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Abstract

In this work, a high-order fully coupled numerical solver based on the Discontinuous Galerkin
(DG) method for simulating reactive flows is presented. The discretized set of equations of
continuity, momentum, energy and chemical species are solved in a fully coupled manner using
a globalized Newton algorithm. The main objective of the solver is to create a framework for
investigating diffusion flames using the DG method. For this, the low-Mach approximation of
the Navier–Stokes equations is used, which enables the simulation of non-Boussinesq flows.
The chemical reaction is modeled using a one-step combustion model with variable kinetic
parameters, which is specifically tailored for hydrocarbon combustion. The temperature and
concentration dependence of the density, heat capacity, and transport parameters is considered
in the formulation.
A detailed description of the governing equations utilized in this study is presented, along

with a comprehensive discussion of their derivation and the assumptions involved. The general
procedure involved in the temporal and spatial discretization of the DG method is illustrated
using a basic transport equation. Subsequently, the DG discretization of the governing equations
for reacting flows is presented, and numerical fluxes are thoroughly described.
The computational methods developed for solving the governing equations are presented

in detail. In particular, the strategy for the solution of the nonlinear problem by means of
the globalized Dogleg-Newton method is explained, together with an efficient method for
calculating the Jacobian matrix. Furthermore, various strategies that improve the convergence
properties of the algorithm are presented. These include a fully automatized homotopy
continuation method for the solution of highly nonlinear systems, an Adaptive Mesh Refinement
strategy used for generating adequate meshes on critical areas of the simulation, and a solver
safeguard for avoiding unphysical solutions during the calculation.
For steady reacting flows an additional strategy is applied, which allows to find adequate

initial estimates for the simulation of diffusion flames. This approach involves solving a
simplified set of equations obtained under the assumption of an infinitely fast chemical reaction
and is a robust method for finding the solution of combustion systems.
A thorough validation of the solver using several test cases is shown, which also highlight

important advantages of the DG method and the algorithms introduced in this work. The test
cases validate the solver against various benchmark solutions obtaining results in very good
agreement with the literature. Additionally, the accuracy of the method is assessed in various
flow settings, all of them demonstrating the expected high convergence rates of the DG method.
However, stability problems are observed in transient simulations of low-Mach flows in which
density exhibits large variations.
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Zusammenfassung

In dieser Arbeit wird ein vollständig gekoppelter numerischer Löser hoher Ordnung vorgestellt,
der auf der Discontinuous Galerkin (DG)-Methode zur Simulation von reaktiven Strömun-
gen basiert. Die diskretisierten Gleichungen der Kontinuität, des Impulses, der Energie und
der chemischen Spezies werden auf vollständig gekoppelte Weise unter Verwendung eines
globalisierten Newton-Algorithmus gelöst. Das Hauptziel des Lösers ist die Erstellung eines
Frameworks für die Untersuchung von Diffusionsflammen mit der DG-Methode. Dazu wird
die low-Mach-Approximation der Navier–Stokes-Gleichungen verwendet. Die chemische Reak-
tion wird mit einem einstufigen Verbrennungsmodell mit variablen kinetischen Parametern
modelliert, das speziell auf die Verbrennung von Kohlenwasserstoffen zugeschnitten ist. Die
Temperatur- und Konzentrationsabhängigkeit der Dichte-, Wärmekapazitäts- und Transportpa-
rameter wird bei der Formulierung berücksichtigt.
Eine detaillierte Darstellung der in dieser Studie verwendeten Gleichungen wird zusammen

mit einer umfassenden Diskussion ihrer Herleitung und der damit verbundenen Annahmen
präsentiert. Das allgemeine Verfahren für die zeitliche und räumliche Diskretisierung mit
der DG-Methode wird anhand einer allgemeinen Transportgleichung erläutert. Anschließend
wird die DG-Diskretisierung der Gleichungen für reaktive Strömungen vorgestellt, und die
verwendeten numerischen Flüsse werden beschrieben.
Die entwickelten Berechnungsmethoden zur Lösung der herrschenden Gleichungen werden

im Detail vorgestellt. Insbesondere wird die Strategie zur Lösung des nichtlinearen Problems
mit Hilfe der globalisierten Dogleg-Newton-Methode erläutert, zusammen mit einer effizienten
Methode zur Berechnung der Jacobimatrix. Darüber hinaus werden verschiedene Strategien
vorgestellt, die die Konvergenzeigenschaften des Algorithmus verbessern. Dazu gehören eine
vollautomatisierte Homotopie-Fortsetzungsmethode für die Lösung von stark nichtlinearen
Systemen, eine adaptive Netzverfeinerungsstrategie, die für adäquate Netze in kritischen
Bereichen der Simulation verwendet wird, und eine Solver-Safeguard zur Vermeidung von
unphysikalischen Lösungen während der Berechnung.
Für stationär reaktive Strömungen wird eine zusätzliche Strategie verwendet, die es ermög-

licht, geeignete Anfangsschätzungen zu finden, die für die Simulation einer Diffusionsflamme
verwendet werden können. Dieser Ansatz erfordert die Lösung eines vereinfachten Satzes
von Gleichungen, die unter der Annahme einer unendlich schnellen chemischen Reaktion
aufgestellt werden, und ist eine robuste Methode zur Lösung von Verbrennungssystemen.
Eine gründliche Validierung des Lösers anhand mehrerer Testfälle wird gezeigt, wodurch

auch zentrale Vorteile der DG-Methode und der in dieser Arbeit vorgestellten Algorithmen
hervorgehoben werden können. Die Testfälle ermöglichen es, den Löser gegen verschiedene
Benchmark-Lösungen zu validieren, wobei Ergebnisse in sehr guter Übereinstimmung mit der
Literatur erhalten werden. Darüber hinaus wird die Genauigkeit der Methode in verschiedenen
Strömungssituationen bewertet, wobei für alle die erwarteten hohen Konvergenzraten der
DG-Methode erzielt werden. Stabilitätsprobleme werden jedoch bei instationären Simulationen
von low-Mach-Strömungen beobachtet, bei denen die Dichte große Schwankungen aufweist.
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1 Introduction

The simulation of combustion processes poses a significant computational challenge, mainly
due to the intricate interaction between chemical reactions and fluid dynamics. The complexity
arises from the inherent nature of combustion processes, which often involve multiple simul-
taneous chemical reactions. These reactions release energy in the form of heat, leading to
the formation and propagation of flames. At the same time, fluid dynamics largely drives the
transport of heat, mass and momentum, which in turn influences the behavior of the flames.
To accurately capture these phenomena, computational models must consider thermodynamic
aspects, and properly represent the chemical reactions, species transport and fluid flow involved.
These processes are highly nonlinear, rendering their numerical representation difficult.
Of particular interest for many practical applications is the simulation of diffusion flames,

which is the result of the combustion of initially separated oxidizer and fuel. The use of
numerical methods to simulate diffusion flames can offer crucial insights into flame structures
and combustion efficiency. Recently Discontinuous Galerkin (DG) methods have demonstrated
high accuracy and efficiency for simulating combustion processes. In this thesis, a fully coupled
DGmethod for simulating diffusion flames will be developed. To explore themethod’s suitability
various simulations will be analysed.

1.1 The DG method for reacting flows

The field of Computational fluid dynamics (CFD) has become a crucial tool for understanding
and predicting complex fluid flows. Through the use of numerical methods and specialized
algorithms, CFD allows researchers to simulate fluid dynamics problems and gain detailed
insights into the behavior of fluids in motion. Detailed information about flow physics that is
often difficult or impossible to obtain through experiments can be provided by these methods,
leading to deeper insights into the mechanisms governing fluid flow.
In addition to their scientific value, numerical methods for solving the governing equations

of fluid dynamics have numerous practical applications. For example, the use of computational
tools has become an essential step in the development of new products. They are widely used
in fields such as the automotive, chemical and aerospace sectors, to name a few. They are also
crucial for assessing the safety and reliability of systems such as chemical and nuclear reactors.
Historically speaking, the methods used in the early days of CFD were low-order numerical

methods, such as Finite Volume Method (FVM) or Finite Element Method (FEM). These kind
of methods use lower order polynomial functions to approximate the solution of the governing
partial differential equations (PDEs). Although they are widely used and very well established,
they can suffer from low accuracy or difficultly in representing complex geometries. On
the other hand, the so called high order methods use higher order polynomial functions to
approximate the solution, allowing them to capture sharp gradients and complex flow structures
with greater fidelity. While high-order methods are often more computationally expensive than
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low-order methods, they offer advantages when high accuracy is required. It should be noted
that the FVM and FEM have also been extended to obtain higher order convergence.
High-order methods have been used since the early days of numerical simulation, but their

use was limited due to their comparatively high computational cost. With the advent of modern
high-performance computing systems and algorithms, the use of high-order methods has
become more widespread and accessible. Today, high-order methods are widely used in many
areas of computational fluid dynamics, including aerospace (Mavriplis et al., 2009), automotive
(Colombo et al., 2021), and biomedical engineering (Fehn et al., 2019), among others. One of
the most prominent methods is the so-called DG method, which is the subject of this thesis.

The DG method

The DG method is a numerical method to solve differential equations. It was initially developed
for solving hyperbolic conservation equations, and has recently gained increased attention
in the CFD community. The key feature of the method is the use of a piecewise polynomial
approximation of the solution field on each element of a computational mesh. This allows for
high accuracy and flexibility, with the order of the polynomial being an adjustable parameter.
The DG method combines the locality of low-order schemes with the accuracy per degree of
freedom (DOF) of spectral schemes. This feature allows for achieving the same level of accuracy
as a low-order scheme with fewer DOFs, leading to more efficient and computationally feasible
solutions. Another advantage of the DG method is that is well suited to parallel computing.
Within the DG method any given cell of the grid only requires information from its immediate
neighbors, allowing an efficient parallelization with minimal communication overhead.
Additionally, in the DG method, the solution is allowed to be discontinuous across element

boundaries, enabling the handling of complex geometries and solution discontinuities in a
natural way. The conservation of a physical quantity (such as mass, momentum, or energy)
is ensured by construction in the DG method. This is achieved through the use of numerical
fluxes, which approximate the flux of the conserved quantity at each element boundary. The
numerical fluxes must meet certain stability and accuracy criteria to ensure the overall stability
and accuracy of the method.
Compared to more popular methods such the FEM and FVM, the DG method offers several

advantages. First, The DG method provides an arbitrary order of error convergence through the
local polynomial approximation of the solution field. Specifically, a polynomial approximation
of degree p can achieve a numerical discretization error of order O(hp+1) for smooth solutions,
where h is a characteristic grid length. This contrasts sharply with other well established
schemes, which are usually restricted to an accuracy of O(hN ), with N ≤ 2 for unstructured
grids. Second, the discontinuous approximation of the solution in the DG method allows for a
robust treatment of discontinuities in the solution, which can be challenging for the classical
FEM. However, the DG method has the disadvantage that usually memory requirements and
overall computational costs are higher than in a finite element method.

Diffusion flame modeling and the DG method

Diffusion flames, also known as non-premixed flames, present a significant challenge for
simulation due to their complex nature. These flames involve the mixing of two or more
reactants before combustion can occur, resulting in a complex interplay of fluid dynamics,
heat transfer, and chemical reactions. Moreover, diffusion flames are characterized by steep
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gradients in temperature, density, and species concentration, necessitating a high spatial mesh
resolution for accurate simulation. In a diffusion flame, the reactants are initially separated,
and their mixing is essential for combustion to take place. High-order methods, such as the DG
method, offer a solution to alleviate the computational burden associated with the demanding
numerical resolution required for accurate simulations.
A proper computational representation of a diffusion flame requires a suitable description

of the combustion processes. Representing the involved chemical reactions in a accurate and
efficient way poses a significant challenge. Although a detailed description of the chemistry
is preferred, it can be computationally intensive and impractical due to the high number of
chemical species and chemical reactions taking place. To overcome this issue, simplified kinetic
models have been developed, such as the one step kinetic model presented by Fernandez-
Tarrazo et al. (2006) for hydrocarbon combustion with air, and is the model used in the present
work. This model correlates kinetic parameters with the equivalence ratio, allowing for better
representation of the characteristic flame properties of premixed and non-premixed flames.
By using a single chemical equation, this model enables the study of complex combustion
phenomena while substantially reducing the computational cost. Furthermore, it offers a
straightforward and flexible approach to simulate phenomena that would otherwise require a
more complex chemical model, such as the calculation of flame temperatures, or the simulation
of reactant leakage and near-extinction diffusion flames.
The flow regime is also an important point to be addressed. Many practical applications

of diffusion flames involve deflagration flames, which are combustion systems defined by a
small characteristic flow velocity compared to the speed of sound (Poinsot and Veynante,
2011). To accurately model this type of system, the low-Mach approximation of the Navier–
Stokes equations is often used. This approximation allows for the calculation of non-constant
density flows while also neglecting acoustic effects, which also reduces the required temporal
resolution. Explicit time marching algorithms are commonly used for simulations of deflagration
flames using the low-Mach approximation, which enables a larger time step size and reduces
computational time. However, implicit schemes can also be useful for simulating diffusion
flames (Müller, 1998), enlarging even more the allowed time-steps for obtaining an accurate
simulation.

Solution of the governing system of equations

Various solution strategies are available for solving the governing differential equations of fluid
flow problems, which can be categorized into segregated and coupled methods.
In a segregated approach, the equations for each variable are solved sequentially and

iteratively. The Semi-Implicit Method for Pressure Linked Equation (SIMPLE) algorithm is a
popular segregated strategy for solving the discretized system of equations arising in CFD.
Originally developed by Patankar (Patankar, 1980) using the Finite Difference Method (FDM),
the SIMPLE algorithm has proven to be effective in solving a wide range of fluid flow problems.
The SIMPLE algorithm has been extended to work with other discretization methods as
other numerical methods gained popularity. For instance, Ferziger and Perić (Ferziger and
Perić, 2002) extended the SIMPLE algorithm to work with the FVM, while Haroutunian et al.
(Haroutunian et al., 1993) extended it to work with the FEM. These extensions have allowed
the SIMPLE algorithm to remain a popular choice for solving fluid flow problems, regardless of
the numerical method used. In the context of high order methods, an extension of the SIMPLE
algorithm for the DG method has been developed in the department of Fluid Dynamics at the
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TU-Darmstadt, which is presented in the work from Klein (2015).

Another possibility is to utilize a coupled approach for solving the system of governing
equations, where the system of equations is solved together, avoiding the need for decomposition
into smaller, independent problems. In the fully coupled approach, each equation in the system
can depend on the other equations. Fully coupled methods tend to be more robust than
segregated methods, as they are less prone to convergence problems or oscillations, especially
for problems with complex or nonlinear physics. However, they present the disadvantage
that usually they are more computationally expensive. Nevertheless, it is expected from a
fully coupled strategy that although the computational requirements are higher, the coupled
solution of the system will require less iterations to find a convergent solution, leading to
shorter calculation times and a more robust solution method. The solution of such coupled
problems is often difficult, and specialized algorithms are required.

A point regarding the conservation of physical variables for segregated and coupled ap-
proaches is important to mention. In a segregated approach, the conservation of relevant
physical variables, such as mass or momentum, is not guaranteed. In Knikker (2011) different
strategies for solution of the low-Mach equations using segregated and coupled approaches
are presented. None of the segregated strategies featured a fully conservative solution, as each
of them needed to sacrifice the conservation of one of the solved variables. However, in case of
the fully coupled algorithm the conservation is guaranteed provided that the solution of the
fully coupled system is completely converged.

Generally speaking, the coupled solution of the Navier–Stokes equations require methods
for handling the nonlinear systems of equations characteristic of fluid flow problems. For this
purpose, methods such as Picard iteration and Newton’s method are often used. While both
methods are iterative and designed for solving nonlinear systems, they differ in their approach
to updating the solution at each iteration, as well as their computational cost and convergence
properties.

Picard iteration is an iterative method used to solve nonlinear equations by generating
a sequence of improved approximated solutions. In this method, the nonlinear equation is
replaced with a linear equation that approximates the solution around a known solution. This
known solution is usually an initial guess or an approximation from a previous iteration. The
linearized equation is then solved for the new solution, which is used in the next iteration
as the known solution. The Picard iteration solving strategy is widely used, as it is relatively
simple to implement. It suffers however from stability problems, and relaxation factors are
required to successfully bring the solution to convergence.

On the other hand, Newton methods are more complex and computationally expensive than
Picard iteration methods, but they typically converge more reliably. Newton methods involve
using the first derivative (the Jacobian) of the equations to update the solution in each iteration,
which is not always available and can be expensive to compute. Furthermore, the classical
Newton method relies on the assumption that the solution is near the initial guess, and may
converge slowly or fail to converge if the initial guess is far from the true solution. Globalized
Newton methods address this limitation by using globalization strategies that help the method
to converge to the true solution even if the initial guess is far from it. A clear advantage of
this method over the Picard iterations is that no extra parameters (such as under-relaxation
factors) have to be selected in order to bring the algorithm to convergence.
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Figure 1.1: Runtime comparison of the DG-SIMPLE solver and the XNSEC solver for a typical non-
isothermal simulation.

1.2 Objectives and motivation

The objective of this work is to present a solver for the fully-coupled simulation of low-Mach
non-reactive and reactive flows using the DG method. Details about the discretization and
solution process of the equations, various convergence supporting algorithms, and a exhaustive
validation of the solver are presented. To the best of the author’s knowledge, this is the
first time that a fully coupled solver is used together with the DG method for solving the
low-Mach equations. While the current study focuses on two-dimensional configurations, the
presented concepts could potentially be extended to three-dimensional systems. The solver
presented in this thesis is embedded in the Bounded Support Spectral Solver (BoSSS) code,
which is under active development at the chair of fluid dynamics of the Technical University
of Darmstadt ∗. The presented solver received the name eXtended Navier-Stokes Equations
solver for Combustion (XNSEC), where the term extended refers to the framework on which
the solver is built, which focuses on applications for multi-phase flows using a sharp interface
approach using a level-set method.
The present study employs the one-step combustion model proposed by Fernandez-Tarrazo

et al. (2006) to describe the chemical reactions. While the present work only considers methane
combustion, the one-step model could be applied to other hydrocarbons as well. The discrete
system of equations is solved using a globalized Newton method with the Dogleg approach.
Additionally, the study presents a homotopy strategy that has proven effective in obtaining
solutions for highly nonlinear problems in steady-state calculations.
In order to find appropriate initial values for Newton’s method in combustion applications,

the concept of flame sheet estimates (i.e. the solution for infinitely fast chemistry) is used.
Several benchmark cases are presented and used to validate the implementation of the solver,
and also to highlight some of the benefits of the DG method and the strategies developed to
support the convergence of the solver.
The main motivation for the development of a fully coupled solver comes from the necessity of

a fast and robust algorithm for the solution of the low-Mach equations. In earlier investigations
performed at the chair of fluid dynamics, a SIMPLE based algorithm for the solution of the
low-Mach equations was implemented in the BoSSS framework (Klein et al., 2013; Klein et al.,
2015; Klein et al., 2016). Although the SIMPLE based solver was capable of solving various
variable density test-configurations, it was observed that the computation times were under
∗The BoSSS code is open-source and is available under https://github.com/FDYdarmstadt/BoSSS
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certain conditions very long. This is largely attributed to the difficulty of finding adequate under-
relaxation factors for the solution algorithm of the nonlinear system. The strategy proposed
in the present work proposes a fully coupled solution of the system of equations, where the
nonlinear system is solved using a globalized Newton algorithm, which employs advanced
heuristics to eliminate the necessity of user-defined parameters such as under-relaxation
factors.
In Figure 1.1 a comparison of the computation times for simulation of a low-Mach number

flow configuration using the fully coupled XNSEC solver and the SIMPLE algorithm based solver
is shown. Although both algorithms allow the simulation of low-Mach number flows, clearly
the SIMPLE algorithm requires much more time for almost all cases presented. The experiment
demonstrate that choosing adequate under-relaxation factors is even more important for high
order solutions. This highlights a fundamental advantage of the presented Newton method,
where no extra parameters are needed.

1.3 Outline of the thesis

The thesis is structured as follows: In Chapter 2 the low-Mach number Navier-Stokes set of
equations is presented. The general form of the governing equations is shown, and the main
elements for the derivation of the low-Mach equations are concisely presented, emphasizing the
assumptions made to arrive at them, as well as the models for the different physical parameters
involved in the simulation. Later, the chemical model chosen for the combustion simulation
is presented. Finally, the concept of the flame-sheet and the Burke-Schumann limit is shown,
which are used within the solution algorithm for the solution of diffusion flame systems.
In Chapter 3 the numerical method used in this work is presented. First, a brief introduction

to the DG method is given using a simple transport equation which allows demonstrating the
procedure used for the spatial and temporal discretization of the governing equations. Later, a
description of each of the discretized terms of the governing equations is shown, with special
emphasis on the numerical fluxes involved.
The methods for solving the system of discretized equations are presented in Chapter 4. The

chapter starts with a description of the solver structure. Later, the globalized Newton method
used to solve the fully-coupled nonlinear system is shown. Particular emphasis is placed on
the core algorithms of the method, as well as on crucial computational aspects that allow for
a higher efficiency. Finally, additional strategies are presented that improve the convergence
properties of the method for cases where the Newton algorithm is not able to obtain solutions,
such as the use of the flame-sheet estimates for combustion simulations and homotopy methods
for highly nonlinear problems.
In Chapter 5 a comprehensive validation of the solver using a variety of test cases is presented.

These test cases are compared with benchmark results, but are also used for highlighting the
algorithms introduced in this work. The test cases presented are subdivided in three sections,
presented in increasing level of complexity. First, in Section 5.1 the solver is used to calculate
typical incompressible benchmark cases, such as lid-driven cavity flow or a backward-facing
step, and the results are compared with benchmark solutions. Then in Section 5.2 the tests
are extended to low-Mach number flows, and several typical configurations are calculated
for such systems, in particular problems for temperature dependant flow problems, such as
the heated square cavity configuration, and the Rayleigh-Bénard Convection problem. Finally
in Section 5.3 the fully coupled system of equations for reactive low-Mach flows is used for
calculating various typical diffusion flame configurations. First a coflow flame configuration is
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Figure 1.2: Schematic representation of the structure of the BoSSS solver. Extracted from the BoSSS
handbook (Kummer et al., 2020).

simulated, and the effect of gravity on the flame is discussed. Later, a planar counterflow flame
configuration is calculated, and the results are compared with simulations of the well known
one-dimensional self similar solution of the flame. Finally Chapter 6 concludes the work and
finishes with a short discussion.
Some results of the present thesis have been published by the author of this work (Gutiérrez-

Jorquera and Kummer, 2022).

1.4 The BoSSS code

BoSSS is a general framework for the discretization of conservation laws using the DG method
and uses a modal DG approach with orthonormal Legendre polynomials as basis functions.
The BoSSS code features a variety of applications in the context of CFD, such as a solver
for multiphase flows with a sharp interface approach (Kummer, 2017), an incompressible
Immersed Boundary Method solver for particle laden flows (Krause and Kummer, 2017), a
solver for viscoelastic fluid flows (Kikker et al., 2020), and a solver for compressible flows
(Geisenhofer et al., 2019), among others.
The structure of the BoSSS framework is shown in a schematic way in Figure 1.2. BoSSS

allows the end user to develop sophisticated solvers at a very low coding effort. The implemen-
tation makes extensive use of several message-passing interface (MPI)-parallel, performance-
optimized operations, among which the evaluation of the DG operator can be highlighted, as
well as a solution using parallelized algorithms for the resolution of linear systems arising from
the discretization. In addition, the user has at his disposal a large number of tools that optimize
the workflow, such as the use of Jupyter-notebooks, as well as various post-processing tools.
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2 Governing equations

The purpose of this chapter is to present the governing equations employed in this work,
including a discussion of their derivation and the assumptions made.
In Section 2.1.1, the governing equations that enable the characterization of reactive fluids,

in addition to other thermodynamic relationships, expressions for the transport parameters,
and the one-step chemical model, are introduced. This is followed by the presentation of
the process of nondimensionalizing the equations and the low-Mach limit of the governing
equations in Section 2.1.2. As a part of the algorithm used to solve diffusion flame problems, a
simplified form of the equations in which the reaction rate is assumed to be infinitely fast is
used. The governing equations for such a system are presented in Section 2.2.

2.1 The low-Mach number equations for reactive flows

Combustion processes can be modeled by a system of nonlinear partial differential equations,
namely the balance equations for the total mass, momentum, energy and mass of individual
species (usually expressed in terms of mass fractions). This system needs to be solved together
with an equation of state and expressions for the transport properties as well as for the chemical
reaction rates.
The derivation of the governing equations for a reacting flow system can be found in the

literature. For more information see for example the works from Kee et al. (2003) and Poinsot
and Veynante (2011). In the following pages, the main ideas regarding the derivation of
equations are presented. For a more detailed explanation, the interested reader is referred to
the cited works and the references therein.

2.1.1 The reactive Navier–Stokes equations

Throughout this work, variables with a hat sign, for example ρ̂, represent dimensional variables,
while those without it are nondimensional. The derivation of the low-Mach number equations
starts with the Navier–Stokes equations, the energy equation (written in its temperature form),
and the species transport equations. Consider a reacting fluid mixture composed of N species.
Let x̂ = (x̂, ŷ, ẑ) and t̂ be the spatial vector and time. The primitive variables are the velocity
field û = (û, v̂, ŵ), the pressure p̂, the temperature T̂ , and the mass fractions Yk of the N total
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species. The set of governing equations to be solved is
∂ρ̂

∂t̂
+ ∇̂ · (ρ̂û) = 0, (2.1a)

∂ρ̂û

∂t̂
+ ∇̂ · (ρ̂û⊗ û) = −∇̂p̂− ∇̂ · τ̂ − ρ̂ĝ, (2.1b)

ρ̂cp̂
∂T̂

∂t̂
+ ρ̂cp̂û · ∇̂T̂ =

Dp̂
Dt − ∇̂ · q̂ −

(︄
ρ̂

N∑︂

k=1

ĉp,kYkÛk

)︄
· ∇̂T̂ + τ̂ : ∇̂û+ ω̂T , (2.1c)

∂ρ̂Yk

∂t̂
+ ∇̂ · (ρ̂ûYk) = −∇̂ · ĵk + ω̂k (k = 1, . . . , N). (2.1d)

In the general case this results in N + 5 differential equations to be solved. In these equations,
ρ̂ is the density of the mixture and ĝ is the acceleration of gravity. τ̂ , q̂ and ĵk are the viscous
tensor, the heat flux vector and the molecular mass flux vector of species k, respectively.
Additionally, ω̂T is the heat release from combustion and ω̂k is the reaction rate of species k.
To close the system, expressions must be defined to link these variables with the primitive
variables. They will be briefly shown and commented upon in the following paragraphs.

Equation of state

Assuming that the fluid behaves ideally, the density can be calculated as

ρ̂ =
p̂Ŵ avg
R̂T̂

. (2.2)

Here, R̂ is the universal gas constant of gases, and Ŵ avg is the average molecular weight of the
fluid, defined as

Ŵ avg =

(︄
N∑︂

k=1

Yk

Ŵ k

)︄−1

, (2.3)

withWk
ˆ being the molecular weight of species k. For an ideal mixture, the specific heat capacity

can be calculated as a weighted average of the specific heats of the species

ĉp =
N∑︂

k=1

Yk ĉp,k, (2.4)

where ĉp,k corresponds to the specific heat capacity of the component k. The temperature
dependence of ĉp,k can be accounted for by using NASA polynomials (Mcbride et al., 1993)

ĉp,k =
(︂
â1 + â2T̂ + â3T̂

2
+ â4T̂

3
+ â5T̂

4
)︂ R̂
Wk
ˆ

, (2.5)

where â1, â2, â3, â4 and â5 are numerical coefficients supplied by the NASA database.

