
Simulation and Optimization of Gas
Transport Problems using

Physics-Informed Neural Networks

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)
genehmigte Dissertation

von

Erik Laurin Strelow, M. Sc.
aus Flörsheim am Main

Referent: Prof. Dr. Jens Lang
Korreferent: Prof. Dr. Jan Giesselmann

Tag der Einreichung: 18. Oktober 2023
Tag der mündlichen Prüfung: 4. Dezember 2023

Darmstadt 2023
D17

Simulation and Optimization of Gas Transport Problems us-
ing Physics-Informed Neural Networks

Accepted doctoral thesis by Erik Laurin Strelow, M.Sc.

Darmstadt, Technische Universität Darmstadt

Date of thesis defense: December 4, 2023
Tag der mündlichen Prüfung: 4. Dezember 2023

Year of publication of the doctoral thesis on tuprints: 2024
Jahr der Veröffentlichung der Dissertation auf tuprints: 2024

Please cite this document as / Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-267694
URL: https://tuprints.ulb.tu-darmstadt.de/26769

This document is provided by tuprints, e-publishing service of TU Darmstadt / Dieses
Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

This work is licensed under a Creative Commons License:
CC BY-SA 4.0
Attribution-ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
CC BY-SA 4.0
Namensnennung-Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/deed.de

https://tuprints.ulb.tu-darmstadt.de/26769
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0/deed.de

Zusammenfassung

Diese Arbeit befasst sich tiefgehend mit physikalisch informierten (physics-informed) neuro-
nalen Netzwerken. Die Methode baut auf Deep Learning Techniken auf, wird im Allgemeinen
zur Lösung von Differentialgleichungen verwendet und in dieser Arbeit auf Gastransportpro-
bleme angewendet. Die vorliegende Bearbeitung dieses bislang wenig erforschten Themen-
feldes leistet einen Beitrag zu einem besseren Verständnis der Methode und richtet seinen
Fokus auf drei Schwerpunkte:

Zunächst beschäftigen wir uns mit den grundlegenden Eigenschaften. Hier beweisen wir ei-
nerseits Fehlerabschätzungen für ein lineares System von Transportgleichungen, die den Feh-
ler der Approximation durch den Wert der Verlustfunktion beschränken. Die Abschätzungen
zeigen allerdings auch, dass die Methode Probleme mit langen Zeitintervallen und hohen
charakteristischen Geschwindigkeiten hat. Zum anderen wird aufgezeigt, wie die Methode
effizient implementiert werden kann.

Neben der Standardmethode wurden zahlreiche Variationen von physikalisch informierten
neuronalen Netzwerken entwickelt. Diese vergleichen wir miteinander und befassen uns mit
dem zweiten Schwerpunkt, der Suche nach der effektivsten Trainingsstrategie. Hier führen
wir umfangreiche numerische Tests durch, die verschiedene Architekturen von neuronalen
Netzwerken, Optimierungsverfahren, Integrationsverfahren und Verfahren zur Wahl von Ge-
wichten in der Verlustfunktion beinhalten.

In den Ergebnissen zeigt sich, dass für jedes Problem eine andere neuronale Netzwerk
Architektur am besten geeignet ist. Als Optimierungsverfahren ist das Adam Verfahren
mit der richtigen Lernrate und genügend Iterationen den anderen Verfahren überlegen. Bei
den verschiedenen Integrationsverfahren lassen sich kaum Unterschiede erkennen und die
verschiedenen Konvergenzraten der Verfahren übertragen sich nicht auf die Konvergenzrate
von physikalisch informierten neuronalen Netzwerken. Dies zeigt ein kompliziertes Verhältnis
zwischen Optimierungs- und Quadraturfehler und, dass der Fehler nicht beliebig reduziert
werden kann.

Bei den Verfahren zur Wahl von Gewichten in der Verlustfunktion kann nur die auf-
wendige Zufallssuche die Genauigkeit verbessern. Abschließend betrachten und erweitern
wir eine andere Formulierung der Verlustfunktion. Durch die Erweiterung lässt sich deren
Genauigkeit steigern, aber die der ursprünglichen Verlustfunktion nicht übertreffen.

Als Drittes befassen wir uns mit der Lösung von optimalen Steuerungsproblemen durch
physikalisch informierte neuronale Netzwerke. Hier betrachten wir einen direkten Ansatz und
entwickeln einen neuen, indirekten Ansatz. Wir zeigen, dass der direkte Ansatz das optimale
Steuerungsproblem nicht ausreichend widerspiegelt und unzulässige Lösungen berechnet.
Der indirekte und auf der Adjungierten aufbauende Ansatz berechnet wiederum zulässige
Lösungen, die auch die Zielfunktion minimieren. Wir verdeutlichen dies durch numerische
Ergebnisse von zwei Testproblemen.

iii

Abstract

This thesis investigates the application of physics-informed neural networks to solve gas
transport problems. Physics-informed neural networks are a new numerical method that
applies deep learning techniques to solve problems involving differential equations. Much
knowledge is still to be developed, and this thesis is a contribution to the understanding of
the method, focusing on three main areas.

First, we contribute to the fundamental knowledge of physics-informed neural networks.
Here, in a theoretical investigation, we prove error estimates for a linear system of transport
equations that bound the generalization error of the method by the values of the loss func-
tion. The estimates thus validate the method. However, they also show that the method has
problems with long time intervals and high characteristic speeds. Furthermore, a practical
investigation shows that the standard implementation can be improved with a more efficient
approach.

Second, we focus on the most effective training strategy to obtain physics-informed neural
networks. Besides the standard method, many variants of physics-informed neural networks
have been proposed. We survey these variants and perform extensive numerical tests in-
volving different neural architectures, optimization methods, sampling strategies, and loss
balancing methods.

The results show that a specific neural network architecture is best suited for each prob-
lem. The Adam optimization method outperforms the other optimization methods with an
appropriate learning rate and sufficient iterations. Higher-order sampling strategies have no
significant advantages over the commonly used Latin hypercube sampling, and thus the con-
vergence rates of sampling strategies do not affect the convergence rate of physics-informed
neural networks. This demonstrates a complex interaction between the optimization and
quadrature error, and also shows that the generalization error cannot be arbitrarily reduced
in practical applications.

For the loss balancing methods, only an expensive random search can improve the accu-
racy. Finally, we review and extend another loss function formulation. While the extension
increases the accuracy, it does not exceed the accuracy of the original loss function.

Third, we address optimal control problems using physics-informed neural networks.
Here, we consider a direct approach and develop a new indirect approach. We show that
the direct approach does not adequately reflect the optimal control problem and computes
infeasible solutions. In contrast, the indirect adjoint-based approach, computes feasible so-
lutions that also minimize the objective function. We illustrate this with numerical tests
from two test problems.

iv

Acknowledgements

First of all, I would like to thank my supervisor, Professor Jens Lang, for giving me the
opportunity to explore this new and exciting topic. I am very grateful for his patient
guidance and experienced support over the years. I would also like to thank Professor Marc
Pfetsch for being my co-supervisor.

Next, I would like to thank the co-referee Professor Jan Giesselmann and the members
of the examination board Professor Yann Disser, Professor Oliver Weeger.

I especially thank Alf Gerisch for his technical support and proofreading the thesis. In
addition, I also thank Selina and Kenan for proofreading the thesis.

I would like to thank my family and friends for their consistent support. Also, a spe-
cial thanks to the Numerical Analysis and Scientific Computing Research Group for their
helpfulness and the very friendly atmosphere.

This work was supported by the German Research Foundation within the collaborative
research center Transregio 154 as well as the Graduate School CE within the Centre for
Computational Engineering at TU Darmstadt. I gratefully acknowledge the computing time
provided on the high-performance computer Lichtenberg at the NHR Centers NHR4CES at
the TU Darmstadt.

v

Contents

1. Introduction 1

2. Two exemplary problems 5
2.1. Linear problem . 5

2.1.1. Exact solution . 6
2.2. Nonlinear problem . 7

3. Fundamentals of deep learning 11
3.1. Designing neural networks . 11

3.1.1. Fully connected deep neural networks 12
3.1.2. Hamiltonian-inspired neural networks. 13

3.2. Training neural networks . 15
3.2.1. Adam Optimizer . 16
3.2.2. L-BFGS . 18
3.2.3. Initialization . 18

3.3. Automatic differentiation . 20
3.4. Implementation . 22
3.5. Numerical tests . 23

4. Physics-informed simulations 28
4.1. Loss based on differential form . 29

4.1.1. Physics-informed neural networks 29
4.1.2. Sampling strategies . 50
4.1.3. Loss balancing weighting . 58

4.2. Loss based on integral form . 64
4.2.1. Numerical Results . 67

4.3. Conclusion . 68

5. Physics-informed optimization 71
5.1. Optimal control problems . 71
5.2. Direct approach . 73

5.2.1. Numerical tests . 74
5.3. Indirect approach . 76

5.3.1. Adjoint-based optimality conditions 76
5.3.2. Physics-informed approach . 81
5.3.3. Numerical results . 83

5.4. Conclusion . 89

6. Conclusion 90

Bibliography 92

vi

1. Introduction

Just in the last three years, the world has experienced multiple crises: a global pandemic,
a war in Ukraine, an energy crisis, inflation, and a worsening climate crisis. These crises
are not independent events, but rather a polycrisis [57]: An interplay between different
crises that interact and amplify each other. To overcome these ever-growing challenges,
scientific research is important on which informed mitigation strategies can be developed.

In this work, we want to contribute to the aspect of methods to reduce energy con-
sumption, relieve the energy scarcity, which helps to mitigate both the energy and climate
crises. We will address this task with another emerging technology, machine learning.
Machine learning comprises algorithmic approaches to learn and improve from data
without being explicitly programmed for specific tasks. These approaches have made
enormous advancements in the last decade, suggesting that they are capable of solving
a wide variety of problems and eventually reaching human intelligence.

In the following, we will explore both aspects in more detail: the energy crisis Germany
is facing and the impact of artificial intelligence. Subsequently, we will describe how we
combine both topics and outline the contributions of this work.

Germany’s energy crisis

Final act. We begin on the morning of September 26, 2022. The news shows images
of natural gas rising from the Baltic Sea, coming from the damaged Nord Stream gas
pipelines that supply Germany with natural gas. What might appear to be a major
environmental disaster and a waste of natural gas that Germany desperately needed
at the time, was the final act of the much proclaimed German natural gas (or, more
broadly, energy) strategy.

The damaged Nord Stream pipelines resolved Germany’s ethical dilemma of support-
ing a war through gas purchases on the one hand, and a feared economic and social
decline on the other hand. However, this situation has been decided by a yet unknown
party by sabotaging the Nord Stream pipeline and jeopardizing Germany’s future.

The past strategy. But what happened first? Compared to other carbon-based en-
ergy sources, natural gas emits significantly less carbon dioxide for the same amount
of energy. As a result, replacing old coal-fired power plants or oil-fired heaters with
natural gas-powered alternatives reduces carbon emissions. In addition, gas-fired power
plants complement renewable energy sources by generating electricity during periods
when wind or solar power is not available [56]. From this perspective, natural gas was
viewed as a bridge enabling a smoother energy transition.

Crucially, there are also other sectors that benefit from cheap natural gas. For exam-
ple, the chemical industry and energy-intensive sectors such as the steel industry have

1

1. Introduction

maintained their global competitiveness by relying on cheap natural gas. Thus, the Nord
Stream pipelines connected two countries with aligned interests: one that has abundant
natural resources and another that wants them to fuel economic growth. Importantly,
the gas was largely purchased at fixed prices, independent of the world market. In this
arrangement, however, Germany sacrificed its energy sovereignty by becoming overly
reliant on a single nation.

A new reality. Without the Nord Stream pipelines, Germany needs to purchase nat-
ural gas from neighboring countries and from the global liquefied natural gas (LNG)
market. Germany now has to follow market prices and has a huge and sudden demand.
This led to a cascade of unfortunate consequences: reduced gas availability in the LNG
market, causing shortages in less developed countries, or rising electricity costs as the
latter are linked to gas prices through gas-fired power plants.

As a result, Germany has to save natural gas because there is no longer enough supply.
However, saving has consequences too. For instance, it harms industrial production and
pushes Germany into a minor technical recession. So far, major damage has been averted.
But the crisis is not over yet. Coal-fired power plants also burned more to compensate
for the lack of gas, exacerbating carbon emissions. Lastly, greenhouses, which typically
use gas to heat during the winter, saved gas and produced fewer vegetables. This has
led to a reduction in supply and an increase in the cost of living.

Challenges ahead. Germany’s energy strategy is facing major challenges and needs
a new direction. Renewable energy is the key to an energy-independent and climate-
neutral future. There are also plans to replace natural gas consumption with hydrogen
[55]. However, the concrete details remain unclear, especially considering the inefficien-
cies in its production process and the associated demand for green energy.

While the immediate and distant futures are different, they share the same funda-
mental challenges. Currently, renewable energy resources are not enough to satisfy the
energy demand, therefore carbon energy resources will be required in the coming years.
However, natural gas is not as cheap and plentiful as it used to be. In a future without
carbon energy sources, energy will be produced by renewable energy sources, which are
not as plentiful as the carbon resources of the past. Thus, efficient use of energy is
important now and will be in the future.

The efficient (or mathematically optimal) use of energy is a major concern of this
work. Mathematical methods can be used to simulate and optimize energy systems, and
thus help in both time frames. While our primary focus revolves around natural gas and
hydrogen, the underlying principles are broadly applicable. These principles are based
on machine learning techniques.

Artificial intelligence

Omnipresence and Perception. It has long been a goal to develop artificial intel-
ligence (AI) methods that can match the human capabilities [16, p. 1]. Over the past
decade, advances in hardware, machine learning software, and methods have enabled

2

impressive progress: Image recognition methods are available on every smartphone, su-
perhuman performance at the board game Go [51] or the prediction of protein structure
with AlphaFold [24]. Furthermore, the broader public has recently become more en-
gaged with machine learning tools such as the StableDiffusion image generation and
conversational models such as ChatGPT. These are leading examples of research that
transitioned into widely recognized and used technologies.

Since these tools are very accessible, the public’s perception of what counts as artifi-
cial intelligence is actually the deciding factor. In fact, platforms like ChatGPT are very
much tailored to maximize this perception. Recent successes make it difficult to distin-
guish between human and machine intelligence, suggesting that the overall search for
artificial intelligence is reaching its final goal. However, in 1950, Alan Turing developed
the Turing test to assess exactly this question. So far, no algorithm has successfully
pretended to be a human and passed the test.

An AI Revolution? It is very difficult to predict what machine learning will even-
tually be capable of. Building on recent successes, reaching human intelligence seems
possible to some, and tougher challenges like self-driving cars or humanoid robots in fac-
tories and schools are on the horizon. This might replace many jobs with AI, potentially
sparking a crisis or another technological revolution [4]. However, such a shift would
favor those with vast computing resources and data, making it very unequal.

From another perspective, machine learning is just a complementary technology that
enables algorithmic solutions to some previously unsolvable problems. This debate can
only be resolved by testing machine learning approaches on various tasks and assessing
their performance. This leads to the main goal of this thesis: We aim to identify the
advantages and disadvantages of machine learning for our specific scenario.

Computational view

By approximating underlying physical systems, numerical methods allow the simulation
of future states and optimization for energy efficiency. These physical systems are typ-
ically modeled by differential equations. In this work, we consider one specific class:
Hyperbolic balance laws in a one-dimensional pipe [xl, xr] over time [ti, te] that are
formalized by

∂tu + ∂x(F ◦ u) = g(u) in (xl, xr)× (ti, te) , (1.1)

for a state vector u(x, t), a flux function F (u) and a source term g(u). Hyperbolic
balance laws are used to model gas flow of natural gas and hydrogen, and equation (1.1)
is the building block for more complex systems such as gas networks.

Classical numerical methods. Much research has focused towards the simulation
and optimization of real-world gas networks. The key to successfully solve optimization
problems is the simulation problem, which provides the solution and sensitivity infor-
mation to the optimization method. However, the underlying transport structure of
the solution requires specialized methods. In particular, simulation methods have been
developed that are adaptive in space, time, and the applied gas transport model [44].
Using simplified models whenever possible can significantly reduce the simulation time.

3

1. Introduction

Reduced methods, which are tailored to specific problems, can further reduce com-
putational costs. However, as a prominent example, reduced basis methods, which are
often successfully applied to different types of differential equations, have fundamental
problems with differential equations that model (gas) transport. See this overview of the
current state [5]. Further improvements are needed to handle large gas networks and
more complex scenarios such as optimization.

Machine learning based methods. Machine learning methods that have proven
effective in other tasks have recently been applied to solve differential equations. The
methods are grouped under the term physics-informed machine learning, as highlighted
in [25], and incorporate physical laws into the training process. The first method are
physics-informed neural networks (PINNs), which were introduced in [36] and quickly
gained popularity. The main advantage is the flexibility of the technique, which allows
specific tuning to a variety of differential equations. This has led to many proposed
variants and extensions of the original approach.

However, a major limitation is the lack of knowledge about the method and its ex-
tensions. Knowledge from classical numerical methods cannot be transferred to PINNs.
Despite the promising outlook, it remains unclear what performance can be expected
when applied to gas transport problems. This is due to the lack of comparisons between
the variants. A deeper understanding of the method, its variants, and the underlying
mechanisms is critical. In addition, it must be evaluated whether an extension to solve
optimization problems is possible.

Contribution. The overall goal of this thesis is twofold: First, we will give an in-
depth overview of physics-informed neural networks and their extensions. We will also
detail an efficient implementation and derive theoretical properties. Second, we will
assess their performance when applied to gas transport problems with comprehensive
numerical tests. Here, we will start with simulation problems. Then, we will transfer
the knowledge to solve optimal control problems. This thesis builds on the results in
[54] and expands them in new directions.

In summary, we aim to determine how physics-informed neural networks can be effec-
tively applied to gas transport problems, evaluating their advantages and disadvantages
for simulation and optimization tasks to close the existing knowledge gap.

Outline. We start by introducing two example problems modeled by hyperbolic bal-
ance laws in Chapter 2. Both problems will guide us through this thesis. Next, in
Chapter 3, we will introduce the fundamentals of deep learning, the foundation of the
remaining chapters. Physics-informed neural networks and their variants are introduced,
and analyzed in theory and by numerical tests in Chapter 4. This knowledge is then
applied to solve optimization problems based on our example problems in Chapter 5.
Finally, in Chapter 6, we summarize and present our conclusions.

4

2. Two exemplary problems

Throughout this work, we will consider two distinct problems modeled by different hyper-
bolic balance laws: a linear problem and a nonlinear problem. While the linear problem
holds primarily academic significance, the nonlinear problem resembles real-world sce-
narios more closely by using the nonlinear isentropic Euler equations and a friction term.
Both problems will serve different roles in our numerical tests, thus enabling a broad
view of the methods presented in this work.

For the linear problem, the solution structure is well-known and can be described
explicitly. The nonlinear problem introduces additional complexities, making the solu-
tion more challenging to comprehend. Consequently, numerical simulation is needed to
obtain a reference solution.

Both problems consider a one-dimensional pipe [xl, xr] where the information of two
state variables is transported from the left to the right boundary and vice versa over the
time [ti, te]. The boundary conditions are specified in accordance with the direction of
the characteristics of each respective solution.

The abstract problem formulation is as follows: We seek a function u(x, t) : [xl, xr]×
[ti, te]→ R2 that satisfies the balance law

∂tu(x, t) + ∂x(F ◦ u)(x, t) = g
(
u(x, t)

)
for (x, t) ∈ Deq := (xl, xr)× (ti, te) , (2.1a)

with a flux F : R2 → R2 and a source g : R2 → R2; the initial condition

u(x, ti) = bi(x) for x ∈ Di := [xl, xr] (2.1b)

with initial data bi : Di → R2; the left and right boundary condition

u1(xl, t) = bl(t) for t ∈ Dl := [ti, te] , (2.1c)

u2(xr, t) = br(t) for t ∈ Dr := [ti, te] , (2.1d)

with left boundary data bl : Dl → R and right boundary data br : Dr → R.

In the following, we introduce the two instances of the abstract problem (2.1).

2.1. Linear problem

For this problem, we consider the spatial interval [xl, xr] = [0, 1] and the time interval
[ti, te] = [0, 4]. The state vector u should fulfill the abstract problem with a linear flux
function and a zero source term. Specifically, we consider

u =

(
u1
u2

)
, F (u) =

(
u2
u1

)
and g(u) =

(
0
0

)
.

5

2. Two exemplary problems

Continuous piecewise linear interpolation. Before we complete the problem
with boundary and initial data, we define a continuous piecewise linear interpolation
function ι, which interpolates input-output pairs (αi, βi) for i = 1, ..., n according to

ι(x;α1, ..., αn;β1, ..., βn) = ι(x;α;β) = βi +
βi+1 − βi
αi+1 − αi

(x− αi) for x ∈ [αi, αi+1] . (2.2)

To complete this problem, we consider the initial data

(bi)1(x) = ι(x; 0, 1; 1,−1) and (bi)2(x) = ι(x; 0, 1;−1, 0)

and the boundary data on the left respectively right side

bl(t) = ι(t; 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0;

1.0,−1.0,−1.0, 1.0, 1.0,−1.0, 0.0, 0.0) ,

br(t) = ι(t; 0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0;

0.0, 0.0,−1.0,−1.0, 1.0, 1.0, 0.0, 0.0) .

See Figure 2.1 for a visualization of the initial, left, and right boundary data.

2.1.1. Exact solution

For this problem, we can construct the solution that will be used as a reference later.
First, we observe that the system matrix is diagonalizable. That is, we have

F (u) = Au with A =

(
0 1
1 0

)
= RΨR−1

and R =

(
−1 1
1 1

)
, Ψ =

(
−1 0
0 1

)
, R−1 =

(
−1/2 1/2
1/2 1/2

)
.

Now we multiply (2.1a) from the left by R−1 and introduce w = R−1u to observe

∂tw1 − ∂xw1 = 0 in Deq ,

∂tw2 + ∂xw2 = 0 in Deq ,

a system of linear transport equations with constant speed [34, p. 47]. The boundary
conditions are transformed into

u1(t) =
(
1 0

)
Rw(xl, t) = −w1(xl, t) + w2(xl, t) = bl(t) ,

u2(t) =
(
0 1

)
Rw(xr, t) = w1(xr, t) + w2(xr, t) = br(t) . (2.3)

Hence, this system is only coupled at the boundary.
Now, for any point (x, t) ∈ Deq we can trace back the characteristics to calculate

the function values w1(x, t) and w2(x, t) [34, p. 59]. For example, for w1(x, t) the
characteristics have the direction

(−1
1

)
because the first eigenvalue is negative. Either,

the characteristic intersects the t = ti line at x∗ = x + t with x∗ ≤ xr. Then, the
value of w1(x, t) is determined by the initial condition w(x, ti) = R−1bi(x). That is, we
have w1(x, t) = w1(x∗, ti). Or, the characteristic intersects the right boundary at t∗ =

6

2.2. Nonlinear problem

t+x−xr, then we can insert the right boundary condition, w1(x, t) = br(t∗)−w2(xr, t∗),
and recursively calculate w2(xr, t∗).

A similar calculation can be carried out for w2(x, t). This leads to the solution

w1(x, t) =

{
w1(x + t, ti) if x + t ≤ xr ,

br(t + x− xr)− w2(xr, t + x− xr) otherwise ,

w2(x, t) =

{
w2(x− t, ti) if x− t ≥ xl ,

bl(t− x + xl) + w1(xl, t− x + xl) otherwise .

As noted in [13, p.19], this solution concept extends beyond solutions that are differen-
tiable with a continuous derivative. We will follow this notion here, and define u = Rw
as the solution of this problem. This is important because the initial and boundary
data of the linear problem are not differentiable everywhere, and thus the solution is not
differentiable everywhere.

2.2. Nonlinear problem

In contrast to the previous problem, this problem is nonlinear and describes the gas flow
in a pipe with [xl, xr] = [0, 2] and [ti, te] = [0, 6]. It is similar to the problem described
in [11, p. 71].

We start by introducing the variables ρ for the gas density, p for the pressure, v for
the velocity, and the product ρv for the momentum. The state variables are the density
ρ and the momentum ρv. To model the gas flow, we use the isentropic Euler equations,
which are an appropriate choice for this particular task, see [34, p. 296]. We augment the
conservation law with a nonlinear friction term. This model is in line with the hierarchy
of models in [12]. In summary, we have

u =

(
ρ
ρv

)
, F (u) =

(
ρv

ρv2 + p

)
, g =

(
0

− λ
2Dρv|v|

)
, with p = κργ .

We set the adiabatic exponent to γ = 1.41, the value for hydrogen.

In a realistic scenario, κ is between 103 and 104 and depends on the initial entropy
of the gas. However, for reasons we will work out in this thesis, we choose a small κ, a
less realistic scenario, and set κ = 1. To obtain a coherent problem, the sizes of ρ and
ρv are also not realistic. This requires us to avoid calculating the friction term with the
Colebrook-White equation and we set λ = 1. We also have D = 1.

The initial state bi(x) is the steady state with respect to ρ = 2 at the left boundary
and ρv = 0.5 at the right boundary. Therefore, in this problem, the gas flows from the
left boundary to the right. See Figure 2.2 for a visualization of the initial data.

Now consider a scenario where the gas enters at the left boundary and is extracted
by the consumers at the right boundary. The gas demand from the consumers varies,
causing ρv to increase or decrease over time. This momentarily causes the gas to expand
or contract, which is reflected in changes in the density ρ. These density fluctuations
are operationally undesirable and require efforts to mitigate them. This is achieved by
adjusting the density at the left boundary. For example, by using a compressor to modify

7

2. Two exemplary problems

the density before the gas enters the pipe. Therefore, later in Chapter 5, we will consider
bl(t) as a control that allows us to adjust the density at the left boundary.

In our concrete scenario, we consider the momentum at the right boundary

br(t) =

0.5 0.00 ≤ t < 0.25 ,

−0.064(t− 0.25)3 + 0.24(t− 0.25)2 + 0.5 0.25 ≤ t < 2.75 ,

1.0 2.75 ≤ t < 4.50 ,

0.5(t− 4.50)3 − 0.75(t− 4.50)2 + 1.0 4.50 ≤ t < 5.50 ,

0.75 5.50 ≤ t ≤ 6.00 .

Leaving the density at the left boundary unchanged, i.e. bl(t) = 2, results in a significant
density drop at the right boundary. See Figure 2.2 for the corresponding solution. For
our simulation problem we consider the following control for the density at the left
boundary

bl(t) = ι(t; 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0;

2.0, 2.3, 2.3, 2.3, 2.2, 2.1, 2.0) .
(2.4)

This control is able to maintain an almost constant density at the right boundary. In
Chapter 5, our objective is to automate the process of determining an optimal control
while also taking the associated compressor costs into account.

We compute the reference solution numerically with the implicit box method presented
in [39]. We use 128 · 2 space points and 512 · 6 time points for the discrete solution.
The resulting nonlinear system of equations is then solved using the Matlab function
fsolve. The steady state is obtained similarly, but with a much longer time interval.

8

2.2. Nonlinear problem

0 1 2 3 4

−1

0

1

t

u
1

Left boundary

0 1 2 3 4

t

u
1

Right boundary

0 1 2 3 4

−1

0

1

t

u
2

0 1 2 3 4

t

u
2

(a) Exact solution of the linear problem at the left and right boundary.

0 0.5 1

−1

0

1

x

u1

0 0.5 1
x

u2

(b) Initial data of the linear problem.

Figure 2.1.: Left and right boundary as well as the initial data of the linear problem.

9

2. Two exemplary problems

0 2 4 6
0

1

2

t

ρ

Left boundary

0 2 4 6

t

ρ

Right boundary

0 2 4 6
0

1

2

t

ρ
v

Solution Solution with constant left boundary

0 2 4 6

t

ρ
v

(a) Exact solution of the isentropic problem at the left and right boundary. The solution uses
the left boundary data defined by (2.4). The solution with the constant left boundary data uses
bl(t) = 2.

0 1 2

1.9

2

2.1

x

ρ

0 1 2

0.5

x

ρv

(b) Initial data of the isentropic problem.

Figure 2.2.: Left and right boundary as well as the initial data of the isentropic problem.

10

3. Fundamentals of deep learning

Machine learning is the automatic learning of complex patterns and representations.
This can include tasks such as image recognition, text generation, and more. In this
chapter, we focus on a specific machine learning technique called deep learning.

At its core, deep learning revolves around parameters θ and a function h(· ; θ), the
neural network, that can be adjusted by θ. The goal is to find parameters θ such that the
neural network h(· ; θ) approximates a target function, and is achieved by an interplay
of the following building blocks.

• Specific constructions, the architecture, of h(· ; θ) allow for the approximation of
a large class of functions. We present two different designs in Section 3.1.

• The parameters θ are obtained by nonlinear optimization methods, the training
process, explained in Section 3.2.

• Nonlinear optimization requires derivatives with respect to the parameters θ which
are obtained by automatic differentiation. This is described in Section 3.3.

• Finally, we describe how these techniques are efficiently implemented in soft- and
hardware in Section 3.4.

Later, we will apply the deep learning techniques in two key areas. First, we will use
them to approximate the solutions of the abstract simulation problem (2.1) in Chapter
4. Second, we will solve optimization problems that build on the abstract simulation
problem in Chapter 5.

3.1. Designing neural networks

There are many possible constructions of the neural network h(· ; θ). These are com-
monly referred to as neural network architectures. Some of these architectures are capa-
ble of accurately approximating a wide range of functions by appropriately choosing the
parameters θ. This property is known as the universal approximation property. While in
theory a single neural network architecture with the universal approximation property
should suffice, in practice many different architectures have been developed for specific
use cases.

