes for the cell to reach equilibrium is called the relaxation time.

VOCV,cell = VOCV,cathode − VOCV,anode. (2.3)

Figure 2.6.: The OCV curve of Cell I (blue line) separated in the NMC cathode (gray line)
and graphite anode (black line) at 25°C. Redrawn from [17].

According to the information shown in Fig. 2.4, the OCV shown in Fig. 2.6 also has a
voltage hysteresis. The reason for the hysteresis of the full cell is that the anode is made
of graphite. Different methods to explain and to model the hysteresis are presented in
Sec. 3.7.7.

2.5.3. The State of Charge (SoC)

The state of charge (SoC) denotes the percentage of available charge of the storage system
and not its available energy. The SoC of the cell can be expressed as:

SoC = 100 − 100 · Cn
Cdischarge

, (2.4)

where Cn is the nominal cell capacity and Cdischarge the discharged amount of charge. For
aged cells, Cn has to be updated to determine the SoC correctly.
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Figure 2.7.: A balancing of the electrodes of a typical (a) energy cell and (b) power cell. The
gray areas cannot be cycled. Redrawn from [134].

Alternatively, the OCV can be used to determine the SoC, due to the relation between
the two. Comparing the measured OCV with its corresponding OCV curve (see Fig. 2.6)
allows for an estimation of the SoC present. However, the OCV is influenced by many
factors (see Sec. 2.5.2) which can impact the estimation and leads to poor results. In the
case of cells with a graphite anode and an LFP cathode, the SoC estimation by OCV is
almost impossible due to the flat OCV curve.

In addition to the SoC of the entire cell, the anode SoC (SoCanode) and cathode SoC
(SoCcathode) can be defined. Due to lithium losses (i.e., from SEI formation during the
initial cycles after the cell’s manufacture), and for preventative safety, the capacity of the
electrodes is restricted. This ratio of anode to cathode is called ‘electrode balancing’ and
can be optimized for power and energy cell types [63, 134].

The typical electrode configurations for power and energy cells are depicted in Fig. 2.7.
The characteristic knee of the anode’s OCV at 50% SoCanode can be used as an indicator
to distinguish both types. The different balancing of the electrodes allows the influence of
the maximal charge current. At high charge currents, the potential of the anode can drop
to 0V. This increases the risk of lithium-plating at the anode, which can lead to dendrites
growing. These dendrites can grow through the separator to the cathode and can lead to
short circuits, which destroy the cell. In some cases, the cell ignites or explodes.
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2.5.4. The State of Health (SoH)

The aging of cells can denote the deterioration of the electrochemical properties, such as
capacity, energy, power capability, and internal resistance [22, 81, 128, 175, 176]. These
values are unified in the so-called ‘state of health’ (SoH), which is 100% for nonaged cells
(BoL) and frequently 80% for end of life (EoL) cells.
Typically, the SoH is characterized by capacity fade. This means that a cell which has

80% of its nominal capacity has an SoH of 80%. Additionally, the increase of the internal
resistance, the fade of energy content, or the power ability can also represent the SoH. As
a result, depending on the application, SoH definitions differ widely and should be used
carefully to prevent misunderstandings.
The aging of Li-ion cells is categorized as either cyclical ageing or calendar aging.

Cyclical aging describes the impact of energy throughput on cell degradation, which
is often counted by the number of charge and discharge cycles. In contrast, calendar
aging refers only to pure aging caused by time. Interactions between active materials and
electrolyte can accelerate the aging effects at high storage temperatures and high SoCs.
In practice, combinations of cyclical and calendar aging occur. As a result, estimations and
predictions of the aging of Li-cells are very complex. A separation of the aging mechanism
for the anode and cathode electrode can be done to get a deeper understanding of these
effects [63].

2.5.5. Coulombic Efficiency

Coulombic efficiency ηQ can be defined as the charge ratio of the charging and discharging
cycle [63] as is expressed as:

ηQ = Qdischarge

Qcharge
. (2.5)

This means that the Li-ion cell loses lithium each cycle. This loss is irreversible which
results in capacity fade. For Li-ion cells, ηQ is lower during the first cycles due to SEI
formation. After the formation process, ηQ should be higher than 99.99% to ensure a
lifetime of over 1000 full cycles. For large Li-ion cells, using ηQ for lifetime predictions is
almost impossible due to the anode overlap.

2.5.6. Impedance

The electrical resistance of a system denotes the relationship between current and voltage.
In general, the resistance is time-dependent and describes the quotient of voltage and
current as well as the phase shift of both. The relationship between current, voltage, and
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impedance 2 of Li-ion cells in the frequency domain is shown in Fig. 2.8. Advantageously,
this resistance is given as impedance in the complex number plane as a function of
frequency.
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Figure 2.8.: A representation of the relationship between the measured current and voltage
to determine the cell impedance using electrochemical impedance spectroscopy.
Graphic created according to [136].

The impedance can be interpreted as a transfer function as is expressed as:

Z(ω) = U(ω)
I(ω) = |Z(ω)|ejϕ(ω) = Re(Z(ω)) + jIm(Z(ω)). (2.6)

Electrochemical systems such as Li-ion cells also have electrical impedance, which
provides deeper insight into cell reactions and their dynamics. The impedance of a Li-ion
cell in the Nyquist diagram and the real and imaginary part of the impedance as a function
of time are shown in Fig. 2.9. Cell impedance is typically used to simulate voltage response
and released heat for applications such as charging and driving profiles.
2Typically, the cell impedance is depicted in the Nyquist diagram with a mirrored imaginary axis.
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Figure 2.9.: The time-dependent electrical resistance of a Li-ion cell: (a) the real part, (b)
the imaginary part of the impedance as a function of time, and (c) the Nyquist
diagram.

2.6. Conclusion

This chapter introduced the basic principle and construction of Li-ion cells. This was
followed by an overview of typical cell types and their materials. Since cell performance,
energy density, aging, and safety are mainly determined by the cell components and their
materials: i.e., the anode, the cathode, the separator, the electrolyte, carbon black and
binder, and current collectors, an understanding of the properties of the cell materials
and components is essential for the modeling of cells. Typical charging protocols and
cell-specific terms such as capacity and charge profiles, state of health, state of charge,
coulombic efficiency, and impedance were introduced.
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3. Modeling the Electrical Dynamic

This chapter gives an overview of the electrical modeling of Li-ion cells. A comparison
is made between the established representations of the characteristic cell processes in
the time domain, frequency domain (i.e., using the impedance spectrum), and the distri-
bution of relaxation times or the distribution of time constants. This follows on from an
explanation of the applied equations used to model the dynamics of Li-ion cells.

3.1. State of the Art

In general, the synthesis of models can be either a top-down or bottom-up process [122].
The bottom-up process begins with a description of individual and single effects at the
atomic level, which then increasingly combines into a macroscopic model of the system.
Finally, the derived equations describe the entire system. In contrast, the top-down ap-
proach starts with a primitive model at the system level. This system model is increasingly
extended by specific effects and results in a finer subdivision of the model and subspaces
which describe effects at the atomic level. In addition to the bottom-up and top-down
approaches, models can be distinguished as either mechanistic, based on first-principles,
phenomenological, based on the modeling approach, or statistical, again based on the
modeling approach [81]. An overview of dynamic cell models are given in [6, 81, 84,
170].
Mechanistic models typically provide a deep insight into the states, physical quantities,

and electrochemical processes of Li-ion cells [66]. These enable the detection of safety-
critical operating conditions and the prevention of rapid aging [81]. However, these models
often require many material and geometrical quantities for parameterization. The effort
required to obtain these quantities is often high and at times, virtually impossible. Due to
the large number of equations, the calculation of these models is more computationally
demanding, and thus a challenge in optimizing any design application [66].
Phenomenological models are based on observations and measurements of the cell.

Few equations are required to reproduce the cell dynamic. This allows for an efficient
simulation of the model. Due to the direct reproduction of the electrical current and volt-
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age, phenomenological cell models can be easily scaled and extended to battery models.
However, phenomenological models provide only limited insights into the internal phe-
nomena of a Li-ion cell. An important group of phenomenological models are the electrical
equivalent circuit models (ECM) [125]. Combining the electrical circuit components to a
network allows modeling of the electrochemical processes within Li-ion cells. Andersson
et al. presented an overview of electrical parameter estimation of Li-ion cell models and
the use of machine learning in parameterization [2].
Apart from mechanistic and phenomenological models, there are also data-driven

models [81]. Data-driven models use either time-series analysis, machine learning, or
artificial intelligence-based approaches to reproduce cell behavior [81]. In particular, they
can provide an adequate estimation for complex processes and those processes which
are not yet fully understood, such as cell aging. The parameterization and training of
data-driven models requires a high number of measurements with several test scenarios
which are mostly expensive and time-consuming. To overcome this drawback, Lucu et al.
present a promising approach for data-driven aging models of electrical vehicles which
trains the model with in-field battery operation data [94].
Regarding the complexity and variety of the physical and electrochemical processes

of Li-ion cells, all model approaches are typically useful in a specific area and level of
the battery development process. The choice depends on the issues which the model has
to solve. In recent research, different approaches have been combined to reduce their
individual drawbacks [81].

3.2. The Cell Dynamic in Time, Frequency Domain and
Distribution of Relaxation Times

The discharge or charge processes of Li-ion cells involves several reactions, where each
reaction operates at its own rate. These different rates lead to different time constants of
the processes.
A simplified overview of the processes with typical time constants for Li-ion cells is

depicted in Fig. 3.1. The time constant changes depending on the temperature, SoC, and
SoH. The resulting time constant ranges at real operating conditions are frommicroseconds
up to several hours. This shows the effort to model and to simulate the multi-timescale
system of a Li-ion cell and underscores the need for efficient calculation. To overcome
the challenges of a multi-timescale system, He et al. presented an electrical model with a
switching structure [55]. The relaxation process, i.e., the equilibrating of lithium within
the cell, is depicted in Fig. 3.1. This process includes several equilibrium processes which
result in the OCV, the relaxed impedance, and the relaxed cell thickness [13, 45, 109].
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Figure 3.1.: The time constants of processes in Li-ion cells [81].

The relaxation process is depicted separately from the diffusion in the solid process1 to
emphasize it as a process which takes place at a macro and micro level (i.e., it not only
takes place at the single particle level).
Evaluating the electrical impedance of the cell allows for a characterization of the cell’s

dynamic and an investigation of the electrochemical processes [63, 131, 135]. As outlined,
the processes of Li-ion cells have individual time constants. This enables an analysis
of the individual electrochemical processes by a separation of the electrical impedance
in characteristic sections. Various methods and approaches exist to obtain information
about the dynamic of the cell, such as current or voltage pulses in the time domain, the
impedance spectrum in the frequency domain, and the distribution of relaxation times
(DRT).
The characteristic processes of Li-ion cells over time for different values2 are depicted in

Fig. 3.2. Although the representations contain similar information, it can be advantageous
to choose a specific representation of the cell dynamics to synthesize and parameterize the
model of the cell. Measurement methods of the time domain and frequency domain are
explained and discussed in more detail in Sec. 4.1. The distribution of relaxation times
method is not used in this work due to the filtering of the measurement data required
to cancel out the OCV and the contribution of none time-depending ohmic resistances.
Consequently, the curve cannot be directly used to quantify all processes of Li-ion cells.
For more information on the distribution of relaxation times method, see Illig [64].
Roughly, cell dynamics can be separated in five characteristic sections (see Fig. 3.2).

Sorted by their time constant, these can be divided into:
(1) Inductive section: The geometry, the terminals, and current collectors cause the

inductance of Li-ion cells [131]. At frequencies above 10 kHz, the penetration depth of the
electrons into the current collectors is reduced by the so-called ‘skin effect’, which leads to

1The overview does not consider all reactions, such as side reactions, self-discharging, and aging effects.
2These representations contain similar information.
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Figure 3.2.: The characteristic processes of Li-ion cells in the (a) time domain, (b) impedance,
and (c) distribution of relaxation times: (1) inductive section, (2) resistive
breakthrough, (3) higher capacity section,(4) lower capacity section, (5) diffusion.
Adapted from [3, 140].

an inductive behavior due to the current collector thickness (see Sec. 2.4.6) [41, 83].
Due to its high dynamic, the inductance influence is not shown in the time domain. In

the impedance spectrum, the inductive behavior of cells is clearly visible by its typical
line in the spectra at high frequencies. In the distribution of relaxation times diagram,
inductance is identifiable as a peak at high frequencies.

(2) Resistive breakthrough: The so-called ‘resistive breakthrough’ includes the ohmic
resistances of the current collectors, electrolyte, and separator. It represents the transition
from the inductive to the capacitive dynamic. In the time domain, the resistive break-
through is clearly visible as a sudden voltage drop. In the frequency domain, it is the
intersection of the impedance curve with the real axis. However, this ohmic loss is not
visible in the distribution of relaxation times diagram because it is purely ohmic and has
no time constant.
(3) Higher and (4) Lower frequency capacitive section: The higher and lower

frequency capacitive dynamic processes are caused by the electrodes such as the electro-
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chemical double layer, charge transfer, and contact resistance between adjacent particles
[131]. In the time domain, the two areas become visible as a decelerated step-response of
the voltage. Due to the superposition of the higher and lower frequency capacitive part in
the voltage response, the representation of the dynamic in the time domain is not suitable
to separate and quantify these processes. In contrast to the time domain, the idealized
cell lower and higher frequency processes lead to separable characteristic semicircles in
the impedance spectra. The distribution of relaxation times shows two peaks for these
idealized cell processes.
Real cell processes result in deformed semicircles in the impedance spectrum and peaks

in the distribution of relaxation times, which have the shape of a distribution curve with
a large rounded peak tapering at both ends. In the case of similar time constants of the
effects of both electrodes, an assignment of the deformed semicircles to processes of the
anode and cathode is barely possible. The semicircles superimpose and the impedance
spectrum shows only one stretched semicircle [131]. An exact separation and assignment
of the semicircles to the electrodes can only be done using a reference electrode [136].

(5) Diffusion branch: The diffusion processes of Li-ion cells describe the ion transport
within the cell and dominate cell behavior at frequencies below 1Hz at room temperature.
They can be recognized in the time domain as a root-like voltage drop. In the impedance
spectrum, a characteristic diffusion branch appears after the semicircle section. In the
distribution of relaxation times diagram, it is marked by a high peak of the low-frequency
component.

3.3. Electrical Equivalent Circuit Modeling

As previously discussed, there are several approaches to model the dynamic behavior
of Li-ion cells (see Sec. 3.1); this work focuses on equivalent circuit models (ECMs).
Their advantages as compared with other approaches are presented and discussed in the
following section.
ECMs are a widely used phenomenological approach to model the dynamics of Li-ion

cells and batteries. The dynamic processes can be expressed by simple electrical elements
that characterize the dominant electrochemical processes within a cell. A simple ECM
consisting of an SoC-dependent voltage source, an internal resistor, and RC-elements to
reproduce the cell’s dynamic are depicted in Fig. 3.3.
Impedance measurements allow for parameterization of the ECM elements, where the

impedance spectra correspond to an averaged physical quantity of all parallel processes
across all particles with their respective current and concentration distributions [81]. By
lumping some electrochemical processes and physical effects together, and omitting others,
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Figure 3.3.: A simple equivalent circuit model (ECM) to simulate cell dynamics. Consisting
of an SoC-dependent voltage source, an internal resistor, and RC-elements.

the resulting ECMs can have a very compact model structure and a smaller number of model
parameters compared to the other model approaches. In particular, for cell effects that
have similar time constants and whose processes cannot be measured separately, lumping
this cell behavior into a simple electrical element can be advantageous. Cell effects, which
account for only a small part of the overall cell behavior, are usually neglected because
they often cannot be detected with the current measurements. This means that an increase
in the quality of ECMs can primarily be achieved by further developing measurement
methodology and technology.
The main application of ECMs is the simulation of so-called ‘key performance parameters’

of the battery for all operating conditions such as energy, power, and heat generation.
Due to the phenomenological approach which uses the voltage and current response of
Li-ion cells, ECMs can easily be scaled up to battery system models. ECMs can be divided
into approaches with electrochemical considerations and purely mathematical approaches
without physical representation. In the following, both approaches are presented in detail.

3.3.1. Simple Equivalent Circuit Models

A common start point to model the dynamic of batteries is by simple electrical circuit
elements. Such simple models consist of an SoC-dependent voltage source in series with
a resistor and an arbitrary number of RC-circuits (see Fig. 3.3), where the electrical
behavior of individual RC-elements are independent of each other [54, 59, 152, 181].
This means the response of a single RC-element does not influence its neighbors. However,
the absent interaction of the RC-elements allows for the model’s simple implementation
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and extremely fast calculation times. He et al. present an overview of typically simple
ECMs without electrochemical considerations [54].
These ECMs can be used for battery simulations to describe battery behavior and

to design simple battery management systems where the level of accuracy provided is
sufficient. Possible applications are small portable electronics and power tools. However,
a direct extension of use for automotive or similar energy storage applications can lead
to several drawbacks due to insufficient accuracy. These simple ECMs are often based
on small-signal considerations, where the parameterization is performed using the cell
response of low-amplitude current pulses. Due to the nonlinear cell response to high-
amplitude current excitations (see Sec. 3.7.3 and Sec. 3.7.5), simple ECMs have limited
prediction quality for high power automotive applications.
To account for the SoC, the temperature dependence of Li-ion cells, and the nonlinear

behavior at high currents, the ECM has to be extended. As simple ECMs do not include
physical or electrochemical considerations, a large number of parameters are required
to fit the extended ECMs. These parameters are typically stored in lookup tables or
polynomials. Due to the lack of physical relevance of the model parameters, interpolation
and extrapolation of the model parameters are only possible to a very limited extent.

3.3.2. Equivalent Circuit Models with Electrochemical Considerations

In addition to simple ECMs, it is also possible to create ECMs which contain known physical
dependencies and electrochemical considerations [40, 66]. This allows for the interpo-
lation and extrapolation of model parameters for a wide range of operating conditions.
ECMs with electrochemical considerations are typically used for optimizing the battery
system design and evaluating battery concepts by considering energy content, cooling,
and performance. In this work, the electrochemical ECMs are not multiphysics models in
a strict sense, as some physical and electrochemical effects are modeled independently
and therefore cannot interact [122].
Categorization of these electrochemically motivated models can be sorted into models

with spatially lumped parameters and models with distributed parameters. Furthermore,
the ECM components may include fractional derivatives, which are typically used to
describe the porous structure of the electrodes [63]. In general, these ECMs consider cell
components such as the anode, cathode, electrolyte, separator, and current collectors. The
identification, parameterization of each process, and the reduction of the model order are
mainly performed by analyzing the impedance spectra or the distribution of relaxation
times.
The concept of deriving the used ECM with electrochemical considerations is shown

in Fig. 3.4. The model includes and combines several ECM components and considers
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well-known processes from the literature to reproduce the main dynamics of Li-ion cells
[18, 19, 27, 40, 70, 101, 102].

The starting point of modeling is a sectional view of the cell (see Fig. 3.4a), where cell
effects and processes are presented by electrical elements. In the next step, the model
structure chosen has to take into account the recorded cell impedance (see Fig. 3.4c).
Afterward, the combination of the circuit elements allows a reduction of the model order.
The result of this reduction—a flexible and common used basic ECM—is depicted in Fig.
3.4b. This approach allows a separate development and modular extension of the ECM to
include other cell effects, such as hysteresis (see Sec. 3.7.7), reversible heat generation,
temperature dependence of the OCV (see Sec. 5.6), and diffusion limiting effects (see
Sec. 3.7.5).

Although combining the circuit elements and their association with physical processes
leads to an adequate reproduction of experimental impedance spectra in the frequency
domain as shown in Fig. 3.4, in most cases it is not trivial to transform these elements from
the frequency domain to the time domain with sufficient approximation and convergence.
Possible transformations are discussed in the corresponding sections below.

Additionally, there are ECMs with a separate view of anode and cathode reactions [40].
For the parameterization of such models, disassembling the cell is typically necessary to
build experimental cells, which allows the electrodes to be measured separately. Usually,
a reference electrode is installed inside the cell for separate voltage measurement of the
electrodes [63, 140]. However, it is challenging to ensure that the reference electrode
itself does not affect the measurement [17, 63]. Possible error sources are the long-term
stability of the reference, anode, and cathode electrode. Furthermore, using reference
electrodes in the form of grids or rings and special separators for laboratory cells can
easily alter the current density within the experimental cell in comparison to the original
industrial cell [17]. Another way to separate the voltages of the electrodes is by using
symmetrical cells [17]. Here, both electrodes of the experimental cell are made of the
same material, the laboratory cell consists of two cathodes or of two anodes. A reference
electrode is no longer necessary in this setup and thus the measurements are not influenced
by a reference. The drawback is the necessary disassembling of Li-ion cells at different
SoCs in order to investigate and parameterize the cells for all operating conditions. Due
to the extremely reactive lithium, the disassembling of cells at high SoCs leads to safety
problems, which have to take into account for the whole preparation process.
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3.4. Equivalent Circuit Model Elements

3.4.1. Elements with Lumped Parameters

Simple electrical network elements can denote the dynamic of the characteristic sections
of the impedance of Li-ion cells (see Sec. 3.2). These elements are: ohmic resistance R,
electrical inductance L, and capacitance C. The Nyquist plot of the impedances is shown
in Fig. 3.5 and the associated equations in the frequency domain and time domain are
listed in Tab. 3.1.
Using these electrical elements and their combination enables an approximation of the

impedance of Li-ion cells. In particular, in the area of simple ECMs (see Sec. 3.3.1), these
basic elements are used. For instance, the characteristic semicircles of the cell’s impedance
(see Sec. 3.2) can be expressed by an arbitrary number of RC-elements. The resulting
model is easy to implement and allows for fast and efficient computation. However, the
ability to predict the electrical behavior of the cell is limited as is the interpretation of its
electrochemical properties.

3.4.2. Elements with Distributed Parameters

The presented basic network elements with lumped parameters are only able to roughly
reproduce the electrochemical behavior of a Li-ion cell. To describe the porous structures
of the electrodes, the charge transfer, and the diffusion process, network elements with
distributed parameters are typically used [40, 63, 67, 70, 131]. The advantage of using
these network elements for the physical modeling of cell behavior is that the elements have
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Table 3.1.: A list of basic network elements with concentrated parameters.
network element equation (time domain) electrical impedance

resistor V = R · I R

inductor V = L · dI
dt jωL

capacitor V = 1
C ·
∫︁

Idt 1
jωC

RC-element V + RC · dV
dt = R · I R

1+jωRC

a simple and compact mathematical formulation in the frequency domain. However, their
transformation into the time domain is not trivial. Therefore, replication of these elements
in the time domain is not possible by a finite number of lumped network elements [70].
An important element with distributed parameters is the so-called ‘Warburg impedance’

which allows for a description of the diffusion processes and the porous structures of the
electrodes [70]. For a semi-infinite diffusion layer, the Warburg impedance can be written
as [63]:

ZW,∞ = 1
Q(jω)0.5 . (3.1)

In the Nyquist plot, the Warburg impedance is represented by a line with a slope of -45°
(see Fig. 3.6); this negative slope indicates the capacitive behavior of this element. In
addition to the assumption of an infinite diffusion layer, two further idealized Warburg-
elements can be formulated by an assumed finite diffusion layer. These elements and
their transformations in the time domain are presented in Sec. 3.6.
A generalization of theWarburg impedanceZW can bemade using the so-called ‘constant

phase element’ (CPE). In the frequency domain, the CPE can be expressed as [63, 167]:

ZCPE = 1
Q(jω)α

, (3.2)

where the exponent α is a function of the angle of the line in the Nyquist plot. As a result
of this additional parameter α, a wide range of different impedance characteristics can
be generated. These range from the dynamic of an ideal inductance over a purely ohmic
resistance to the ideal capacity. The dynamic of the CPE as a function of the exponent α is
listed in Tab. 3.2.
Connecting the CPE with an ohmic resistance in parallel creates the so-called ‘ZARC-
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Table 3.2.: The dynamic of the CPE as a function of the exponent α [148].
value of the exponent behavior of the CPE

-1 ideal inductance
-1· · · 0 inductively
0 ohmic resistance

0· · · 1 capacitively
1 ideal capacitance

element’ and is expressed as:

ZZARC = R

1 + R · Q(jω)α
. (3.3)

The ZARC-element is denoted by a semicircle in the Nyquist plot, which can be compressed
by varying α (see Fig. 3.6) [63, 147]. This enables an approximation of the impedance of
inhomogeneous and porous structures as they occur in electrochemical systems [63, 173].
Smaller values of the exponent α indicate a more inhomogeneous and porous electrode
structure. Depending on the electrode, the distribution of the reaction rates can lead to an
asymmetrical semicircle in the Nyquist plot. Havriliak and Negami suggest a supplement
to the ZARC-element for modeling this asymmetrical semicircle [53]. This element is
called the ‘HN-element’ and contains an additional exponent in the denominator of Eq.
3.3 [53]. However, this makes the parameterization of the HN-element very challenging
due to the additional parameter in the denominator for all operation conditions of the cell.
In addition, the transformation from the frequency domain to the time domain and the
calculation of the HN-element is computation-intensive. For these reasons the HN-element
is not considered in this work.
A comparison of the impedance of the Warburg impedance, CPE, and ZARC-element in

the Nyquist plot at varying values of the exponent α is depicted in Fig. 3.6.

3.5. ZARC-Elements and their Approximations

In addition to the analytic solution of the fractional differential equation of the ZARC-
element, several approximation methods exist for the time domain transformation [156,
157]. This work focuses on an approximation approach of the ZARC-element by the
superposition of linear differential equations, due to the suitability of implementation and
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constant τZARC = R · Q and the exponent of the ZARC-element α = 0.6.

fast computation times. Farmann et al. present approximations of the ZARC-element with
three and five RC-elements [32]. A higher number of RC-elements would lead to very
small time constants of these RC-elements, which would increase the computation time to
extreme levels. In particular, the time constant of the ZARC-element is in the millisecond
range at higher cell temperatures.
The impedance of the ZARC-element and its approximation with three RC-elements for

α = 0.6 is shown in Fig. 3.7. The resistances of the three RC-elements can be calculated
using:

RRC1 = RRC2 = RRC3 = R

3 . (3.4)

To determinate the capacity of the RC-elements, a pseudo time constant τZARC of the
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ZARC-element is defined as [32]:

τZARC = R · Q. (3.5)

Assuming that the second RC-element (see Fig. 3.7) has the same time constant as the
ZARC-element, the capacity of the second RC-element is defined as:

CRC2 = 3 · Q. (3.6)

The capacity of the first and third RC-element, which present the higher and lower
frequency part of the ZARC-element, can be calculated by the factor f(α) and expressed
as:

CRC1 = 3 · Q

f(α) = CRC2

f(α) . (3.7)

CRC3 = 3 · Q · f(α) = CRC2 · f(α). (3.8)

Depending on the α parameter of the ZARC-element, the factor f(α) is chosen to minimize
the approximation error. To minimize the computation time of the cell simulation, factor
f(α) is calculated in a prior offline optimization. Adequate accuracy of the approximation
can be reached by following the polynomial fitting function of factor f(α) and expressed
as:

f(α) = 392.77 · α4 − 1381.3 · α3 + 1826.5 · α2 − 1088.7 · α + 251.73. (3.9)

The resulting system of equations to approximate the ZARC-element can be expressed as:

VRC1 + RRC1CRC1 · dVRC1

dt
= RRC1 · I,

VRC2 + RRC2CRC2 · dVRC2

dt
= RRC2 · I,

VRC3 + RRC3CRC3 · dVRC3

dt
= RRC3 · I,

(3.10)

with:
VZARC,approx. = VRC1 + VRC2 + VRC3 . (3.11)

The advantage of this system of linear differential equations is that the equations are not
coupled. This means the variables and states of each equation are independent. This
allows for a fast calculation in the time domain of this approximated representation of the
ZARC-element.
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3.6. Warburg-Elements and their Approximations

3.6.1. General Warburg-Elements

In electrochemistry, the Warburg impedance is typically derived using Fick’s first and
second laws, and the Nernst equation. However, it is also possible to use the so-called
‘telegraph equation’. In this work, the different Warburg-elements are derived first using
Fick’s laws and then using the telegraph equation. Comparing the formula indicates that
an approximation of the Warburg-element is possible with a network of circuit elements.
This enables an easy transformation of the Warburg-element to the time domain.
In the case of one-dimensional diffusion, Fick’s first law is defined as [63]:

J(x, t) = −D · ∂c(x, t)
∂x

, (3.12)

where J is the current density, ∂c(x,t)
∂x is the concentration gradient which acts opposite to

the direction of diffusion, and D is the diffusion coefficient. For the electrical current i,
Fick’s first law can be written as:

i(x, t) = −n · F · A · D · ∂c(x, t)
∂x

, (3.13)

where n is the number of transferred electrons, F is the Faraday constant, and A is the
cross-sectional area. Fick’s second law is defined as:

∂c(x, t)
∂t

= D · ∂2c(x, t)
∂x2 . (3.14)

The Nernst equation links concentration c and voltage v and can be expressed as:

v(x) = Rg · T

n · F
· ln c(x)

c0
= VT

n
· ln c(x)

c0
, (3.15)

where Rg is the universal gas constant, c0 is the initial concentration, c(x) is the concen-
tration at the position x, T is the absolute temperature, and VT is the thermal voltage. VT
can be expressed as:

VT = Rg · T

F
. (3.16)

At concentration c(x), which are much higher than the initial concentration c0, the Nernst
equation can be linearized as:

v(x) ≈ VT
n

·
(︃

c(x)
c0

− 1
)︃

= VT
n

· c(x)
c0⏞ ⏟⏟ ⏞

∆v(x)

−VT
n

. (3.17)
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As a result, the Warburg impedance can be formulated as:

ZW = ∆v(x)
i(x) = − VT

n2 · c0 · F · A · D
· c(x)

∂c(x)
∂x

. (3.18)

The transformation of Fick’s second law in the frequency domain can be expressed as:

jω · c(x) = D · ∂2c(x)
∂x2 . (3.19)

The resulting equation is a differential equation of order two and can be solved with
hyperbolic functions. The solution of Eq. 3.19 can be written as:

c(x) = Ã · sinh

⎛⎝√︄jω

D
· (l − x)

⎞⎠+ B̃ · cosh

⎛⎝√︄jω

D
· (l − x)

⎞⎠ . (3.20)

In the case of an infinite length of the diffusion (x → ∞), the differential term in Eq. 3.18
can be simplified to:

c(x)
∂c(x)

∂x

⇒ −
√︄

D

jω
. (3.21)

This leads to the well-known formula of the Warburg impedance of a semi-infinite diffusion
layer [63, 140], i.e.:

ZW,∞ = VT
n2 · c0 · F · A · D

·
√︄

D

jω
. (3.22)

In contrast to the previous presented formula of the Warburg-element (see Eq. 3.1), a
physical interpretation of Eq. 3.22 and its parameters is now possible.
The transformation of the infinite Warburg impedance to the time domain can be

achieved using the Laplace transformation and is expressed as:

L
(︂

n
√

t
)︂

= 1
s

1
n

+1
· Γ
(︃ 1

n
+ 1

)︃
, (3.23)

where n is an integer and Γ is the gamma function. The solution of the equation in the
time domain leads to the characteristic root shape of the voltage response (see Fig. 3.2).
However, this transformation is not suitable for implementation in cell simulation, as the
Warburg impedance depends strongly on the respective operating point. This would have
the consequence that the calculation of the convolution would have to be performed again
for each calculation step, which is computationally expensive.
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Figure 3.8.: A visualization of the telegraph equation, where ZA is the input impedance and
ZE represents the impedance of the end of the transmission line.