Transport models

The viscous tensor τ̂ is defined for a Newtonian fluid as

τ̂ = −µ̂
(︂
∇̂û+ (∇̂û)T

)︂
+

(︃
2

3
µ̂− κ̂

)︃
(∇̂ · û)I. (2.6)
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Here, µ̂ is the dynamic viscosity of the fluid, which is generally specific to the fluids and
depends on its temperature and pressure. Furthermore, κ̂ corresponds to the bulk viscosity,
which is usually negligible for fluids at low pressures (Bird et al., 1960). In the rest of this
work κ̂ will be taken to be equal to zero.
The heat flux vector q̂ is given by Fourier’s law of heat conduction,

q̂ = λ̂∇̂T̂ . (2.7)

Here, λ̂ corresponds to the thermal conductivity, which, similar to viscosity, depends on the
particular fluid under study as well as its temperature and pressure. Soret and Dufour effects
are not considered in the present work.
The molecular mass flux vector ĵk of species k is defined as ĵk = ρ̂Ûk, where Ûk is the

diffusion velocity of the component k. In general, Ûk can be obtained by solving the Maxwell-
Stefan equations

∇Xp =

N∑︂

k=1

XpXk

Dpk
(Uk −Up), p = 1, . . . , N. (2.8)

Here Dpk = Dkp is the binary mass diffusion coefficient of species p into species k. Xk is the
mole fraction of species k and is related to the mass fraction of k as Xk = YkŴ/Ŵ k. The
solution of the system defined by Equations (2.8) is often a difficult and costly task (Williams,
2000; Poinsot and Veynante, 2011), and often simplifications are made. It can be shown that
for binary mixtures (N = 2), and for mixtures containing multiple species (N > 2) with equal
diffusion coefficients, Equations (2.8) reduce exactly to the well-known Fick’s law

ĵk = −ρD̂k∇Yk. (2.9)

This expression is exact only in the cases mentioned above. The variable D̂k corresponds in
this case to the diffusion coefficient of species k in the mixture. An issue related to global
mass conservation can be noted here. Recall that by definition, the sum of the mass fractions
must always be one, namely ∑︁N

k=1 Yk = 1. However, this is only true for the solution of
Equations (2.1) if exact expressions for diffusion velocities are used (Poinsot and Veynante,
2011). However, if some inexact expression is used (as for example Fick’s law), the constraint
for the sum of the mass fractions will not be fulfilled. This problem can be circumvented by
solving the global mass conservation equation and the equations for the first N − 1 species. By
doing so, all inconsistencies originating from not using an exact species diffusion model are
absorbed by YN . As pointed out in Poinsot and Veynante (2011), this simplification should only
be used if all N − 1 species are strongly diluted in species N , such as the case of a flame in air,
where the mass fraction of nitrogen is large. This approach reduces the number of differential
equations needed to be solved by one, slightly alleviating computational requirements.
The temperature dependence of viscosity is modeled by Sutherland’s law (Sutherland, 1893)

µ̂(T̂ ) = µ̂suth

(︄
T̂

T̂ suth

)︄1.5
T̂ suth + Ŝ

T̂ + Ŝ
. (2.10)

Here µ̂suth is the viscosity evaluated at a reference temperature T̂ suth, and Ŝ is a material-
dependent parameter. In all calculations in this work, the value of Ŝ for air is used, i.e.
Ŝ = 110.5K. Expressions for determining the thermal conductivity and diffusion coefficients
as a function of temperature can be obtained using similar expressions, as shown later in
Section 2.1.2.
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The enthalpy transport term due to diffusive fluxes (third therm on the right hand side of
Equation (2.1c)) usually has only a small influence on the solution (Smoke and Giovangigli
(1991), Goey et al. (1995), and Paxion et al. (2001)), and it is actually exactly equal to zero
for systems where all species heat capacities are equal. In the present formulation this term is
neglected from the energy equation.

Chemical model

As mentioned in the introduction, the task of choosing and implementing a suitable chemical
model to accurately and efficiently represent the combustion process presents a considerable
challenge. While normally a detailed depiction of the chemistry is preferable, it can become
computationally intensive and impractical. For example, in the work of Stauch et al. (2006)
a numerical investigation of methanol combustion using detailed chemistry is carried out,
and involves the analysis of 23 chemical species and 166 elementary reactions. Because of
their high complexity, solvers using detailed chemistry are often restricted to simple one- or
two-dimensional configurations, and to a small number of grid elements. If one is interested
in more complex geometries or more complicated flow systems, the use of detailed kinetics
can be prohibitive. To address this challenge, researchers often use specialized methods and
model reduction techniques to handle species transport efficiently. Some common approaches
include the use of look-up tables or the use of global schemes (Poinsot and Veynante, 2011).
Another popular approach involves employing reduced chemical reaction models, specially
formulated to optimize computational efficiency while maintaining fidelity to the underlying
physical processes.
Regarding the last point mentioned, in the work of Westbrook and Dryer (1981) a one-step

kinetic model is presented, where combustion is expressed as a single chemical reaction with
a reaction rate given by an Arrhenius-type expression with constant parameters. Multi-step
chemical reaction models have also been developed, such as the four-step mechanism for
methane combustion by Peters (1985) or the three-step mechanism by Peters and Williams
(1987). In the present work, the chemical model proposed by Fernandez-Tarrazo et al. (2006)
for hydrocarbon combustion with air is used. It will be introduced in the next pages.
Consider a system composed of N species whereM chemical reactions take place. Chemical

reactions can be written in generalized form as
N∑︂

k=1

ν ′kjMk ⇌
N∑︂

k=1

ν ′′kjMk for j = 1, . . . ,M , (2.11)

where ν ′jk and ν ′′jk are the molar stoichiometric coefficients of species k in the chemical reaction
j, andMk represents the chemical component k.

The reaction rate of species k is ω̂k, which accounts for the net change in the total amount
of species k due toM chemical reactions. Its given by

ω̂k = Ŵ k

M∑︂

j=1

νjkQ̂j . (2.12)

Here νkj = ν ′′kj − ν ′kj , and Q̂j is the rate of progress of the reaction j, which is usually modeled
using Arrhenius-type expressions.
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B̂ T̂ a0 Q̂0 a b
(cm3/(mol s)) (K) (MJkmol−1)

6.9× 1014 15 900 802.4 1 1

Table 2.1: Base parameters used in the one-step combustion model by Fernandez-Tarrazo et al. (2006)

The heat release ω̂T that appears in the energy equation is related to the reaction rates
according to

ω̂T = −
N∑︂

k=1

ĥkω̂k = −
N∑︂

k=1

∆ĥ
0

kω̂k −
N∑︂

k=1

ĥksω̂k. (2.13)

Here, the specific enthalpy of k-th species ĥk is written in terms of its formation enthalpy ĥ
0

k

and a sensible enthalpy ĥks =
∫︁ T̂
0 ĉp,kdT̂ . The second term on the right-hand side of Equa-

tion (2.13) is usually small and is exactly zero for a mixture in which all the heat capacities of
each component are equal (Poinsot and Veynante, 2011). It will be neglected in the rest of the
analysis.

In this work, the one-step kinetic model for the combustion of hydrocarbons presented in
Fernandez-Tarrazo et al. (2006) is used. The chemical reaction is represented by a single
(M = 1) exothermic global irreversible expression as

CnHm +
(︂
n+

m

4

)︂
O2 nCO2+

m

2
H2O. (2.14)

with n and m denoting the number of carbon and hydrogen atoms composing a molecule of
fuel. The rate of progress of the global reaction is modeled by an Arrhenius-type expression

Q̂ = B̂e−T̂a/T̂

(︃
ρ̂YF

ŴF

)︃a(︃ ρ̂YO

ŴO

)︃b

. (2.15)

Here, the subscripts F and O refer to fuel and oxidizer, respectively. The parameter B̂ cor-
responds to the pre-exponential factor, T̂ a is the activation temperature, and a and b are
reaction orders. For a one-step reaction model, the reaction rate of the k-th component in
Equation (2.12) is

ω̂k = νkŴ kQ̂. (2.16)
With this definition, the heat release ω̂T in Equation (2.13) yields

ω̂T = −ŴF ω̂F Q̂
m

= −ω̂F Q̂. (2.17)
Here Q̂m is the molar heat of reaction of the one-step reaction and Q̂ is the mass heat of
reaction. ŴF and ω̂F are the molar mass of the fuel species and the reaction rate of the fuel
species respectively.
Within the model proposed by Fernandez-Tarrazo et al. (2006), several parameters are

adjusted to represent characteristic features of premixed flames and diffusion flames. In
particular, the parameters T̂ a and Q̂ are defined as functions of the local equivalence ratio ϕ,
which is, in turn, is defined in terms of the local mass fractions of fuel YF and oxidizer YO as

ϕ =
sY 0

F

Y 0
O

sYF − YO + Y 0
O

s(Y 0
F − YF ) + YO

, (2.18)
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where Y 0
F and Y 0

O are the mass fractions of the fuel and oxidizer flows in their corresponding
feed streams, and s is the mass stoichiometric ratio, defined as s = νOŴO/νF ŴF . The
activation energy depends on ϕ as

T̂ a(ϕ) =

⎧
⎪⎨
⎪⎩

(1 + 8.250(ϕ− 0.64)2)T̂ a0 if ϕ ≤ 0.64,

T̂ a0 if 0.64 ≤ ϕ ≤ 1.07,

(1 + 4.443(ϕ− 1.07)2)T̂ a0 if ϕ ≥ 1.07,

(2.19)

and the molar heat release according to

Q̂(ϕ) =

{︄
Q̂0 if ϕ ≤ 1,

(1− α(ϕ− 1))Q̂0 if ϕ > 1.
(2.20)

The parameter α is a constant that depends on the hydrocarbon being considered, in
particular α = 0.21 for methane combustion.
It should be noted that Equation (2.20) yields unphysical values of Q̂ for large values of

ϕ. This problem can be avoided by setting an upper boundary value for ϕ in Equation (2.20).
However, in practice, this should not have a significant effect because the non-physical values
of Q̂ appear in zones where the reaction rate ω̂ is very close to zero, making the factor Q̂ω̂
in the temperature equation negligible. However, setting an upper bound for ϕ is helpful for
avoiding possible numerical instabilities.

2.1.2 The reactive low-Mach Navier-Stokes equations

In the present work, the low-Mach number approximation of the governing equations is used.
They were first derived by Rehm and Baum (1978). A rigorous extension to combustion
problems was done by Majda and Sethian (1985). The interested user is referred to these
references for a detailed explanation of how the set of equations is derived, as well as the work
from Müller (1998). In what follows, only the main consequences of the low-Mach limit will
be shown and discussed.
Recall the definition of the Mach number, Ma = ûref/ĉ, where ûref is a characteristic flow

velocity and ĉ the speed of sound. The low-Mach number limit approximation of the governing
equations is used for flows where the Mach number is small, which is usually the case in
typical laminar combustion systems (Dobbins and Smooke, 2010). The low-Mach equations
are obtained by using standard asymptotic methods. One of the main results of the analysis is
that for flows with a small Mach number, the pressure can be decomposed as

p̂(x̂, t̂) = p̂0(t̂)⏞ ⏟⏟ ⏞
O(1)

+ p̂2(x̂, t̂)⏞ ⏟⏟ ⏞
O(Ma2)

. (2.21)

The spatially uniform term p̂0(t̂) is called thermodynamic pressure and only influences the
system through the equation of state. It is constant in space but can change in time. For an
open system, the thermodynamic pressure is also constant in time and equal to the ambient
pressure, while for a closed system (e.g. a system completely bounded by walls) it changes,
ensuring mass conservation.
On the other hand, the perturbational term p̂2(x̂, t̂) appears only in the momentum equations

and plays a role similar to that of the pressure in the classical incompressible formulation. This
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perturbational term satisfies p̂2/p̂ ∼ O(Ma)2 (Dobbins and Smooke, 2010; Nonaka et al., 2018)
showing that the equation of state is satisfied only to O(Ma2).
Effectively, the low-Mach limit of the Navier-Stokes equations allows the calculation of

systems where large density variations due to temperature differences are present, thus the
formulation is not restricted to approximations such as the Boussinesq approximation for
buoyancy-driven flow. In addition, this approximation truncates the mechanism of pressure
wave propagation, which is a natural feature of the compressible Navier-Stokes equations, but
is negligible for low velocity flows. By doing this the necessity of small time-steps for resolving
the wave phenomenon is completely removed and the maximum allowed time-step is greatly
increased.
In this work a nondimensional formulation of the governing equations is used. Following

nondimensional quantities are defined

ρ =
ρ̂

ρ̂ref
, p =

p̂

p̂ref
, u =

û

ûref
, T =

T̂

T̂ ref
, cp =

ĉp
ĉp,ref

, Wk =
Ŵ k

Ŵ ref
,

µ =
µ̂

µ̂ref
, Dk =

D̂k

D̂k,ref
, k =

k̂

k̂ref
∇ =

∇̂
L̂ref

, t =
t̂

t̂ref
, g =

ĝ

ĝref
, Q =

Q̂

Q̂0

.

Here ûref, L̂ref, p̂ref, t̂ref, and T̂ ref are the reference velocity, length, pressure, time, and tem-
perature, respectively, and are equal to some characteristic value for the particular studied
configuration. Furthermore, ĝref is the magnitude of the gravitational acceleration and Ŵ ref is
the reference molecular weight. The reference transport properties µ̂ref, k̂ref, D̂k,ref and the
reference heat capacity of the mixture ĉp,ref are evaluated at the reference temperature T̂ ref.
Similarly, the reference density must satisfy the equation of state, thus ρ̂ref = p̂refŴ ref/(R̂T̂ ref).
By introducing these definitions into the governing Equations (2.1a) to (2.1d), together with
the transport coefficients and equations for the source terms ωT and ωk given by the one-step
model, the nondimensional reactive low-Mach number set of equations is obtained

∂ρ

∂t
+∇ · (ρu) = 0, (2.22a)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+ 1

Re∇ · µ
(︃
∇u+∇uT − 2

3
(∇ · u)I

)︃
− 1

Fr2 ρg, (2.22b)

1

γ

∂ρT

∂t
+∇ · (ρuT ) = 1

Re Pr∇ ·
(︃

k

cp
∇T
)︃
+ H Da Q Q

cp
, (2.22c)

∂ρYk
∂t

+∇ · (ρuYk) =
1

Re Pr Lek
∇ · (ρD∇Yk) + Da νkWkQ, k = 1, . . . , N − 1. (2.22d)

This system is solved for the primitive variables velocityu = (ux, uy), pressure p, temperature T
and mass fractions Y′ = (Y1, . . . , YN−1). An advantage of using the temperature as a primitive
variable is that in doing so, the temperature dependant transport parameters and equation
of state can be readily calculated, and no intermediate calculation needs to be done. Note
that it is assumed that the spatial gradients of the mixture heat capacity are small, which
allows to introduce cp in the derivative of the diffusive term of Equation (2.22c). Furthermore,
considering the fact that the sum of the mass fractions must always be one, the mass fraction
of the last species N can be calculated with

YN = 1−
N−1∑︂

k=1

Yk. (2.23)
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Note that the form of the low-Mach equations is very similar to the Navier-Stokes equations.
The major difference is in the decomposition of the pressure. This similarity is beneficial as it
allows the use of similar techniques to solve the PDE system to those used for the completely
incompressible case (Keshtiban et al., 2003). From now on, the sub-index of the hydrodynamic
pressure p̂2 will be dropped and it will be called simply p̂, further emphasizing the similarity
in its role to the pressure of the incompressible equations.
Six nondimensional factors arise from the nondimensionalization process:

Re = ρ̂refûrefL̂ref
µ̂ref

, Fr = ûref√︂
ĝrefL̂ref

, Pr = ĉp,refµ̂ref
k̂ref

,

Lek =
k̂ref

ρ̂refD̂k,refĉp,ref
, Da = B̂L̂refρ̂ref

M̂ refûref
, H =

Q̂0

ĉp,refT̂ ref
.

The first three equations define the Reynolds, Froude and Prandtl number, respectively. Lek
is the Lewis number of species k. Finally, Da and H are the Damköhler number and the
nondimensional heat release, respectively. The nondimensional progress of the global reaction
reads as follows

Q(T,Y ) = exp
(︃−Ta

T

)︃[︃(︃
ρYF
MF

)︃(︃
ρYO
MO

)︃]︃
, (2.24)

where Ta = T̂ a/T̂ ref. Furthermore, the nondimensional heat release is

Q(ϕ) =

{︄
1 if ϕ ≤ 1,

(1− α(ϕ− 1)) if ϕ > 1.
(2.25)

with ϕ evaluated according to Equation (2.18). In the low-Mach limit, the ideal gas equation
depends on the thermodynamic pressure, temperature and mass fractions. It reads in its
nondimensional form

ρ(p0, T,Y ) =
p0

T
N∑︁
k=1

Yk
Wk

. (2.26)

As mentioned previously, in a closed system, the thermodynamic pressure must be determined
to ensure mass conservation. Conversely, in an open system, the pressure is equal to the
atmospheric pressure. By integrating Equation (2.26) into the entire domain Ω, the expression

p0(T,Y ) =
m0

∫︁
Ω

(︂
T
∑︁N

k=1
Yk
Wk

)︂−1
dV

(2.27)

can be derived. Here, m0 =
∫︁
Ω ρdV is the mass of the fluid in the closed system. Since in a

closed system the total mass is constant, it can be determined using initial conditions. Similarly,
the nondimensional specific heat capacity of the mixture cp is calculated as

cp(T,Y) =
N∑︂

k=1

Ykcp,α, (2.28)
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Figure 2.1: S-shaped bifurcation curve of a combustion process.

and the nondimensional viscosity as

µ(T ) = T
3
2

1 + Ŝ

T̂ refT + Ŝ
. (2.29)

The model for the transport parameters can be simplified by assuming constant values for the
Prandtl and Lewis numbers (Smoke and Giovangigli, 1991). The nondimensional transport
parameters are related in that case with

µ = k/cp = ρD. (2.30)

2.1.3 A note on the multiple solutions of the system

The system of equations shown in this section has the particularity that its solution presents
branching phenomena. The presence of branching solutions often arises in nonlinear or complex
systems, where multiple stable or unstable states can exist, leading to various possible solutions
for the given set of equations, depending on the initial conditions considered for the solution.
In context of the reactive equations presented above, one solution is evidently that of pure

mixing (also called frozen chemistry), in which combustion does not occur and the equations
are simply describing a mixing process. Another solution is that of a system under combustion,
where the reaction takes place in a thin but finite reaction zone, in which the reactants can
overlap. This phenomenon is usually represented by a bifurcation curve of the combustion
process, as shown in Figure 2.1 in which the maximum temperature of the system is plotted
for different Dahmköhler numbers.
The graph also shows the ignition and extinction points. If a system is in the stable combustion

branch, and the Dahmköhler number begins to decrease there is a point where the chemical
reaction is not sustainable, and the extinction phenomenon occurs. An example of this is the
case of extinguishing a candle by blowing it out. The ignition phenomenon can be interpreted
analogously. For a system where there is no chemical reaction (but mixing of the reactants),
the increase of the Dahmköhler number eventually leads to ignition of the system, obtaining
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a flame that is in the stable combustion branch. An example of this would be when a lighter
produces a flame as a result of a spark.
Several strategies can be recognized to obtain a solution for a steady-state diffusion flame.

Clearly, one sensible way would be to numerically represent the ignition process by including
a high temperature zone in the initial conditions of the system and advance it in time using
a marching algorithm. From a numerical point of view this posses several challenges. For
instance, in a diffusion flame, it is not clear in advance the exact location of the high reaction
zones, and positioning the high temperature patch in a distant zone does not guarantee ignition
of the system. Furthermore, the temperature has to be large enough to cause ignition of the
system, and the large spatial gradients associated make necessary an adequate meshing strategy
to obtain converged solutions. If one is only interested in the steady state solution, an implicit
time stepping method with a large time-step could be used. This requires, however, a very
good initial estimate to obtain a convergent solution. In the next section a strategy is presented
that allows to obtain systems of steady state combustion, which does not require the simulation
of the ignition process.

2.2 The flame sheet approximation

The reactive low-Mach equations exhibit a high nonlinear nature, displaying a remarkably
strong interplay between fluid dynamics and thermochemistry. The numerical solution of the
fully coupled discretized equations can be realized in different ways, one of them being the use
of Newton algorithm to find the solution in an iterative manner. This requires however the use
of adequate initial estimates which make possible the algorithm to find a converged solution.
Not using an adequate estimate could lead to a very slow convergence, or even to divergence
of the algorithm. As previously mentioned, the initial estimate should also be carefully selected
to ensure that the nonlinear solver delivers the ignited solution. In this part a strategy for
obtaining an adequate initial estimate is presented.
The rate of reaction in a diffusion flame is determined by the rate at which the fuel and

oxidizer are brought together. If one considers the limit of infinitely fast chemical reaction,
the reactants are separated by a thin exothermic layer. The highest temperature is located
at the point where reactants meet in stoichiometric proportions maximizing the production
of combustion products. The use of such a infinitely fast reaction model provides a good
initial estimate that can be used to find a solution for the steady state systems with a finite
reaction rate, and has been used in various works, such as the work from Keyes and Smooke
(1987) where the idea is used in a counterflow configuration, and in the work of Smooke et al.
(1986a) for an axisymmetric coflow configuration, also in Smooke and Giovangigli (1992)
for a Tsuji-counterflow configuration and in the work by Dobbins and Smooke (2010) for an
axisymmetric laminar jet diffusion flame with time dependent boundary conditions.
A set of governing equations for systems with infinite reaction rates can be written. This

requires assuming that all species have the same heat capacity cp,k = cp and mass diffusion
coefficient Dk = D, that the Lewis number is unity for all species, and that combustion can
be described by a single step chemical reaction. By taking a linear combination of the energy
Equation (2.22c) and mass fractions Equation (2.22d), an equation for a passive scalar can be
written. Thus, the system can be simplified to solving the low-Mach Navier-Stokes equations
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Variable Fuel value Oxidizer value
Fuel mass fraction, YF Y 0

F 0
Oxidizer mass fraction, YO 0 Y 0

O

Temperature, T T 0
F T 0

O

Mixture Fraction, z 1 0

Table 2.2: Boundary conditions of reactantsmass fractions, temperature andmixture fraction. Adapted
from Poinsot and Veynante (2011).

and an equation for a scalar z:

∂ρ

∂t
+∇ · (ρu) = 0, (2.31a)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+ 1

Re∇ · µ
(︃
∇u+∇uT − 2

3
(∇ · u)I

)︃
− 1

Fr2 ρg, (2.31b)
∂ρz

∂t
+∇ · (ρuz) = 1

Re Pr∇ · (ρD∇z) . (2.31c)

Here z is the mixture fraction, which is a scalar that measures the local fuel/oxidizer ratio
(Poinsot and Veynante, 2011). Note that Equation (2.31c) is simply a diffusion-convection
equation. It is however still coupled to the flame structure via the velocity fields and through
the density (and indirectly to the temperature and mass fractions fields, as will be shown
later), requiring an iterative procedure for the solution of the coupled system. In Table 2.2 the
boundary conditions for a non-premixed systems are indicated. There YF and YO represent
the fuel and oxidizer mass fractions, respectively. The variables Y 0

F and Y 0
O indicate the fuel

and oxidizer mass fraction at their respective inlet zone. Furthermore the variable z is per
definition equal to unity in the fuel feed stream and equal to zero in the oxidizer feed stream.
Note that the system of governing equations is not closed, because ρ, µ and ρD are still

functions of the temperature and mass fractions. These fields can be related to the mixture
fraction using the flame structure concept presented in the seminal publication from Burke
and Schumann (1928).
The procedure described before for obtaining the equation for the mixture fraction z leads

to expressions that relate z to the temperature T , mass fraction of the fuel YF and the mass
fraction of the oxidizer YO as

z =
sYF − YO + Y 0

O

sY 0
F + Y 0

O

=

cp
Q (T − T 0

O) + YF
cp
Q (T 0

F − T 0
O) + Y 0

F

=

scp
Q (T − T 0

O) + YO − Y 0
O

scp
Q (T 0

F − T 0
O) + Y 0

O

. (2.32)

In the case of an infinitely fast chemical reaction, fuel and oxidizer cannot coexist. On one
side of this sheet only oxidizer is found, and on the other side only fuel. The exact position of
the flame sheet can be determined using Equation (2.32) by the location of the points where
the reactant mass fractions YF and YO are zero, that is, the points where the mixture fraction
z = zst, with

zst =
Y 0
O

Y 0
O + sY 0

F

. (2.33)

The Burke-Schumann flame structure provides analytical expressions for temperature and mass
fraction fields on either side of the flame sheet as a function of the mixture fraction z. For a
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Figure 2.2: Temperature and fuel mass fraction profiles calculated in the center-line of a counter-
flow flame configuration using finite chemistry (black) and the flame sheet approximation
(green).

more detailed derivation see for example the textbook from Poinsot and Veynante (2011) or
the work from Keyes and Smooke (1987). The temperature is related to the mixture fraction as

T (z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

zT 0
F + (1− z)T 0

O +
QY 0

F

cp
zst

1− z

1− zst
if z ≥ zst,

zT 0
F + (1− z)T 0

O +
QY 0

F

cp
z if z < zst.

(2.34)

The mass fraction field of fuel and oxidizer species at either side of the flame is given by:

YF (z) =

⎧
⎨
⎩
Y 0
F

z − zst
1− zst

if z ≥ zst,

0 if z < zst,
(2.35)

YO(z) =

⎧
⎪⎨
⎪⎩

0 if z ≥ zst,

Y 0
O

(︃
1− z

zst

)︃
if z < zst.

(2.36)

Finally, the mass fraction field of product species P is:

YP (z) =

⎧
⎪⎪⎨
⎪⎪⎩

Y 0
O

WP νP
WOνO

(1− z) if z ≥ zst,

Y 0
F

WP νP
WF νF

z if z < zst.

(2.37)

Once the mixture fraction field z is obtained, the temperature and mass fraction fields are
uniquely defined by Equations (2.34) to (2.37), which are used to evaluate the density and
the transport properties. This allows to use an iterative scheme for the solution of the coupled
equations.
Note that the expressions shown above (and by extension the density and transport properties)

are not differentiable at the stoichiometric point z = zst. This poses a challenge for numerical
algorithms (Rauwoens et al., 2009), and some form of smoothing could be helpful for finding
solutions. Later in Section 4.4.3 this point will be treated.
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It is worth noting that the assumption of infinite reaction rate can be interpreted as an infinite
Dahmköhler number, where the chemical time scales are much shorter than the flow scales. It
is expected that the initial estimate using the flame-sheet is a good approximation for finite
reaction rate systems where the Dahmköhler number is very large, or expressed differently, for
conditions far away from the extinction point (see Figure 2.1).
Under certain conditions, the the flame-sheet approximation is indeed a very good initial

guess. In Figure 2.2, temperature and fuel mass fraction fields obtained with infinite and finite
reaction rate across the center-line of a counterflow flame configuration are shown. Clearly,
both solutions are very similar, differing only in the area immediately near the flame. However,
this similarity is only valid under the assumptions made to derive Equation (2.31c). In the case
that the Lewis number is not equal to one, or that the heat capacities are not equal for each
species, the finite-rate solution will differ slightly from that obtained for the flame sheet. Note
that the assumption of unity Lewis number of the flame sheet formulation is not mandatory
(Liñán et al., 1994).
The use of the flame-sheet solution provides a logical and natural initial guess for a steady

state simulation of a diffusion flame with finite reaction rates. Furthermore, for the case of a
transient simulation, the flame sheet could also provide a means of initializing the solution of
the system, circumventing the need of simulating ignition phenomena.