A neural network is typically a composition of multiple layers that transform the input
into multiple intermediate representations and finally into the output. Historically, fully
connected layers have been the basic architecture of neural networks. Specialized layers
such as residual layers and convolutional layers have been designed for image recognition
[21]. Transformer networks, such as ChatGPT, have a so-called attention mechanism
and demonstrate impressive performance in natural language processing tasks [62].

11

3. Fundamentals of deep learning

−2 0 2

0

2

tanh

−2 0 2

relu

−2 0 2

gelu

−2 0 2

splus

Figure 3.1.: The tanh, relu, gelu and splus activation function.

In this work, we will consider two architectures: fully connected neural networks and
Hamiltonian-inspired neural networks. While the former is commonly used, the latter
may offer potential advantages for our use case.

3.1.1. Fully connected deep neural networks

Universal approximation. We start by considering the task of approximating an
affine linear function f : Rn → Rk. To accomplish this, we use an affine model

h(y; θ) = Ay + b ,

with A ∈ Rk×n, b ∈ Rk and θ = (A, b). Since every affine function can be expressed by
h, there exist parameters θ such that h(· ; θ) is equal to f . In this sense, h is able to
exactly represent the class of affine functions.

To extend this approach to the approximation of nonlinear functions, we introduce
a nonlinearity into our model. We define σ : R → R as a nonlinear function, which is
called an activation function in this context. Popular choices for the activation function
include

σ(y) = tanh(y) or σ(y) = relu(y) := max(0, y) .

See Figure 3.1 for a visualization of both functions and also others. The activation
function σ is extended to vectors by applying it componentwise.

We now modify the model by applying an affine transformation, then a nonlinearity,
and then another affine transformation. This leads to

h(y; θ) = (h2 ◦ σ ◦ h1)(y) , with (3.1)

h1(y1; θ) = A1y1 + b1 and h2(y2; θ) = A2y2 + b2 ,

for parameters θ = (A1, b1, A2, b2), A1 ∈ Rn2×n1 , b1 ∈ Rn2 , A2 ∈ Rn3×n2 and b2 ∈ Rn3 .
Here, n1 = n and n3 = k are based on the input and output dimensions, and n2 can be
chosen. Despite the simple construction, this is sufficient to approximate the large class
of continuous functions arbitrarily well.

Theorem 1 (Universal approximation theorem [45, Proposition 3.7]). Let K ⊆ Rk be
compact, σ be continuous and not a polynomial. Furthermore, let ∥ · ∥ be a vector norm.

12

3.1. Designing neural networks

Then, for every continuous function f : K → Rn and every ε > 0, there exist parameters
θ = (A1, b1, A2, b2) such that

max
y∈K

∥f(y)− h(y; θ)∥ < ε ,

where h is the neural network defined by (3.1).

The number n2 controls the number of parameters of the neural network. The num-
ber of parameters of a neural network is the sum of the entries of the matrices and
vectors in θ. It is important to note that the Universal approximation theorem makes
no assertion about the actual value of n2 which can be arbitrarily high. However, for
specific activation functions, there are estimates of the required number of parameters
and bounds on the rate of convergence. For further details, we refer to [10] for the tanh
activation function and [40] for the relu activation function. Finally, there are many
different variants of Theorem 1, each with its own assumptions, including those on σ.

Deep neural networks. The neural network h in (3.1) can be decomposed into multi-
ple layers. The first layer σ◦h1, converts the input y1 into an intermediate representation
y2. This layer is commonly referred to as the hidden layer, and the individual elements
of y2 are known as neurons. The width of this layer is determined by the number of its
neurons. The final layer h2 serves as the output layer and typically does not have an
activation function. This layer transforms the last intermediate representation into the
final output.

One can make the neural network arbitrarily deep by adding more hidden layers. This
leads to the deep fully connected neural network

h(x; θ) =
(
hN+1 ◦ (σ ◦ hN) ◦ ... ◦ (σ ◦ h2) ◦ (σ ◦ h1)

)
(y) , (3.2)

with N+1 layers, N hidden layers, and the corresponding affine transformations hi(yi) =
Aiyi + bi.The different layers are separated by the additional parentheses in (3.2). The
deep neural network h is parameterized by the weights Ai and biases bi contained in
θ = (A1, b1, A2, b2, ..., AN+1, bN+1). In the following, we always assume that A2, ..., AN ∈
RK×K , b1, ..., bN ∈ RK×K and denote K as the number of neurons. The size of A1

depends on the input size, and AN+1, bN+1 depend on the output size.
The activation function has a significant impact on the approximation capabilities

of the neural network. While relu neural networks are very capable of approximating
continuous piecewise linear functions [40], tanh neural networks are smooth and thus
approximate smooth functions most effectively. Therefore, the activation function should
be chosen carefully. In the next subsection, we explore an approach to embed more
structural information into the neural network.

3.1.2. Hamiltonian-inspired neural networks.

A fully connected deep neural network is a very general architecture for approximating
functions. In this subsection, we introduce a more specific neural network architecture
that is derived from physical processes. This architecture is based on a connection
between neural networks and ordinary differential equations that is established by a
numerical time integrator. This connection allows an analysis using numerical analysis
tools.

13

3. Fundamentals of deep learning

Residual layer. Fully connected layers can be modified into residual layers [21] by
introducing a skip connection into the architecture. Formally, each hidden layer (σ ◦ hi)
is replaced with a residual layer

gi(yi) = yi + σ(Aiyi + bi) .

This allows the intermediate values yi to be passed unchanged to the next layer and
ensures that no information is dropped by the hidden layer. While this approach simpli-
fies the approximation of the identity function, it makes it more difficult to approximate
constant functions.

We can rewrite the calculation of the intermediate values into

yi+1 = yi + σ(Aiyi + bi) (3.3)

and observe that the discrete values y1, y2, ... are approximations of the solution of the
system of ordinary differential equations

y′(t) = σ
(
A(t)y(t) + b(t)

)
(3.4)

obtained by the explicit Euler time integrator with step size one and suitable functions
A(t) : R→ RK×K , b(t) : R→ RK with K as the number of neurons.

This connection allows the analysis of both the continuous system (3.4) and the dis-
crete system (3.3) using numerical analysis tools. This has been conducted in [19] with
a focus on the stability of each system. From their point of view, the continuous system
(3.4) is stable if A(t) changes only slowly and the real parts of the eigenvalues of the
Jacobian JA(t) are non-positive. In addition, the stability of the time integrator and
thus of the discrete system (3.3) has been considered. They, show that (3.3) is not
unconditionally stable.

Hamiltonian systems. One of the remedies suggested by the authors is to consider
the symmetric Hamiltonian system

z′(t) = −σ
(
A(t)⊤y(t) + b(t)

)
,

y′(t) = σ
(
A(t) z(t) + b(t)

)
,

which is unconditionally stable. The authors in [19] discretize the system using the
symplectic Störmer-Verlet scheme to obtain a stable discretization. Using again step
size one, they derive with z−1/2 = 0

zi+1/2 = zi−1/2 − σ
(
A⊤

i yi + bi
)
,

yi+1 = yi + σ
(
Ai zi+1/2 + bi

)
.

This discrete system forms the basis of the Hamiltonian-inspired neural network.
Hamiltonian systems are used to model conserved energy in a dynamical system.

This is similar to our use case, and thus Hamiltonian-inspired neural networks may have
some potential to approximate solutions of the balance law (1.1). In our numerical tests,
we consider both architectures, fully connected deep neural networks and Hamiltonian-
inspired neural networks, and evaluate which one is best suited.

14

3.2. Training neural networks

Outlook. The connection between deep neural networks and ordinary differential
equations has been studied in other works. For example, reversible neural networks have
been proposed, which offer a computational advantage by reducing the memory required
to compute the gradient with respect to the parameter [7]. In addition, continuous-in-
depth neural networks have been proposed with parameters that are continuous in time
[46]. There is room for further research to establish a link between the ordinary differ-
ential equation of the architecture and the partial differential equation of the physical
system we want to solve.

From a broader perspective, embedding structural information in neural network ar-
chitectures is an elegant way to naturally ensure certain properties in a very strong sense.
This has been done, for example, in [28]. A review of structure-preserving deep learning
has been carried out in [6]. However, this approach requires a specialized architecture
for each property, and it is not possible to embed any desired property.

In the next section, we introduce a second and our main way to obtain neural networks
with certain properties. This approach is based on nonlinear optimization and enforces
properties only in a weaker sense. Both approaches are conceptually different ways of
achieving the same goal.

3.2. Training neural networks

We have already introduced neural networks. In this subsection, we introduce their
training process. Training is the process of determining the parameter θ such that
h(· ; θ) closely satisfies the desired properties, based on the nonlinear optimization of a
loss function.

Loss function. The loss function L(θ) is defined as follows: The value of the loss
function decreases as the accuracy of the approximation h(· ; θ) increases.

For example, we define the mean squared error loss. As a goal, the neural network
h(x; θ) should approximate a function f(x) : Rn → R. To proceed, we consider input-
output pairs (xi, yi) = (xi, f(xi)) for i = 1, ..., d and define the pointwise deviation
ℓ(x, y; θ) = y − h(x; θ). The mean squared error loss is now defined by

L(θ) =
1

d

d∑
i=1

(
ℓ(xi, yi; θ)

)2
. (3.5)

Minimizing L(θ) implies that h(x; θ) satisfies the input-output pairs in a least squares
sense.

The structure of the mean squared error loss function (3.5), where each point is eval-
uated individually by ℓ, squared, and then summed up, is a very common construction.
In this context, the input-output pairs (xi, yi) are often referred to as training data,
and d is the size of the data set. However, the exact definition of ℓ may vary from one
application to another. In the following, we assume that L has the form (3.5).

Nonlinear optimization. In the training process, one wants to find parameters θ such
that the loss function L is minimal and thus the approximation is as good as possible.

15

3. Fundamentals of deep learning

Consequently, the optimization problem

min
θ

L(θ) (3.6)

is considered, which is also called the training problem.
In the remainder of this section, we introduce two very important nonlinear optimiza-

tion methods that are commonly used to solve the training problem (3.6). The first is
a gradient descent method, that directly minimizes the loss values, and the second is a
Newton-like method that solves for a stationary point, ∇L(θ) = 0. We also introduce
initialization strategies that compute a starting point for the nonlinear optimization
methods.

3.2.1. Adam Optimizer

A straightforward approach to solve (3.6) is the gradient descent method. Here, the
parameters θ are updated by moving in the direction of the negative gradient ∇θL.
Specifically, for a step size η > 0 the parameters θ are updated according to

θ ← θ − η∇θL .

In the context of deep learning, the step size is often referred to as the learning rate.
According to the optimization theory, η is usually obtained by a line search algorithm.
Then, performing gradient descent steps iteratively guarantees a monotonically decreas-
ing sequence of loss values and that every accumulation point of this sequence is a
stationary point [60, p. 22].

However, for practical machine learning tasks, this approach is insufficient. This can
be attributed to the following factors:

• In practice, the size of the data set d is large and thus the computation of L(θ) is
expensive. Hence, a line search with many function evaluations is very expensive.
Usually, this computational budget is spent more effectively by calculating more
gradients and updating more often.

• The computational cost of evaluating the gradient of L(θ), as defined by (3.5),
increases with the size of the data set d. Instead of computing the gradient with
respect to the entire data set, it is common to compute the gradient with respect
to a smaller subset. This gradient can be viewed as an approximation of the full
gradient. Alternatively, this approach can be embedded in a stochastic setting
where samples are drawn from a random distribution at each iteration. In the
context of machine learning, this is known as mini-batching.

• Gradient descent methods are known for not taking the shortest path to a sta-
tionary point. This depends on the optimization landscape and can lengthen the
optimization time. This behavior is also known as zigzagging and mini-batching
exacerbates this problem, see [16, p. 293] or [60, p.42].

These considerations have led to the development of new variants of the gradient
descent method. One of the most popular variations is the Adam (Adaptive Moment
Estimation) method [26], which we introduce now. The method is based on two ideas:
momentum and magnitude.

16

3.2. Training neural networks

Momentum. This is also known as the heavy ball method, which provides a neat
visualization of the idea: Imagine a heavy ball rolling down a hill. The direction of the
ball is determined by the gradient of the hill. However, because the ball is heavy and
moving, it will continue to move even if it reaches a saddle point or a local minimum.
This prevents the ball from getting stuck on the way to the valley and thus reaches a
lower point. Now we incorporate this idea into the gradient descent method.

Formally, the momentum is a weighted average of all gradients, with the most re-
cent gradients having a much higher weight. We denote the momentum with s. The
momentum is initially zero and is updated at each optimization step according to

s← β1s + (1− β1)g ,

where g = ∇θL is the gradient or the gradient with respect to a subset of the training
data. Also, β1 = 0.9 is the exponential decay rate for the momentum. The update rule
of s is commonly referred to as an exponential moving average.

Crucially, the momentum computes a main direction that suppresses outliers. Updat-
ing the parameters with the momentum, rather than the gradient, prevents premature
stagnation and reduces zigzagging in the optimization process. This is particularly effec-
tive for managing rapidly changing or noisy gradients, which are common in stochastic
settings.

The Adam method computes at the k-th step a correction of the momentum

ŝ← 1

1− βk
1

s .

This correction ensures that the initial value of s is weighted less at the beginning of the
optimization process.

Magnitude. While the momentum determines the direction, the magnitude deter-
mines the speed at which each parameter is updated. The idea is as follows: The update
for a parameter should be slower in a steep landscape and faster in a flat landscape.
The magnitude is a measurement of the steepness and is obtained by a moving average
of the componentwise squared gradient. We denote the magnitude with r, initially set
r = 0, and update r according to

r ← β2r + (1− β2) g ∗ g ,

where β2 = 0.99 is the exponential decay rate for the magnitude and ∗ is the componen-
twise multiplication.

Now, calculating
√
r componentwise measures the steepness for each parameter and

can be understood as a weighted Euclidean norm measuring the magnitude of the
(weighted) gradients for each parameter. Thus, if

√
r is large, we want to slow down,

and if
√
r is small, we want to speed up. This procedure is based on the Root Mean

Square Propagation (RMSProp) method [16, p. 303].
Again at step k, a correction reduces the influence of the initialization of r,

r̂ ← 1

1− βk
2

r .

17

3. Fundamentals of deep learning

Update step. The parameters θ are updated with respect to the momentum ŝ scaled
by the learning rate η and by the inverse of the of square root of the magnitude r̂. In
summary, we have the following update step

θ ← θ − η
ŝ√
r̂ + δ

,

where δ = 10−8 is needed to ensure a strictly positive denominator and the calculation
on the right hand side is performed componentwise. The authors of the Adam method
proved a convergence result in their publication. Crucially, this result requires a decaying
learning rate. Thus, in this work we use an exponentially decaying learning rate ηk, that
is defined at the k-th step with

ηk = ηInit · ηRate

k
ηSteps , (3.7)

where ηInit is the initial learning rate, ηRate is the decay rate and ηSteps is the decay
steps. Hence, the learning rate is decayed every ηSteps steps by ηRate.

3.2.2. L-BFGS

In addition to the Adam method, we now introduce a second-order optimization method.
Such methods solve for a stationary point, ∇θL(θ) = 0, by utilizing the Hessian matrix
H of L(θ) at the position θ. They solve the stationary point equations with the Newton
method. This leads to the update rule

θ ← θ − ηH−1∇θL(θ) ,

for a step size η. Since neural networks have many parameters, computing, storing, and
inverting the Hessian H of L is computationally intractable in most cases.

Here, the limited-memory variant of the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
method allows computing with the inverse Hessian by combining two ideas: First, the
Hessian is not computed exactly, but an approximation of the inverse is computed, which
is refined with newly computed gradients as the optimization progresses. Second, the
inverse of the Hessian is never constructed explicitly. The method stores a low-rank
approximation of the Hessian consisting of a limited number of last gradients. Then,
the inverse Hessian-vector product H−1∇θL(θ) is carried out based on these gradients.
Furthermore, a line search is used to calculate the step size η. In summary, this method
enables the optimization of large neural networks with a second-order method.

3.2.3. Initialization

The presented nonlinear optimization methods share an iterative refinement strategy.
Crucially, they require a starting point, or initial parameters. The success of deep
learning methods depends strongly on the initial parameters, so they must be chosen
properly. Several initialization schemes have been developed for specific activation func-
tions. Hence, both cannot be selected separately. In the following, we want to review
the main construction ideas of the initialization schemes, see also [16, Chapter 8.4].

18

3.2. Training neural networks

Randomness. We begin with the following observation: If two rows of a weight matrix
in a hidden layer are linearly dependent, then the gradient with respect to these rows
is the same up to a constant. Thus, such a hidden layer provides one less optimization
direction, and makes one row in such a weight matrix redundant. To provide a maximum
of possible optimization directions, the rows should be different transformations, ideally
linearly independent, to break any symmetries [16, p. 297].

In practice, this is established by random initialization schemes. This implies that we
can initialize arbitrarily many parameters, but also that any result is inherently based
on randomness. But again, one must be careful: Drawing weights that are too large
or too small result in entries that have a disproportionately large or small effect on the
gradient. Thus, the weights are drawn from a random distribution characterized by a
density function with compact support.

Here, two options are usually considered: a uniform distribution U(a, b), where every
point in [a, b] has the same probability, or a truncated normal distribution NT (σ) with a
mean of zero and a standard deviation of σ. The density function of a truncated normal
distribution is equal to a scaled density function of a suitable normal distribution on
[−2σ, 2σ] and is zero otherwise. The suitable scaled normal distribution is chosen such
that the density function of a truncated normal distribution is indeed a probability
density function.

Forward and backward pass. But how to select these random distributions? In
[15] and [22] simplified calculations were performed with fully connected deep neural
networks without a nonlinear activation function. They studied two properties: how, for
a given input distribution, the weights affect the output of the neural network, and how
the weights affect the gradient of the loss function with respect to the weights. Hence,
they consider the forward and the backward pass. The terminology is explained in more
detail in Section 3.3.

We start with the forward pass. The variance of the input distribution should be
conserved when the input is transformed through multiple layers of the neural network.
Hence, the output has the same variance as the input, thus the data is not amplified or
reduced. Most initialization methods aim to preserve a distribution with a mean of zero
and a variance of one. Therefore, in this thesis, we will always adjust the input data to
have an empirical mean of zero and an empirical variance of one. This is similar to the
approach described in [27].

We continue with the backward pass. Here, the derivatives of the loss function are
examined to avoid two common issues. It is crucial to prevent one entry of the weight
matrix from having a negligible (diminishing gradient) or excessive (exploding gradient)
effect on the gradient. These issues prevent the optimization algorithm from effectively
reducing the loss function. Therefore, one tries to keep the mean of the gradient entries
of the loss close to zero and the variance of the gradient entries of the loss close to one.

Common initialization schemes. Both, the forward and backward, considerations
lead to (partly conflicting) conditions on the distribution of the weights. The initializa-
tion schemes balance between them and suggest distributions to draw from. Table 3.1
shows common realizations of such initialization schemes based on different assumptions.

19

3. Fundamentals of deep learning

Initialization Uniform Distribution Truncated Normal Distribution

Xavier [15] U
(
−
√

6
k1+k2

,
√

6
k1+k2

)
NT

(
2

k1+k2

)
He [22] U

(
−
√

6
k1
,
√

6
k1

)
NT

(
2
k1

)
Table 3.1.: Initialization schemes for uniform and truncated normal distributions for
weight A ∈ Rk2×k1 .

The Xavier initialization is best suited for sigmoid-like functions, and therefore we use it
in combination with the tanh activation. The He initialization is best suited for relu-like
activation functions, and we use it for these.

3.3. Automatic differentiation

In the previous sections, we introduced neural networks as universal tools for approxi-
mating functions and discussed that these networks are typically obtained by minimizing
a loss function. To perform nonlinear optimization techniques, it is crucial to have ac-
cess to the gradient of the loss function with respect to the parameter θ of the neural
network.

One way to obtain these gradients is through analytical derivation. However, this ap-
proach is error-prone and becomes cumbersome when the model or loss function changes.
Another option is to approximate the derivatives using the finite difference method. Un-
fortunately, this approximation is by definition inaccurate and not feasible for calculating
derivatives for functions with many variables, as in our case.

Therefore, we turn our attention to automatic differentiation, a widely used algorithm
for deep learning applications. It accurately calculates derivatives up to machine pre-
cision and can be applied to virtually any function composed of functions with known
derivatives. See [17] for a reference.

In the following presentation, we consider a function f : Rn1 → Rnk that is composed
of elementary differentiable functions (sin, tanh, exp, ...) and operations (+, −, ·, ...).
Thus we assume, there are differentiable functions fi : Rni → Rni+1 with

f = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1 . (3.8)

For a given input y, we can calculate the output f(y) = yk+1 iteratively with yi+1 = fi(yi)
and y1 = y. Now the Jacobian of f , Jf , can be decomposed by the chain rule into

Jf (y) = Jfk(yk) · Jfk−1
(yk−1) · ... · Jf2(y2) · Jf1(y1) . (3.9)

The Jacobians Jfi are assumed to be known, but performing Matrix-Matrix products
becomes impractical for many parameters. As a result, the approach shifts towards
computing Matrix-Vector products. Specifically, the Jacobian-Vector product Jf (y) · v
and the Vector-Jacobian product w⊤ · Jf (y) are calculated. Each product corresponds
to a distinct automatic differentiation mode with unique characteristics.

20

3.3. Automatic differentiation

Jacobian-Vector product (Forward mode). One can compute the Jacobian-Vector
product Jf (y) · v = vk+1 iteratively as vi+1 = Jfi(yi) · vi with the starting point v1 = v.

Crucially, yi and vi can be computed at the same time while traversing from f1 to
fk. This approach is therefore known as forward mode. At the i-th step, only the
information yi and vi is needed to compute yi+1 and vi+1. As a result, this mode has a
small memory footprint.

If em represents the m-th unit vector, one forward pass calculates the m-th column of
the Jacobian Jf

Jf (y) · em =
(
∂y1f(y) . . . ∂yn1

f(y)
)
em = ∂ymf(y) . (3.10)

Therefore, to obtain the complete Jacobian, one must perform as many forward passes
as there are columns in the Jacobian.

Vector-Jacobian product (Reverse mode). Similarly, the Vector-Jacobian prod-
uct w⊤ · Jf (y) = w⊤

1 is computed iteratively with wk+1 = w and w⊤
i = w⊤

i+1 · Jf (yi).

Now note that computing wi requires yi. In the extreme case, obtaining wk necessitates
yk. This implies two things: First, we need to traverse from f1 to fk to obtain y1 to yk,
and second, we need to store them to use them in reverse as we traverse from Jk to J1
to calculate wk to w1. This approach is thus known as the reverse mode and requires
significantly more memory compared to the forward mode.

If em represents the m-th unit vector, a single backward pass computes the m-th row
of the Jacobian Jf

e⊤m · Jf (y) = e⊤m

 Jf1(y)
...

Jfnk
(y)

 = Jfm(y) . (3.11)

Consequently, obtaining the complete Jacobian requires as many backward passes as the
number of rows.

Computational considerations. Both forward and reverse modes can compute the
entire Jacobian Jf (y) ∈ Rnk×n1 at a given point y. To compute the entire Jacobian, the
forward mode requires n1 forward passes, while the backward mode requires nk passes.
Depending on the specific values of n1 and nk, either the forward or the backward mode
is more efficient and should be preferred.

As a consequence, the reverse mode is particularly useful for optimizing neural net-
works. As explained in the previous sections, a loss function L(θ) that depends on many
parameters θ, n1 being large, with only one output, nk = 1, is optimized. Therefore, only
one backward pass is needed to compute the gradient ∇θL. Despite the disadvantages
of the reverse mode compared to the forward mode, this is a significant advantage and
enables training of very large neural networks. This special case of automatic differen-
tiation is usually called backpropagation.

The considered functions f in (3.8) may seem to limit the number of functions that
can be automatically differentiated with the algorithm described above, since functions
such as f = g(h(x), k(l(x)) are not directly covered. But every general composition of
functions and operations, known as computational graphs, can be reformulated to fit into

21

3. Fundamentals of deep learning

the presented scheme. However, the scheme can also be extended to capture functions
of many inputs and outputs of vectors, matrices, and so on. Implementations usually
choose this route and provide a very flexible interface to the user.

The computation of the Jacobian-Vector product and the Vector-Jacobian product is
another computational graph. This allows for automatic differentiation of these graphs
again to obtain higher order derivatives.

In this work, we will leverage automatic differentiation in two key areas. First, to
compute the gradient of the loss function, and second, as we will introduce in the next
chapter in Section 4.1, to calculate the derivatives in the balance law (1.1). For the second
point, we will provide a comparison between forward and reverse mode to compute the
derivatives in Subsection 4.1.1.d. In summary, we will utilize both the forward mode
and the reverse mode in our implementation.

3.4. Implementation

Software. Currently, there are several advanced deep learning frameworks available,
developed by companies such as Google and Facebook, among others. These frameworks
are provided free of charge to the end user and offer sophisticated implementations of
the algorithms discussed above. For our purposes, we will use Jax [3] as it closely aligns
with the mathematical formulation presented in this work and provides key benefits that
we will discuss in Subsection 4.1.1.d with multiple code examples. Other popular choices
are TensorFlow and PyTorch.

Hardware. When designing a processor, a choice must be made between generaliza-
tion, which allows for many different tasks to be performed decently, and specificity,
which allows specific tasks to be performed highly efficiently. CPUs are excellent at
flexibility and generalization. However, they are less effective at massively parallel com-
putation.

In contrast, Graphics Processing Units (GPUs) are better suited for parallel comput-
ing. Originally designed for graphics, GPUs have evolved into General-Purpose Com-
puting on Graphics Processing Units (GPGPU), making them highly suitable for deep
learning and our intended applications [53]. For a more detailed explanation, see [16, p.
439]. As a result, GPUs achieve significantly higher floating point operations per second
(FLOP/s) rates compared to CPUs. See also a the runtime comparison between a CPU
and a GPU implementation in the next section, Section 3.5.

Broader view. Fundamentally, computer hardware performs calculations using dis-
crete approximations of real numbers. However, many numerical challenges, such as
solving differential equations, involve continuous problems with functions. This necessi-
tates to formulate discrete problems to bridge the gap between hardware (discrete) and
the continuous problems, but this often introduces additional complexity that overshad-
ows the underlying continuous problem.

Deep learning frameworks offer a different and really compelling approach that al-
lows working closely with the continuous problem and hides many discretization details.
They offer a realization of “Computing numerically with functions instead of numbers”

22

3.5. Numerical tests

[58], using neural networks, optimization methods, and automatic differentiation as the
foundation. The approach described in [58] is based on piecewise Chebyshev polynomi-
als, discrete cosine transform, and a recurrence relation to obtain the derivatives. While
neural networks scale easily to many dimensions, Chebyshev polynomials do not.

3.5. Numerical tests

Before moving on to the next chapter, we want to identify neural network architectures
that are very effective at approximating the solutions of our example problems. We
seek either highly accurate architectures or efficient architectures, the latter defined by
a better ratio of computational cost to accuracy.

Setup

State prediction. In this test we consider neural networks h with two outputs,
(h1, h2) = h(x, t; θ). These outputs are used to construct an approximation of the state
vector u(x, t), denoted by u(h1, h2). For the linear problem we set u(h1, h2) = (h1, h2)

⊤.

For the isentropic problem, this is not feasible: For reasons explained in detail in
Chapter 4, it is very important for the isentropic problem that the predicted density is
positive for all possible parameters θ. Therefore, we cannot proceed as in the linear case.
Instead, we consider different realizations of u = u(h1, h2) and define an approximation
of ρ and ρv, denoted by ρ and ρv, respectively.

To ensure a positive density, we consider a bijective function τ : R → (0,∞) and set
ρ = τ(h1). In addition, we interpret the second prediction h2 as either ρv or v. In
summary, we have either

u(h1, h2) =

(
ρ
ρv

)
and ρ = τ(h1) , ρv = h2 , (3.12)

or u(h1, h2) =

(
ρ

ρ · v

)
and ρ = τ(h1) , v = h2 . (3.13)

Relative error. Throughout this thesis, we measure the distance between an approx-
imation and a reference solution with the relative 2-norm error. To define this error, we
consider a solution f and a function f(h1, h2) that depends on the output of the neural
network (h1, h2) = h(x, t; θ). We measure the difference between f and the approxima-
tion f ◦ h. Then, for a finite set D ⊂ Deq and neural network parameters θ, the error is
defined by

error
[
f ; θ
]

=

√∑
(x,t)∈D

(
f(x, t)− f

(
h(x, t; θ)

))2
√∑

(x,t)∈D
(
f(x, t)

)2 . (3.14)

We write error[f] when the parameters θ are unambiguous from the context.

In this numerical test, we train the neural networks by minimizing the loss function

L(θ) = error[u1; θ] + error[u2; θ] ,

23

3. Fundamentals of deep learning

where the error is computed with respect to a training set of 30 000 randomly sampled
points. Note that this loss function requires the solution of the simulation problem and
therefore has no practical use. In the next chapter, we will consider other loss functions
that do not require the solution.

We validate the result by computing the error with respect to a validation set con-
taining 50 000 randomly sampled points. In this thesis, we will refer to this error as
the generalization error, and may only write error when it is clear from the context.
The training and validation sets are sampled independently, and for the isentropic test
case we sample from the grid points of the discrete reference solution, which are about
800 000 points.