As outlined, this work uses the telegraph equation to simulate the Warburg impedance in
the cell model. The general circuit of the transmission line model (TLM) of the telegraph
equation is depicted in Fig. 3.8. The general impedance of the transmission line is
expressed as:

ZL =
√︄

R′ + jωL′

G′ + jωC ′ , (3.24)

where R′ is the resistance, L′ is the inductance, C ′ is the capacitance, and G′ is the
conductance of the transmission line. These parameters are expressed per unit length.
The propagation function respectively propagation constant γ is defined as:

γ =
√︂

(R′ + jωL′) · (G′ + jωC ′). (3.25)

The input impedance ZA of the transmission line is expressed as:

ZA = ZL · ZE + ZL · tanh(γ · l)
ZL + ZE · tanh γ · l) , (3.26)

where ZE represents the impedance of the end of the transmission line. At finite transmis-
sion lines the ZE has a significant impact on the input impedance ZA, especially in the
case of an open and shorted circuit at the end of the transmission line. These two types
will be presented in Sec. 3.6.2 and Sec. 3.6.3.
Assuming G′ = 0 and L′ = 0, Eq. 3.26 can be reduced to:

ZA =
√︄

R′

jωC ′ ·
ZE +

√︂
R′

jωC′ · tanh(
√

jωR′C ′ · l)√︂
R′

jωC′ + ZE · tanh
√

jωR′C ′ · l)
. (3.27)
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In the case of an infinite length of the diffusion (x → ∞), Eq. 3.27 simplifies to:

ZA,∞ =
√︄

R′

jωC ′ = 1√︂
jω C′

R′

. (3.28)

Comparing Eq. 3.28 and Eq. 3.22 indicates that the derived formulae have the same
structure. This implies that both approaches can reproduce the dynamic of diffusion
processes within Li-ion cells, where the electric circuit of the telegraph equation can be
more easily implemented in a time domain model. However, the infinity length of the
diffusion has to be approximated. A physical interpretation of the parameters C ′ and R′

of the telegraph equation can be done by comparing the coefficients of Eq. 3.28 and Eq.
3.22. Rewriting Eq. 3.28 leads to:

ZW,∞ = 1√︄
jω · n4 ·

c0·F ·A· 1
VT

1
c0·F ·A·D ·VT

. (3.29)

Assuming the number of transferred electrons n = 1, the parameters of the TLM are:

R′ = 1
c0 · F · A · D

· VT, (3.30)

C ′ = c0 · F · A · 1
VT

. (3.31)

As outlined, the fractional derivation of the Warburg-element can be generalized by
the CPE (see Eq. 3.2). The transformation of the CPE from the frequency domain to the
time domain is not trivial. Schrama presented an approach to approximate the CPE by a
TLM consisting of RC-elements, where the parameters R′ and C ′ are not constant and
have to be determined for each RC-element [141, 167]. For an adequate approximation
of the CPE, a high number of RC-elements are required but the calculation of each R′ and
C ′ is computing-intensive. The values of R′ and C ′ are functions of the gamma-function,
where the gamma-function in the expression is the present index of the RC-element [167].
Due to the evaluation of the gamma-function, computing-time increases according to the
number of RC-elements (even nominal numbers cause large increases). To overcome this
problem, Wang presents a new approach based on Schrama’s thesis [167], which allows
the determination of the parameters R′ and C ′ for a high number of RC-elements. The
formulae for the resistors and capacitors of the TLM are as follows [167]:

R(k + 1) = (log(A) + log(B)) · (h · N2)α · Γ(1 − α)
Γ(α) · Ak, (3.32)
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C(k + 1) = (h · N2)(1−α) · log(A) + log(B)
2

·
2 · (A · B)(k·0.5) + 1

N
Γ(1−α)

Γ(α) · ((A · B)(k·0.5) + α
N )

· Bk,
(3.33)

where A can be determined by the constant B:

A = exp
(︃−α · log(B)

α − 1

)︃
. (3.34)

It has to be proven that B = 1.03 leads to good approximations of the CPE. The parameter
N is the number of RC-elements of the TLM, h is the step size, α is the exponent to set
the angle of the line in the Nyquist plot of the CPE, Γ is the gamma-function, and k is the
index of the RC-element.
To compare the analytical CPE and the approximation, the chosen parameters are in

the range of a real automotive Li-ion cell with about 28Ah. The chosen capacitance
(i.e., respectively pseudo capacitance) Q is 100 kF and the resistance is 10mΩ at 25 °C.
The parameters of Wang’s approximation are N = 1500, B = 1.03, and h = 10−22. The
simulation results are shown in Fig. 3.9. The analytical and approximated CPE for α is
0.2 to 0.8 in the frequency range from 100Hz to 1mHz.
The comparison confirms the suitability of the approximation. Despite the large range of

values of α, the errors in the impedance are very small. The dashed lines in Fig. 3.9 mark
the impedance values at the same frequency for different values of α. The values at the
equivalent frequency lines (i.e., the dashed lines) indicate that the maximum of the real
part of the impedance Re(Z) of all of these curves changes depending on the frequency
and α. At a frequency of 1Hz, the maximal value of Re(Z) is α = 0.2, at 100mHz, the
maximal value of Re(Z) is α = 0.5, and at 10mHz, the maximal value of Re(Z) is α = 0.7.
Moreover, the curves show that the maximum of Re(Z) and the maximum of the absolute
value of the impedance |Z| for a given frequency are not consequently at the same α.
The findings of this section are the modeling of the Warburg-element and CPE in the

time domain using RC-circuits. The formula initially introduced as the Warburg-element
(see Sec. 3.4.2) was amended with Fick’s laws (see Eq. 3.12 and Eq. 3.14) and the
Nernst equation (see Eq. 3.15). The comparison of the diffusion-based derivation and the
used telegraph equation shows that several physical processes exist which have the equal
structure of the formula and can reproduce the same dynamic processes.

3.6.2. Finite Space Warburg-Elements

In addition to the Warburg impedance with a semi-infinite diffusion layer (see Sec. 3.6),
two further idealized Warburg-elements with a limited diffusion can be defined under
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Figure 3.9.: An approximation of the CPE’s impedance for α from 0.2 to 0.8 by Eq. 3.32
to Eq. 3.34. The number of RC-elements N = 1500, the step size h = 10−22,
B = 1.03, the time constant τ = 1000 s, the pseudo capacity Q = 100 kF, and
the resistor R = 10 m Ω. The dashed lines mark equal frequencies.

idealized conditions. These elements are the ‘finite space Warburg’ (FSW) and ‘finite
length Warburg’ (FLW). The three idealized Warburg-elements are shown in the Nyquist
plot in Fig. 3.10 and the FLW is presented in Sec. 3.6.3.
In this work, Eq. 3.18 is the starting point to derive the Warburg-element of a finite

diffusion layer of length L using Fick’s laws. To solve this differential equation, the
hyperbolic function of the lithium concentration (see Eq. 3.20) can be applied. Assuming
a non-ionic boundary layer at x = L, the particle current density J drops to zero at this
boundary layer. This means that the amount of electroactive substance of this layer is
fixed and leads to a capacitive behavior at low frequencies of this Warburg-element. The
impedance of this element is shown as a line in the Nyquist plot with a slope of -45° at
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high frequencies. This line transitions to a vertical kink at low frequencies, which typically
characterizes capacitive behavior (see Fig. 3.10).

a) b)

Figure 3.10.: A comparison of the three Warburg-elements: infinite Warburg, finite space
Warburg (FSW), and finite length Warburg in the frequency domain in the range
from 1 kHz to 1 mHz and time domain. Parameters are R = 5 mΩ, C = 100 kF,
l = 1.

The resulting diffusion element is called the ‘finite space Warburg’ (FSW). The boundary
conditions of Eq. 3.20 of the FSW are expressed as:

∂c(x)
∂x

|x=l = 0 ⇒ Ã = 0, (3.35)

c(x) = B̃ · cosh

⎛⎝√︄jω

D
· (l − x)

⎞⎠ , (3.36)

∂c(x)
∂x

= −

√︄
jω

D
· B̃ · sinh

⎛⎝√︄jω

D
· (l − x)

⎞⎠ . (3.37)
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Applying the boundary conditions on Eq. 3.18 leads to:

ZFSW = 1⌜⃓⃓⃓
⎷⃓jω · n4 ·

c0 · F · A · 1
VT

1
c0 · F · A · D · VT

· coth

⎛⎝√︄jω

D
· L

⎞⎠

= RgT

n2F 2c0D
·

coth
(︂√︂

jω
D · L

)︂
√︂

jω
D

.

(3.38)

As discussed in Sec. 3.6, a transformation of this FSW to the time domain is not trivial.
It has to be proven that the FSW can be approximated using an RC-circuit based on the
telegraph equation (see Eq. 3.27). To derive the formula of the FSW using the telegraph
equation, the end of the transmission line ZE represents an open circuit which results
in an infinity high impedance (ZE → ∞). The RC-circuit of the FSW, called the ‘ladder
model’, ‘T-model’, or ‘Cauer model’ [82, 98] is depicted in Fig. 3.11.

𝑍𝐴

𝑅′

𝐶′

𝑖 𝑅′

𝐶′

𝑅′

𝐶′

Figure 3.11.: An approximation of the FSW by the so-called ‘ladder model’, ‘T-model’, or
‘Cauer model’.

The input impedance ZA of the telegraph equation (see Eq. 3.27) results in:

ZA =
√︄

R′

jωC ′ · 1
tanh(

√
jωR′ · C ′ · l)

= 1√︂
jω C′

R′

· coth(
√︁

jωR′C ′ · l)

= R′
√

jωR′ · C ′ · coth(
√︁

jωR′C ′ · l).

(3.39)

In the case of a number of transferred electrons n = 1, the comparison of coefficients of
the equations 3.38 and 3.39 provides:
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C ′ = c0 · F · A · 1
VT

, (3.40)

R′ = 1
c0 · F · A · D

· VT, (3.41)

R′ · C ′ = 1
c0 · F · A · D

· VT · c0 · F · A · 1
VT

= 1
D

. (3.42)

To simulate the RC ladder network of Fig. 3.11, the following equations of the voltages
must be implemented in the model:

dVFSW1

dt
= I0 · R′ − VFSW1 − VFSW2

C ′ · R′ ,

dVFSW2

dt
= VFSW1 − VFSW2

C ′ · R′ − VFSW2 − VFSW3

C ′ · R′ ,

dVFSWn−1

dt
=

VFSWn−2 − VF SWn−1

C ′ · R′ −
VFSWn−1 − VFSWn

C ′ · R′ ,

dVFSWn

dt
=

VFSWn−1 − VFSWn

C ′ · R′ ,

(3.43)

with the currents:

IFSWi−1 =
VFSWi−1 − VFSWi

R′ ,

IFSWn = 0.
(3.44)

where n is the number of RC-elements, the index i represents the position of the RC-
element of the transmission line, and VFSW1 is the voltage of the input impedance. The
current IFSWi charges or discharges the capacitors of the RC-elements. For simulation in
the time domain, these differential equations are coupled. This means each RC-element
is impacted by other RC-elements. In addition, the RC-elements depend on temperature,
SoC, and history. Due to the coupling of these RC-elements and their dependencies,
the computational effort is high for an adequate approximation of the FSW by 20 to 50
RC-elements. To reduce the model complexity and model order, the ladder network (see
Fig. 3.11) can be transformed by considering only the time constants of every single
RC-element. The resulting network, where the RC-elements are connected in serial is
depicted in Fig. 3.12. The equivalent circuit is called an ‘RC-chain model’, a ‘Voigt model’,
or a ‘Foster model’ [37, 82, 173]. The advantages of the RC-chain model are the fast
convergence of the approximation and the decoupled equations, which allows for parallel
and separate evaluation of the RC-elements.
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Figure 3.12.: An approximation of the FSW by the so-called ‘RC-chain model’, ‘Voigt model’,
or ‘Foster model’.

Comparing the pulse response of the FSW and the pulse response of a single RC-element
allows for a determination of the parameters Rn and Cn of the RC-chain model. The pulse
responses are expressed as [101]:

gFSW(t) = 1
CFSW,0

+ 2
CFSW,i

·
∞∑︂

i=1
exp

(︄
−i2π2

RFSW,i · CFSW,i
· t

)︄
, (3.45)

gRC(t) = 1
C

· exp
(︃ −t

R · C

)︃
. (3.46)

The comparison of the parameters provides:

CFSW,0 = CW , CFSW,i = CW

2 , RFSW,i = 2 · RW
i2π2 . (3.47)

To investigate the approximation error of the RC-ladder and RC-chain model, both
models were simulated in the time domain with the typical parameters of a 28Ah Li-
ion cell, where capacitance C is 100 kF and resistance R is 5mΩ of the FSW. The error
approximation of the two approaches—as a function of the number of the RC-element—is
depicted in Fig. 3.13. As an analytical solution of the FSW in the time domain was not
derived, an approximated FSW consisting of 4000 RC-elements was used as the reference
instead. The errors of the approximated voltages were determined after 1000 s excitation.
The RC-ladder model requires more RC-elements than the RC-chain model as indicated
in Fig. 3.13. The suggested 20-50 RC-elements lead to an adequate reproduction of the
FSW, where the error is smaller than 0.4%3.
3The chosen parameters reproduce the dynamic of typically Li-ion cells at room temperature, lower tempera-
tures lead to lower dynamics and a higher resistor of the FSW. As a result, more RC-elements are required
to reproduce the FSW and the difference between the RC-ladder and RC-chain model becomes greater.
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Figure 3.13.: A comparison of the convergence of the Foster and Cauer models as a function
of the number of RC-elements at a temperature of 25 °C and a frequency of
1 mHz, where capacity C = 100 kF and resistance R = 5 mΩ. The error is
calculated by an approximated FSW consisting of 4000 RC-elements.

Despite the disadvantages of the RC-ladder model, it has some important advantages
in reproducing the diffusion behavior of Li-ion cells, which are discussed in Sec. 3.7.6 and
Sec. 6.3.
For non-ideal boundary conditions, the FSW can be expanded analogously to the CPE.

For this purpose, the square root function of Eq. 3.38 is replaced by the exponent nW. By
varying the exponent nW, the angle of the straight line of the FSW’s impedance in the
Nyquist plot changes. The resulting Warburg impedance is the so-called ‘generalized FSW’
(GFSW) and is expressed as:

ZGFSW = R′ · coth ((jω · R′ · C ′)nW)
(jω · R′ · C ′)nW

. (3.48)

In addition to the 1-dimensional diffusion FSW, Illig and Witzenhausen present in their
works Warburg-elements for the 1-, 2- and 3-dimensional diffusion [63, 173]. Further
Warburg-elements can be derived by considering the geometry of the particle and the
distribution of the particle size, which influence the diffusion process [26, 72].
In this work, the GFSW and other special forms of FSW are not considered in cell

modeling. The reasons for this are the difficult and ambiguous identification of the
exponent nw from cell measurements and the complex approximation of these elements
in the time domain, which leads to computationally intensive simulations.
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3.6.3. Finite Length Warburg-Elements

In addition to the FSW, a finite diffusion layer can be defined with an ideal reservoir at the
endpoint x = L. This has the consequence that the concentration c at x = L is zero [69].
The resulting element is the so-called ‘finite length Warburg’ (FLW). At high frequencies,
the FLW is a straight line on the Nyquist plot with a slope of -45 ° which drops to a purely
resistive value similar to the impedance of an RC-element at lower frequencies (see Fig.
3.10).
Due to the similar derivation of the FSW and FLW using Fick’s laws, the required

formulae can be briefly summarized. As a result of the ideal reservoir at x = L, the
following equations can be deduced:

c(x = l) = 0 ⇒ B̃ = 0, (3.49)

c(x) = Ã · sinh

⎛⎝√︄jω

D
· (l − x)

⎞⎠ , (3.50)

∂c(x)
∂x

= −

√︄
jω

D
· Ã · cosh

⎛⎝√︄jω

D
· (l − x)

⎞⎠ . (3.51)

Substituting of Eq. 3.50 and Eq. 3.51 in Eq. 3.18 leads to the formula of the impedance:

ZFLW = 1⌜⃓⃓⃓
⃓⃓⎷jω · n4 ·

c0 · F · A · 1
VT

1
c0 · F · A · D

· VT

· tanh

⎛⎝√︄jω

D
· L

⎞⎠

= RgT

n2F 2c0D
·

tanh
(︂√︂

jω
D · L

)︂
√︂

jω
D

.

(3.52)

Besides the FSW, it is also possible to describe the FLW with a TLM based on the
telegraph equation. The resulted TLM is called the ‘pi model’, the ‘ladder model’, or the
‘Cauer model’ and is shown in Fig. 3.14. Here the impedance at the end ZE is respectively
shorted to zero [82, 98, 180]. Using the boundary condition ZE = 0 in Eq. 3.27 leads to:

ZA =
√︄

R′

jωC ′ · 1
coth(

√
jωR′ · C ′ · l)

= 1√︂
jω C′

R′

· tanh(
√︁

jωR′C ′ · l)

= R′
√

jωR′ · C ′ · tanh(
√︁

jωR′C ′ · l).

(3.53)
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Figure 3.14.: An approximation of the FLW by the so-called ‘ladder model’, ‘pi model’, or
‘Cauer model’.

Comparing Eq. 3.52 and Eq. 3.53 leads to the electrochemical interpretation of the
parameters R′ and C ′ of the FLW. In the case of the number of transferred electrons being
n = 1, these parameters are similar to the FSW’s parameters (see Eq. 3.40 and Eq. 3.41).
The implementation and simulation of the RC-ladder model has some disadvantages

due to its coupled equations as outlined in Sec. 3.6.2. For these reasons, the RC-ladder
model of the FLW is transformed to the RC-chain model (see Fig. 3.15), which also allows
for a simulation of the FLW in the time domain [10]. The impulse response of the FLW
[101] is expressed as:

gFLW(t) = 2
CW

·
∞∑︂

i=1
exp

(︂−(2i − 1)2π2

4RWCW
· t
)︂
. (3.54)

The comparison of Eq. 3.54 and the impulse response of a single RC-element (Eq. 3.46)
provides:

CFLW,i = CW
2 , RFLW,i = 8 · RW

(2i − 1)2π2 . (3.55)

For the sake of completeness, it should be mentioned that the FLW can be extended in
the same way as the FSW, thus:

ZGFLW = RW ·
tanh

(︂
(jωτW)nW

)︂
(jωτW)nW

. (3.56)

According to the GFSW, the GFLW is not considered in this work due to its complex
transformation into the time domain.
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Figure 3.15.: An approximation of the FLW by the so-called ‘RC-chain model’, ‘Voigt model’,
or ‘Foster model’.

3.7. Modeling Dynamics Using ECMs

3.7.1. The Solid Electrolyte Interface (SEI)

There is an interface between the electrolyte and the electrode that grows during the
initial charge cycles of Li-ion cells as outlined in Sec. 2.5.1. This interface not only occurs
at the anode, but it also grows at the cathode [71]. At the anode, the layer is called the
‘solid electrolyte interface’ (SEI). In this work, the cathode interface is referred to as the
SEI to avoid changes to the interface at the anode. The SEI is the product of the reaction
of lithium and electrolyte. It forms over the entire electrode surface, preventing further
reactions between the lithium embedded in the graphite and the electrolyte [63, 67].
However, lithium ions can pass through the SEI and this leads to reaction losses within
the Li-ion cell [25]. The so-called ‘charge transfer resistance’ denotes these losses. To
reduce the losses, the SEI should be as thin and as uniform as possible [67].
The SEI layer denotes an electrochemical double layer in which the electric potential

between the active material and the electrolyte changes suddenly [51, 67, 165]. Wang et
al. discuss different approaches and models to describe the SEI [165]. These approaches
are illustrated in Fig. 3.16. They are based on the so-called ‘Helmholtz model’, where
the Li-ions are directly attracted to the electrode surface (see Fig. 3.16a). The resulting
layer is confined to a monomolecular layer, leading to a linear function of the electric
potential [51, 182]. However, the Helmholtz model does not account for the thermal
motion of the ions and their spatial distribution. The ‘Gouy-Chapman model’ (see Fig.
3.16b) takes these effects into account but neglects the behavior of the Helmholtz layer
[101]. The so-called ‘Stern model’ combines both approaches (see Fig. 3.16c) and allows
a description of the two-layered structure of the SEI [51, 182]. This layered structure
characterizes the inner and outer Helmholtz layer. They consist of the porous organic
cover layer, which is permeable to the solvated Li-ions (cations) and salt anions, and the
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Figure 3.16.: A comparison of concepts to describe the electrochemical double layer at the
electrodes. Models according to (a) Helmholtz, (b) Gouy-Chapman and (c)
Stern. Redrawn from [182].

thin inorganic inner layer, which transports only Li-ions (see Fig. 3.16)[25, 165].
A common ECM approach to model the dynamics of the SEI is an RC-element, where

the resistor Rct represents the charge transfer resistance and the capacitor Cdl models the
double layer capacitance [63, 124, 173]. However, the structure of the SEI (see Fig. 3.16),
EIS measurements, and DRT results expose that a single RC-element cannot model these
dynamics adequately. Elements with distributed parameters (see Sec. 3.4.2) enable a
better reproduction of the dynamic. An adequate description uses the ZARC-element (see
Eq. 3.3) in combination with a Warburg-element. Randles presents an ECM consisting of
an RC-element, where a Warburg-element is in series with the resistor [124]. In this work,
the RC-element is replaced by the ZARC-element to account for the porous structure of the
electrodes. Another possibility is to connect the ZARC-element and the Warburg-element
in series. The two resulting ECMs are shown in Fig. 3.17. For Li-ion cells the differences
between the ECMs can be neglected due to the different dynamics of the ZARC and
Warburg-element [63, 173]. Due to the easier implementation of the serial connected
ECM (see Fig. 3.17b), this variant is chosen to model the SEI in this work.

3.7.2. Capturing the Temperature Dependency of the Cell’s Dynamic

A common approach to model the temperature dependency of the cell’s dynamics is by
using the so-called ‘Arrhenius equation’ [134]. The phenomenological Arrhenius equation
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Figure 3.17.: A comparison of ECMs to reproduce the dynamic of the electrochemical double
layer, (a) Randles model, and (b) ZARC-element in series with a Warburg-
element [124].

denotes the reaction rate k as a function of the temperature and the activation energy
of reactions. In this work, the Arrhenius equation is the fundamental description of the
temperature dependency of the ECM’s elements. Additionally, it denotes aging processes.
For sufficiently small temperature intervals, the reaction rate k is expressed as [100]:

k = A · e− EA
R·T , (3.57)

where EA is the activation energy, R is the general gas constant, T is the absolute tem-
perature, and A is the abundance factor or pre-exponential factor. To run a reaction, the
reactants must have energyE > EA. In general, the reactants are subject to the Boltzmann
distribution, which is considered by e− EA

R·T . This means, an increase in temperature leads
to an ever greater number of reactants, which have energy E > EA. As a result, the
reaction proceeds with a higher number of reactants [100]. The pre-exponential factor A
denotes the total number of reaction formation experiments that take place4. Thus, the
product of A and e− EA

R·T can be interpreted as the number of trials with sufficient energy
E > EA leading to the reaction [4]. In general, the activation energy is unknown and
must be determined by measurements [134]. Typically Li-ion cells have an activation
energy EA of about 40-60 kJ/mol, where a temperature increase of 10 K causes a doubling
of the reaction rate [14, 67, 133, 153]. For Li-ion cells, this means that performance
decreases with lower temperatures and increases with higher temperatures. However,
the temperature must not be selected too high, otherwise the self-discharge and aging
processes will increase drastically [67].

4In general, the pre-exponential factor is a function of temperature. For the relevant temperature range of
Li-ion cells, it can be considered approximately constant.
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3.7.3. Capturing the Nonlinear Current-Overpotential Relationship

Thus far, the dynamics of the presented elements have had a linear relation between the
cell current and the overpotential. However, the current-overpotential relation of Li-ion
cells is nonlinear at high currents. More precisely, the voltage response of the cell at high
excitations is less than the expected response. The voltage of a typical Li-ion cell as a
function of the excitation current is shown in Fig. 3.18a. The measured overpotential after
10 s excitation and the overpotential by assuming a linear current-overpotential relation is
shown in Fig. 3.18b. Comparing the curves indicates that the overpotentials of more than
the thermal voltage VT (see Eq. 3.16) causes a nonlinear current-overpotential relation.
The thermal voltage VT at room temperature is about 25mV. The reason is a reduction of
the charge transfer resistance Rct of the SEI (see Sec. 3.7.1). In the frequency domain,
this reduction leads to a shrinkage of the characteristic semicircles in the Nyquist plot,
which allows for a separation from other reactions and enables an accurate determination
of the charge transfer resistance Rct as a function of the excitation current (see Sec. 4.6).

a) b)

linear dynamic
(ohmic resistance)

overpotential after 
10 s excitation

11

Figure 3.18.: The nonlinear current-voltage relation of Cell E (see Tab. A.1) at 0°C, (a)
voltage response and (b) resulting overpotential as a function of the excitation
current.
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Figure 3.19.: A visualization of the Butler-Volmer equation (solid line) and Tafel equation
(dashed line) for different symmetry factors α at 25°C. Redrawn from [162].

The ‘Butler-Volmer equation’ describes the nonlinear current-overpotential relationship
assuming ideal charge transfer at the double layer of electrodes [162]. The Butler-
Volmer equation represents a dynamic equilibrium resulting from backward and forward
reactions. Without excitation of the cell, both reactions proceed at the same rate and
the superimposed charge flux of both reactions is zero [67]. Witzenhausen presents the
derivation of the Butler-Volmer equation which can be derived directly using the Arrhenius
equation (see Eq. 3.57) and the change in Gibbs energy (see Eq. 5.15) [173].
The current density J as a function of the overpotential η can be written with the

Butler-Volmer equation as [100]:

J = JC − JA = J0 · (e
αBV·n·F

Rg·T ·η − e
− (1−αBV)·n·F

Rg·T ·η), (3.58)

where J0 is the output or exchange current density, α is the symmetry factor, n is the
number of transferred electrons, F is the Faraday constant,Rg is the universal gas constant,
and T is the absolute temperature. The symmetry factor αBV denotes the contribution of
the cathodic and anodic reaction, where the total reaction is defined as the sum of both
reactions and results to one. For the symmetry factor αBV = 0.5, the anode and cathode
reactions are symmetric and run with the same reaction rate [162]. The Butler-Volmer
equation for several symmetry factors αBV at 25 °C is illustrated in Fig. 3.19.
Overpotentials η of more than the thermal voltage VT enables a simplification of the

Butler-Volmer equation to the so-called ‘Tafel equation’ [100]. The Tafel equation is shown
as dashed lines in Fig. 3.19. The simplification of the Butler-Volmer equation is possible
due to the neglected impact of the cathode reaction on the total reaction for overpotentials
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Figure 3.20.: A ZARC-element with a diode to approximate the nonlinear current-voltage
relation of Li-ion cells.