2.3 Boundary conditions

The following boundary conditions are imposed for the resolution of the finite reaction rate
system (Equations (2.22a) to (2.22d)) and for the flame sheet problem (Equations (2.31a)
to (2.31c)),

ΓD : u = uD, T = TD, Yk,= Yk,D, z = zD, (2.38a)
ΓDW : u = uD, ∇T · n∂Ω = 0, ∇Yk · n∂Ω = 0, ∇z · n∂Ω = 0, (2.38b)

ΓN :

(︃
−pI+

(︃
µ

Re
(︁
∇u+ (∇u)T

)︁
− 2

3
µ(∇ · u)I

)︃)︃
· n∂Ω = 0,

∇T · n∂Ω = 0, ∇Yk · n∂Ω = 0, ∇z · n∂Ω = 0, (2.38c)

ΓND :

(︃
−pI+

(︃
µ

Re
(︁
∇u+ (∇u)T

)︁
− 2

3
µ(∇ · u)I

)︃)︃
· n∂Ω = 0,

T = TD, Yk = Yk,D, z = zD (2.38d)
ΓP : u(x) = u(x′), T (x) = T (x′), Yk(x) = Yk(x

′), z(x) = z(x′), (2.38e)

where k = (1, . . . , N − 1) denotes the index of mass fractions. The boundary ΓD represents
conditions for inlets and walls, with the velocity, temperature, mass fractions and mixture
fraction defined as Dirichlet boundary conditions. Boundaries ΓDW are used to represent
adiabatic walls, where the velocity is given as a Dirichlet boundary condition again, but with
the gradients perpendicular to the wall of the transported scalars are set to zero. The boundary
ΓN represent an outflow of the domain with homogeneous Neumann condition for all scalars.
The boundary ΓND also represents an outlet boundary condition, but with Dirichlet boundary
conditions for the scalars. Finally, the boundaries ΓP are periodic, where x and x′ are periodic
pairs in the domain.
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3 The Discontinuous Galerkin method

This chapter aims to give an overview of the DG method, as well as to present the spatial and
temporal discretization of the equations presented earlier. Parts of this chapter are based on
the works presented by Kummer (2017), Kikker et al. (2020), and Smuda (2021).

3.1 The Discontinuous Galerkin method

The spatial and temporal discretization of a scalar transport equation using the DG method
is demonstrated in this section. Initially, basic definitions are provided, followed by the
presentation of the general procedure for obtaining a DG discretization. The works of Cockburn
et al. (2000), Hesthaven and Warburton (2008), and Di Pietro and Ern (2012) are referred to
for a more in-depth description of the DG method.

3.1.1 Definitions for the discretization

First some standard definitions and notation are introduced in the context of DG methods.
Let Ω ⊂ R2 be a computational domain with a polygonal and simply connected boundary ∂Ω.

The numerical grid is then formed by the set of non-overlapping elements Kh = {K1, ...,KJ}
with a characteristic mesh size h, so that Ω is the union of all J elements, i.e. Ω =

⋃︁J
i=1Ki.

Define Γ =
⋃︁

j ∂Kj as the union of all edges (internal edges and boundary edges) and
ΓI = Γ \ ∂Ω as the union of all interior edges. For each edge of Γ a normal field nΓ is defined.
Particularly on ∂Ω the normal field is defined as an outer normal and nΓ = n∂Ω.

K1 K2

Γi

nΓ

in − out +
nΓ = n∂Ω

∂Ω

Figure 3.1: Schematic illustration of two cells. Normals of the cell K1 are shown.

For each field u ∈ C0 (Ω \ ΓI), u− and u+ is defined, which describe the values of the
variables on the interior and exterior sides of the cell:

u− = lim
ξ↘0

u (x− ξnΓ) for x ∈ Γ (3.1)

u+ = lim
ξ↘0

u (x+ ξnΓ) for x ∈ ΓI (3.2)
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The jump and mean values of u on the inner edges ΓI are defined as

JuK = u+ − u−, (3.3)

{u} = 1

2

(︁
u− + u+

)︁
. (3.4)

while the jump and mean values on the boundary edges ∂Ω are given by

JuK = u−, (3.5)
{u} = u−. (3.6)

Furthermore, the broken polynomial space of a total degree k is defined as

Pk(Kh) = {f ∈ L2 (Ω) ;∀K ∈ Kh : f |K is polynomial and deg (f |K) ≤ k}. (3.7)

Additionally, for u ∈ C1(Ω \ Γ) the broken gradient ∇hu is defined as:

∇hu =

{︄
0 on Γ
∇u elsewhere (3.8)

The broken divergence ∇h · u is defined analogously. Furthermore, the function space for test
and trial functions for Dv dependent variables is defined as

Vk =

Dv∏︂

i=1

Pki(Kh) (3.9)

where k = (k1, ..., kDv) is the degree vector. Additionally, for a cell K a local inner product and
a local L2-norm is defined for uK , vK ∈ Vk as

(uK , vK)K :=

∫︂

K
uKvKdx, ||uK ||2K := (uK , uK)K (3.10)

Similarly, for uh, vh ∈ Vk a global inner product and global broken norm are defined as

(uh, vh)Ωh
:=

N∑︂

i=1

(uh, vh)K , ||uh||2Ωh
:= (uh, uh)Ωh

(3.11)

3.1.2 Discretization using the DG Method

In this subsection the DG discretization of a simple problem will be shown in order to demon-
strate the method and some of its specific characteristics. For this purpose, the discretization of
a general conservation law for a scalar quantity u = u(x, t) governed by a nonlinear flux func-
tion f(u) will be considered. In addition, suitable Dirichlet boundary conditions on ∂Ω = ∂ΩD

and initial conditions u0 are defined. The problem reads
∂u

∂t
+∇ · f(u) = 0, x ∈ Ω, (3.12a)

u = uD, x ∈ ∂ΩD, (3.12b)
u(x, 0) = u0(x), x ∈ Ω. (3.12c)
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The DG method allows finding an approximate solution uh = uh(x, t) for the problem defined
by Equation (3.12) by forming a linear combination of polynomial functions in each cell. The
discretization procedure starts by the approximation of the domain Ω with a numerical grid
Kh. In each cellKj of the numerical grid a set of polynomial basis ϕj = (ϕj,l)l=1,...,Nk

∈ Pk(Kh)

with a local cell support supp(ϕj) = Kj is defined. This allows to represent the local solution
for each cell Kj as

uj(x, t) =

Nk∑︂

l=1

ũj,l(t)ϕj,l(x) = ũj(t) · ϕj(x) (3.13)

The coefficients ũj = (ũj,l)l=1,...,Nk
are the DOF of the local solution in the cell Kj , which are

the unknowns of the problem. Note the time dependence of the coefficients ũj , as well as the
spatial dependence of the basis functions ϕj on the vector x.
This approximate solution sought is the best approximation of u ∈ L2(Ω), which gives a

minimum global error in the approximation space u ∈ Pk(Ω).
∫︂

Ω
(uh(x)− u(x)⏞ ⏟⏟ ⏞

=:r(x)

)2 dV = ||uh − u||22 → min (3.14)

Here r is the error of the discretization. Minimization is equivalent to the requirement

(r(x), ϕm) = (uh − u, ϕm)
!
= 0 ∀ϕm. (3.15)

This means that the error is orthogonal to every polynomial function ϕm in the approximation
space. This requirement, together with the ansatz Equation (3.13) define the projection
operator πp as

L2(Ω) ∋ u ↦→ πp(u) = uh ∈ Pp(Kh) (3.16)

One of the major motivations for the use of high order methods stems from the so called Bramble-
Hilbert lemma (Bramble and Hilbert, 1970), which states that for a p-times differentiable
variable u,

∥u(x)− πp(u(x))∥L2(Ω) ≤ C · hp+1 (3.17)

where h is a characteristic cell length and C is a constant that depends on u but not on h.
This means, that for a sufficiently smooth u, the approximation error is of the order O(hp+1).
Note that he differentiability assumption is essential: for non smooth u the well known Gibbs
phenomenon occurs. In this work a modal polynomial representation is used, using in particular
Legendre polynomials. The basis functions are chosen such that they are orthogonal to each
other ∫︂

Kj

ϕj,mϕj,ndV = δmn, (3.18)

where δmn is the Kronecker delta. This property implies that the mass matrix (to be defined
later) equals the identity matrix, at least for constant density systems. This is advantageous
particularly for incompressible flows, where the calculation of the mass matrix is dramatically
simplified using this property.
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The local formulation

By inserting the approximate solution defined by Equation (3.13) in the conservation Equa-
tion (3.12a), a local residual Rj can be defined

Rj(x, t) =
∂uj
∂t

+∇ · f(uj), x ∈ Kj (3.19)

Minimization of this local residual is done by multiplying Equation (3.19) by the so called test
functions ϑj,l. In the Galerkin approach, these test functions are required to be from the same
space as the trial functions, i.e. ϑj,l = ϕj,l. Thus, by multiplying Equation (3.19) by a trial
function and integrating over the cell Kj , one obtains

∫︂

Kj

Rjϕj,l dV =

∫︂

Kj

∂uj
∂t

ϕj,l

⏞ ⏟⏟ ⏞
Temporal

+∇ · f(uj)ϕj,l dV⏞ ⏟⏟ ⏞
Spatial

!
= 0, ∀ϕj,l. (3.20)

Where the minimization comes from requiring the equality to zero. Note that until this point
only a cell-local discretization has been addressed. The next step for obtaining a global DG
formulation is to use integration by parts for rewriting the spatial term in Equation (3.20).
This is done to make the boundary edge integrals explicitly appear in the formulation, which
are used to couple cell Kj with neighbouring cells. The partial integration process results in

∫︂

Kj

∂uj
∂t

ϕj,l dV +

∮︂

∂Kj

(f(uj) · nj)ϕj,l dS −
∫︂

Kj

f(uj) · ∇hϕj,l dV = 0, ∀ϕj,l, (3.21)

Note that inserting the ansatz Equation (3.13) into Equation (3.21) is problematic, since ∂Kj

is shared by other cells, and in the DG method, continuity of a variable is not enforced across
cell boundaries. This means that in general the inner value u−j and the outer value u+j are not
equal. This problem is solved by introducing the concept of a numerical flux function, denoted
here with f̂ , which follows

f̂(u+j , u
−
j ,nΓ) ≈ f(uj) · nj . (3.22)

This expression defines an unique value for the flux of a given cell boundary, enforcing flux
continuity. The numerical flux f̂ couples the DOFs of neighbouring cells, and should satisfy
certain mathematical and physical properties which will be discussed later. Many different
numerical fluxes have been developed, and it is an active area of investigation. They differ
mainly in computational cost, stability and dissipation of the scheme.
Finally by introducing the numerical flux in Equation (3.21) the problem now reads
∫︂

Kj

∂uj
∂t

ϕj,l dV +

∮︂

∂Kj

(︂
f̂(u+j , u

−
j ,nΓ)

)︂
ϕj,l dS −

∫︂

Kj

f(uj) · ∇hϕj,l dV = 0, ∀ϕj,l, (3.23)

The global formulation

Note that Equation (3.23) is still a local formulation. A global solution u(x, t) can be defined
by a piecewise polynomial approximation according to

u(x, t) ≈ uh(x, t) =

J⨁︂

j=1

uj(x, t) =

J∑︂

j=1

Nk∑︂

l=1

ũj,l(t)ϕj,l(x) ∈ Pk(Kh) (3.24)
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which corresponds to the direct sum of the J local solutions uj . A vector ũ = ũ1,1, ũ1,2, . . . ,
ũj,l, . . . , ũJ,Nk

which comprises all the DOFs of the global approximation uh is defined, and is
of length N = J ·Nk.
Finally, the global formulation is obtained by inserting the ansatz given by Equation (3.13)

into Equation (3.23), summing over all cells Kj and making use of Equation (3.24). The
problem finally reads: Find uh ∈ Pk(Kh), such that ∀ϕ ∈ Pk(Kh)

∫︂

Ω

∂uh
∂t

ϕ dV +

∮︂

Γ
f̂(u+h , u

−
h ,nΓ) [[ϕ]] dS −

∫︂

Ω
f(uh) · ∇hϕ dV = 0, (3.25)

The solution of this system requires finding the DOFs ũ of the global approximation uh. Dirichlet
boundary conditions are included in the formulation by defining at ΓD the outer value u−h = uD.
Note that Equation (3.25) is semi-discrete, meaning that the system of equations has been

discretized in space, but not in time. Time discretization will be treated in Section 3.1.3.
Finally, after selecting suitable numerical fluxes for the various terms of the governing

equations, a system is obtained that in general has the form

M
dũ
dt +Op(ũ) = b, (3.26)

WhereM is the mass matrix, andOp is the operator matrix. The vector b contains the Dirichlet
boundary condition. The operator matrix is defined locally by

(Opj)m,n =

∮︂

∂Kj

f̂(ũj,n, ũj∗,n,nI)ϕj,m dS −
∫︂

Kj

f(ũj,nϕj,n) · ∇hϕj,m dV, (3.27)

with j∗ denoting the index of a neighbour cell. The matrix Op has block-diagonal structure,
but also including extra diagonals which relate the DOFs of the cell with the neighbouring
cells.
The global mass matrix is

M =

⎡
⎢⎢⎢⎣

M1 0 · · · 0
0 M2 · · · 0
... ... . . . ...
0 0 · · · MJ

⎤
⎥⎥⎥⎦ , (3.28)

which is block-diagonal, sinceMj does not depend on neighbouring cells.

(Mj)m,n =

∫︂

Kj

ϕj,mϕj,n dV (3.29)

The mass matrix of a cellMj := M
(j,−) (j,−)

only depends in this case on the cell-local basis
functions. Note also that for an orthonormal basis,M = 1, i.e. the identity matrix.
It is interesting to note regarding the DG discretization, that a FVM-type discretization can

be recovered if the basis functions in this formulation are restricted to zero-degree polynomials.
Similarly, a discretization similar to a FEM formulation would be obtained if the allowance of
discontinuities in the formulation of the DG method would have been ignored.
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Note on the numerical fluxes

As mentioned before, the numerical fluxes f̂ have to fulfil certain physical and mathematical
properties for obtaining a stable and convergent method. A proof for the stability of the
numerical flux is given in Di Pietro and Ern (2012). One of the requirement for proving the
stability is the Lipschitz continuity, meaning

∃Ca ∈ R :
⃓⃓
⃓f̂(a1, b,n)− f̂(a2, b,n)

⃓⃓
⃓ ≤ Ca |a1 − a2| ∀a1, a2 ∈ R (3.30)

and
∃Cb ∈ R :

⃓⃓
⃓f̂(a, b1,n)− f̂(a, b2,n)

⃓⃓
⃓ ≤ Cb |b1 − b2| ∀b1, b2 ∈ R (3.31)

Additionally, the proof of the stability requires is the monotonicity of the flux:

∂f̂(a, b,n)

∂a
≥ 0 ∧ ∂f̂(a, b,n)

∂b
≤ 0 ∀a, b,n (3.32)

Two more requirements are needed for the numerical flux. The first is its consistency, which
can be written as

f̂(a, a,n) = f(a) · n, ∀a ∈ R. (3.33)
imposing that a numerical flux function should deliver the same approximate solution as the
original flux function in case of a continuous variable across the interface. A direct consequence
of the consistency of the numerical flux is that the weak formulation Equation (3.25) is
automatically fulfilled by uh = u.
Finally the last requirement is that the numerical flux should be conservative, which means

that the total amount of u can only change due to fluxes across the domain boundary. This can
be written as

f̂(a, b,n) = −f̂(b, a,−n), ∀a, b ∈ R. (3.34)
All numerical fluxes used in this work for the spatial discretization of equations (2.22) fulfil
these requirements.

3.1.3 Temporal discretization

This section gives a brief introduction to the most used time-stepping techniques and then
show the time-stepping method used in this work. It is mainly based on LeVeque (2002) and
Ferziger and Perić (2002).
In the previous section the spatial discretization of a transport equation using a DG method

was shown, resulting in the semi-discrete formulation given by Equation (3.25). The time
discretization of this semi-discrete system leads to the so called method of lines, which is the
name for a method first discretized in space, and later in time.
An alternative to the method of lines is the so called Rothe’s method, where time is first

discretized then the space. This can be advantageous in some cases, such as problems with a
moving domain. Another alternative is the space-time approach, where basically the temporal
coordinate is treated as another spatial dimension. Again, the method can be very attractive
for some cases. However, the discretized schemes lead often to prohibitively large systems.
These approaches are ignored in the present work, and the method of lines is adopted.
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First the time discretization for a system with a constant mass matrix will be discussed. The
process of discretization results often in a system of ordinary differential equation (ODE) of
the form

M
du
dt = −F (t,u(t)) for t ∈ (0, T ). (3.35)

with a initial condition given by u(t = 0) = u0. The main idea of a time-stepping algorithm
is to discretize the time coordinate, and advance gradually the solution u(tn) in time using
the information at previous time levels u(tn−1), u(tn−2), . . . , until a certain final time t = T is
reached. By integrating Equation (3.35) in time, one obtains

M(u(tn+1)− u(tn)) = −
∫︂ tn+1

tn
F (t,u(t))dt (3.36)

This equation is the starting point for different class of time stepping techniques. Two kind of
methods can be distinguished, depending on how the integral in Equation (3.36) is evaluated:
explicit methods and implicit methods. Explicit methods are obtained when the approximation
of the integral is done only by using information from old time steps, while for implicit methods
the information from the actual timestep is also considered, necessitating to solve a system of
equations.
The simplest example of an explicit time-stepping method is the Explicit Euler Method:

Mu(tn+1) = Mu(tn)−∆tF (tn,u(tn)), (3.37)
which is first order accurate in time. Other explicit methods exists with better properties than
the Explicit Euler Method, typically using information from multiple known time levels or a
interpolation of them. Adams-Bashforth methods are an example of them.
Due to the local nature of the approach, explicit methods present themselves specially

attractive for DG methods, particularly for hyperbolic equations. Explicit methods are relatively
easy to implement, and need considerably less storage compared to implicit methods. However,
explicit methods experience the disadvantage that the stability of the algorithm is heavily
limited by a maximal timestep size ∆t. The timestep typically scales with the grid size h
and polynomial degree p by ∆ ∼ h/p for hyperbolic and ∆ ∼ (h/p)2 for parabolic problems
(Gassner et al., 2007). For many problems of interest, particularly stiff systems, this limitation
is highly restrictive, since very little timesteps need to be chosen in order to obtain a stable
method.
Implicit methods on the other hand are specially well suited for stiff problems, as they don’t

suffer from the restrictive timestep limitation of explicit methods, even not being restricted
at all under certain conditions. This allows using considerably bigger timesteps, potentially
reducing drastically calculation times. Implicit methods present however the inconvenience
that they require the solution of a system of equations, which for large problems is not a trivial
task and specialized methods are needed. The use of implicit methods is justified, particularly
for stiff problems, as the extra computational overhead originating from solving of the system
of equations is usually smaller than the time it would take to solve the same problem using
explicit schemes with very small timesteps.
The simplest implicit method is the Implicit Euler Method,

Mu(tn+1) + ∆tF (tn+1,u(tn+1)) = Mu(tn). (3.38)
Note that this is a nonlinear system of algebraic equations that has to be solved for u(tn+1).
The Implicit Euler Methods is the first method of a family of backward differentiation formula
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(BDF) methods, and under some conditions presents the property of being unconditionally
stable, meaning that the algorithm allows an arbitrarily large timestep. This property allows
the calculation of steady state solutions just by choosing a very large ∆t value. However, not
all BDF schemes are unconditionally stable, as it will be shown next.

Backward Differentiation Formula

s γ β0 β1 β2 β3 β4
Implicit Euler (BDF1) 1 1 -1
BDF2 2 3 -4 1
BDF3 6 11 -18 9 -2
BDF4 12 25 -48 36 -16 3

Table 3.1: Coefficients of the BDF schemes.

In the present work BDF methods are used. The main characteristic of this family of methods
is that they are linear multistep methods, which means that they use information available
from previous timesteps, increasing the accuracy of the scheme. In case of a non-constant mass
matrixM, they have a general formula given by

β0
γ∆t

M
(︁
u(tn)

)︁
u(tn)− F

(︁
u(tn)

)︁
= −

s∑︂

i=1

βi
γ∆t

M
(︁
u(tn−i)

)︁
u(tn−i). (3.39)

where s is the order of the BDF-scheme. The coefficients of each schema are shown in Table 3.1.
The main advantage of BDF methods is their large stability regions, which make them suitable
for solving stiff problems. In Figure 3.2 the stability regions for the first four BDF schemes are
shown. It is possible to observe that only the BDF-1 (implicit Euler) and BDF-2 schemes exhibit
the property that they are A-stable, which means that the stability region contains the entire
left complex plane (Dahlquist, 1963). On the other hand, BDF schemes of order s > 2 are not
A-stable. In this work however, BDF schemes up to order three have been used, as the unstable
eigenvalues for s = 3 are comparatively small (Smuda, 2021).

Temporal discretization of the low-Mach equations

Performing the same procedure as explained in the previous section for the low-Mach equations
(Equations (2.22a) to (2.22d)), a semi-discrete formulation of the form

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣

ρ(T,Y ) 0 0 0
0 0 0 0
0 0 ρ(T,Y ) 0
0 0 0 ρ(T,Y )

⎤
⎥⎥⎦

⏞ ⏟⏟ ⏞
M(U)

⎡
⎢⎢⎣

u
p
T
Y ′

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎢⎢⎣Op

⎛
⎜⎜⎝

u
p
T
Y ′

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
∂tρ(T,Y )

0
0

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⏞ ⏟⏟ ⏞
F (U)

= 0

(3.40)
is obtained. Here the spatial operator is denoted as Op. Equation (3.40) has exactly the form
that can be solved with a BDF formula as expressed by Equation (3.39). Note that the time
derivative ∂ρ/∂t from the continuity equation is written as an additional source term, since the
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Figure 3.2: A-stability regions of the BDF schemes for different s. The areas shown in grey are unstable
regions. Figure taken and adapted from (Kikker, 2020)

density is not a primitive variable. A second-order approximation of the density time derivative
is used for its discretization

(︃
∂ρ

∂t

)︃n

=
1

2∆t

(︁
3ρn − 2ρn−1 + ρn−2

)︁ (3.41)

While this type of discretization works for a wide range of applications, as it will be seen later,
it can lead to instabilities in systems where density variations are large.

3.2 Discontinuous Galerkin discretization of the low-Mach equations

The discretization methodology shown in last section is used for finding a discrete formulation
of the governing equations for low-Mach reactive flows. In the next sections the discretization
for the fully coupled problem with finite reaction rate, and for the flame sheet problem are
shown. The chosen numerical fluxes are also shown, and some of their particularities are
discussed.
Special care has to be taken to avoid spurious oscillations on the pressure field. This is

done in the present work by using a mixed order formulation, where polynomials of order
k for velocity, temperature, mass fractions and mixture fractions, and of degree k′ = k − 1
for pressure are used. This is a required compatibility condition for obtaining a well posed
problem and is used to ensure the validity of the Ladyzenskaja-Babus̆ka-Brezzi (or inf-sup)
condition (Babuška, 1973).

3.2.1 Discontinuous Galerkin discretization of the finite reaction rate problem

Here the DG discretization of the finite reaction system defined by Equations (2.22a) to (2.22d)
is presented. First, the vector Y ′ = (Y1, . . . , YN−1) is defined as the vector containing the first
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(N − 1) mass fractions and s = (s1, . . . , sN−1) as the vector containing the test functions for
the first (N − 1) mass fraction equations.
The discretized form of Equations (2.22a) to (2.22d) is obtained in a similar fashion to the

methodology shown in Section 3.1.2. This means, (1) each equation is multiplied by a test
function, (2) integrated over an element Kj , (3) applied integration by parts, (4) introduced
an adequate numerical flux for each term and (5) summing over all cells in order to obtain a
global formulation.
The discretized equations of the transient problem can be written as: find the numerical

solution (pn+1
h ,un+1

h , Tn+1
h ,Y ′n+1

h ) ∈ Vk such that for all test functions (qh,vh, rh, sh) ∈ Vk ,
following equations are fulfilled:

Continuity equation
B1(qh) = C

(︁
un+1
h , qh, ρ(T

n+1
h ,Y n+1

h )
)︁
+ T (∂tρ|tn+1 , qh), (3.42a)

Momentum equations
B2(vh) = UC

(︁
un+1
h ,un+1

h ,vh, ρ(T
n+1
h ,Y n+1

h )
)︁
+ UP

(︁
pn+1
h ,vh

)︁
+ UD

(︁
un+1
h ,vh, µ(T

n+1
h )

)︁

+ US
(︁
ρ(Tn+1

h ,Y n+1
h ),vh

)︁
+ E(∂t(ρu)|tn+1 ,vh), (3.42b)

Energy equation
B3(rh) = SC

(︁
un+1
h , Tn+1

h , rh, ρ(T
n+1
h ,Y n+1

h )
)︁
+ SD,E

(︁
Tn+1
h , rh, k/cp(T

n+1
h )

)︁

+ SS
(︁
rh,Q(Tn+1

h ,Y n+1
h ), ω(Tn+1

h ,Y n+1
h ), cp(T

n+1
h ,Y n+1

h )
)︁

+ T (∂t(ρT )|tn+1 , rh), (3.42c)
Mass fraction of species α equation
B4(sαh) = SC

(︁
un+1
h , Y n+1

αh , sαh, ρ(T
n+1
h ,Y n+1

h )
)︁
+ SD,M

(︁
Y n+1
αh , sαh, ρDα(T

n+1
h )

)︁

+MS
α

(︁
sαh, ω(T

n+1
h ,Y n+1

h )
)︁
+ T (∂t(ρYα,h)|tn+1 , sh). (3.42d)

where the index α of the mass fraction equations takes values α = 1, . . . , (N − 1). Here C is
the discretized divergence form of the continuity equation. Furthermore UC is the discretized
convective form of the momentum equation and SC is the discretized convective form of the
temperature and mass fraction equations. UP is the discretized gradient form. Additionally,
UD, SD,E and SD,M are the discretized diffusive form of the momentum, temperature and
mass fractions equations, respectively. Furthermore US , SS andMS are the discretized source
terms of the momentum, temperature and mass fraction equations. Finally T and E are the
contributions of the temporal derivatives, and B1, B2, B3 and B4 contain the information of
the Dirichlet boundary conditions for the continuity, momentum, energy and mass fraction
equations, respectively.
Note that the convective and diffusive terms of the temperature scalars T , mass fraction

Yα and mixture fraction z have the same form, so they share the same expression in their
discretized form. Each one of the forms introduced here are defined later in Section 3.2.3.

3.2.2 Discontinuous Galerkin discretization of the flame sheet problem

The discretization the flame sheet problem given by Equations (2.31a) to (2.31c) proceeds in
a analogous way.
The resulting problem reads: find the numerical solution (pn+1

h ,un+1
h , zn+1

h ) ∈ Vk such that
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for all test functions (qh,vh, rh) ∈ Vk following equations are fulfilled:
Continuity equation
B1(qh) = C

(︁
un+1
h , qh, ρ(z

n+1
h )

)︁
+ T (∂tρ|tn+1 , qh), (3.43a)

Momentum equations
B2(vh) = UC

(︁
un+1
h ,un+1

h ,vh, ρ(z
n+1
h )

)︁
+ UP

(︁
pn+1
h ,vh

)︁
+ UD

(︁
un+1
h ,vh, µ(z

n+1
h )

)︁

+ US
(︁
ρ(zn+1

h ),vh
)︁
+ E(∂t(ρu)|tn+1 ,vh), (3.43b)

Mixture fraction equation
B3(rh) = SC

(︁
un+1
h , zn+1

h , rh, ρ(z
n+1
h )

)︁
+ SD,E

(︁
zn+1
h , rh, ρD(zn+1

h )
)︁
T (∂t(ρz)|tn+1 , rh).

(3.43c)
Note that density and transport parameters depend on the mixture fraction z, which indirectly
modifies the temperature and mass fraction fields.

3.2.3 Definitions of nonlinear forms

In the following the nonlinear forms used in this work are shown. Regarding the choice of
fluxes, the "best practices" known in literature for the incompressible Navier-Stokes equation
are followed. These fluxes proved to be well suited for all the problems discussed in this thesis,
providing stability to the algorithm, while maintaining the accuracy of the solver.
It is well known that central difference fluxes for the pressure gradient and velocity divergence,

combined with a coercive form for the viscous terms, e.g. symmetric interior penalty, gives
a stable discretization for the Stokes equation (Pietro and Ern, 2012; Girault et al., 2004).
Furthermore, it is known that for all kinds of convective terms, a numerical flux which transports
information in characteristic direction, e.g. Upwind, Lax-Friedrichs or Local-Lax-Friedrichs,
must be used. The last one was opted for in the present implementation, as it provides a good
compromise between accuracy and stability.