Hyperparameter tuning. We evaluate various hyperparameters to determine the
optimal architecture. Our choices include fully connected neural networks and Hamil-
tonian-inspired neural networks. We further consider the following hyperparameter

N ∈ {2, 3, 4, 5, 6} , K ∈ {20, 30, 40, 50, 60} , σ ∈ {tanh, relu, splus, gelu} .
In the case of the isentropic problem, we consider τ ∈ {exp, splus}. The gelu, Gaussian
error linear units [23], and splus, Softplus [66], activation functions are defined by

gelu(x) =
x

2

(
1 + erf

(
x√
2

))
, splus(x) = log

(
1 + exp(x)

)
,

where erf is the Gauss error function. Both activation functions are smooth approxima-
tions of the relu activation.

We train each neural network with the Adam method and the L-BFGS method. For
the Adam method, we perform 100 000 iterations and consider the following learning
rate parameter

ηSteps ∈ {1000, 5000, 10000} , ηRate = 0.9 , ηInit ∈ {0.1, 0.01, 0.001} .
From these nine approximations, we consider the approximation with the lowest loss
value after training. To limit the influence of randomness, whether from random initial-
ization or random sampling, we conduct each test three times and report the average
error.

Results

We start by measuring the time required for a CPU and a GPU to evaluate the gradient
of the loss function. See Figure 3.2 for the runtime measurements. We observe that the
GPU requires almost two orders of magnitude less time to compute the gradient of the
loss function. Therefore, in this thesis, we use a GPU exclusively to obtain all results.

The results of the linear problem are listed in the Tables 3.2 and 3.3, and for the
isentropic problem in the Tables 3.4 and 3.5. Each table lists the most accurate and most
efficient neural network architectures for each activation function. The listed error is the
generalization error, which is calculated with respect to the validation set. Efficiency for
the parameters θ is measured by the ratio

error
[
u1; θ∗

]
+ error

[
u2; θ∗

]
error

[
u1; θ

]
+ error

[
u2; θ

] · #θ∗
#θ

,

24

3.5. Numerical tests

20,000 40,000 60,000 80,000
10−4

10−3

10−2

10−1

100

Sample points

R
un

tim
e

(s
ec

on
ds

)

Linear problem

CPU GPU

20,000 40,000 60,000 80,000

Sample points

Isentropic problem

Figure 3.2.: Time to evaluate one gradient ∇θL measured on a CPU and a GPU for a
different number of sample points. For the isentropic problem we use a neural network
with N = 5, K = 50, σ = tanh and for the linear problem N = 2, K = 30, σ = relu.
The CPU measurements were taken on a Intel Xeon Gold 6354 CPU and the GPU
measurements were taken on a Nvidia RTX A6000.

where θ∗ are the accurate reference parameters. Also, #θ∗ and #θ denote the number of
parameters of θ∗ and θ, respectively. Architectures with a high efficiency offer a better
balance between accuracy and number of parameters.

For the isentropic problem, we observe that a higher number of parameters leads to
lower generalization errors. However, it is always possible to save computational cost,
by reducing the number of parameters, without sacrificing too much accuracy. The gelu
activation function provides the most accurate results, followed by the tanh activation
function. Furthermore, the state prediction (3.12) combined with the splus function
almost always gives the best result. The best results were obtained with the Adam
method and a fully connected deep neural network. The results of the Hamiltonian-
inspired neural networks are not as good.

For the linear problem, we see that the relu activation function provides the best
results. For the fully connected deep neural networks, the best results require only
two hidden layers and are obtained by the Adam method. The best results have been
computed with the L-BFGS method and the Hamiltonian-inspired neural network.

The tests show that the best neural network architecture and activation function
depends on the problem and should be chosen carefully. Building on the foundation
of this chapter, the next chapter introduces loss functions that directly incorporate the
balance law. There, we will train neural networks to approximate the solution, without
relying on the solution itself. The neural network architectures identified in this test will
play an important role in this approach.

25

3. Fundamentals of deep learning

Most accurate Most efficient

σ N K #θ error[u1] error[u2] N K #θ error[u1] error[u2]

tanh 6 50 13002 1.45e−3 1.74e−3 3 20 942 6.44e−3 8.06e−3
relu 2 20 522 4.51e−4 5.02e−4 2 30 1082 6.75e−4 7.07e−4
splus 6 50 13002 1.34e−3 1.66e−3 4 20 1362 4.07e−3 4.91e−3
gelu 6 50 13002 1.34e−3 1.44e−3 2 20 522 5.02e−3 6.24e−3

(a) Results obtained with the Adam optimization.

Most accurate Most efficient

σ N K #θ error[u1] error[u2] N K #θ error[u1] error[u2]

tanh 6 50 13002 6.36e−4 7.60e−4 4 20 1362 1.86e−3 2.28e−3
relu 2 30 1082 2.00e−4 2.22e−4 2 20 522 2.02e−4 2.54e−4
splus 6 50 13002 1.09e−2 1.33e−2 2 20 522 2.30e−2 2.85e−2
gelu 6 30 4802 1.53e−3 1.85e−3 3 20 942 3.81e−3 4.71e−3

(b) Results obtained with the L-BFGS optimization.

Table 3.2.: Results for the linear problem approximated by fully connected neural
networks. For each activation function, the most accurate and efficient result is shown.

Most accurate Most efficient

σ N K #θ error[u1] error[u2] N K #θ error[u1] error[u2]

tanh 5 60 14942 1.80e−3 2.21e−3 3 20 942 5.15e−3 6.45e−3
relu 6 50 13002 2.65e−5 3.39e−5 4 20 1362 5.36e−5 6.38e−5
splus 6 50 13002 1.67e−3 2.06e−3 4 20 1362 3.88e−3 4.76e−3
gelu 6 50 13002 1.34e−3 1.63e−3 3 20 942 4.14e−3 5.11e−3

(a) Results obtained with the Adam optimization.

Most accurate Most efficient

σ N K #θ error[u1] error[u2] N K #θ error[u1] error[u2]

tanh 6 50 13002 8.32e−4 1.02e−3 4 20 1362 2.32e−3 2.88e−3
relu 3 30 2012 2.17e−4 2.56e−4 3 20 942 2.57e−4 2.65e−4
splus 4 20 1362 6.32e−3 7.63e−3 3 20 942 1.19e−2 1.47e−2
gelu 5 30 3872 2.51e−3 3.06e−3 4 20 1362 3.94e−3 4.85e−3

(b) Results obtained with the L-BFGS optimization.

Table 3.3.: Results for the linear problem approximated by Hamiltonian-inspired neural
networks. For each activation function, the most accurate and efficient result is shown.

26

3.5. Numerical tests

Most accurate Most efficient

σ h τ N K #θ error[ρ] error[ρv] h τ N K #θ error[ρ] error[ρv]

tanh (3.12) splus 6 50 13002 7.42e−5 1.80e−4 (3.12) splus 3 20 942 4.57e−4 1.04e−3
relu (3.12) splus 6 50 13002 2.38e−4 4.05e−4 (3.12) exp 2 30 1082 5.37e−4 1.12e−3
splus (3.12) splus 6 50 13002 1.01e−4 2.30e−4 (3.12) splus 6 20 2202 2.31e−4 4.78e−4
gelu (3.12) splus 5 50 10452 3.77e−5 7.68e−5 (3.12) splus 5 20 1782 1.45e−4 2.56e−4

(a) Results obtained with the Adam optimization.

Most accurate Most efficient

σ h τ N K #θ error[ρ] error[ρv] h τ N K #θ error[ρ] error[ρv]

tanh (3.12) splus 6 50 13002 1.25e−4 3.55e−4 (3.12) splus 4 20 1362 2.90e−4 7.70e−4
relu (3.12) splus 6 50 13002 2.67e−4 4.95e−4 (3.12) splus 2 20 522 1.12e−3 2.54e−3
splus (3.12) splus 6 30 4802 1.32e−3 3.32e−3 (3.12) exp 2 20 522 4.16e−3 1.10e−2
gelu (3.12) exp 6 30 4802 1.05e−4 2.80e−4 (3.12) exp 2 20 522 8.76e−4 2.77e−3

(b) Results obtained with the L-BFGS optimization.

Table 3.4.: Results for the isentropic problem approximated by fully connected neural
networks. For each activation function, the most accurate and efficient result is shown.

Most accurate Most efficient

σ h τ N K #θ error[ρ] error[ρv] h τ N K #θ error[ρ] error[ρv]

tanh (3.12) splus 6 50 13002 1.34e−4 3.17e−4 (3.12) exp 3 20 942 4.36e−4 1.02e−3
relu (3.12) splus 6 40 8402 1.89e−4 5.03e−4 (3.12) splus 4 20 1362 5.74e−4 1.39e−3
splus (3.12) splus 5 50 10452 1.39e−4 3.71e−4 (3.12) splus 4 20 1362 2.95e−4 7.35e−4
gelu (3.12) splus 6 50 13002 9.91e−5 2.65e−4 (3.12) splus 5 20 1782 1.35e−4 3.51e−4

(a) Results obtained with the Adam optimization.

Most accurate Most efficient

σ h τ N K #θ error[ρ] error[ρv] h τ N K #θ error[ρ] error[ρv]

tanh (3.12) splus 6 30 4802 2.78e−4 6.75e−4 (3.12) splus 5 20 1782 4.12e−4 9.68e−4
relu (3.12) splus 5 30 3872 6.53e−4 1.25e−3 (3.12) splus 4 20 1362 8.01e−4 1.67e−3
splus (3.12) splus 3 30 2012 1.38e−3 3.70e−3 (3.12) splus 3 20 942 1.80e−3 5.56e−3
gelu (3.12) splus 5 30 3872 8.30e−4 2.49e−3 (3.12) splus 3 20 942 8.58e−4 2.46e−3

(b) Results obtained with the L-BFGS optimization.

Table 3.5.: Results for the isentropic problem approximated by Hamiltonian-inspired
neural networks. For each activation function, the most accurate and efficient result is
shown.

27

4. Physics-informed simulations

The last chapter introduced the fundamentals of deep learning, including neural net-
works h(·; θ), the concept of a loss function L(θ), and the associated training process.
The loss function L encodes the properties the neural network h(·; θ) should fulfill. To
approximate the solution of the abstract simulation problem (2.1) with a neural network
h(x, t; θ), we have already seen a realization of L that embeds the solution itself. But
this approach is not practical.

In this chapter, we introduce two different realizations of L. Crucially, both encode
the abstract simulation problem (2.1) without incorporating any unknown information
about the solution. One realization is based on the differential formulation of the balance
law (2.1a) and is presented in Section 4.1. The other realization is based on the integral
formulation and is presented in Section 4.2. Before we continue, we need to address an
issue that appears when integrating the nonlinear isentropic flux function into the loss
function.

Arbitrary neural network predictions

We mentioned this issue briefly in Chapter 3, and now we will examine it more closely.
Ideally, the approximation of the state vector u, denoted by u, is predicted by the neural
network. That is, for (h1, h2) = h(x, t; θ) we set

u(h1, h2) = (h1, h2)
⊤ . (4.1)

However, this poses some problems for the procedure presented in this chapter.

For now, we assume that (4.1) holds. During the training process, the parameters θ can
be arbitrary, and therefore, the predictions of the state vector u can also be arbitrary.
In this chapter, we want to integrate the balance law (1.1) into the training process.
Hence, it is necessary to evaluate the flux F (u) faithfully for any predicted state vector
u.

In the case of the nonlinear isentropic flux, the equation of state, p = κργ , cannot
be computed for negative densities. Furthermore, a division by zero is possible when
calculating v = ρv/ρ. Although this scenario seems unlikely, it does happen.

In Chapter 3, we introduced the altered state vector u(h1, h2), which can be used
to alter the output of a neural network in a beneficial way. Specifically, we considered
realizations of u(h1, h2) that ensure a positive predicted density ρ. A positive density
resolves the aforementioned issues, and as shown in the tests of the previous chapter

u(h1, h2) =

(
ρ
ρv

)
, with ρ = splus(h1) and ρv = h2

28

4.1. Loss based on differential form

provides the most accurate predictions. Analogous to the altered state vector, we also
define an altered flux F (h1, h2) and an altered source g(h1, h2) according to

F (h1, h2) =

(
ρv

ρv2 + p

)
, g(h1, h2) =

(
0

− λ
2Dρv|v|

)
,

with p = κργ and v =
ρv

ρ
.

In the linear case, we can evaluate the flux function for any state vector, so we do not
have the same problems as in the isentropic case. Hence, we set u(h1, h2) = (h1, h2)

⊤,
F (h1, h2) = F (u(h1, h2)) and g(h1, h2) = 0. We continue for both problems with u, F
and g in the following.

4.1. Loss based on differential form

In this section, we introduce the loss function that encodes the abstract simulation
problem (2.1), which is based on the differential form of the balance law. We refer to this
loss function as physics-informed loss function, which is used to train physics-informed
neural networks.

Both, the physics-informed loss function and neural networks, are presented in Sub-
section 4.1.1. In the remaining subsections of this section, we will study two important
extensions of the original approach: Sampling strategies in Subsection 4.1.2 and Loss
balancing weighting in Subsection 4.1.3.

4.1.1. Physics-informed neural networks

Residuals. As a first step to construct the physics-informed loss function, we define
pointwise residuals for each equation in the abstract simulation problem (2.1). Each
residual measures how well the approximation u(h(x, t; θ)) of u(x, t) with the parameters
θ satisfies the respective equation.

Specifically, for (x, t) we define the residual of the balance law (2.1a)

ℓeq(x, t; θ) = ∂t
(
u ◦ h

)
(x, t; θ) + ∂x

(
F ◦ h

)
(x, t; θ)− (g ◦ h)(x, t; θ) . (4.2a)

The derivatives contained in ℓeq are obtained by automatic differentiation. The imple-
mentation is detailed in Subsection 4.1.1.d. The residual of the initial condition (2.1b)
is defined by

ℓi(x; θ) = u
(
h(x, ti; θ)

)
− bi(x) , (4.2b)

the left boundary condition (2.1c) translates to

ℓl(t; θ) = u1
(
h(xl, t; θ)

)
− bl(t) , (4.2c)

and the right boundary condition (2.1d) translates to

ℓr(t; θ) = u2
(
h(xr, t; θ)

)
− br(t) . (4.2d)

29

4. Physics-informed simulations

Physics-informed loss function. The residuals are used as an indicator of the dis-
tance between the approximation and the exact solution, and should hence be minimized.
Therefore, for each residual, the mean squared error for a finite set of randomly selected
sample points is considered in the physics-informed loss function.

For an exact definition, we consider the finite sets Deq ⊂ Deq, Di ⊂ Di, Dl ⊂ Dl, and
Dr ⊂ Dr of randomly sampled points and denote with deq, di, dl, and dr the number of
(sample) points in each respective set. The standard procedure draws the samples using
the Latin hypercube strategy. A description of this strategy is given in Subsection 4.1.2.
Now, the mean squared error for each residual is defined by

Leq(θ) :=
1

deq

∑
(x,t)∈Deq

∥∥ℓeq(x, t; θ)
∥∥2
2
, Li(θ) :=

1

di

∑
x∈Di

∥∥ℓi(x; θ)
∥∥2
2
,

Ll(θ) :=
1

dl

∑
t∈Dl

(
ℓl(t; θ)

)2
, Lr(θ) :=

1

dr

∑
t∈Dr

(
ℓr(t; θ)

)2
.

(4.3)

Finally, we aim to minimize the sum of each mean squared error. This leads to the
training problem

min
θ

LDif with LDif = Leq(θ) + Li(θ) + Ll(θ) + Lr(θ) , (4.4)

the physics-informed loss function. This approach draws a lot of inspiration from other
deep learning techniques by using the mean squared error loss in combination with
random sampling.

Outline. Physics-informed neural networks are neural networks trained by the physics-
informed loss function and are a new numerical method to approximate solutions of
differential equations. This thesis is centered around this approach that was popularized
by [36]. Therefore, we provide an in-depth presentation in the following subsubsections.

We begin by characterizing physics-informed neural networks in Subsubsection 4.1.1.a
and compare them to other numerical methods. Then, we derive the method again from
a mathematical perspective in Subsubsection 4.1.1.b. This perspective enables us to
derive error estimates for the linear problem in Subsubsection 4.1.1.c. After that, we
look at the implementation of ℓeq in Subsubsection 4.1.1.d. Finally, in Subsubsection
4.1.1.e, we complete the presentation by performing numerical tests.

4.1.1.a. Characteristics of physics-informed neural networks

Classification. Physics-informed neural networks are comparable to other methods
for solving differential equations, such as finite element, finite volume, and spectral
methods. However, they have unique properties compared to these classical methods
that we would like to highlight.

First, the neural network parameters, at least in the architectures used in this work,
affect the solution on the entire domain. Therefore, physics-informed neural networks are
a global method, similar to spectral methods, and in contrast to finite element methods
with local elements, for example. Second, to evaluate the loss function, we need the
approximation of the solution. Hence, physics-informed neural networks use an implicit

30

4.1. Loss based on differential form

approach, like the implicit box method. Third, in this approach, time is treated like any
other dimension and is not discretized using the method of lines, which is commonly
applied to initial value problems.

Degrees of freedom and conditions. Traditional numerical methods for solving
partial differential equations feature a carefully constructed one-to-one relationship be-
tween conditions and degrees of freedom. In contrast, physics-informed neural networks
decouple conditions, residuals that should be zero, and degrees of freedom, parameters
of the neural network, allowing both to be chosen independently. Consequently, the
solvability of the conditions by the parameters, which is ensured by traditional solvers,
is not guaranteed. Instead, the goal is to minimize the residuals and meet the conditions
as closely as possible. The implications of this will be discussed later.

This flexibility enables the method to be easily adapted to a wide variety of differential
equations, see for example [65, 48, 50, 64, 27, 2, 54]. In Chapter 5, we take advantage of
this flexibility to solve optimization problems. In addition, the number of sample points
is typically greater than the number of parameters. Thus, the least squares collocation
technique [18] is the most similar numerical method to physics-informed neural networks.

We now take another look at the derivation of the physics-informed loss LDif.

4.1.1.b. Mathematical perspective

We want to reconsider the derivation of Leq, Ll, Lr, and Li. Although presenting them
as the mean squared error loss of the residuals is concise, it neglects important properties
of the method. But they are essential for the next steps.

Continuous setting. The residuals ℓeq, ℓi, ℓl, and ℓr should be minimal over the
entire domain. Therefore, we measure them using a (continuous) norm. Considering the
definition of Leq, Ll, Lr, and Li, the L2-norm fits exactly. For a function g : D → Rn

and D ⊂ Rk the L2-norm is defined by

∥g∥L2(D) =

√∫
D
∥g(x)∥22 dx ,

where ∥ · ∥2 denotes the Euclidean-norm and the integral is a Lebesgue integral.
Consequently, we consider the following squared L2-norms of the residuals

Leq = ∥ℓeq∥2L2(Deq)
=

∫
Deq

∥∥ℓeq∥∥22 d(x, t) , Li = ∥ℓi∥2L2(Di)
=

∫
Di

∥∥ℓi∥∥22 dx ,

Ll = ∥ℓl∥2L2(Dl)
=

∫
Dl

(
ℓl
)2

dt , Lr = ∥ℓr∥2L2(Dr)
=

∫
Dr

(
ℓr
)2

dt .

For hyperbolic problems, where shocks or contact discontinuities occur, the L2-norm
is not suitable for measuring residuals. This requires other approaches such as those
presented in [8]. However, we do not expect discontinuities to occur in our nonlinear
problem, or more generally in gas networks, and therefore do not consider this further.

The next step is to discretize the integrals using a quadrature method. By applying
the Monte Carlo quadrature and neglecting the volume of the integration domain, one

31

4. Physics-informed simulations

obtains the original definition of the discrete objective Leq, Ll, Lr, and Li. Specifically,
for k = eq, l,r, i the Monte Carlo approximation of Lk is defined by

1

vol(Dk)
Lk(θ) ≈ 1

dk

∑
z∈Dk

ℓk(z; θ)2 = Lk(θ) . (4.5)

The derivation emphasizes the chosen quadrature rule, but also shows that we can sub-
stitute other quadrature rules. We will discuss the Monte Carlo quadrature and other
choices further in Subsection 4.1.2.

Note, that the relative 2-norm error, defined by (3.14), is also a Monte Carlo approx-
imation of the relative L2-error, since we have

(
error

[
f ; θ
])2

=

∑
(x,t)∈D

(
f(x, t)− f(x, t; θ)

)2∑
(x,t)∈D

(
f(x, t)

)2
≈
∫
Deq

(
f(x, t)− f(x, t; θ)

)2
d(x, t)∫

Deq

(
f(x, t)

)2
d(x, t)

,

for functions f(x, t), f(h1, h2), a neural network h(x, t; θ) and a finite set D ⊂ Deq.

Multi-objective setting. We have just derived discrete approximations of the norms
that measure each residual. Formally, we want to minimize the loss functions Leq, Ll,
Lr, and Li simultaneously. Consequently, we consider the multi-objective optimization
problem

min
θ

(
Leq(θ), Li(θ), Ll(θ), Lr(θ)

)
. (4.6)

In the original formulation, this problem is converted into a single-objective optimization
problem by forming the sum of all objectives. This results in the definition of LDif and
the physics-informed training problem (4.4).

However, this conversion weights every objective by the multiplicative inverse of the
volume of the respective domain, see (4.5). In a more general setting, the objectives are
weighted differently, which may have a positive impact on the resulting approximation.
This leads to loss-balancing strategies, which will be introduced in Subsection 4.1.3.

Before we proceed with this topic, we expand on the mathematical perspective we just
introduced and derive error estimates for the linear problem.

4.1.1.c. Error estimates in the linear case

In this subsubsection, we develop further knowledge about the underlying mechanisms
of physics-informed neural networks by deriving error estimates for the linear problem.
These estimates bound the generalization error by the loss values Li, Ll, Lr, Leq and
thus show that minimizing the losses decreases the generalization error. This procedure
is based on the work in [49].

In the following, we consider a problem with the linear flux

F (u) = Au with A =

(
0 1
c2 0

)
and c > 0 .

32

4.1. Loss based on differential form

This flux function can be cast as a generalization of the linear flux, or as a flux that
is derived from the nonlinear Euler equations equipped with the isothermal equation of
state, p = c2ρ, when the nonlinear term ρv2 is neglected [12, p. 12]. In this setting, c
corresponds to the speed of sound of the considered gas.

Absolute continuity. Our linear problem has continuous piecewise linear initial and
boundary data, and thus the solution u is only differentiable almost everywhere on Deq.
The same holds for the approximation u∗, if u∗ is defined by a neural network with the
relu activation function. To capture a general class of solutions and approximations,
we will use the notion of absolute continuous functions. We summarize the following
important properties:

• A function f : [a, b] → R is absolute continuous if the derivative f ′ exists almost
everywhere, the derivative f ′ is Lebesgue-integrable and

f(t)− f(a) =

∫ t

a
f ′(s) ds for all t ∈ [a, b] .

• The sum of two absolute continuous functions is absolute continuous.

• The product of two absolute continuous functions defined on a bounded domain is
also absolute continuous.

Setup. We denote with u(x, t) : Deq → R2 the solution of the problem and with
u∗(x, t) : Deq → R2 the approximation. Note, that u∗(x, t; θ) differs from u since it
directly depends on x and t. One could set u∗(x, t) = (u◦h)(x, t; θ) for a neural network
h with parameters θ. We assume that ui(·, t), u∗i (·, t), ui(x, ·), u∗i (x, ·) are absolute con-
tinuous functions for i = 1, 2, x ∈ [xl, xr] and t ∈ [ti, te]. Furthermore, u should satisfy
the following linear problem

∂tu + A∂xu = 0 a.e. in Deq ,

u(x, ti) = bi(x) on Di ,

u1(xl, t) = bl(t) on Dl ,

u2(xr, t) = br(t) on Dr .

The approximation u∗ should fulfill the following perturbed linear problem
∂tu

∗ + A∂xu
∗ = ℓeq(x, t) a.e. in Deq ,

u∗(x, ti) = bi(x) + ℓi(x) on Di ,

u∗1(xl, t) = bl(t) + ℓl(t) on Dl ,

u∗2(xr, t) = br(t) + ℓr(t) on Dr ,

for the pointwise perturbations ℓeq(x, t), ℓi(x), ℓl(t), ℓr(t) which could be defined analo-
gous to (4.2a), (4.2b), (4.2c), (4.2d). The difference between the exact solution and the

33

4. Physics-informed simulations

solution of the pertubated system µ = u− u∗ thus satisfies
∂tµ + A∂xµ = −ℓeq(x, t) a.e. in Deq ,

µ(x, ti) = −ℓi(x) on Di ,

µ1(xl, t) = −ℓl(t) on Dl ,

µ2(xr, t) = −ℓr(t) on Dr .

Note that u∗ and therefore ℓi, ℓl, ℓr, ℓeq as well as Li, Ll, Lr, Leq may depend on
the parameters θ. In the following, we assume that the parameters θ are constant and
therefore do not explicitly state the dependency.

We begin with the following

Observation. The matrix A is diagonalizable with

A = RΨR−1 and R =

(
−1/c 1/c

1 1

)
, Ψ =

(
−c 0
0 c

)
, R−1 =

(
−c/2 1/2
c/2 1/2

)
.

We set ω = R−1µ, then ω satisfies the system
∂tω + Ψ∂xω = β(x, t) a.e. in Deq ,

ω(x, ti) = α(x) on Di ,

ω2(xl, t) = ω1(xl, t)− c ℓl(t) on Dl ,

ω1(xr, t) = −ℓr(t)− ω2(xr, t) on Dr ,

(4.7)

(4.8)

(4.9)

with α(x) = −R−1ℓi(x), β(x, t) = −R−1ℓeq(x, t).
Using the same approach as in Subsection 2.1.1, we can construct an explicit descrip-

tion of ω. Crucially, we need to account for the source term on the right-hand side.
Using the solution formula stated in [13, p. 19], we have

ω1(x, t) =

α1(x + ct) +

∫ t

0
β1
(
x + c(t− s), s

)
ds if x + ct ≤ xr,

ω1

(
xr, t +

x− xr
c

)
+

∫ t

t+x−xr
c

β1
(
x + c(t− s), s

)
ds otherwise,

ω2(x, t) =

α2(x− ct) +

∫ t

0
β2
(
x− c(t− s), s

)
ds if xl ≤ x− ct,

ω2

(
xl, t +

xl − x

c

)
+

∫ t

t+xl−x
c

β2
(
x− c(t− s), s

)
ds otherwise.

Note, in contrast to the construction in Chapter 2, we have not incorporated the bound-
ary conditions.

For convenience, we define the length of the spatial domain with δ = xr− xl. For the
diagonalized system, we can derive the following estimates.

Lemma 1. 1. For every T with ti ≤ T ≤ δ/c, the following inequality holds∥∥∥∥(ω1(xr, ·)
ω2(xl, ·)

)∥∥∥∥
L2([ti,T])

≤ ∥ℓr∥L2([ti,T]) + c ∥ℓl∥L2([ti,T])

+ c−
1
2 ∥α∥L2([xl,xr])

+ δ
1
2 c−1 ∥β∥L2([xl,xr]×[ti,δ/c])

.

(4.10)

34

4.1. Loss based on differential form

2. For every T with δ/c ≤ T ≤ te, the following inequality holds∥∥∥∥(ω1(xr, ·)
ω2(xl, ·)

)∥∥∥∥
L2([ti,T])

≤
∥∥∥∥(ω1(xr, ·)

ω2(xl, ·)

)∥∥∥∥
L2([ti,T−δ/c])

+ ∥ℓr∥L2([ti,T]) + c ∥ℓl∥L2([ti,T])

+ c−
1
2 ∥α∥L2([xl,xr])

+ δ
1
2 c−1 ∥β∥L2([xl,xr]×[ti,T]) . (4.11)

3. The estimate
∥ω∥L2([xl,xr]×[ti,te])

≤ C
(
exp(te − ti)− 1

)
(4.12)

holds for M =
⌈
c(te−ti)

δ

⌉
and

C = c
1
2M ∥ℓr∥L2([ti,te])

+ c
3
2M ∥ℓl∥L2([ti,te])

+ (M + 1) ∥α∥L2([xl,xr])
+
(
Mδ

1
2 c−

1
2 + 1

)
∥β∥L2([xl,xr]×[ti,te])

.

Proof. We start by showing the second assertion. Without loss of generality we assume
ti = 0. We insert the boundary conditions (4.8), (4.9) and use the triangle inequality to
obtain∥∥∥∥(ω1(xr, ·)

ω2(xl, ·)

)∥∥∥∥
L2([0,T])

≤
∥∥∥∥(ω2(xr, ·)

ω1(xl, ·)

)∥∥∥∥
L2([0,T])

+

∥∥∥∥(ℓr
cℓl

)∥∥∥∥
L2([0,T])

. (4.13)

According to the exact definition of ω, we see that ω2(xr, ·) respectively ω1(xl, ·) are
defined piecewise on [0, δ/c] and [δ/c, T]. Consequently, we define

A(t) =

(
α2(xr − ct)
α1(xl + ct)

)
and B(1)(t) =

(∫ t
0 β2

(
xr − c(t− s), s

)
ds∫ t

0 β1
(
xl + c(t− s), s

)
ds

)
on [0, δ/c] ;

W(t) =

(
ω2(xl, t− δ/c)
ω1(xr, t− δ/c)

)
and B(2)(t) =

(∫ t
t−δ/c β2

(
xr − c(t− s), s

)
ds∫ t

t−δ/c β1
(
xl + c(t− s), s

)
ds

)
on [δ/c, T] .

