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Abstract

Light nuclei, that consist of only a few nucleons, are exciting testing grounds for our un-
derstanding of fundamental interactions. Bound by the residual strong interaction acting
between the quarks inside the protons and neutrons, these nuclei form interesting structures
such as condensed α clusters or halo nuclei that are challenging to describe by nuclear theory.
Over the last decades, ab initio nuclear structure calculations, that are rooted in quantum
chromodynamics, were improved significantly. Providing precise benchmark values for these
theories is essential to improve the precision of predictions on how nuclear matter emerges.
The isotopes of the light element carbon (C) are highly interesting cases to study as they exhibit
pronounced α clustering and are important contributors to the nucleosynthesis process in
stars. Additionally, C is at the limit of what is computationally possible using higher-order
nuclear structure calculations, and due to its unfavorable spectral properties, no experimental
high-precision spectroscopy data is available so far.
In this work, the differential nuclear charge radius of 12,13C is determined purely from results
of ab initio nonrelativistic quantum electrodynamics atomic structure calculations and high-
precision collinear laser spectroscopy measurements carried out at the Collinear Apparatus
for Laser Spectroscopy and Applied Science (COALA), located at the Institute for Nuclear
Physics at the Technical University Darmstadt. For this, first high-accuracy measurements
of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions in He-like 13C4+ were carried out and combined
with measurements in 12C4+ from preceding work. The C4+ isotopes in the metastable 3S1
state are produced in an electron beam ion source and are accessible with lasers operated
at a wavelength of 227.6nm. The fluorescence detection region (FDR) of COALA at these
deep-UV wavelengths was improved with a new lens-based FDR designed and built within this
work. The new segment provides an improved signal-to-noise ratio compared to the previous
mirror-based design. This considerably facilitated spectroscopy of the weakest transitions in
13C4+, which split into hyperfine structure (HFS). The effect of hyperfine-induced mixing on the
transition frequencies is investigated and benchmark values for atomic structure calculations
are provided. The new model-independent δ⟨r2⟩12,13 = −0.1245(66) fm2 is compared to results
from elastic electron scattering, muonic atom spectroscopy and ab initio nuclear structure
calculations. In combination with the existing experimental results for 12C, the absolute nuclear
charge radius of 13C is determined. An elaborate analysis of the fluorescence spectra and
potential systematic uncertainties is presented that is enabled by the new Python package qspec,
developed within this work for simulations and data analysis surrounding laser spectroscopy.
The package was extensively tested during beamtimes at GSI, CERN/ISOLDE and ANL where it
significantly contributed to decision-making processes by enabling a detailed live data analysis
and simulations. In addition to the analysis of 13C4+, an investigation of quantum interference
effects and optical-population transfer in the HFS of 87Sr+ is presented in the appendix.
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Zusammenfassung

Leichte Kerne, die nur aus wenigen Nukleonen bestehen, sind ausgezeichnete Objekte, um
unser Verständnis fundamentaler Wechselwirkungen zu überprüfen. Gebunden durch die
verbleibende starke Wechselwirkung, die zwischen den Quarks im Inneren der Protonen und
Neutronen wirkt, bilden diese Kerne interessante Strukturen wie kondensierte α-Gruppen (Clus-
ter) oder Halo-Kerne, deren kerntheoretische Beschreibung herausfordernd ist. In den letzten
Jahrzehnten wurden in der Quantenchromodynamik verwurzelte ab initio Kernstrukturberech-
nungen erheblich verbessert. Die Bereitstellung genauer Referenzwerte für diese Theorien
ist unerlässlich, um die Präzision von Vorhersagen über die Entstehung der Kernmaterie zu
verbessern. Die Isotope des leichten Elements Kohlenstoff (C) sind hochinteressant, da sie
ausgeprägte α-Cluster aufweisen und ein wichtiger Bestandteil des Nukleosyntheseprozesses in
Sternen sind. Darüber hinaus liegt C an der Grenze dessen, was mit Kernstrukturberechnungen
höherer Ordnung berechenbar ist, und aufgrund seiner ungünstigen spektralen Eigenschaften
sind bisher auch keine experimentellen hochpräzisen Spektroskopiedaten verfügbar.
In dieser Arbeit wird der differentielle Kernladungsradius von 12,13C rein aus Ergebnissen
von ab initio nichtrelativistischen quantenelektrodynamischen Atomstrukturrechnungen und
hochpräzisen kollinearen Laserspektroskopie-Messungen bestimmt, die an der Kollinearen
Apparatur für Laserspektroskopie und Angewandte Wissenschaft (KOALA) am Institut für
Kernphysik der Technischen Universität Darmstadt durchgeführt wurden. Dazu wurden erst-
mals hochgenaue Messungen der 1s2s 3S1 → 1s2p 3P0,1,2 Übergänge in He-ähnlichem 13C4+