η of more than the thermal voltage VT respectively for negative overpotentials η and vice
versa for the anode. The Tafel equation of the anode reaction is expressed as [100]:

ln(JA) = ln(J0) − (1 − αBV) · n · F

Rg·, T
· η (3.59)

and for the cathode reaction that follows:

ln(JC) = ln(J0) + αBV · n · F

Rg · T
· η. (3.60)

The exchange current density J0 can be calculated as [93]:

J0 = F · k0 · cLi+
1−αBV(cmax − csurf)1−αBV · cαBV

surf , (3.61)

where k0 is the reaction rate coefficient, cmax is the maximum concentration of lithium, csurf
is the surface concentration of lithium in the active material, and cLi+ is the concentration
in the electrolyte.
Instead of the Butler-Volmer equation, a diode is used in parallel to the ZARC-element

to implement the nonlinear current-overpotential behavior of Li-ion cells in the simulation
model (see Fig. 3.20). The reasons being easier implementation and that the measurement
results (see Fig. 4.20) do not show an adequate approximation of the cell dynamics with
the Butler-Volmer equation. For a good reproduction of the cell dynamics at high currents,
the number of transferred electrons n and the symmetry factors αBV of the Butler-Volmer
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equation must be changed to nonphysical values. Moss et al. also reported a nonphysical
number of transferred electrons n to reproduce the current dependence of the charge
transfer resistance Rct [102]. An analytical calculation of the Rct by the Butler-Volmer
equation is only possible for αBV = 0.5. Otherwise, Eq. 3.58 cannot be rewritten to
express the overpotential as a function of the current. This is in contrast to the diode
model (see Fig. 3.20), which enables the calculation of Rct for various αBV. Furthermore,
the Butler-Volmer equation results in an infinitely small charge transfer resistance Rct
for an infinity overpotential. However, measurement results expose a limit in the charge
transfer resistance (see Fig. 4.20). In this work, the bulk resistance Rb of the diode
models this limit. Further advantages of the diode in parallel to the ZARC-element are
the easy and separate determination of the temperature, SoC, and current dependence of
the charge transfer resistance Rct. The current of an ideal diode is expressed as:

Id = Is ·
(︃

e
Vd

nd·VT − 1
)︃

, (3.62)

where VT is the thermal voltage, Vd is the overpotential of the diode, Is is the reverse bias
saturation current and nd is the emission coefficient of the diode. The overpotential of the
ZARC-element with the diode (see Fig. 3.20) can be calculated using:

VZARC = Vd + Id · Rb, (3.63)

where Rb is the bulk resistance of the diode and limits the minimal impedance of the
resulted circuit. The differential resistance Rd of the diode can be written as:

Rd = dVd
dId

|OP = nd · VT
Id,OP + Is

, (3.64)

where OP denotes the current operation point.
A comparison of the Butler-Volmer equation and ZARC-element with the diode is

depicted in Fig. 3.21. The resistances of both approaches are simulated for currents in
the range of 0A to 200A. To visualize the differences of the two approaches, the charge
transfer resistance Rct was varied in the range of ±20%, which corresponds to the SoC
dependence of the Rct (see Sec. 4.4). The parameters of both models are listed in Tab. 3.3.
To simulate the different Rct by the Butler-Volmer equation, the prefactor J0 is linearly
scaled with Rct. The curves at high currents show that the models have similar behavior.
At a small excitation, the curves show different behavior. Compared to the diode approach,
the simple linear scaling of the prefactor JO cannot adequately reproduce the simulated
Rct. This indicates that a more complex calculation of the prefactor J0 for a varied charge
transfer resistance is necessary to model the small-signal behavior of the SEI.
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Figure 3.21.: Simulation results of the Butler-Volmer equation and the diode model approach
as a function of the excitation current for different initial charge transfer
resistances Rct.

Table 3.3.: The parameters used to simulate the Butler-Volmer equation and the ECM with
diode (see Fig. 3.21).

parameter value unit

number of transferred electrons n 1 -
symmetry factors αBV 0.5 -
exchange current I0 10 A

saturation current Is 10 A
emission coefficient nd 2 -
bulk resistance Rb 0.0001 Ω
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Witzenhausen presented an implementation of the Butler-Volmer equation in which
the nonlinear behavior can be represented by piecewise linear functions [173]. However,
extrapolation of this method is only possible to a limited extent. This is in contrast to
the diode approach, which can be calculated by an analytical function and can be easily
extrapolated.

3.7.4. Capturing the State of Charge Dependency of the Cell’s Dynamic

The State of Charge (SoC) also has an impact on the dynamics of the cell. Typically, the
resistance increases at lower and higher SoCs and has its minimum around 70-80% SoC
[14, 140, 179]. The SoC dependence of two different Li-ion cells is depicted in Fig. 4.13
(Sec. 4.4). The increasing resistance results from the lithiation of the anode and cathode.
In the presented ECM (see Fig. 3.4), only the charge transfer resistance Rct and the
diffusion elements have SoC dependence. The ohmic resistance R0 is not a function of the
SoC. Impedance measurements show that the SoC dependence of the Rct of an electrode
can be characterized by a reciprocal function of the SoC [14]. Schönleber also presented
a reciprocal formula to calculate Rct for an entire cell [140]. The SoC dependence of Rct
can be expressed as follows [140]:

Rct = A · 1
SoCα · (100 − SoC)1−α

, (3.65)

where A is a prefactor, α is the symmetry factor in charge transfer, and SoC is the charge
state of the cell in percent. The capacitance Q of the ZARC-elements does not show
any SoC influence. The normalization of Eq.3.65 enables a simple combination with the
temperature dependence of the ZARC-element by multiplying the terms of the SoC and
temperature dependence. The normalized prefactor A can be defined as:

A = SoCmeas
α · (100 − SoCmeas)1−α, (3.66)

where SoCmeas (in percent) is the SoC used to determine the temperature dependence.
To model the SoC dependence of the diffusion elements, the measurement results from

the OCV and the impedance spectra at very low frequencies are used (see Sec. 3.7.6 and
Sec. 4.5). In his work, Schönleber also proposed a reciprocal formula for modeling the
diffusion resistance. However, such a relationship was not found in researching this work.
Reasons for this could be the cell types used, the structure of the ECM, and the procedure
for determining the parameters of the ECM. As a result, the diffusion resistances are only
a function of temperature.
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3.7.5. Describing Electrolyte Diffusion

Li-ion cells have an organic anhydrous electrolyte consisting of three main components:
the lithium salt, the polar solvent, and the non-polar solvent. The lithium salt is usually
LiPF6, which comprises the anion PF−

6 and the cation Li+ (see Fig. 3.16)5. A possible
ECM for modeling the SEI as outlined is shown in Fig. 3.17. As the charge transfer
resistance Rct was introduced, the derivation and formula of the Warburg-element of the
ECM are presented in the following section.
To derive the Warburg impedance, Schönleber introduces the transfer number of Li-ions

tLi+ to account for the fact that only the Li+ cations can intercalate the electrode [140].
The transfer number of an ionic species denotes the fraction of the total electric current
carried in the electrolyte, where the sum of all transfer numbers of the system is one [140].
The transfer numbers of the Li+ and PF−

6 ions can be calculated by their mobilities uLi+
and uPF−

6
(in m2/Vs) [140], i.e.:

tLi+ = uLi+

uLi+ + uPF−
6

, (3.67)

tPF−
6

=
uPF−

6

uLi+ + uPF−
6

. (3.68)

The solvation shell of Li+ leads to lower mobility than that of PF−
6 . To derive the

Warburg-element of the binary electrolyte with the two ion species, the boundary con-
ditions of Fick’s first law (see Eq. 3.12) must be extended by the transfer number of the
lithium ions tLi+ [140], i.e.:

J(x, t) · (1 − tLi+) = −D · ∂c(x, t)
∂x

|x=0,x=l. (3.69)

The identical charge of Li+ that flows in and out of two parallel electrodes is reflected in
Eq. 3.69. The resulting Warburg-element for a planar electrode is expressed as [140]:

Zelect., diff = RgT

n2 F 2 c0 Delect.
· (1 − tLi+)

·
tanh

(︂√︂
jω

Delect.
· Lelect.

2

)︂
√︂

jω
Delect.

.

(3.70)

The demand for identical charge flow at the boundaries leads to a symmetrical lithium
concentration within the electrolyte. Thus, the term of tanh(∗) in Eq. 3.69 must be
5Only the Li+ cations can intercalate the electrode and be stored (see Fig. 3.16).
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changed. The parameters of Eq. 3.70 are: the lithium concentration c0 of the electrolyte
at equilibrium, the diffusion length Lelect., and the ambipolar diffusion coefficient Delect.
of the coupled diffusion of both species of ions in the electrolyte. The diffusion coefficient
Delect. can be calculated as [140]:

Delect. =
DPF−

6
· uLi+ + DLi+ · uPF−

6

uLi+ + uPF−
6

. (3.71)

The electrolyte itself has a non negligible impact on cell behavior in addition to the
dynamics of the interface between the electrolyte and the electrode. An ohmic resistance
cannot adequately model the volume of the electrolyte between both electrodes due to
the ambipolar diffusion coefficient of the electrolyte. The Nernst equation (see Eq. 3.15)
denotes the mass flow of the electrolyte as the sum of migration and diffusion flow. The
migration flow results from the assumption that an electric field occurs between the two
ion species due to the difference in mobility. However, in practice, the electric field is not
large enough to create a macroscopic electric field in the bulk of the electrolyte. As a
result, small electrolyte volumes are electrical neutral and the concentration gradient of
the electrolyte leads to a diffusion flow. At the electrode surface, only Li+ contributes to
mass flow. The parts of the migration and diffusion flow of PF−

6 equalize and compensate
for long current excitations. The resulting stationery mass flow is only carried by Li+ and
corresponds to an ohmic resistance. The overpotential Velect. of the electrolyte volume
can be expressed as [140]:

Velect. = J(t)
σ

· Lelect. − RT

F
· (1 − 2tLi+)

· ln
(︃

c0 + ∆c(Lelect., t)
c0 + ∆c(L0, t)

)︃
,

(3.72)

where the conductivity of the electrolyte σ can be expressed by the mobility of the ions
[140], i.e.:

σ = F · (uLi+ + uPF−
6

). (3.73)

The overpotential Velect. expresses the dynamic of the electrolyte as an impedance. The
electrolyte volume between the two electrodes and the resulting ECM of the impedance
are shown in Fig. 3.22a. A derivation of this impedance is given in Schönleber [140]. In
this work, the impedance of the electrolyte volume is referred to as ‘bulk impedance of
the electrolyte’ Zelect., bulk (see the references in the gray dashed rectangle in Fig. 3.22a).
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This can be expressed as:

Zelect., bulk = Lelect.
σ

+ RgT

n2F 2c0Delect.
· 2 · (1 − 2tLi+)

·(1 − tLi+) ·
tanh

(︂√︂
jω

Delect.
· Lelect.

2

)︂
√︂

jω
Delect.

.

(3.74)

Due to the parallel processes within the cell, the impedances of the electrolyte Zelect., diff
and Zelect., bulk can be unified (see the reference in the blue dashed rectangle in Fig. 3.22a).
The resulting impedance can be expressed as [140]:

Zelect. = Lelect.
σ

+ RgT

n2F 2c0Delect.

·(1 − tLi+)2 ·
tanh

(︂√︂
jω

Delect.
· Lelect.

2

)︂
√︂

jω
Delect.

.

(3.75)

As described in Sec. 3.7.3, the charge transfer resistance Rct is a function of current.
The resistance decreases under high currents which leads to a decrease in overpotential.
However, an opposite effect occurs when the excitation currents are too high. These
currents lead to a sudden increase in the overpotential of the electrolyte. To illustrate
this effect, the bulk impedance overpotential Zelect., bulk is simulated for two different
current densities J using Eq. 3.72. The simulation parameters are listed in Tab. 3.4. The
simulation curves are shown in Fig. 3.22b and Fig. 3.22c. Due to the limited diffusion
velocity of the ions, the current density of 81 A

m2 leads to a sudden drop in concentration,
which increases the overpotential (see Fig. 3.22c)6.
In practice, Li-ion cells should not be designed to operate in the current ranges described

above. The sudden drop in cell voltage can lead to two main problems. First, the cell
cannot supply power; and second, the cell becomes extremely hot.

3.7.6. Describing Solid State Diffusion

The finite space Warburg-elements (see Sec. 3.4.2) can be used to model the dynamic
of the voltage relaxation and the OCV of Li-ion cells. One approach is to model the low
frequency part of the cell impedance as a single active material particle of the electrodes
(see Fig. 3.23a) [173]. The voltage of this particle is defined by the lithium concentration
6The diffusion coefficient Delect. is set as constant for a more efficient simulation. In Li-ion cells, Delect.

decreases in small concentrations.
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Figure 3.22.: (a) an ECM of an electrolyte volume between two ideal lithium electrodes, (b)
resulting overpotential of the electrolyte for a current density of 10 A

m2 , and (c)
for a current density of 81 A

m2 . All simulation parameters are listed in Tab. 3.4.
Redrawn from [140].
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Table 3.4.: The parameters used for the simulation of the dynamic of an exemplary electrolyte
(see Fig. 3.22) [140].

parameter value unit

Delect. 3.7 · 10−6 m2 s−1

Lelect. 0.001 m
J b)10, c)81 A

m2

tLi 0.1 -
σ 0.95 S

m
T 298.15 K

on the particle surface. Thus, during the intercalation process, Li-ions change to Li-atoms
after passing through the particle surface. These Li-atoms diffuse inside the particle as
described by Fick’s laws. The FSW-element (see Eq. 3.38) can be applied, assuming a
1D diffusion process. However, it is also possible to interpret the low frequency part of
the cell impedance as a multiple particle model (see Fig. 3.23b) or as a pore model (see
Fig. 3.23c) [63, 72, 140]. These approaches for lithium intercalation in the anode7 are
visualized in Fig. 3.23. The dynamic of the lithium intercalation in the presented cases
can be approximated by an FSW-element8.
To reduce the order of the cell model, the anode and cathode can be unified to an

FSW-element. The parameterization of the FSW is done by the OCV and the low-frequency
part of the impedance (see Sec. 4.5). However, to predict Li-plating, separate modeling
has to be taken into account for long time period simulations due to the anode overlap (see
Sec. 3.7.8), cell aging, and fast charging. A simulation of the OCV and the dynamic of the
diffusion was made (see Sec. 6.3), and shows the suitableness of the unified FSW-element.

3.7.7. Describing Hysteresis

The charge branch and the discharge branch of Li-ion cells can differ. Generally, these
differences are referred to as ‘hysteresis’ [46, 47, 63, 109, 111]. Hysteresis depends on the
active materials of the electrodes and persists after equilibrium is reached. It is assumed
that hysteresis comes from variations in the lithiation of the electrodes, and the phase

7For the cathode, similar considerations can be made.
8As the focus of this work is on modeling the cell dynamic, there is no investigation of the lithium intercalation
process.
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changes of the active materials. Hysteresis can be approximated as a function of the SoC
and the change of the charge amount. Other influences are: temperature, SoH, excitation
history, and excitation amplitude [46, 47, 63, 109, 111]. In particular, graphite electrodes
and LFP electrodes have phase changes. Hystereses can occur in addition to those in the
OCV (see Sec. 2.5.2). Grimsmann et al. investigated hystereses of the thickness of Li-ion
cells resulting from the different graphite grades of the anode [46, 47]. Oldenburger et al.
observed hystereses of the impedance of Li-ion cells [109, 111]. Additionally, a difference
of the reversible heat generation between the charge and discharge branch was measured
(see Sec. 5.6.5) [15].
A model that accounts for all hysteresis effects is required to predict key performance

parameters such as voltage, temperature, energy content, and power. For battery man-
agement systems, adequate modeling of the OCV is necessary to estimate the SoC and
SoH [8, 118, 119, 120, 125, 176]. Additionally, correct estimates of hysteresis losses and
reversible heat generation are important for battery thermal management systems that
heat or cool Li-ion cells. These hysteresis losses limit the theoretical efficiency of Li-ion
cells. For Li-ion cells with a silicon doped anode, hysteresis losses become a non-negligible
contribution to total losses.
Several approaches exist for modeling the effects of hysteresis on Li-ion cells [8, 9,

24, 28, 56, 119]. Popular models are the ‘many-particle-model’, the ‘domino-cascade-
model’, the ‘Preisach model’, and the ‘Plett model’ [8, 9, 24, 56, 119]. The Preisach model
calculates the hysteresis and the transition curves—which denote the change from one
branch to the other—using hysterons9. The main disadvantage of the Preisach model is
the high number of hysterons required for an adequate reproduction of the hysteresis of
a Li-ion cell. Simulations of an adjusted Preisach approach indicate that more than 50
hysterons are needed to calculate the hysteresis of the OCV in the millivolt range [9]. To
measure all these curves would take several months, rendering the procedure impractical.
In his work, Plett presents a model which used only the charge and discharge branches of
the OCV and calculates the dynamic of the transition curves by differential equations [118,
119, 120]. This approach allows for easy parameterization and an efficient simulation
of the hysteresis model. A comparison of the Preisach and the Plett model is made by
Baronti et al. for an LFP cell [9]. The Plett model is used in this work due to its practical
parameterization.
Using the Plett model, the OCV of the charge and discharge branch can be defined as

[119]:
VOCV = VOCV,average + Vhyst, (3.76)

9A hysteron is a hysteresis loop, which denotes the hysteresis of a certain SoC range of the cell (see Fig.
6.8).
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where VOCV,average is the average of the OCV curves of the charge and discharge branch
and Vhyst reproduces the dynamic of hysteresis voltage, which denotes the transition
curves between the charge and discharge branch. The expression of the hysteresis voltage
Vhyst can be calculated as [119]:

dVhyst
dt

= K · |I|
Cn

· (VOCV,charge − VOCV,discharge − Vhyst), (3.77)

where I is the excitation current, Cn is the nominal capacity of the cell, and K denotes
the retrospective speed required by the SoC to change from one OCV branch to the other.

3.7.8. Describing the Passive Anode Effect

The geometry and construction of Li-ion cells can have an impact on their electrical
behavior. The term ‘passive anode’ or ‘anode overlap’ [33, 50, 61, 86, 87, 88, 172]
describes the long term impact of this behavior. For technical and safety reasons, the
anode electrode is manufactured to be slightly larger than the cathode electrode (see Fig.
2.3). The larger anode decreases the current density at the edges of the electrode and
reduces the risk of Li-plating, which damages the cell. Furthermore, the electrodes of the
anode and cathode are coated on both sides (see Fig. 2.3). Due to the fact that the anode
electrodes are the first and last electrodes of stacked industrial pouch or prismatic cells,
the backside of these coated anodes do not have a counter cathode (see Fig. 2.3). In this
work, the passive anode model also accounts for the backside of the anodes. For round
cells and prismatic cells with a jelly roll structure, the inner and outer surface are also an
anode electrode without a counter cathode (see Fig. 2.3).
Although the passive anode does not have a counter electrode, it is able to store

and release lithium depending on the potential of the active and passive part of the
anode. In particular for cell aging tests, the dynamic of the passive anode can lead to
misinterpretations of the results and the stored lithium in the passive anode could be
misinterpreted as additional irreversible aging [33, 50, 61, 86, 87, 88, 172]. Hüfner et al.
showed that, theoretically, up to 10% of the entire lithium of a cell can be stored in the
anode overlap [61]. The investigation of the lithium flow, which drain in or out of the
passive anode, indicates that this dynamic process cannot be described by a process with
a single time constant. A disassembly of cells showed that the anode overhang was not the
same size overall. It is distinguished by a short and long overhang. In addition, the backside
of the anode can also be important for the dynamic. Hüfner et al. recommended two TLMs
to reproduce the dynamic of the anode overhang [61]. The TLMs have different storage
capabilities and time constants to reproduce both the long and short anode overhang.

66



In this work, two TLMs are used to reproduce the dynamic of the passive anode.
Approximations of the FSW are used to implement the TLMs in the cell model (see Sec.
3.6.2). For the parameterization of the FSW, the suggested measurement method and
geometrical considerations of the anode overhang from Hüfner et al. are used [61]. The
OCV curve of the anode are measured by lab cells, which are built from the original
industrial cell [17, 139]. To keep the model order small, the short TLM consists of five
RC-elements and the long TLM consists of ten RC-elements. The capacity is determined
by the OCV of the anode and the capacity of the anode overhang. Resistance is calculated
by the measured time constant and the determined capacity. The input of the TLMs is
the voltage of the simulated active part of the anode. The SoC of the cell is varied by the
charge amount which flows into or out of the TLMs.

3.8. Conclusion

This chapter presented an overview of the electrical modeling of Li-ion cells and the
representations of the characteristic cell processes in the time domain (i.e., by using the
impulse response), frequency domain (i.e., by using the impedance spectrum), as well as
distribution of relaxation times or distribution of time constants. To reproduce the high and
slow dynamics of Li-ion cells, a novel equivalent circuit model (ECM) with electrochemical
consideration was developed. The model is based on impedance measurements and
was developed regarding the areas of modeling, simulation time, implementation effort,
measurement technique, and parameterization.
The deep insight provided by impedance led to a model that reproduces the small and

large signal behavior of a Li-ion cell as a function of temperature, state of charge, and
current. The resulting ECM consists of a resistor, an RC-element, two ZARC-elements, a
finite length Warburg (FLW), and a finite space Warburg (FSW). The resistor represents the
ohmic resistances of the electrolyte, separator, and current collector. Contact resistances
between the particles were modeled using the RC-element. Two ZARC-elements denote
the anode and cathode charge transfer process. The dynamic processes of the electrolyte
were modeled using an FLW. The diffusion processes in the solid-state were denoted by
an FSW. In addition, the passive anode effect caused by the cell’s geometry, which has an
impact on the slow cell dynamics, was also modeled as an FSW and integrated into the
ECM structure.
The presented approximation of the ECM elements enabled the implementation of the

ECM in dynamic time domain simulations. The current dependence of the impedance in
the frequency domain could be transformed into the time domain by introducing a diode
model. The FSW approximation enabled the reproduction of the dynamic OCV relaxation
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process. The Plett model was implemented in the ECM to reproduce the low cell dynamics
corresponding to OCV hysteresis and its dynamics. The presented parameterization of the
Plett model via the slope of the OCV facilitated the simulation of the different transition
speeds between the charging and discharging curves. Additionally, the presented OCV
modeling can reproduce the resistance hysteresis effect of low frequencies [109, 111].
As a result, the ECM—introduced as a time domain model—reproduces higher cell

dynamics which are essential for simulations on the distance capacity of batteries used
in electric vehicles, and lower dynamics which are important for fast charging and BMS
functions such as SoC and SoH estimations.
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4. Dynamic Measurements and ECM
Parameter Identification

This chapter gives an overview of the methods used to measure dynamic cell effects
in order to parameterize the equivalent electrical circuit model. The electrochemical
impedance spectroscopy of the small- and large-signal behavior of Li-ion cells is applied
to measure the dynamics in the frequency domain. For this purpose, the recording and
evaluation of the impedance in the frequency and time domains are discussed in detail.
In addition, the methods for measuring and parameterizing the open-circuit voltage and
hysteresis are presented. An automated electrochemical impedance spectroscope called
AutoEIS and a new automated parameter identification method based on a generic cell
model were developed for this work and are presented in this chapter. The automation is
required to accelerate the model generation procedure, reduce workload, and decrease
costs. Beyond that, in the early design process, generic models are necessary to assess
concepts. Measurements on cells with differing active materials, formats, capacities, and
manufacturers are investigated to formulate the generic model (see Appendix A.1).

4.1. Electrochemical Impedance Spectroscopy (EIS)

There are several methods available to measure the impedance of Li-ion cells. These
methods differ in signal excitation, evaluation, and processing. The methods in common
use are: single sine, multi-sine, pulses, steps, stochastic approaches such as white noise,
and pseudo-random binary sequences (PRBS) [31, 58, 60, 63, 78, 155]. All of these
measurement methods have challenges which can influence the impedance measurement
in different ways.
The impedance of Li-ion cells is a function of temperature, SoC, overpotential, SoH,

and the charge history of the cell [109, 110, 111]. As outlined in Chapter 3, Li-ion cells
are nonlinear and time-variant systems. For frequencies below 1mHz, the impact from
the measurement method of the impedance becomes stronger [63, 109, 111]. This work
focuses on the single sine and pulse excitation approaches to measure impedance (see
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Figure 4.1.: The methods for measuring the electrochemical impedance of Li-ion cells in the
time domain and frequency domain for small and large-signal behavior of the
cells.

Fig. 4.1).
It was necessary to develop new measurement systems and improve the current evalu-

ation methods due to the low current capability of available impedance meters and the
requirement for high currents in large automotive Li-ion cells. In the following sections,
the evaluation methods, the test setup, the devices, and the test procedure are presented.

4.1.1. The Frequency Domain Method

A widely used non-invasive measuring method to characterise systems is electrochemical
impedance spectroscopy (EIS) [131, 136]. When determining the impedance of Li-ion
cells using EIS, the impedance only describes the cell dynamics at a single operating point
and its extrapolation is very limited. This is referred to as the ‘small-signal behavior’ of a
system. In particular, current excitation leading to high overpotential errors can easily
occur. Overpotentials of more than the thermoelectric voltage result in a decrease of
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the impedance (see Sec. 3.7.3). To ensure this error does not occur during impedance
measurements for batteries typically to 25mV, overpotentials should be limited while at
room temperature. Due to this, sinusoidal excitations with only a single frequency are
used in this work to determine the impedance spectrum, since the total signal energy is
theoretically distributed in a single frequency. This enables a better signal-to-noise ratio
compared to the multi-sine and pulse methods. However, the impedance of commercial
Li-ion cells is in the milliohm range that require excitation currents of several hundred
amperes. In practice, it is almost impossible to generate these high currents as analog
sinusoidal signals over a wide frequency band with high accuracy. Thus, an approximation
via the high current step function is used to generate the sinusoidal signal.
To ensure reproducible results, the measurement procedure used includes: setting

the SoC, presetting the control parameters of the power supply, pausing for relaxation
processes of the cell, and measuring the EIS in the frequency domain. The resulting
procedure is represented in Fig. 4.2.
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Figure 4.2.: An excitation current from the EIS test plan with the following steps: setting
the SoC, adjusting the power supply control parameter, pausing for a rest period
to reach equilibrium, and measuring the EIS.

EIS measurements can typically be analyzed without complex signal processing or
any type of filtering, and a discrete Fourier transformation is not necessary. However, a
high number of measurements are required to adequately reproduce the spectrum of a
Li-ion cell. For subsequent calculations of the impedance at varying frequencies, only the
fundamental oscillation is evaluated as it is sufficient to determine the Fourier coefficients
(see Appendix A.2).
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4.1.2. The Time Domain Method

As an alternative to frequency domain methods, the time domain model can be used to
determine impedance [63, 78, 109, 111, 136]. In general, the system is excited with an
arbitrary signal and its response is measured. To obtain the spectrum, the current and
voltage signals must be transformed from the time domain to the frequency domain (see
Eq. 2.6). This enables simultaneous determination of impedance for a wide frequency
band. This leads to a significant reduction of the measurement time by a factor of up to
eight. However, the frequency transformation is strictly only valid for linear cell behavior.
Furthermore, the signal energy of the excitation pulse is limited by the overpotential of
the cell and the SoC change. Due to the wide frequency band of the pulse, an adequate
signal-to-noise ratio is more challenging than for frequency domain methods with simple
sinusoidal excitation. In this work, the discrete fast Fourier transform (FFT) algorithm is
applied [155].
Since an ideal Dirac pulse excitation containing all frequencies cannot be realised in

practice, various pulse shapes have been investigated in the literature. Lohmann et al.
investigated rectangular, Gaussian, and Sinc pulses to determine impedance [92]. They
concluded that the Sinc pulse leads to the best signal-to-noise ratio. In practice, pulse
currents are typically used because they easily generate the required amplitude for large
cells [63, 78, 109, 111, 136]. This allows for the use of conventional power supplies as
an alternative to a complete battery test system. Further simplification can be achieved
by applying discharge pulses only; the power supply can be replaced by a shunt resistor
discharging the cell. This allows for the construction of a low-cost measurement setup
that can be easily adapted to different cell chemistry or cell size.
The FFT algorithm periodically repeats the signals in the time domain to calculate the

spectrum. Consequently, the start and end values of the signals must be the same to avoid
the leakage effect. However, pulses result in slightly different start and end cell voltages
due to the SoC change. To avoid the leakage effect, the signals can be filtered in the time
domain. However, choosing a suitable filter window is difficult because the window itself
affects the impedance evaluation. To avoid distortions of the spectrum, the derivative of
current and voltage can be applied in the FFT algorithm [111]. As result, the OCV change
cancels out, and the start and end values of the measured voltage are close to zero. It
is possible to calculate the lowest frequencies of the impedance down to the theoretical
value the reciprocal of the measurement time. In comparison to other pulse methods,
this enables a reduction of the measurement time by a factor of four [63, 140]. Besides
the leakage effect, the time interval of a signal has a decisive influence on the calculated
impedance (see Appendix A.3).
Additionally, an ideal pulse is not band-limited and contains frequency components that
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cannot be sampled by a real measurement system. The so-called ‘aliasing effect’ leads to a
violation of the Nyquist-Shannon sampling theorem and results in misinterpretations of
frequencies above half the sampling frequency. These frequency components are reflected
at half the sampling frequency and superimpose the lower frequencies. After recording,
the aliasing effect cannot be corrected, i.e., by digital filtering. To reduce the aliasing
effect, the sampling rate can be increased. Additionally, a reduction in aliasing interference
can be achieved by band-limiting the excitation signal. A practical way of doing this is to
adjust the rise time of the pulse.
A comparison of the frequency method and the time domain method was performed

and is described in Appendix A.4. The impedance spectra indicate a high agreement
between the two methods in the frequency range from 100Hz to 1mHz.