Let A(t) be zero outside of [0, δ/c], W(t) be zero outside of [δ/c, T] and

B(t) =

{
B(1)(t) for t ∈ [0, δ/c] ,

B(2)(t) for t ∈ (δ/c, T] ,

then we have (
ω2(xr, t)
ω1(xl, t)

)
= A(t) +W(t) + B(t) .

Therefore, we conclude∥∥∥∥(ω2(xr, ·)
ω1(xl, ·)

)∥∥∥∥
L2([0,T])

≤ ∥A∥L2([0,δ/c])
+ ∥W∥L2([δ/c,T]) + ∥B∥L2([0,T]) . (4.14)

We estimate the norms in (4.14) separately. We start with the norm of A and observe

∥A∥2L2([0,δ/c])
=

∫ δ/c

0
A1(t)

2 +A2(t)
2 dt =

1

c

∫ xr

xl

α2(x)2 + α1(x)2 dx =
1

c
∥α∥2L2([xl,xr])

.

(4.15)

35

4. Physics-informed simulations

The change of variables is performed by two different substitutions, specifically∫ δ/c

0
α2(xr − ct)2 dt =

1

c

∫ xr

xl

α2(x)2 dx ,

∫ δ/c

0
α1(xl + ct)2 dt =

1

c

∫ xr

xl

α1(x)2 dx .

Also by substitution we derive for the norm of W

∥W∥2L2([δ/c,T]) =

∫ T

δ/c
ω2(xl, t− δ/c)2 + ω1(xr, t− δ/c)2 dt

=

∫ T−δ/c

0
ω2(xl, t)

2 + ω1(xr, t)
2 dt =

∥∥∥∥(ω1(xr, ·)
ω2(xl, ·)

)∥∥∥∥2
L2([0,T−δ/c])

.

(4.16)

It remains to bound the norm of B = (B1,B2)⊤. We start by splitting the squared
L2-norm

∥B∥2L2([0,T]) = ∥B1∥2L2([0,T]) + ∥B2∥2L2([0,T]) . (4.17)

We present only the estimate for the norm of B1. However, the estimate of B2 works
with the same arguments. First, we observe by Hölder’s inequality for t ∈ [0, δ/c](

B(1)1 (t)
)2

=

(∫ t

0
β2
(
xr − c(t− s), s

)
ds

)2

≤
(∫ t

0
|β2
(
xr − c(t− s), s

)
|ds
)2

≤ δ

c

∫ t

0
β2
(
xr − c(t− s), s

)2
ds ,

and for t ∈ [δ/c, T]

(
B(2)1 (t)

)2
≤
(∫ t

t−δ/c
|β2
(
xr − c(t− s), s

)
|ds
)2

≤ δ

c

∫ t

t−δ/c
β2
(
xr − c(t− s), s

)2
ds .

Combing both yields

∥B1∥2L2([0,T])

=

∫ δ/c

0

(
B(1)1

)2
dt +

∫ T

δ/c

(
B(2)1

)2
dt

≤ δ

c

∫ δ/c

0

∫ t

0
β2
(
xr − c(t− s), s

)2
ds dt +

δ

c

∫ T

δ/c

∫ t

t−δ/c
β2
(
xr − c(t− s), s

)2
ds dt

=
δ

c

∫
B1

β2
(
xr − c(t− s), s

)2
d(s, t) +

δ

c

∫
B2

β2
(
xr − c(t− s), s

)2
d(s, t) .

In the last step we used the domains

B1 = {(t, s) : t ∈ [0, δ/c] , 0 ≤ s ≤ t} , B2 = {(t, s) : t ∈ [δ/c, T] , t− δ/c ≤ s ≤ t} .

We transform B1 and B2 by

φ(t, s) =
(
xr − ct + cs, s

)
with Jφ =

(
−c c
0 1

)
and |det(Jφ)| = c .

36

4.1. Loss based on differential form

The domain B1 is a triangle and the corners are mapped as follows

φ(0, 0) = (xr, 0) , φ(δ/c, 0) = (xl, 0) , φ(δ/c, δ/c) = (xr, δ/c) .

Hence B1 is transformed into

φ(B1) =

{
(x, τ) : x ∈ [xl, xr] , τ ∈

[
0,

x− xl
c

]}
.

The domain B2 is a parallelogram and its corners are mapped according to

φ(δ/c, 0) = (xl, 0) , φ(δ/c, δ/c) = (xr, δ/c) ,

φ(T, T − δ/c) = (xl, T − δ/c) , φ(T, T) = (xr, T) .

Thus, we have

φ(B2) =

{
(x, τ) : x ∈ [xl, xr] , τ ∈

[
x− xl

c
, T − xr − x

c

]}
.

In summary, we conclude∫ δ/c

0

(
B(1)1

)2
dt +

∫ T

δ/c

(
B(2)1

)2
dt

≤ δ

c

∫
B1

β2
(
xr − c(t− s), s

)2
d(s, t) +

δ

c

∫
B2

β2
(
xr − c(t− s), s

)2
d(s, t)

=
δ

c2

∫
φ(B1)

β2(x, τ)2 d(x, τ) +
δ

c2

∫
φ(B2)

β2(x, τ)2 d(x, τ)

=
δ

c2

∫ xr

xl

∫ x−xl
c

0
β2(x, τ)2 dτ dx +

δ

c2

∫ xr

xl

∫ T−xr−x
c

x−xl
c

β2(x, τ)2 dτ dx

=
δ

c2

∫ xr

xl

∫ T−xr−x
c

0
β2(x, τ)2 dτ dx

≤ δ

c2
∥β2∥2L2([xl,xr]×[0,T]) . (4.18)

Performing the same arguments one can show

∥B2∥2L2([0,T]) =

∫ δ/c

0

(
B(1)2

)2
dt +

∫ T

δ/c

(
B(2)2

)2
dt ≤ δ

c2
∥β1∥2L2([xl,xr]×[0,T]) .

This yields with (4.17) and (4.18) and

∥B∥2L2([0,T]) = ∥B1∥2L2([0,T]) + ∥B2∥2L2([0,T]) ≤
δ

c2
∥β∥2L2([xl,xr]×[0,T]) . (4.19)

By combining (4.13), (4.14), (4.15), (4.16) and (4.19) we obtain the inequality (4.11).
Next, we show the first assertion. Without loss of generality we assume ti = 0. Note

that (4.13) also holds in this case. Together with the previous definitions, we have∥∥∥∥(ω2(xr, ·)
ω1(xl, ·)

)∥∥∥∥
L2([0,T])

≤ ∥A∥L2([0,δ/c])
+
∥∥∥B(1)∥∥∥

L2([0,δ/c])
.

37

4. Physics-informed simulations

The norm of A has been estimated in (4.15) and we have proven in (4.18) that∫ δ/c

0

(
B(1)1

)2
dt ≤ δ

c2

∫ xr

xl

∫ x−xl
c

0
β2(x, τ)2 dτ dx ≤ δ

c2
∥β2∥2L2([xl,xr]×[0,δ/c]) .

With the same arguments one can show∫ δ/c

0

(
B(1)2

)2
dt ≤ δ

c2
∥β1∥2L2([xl,xr]×[0,δ/c]) .

With these results and a similar argument as for assertion two, we obtain (4.10).
Finally, we show the third assertion. We build the inner product of ω and (4.7) to

observe

∂t(ω
2
1 + ω2

2) + ∂x(cω2
2 − cω2

1) = 2ω1β1 + 2ω2β2

≤ ω2
1 + β2

1 + ω2
2 + β2

2 a.e. in [xl, xr]× [ti, te] , (4.20)

where we have used the identities ωi∂t(ωi) = 1
2∂t(ω

2
i), ωi∂x(ωi) = 1

2∂x(ω2
i) and the

inequality 2ωiβi ≤ ω2
i + β2

i .
Now, we consider the integral of (4.20) on the domain [xl, xr]× [ti, T] for T ∈ [ti, te]

and obtain∫ xr

xl

∫ T

ti

∂t(ω
2
1 + ω2

2) + ∂x(cω2
2 − cω2

1) dtdx

=

∫ xr

xl

ω1(x, T)2 + ω2(x, T)2 dx−
∫ xr

xl

ω1(x, ti)
2 + ω2(x, ti)

2 dx

+ c

∫ T

ti

ω1(xl, t)
2 − ω1(xr, t)

2 + ω2(xr, t)
2 − ω2(xl, t)

2 dt

≤
∫ T

ti

∫ xr

xl

ω2
1 + β2

1 + ω2
2 + β2

2 dx dt .

Rearranging yields∫ xr

xl

ω1(x, T)2 + ω2(x, T)2 dx

≤
∫ T

ti

∫ xr

xl

ω2
1 + ω2

2 dx dt

+ c

∫ T

ti

ω1(xr, t)
2 − ω1(xl, t)

2 + ω2(xl, t)
2 − ω2(xr, t)

2 dt

+

∫ xr

xl

ω1(x, ti)
2 + ω2(x, ti)

2 dx +

∫ T

ti

∫ xr

xl

β2
1 + β2

2 dx dt

≤
∫ T

ti

∫ xr

xl

ω2
1 + ω2

2 dx dt

+ c

∥∥∥∥(ω1(xr, ·)
ω2(xl, ·)

)∥∥∥∥2
L2([ti,te])

+ ∥α∥2L2([xl,xr])
+ ∥β∥2L2([xl,xr]×[ti,te])

. (4.21)

38

4.1. Loss based on differential form

We continue by estimating the norm of ω at the boundary in (4.21). By iteratively

applying the estimate (4.11)
⌊
c(te−ti)

δ

⌋
times and then the estimate (4.10) we deduce∥∥∥∥(ω1(xr, ·)

ω2(xl, ·)

)∥∥∥∥
L2([ti,te])

≤M
(
∥ℓr∥L2([ti,te])

+ c ∥ℓl∥L2([ti,te])
+ c−

1
2 ∥α∥L2([xl,xr])

+ δ
1
2 c−1 ∥β∥L2([xl,xr]×[ti,te])

)
=: C1 ,

for M =
⌈
c(te−ti)

δ

⌉
. This yields

∫ xr

xl

ω1(x, T)2 + ω2(x, T)2 dx ≤ C2 +

∫ T

ti

∫ xr

xl

ω2
1 + ω2

2 dx dt

with C2 = cC2
1 + ∥α∥2L2([xl,xr])

+ ∥β∥2L2([xl,xr]×[ti,te])
. We apply Grönwall’s inequality for

integrals and obtain∫ xr

xl

ω1(x, T)2 + ω2(x, T)2 dx ≤ C2 exp(T − ti) .

Finally, we can estimate the squared L2-norm of ω

∥ω∥2L2([xl,xr]×[ti,te])
=

∫ te

ti

∫ xr

xl

ω1(x, T)2 + ω2(x, T)2 dx dT ≤ C2 (exp(te − ti)− 1) .

(4.22)
The estimate (4.12) is now obtained by taking the root of (4.22) and with

√
C2 ≤ C.

Remark 1. The constant M measures the maximum number of times an information
travels from one spatial boundary to the other. Any information that leaves the domain
is reintroduced and continues to travel. The method does not guarantee that any con-
dition is exactly satisfied. Therefore, errors are introduced at each boundary and as the
information travels through the domain. Thus, the generalization error increases in pro-
portion to the distance traveled. The dependence on M in the error estimate describes
exactly this relationship.

This property is unique to systems with coupled boundary conditions. For example,
this is not the case for a scalar transport equation, where the information leaves the
domain and is not reintroduced.

To derive an estimate for µ = u− u∗, we apply the third assertion of the Lemma.

Theorem 2. Let c ≥ 1 and M =
⌈
c(te−ti)

δ

⌉
. Then the following estimate holds

∥u− u∗∥L2(Deq)
≤
(
√

2Mc
1
2

(√
Lr + c

√
Ll

)
+ c(M + 1)

√
Li

+
(
M
√
δc + c

)√
Leq

)(
exp(te − ti)− 1

)
.

39

4. Physics-informed simulations

Proof. By construction we have

∥u− u∗∥L2(Deq)
= ∥µ∥L2(Deq)

= ∥Rω∥L2(Deq)
≤ ∥R∥2 ∥ω∥L2(Deq)

,

where we denote by ∥B∥2 for a matrix B the matrix norm induced by the ∥·∥2 vector
norm.

For c ≥ 1 we calculate ∥R∥2 =
√

2 and
∥∥R−1

∥∥
2

= c/
√

2. Hence, we have

∥β∥L2(Deq)
=
∥∥−R−1ℓeq

∥∥
L2(Deq)

≤
∥∥R−1

∥∥
2
∥ℓeq∥L2(Deq)

=
c√
2

√
Leq ,

∥α∥L2(Di)
=
∥∥−R−1ℓi

∥∥
L2(Di)

≤
∥∥R−1

∥∥
2
∥ℓi∥L2(Di)

=
c√
2

√
Li .

Now we insert (4.12) and obtain

√
2 ∥ω∥L2(Deq)

≤
(
√

2Mc
1
2

(√
Lr + c

√
Ll

)
+ c(M + 1)

√
Li

+
(
M
√
δc + c

)√
Leq

)(
exp(te − ti)− 1

)
.

The theorem shows a clear relationship between the losses Li, Lr, Ll, Leq and the
generalization error ∥u− u∗∥L2(Deq)

. Minimizing the loss functions also minimizes the
generalization error. In this sense, it validates the deviation of the physics-informed loss
LDif.

We formulate some further remarks.

Remark 2 (Simulating real gas pipelines). The error estimate becomes weaker for larger
c or when the temporal domain is much longer than the spatial domain. For example,
the linear problem has c = 1 and M = 4.

However, a more realistic scenario with a 50km gas pipeline simulated over a time
interval of 24h with a speed of sound of 340m/s has M ≈ 588. According to the
theorem,

√
Leq must be minimized by additional log10(M

√
δc+ c) ≈ 6.3 orders to have

the same influence on the result as in our linear problem.
This behavior has also been described multiple times in the literature for scalar linear

transport equations, see for example [30, 37, 9]. The authors identified the characteristic
speed (in our case the speed of sound) of the solution as the main factor for the accuracy
of the results. They showed practically that for characteristic speeds of ten or higher,
the generalization error increases. Therefore, we have chosen our examples deliberately
to avoid this problem and we do not investigate this further.

Finally, there are publications that have successfully used physics-informed neural
networks to simulate real-world scenarios, but they have not considered gas transport
problems. See for example [27, 2].

Remark 3 (Loss balancing weights). The losses in the estimate are not equally weighted,
and their influence changes depending on c and M . This suggests that some losses have
more influence and are therefore more important than others for the generalization error.
This suggests a complicated interaction between the different losses. We will investigate
this further in Subsection 4.1.3.

40

4.1. Loss based on differential form

So far we have derived an estimate that is based on the values of the norms Leq,
Li, Ll, and Lr. However, in our implementation, we do not minimize the continuous
integrals, but discrete approximations. Therefore, we turn our attention to this setting
and denote by L∗

k the approximation of Lk for k = eq, i, l,r. Note, L∗
k and Lk differ by

the volume factor of the respective domain that is neglected in the derivation of LDif.

Corollary 1. Let M be defined as before. Assume c ≥ 1,∣∣Leq − L∗
eq

∣∣ < εeq , |Li − L∗
i | < εi , |Ll − L∗

l| < εl and |Lr − L∗
r| < εr ,

then it holds

∥u− u∗∥L2(Deq)

≤
(
√

2Mc
1
2

(√
εr + |L∗

r|+ c
√
εl + |L∗

l|
)

+ c(M + 1)
√
εi + |L∗

i |+
(
M
√
δc + c

)√
εeq +

∣∣L∗
eq

∣∣)(exp(te − ti)− 1
)
.

Proof. For example, by the triangle inequality we obtain

Leq = |Leq| =
∣∣Leq − L∗

eq + L∗
eq

∣∣ ≤ εeq +
∣∣L∗

eq

∣∣ .
We proceed similarly for the other losses and then obtain the assertion by applying
Theorem 2.

Remark 4 (Error decomposition). The corollary above decomposes the generalization
error into two contributions: the quadrature errors (εk) and the training errors (L∗

k). The
quadrature error is easily controlled by a converging quadrature rule and an increasing
number of sample (or, quadrature) points. In the next section, 4.1.2, we investigate the
quadrature error.

Controlling the training error is much harder. The training error can be decomposed
into the optimization error, the error that occurs because the optimizer does not find the
global minimum, and the approximation error, the error between the best approximation
of the neural network with respect to the chosen architecture and the exact solution.
Especially, Theorem 1 guarantees for any continuous function the existence of a sequence
of neural network parameters, such that the corresponding neural networks converge to
the function. In summary, the corollary shows that the convergence of physics-informed
neural networks is possible, if we manage to minimize all errors arbitrarily. We will see
later whether convergence can be observed in practice.

Additionally, traditional machine learning techniques suggest that one should not
minimize the training error as much as possible, as that can increase the risk of overfitting
and cause the approximation to decline eventually. Even the founding article of physics-
informed neural networks mentions concerns about overfitting [36]. However, our results
clearly show that lower training and quadrature errors result in lower generalization
errors. This is in line with other findings in [49] and points to a deviation between
traditional machine learning techniques and physics-informed machine learning.

41

4. Physics-informed simulations

4.1.1.d. Implementation

The loss of the balance law Leq sets the physics-informed neural networks apart from
the solution-based loss function used in Chapter 3. As a consequence, Leq is the main
building block enabling physics-informed neural networks. To evaluate Leq, we need to
compute ℓeq(x, t; θ) for many points, and thus the efficient computation of ℓeq is critical.

Usually, reverse mode automatic differentiation is used to obtain the derivatives in
ℓeq. For instance, the authors in [36] demonstrate a reverse mode implementation. This
preference can be attributed to the fact that reverse mode differentiation is the primary
approach of the widely used deep learning frameworks TensorFlow or PyTorch.

In this subsubsection, we explore the implementation of ℓeq from a broader perspective.
We examine three different implementations: two based on forward mode differentiation
and one based on reverse mode differentiation. Finally, we compare the efficiency of the
implementations.

For this presentation, we assume that the parameters θ are constant and thus h(x, t) =
h(x, t; θ).

Forward mode differentiation. To compute ℓeq we need the time derivative of u ◦h
and the spatial derivative of F ◦ h. By applying (3.10) these can be obtained by the
Jacobian-Vector products

∂t(u ◦ h)(x, t) = Ju◦h(x, t) ·
(

0
1

)
and ∂x(F ◦ h)(x, t) = JF◦h(x, t) ·

(
1
0

)
. (4.23)

This leads us to the first implementation. The corresponding code is displayed in Listing
4.1a. This and the following implementations are based on the Jax [3] framework.

Fast forward mode differentiation. The previous implementation is not ideal and
can be optimized by exploiting the structure of the derivatives in ℓeq. To perform similar
computations only once, we split both Jacobian-Vector products into

Ju◦h(x, t) ·
(

0
1

)
= Ju(h1, h2) · Jh(x, t) ·

(
0
1

)
and

JF◦h(x, t) ·
(

1
0

)
= JF (h1, h2) · Jh(x, t) ·

(
1
0

)
,

with (h1, h2) = h(x, t). Then, we compute Jh(x, t) · (1 0
0 1) using a vectorized version of

the Jacobian-Vector product v 7→ Jhv. This result is subsequently used to compute the
remaining Jacobian-Vector products. See Listing 4.1b for the implementation.

Aside: Automatic code vectorization. The main difference between the imple-
mentations in Listing 4.1b and 4.1a is the vectorization of the Jacobian-Vector product.
Automatic vectorization is a very powerful approach to simplify the generation of fast
implementations. The automatic vectorization is not a loop (which would lead to the
same implementation as in Listing 4.1a) and not a parallel execution, but a transforma-
tion of the function that replaces each operation with a vectorized one.

42

4.1. Loss based on differential form

As a result, Listing 4.1b requires only one evaluation of h, while Listing 4.1a requires
three evaluations. The derivatives of h are computed using the same operations, and
thus, we traverse the computational graph of h only once.

In abstract terms, vectorization adds a new dimension to each input parameter and
to the output of a function. For instance, the vector-matrix product

f : Rk → Rk , b 7→ bA ,

with A ∈ Rk×k is vectorized into matrix-matrix product

f̂ : Rn×k → Rn×k , B 7→ BA .

Usually, vectorization is performed manually. However, frameworks like Jax [3] pro-
vide automatic code vectorization, to simplify the process. In the second next paragraph,
we will compare the efficiency of the non-vectorized code in Listing 4.1a with the vec-
torized code in Listing 4.1b.

Reverse mode differentiation. By reverse mode automatic differentiation, we ob-
tain one row of the Jacobian, see (3.11). In order to compute ∂t(u ◦ h) and ∂x(F ◦ h),
we need to compute the complete Jacobians Ju◦h, JF◦h. Again, we split Ju◦h = Ju · Jh,
JF◦h = JF · Jh and vectorize the Vector-Jacobian products. Thus we compute

Wu =

(
1 0
0 1

)
· Ju(x, t) , WF =

(
1 0
0 1

)
· JF (x, t) ,(

∂x(F ◦ h) ∂t(F ◦ h)
∂x(u ◦ h) ∂t(u ◦ h)

)
=

(
WF

Wu

)
· Jh(h1, h2) ,

with (h1, h2) = h(x, t). Importantly, only half of the computed derivatives are actually
needed. See Listing 4.1c for the corresponding implementation.

Comparison. In terms of the number of Jacobian-Vector or Vector-Jacobian products
that are required by the three implementations, the forward mode implementations
are more efficient. To further quantify this comparison, we can measure the number
of floating-point operations (FLOP) required to evaluate the gradient of ℓeq(x, t) with
respect to the parameter θ, which is the most expensive operation in our application.

For this measurement, and all such measurements in this work, we rely on the data
provided by the Jax framework. Note, that the estimated number of operations depends
on the device and the applied algorithms. Additionally, the number of operations does
not linearly map to the runtime. That is, increasing the number of operations by a
factor of 10 does not imply that the runtime increases by a factor of 10. This is rooted
in the underlying massively parallel computing architecture of GPUs. Therefore, the
FLOP numbers presented should be interpreted as an approximation, and as a reference
to compare the computational cost between different methods and/or implementations.

For a fully connected neural network with 5 hidden layers and 50 neurons, along with
48 000 sample points and the isentropic balance law, we obtain the following results.
Implementation 4.1a requires 5.48× 108 FLOP, implementation 4.1b requires 4.13× 108

FLOP, and implementation 4.1c requires 7.39 × 108 FLOP on a Nvidia RTX A6000

43

4. Physics-informed simulations

def fwd_slow(self, x, t, h):
def h_then_state(x_, t_):

return self.state(*h(x_, t_))

Compute Ju◦h(x, t) · (0
1)

(_, _), (rho_t, rho_v_t) = jax.jvp(h_then_state, (x, t), (jnp.zeros_like(x),
jnp.ones_like(t)))

def h_then_flux(x_, t_):
return self.flux(*h(x_, t_))

Compute JF◦h(x, t) · (1
0)

(_, _), (f_1_x, f_2_x) = jax.jvp(h_then_flux, (x, t), (jnp.ones_like(x),
jnp.zeros_like(t)))

g = self.rhs(*h(x, t))

return jnp.square(rho_t + f_1_x) + jnp.square(rho_v_t + f_2_x - g)

(a) This function computes ℓeq(x, t; θ) using the forward mode automatic differentiation.

def fwd_fast(self, x, t, h):
v_x = jnp.stack((jnp.ones_like(x), jnp.zeros_like(t)), axis=0)
v_t = jnp.stack((jnp.zeros_like(t), jnp.ones_like(t)), axis=0)

def h_jvp(v_1, v_2):
return jax.jvp(h, (x, t), (v_1, v_2))

Compute Jh(x, t) · (1 0
0 1)

(((h_1, _), (h_2, _)), ((h_1_x, h_1_t),
(h_2_x, h_2_t))) = jax.vmap(h_jvp)(v_x, v_t)

Compute Ju(h1, h2) ·
(
∂th1

∂th2

)
and JF (h1, h2) ·

(
∂xh1

∂xh2

)
(_, _), (rho_t, rho_v_t) = jax.jvp(self.state, (h_1, h_2), (h_1_t, h_2_t))
(_, _), (f_1_x, f_2_x) = jax.jvp(self.flux, (h_1, h_2), (h_1_x, h_2_x))
g = self.rhs(h_1, h_2)

return jnp.square(rho_t + f_1_x) + jnp.square(rho_v_t + f_2_x - g)

(b) Implementation of ℓeq(x, t; θ) using a vectorized forward mode automatic differentiation to
avoiding redundant calculations and group together similar operations.

Listing 4.1.: Three different implementations of ℓeq(x, t; θ). For all implementations,
self.state is the realization of u and self.flux the realization of F . Furthermore, the
function jax.jvp computes the Jacobian-Vector product, jax.vjp computes the Vector-
Jacobian product and jax.vmap vectorizes functions. Continued on the next page.

44

4.1. Loss based on differential form

def rev(self, x, t, h):
jax.vjp calculates h(x, t) and returns a function
that computes h vjp : w 7→ w⊤Jh(x, t).
(h_1, h_2), h_vjp = jax.vjp(h, x, t)

state vjp : w 7→ w⊤Ju(x, t)
_, state_vjp = jax.vjp(self.state, h_1, h_2)
flux vjp : w 7→ w⊤JF (x, t)
_, flux_vjp = jax.vjp(self.flux, h_1, h_2)

w_1 = jnp.stack((jnp.ones_like(x),
jnp.zeros_like(x)), axis=0)

w_2 = jnp.stack((jnp.zeros_like(x),
jnp.ones_like(x)), axis=0)

Compute (1 0
0 1) · Ju(h1, h2)

w_state_1, w_state_2 = jax.vmap(state_vjp)((w_1, w_2))
Compute (1 0

0 1) · JF (h1, h2)
w_flux_1, w_flux_2 = jax.vmap(flux_vjp)((w_1, w_2))

w_h_1 = jnp.concatenate((w_state_1,
w_flux_1), axis=0)

w_h_2 = jnp.concatenate((w_state_2,
w_flux_2), axis=0)

Compute
(

WF

Wu

)
· Jh(x, t)

((rho_x, rho_v_x, f_1_x, f_2_x),
(rho_t, rho_v_t, f_1_t, f_2_t)) = jax.vmap(h_vjp)((w_h_1, w_h_2))

g = self.rhs(h_1, h_2)

return jnp.square(rho_t + f_1_x) + jnp.square(rho_v_t + f_2_x - g)

(c) Implementation of ℓeq(x, t; θ) using reverse mode automatic differentiation.

Listing 4.1.: Three different implementations of ℓeq(x, t; θ).

45

4. Physics-informed simulations

GPU. Hence, the second implementation uses about 56% and the first implementation
uses about 75% of the FLOP required by the third implementation.

In summary, the second implementation 4.1b is the most efficient and provides a
significant improvement over the reverse mode implementation that is usually employed.
Therefore, we will only use this implementation.

4.1.1.e. Numerical Results

In this subsubsection, we perform numerical tests of the physics-informed neural net-
works introduced in this subsection. Our goal is to evaluate the performance of the
two test problems described in Chapter 2. In addition, the results of these tests serve
as a baseline for a comparison with the variants of physics-informed neural networks
introduced later in this chapter.

Here, we use the neural network architectures that gave either the most accurate or
the most efficient results in Chapter 3. They are listed in Table 4.1. Furthermore, the
following optimization schemes are considered:

• Adam method. Here, we perform 100 000 iterations and use the exponentially
decaying learning rate defined by (3.7). We test each of the following learning rate
parameter combinations

ηSteps ∈ {1000, 5000, 10000} , ηRate = 0.9 , ηInit ∈ {0.1, 0.01, 0.001} .

From every obtained approximation, we select the approximation with the lowest
loss value after training.

• L-BFGS method. Here we use the implementation from the SciPy [63] package,
and we set the stop criterion to a gradient tolerance of 10−7.

• A hybrid of the Adam and the L-BFGS method. Here, we first perform 10 000
Adam iterations and then run the L-BFGS method. This procedure was first
introduced in [36] and is based on the idea to use a gradient-based method if the
parameters are far away from the (local) optima and to use a higher-order method if
the parameters are near. In this sense, the procedure is similar to the Levenberg-
Marquardt method. For the Adam method, we test the same learning rates as
described above. From every obtained approximation, we select the approximation
with the lowest loss value after training.

To simplify the test setup, we use the same number of sample points for the initial data
as well as the left and right boundary data. That is, we have

dl = dr = di =: dbd .

The following combinations of the number of boundary sample points and the number
of balance law sample points are included

dbd ∈ {2000, 4000, 8000} , deq ∈ {8000, 16000, 32000, 48000} .

46

4.1. Loss based on differential form

Linear Isentropic

σ N K σ N K

relu 2 20 tanh 4 20
relu 2 30 tanh 6 30
relu 2 50 tanh 6 50
tanh 5 30 gelu 4 50
tanh 5 50 gelu 5 50
gelu 3 20 gelu 6 30
relu∗ 4 20 gelu∗ 5 20
relu∗ 6 50

Table 4.1.: Neural network architectures for the linear and isentropic problem. An
asterisk indicates a Hamiltonian-inspired neural network.

We conduct each test three times, each time with different randomly chosen sample
points and initial parameters to mitigate the influence of randomness. Then, we calculate
the average errors and report them.