Continuity equation

A central difference flux for the discretization of the continuity equation is used:

C(u, q, ρ) =
∮︂

ΓI∪ΓN∪ΓND∪ΓP
{ρu} · nΓ [[q]] dS −

∫︂

Ω
ρu · ∇hq dV. (3.44)

The density in Equation (3.44) is evaluated as a function of the temperature and mass frac-
tions using the equation of state (Equation (2.26)). The term B1 on the left hand sides of
Equation (3.42a) and Equation (3.43a) contains the Dirichlet boundary conditions:

B1(q) = −
∮︂

ΓD∪ΓDW
q(ρDuD · nΓ).dS (3.45)

The density at the boundary ρD is evaluated with Equation (2.26) using the corresponding
Dirichlet values of temperature and mass fractions, i.e. ρD = ρ(TD,YD). Finally the temporal
contribution is

T (u, v) =
∫︂

Ω
uv dV. (3.46)

Note that in case of the temporal term of the continuity equation ∂tρ, it is discretized as
mentioned in Equation (3.41)

33



Momentum equations

The convective term of the momentum equations is discretized using a Lax-Friedrichs flux

UC(w,u,v, ρ) =

∮︂

Γ

(︂
{ρu⊗w}nΓ +

γ1
2

[[u]]
)︂
· [[v]] dS −

∫︂

Ω
(ρu⊗w) : ∇hvdV. (3.47)

The Lax-Friedrichs parameter γ1 is calculated as Klein et al. (2016)

γ1 = max
{︂
2ρ+|u+ · n+|, 2ρ−|u− · n−|

}︂
, (3.48)

where ρ± and u± are the mean values of ρ± and u± in K±, respectively. The pressure term is
discretized by using a central difference flux

UP (p,v) =

∮︂

Γ\ΓN\ΓND
{p} ([[v]] · nΓ) dS −

∫︂

Ω
p∇h · v dV . (3.49)

The diffusive term of the momentum equations is discretized using a symmetric interior penalty
(SIP) formulation (Shahbazi, 2005)

ŨD
(u,v, µ) =

∫︂

Ω

(︃
µ

(︃
(∇hu) + (∇hu)

T − 2

3
(∇h · u)I

)︃)︃
: ∇hv dV

−
∮︂

Γ\ΓN\ΓND

(︃{︃
µ(∇hu+∇hu

T − 2

3
(∇h · u)I)

}︃
nΓ

)︃
· [[v]] dS

−
∮︂

Γ\ΓN\ΓND

(︃{︃
µ(∇hv +∇hv

T − 2

3
(∇h · v)I)

}︃
nΓ

)︃
· [[u]] dS

+

∮︂

Γ\ΓN\ΓND
ηµmax [[u]] [[v]] dS.

(3.50)

The viscosity µ is evaluated as a function of temperature according to Equation (2.29) and
µmax = max(µ+, µ−). Additionally η is the penalty term of the SIP formulation, which has to
be chosen big enough to ensure coercivity of the form, but also as small as possible in order to
not increase the condition number of the problem. The estimation of the penalty term is based
on an expression of the form

η = η0
A(∂K)

V (K)
, (3.51)

where for a two-dimensional problem A is the perimeter and V the area of the element. The
parameter η0 is a safety factor. If not stated otherwise, the value η0 = 4 is set in all calculations.
Further information on the determination of the penalty term of the SIP formulation η and
the penalty term of the Lax-Friedrichs flux γ1 can be found in the works from Hesthaven and
Warburton (2008) and Hillewaert (2013).
Note that the diffusive term of the momentum equations is scaled by the Reynolds number,

obtaining finally
UD(u,v, µ) =

1

Re Ũ
D
(u,v, µ) (3.52)

The source term arising due to body forces is:

US (ρ,v) =
1

Fr2
∫︂

Ω
ρ

g

∥g∥ · v dV. (3.53)
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Finally, the left hand sides of Equation (3.42b) and Equation (3.43b) contain the information
from Dirichlet boundary conditions:

B2(v) = −
∮︂

ΓD

(︂
(ρuD ⊗ uD)nΓ +

γ1
2
uD
)︂
· v dS +

∮︂

ΓD
µDuD · (∇hvnΓ +∇hv

TnΓ − ηv) dS.

(3.54)
The Dirichlet viscosity value µD is calculated from Equation (2.29) using the Dirichlet values of
the temperature at the boundary. Finally the temporal derivative of the momentum equation
in its discretized form corresponds to

E(u,v) =
∫︂

Ω
u · v dV. (3.55)

Scalar equations

Since the convective and diffusive terms for the temperature, mass fractions and mixture
fraction share a similar form, here their discretized expressions are summarized in terms of an
arbitrary scalar X (corresponding to T in the energy equation, Yα in the equation for species α
and z for the mixture fraction equation) and transport parameter ξ (i.e. k/cp in the energy
equation, and (ρD) for the mass fraction and mixture fraction equations). The convective term
of the scalars is discretized using a Lax-Friedrichs flux

SC(u, X, r, ρ) =

∮︂

Γ

(︂
{ρuX} · n+

γ2
2

[[X]]
)︂
[[r]] dS −

∫︂

Ω
(ρuX · ∇hr)dV. (3.56)

The Lax-Friedrichs parameter γ2 is calculated as

γ2 = max
{︂
ρ+|u+ · n+|, ρ−|u− · n−|

}︂
. (3.57)

The diffusion term of scalars is discretized again with a SIP formulation:

SD(X, r, ξ) =

∫︂

Ω
(ξ∇hX · ∇hr) dV

−
∮︂

Γ\ΓN\ΓND
({ξ∇hX} · n [[r]] + {ξ∇hr} · n [[X]]− ηξmax [[X]] [[r]]) dS. (3.58)

The transport parameter ξ is calculated as a function of temperature using Equation (2.29)
and ξmax = max(ξ+, ξ−). The diffusive term for the temperature equation and mixture fraction
equation is scaled by the Reynolds and Prandtl number as

SD,E (T, r, k/cp) =
1

Re PrS
D(T, r, k/cp) (3.59)

Similarly the diffusive term for the mass fraction equations is

SD,M
(︁
Y n+1
αh , sαh, ρDα

)︁
=

1

Re Pr Leα
SD
(︁
Y n+1
αh , sαh, ρDα

)︁ (3.60)

The boundary condition term of the corresponding scalar equation is:

B3(r) = −
∮︂

ΓD∪ΓND

(︂
(ρDuDXD) · nΓ +

γ2
2
XD

)︂
r dS+

∮︂

ΓD∪ΓND
ξDXD(∇hr·nΓ−ηr) dS. (3.61)
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Here, XD is the Dirichlet value of the scalar X on boundaries and ξD is the corresponding
transport parameter, which is calculated with Equation (2.29) using the Dirichlet values of
the temperature at the boundary. Finally, the volumetric source terms of the energy and mass
fraction equations are defined as follows:

SS(r,Q, ω, cp) = H Da
∫︂

Ω

Qω

cp
r dV, (3.62)

MS
α(sα, ω) = Da

∫︂

Ω
ναMαωsα dV. (3.63)

The heat release Q is calculated with Equation (2.25), the reaction rate ω is evaluated using
Equation (2.24) and the mixture heat capacity with Equation (2.28).
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4 Computational methodology

This chapter addresses the computational methods developed for solving the system of gov-
erning equations presented in the preceding chapters. The chapter starts in Section 4.1 with
a concise literature review concerning the methods employed in this study. Subsequently, in
Section 4.2 a comprehensive description of the methods employed by the XNSEC solver is
provided. Then in Section 4.3 the implementation and uses of both nonlinear and linear solvers
are presented. Finally, in Section 4.4 various convergence-enhancing strategies employed for
solving highly nonlinear problems are presented, such as the use of a homotopy strategy for
highly non-linear problems, or the use of solver safeguards to avoid nonphysical results.

4.1 State of the art of DG methods for diffusion flame simulations

There are numerous works in which the DG method has been used in the context of CFD.
Extensive attention has been paid to algorithms for solving incompressible flows, such as in
the works from Shahbazi et al. (2007), Kummer (2012), and Klein et al. (2013). However,
not much attention has been put into extending the methods to be able to handle variable
density flows. In the work by Klein et al. (2016) an extension is presented of the method for
solving the low-Mach equations in a DG Framework making use of a SIMPLE type scheme. As
mentioned in the introduction, while the strategy proved useful for simulating various flow
problems, for many of these problems the computation time proved to be prohibitive. Similarly,
in the work of Hennink et al. (2021) a pressure-based solver for low-Mach flows is presented.
They solve the system of equations in a segregated way, and solve for the mass flux instead of
the velocity as the primitive variable. They employ an equal order formulation for the coupling
of pressure and velocity; however, this approach results in significant computational expenses,
especially when dealing with high Reynolds numbers. They solve the enthalpy form of the
energy equations, which is shown to be a source of instabilities if special care is not taken.
In the context of CFD, the coupling between velocity fields and pressure within the Navier–

Stokes equations has been a topic of considerable research and interest. It’s a well known
fact that in the case of incompressible flows, the absence of a time derivative in the continu-
ity equation poses challenges for advancing the system in time using conventional methods.
Traditionally this type of coupling has been solved by means of segregated methods, such as
projection methods (Chorin, 1967), or by using methods such as SIMPLE (Patankar, 1980).
Such algorithms offer the benefit of low memory usage and have undergone extensive in-
vestigation and application especially within the context of approaches like FVM. However,
as mentioned earlier, the use of segregated methods doesn’t guarantee conservativity of the
relevant physical quantities, and special care has to be taken in that regard. Since for low-Mach
number flows the flow field is coupled to the temperature and therefore to the density, it is not
possible to solve the equations in a completely conservative way in a non-iterative segregated
framework.
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The investigations mentioned above deal exclusively with segregated approaches, which
as mentioned, are not necessarily conservative. An alternative approach involves solving
the complete system of equations in a fully coupled manner. This approach guarantees the
conservation of relevant physical variables, provided careful attention is paid to the convergence
criteria. While this strategy may appear to be the most straightforward, it is not free of
complications. Special care must be taken in the algorithms for solving the usually nonlinear
problem, as this can easily lead to problems with convergence. Memory resources can also be
prohibitive, as solving the equations in a coupled manner usually requires dealing with very
big matrices.
The DG method has also been used for simulations of combustion, mainly within a compress-

ible framework. In the work from Johnson and Kercher (2020) the compressible Navier–Stokes
equations are solved using a nodal DG scheme for combustion with complex chemistry and
transport parameters. An hp-adaptive method is also presented. Similarly in the work from
Lv and Ihme (2017) a DG solver for multi-component chemically reacting flows, which solves
the fully compressible Navier-Stokes equation, is presented. A hybrid-flux formulation is used,
where a conservative Riemann solver is used for shock treatment, and a double-flux formulation
is used in smooth regions. They show its applicability for non-reacting and reacting flows,
particularly for systems characterized by high-Mach numbers. To the best of the authors’
knowledge, there are no publications that address low-Mach number reactive flows using a
fully coupled solver, as done in the present work.
The system of equations obtained from the discretization of highly nonlinear systems can be

very difficult to solve. Fixed-point iteration schemes have been used often used as a linearization
strategy, as done by Klein et al. (2016). A significant limitation of this strategy is the necessity
for an adequate selection of the under-relaxation factors, which are highly dependent on the
specific problem. A much more robust strategy is the use of Newton type methods. Here, a
problem-dependent factor is not needed. There is however a trade-off, because the Jacobian
matrix has to be calculated, which can be computationally expensive. This approach has been
used for combustion related problems in numerous works. Karaa et al. (2003) studied the
axisymmetric laminar jet diffusion flame and investigated the behavior of a multi-grid solver
when using different pre-conditioners with a damped Newton algorithm. Shen et al. (2006)
investigated the use and efficiency of a Newton method coupled with the Bi-CGSTAB method
for an axisymmetric laminar jet flame. They concluded that, in terms of computational cost,
the steady-state solution is more efficiently obtained by directly solving the steady formulation
of the equations, than by solving the transient Navier-Stokes equations until the steady state is
reached.

4.2 The XNSEC solver

The XNSEC solver is mainly focused on the simulation of combustion using the low-Mach
equations. The equations are solved in a fully coupled way, and the associated nonlinear
problem is solved by means of a globalized Newton method. Motivated by future work, where
a burning droplet is going to be simulated, the solver is embedded in the framework for
eXtended Discontinous Galerkin (XDG) solvers presented in Kummer (2017), which focuses
on applications for multi-phase flows using a sharp interface approach employing a level-set
method. However, in the present work only the single-phase case is treated.
The fully coupled solution of the equations is realized by means of various algorithmic

components
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• A time-stepping framework based on a BDF scheme, described in Kummer et al. (2018).

• A Newton-Doglegmethod for the solution of nonlinear problems. The Dogleg globalization
increases the likelihood of finding a convergent solution even in cases where no adequate
initial estimate is available. An increased computational efficiency is archived by an
special method for the calculation of the Jacobian matrix. The algorithm is described in
Section 4.3.3

• A homotopy continuation scheme that allows solving highly nonlinear problems by
generating a series of convergent solutions. This algorithm is described in Section 4.4.1.

• The solution of the flame-sheet problem for initialization of a fully coupled steady-state
finite-reaction rate system. The strategy is presented in Section 4.4.3

Note that even for steady state calculations, a time stepping scheme is used and the steady-
state solutions are obtained by using a Implicit Euler time stepping scheme. Since the scheme
is unconditionally stable (see Section 3.1.3), it is possible to select a very large timestep to
obtain the steady state solution. In particular, a value ∆t = 1.7976931348623157 · 10304 is used,
which is four orders of magnitude lower than the largest possible value of a double-precision
floating-point number.

4.3 Solution of the nonlinear problem

In the early stages of development of the XNSEC solver, the BoSSS code featured a framework
for the solution of nonlinear systems using Picard iterations. These proved to be useful for
systems where no large nonlinearities exist. Although the use of Picard iterations was useful for
solving various types of problems (particularly problems involving incompressible flows), the
method did not prove to be a particularly robust method, since it requires user-defined under-
relaxation parameters in order to obtain a stable algorithm. This motivated the development
of the implementation of a Newton method for the resolution of the nonlinear system which
will be presented in the following pages. The method was already presented in (Kikker et al.,
2020; Gutiérrez-Jorquera and Kummer, 2022), and following section is largely based on it.
The use of this globalized Newton method proved to be very successful for all testcases treated
in the present work.
The variational problem defined by Equations (3.42a) to (3.42d) can be cast into a more

compact notation. By subtracting all terms from the right-hand sides from the terms of the
left-hand sides of Equations (3.42a) to (3.42d) the problem can be written as: Find Uh ∈ Vk

N (Uh,Vh) = 0 ∀ Vh ∈ Vk, (4.1)

for Uh = (ph,uh, Th,Y
′
h) and Vh = (qh,vh, rh, sh) . A basis is assumed as Φ = (Φ1, . . . ,ΦL) of

Vk, written as a row vector, with L := dim(Vk). Then Uh can be represented as Uh = Φ · U.
The nonlinear problem (4.1) can then be expressed as

A(U) = 0, (4.2)

with the nonlinear function RL ∋ U ↦→ A(U) ∈ RL. The i-th component of A(U), can be
defined by N (−,−) through the relation [A(U)]i = N (Φ · U,Φi).
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4.3.1 Newton’s method

Newton’s method is a very popular and well known iterative method used for finding roots of
nonlinear systems. The method is particularly attractive because shows the property of having
quadratic convergence sufficiently close to the solution (Deuflhard, 2011). In this section the
method will be briefly described. For more information the interested reader is referred to the
textbook from Kelley (1995).
Consider the linearization of Equation (4.2) around Un,

A(Un) + ∂A(Un) (Un+1 − Un)⏞ ⏟⏟ ⏞
=:s′n

= 0. (4.3)

Here is ∂A the Jacobian matrix of A, defined as

∂Aij(U) :=
∂Ai

∂Uj
(U). (4.4)

By repeatedly solving Equation (4.3) one obtains a standard Newton scheme for Equation (4.2),
yielding a sequence of approximate solutions U0,U1,U2, . . . obtained from an initial guess U0

through the iteration scheme Un+1 = Un + s′n. In the classical undamped Newton method, the
correction step s′n is set to be the whole Newton-step, i.e s′n = sn with

sn := −∂A(Un)
−1A(Un), (4.5)

which is computed using a direct solver. Unfortunately, convergence of the Newton method
for any starting value U0 is not guaranteed. As a way to remedy this problem, so-called
globalization methods have been developed, where basically the area of convergence of the
Newton algorithm is enlarged used different kind of strategies.
A big drawback of Newton method is the calculation is the necessity of the Jacobian matrix,

since its direct calculation using usual methods can be computationally expensive. The BoSSS
framework provides an efficient algorithm for the evaluation of the Jacobian, and is presented
next.

4.3.2 Calculation of the Jacobian matrix

During the development process of the XNSEC solver different strategies for the calculation of
the Jacobian matrix ∂A were developed and are shown here.
First, it is interesting to show the relationship existing between two well known methods for

solving nonlinear systems: Picard iterations and Newton’s method. Note that the nonlinear
problems Equation (4.2) appearing in this work have the structure

A(U) := A(U)U− b. (4.6)
Thus, the Jacobian matrix Equation (4.4) can be written as

∂Aij(U) = Aij +
∑︂

k

∂Aik

∂Uj
UK = Aij +A′

ijUK . (4.7)

Inserting Equation (4.6) and Equation (4.7) into Equation (4.3), the linear system to be solved
using Newton’s method can be written as

A(Un)(Un + s′n)− b⏞ ⏟⏟ ⏞
Picard system

+A′(Un)Uns′n = 0 (4.8)
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This makes the relationship between the two algorithms apparent, and shows that by using
Picard iterations some terms are being neglected from the iteration scheme. Unlike Picard’s
method of iterations, Newton’s method requires additionally the evaluation of the Jacobi matrix,
which must be approximated in some way. This section shows three strategies that were used
throughout the development of this work for that purpose.

Ad-hoc linearization of the Jacobian matrix

For some problems, particularly saddle-point problems, the Jacobian A’ can be approximated
fairly well by simply evaluating the operator matrix. Thus, the system to be solved for Newton
Iteration yields

A(Un)(Un + s′n)− b+A(Un)Uns′n = 0 (4.9)
This strategy offers a computationally cheap algorithm to obtain a solution of the nonlinear
problem. However, the method offers limited robustness, and is known to be prone to fail for
non-saddle-point problems (Kikker, 2020).

Approximation of the Jacobian matrix by finite differences

A straightforward way of calculating the Jacobian matrix appearing in Equation (4.8) is to use
forward finite differences as an approximation

A′(U)j :=
A(U+ ε ||U|| ej)−A(U)

ε ||U|| , (4.10)

where ej is the unit vector with jth component equal to one, and zero in all other components.
The value of ε should be chosen small, as usual when calculating finite differences, but also
large enough not to disturb the calculations due to problems caused by floating-point rounding
calculations. Here, value ε = √eps is selected, where eps = 2.22044604925031 · 10−16 is the
floating point accuracy for double precision.
The calculation of the forward finite difference approximation is a costly operation, especially

for large systems, where it can be particularly prohibitive. However it offers a robust way to
approximate the Jacobian. Strategies for improving the efficiency of this calculation exists,
such as the use of analytic Jacobians, or use of the sparsity patterns of the Jacobian (Kelley,
1995). These are not treated in the present work.

Approximation of the Jacobian from differentiation of equation components

The finite difference Jacobi matrix calculation shown above is a fairly simple but computa-
tionally expensive calculation. The BoSSS code is capable of evaluating the Jacobian matrix
automatically from the equation components given in Section 3.1.1. First, note that A(U) could
be written as

[A(U)]i = N (Uh,Φi) =

∫︂

Ωh

N1(x,Uh,∇Uh)·Φi+N2(x,Uh,∇Uh)·∇ΦidV+
∮︂

Γ
. . . dS. (4.11)

The edge integral, which is left out in Equation (4.11), can be expressed analogously to the
volume integral, i.e. as a sum over four nonlinear functions, multiplied by Φ+

i , Φ−
i , ∇Φ+

i

and ∇Φ−
i , respectively. These functions themselves may include the dependence on x, U+

h ,
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U−
h , ∇U+

h and ∇U−
h . These are however omitted here for the sake of compactness, but the

treatment is analogue. Realizing that
∂Uh

∂Uj
= Φj (4.12)

and by application of the chain rule, it is possible to derive an expression for the calculation of
the entries of the Jacobian matrix from the equation components as

∂Aij(U) =
∫︂

Ωh

(∂Uh
N1(x,Uh,∇Uh)Φj + ∂∇Uh

N1(x,Uh,∇Uh)∇Φj) ·Φi + . . .dV+
∮︂

Γ
. . . dS.

(4.13)
All omitted terms in Equation (4.13) can be approximated analogously to the contributions for
N1. In the BoSSS code, derivatives ∂Uh

N1(. . .) and ∂∇Uh
N1(. . .) are approximated by a finite

difference, using a perturbation by eps in the respective argument.
This approach has the significant improvement that it offers an efficient and accurate way to

obtain the Jacobian matrix, unlike the two approaches mentioned above. For this reason, this
option is the one chosen for the resolution of all the testcases shown in this work.

4.3.3 Newton-Dogleg Method

A well known problematic of Newton methods is the necessity of a good starting estimate for
the algorithm to get a convergent solution. If the initial estimate is far away from a solution,
the algorithm could converge but at a very slow rate and in the most critical cases it could
stagnate or even diverge. For some highly nonlinear problems this is a significant issue. The so
called globalization methods are auxiliary procedures designed to alleviate this problem.
In general two kinds of globalization algorithms can be identified. The so called backtracking

methods consist in a modification of the Newton step length (usually a reduction), in order
to obtain steps that lead to a solution of the system. These are usually easy to implement,
but suffer from the restriction that the Newton step direction is restricted to the one of the
trial step, which could not be an ideal direction, specially if the Jacobian is ill conditioned
(Pawlowski et al., 2006).
The second globalization type are the so called Trust-region globalization methods. The

main idea of these kind of algorithms is to use a quadratic approximation of the function, which
is assumed to be valid within a "trust region". This trust region is enlarged or reduced based
on defined strategies, which improves the likelihood of finding a solution and accelerates the
convergence. This kind of approaches has proven to be robust and very useful for a variety of
problems, but are usually not easy to implement.
In this work, in order to increase robustness when the distance between U0 and the exact

solution U is large, a trust region globalization approach known as the Newton-Dogleg method
is used. The algorithm is presented by Pawlowski et al. (2006) and Pawlowski et al. (2008).
In this section the intention is to give only the main ideas of method and refer to the original
works for further details.
Note that the exact solution of Equation (4.2) is also a minimum of the functional

f(U) := 1

2
∥A(U)∥22 . (4.14)

Thus ∇f(U) = ∂A(U)TA(U). For Un, the approximate Cauchy point with respect to the
2-norm, is defined as the minimizer gn of ∥A(Un) + ∂A(Un)gn∥2 in the direction of steepest
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decent, i.e. gn = λ∇f(Un), λ ∈ R. Substituting w := −∂A(Un)∇f(Un), gn is given by

gn =
A(Un) ·w
w ·w ∇f(Un). (4.15)

In contrast to the classical undamped Newton Method, where each iteration uses the whole
Newton-step sn (cf. Equation (4.5)), within the Newton-Dogleg method the correction step
s′n is chosen along the so-called Dogleg curve, which is the piece-wise linear curve from the
origin to gn and further to sn. The selection of s′n on this curve is controlled by the trust-region
diameter δ > 0:
• If ∥sn∥2 ≤ δ, meaning that the Newton estimate lies inside the trust region, the whole
Newton step is accepted and s′n = sn.

• If ∥gn∥2 ≤ δ and ∥sn∥2 > δ, i.e. the Newton guess is outside the trust region, but the
Cauchy point is inside the trust region, s′n is chosen on the linear interpolation from gn
to sn so that ∥s′n∥2 = δ: For the ansatz s′n = τsn + (1− τ)gn, the interpolation factor τ
is given as τ = (a2 − c+

√︁
(a2 + b2 − 2c)δ2 − a2b2 + c2)/(a2 + b2 − 2c) with a = ∥gn∥2,

b = ∥sn∥2 and c = gn · sn. Thus, the new estimate is taken as point where the line
connecting the Newton guess and the Cauchy point intersect the boundary of the trust
region.

• If ∥gn∥2 > δ, both Newton guess and Cauchy point lie outside the trust region, the new
iterate is taken to be the point at the edge of the trust region from the line connecting
the actual Newton guess and the Cauchy point. gn = (δ/∥gn∥2)gn.

The choice and adaptation of the trust region diameter δ throughout the Newton-Dogleg
procedure follows a sophisticated heuristic which is for the sake of completeness described
here.
The adaptation of the trust region diameter is based on comparing the actual residual

reduction aredn := ∥A(Un)∥2 − ∥A(Un + s′n)∥2 with the predicted residual reduction predn :=
∥A(Un)∥2 − ∥A(Un) + ∂A(Un)s′n∥2. The algorithm for the adaptation of the trust region can
be resumed as
(1) Set n = 0, δn = min(1010,max(2 · 10−6, ∥s0∥2)).
(2) Compute the Newton step sn and the Cauchy point gn and find s′n on the Dogleg curve
with respect to the recent δn.

(3) While aredn ≤ predn do: Update trust region diameter δn ← 0.5 δn and re-compute s′n.
If δn < 10−6 terminate abnormally and mark the computation as failed.

(4) If the convergence criterion (see below) is fulfilled, terminate and mark the computation
as success.

(5) Perform a final update of the trust region: Set

δn+1 =

⎧
⎪⎪⎨
⎪⎪⎩

max(10−6, ∥sn∥2) if aredn/predn < 0.1 and ∥sn∥2δn
max(10−6, 0.25 · δn) else, if aredn/predn < 0.1
min(1010, 4 · δn) else, if aredn/predn > 0.75
δn otherwise

Set Un+1 = Un + s′n, update n← n+ 1 and return to step (2).
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4.3.4 Linear solver

The computation of the Newton step according to Equation (4.5) requires the inversion of the
Jacobian matrix. For most of the problems presented in this work, the system is solved by using
the package Parallel Sparse Direct and Multi-Recursive Iterative Linear Solvers (PARDISO),
originally developed by Schenk et al. (Schenk et al., 2000; Schenk and Gärtner, 2002; Schenk
and Gärtner, 2004), from the “Intel(R) Parallel Studio XE 2018 Update 3 Cluster Edition
for Windows” library collection. However for some of the testcases presented in this work,
particularly the cases where combustion is present, the use of PARDISO for the solution of the
linear problem was not possible due to memory problems. A limit of approximately 500,000
DOFs was observed. For larger problems an iterative scheme was used.
An active field of study in the BoSSS development group is that of iterative algorithms for

solving linear systems. The BoSSS code features a multigrid orthonormalization algorithm
(Kummer et al., 2021), which uses additive Schwarz schemes as smoothers for all multigrid
levels, except the coarsest one, where PARDISO is used. This method of solution proved to be
adequate to solve systems that are too big to be solved directly by PARDISO, and is adopted for
all combustion calculations. Additionally, BoSSS includes a matrix preconditioning procedure
using LU-factorization. In particular, it allows preconditioning of each block of the matrix, with
the objective of reducing the condition number of the system.