4.2. The Impedance Relaxation Effect

In this work, the impedance relaxation process defines the change in impedance after
the SoC is set as a function of the rest time1. The impedance relaxation process has
a large effect on the impedance from 3% to 30% [7, 76, 77, 109]. Kindermann et al.
and Barai et al. described the effect of the impedance relaxation as an inhomogeneous
Li-distribution along the electrodes which influence the charge transfer resistance [7,
76, 77]. Measurement results indicate that the diffusion part of the impedance also
changes depending on the rest time [111]. The impedance change is not an impedance
increase caused by cell aging. It is reversible and resets after each greater SoC adjustment.
Furthermore, impedance relaxation during SoC adjustment occurs due to charge and
discharge currents. The measurements showed that in both cases, the impedance increases
as a function of the rest time. This highlights the time-varying and nonlinear dynamics of
Li-ion cells.
This work examines several different Li-ion cells (labelled in the text by their assigned

letter and Cell written with a capital C, e.g., Cell A, Cell B, etc.) to classify the influences
on the impedance relaxation. First, the impact of the excitation current’s polarization
of Cell A (see Appendix A.1) is investigated. The initial point of the experiment is the
fully charged cell which is discharged to 30% SoC with 5A and 50A at 35°C then 25°C
respectively. For the charge currents, the cell is completely discharged and is charged to
30% SoC with 5A and 50A at 25°C. After setting the SoC, EIS measurements (see Sec.
4.1.1) are taken using the BaSyTec XCTS. The spectra in the frequency range of 20.0Hz
to 0.1Hz for the SoC setting are shown in Fig. 4.3a and the spectra for discharge currents

1It should not be confused with the time-dependent resistance (impedance) of the cell.
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are depicted in Fig. 4.3b. For both cases, the real part of the impedance as a function of
the rest time is shown in Fig. 4.3c.

a) b)

c)

20 Hz

20 Hz

0.1 Hz

0.1 Hz

Figure 4.3.: Results of the impedance relaxation of Cell A at 25°C and 35°C. The EIS
measurements in the frequency range from 20.0 Hz to 0.1 Hz started after the
SoC reached 30% by charge respectively discharge currents.

The measured curves indicate an increase in resistance of 3% up to 10%. A temperature
variation during the experiment cannot be the reason as the temperature was constant
after 1 h. Comparing the spectra indicates that a higher excitation current leads to a
stronger impedance relaxation effect, where the relationship seems to be highly nonlinear.
The impedance increase is in contradiction to OCV relaxation, where the voltage decreases
after charging. As a result, both relaxation effects run in opposite directions.
Second, the temperature dependence of the impedance relaxation was investigated

using the BaSyTec CTS. This enabled EIS measurements to be taken with a frequency
range up to 100Hz and avoided errors due to the small leakage currents. However, Cell A
had to be replaced by Cell H (see Appendix A.1) to ensure a sufficient excitation current
amplitude. The cell was charged to 70% SoC, and the impedance relaxation was measured
for several temperatures. The measured impedance relaxation, which is clearly indicated
for all four temperatures, is shown in Fig. 4.4. Even the small current of 0.05A at -5°C
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led to a significant impedance relaxation. The comparison of the real parts shows that
the relative impedance change was 7% at 35°C and 32% at -5°C and had an apparent
dependence on temperature. However, the spectra included the ohmic resistance (see
Sec. 3.2) which falsified the comparison. Assuming an ohmic resistance of 20mΩ, the
resulting relative impedance change was 33% at 35°C, and 35% at -5°C. According to the
measurement error, a temperature dependence could not be clearly determined for Cell H.

35°C SoC setting with 0.8 A 25°C SoC setting with 0.8 A

-5°C SoC setting with 0.05 A10°C SoC setting with 0.25 A

a) b)

d)c)

Figure 4.4.: Results of the impedance relaxation of Cell H at (a) 35°C, (b) 25°C, (c) 10°C,
and (d) -5°C. The EIS measurements in the frequency range from 100.0 Hz to
0.1 Hz started after the SoC reached 70% by charge currents. Redrawn from
[108].

Third, the impact of the charge throughput on the impedance relaxation at 10°C was
investigated. For this purpose, Cell H was completely discharged. Afterwards, the cell
was charged to 90%, 80%, or 70% SoC. After a rest time of about 100h to reach the
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steady-state, the cell was discharged to 50% SoC, and the EIS measurements began. The
recorded spectra are shown in Fig. 4.5. The comparison of the spectra indicated the
strong impact of the charge throughput on the impedance relaxation process. For a charge
throughput of 30% and 40%, the impedance dropped from 75mΩ to around 59mΩ.
There appears to be saturation in the impedance drop for a charge throughput above 30%
for Cell H.

Figure 4.5.: Results of the impedance relaxation of Cell H at 10°C as a function of the
charge throughput. The EIS measurements in the frequency range from 100.0 Hz
to 0.1 Hz started after the SoC reached 50% by discharge currents, where the
starting SoC of the discharge varying from 90% to 70% SoC. Redrawn from
[108].

Besides the high-frequency part, the impedance relaxation process also affects the
diffusion processes at low frequencies. Oldenburger et al. investigated the influence on
the diffusion processes of Cell H and Cell I at 25°C and 10% SoC [109]. They found a
change of 4% for Cell H and 15% for Cell I at 0.1mHz [109]. A possible reason for the
different values could be the Si-doped graphite anode of Cell I compared to Cell H with a
pure graphite anode.
In summary, all measured spectra show the process of impedance relaxation. No SoC

dependence could be observed. Spectra indicate a strong nonlinear impedance relaxation
process, which depends on several parameters such as charge throughput and rest time.
Oldenburger et al. reported that the cell chemistry and the cell format also have a big
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impact on the impedance relaxation process [109].
Nüssle modeled impedance relaxation according to the theory of an inhomogeneous

Li-distribution along the electrodes as proposed by Kindermann et al. and Barai et al. [7,
76, 77, 108]. However, the results show that—at real conditions and typical properties
of the materials—an adequate reproduction of the measured impedance relaxation is
not possible [108]. In particular, the increasing impedance for charge and discharge
currents for all SoCs could not be modeled by this theory. Furthermore, the impedance
relaxation after the SoC setting by a small current (see Fig. 4.4) could not be reproduced
by simulating the inhomogeneous Li-distribution along the electrodes [108].
Schneider investigated impedance relaxation for the cathode and anode of Cell B (see

Appendix A.1) separately [139]. For this purpose, experimental cells with symmetrical
electrodes were built. In these cells, the electrode and counter electrode are the same
material, i.e., graphite/graphite or NMC/NMC. The recorded spectra are shown in Fig.
4.6.
Comparing the spectra indicates that the NMC cathode of Cell A is responsible for the

impedance relaxation effect. This is in contrast to the findings of diffusion processes,
where the anode seems to cause the relaxation effect. The cell with a graphite/silicon
anode has a stronger impedance relaxation than cells with a pure graphite anode [109].
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Figure 4.6.: Results of the impedance relaxation of experimental cells with symmetrical
electrodes (a) cathode and (b) anode at 25°C. The electrodes were extracted
from Cell B. The AutoEIS measurements in the frequency range from 1 kHz to
0.1 mHz started after 20% of the original cell-SoC was reached. Redrawn from
[139].
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Despite the investigations made, adequate modeling of the impedance relaxation process
could not be achieved due to physical reasons which are not fully understood. In simula-
tions which do not consider the impedance relaxation effect, the results under-predict
maximal electrical power, energy, and efficiency. To avoid these errors, determination
of the ECM’s parameters is done on fully relaxed cells. Regarding the investigation, the
rest time is about three days to ensure sufficient relaxation of the cell. Furthermore, two
spectra of the same cell’s operation point are measured with a rest time between both
of at least 5 h. Differences between the spectra of more than 1% lead to ancillary EIS
measurements with a longer rest time. Another way to prove the stationarity of the spectra
is the ‘Kramers Kronig relation’, which enables the stationarity of a system to be quantified
[63, 140].

4.3. An Investigation of the Temperature Dependence

As outlined in Sec. 3.7.2, the dynamic of Li-ion cells follows Arrhenius’s law. Adhering
to the time constants of the processes (see Fig. 3.1), impedance measurements were
performed in the frequency range from 2kHz to 0.1mHz. The temperature range was
based on typical automotive application scenarios, which include temperatures from -20°C
to 45°C. The temperatures used were 25°C, -10°C, and -20°C with corresponding SoCs of
about 92%, 56%, 18%, 10%, and 0%2. Considering the impedance relaxation effect (see
Sec. 4.2) and the nonlinear Butler-Volmer relation (see Sec. 3.7.3) of the resistance, the
impedance spectra of Cell B were recorded with the AutoEIS equipment (see Sec. 4.7.1).
The resulting spectra are shown in Fig. 4.7. As expected, the impedance of the cell rose at
lower temperatures for all investigated SoCs
To get more insight into the electrode’s dynamics, spectra of symmetrical experimental

cells were investigated. Schneider presented the temperature dependence of the anode and
cathode of Cell B at 20% cell-SoC separately [139]. For this purpose, experimental cells
with symmetrical electrode configurations were built and measured in the temperature
range of 0°C to 40°C. The recorded spectra are shown in Fig. 4.8 and Fig. 4.9. The spectra
indicate a rather similar dynamic of the electrodes at 20% cell-SoC.
To analyze the temperature dependence of the ECM used (see Sec. 3.3.2), the parame-

ters of each element were fitted using a differential evolution algorithm [151]. For the
separate investigation of the electrodes, the ECM was adjusted and contained: inductivity
L, an ohmic resistor Ri, an RC-element, a ZARC-element, an FLW, and a generalized FSW.
As the spectra indicated, not all parameters seemed to have a temperature dependence.
To simplify the curve, the following parameters were constant: inductivity L = 5µH, the
2The SoC used is an author-defined SoC and does not correspond to the technical SoC of the cell.
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25°C

-10°C -20°C

Figure 4.7.: The impedance spectra of Cell B in the frequency range from 2 kHz to 0.1 mHz.
The spectra were recorded with the AutoEIS device.

resistor of the RC-element R1 = 0.55 Ω and its capacitor C1 = 3 mF, and the exponents of
the FLW αFLW = 0.5. The cell’s inductivity has to be considered as it influences the higher
frequencies of the impedance semicircles. The RC-element denotes electrical contact of
the electrodes within the experimental cell housing.
The parameters of the symmetrical experimental cells are depicted as an Arrhenius

plot in Fig. 4.10. For reasons of clarity, the anode’s values of QZARC,2 are multiplied
by 10. Comparing the plotted resistances Ri, RZARC,2, RFLW, and RFSW of the cathode
and anode indicated that a similar temperature dependence at 20% cell-SoC could be
reproduced with Arrhenius’ law. A reason could be that the manufacturer had optimized
the electrodes to have a similar temperature dependency, and therefore no electrode
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0.1 mHz

10 mHz

Figure 4.8.: The impedance spectra of an experimental cell with symmetrical electrodes of
the graphite anode of Cell B, recorded with the AutoEIS device in the frequency
range from 1 kHz to 0.1 mHz. The spectra were measured at 20% cell-SoC and
various temperatures. Redrawn from [139].

limited the electrical power at low temperature by its increasing impedance. It also
increased at a lower temperature due to summarizing the resistances of the electrolyte,
separator, and current collectors in the ECM as one resistance—Ri. This is in contrast to the
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0.1 mHz

10 mHz

Figure 4.9.: The impedance spectra of an experimental cell with symmetrical electrodes of
the NMC cathode of Cell B, recorded with the AutoEIS device in the frequency
range from 1 kHz to 0.1 mHz. The spectra were measured at 20% cell-SoC and
various temperatures. Redrawn from [139].

resistances of current collector’s metals, which decrease at a lower temperature. However,
resistance Ri had a much smaller temperature dependence regarding the remaining
resistances of the ECM. The ZARC’s capacity QZARC,2 shows—in a reciprocal Arrhenius

81



dynamic (see Fig. 4.10)—where the decrease of the anode is much larger than for the
cathode. It could be possible that the ZARC’s exponent αZARC,2 affected the capacity
QZARC,2 and led to this behavior. The capacities of the FLW and FSW diffusion elements
also decreased. The reason for these could not be found. A possible reason could be the
entropy change∆S (see Sec. 5.6.2), which led to a change of the OCV as a function of the
temperature. As a result, the determined capacities of the FLW and FSW capacity curves
could have risen or fallen to lower temperatures according to the actual SoC. The exponent
αFSW of the generalized FSW did not show an unambiguous function of temperature.

Figure 4.10.: The ECM parameters of the symmetrical experimental cells as Arrhenius plots.
The ECM contained: inductivity L, an ohmic resistor Ri, an RC-element, a
ZARC-element, an FLW, and a generalized FSW. For reasons of clarity, the
anode’s values of QZARC,2 are multiplied by 10. To perform the fits, L = 5 µH,
R1 = 0.55 Ω, C1 = 3 mF, αFLW = 0.5 were fixed.
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4.4. An Investigation of the State of Charge Dependence

According to the temperature dependence, the SoC dependence of the cell’s dynamic could
be determined using impedance spectra (see Fig. 4.7) Comparing the spectra indicated
that the processes of the higher and lower frequency part separate continuously for SoCs
below 30%. As a result, two evident semicircles emerged3. Depending on the electrode
balancing, the second semicircle of the cell’s impedance can also rise for higher SoCs [140,
179].
To allocate the SoC dependence, symmetrical experimental cells were built using the

electrodes of Cell B. The recorded spectra of the anode and cathode at 25°C are shown in
Fig. 4.11. The cathode’s impedance increased at lower SoCs, and the separation of the
two semicircles were visible. In contrast, the anode’s impedance only had tiny variations.
The adjusted ECM was used according to the investigations of the temperature de-

pendency of the cell’s dynamic. It contained: inductivity L, an ohmic resistor Ri, an
RC-element with R1 and C1, a ZARC, an FLW, and a generalized FSW. The fitted pa-
rameters, where the parameters L = 5µH, Ri = 2.00 Ω for the AA-cell and Ri = 1.45 Ω
for the CC-cell, R1 = 0.55 Ω and C1 = 3mF, and αFLW = 0.5 are set and are depicted
in Fig. 4.12. Comparing the resistances of RZARC,2 indicated a stronger variation of
RZARC,2 for the cathode than for the anode. The RZARC,2 of the cathode decreased for
higher SoCs whereas the anode’s resistance increased. Illig applied the DRT method on
experimental cells to separate the cell processes and reported that the anode also has
a strong SoC dependence [63]. A reason could be the different electrode balancing of
the cells. The OCV curve of Cell B (see Sec. 4.5) indicated that the typical OCV step at
50% anode-SoC occurs at 68% cell-SoC. This led to an anode not being fully charged at
100% cell-SoC4. The Warburg capacity CFSW qualitatively corresponds to the expected
slope of the electrode’s OCVs at the regarded SoCs. For the remaining parameters an SoC
dependence could not be clearly indicated. Reasons could be the ECM chosen to fit the
spectra, or variations in the preparation of the symmetrical experimental cells. In contrast
to the measurements of the temperature dependence, four symmetrical experimental cells
were required to obtain the curves as shown.
To investigate the SoC dependence at higher anode-SoCs, the impedance of Cell H

was measured, as the OCV of Cell H showed that 54% cell-SoC corresponded to 50.0%
anode-SoC. Consequently, the anode reached a charge level of 92.6% anode-SoC at 100%
cell-SoC. The normalized real part of the impedance of Cell B and Cell H as a function of
anode-SoC at 0.1Hz and 25°C is shown in Fig. 4.13. The resistance of Cell H showed a flat
3The optical separation of the semicircles is only measured with cells of this manufacturer, the two semicircles
do not occur with every Li-ion cell.

4At 100% cell-SoC, the anode is charged 74%.
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Figure 4.11.: The impedance spectra of the experimental cells with symmetrical electrodes of
of the (a) anode and (b) cathode of Cell B, recorded with the AutoEIS device
in the frequency range from 1.0 kHz to 0.1 mHz. The spectra were measured at
25°C and various SoCs. Redrawn from [139].

minimum around 48% SoC, which increased toward lower and higher SoCs. A comparison
of the resistance of Cell B and Cell H showed that the trajectories were similar. The claim
that resistance at higher cell-SoCs of Cell B does not increase due to the anode not being
fully charged was confirmed.
The findings of the anode- and cathode-SoC dependence on the impedance increase

were also essential for modeling and estimating cell aging. The investigations indicated
that the resistance increase and the voltage drop in the discharged cell were different
processes. In the case of an aged anode, only the voltage dropped at low SoCs and reduced
the capacity. The resistance at lower SoCs should not change. On the other hand, aged
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Figure 4.12.: The ECM parameters of the symmetrical experimental cells as a function of
the cell-SoC. The ECM contained: inductivity L, an ohmic resistor Ri, an
RC-element, a ZARC-element, an FLW, and a generalized FSW. For reasons
of clarity, the anode’s values of QZARC,2 are multiplied by 10. To perform the
fits, L = 5 µH, Ri = 2.00 Ω for the AA-cell and Ri = 1.45 Ω for the CC-cell,
R1 = 0.55 Ω, C1 = 3 mF, and αFLW = 0.5 were fixed.

cathodes led to a rising resistance a lower SoCs without the high voltage decrease of the
anode. In both cases, cell properties could change unexpectedly, i.e., power capability, heat
generation, and quick charge capability. This shows that a consideration of the aging only
by the cell’s capacity is insufficient (see Sec. 2.5.4). As a result, a separate investigation
of the anode and cathode is suggested to calculate and predict the state of health (SoH).

4.5. Parameterizing Solid State Diffusion

Besides the cell’s higher dynamic processes that are parameterized via impedance spectra
in this work, diffusion processes with lower dynamics become essential for long-term
excitation profiles. The parameters required to model the diffusion processes are resistance
RW and capacity CW using Warburg-elements (see Sec. 3.6). An overview of typical
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Figure 4.13.: A comparison of the normalized ZARC resistance RZARC,3 of Cell B and Cell H
as a function of the anode-SoC.

methods to determine capacity CW are given in Fig. 4.14. These approaches evaluate the
reciprocal of the OCV derivative, the interpretation of the impedance spectrum at low
frequency as an ideal capacity, and the evaluation of the pulse response’s voltage change.
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Figure 4.14.: The three methods to determine the capacity CW of the Warburg-element: (a)
the reciprocal of the OCV derivative, (b) the interpretation of the impedance
spectrum at low frequency as an ideal capacity, and (c) the evaluation of the
pulse response’s voltage change. Redrawn from [136].

This work uses the OCV curve to determine capacity CW. The central difference rule
can approximate capacity CW, i.e.:

CW(SoC2) = SoC3 − SoC1
VOCV(SoC3) − VOCV(SoC1)

= 2 · ∆SoC

VOCV(SoC2 + ∆SoC) − VOCV(SoC2 − ∆SoC) ,

(4.1)

where∆SoC is constant. In contrast to the forward and backward difference rule, the error
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of the central difference decreased faster for a smaller ∆SoC. Its error function followed
O(∆SoC2) and also enabled the use of a step-wise OCV for an adequate determination of
the capacity CW. It enables a high resolved CW as a function of the SoC. To minimize
error sources caused by the long measurement time, such as self-discharge and passive
anode effects (see Sec. 3.7.8), the so-called ‘pseudo-OCV’ can be used, where the cell
is charged or discharged with a small current (see Fig. 4.15). In practice, currents of
C/50 to C/100 seem to be advantageous to avoid errors caused by the overpotential and
relaxation processes.

B

a)

b)

Figure 4.15.: (a) A comparison of the OCV of Cell B, Cell I, and Cell J OCV measured with
a current of C/100. (b) A comparison of Warburg capacity CW calculated
by difference quotient of the OCV (see Eq. 4.1) and the determined capacity
CFSW,EIS from the impedance (Z) at 25°C.

87



The recorded OCV curves for the charge and discharge branch of Cell B, Cell I, and Cell
J (see Appendix A.1) are shown in Fig. 4.15a. Comparing the curves indicated that each
cell type had their own characteristic OCV curves. The hysteresis of cells with a graphite
anode was relatively small and approx. 30mV.
In contrast, Cell I—with a silicon doped anode—showed a considerable hysteresis at

lower SoCs. The balancing of the cell’s electrodes could be clearly identified for Cell B and
Cell J—with graphite anodes—by its characteristic points on the graphite anode’s OCV.
In contrast, the characteristic points of Cell I could not be easily assigned to the graphite
curve.
The calculated capacity CW curve of Cell B is shown in Fig. 4.15b. Additionally, the

determined capacities CFSW,EIS from the low frequency part of the spectra at 25°C (see
Fig. 4.7) are depicted. Comparing the capacity CW determined by OCV and impedance
spectra showed slight differences. Bedürftig presented similar differences in the capacities
CW and CFSW,EIS of Cell A which were determined by a step-wise OCV and EIS with
sinusoidal excitation [14]. Oldenburger et al. showed that the impedance of Li-ion cells
at frequencies below 1mHz can be influenced by several error sources relatively easily
[109, 111]. Accordingly, the effort rises significantly to obtain spectra with the required
accuracy for parameterizing the ECM.

4.6. An Investigation of the Nonlinear Current-Overpotential
Relationship

So far, the small-signal behavior of Li-ion cells has been considered. In this work, repro-
ducing cell dynamics for high current excitations requires so-called ‘large-signal behavior’.
To determine the large-signal response, the frequency and time domain method presented
can be extended, where an offset current superimposes the small-signal excitation (see Fig.
4.1). Varying the offset current enables the determination of the nonlinear relationship
between the overpotential and the current. The measurement methods in this work are
known as ‘dynamical electrochemical impedance spectroscopy’. In addition, the ‘nonlinear
frequency response analyses’ (NFRA) method can be used, which evaluates the resulting
harmonics [52, 81, 174].

4.6.1. Dynamical Electrochemical Impedance Spectroscopy - Frequency
Domain

As outlined, a sinusoidal excitation superimposed on a varied offset current can be used to
determine the nonlinear relationship between the current and the overpotential (see Fig.
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4.1). The offset current leads to a voltage drift, which influences the impedance evaluation.
Simulations with an additional linear and square root like voltage drift were performed
to investigate the impact of voltage drift. Thereby, the square root function denotes the
natural diffusion processes more applicable (see Sec. 3.7.6). The simulated voltages and
their resulting impedance are shown in Fig. 4.16. The evaluation window is continuously
shifted when calculating impedance. In the case of linear voltage drift, a circle around
the correct impedance value occurs in the Nyquist plot, whereas the root-like drift forms
a spiral (see Fig. 4.16). The geometrical form of the error in the Nyquist plot indicates
a simple method to correct the impedance. By calculating the average of two different
windows with a shift of 180° toward each other, the linear drift for determining cell
impedance can be compensated for. For the more realistic root-like drift, three different
evaluation windows with a shift of 180° were used to adequately compensate for the error.
The correction of the impedance can be expressed as [110]:

Z = 1
2 ·
(︃

Z1 + Z3
2 + Z2

)︃
, (4.2)

where the index denotes the position of the shifted evaluation window, as shown in Fig.
4.16.
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Figure 4.16.: A visualization of (a) the voltage response with superimposed linear and root-
like voltage drift and the evaluation windows, and (b) with the determined
impedance corrected. Redrawn from [14, 110].
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4.6.2. Dynamical Electrochemical Impedance Spectroscopy - Time Domain

In addition to the frequency domain dynamic impedance spectroscopy, the pulse method
in the time domain can be applied. Whereby the pulse excitation is superimposed on a
varied offset current. This method is referred to as the ‘dynamic pulse method’. It enables
a shorter measurement time and reduces the cell’s self-heating.
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Figure 4.17.: The measurement setup of the dynamic pulse method. The large-signal exci-
tation current is supplied by the power supply and the small-signal current is
generated by a MOSFET switch. Resistors R1 and R2 control the rise time of
the excitation pulse. Redrawn from [110].

In contrast to the frequency method, a correction of the voltage drift caused by offset
currents cannot be done by a simple averaging of the resulting impedances. It requires a
new measurement setup to compensate for the voltage drift. Assuming two cells have
similar dynamics5, a subtraction of their voltage response connected in series corrects
for voltage drift. In this case, one cell is excited by the offset current and the small pulse
excitation, while the second cell is excited only by the offset current. As a result, the offset
currents’ responses cancel out, and only the small pulse response remains. A comparison
of the spectra determined by the frequency method and dynamic pulse method is given in
Oldenburger et al. [110].
5The cells are similar and have the same temperature, heat generation, SoC, and SoH.
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a)

b)

Figure 4.18.: The resulting cell voltages of (a) the dynamic pulse measurement, and (b) the
drift compensated voltage of cell 3. For the pulse measurement, Cell C was
discharged for 20 s with 2/3 C at 80% SoC and -10°C. After 10 s, a small-signal
excitation current was applied with 1/10 C.

4.6.3. Parameterizing the ECM

To parameterize the current dependent charge transfer resistance of the proposed ECM,
only discharge currents were applied, due to even small differences of the nonlinear
dynamics of high charge and discharge currents [63, 110].
During the measurements, a constant cell temperature was required to avoid errors due

to the temperature dependency of Li-ion cells (see Sec. 4.3). Oldenburger et al. showed
that a temperature variation smaller than 0.5K is required to adequately parameterize
the Butler-Volmer dynamics [110]. Due to the strong self-heating of Li-ion cells at high
excitation currents and the temperature-dependent cell dynamic (see Sec. 3.7.2), the
nonlinear dynamics cannot be parameterized by measurements at room temperature. To
overcome this, it is possible to generate high overpotentials of the cell by rather small
excitation currents at lower cell temperatures.
The recorded spectra of Cell H for several offset currents are shown in Fig. 4.19. The

semicircles of the spectra decrease and separate for higher offset currents. To study these
dynamics, the diode approximation is used based on the Butler-Volmer equation (see
Sec. 3.7.3). The higher frequency parts without the Warburg diffusion elements of the
presented ECM (Sec. 3.3.2) were fitted to identify the parameters.
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Figure 4.19.: Results of the dynamic impedance spectroscopy in the time domain of Cell H
in the frequency range from 1.0 kHz to 0.2 Hz at -5°C and 50% SoC. Redrawn
from [108].

The determined resistance RZARC,2 and RZARC,3 as a function of the offset current
is shown in Fig. 4.20. The remaining ECM parameters, such as the contact resistance,
the ZARC’s capacities, and the Warburg-elements were constant. The simulation of the
proposed diode model to reproduce the nonlinear dynamics is depicted in Fig. 4.20. The
parameters of the diode model of Cell H are listed in Tab. 4.1. The error of the diode
model was less than 1%. The results of different cell types are depicted in Fig. 4.20 to
show possible ranges of the current dependence of the parameters RZARC,2 and RZARC,3.
From this, it can be seen that the current dependence had to be measured for each cell as
the dynamics of the cell types were very different.

4.7. Automated Parameter Identification

For fast parameterization of the ECM and to minimize the workload, an automated param-
eter identification method was developed, which is presented in the following sections.
For this purpose, an automated impedance spectrometer (AutoEIS) was developed, which
allows for a short measurement time and reduces the workload. For automated parameter
identification, the search space of the optimizer has to be limited due to the ill-conditioned
optimization problem with a large number of local minima. To overcome the local minima,
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Table 4.1.: The parameters of the diode model of Cell H.
parameter value unit

RZARC,2, saturation current Is 0.065 A
RZARC,2, emission coefficient nd 2 -
RZARC,2, bulk resistance Rb 0.001 Ω

RZARC,3, saturation current Is 0.060 A
RZARC,3, emission coefficient nd 2 -
RZARC,3, bulk resistance Rb 0.048 Ω

a good choice of the initial parameters of the optimization procedure is essential6. A
generic model based on impedance spectra of several cells was developed. It enables the
generation of a suitable initial parameter set for automated parameter identification.