Again, we measure the accuracy and efficiency of the results. Efficiency is measured
by the ratio of the generalization error to the floating point operations (FLOP) required
to obtain the result. Specifically, the efficiency for the parameter θ is measured by

error
[
u1; θ∗

]
+ error

[
u2; θ∗

]
error

[
u1; θ

]
+ error

[
u2; θ

] · FLOP∗
FLOP

, (4.24)

where θ∗ are the accurate reference parameters, FLOP are the number of floating point
operations required to obtain θ and FLOP∗ are the number of floating point operations
required to obtain θ∗. As before, the floating point operations are measured by the Jax
framework. Since we are using the L-BFGS method from the SciPy package, we can
only give a very rough estimate of the FLOP required to obtain these results.

The following tables show the most accurate and the most efficient results for each
neural network architecture and optimization method. See Table 4.2 for the results of
the linear problem and Table 4.3 for the results of the isentropic problem.

For the linear problem, neural networks using the relu activation function do not have
the necessary regularity to be trained with the L-BFGS method, so these tests were
not performed. However, the results show that neural networks with a relu activation
function, especially fully connected neural networks with two hidden layers, provide the
best results. These results have a similar accuracy as those obtained in Chapter 3, where
we trained with the exact solution. The other activation functions require significantly
more parameters and sample points to produce worse results. In addition, we can save
about half the computational cost for results that are an order of magnitude worse.

For the isentropic problem, the gelu activation function gives the most accurate results.
However, the results are up to two orders of magnitude worse than the results of the linear
problem and also worse than the results obtained in Chapter 3. The neural networks
with the tanh activation function provide a cost-effective solution with only a small loss
in accuracy. Here, we can save up to an order of magnitude in computational cost.

47

4. Physics-informed simulations

Most accurate Most efficient

σ N K deq dbd FLOP error[u1] error[u2] deq dbd FLOP error[u1] error[u2]

relu 2 20 48000 2000 1.6e12 1.93e−5 2.41e−5 16000 4000 8.7e11 2.39e−5 3.08e−5
relu 2 30 16000 8000 1.8e12 2.98e−5 2.97e−5 16000 2000 9.7e11 3.28e−5 4.14e−5
relu 2 50 48000 2000 3.9e12 2.73e−4 3.77e−4 16000 2000 1.6e12 4.84e−4 4.26e−4
tanh 5 30 16000 8000 1.1e13 5.35e−3 6.66e−3 8000 2000 4.8e12 5.93e−3 7.40e−3
tanh 5 50 48000 2000 4.3e13 3.38e−3 4.17e−3 8000 4000 8.8e12 4.14e−3 5.16e−3
gelu 3 20 32000 2000 2.7e13 1.04e−2 1.31e−2 8000 2000 7.8e12 1.05e−2 1.31e−2
relu* 4 20 8000 2000 1.9e12 1.76e−4 2.22e−4 16000 2000 2.8e12 5.62e−4 6.29e−4
relu* 6 50 48000 8000 4.9e13 8.86e−5 1.26e−4 8000 2000 9.8e12 1.35e−4 1.59e−4

(a) Results obtained by the Adam method. The three lowest values per column are highlighted.

Most accurate Most efficient

σ N K deq dbd FLOP error[u1] error[u2] deq dbd FLOP error[u1] error[u2]

tanh 5 30 48000 4000 5.7e13 1.28e−2 1.59e−2 8000 2000 4.0e12 2.14e−2 2.68e−2
tanh 5 50 16000 2000 2.7e13 1.13e−2 1.41e−2 8000 4000 1.5e11 2.01e−1 2.54e−1
gelu 3 20 32000 8000 5.9e13 1.14e−2 1.43e−2 8000 2000 8.7e12 2.07e−2 2.59e−2

(b) Results obtained by the L-BFGS method. The lowest value per column is highlighted.

Most accurate Most efficient

σ N K deq dbd FLOP error[u1] error[u2] deq dbd FLOP error[u1] error[u2]

tanh 5 30 16000 8000 2.3e13 3.57e−3 4.47e−3 8000 2000 9.0e12 4.68e−3 5.85e−3
tanh 5 50 32000 8000 6.5e13 2.75e−3 3.44e−3 8000 4000 9.3e11 1.76e−2 2.19e−2
gelu 3 20 8000 8000 2.1e13 7.08e−3 8.80e−3 8000 2000 1.6e13 8.29e−3 1.03e−2

(c) Results obtained by the hybrid method. The lowest value per column is highlighted.

Table 4.2.: Results for the linear problem. An asterisk indicates a Hamiltonian-inspired
neural network.

48

4.1. Loss based on differential form

Most accurate Most efficient

σ N K deq dbd FLOP error[ρ] error[ρv] deq dbd FLOP error[ρ] error[ρv]

tanh 4 20 16000 8000 6.1e12 1.45e−3 4.60e−3 8000 2000 2.7e12 1.51e−3 4.79e−3
tanh 6 30 16000 8000 1.3e13 1.10e−3 3.50e−3 8000 4000 6.6e12 1.34e−3 4.28e−3
tanh 6 50 32000 8000 3.9e13 1.06e−3 3.41e−3 8000 2000 9.7e12 1.28e−3 4.12e−3
gelu 4 50 16000 2000 4.8e13 8.94e−4 2.84e−3 8000 2000 2.6e13 9.66e−4 3.02e−3
gelu 5 50 8000 8000 4.7e13 8.58e−4 2.69e−3 8000 2000 3.3e13 1.03e−3 3.24e−3
gelu 6 30 32000 2000 8.3e13 9.83e−4 3.12e−3 8000 2000 2.4e13 1.11e−3 3.51e−3
gelu* 5 20 8000 4000 2.3e13 6.67e9 6.67e9 8000 2000 2.0e13 6.67e9 6.67e9

(a) Results obtained by the Adam method.

Most accurate Most efficient

σ N K deq dbd FLOP error[ρ] error[ρv] deq dbd FLOP error[ρ] error[ρv]

tanh 4 20 48000 8000 3.3e13 1.38e−3 4.41e−3 8000 4000 5.4e12 1.71e−3 5.52e−3
tanh 6 30 16000 8000 2.2e13 1.13e−3 3.61e−3 8000 2000 7.9e12 1.54e−3 4.96e−3
tanh 6 50 8000 8000 1.9e13 1.09e−3 3.57e−3 8000 4000 1.1e11 1.97e−2 6.04e−2
gelu 4 50 48000 4000 1.4e14 1.86e−3 5.89e−3 8000 4000 4.7e11 1.85e−2 5.88e−2
gelu 5 50 32000 4000 1.3e14 1.53e−3 4.82e−3 8000 4000 4.3e11 2.06e−2 6.31e−2
gelu 6 30 16000 8000 5.4e13 1.68e−3 5.40e−3 8000 2000 1.4e13 2.96e−3 9.23e−3
gelu* 5 20 16000 2000 4.5e12 4.29e0 3.68e0 8000 2000 2.5e12 4.29e0 3.70e0

(b) Results obtained by the L-BFGS method.

Most accurate Most efficient

σ N K deq dbd FLOP error[ρ] error[ρv] deq dbd FLOP error[ρ] error[ρv]

tanh 4 20 32000 8000 2.1e13 1.10e−3 3.57e−3 8000 2000 3.5e12 1.44e−3 4.64e−3
tanh 6 30 32000 8000 3.4e13 1.02e−3 3.27e−3 8000 2000 7.3e12 1.11e−3 3.57e−3
tanh 6 50 32000 8000 4.7e13 9.95e−4 3.18e−3 8000 4000 1.1e12 6.71e−3 2.08e−2
gelu 4 50 48000 2000 1.4e14 1.37e−3 4.29e−3 8000 4000 3.0e12 7.37e−3 2.26e−2
gelu 5 50 32000 4000 1.2e14 1.16e−3 3.70e−3 8000 8000 3.5e13 1.32e−3 4.17e−3
gelu 6 30 32000 8000 1.2e14 1.57e−3 4.96e−3 8000 4000 2.0e13 1.85e−3 5.85e−3
gelu* 5 20 8000 2000 7.3e12 5.45e0 5.22e0 16000 4000 1.4e13 6.99e0 4.04e0

(c) Results obtained by the hybrid method.

Table 4.3.: Results for the isentropic problem. An asterisk indicates a Hamiltonian-
inspired neural network. The three lowest values per column are highlighted.

49

4. Physics-informed simulations

For both problems, neither the L-BFGS nor the hybrid method provides an accuracy
or efficiency advantage over the Adam method. Therefore, only the Adam method
is considered in the following numerical tests. However, we must emphasize that we
repeated each Adam test nine times to find the best learning rate. This cost was not
considered in the evaluation because it depends on the number of learning rates tested
and can most likely be reduced by more sophisticated techniques.

The results of this numerical test are the baseline, and in the remainder of this chapter
we introduce variants of the original physics-informed neural networks and test whether
we can improve accuracy or efficiency. Here, we consider different sampling strategies in
Subsection 4.1.2, loss balancing strategies in Subsection 4.1.3, and a loss function based
on the integral form of the balance law in Section 4.2.

4.1.2. Sampling strategies

Random sampling strategies are widely used in machine learning. They prevent the
model from learning only on specific training data and thus from overfitting. This
procedure is enabled by stochastic gradient descent methods. Sometimes training data
is augmented and thus can be extended indefinitely. For example, images can be cropped,
scaled, rotated, mirrored, and so on.

In this perspective, the sets Deq, Di, Dl, Dr are infinite sampling spaces and therefore
also the possible training data. Following the machine learning path, physics-informed
neural networks utilize random sampling strategies to effectively learn solutions of dif-
ferential equations.

From a different perspective, we derived error estimates in the last section that showed
the important role of quadrature errors. The quadrature errors are introduced by ap-
proximating the L2-norms, thus by considering Leq, Li, Ll,Lr instead of Leq, Li, Ll,
Lr. In this subsection, we take a closer look at quadrature methods that are based on
random sampling and evaluate their performance in our use case. In particular, we will
introduce the Latin hypercube sampling, the sampling strategy proposed in [36]. For an
overview, see [42].

Specifically, for a square integrable function f : [0, 1]d → R we consider approximations
of the integral

F =

∫
[0,1]d

f(x) dx ≈ F .

These approximations are based on the following observation: Let X be a random vari-
able distributed as U([0, 1]d), denoted by X ∼ U([0, 1]d). Since the probability density
function of X is equal to one, the expected value of f(X) is given by

E
(
f(X)

)
=

∫
[0,1]d

f(x) dx = F .

The quadrature rules, that we are about to present, construct estimates of the expected
value E(f(X)) and thus approximations of F . We begin with the Monte Carlo method.

4.1.2.a. Monte Carlo method

The Monte Carlo method draws random samples uniformly and takes the average of the
corresponding function values. Consequently, let X1, ..., Xn ∼ U([0, 1]d) be independent

50

4.1. Loss based on differential form

random variables. Then, the Monte Carlo estimate of E(f(X)) is defined by

FMC =
1

n

n∑
i=1

f(Xi) .

This estimate is unbiased because E(FMC) = F . Furthermore, since f is square inte-
grable and X ∼ U([0, 1]d), we deduce by the identity of Bienaymé

V
(
FMC

)
=

V
(
f(X)

)
n

=
σ2

n
,

for σ2 = V(f(X)). Since the Monte Carlo estimate is based on randomness, we in-
vestigate the expected error. Specifically, we consider the root mean square error and
observe √

E
((

FMC − F
)2)

=
√

V
(
FMC

)
=

σ√
n
.

This error bound indicates a fundamentally different error composition in comparison
to deterministic methods. Crucially, this bound is independent of the dimension d. This
makes the Monte Carlo method the only suitable choice for large d, since for deterministic
quadrature rules the number of quadrature points usually grows exponentially with the
dimension. However, the error bound only decays at a rate of

√
n. This is slower than

the usually considered deterministic quadrature rules. Therefore, the independence of
the dimension is achieved by a very slow rate of convergence. The bound further depends
on the variance σ2 of f(X). The error decreases for smaller variances σ2.

Next, we introduce variations of the Monte Carlo estimate. These methods have in
common that they trade randomness for determinism to achieve a faster error decay
rate. We start with the Latin hypercube sampling.

4.1.2.b. Latin hypercube sampling

The Latin hypercube sampling (LHS) strategy divides every dimension into n equidis-
tant intervals and draws a sample in each interval. A sample of the domain is ob-
tained by randomly pairing samples of each dimension. Hence, we consider independent
random variables Yi,j ∼ U([0, 1]) for i = 1, ..., n and j = 1, ..., d. Furthermore, let
π1, ..., πd : {0, ..., n−1} → {0, ..., n−1} be random permutations. Then, the i-th random
sample of dimension j is defined by

Ŷi,j =
π(i− 1) + Yi,j

n
for i = 1, ..., n and j = 1, ..., d .

Consequently, the i-th random sample of [0, 1]d is

Xi =
(
Ŷi,1 . . . Ŷi,d

)
for i = 1, ..., n .

The Latin hypercube estimate is now defined by

FLHS =
1

n

n∑
i=1

f(Xi) .

51

4. Physics-informed simulations

As shown in [52], this estimate is again unbiased, E(FLHS) = F .

Estimating the variance of FLHS is more delicate. In [52] it is shown that for nearly
additive functions, Latin hypercube sampling outperforms the classical Monte Carlo
method. In particular, for f0 ∈ R and specifically defined univariate fj(x) : R → R the
function

fadd(x) = f0 +
d∑

j=1

fj(xj)

is considered. Then, it is shown that

V
(
FLHS

)
≤ 1

n

∫
[0,1]d

(f − fadd)2 dx + o

(
1

n

)
,

where o(·) is the little–o notation. This implies, if f is nearly additive, which is the
case when (f − fadd)2 is small, then the convergence rate improves. Finally, in [41] it
was shown that in the worst case the variance of FLHS is only slightly larger than the
variance of FMC, since

V
(
FLHS

)
≤ σ2

n− 1
.

In summary, LHS can improve the rate of convergence for some functions, while not being
much worse than the Monte Carlo procedure. The method is also easy to implement
and scales to very high dimensions. Therefore, the Latin hypercube sampling is a good
default choice.

However, the scheme does not provide a generalization to other hypercubes than
[0, 1]d. Since every dimension is divided into the same number of intervals, the best
choice is to scale the samples from [0, 1]d to the desired hypercube. This implies that
for hypercubes with highly unequal dimension sizes, the longer dimensions are severely
underrepresented. This is in contrast to traditional numerical methods. For example, to
solve the nonlinear equation system that arises when simulating the nonlinear problem
with the implicit box method, we need twelve times more time steps per unit than space
points per unit. Therefore, we turn our attention to the stratified sampling strategy,
which allows for a more even distribution of points, even for different side lengths.

4.1.2.c. Stratified sampling

The stratified sampling strategy divides the hypercube [0, 1]d into md cubes of side length
1/m. Then, one sample in each cube is drawn uniformly. We denote these samples by
Xi for i = 1, ...,md. The stratified estimate is defined by

F Str =
1

n

n∑
i=1

f(Xi) for n = md .

Again, the estimate is unbiased, E(F Str) = F . It has been further shown in [32, 20] that

V(F Str) ≤ V(FMC) .

52

4.1. Loss based on differential form

Consequently, the stratified sampling strategy is always as good as the standard Monte
Carlo method. However, under the assumption that f is continuously differentiable, it
has been shown with a Taylor expansion in [20] that

V
(
F Str

)
∈ O

(
n−1−2/d

)
,

where O(·) is the big–O notation. Unlike the other random strategies, the rate depends
on the dimension d. Furthermore, the stratified strategy provides an improvement over
the Monte Carlo procedure for small d. For example, the rate for the root mean square
error is 1/n for d = 2.

This strategy has a generalization for hypercubes with arbitrary side lengths, since it
allows different numbers of intervals per dimension. However, for large d, the advantage
becomes smaller as the convergence rate increases and the implementation becomes
harder. Finally, Latin hypercube and stratified sampling are identical for d = 1.

4.1.2.d. Sobol sequences

The last method we consider is Sobol sequences. A Sobol sequence is a sequence of
deterministic points x1, ..., xn ∈ [0, 1]d with n = 2m such that the difference

F − F Sobol = F − 1

n

n∑
i=1

f(xi)

is minimal, the points fill the space evenly and have no apparent pattern. Such methods
are called quasi-Monte Carlo methods since they trade randomness for maximum speed
of convergence. An error convergence rate of O(n−1 log(n)d−1) has been proven for
functions with a certain kind of bounded variation, see [43]. This convergence rate is
better than the rate of the Monte Carlo method, but the rate increases for larger d.

Randomness can be reintroduced by scrambling the Sobol sequence, which is a random
perturbation of the sequence while preserving its space-filling properties. It can be
shown that for functions with sufficient regularity, the root mean square error decays
as O(n−3/2 log(n)(d−1)/2) [43]. This is the fastest convergence rate of the considered
sampling strategies. However, again, the rate slows down for larger d.

Sobol sequences are only defined for hypercubes [0, 1]d. Therefore, we need to scale
the points to obtain a scheme for a general hypercube. Also, the number of samples
can only be a power of two. As outlined in [43], dropping any points of the sequence
eliminates the advantages of Sobol points. Sobol sequences are not trivial to implement,
thus we use the implementation provided by SciPy [63].

For an example of the samples each strategy draws, see Figure 4.1. Note, that the
Latin hypercube strategy draws one sample for each row and column, and the stratified
strategy draws one sample per cell.

4.1.2.e. Convergence comparison

In this subsubsection, we practically compare the previously presented random-based
quadrature rules with deterministic composite Gauss-Legendre rules by measuring the
quadrature error of Leq. We consider two different instances of Leq: the linear balance

53

4. Physics-informed simulations

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

t

Monte Carlo

0 0.5 1
x

Latin hypercube

0 0.5 1
x

Stratified

0 0.5 1
x

Sobol

Figure 4.1.: Comparison of different sampling strategies when sampling 16 points in
the domain [0, 1]× [0, 4].

law with a fully connected relu neural network, N = 2 and K = 30, and the isentropic
balance law with a fully connected gelu neural network, N = 5 and K = 50.

This test uses the initial parameters of the neural networks. The error of the random
quadrature rules is the root mean square error of 20 calculations. The error is computed
with respect to a reference value that is calculated with 4 096 000 points. The results
are computed using 32-bit floating point numbers and displayed in Figure 4.2.

We observe that the higher-order methods converge faster for the isentropic problem,
and we can distinguish the different rates of convergence: The Monte Carlo and Latin
hypercube sampling strategies have the slowest convergence rate. The stratified and
Sobol strategies have roughly the same order of convergence as the Gauss-Legendre
quadrature of order one. The higher-order Gauss-Legendre quadrature rules have the
highest order of convergence. This can be attributed to the smoothness of the gelu
activation function, which is transferred to Leq.

This is in contrast to the linear problem with the relu activation function. Here,
the higher-order methods cannot show their advantage and are as fast as the Sobol or
stratified sampling strategies.

54

4.1. Loss based on differential form

102 103 104 105
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Sample points

Er
ro

r

Linear problem

Monte Carlo LHS Stratified Sobol
Gauss 1 Gauss 2 Gauss 3

102 103 104 105

Sample points

Isentropic problem

Figure 4.2.: Convergence analysis of different methods approximating Leq(θ).

4.1.2.f. Numerical Results

In this subsubsection, we test the different sampling strategies presented in this subsec-
tion when used by physics-informed neural networks to solve the two test problems. In
addition to the random-based quadrature rules, we also consider deterministic composite
Gauss-Legendre rules. We use the Gauss-Legendre method with two quadrature points
for the linear problem, and three quadrature points for the isentropic problem.

For the random-based quadrature rules, we consider the following two modes:

• Static. We draw the points in advance and do not change them during the training
process. This is in line with the previous procedure and the original method [36].

• Dynamic [9]. We draw new points at each iteration. This is consistent with
stochastic optimization, where samples are drawn from an infinite distribution.

Furthermore, we use the neural networks that performed well in the previous test.
These are listed in Table 4.4. Again, we use the same number of sample points dbd
for the initial, the left and the right boundary data. For the Sobol points, we take
the nearest power of two for the number of sample points. Similarly, for the composite
Gauss-Legendre rules and the stratified sampling strategy, the number of cells is chosen
so that the cells are approximately a square and the number of sample points is close to
the target value.

We consider all combinations of the following parameters

dbd ∈ {1000, 2000, 4000} , deq ∈ {2000, 4000, 8000, 16000} .

55

4. Physics-informed simulations

Linear Isentropic

σ N K σ N K

relu 2 20 tanh 4 20
relu 2 30 tanh 6 30
tanh 5 30 gelu 5 50
relu∗ 6 50 gelu 6 30

Table 4.4.: Neural network architectures for the linear and isentropic problem. An
asterisk indicates a Hamiltonian neural network.

The neural networks are trained for 100 000 Adam iterations with the following learning
rate parameters

ηSteps ∈ {1000, 5000, 10000} , ηRate = 0.9 , ηInit ∈ {0.1, 0.01, 0.001} .
From these nine approximations, we select the approximation with the lowest loss value
LDif after training. We run each test three times with different random values and only
report the mean error.

See Table 4.5, which lists the most accurate and most efficient results for both test
problems and each quadrature rule. As before, the efficiency is the ratio of the general-
ization error to the computational cost, defined by (4.24).

For the linear test, we obtain more accurate results at a lower computational cost when
using Sobol points instead of Latin hypercube sampling. However, this difference is not
noticeable in the most efficient results. Also, the difference between the most accurate
and efficient results is rather small: we can double the error for half the computational
cost. In addition, there is no advantage to dynamic sampling over static sampling.

The isentropic test requires fewer sample points than the linear test. Again, for this
test, we see a slight improvement in the errors and sample points required when using
an integration strategy other than Latin hypercube sampling. The most efficient results
show that only a small number of sample points are required to achieve relatively accurate
results. Again, we do not see a significant advantage of dynamic sampling.

4.1.2.g. Convergence comparison revisited

As a final step, we extend the convergence test performed in Subsection 4.1.2.e to physics-
informed neural networks. We measure the generalization errors of the obtained physics-
informed neural networks for the different sampling strategies and number of sample
points for both test problems. In all tests, we set dbd = 4 000 and train for 100 000
Adam iterations. We try the same learning rates as in Subsubsection 4.1.2.f and only
consider the result with the lowest loss value LDif. The reported error is the average
error of three runs. The linear problem uses a relu neural network with N = 2 and
K = 30. The isentropic problem uses a gelu neural network with N = 5 and K = 50.

The results are shown in Figure 4.3. While in Subsubsection 4.1.2.e we could distin-
guish the different quadrature rules by their convergence order, this is no longer possible.
For the isentropic problem, all strategies perform almost identically, and only the num-
ber of sample points determines the generalization error. For the linear problem, we can

56

4.1. Loss based on differential form

Quadrature σ N K deq dbd FLOP error[u1] error[u2]

static LHS relu 2 20 16000 4000 8.7e11 2.39e−5 3.08e−5
static Stratified relu 2 20 16000 2000 6.7e11 4.23e−5 5.24e−5
static Sobol relu 2 30 4000 4000 7.8e11 1.88e−5 2.36e−5
static Gauss 2 relu 2 20 16000 4000 9.1e11 1.89e−5 2.41e−5
dynamic LHS relu 2 30 2000 4000 6.8e11 3.33e−5 2.43e−5
dynamic Stratified relu 2 30 4000 4000 7.9e11 2.91e−5 3.54e−5
dynamic Sobol relu 2 20 16000 4000 9.2e11 1.58e−5 1.97e−5

(a) Most accurate results of the linear problem.

Quadrature σ N K deq dbd FLOP error[u1] error[u2]

static LHS relu 2 20 4000 2000 3.5e11 5.32e−5 6.18e−5
static Stratified relu 2 20 4000 1000 2.5e11 1.03e−4 1.28e−4
static Sobol relu 2 20 4000 2000 3.6e11 4.65e−5 5.78e−5
static Gauss 2 relu 2 20 4000 2000 3.7e11 5.79e−5 7.28e−5
dynamic LHS relu 2 30 4000 2000 5.1e11 3.78e−5 4.69e−5
dynamic Stratified relu 2 20 4000 2000 3.6e11 5.42e−5 7.01e−5
dynamic Sobol relu 2 20 8000 2000 5.3e11 2.82e−5 3.48e−5

(b) Most efficient results of the linear problem.

Quadrature σ N K deq dbd FLOP error[ρ] error[ρv]

static LHS gelu 5 50 16000 4000 6.4e13 8.93e−4 2.81e−3
static Stratified gelu 5 50 2000 1000 9.4e12 8.75e−4 2.66e−3
static Sobol gelu 5 50 2000 1000 9.6e12 8.29e−4 2.61e−3
static Gauss 3 gelu 5 50 16000 1000 5.6e13 8.69e−4 2.72e−3
dynamic LHS gelu 5 50 8000 2000 3.1e13 8.69e−4 2.74e−3
dynamic Stratified gelu 5 50 4000 2000 1.8e13 8.64e−4 2.70e−3
dynamic Sobol gelu 5 50 4000 1000 1.6e13 8.66e−4 2.73e−3

(c) Most accurate results of the isentropic problem.

Quadrature σ N K deq dbd FLOP error[ρ] error[ρv]

static LHS tanh 4 20 2000 1000 7.6e11 1.63e−3 5.18e−3
static Stratified tanh 4 20 2000 1000 7.7e11 1.76e−3 5.58e−3
static Sobol tanh 4 20 2000 1000 7.8e11 1.70e−3 5.41e−3
static Gauss 3 tanh 4 20 2000 1000 7.8e11 1.60e−3 5.10e−3
dynamic LHS tanh 4 20 2000 1000 7.7e11 1.66e−3 5.31e−3
dynamic Stratified tanh 4 20 2000 1000 7.7e11 1.76e−3 5.52e−3
dynamic Sobol tanh 4 20 2000 1000 7.9e11 1.59e−3 5.12e−3

(d) Most efficient results of the isentropic problem.

Table 4.5.: Sampling strategies test results. Each row shows the most accurate or
efficient result per quadrature rule. The three lowest values per column are highlighted.

57

4. Physics-informed simulations

10−5

10−4

10−3

10−2

10−1

Li
ne

ar
Pr

ob
le

m

error[u1] error[u2]

102 103 104
10−4

10−3

10−2

10−1

deq

Is
en

tr
op

ic
Pr

ob
le

m

LHS Stratified Sobol Gauss 2 Gauss 3

102 103 104

deq

Figure 4.3.: Relative L2-errors for different sampling strategies and number of balance
law sample points deq when solving both test problems with physics-informed neural
networks.

observe a small advantage of the Sobol points over the other strategies. This shows that
the theory of the previous subsection, which decouples training and quadrature error,
provides an incomplete picture and cannot fully describe the results obtained.

In the next subsection, we introduce loss balancing methods, which are another ex-
tension of physics-informed neural networks.

4.1.3. Loss balancing weighting

To train physics-informed neural networks, four loss functions are combined: Leq for the
balance law, Ll for the left boundary condition, Lr for the right boundary condition, and
Li for the initial condition. They encode different properties, and each loss is necessary
for a successful approximation. It appears that they are working together to achieve a
common goal, but this is not the case. They compete for the approximation capabilities
of the neural network, as they optimize for their own goal. As a result, the gradients of
the losses do not necessarily point in the same direction.

From this viewpoint, it is remarkable that physics-informed neural networks actually
work. This remains especially the case when we consider our system of coupled transport

58

4.1. Loss based on differential form

equations: The information begins with the initial data, travels through the space-time
domain, and is reintroduced at each boundary. Therefore, we are very dependent on
each loss function to cooperate in the most beneficial way. In this subsection, we look
at the interaction of the different losses and introduce loss balancing methods.

Weighted training problem. As briefly mentioned above, the training problem of
physics-informed neural networks is a multi-objective optimization problem (4.6)

min
θ

(
Leq(θ), Li(θ), Ll(θ), Lr(θ)

)
.

Here, the conflicting objectives must be minimized simultaneously. This is in contrast
to the training problem (4.4), where the sum of the objectives is minimized.

In general, there is no solution of (4.6) that minimizes all objective functions simul-
taneously. Therefore, we focus on Pareto optimal solutions, which are solutions that
cannot be improved in any of the objectives without worsening at least one of the other
objectives. Then, among all Pareto optimal solutions, one can decide which objectives
are more important than others and choose the solution accordingly. The trade-offs
between Pareto optimal solutions are visualized by the Pareto front. The Pareto front
has been studied in the context of physics-informed neural networks in [48]. However,
the study only focuses on one weight that mediates between the data residuals and the
differential equation residual.

In our use case, visualizing the Pareto front is challenging and does not provide the
information we need: Our primary concern is minimizing the generalization errors rather
than achieving the lowest loss values. The error estimates suggest that lower loss values
should imply reduced errors, however, each loss value affects the bound differently. This
makes it challenging to describe the optimal prioritization.

Hence, we refocus on the more algorithmically tractable single-objective optimization
problems. A prioritization between the objectives can be achieved by introducing weights
into the loss function LDif. Here, we consider positive weights λeq, λi, λl, λr for each
objective and optimize the weighted sum of the weights and objectives. That is

min
θ

LwDif with LwDif = λeqLeq(θ) + λiLi(θ) + λlLl(θ) + λrLr(θ) . (4.25)

The training problem (4.4), is only one possible instance of (4.25), where all weights
are one. For each tuple of weights, we get another optimal solution, and changing the
weights may improve one objective but can compromise another. The following example
shows that choosing appropriate weights is critical.

Motivational example. Setting aside the theoretical challenges, selecting different
weights can improve the results. See Figure 4.4 for an example. There, we compare two
neural networks that were trained to approximate the linear simulation problem. The
same sample points and initial parameters were used in the training process. Also,
the relative L2-error was measured by the same sample points. However, different
weights were used during the training process, which resulted in significantly reduced
generalization errors. In the example, the weights have the following order: λeq > λi >
λl > λr. This shows that the balance law is the most important and that the right
boundary is the least important.