4.3.5 Termination criterion

The standard way to determine whether the nonlinear solver should be terminated is to check
if the residual norm has fallen below a certain threshold, i.e. ∥A(Un)∥ ≤ tol. As noted by
Pawlowski et al. (2008), this approach is not always helpful. A universal choice of tolerance
is in fact difficult, especially for investigations of the convergence properties of numerical
methods. The reason for this is that, if the tolerance tol is chosen to be too high, the error
due to the premature termination may dominate the error of the spatial discretization and the
advantages offered by the high-order methods cannot be fully employed. On the other hand,
if the tolerance is set too low, the algorithm may never terminate, due to dominant numerical
rounding errors. Therefore, the goal is to continue the Newton-Dogleg method until the lowest
possible limit dictated by the floating point precision is reached.
To identify the limit in a robust way, the residual-norm skyline is defined as

srn := min
j≤n
∥A(Uj)∥ (4.16)

and, for n ≥ 2, the averaged reduction factor

arfn :=
1

2

(︃ srn−2

max{srn−1, 10−100} +
srn−1

max{srn, 10−100}

)︃
. (4.17)

The Newton-Dogleg method is terminated if
n ≥ 2 and srn ≤ 10−5 + 10−5∥Un∥2 and arfn < 1.5. (4.18)

The skyline approach ensures robustness against oscillations close to the lower limit. For
the computations in this work, this choice guarantees that the nonlinear system is solved as
accurately as possible. It secures that the numerical error is dominated by the error of the
spatial or temporal discretization and not by the termination criterion of the Newton-Dogleg
method.
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4.4 Additional convergence supporting strategies

Although the Newton-Dogleg method works well for a variety of cases, in some of the test
cases discussed in this work, convergence problems are encountered. This section shows a
series of strategies used in the present work that allowed the solution of problems where large
nonlinearities, or the lack of adequate initial estimates, made it difficult to obtain results by
simply using the Dogleg-Method Newton.

4.4.1 Homotopy method

In some cases the problem to be solved contains some parameter that makes it difficult to
obtain a result using the methods presented above. A typical example of this is a system where
the Reynolds number is very high. An approach that makes it easier to obtain a solution is to
choose as an initial guess a solution of a similar but simpler problem - such as the same system
with a moderate Reynolds number - where even with a bad initial guess Newton’s algorithm
is able to obtain a solution. This strategy can be used repeatedly to gradually approach the
full system. Such approaches are usually called homotopy methods (also called homotopy
continuation methods).
The choice of the values of the parameter of the intermediate steps of the homotopy method

is a point that requires attention. A straightforward option would be to manually choose the
path to the solution. While such a strategy proved useful in cases such as the one presented in
(Klingenberg, 2022) for a turbulent boundary layer flow, the requirement for user intervention
to choose a suitable homotopy path makes it a not always robust solution.
Based on the above, a methodology for homotopy methods was implemented in the BoSSS

framework making use of an algorithm that automatically determines a homotopy path to
the full system solution. This algorithm is based on the ideas from the textbook by Deuflhard
(2011). In this section the main ideas of the algorithm are presented, as already shown in
(Gutiérrez-Jorquera and Kummer, 2022). For a more detailed explanation of the method, the
interested reader is referred to the mentioned textbook.
The first step is to identify a parameter that causes difficulties in the solution of the nonlinear

problem. Hereafter this variable will be referred to as the homotopy parameter hp. As
mentioned, the main idea of the homotopy strategy is to solve a series of simpler problems,
starting with a parameter where the problem is easy to solve, and carefully increasing it until
the desired value is reached. Let Hp be the value of the homotopy parameter for which a
solution is sought. Let

Ahp∗(U) = 0 (4.19)
be the discretized system for a certain intermediate homotopy-parameter hp∗, between 0 and
the target homotopy-parameter Hp, i.e. 0 ≤ hp∗ ≤ Hp. In addition, let Uhp,ϵ be an approximate
solution to the problem (4.19) with hp∗ = hp, up to a tolerance ϵ, i.e.

∥Ahp(Uhp,ϵ)∥2 ≤ ϵ. (4.20)

For the sake of clarity when discussing the algorithm which follows below, a distinction is
made between the intermediate homotopy-parameter hp for which it is assumed to already
have found an acceptable solution, and the next homotopy-parameter hp∗ whose solution is
being looked for. For any hp∗ > hp, ϵ = 10−5 ∥Ahp∗(Uhp,ϵ)∥2 is set, meaning that the accepted
solution for the intermediate homotopy parameter hp∗ should show a residual norm reduction
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Figure 4.1: Residual, trust region diameter and homotopy parameter history of the differentially heated
cavity test case using the Homotopy strategy. The homotopy parameter hp in this case is
the Reynolds number.

of at least five orders of magnitude with respect to the initial residual norm. Finally, if hp∗ = Hp,
the termination criterion presented in section 4.3.5 is applied.An approximate solution for the
target homotopy-parameter is obtained by means of the following algorithm:

(1) Set hp = 0, i.e. start by obtaining an (approximate) solution U0,ϵ.

(2) Search for a an increased homotopy-parameter hp∗: Find the minimal i ≥ 0 so that for
hp∗ = 1

2i
(Hp− hp) + hp one has

⃦⃦
Ahp∗(Uhp,ϵ)

⃦⃦
2
≤ δmax ∥Ahp(Uhp,ϵ)∥2 Here, δmax is the

maximal allowed increase of the residual for an increased homotopy-parameter hp∗; δmax
is adapted in the following steps, as an initial guess δmax = 106 is used.

(3) Use the Newton-Dogleg method to compute an approximate solution to the problem
(4.19), for the homotopy-parameter hp∗, using the solution Uhp,ϵ as an initial guess.

– If the Newton-Dogleg method did not converge successfully within ten steps, the
homotopy-parameter increase from hp to hp∗ was probably too large. Set δmax ←
0.2δmax and go to step (2).

– If the Newton-Dogleg method reached its convergence criterion and if the target
homotopy-parameter is reached, i.e. hp∗ = Hp, the algorithm has successfully found
an approximate solution for AHp(U) = 0 and can terminate.

– Otherwise, if the Newton-Dogleg method converged successfully, but is below the
target homotopy-parameter: Accept the solution and set hp← hp∗. If the Newton-
Dogleg method took less than three iterations to reach the convergence criterion,
set δmax ← 8δmax. Return to step (2).

An exemplary run of the method is shown in Figure 4.1. The homotopy parameter hp in
this particular case is the Reynolds number. The homotopy-parameter hp was increased for
iterations 10, 18, 22 and 24, causing an increase of the residuals ∥Ahp∗(Un)∥2, leading to
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a convergent solution after 34 Newton iterations. The presented algorithm offers a robust
method for finding steady-state solutions of highly nonlinear systems.
y

4.4.2 Solver safeguard

Another strategy that proved to be useful in improving the convergence properties of the
iterative scheme is the use of a solver safeguard, which is used to avoid unphysical solutions
during the solution procedure, such as negative temperatures or temperatures higher than the
adiabatic temperature.
In particular, the basic idea is to clip values from the solution fields delivered by Newton’s

algorithm which are known to be unphysical, and limit the solution fields by user defined values.
This clipping emulates in a sense the effect of schemes such as Total Variation diminishing
Method (TVM) or Essentially Non-Oscillatory methods (ENO) (Nicoud, 2000).
For an arbitrary scalar ξ the values are bounded in the range [ξmin− ϵsafe, ξmax+ ϵsafe], where

ξmin and ξmax are user defined bounds, and ϵsafe = 10−4. For example, the mass fractions by
definition should have a value between zero and one, thus Yk,min = 0 and Yk,max = 1. For
certain problems, particularly problems involving combustion, it could be also useful to limit
the value of the temperature, which can be bounded using the inlet conditions as the minimum
value, and the adiabatic temperature as the maximum value.
The occurrence of these non-physical values is not always problematic, and in theory the

Newton algorithm above should be able to correctly handle them and finally find the solution
of the nonlinear system. However in certain cases this can lead to problems. Just to mention
one example, a negative temperature would result in a imaginary value of the viscosity if it is
calculated according to Equation (2.29). Particularly for problems with sharp gradients this
could be problematic due to dispersion phenomena.

4.4.3 Flame sheet estimates for steady state combustion simulations

The proposed algorithm for obtaining steady state solutions of finite reaction rate combus-
tion problems involves first solving the problem assuming an infinite reaction rate (the flame
sheet problem). This requires first solving the system presented in Section 2.2, where Equa-
tions (3.43a) to (3.43c) need to be solved in a coupled manner together with the expressions
that link the temperature and mass fractions to the mixture fraction in order to be able to
evaluate the density and transport parameters. This idea has been already employed in various
works (Smooke et al., 1986a; Smooke and Giovangigli, 1992).
The reason for the use of this pre-step is twofold:

• Solving Equations (2.22a) to (2.22d) using a Newton-type method requires adequate
starting estimates in order to converge. Using the flame sheet solution as initial estimate
improves the convergence properties of the method.

• The system of Equations (2.22a) to (2.22d) has multiple solutions. One is the pure
mixing (frozen) solution, where no chemical reaction has taken place, and other one is
the ignited solution, where the flame is present (see Figure 2.1) . Using the flame sheet
solution as initial estimate makes much more likely that the path taken by Newton’s
algorithm will tend towards the ignited solution.
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This approach proved to be very useful for finding solutions of steady state flame simulations
in a variety of cases.
One question one could certainly ask is under what flame conditions the infinite reaction rate

solution (also called flame sheet solution in the following) effectively is a good initial estimate
for Newton’s algorithm. Obviously for systems that respect the assumptions done for the flame
sheet the obtained solution will be very close to the finite-rate solution (see Figure 2.2). The
assumption of an infinitely fast chemical reaction implies that the time scales associated with
the chemical reaction are infinitely smaller than the flow scales, or in other words, Da→∞.
For this reason, the flame sheet solution is expected to give a similar solution for cases close to
equilibrium (where the Damköhler number is large). On the other hand, in cases that are far
from equilibrium, as, for example, in the case of a flame in conditions close to extinction, it is
expected that the flame sheet solution will depart considerably from the solution with a finite
reaction rate.
It should be noted that within the derivation of the equations for the flame sheet it is

only assumed that the heat capacity is the same for all components (ckp = cp), but it is
still possible to consider a dependence on temperature. However, this introduces a difficulty,
since the evaluation of the temperature with Equation (2.35) requires cp, which according to
Equation (2.28), depends in turn on the temperature. Solving the system of equations required
to obtain cp and T is very expensive, since it would require solving it every time the temperature
must be evaluated -in particular for the evaluation of the density ρ and transport parameters µ
and ρD. This problem can be solved by simply assuming a constant representative value of cp.
The problem that now arises is the selection of a suitable cp. In the work by Xu and Smooke

(1993) it is suggested to estimate it simply on the basis of experimental measurements, or
also by selecting some representative value, such as cp evaluated at the adiabatic temperature
and stoichiometric conditions. In particular, in this work the value ĉp = 1.3 kJ kg−1K−1 was
adequate for all calculations. This constant value of the heat capacity proved to yield a flame
sheet solution which is an adequate estimate for finite-rate simulations, even for cases with a
nonconstant heat capacity.
In a similar fashion, the assumption of unity Lewis number in the flame sheet system delivers

a solution that slightly deviates from the solution of the finite chemistry rate problem with
nonunity Lewis numbers. Nevertheless, this small deviation does not preclude the use of the
flame sheet solution as an adequate initial estimate for Newton’s method.

Smoothing of the flame sheet

It should be noted regarding the solution of the flame sheet problem (cf. Section 2.2) that the
sharp change in the primitive variables around z = zst is problematic in certain scenarios. In
particular, the non-smoothness of the derived variables could lead to Gibbs phenomenon-type
problems if the stoichiometric point happens to be in a unfavourable position within a cell. This
inconvenient can be remedied to a certain extent by using a regularized form of the equations.
The smoothing function H is defined as

H(z) ≈ 1

2
(1 + tanh(σ(z − zst))). (4.21)

This function is useful for creating a smooth transition between two functions, since it returns
values close to 0 for z ≪ zst and values close to 1 for z ≫ zst. The sharpness of the transition
at the point z = zst is dictated by the parameter σ. In Figure 4.2 the smoothing function H
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Figure 4.2: Smoothing function at zst = 0.22 for different smoothing parameters σ.

using different smoothing parameters σ is shown. Clearly, increasing the value of σ increases
the sharpness of the transition at the point zst. For a very big σ value the function H resembles
the Heaviside step function
Using Equation (4.21) for creating a smooth transition of Equations (2.34) to (2.37), the

temperature and mass fraction fields can be written as

T (z) = zT 0
F + (1− z)T 0

O +
QY 0

F

cp
zst

1− z

1− zst
H(z) + QY 0

F

cp
z (1−H(z)) , (4.22a)

YF (z) = Y 0
F

z − zst
1− zst

H(z), (4.22b)

YO(z) = Y 0
O

zst − z

zst
(1−H(z)), (4.22c)

YP (z) = Y 0
O

MP νP
MOνO

(1− z)H(z) + Y 0
F

MP νP
MF νF

z(1−H(z)), (4.22d)

YN (z) = (1− Y 0
F )z + (1− Y 0

O)(1− z). (4.22e)

The use of this regularized form of the equations results in practice on a spreading of the flame
front, which eases the numerical calculation (Braack et al., 1997). In Figure 4.3 the effect of
the smoothing factor σ on calculations of a flame in a counter-flow configuration are shown. It
can be clearly observed how for decreasing σ the solution becomes smoother.

4.4.4 Adaptive Mesh Refinement

The BoSSS code offers the capability to modify throughout the simulation the numerical
mesh by means of an Adaptive Mesh Refinement (AMR) algorithm. In particular, the locality
of a DG method allows a straightforward implementation, as the DG discretization admits
the apparition of hanging nodes in the numerical mesh. The base mesh can be refined by
subdividing a cell element into four elements of the same size using a quadtree-like data
structure. It is also ensured that neighbouring cells always exhibit a 2:1 cell ratio on every
edge (Smuda, 2021).
The mesh refinement process occurs before each time-step is started. This allows to use
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Figure 4.3: Temperature profile calculated in the center-line of a counter-flow flame configuration for
different smoothing parameters σ.

the AMR algorithm on start of the application, which can be useful in case the user needs an
increased mesh resolution in particular areas of the computational domain.
The mesh refinement is controlled by user defined refinement-coarsening criteria. Dur-

ing the development of the XNSEC solver different refinement strategies where investi-
gated and implemented. Some of them worth mentioning are the refinement strategy
AMRBasedOnFieldGradient, where the mesh is refined or coarsened based on the magni-
tude of the gradients of a particular solution field. For simulations where combustion is present,
a sensible choice for the refinement strategy are the magnitude of temperature gradients or
magnitude of mass fraction gradients. Additionally, the strategy AMRonFlameSheet allows
the refinement/coarsening around the stoichiometric surface z = zst.
In Figure 4.4 the refinement of a coflowing flame configuration using the AMRonFlameSheet

strategy is shown. The mentioned strategies proved to be useful in combustion simulations, as
will be discussed later.
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(a) Refinement level 0. (b) Refinement level 1. (c) Refinement level 2.

Figure 4.4: Adaptive mesh refinement around the stoichiometric surface in a coflow flame configura-
tion. The iso-contour z = zst of the mixture fraction is shown in red.
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5 Numerical results

The following sections show a comprehensive solver validation using various test cases presented
in increasing levels of complexity. The tests also allow to highlight some of the benefits of the
DG method and the algorithms introduced before in this work, namely the globalized Newton
method, homotopy strategy and the initialization of combustion applications using flame sheet
estimates.
First, in Section 5.1 the applicability of the solver is analyzed for isothermal single-component

systems. Later in Section 5.2 several single-component non-isothermal configurations are
studied. Finally, in Section 5.3 test cases for multicomponent non-isothermal systems are
presented, with a particular emphasis on systems where combustion is present.
All calculations shown here were performed on a cluster with the following speficiations:

• CPU 4x8 cores (Intel(R) Xeon(R) CPU E5-4627 v2)

• CPU vector extension Intel® AVX

• CPU speed basis 3.30 GHz, turbo 3.6 GHz

• Memory 512 GByte (DDR3-1600)

Unless otherwise stated, all calculations use the termination criteria presented in Section 4.3.5.
Some of the results presented in this section have been published in (Gutiérrez-Jorquera and
Kummer, 2022).
In the following, only two dimensional configurations are considered. However, the methods

shown in this work could be also used for three-dimensional problems.

5.1 Single-component isothermal cases

The XNSEC solver presented in the previous chapter is validated first for single-component
isothermal cases. In these cases, only the continuity and momentum equations are solved.
The energy equation and the species concentration equations are replaced by the conditions
T = 1.0 and Y0 = 1.0 in the entire domain. This means that the physical properties of the flow
(density and viscosity) are constant. Therefore, the flow is totally incompressible, since the
density shows no thermodynamic or hydrodynamic dependence.

5.1.1 Lid-driven cavity flow

The lid-driven cavity flow is a classic test problem used for the validation of Navier-Stokes
solvers. The system configuration is shown in Figure 5.1. It consists simply of a two-dimensional
square cavity enclosed by walls whose upper boundary moves at constant velocity, causing the
fluid to move. Benchmark results can be found widely in the literature for different Reynolds
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Figure 5.1: Schematic representation of the Lid-Driven cavity flow.

numbers. In this section, the results obtained with the XNSEC solver are compared with those
published by Botella and Peyret (1998).
The problem is defined in the domain Ω = [0, 1]× [0, 1]. The system is solved for the velocity

vector u = (u, v) and the pressure p. All boundary conditions are Dirichlet-type, particularly
with u = (−1, 0) for the boundary at y = 1 and u = (0, 0) for all other sides. The gravity
vector is set to g = (0, 0). A Cartesian mesh with extra refinement at both upper corners is
used, and is shown in Figure 5.2. The refinement was done to better represent the complex
effects that take place in the corners. The streamline plot presented in Figure 5.2 shows the
different vortex structures typical of this kind of system, where in addition to the main vortex
of the cavity, smaller structures appear in the corners.
The lid-driven cavity was calculated for a Reynolds number Re = 1000. For the calculations

presented here, the polynomial degree is set to four for both velocity components and three for
the pressure. A regular Cartesian mesh with 16× 16 elements is used with extra refinement in
the corners. In Figure 5.3 a comparison of the calculated velocity with the DG-Solver and the
velocities provided by the benchmark is shown. Clearly, very good agreement is obtained, even
by using a relatively coarse mesh (the benchmark result uses a grid with 160× 160 elements).
A more rigorous comparison of results is presented in Table 5.1, where the extreme values
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Figure 5.2: Mesh and streamlines of the lid-driven cavity flow with Re = 1000
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Mesh umax ymax vmax xmax vmin xmin
16× 16 0.3852327 0.1820 0.3737295 0.8221 -0.5056627 0.0941
32× 32 0.3872588 0.1821 0.3760675 0.8227 -0.5080496 0.0943
64× 64 0.3897104 0.1748 0.3774796 0.8408 -0.5248360 0.0937
128× 128 0.3886452 0.1720 0.3770127 0.8422 -0.5271487 0.0907
256× 256 0.3885661 0.1717 0.3769403 0.8422 -0.5270653 0.0907
Reference 0.3885698 0.1717 0.3769447 0.8422 -0.5270771 0.0908

Table 5.1: Extrema of velocity components through the centerlines of the lid-driven cavity for Re = 1000.
Reference values obtained from Botella and Peyret (1998)

of the velocity components calculated through the centerline of the cavity are compared with
the results presented by Botella and Peyret (1998). Different mesh resolutions were used for
this comparison, particularly meshes with 16× 16, 32× 32, 64× 64, 128× 128 and 256× 256
elements, each with extra refinement at the corners. It can be clearly seen how for the finest
mesh the results obtained with the DG-solver are extremely close to the reference. A difference
is only appreciated at the fifth digit after the decimal point for the velocity components. In
case of the position of the extremal values no difference is observed. It can also be seen that
the results obtained with the coarser meshes are still very close to those of the reference.

5.1.2 Backward-facing step

The backward-facing step problem is another classical configuration widely used for validation
of incompressible CFD codes. It has been widely studied theoretically, experimentally, and
numerically by many authors in the last decades (see, for example, Armaly et al. (1983),
Barkley et al. (2000), and Biswas et al. (2004) ). In Figure 5.4 a schematic representation
of the problem is shown. It consists of a channel flow (usually considered fully developed)
that is subjected to a sudden change in geometry that causes separation and reattachment
phenomena. For these reasons, this case can be considered more challenging than the one
presented in the previous section, since special care of the mesh used has to be taken in order
to capture accurately all complex phenomena taking place.
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Figure 5.4: Schematic representation (not to scale) of the backward-facing step. Both primary and
secondary vortices are shown.

Although the backward-facing step problem is known to be inherently three-dimensional, it
has been shown that it can be studied as a two-dimensional configuration along the symmetry
plane for moderate Reynolds numbers. For the range of Reynolds numbers used in the calcula-
tions presented here, the two-dimensional assumption is justified (Barkley et al., 2000; Biswas
et al., 2004). The origin of the coordinate system is set in the bottom part of the step. The
step height S and channel height h characterize the system. Results in the literature are often
reported as a function of the expansion ratio, defined as ER = (h+ S)/h.
A series of simulations were performed with the objective of reproducing the results reported

by Biswas et al. (2004), where the backward-facing step was calculated for Reynolds numbers
up to 400 and for an expansion ratio of ER = 1.9423. In particular, the reported lengths of
detachment and reattachment are used as a means of comparison with the results from the
XNSEC solver.
The Reynolds number for the backward-facing step configuration is defined in the literature

in many forms. Here, the definition based on the step height Ŝ and the mean inlet velocity
Ûmean is adopted as the reference length and velocity, resulting in

Re = ŜÛmean
ν̂

. (5.1)

The boundary at x = −L0 is an inlet boundary condition, where a parabolic profile is defined
with

u(y) = −6(y − S)(y − (h+ S))

h2
(5.2)

The system is isothermal, and the fluid is assumed to be air. The step length is set S = 1 and
h = 1.061. To minimize the effects of the outlet boundary condition on the part of interest
in the system, the length L of the domain is set to L = 70S. All other boundaries are fixed
isothermal walls. Based on prior calculations, the effect of the domain length before the step
was found to have almost no impact on the results and is set to L0 = S. Preliminary studies
showed that the calculated reattachment and detachment lengths are highly sensitive to the
mesh resolution. For all simulations in this section, a structured grid with 88,400 elements is
used. To better resolve the complex structures that occur in this configuration, smaller elements
are used in the vicinity of the step, as seen in Figure 5.5. A polynomial degree of three was
chosen for both velocity components and two for pressure.
The backward-facing step configuration exhibits varying behavior as the number of Reynolds

changes. For small Reynolds numbers, a single vortex, usually called the primary vortex, appears
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Figure 5.5: Mesh used for the backward-facing step configuration.
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Figure 5.6: Distribution of x-component of velocity in the backward-facing step configuration for a
Reynolds number of 400. Solid lines correspond to results obtained with the XNSEC solver.

in the vicinity of the step. Furthermore, as the Reynolds number increases, a second vortex
eventually appears on the top wall, as shown schematically in Figure 5.4. The detachment and
reattachment lengths of the vortices are values that are usually reported in the literature. It is
possible to determine the detachment position by finding the point along the wall where the
velocity gradient normal to the wall acquires a value equal to zero.
Figure 5.7 shows the detachment and reattachment lengths of the primary and secondary

vortices obtained with the XNSEC solver for different Reynolds numbers, which are also
compared with the results presented in the reference paper from Biswas et al. (2004). Cubic
splines and a bisection method have been used to accurately locate this point. It can be
seen that the results for the detachment lengths of the primary vortex R1 are in very good
agreement with those of the reference. In the case of the secondary vortex, it is possible to see
a very minimal deviation for the lengths of the reattachment R3, hinting at a possible spatial
under-resolution far away from the step. It is interesting to note that, despite the fact that the
reference does not report the existence of a secondary vortex for Re = 200, it was possible to
observe it with the XNSEC solver. The results allow to conclude that it is possible to study flows
with complex behavior for low- to moderate Reynolds numbers, at least in the isothermal case.
In the next section, a non-isothermal case of this configuration will be studied.
It is worth mentioning that the evaluation of the global order of accuracy of the solver

using the two incompressible test cases presented in this section is problematic due to the
presence of singularities. Specifically the points at the corners at the coordinates x = (0, 1)
and x = (1, 1) of the Lid-driven cavity (where the pressure is not finite according to Botella
and Peyret (1998)), and at the corner of the step x = (0, S) of the backward-facing step are
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Figure 5.7: Detachment and reattachment lengths of the primary (left figure) and secondary (right
figure) recirculation zones after the backward-facing step compared to the reference
solution (Biswas et al., 2004).

problematic. The accuracy of the solver will be assessed later in Section 5.2.2 making use of a
analytical solution and in Section 5.2.3 using a solution obtained with a high spatial resolution.

5.2 Single-component non-isothermal cases

For the test cases presented in this section, the equations for continuity, momentum and energy
are solved. All systems are assumed to be single-component, thus N = 1 and Y0 = 1.0. The
tests shown in this section shall serve as a throughout validation of the XNSEC solver spatial
and temporal discretization for low-Mach variable density flows.
First in Section 5.2.1 an extension of the backward-facing step configuration for a non-

isothermal system is shown, and benchmark values are compared to references. Later in
Section 5.2.2 a Couette flow configuration that presents a temperature gradient in the vertical
direction is studied and compared to an analytical solution. Additionally the numerical accuracy
of the solver is shown and compared to calculations using a SIMPLE-type algorithm. Later in
Section 5.2.3 a heated square cavity configuration is studied to assess the solver’s ability to
simulate steady state flow configurations of variable density in closed systems. In Section 5.2.4
the flow over a heated cylinder is studied, which serves as a test for unsteady calculations of
non-isothermal systems. Finally in Section 5.2.5 a classical Rayleigh-Bénard convection system
is treated, showing the behavior of the solver for unstable systems.

5.2.1 Heated backward-facing step

As an extension to the previous case the backward-facing step configuration in a non-isothermal
configuration is studied. In this case the bottom wall is heated to a constant temperature and
higher than the inlet temperature.
In this section the configuration for a heated backward-facing step proposed in the work

of Xie and Xi (2016) is solved. The fluid entering the system has a temperature equal to
T̂ 0 = 283K and the bottom wall is set to a constant temperature of T̂ 1 = 313K. The inlet
temperature is used as the reference temperature, obtaining T0 = 1.0 and T1 = 1.106. In
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Figure 5.8: Temperature profile and streamlines corresponding to the backward-facing Step configura-
tion for Re = 400 and an expansion ratio of two.

the work of Xie and Xi (2016) results are reported for the local Nusselt numbers and the
local friction coefficients fd along the bottom wall (y = 0) for different expansion ratios and
Reynolds numbers. By combining the definition of the Nusselt number (Nu = ĥL̂/λ̂), Newton’s
law of cooling (q̂ = ĥ(T̂ 0− T̂ 1)), and Fourier’s law of heat conduction (q̂ = λ̂∇̂T̂ ) a expression
for the local Nusselt number is obtained.

Nuloc =
L̂

T̂ 0 − T̂ 1

∇̂T̂ · n̂ (5.3)

where L̂ is the reference length. L̂ = Ŝ is chosen to be consistent with the definition of the
Reynolds number of the reference. Furthermore, the local friction factor can be written as

fd =
8ν̂

(Ûmean)2
∇̂û · n̂ (5.4)

Simulations were conducted for different Reynolds numbers and expansion ratios. In Fig-
ure 5.8 the temperature field and the streamlines corresponding to a calculation with Re = 700
are shown. Here, the apparition of the secondary vortex is seen in the top wall. Note that
only a small part of the computational domain is shown. Far away from the step, a lightly
skewed parabolic velocity profile is obtained, which is influenced by the density variations on
the vertical direction.
For this range of temperature differences, the temperature profile is just influenced by

conductive effects, since no appreciable natural convection phenomena appears. For larger
temperature differences, Rayleigh-Bénard type instabilities would appear in the flow. This type
of system will be treated later in Section 5.2.5.
It should be noted here that the results obtained using the XNSEC solver are substantially

different from those reported by Xie and Xi (2016), and will not be shown here. However, in
the work of Hennink (2022) the same is also reported, stating that with his method it was not
possible to reproduce the results presented by Xie and Xi (2016).
In Figure 5.9 the local friction factor and local Nusselt number along the wall y = 0 are

plotted for Re = 700 and ER = 2. Comparing the results from the XNSEC solver with those
reported in Hennink (2022) a very good agreement can be observed. With this test it is possible
to confirm that the XNSEC solver is able to deal with complex systems where heat transfer is
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Figure 5.9: Local friction factor and local Nusselt number along the bottomwall of the backward-facing
step for Re = 700 and an expansion ratio of two. The solid lines corresponds to the present
solution and the marks to the reference (Hennink, 2022)

present. However, for the range of temperature differences involved in this case, the variation
of physical parameters such as density, viscosity and thermal conductivity with respect to
temperature has no appreciable influence on the simulated flow fields. The next two test-cases
will show how the XNSEC solver is able to simulate low-Mach number flows with a larger
temperature difference.