4.7.1. The Automated Impedance Measurement System - AutoEIS

The comparison of the frequency and time domain methods indicates that the time domain
method seems more convenient in practice due to its speed (measurements are taken eight
times faster), ease of pulse excitation generation, avoidance of hysteresis effects, scalability
to a wide range of cell sizes, and flexibility of application to different voltage levels. A
new piece of test equipment was designed which takes an automated measurement of
impedance. The equipment was designed to produce measurements at a faster rate and
reduce workloads.
The new device, called ‘AutoEIS’, was designed as an external device which is controlled

by industrial test systems. The AutoEIS and its measurement setup is shown in Fig. 4.21.
The BaSyTec system monitors the cell and sets the SoC, controls the climate chamber and
the AutoEIS. The PC contros the Keithley DMM7510, which records the cell voltage and
current, and stores the measurement data. This setup enables continuous currents up to
60A and pulse currents up to 300A. Additionally, five cells with different SoCs can be
connected to the AutoEIS which enables an faster recording of the required spectra to
parameterize the ECM.
A reference circuit was built to validate the AutoEIS (see Appendix A.5). This test circuit

imitates the dynamic of the charge transfer of Li-ion cells. It consists of an RC-element
and a shunt resistor. The analytically calculated impedance of the reference circuits are
6In this work, a differential evolution algorithm is used as global optimization procedure [151].
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a) b)

Figure 4.20.: A comparison of the normalized resistances of (a) RZARC,2, and (b) RZARC,3 as
a function of current [14, 97, 108, 110]. In addition, the results of the proposed
diode model of Cell H are shown.

compared with the measured impedance using frequency domain method (see Sec. 4.1),
the AutoEIS, and the commercial spectrometer from Solartron [149]. Comparison of the
spectra shows good agreement between the AutoEIS results and the analytically calculated
spectra.

4.7.2. A Comparison of Normalized Cell Resistances

To examine if an automated parameter identification is possible at all, the dynamic of
several cells was investigated to find any similarities (see Tab. A.1). First, due to the
strong temperature impact on cell resistance (see Sec. 4.3), the temperature dependence

94



climate

chamber

S
e
n

s
e

 1
-5

c
e

ll
1

 (+
)

c
e

ll
2

 (+
)

c
e

ll
3

 (+
)

c
e

ll
4

 (
+

)

c
e

ll
5

 (
+

)

L
T

C + -
+

-

-

T
ri
g

g
e
r

T
p

-L
in

k

L
A

N

USB

+

S-

-

RS232 – USB

climate chamber

controller
-

twisted pair

Li-ion

cell

S+

BaSyTec

+-

Keithley 

- current

+- 12V DC 

power supply

Power + 

(Basytec)

+

A
rd

u
in

o

PC

power (-) 

(cell 1 to 5, 

and BaSyTec) 

Switch

Ethernet

trig
g

e
r

Keithley -

voltage

Figure 4.21.: The measurement and wiring setup of the AutoEIS. The Li-ion cell is shown
outside the climate chamber for illustration purposes only.

of several cells was investigated. The cells with an SoC of 30% were tempered for
several hours in a climate chamber to ensure a constant temperature. The quotient of
the responded overpotential and the current amplitude approximates the calculated cell
resistance R10s

7. For a better comparison of the resistances of the different cells, resistance
R10s had to be normalized by multiplying it with the cell’s capacity. Assuming a doubling
of the cell’s capacity was similar to a parallel connection of two cells. As a result, the
parallel connection halved the entire resistance. The normalized values of R10s are shown
in the Arrhenius plot in Fig. 4.22. The normalized values followed Arrhenius’ law at lower
temperatures very well. However, the curves saturated at higher temperatures due to the
almost constant parts of the internal cell resistance, such as current collectors, bus bars,
and terminals.
To investigate the temperature dependence more comprehensively, the superimposed

constant part of the internal cell resistance had to be canceled out. For this purpose,
7The resulted resistance contains ohmic and capacity (imaginary) parts of the impedance.
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Figure 4.22.: A comparison of the cell resistance after 10 s excitation with results shown as an
Arrhenius plot. For reasons of clarity, the resistance is normalized by multiplying
it with the nominal capacity Cn of the cell.

a constant value was subtracted from each curve so that the remaining curves was a
line in the Arrhenius plot. The resulting curves are shown in Fig. 4.23. Unexpectedly,
all curves had a similar slope, even though the cells have different cathode and anode
material combinations. A possible reason could be that the optimal design of the cells
for electrical power and heat generation led to the equal slopes of the curves since the
slopes represent the activation energy of electrochemical processes (see Sec. 3.7.2). The
activation energy of the normalized curves was approx. 51 kJ per mol and corresponded
very well to literature values of 40-60 kJ per mol [67, 133, 153]. Furthermore, the curves
seemed to have separated into two groups which only have an offset8.
The presented curves mark a fundamental found in this work and enables the devel-

opment of a generic model which generates the initial parameter set for the parameter’s
identification of the applied ECM from impedance spectra. Beyond this, it enables relevant
predictions of the cell’s key parameters such as electrical power, energy, heat generation,
and optimal design of the current collectors and terminals.

4.7.3. The Generic Cell Model

The measurement results in Sec. 4.7.2 show that Li-ion cells seem to have a similar
temperature dependence. This assumption leads to some simplification and makes it
8Resistance measurements at other SoCs indicate a similar behavior.
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Figure 4.23.: An adjustment of Fig. 4.22, where the non-temperature-dependent part of the
resistance is canceled out from the normalized resistance. The subtracted values
are listed in Tab. A.2

possible to formulate a generic model of the electrical part of the cell model. The generic
ECM generates an initial parameter set for the optimization procedure. To create the
generic ECM, the impedance spectra of several cells were fitted with the presented ECM
(see Sec. 3.3.2). The determined parameter sets of several cells in the Arrhenius plot9
is displayed in Fig. 4.24. For the comparison, the parameters are normalized by the
nominal capacity Cn of the cell. The resistances are multiplied, and the capacities are
divided by Cn. The exponents α of the ZARC-elements are constant (αZARC,2 = 0.90 and
αZARC,3 = 0.75).
The curves indicated the resistances of the ECM increase for lower temperatures and had

similar slopes. Only the curves of the resistance R0 showed several gradients. A possible
reason could have been that this resistance unified and represents several components
of the cell such as electrolyte, separator, current collectors, and cell terminals. These
components have different temperature dependencies. As mentioned, the capacities C1,
QZARC,2, and QZARC,3 have a reciprocal dynamic compared to the resistances. Besides
that, the capacities showed higher uncertainties (i.e., noise) in their curves.
Averaging the presented curves enabled functions of the generic ECM to be found,

where the errors to the cell’s specific parameters were less than 300% (see Fig. 4.24).
The capacity CFLW of the generic model had higher uncertainties of about 500%. As
9For the optimization procedure to determine the ECM’s parameters, there are no requirements to fit the
Arrhenius equation.
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legend

Figure 4.24.: The ECM parameters of selected cells and the resulting generic model as an
Arrhenius plot. The parameters are normalized by the nominal capacity Cn of
the cells.

mentioned, the capacity CFSW of the FSW was determined from the OCV curve. Using Eq.
3.65, the SoC dependence of the resistance could be modeled, where the balancing of the
electrodes α had an essential impact on the function (see Sec. 4.4). The characteristic
points of the OCV can estimate the balancing of the electrodes. Schönleber reported that
the SoC dependence influences the charge transfer resistance [140]. This could also be
observed (see Sec. 4.4) and led to the simplification that only the resistances RZARC,2 and
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RZARC,3 of the ECM had an SoC dependence. The combination of temperature and SoC
dependence was done by multiplying their functions, where Eq. 3.65 was split into an
anode and cathode term, which had to be normalized10. The generic ECM represents the
ZARC with index two the cathode and index three the anode. The formulas to calculate
the resistors of the generic ECM are:

R0 = 5 · 10−4 · e
11.61
RgT · 1

Cn
, (4.3)

R1 = 2.5 · 10−7 · e
27.02
RgT · 1

Cn
, (4.4)

RZARC,2 = 2 · 10−11 · e
49.211
RgT · SoCα

meas
SoCα

· 1
Cn

, (4.5)

RZARC,3 = 1.2 · 10−13 · e
60.79
RgT · (100 − SoCmeas)1−α

(100 − SoC)1−α
· 1

Cn
, (4.6)

RFLW = 2 · 10−8 · e
36.66
RgT · 1

Cn
, (4.7)

RFSW = 7 · 10−7 · e
30.88
RgT · 1

Cn
, (4.8)

where the resistances are in Ω, the activation energy EA (see Eq. 3.57) is in kJ per mol,
the nominal capacity of the cell Cn is in Ah, the absolute temperature T is in kelvin, the
cell SoC is in %, the SoCmeas in % denotes the SoC used for the temperature dependence,
the balancing of the electrodes α is from 0 to 1, and Rg is the universal gas constant. The
formulas of the capacity can be expressed as:

C1 = 10 · e
−7.72
RgT · Cn, (4.9)

QZARC,2 = 2 · 103 · e
−16.4
RgT · Cn, (4.10)

QZARC,3 = 2.3 · 103 · e
−18.33

RgT · Cn, (4.11)

CFLW = 3 · 104 · Cn, (4.12)
10The separation of Eq. 3.65 in two terms to reproduce the SoC dependence of the electrodes and the addition
of the ZARC-elements in the ECM is an approximation of Eq. 3.65.
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where the capacities Cx and Qx are in F, the nominal capacity of the cell Cn is in Ah, the
absolute temperature T is in kelvin, and Rg is the universal gas constant.
Simulations in the time domain of the generic ECM and a cell-specific model are

presented in Sec. 6.2 and Sec. 6.3. These simulations are used to investigate the accuracy
and suitableness of the scalability of the generic ECM. Adequate simulation results are
essential to predict the cell’s dynamic in the early phase of the battery design, where the
final cell is unavailable and very little information about the cell exists.

4.7.4. The Automated Parameter Identification Procedure

As outlined, the generic model generates the initial set of parameters used in the opti-
mization procedure to identify the best set of parameters to reproduce the dynamics of
the cell. The parameter identification procedure has four parts to obtain the parameters
that best fit the dynamics of the cell. These are: the generation of the initial parameter
set, the determination of the small-signal parameters of the higher-frequency elements,
the determination of the small-signal parameters of the lower-frequency elements, and
the determination of the large-signal parameters that reproduce the nonlinear relation-
ship between current and overpotential. For the optimization, a differential evolution
algorithm to find the global optimum of the parameter set was chosen [151]. Different
definitions and weights are possible to calculate the cost function [131]. This work uses
the difference of the absolute value of the measured and simulated impedance without
weighting. This is not necessary because of the separation of the impedance into a higher
and lower frequency component. The automated parameter identification procedure is
shown in Fig. 4.25.
Initially, the generic model generates with the nominal capacity of the cell Cn in Ah,

the absolute temperature T in kelvin, the balancing of the electrodes α from 0 to 1, SoC
in %, and OCV in volts the initial parameter set for the fit procedure. Then, using this
parameter set as the initial point for the parameter estimation to determine the small-
signal parameters of the resistor R0, the RC-element, and the ZARC-elements. After fitting
these parameters for all measured temperature and SoC combinations of impedance, the
lower frequency Warburg-elements (FLW and FSW) are determined. For this purpose,
the determined parameters of the higher frequency elements are fixed, and the Warburg-
element’s parameters are optimized to match the recorded spectra. Finally, the determined
small-signal parameters of the ECM are used to fit the large-signal dynamic. The diode
elements and their parameters reproduce the nonlinear relationship between current and
overpotential. Tests show that five temperatures at five SoCs lead to adequate parameter
identification of all of the ECM’s elements. Several time domain simulations are presented
in Sec. 6 to show the suitability of the identified parameters and the ECM used.
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Figure 4.25.: A scheme of the automated parameter identification process.

4.8. Conclusion

This chapter gave an overview of the measurement methods of dynamic cell effects to
parameterize the electrical equivalent circuit model. For this purpose, the recording and
evaluation of the electrochemical impedance spectroscopy of the small- and large-signal
behavior of Li-ion cells in the frequency and time domain were discussed in detail. In
addition, different methods for measuring and parameterizing the open-circuit voltage
and hysteresis were contrasted to determine the parameter CW.
The investigation of the impedance relaxation showed that considering this effect is
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important for an adequate prediction of the maximal electrical power, energy, and efficiency.
Experimental cells were built to separate the effects to the cell components such as the
anode, cathode, electrolyte, separator, and current collectors. Measurements indicated
that the impedance relaxation was much higher for the cathode impedance than for
the anode spectra. To avoid errors, a determination of the ECM’s parameters should be
done on fully relaxed cells. The impedance as a function of the temperature—which
was modeled with the Arrhenius law—revealed the strong nonlinear characteristic where
temperature dependence of the anode and cathode resistances were similar. The resistance
of the ECM elements increased whereas the capacity decreased for lower temperatures.
Investigations of the SOC dependence of the internal cell resistance indicated that for
lower SOCs, the cathode reactions dominate the resistance, and higher SOCs, the anode
reactions dominate the resistance. Diode model simulations have shown good accordance
to the nonlinear current-overpotential relationship of the impedance and enabled the
representation of this effect in time domain simulation. To determine the dynamic of the
open-circuit voltage modeled by a Warburg-element, the calculation of the parameter CW
from a ‘pseudo-open-circuit voltage’ curve was made. The comparison of the determined
capacity of the Warburg-element by the low frequency part of the impedance and the
derivation of the pseudo-open-circuit voltage showed differences.
To speed up model generation, reduce workload, and lower costs, an automated pa-

rameter identification procedure was developed. Determining the initial parameters for
parameter estimation is a major challenge. A new impedance measurement setup (i.e., the
AutoEIS) was developed to enable automated measurement of impedance on cells, reduce
measurement time, and minimize impedance relaxation and hysteresis errors. The setup,
based on pulse measurements in the time domain, enables an automated recording of the
cell impedance. For the transformation of the AutoEIS signals into the frequency domain
to calculate the impedance, the newly developed derivation transformation method was
implemented. Comparison of the normalized cell resistances after 10 s excitation as a
function of temperature yielded an important finding; the dynamics of all the cells studied
are very similar and the cell dynamics differ essentially only by a prefactor. This prompted
the study of experimental cells to determine the dynamics of the ECM elements. As a
result, a generic ECM could be created, which required only the nominal cell capacity and
OCV. This facilitated, on the one hand, the fast determination of the initial parameters
for the automated parameter estimation and on the other hand, it enabled time domain
simulations to calculate the cell dynamics. In particular, in the early design process, the
generic model could assess new battery concepts.
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5. Modeling the Temperature Dynamic

This chapter presents the thermal modeling of Li-ion cells which is used to reproduce
the temperature dynamic and distribution of industrial Li-ion cells. First, a brief view of
thermal models and thermal properties of the cell components is given. This follows the
thermal modeling of pouch and round cells by equivalent circuits and the determination of
the thermal parameters. Second, simulations of the temperature dynamic and distribution
within the cells for different cooling conditions are applied.
Thus far in this work, irreversible heat generation was modeled using the electrical

ECM. However, reversible heat generation occurs in Li-ion cells. This reversible heat is
investigated in the sections covering modeling and measurement methods. Then there
is a comparison of the established potentiometric and the newly developed calorimetric
methods. The chapter concludes with an overview of the resulting reversible heat of Li-ion
cells with different chemistry.

5.1. State of the Art

For safe and optimal battery operation, manufacturers must have an accurate prediction
of the cell temperature dynamic as well as the electrical process outlined previously [75,
145, 166]. Predictions of the temperature are essential because the electric processes
are temperature dependant. In general, thermal management systems are applied to
control and monitor safe and optimal battery operation [168]. To determine the cell
temperature, the following variables of the battery and its components must be modeled:
heat generation, heat transfer, and heat capacity. Some thermal models account for the
electrochemical dynamics of Li-ion cells, but not all. The level of detail of thermal models
also varies. The thermal runaway of Li-ion cells was not focused on in this work. A review
of thermal runaway mechanisms is given in Feng et al. [34].
Guo et al. simulated the temperature distribution within the electrodes via a P2D model

[49]. Detailed simulations are applied in 3D by Cheng et al, to reproduce the temperature
distribution and thermal dynamics in each component of a cell [20]. Combining this
model with electrical models, Cheng et al. recommend a reduction of the 3D thermal
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with simplification strategies and a validation from the detailed thermal model to reduce
the computation effort [20]. Loges et al. introduced a 2D thermal model coupled with
a simplified electrical model to simulate the temperature dynamic, where the thermal
parameters of the cell components are functions of the temperature. The total heat
generation was modeled by a temperature independent ohmic loss and the reversible
heat of the cell [91]. Wang et al. presented a thermal 3D model which considered the
heat generation model [171]. Heat generation included a temperature dependent ohmic
loss and the reversible heat of the cell. Li et al. presented a thermal model coupled
with a 2D computational fluid dynamics model (CFD) to simulate the heat convection
of an air-cooled battery pack [89]. However, these types of thermal models require the
geometrical and thermal properties of all cell components and materials to be known.
Phenomenological approaches such as ECMs can also be used to model the temperature

dynamic of Li-ion cells. In general, the parameters of those ECMs are the thermal conduc-
tivity expressed by resistors, the heat capacity expressed by capacitors, the environment
temperature expressed by voltage sources, and the external heat generation or cooling
expressed by current sources. Forgez et al. presented a cell model which combines a
thermal and electrical ECM [36]. To keep the computation effort to a minimum, the
ECMs were reduced by using lumped ECM elements. Schmidt simulated the temperature
distribution with a thermal ECM coupled with an electrical ECM, where the ECMs were
formulated in state space for simulation [136]. Veth et al. presented an ECM which
enables a 3D description of the temperature, current, and SoC distribution via a deeper
view of the cell materials [161]. Ramotar et al. applied an thermal ECM to reproduce the
temperature dynamic of an electric vehicle battery pack [123]. Gan et al used a thermal
ECM to model a heat pipe-based thermal management system for a battery module with
cylindrical cells [39].
Machine learning and neural networks can reduce the computational effort and the

workload required to determine geometrical and thermal properties of all cell components
and materials. Kolodziejczyk et al. presented a group of convolutional neural networks
(CNNs) which were trained with finite element method (FEM) simulations [79]. The
neural networks enabled a simulation of the thermal conductivity of complex composite
phase change materials, the reversible heat generation, and irreversible heat generation.
Wang et al. applied a neural network to estimate circuit parameters of a coupled thermal
and electrical ECM [169]. Tran et al. compared a linear regression, k-nearest neighbors,
random forest, and a decision tree model for reproducing the temperature and voltages
of a prismatic cell [159]. The models were trained with measurement data. Zhu et al.
presented a data-driven approach to decouple the contribution of reversible heat and
irreversible heat on the temperature change of Li-ion cells [183]. Yang et al. presented
a machine learning model to simulate the temperature dynamic of Li-ion cells under an
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external short circuit [178].
In this work, the ECM approach is used to create a physically based model which

includes thermal and electrical dynamics. As outlined, a thermal ECM enables simple
implementation in the electrical model and a parameterization of the thermal model
without disassembling cells. This allows for a fast and a cost-effective modeling of Li-ion
cells, as no special or expensive equipment is required (e.g., glove boxes, calorimeter, lab
cells, etc.). The thermal ECM was generated using the ECM elements presented in Sec.
3.4 (i.e., from the modeling method). To use these ECM elements, the thermal quantities
and equations have to transform to corresponding electrical elements.

5.2. The Thermal Properties of Cell Components

The thermal conductivity λ and specific heat capacity cp of cell materials are defined in
this section. The specific heat capacity cp describes the amount of thermal energy (i.e.,
heat) that a material can store under conditions of constant pressure and can be expressed
as:

cp = dQ

dT · m
= ∆Q

∆T · m
, (5.1)

where ∆Q in joules denotes the amount of heat which is added to, or removed from, a
substance of mass m and results in temperature change ∆T . In general, the heat transfer
denotes the exchange of heat within a material or between systems. Several types of heat
transfer exist. Each kind has its own distinct characteristics, and several mechanisms often
occur simultaneously. Typical heat transfer mechanisms are: convection Q̇conv, thermal
conduction Q̇cond, and radiation Q̇rad. The resulting rate of heat flow Q̇ in watts1 can be
expressed as:

Q̇ = Q̇conv + Q̇cond + Q̇rad. (5.2)

The radiation and convection transfer mechanisms of the cell depend on the following:
the battery housing (and all materials), the vehicle integration, and the cooling system. In
this work, the focus is on modeling of the thermal conduction at the cell level, as specific
battery system parameters are not publicly available. However, the impact of the radiation
and convection on the thermal measurements and validations have to be respected and
considered. The thermal conductivity of a homogeneous material can be written as:

λ = ∆Q · l

A · ∆T
, (5.3)

1It is important not to conflate Q̇ with the heat flux Φ in W
m2 .
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where ∆T is the temperature difference of the material between two points with the
distance l. The energy ∆Q in joules denotes the amount of heat which flows in or out the
cross-sectional area A of the material volume.
An overview of thermal measurement methods and thermal properties of the cell

components are given in Shah et al. [144] and Steinhardt et al. [150]. Typical thermal
values of cell components are listed in Tab. A.3. To estimate the heat capacity of the
generic model, the heat capacities of the cells (see Tab. A.1) are normalized to the nominal
capacity Cn of the cells. The heat capacity used in the generic model is 16 J

K per 1Ah.

5.3. Equivalent Circuit Modeling of the Temperature Dynamic

In addition to the thermal properties as outlined, thermal modeling must also account for
the physical form (i.e., format) of Li-ion cells. The round cell, prismatic cell, and pouch
cell formats have typical constructions which result in different thermal ECMs. The format
variables are: the terminals of the cell, the geometry and construction of the cell stack, the
thermal resistance between stack and housing, and thermal properties of special safety
devices such as the current interrupt device (CID), and the positive temperature coefficient
device (PTC). As a result, the thermal conductivity of Li-ion cells are strongly anisotropic.
This work focus on the thermal modeling of round and pouch cells, as their construction

is easily standardized. Prismatic cells have manufacturer specific constructions which are
not published for the prismatic cells studied.
Modeling requires considerable computational effort due to the cell format variables

outlined above. To minimize that effort, a reduction of the thermal model can be applied
by only including the thermal paths to the cooling system.
The pouch cell has the simplest format so it is used to introduce the ECM first. The

model of the pouch cell stack can be reduced to the lateral and perpendicular conductivity,
since the focus is on a top and bottom cooling concept. To prevent short circuits between
the anode and cathode, the separator sheets between the electrode sheets are slightly
larger. This area is called the ‘separator overhang’ and is about 0.5-2.0mm. It is clearly
evident from the values in Tab. A.3 that the separator overhang causes a bottleneck in the
transfer of heat to the cooling plates by a top and bottom cooling concept. As a result, an
adequate modeling of temperature distribution requires respecting the separator overhang.
The resulting reduced thermal ECM of a pouch cell is depicted in Fig. 5.1. The thermal
model is reduced to a 1D ECM assuming the anode and cathode electrode can be unified
and expressed as a homogeneous layer. As with electrical ECMs, heat generation sources
can be denoted by ideal current sources for heat generation and external temperatures are
modeled by ideal voltage sources. It is assumed that the anode and cathode electrode can
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be unified and express as a homogeneous layer. Thermal resistance of this homogeneous
layer is Rcell,lateral,n and the heat capacity is Cth,n. They can be calculated using the
geometry of the cell and the measured values from entire cells. The thermal parameters
of the pouch foil are Rfoil,n and Cth,foil,n. The contact resistance Rcontact between the
pouch foil and cell stack has to be estimated. The sensitivity of the contact resistance is
investigated in Sec. 5.5. The ideal sources Tamp and Tcooling denote the temperature of
the environment and the temperature of the cooling plate. The thermal resistance of the
separator overhang is modeled by Rseparator.

temperature, 
measuring point

ambient 
temperature

thermal 
resistance
to the 
environment

cooling plate

thermal resistance, 
pouch foil

heat capacity, 
pouch foil

symmetry

thermal resistance, 
cell stack

thermal paste

separator overhang

thermal resistance 
between pouch foil and 
cell stack

heat capacity, 
cell stack

thermal resistance, 
separator overhang

temperature, 
cooling plate

Figure 5.1.: The advanced thermal ECM of a pouch cell with consideration of the pouch foil.
The cooling is on the bottom.

Thermal modeling of round cells also requires simplifications to combine the thermal
ECM with the electrical ECM. A cross-sectional view of a typical 18650 cell is shown in
Fig. 5.2. In contrast to pouch cells, round cells typically have a round jelly roll structure
which is separated at the top and bottom from the casing by insulator plates, a vent plate,
a PTC device, a CID device, and a casing made of steel, as the anode is connected with
the casing. To simplify the thermal ECM, it is advantageous to firstly define the cooling
concept. In this work, cooling is done using the lateral surface area of the cell. This can be
done by thin cooling foils or by fluid cooling directly. As a result, the radial temperature
distribution is focused on in this work.
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Figure 5.2.: The construction of a typical 18650 round cell.

A simplified radial cross-sectional view of a round cell and its possible thermal ECM
are shown in Fig. 5.3. Due to the constant thickness layer and the unified electrodes,
the resulting spiral can be expressed by the formulas of the arithmetic spiral (i.e., an
Archimedean spiral) (see Fig. 5.3). In addition to the thermal path in the radial direction,
a second thermal path occurs in the lateral direction.

Some simplifications for the thermal model are indicated in Tab. A.3. The lateral
thermal resistance Rlateral has a significant contribution by the copper and aluminum
electrodes. In addition, a pair of anode and cathode electrodes is rather thin compared
to the cell thickness and results in a high number of windings [164]. It is assumed that
the temperature of these thin electrodes is rather similar. As a result, only the copper
and aluminum electrodes are taken into account and will be unified as one layer with the
thickness dAl+Cu to model Rlateral of the anode and cathode electrode. To derive a 1D
thermal ECM, the continuous lateral thermal resistance is discretized by single resistors
Rlateral,n of each winding (see Fig. 5.3). To determine Rlateral,n, the perpendicular area
Avertical of the layer and the length of the heat path ∆ln of this winding have to be
calculated. Avertical can be calculated by the multiplication of the thickness dAl+Cu and
the height h of the round cell. The length ln can be calculated with the formula of an
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Figure 5.3.: The simplified thermal ECM of a round cell.

arithmetic spiral [164], i.e.:

ln = delectrode
4 · π

· [2π · n ·
√︂

1 + (2π · n)2

+ ln
(︃

2π · n +
√︂

1 + (2π · n)2
)︃

],
(5.4)

and
∆ln = ln − ln−1, (5.5)

where n is the current number of the winding and delectrode is the accumulated thickness
of an anode and cathode electrode pair and the separator sheet. For the first winding,
ln−1 is zero. The thermal resistance Rlateral,n can be expressed as:

Rlateral,n = ∆ln
Avertical

· 1
λAl+Cu

. (5.6)

109



To calculate the thermal resistance Rradial,n and the heat capacity Cth,n, the surface
area (lateral area) Alateral,n and the volume of each winding are required. The spiral
shape of the windings is simplified by cylinders with the radius rn (see Fig. 5.3). These
surface areas Alateral,n are depicted in Fig. 5.3 in dashed lines. The sketch indicates bigger
approximated surface areas by the cylinders. However, the approximation error decreases
for a higher number of windings. The surface area Alateral,n can be calculated as:

Alateral,n = 2π · delectrode · h · n, (5.7)

where n is the current number of the winding and h is the height of the cell. The
perpendicular resistor Rradial,n can be expressed as:

Rradial,n = delectrode · n

Alateral
· 1

λperpendicular
, (5.8)

where λperpendicular is the perpendicular conductivity of the cell. However, an adequate
determination of λperpendicular for an entire round cells is almost impossible. In general,
cell disassembly is required. In this work, the perpendicular properties of pouch cells
are used instead of disassembling round cells. Oswald et al. measured the perpendicular
conductivity of several pouch cells and determined an average perpendicular conductivity
λperpendicular of 0.7 W

K·m [115]. This allows for a fast and adequate parameterization of the
thermal ECM without complex cell disassembly and preparation.
The heat capacity Cth,n represents the heat capacity of each approximated cylinder

volume of the cell. In the thermal ECM, the heat capacity Cth,n is connected to the cross-
sectional point of the lateral and radial resistors. This point denotes the temperature
of the volume section. The resulting network corresponds to the presented ECM of the
Warburg impedance (see Sec. 3.6). This enables the use of their calculation rules and their
implementations. It is assumed, that the heat capacity Cth,n of the cell is homogeneous.
As a result, Cth,n can be expressed as:

Cth,n = cp · m ·
(︁
(delectrode · n)2 − (delectrode · (n − 1))2)︁

r2
cell

, (5.9)

where cp is the specific heat capacity,m is the mass, and rcell is the radius of the round cell.
For the simulation of the thermal ECM, the value of Cth,0 should be chosen in the range of
Cth,1. In practice, round cells have a hole in the center of the cell of about 1.0mm, which
contains no active material, but probably electrolyte [164]. This hole is not modeled in
the proposed thermal ECM of round cells. Due to the probably electrolyte in this hole, the
specific heat capacity of this volume should be higher than volumes with electrodes and
separator. This enables the simplification: the value of Cth,0 can be approximated by Cth,1.
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5.4. Determining Heat Capacity and Conductivity

There are several methods for measuring heat capacity [12, 57, 96, 112, 146]. Typical
values of the specific heat capacity of commercial Li-ion cells are in the range of 900 to
1150 J

kg·K (see Sec. 5.2) [57, 146]. A cost-efficient and rapid measurement method had to
be developed to determine the parameters of the thermal ECM (see Sec. 5.3). To reduce
the measurement time, the heat capacity and the anisotropic thermal conductivity are
measured simultaneously. Additionally, the measurement method should be non-invasive
and should not require cell disassembly. In contrast to pouch cells, prismatic hard-case and
round cells have several safety devices and internal current bus bars besides the electrodes
that influence the thermal dynamic of these cells. For this reason, adequate knowledge of
the cell construction is needed for an effective thermal model.
The starting point for developing the measurement method is a common cooling concept

in which the cooling plates are located at the top or bottom of the battery. Assuming that
heat exchange to the cold plate is lateral to the stacked sheets, heat must flow through
the rather indeterminate geometry of the separator overlap. The separator overlap is
needed to prevent short circuits (see Sec. 2.4.3). A sketch of a side view of a pouch cell
with the separator overlap and the corresponding bottom cooling is shown in Fig. 5.4.
For this cooling concept, the lateral thermal conductivity and the separator overlap are
key parameters that influence the cell’s maximum cooling power and the temperature
distribution. For practical reasons, it is convenient to interpret the conductivity of the
separator overlap as surface conductivity, as the thickness of the separator overlap is
difficult to measure. In contrast, the perpendicular thermal conductivity has a significant
influence on the temperature distribution between the cells, resulting from a temperature
distribution within the cooling plate. Additionally, the perpendicular thermal conductivity
can be a crucial parameter in the battery’s thermal runaway.
Excitation of the cell is achieved through a temperature step at its base. Measuring the

resulting temperature distribution enables the determination of the thermal parameters.
The first measurements indicated that the generation of temperature step by a water flow
which directly contacts the cell surface does not lead to adequate results. The reason
being that the surface conductivity between water and solid materials range between
500 up to 4000 W

m2K [160]. Furthermore, the surface conductivity is a function of the
temperature, the flow velocity, and the surface condition. As a result, the uncertainty of
the estimated separator overlap is too high.
To reduce measurement errors, a much smaller thermal resistance between the pouch

foil and the heat source is required. A comparison of several materials point out that
gallium is a suitable material as thermal conductor between pouch foil and heat source. It
is fluent at room temperature and has four to ten times better conductivity than other
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Figure 5.4.: The side view of a pouch cell in the measurement setup for determining the
separator overlap, in which gallium is used as a heat coupling material to reduce
the thermal contact resistance to the cooling/heating plate.

frequently used industrial thermal interface materials such as thermal paste or grease2.
The measurement setup with gallium as the thermal interface material is shown in Fig.
5.5. The cell is placed on a cooling plate, where a thin layer of gallium sits between
the cooling plate and the cell. A sudden temperature change as a step function can be
achieved by changing the temperature of the inlet water with a high volume flow. Rapid
detection of temperature changes is enabled through a direct sensing of the temperature
within the gallium. This is achieved without additional time delays which would occur by
recording the inlet water temperature.
Temperature sensors are placed at the middle of the cell to record the transient and

spacial temperature distribution. The cell is insulated to reduce the impact of heat
exchange to the environment and to avoid air convection. The thermal ECM (see Sec.
5.3) can be simplified assuming a homogeneous heat flow within the cell, symmetrical
positioning of the temperature sensors, and constant heat exchange to the environment.
The resulting thermal model consists of a thermal TML. Each node of the TML is connected
to the environment temperature by the resistor of the insulation (see Fig. 5.1). The
excitation is implemented by an ideal temperature source to reproduce the temperature of
the cooling plate. The temperature sensors are fixed to the cell surface, where the sensors
next to the separator overlap may misdetect temperatures caused by the faster dynamic
of the pouch foil3.