59

4. Physics-informed simulations

rel. L2: 2.74e−5
0

0.5

1

1.5

2

2.5

3

3.5

4
er

ro
r
u
1

t

Standard weights

rel. L2: 3.98e−6

Modified weights
10−4

10−5

10−6

10−7
rel. L2: 3.37e−5

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

er
ro

r
u
2

t

rel. L2: 5.04e−6

0 0.25 0.5 0.75 1
x

Figure 4.4.: The pointwise difference of two neural networks with σ = relu, N = 2,
K = 30, and the exact solution for the linear problem are displayed. Both neural
networks were trained with different loss weights. The left one was trained with unit
weights and the right one with λi = 2.25, λl = 3.69, λr = 1.12, λeq = 4.65.

60

4.1. Loss based on differential form

Algorithmic approaches. In the previous example, the weights were not chosen
arbitrarily but were determined through an algorithmic approach. Such techniques are
often referred to as loss balancing methods in the literature. Loss balancing methods
determine the weights λeq, λi, λl, λr to achieve better approximations. Multiple studies
have emphasized its significance and proposed various approaches [61, 64, 50]. We review
some of these methods next.

We start with a random-search procedure in Subsubsection 4.1.3.a. This procedure is
prohibitively expensive, so we turn our attention to computationally cheaper solutions.
First, we will look at gradient-based balancing methods in Subsubsection 4.1.3.b. Sec-
ond, we will look at an attention-based method in Subsubsection 4.1.3.c. After that, we
will compare all approaches in Subsubsection 4.1.3.d.

4.1.3.a. Random-search

The results of the previous example were obtained by a random-search. This method
is explained in this subsubsection. Using the Latin hypercube sampling, we generate a
fixed number of random tuples (λeq, λi, λl, λr) ∈ [1, 5] × [1, 5] × [1, 5] × [1, 5] and solve
the training problem (4.25) for each tuple. Once each training has been conducted, we
need to select the best approximation among all the approximations obtained. Here,
we consider two different criteria: First, we use only the information available during
training by selecting the approximation with the smallest loss value LDif. Second, we
choose the approximation associated with the smallest sum of the generalization errors,
error[u1] + error[u2], and select the most accurate approximation.

A random-search is computationally very expensive since we have to solve the train-
ing problem multiple times. Therefore, we consider next loss balancing methods that
determine the weights based on information available during the training process.

4.1.3.b. Gradient-based weighting

Gradient-based balancing methods determine the weights based on the gradients during
the training process. This procedure is inspired by the ideas of the initialization schemes
introduced in Chapter 3. There, we have discussed that initialization schemes consider
the gradient entries of the loss and try to keep the mean close to zero and the variance
close to one. The variance expresses the ability of the neural network parameters to
minimize the loss. A variance closer to zero indicates that many elements are not very
sensitive. Conversely, a higher variance indicates a greater number of parameters that
are highly sensitive. In these cases, the loss is easier to minimize.

The variance depends on the specific loss function, and thus varies for each Leq, Li,
Ll, Lr. In their studies, the authors in [50, 64] identified these varying variances and
interpreted them as indicators of imbalances between the different losses. They argue
that such imbalances hinder successful training. Hence, they use the weights λeq, λi,
λl, λr to adjust each gradient such that the variances are approximately the same.
This ensures that the losses are prioritized equally during the training process. We now
describe the procedure in more detail.

In the following, we denote the empirical mean of a vector v by µ(v). Then µ(| · |)
measures the mean absolute deviation. For a vector with an empirical mean of zero,

61

4. Physics-informed simulations

this can be regarded as an approximation of the empirical variance. For this method,
µ(|∇θLeq|) is the reference value. Therefore, we have λeq = 1. The other gradients are
scaled to have approximately the same mean absolute deviation. To achieve this, the
intermediate weights are defined by

λ̂i =
µ
(
|∇θLeq(θ)|

)
µ
(
|∇θLi(θ)|

) , λ̂l =
µ
(
|∇θLeq(θ)|

)
µ
(
|∇θLl(θ)|

) , λ̂r =
µ
(
|∇θLeq(θ)|

)
µ
(
|∇θLr(θ)|

) . (4.26)

During the optimization process, the intermediate weights fluctuate a lot and are
therefore stabilized by a mean weighted average. This is similar to the approach used
by the Adam optimizer. Consequently, let α ∈ (0, 1). Then, the weights are updated
according to

λi ← (1− α)λi + αλ̂i , λl ← (1− α)λl + αλ̂l , λr ← (1− α)λr + αλ̂r . (4.27)

Now, the method works as follows. First, the gradients ∇θLeq, ∇θLi, ∇θLl, ∇θLr

are computed. Second, the weights are updated as defined by (4.26) and (4.27). Third,
the weighted gradient

∇θLwDif = ∇θLeq + λi∇θLi + λl∇θLr + λl∇θLr .

is built and used to update the parameters with a gradient descent step.
Usually, the weights λeq, λi, λl, λr are initially one. In [50] α = 0.9 and in [64] α = 0.1

is used. There is also a proposed variant that uses max(|∇θLeq|) in (4.26) instead of
µ(|∇θLeq(θ)|). However, this method was not successful in the study [54] and therefore
we omit it here.

4.1.3.c. Attention-based weighting

In this subsubsection, we consider the attention-based mechanism that was introduced
in [31]. Unlike the previous method, which determines weights based on the solution,
this approach incorporates the weights directly into the training process. Originally, the
authors proposed to assign one weight to each sample point in Deq, Di, Dl and Dr.
However, this is associated with a very high computational cost. To avoid this, and for
a more direct comparison, we modify this method to fit the problem (4.25).

For the following, we define λ = (λeq, λi, λl, λr). Then, we focus on LwDif(θ, λ), the
loss function associated with the training problem (4.25). Now, the goal of the weights
λ is to penalize the losses Leq, Li, Ll, and Lr with the most significant values. This is
accomplished by maximizing the loss function LwDif with respect to λ. Our overall goal
remains to minimize LwDif with respect to the parameters θ. We, address both goals by
considering the saddle point problem

min
θ

max
λ

LwDif(θ, λ) .

This problem can be solved by a gradient descent step for the parameters θ combined
with a gradient ascent step for the weights λ. Specifically, we perform the update

θ ← θ −∇θLwDif(θ, λ) and λ← λ +∇λLwDif(θ, λ) .

At the beginning, we initialize the weights with λ = (1, 1, 1, 1).

62

4.1. Loss based on differential form

σ N K Quadrature rule dbd deq ηInit ηSteps

Most accurate relu 30 2 Sobol 4000 8000 0.1 1000
Most efficient relu 20 2 Stratified 1000 8000 0.01 1000

(a) Hyperparameter for the linear problem.

σ N K Quadrature rule dbd deq ηInit ηSteps

Most accurate gelu 50 5 Stratified 1000 2000 0.01 10000
Most efficient tanh 20 4 Stratified 1000 2000 0.01 10000

(b) Hyperparameter for the isentropic problem.

Table 4.6.: Most accurate and efficient hyperparameter identified in the previous tests.

4.1.3.d. Numerical results

In this subsubsection, we test the performance of the introduced loss balancing meth-
ods to solve the two simulation problems. We aim to improve the previous results by
obtaining more efficient or more accurate approximations. To accomplish this, we select
the hyperparameters that led to either the most accurate or the most efficient results
in the previous tests, and apply each of the presented loss balancing methods. The
hyperparameters include the neural network architectures and the training parameters,
and are listed in Table 4.6 for the linear and the isentropic problem.

The gradient-based method is tested for α ∈ {0, 1, 0.5, 0.9}. Training is conducted
using the Adam method over 100 000 iterations. Each test is repeated three times and
the average error is reported.

See Table 4.7a for the results of the linear problem and Table 4.7b for the results of
the isentropic problem. We observe that using the random-search procedure consistently
decreases the errors for both problems. The improvement is small when the weights are
chosen based on the lowest LDif value. However, selecting the weights based on the
smallest error leads to a substantial error reduction, particularly for the linear problem.
This indicates that the selection of the weights is important, but optimal results are
achieved using the solution itself, which is not practical.

The gradient-based method has the best results for α = 0.1, but even these are worse
than the standard weights. Therefore, the gradient-based method is not able to improve
the results. The attention-based method only marginally improves the results for one test
case. Consequently, neither approach offers significant advantages for our test problems.

In the following section, we present another physics-informed loss function that inte-
grates the initial and boundary data, and thus mitigates the multi-objective optimization
problem.

63

4. Physics-informed simulations

Most accurate Most efficient

Method FLOP error[u1] error[u2] FLOP error[u1] error[u2]

standard weights 1.0e12 2.30e−5 2.86e−5 4.0e11 5.10e−5 6.37e−5
random-search LDif 1.0e12 2.03e−5 2.55e−5 4.0e11 4.16e−5 5.18e−5
random-search error 1.0e12 4.87e−6 6.12e−6 4.0e11 2.41e−5 2.99e−5
attention-based 1.0e12 1.55e−1 1.75e−1 4.0e11 8.54e−5 1.04e−4
gradient-based α = 0.1 2.6e12 4.96e−1 6.10e−1 8.8e11 1.14e−2 1.50e−2
gradient-based α = 0.5 2.6e12 4.85e−1 6.02e−1 8.8e11 1.07e−1 1.34e−1
gradient-based α = 0.9 2.6e12 5.53e−1 7.20e−1 8.8e11 9.03e−2 1.14e−1

(a) Results of the linear problem.

Most accurate Most efficient

Method FLOP error[ρ] error[ρv] FLOP error[ρ] error[ρv]

standard weights 9.4e12 8.53e−4 2.59e−3 7.7e11 1.74e−3 5.49e−3
random-search LDif 9.4e12 8.12e−4 2.61e−3 7.7e11 1.43e−3 4.58e−3
random-search error 9.4e12 7.53e−4 2.30e−3 7.7e11 1.30e−3 4.09e−3
attention-based 9.4e12 6.67e9 6.67e9 7.7e11 1.70e−3 5.35e−3
gradient-based α = 0.1 2.1e13 2.33e−3 7.34e−3 3.0e12 5.40e−3 1.70e−2
gradient-based α = 0.5 2.1e13 3.33e9 3.33e9 3.0e12 6.80e−3 2.16e−2
gradient-based α = 0.9 2.1e13 3.33e9 3.33e9 3.0e12 4.76e−3 1.49e−2

(b) Results of the isentropic problem.

Table 4.7.: Results of the loss balancing tests. The three lowest values per column are
highlighted.

4.2. Loss based on integral form

The physics-informed loss function LDif, introduced in the previous section, is based on
the differential form of the balance law given by (1.1). In this section, we introduce a
loss function that incorporates the integral form of the balance law. This results in a
loss function that has different properties than the loss function LDif. This method was
first proposed in [47].

Integral form. To reformulate the differential form of the balance law (1.1) into its
integral form, we define the space-time flux function G : R2 → R2×2 with

G(u) =
(
F (u) u

)
.

Using the space-time flux G we can rewrite the balance law (1.1) with the divergence

∂tu + ∂x(F ◦ u) = ∂x(G1 ◦ u) + ∂t(G2 ◦ u) = div(x,t)(G ◦ u) . (4.28)

Now, we integrate equation (4.28) on D′ ⊂ Deq with a piecewise smooth boundary and
obtain by the divergence theorem∫

D′
div(x,t)(G ◦ u) d(x, t) =

∫
∂D′

G(u) · n⃗dS ,

64

4.2. Loss based on integral form

where n⃗ denotes the outward-facing normal vector on the boundary ∂D′. Thus, if we
assume that u fulfills (1.1), then∫

∂D′
G(u) · n⃗dS =

∫
D′

g(u) d(x, t)

for all D′ ⊂ Deq with piecewise smooth boundary.

(4.29)

With sufficient regularity assumptions, the reverse also holds: If u satisfies (4.29), then
u is also a solution of (1.1).

In the following, we define a loss function based on the integral form of the balance
law (4.29). We start with the initial and boundary conditions.

Enforcing boundary conditions. In comparison to the differential form of the bal-
ance law (1.1), it is apparent that u needs less regularity to fulfill (4.29). It is therefore
admissible to include the initial and boundary data naturally by altering the predicted
state u of the neural network. For ε = 10−6 let

ũ(h1, h2) =

(
ũ1
ũ2

)
, ũ1 =

(bi)1(x) if t ≤ ti + ε ,

bl(t) if x ≤ xl + ε ,

u(h1, h2) otherwise ,

ũ2 =

(bi)2(x) if t ≤ ti + ε ,

br(t) if x ≥ xr − ε ,

u(h1, h2) otherwise ,

where (h1, h2) = h(x, t; θ) is the output of the neural network. Compared to u, ũ always
satisfies the initial, left, and right boundary conditions. We alter F and g in the same
way, which leads to F̃ and g̃. In conclusion, we define the altered space-time flux G̃

G̃(h1, h2) =
(
F̃ (h1, h2) ũ(h1, h2)

)
.

Control volume loss function. Now, we construct a loss function derived from the
integral form of the balance law (4.29). The equation should be satisfied only with
respect to a finite sequence of suitable subsets D1, ..., Dn ⊂ Deq. For these subsets, we
aim to minimize the deviation from equation (4.29). Consequently, we consider

min
θ

LInt(θ) , with

LInt(θ) =

n∑
i=1

(∫
∂Di

G̃
(
h(x, t; θ)

)
· n⃗ dS −

∫
Di

g̃
(
h(x, t; θ)

)
d(x, t)

)2

.

There are two remaining aspects to consider: the selection of the control volumes
D1, ..., Dn and the approximation of the integrals in LInt with quadrature rules.

Unlike the physics-informed approach, the authors of [47] recommend a deterministic
quadrature rule. This was evaluated in [54], where deterministic rules gave the best
results. Thus, we focus only on Gauss-Legendre quadrature rules with one, two, or three
quadrature points to integrate the edges of ∂Di. We extend the same rule to integrate
the two-dimensional control volumes Di.

The control volumes D1, ..., Dn are another degree of freedom in this method. In
[47], the authors recommend partitioning Deq using either rectangles or triangles. Both

65

4. Physics-informed simulations

0 2
0

6

1

1

2

3

4

5

x

t

No offset

0 2
0

6

1

1

2

3

4

5

x

t

With random offset

Figure 4.5.: Sampling points of the control volume physics-informed neural networks
for the domain [0, 2]× [0, 6]. Left for a regular partition and right for a regular partition
with random offset. The x axis is divided into 3 intervals and the t axis is divided into
9 intervals. The sample points on the edges integrate the space-time flux G and the
sample points in the interiors integrate the source g.

strategies were compared in [54], but neither was conclusively better. As a result, we
exclusively use rectangular meshes.

In addition to the rectangular partition, which results in a regular pattern of sample
points, we explore an alternative selection of control volumes and introduce randomness
into the loss function. Suppose that D1, . . . , Dn is a rectangular partition of Deq. Then,
we consider D′

1, . . . , D
′
n, where each rectangle is slightly offset in a different random

direction. We ensure that no rectangle is moved outside the domain Deq and consider
two modes: maintaining a static offset throughout the training process or dynamically
changing it in each iteration. See Figure 4.5 for a comparison between a partition and a
randomly offset partition.

Comparison to PINNs. Most importantly, the loss function LInt does not contain
any derivatives. This leads to a considerable reduction in computational complexity.
When the source term is zero, the dimension of the integration domain is reduced by
one degree, again yielding significant efficiency gains. Otherwise, the space-time flux G
and the source term g can be integrated with different quadrature rules.

By naturally incorporating the initial and boundary conditions, we have bypassed the

66

4.2. Loss based on integral form

Mesh σ N K dInt q FLOP error[u1] error[u2]

Partition relu 2 30 32000 1 1.9e12 2.52e−3 2.95e−3
Static offset relu 6 50 32000 2 1.3e13 3.39e−3 4.19e−3
Dynamic offset relu 2 30 32000 2 2.0e12 7.59e−4 9.34e−4

(a) Most accurate results.

Mesh σ N K dInt q FLOP error[u1] error[u2]

Partition relu 2 30 16000 1 9.7e11 5.64e−3 7.29e−3
Static offset relu 2 30 32000 1 2.0e12 3.62e−3 4.50e−3
Dynamic offset relu 2 30 8000 3 4.9e11 7.85e−4 1.00e−3

(b) Most efficient results.

Table 4.8.: Results of the control volume physics-informed approach and the linear
problem. The lowest value per column is highlighted.

Mesh σ N K dInt q FLOP error[ρ] error[ρv]

Partition gelu 5 50 16000 1 1.3e13 1.05e−3 3.33e−3
Static offset gelu 5 50 32000 1 2.6e13 1.03e−3 3.19e−3
Dynamic offset gelu 5 50 8000 2 6.4e12 8.60e−4 2.73e−3

(a) Most accurate results.

Mesh σ N K dInt q FLOP error[ρ] error[ρv]

Partition tanh 4 20 2000 1 1.7e11 4.00e−3 1.18e−2
Static offset tanh 4 20 2000 1 1.9e11 7.85e−3 2.45e−2
Dynamic offset tanh 4 20 2000 1 1.8e11 2.39e−3 7.42e−3

(b) Most efficient results.

Table 4.9.: Results of the control volume physics-informed approach and the isentropic
problem. The lowest value per column is highlighted.

multi-objective optimization problem. The loss function LInt consists only of a single
objective function that enforces the same conditions for all control volumes Di. Also,
as with LDif, time is treated like any other dimension, and there is no explicit time
discretization.

4.2.1. Numerical Results

In this subsection, we test the control volume physics-informed neural networks and
compare their performance with the other results obtained in this chapter. We use the
two test problems introduced in Chapter 2.

We denote the number of sample points with dInt and the order of the Gauss-Legendre
quadrature rule with q. The number of control volumes n is chosen depending on dInt
and q such that the number of sample points used is very close to dInt. Furthermore,

67

4. Physics-informed simulations

since the source term g of the linear problem is always zero, we do not integrate this
term and therefore do not need specific sample points. The implementation takes this
into account.

We use the neural network architectures listed in Table 4.4 and consider the following
combination of hyperparameters

dInt ∈ {2000, 4000, 8000, 16000, 32000} , q ∈ {1, 2, 3} .
The neural networks are trained with 100 000 Adam iterations, and we consider the
following learning rate parameters

ηSteps ∈ {1000, 5000, 10000} , ηRate = 0.9 , ηInit ∈ {0.1, 0.01, 0.001} .
From these nine approximations, we select the approximation with the lowest loss value
LInt after training. To limit the influence of randomness, we repeat each test three times
with different random values and report only the average error.

The results for the linear problem are listed in Table 4.8 and for the isentropic problem
in Table 4.9. Most notably, dynamically offsetting the control volumes improves the re-
sults of this approach significantly. We get more accurate results, and in some cases, with
fewer sample points. The best results of the isentropic problem have the same accuracy
as the other results of this chapter, while requiring only two thirds of the computational
cost. However, more sample points are required to achieve the results, which indicates
that the derivative in the physics-informed approach provides more information. The
results of the linear problem are significantly worse than the other results in this chapter.

In conclusion, our tests indicate that the results improve if the control volumes are
not a partition of the domain. This choice was suggested in [47] and was most likely
influenced by the finite volume method. However, control volume physics-informed neu-
ral networks work differently and therefore other considerations are necessary. Beyond
the random offset of the control volumes, one could imagine control volumes that are
randomly positioned, scaled, rotated, and skewed. This would free this approach from
the partition. These changes could further improve the accuracy and may reveal the full
potential of this very cost-effective approach.

4.3. Conclusion

At the beginning of this chapter, we looked at the fundamental properties of physics-
informed neural networks, efficient implementations, and error estimates for a linear
system of two transport equations. The estimates show that the generalization error is
bounded by the quadrature and the training errors, the value of the loss functions Leq,
Ll, Lr, Li. The latter is composed of the optimization and the approximation error.
The estimates indicate that problems with high characteristic speeds and simulations
over long time spans pose particular challenges for physics-informed neural networks.
However, for sufficiently small quadrature errors they do not suffer from overfitting.

Complementary to the theoretical analysis, we conducted extensive numerical tests to
identify the most effective training strategies for physics-informed neural networks for
two test problems introduced in Chapter 2. These experiments included different neural
network architectures, sampling and optimization strategies, and loss function variants.
Specific conclusions are outlined in the following paragraphs.

68

4.3. Conclusion

Linear problem. The linear problem has been approximated by highly accurate re-
sults, with a relative L2-error of 5× 10−6. This result actually surpasses those acquired
in Chapter 3, where the training was conducted with the exact solution, and has been
obtained with specific loss balancing weights. The error is potentially already limited by
the 32-bit floating-point precision and is rather unexpected, since an investigation of dif-
ferent quadrature rules showed that the loss function Leq is more difficult to approximate
for the linear problem than for the isentropic problem.

This can largely be attributed to the relu activation function, which is only continuous
and piecewise linear. This inherent limited regularity is transferred to Leq, and thus a
greater number of sample points is necessary. However, the relu activation function is
very compatible with the solution of the linear problem, which is also continuous and
piecewise linear. This provides an explanation for the small errors.

Isentropic problem. The isentropic problem did not yield errors as low as those of
the linear problem: For ρ we have obtained a relative L2-error of 9× 10−4 and for ρv of
3× 10−3. This shows that the nonlinear isentropic balance law poses a greater challenge
than the linear balance law. This is further reinforced by the fact that we achieved this
level of error through two distinct approaches: the physics-informed loss function LDif

and the control volume physics-informed loss function LInt.

Moreover, the errors are nearly an order of magnitude higher than those in Chapter
3, where the neural networks were trained with the exact solution. This indicates that
there are parameters θ with lower relative L2-errors. However, we were not able to find
them with a physics-informed approach. The limiting factors are unknown and a better
theoretical understanding might help to overcome them. Furthermore, a different loss
function that is based on reformulated Euler equations or a loss function that embeds
more information about the nonlinear system might be promising. Crucially, improve-
ments for the simpler problems could enable the simulation of real-world gas pipelines
with a decent accuracy.

Also, smooth activation functions like tanh and gelu have yielded the best results.
But we can assume that the exact solution of the isentropic problem is not smooth. It is
thus challenging for neural networks with a smooth activation function to approximate
the exact solution. However, the relu activation did not perform as good as the smooth
alternatives. Therefore, activation functions that maintain a higher degree of regularity
compared to relu, while not being smooth, might be beneficial.

Default hyperparameter. From a broader perspective, physics-informed neural net-
works apply successful deep learning methods to solve differential equations. There-
fore, the training algorithms, neural network architectures, or sampling strategies are
not specifically optimized to solve differential equations with high accuracy. They are
optimized for tasks like image recognition or text generation, and there are certainly
differences between classical machine learning tasks and differential equations.

Throughout this chapter, we have questioned the default hyperparameters for physics-
informed neural networks with the goal of finding the most effective strategy, and we
now outline the results.

69

4. Physics-informed simulations

Sampling strategies. We studied random-based sampling strategies, including the
default Latin hypercube sampling. While the Latin hypercube sampling has some theo-
retical advantages over Monte Carlo sampling, strategies such as stratified sampling or
Sobol points offer even higher convergence rates.

A convergence analysis has shown that the quadrature error can be easily minimized.
Furthermore, if the neural network is sufficiently smooth, then higher-order quadrature
rules converge faster. However, if the neural network is rather rough then higher-order
methods have no benefit and a larger number of sample points is required. Importantly,
we could not practically confirm that the convergence rate of the quadrature rule is
transferred to the convergence rate of the physics-informed neural networks. Therefore,
there were no significant advantages over the Latin hypercube sampling, and the decom-
position of the generalization error into the quadrature error and the training error is
not accurate enough to fully describe the generalization error of physics-informed neural
networks.

Optimization strategies. In our tests, we explored several optimization strategies:
the Adam method, the L-BFGS method, and a hybrid of both. The L-BFGS method
features an integrated line search algorithm to find the optimal learning rate. In contrast,
with the Adam method, we always tried different learning rates to obtain the best
possible result.

Overall, the Adam method surpassed the other strategies when we trained for 100 000
iterations. However, these results were associated with a significantly higher compu-
tational cost as we tested different learning rates to find the most suitable one. This
indicates that there is potential to develop optimization techniques tailored specifically
for physics-informed neural networks.

Loss function variants. In our study, we also evaluated loss balancing techniques
and the control volume loss function. Both are designed specifically for physics-informed
neural networks.

For the former, a random-search procedure demonstrated that specific weights can
improve the accuracy, but at a high computational cost. While other loss balancing
methods are less expensive, they did not perform as well. For the latter, incorporating
random offsets into the control volume approach enhanced the results, matching the
performance of the physics-informed approach in one test case. Crucially, this was
achieved with just two-thirds of the computational cost.

Outlook. In this chapter, we have covered a substantial subset of physics-informed
neural networks, but many more research opportunities exist. Our findings suggest
that physics-informed neural networks can solve differential equations with adequate
accuracy, making them suitable for various applications, even though they are not a
high-precision method. In the next chapter, we will build on these results to solve
optimal control problems.

70

5. Physics-informed optimization

In the previous chapter, we studied physics-informed neural networks and conducted a
thorough analysis. It became evident that physics-informed neural networks are neither
a highly accurate simulation method nor a super fast algorithm. However, the strength
of this approach lies in the flexibility. This allows to address problems that are difficult
for classical methods. This is illustrated with numerous examples in the literature,
such as solving inverse problems, discovering differential equations, or simulating high-
dimensional physical problems. For an overview see [25].

In this chapter, we demonstrate the flexibility of the physics-informed approach with
a gas transport example. Specifically, we focus on optimal boundary control problems.
Previous research in [29, 11] approached such problems with a classical approach that
decouples the simulation and optimization. To this end, this method unfolds in a loop of
simulation, sensitivity calculation regarding the control (requiring another simulation),
followed by an update of the control. Thus, the method necessitates many simulations,
which are very costly for large gas networks.

Therefore, we want to explore different approaches that do not decouple the simulation
and optimization. To achieve this, we utilize the physics-informed approach and the
knowledge gained in the previous chapter. As a test case, we focus on optimal control
problems with a single pipe. The specific problems are based on the simulation problems
introduced in Chapter 2.

This chapter is structured as follows. In Section 5.1, we define the optimal control
problem and introduce two specific instances. Then, in Section 5.2, we introduce a direct
approach to solve this problem. However, this approach shows complications with our
problems. To address these, we develop an indirect adjoint-based approach in Section
5.3. Finally, we conclude this chapter in Section 5.4.

5.1. Optimal control problems

Optimal control problems consist of several components. They include a simulation
problem represented by a differential equation and additional initial and boundary con-
ditions. Importantly, this simulation problem is influenced by a control. This control
can vary the initial condition, the boundary condition, or the differential equation. The
control thus affects the solution of the simulation problem. The objective function de-
pends on this solution and is thus indirectly changed by the control. The goal is to
find a control that minimizes the objective function. For further information on optimal
control problems, see [59, p. 3].

In this chapter, we focus on optimal boundary control problems. As before, we consider
a state vector u(x, t) : Deq → R2 that should adhere to a balance law in a pipe. We
control the left boundary data of the first state variable u1(xl, t) with a control function

71

5. Physics-informed optimization

c(t) : Dl → R. Our aim is to match a target at the right boundary of the first state
variable u1(xr, t). This target is denoted by uObj(t) : Dr → R. Our objective function
measures the distance u1(xr, t) − uObj(t) in the L2(Dr)-norm, as well as the deviation
c(t) − cObj(t) in the L2(Dl)-norm. The latter serves as a regularization term and also
as a cost function that evaluates the cost associated with c deviating from cObj. This
cost is scaled by a factor λ > 0.

Consequently, we are concerned with the following optimal control problem

min
u(x,t), c(t)

1

2
∥u1(xr, ·)− uObj(·)∥2L2(Dr)

+
λ

2
∥c(·)− cObj(·)∥2L2(Dl)

(5.1a)

s.t. ∂tu + ∂x(F ◦ u) = g ◦ u in Deq (5.1b)

u(· , ti) = bi(·) on Di (5.1c)

u1(xl, ·) = c(·) on Dl (5.1d)

u2(xr, ·) = br(·) on Dr , (5.1e)

where the objective function is given by (5.1a) and the simulation problem by (5.1b) –
(5.1e) for a flux function F (u), a source term g(u), initial boundary data bi(x) : Di → R2

and right boundary data br(t) : Dr → R. In this chapter, we denote by uc(x, t) the
solution of the simulation problem (5.1b) – (5.1e) with respect to a control c(t).

Usually, two approaches are considered to solve an optimal control problem: either di-
rectly or indirectly. The former approach minimizes the objective of (5.1) directly. The
latter solves derived optimality conditions and thus approaches the problem (5.1) indi-
rectly. In this chapter, we translate both approaches into a physics-informed formulation
and then study the advantages and the disadvantages through numerical tests.

Before that, we introduce two instances of the optimal control problem (5.1). Both
problems are based on a simulation problem introduced in Chapter 2.

Linear problem. This optimal control problem is based on the linear simulation prob-
lem defined in Chapter 2. The right boundary br(t) and the initial condition bi(x) remain
unchanged. This optimal control problem is specifically designed so that the left bound-
ary data bl(t) of the linear simulation problem is the exact control

c∗(t) = bl(t) = ι(t; 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0;

1.0,−1.0,−1.0, 1.0, 1.0,−1.0, 0.0, 0.0) ,

where ι is the continuous piecewise linear interpolation defined by (2.2). We achieve
this with a target function uObj(t) that is equal to the exact solution of the simulation
problem ubl(x, t) at the right boundary. Hence, uObj(t) = (ubl)1(xr, t) = (uc∗)1(xr, t),
or specifically

uObj(t) = ι(t; 0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0;

0.0, 0.0,−1.0,−1.0, 1.0, 1.0, 0.0, 0.0) .