5.2.2 Couette flow with vertical temperature gradient

As a further test case for the low-Mach solver, a Couette flow with a vertical temperature
gradient is considered. This configuration was already studied in Klein et al. (2016), where the
SIMPLE algorithm was used in an DG framework for the solution of the governing equations. In
this section, the results from said publication are reproduced by using the XNSEC solver, which
features a fully coupled algorithm, in contrast to the SIMPLE solver, which solves the system
in a segregated way. Additionally, it will be shown how the implemented solver performs in
relation to the SIMPLE based solver in terms of runtime.
In Figure 5.10 a schematic representation of the test case is shown. The domain is chosen as

Ω = [0, 1]× [0, 1], and Dirichlet boundary conditions are used for all boundaries. The upper
wall corresponds to a moving wall (u = 1) with a fixed temperature T = Th. The bottom wall
is static (u = 0) and has a constant temperature T = Tc. Additionally, the system is subjected
to a gravitational field, where the gravity vector only has a component in the y direction. Under
these conditions, the x-component of velocity, pressure, and temperature are only dependent
on the y coordinate, that is, u = u(y), T = T (y) and p = p(y). The governing equations reduce
to

1

Re
∂

∂y

(︃
µ
∂u

∂y

)︃
= 0, (5.5a)

∂p

∂y
= − ρ

Fr2 , (5.5b)
1

Re Pr
∂

∂y

(︃
λ
∂T

∂y

)︃
= 0. (5.5c)
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Figure 5.10: Schematic representation of the Couette flow with temperature difference test case.

By assuming a temperature dependence of the transport properties according to a Power Law
(µ = λ = T 2/3) it is possible to find an analytical solution for this problem.

u(y) = C1 + C2

(︄
y +

T
5/3
c

T
5/3
h − T

5/3
c

)︄3/5

, (5.6a)

p(y) = − 5p0
2Fr2

(︂
y
(︂
T
5/3
h − T

5/3
c

)︂
+ T

5/3
c

)︂2/5
(︂
T
5/3
h − T

5/3
c

)︂ + C, (5.6b)

T (y) =

(︃
C3 −

5

3
C4y

)︃3/5

. (5.6c)

Where the constants C1, C2, C3 and C4 are determined using the boundary conditions on the
upper and lower walls and are given by

C1 =

(︃
T

5/3
c

T
5/3
h −T

5/3
c

)︃3/5

(︃
T

5/3
c

T
5/3
h −T

5/3
c

)︃3/5

−
(︃

T
5/3
h

T
5/3
h −T

5/3
c

)︃3/5
(5.7a)

C2 =
1

(︃
T

5/3
h

T
5/3
h −T

5/3
c

)︃3/5

−
(︃

T
5/3
c

T
5/3
h −T

5/3
c

)︃3/5
(5.7b)

C3 = T 5/3
c , (5.7c)

C4 =
3

5

(︂
T 5/3
c − T

5/3
h

)︂
(5.7d)

and C is a real-valued constant determined by an arbitrary zero level for the pressure. The
dimensionless parameters are set as Re = 10 and Pr = 0.71, Th = 1.6, and Tc = 0.4 for all
calculations. The system is considered open and the thermodynamic pressure is p0 = 1.0. The
Froude number is calculated as

Fr =
(︃
2Pr(Th − Tc)

(Th + Tc)

)︃1/2

. (5.8)
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Figure 5.11: Solution of the Couette flow with vertical temperature gradient using a Power-Law.

A derivation for Equation (5.8) will be given in Section 5.2.3. In Figure 5.11 the solutions for
the velocity, pressure and temperature are shown. The results are for a mesh with 26 × 26
elements and a polynomial degree of three for u and T , and a polynomial degree of two for p.
The vertical velocity v is zero everywhere.

h-convergence study

The convergence properties of the DG method for this non-isothermal system were studied
using the analytical solution described before. The domain is discretized and solved in uniform
Cartesian meshes with 16×16, 32×32, 64×64 and 128×128 elements. The polynomial degrees
for the velocity and temperature are changed from one to four and for the pressure from zero
to three. The convergence criterion described in Section 4.3.5 was used for all calculations.
The analytical solutions given by Equation (5.6) are used as Dirichlet boundary conditions on
all the boundaries of the domain. The global error is calculated against the analytical solution
using a L2 norm. In Figure 5.12 the results of the h-convergence study are shown. Recall that,
for increasing polynomial order, the expected order of convergence is given by the slope of the
line curve when cell length and errors are presented in a log-log plot. Due to the mixed-order
formulation used, the slopes should be equal to k for the pressure and equal to k + 1 for all
other variables, which is possible to observe for all variables.

Comparison with SIMPLE

As mentioned before, a solver for solving low-Mach number flows based on the SIMPLE
algorithm presented in Klein et al. (2016) has already been developed and implemented within
the BoSSS framework. Although the solver was validated and shown to be useful for a wide
variety of test cases, there were also disadvantages inherent to the SIMPLE algorithm. For
example, within the solution algorithm, under-relaxed Picard-type iterations are used to search
for a solution. This usually requires some prior knowledge from the user in order to select
suitable relaxation factor values that provide stability to the algorithm, but at the same time
do not slow down the computation substantially. The intention of this subsection is to show a
comparison of runtimes of the calculation of the Couette flow with vertical temperature gradient
between the DG-SIMPLE algorithm (Klein et al., 2016) and the XNSEC solver. Calculations were
performed on uniform Cartesian meshes with 16× 16, 32× 32, 64× 64 and 128× 128 elements,
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Figure 5.12: Convergence study of the Couette-flow with temperature difference. A power-law is used
for the transport parameters.

and with varying polynomial degrees between one and three for the velocity and temperature,
and between zero and two for the pressure. All calculations where initialized with a zero
velocity and pressure field, and with a temperature equal to one in the whole domain. All
calculations were performed in a single core. The convergence criteria of the nonlinear solver
is set to 10−8 for both solvers. The under-relaxation factors for the SIMPLE algorithm are set
for all calculations to 0.8, 0.5 and 1.0 for the velocity, pressure and temperature, respectively.
In Figure 5.13, a comparison of the runtimes from both solvers is presented. It is evident

that the runtimes of the SIMPLE algorithm are generally higher for almost all the cases studied.
Only for systems with a small number of cells does the solver using the SIMPLE algorithm
outperform the XNSEC solver. Additionally, it is observed that the runtimes are comparable
only for low polynomial degrees. Furthermore, it is noticeable that the runtimes are similar
only for low polynomial degrees. It can be observed how the runtime of the simulations with
the XNSEC code seems to scale linearly with the polynomial degree. In the case of the SIMPLE
solver, the scaling is much more unfavourable, and the runtime increases dramatically as the
polynomial degree increases. Obviously, the under-relaxation parameters used within the
SIMPLE algorithm have an influence on the calculation times and an appropriate selection of
them could decrease the runtimes. This is a clear disadvantage, since the adequate selection of
under-relaxation factors is highly problem dependent and requires previous expertise from the
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Figure 5.13: Runtime comparison of the DG-SIMPLE solver and the XNSEC solver for the Couette flow
with vertical temperature gradient for different polynomial degrees k and number of cells.

user. On the other hand, the globalized Newton method used by the XNSEC solver avoid this
problem by using a more sophisticated method and heuristics in order to find a better path to
the solution, which does not require user-defined parameters.

5.2.3 Differentially heated cavity problem

The differentially heated cavity problem is a classical benchmark case that is often used to
assess the ability of numerical codes to simulate variable density flows (Paillere et al., 2000;
Vierendeels et al., 2003; Tyliszczak, 2014). The test case has the particularity that deals with a
closed system, where the thermodynamic pressure p0 is a parameter that must be adjusted so
that the mass is conserved. The thermodynamic pressure p0 determines the density field, which
in turn appears in the momentum equation and the energy equation, making it necessary to
use an adequate algorithm to solve the system. This point presents a special difficulty for the
solution, since the calculation of p0 requires knowledge of the temperature field on the whole
computational domain, inducing a global coupling of the variables.
The system is a fully enclosed two-dimensional square cavity filled with fluid. A sketch

of the problem is shown in Figure 5.14. The left and right walls of the cavity have constant
temperatures T̂ h and T̂ c, respectively, with T̂ h > T̂ c, and the top and bottom walls are
adiabatic. A gravity field induces fluid movement because of density differences caused by the
difference in temperature between the hot and cold walls. The natural convection phenomenon
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Figure 5.14: Schematic representation of the differentially heated cavity problem.

is characterized by the Rayleigh number, defined as

Ra = Pr ĝρ̂
2
ref(T̂ h − T̂ c)L̂

3
ref

T̂ refµ̂
2
ref

, (5.9)

For small values of Ra, conduction dominates the heat transfer process, and a boundary layer
covers the entire domain. On the other hand, large values of Ra represent a flow dominated by
convection. When the number Ra increases, a thinner boundary layer is formed. Following
Vierendeels et al. (2003), a reference velocity for buoyancy-driven flows can be defined as

ûref =

√
Raµ̂ref

ρ̂refL̂ref
. (5.10)

The Rayleigh number is then related to the Reynolds number according to

Re =
√
Ra. (5.11)

Thus, it is sufficient to select a Re number in the simulation, fixing the value of the Ra number.
The driving temperature difference (T̂ h − T̂ c) appearing in Equation (5.9) can be represented
as a nondimensional parameter:

ε =
T̂ h − T̂ c

2T̂ ref
. (5.12)

Using these definitions, the Froude number can be calculated as

Fr =
√
Pr2ε. (5.13)

The average Nusselt number is defined for a given wall Γ as

NuΓ =
1

Th − Tc

∫︂

Γ
k
∂T

∂x
dy. (5.14)

The results of the XNSEC solver are compared with those of the reference solution for T̂ ref =
600K and ε = 0.6. All calculations assume a constant Prandtl number equal to 0.71. The
dependence of viscosity and heat conductivity on temperature is calculated using Sutherland’s
law (Equation (2.29)). The nondimensional length of the cavity is L = 1. The nondimensional
temperatures Th and Tc are set to 1.6 and 0.4, respectively. The nondimensional equation
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of state (Equation (2.26)) depends only on the temperature (not on the mass fractions) and
reduces to

ρ =
p0
T
. (5.15)

The thermodynamic pressure p0 in a closed systemmust be adjusted to ensuremass conservation.
For a closed system is given by

p0 =

∫︁
Ω ρ0dV∫︁
Ω

1
T dV

=
m0∫︁

Ω
1
T dV

, (5.16)

where Ω represents the complete closed domain. The initial mass of the system m0 is constant
and is set m0 = 1.0. Note that the thermodynamic pressure is a parameter with a dependence
on the temperature of the entire domain. This makes necessary the use of an iterative solu-
tion algorithm, so that the solution obtained respects the conservation of mass. Within the
solution algorithm of the XNSEC solver, Equation (5.16) is used to update the value of the
thermodynamic pressure after each Newton iteration.

Comparison of results with the benchmark solution

Here a comparison of the results obtained with the XNSEC solver and the results presented
in the work of Vierendeels et al. (2003) is made. Vierendeels et al. (2003) solved the fully
compressible Navier-Stokes equations on a stretched grid with 1024 × 1024 using a finite-
volume method with quadratic convergence, providing very accurate results that can be used as
reference. The benchmark results are presented for Ra = {102, 103, 104, 105, 106, 107}. In this
range of Rayleigh numbers, the problem has a steady-state solution. The cavity is represented
by the domain [0, 1]× [0, 1]. For all calculations in this subsection, the simulations are done
with a polynomial degree of four for both velocity components and temperature and three for
the pressure. The mesh is in an equidistant 128× 128 mesh.
Preliminary calculations showed that for cases up to Ra = 105 the solution of the system

using Newton’s method presented in Section 4.3.3 is possible without further modifications,
while for higher values the algorithm couldn’t find a solution and stagnates after certain number
of iterations. For this particular case a limit of 100 Newton iterations was set. The homotopy
strategy mentioned in Section 4.4.1 is used to overcome this problem and obtain solutions for
higher Rayleigh numbers. Here, the Reynolds number is selected as the homotopy parameter
and is continuously increased until the desired value is reached.
In Figure 5.15 the streamlines corresponding to the different simulations are shown. It is

apparent that for an increasing Rayleigh number the flow behaviour becomes more complex.
While for low Ra numbers the flow exhibits just one vortex, for higher Ra number more vortex
like structures appear. It is also possible to observe how an increasing Ra value creates a thinner
boundary layer.
In Figures 5.16 to 5.18 the temperature and velocity profiles across the cavity for different

Rayleigh numbers are shown. The profiles calculated with the XNSEC solver agree closely to
the benchmark solution.
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Figure 5.15: Streamlines of the heated cavity configuration with ϵ = 0.6 for different Reynold numbers.
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Figure 5.16: Temperature profiles for the differentially heated square cavity along different vertical
levels. Solid lines represent the XNSEC solver solution and marks the benchmark solution.
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Figure 5.17: Profiles of the x-velocity component for the differentially heated square cavity along the
vertical line x = 0.5. Solid lines represent the XNSEC results and marks the benchmark.
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Figure 5.18: Profiles of the y-velocity component for the differentially heated square cavity along the
horizontal line y = 0.5. Solid lines represent the XNSEC results and marks the benchmark.
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Rayleigh p0 p0,ref Nuh Nuc Nuref
102 0.9574 0.9573 0.9787 0.9787 0.9787
103 0.9381 0.9381 1.1077 1.1077 1.1077
104 0.9146 0.9146 2.2180 2.2174 2.2180
105 0.9220 0.9220 4.4801 4.4796 4.4800
106 0.9245 0.9245 8.6866 8.6791 8.6870
107 0.9225 0.9226 16.2411 16.1700 16.2400

Table 5.2: Comparison of calculated Nusselt numbers of the hot and cold wall and Thermodynamic
pressure p0 reported values by Vierendeels et al. (2003) for the differentially heated cavity.

A comparison of the thermodynamic pressure and the Nusselt numbers with the benchmark
solution was also made. The results are shown in Table 5.2. The thermodynamic pressure
is obtained from Equation (5.16), and the average Nusselt number is calculated with Equa-
tion (5.14). The results obtained with the XNSEC solver agree very well with the reference
results, as can be seen for the thermodynamic pressure, which differs at most in the fourth
decimal place.
Note that the average Nusselt number of the heated wall Nuh and the Nusselt number of the

cold wall Nuc are different. While for an energy conservative system Nuh and Nuc should be
equal, for the DG-formulation this is not the case, since conservation is only ensured locally and
the global values can differ. This discrepancy can be seen as a measure of the discretization error
of the DG formulation and should decrease as the mesh resolution increases. As the Rayleigh
number grows, the discrepancy becomes larger, hinting that, at such Rayleigh numbers, the
mesh used is not refined enough to adequately represent the thin boundary layer and more
complex flow structures appearing in high-Rayleigh number cases. This point will be discussed
in the next section.

Convergence study

An h−convergence study of the XNSEC solver was conducted using the heated cavity configura-
tion. Calculations were performed for polynomial degrees k = 1, 2, 3, 4 and equidistant regular
meshes with, respectively, 8× 8, 16× 16, 32× 32, 64× 64, 128× 128 and 256× 256 elements.
The L2 -Norm was used to calculate errors against the solution in the finest mesh. The results
of the h-convergence study for varying polynomial orders k are shown in Figure 5.19. It is
observed how the convergence rates scale approximately as k + 1. Interestingly, for k = 2
the rates are higher than expected. On the other hand, some degeneration is observed in
convergence rates for k = 4. This strange behavior can be explained if one considers that the
heated cavity presents a singular behavior at the corners (similar to the problem previously
exposed for the lid-driven cavity), which causes global pollution in the convergence behavior
of the algorithm.
As discussed in the previous section, the difference in the average values of the Nusselt

number on the hot wall Nuh and the cold wall Nuc is a direct consequence of the spatial
discretization error and should decrease for finer meshes. In Figure 5.20 the convergence
behavior of the Nusselt number is presented for different polynomial degrees k, different
number of elements and for two Rayleigh numbers. As expected, it can be observed that this
discrepancy is smaller when a larger number of elements is used. It can also be seen that
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Figure 5.19: Convergence study of the differentially heated cavity problem for Ra = 103.

Nuh reaches the expected solution of cells for a much smaller number of elements. This can
be explained if one thinks that more complex phenomena take place near the cold wall (see
Figure 5.15), which makes necessary a finer mesh resolution in that area.
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Figure 5.20: Nusselt numbers of the differentially heated square cavity at the hot wall (Nuh) and the
cold wall (Nuc) for different number of cells and polynomial order k. The reference values
from Vierendeels et al. (2003) are shown with dashed lines.

Influence of the penalty factor

A point not still discussed is the choice of the safety parameter η0 of the penalty terms from
the SIP discretization (see Section 3.2.3). Table 5.3 shows results obtained for Ra = 103, for
different polynomial degrees and penalty safety factor. For the tests presented here, the penalty
terms of the diffusive terms from the momentum and energy equations are considered equal.
Furthermore, the number of elements in the mesh is selected in such a way that the number of
degrees of freedom remains approximately constant for each simulation.
It is possible to see that the penalty safety factor (and therefore the penalty term) can have

a great influence on the solution. If the value chosen is very small, as in the case of the table
for η0 = 0.01, the algorithm is not able to find a solution. On the other hand, if the chosen
value is too high, the error also increases. It can be concluded that an optimal value for the
penalty factor exists.
It is also noticeable that, maintaining a constant penalty safety factor, increasing the poly-

nomial degree for an approximately constant number of DOFs gives an improvement in the
results compared to the literature. Although for this testcase the effect of the penalty factor on
the solution is not very large, the effect could be considerable, especially when dealing with
more complex geometries and coarser meshes. The value η0 = 4 has shown to be a value that
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η0 k DOFs Nuc Nuc−Nuc,ref
Nuc,ref × 102 p0

p0−p0,ref
p0,ref

× 104

0.01
2 6804 0.549483* 50.39424 0.899757* 408.7292
3 7056 0.722593* 34.76637 0.936085* 21.48436
4 6655 -0.50954* 146 1.016691* 837.7683

1
2 6804 1.090047 1.593667 0.938192 0.980674
3 7056 1.102072 0.508037 0.938057 0.453674
4 6655 1.105225 0.22348 0.938046 0.570494

4
2 6804 1.089332 1.65817 0.93843 3.521926
3 7056 1.102261 0.491027 0.938076 0.25384
4 6655 1.105359 0.211372 0.938047 0.561709

16
2 6804 1.08694 1.874166 0.939109 10.75641
3 7056 1.102266 0.490563 0.938124 0.251627
4 6655 1.105439 0.204153 0.93805 0.537265

Table 5.3: Thermodynamic pressure and cold-side Nusselt number for different penalty safety factors
in a heated cavity with Ra = 103. Values marked with an asterisk are from problems not
converged after 100 iterations.

gives stability to the scheme and is used for all simulations in this thesis, as already has been
done in many works (Krause and Kummer, 2017; Kummer, 2017; Smuda, 2021) and is used
for all calculations in this work.
The results presented in this section allows to conclude that the implemented solver is capable

of dealing with flows with variable densities, and in particular in closed spaces. Additionally, it
was observed that even for this complex test, convergence properties close to those expected
from the DG method are obtained. Until this point only systems with a steady state solution
were treated. Later in Section 5.2.4 the ability of the solver to compute flows with varying
densities in non-steady state will be shown.

5.2.4 Flow over a circular cylinder

A further test case of the XNSEC solver is the simulation of flow over a circular cylinder. The
results shown section are based on the work by Miao (2022)
The simulation of a 2D flow over an obstacle exhibits different flows states depending on

the Reynolds number. For low Reynolds numbers, the flow is laminar and stationary. When
the Reynolds number reaches a critical value, the flow becomes non-stationary and eventually
turbulent. In particular, for 50 ≤ Re ≤ 160 the behavior of the fluid is laminar with an
non-stationary periodic character, and the well-known vortex shedding phenomenon appears
(Sharma and Eswaran, 2004). In this section the ability of the XNSEC solver for dealing with
isothermal and non-isothermal unsteady flow will be assessed. This is done by calculating the
Strouhal number, average drag and lift coefficients and the Nusselt number and comparing
them to reference solutions.

Set-up

Figure 5.21 shows the geometry of the problem. In the center of the domain is located a heated
cylinder of diameter d = 1, which is subjected to a flow of constant velocity magnitude. The
size of the computational domain is chosen as D = 59d, which is large enough so that the
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Figure 5.21: Schematic representation of the heated circular cylinder. Figure adapted from (Miao,
2022)

outlet boundary conditions do not influence the solution. The left half of the boundaries of
the computational domain corresponds to a velocity inlet with constant velocity (u, v) = (1, 0)
and temperature T = T∞. The right half of the domain corresponds to a pressure outlet.
The boundary condition corresponding to the heated cylinder is a no-slip wall defined with
(u, v) = (0, 0), and with a constant temperature T = Th. The system is an open system, and
the thermodynamic pressure has a constant value set to p0 = 1.
As mentioned, a isothermal and non-isothermal system is considered in this section. A

reference temperature of T̂ ref = 298.15K is selected. The conditions for the velocity inlet are
for the isothermal case a dimensionless temperature of Th = 1.0 and T∞ = 1, while for the
non-isothermal Th = 1.5 and T∞ = 1.0 . A Reynolds number of 100 is used, for which the flow
is known to be unsteady and periodic. Gravity effects are taken as negligible. The Prandtl
number has a constant value of Pr = 0.71 and the heat capacity ratio is γ = 1.4. The transport
parameters are calculated with Sutherland’s law which is given by Equation (2.29) and the
equation of state for the density is Equation (2.26).
For all calculations a polynomial degree of order three is used for both velocity components

and the temperature, and two for pressure. In this simulation a curved mesh consisting of 64
elements in the radial direction and 64 elements in the angular direction is used. The use of a
curved mesh for this problem was done primarily to adequately represent the geometry of the
cylinder. Another possibility could have been to use a method such as a Immersed Boundary
Method -which is also supported in the BoSSS-framework-, but it is beyond the scope of this
work.
One point to note regarding the use of curved meshes within the DG method (and in all

High-order methods), is that special care has to be taken in the representation of curved
elements in order to use correctly quadrature rules (Bassi and Rebay, 1997). This is critical to
preserve the convergence properties of DG-methods. In particular, since the highest degree
of the polynomials used in this simulation is three, elements of the bi-cubic type are used,
where 16 nodes are used per element for the discretization for a two-dimensional element.
Furthermore, the time discretization is performed with a BDF-3 scheme, and the time derivative
of the continuity equation is calculated with a second order backward difference scheme (see
Section 3.1.3). The simulation time corresponds to t = 100, and constant timesteps of∆t = 0.2
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are used. The initial conditions are
u(t = 0) = 1 + uvortex, (5.17a)
v(t = 0) = 0 + vvortex, (5.17b)
T (t = 0) = 1, (5.17c)
p(t = 0) = 0. (5.17d)

Here, uvortex and uvortex are the velocity component of a vortex field of radius r, strength a and
central point (xo, yo) defined by

uvortex(x, y) =

{︄
−a(y − yo) if

√︁
(x− xo)2 + (y − yo)2 ≤ r

0 if
√︁
(x− xo)2 + (y − yo)2 > r

(5.18a)

vvortex(x, y) =

{︄
a(x− xo) if

√︁
(x− xo)2 + (y − yo)2 ≤ r

0 if
√︁
(x− xo)2 + (y − yo)2 > r

(5.18b)

The reason for placing a vortex in the initial conditions is to include a perturbation in the
system which triggers the vortex shredding phenomenon. The vortex moves with the flow and
is eventually advected from the calculation domain. Specifically, for this simulation, a vortex of
radius r = 1 and strength a = 1 is placed at (xo, yo) = (2, 0). It is worth mentioning that the
inclusion of the vortex in the initial conditions is not imperative to make the vortex-shedding
phenomenon emerge, but it is a way to accelerate its appearance. For the range of Reynolds
numbers mentioned, even instabilities of the numerical method should be enough to cause the
phenomenon to arise, but in a much slower way.
The variables lift coefficientCL, drag coefficientCD, Strouhal number St, and Nusselt number

Nu are calculated and compared with reference results. These characteristic quantities are
defined as

CL =
2FL

ρ∞u2∞d
(5.19)

CD =
2FD

ρ∞u2∞d
(5.20)

St = fd

u∞
(5.21)

Nu = d

∆T

1

∥∂S∥leb

∮︂

∂S
∇T · ndS (5.22)

FL and FD are the lift and drag force respectively, f is the vortex shedding frequency and
∥∂S∥leb = πd is the circumference of the cylinder.

Isothermal case.

The isothermal case results are compared with the work of Sharma and Eswaran (2004). They
reported results for the case Re = 100 and Th = T∞. The Strouhal number and average drag
coefficient calculated with the XNSEC solver are St = 0.1639 and CD,avg = 1.3103, while the
reference values St = 0.164 and CD,avg = 1.3183, which means a error of less than a 0.6% on
both quantities. Its worth noting that preliminary calculations with a implicit Euler scheme
for the discretization of the temporal terms didn’t cause the vortex shedding phenomenon
to appear, making necessary a scheme of higher order. This is probably due to an excess of
numerical dissipation by using a low-order temporal discretization, which smooths out and
removes the natural perturbation effects that trigger vortex shedding.
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Figure 5.22: Temporal evolution of average Nusselt number, lift coefficient and drag coefficient of the
heated cylinder

Non-isothermal case.

A comparison of the calculation results for the non-isothermal case was performed based on the
results reported in Shi et al. (2004), Wang et al. (2000) and Hennink (2022). The temporal
evolution of the characteristic quantities CD, CL and Nu is shown in Figure 5.22. The results
agree very closely with the references. The average Nusselt number is Nu = 3.8434, while
the reference value from Hennink (2022) is Nu = 3.804, which corresponds to a difference of
1.04%. The Strouhal number is St = 0.1538 and the references report values of St = 0.152 and
St = 0.1536, a difference of approximately 1%. It is possible then to conclude that the XNSEC
solver allows to simulate adequately unsteady non-isothermal flows, where the fluid properties
do present a scalar dependence (in this case, on the temperature).
It is worth noting that in this test-case the temperature changes causes only a moderate

variation in the density. As will be seen later, the temporal term appearing in the continuity
equation, as implemented in the present solver, is problematic in the case of larger density
differences (Knikker, 2011), as it is a cause of numerical instabilities.

5.2.5 Rayleigh-Bénard Convection

The Rayleigh-Bénard convection problem is a configuration similar to the heated cavity (see
Section 5.2.3) as the flow is also induced by bouyancy effects. The configuration consists of a
fluid located between two horizontal plates maintained at different temperatures, with the
temperature of the lower plate being higher than that of the upper plate. It is known that
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Figure 5.23: Geometry of the Rayleigh-Bénard convection problem. Convection rolls are sketched.

under a certain Rayleigh number the flow presents a macroscopically stable behavior and the
heat is simply transferred by conduction. When the Rayleigh number exceeds a certain critical
value Racrit, the system becomes unstable, which causes a perturbation of the system to give
rise to fluid motion, creating the so-called convection cells, also usually referred to as Bénard
cells. In the following sections two aspects of this situation will be discussed by making use
of different types of boundary conditions on the sides of the domain. First in Section 5.2.5
periodic boundary conditions are used, which allows studying a single pair of convection rolls
and to calculate numerically the critical value Racrit, which is compared with theoretical values.
Subsequently, in Section 5.2.5 a transient simulation of this configuration is performed by
using pressure-outlet boundary conditions. The results shown in this section are taken from
the work by Miao (2022).