2Note well, when together, gallium and aluminum form an alloy, which could destroy the cell. The gallium
must be insulated from the aluminum of the cell.

3Only the temperature of the pouch foil can be measured (not the cell stack itself).
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Figure 5.5.: The measurement setup with the pouch cell for determining the separator overlap.

The heat capacity, the lateral conductivity, and the thermal conductivity of the separator
overlap of Li-ion cells is determined by exciting the cell with a temperature step and
recording the temperature distribution on the cell’s surface. The simulated and measured
temperature of Cell C is shown in Fig. 5.6. The temperature step was from 29.0°C to
57.5°C. The cooling curve determined the heat exchange resistance to the environment
after excitation. The simulation determined a specific heat capacity of 960 J

K kg at 25°C
with 0.2% decrease per kelvin and a lateral thermal conductivity of 17.3 W

K·m
4. According

to the comparison of the resulting temperatures, the conductivity of the separator overlap
was from 800 to 900 W

m2K . These lumped thermal values enabled an easy parameterization
of the thermal ECM and simulation of the temperature distribution.
A validation with stainless steel confirms the suitableness of the measurement method

and is presented in Appendix A.9.

5.5. Thermal Simulation of Pouch and Round Cells

The temperature distribution within Li-ion cells was simulated for several cooling scenarios
and is discussed in the following section. A prediction of the temperature spread within a
battery is essential to prevent Li-plating, overheating, and accelerated aging of the cells.

4The value corresponds well with the calculated lateral conductivity using the theoretical cooper and
aluminum properties.
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Figure 5.6.: The measurement of the temperature distribution of Cell C to determine the
heat capacity, the lateral conductivity, and the thermal conductivity of separator
overlap. Cell C was excited by a temperature step at the cell’s bottom. The
simulation of the thermal ECM (see Fig. 5.1) is shown as a surface considering
values of the conductivity of the separator overlap from 800 to 900 W

m2K .

5.5.1. Thermal Simulation of Pouch Cells

First, Cell C (i.e., a pouch cell) was investigated for bottom cooling, bottom cooling with
top cooling, and bottom cooling without the separator overhang. The thermal ECM is
introduced in Sec. 5.3. It consists of the separator overhang, the cell stack, and the
pouch foil. The first simulations showed that the impact of the pouch foil on temperature
distribution is small. As a result, the thermal ECM could be simplified, and the pouch
foil itself was not considered. The cell stack had a length of 10 cm and the separator
overhang of the top and bottom of the cell was assumed each time at 2mm thickness. The
parameters used with each thermal model are listed in Tab. 5.1.
In the simulation, with an ideal cooling temperature of 15.0W, the cell’s bottom is

excited and the top and bottom of the cell are recorded at 7.5W. This value corresponds
approximately to real battery systems. The initial cell temperature was 25°C. A heat
exchange to the environment is only possible via the top and bottom cooling system and
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Table 5.1.: The parameters of Cell C used in the simulations of the thermal ECM depicted in
Fig. 5.1. Cell C has a cross-sectional area of 3.84 10−3m2 and a mass of 883 g.
The parameters listed are rounded.

parameter value unit

Rseparator,n 0.08 K
W

Rstack,n 0.10 K
W

Cstack,n 90.0 J
K

Cseparator,n 1.8 J
K

is equal to a cell in the battery module’s center.

Figure 5.7.: A comparison of the simulated temperature distribution of Cell C for different
configurations. These are bottom cooling with and without considering the
influence of the separator overhang and a two-surface cooling concept for the
top and bottom of the cell.

The simulation results of the three scenarios are shown in Fig. 5.7 . For clarification,
only the cell stack’s top, center, and bottom temperatures are shown. Comparing the
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Figure 5.8.: A comparison of the simulated temperature distribution of Cell H for different
configurations. These are cooling with (solid line) and without (dashed line)
considering the influence of the lateral heat path. Assuming a constant cooling
of 1 W and 3 W respectively.

temperatures with and without the separator overhang indicates that its impact on the
temperature distribution is significant. The simulation considering the separator overhang
shows a kink in the curves, which marks the transition from the separator overhang to the
cell stack. In contrast, the curve without modeling of the separator overhang did not have
a kink. These results indicate how important modeling of the separator overhang is to
predict the temperature dynamics accurately. Furthermore, the temperature spread was
14°C from top to bottom for the single direction cooling with separator overhang. This
difference brings the risk of overheating, Li-plating, and accelerated aging. As a result,
a reduction in the spread should be driven forward. One possibility is two-side cooling.
The results show a significant decrease of the temperature spread down to 6°C. Another
possibility is a kind of the so-called ‘tabless design’, where the anode sheets are extended
and touch the pouch foil. As a result, the heat exchange is drastically improved. The
resulting temperature spread is 8°C.
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Table 5.2.: The parameters of Cell H used in the simulations of the thermal ECM depicted in
Fig. 5.3. The parameters listed are rounded.

parameter value unit

Avertical 16.25 · 10−6 m2

dAl+Cu 25 · 10−6 m
λAl+Cu 295 W

K·m
delectrode 250 · 10−6 m
λperpendicular 0.8 W

K·m
cp 900 J

K·kg
n 36 -
h 65 mm
m 45 g

5.5.2. Thermal Simulation of Round Cells

Besides the top and bottom cooling of prismatic pouch and hard-case cells, round cells
have typically a radial cooling concept. Cell H was simulated to investigate the influence
of the radial cooling on the temperature distribution within round cells. The thermal ECM
used is shown in Fig. 5.3. As mentioned in Sec. 5.3, two thermal paths, the lateral and
radial direction, have to be considered. The parameters used are listed in Tab. 5.2. The cell
surface is cooled by a constant heat generation of 1W and 3W. The simulation results of
the temperature distribution are shown in Fig. 5.8. For clarification, only the temperatures
of the cell’s surface, the center, and the half distance to the center (i.e., the middle) are
depicted. The results show the expected transmission line dynamic that changes after 40 s
constant temperature increase. The temperature spread was 1.4°C at 1W cooling and
4.2°C at 3W cooling, where the difference between surface and middle was much larger
than the difference from the center to the middle. The higher temperature spread (i.e.,
3x) results from higher cooling (i.e., 3x).
The influence of the lateral heat path on the temperature distribution is shown in Fig.

5.8. The curves indicate that the lateral heat path can be neglected for realistic conditions
of the heating and cooling systems which have the heat transfer at the cell surface. It
can be concluded that the proposed 1D thermal model leads to adequate simulations
of the temperature distribution. The formulation of the thermal dynamics enables an
implementation similar to Warburg impedances.
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5.6. Reversible Heat

An accurate description of the heat generated by a Li-ion cell is important for an adequate
prediction of the temperature dynamic. Thus far in this work, the heat of irreversible
losses has been considered (i.e., ohmic, polarization, diffusion, and hysteresis). These
losses denote mechanisms which convert electrical energy into heat (i.e., joules) [67].
The total heat generated Qtotal in Li-ion cells can be categorized as either irreversible heat
Qirr or reversible heat Qrev, thus:

Qtotal = Qrev + Qirr. (5.10)

To calculate the losses, the cell current I is multiplied by the difference between the
OCV and the present cell voltage Vcell. This is known as the ‘overpotential’.
These losses lead to the irreversible part of the generated heat and can be written as a

rate [16], i.e.:
Ploss = Q̇irr = (Vcell − VOCV) · I. (5.11)

However, this formula should be used with caution, because it can easily lead to miscal-
culations and misinterpretation. The heat represented in Eq. 5.11 is only the amount of
generated heat. In general, equilibrium currents occur within cells after they are excited,
which additionally heats the cell. To reach equilibrium, these losses are included in the
capacity part (i.e., the imaginary part of the impedance) of the overpotential. During
current excitation, this energy is stored in a capacitor such as the double layer capacitor
(see Sec. 3.7.1) and after the excitation, the energy is transferred to heat . As a result, the
heat generation of the relaxation processes and the heat generation of the excitation do
not occur simultaneously. In this work, the electrical ECM shown take into account both
the equilibrium processes and their equilibrium currents. The losses are determined for
each process respectively circuit element and added to the entire loss of the cell. This is
represented as:

Ploss = Q̇irr =
N∑︂

n=1
Re(Zn) · I2

n, (5.12)

where Re(Zn) is the real part of the impedance of the circuit element, In is the current that
flows through the real part of this element and N is the number of elements. Using Eq.
5.12 enables the calculation of the dynamic of the irreversible part of heat generation. The
ratio between Qirr and Qtotal decreases at higher temperatures due to the temperature
dependency of the electrochemical processes5. Furthermore, the ongoing improvement of
5The hysteresis losses are either not affected by the temperature, or only weakly affected.
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Figure 5.9.: The simulated temperature of Cell F with and without entropy change considera-
tion. The cell was charged with a C-rate of 1 C at an initial temperature of 35°C
and 10% SoC.

battery technology leads to consistently smaller cell resistances. Thus, Qrev becomes a
more substantial contributor to Qtotal.
A simulation of the charge process was used to demonstrate the impact of Qrev on

cell temperature. Its parameterization was done using measurements of a hard-case cell
with a nominal capacity of 96Ah (i.e., Cell F; see Tab. A.1). The boundary condition of
the simulation are a homogeneous cell temperature, a fixed thermal resistance to the
environment temperature, and no temperature dependency of the thermal properties. A
detailed explanation of the parameter identification is given in Chapter 4. The simulated
surface temperature of the hard-case cell with and without considering reversible heat is
shown in Fig. 5.9.
In the simulation, the cell was charged at 10% SoC and 35°C with a C-rate of 1C.

The cooling conditions corresponded to free convection. Comparing the curves indicates
that the reversible heat leads to a 1.1°C higher maximal temperature. Considering the
total temperature change, the error excluding the reversible heat part is about 30%,
highlighting the importance of reversible heat modeling for accurate cell temperature
prediction.

5.6.1. Modeling Reversible Heat

In the following section, the relation between reversible heat Qrev, the thermodynamics,
and the electrical quantities of Li-ion cells are investigated. A deeper view of the ther-
modynamics is needed to understand the different possibilities to measure and model
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reversible heat.
Qrev depends significantly on the electrode materials, the SoC, and is a linear function

of the temperature. It is caused by the change in entropy (∆S). The relation between
Qrev and the total entropy differential can be described by the second law of the thermo-
dynamics, i.e.:

dS = δQrev
T

, (5.13)

where the absolute temperature T enables to express the incomplete differential δQrev
as a complete differential dS. With regard to this definition, the entropy change dS is
positive in the case of adding heat to the system and negative for removing heat from the
system. The reaction enthalpy includes this reversible work [16]. Bernardi et al. present a
formula for electrochemical processes, which expresses the generated reversible heat part
as a rate [16] i.e.:

Q̇rev = I · T · ∆S

z · F
=⇒ ∆S = z · F · Q̇rev

I · T
, (5.14)

where F is the Faraday constant, z is the number of electrons transferred per ion, and
∆S is the change in entropy. Several measurement methods to determine the change in
entropy are presented in Sec. 5.6.2.
In addition to the calculation of ∆S by the reversible heat, it can also be determined

by the temperature dependence of the OCV. The starting point for deriving the relation
between entropy and OCV is with the characteristic equations of the total differential of
Gibbs energy dG and enthalpy dH. They are defined as:

dG = −S dT + V dp +
∑︂

i

µi dNi, (5.15)

dH = T dS + V dp +
∑︂

i

µi dNi, (5.16)

where V is volume, p is pressure, µ is the chemical potential, and N is the particle number.
Eq. 5.15 and Eq. 5.16 can be used to express the differential of Gibbs energy by the total
differentials of enthalpy, entropy and temperature, and is defined as:

dG = dH − T dS − S dT. (5.17)

To obtain Gibbs energy as difference quotient, Eq. 5.17 has to be integrated from an initial
state (1) to a final state (2) in the reaction, i.e.:

∆G =
∫︂ 2

1
dG =

∫︂ 2

1
dH −

∫︂ 2

1
T dS −

∫︂ 2

1
S dT

= ∆H − T ∆S.

(5.18)
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Assuming the start and end temperature of the reaction are identical, the last integral
term is omitted.
At the equilibrium of Li-ion cells, Gibbs energy is the cell’s maximum extractable energy.

An enthalpy equation (i.e., Eq. 5.17) is used to obtain the relation between the change
of entropy and the change of Gibbs energy at the equilibrium. An external temperature
change of this system can be expressed as:

∂∆G

∂T
= ∂

∂T
(∆H − T ∆S) = −∆S. (5.19)

To get the relation between the Gibbs energy and the OCV, Eq. 5.15 is integrated assuming
the pressure and temperature in the initial state (1) and final state (2) are the same.
These are expressed as:

∆G =
∫︂ 2

1
dG =

∫︂ 2

1

∑︂
i

µi dNi

=
∫︂ 1

λ=0

∑︂
i

µi νi dλ =
∑︂

i

µi νi,

(5.20)

where ν is a stoichiometry factor and λ is the reaction number from 0 to 1. It should be
noted that Eq. 5.15 and Eq. 5.16 only contain the chemical potential µ without including
‘external’ fields such as the electric field or the gravity field. However, for Li-ion cells the
electric field must also be taken into account and leads to the electrochemical potential
between two electrodes. At equilibrium, the electrical work W can be expressed with
Faraday’s law, i.e.:

W = z · F · VOCV, (5.21)

where F is the Faraday constant and z is the number of electrons transferred per ion.
Furthermore, at the electrochemical equilibrium the sum of chemical energy and electrical
energy is zero. As a results of the electric work, Eq. 5.20 has to be extended to:

∆G + z · F · VOCV =
∑︂

i

µi νi + z · F · VOCV = 0. (5.22)

This follows the formula for the change in Gibbs energy ∆G for reversible electrochemical
processes in the electrochemical equilibrium, i.e.:

∆G = −z · F · VOCV. (5.23)

The values of ∆G are negative, since F , z, and the OCV can only have positive values.
Negative values of∆G denote reactions, which run ‘voluntarily’ and lead to the fundamen-
tal work principle of Li-ion cells. The expression of ∆S as a function of the temperature
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dependence of the OCV is enabled by Eq. 5.23 and Eq. 5.19, i.e.:

∆S = z · F · ∂

∂T
(VOCV) . (5.24)

The derivation of the formulas shows, that two completely different approaches exist
to determine the entropy change ∆S. These are the potentiometric and the calorimetric
measurement methods. The approaches are presented and compared in Sec. 5.6.2.

5.6.2. An Overview of Measurement Methods

As outlined in Sec. 5.6, reversible heat generation in Li-ion cells is related to OCV and
entropy change, for which several measurement methods are available.
A commonly applied method is the so-called ‘potentiometric method’, which evaluates

the temperature dependency of the OCV [30, 36, 65, 95, 106, 114, 129, 163]. The
calculation of the entropy change to simulate the reversible heat is shown in Eq. 5.24.
However, the determination of the temperature dependency of the OCV is not trivial
and requires the consideration of several error sources. In particular, the superimposed
voltage relaxation process of the OCV leads to errors [30, 36, 114, 137]. There are several
measures proposed in the literature to reduce this effect. Eddahech et al. [30] and Schmidt
et al. [137] paused cells for one to two days after the SoC setting. Schmidt et al. [137]
showed that this long rest time is not a guarantee to reach the equilibrium potential. The
resulting errors lead to misinterpretation of the entropy change. Osswald et al. [114]
applied a fitting function of the voltage relaxation to cancel out the voltage relaxation
effects from the measurement data to prevent these errors and reduce the measurement
time.
In contrast to the potentiometric method, it is possible to obtainQtot via full or fractional

charge cycles [30, 57, 112, 143, 146]. The cell is placed in a calorimeter, and the cell
temperature is measured. Due to the linear relationship between the current and the
reversible heat generation (see Eq. 5.14) and the quadratic relationship for the irreversible
heat generation (see Eq. 5.12), a separation of reversible and irreversible heat is possible.
To determine these quantities, Eddahech et al. excited the cell with different current
amplitudes [30]. However, standard calorimeters often have too small a chamber volume
for large industrial cells, requiring expensive and customized setups. A disadvantage of
this method is the large number of possible error sources. Typical sources of error include
heat distribution inside the calorimeter and heat loss through the cables connecting the
cell. Another way to determine Qrev is to measure the dissipated heat flux of the cell
between its surface and the surrounding [104]. For this purpose, heat flux sensors must
be specially calibrated [104].
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Qrev can be determined using thermal impedance spectroscopy [137] (see electrical
impedance spectroscopy in Sec. 4.1). Like EIS, the cell is excited with a sinusoidal current,
where the temperature response is recorded. Qrev is a linear function of the current
and Qirr is a quadratic function of the current. As a result, the spectra show two peaks,
where the Qrev part has the same frequency as the current and the Qirr part has double the
frequency of the current due to its quadratic relationship. This enables a clear separation of
Qrev and Qirr from Qtot. The disadvantages of the method are the generation of sinusoidal
excitation signals with a high amplitude, the complex transformation of the signals, and
the evaluation of the frequency domain’s signals.
A novel calorimetric measurement method is developed to fulfill the high demands

of an industrial suitable and automated measurement method. The so-called ‘double
pulse method’ (DPM) enables a simple evaluation of the measured signals, the use of
cost-effective equipment, and has a relatively simple measurement setup. The DPM is
based on the cell’s excitation by two current pulses of opposite polarity and the record
of the temperature change. Resulting from the influence of the reversible heat Qrev, the
responded temperature pulses have different amounts6. The evaluation of the temperature
difference enables the determination of the entropy change ∆S.
An overview of the different measurements methods is given in Fig. 5.10. All these

methods require the consideration of the passive anode (see Sec. 3.7.8) to avoid errors.
Errors can be easily arise due to an SoC-shift by the anode overhang. This is especially
the case with the potentiometric method due to the long measurement time required.
Additionally, the self-discharge of the cell, hysteresis effects, and the time-dependent
internal resistance should be taken into account.
The measurement setup used to measure the reversible heat with the improved poten-

tiometric method and the novel DPM is presented in Appendix A.10.

5.6.3. The Potentiometric Method

In this work, the commonly used potentiometric method—to determine the entropy
change ∆S—has to be improved in order to apply this method in the industrial field. For
this purpose, a reduction of the measurement time is an essential factor to decrease the
errors caused by the passive anode.
The potentiometric method is based on measuring the equilibrium voltage (OCV) of the

cell at several SoC operation points and temperatures. After the cell has reached the OCV,
a step-wise temperature profile is often applied to evaluate the temperature dependence
of the OCV [30, 114, 137]. The challenge for this procedure is to guarantee equilibrium.

6The amplitude and length of the current pulses are the same.
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Figure 5.10.: The four methods used to determine the entropy change ∆S i.e., (a) the
potentiometric method, (b) the ‘double pulse method’ (DPM), (c) the calori-
metric method with varying current amplitudes, and (d) the thermal impedance
spectroscopy.

Otherwise, relaxation effects superimpose the temperature dependency of the OCV, making
it impossible to determine ∆S. However, the necessary rest time can rise to several days
[30, 137]. Besides the influences of the passive anode, the determination of a highly
resolved function of the SoC dependence of the entropy change ∆S is not convenient
in the industrial field due to the extended rest periods. To overcome this, Osswald et al.
suggested a potentiometric method that measures cells that are not completely relaxed
[114]. The impact of the relaxation should be corrected by an estimated fit function of the
voltage drift. To increase the correction method’s reliability and prevent misinterpretations
by wrong measurements, a more physics-based modeling approach is applied in this work.
Instead of an arbitrary function, a transmission line model (TLM) was used to reproduce
the relaxation processes’ dynamics. Physics-based modeling of a one-dimensional voltage
relaxation process enables a TLM as presented in Sec. 3.6.
Additionally, the diffusion velocity depends strongly on the temperature. As a result,

modeling of the relaxation processes with high-temperature changes requires TLM ele-
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ments with a temperature dependency. However, it is possible to describe the temperature
dependency of the TLM resistance using the Arrhenius law. However, this has limited
accuracy. The effect of the temperature dependency of the OCV is in the micro- to millivolts
range, which makes an adequate correction of the temperature-dependent relaxation
processes by a simple TLM almost impossible. As a result, the temperature changes should
be small to also keep the change in the relaxation processes small. This work applies a
step-wise temperature profile with a change of 5°C. This slight temperature difference
requires a high-resolution temperature and voltage measurement. To guarantee constant
temperature for each step, the cell is placed in a climate chamber and covered with
insulation (see Appendix A.10).
The recorded cell voltage of Cell J for the charge branch and the applied temperature

profile is shown in Fig. 5.11. To ensure a fast relaxation, the cell SoC is set at 35°C. After
SoC setting, the cell pauses for 4 h. The first test results indicated that a suitable tem-
perature profile—to model the voltage relaxation and determine the entropy change—is
an alternated step-wise change of the temperature between 35°C and 30°C with 2 h rest
time (see Fig. 5.11b). Voltage relaxation and its gradient at different temperatures (i.e., a
profile of 35°C, 25°C, and −5°C) is shown in Fig. 5.11c . Comparing the gradients indicates
the challenge of correcting the superimposed voltage drift by a simple TLM. The corrected
cell voltage of Fig. 5.11b is shown in Fig. 5.11d. Lastly, entropy change ∆S is determined
using Eq. 5.24.

5.6.4. The Double Pulse Method

To meet high industrial requirements, a new measurement method was developed as part
of this work. The ‘double pulse method’ (DPM) combines several calorimetric approaches
to determine the entropy change ∆S by exciting the cell with two current pulses in
opposite polarity. Due to the different current dependency of the single parts of the total
generated heat Qtot, a separation of the reversible and irreversible heat is possible.
The cell temperature during a charge and discharge of a current pulse of the same

amplitude and pulse length is shown in Fig. 5.12. Furthermore, the relationship between
the temperature and the heat generation Qtot, Qirr, and Qrev is displayed where the real
detectable temperatures T̃ 1 and T̃ 2 are smaller than the expected values T1 and T2. The
lower temperature comes from the imperfect insulation, which leads to a heat exchange
to the environment. As a result, a part of the generated heat Qtot is lost.
As ∆S is unlike 0, the two responded temperature pulses do not have the same value.

The reason is that Q̇rev is a linear function of the current. Thus, Q̇rev depends on the
polarity of the current (see Eq. 5.14). According to the definition of the entropy change
∆S, a positive value of ∆S and a charge current results in a positive Q̇rev which heats the
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cell up. In contrast, this positive ∆S and a discharge current leads to a negative value
of Q̇rev and cools the cell down. For negative values of ∆S, the processes are converse.
Due to the quadratic function of the current in Eq. 5.11, the Q̇irr caused by ohmic losses
is always positive. This leads to the basic idea of the DPM determining ∆S from the two
pulses’ temperature difference.
Assuming a homogeneous cell temperature and that the temperatures T1 and T2 are

known, the calculation of the Qrev can be approximated. The simplified equation contains
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only the specific heat capacity cp and the mass m of the cell. Qrev can be expressed as:

Qrev =
Qtot(T2) − Qtot(T1)

2 = 1
2(T2 − T1) · m · cp. (5.25)

In contrast, the sum of Qtot(T1) and Qtot(T2) leads to the irreversible heat, expressed as:

Qirr =
Qtot(T2) + Qtot(T1)

2 = 1
2(T2 + T1) · m · cp. (5.26)

Since large automotive cells cannot be placed in a standard calorimeter and require
custom-made calorimeters, a cost-efficient solution for changing sizes and geometries of
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Li-ion cells is needed. A possible solution is to cover Li-ion cells with extruded polystyrene
(EPS) and place them in a climate chamber. However, the imperfect insulation of the
cell leads to errors in the temperature measurement (see Fig. 5.12a), which makes a
direct calculation of Qtot impossible. To correct the measured temperature T̃ 1 and T̃ 2,
the simplified thermal model of Eq. 5.25 and Eq. 5.26 is extended by the impacts of the
heat exchange through the insulation and the wires. The resulting thermal ECM, which
enables the reconstruction of the theoretical temperatures T1 and T2, is depicted in Fig.
5.13. The thermal ECM contains the heat generation rates Q̇irr and Q̇rev as ideal sources,
the heat capacity of the cell ccell as capacitor, and the thermal resistances of the insulation
(Rinsulation) and contacted wires (Rwire).
To reconstruct T1 and T2, the parameter of the sources Q̇irr and Q̇rev are varied until the

simulated and measured temperature curves match. Inputs of the thermal ECM are the
measured temperature of the climate chamber, Q̇irr, and Q̇rev, whereas ccell, Rwire, and
Rinsulation are fixed. Because of that, only the Q̇irr and Q̇rev are functions of the current and
the SoC. Since the initial and final state of the two current pulses of opposite polarity have
the same SoC, the SoC-depended losses of the internal cell resistance are compensated
for.
According to typical thermal properties of automotive Li-ion cells (see Tab. 5.2), the

impact of the heat transfer’s dynamic via the insulation and the wires can be estimated.
Due to the small heat capacity of the wires and their high conductivity, the dynamic
is much faster than the cell’s temperature dynamics. Unlike the insulation, this has an
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extremely low thermal conductivity and a relatively high heat capacity, which leads to
much slower dynamics than the dynamics of the cell. In both cases, the temperature
dynamic can be neglected and can be approximated by the thermal resistance of the wires
(Rwire) and the insulation (Rinsulation)7. To prevent temperature gradients in the cell, the
cross-section of the wires or the electrical resistance has been chosen in the internal cell
resistance range.