Since the length of the spatial domain is one, the speed of the characteristics is one,
and the length of the time interval is four, any control c(t) does not affect the right
boundary for t > 3. According to the definition of bl(t), the control should be zero for
t > 3, therefore we set cObj(t) = 0. Lastly, we set λ = 5 · 10−3.

72

5.2. Direct approach

Nonlinear problem. This problem is based on the isentropic simulation problem
defined in Chapter 2. The right boundary br(t) and the initial condition bi(x) remain
unchanged. As described in the definition of the simulation problem, we want to keep
the density ρ at the right boundary constant. Thus, we set uObj(t) = (bi)1(xr) ≈ 1.93.
We also set cObj(t) = 2 to measure the cost of changing the density at the left boundary.
These costs are scaled by λ = 5 · 10−2. Therefore, the optimization method must decide
between cost minimization and goal satisfaction at the right boundary.

5.2. Direct approach

This approach directly minimizes the objective function (5.1a) of the optimal control
problem (5.1). This works by introducing a parameterized control into the physics-
informed training problem (4.4) and by adding the objective function to the loss function.
The approach has been described in [38]. A similar approach has been described in [14].

The state vector u(x, t) is approximated by a neural network with randomly initialized
parameters θu. Consequently, we have u(x, t) ≈ u(h(x, t; θu)).

The control c(t) is parameterized by a continuous piecewise linear function defined
through (2.2). We consider dc nodes, denoted as ϑk for k = 1, ..., dc, each associated
with a function value φk. The nodes are initially equidistant, thus we have

ϑk = ti + (k − 1)
te − ti
dc − 1

and φk = uObj(ϑk) for k = 1, ..., dc .

The first and the last nodes, as well as the first weight, cannot be changed during the
optimization process. In our numerical tests, we aim to differentiate between training
only the weights φk and simultaneously training both the weights and the nodes ϑk.
Therefore, the parameters for the control are given either by

θc = (ϑ2, ..., ϑdc−1, φ2, ..., φdc) or θc = (φ2, ..., φdc) .

This allows for the control of either dc − 1 weights and dc − 2 nodes, or only dc − 1
weights. Finally, we define the parameterized control

c(t; θc) = ι(t;ϑ1, ..., ϑdc ;φ1, ..., φdc) . (5.2)

Note that [14] removes the control from the system and recovers the control from the
state variables. For our problem this could be achieved with c(t) = u1(h(xl, t; θu)).

We define the physics-informed loss function with respect to the simulation problem
(5.1b) – (5.1e)

LDif(θu, θc) ≈
1

vol(Deq)

∥∥∥∂t(u ◦ h)(· , · ; θu)

+ ∂x(F ◦ h)(· , · ; θu)− (g ◦ h)(· , · ; θu)
∥∥∥2

L2(Deq)

+
1

vol(Di)
∥(u ◦ h)(· , ti; θu)− bi(·)∥2L2(Di)

+
1

vol(Dl)
∥(u ◦ h)1(xl, · ; θu)− c(· ; θc)∥2L2(Dl)

+
1

vol(Dr)
∥(u ◦ h)2(xr, · ; θu)− br(·)∥2L2(Dr)

.

73

5. Physics-informed optimization

The approximation is obtained by a suitable quadrature rule, which we specify later.
Compared to the definition of LDif in Chapter 4, the left boundary condition depends
on the control c(t). We also construct a loss function for the objective function (5.1a)

LObj(θu, θc) ≈
1

2
∥(u ◦ h)1(xr, · ; θu)− uObj(·)∥2L2(Dr)

+
λ

2
∥c(· ; θc)− cObj∥2L2(Dl)

.

In conclusion, we consider the training problem

min
θu,θc

LDif + γLObj . (5.3)

The factor γ > 0 balances between the objective function, which we aim to minimize as
much as possible, and the constraints, which should always be satisfied. Next, we want
to assess the effectiveness of this approach.

5.2.1. Numerical tests

In this subsection, we test the direct approach with the linear optimization problem
and a control with dc = 4 control points. This problem was specifically chosen to test
the direct approach in a setting where the exact control cannot be reconstructed. We
want to evaluate, how well this approach satisfies the conditions while minimizing the
objective. For this, we define the exact value of the objective function (5.1a) with respect
to a control c(t)

J (c) =
1

2
∥(uc)1(xr, ·)− uObj(·)∥2L2(Dr)

+
λ

2
∥c(·)− cObj(·)∥2L2(Dl)

.

The test uses the hyperparameters that have resulted in the most accurate approxima-
tions in the previous chapter. These are listed in Table 4.6a. Then, we solve the training
problem (5.3) with the Adam method for 150 000 iterations. We test the approach for
γ = 0.25 and γ = 1.5. The results are shown in Figure 5.1.

We observe that the results depend strongly on γ: For γ = 0.25, the approximation
u1 on the right boundary is a compromise between the exact solution of the simulation
problem uc and the target function uObj. On the other hand, for γ = 1.5, the approx-
imation u1 is very close to uObj and far away from the exact solution. Remarkably, in
both cases, the generalization error between the approximation and the exact solution
is very large. This is also shown in the figures, where the approximation of u2(xl, ·) is
very poor, since these values depend only on the balance law. There is also a significant
difference between the loss value LObj and the exact objective value J(c). This shows
that the direct training problem (5.3) does not adequately reflect the optimal control
problem (5.1).

The obtained results can be explained by the loss function of the training problem
(5.3). Here, both the constraints and objectives are treated equally, and the training
process is unaware of the specific role of each loss function. Consequently, u1(xr, ·) is
optimized such that the difference to uObj is minimal. However, any changes in u1(xr, ·)
should only be attributed to changes in the control c. Furthermore, u1(xl, ·) should be
optimized to be close to c. But in the training problem (5.3), c is also optimized to be
close to u1(xl, ·).

74

5.2. Direct approach

−2

1

0

−1

2
u
1

Left boundary Right boundary

0 1 2 3 4
−2

1

0

−1

2

t

u
2

u uc uObj

0 1 2 3 4

t

(a) Solution for γ = 0.25. The dots are the control points of the control c. Furthermore, we
have error[u1] = 6.43× 10−1, error[u2] = 7.23× 10−1, J (c) = 1.13× 100, LObj = 2.71× 10−1.

−2

1

0

−1

2

u
1

Left boundary Right boundary

0 1 2 3 4
−2

1

0

−1

2

t

u
2

u uc uObj

0 1 2 3 4

t

(b) Solution for γ = 1.5. The dots are the control points of the control c. Furthermore, we
have error[u1] = 8.91× 10−1, error[u2] = 1.03× 100, J (c) = 1.45× 100, LObj = 3.14× 10−2.

Figure 5.1.: Solutions computed by the direct approach for the linear optimization
problem, two values of γ and dc = 4.

75

5. Physics-informed optimization

In conclusion, the direct training problem (5.3) fails to accurately reflect the inter-
actions between the state variables u(x, t) and the control c(t) in the optimal control
problem (5.1). As a consequence, both are optimized based on the wrong incentives,
resulting in infeasible solutions. Adjusting γ can certainly help prioritize between ob-
jectives and constraints, but this does not solve the underlying issue. And it raises the
question of how the choice of γ affects the result. Therefore, the direct approach is not
suitable for the problems we consider.

In the next section, we construct an alternative approach based on the adjoint of the
optimal control problem. We demonstrate that this method does not have the same
limitations as the direct approach and show its effectiveness through numerical tests.

5.3. Indirect approach

In this section, we develop an indirect physics-informed approach, partially based on
the work in [1], to solve the optimal control problem (5.1). In contrast to the direct
approach, which directly minimizes the objective function (5.1a), the indirect approach
solves optimality conditions of the optimal control problem. The optimality conditions
describe a stationary point of the Lagrange function associated with the optimal control
problem.

The optimality conditions include the so-called adjoint problem. The adjoint is a
measurement tool that quantifies the deviation between the solution u and the target
uObj at the right boundary. This information is then transported to the left boundary,
where the control can be updated accordingly. The adjoint is usually used to provide
sensitivity information in an optimization procedure.

For the indirect approach, however, the introduction of the adjoint serves a different
purpose and allows to effectively decouple the update rules for the parameters of the
state vector θu and the control θc. We will see that, in contrast to the direct approach,
this ensures that all constraints are satisfied and wrong incentives, such as the control
adapting to the state or the state adapting to the objective function, are avoided. As a
result, the indirect approach adequately reflects the optimal control problem, and does
not require any balancing between the objective and the constraints.

The derivation of the adjoint-based optimality conditions is shown in Subsection 5.3.1.
Then, in Subsection 5.3.2, we describe our physics-informed approach to solve the opti-
mality conditions. In Subsection 5.3.3, we examine the approach with numerical tests.

5.3.1. Adjoint-based optimality conditions

In this subsection, we derive optimality conditions for the optimal control problem (5.1).
We will see that the conditions consist of three separate components: The simulation
problem, the adjoint problem, and a multiplier law. Each component will be used later
to update the state, the adjoint, and the control separately.

For the following, we define the L2 scalar product by

⟨f, g⟩L2(D) =

∫
D

〈
f(x), g(x)

〉
2

dx

for functions f, g : D → Rn and the euclidean scalar product ⟨ · , · ⟩2.

76

5.3. Indirect approach

We start by defining the Lagrange function

L(u, c, ξ, ζ, ν, µ) =
1

2
∥u1(xr, ·)− uObj(·)∥2L2(Dr)

+
λ

2
∥c− cObj∥2L2(Dl)

+
〈
∂tu + ∂x(F ◦ u)− g ◦ u, ξ

〉
L2(Deq)

(5.4)

+
〈
u(· , ti)− bi, ζ

〉
L2(Di)

(5.5)

+
〈
u1(xl, ·)− c, µ

〉
L2(Dl)

(5.6)

+
〈
u2(xr, ·)− br, ν

〉
L2(Dr)

(5.7)

for the Lagrange multiplier ξ : Deq → R, ζ : Di → R, µ : Dl → R and ν : Dr → R.
Consequently, we consider the minimization problem

min
u,c,ξ,ζ,ν,µ

L(u, c, ξ, ζ, ν, µ) . (5.8)

Formal Lagrange calculus. In the following, we derive optimality conditions for
the minimization problem (5.8). These conditions will describe a stationary point of
the Lagrange function L. The performed procedure is based on the formal Lagrange
calculus described in [59, p. 67]. That is, we perform the calculations syntactically
without providing evidence that they are semantically correct.

Especially, we will not provide function spaces for the solution, adjoint, and control.
We just assume that the calculations can be performed and that all functions are at least
square integrable. Note that specifying function spaces is inherently difficult for non-
linear transport equations, since discontinuities can occur in the underlying simulation
problem.

Fréchet derivative. To formulate a stationary point of L, we need to consider deriva-
tives of functions with respect to function parameters. Here, the Fréchet derivative pro-
vides us with a generalization of the total derivative to normed function spaces [59, p.
46]. We denote the Fréchet derivative of a function f(x) by f ′ or, in the case that f
depends on multiple parameters, by fx.

Let f and g be Fréchet differentiable, then the following statements hold for the Fréchet
derivative [59, p. 47]:

(A) The Fréchet derivative is linear: (αf + βg)′h = αf ′h + βg′h.

(B) For every bounded linear operator f(x) = Ax we have f ′(x)h = Ah.

(C) The chain rule holds
(f ◦ g)′h = f ′(g(x)

)
g′(x)h .

Stationary point. The Lagrange function L has a stationary point if the Fréchet
derivative of L with respect to each parameter is zero. Hence, we seek for u, c, ξ, ζ, µ,
and ν such that

Lu = 0 , Lc = 0 , Lξ = 0 , Lζ = 0 , Lν = 0 , and Lµ = 0 . (5.9)

In the following, each derivative in (5.9) is derived.

77

5. Physics-informed optimization

Simulation problem (Lξ = 0, Lζ = 0, Lν = 0, Lµ = 0). We start with the deriva-
tives of L with respect to the Lagrange multipliers ξ, ζ, ν, and µ. We define k1(x) =
⟨χ, x⟩L2

for an arbitrary χ. The function k1(x) is linear in x, and thus by (B) we have
k′1(x)h = ⟨χ, h⟩L2

. In the following, we will refer to k1 several times, but we will not
specify χ each time.

With the derivative of k1 we can directly conclude

Lξh =
〈
∂tu + ∂x(F ◦ u)− g, h

〉
L2(Deq)

, Lζh =
〈
u(· , ti)− bi, h

〉
L2(Di)

,

Lνh =
〈
u1(xl, ·)− c, h

〉
L2(Dl)

, Lµh =
〈
u2(xr, ·)− br, h

〉
L2(Dr)

.
(5.10)

To satisfy the conditions for a stationary point (5.9), the integrals Lξh, Lζh, Lνh and
Lµ need to vanish for any h. To achieve this, we require the stronger condition that
each integrand is pointwise zero. This is equivalent to the requirement that u satisfies
the simulation problem (5.1b) – (5.1e).

Adjoint problem (Lu = 0). Next, we derive the derivative Lu. To describe the first
term of L, let k2(x) = ∥x∥2L2

. Then, as described in [59, p. 45], we have k′2(x)h =
2⟨x, h⟩L2

. Further let k3(u) = u1(xr, ·) − uObj(·). Here, by (B) we have k′3(u)h =
h1(xr, ·). Therefore, we obtain

(k2 ◦ k3)(u) = ∥u1(xr, ·)− uObj(·)∥2L2(Dr)
.

By using the chain rule (C), we conclude

(k2 ◦ k3)′(u)h = 2
〈
u1(xr, ·)− uObj(·), h1(xr, ·)

〉2
L2(Dr)

.

Auxiliary calculation: Integration by parts for inner products. Before we
continue with the derivative Lu, we need the following auxiliary statement: For functions
f(t), g(t) : [a, b]→ Rn with a < b we have∫ b

a
⟨∂tf(t), g(t)⟩2 dt = ⟨f(b), g(b)⟩2 − ⟨f(a), b(a)⟩2 −

∫ b

a
⟨f(t), ∂tg(t)⟩2 dt . (5.11)

This follows by considering e(t) = ⟨f(t), g(t)⟩2 with ∂te(t) = ⟨∂tf(t), g(t)⟩2+⟨f(t), ∂tg(t)⟩2.
Then, by the fundamental theorem of calculus we obtain∫ b

a
⟨∂tf(t), g(t)⟩2 + ⟨f(t), ∂tg(t)⟩2 dt =

∫ b

a
∂te(t) dt = ⟨f(b), g(b)⟩2 − ⟨f(a), b(a)⟩2 .

Rearranging now yields (5.11).

Adjoint problem continued. As the next intermediate step, we build the derivative
of (5.4) with respect to u. Let k4(u) = ∂tu. Since k4 is linear in u and by (B) we have
k′4(u)h = ∂th. Therefore, we can conclude

(k1 ◦ k4)(u) =
〈
∂tu, ξ

〉
L2(Deq)

and (k1 ◦ k4)′(u)h =
〈
∂th, ξ

〉
L2(Deq)

.

78

5.3. Indirect approach

Integration by parts now yields〈
∂th, ξ

〉
L2(Deq)

=

∫ xl

xr

∫ te

ti

〈
∂th, ξ

〉
2

dtdx

=

∫ xl

xr

〈
h(x, te), ξ(x, te)

〉
2

dx−
∫ xl

xr

〈
h(x, ti), ξ(x, ti)

〉
2

dx

−
∫ xl

xr

∫ te

ti

〈
h, ∂tξ

〉
2

dtdx

=
〈
h(· , te), ξ(· , te)

〉
L2(Di)

−
〈
h(· , ti), ξ(· , ti)

〉
L2(Di)

−
〈
h, ∂tξ

〉
L2(Deq)

.

Now let k5(u) = ∂xu and similarly we obtain k5(u)′h = ∂xh. By the chain rule, we
have (k5 ◦ F)′(u)h = ∂x(F ′(u)h). Hence, we conclude

(k1 ◦ k5 ◦ F)(u) =
〈
∂xF (u), ξ

〉
L2(Deq)

and (k1 ◦ k5 ◦ F)′(u) =
〈
∂x(F ′(u)h), ξ

〉
L2(Deq)

.

Integration by parts now yields〈
∂x(F ′(u)h), ξ

〉
L2(Deq)

=

∫ te

ti

∫ xl

xr

〈
∂x(F ′(u)h), ξ

〉
2

dx dt

=

∫ te

ti

〈
(F ′(u)h)(xr, t), ξ(xr, t)

〉
2

dt−
∫ te

ti

〈
(F ′(u)h)(xl, t), ξ(xl, t)

〉
2

dt

−
∫ te

ti

∫ xl

xr

〈
F ′(u)h, ∂xξ

〉
2

dx dt

=
〈
(F ′(u)h)(xr, ·), ξ(xr, ·)

〉
L2(Di)

−
〈
(F ′(u)h)(xl, ·), ξ(xl, ·)

〉
L2(Di)

−
〈
F ′(u)h, ∂xξ

〉
L2(Deq)

.

To conclude the derivative of (5.4) with respect to u, we observe

(k1 ◦ g)(u) =
〈
g, ξ
〉
L2(Deq)

and thus (k1 ◦ g)′(u)h =
〈
g′(u)h, ξ

〉
L2(Deq)

.

The remaining derivatives for Lu are the derivatives of (5.5), (5.6) and (5.7) with
respect to u. Here, by performing similar calculations as before, we obtain

⟨h(· , ti), ζ⟩L2(Di) , ⟨h1(xl, ·), µ⟩L2(Dl) , respectively ⟨h2(xr, ·), ν⟩L2(Dr) .

Finally, we combine all derivatives and receive

Luh =
〈
u1(xr, ·)− uObj(·), h1(xr, ·)

〉2
L2(Dr)

+
〈
h(· , te), ξ(· , te)

〉
L2(Di)

−
〈
h(· , ti), ξ(· , ti)

〉
L2(Di)

−
〈
h, ∂tξ

〉
L2(Deq)

+
〈
(F ′(u)h)(xr, ·), ξ(xr, ·)

〉
L2(Dr)

−
〈
(F ′(u)h)(xl, ·), ξ(xl, ·)

〉
L2(Dl)

−
〈
F ′(u)h, ∂xξ

〉
L2(Deq)

+
〈
g′(u)h, ξ

〉
L2(Deq)

+
〈
h(· , ti), ζ

〉
L2(Di)

+
〈
h1(xl, ·), µ

〉
L2(Dl)

+
〈
h2(xr, ·), ν

〉
L2(Dr)

.

(5.12)

79

5. Physics-informed optimization

The derivatives g′(u) and F ′(u) can be represented by their Jacobians Jg(u) and JF (u),
respectively. Additionally, we have

JF (u)⊤ =

(
(∂u1F)⊤

(∂u2F)⊤

)
.

With these identities, we rearrange the terms in (5.12) and obtain

Luh =
〈
−∂tξ − JF (u)⊤∂xξ + Jg(u)⊤ξ, h

〉
L2(Deq)

+
〈
ζ − ξ(· , ti), h(· , ti)

〉
L2(Di)

+
〈
ξ(· , te), h(· , te)

〉
L2(Di)

+

〈
µ−

(
∂u1F

(
u(xl, ·)

))⊤
ξ(xl, ·), h1(xl, ·)

〉
L2(Dl)

+

〈
−
(
∂u2F

(
u(xl, ·)

))⊤
ξ(xl, ·), h2(xl, ·)

〉
L2(Dl)

+

〈
u1(xr, ·)− uObj(·) +

(
∂u1F

(
u(xr, ·)

))⊤
ξ(xr, ·), h1(xr, ·)

〉
L2(Dr)

+

〈
ν +

(
∂u2F

(
u(xr, ·)

))⊤
ξ(xr, ·), h2(xr, ·)

〉
L2(Dr)

.

Again, we extract pointwise conditions, such that each integrand vanishes. Therefore,
we conclude that ξ should fulfill

∂tξ + JF (u)⊤∂xξ = Jg(u)⊤ξ in Deq , (5.13a)

ξ(· , te) = 0 on Di , (5.13b)(
∂u2F

(
u(xl, ·)

))⊤
ξ(xl, ·) = 0 on Dl , (5.13c)(

∂u1F
(
u(xr, ·)

))⊤
ξ(xr, ·) = uObj(·)− u1(xr, ·) on Dr . (5.13d)

We denote the equations (5.13) as adjoint equations and ξ as adjoint variables. The
remaining equations vanish, if we choose suitable ζ, µ, and ν.

The adjoint is zero if the target function uObj(·) is equal to u1(xr, ·), since then the
end condition (5.13b), the left boundary (5.13c), and the right boundary (5.13d) are
zero. Otherwise, information about the deviation of the target is introduced through
the right boundary condition (5.13d). This information is then transported through the
domain by (5.13a). However, with the current equations, this information is not used
and no update of the control can be performed. To achieve this, we will next derive the
multiplier law, the missing piece of the puzzle.

Multiplier law (Lc = 0). There are only two terms in L that depend on the control
c. The derivatives can be derived using similar arguments as before. Consequently, we
have

Lch =

〈
λ(c− cObj) +

(
∂u1F

(
u(xl, ·)

))⊤
ξ(xl, ·), h

〉
L2(Dl)

.

80

5.3. Indirect approach

Again, we want each integrand to vanish pointwise. Therefore, we require

λ(c− cObj) +
(
∂u1F

(
u(xl, ·)

))⊤
ξ(xl, ·) = 0 on Dl . (5.14)

We refer to equation (5.14) as the multiplier law. The multiplier law combines the state
and the adjoint at the left boundary with the control into one equation. If this equation
holds with respect to a state u and an adjoint ξ, then Lc = 0 and thus the control cannot
be improved anymore.

Stationary point revisited. In the previous paragraphs, we derived optimality con-
ditions that imply a stationary point (5.9) of the Lagrange function L. Specifically, if the
state variables u, the adjoint variable ξ, and the control c satisfy the simulation problem
(5.1b) – (5.1e), the adjoint equations (5.13), and the multiplier law (5.14), then the
conditions for a stationary point (5.9) are fulfilled. Moreover, the Lagrange multipliers
ζ, µ, and ν can be eliminated from the system. In the following subsection, we describe
how these equations are solved using a physics-informed approach.

5.3.2. Physics-informed approach

In this subsection, we describe a physics-informed approach to solve the adjoint-based
optimality conditions which we have derived in the previous subsection. This approach
is inspired by the work in [1], but differs in important aspects which we will highlight.

Approximation of u, ξ, c. The state vector, the adjoint variables, and the control
serve different purposes in the optimality conditions. To avoid any unwanted connections
between them and to allow them to focus on different aspects during the training process,
we intentionally use three different parameterized functions to approximate them. This
is in contrast to the method proposed in [1], where one tailored neural network predicts
the state vector, the adjoint variables, and the control.

Our approach builds on the definitions in Section 5.2. The approximation of the state
vector u(x, t) is defined by u(h(x, t; θu)) for parameters θu and a neural network h. The
parameterized control c(t) is defined by (5.2).

Additionally, we have an approximation of the adjoint variables ξ, which we denote
by ξ(x, t) = h(x, t; θξ) for the parameters θξ. Note that the adjoint equations (5.13) and
the multiplier law (5.14) can be evaluated for any ξ.

New loss functions. As a next step, we translate the adjoint equations (5.13) into a
physics-informed loss function. Here, we have

LAdj(θu, θξ) ≈
1

vol(Deq)

∥∥∥∂tξ(· , · ; θξ)

+ JF
(
(u ◦ h)(· , · ; θu)

)⊤
∂xξ(· , · ; θξ)

− Jg
(
(u ◦ h)(· , · ; θu)

)⊤
ξ(· , · ; θξ)

∥∥∥
L2(Deq)

+
1

vol(Di)

∥∥ξ(· , te; θξ)
∥∥

L2(Di)

81

5. Physics-informed optimization

+
1

vol(Dl)

∥∥∥∥(∂u2F
(
(u ◦ h)(xl, · ; θu)

))⊤
ξ(xl, · ; θξ)

∥∥∥∥
L2(Dl)

+
1

vol(Dr)

∥∥∥(∂u1F
(
(u ◦ h)(xr, · ; θu)

))⊤
ξ(xr, · ; θξ)

− uObj(·) + (u ◦ h)1(xr, ·)
∥∥∥

L2(Dr)
.

A suitable quadrature rule, which we will specify later, is used to obtain the approx-
imation. The derivatives of ξ in LAdj are computed with forward mode automatic
differentiation. However, the derivatives of F and g are implemented explicitly. This
is another difference from the approach in [1], where every derivative is obtained by
automatic differentiation.

The physics-informed loss function for the multiplier law (5.14) is given by

LMult(θu, θξ, θc) ≈
1

vol(Dl)

∥∥∥λ(c(· ; θc)− cObj

)
+
(
∂u1F

(
(u ◦ h)(xl, · ; θu)

))⊤
ξ(xl, · ; θξ)

∥∥∥
L2(Dl)

.

Training process. The approach in [1] considers the training problem

min
θu,θξ,θc

LDif(θu, θc) + LAdj(θu, θξ) + LMult(θu, θξ, θc) . (5.15)

However, this training problem has the same underlying issue as the direct approach. The
parameters θu, θξ, and θc are still optimized based on incorrect incentives. Specifically,
the state vector u still adjusts according to the condition uObj(·) + u1(xr, ·) in LAdj.
Furthermore, the control adapts to u1(xl, ·)−c(·) in LDif. This issue also shows up in a
practical implementation of (5.15). As a result, the training problem (5.15) is unable to
distinguish between constraints and objective. This has also been noted and addressed
by [1], who suggests to incorporate weights into the training problem.

But we will pursue a different strategy, which is inspired by the classical strategies
described in [11, p. 63] and [29, p. 125]. There, the optimal control problem is decoupled
and solved in a loop of the following steps. First, the simulation problem is solved with
respect to a fixed control, resulting in a new state vector. Second, the adjoint equations
are solved with respect to a fixed state vector, resulting in new adjoint variables. Third,
the state vector and the adjoint variables are combined to form a so-called reduced
gradient, which is used to update the control. Crucially, the state vector, the adjoint
variables, and the control are each updated with their own update rule.

We transfer this strategy to obtain the following training procedure. The parameters
of the state vector θu are trained on the simulation problem, encoded by LDif, the pa-
rameters of the adjoint variables θξ are trained on the adjoint equations, encoded by
LAdj, and the parameters of the control θc are trained on the multiplier law, encoded
by LMult. Specifically, a training step works as follows. First, we calculate the gradi-
ents ∇θuLDif(θu, θc), ∇θξLAdj(θu, θξ), and ∇θcLMult(θu, θξ, θc). Second, we update the
parameters according to

θu ← θu −∇θuLDif , θξ ← θξ −∇θξLAdj , θc ← θc −∇θcLMult .

82

5.3. Indirect approach

Direct approach

c

LDif LObj

u

Indirect approach

c ξ

LDif LMult LAdj

u

Loss evaluation Gradient update

Figure 5.2.: Training process of the direct and indirect approach.

In summary, we have three different loss functions, one for each of the different pa-
rameters. These loss functions encode only the information relevant to the parameters.
Thus, we have removed the wrong optimization incentives from the training problem.
Importantly, this differs from the other approaches only when the target cannot be met
exactly. See Figure 5.2, which compares the training process of the indirect approach
from this section and the direct approach from Section 5.2. In the next subsection, we
test the indirect approach.

5.3.3. Numerical results

Setup. The tests in this subsection are performed with the hyperparameters that led
to either the most accurate or the most efficient results in the previous chapter, listed
in Table 4.6 for the linear problem and the isentropic problem. In particular, the neural
network architectures are used to approximate the state vector u and the adjoint vari-
ables ξ. The sampling strategies are used to approximate the norms in the loss functions
LDif, LAdj and LMult. For the linear problem, we consider dc ∈ {4, 6, 8, 9}, and for the
isentropic problem, we consider dc ∈ {4, 8, 12}. We also test two scenarios: one with
constant nodes during the training process, and another where the nodes are trained.

Importantly, the loss function for θξ depends on the parameters θu and the loss function
for θc depends on the parameters θu, θξ. To improve the learning process, we want to
give θu an advantage over θξ and θc, and also θξ an advantage over θc. To accomplish
this, we extend the exponential decaying learning rate (3.7) with a new variable that
delays the learning rate for ηDelay steps. Consequently, we consider the learning rate

ηk =

0 if k ≤ ηDelay,

ηInit · ηRate

k−ηDelay
ηSteps otherwise,

where the remaining learning rate variables are as before.

83

5. Physics-informed optimization

Accurate Hyperparameter Efficient Hyperparameter

dc nodes LObj J (c) error[u1] error[u2] LObj J (c) error[u1] error[u2]

4 constant 9.43e−1 9.43e−1 2.90e−3 3.50e−3 9.41e−1 9.44e−1 8.33e−3 1.11e−2
4 trained 2.25e−1 2.26e−1 1.02e−3 1.22e−3 2.24e−1 2.26e−1 6.73e−3 7.92e−3
6 constant 9.51e−2 9.88e−2 1.50e−2 1.85e−2 9.28e−2 9.96e−2 4.10e−2 5.09e−2
6 trained 4.10e−2 4.35e−2 2.64e−2 3.16e−2 3.93e−2 4.64e−2 4.57e−2 5.54e−2
8 constant 7.30e−2 7.99e−2 3.48e−2 3.68e−2 6.07e−2 9.03e−2 9.63e−2 1.06e−1
8 trained 3.47e−3 5.33e−3 2.61e−2 3.25e−2 3.40e−3 8.19e−3 5.33e−2 6.65e−2
9 constant 1.04e−3 1.04e−3 7.82e−4 9.79e−4 1.04e−3 1.04e−3 1.03e−3 1.19e−3
9 trained 1.04e−3 1.05e−3 2.47e−3 3.11e−3 1.06e−3 1.08e−3 5.17e−3 6.51e−3

(a) Results for the linear optimal control problem.