Periodic boundary conditions

In this section the fluid behavior will be analysed by studying a system where a single convection
cell appears. Making use of linear stability theory for the governing equations under the
Boussinesq assumption, it is possible to determine that for a system with rigid boundaries
the critical Rayleigh number is Racrit = 1707.762 (Chandrasekhar, 1961). Moreover, the
dimensionless wave number is ac = 3.117, which implies that the convective rolls develop at an
aspect ratio of 2π/ac = 2.016. For the simulations presented in this section an aspect ratio of
L/H = 2 is used, as is done by Kao and Yang (2007). The geometry and boundary conditions
of the analysed problem can be found in Figure 5.23. The upper wall corresponds to a no-slip
wall that is maintained at a constant temperature Tc. Similarly, the bottom wall is also a no-slip
wall with a temperature Th, where Th > Tc. The boundary conditions on the left and right of
the computational domain are periodic boundary conditions. Gravity has only one component
in the negative direction of y.
For the range of Rayleigh numbers treated here, the simulations are steady state. For all

simulations in this section a regular Cartesian grid consisting of 32×64 cells, with dimensionless
lengths L = 2 and H = 1 was used. The polynomial degree of both velocity components and
temperature is four, and for pressure it is three. An open system is assumed, and p0 = 1.0
throughout the simulation.
First, the stability of the XNSEC solver is studied by determining the critical value Racrit. As
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Figure 5.24: Maximum x-velocity in the Rayleigh-Bénard convection configuration for different a and r.

mentioned above, the theoretical value Racrit = 1707.762 was determined using the Boussinesq
assumption in the governing equations, which, unlike the low-Mach equations, is only valid
if the variation of temperature within the system is very small. For this reason, an analysis
is performed for a dimensionless temperature difference ϵ = (Th − Tc)/(Th + Tc) = 0.0001,
meaning Th = 1.0001 and Tc = 0.9999. The reference temperature is chosen to be T̂ ref = 600K.
Since the XNSEC solver is based on the low-Mach equations, this choice of low temperature
difference allows comparing the present results with those obtained analytically using the
Boussinesq approximation. The definition of the dimensionless numbers as well as the reference
velocity are exactly the same as those mentioned in Section 5.2.3. The transport coefficients
are calculated with Sutherland’s law.
Similarly to the case discussed in Section 5.2.4, velocity fields are initialized with vortices,

which are used to trigger the inherent instabilities of the studied system. In particular, two
vortices with opposite directions of rotation are added. The velocity components of these are
again given by Equation (5.18). The coordinates of the first vortex are (xo, yo) = (−0.5, 0) and
it has a strength a = 1 and a radius r = 0.4. For the second vortex (xo, yo) = (0.5, 0), a = −1
and r = 0.4 are selected. The initial conditions are

u(t = 0) = 1 + uvortex-left + uvortex-right, (5.23a)
v(t = 0) = 0 + vvortex-left + vvortex-right, (5.23b)
T (t = 0) = 1, (5.23c)
p(t = 0) = − ρy

Fr2 . (5.23d)

It is worth noting that the initialization of the solver without the vortices leads the solver to a
stationary solution with no fluid motion. Clearly this is a solution of the equations, but is an
unstable solution.
First, a study was performed to demonstrate the independence of the steady-state solution

from the chosen initial conditions. This is demonstrated in Figure 5.24, where for a given
Rayleigh number the maximum velocity obtained inside the system is shown, varying the
strength a or the radius r of the vortices. It is apparent that the case Ra = 1000 does not exhibit
a macroscopic fluid motion, while Ra = 2000 does. This points to the fact that the critical value
is effectively in this range.
Subsequently a series of simulations were performed with a = 0.5 and r = 0.4 were done to

find the critical Rayleigh value. By using a bisection strategy, the critical Rayleigh was found to
be Ra = 1707.922, as shown in Figure 5.25.
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Figure 5.25: Stability behavior of the Rayleigh-Bénard convection with ϵ = 0.0001.

A the theoretical value for the critical Ra number can be calculated. For the case of two
plates with no-slip boundaries the value corresponds to Ra = 1707.762 (Shishkina, 2021). The
calculated value with the XNSEC solver presents a difference of only 0.009% compared with the
analytical value. In addition, the proportionality u ∝ √Ra− RaRa that is expected by analytical
arguments is also obtained, in particular, umax = 0.008015

√Ra− 1707.922. It is possible to
conclude that, at least for small temperature differences, the low-Mach approximation has a
behavior similar to that of the equations with the Boussinesq approximation.
Finally, in Figure 5.26 the temperature fields obtained with the XNSEC solver for ϵ = 0.5

and T̂ ref = 600K for different Rayleigh numbers are shown. For a Ra number of 2000 -which
corresponds to a value slightly higher than the critical value- the apparition of convection rolls
can be appreciated. As the value increases, the fluid departs from its purely conductive state,
and the fluid gets more accelerated. As this happens, more complex structures appear.
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Figure 5.26: Temperature field and temperature contours of a Rayleigh-Bénard convection roll
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Figure 5.27: Geometry of the Rayleigh-Bénard convection with pressure outlet boundary conditions.

Finally, a transient calculation of the Rayleigh-Bénard configuration is shown. This example
shall work as a test for the implementation of the time-stepping algorithm. The configuration is
similar to the one described for the case with periodic boundary conditions, with the difference
that the boundaries of the left and right sides are now pressure outlet boundary conditions,
representing an open system. The length L of the system is chosen to be considerably longer
in order to allow the apparition of multiple convection rolls. A sketch of the system is shown
in Figure 5.27. The nondimensional lengths are chosen to be H = 1 and L = 10. A grid with
32× 320 cells is used. The polynomial degrees for the velocity components and temperature
are set to four and for the pressure to three. The time discretization is done again with a BDF-3
scheme and the calculation time is 150, using timesteps of ∆t = 0.5. The temperatures are set
to Th = 1.5 and Tc = 0.5, with a reference temperature of T̂ ref = 600K. The Rayleigh number
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is Ra = 5659, which is above the critical value. The initial conditions are chosen to be

u(t = 0) = 0, (5.24a)
v(t = 0) = 0, (5.24b)
T (t = 0) = 1, (5.24c)
p(t = 0) = − ρy

Fr2 . (5.24d)

Note that no vortex is included in the initial conditions and that only a fluid at rest is consid-
ered. A perturbation effect caused by the pressure outlet boundaries triggers the movement of
the fluid. At the first stages of the simulation the perturbations induce a vortex-like structure
close to the left and right boundaries, and start gradually filling the whole domain, finally
reaching a steady solution. This can be seen in Figure 5.28. Clearly, in the center of the domain
(far away from the outlet boundary conditions), the structure of the solution is very similar to
the ones shown in the last subsection. In fact, if the domain length is chosen sufficiently large,
they should be equal.
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Figure 5.28: Temperature and streamlines of the Rayleigh-Bénard flow with pressure outlets.
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5.3 Multi-component non-isothermal cases

Finally in this section, test cases where the whole operator presented in Chapter 3 is used are
shown. The balance equations of continuity, momentum, energy and species are considered
and solved in a coupled manner, together with a equation of state and expressions for the
transport parameters. For all the steady state cases treated here, the solution of the flame sheet
problem described in Section 2.2 is calculated first, and then this solution is used as an initial
estimate for the solution of the finite chemistry rate problem (see Section 2.1.2). Also for all
test cases presented a smoothing parameter σ = 40 is used (see Section 4.4.3).
The resolution of the linear solver using a direct solver such as PARDISO proved to be

problematic as the large number of DoFs arising from the discretization of all 8 balance
equations lead to large memory requirements. In order to avoid this, in all calculations of this
section the multigrid orthonormalization method mentioned in Section 4.3.4 is used.
The combustion model used is the one-step model shown in Section 2.1. All calculations

assume methane as fuel, therefore, the relevant chemical components are CH4, O2, CO2, H2O
and N2, thus N = 5 and Y ′ =

(︁
YCH4, YO2, YCO2, YH2O

)︁. The nitrogen mass fraction YN2 is
calculated according to Equation (2.23).
This subsection is divided as follows. First in Section 5.3.1 a coflow laminar diffusion flame

configuration is calculated and some remarks about the convergence behavior of the XNSEC
solver are made. Next in Section 5.3.2 a diffusion flame in a two-dimensional counterflow
configuration is simulated and compared with results from a one-dimensional configuration.
Finally in Section 5.3.3 the convergence rates of the fully coupled solver are investigated by
studying a pseudo-one-dimensional diffusion flame configuration.

5.3.1 Coflow laminar diffusion flame

The coflowing flame configuration is used as a first test to assess the behavior of the solver for
reactive flows applications, particularly the initialization strategy using the flame-sheet. The
configuration classically consists of two concentric ducts that emit fuel and oxidant into the
system, which after ignition forms a flame. This configuration has been widely studied, starting
with the seminal work of Burke and Schumann (1928) and followed by many others (see, for
example, Smooke and Giovangigli (1992), Smooke et al. (1986a), and Braack et al. (1997)).
Since the solution of the axisymmetric system of equations presents numerical difficulties that
are not the main concern of the present work, in this section an infinitely long slot burner
configuration is considered. For that kind of configuration, cartesian coordinates describe the
problem naturally.

Set-up

A schematic diagram of the configuration can be seen in Figure 5.29a. The system consists
of a fuel inlet with two oxygen inlets on its sides. These inlets are separated by a finite wall
thickness. The inclusion of this separation is observed to be necessary to be able to obtain a
converged solution, which makes sense, since a finite separation between both inlets smooths
the big gradients due to strong mixing and reaction in that area. Although the system is clearly
symmetric around the axis x = 0, no symmetry assumption is made and the whole domain
is considered for the simulation. First, the case without gravity effects will be analysed. The
influence of the gravity on the flame will be shown later. The lengths depicted in Figure 5.29a
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Figure 5.29: Geometry of a coflowing flame configuration (not to scale).

are set as r1 = 1, r2 = 1.2, and r3 = 11.763. Additionally h = 4 andH = 63. The lengths r3 and
H are set as arbitrarily large values in order to avoid influence of the outer boundary conditions
on the solution of the flame zone. Setting a higher value of r3 or L did not significantly affect
the results. The inlet boundary conditions are set as:
• Oxidizer inlet: {∀(x, y) : y = −h ∧ x ∈ [−r3,−r2] ∪ [r2, r3]}

u = 0, v = vO, T = TO, Y ′ = (0, Y O
O2, 0, 0)

• Fuel Inlet: {∀(x, y) : y = −h ∧ x ∈ [−r1, r1]}

u = 0, v = vF (x), T = TF , Y ′ = (Y F
CH4, 0, 0, 0)

The oxidizer enters the system as a plug flow with a constant velocity of vO = 1. The inlet
velocity of the fuel stream vF is a a parabolic profile given by

vF (x) =

[︄
1−

(︃
x

X1

)︃2
]︄
vFm (5.25)

with vFm = 0.592. The inlet temperatures of both streams is TF = TO = 1. Combustion of
diluted methane on air is considered, with Y F

CH4 = 0.2 and Y F
N2 = 0.8 for the fuel stream, and
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Y O
O2 = 0.23 and Y O

N2 = 0.77 for the oxidizer stream. The superscripts F and O represent the
fuel and oxidizer inlet respectively. The pressure outlet boundary condition is the same as
Equation (2.38c). Finally, the boundary conditions at the tips correspond to adiabatic walls,
which are defined as in Equation (2.38b), with uD = (0, 0).
The variables defined above were nondimensionalized in the usual way. The reference length

is L̂ref = 0.635 cm and the reference velocity ûref = 8.19 cm s−1. The reference temperature is
T̂ ref = 300K. All derived variables are nondimensionalized using the air stream as a reference
condition, i.e. ρ̂ref = 1.17 kgm−3, µ̂ref = 1.85× 10−5 kgm−1 s−1 and Ŵ ref = 28.82 kg kmol−1,
resulting in the nondimensional numbers Re = 33.02 and Da = 2.17·109. The Prandtl number is
assumed to be constant with Pr = 0.71. The reference heat capacity is ĉp,ref = 1.3 kJ kg−1K−1,
which is also the constant value used for the flame sheet calculation (i.e. cp = 1). The choice of
this value for the heat capacity is important because it gives a solution of the flame sheet which
is similar to the actual solution of the full problem. The transport parameters are calculated
using Sutherland’s law with Ŝ = 110.5K. The mixture heat capacity cp is calculated with
Equation (2.28) and using NASA polynomials for the heat capacity of each component. Finally,
a nonunity but constant Lewis number formulation is used, with LeCH4 = 0.97 , LeO2 = 1.11,
LeH2O = 0.83 and LeCO2 = 1.39 (Smooke and Giovangigli, 1991)

Numerical results

The purpose of simulating this case is to test the XNSEC solver in a real-world application
with realistic physical parameter values. In particular, it is intended to demonstrate that the
strategy of using the flame sheet solution as the initial estimate is adequate for obtaining a
converged solution. Numerical experiments using the XNSEC solver showed that the solution
of this problem is highly mesh-dependent. The presence of very high gradients in some areas
requires a higher density of cells to obtain a well-resolved solution. In Figure 5.29b the actual
mesh used for the solution of the full problem is shown. A base mesh with smaller elements in
the vicinity of the inlets and larger elements further away from them is used. It is observed
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Figure 5.30: Typical convergence history of a diffusion flame in the coflowing flame configuration.
Two mesh refinement passes are done. The second pass starts at iteration 21.
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Figure 5.31: Temperature and reaction rate fields of the coflow configuration.

that the complex mixing and combustion phenomena that occur in the vicinity of the inlets
have a critical effect on the convergence of the solution. For this reason, a special refinement of
the base mesh is done in the vicinity of the tips. Another reason that could explain the need for
extra refinement in the vicinity of the inlets is that the use of high-order methods introduces
very little numerical diffusion into the formulation, which in theory would help to smooth out
the large gradients that exist in the area.
It is clear that an adequate mesh resolution at the flame location is critical. In order to

avoid over-solving on parts of the computational domain where it is not needed, multiple AMR
passes are done. In each pass, after obtaining a steady-state solution the mesh is refined and
the calculation is started again (see Section 4.4.4). In particular, for this case, three AMR
passes were performed for the flame sheet calculation. After each pass, the mesh is refined
in the vicinity of the flame sheet, that is, in the cells where z = zst. Obviously, a finer grid in
the vicinity of the surface z = zst will be beneficial for the solution of the finite reaction rate
problem if the same conditions used to derive the flame sheet equations (namely constant cp
and unity Lewis number) are assumed. However, experiments with the XNSEC solver have
shown that this refinement strategy is still beneficial for the convergence of the full problem
even when using non-constant cp and nonunity Lewis numbers.
In Figure 5.30 the convergence history using the Newton algorithm presented in Section 4.3.3

is shown. The flame sheet calculation requires 20 Newton iterations to find a solution. It is
clearly seen that the residuals ∥A(Un)∥2 decrease very slowly for about the first 14 iterations,
while the trust region diameter δ of the globalised Newton method is adapted to find an

85



optimal value to reduce the residuals. Around iteration 14 the algorithm starts to increase
δ, leading to a faster reduction of the residuals. A solution to the problem according to the
termination criterion exposed in Section 4.3.5 is found in iteration number 20. In iteration 21
mesh refinement based on the strategy mentioned above is used and now only 6 iterations are
required to find a converged solution. Finally, in iteration number 27 the flame sheet solution
is used as the initial estimate for the full problem, which requires only 11 iterations to find a
solution.
For the flame sheet calculation a polynomial degree k = 2 is chosen, resulting in a rather

small system with 49,140 degrees of freedom. For the finite rate calculation k = 4 is used,
which resulted in a system with 482,310 degrees of freedom. This highlights another advantage
of the approach of using the flame sheet calculation for two-dimensional simulations: the initial
estimate can be found relatively easily for a system with few degrees of freedom. Using the
solution found as the initial estimate for the full problem facilitates Newton’s algorithm, as the
complete problem only needs a few iterations to find a solution.
In Figure 5.31 the obtained temperature and reaction rate fields are shown. Since for the

selected inlet velocities the flame corresponds to an over-ventilated one, the typical jet form is
observed. The maximum dimensionless temperature T reached corresponds to 6.04 (meaning
1812K). Magnified plots show that the bottom part of the flame sits on the outside part of the
tips. The high reaction rates appearing in the area close to the inlets are also worth highlighting.
This could explain why the mesh refinement in the vicinity of the inlets is crucial to obtain a
converged solution.
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Figure 5.32: Mass fraction field of H2O over the line y = 10

A question to consider is whether indeed the initialization of the finite reaction rate problem
with the flame sheet provides adequate estimates for the Newton algorithm, in particular for
more complex problems that do not fulfil the assumptions made to obtain the equations of the
mixture fraction problem such as nonconstant heat capacity cp or non-unity Lewis numbers.
For illustrative purposes, the simulation of the coflowing flame for unity and nonunity lewis
numbers was performed. In Figure 5.32 the solution obtained for the mass fraction field of
H2O along the line y = 10 is shown. As expected, the solution obtained for the case with
unity Lewis number is very close to the one obtained using the flame sheet. Furthermore. the
case with nonunity Lewis number also presents a solution very similar to that of the flame
sheet, with a small deviation in the vicinity of the zones where the chemical reaction occurs.
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Both finite chemistry calculations use the same initial estimate and both calculations find the
converged solution after 11 Newton iterations. In all the simulations shown in this thesis, the
use of the flame sheet estimation served as a way to initialize the finite-reaction rate problem.
The simulation of the coflowing flame shows that the strategy of using the flame sheet as an

initial condition offers an efficient way to obtain steady-state solutions of combustion problems.
Since the flame sheet is only used an estimate for the ignited solution, it is possible to perform
the calculations on relatively coarse grids, and use low-order polynomial degrees. The obtained
solution can be used as an estimate for calculations with higher polynomial degrees to find
a more accurate solution of the full flame problem in a few iterations. A disadvantage, as
already mentioned in Section 4.4.3, is the requirement to choose the cp parameter, since an
inappropriate choice gives a solution of the flame sheet problem far away from the solution of
the full problem. However, the user’s experience and access to experimental information allows
estimating this value relatively easily, as also suggested by Smooke et al., 1986b. Note that the
value chosen in this section (ĉp,ref = 1.3 kJ kg−1K−1) served as an adequate estimate for all
the simulations presented in this thesis. Note that the results in this section assumed a zero
gravity field. Next section will deal with the case where the gravity field influences the flame.

Gravity influence on the flame
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Figure 5.33: Nondimensional temperature and reaction rate fields of the coflow configuration consid-
ering gravity effects. Results are zoomed-in, in order to depict more clearly the solution
fields.

In this part the case where g = (0,−1) and ĝref = 9.8m s−2 is considered. The setup is
exactly the same as the one presented before. Contrary to the case with zero gravity, the
simulation of a gravity influenced configuration presented a considerable difficulty to solve.
Te external force influencing the flow field destabilizes the algorithm, and finding a solution
is much more difficult. The flow is said to be convection controlled if the Froude number is
large. On the other hand, for small Froude numbers the flow is said to be buoyancy controlled.
Under the conditions mentioned above, the Froude number is Fr = 0.1643, thus the buoyancy
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effects influence largely the flow field.
In order to obtain a converged solution under these characteristics, the homotopy strategy

presented in previous chapters is necessary. The homotopy variable is the Froude number.
The infinite reaction rate equations are solved for a series of decreasing Froude values until
reaching the desired value Fr = 0.1643. The solution is found after 13 homotopy steps. Finally,
when the solution for Fr = 0.1643 is obtained, it is utilized as a initial condition for the full
problem, obtaining a converged flame solution. The results of the nondimensional temperature
and reaction rate are shown in Figure 5.33. Note the different spatial scale of the figures shown.
The flame obtained is much shorter than the case with zero gravity.

5.3.2 Counterflow diffusion flame
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Figure 5.34: Schematic representation (not to scale) of the counterflow diffusion flame configuration.

The counterflow diffusion flame is a canonical configuration used to study the structure
of nonpremixed flames. This simple configuration has been a subject of study for decades
because it provides a simple way of creating a strained diffusion flame, which proves to be
useful when studying the flame structure, extinction limits or production of pollutants of flames
(Pandya and Weinberg, 1964; Spalding, 1961; Keyes and Smooke, 1987; Lee et al., 2000).
In the work of Paxion et al. (2001) an unstructured multigrid solver for laminar flames with
detailed chemistry is presented. A Krylov-Newton method was used for solving several flame
configurations. A two-dimensional counter diffusion flame was calculated, and its results were
compared with the one-dimensional self-similar solution of the equations. A similar study is
presented in this section using the XNSEC-solver.
The counterflow diffusion flame consists of two oppositely situated jets. The fuel (possibly

mixed with some inert component, such as nitrogen) is fed into the system by one of the jets,
while the other jet feeds oxidizer to the system, thereby establishing a stagnation point flow.
On contact and after ignition, the reactants produce a flame that is located in the vicinity of
the stagnation plane. A diagram of the setup can be seen in Figure 5.34. In this section, the
solution of a steady two-dimensional flame formed in an infinitely long slot burner will be
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treated. Similarly to the coflow configuration treated before, the infinitely long slot burner
configuration can be calculated naturally using cartesian coordinates.
First, as a means of verifying the solver for combustion applications, the results obtained

with the XNSEC solver for steady two-dimensional counterflow diffusion flame are compared
with the solution of a simplified system of equations for a steady and quasi one-dimensional
flame. Later, the influence of the inlet velocities on the maximum temperature is studied and
finally some remarks concerning the convergence behavior are given.

The one-dimensional diffusion flame

By assuming an infinite injector diameter, a self-similar solution and by neglecting the ra-
dial gradients of the scalar variables along the axis of symmetry, it is possible to reduce the
three-dimensional governing equations to a one-dimensional formulation along the stagnation
streamline y = 0 (see the textbook from Kee et al. (2003) for the derivation). The governing
equations for a steady planar stagnation flow reduce to

∂ρ̂v̂

∂x̂
+ ρ̂Û = 0, (5.26a)

ρ̂v̂
∂Û

∂x̂
+ ρ̂Û

2
= −Λ̂ +

∂

∂x̂

(︄
µ̂
∂Û

∂x̂

)︄
, (5.26b)

ρ̂ĉpv̂
∂T̂

∂x̂
=

∂

∂x̂

(︄
λ̂
∂T̂

∂x̂

)︄
+ Q̂ Q̂, (5.26c)

ρ̂v̂
∂Yk
∂x̂

=
∂

∂x̂

(︃
ρ̂D̂

∂Yk
∂x̂

)︃
+ Ŵ kνkQ̂, (k = 1, . . . , N − 1) (5.26d)

where Û is the scaled velocity and Λ̂ is the radial pressure curvature, which is an eigenvalue
independent of x̂. Again, the hat sign represents dimensional variables. The equations are
written assuming Fick’s law and an one-step combustion model. The system of equations
need to be solved for v̂, Û , T̂ and for Yk with (k = 1, . . . , N − 1). In addition, an equation
of state and expressions for the heat capacity ĉp and the transport parameters µ̂, λ̂, (ρ̂D̂) are
needed. This formulation is very well known and is often used for analysis of flame structure
and determination of extinction points, just to mention a few.
In order to assess the ability of the XNSEC solver to simulate such a system, the solution

obtained for a two-dimensional configuration is compared with the solution of the quasi
one-dimensional equations solved with BVP4, a fourth order finite difference boundary value
problem solver provided by MATLAB (Kierzenka and Shampine, 2001). The BVP4 solver
provides automatic meshing and error control based on the residuals of the solution, allowing
the development with relatively low effort of a code that solves the one-dimensional equations.
It is important to mention some points regarding the solution of these equations using

the BVP4 solver. Analogous to the problem mentioned in Section 4.4.3, the system of Equa-
tions (5.26a) to (5.26d) has multiple solutions. One of them is the cold solution and the other
is the burning one (see Figure 2.1). The same idea mentioned in Section 4.4.3 is also valid for
the quasi-one-dimensional configuration. In particular, this means that a first step for finding a
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converged solution of Equations (5.26a) to (5.26d) is to solve the system
∂ρ̂v̂

∂x̂
+ ρ̂Û = 0 (5.27a)

ρ̂v̂
∂Û

∂x̂
+ ρ̂Û

2
= −Λ̂ +

∂

∂x̂

(︄
µ̂
∂Û

∂x̂

)︄
(5.27b)

ρ̂v̂
∂Z

∂x̂
=

∂

∂x̂

(︃
ρ̂D̂

∂Z

∂x̂

)︃
(5.27c)

together with the equation of state (Equation (2.26)) and expressions for the transport
parameters. The dependency of the temperature and mass fractions on the mixture fraction Z
is given by the Burke-Schumann limit (see Section 2.2). This solution can be used as an initial
estimate for the solution of Equations (5.26a) to (5.26d). It is observed that if the constant
value of ĉp for calculation of the flame sheet is chosen too big, the solver yields the solutions
without a flame. For the calculations considered here ĉp = 1.3 kJ kg−1K is an adequate value
that delivers the ignited solution.
However, it is observed that this flame sheet solution is not directly useful as an initial

estimation for the solution using BVP4 of the full system of equations. In order to help the
BVP4 solver find a converged solution, an intermediate step is necessary. First, the flame sheet
solution is used as an initial estimate for the solution of Equation (5.26) using a constant heat
capacity and unity Lewis number. Once the algorithm has found a solution, it can be used for
solving the same system but with a variable heat capacity according to Equation (2.28) and
user defined Lewis numbers.
It is interesting to mention that other values of the heat capacity ĉp can lead the algorithm to

two other types of solutions. In some conditions it simply obtains the frozen solution, where
there are no chemical reactions taking place. A more interesting situation, however, is that
the algorithm also finds solutions that correspond neither to the frozen solution, nor to the
burning solution, but to a solution where the maximum temperature is in between, which
would correspond to the unstable branch shown in Figure 2.1.

Set-up of the two-dimensional counterflow diffusion flame

In this part, the simulation of combustion of diluted methane with air in a two-dimensional
infinitely long slot burner configuration using the XNSEC solver is studied. The solution is
obtained by solving Equations (2.22a) to (2.22d), making use of the flame sheet solution
as initial estimates. The transport parameters are calculated using Sutherland law with
Ŝ = 110.5K. Gravity effects are not taken into account. The mixture heat capacity cp is
calculated with Equation (2.28) and using NASA polynomials for the heat capacity of each
component.

v̂Fm (cm s−1) v̂Om (cm s−1) a(s−1) T̂
F (K) T̂

O(K)
case(a) 4.85 12.29 36.04 300 300
case(b) 12.13 30.73 84.03 300 300
case(c) 26.69 67.62 176.71 300 300

Table 5.4: Maximum inlet velocity, strain and temperatures used for the counterflow diffusion flame
calculations.
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For comparison with the quasi-one-dimensional model, three pairs of inlet velocities are
considered. They are shown in Table 5.4. Both streams enter at a temperature T̂O

= T̂
F
=

300K. The mass composition of the fuel inlet is assumed to be Y F
CH4 = 0.2 and Y F

N2 = 0.8, and
the oxidizer inlet is air with Y O

O2 = 0.23 and Y O
N2 = 0.77.

Counterflow diffusion flames are usually characterized by the strain rate a. Many different
definitions for it can be found in the literature (Fiala and Sattelmayer, 2014). In this work the
definition of the strain rate based on the maximum axial velocity gradient is used.
The lengths described in Figure 5.34 are D̂ = 2 cm, Ĥ = 2 cm and L̂ = 12 cm. The

variables are nondimensionalized using L̂ref = 2 cm, T̂ ref = 300K and p̂ref = 101 325Pa.
For each case, the reference velocity is set to ûref = v̂O. Again, all derived variables are
nondimensionalized using the air stream as a reference condition, i.e. ρ̂ref = 1.17 kgm−3,
µ̂ref = 1.85 × 10−5 kgm−1 s−1 and Ŵ ref = 28.82 kg kmol−1. The reference heat capacity is
ĉp,ref = 1.3 kJ kg−1K−1.
Under this conditions, the Reynolds numbers are Re = 156, Re = 390 and Re = 858, for

the low, medium and high inlet velocities respectively. The Prandtl number is assumed to be
constant with Pr = 0.75. A nonunity but constant Lewis number formulation is used, with
LeCH4 = 0.97 , LeO2 = 1.11, LeH2O = 0.83 and LeCO2 = 1.39 (Smooke and Giovangigli, 1991).
The system is considered open, the thermodynamic pressure is constant and set to p0 = 1.
The boundary condition of the inlets are

• Oxidizer inlet: {∀(x, y) : y = 0 ∧ x ∈ [−D/2, D/2]}

u = 0, v = vO(y), T = 1.0, Y ′ = (0, Y O
O2, 0, 0).