5.6.5. A Comparison of the Potentiometric and the Double Pulse Method

The reversible heat or entropy change ∆S of Li-ion cells was determined via the poten-
tiometric method (see Sec. 5.6.3) and the double pulse method (DPM) (see Sec. 5.6.4).
Comparing these methods, Cell J (with an LFP cathode and graphite anode) was chosen
due to its flat OCV compared to cathodes made of NMC or NCA (see Fig. 4.15). Due to
the rather flat OCV, the voltage relaxation was also smaller. Thus, the relaxation voltage
could be more easily corrected out of the measurements in the presented potentiometric
method. Excitation current pulses with an amplitude of 2A and a pulse width of 1850 s
(respectively 5% SoC) are used for the DPM. Comparing the measurement times shows
that the DPM is two times faster than the improved potentiometric method [15].
The ∆S curves—calculated as a function of the SoC for each method—are displayed

in Fig. 5.14. An evaluation of ∆S for SoCs less than 15% of the charge branch was not
possible via the potentiometric method. The voltage drift was too high and could not be
sufficiently reproduced by the FSW used (see Sec. 3.6). The error bars were calculated
by the standard deviation of the measurement and the Student’s t-distribution with a
confidence interval of 95% [107]. Calculating the standard error, the DPM measurements
were taken three times. The error of the DPM was approx. ±2 J

mol·K . For the potentiometric
method, the five voltage steps caused by the temperature profile were used to calculate
the standard errors, which range from ±3 J

mol·K to ±8 J
mol·K .

Comparing the resulting ∆S curves of both methods (see Fig. 5.14) indicated a similar
characteristic, which is also reported in the literature for cells with a graphite anode [36,
65, 106, 137, 146]. As outlined in Sec. 5.6, the entropy changes ∆S could be positive
and negative. The potentiometric’s curves differed from DPM results at SoCs from 0
to 60% for the charge branch and from 15 to 35% for the discharge branch. Retaking
the measurements resulted in similar curves and could not eliminate the difference.
Furthermore, the potentiometric method results showed a difference between the charge
and discharge branch for SoCs from 30 to 60%. In contrast, the DPM’s curves did not show
this difference. Moreover, the DPM results seemed to be a SoC-shift of approx. 5% between

7Modeling the thermal capacities of the wires and the insulation in the thermal ECM is not needed.
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Figure 5.14.: The measurement results of ∆S of Cell J with the corresponding error bars of
the DPM and the potentiometric method. Redrawn from [15].

.

the charge and discharge branch. Due to the accuracy of 1mA of the BaSyTec CTS, errors
in the recorded charge amount or the SoC setting at the beginning of the measurement
could not be the reason for the shift. The cell voltage of the DPM measurement with the
OCV as depicted in Fig. 5.15 was used to check for a possible elementary mistake in the
profile of pulses in the opposite direction. Comparing the curves indicated a good match
of the OCV and voltage of the DPM measurement. As a result, errors in the current profiles
and passive anodes effects could be excluded.
Besides that, the assumed equal amount of irreversible heat of the charge and discharge

pulses could be different. The addition of the two pulses did not completely cancel out
the irreversible heat from the determined total heat, and a small part of the irreversible
heat remained in the reversible heat or respectively entropy change ∆S (see Sec. 5.6.4).
The SoC dependency of the resistance (see Sec. 4.4) led to a resistance variation of less
than 1% for an SoC-step of 5% between 20% and 80% SoC. Thus, it could not have
been the reason for the shift of the curves. However, the losses of the OCV hysteresis also
resulted in irreversible heat Qirr. The DPM required that the OCV hysteresis losses had
to have been the same for the charge and discharge direction. Violating this assumption
could be a reason for the shift. Schmidt et al. measured the ∆S curve via ‘thermal
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Figure 5.15.: A comparison of the recorded voltage at the final position of each SoC point of
the DPM and the measured OCV curve at 25°C of Cell J. Redrawn from [15].

impedance spectroscopy’ (ETIS), and they also reported a shift between the charge and
discharge direction [137]. Yet, the thermal impedance spectroscopy used a sinusoidal
excitation, which led to micro-cycles as well. In contrast to the ∆S curves measured via
the thermal impedance spectroscopy, Allart et al. determined ∆S curves of a graphite
anode by a potentiometric method which did not show this shift [1]. Furthermore, their
potentiometric ∆S curves are similar to the measured potentiometric ∆S curves in this
work. The curves have a similar difference between the charge and discharge branch at
SoCs from 30 to 60% (see Fig. 5.14b) [1]. Allart et al. assume that the different graphite
stages for the charge and discharge branch are the reason for this difference. It is also
possible that the shifted ∆S curves of the DPM are caused by the different graphite stages,
which also lead to a hysteresis of the OCV and the cell thickness [46].
In this work, the reason for the different results of the DPM and potentiometric method

could not be found. Nevertheless, the DPM was used in this work for the parameterization
of the Li-ion cell model. On the one hand, the DPM is up to three times faster than the
potentiometric method. In addition, the small measurement effect of the temperature
dependency of the OCV required a highly accurate voltage measurement and its easily
disturbing relaxation correction. On the other hand, the ∆S curves via the DPM together
with the OCV hysteresis model (see Sec. 3.7.7) can be easily implemented in the cell
model due to the assumed equal split of the OCV hysteresis losses to the charge and
discharge branch. Deviations from this assumption are automatically considered in the
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∆S curves of the DPM.

5.6.6. Resulting Reversible Heat of Different Li-ion Cells

As outlined, ∆S curves depend on the cell chemistry. To investigate the influence of
several material combinations of industrial cells, the ∆S curves were measured via the
DPM. The redetermined curves are displayed in Fig. 5.16. A comparison of the curves
indicates that Cell C and Cell I show a shift between the discharge and charge branches.
In contrast to Cell K and Cell L, the ∆S curves did not show a clear shift. Furthermore,
the ∆S curves of Cell C, Cell I, and Cell J had a similar characteristic (see Fig. 5.14). The
influence from the cathode of these cells seems to be small. Additionally, the Si content in
the graphite anode of Cell I also led to minor changes. For SoCs below 15%, the impact of
the Si increased and corresponded to the Si impact on the OCV at lower SoCs. The ∆S
curves of Cell K were different from the other cells with a graphite anode. The reason
could have been the NCA cathode with an LCO blend. Schmidt et al. reported similar
∆S curves of a cell with a graphite anode and NCA cathode with an LCO blend [137].
Cell L with the NMC cathode and graphite/Ge anode showed slight changes of ∆S and
negligible differences between the charge and discharge branch.

5.7. Conclusion

This chapter gave an overview of thermal models and the properties of the cell components.
To reproduce the temperature dynamic and distribution of industrial Li-ion cells, thermal
equivalent models for the pouch and round cells were presented. These models considered
the dynamics coursed by the cell geometry and enable an adequate prediction of cool and
hot spots of the cell. In particular, for fast charge applications, an accurate prediction of
the temperature is essential to prevent damage to the battery.
Measurement methods were developed for the parameterization of the thermal ECM,

where the cell was excited by a temperature step. The response was used to determine the
parameters. To measure the separator overhang in industrial cells, a novel measurement
setup was developed in which one side of the cell was immersed in liquid gallium.
Simulations of the temperature dynamic and distribution within the cells for different

cooling conditions showed that the separator overhang has a significant impact on the
cooling capability of Li-ion cells. As a result, the development of Li-ion cells should
minimize the thermal resistance of the separator overhang to achieve a higher and more
homogeneous cooling of cells. A homogeneous temperature is essential for fast charging
since the coldest and hottest cells limit fast charging.
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Figure 5.16.: A comparison of the resulting ∆S curves of several Li-ion cells measured with
the DPM.

Reversible heat was modeled to gain a more accurate prediction of total heat gen-
eration. Simulations which considered reversible heat showed a big impact at higher
temperatures compared to simulations which did not consider reversible heat. To measure
reversible heat, a new calorimetric measurement method, called double pulse method,
was developed. The comparison of the established potentiometric and the double pulse
method indicated its benefits. These were a shorter measurement time, less expensive
measurement equipment, and more accurate prediction of the temperature dynamic [15].
The chapter concludes with a comparison of the resulting reversible heat of Li-ion cells
with different chemistry. The results showed different curves for the cells and underlined
the importance of determining the reversible heat for each cell chemistry.
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6. Evaluating the Complete Cell Model

This chapter presents the coupled thermal-electrical model for time domain simulations.
Several simulation examples show the capability and suitability of the cell-specific model
and the generic model. These are the simulations of profiles, OCV hysteresis, full cycle,
and parallel connected cells.

6.1. The Coupled Thermal-Electric Simulation Model

A transient time domain model is required to simulate the electrical and thermal dynamics
of a Li-ion cell. In this work, the cell model consists of a separate electrical part (see
Chapter 3) and thermal part (see Chapter 5). These parts are connected by: reversible
heat Q̇rev, irreversible heat Q̇irr, and temperature T . Furthermore, both the electrical and
thermal parts have a modular structure. This enables the cell model to be tailored to the
simulation requirements. Typical applications of dynamic models are: online monitoring
and checking of batteries, reproduction of the electrical-thermal response of the battery
to a given electrical power or current, cooling studies, and charge simulations. The
implementation of the cell model is in MATLAB®/Simulink1. The cell model implemented
in MATLAB®/Simulink is shown in Fig. 6.1. This cell model can easily be extended to a
battery system model due to its modular structure. The possible methods are a simple
scaling of the input and output power from the battery level to the cell level or a serial and
parallel connecting of the cell model, i.e., the number of single cell models corresponds to
the number of cells in the battery.
The electrical part of the cell model consists of the presented ECM (see Sec. 3.3.2),

the SoC calculation, the entropy change ∆S, and the hysteresis model (see Sec. 3.7.7).
The circuit elements and their approximations were applied to implement the ECM in
MATLAB®/Simulink. The circuit elements are the resistor R0, the RC-element, the two
ZARC-elements with the in parallel connected diode 1 and diode 2, the FLW, and the FSW.
In contrast to the electrical part, the model structure of thermal part of the cell model

depends on the cell type, cell geometry, and the application (see Sec. 5.3). The simplest
1Other simulation tools are also possible.
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model is the 0-dimension model which consists of a heat capacity and a thermal exchange
to the cooling system. More complex ECM models respect the heat transmission in
3-dimensions and include special heat paths to the cooling system (see Sec. 5.1).
As outlined, the electrical and thermal cell model parameters were determined from

offline measurements carried out in advance. Inputs of the cell model were the electri-
cal current and the heat exchange to the environment or cooling system2. The initial
parameters for simulations were the temperature T0 and the start state of charge SoC0.
According to the inputs, the typical outputs were cell voltage V , state of charge SoC,
temperature T , and heat exchange to the environment or cooling system Q̇cooling system.
The total generated heat Q̇tot (sum of Q̇rev and Q̇irr) and the temperature T connect the
electrical and thermal models. As a result, the electrical and thermal model could be
independently changed from the other one which enabled a varying level of detail.

6.2. Profiles

To investigate the capability of the cell model, the dynamic of different cells was simulated
and compared with measured curves. In practice, pulse profiles play an essential role
in predicting the performance, losses, and range of a vehicle. For choosing relevant
current profiles and challenging to model scenarios, real profiles were analyzed3. However,
the discharge current pulses were significantly higher than moderate real scenarios to
investigate the limits of the cell model. In addition to the cell-specific model, the results
of the generic model were compared with measurements to provide guidance on which
cases require the specific cell model. Furthermore, the generic model highlighted that the
specific model was not specifically adapted in the scenarios presented.
First, the capability of the cell model to reproduce the small and large signal behavior

of Li-ion cells was investigated. For this purpose, Cell F was placed in a climate chamber
at 35°C and 80% SoC. The current profile consisted of two discharge current pulses
with a width of 20 s followed by a charge pulse to set the initial SoC. This pulse series
repeated with heightening discharge pulses. The measured and simulated signals of the
excitation current profile, SoC, cell voltage, and the difference between the voltages is
shown in Fig. 6.2. Comparing the curves indicated that both cell-specific and generic
models could reproduce the nonlinear dynamics of the cell. The cell-specific model error
is about 0.5-1.0mV and the generic model has an error of 1.0-2.0mV.
Simulations of mission profiles indicated that reproducing profiles with sudden changes

in the polarity of the excitation current could lead to more numerous errors. The current
2The electrical power and the cell voltage can also be used as an input signal.
3The artificial current profiles enable no conclusions on real drive cycles.

136



 𝑄  𝑄

 𝑄

 𝑄

electric model

thermal model

initial temperature

excitation current
voltage

temperature

total heat
loss

heat
exchange
(cooling
system)

initial SoC

Figure 6.1.: A schematic of the cell model. The electrical model includes the electrical ECM,
the hysteresis model, the calculation of the entropy change (reversible heat).
The thermal model contains the thermal ECM and the boundary conditions of
the cooling system.

and voltage signal of an artificially generated mission profile sequence and the simulation
results are shown in Fig. 6.3. As expected, the sudden changes of the current’s polarity
result in higher errors. The error of the cell-specific model is approx. 3-5mV and the
generic model has an error of 3-8mV.
In addition to Cell F (i.e., a prismatic cell) at 35°C, the model’s capability of Cell A (i.e.,

a pouch cell) is presented (i.e., at -10°C, placed in a climate chamber at 71% SoC). The
excitation current profile, the measured and simulated voltage, and the SoC are displayed
in Fig. 6.4. Comparing the results indicated that the cell-specific model had an error up
to 13mV, and the generic model had an error up to 450mV. The voltage response of the
small currents at the beginning and the end of the profile could be reproduced and showed
that the model works adequately. However, the errors of the cell-specific model became
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Figure 6.2.: A comparison of the cell-specific and generic models for reproducing the dynamic
of the cell voltage. Cell F was excited by a pulse series with discharge currents
up to 240 A at 35°C and 80% SoC.

more significant for currents above 1C at -10°C. A possible reason could have been that
additional nonlinear cell effects occurred, which have not been considered and which
leave space for further model extensions. The errors of the generic model were in the poor
reproduction of determined cell-specific parameters R0 and R1 (see Fig. 4.24) and the
nonlinear cell dynamic at high overpotentials (see Sec. 3.7.3) that were not considered in
the generic model.
In summary, the cell-specific model can adequately reproduce cell dynamics for profiles
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Figure 6.3.: A comparison of the cell-specific and generic model for reproducing the dynamic
of the cell voltage. Cell F was excited by an artificially generated mission profile
sequence with discharge currents up to 240 A at 35°C and 80% SoC.

with moderate current amplitudes. In particular, the ECM accurately describes the cell
dynamics in the range of 0–60 s. Furthermore, the ECM simulates the voltage response
of current amplitude up to 4C at higher temperatures. The results of the generic model
indicate its suitability to predict the cell’s dynamic. If an estimation of the electrical power
is all that is required, the error is less than 0.1%. In particular, in the early stage of the
battery design, the generic model seems to be a good compromise between accuracy and
effort.

139



Figure 6.4.: A comparison of the cell-specific and generic model for reproducing the dynamic
of the cell voltage. Cell A was excited by a pulse series with currents up to 120 A
at -10°C and 71% SoC.

6.3. The Full Cycle Dynamic

An adequate reproduction of the full cycle dynamic of Li-ion cells is essential to predict
relevant battery parameters such as losses, energy efficiency, and temperature. In particular,
accurate modeling of the cell temperature is need to avoid damage to the cell caused by
overheating and lithium plating. As outlined, the maximal charge current is a function of
the SoC, SoH, charge amount, and temperature [29, 46, 47]. Besides the battery design,
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full cycles are used for artificially aging tests. The simulation results can be used in cell
monitoring to detect errors and unexpected cell behavior during the cell aging test, leading
to safety issues.
In the following section, the suitableness of the cell-specific and generic model is

discussed for full and part cycles. Furthermore, the two approximations of the FSW
diffusion element, i.e., the Foster model and the Cauer model (see Sec. 3.6.2) are
presented and compared. First, Cell C cycled between 10% and 70% SoC at 25°C4. The
restricted SoC range enabled constant charge currents up to 1.0 C without Li-plating. The
excitation currents investigated were 0.2C, 0.5C, and 1.0C. The measurement and the
simulation results are shown Fig. 6.5. Comparing the errors of the simulation in Fig. 6.5b
indicates that the cell-specific model and the generic model with the Cauer model have
a smaller average error in the overpotential than the cell-specific model with the Foster
model. In particular, the error of the overpotential at 50% anode SoC respectively 56%
cell SoC is higher for the Foster model than for the two Cauer models. Due to the phase
change in the graphite at this SoC, the dynamic changes suddenly, and several graphite
stages can coincide [46, 47]. The kink in cell voltage at 56% cell SoC only occurs at
small currents that enable the formation of the graphite stage. Comparing the curves in
Fig. 6.5a indicates the current dependency of voltage kink. The higher the charge and
discharge current, the weaker the knee.
As outlined, the dynamic of the intercalation process also depends on the temperature.

For this reason, Cell C cycles between 10% and 70% SoC at 35°C, 25°C, 10°C, and 0°C. The
discharge current was 1.0C for all cycles, whereas the charge current was 1.0C at 35°C
and 25°C. At 10°C and 0°C, the charge current was 0.1C to avoid damage to the cell by
Li-plating. The measured and simulated voltage curves are shown in Fig. 6.6. Comparing
the discharge branch at the different temperatures indicates that the characteristic kink
in the overpotential at 56% cell SoC becomes weaker for lower temperatures despite the
discharge current being constant. Furthermore, the curves of the discharge branch differ
more and more for lower SoCs. Possible reasons could be a reduction of the diffusion
velocity of the electrolyte (see Sec. 3.7.5) or the active materials (see Sec. 3.7.6) at lower
temperatures, which leads to high gradients in the lithium concentration. The average
error, the error at 56% cell-SoC, and at 10% cell-SoC indicate that only the specific cell
model with the Cauer model can reproduce these diffusion dynamics.
So far, the simulations have focused on reproducing the overpotential to predict quanti-

ties such as losses, energy content, and electrical power. However, an adequate calculation
of the total losses Qtot is essential to determine the cell temperature. As outlined in Sec.
5.6.5, the reversible heat has a crucial impact on the cell temperature. The temperature

4The cell is placed in a climate chamber.
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a)

b)

Figure 6.5.: A comparison of (a) the cell-specific model with the Foster and Cauer models,
and the generic model with the Cauer model to reproduce the dynamic of Cell C
for partial cycles, and (b) Cell C cycles with various currents between 10% and
70% SoC at 25°C. The error is calculated as difference between simulated and
measured cell voltage.

sensor is placed in the middle of the cell surface. The cell is covered in 1.0 cm EPS to
reduce convection disturbances due to the airflow within the climate chamber. A relatively
homogeneous temperature can be assumed due to the low heat exchange to the environ-
ment compared to the cell’s perpendicularly and lateral thermal conductivity. As a result,
a simplified 0D thermal model can be used. It contains the heat capacity, the generated
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b)

Figure 6.6.: A comparison of the (a) cell-specific model with the Foster and Cauer models
and the generic model with the Cauer model to reproduce the dynamic of Cell C
for partial cycles and (b) Cell C cycles between 10% and 70% SoC at various
temperatures, where the discharge current is 1 C for all temperatures. The error
is calculated as the difference between the simulated and the measured cell
voltages.

total heat, and the heat transfer to the environment. The required heat transfer coefficient
to the environment can be estimated by the cooling curve of the cell’s temperature after
the excitation.
Cell C cycles with 0.3C at 25°C. This corresponds to a simplified highway scenario,

where the vehicle drives 3 h with a rather constant velocity. To apply a constant charge
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current up to 100% SoC, the charge current is limited to avoid Li-plating. The constant
current eases the interpretation of the measured and simulated temperature. The cell
voltage and temperature are displayed in Fig. 6.7. Comparing the curves indicate that the
models enable an accurate prediction of the cell temperature. Additionally, the temperature
curves show the characteristic temperature profile due to the impact of the reversible heat
on the total generated heat.

Figure 6.7.: A comparison of the (a) cell-specific model with the Cauer model (dashed line)
and the measured (solid line) voltage, and (b) temperature. Cell C cycles with
0.3 C at 25°C and is covered in 1 cm EPS.

Concluding, the simulated curves indicate the suitableness of the approximation of
the diffusion by the Cauer model to reproduce the full cycle dynamic of Li-ion cells. For
full and part cycles, the approximation of diffusion elements is more important than the
improvements from the generic model to the cell-specific model. The simplified Foster
model could be helpful for applications and simulations with lower excitation currents
and higher temperatures.
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6.4. Hysteresis

As mentioned, Li-ion cells have an OCV hysteresis which can be several hundred millivolts.
An accurate prediction of the voltage is essential for common SoC estimation methods
which use the OCV curve. To show the capability of the presented hysteresis model (see
Sec. 3.7.7), Cell I—with an NMC cathode and a silicon doped graphite anode—was
measured.
The OCV curves of Cell I are shown in Fig. 6.8. These curves were used to parameterize

the hysteresis model and to simulate the transition curves to change from the charge to
the discharge branches respectively vice versa5. The measured and simulated transition
curves are depicted in Fig. 6.8a and Fig. 6.8b. For a deeper view, the differences of the
charge and discharge branches and their measured and simulated transition curves are
displayed separately in Fig. 6.8c to Fig. 6.8f.
The OCV of Cell I was measured with a current of C/100 (see Sec. 4.5) from the charge

to the discharge cutoff voltage (4.15V to 2.80V). The resulting pseudo OCV enables
more accurate modeling of the OCV, due to highly resolved kinks in the OCV required to
reproduce the transition curves with the hysteresis model applied. Using a step-wise OCV,
it is more difficult to measure and determine the kinks of the OCV, due to the coarser
discretization. To measure the transition curves, the initial SoC was set from 10% to 90%.
Afterwards, the cell was step-wise discharged respectively charged with 2% SoC and 4h
rest time between the steps until the cutoff voltage was reached.
The differences in Fig. 6.8d and Fig. 6.8e indicate that the measured curves did not

converge below 10% SoC to the discharge branch of the OCV. Possible reasons could be
insufficient rest time to reach the equilibrium, variations in the initial SoC, or that the
lithiation or phase within the active materials are different.
The Plett model, with a fixed factor K = 57.78, was fitted so that the transition curve

starting at 10% SoC and changing to the charge and discharge branches, reproduced
the dynamics well. However, the other transition curves (see Fig. 6.8c and Fig. 6.8d)
show that the transition curves were not well reproduced at higher SoCs. The proposed
Plett model with K as a function of the OCV derivative gave much better results for all
transition curves (see Fig. 6.8e and Fig. 6.8f). Here, the large slope of the OCV at lower
SoCs causes a fast transition from the charging to the discharging branches or vice versa.
At higher SoCs, the slope of the OCV is smaller and thus causes a slower transition from
the charging to the discharging branches or vice versa.
To improve the accuracy of the hysteresis model, OCV curves of the anode and cathode

5Only the outer OCV curves of the charge and discharge branches are used for the parameterization and not
the transition curves.
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a) b)

c) d)

e) f)

Figure 6.8.: The OCV of Cell I with (a) transition curves from the discharge to the charge curve,
and (b) from the charge to the discharge curve. The curves are: measurement
(solid line), Plett model with a fixed factor K = 57.78 (dashed line), and Plett
model with K as a function of the OCV’s derivation (dotted line). The hysteresis
and transition curves (c) and (d) are shown separately for the Plett model with a
fixed factor K = 57.78, and (e) and (f) for the Plett model with K as a function
of OCV derivative. The transition curve at 60% SoC is not available from the
charge to discharge curve.

could be measured and implemented separately. As a result, a more accurate calculation
of the transition curves could be possible as the anode and cathode have diverse OCV
shapes and different OCV hysteresis contributions.
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Assuming that the charge and discharge direction losses are similar, the irreversible
losses of the hysteresis can be calculated by the area between the charge or discharge
branches and the present OCV value. This assumption corresponds to the used definition
of reversible heat (see Sec. 5.6.4). Oldenburger et al. showed that this hysteresis model is
able to reproduce also the hysteresis of the impedance of Li-ion cells [111].

6.5. Parallel Connected Cells

The investigation of the dynamic of parallel-connected cells and their modeling is initiated
from real batteries, where parallel connected cells lead to unexpected results in the current
distribution. Unexpectedly, cells with a lower SoH and higher internal resistance delivered
a higher current than the cells with a higher SoH and a minor internal resistance.
To investigate the current exchanges of in parallel connected cells, a measurement

setup was built (see Fig. 6.9). One of these cells was aged by cycling to 87% SoH (named
EoL cell), and the second cell was a new cell6. The resistance of the aged cell was 5%
higher than the resistance of the cell at BoL. Both cells were placed in a climate chamber
to enable the same initial temperature of 25°C. To measure the cell’s current, the potential
difference of two test probes on the power wires was recorded. The test probes were
directly soldered onto the power wires. Previous measurements of the difference potential
with known currents in the range of 5A to 200A enable an exact determination of the
resistance of the power wires between the two test probes7. To investigate the worst case
scenario of a thermal exchange within a battery, the cells are not thermally coupled. Heat
transfer is only possible through the power wires. As a result, the temperature change
of each cell is independent of the others. Due to the different cell currents, the resulting
temperature difference of the cells should have an additional impact on the dynamic of
the two parallel cells and could lead to the so far inexplicable current distribution within
batteries.
The recorded currents of the two cells connected in parallel and their voltages are

shown in Fig. 6.10a. The generated current profile for this experiment was extracted from
a real battery profile, in which the inexplicable current distribution becomes significant.
The voltage of both cells was measured to identify contact problems between the cells
and wires or a higher resistance in one of the wires as possible reasons for the current
distribution. The comparison of the curves in Fig. 6.10b indicates that both cells had the
same voltage. As a result, problems of the electrical contact or the wires cannot be the
reason for the dynamic of the recorded cell’s current (see Fig. 6.10a).
6The measured difference of the beginning of life (BoL) capacity of both cells is less than 1% at 25°C.
7R1,wire = 11.1µΩ and R2,wire = 10.8µΩ
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Figure 6.9.: The measurement setup for determining the current distribution of two cells
connected in parallel with different SoHs.