Accurate Hyperparameter Efficient Hyperparameter

dc nodes LObj J (c) error[ρ] error[ρv] LObj J (c) error[ρv] error[ρv]

4 const 3.76e−3 3.86e−3 1.40e−3 6.00e−1 3.80e−3 3.84e−3 1.49e−3 6.00e−1
4 train 2.37e−3 2.32e−3 9.71e−4 5.98e−1 2.37e−3 2.32e−3 1.50e−3 5.98e−1
8 const 2.04e−3 2.01e−3 1.54e−3 5.98e−1 2.03e−3 2.02e−3 2.11e−3 5.97e−1
8 train 1.84e−3 1.78e−3 1.52e−3 5.97e−1 1.77e−3 1.86e−3 3.89e−3 5.97e−1
12 const 1.78e−3 1.82e−3 1.47e−3 5.97e−1 1.82e−3 1.81e−3 1.45e−3 5.97e−1
12 train 1.42e−3 1.79e−3 6.47e−3 5.98e−1 1.61e−3 1.69e−3 3.53e−3 5.97e−1

(b) Results for the isentropic optimal control problem.

Table 5.1.: Results of the indirect approach. The three lowest values per column are
highlighted.

We use three learning rates, one for the parameters θu, one for θξ, and one for θc. To
limit the number of learning rates considered, we make the following assumptions. We
set ηRate = 0.9. The parameters θu and θξ use the same values for ηSteps and ηInit,
which we denote by ηSteps−uξ and ηInit−uξ, respectively. Additionally, we have ηSteps−c

and ηInit−c. Then, we consider the following combinations

ηSteps−uξ, ηSteps−c ∈ {1000, 5000, 10000, 15 000} , ηInit−uξ, ηInit−c ∈ {0.1, 0.01, 0.001} .

Furthermore, we denote the delay steps for θξ and θc by ηDelay−ξ and ηDelay−c, re-
spectively. Here, we consider the following choices

(ηDelay−ξ, ηDelay−c) ∈ {(500, 1000), (500, 2000), (1000, 2000), (2000, 4000)} .

We solve the training problem with the Adam method for 150 000 iterations. From all
obtained results, we select the ten results with the lowest LDif values, and from these, we
select the one with the lowest LObj value. This ensures that the simulation problem is
adequately solved, while also taking into account the results with a low objective value.
Finally, we run each test three times and report the average results.

84

5.3. Indirect approach

Quantitative evaluation. We start by quantitatively evaluating the results by ana-
lyzing the obtained objective values and generalization errors for different numbers of
control points dc and whether the nodes are constant or trained. The generalization
error measures the relative L2-error between u and uc.

The results for the linear and the isentropic control problem are listed in Table 5.1.
Most importantly, the generalization errors are much better than those of the direct
approach. But the generalization errors are still higher than in the previous chapter,
also and the error of ρv is quite high.

Furthermore, the objective values decrease with a higher number of control points
dc and also when the nodes are trained. Crucially, LObj and J (c) are very close. In
conclusion, the results show that the indirect approach closely reflects the optimal control
problem (5.1). There is only a small difference between the results obtained with the
most accurate and the most efficient hyperparameters, and thus compute time can be
saved by using the latter.

Qualitative evaluation. The second step of the test evaluation is the visual analysis
of the obtained solutions. We visualize the solution with the lowest LObj value, selected
from the top ten solutions with the lowest LDif values among all solutions trained with
different learning rates and random initializations. We begin by analyzing the test
considered in Section 5.2. There, we considered the linear optimization problem with
dc = 4 and the nodes remained constant.

See Figure 5.3a for the results obtained by the indirect approach. Compared to the
result of the direct approach, in Figure 5.1, the generalization errors are significantly
reduced, and the achieved objective value J (c) is lower. This shows that the indirect
approach does not have the same problems as the direct approach. See Figure 5.3b
for the same test, but here the nodes are also trained. Importantly, training the nodes
improves the control obtained, which is quantified by a lower objective value J (c) and
qualified in the figure, since the target is better reached.

The remaining solutions for the linear problem are in Figure 5.4. It is evident that as
the number of control points increases, the target at the right boundary is better fulfilled.
In particular, with dc = 9 control points, the exact boundary data from the linear
simulation problem is reconstructed. This shows that the indirect approach successfully
finds the optimal solution.

The solutions for the isentropic problem are shown in Figure 5.5. Crucially, the
solutions maintain a constant density and improve with more control points. However,
the solution with dc = 12 control points, where the nodes are also trained, shows some
deficiencies.

It is important to emphasize that the initial density drop cannot be addressed by
any control due to the time it takes for the control to affect the right boundary. This
demonstrates that the indirect approach respects the balance law and does not optimize
the state to conform to the target function.

85

5. Physics-informed optimization

−2

1

0

−1

2
u
1

Left boundary Right boundary

0 1 2 3 4
−2

1

0

−1

2

t

u
2

u uc uObj

0 1 2 3 4

t

(a) Solution with constant nodes. The dots are the control points of the control c. Fur-
thermore, we have error[u1] = 6.99 × 10−4, error[u2] = 1.01 × 10−3, J (c) = 9.43 × 10−1,
LObj = 9.43× 10−1.

−2

1

0

−1

2

u
1

Left boundary Right boundary

0 1 2 3 4
−2

1

0

−1

2

t

u
2

u uc uObj

0 1 2 3 4

t

(b) Solution with trained nodes. The dots are the control points of the control c. Furthermore,
we have error[u1] = 4.58×10−5, error[u2] = 5.38×10−5, J (c) = 2.26×10−1, LObj = 2.26×10−1.

Figure 5.3.: Solutions computed by the indirect approach for the linear optimization
problem with constant and trained nodes, and dc = 4.

86

5.3. Indirect approach

−2

1

0

−1

2

dc = 6
J = 9.84e−2

Left boundary Right boundary

−2

1

0

−1

2

dc = 6∗

J = 4.29e−2

−2

1

0

−1

2

dc = 8
J = 8.07e−2

−2

1

0

−1

2

dc = 8∗

J = 3.96e−3

−2

1

0

−1

2

dc = 9
J = 1.04e−3

0 1 2 3 4
−2

1

0

−1

2

t

dc = 9∗

J = 1.04e−3

0 1 2 3 4

tu1 (uc)1 uObj

Figure 5.4.: Solution of the indirect approach for the linear problem with different
values for dc. An asterisk indicates the results where the nodes are also trained.

87

5. Physics-informed optimization

1.5

2

2.5

dc = 4
J = 3.83e−3

Left boundary Right boundary

1.5

2

2.5

dc = 4∗

J = 2.32e−3

1.5

2

2.5

dc = 8
J = 2.01e−3

1.5

2

2.5

dc = 8∗

J = 1.78e−3

1.5

2

2.5

dc = 12
J = 1.81e−3

0 1 2 3 4 5 6

1.5

2

2.5

t

dc = 12∗

J = 1.72e−3

0 1 2 3 4 5 6

tρ ρc uObj

Figure 5.5.: Solution of the indirect approach for the isentropic problem with different
values for dc. An asterisk indicates the results where the nodes are also trained.

88

5.4. Conclusion

5.4. Conclusion

In this chapter, we have presented a direct and an indirect approach to solve optimal
boundary control problems with physics-informed neural networks. The optimal bound-
ary control problem includes a balance law constraint. We have tested both approaches
with two test problems: one based on a linear balance law and one based on the isen-
tropic Euler equations. These tests used the most accurate and efficient hyperparameters
identified in the previous chapter.

Importantly, the results show that the direct approach does not distinguish between
the constraints and the objective. This has been demonstrated practically by solutions
which do not satisfy the balance law. Therefore, this approach is not suitable to solve
the problems considered.

To circumvent this issue, we have developed an indirect approach. The indirect ap-
proach solves optimality conditions and introduces the adjoint variables, the adjoint
equations, and the multiplier law of the optimal control problem. This allows us to
formulate separate loss functions for the state, adjoint, and control parameters.

We tested the indirect approach with two test problems and a different number of
control points. The results show that the method was very effective in solving the
optimal control problems. The computed solutions satisfy the balance law and minimize
the objective value. This shows that the indirect approach correctly reflects the dynamics
of the original optimal control problem.

To obtain the results, we have tested many different learning rates to find the best
solutions. There is certainly room for improvement to reduce the number of combinations
tested. The computed solutions did not solve the simulation problem with the same level
of accuracy as in the previous chapter. This implies that the simulation problem alone
must be solved with decent accuracy to make this approach viable. The accuracy of
the approach could be improved with a different update rule, where only the state, the
adjoint, or the control is updated for a few iterations at a time.

The proposed indirect approach has a very general formulation, making it applicable
to other optimal control problems. While our control was a continuous piecewise linear
function, alternative parameterized functions can also be applied.

In addition to the approaches discussed in this chapter, physics-informed neural net-
works offer another direction to solve optimal control problems. Here, a reduced model is
trained that predicts the state vector based on the coordinates and, crucially, a control.
This reduced model can now be used in another optimization process to quickly predict
a state with respect to the control and to obtain sensitivity information by automatic
differentiation of the reduced model. Significant research efforts have been invested in
this topic, including the development of deep operator networks [35] and their specialized
adaptations for transport problems [33].

89

6. Conclusion

Physics-informed neural networks are a new numerical method to solve problems involv-
ing differential equations. Compared to classical numerical methods, a lot of knowledge
needs to be developed. This includes the types of problems that can be solved, the
advantages, the limitations, and the most effective strategies.

In this thesis, we developed knowledge on each of these aspects when physics-informed
neural networks are applied to gas transport problems. The contributions can be grouped
into three areas, which we outline below.

Advancements in fundamental knowledge. PINNs are a very flexible method that
can be easily adapted to a wide variety of differential equations. However, the underlying
dynamics of the differential equations are different, so specific knowledge of the method
for gas transport problems is required.

Specifically, we derived error estimates for a system of two linear transport equations
that shares important properties with the nonlinear Euler equations. Importantly, the
estimates bound the generalization error by the loss function values, thus validating
the physics-informed approach. However, the estimates also show that physics-informed
neural networks have problems simulating over large time scales and with high charac-
teristic speeds. As a result, simulations of full-scale gas pipelines are not possible with
this approach and require further research. We also performed a practical convergence
analysis, but the results could not be fully explained by the error estimates. This sug-
gests that decomposing the loss value into a training error and a quadrature error is not
sufficient.

In addition, we developed and compared different implementations of physics-informed
neural networks. Our comparison shows that the commonly used implementation based
on reverse mode automatic differentiation is inefficient. An implementation based on
forward mode automatic differentiation, which also groups similar operations together,
requires about half the computational cost of the reverse mode implementation.

Finding the most effective simulation strategy. Physics-informed neural net-
works have been extended in many directions. In this thesis, we studied many variants
and performed intensive numerical tests to find the most effective training strategy. For
the numerical tests, we considered a linear transport problem and a problem using the
nonlinear isentropic Euler equations. Together, these problems provided a broad picture
of the capabilities of physics-informed neural networks.

Our tests included different neural network architectures and activation functions.
Here, fully connected deep neural networks provided the best results. For each test
problem, the best approximations were obtained with a different activation function,
number of layers, and number of neurons. Hence, the most effective neural network
depends on the specific problem and its solution.

90

Furthermore, we tested different optimization strategies to solve the training problem.
Here, the Adam method with a suitable learning rate outperformed the L-BFGS method
and a hybrid of the two. We also considered different sampling strategies for the training
procedure. The original formulation uses Latin hypercube sampling, but there are other
strategies with more promising properties. However, the theoretical advantages do not
lead to better approximations, and the overall difference between the strategies is rather
small.

The training problem of physics-informed neural networks consists of multiple loss
functions that need to be minimized simultaneously. Here, variants have been proposed
that can compensate for imbalances in the loss function. In our tests, a random search
is able to improve the accuracy. However, this method is computationally expensive and
cheaper methods performed worse. By deriving a loss function using the integral form
of the balance law, we only need to minimize one function. The original formulation of
this approach did not achieve the same level of accuracy as PINNs. We showed that a
modification of this loss function not only matched the accuracy of PINNs in one test
case, but also required a smaller computational budget.

Our numerical tests demonstrated that physics-informed neural networks are not a
highly accurate numerical method. Even with intensive hyperparameter tuning, the
generalization errors cannot be reduced arbitrarily.

Solving optimal boundary control problems. PINNs can be easily extended to use
cases beyond simulation problems. In this thesis, we followed this path and investigated
physics-informed approaches to solve optimal boundary control problems.

Here, we considered an existing direct approach and our tests showed that the direct
approach is not able to compute feasible solutions. Therefore, we developed an indirect
adjoint-based approach that uses different loss functions for the different parameters in
the training process. We performed extensive numerical tests using this approach and
two test problems. In all cases, the solutions were feasible, and also the objective was
minimized. Hence, the indirect approach solves optimal control problems very effectively.

Outlook. Physics-informed neural networks excel when applied to problems that in-
volve differential equations, but have additional constraints that make it difficult to apply
classical numerical methods. They are a complementary numerical method and can be
easily adapted to many problems. Improving physics-informed neural networks not only
benefits simulation problems, but many other problems as well, and thus can have a very
broad impact. This illustrates the value of further research in physics-informed neural
networks.

In this thesis, we identified several research opportunities, including specifically tai-
lored training methods and neural network architectures. This research can be contin-
ued by developing a physics-informed approach to simulate and optimize real-scale gas
pipeline systems with pipes and algebraic elements such as compressors and valves.

91

Bibliography

[1] J. Barry-Straume, A. Sarshar, A. A. Popov, and A. Sandu. Physics-informed neural
networks for PDE-constrained optimization and control, 2022. arXiv: 2205.03377.
Preprint.

[2] A. Bihlo and R. O. Popovych. Physics-informed neural networks for the shallow-
water equations on the sphere. Journal of Computational Physics, 456:111024,
2022. doi: 10.1016/j.jcp.2022.111024.

[3] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX:
composable transformations of Python+NumPy programs, version 0.4.15, 2018.
url: http://github.com/google/jax.

[4] I. Bremmer. How the World Must Respond to the AI Revolution. May 2023. url:
https://time.com/6283716/world-must-respond-to-the-ai-revolution/.
Accessed on August 17, 2023.

[5] C. Himpe, S. Grundel, and P. Benner. Model order reduction for gas and energy
networks. Journal of Mathematics in Industry, 11:13, 2021.

[6] E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. Mclachlan, B. Owren, C.-B. Schon-
lieb, and F. Sherry. Structure-preserving deep learning. European Journal of Ap-
plied Mathematics, 32(5):888–936, 2021. doi: 10.1017/S0956792521000139.

[7] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, New
Orleans, Louisiana, USA. AAAI Press, 2018. doi: 10.5555/3504035.3504378.

[8] A. Chaumet and J. Giesselmann. Efficient wPINN-Approximations to Entropy
Solutions of Hyperbolic Conservation Laws, 2022. arXiv: 2211.12393. Preprint.

[9] A. Daw, J. Bu, S. Wang, P. Perdikaris, and A. Karpatne. Mitigating propagation
failures in physics-informed neural networks using retain-resample-release (R3)
sampling. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J.
Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 7264–
7302. PMLR, July 2023.

[10] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by
tanh neural networks. Neural Networks, 143:732–750, 2021. doi: 10.1016/j.neun
et.2021.08.015.

92

https://arxiv.org/abs/2205.03377
https://doi.org/10.1016/j.jcp.2022.111024
http://github.com/google/jax
https://time.com/6283716/world-must-respond-to-the-ai-revolution/
https://doi.org/10.1017/S0956792521000139
https://doi.org/10.5555/3504035.3504378
https://arxiv.org/abs/2211.12393
https://doi.org/10.1016/j.neunet.2021.08.015
https://doi.org/10.1016/j.neunet.2021.08.015

Bibliography

[11] P. Domschke. Adjoint-Based Control of Model and Discretization Errors for Gas
Transport in Networked Pipelines. Dr. Hut, München, 2011.

[12] P. Domschke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, and C. Tischendorf.
Gas Network Modeling: An Overview, 2021. Preprint.

[13] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2nd edition, 2010.
doi: https://doi.org/10.1090/gsm/019.

[14] C. J. Garćıa-Cervera, M. Kessler, and F. Periago. Control of Partial Differential
Equations via Physics-Informed Neural Networks. Journal of Optimization Theory
and Applications, 196(2):391–414, 2023. doi: 10.1007/s10957-022-02100-4.

[15] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Y. W. Teh and M. Titterington, editors, Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, volume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia
Laguna Resort, Sardinia, Italy. PMLR, May 2010.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. htt
p://www.deeplearningbook.org.

[17] A. Griewank and A. Walther. Evaluating Derivatives. Society for Industrial and
Applied Mathematics, second edition, 2008. doi: 10.1137/1.9780898717761.

[18] M. D. Gunzburger and P. B. Bochev. Least-Squares Finite Element Methods. Ap-
plied Mathematical Sciences. Springer New York, NY, 1st edition, 2009. doi: 10
.1007/b13382.

[19] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, Dec. 2017. doi: 10.1088/1361-6420/aa9a90.

[20] S. Haber. A Modified Monte-Carlo Quadrature. Mathematics of Computation,
21(99):388–397, 1967. doi: 10.1090/S0025-5718-1967-0234606-9.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034, Los Alamitos, CA,
USA. IEEE Computer Society, Dec. 2015. doi: 10.1109/ICCV.2015.123.

[23] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus), 2016. arXiv:
1606.08415. Preprint.

[24] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer,
S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain,
J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger,
M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure

93

https://doi.org/https://doi.org/10.1090/gsm/019
https://doi.org/10.1007/s10957-022-02100-4
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1007/b13382
https://doi.org/10.1007/b13382
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1090/S0025-5718-1967-0234606-9
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1606.08415

Bibliography

prediction with alphafold. Nature, 596(7873):583–589, 2021. doi: 10.1038/s4158
6-021-03819-2.

[25] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June
2021. doi: 10.1038/s42254-021-00314-5.

[26] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Y.
Bengio and Y. LeCun, editors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. doi: 10.48550/arXiv.1412.6980.

[27] G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, and P. Perdikaris.
Machine learning in cardiovascular flows modeling: Predicting arterial blood pres-
sure from non-invasive 4D flow MRI data using physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering, 358:112623, 2020. doi:
10.1016/j.cma.2019.112623.

[28] D. K. Klein, M. Fernández, R. J. Martin, P. Neff, and O. Weeger. Polyconvex
anisotropic hyperelasticity with neural networks. Journal of the Mechanics and
Physics of Solids, 159:104703, 2022. doi: doi.org/10.1016/j.jmps.2021.10470
3.

[29] O. Kolb. Simulation and Optimization of Gas and Water Supply Networks. Dr.
Hut, München, 2011.

[30] A. S. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Charac-
terizing possible failure modes in physics-informed neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

[31] L. McClenny and U. Braga-Neto. Self-adaptive physics-informed neural networks
using a soft attention mechanism. In J. Lee, E. Darve, P. Kitanidis, M.W. Mahoney,
A. Karpatne, M.W. Farthing, and T. Hesser, editors, Proceedings of the AAAI
2021 Spring Symposium on Combining Artificial Intelligence and Machine Learn-
ing with Physical Sciences (Stanford, CA, USA), volume 2964 of CEUR Workshop
Proceedings, Aachen. CEUR-WS, 2021.

[32] P. L’Ecuyer. Randomized Quasi-Monte Carlo: An Introduction for Practitioners.
In A. B. Owen and P. W. Glynn, editors, Monte Carlo and Quasi-Monte Carlo
Methods, pages 29–52, Cham. Springer International Publishing, 2018.

[33] S. Lanthaler, R. Molinaro, P. Hadorn, and S. Mishra. Nonlinear Reconstruction for
Operator Learning of PDEs with Discontinuities. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023, 2023.

[34] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, 2002. doi: 10.1017/CBO97
80511791253.

[35] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear op-
erators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, Mar. 2021. doi: 10.1038/s42256-02
1-00302-5.

94

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/doi.org/10.1016/j.jmps.2021.104703
https://doi.org/doi.org/10.1016/j.jmps.2021.104703
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5

Bibliography

[36] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks:
a deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational Physics, 378:686–
707, 2019. doi: 10.1016/j.jcp.2018.10.045.

[37] R. Mojgani, M. Balajewicz, and P. Hassanzadeh. Kolmogorov n–width and La-
grangian physics-informed neural networks: A causality-conforming manifold for
convection-dominated PDEs. Computer Methods in Applied Mechanics and Engi-
neering, 404:115810, 2023. doi: 10.1016/j.cma.2022.115810.

[38] S. Mowlavi and S. Nabi. Optimal control of PDEs using physics-informed neural
networks. Journal of Computational Physics, 473:111731, 2023. doi: 10.1016/j.j
cp.2022.111731.

[39] O. Kolb, J. Lang, and P. Bales. An implicit box scheme for subsonic compressible
flow with dissipative source term. Numerical Algorithms, 53:293–307, 2010. doi:
10.1007/s11075-009-9287-y.

[40] J. A. A. Opschoor, P. C. Petersen, and C. Schwab. Deep ReLU networks and high-
order finite element methods. Analysis and Applications, 18(05):715–770, 2020.
doi: 10.1142/S0219530519410136.

[41] A. B. Owen. Latin Supercube Sampling for Very High-Dimensional Simulations.
ACM Trans. Model. Comput. Simul., 8(1):71–102, Jan. 1998. doi: 10.1145/2729
91.273010.

[42] A. B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.d
omains/mc/, 2013.

[43] A. B. Owen. On dropping the first sobol’ point, 2021. arXiv: 2008.08051. Preprint.

[44] P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. Mehrmann. Adaptive refine-
ment strategies for the simulation of gas flow in networks using a model hierarchy.
Electronic Transactions on Numerical Analysis, 48:97–113, 2018. doi: 10.1553/e
tna_vol48s97.

[45] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta
Numerica, 8:143–195, 1999. doi: 10.1017/S0962492900002919.

[46] A. F. Queiruga, N. B. Erichson, D. Taylor, and M. W. Mahoney. Continuous-in-
depth neural networks, 2020. arXiv: 2008.02389. Preprint.

[47] R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, and E.C. Cyr.
Thermodynamically consistent physics-informed neural networks for hyperbolic
systems. Journal of Computational Physics, 449:110754, 2021. doi: 10.1016/j.j
cp.2021.110754.

[48] F. M. Rohrhofer, S. Posch, C. Gößnitzer, and B. C. Geiger. Data vs. Physics:
The Apparent Pareto Front of Physics-Informed Neural Networks. IEEE Access,
11:86252–86261, 2023. doi: 10.1109/ACCESS.2023.3302892.

[49] S. Mishra and R. Molinaro. Estimates on the generalization error of physics-
informed neural networks for approximating PDEs. IMA Journal of Numerical
Analysis, 2022. doi: 10.1093/imanum/drab093.

95

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.cma.2022.115810
https://doi.org/10.1016/j.jcp.2022.111731
https://doi.org/10.1016/j.jcp.2022.111731
https://doi.org/10.1007/s11075-009-9287-y
https://doi.org/10.1142/S0219530519410136
https://doi.org/10.1145/272991.273010
https://doi.org/10.1145/272991.273010
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/
https://arxiv.org/abs/2008.08051
https://doi.org/10.1553/etna_vol48s97
https://doi.org/10.1553/etna_vol48s97
https://doi.org/10.1017/S0962492900002919
https://arxiv.org/abs/2008.02389
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.1109/ACCESS.2023.3302892
https://doi.org/10.1093/imanum/drab093

Bibliography

[50] S. Wang, Y. Teng, and P. Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Com-
puting, 43:A3055–A3081, 2021. doi: 10.1137/20M1318043.

[51] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038
/nature16961.

[52] M. Stein. Large Sample Properties of Simulations Using Latin Hypercube Sam-
pling. Technometrics, 29(2):143–151, 1987. doi: 10.1080/00401706.1987.10488
205.

[53] D. Steinkraus, I. Buck, and P. Simard. Using GPUs for machine learning algo-
rithms. In Eighth International Conference on Document Analysis and Recognition
(ICDAR’05), volume 2, pages 1115–1120, 2005. doi: 10.1109/ICDAR.2005.251.

[54] E. L. Strelow, A. Gerisch, J. Lang, and M. E. Pfetsch. Physics informed neural net-
works: a case study for gas transport problems. Journal of Computational Physics,
481:112041, 2023. doi: 10.1016/j.jcp.2023.112041.

[55] The Future of Hydrogen. Technical report, International Energy Agency, 2019.
url: https://www.iea.org/reports/the-future-of-hydrogen.

[56] The Role of Gas in Today’s Energy Transitions. Technical report, International
Energy Agency, 2019. url: https://www.iea.org/reports/the-role-of-gas-
in-todays-energy-transitions.

[57] A. Tooze. Welcome to the world of the polycrisis. Oct. 2022. url: https://www.f
t.com/content/498398e7-11b1-494b-9cd3-6d669dc3de33. Accessed: August
16, 2023.

[58] L. N. Trefethen. Computing numerically with functions instead of numbers. Com-
mun. ACM, 58(10):91–97, 2015. doi: 10.1145/2814847.

[59] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theorie, Ver-
fahren und Anwendungen. Vieweg+Teubner Verlag Wiesbaden, 2nd edition, Oct.
2009, page 311. doi: 10.1007/978-3-8348-9357-4.

[60] M. Ulbrich and S. Ulbrich. Nichtlineare Optimierung. Mathematik Kompakt. Birk-
häuser Basel, 1st edition, 2012. doi: 10.1007/978-3-0346-0654-7.

[61] R. van der Meer, C. Oosterlee, and A. Borovykh. Optimally weighted loss functions
for solving PDEs with Neural Networks. Journal of Computational and Applied
Mathematics, 405, 2022. doi: 10.1016/j.cam.2021.113887.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
doi: 10.5555/3295222.3295349.

96

https://doi.org/10.1137/20M1318043
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1109/ICDAR.2005.251
https://doi.org/10.1016/j.jcp.2023.112041
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions
https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions
https://www.ft.com/content/498398e7-11b1-494b-9cd3-6d669dc3de33
https://www.ft.com/content/498398e7-11b1-494b-9cd3-6d669dc3de33
https://doi.org/10.1145/2814847
https://doi.org/10.1007/978-3-8348-9357-4
https://doi.org/10.1007/978-3-0346-0654-7
https://doi.org/10.1016/j.cam.2021.113887
https://doi.org/10.5555/3295222.3295349

Bibliography

[63] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.
Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Har-
ris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[64] X. Jin, S. Cai, H. Li, and G.E. Karniadakis. NSFnets (Navier-Stokes flow nets):
physics-informed neural networks for the incompressible Navier-Stokes equations.
Journal of Computational Physics, 426:109951, 2021. doi: 10.1016/j.jcp.2020
.109951.

[65] Z. Mao, A.D. Jagtap, and G.E. Karniadakis. Physics-informed neural networks
for high-speed flows. Computer Methods in Applied Mechanics and Engineering,
360:112789, 2020. doi: 10.1016/j.cma.2019.112789.

[66] H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li. Improving deep neural networks
using softplus units. In 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–4, 2015. doi: 10.1109/IJCNN.2015.7280459.

97

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1109/IJCNN.2015.7280459

Wissenschaftlicher Werdegang

Erik Laurin Strelow

geboren am 18.2.1995 in Flörsheim am Main, Deutschland

2023 Promotion in Mathematik (Dr. rer. nat.)
Technische Universität Darmstadt

2020 – 2023 Mitglied im Sonderforschungsbereich Transregio 154
Mathematische Modellierung, Simulation und Optimierung
am Beispiel von Gasnetzwerken

2020 – 2023 (Hilfs-)Wissenschaftlicher Mitarbeiter in der AG
Numerik und Wissenschaftliches Rechnen
Fachbereich Mathematik, Technische Universität Darmstadt

2019 Master of Science Mathematik
Technische Universität Darmstadt

2017 Bachelor of Science Mathematik
Technische Universität Darmstadt

2013 Abitur
Schillerschule, Frankfurt am Main

Stipendien

2021 – 2022 Graduiertenschule Computational Engineering
Technische Universität Darmstadt

2020 – 2021 Sonderforschungsbereich Transregio 154

98

	Introduction
	Two exemplary problems
	Linear problem
	Exact solution

	Nonlinear problem

	Fundamentals of deep learning
	Designing neural networks
	Fully connected deep neural networks
	Hamiltonian-inspired neural networks.

	Training neural networks
	Adam Optimizer
	L-BFGS
	Initialization

	Automatic differentiation
	Implementation
	Numerical tests

	Physics-informed simulations
	Loss based on differential form
	Physics-informed neural networks
	Sampling strategies
	Loss balancing weighting

	Loss based on integral form
	Numerical Results

	Conclusion

	Physics-informed optimization
	Optimal control problems
	Direct approach
	Numerical tests

	Indirect approach
	Adjoint-based optimality conditions
	Physics-informed approach
	Numerical results

	Conclusion

	Conclusion
	Bibliography