• Fuel Inlet: {∀(x, y) : y = H ∧ x ∈ [−D/2, D/2]}

u = 0, v = vF (y), T = 1.0, Y ′ = (Y F
CH4, 0, 0, 0).

The pressure outlet boundary condition is the same as Equation (2.38c). The pressure outlet
boundaries are placed far away from the center of the domain, to decrease the effect on the
centerline. Placing the boundary further away did not appreciably change the results. Finally
the boundary conditions at the walls are defined as in Equation (2.38b), with uD = (0, 0) and
a constant temperature T = 1.0.
In Figure 5.35 the solution profiles for case (a) are shown. The used mesh was obtained by a

process of mesh refinement. The base mesh is initially created with a larger concentration of
elements in the center of the domain. The points of intersection from the velocity inlet and
wall boundary conditions are also refined, which was observed to improve the robustness of the
algorithm. Similarly to the coflowing flame (Section 5.3.1), during the solution algorithm of
the flame sheet problem, the mesh is additionally refined around the flame sheet making use of
a pseudo-time-stepping approach. As expected, a stagnation flow develops and a flame forms
close to the stagnation streamline. For this strain rate, a maximum dimensionless temperature
of T = 6.05 is obtained (1815 K). This large increase in the temperature is also reflected in a
large decrease of the density. This change of density also causes the acceleration of fluid, as
observed in Figure 5.35b.
In Figure 5.35k the reaction rate given by Equation (2.24) is plotted. It is interesting to see

that the actual reacting zone is very small, which clearly demonstrates why adequate meshing
is necessary to capture the steep gradients resulting from the strong and highly localized heat
sources. Finally, and as expected, the fuel and oxidizers fields seem to only be found on either
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(e) Reaction rate
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Figure 5.35: Nondimensional solution and derived fields of the counterflow flame configuration for
case (a).
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Figure 5.35: Nondimensional solution and derived fields of the counterflow flame configuration for
case (a) (continued).
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Figure 5.36: Velocity profiles of the counterflow diffusion flame for parabolic and plug inlet boundary
conditions.

side of the flame. Although it cannot be seen here, some reactant leaking occurs, meaning that
there exists a small zone where both species coexist. This point will be addressed later.

Comparison of two-dimensional and the quasi one-dimensional counterflow flames

In this section a comparison of the results obtained with the XNSEC solver for a two-dimensional
counterflow diffusion flame, and the results obtained with the BVP4 solver for a quasi one-
dimensional flame is made. This comparison is made along the centerline of the domain (see
Figure 5.34). In this section, only dimensional variables will be considered. The transport
parameters, chemical model and the equation of state are exactly the same for both formulations.
For all calculations in this section done with the XNSEC solver, a polynomial degree of four is
used for the velocity components, temperature and mass fractions. A polynomial degree of
three is used for the pressure. This results in systems with approximately 439,000 degrees of
freedom.
The choice of the type of velocity boundary conditions for the inlets requires some attention.

Different possibilities exist to describe the velocity profiles. One possibility is to characterize the
velocity boundary conditions by assuming a Hiemenz potential flow, where a single parameter
defines the flow field. Other possibilities are also a constant velocity value (plug flow) or a
parabolic profile, which allows defining different velocity values for each jet inlet. The effect of
boundary conditions on the flame structure has been studied by Chelliah et al. (1991) and
Johnson et al. (2015), where it is concluded that both plug and potential flow are able to
adequately describe experimental data.
The question of whether a plug or parabolic flow profile allows a better representation of the

quasi one-dimensional equations was treated in the work from Frouzakis et al. (1998). There
it is stated that the one and two-dimensional formulations yield very similar results, provided
that the inlets of the two-dimensional configurations are uniform. Furthermore, preliminary
calculations with the XNSEC solver showed that the selection of a plug flow or parabolic have
an influence on the solution, as shown in Figure 5.36. Based on these results, the plug flow
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Figure 5.37: Comparison of the axial velocity calculatedwith theXNSECsolver and the one-dimensional
approximation.

boundary condition is adopted for all following test cases.
In Figure 5.37 a comparison of the axial velocities calculated with the XNSEC solver and

the one-dimensional solution is shown. While for the high strain case the results agree closely,
for lower strains a discrepancy is observed. Recall that the derivation of the one-dimensional
approximation assumes a constant velocity field incoming to the flame zone in order to obtain
a self-similar solution. In the case of the two-dimensional configuration presented here, the
border effects do have an influence on the centerline, which disrupts the self-similarity. This
effect is more pronounced for low velocities, which explains the discrepancy between curves.
In Figure 5.38 the temperature and mass fraction fields are presented. Again, a discrepancy

is observed for low strains, but results show a good agreement for higher inlet velocities. It
can also be observed that, as expected, at higher strains a significant leakage of oxygen across
the flame is present. This is a typical behavior of a flame that is getting closer to its extinction
point (Fernandez-Tarrazo et al., 2006).
A drawback from the usual one-step models with constant activation temperature is that

they tend to over predict fuel leakage. This behavior is not observed in the one-step model
with variable activation temperature used here. In Figure 5.39 the comparison is shown for
the configuration (c) between the mass fractions fields obtained using a chemical model with
variable kinetic parameters given by Equations (2.19) and (2.20) and with constant kinetic
parameters using T̂ a = T̂ a0 and Q̂ = Q̂0. The oxygen leakage obtained by using the chemical
model with variable parameters is evident, demonstrating that the chemical model is capable
of appropriately modeling the leakage phenomenon.
In Figure 5.40 the maximum temperature obtained at the centerline for different strain

rates is plotted. Qualitatively speaking, the solution obtained with the XNSEC solver agrees
with the expectations. As the strain rate increases the residence time decreases, the system
moves away from equilibrium and the maximum temperature decreases (see Figure 2.1). On
the other hand, the comparison of values obtained with the XNSEC solver and those of the
quasi-one-dimensional approximation clearly shows a discrepancy in the results. For low strain
rates, this discrepancy is small, being only 10K for a = 20 s−1, approximately a difference of
0.5%. As the strain rate increases so does the discrepancy. For a = 200 s−1 the difference is
almost 50K, which is a 9% disagreement. A similar behavior is also reported in Frouzakis et al.
(1998), where a difference of 50K was obtained between the results of a two-dimensional
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Figure 5.38: Comparison of temperature and mass fraction fields obtained with the XNSEC solver
(solid lines) and the one-dimensional approximation (dashed lines).
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axisymmetric configuration and a quasi-one dimensional configuration.
It is worth noting that the XNSEC solver was not able to find a converged solution for

a > 202 s−1, and the Newton algorithm stagnates. This is most probably a sign of under-
resolution of the mesh, and that the used refinement strategy did not help for such high strain
rates. A better mesh refinement strategy is necessary for calculating the flame at conditions
near the extinction point. Moreover, for high strain rates, the flame will be far from the
thermochemical equilibrium, and it is likely that the solution obtained for the flame sheet
will be far from the solution with finite reaction rates. A possibility would be to use one of
the well-known continuation methods to progressively move in the direction of the extinction
point (see, for example, Nishioka et al. (1996)). The homotopy methodology presented in
Section 4.4.1 can be viewed as one of those methods and would be useful when looking for
solutions of systems that are close to the extinction point, by gradually increasing the velocity
of the inlets. A complexity that arises is how to create in a robust way a dynamical mesh that
is suitable for obtaining the intermediate solutions while searching for the final result. This
issue is beyond the scope of this thesis and may be the subject of future research.
The difference between the results obtained for the two-dimensional configuration and the

quasi-one dimensional approximation could be explained by some condition within the 1D
system assumptions being violated in the set-up of the 2D configuration. It is known that in
addition to the boundary conditions, the ratio between the width of the slot and the separation
between the two slots (here D/H = 1.0) also has an influence on the solution and that a high
ratio is desirable (Frouzakis et al., 1998). Experiments with the XNSEC solver showed that
increasing the ratio to D/H = 1.5 or decreasing it to D/H = 0.75 did not change the results
appreciably.
Another point that was not addressed here is whether the boundary conditions chosen for

the cold walls have an effect on the solution along the centerline. Other possibilities could
have been using outlet boundary conditions or an adiabatic wall. However, it is expected that
its effect on the centerline would not be big.
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Figure 5.40: Maximum centerline temperature of a counterflow flame for different strains.
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Figure 5.41: Convergence study of themaximum value of the temperature for the counterflow diffusion
flame configuration.

Similarly to problems presented in earlier sections, the presence of singularities caused by
non-consistent boundary conditions causes a degenerative effect on the global error values,
making a global convergence study for this configuration problematic. However, it is still
possible to study the behavior of some characteristic point value under different conditions to
prove the mesh independence of the solution.
In Figure 5.41 it is shown how the maximum temperature along the centerline obtained

for the case (b) behaves under different number of elements in the x direction (Nx) and
polynomial degrees. The values for k = 1 are not shown, because for this range of cell elements,
the maximum temperature value was of the order of 60K higher than the ones depicted here.
The temperature tends to a limit value, and it is possible to observe how this value is reached
already for coarse meshes when using a polynomial degree of three or four. For k = 2 the
temperature also tends to a limit value, but at a slower rate compared to k = 3 or k = 4.
In the next section a simplified one-dimensional flame configuration will be used in order to

be able to realize a global h-convergence study of the whole system operator.
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5.3.3 Chambered diffusion flame
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Figure 5.42: Schematic representation of the chambered diffusion flame configuration.

In this chapter an h-convergence study for a quasi-one-dimensional configuration is shown.
This is done by using a planar unstrained diffusion flame in the so-called chambered diffusion
flame. This configuration has served as a model for many theoretical studies related to diffusion
flames (Matalon et al., 1980; Rameau and Schmidt-Lainé, 1985; Matalon and Metzener, 2010).
A sketch of the configuration can be seen in Figure 5.42. Fuel is injected at a constant rate

into the bottom of a small insulated chamber, while oxidant diffuses into the system against
the direction of the flow. Constant conditions at the outlet of the chamber are achieved in an
experimental setting by a rapid renewal of the flow of the oxidant. Under these conditions, an
unstrained planar flame is formed.
The fuel inlet into the chamber is modeled with a constant velocity inlet boundary condition

Equation (2.38a), while the flow outlet at the top is considered an outlet as given by Equa-
tion (2.38d). Since the interest is in the flame far away from the container walls, it is sufficient
to set the remaining boundary conditions as periodic boundaries. This effectively transforms
the problem into a pseudo-two-dimensional configuration.
The inlet velocity of the fuel jet is set to 2.5 cm s−1 and its mass composition is Y 0

CH4 = 0.2

and Y 0
N2 = 0.8 while air has a composition Y 0

O2 = 0.23 and Y 0
N2 = 0.77. The temperature of

the fuel and air feed streams is 300K. The length of the system L is equal to 0.015m. The
Reynolds number is Re = 2.
For this configuration, an h-convergence study is conducted, where uniform Cartesian meshes

with 5 × 26, 5 × 27, 5 × 28, 5 × 29 and 5 × 210 cells are used. The polynomial degrees are
varied from one to four for velocity, temperature and mass fractions, and from zero to three for
pressure. Errors are calculated using the finest mesh as a reference solution.
The results are shown in Figure 5.43 for variables u, T , YCH4 and p. The convergence

results for other variables are similar and not shown here. The expected convergence rates
characteristic for the DG method are observed. For low polynomial degrees the orders of
convergence are very close to the theoretical values. However for higher polynomial degrees a
slight deterioration of the convergence rate is observed.
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Figure 5.43: Convergence study for the chambered diffusion flame configuration.

5.3.4 Combustion over a square cylinder

As a last testcase of the XNSEC solver, a configuration very similar to the one previously shown
for the flow over a cylinder was simulated, but now extending the case to a system where
combustion is present. Unlike Section 5.2.4, for this test case the flow over a square cylinder
is considered. The simulation is non-stationary and shall serve as a test of the time-steping
together with the AMR algorithms. As will be explained later, this was not possible with the
current solver implementation, and only some simplified cases will be shown. First, results
for a non-reactive steady state solution are shown. Later, an unsteady case with combustion
present is analysed.

Flow over a heated square cylinder

In the work from Miao (2022) the XNSEC solver was used for calculating the flow around
a heated square cylinder. The results were compared with the data published by Sharma
and Eswaran (2004) for the recirculation lengths after the square cylinder. Simulations were
performed with Reynolds numbers ranging from Re = 5 to Re = 40. The square cylinder is
modeled by no-slip walls with (u, v) = (0, 0) and the incoming flow field (air inlet in Figure 5.44)
is (u, v) = (1, 0). The fluid considered is air. In Figure 5.45 a comparison of the normalized
recirculation length Lr/B obtained with the XNSEC solver and the reference is shown. The
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0 5 10 15 20 25 30 35 40

0.5

1

1.5

2

2.5

Re

L
r
/B

XNSEC
Sharma
Lr/B = 0.0672Re

Figure 5.45: Recirculation lengths for different Reynolds numbers for the non-reactive case.

results agree very well, deviating slightly at higher Reynolds numbers.

Unsteady combustion over a square cylinder

The last test of the XNSEC solver was done with the objective of calculating a non-stationary
flame. It is well known that there is a critical Reynolds value (at least for non-reactive systems)
from which the system becomes non-stationary. According to Sharma and Eswaran (2004),
for Re > 50 the flow has a non-stationary periodic character. In this section results from two
simulations are shown. For the first one, a constant density is assumed, and in the second one
the equation of state is used. A sketch of the configuration is shown in Figure 5.44. Fuel is
expelled at a constant rate and homogeneously through the cylinder. A constant flow of air in
the horizontal direction comes in contact with the fuel, which eventually forms a flame.
The lengths depicted in Figure 5.44 are set to B = 1, x1 = 4, x2 = 22 and H = 8. The

air enters with a uniform velocity to the system (u, v) = (1, 0), and uniform temperature
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T = 1. Its composition is Y O
O2 = 0.23 and Y O

N2 = 0.77. The fuel inlet enters with a velocity field
(u, v) = (0.2x/B, 0.2y/B), has a uniform temperature T = 1 and composition Y F

CH4 = 0.2 and
Y F
N2 = 0.8. A Reynolds number of Re = 300 is set, for which in the non-reactive case the vortex
shedding phenomenon occurs. The Prandtl number is set to Pr = 0.75.
For this simulations only the infinite-reaction rate equations given by Equation (2.31) are

calculated and advanced in time. The initial conditions used are similar to those of the circular
cylinder in section Section 5.2.4. Again, an initial vortex is used to trigger the vortex shedding
according to

u(t = 0) = 1 + uvortex, (5.28a)
v(t = 0) = 0 + vvortex, (5.28b)
Z(t = 0) = 0, (5.28c)
p(t = 0) = 0. (5.28d)

where the vortices uvortex and uvortex are given by Equation (5.18). The strength of the vortex
is a = 1 and its center is initially located at (xo, yo) = (−2.5, 0). A Cartesian base mesh with
54 × 32 elements is used, which is refined or coarsened as necessary during the simulation.
The calculation time is set to t = 100, with constant time steps of ∆t = 0.05. A BDF-2 scheme
is used for the temporal discretization.
The time-dependent simulation of a combustion phenomenon proved to be very challenging

and the temporal discretization described in Section 3.1.3 did not allow obtaining solutions of
this problem. In particular, it is observed that the time derivative of the continuity equation
∂ρ/∂t is a source of numerical instabilities, particularly in systems with large density variations.
This is a fact already reported in the literature. In the work of Nicoud (2000) difficulties are
reported for obtaining solutions for density ratios greater than three. In this context density
ratios refer to the ratio between maximum and minimum density appearing in the system. In
the work of Rauwoens et al. (2009) and Cook and Riley (1996) a similar destabilization effect
is also reported for high density ratios, reporting also better stability properties when using
even-ordered schemes compared to odd-ordered schemes.
It must be mentioned that the non-isothermal unsteady flow configurations presented until

this point didn’t present any kind of particular problems for its solution. Those test cases
presented however only moderate density ratios, the largest of them being 1.5. On the other
hand, for a combustion process like the one presented here, the density ratios are much higher,
even higher than six for typical combustion cases.
Nevertheless, simulations of this test case ignoring the ∂ρ/∂t term were performed. This is

clearly a non-physical approximation, but is nonetheless used to showcase the capability of the
solver for calculating unsteady reacting flow.

Constant density

First, the problem was calculated with the assumption of a constant density ρ = 1. By doing
this, the term ∂ρ/∂t is automatically equal to zero, and the momentum equation is only slightly
coupled to the mixture fraction equation, since the viscosity still depends on the temperature.
In Figure 5.46 the temperature field is shown at different times. Obviously, since this is a
simplified case, using the flame sheet circumvents the need to simulate the ignition of the
system, and from the instant t = 0 onward the system already has areas where the temperature
reaches the adiabatic temperature. It can be seen that the vortex-shedding phenomenon

102



appears, as expected for a number Re = 300. It is interesting to see that the vortex shedding
separation point moves downwards (compared with a square cylinder without outflow) since
the incoming air flow is pushed by the fuel exiting the cylinder. The mesh obtained from the
mesh refinement process is also shown. The mesh is refined or coarsened after each time-step
by using as a criterion the location of the flame sheet, meaning that cells where z = zst are
refined. The calculations were performed using eight cores. The algorithm performs well for
this configuration, needing at most 5 Newton iterations to reach convergence.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

(a) t=1.25

(b) t=5

(c) t=25

Figure 5.46: Temperature field and mesh calculated with the Burke-Schumann solution at different
times, assuming a constant density.
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Figure 5.47: Temperature field calculated with the Burke-Schumann solution at different times.
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Variable density

Finally, the configuration using a variable density was calculated. The temperature fields and
meshes are shown in Figure 5.47. It is interesting to observe the great effect that the big density
variations caused by the combustion have on the flow structure. The zones near the flame sheet
are greatly accelerated because of the big reduction in the density. The refinement strategy
mentioned before was used, and was observed to be critical for finding converged solutions
of the system. Interestingly, the zone of the domain where the vortex shedding commences
in this configuration, is shifted even further to the right compared with the case mentioned
above. This is clearly attributable to the flow acceleration due to the high density variations in
the zones where chemical reaction takes place.
The number of DoFs for the simulation range between 62064 for the initial mesh, and 224280

for the mesh corresponding to the last iteration. The relatively low number of DoFs allowed
to use the direct solver PARDISO during the whole course of the simulation. The calculation
time of each timestep ranges between two minutes for the coarse initial mesh and 20 minutes
for the finest mesh obtained at the end of the simulation. This relatively high calculation time
could be a big drawback of the presented algorithm. The fully coupled solution of the system
leads to very big matrices which have to be solved with efficient linear solvers. Although the
linear solvers used in this work are very efficient, other specialized solvers could be used in
order to reduce the calculation times, particularly for transient simulations. This is a point
which should be addressed in future work.
The infinite reaction rate equations where used in this test mainly to reduce the calculation

time of the transient system. The finite reaction rate equations could have been solved by
using a similar strategy as the one used for steady state calculations, meaning that the system
Equation (2.31) can be solved for an initial time interval, after which the finite reaction rate
equations are initialized and advanced in time. Due to the long calculation times for this kind
of simulations, this aspect was not explored in the present work.

5.4 Conclusion

In this chapter a very detailed verification of the solver by means of several benchmark config-
urations is done. They also allow to highlight some of the benefits of the algorithms presented
in this work.
First, two classical incompressible benchmark cases are selected: the lid-driven cavity flow

and the backward-facing step. These cases are simulated and compared with reference solutions,
obtaining very good agreement of the results. The recirculation lengths of the backward facing
step agree very well with the lengths reported in other publications. Interestingly the XNSEC
solver encounters a secondary recirculation zone for Re = 200, which is not reported in the
benchmark solutions.
Subsequently, several test cases in which temperature plays a significant role are analysed. A

heated backward-facing step is calculated and compared with the benchmark results, again
obtaining very good result agreements. Later, a Couette flow configuration with a vertical
temperature gradient is used for determining the experimental order of convergence of the
solver for single-component non-isothermal systems, where the expected rates of the DG
method are observed. The capability of the XNSEC solver for simulating buoyancy driven flows
is tested by means of the heated square cavity problem. This test case also serves to prove
the ability to solve flows in a closed system. A very thorough comparison with benchmark
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results is performed, obtaining very satisfactory results. The Newton-Dogleg method proved
to be adequate for systems up to a Rayleigh number of Ra = 105. Larger Rayleigh number
values required the use of the homotopy algorithm in order to find a converged solution. The
convergence properties for the non-isothermal closed-system flow are also calculated, and the
expected DG convergence rates are obtained; only for k = 4 a slight deterioration of the rates
is observed.
Later, an unsteady non-isothermal test case is shown, namely the flow over a heated circular

cylinder. The unsteady behavior of the solution obtained agrees very well with the benchmark
results, and the expected Kármán vortex street is observed. The behavior of the solver with
respect to perturbations is studied by means of the Rayleigh-Bénard convection problem. The
critical value obtained for the Rayleigh number at which the system exhibits convective fluid
motion is calculated with precision of 0.009% compared to theoretical values.
Finally, the XNSEC solver is used to solve several classical diffusion flame configurations.

First, a coflowing flame is simulated, which served to highlight the benefits of the strategy of
using flame-sheet estimates, and also for showing the behavior of the nonlinear solver. It was
observed that the simulation of the coflowing flame in a gravity field is considerably harder
than the one without gravity, and the homotopy approach was necessary to obtain a converged
solution. Later, a verification of the spatial discretization for the reactive case is performed
by means of the counterflow diffusion flame configuration. The results obtained using the
XNSEC solver for this configuration at varying strain rates are compared with results obtained
by solving the equations for a quasi-one-dimensional flame using the BVP4 Matlab solver.
Comparison of the results showed that for high strain rates the results agree very closely, while
for low strain rates they differ slightly. This can be explained by the influence of the border
effects on the centerline results for a two-dimensional configuration. Additionally, the influence
of different types of input boundary conditions is studied, concluding that a plug flow is the
most adequate for comparison with the one-dimensional equations. Finally, a comparison
of the maximum temperatures obtained for different strain rates showed discrepancies of
up to 10% for high strain values. Later, a pseudo-one-dimensional flame configuration is
used to study the convergence rates of the method in cases where combustion is present and
again the expected convergence rates are obtained, only observing a slight deterioration for
higher polynomial orders k. Finally, an unsteady test case with combustion is shown. It is
observed that the temporal term of the continuity equation is a source of instability in cases
with high temperature variations and causes the algorithm to not converge. Nevertheless,
simulations ignoring the term are performed, which shows that the mesh refinement algorithm
in a time-stepping framework works as expected.
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6 Conclusion

In the present work, the discretization and implementation of a fully coupled implicit method
for simulating steady-state diffusion flames using the DG method are shown. The governing
equations in the low-Mach limit are used, which allows to account for expansion and com-
pression effects for large variations in temperature, and removes the restriction to models
such as the Boussinesq approximation. The chemical model used corresponds to a one-step
model with variable parameters that captures fundamental characteristics of diffusion flames,
while also demanding far less computational power compared to complex chemical models.
Furthermore, temperature-dependent expressions for the transport parameters according to
Sutherland’s law and variable heat capacities according to NASA polynomials are used. The
presented formulation of the equations allows the simulation of open and closed systems.
The discretization using DG-methods allows for a high-order formulation which offers high

accuracy with low computational costs. A mixed-order formulation is used for stability reasons,
where the velocity, temperature, and mass fractions are represented by polynomials of degree
k, and pressure by polynomials of degree k− 1. The system obtained from the discretization is
solved in a fully coupled manner by means of a Newton-Dogleg type method, which proved to
be a very robust algorithm for the test cases presented, even for cases where an adequate initial
estimate is not available. In addition, an efficient method for the calculation of the Jacobian
matrix as part of Newton’s algorithm is presented. Systems of linear equations are solved in
two ways: Systems with up to approximately 500,000 DOF are solved using the direct solver
PARDISO and larger systems are solved using a multi-grid method.
The algorithms presented here form a solid foundation for the solution using a fully coupled

approach. The presented solver is used for the simulation of a wide range of test cases, which
proves to be very efficient in the search for solutions and, most importantly, with little need of
intervention from the user in terms of configuration.
The fully coupled method proved to be adequate and very time-efficient in finding solutions

of all the test cases presented in this thesis. Tests are performed to compare the fully implicit
approach presented in this work with the SIMPLE-DG algorithm-based solver that is already
present in the BoSSS framework. A clear and very large difference in the runtimes is observed,
where the XNSEC solver presents computation times up to 20 times shorter than the SIMPLE-
DG solver. It is important to note that this is not an indicator that the SIMPLE-DG method
is generally less efficient in terms of computational time than the approach presented in this
work, since the low performance of the SIMPLE-DG method could be explained by a poor
choice of under-relaxation factors. However, the fully coupled approach presented in this work
requires less user input, which also makes it more robust.
Additionally, as a convergence supporting strategy, an homotopy method is included in the

structure of the nonlinear solver, which allows for solving highly nonlinear systems in a fully
automatic manner. This type of algorithm is useful to solve steady state systems where some
parameter makes the solution of the system difficult, as is, for example, the simulation of the
square heated cavity problem for high Rayleigh numbers. The homotopy algorithm shown here
is shown to be a robust and automatic strategy that allows finding solutions to such problems
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without the need for user intervention.
For reactive test cases, the concept of the flame sheet estimate is demonstrated to be a

useful and computationally inexpensive way to initialize steady-state calculation of combustion
systems with finite reaction rate. Using this strategy avoids the need for ignition simulation,
usually performed by means of time-stepping or pseudo-time-stepping techniques, which can
be very time consuming.

6.1 Future work

Although the algorithms presented in this paper are useful for a large number of cases, there
are aspects that still require further investigation. They are mentioned below.
Theoretically all the methods presented are capable of simulating three-dimensional flows.

In the present work only two-dimensional systems are treated, mainly due to performance
reasons. The systems of equations to be solved in the three-dimensional case are too large for
the linear-solvers that are part of the BoSSS-code. Nonetheless, the development of iterative
solvers that allow the solution of such problems is ongoing work in the BoSSS developing
group, and the simulation of systems with three-dimensional combustion could be part of
future investigations.
The governing equations treated in this work are based on a set of assumptions. The diffusion

model used is simplified, and it is expected that in certain combustion related problems, it may
lead to large errors, particularly in systems that are not significantly diluted. Implementing a
more complex diffusion model, such as the Hirschfelder and Curtiss approximation, would be a
simple and efficient way to solve this problem. Another important point is that the simulations
shown in this work dealt mainly with very dilute fuels. Simulation of pure fuel combustion
would in theory require much finer meshing (which greatly increases the number of DOF to be
solved), or similarly, a more specialized refinement strategy. Future work could address these
points, and the development of specialized linear solvers could help with computation times
for systems with large numbers of DOF.
This work mainly dealt with steady-state combustion systems. The use of the flame sheet

solution as an initial estimate proved to be an efficient way to find the burning solution. With
this strategy, the need to simulate the flame initiation process is circumvented, since only the
steady-state solution is of interest. Simulation of the ignition process is an open topic that
should be addressed in future work.
Although the work showed that the fully coupled approach performed very well for a wide

variety of problems, for more complex systems, such as non-stationary combustion processes,
the computational times could be quite prohibitive. Further computational parallelization, in
particular of linear-solvers, could speed up the calculations.
In future work, the implemented solver is intended to be used in conjunction with a extended-

DG solver (Kummer, 2017; Kummer et al., 2021; Krause and Kummer, 2017) in order to study
multiphase reactive systems such as burning droplets. Some preliminary results have already
been obtained, showing promising results.
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