The first charge pulse led to an expected current distribution, where the current of
the aged cell was smaller than the current of the cell at BoL (see Fig. 6.10a). However,
the current amplitude of the first 150 s was similar. After 800 s excitation, a discharge
pulse with 2.7 C followed and showed an equitable current distribution. Additionally, the
current of the two cells alternates. Temperature changes of the cells cannot be the reason
for these quick changes of the current amplitudes due to the low dynamic of the thermal
processes. Although after the discharge pulse, following a rest time, the recorded currents
of both cells were not zero. The curves indicate a significant equilibrium current flow,
which charges the aged cell with a current amplitude up to 1.5 C. After the equilibrium is
reached, a short charge current pulse of 3.0 C excites the cells and leads to no difference
in the cell currents. At the end, charge and discharge pulses with a length of 10 s and an
amplitude of 3.0C were applied. The recorded currents show that the charge currents
of the aged cell are 35% higher than the currents of the cell at BoL. According to the
remaining capacity of the aged cell, the charge currents have an amplitude of up to 4.4 C.
At higher SoCs, these charge currents lead to Li-plating and damage of the cell. The
experiment indicates that the unbalancing of the charge currents have the potential to
cause additional damage the aged cell. Several scenarios with the cell model are simulated
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a)

b)

Figure 6.10.: (a) The measured current distribution and (b) the resulting voltage of the two
in parallel connected cells (type Cell A). The SoHs are 100% (BoL) and 87%
(named EoL cell).

to investigate this unexpected and thus far inexplicable dynamic of the current.
In the first step, the impact of the internal cell resistance on the current distribution

of two cells connected in parallel is simulated. This investigation gives insights into
how critics have been producing variations that distinguish the internal cell resistance at
BoL. For this reason, two parallel cells were simulated with the specific model of Cell A,
where one cell’s resistance was 5% and 50% higher. The initial temperature, SoC, heat
capacity, heat exchange to the cells’ environment, and electrical capacity were identical.
As per the current profile, a charge pulse with an amplitude of 1C and a pulse length
of 800 s was used, followed by a discharge current pulse of 2C and 300 s. After the
two pulses, a rest time was set to simulate the equilibrium current between the two
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a)

b)
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Figure 6.11.: A comparison of simulation results of two cells connected in parallel. The
specific model of Cell A was used, where the internal resistance of the EoL cell
model was 5% respectively 50% higher. The electrical capacity of the BoL and
EoL model were the same.

cells. The simulated currents and cell temperatures of the three scenarios are displayed
in Fig. 6.11. Comparing the simulated currents indicates that the cell with the higher
resistance has a smaller current for all scenarios. At 1100 s, a change of the maximal
current amplitudes occurs coursed by the SoC differences. However, the unexpected
dynamic of the measurements could not be reproduced by increased resistance of one cell.
Furthermore, the simulation results indicate that the temperature difference is negligible.
Just the simulation scenario with the 50% higher resistance has a temperature difference
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Figure 6.12.: A comparison of simulation results of two cells connected in parallel. The
specific model of Cell A was used, where the temperature of the EoL cell model
was 10 K higher respectively 10 K lower. The electrical capacity of the BoL and
EoL model were the same.

of less than 3K. The simulation results indicate that variation of the cell resistance via
manufacturing, seems uncritical for the current and temperature distribution in parallel
connected cells.
Next, simulations were performed to investigate the impact on the temperature differ-

ences of the two cells. Two scenarios were simulated; in the first scenario, the aged cell
had a 5% higher resistance and was 10K warmer than the cell at BoL, and in the second
case, the aged cell was 10K colder. The capacity of the aged cell was equal to the BoL
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Figure 6.13.: A comparison of simulation results of two cells connected in parallel. The
specific model of Cell A was used, where the internal resistance of the EoL cell
model was 5% higher and the electrical capacity was 15% lower.

cell. Furthermore, there was no heat exchange between the cells. In this work, only the
impact of the temperature difference was investigated to quantify temperature spreads
within a cell module or battery. The simulation results of both scenarios are shown in
Fig. 6.12. Comparing the curves indicated that cell behavior was as expected . In both
cases, the warmer cell had a higher current. A change of the cell’s current did not occur
(see Fig. 6.10). Although the initial temperature of the cells had a difference of 10K, the
temperature increase of both cells were equal. The quadratic impact of the current on
the irreversible heat generation does not lead to an overheating of the warmer cell due
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shift

Figure 6.14.: The measured pseudo OCV curve (C/100) of the discharge branch of the BoL
and EoL (87% SoH) of Cell A.

to the higher current of the warmer cell caused by the current distribution of the two in
parallel connected cells. Regarding safety issues due to overheating, the simulations show
that a temperature spread in a module or battery is not critical for discharge pulses and
moderate charge pulses. However, Li-plating should be taken into account for choosing
the maximal amplitude of the charge current.
Thus far, simulations have not explained the measured current distribution as shown

in Fig. 6.10. For this reason, the influence of the capacity loss of the aged cell was
investigated next. The aged cell had an assumed capacity loss of 15% and 5% higher
resistance. The remaining cell capacity only scales the OCV curve of the aged cell, where
a consideration of a change of the anode and cathode OCV curve is not applied. Both cells
started with the same initial temperature and SoC. The simulated current distribution,
SoC, and cell temperatures are shown in Fig. 6.13. The curves indicate that a charge
current flows in the aged cell after the discharge pulse. Regarding the measured current
distribution, the model used reproduces the dynamic of the cell in parallel connected
cells well and leads to the claim that the capacity loss of the aged cell is responsible for
the measured current distribution. However, the simulation cannot reproduce the fast
changes of the current during the pulse excitation. In conclusion, a capacity variation by
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Figure 6.15.: A comparison of the measurement (dashed line) and simulation (solid line)
results of two cells connected in parallel. The specific model of Cell A was
used, where the internal resistance of the EoL cell model was 5% higher and
the electrical capacity was 13% lower. The measured pseudo OCV of the EoL
cell was implemented in the EoL model.

production is more critical to ensure the safe operation of the battery than a variation of
internal cell resistance.
Besides the impact of the different capacities of in parallel connected cells on the current

distribution, the shape of the OCV curve is also conceivable. The OCV curve of aged
cells can be extremely distinguished from the OCVs curve of cells at BoL. The OCV of
both cells is shown in Fig. 6.14. Comparing the curves indicates some differences in the
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shape, the characteristic kink in the OCV at 50% anode SoC is for the BoL cell at 62%
cell SoC and the aged cell at 75% cell SoC. A reason could be that the capacity loss of
the cathode was much higher than the capacity loss of the anode. Additional to the shift
of the characteristic kink, the OCVs also differ at lower SoCs. The OCVs have several
intersections in the SoC range of 30% to 10%.
To investigate the impact of these OCV changes on the current distribution of the parallel

connected cells, the cell BoL and aged OCV were implemented in the model. Furthermore,
the aged cell had a 5% higher internal resistance, and the capacity loss was 13%. A
comparison of the simulated and measured current distribution is shown in Fig. 6.15. It
indicates that the simulation model is now able to reproduce the complex dynamic of the
cell currents. The fast changes of the discharge current at 900-1200 s and the balancing
currents after the discharge pulse, which charges the aged cell, are adequately modeled.
The investigations show the capability of the developed cell model to extend it to a

battery or module model, which reproduces the dynamic of each cell and its interactions.
As presented, these interactions can lead to unexpected behavior of the entire battery
system, which can result in additional battery aging or safety problems. The results
show equilibrium currents of 1C for a couple of seconds, leading to Li-Plating. It is very
important to indicate such safety problems in the design process of the battery and its safe
operation. Furthermore, the model enables a separate view of the impact factors on the
dynamic. Simulations indicate that variations of the internal resistance or temperature
spread are not crucial for the current distribution. However, variations of the capacity
and different OCVs have an essential impact on the current distribution, leading to an
asymmetrical load of the cells. For further development and re-manufacturing of batteries,
these issues should be taken into account. As a result, new single cells’ replacement of
aged cells is not recommended for batteries.

6.6. Conclusion

This chapter presented time domain simulations of the coupled thermal-electrical model,
where the ECM approach enables changes of the thermal and electrical model parts. The
model can be simplified or adapted for special scenarios and applications.
The comparison of the cell-specific and generic models showed that both can reproduce

the dynamic of pulse series very well. The error of the cell-specific model was 0.5-1.0mV
and the generic model had an error of 1.0-2.0mV. For artificially generated mission profiles
the errors were higher due to the sudden changes of the current’s polarity. The resulting
errors were approx. 3-5mV for the cell-specific model and 3-8mV for the generic model.
As a result, the generic model can be used for adequate prediction for small excitation
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and higher temperatures. It can be used to deliver initial values for optimization and
estimation algorithms in BMS functions or to make predictions of the cell dynamic in an
early stage of the battery development process. A coupling of the physical-based generic
model with data-driven models, machine learning algorithms, and neuronal networks
would be conceivable. For dynamic simulations of high-performance applications, the
cell-specific model is proposed due to its highly accurate prediction of the cell’s dynamic
at high excitation currents and low temperatures. In addition, the fast calculation of both
models enables the integration in overall system simulation models.
The simulation of full cycles with the presented FSW approximations by the Cauer and

Foster models indicated that the Foster model cannot reproduce the diffusion dynamic for
high currents or low temperatures. A comparison of the measured and simulated temper-
ature showed that its dynamic can be reproduced by the cell-specific ECM which includes
the Cauer model. The results confirm that the assumptions made for the calculation of the
total heat generation can be used for an accurate simulation of the temperature dynamic.
As a result, the FSW approximation by Cauer is proposed for full-cycle simulations with
the presented ECMs.
The simulation of the OCV hysteresis results showed the suitability of the adjusted

Plett model where the parameter K is a function of the OCV’s derivation. This could be
enhanced by the reproduction of the transition curves of the OCV branches in comparison
to a constant parameter K. Due to the fast calculation of the developed OCV model, BMS
functions such as SoC, SoH, and energy estimations can be improved.
The investigations of parallel-connected cells showed that unexpected high equilibrium

currents of 1.0C occurred for a couple of seconds. The reason for these currents could
be found out by simulations of coupled cell models. The model enabled a separate view
of the impact factors on the dynamic and indicated variations of the internal resistance
or the temperature spread of the cells were not the reasons for the unexpected current
distribution. The difference in the capacity and OCVs had an essential impact on the
current and led to the asymmetrical load of the cells. As a result, the developed cell model
enabled consideration of these effects and could reproduce the dynamic of the interaction
of cells. The model can be extended to battery models which makes it suitable to improve
the development and re-manufacturing of batteries. Furthermore, the results revealed
that the replacement of aged cells by new cells can lead to accelerated battery aging and
safety problems. A replacement of single cells is not recommended for battery systems.
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7. Conclusions and Outlook

A novel equivalent circuit model including electrochemical properties was developed to
simulate the electrical and temperature dynamics of Li-ion cells. The model is based on
impedance measurements and was developed considering the following areas of modeling:
simulation time, implementation effort, measurement technique, and parameterization.
The deep insight provided by the impedance led to a model that reproduces the small-

and large-signal behavior of the Li-ion cell as a function of temperature, state of charge,
and current. To reproduce the low cell dynamics corresponding to open-circuit voltage
hysteresis and its dynamics, the Plett model was implemented in the equivalent circuit
model. In addition, the passive anode effect—which has an impact on the slow cell
dynamics—was modeled. Furthermore, the temperature dependence of the open-circuit
voltage was realized by considering the entropy change.
Introducing a diodemodel enabled converting the frequency domain current dependence

of impedance into a time domain simulation model. The modeling of the diffusion
processes in the solid state by a finite space Warburg, allows for the reproduction of the
open-circuit voltage relaxation. Likewise, the passive anode effect could be modeled as
a finite space Warburg and thus can be integrated into the structure of the cell model.
The presented parameterization of the Plett model via the slope of the open-circuit
voltage facilitated the simulation of the different transition speeds between the charging
and discharging curves. Additionally, the presented open-circuit voltage modeling can
reproduce the impedance hysteresis effect of low frequencies [109, 111].
A new impedance measurement setup (i.e., the AutoEIS) was developed in order

to enable automated measurement of impedance on Li-ion cells, reduce measurement
time, and minimize impedance relaxation and hysteresis errors. The AutoEIS setup is
based on pulse measurements in the time domain and allows impedance measurements
in the frequency range from 10µHz to about 2 kHz with pulse currents up to 300A.
The AutoEIS enables measurements to be taken up approximately eight times faster
than standard electrochemical impedance spectroscopy systems. The newly developed
derivation method has been implemented to calculate the impedance for transforming the
signals into the frequency domain. Automated parameter identification was developed
in order to speed up model generation, reduce workload, and lower costs. Determining
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the initial parameters for parameter estimation is a major challenge. Comparison of the
normalized cell resistances after 10 s excitation as a function of temperature yielded an
important finding, i.e., the dynamics of all the cells examined were very similar and the
cell dynamics only differ by a prefactor. This prompted the study on experimental cells to
determine the dynamics of the equivalent circuit model elements. As a result, a generic
equivalent circuit model could be created. This facilitated the initial parameters for the
parameter estimation to be determined quickly and enabled time domain simulations to
calculate the cell dynamics.
Irreversible and reversible heat generation was modeled to calculate the temperature

dynamics. Measurements and simulations at higher temperatures showed the importance
of modeling reversible heat. A new calorimetric measurement method based on double
pulse measurements was developed to measure reversible heat on Li-ion cells. To account
for the temperature distribution and geometric influence of the cell components, a thermal
model was created and coupled with the electrical model. The thermal model was imple-
mented as an equivalent circuit model. Measurement methods for pouch and prismatic
cells were developed for the parameterization of the thermal model. Special attention was
given to modeling and measuring the separator overhang, which has a significant impact
on the cooling capability of Li-ion cells. To measure the separator overhang in cells, a
novel measurement setup was developed in which one side of the cell was immersed in
liquid gallium. Simulations showed the major influence of the separator overhang. Cell
developers should take this into account when minimizing the thermal resistance of the
separator overhang in order to achieve higher and more homogeneous cooling.
The investigation of aged cells connected in parallel revealed an unexpected behavior.

Exchange currents occur, which can lead to safety problems and accelerated aging of the
battery. The simulation with the developed cell model points to the open-circuit voltage
difference of the aged cells as the cause. This result is relevant for battery development to
focus more on open-circuit voltage requirements. For repair and second-life applications,
this result is also important for battery remanufacturing.
The simulation studies showed that the developed cell model can reproduce the cell

dynamics very well. Thus, it has been possible to formulate an overall approach that meets
industrial as well as scientific objectives of modeling effort, simulation time, implementa-
tion effort, required measurement technology, and parameterization. The measurement
setup, signal analysis, parameterization, and modeling approach used give the battery
developers the ability to model all Li-ion cell types—i.e., from lab-scale cells to industrial
cells—without having to use expensive equipment. Additionally, the generic model can be
used for general investigations and for simulations where a complete characterization of
the cell is not available. Recent research on Na-ion cells has shown that the modeling and
measurement concepts developed are not limited to Li-ion cells [35].
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In further research, the developed model should be validated with field data of the
application used by real customers. This research could be used to generate an uncertainty
model that can be applied in a co-simulation to provide feedback to the user on how
certain the simulation results are. In addition, the cell model could be integrated into
the application’s battery management system. To this end, model reduction could be
explored to improve computation time. Also, the model could be used as an observer for
online estimation of battery states, i.e., temperature and state of charge, to improve safety,
lifetime, energy consumption, and fast charging time.
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A. Appendix

A.1. Investigated Cells

This work focuses on several cell types and their chemical properties to validate and show
the suitableness of approaches and measurement methods that have been employed as
well as the model-structure itself.

Table A.1.: An overview of the investigated cells and their properties at 25°. The capacity is
in Ah and heat capacity is in J

K .
cell cathode anode capacity

in Ah
heat ca-
pacity in
J
K

format manu-
facturer

Cell A NMC graphite 37.0 770 pouch A
Cell B NMC graphite 45.0 900 pouch A
Cell C NMC graphite 59.0 850 pouch B
Cell D NMC LTO 6.7 - hard-case C
Cell E NMC graphite 50.0 790 hard-case C
Cell F NMC graphite 96.0 1470 hard-case C
Cell G NMC graphite/Si 152.0 2200 hard-case C
Cell H NCA graphite 2.7 50 round D
Cell I NCA graphite/Si 3.2 45 round E
Cell J LFP graphite 22.0 430 hard-case F
Cell K NCA/LCO graphite 3.0 45 round G
Cell L NMC graphite/Ge 5.0 35 pouch H
Cell M NMC graphite 68.0 870 pouch A
Cell N NMC graphite 22.0 425 pouch I

An overview of the investigated automotive Li-ion cells used in hybrid or electric vehicles
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is given in Tab. A.1. For a comprehensive comparison of several cell types, the end-of-
discharge voltage for NMC and NCA cells is 3.0 V, and the end-of-charge voltage is 4.2 V.
The chosen voltage range of LFP cells is 2.5 to 3.6 V1. The charge currents are adjusted
to respect the maximal currents of cells to avoid lithium plating. The upper voltage is
reached with a CV-charge control with an end-of-charge current of C/10 (see Sec. 2.5.1),
where the C-rate is based on the nominal capacity from the manufacturer. The chosen
voltage ranges and end-of-charge currents reduce the error by overpotentials of ohmic
losses. By immersing the entire cells, including the contact tabs, into a calorimeter, the
heat capacity of the cells is measured with an error of 8%. For large Li-ion cells, the heat
capacity is determined by the developed method presented in Sec. 5.4.

A.2. Calculating Impedance via Fourier Transformation

The Fourier transformation of the voltage and current is used to determine the impedance.
For a signal x, the Fourier transformation is defined as [113]:

F{x(t)} = X(ω) =
∫︂ ∞

−∞
x(t) · e−j·ω·t dt, (A.1)

with:
e−j·ω·t = cos(ω · t) − j sin(ω · t). (A.2)

Eq. A.1 can be split into a real and imaginary part:

X(ω) =
∫︂ ∞

−∞
x(t) · cos(ω · t) dt − j

∫︂ ∞

−∞
x(t) · sin(ω · t) dt. (A.3)

The integrals in Eq. A.3 can be approximated. The resulting sum of the real and
imaginary part can be written as:

Xreal,i =
n∑︂

k=1
x(tk) · cos(ωi · tk), (A.4)

Ximag,i =
n∑︂

k=1
x(tk) · sin(ωi · tk), (A.5)

1These voltage ranges are only used to measure the electrical capacity (Sec. 2.5.1) and to identify the
parameters of the ECMs. Even if some cells have different operation windows.
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with the discrete times steps tk and the angular frequency ωi. The absolute value (magni-
tude) and the phase of X can be calculated as:

|X| =
√︂

X2
real,1 + X2

imag,1, (A.6)

with:
ϕX = arctan −Ximag,1

Xreal,1
. (A.7)

Finally, the magnitude |Z| of the impedance and the phase shift ϕZ between the current
and voltage can be calculated as:

|Z| = |U |
|I|

, (A.8)

ϕZ = ϕU − ϕI. (A.9)

According to Eq. A.4 and Eq. A.5, multiplying the measured signals by sine respectively
cosine is sufficient to determine the impedance, where the number of sampling points n
of the recorded signal denotes the so-called ‘evaluation window’. It must correspond to a
multiple of the period length of the sinusoidal excitation [68, 85]. Otherwise, a so-called
‘smearing’ or ‘leakage’ of the spectrum occurs, which leads to errors in spectrum evaluation
[126].

A.3. Calculating Impedance via the Time Domain Method -
Windowing of Signals

Considering the relationship between the time and frequency domain, it is expected that
a longer measurement of the signals will result in more accurate impedance spectra.
However, in the case of single-pulse excitation, a longer measurement time leads to a
lower signal-to-noise ratio due to limited signal energy. As reported by Takano et al,
the effect is significant at higher frequencies [155]. For measurement times of three
hours, the maximum valuable frequency of impedance is about 10Hz [155]. The reason
for this is that the high dynamic range of the cell is only at the edge of the impulse
response. Consequently, the additional high-frequency noise of the long-term recorded
voltage leads to an insufficient signal-to-noise ratio [155]. However, frequencies up to
the kilohertz range are needed to characterize the cell and to parameterize the ECM. To
overcome this, the signal can be evaluated for several signal evaluation windows by a
kind of a short time Fourier transformation [155]. Depending on the evaluation window
length, the different frequency ranges of the impedance can be determined. Tests on
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Li-ion cells indicate that it seems to be advantageous to use only the deepest three to ten
frequencies of each evaluation window and to ignore the remaining impedance values. In
this work, 20 evaluation windows are used. To illustrate the method, the simulated voltage
and current of an RC-element and its impedance spectrum—where the time signals are
superimposed by white noise—are depicted in Fig. A.1. Furthermore, the impedances of
the different evaluation windows are shown and their use to reconstruct the impedance
of the RC-element.

a)

b)

evaluation window 0-3s
evaluation
window 0-1s

evaluation
window 0-0.3s

Figure A.1.: A visualization of the evaluation windows to determine the impedance of an
RC-element with the parameters R = 10 kΩ and C = 3.3 µF.
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A.4. A Comparison of the Cell’s Impedance via the EIS and
Pulse Method

To demonstrate the ability of the EIS (frequency method) and the pulse method (time
domain) (see Sec. 4.1) to determine the impedance of Li-ion cells, the impedance spectrum
of Cell A was determined at 30% SoC and -20°C. The cell was placed in a climate chamber
for constant temperature. The low temperature enables a better comparison of the cell
processes due to the slow dynamics at low temperatures. The results are shown in Fig.
A.2. The comparison indicates that both methods can determine the impedance of a Li-ion
cell in the frequency range from 100Hz to 1mHz. The differences between both methods
are negligible for these frequencies. Oldenburger et al. have shown that the difference
at lower frequencies down to 1µHz are considerable due to OCV hysteresis effects [109,
111].

Pulse method

Figure A.2.: A comparison of the recorded impedance spectra of Cell A at 30% SoC and
-20°C via EIS (frequency domain) and pulse method (time domain). Redrawn
from [14].

A.5. RC-Circuit for Validation of Impedance Measurement
Equipment

A test circuit was developed to investigate the errors of impedance spectrometers. The
circuit reproducing the dynamics of the charge transfer in the cell is shown in Fig. A.3.
However, real circuit elements are limited, especially small network capacitors are in
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CRC

imeas

vmeas

+-+ -
RRC

Rshunt

cell1 cell2

Figure A.3.: An RC-circuit for the validation of impedance measurement equipment. Typical
values of the components are: shunt resistor Rshunt = 10 mΩ, resistor of the
RC-element RRC = 10 kΩ, and capacitor of the RC-element RRC = 5 µF. The
optional cell1 and cell2 adjust the voltage level from 0 V to typical cell voltages.

the microfarad range. As a result, the resistance of the RC-element is in the kiloohm
range to reproduce time constants of real cells. The resulting current flowing through the
RC-element is only a few milliamperes. However, these small currents do not correspond
to the behavior of industrial cells. The additional shunt resistor enables currents in the
ampere range and more accurate reproduction of real cell behavior. The shunt resistor
acts as a current divider and reduces the current through the RC-element. Cell1 and
cell2 may be required to generate charge and discharge currents by battery test systems2.
The cells adjust the voltage level from 0V to cell typical values. This avoids voltages in
both polarities due to sinusoidal excitation, which can lead to nonlinear errors of the
measurement system.

A.6. A Comparison of Impedance Measurement Equipment

To compare the errors of the frequency method using the battery tester BaSyTec [11],
the time domain method using the developed AutoEIS equipment (see Sec. 4.7.1), and
the commercial spectrometer from Solartron [149], the determined impedance of the
reference circuits (see Sec. A.5) were depicted with the analytically calculated impedance.
Schneider measured the impedances for several variations of the RC-circuit with the time
constants of 1, 10, 50, and 100Hz [139].
The resulting impedances of the RC-circuits in the Nyquist plot are shown in Fig.

A.4. The results indicate adequate reproduction of the impedance for frequencies up to
2BaSyTec systems can only generate discharge currents by internal shunt resistors.
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Figure A.4.: A comparison of the resulting impedance of the test circuit using frequency
method with BaSyTec CTS, AutoEIS and Solartron. The time constants of the
RC-circuits are (a) 1 Hz, (b) 10 Hz, (c) 50 Hz, and (d) 100 Hz. Redrawn from
[139].

10Hz via the BaSyTec CTS using the frequency method. The limited frequency of the
sinusoidal excitation reduced the accuracy at higher dynamics. In contrast, the Solartron
recorded higher dynamics very well. However, the errors increase at lower frequencies
and smaller imaginary values of the impedance. The AutoEIS results showed small errors
for frequencies below 2 kHz.
Due to the small excitation currents of the Solartron equipment, only small cells with

a few ampere-hours can be measured [149]. Industrial automotive cells require higher
excitation currents, which can be generated with the developed frequency method and
AutoEIS setup. The AutoEIS setup enables an automated recording of the cell impedance
in the frequency range from 10µHz to about 2 kHz with pulse currents up to 300A, where
the measurement time is up to eight times faster than frequency domain based impedance
systems. In addition, Li-ion cells have several hysteresis effects that are significant at
low frequencies [109, 111]. The developed AutoEIS prevents errors of the impedance by
hysteresis effects.
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A.7. Adjustment Values of the Normalized Resistances

The adjustment values of the normalized resistances which are depicted Sec. 4.7.2 are
listed in Fig. 4.22. The adjustment values are the non-temperature-dependent part of the
resistance.

Table A.2.: Adjustment values to cancel out the non-temperature-dependent part of the
resistance from the Arrhenius plot in Sec. 4.7.2.

cell adjustment values
in Ah·mΩ

Cell A 21.5
Cell B 18.0
Cell C 53.3
Cell D 19.0
Cell E 37.0
Cell F 60.0
Cell H 62.0
Cell I 52.0
Cell J 40.0
Cell M 60.0

A.8. Lithium-Ion Cell Materials and Their Thermal Parameters

Typical thermal values of cell components are listed in the Tab. A.3. These properties can
help to validate measurement results and to identify potential simplifications on thermal
models. However, the predictability of thermal models is very limited due to the wide
range of anode, cathode (LCO), and electrolyte parameters which are only parameterized
using listed values from the literature3. Possible reasons for the parameter variations as
shown are the composition of the components (see Sec. 2.4), temperature, or lithium
content (lithiation) of the active materials.

3A small variation of the separator and the electrolyte can result in a significant change of the heat capacity
of the cell.
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Table A.3.: Li-ion cell materials and their thermal parameters, the separator is made of
polypropylene (PP), the electrolyte includes (PF6/EC + DMC + DEC).

component thermal conductivity in W
K·m heat capacity in J

K·kg

anode(graphite) 1.40 [21], 1.20 [96], 1.04 [20] 1437 [20], 1184 [21], 750 [91],
623 [96]

cathode (NMC) 2.90 [23] 800 [91]
cathode (LFP) 0.53 [105] 741 [105]
cathode (LCO) 4.00 [154], 2.49 [96], 2.18 [21],

0.79 [44]
1134 [21],770 [44], 601 [96]

separator 0.33 [20] 1978 [20], 1600 [91]
electrolyte 0.60 [20] 2055 [20], 1650 [91], 1339

[117]
copper 400.00 [132], 385.00 [20] 398 [20], 385 [132]
aluminum 238.00 [20], 235.00 [132] 903 [20], 897 [132]
lithium 84.70 [132] 3582 [132]

Cheng et al. measure electrolyte-soaked electrodes and separators [20]. Loges et
al. investigate the specific heat capacities of Li-ion cell components as a function of the
temperature and the SoC [91]. They found a temperature rise of the heat capacity of
1.00% per 1 K for the anode, 0.44% for the cathode and 0.20% for the electrolyte [91]. In
addition, they observed a strong impact of the SoC on the heat capacity. The heat capacity
of the anode at 0% cell SoC is about 750 J

K·kg whereas the capacity is 920
J

K·kg at 100%
cell SoC [91]. The cathode has a heat capacity of 780 J

K·kg at 0% cell SoC and 720
J

K·kg at
100% cell SoC. Nanda et al. also found a temperature dependency of the heat capacity
of LFP cathodes [105]. A possible reason for these heat capacity variations could be the
high heat capacity of lithium of 3582 J

K·kg [132]. Richter et al [130] discussed remains of
electrolyte in the electrodes as a possible reason for variation of thermal conductivity. They
detected a strong increase in the thermal conductivity of solvent-soaked active materials
compared to dry electrode active materials [130]. In general, the thermal conductivity
of Li-ion cells depends significantly on the current collectors due to their having much
higher conductivity as compared with other cell components. As a result, the temperature
dependence of the conductivity of the entire cells is low. Aluminum has a change rate of the
conductivity of 0.02% per 1K and Copper has 0.01% per 1K. Furthermore, Richter et al.
investigate cell aging and its influence on the thermal conductivity of electrode materials
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[130]. The results indicate that cell aging does not lead to significant changes in thermal
conductivity [130]4. Measurements of the pouch foil provide a thermal conductivity of
about 91.0 W

K·m . Ponnappan et al. measured the contact resistance between the layers
and derived values up to 0.0009 m2K

W [121]. Oswald et al. measured the perpendicular
conductivity of several pouch cells and determined an averaged perpendicular conductivity
λperpendicular of 0.7 W

K·m [115].

A.9. Validation Measurement of the Heat Capacity and
Conductivity

A new method to determine the heat capacity and lateral thermal conductivity of Li-
ion cells—where one side of the cell is immersed in liquid gallium and is excited with
a temperature step—is presented in Sec. 5.4. The measurement of the temperature
distribution of the cell’s surface enables this via a parameter estimation using a thermal
ECM the determination of the heat capacity and lateral thermal conductivity of the Li-ion
cell.
For validation, a stainless steel plate (5mm thick, 10 cm high, and 20 cm long) was

measured with the new setup. To measure the temperature distribution, two temperature
sensors were placed 1 cm and 7 cm above the bottom side of the plate. The stainless steel
plate was covered with 1 cm expanded polystyrene (EPS) to reduces disturbances due to
air convection. The environment temperature was 21.5 °C.
The measured and simulated temperatures are shown in Fig. A.5. The simulation

revealed a heat capacity of 481 J
K kg and a lateral thermal conductivity of 15.4

W
K·m . These

values corresponds to the heat capacity of 500 J
K kg and a lateral thermal conductivity of

15.0 W
K·m from the data sheet

5. The error in the heat capacity was 3.8% and the error in
the conductivity was 2.7%. In conclusion, the validation showed that the errors of the
new developed method are small enough for applying it for determination of the thermal
parameter of Li-ion cells.

4Gas formation as a result of side reactions has a strong impact and has to be considered for the design of
batteries. The gas can disturb the heat exchange to neighbor cells or to the cooling system. In addition, it
increase the risk of hot or cool spots in the battery which can lead to safety problems.

5DIN EN Werkstoff 1.4301 Edelstahl X5CrNi18-10 V2A
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Figure A.5.: Measurement of the temperature distribution of the stainless steel plate to
determine the heat capacity and the lateral conductivity. The steel plate was
excited by a temperature step at the steel plate’s bottom. The simulation of the
thermal ECM (see Fig. 5.1) revealed a heat capacity of 481 J

K kg and a lateral
thermal conductivity of 15.4 W

K·m .

A.10. The Measurement Setup of the Double Pulse Method
and the Potentiometric Method

To measure the reversible heat of industrial Li-ion cells, a new low-cost and flexible
measurement setup was developed to use either the Double Pulse Method (DPM) or the
potentiometric method. For this purpose, temperature fluctuations on the cell surface of
less than 0.05 °C and accurate temperature measurement are required. Sufficient temper-
ature stability could be reached by covering the Li-ion cells with extruded polystyrene
(EPS) and placing them in a climate chamber.
For the DPM, the cell is connected to a power supply in a 4-wire setup. A power supply

generates the excitation current pulses, sets the SOC, measures the temperature, and
monitors the cell. To reduce additional heating of the cell and heat dissipation to the
environment, the cable cross-section of the wires should be thin as possible, and the
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Figure A.6.: The measurement setup of the DPM and the potentiometric method. Redrawn
from [15].

contact resistance between the cell and the wires should be small. For potentiometric
measurements, the setup is extended by a voltmeter. Due to the small voltage change as
a function of the entropy change ∆S and the temperature, the requirements of the cell
voltage measurement are extremely high. The measurement setup is shown in Fig. A.6.
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