durchgeführt und mit Messungen in 12C4+ aus einer vorangegangenen Arbeit kombiniert. Die
C4+-Isotope im metastabilen 3S1-Zustand werden in einer Elektronenstrahl-Ionenquelle erzeugt
und sind mit Lasern zugänglich, die bei einer Wellenlänge von 227,6nm betrieben werden. Die
Fluoreszenzdetektionsregion (FDR) von KOALA wurde mit einer neuen linsenbasierten FDR
verbessert, die im Rahmen dieser Arbeit entwickelt und gebaut wurde. Das neue Segment bietet
ein verbessertes Signal-zu-Rausch-Verhältnis im Vergleich zu dem früheren spiegelbasierten
Design. Dies erleichterte die Spektroskopie der schwächsten Übergänge in 13C4+, die sich
durch die Hyperfeinstruktur aufspalten, erheblich. Die Auswirkung der hyperfein-induzierten
Mischung auf die Übergangsfrequenzen wird untersucht und es werden Referenzwerte für Atom-
strukturberechnungen angegeben. Der neue modellunabhängige δ⟨r2⟩12,13 = −0,1245(66) fm2

wird mit Ergebnissen aus elastischer Elektronenstreuung, Spektroskopie myonischer Atome
und ab initio Kernstrukturrechnungen verglichen. In Kombination mit den vorhandenen exper-
imentellen Ergebnissen für 12C wird der absolute Kernladungsradius von 13C bestimmt. Die
ausführliche Analyse der Fluoreszenzspektren und möglicher systematischer Unsicherheiten
wurde durch das neue Python-Paket qspec ermöglicht, das im Rahmen dieser Arbeit für Simula-
tionen und Datenanalyse rund um die Laserspektroskopie entwickelt wurde. Das Paket wurde
ausgiebig während mehrerer Strahlzeiten an GSI, CERN/ISOLDE und ANL getestet, wo es durch
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eine detaillierte Live-Datenanalyse und Simulationen wesentlich zu Entscheidungsprozessen
beitrug. Neben der Analyse von 13C4+ wird als Ergänzung noch eine Untersuchung von Quan-
teninterferenzeffekten und optischem Populationstransfer in der Hyperfeinstruktur von 87Sr+
im Anhang dieser Arbeit vorgestellt.
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1 Introduction

The description of nuclear structure beyond a point-like core got accelerated by the development
of the nuclear shell model in 1949, for which Maria Goeppert Mayer and Hans D. Jensen
together got awarded half of the physics Nobel Price in 1963 [1, 2]. From here, a golden-age
of nuclear physics started that set forth the fundamental understanding of matter we use today.
Already in the 1960s, the standard model of particle physics was developed and finalized
only ten years later after the experimental discovery of the quarks [3, 4]. Calculations in
the framework of the underlying theory of quantum chromodynamics (QCD) are extremely
challenging and as of today, a prediction of multi-nucleon structures to meaningful precision
require some form of effective theory, such as chiral effective field theory [5, 6]. In this ab
initio theory, the interaction between the nucleons is expanded in a series of fundamental
interactions that are ordered based on their importance. Different approaches were developed
in the last decades that are able to predict nuclear electromagnetic moments and radii up to
mass number A ∼ 80 from first principle [7, 8]. These predictions need to be validated by
experiments. Ever since the 1980s, collinear laser spectroscopy (CLS) has been proven to be
a powerful method to determine nuclear properties across the entire nuclear chart [9–13].
The most common application is the determination of nuclear electromagnetic moments and
differential mean-square charge radii

δ⟨r2⟩A,A′
:= ⟨r2⟩A

′
− ⟨r2⟩A (1.1)

from hyperfine structure spectra and isotope shift measurements, respectively. The lightest el-
ements and their isotopes are particularly interesting cases to study. Due to their small amount
of protons and neutrons, adding or removing a nucleon can lead to drastic structural changes.
One interesting structure is the appearance of α clusters that can be observed throughout the
light elements [14–21]. The transition between the independent particle shell model and a
cluster-like structure can be understood by increasing multinucleon correlations due to residual
short-range interactions. The strongly bound nucleus of 12C is thought to be a cluster and
mean-field coexisting system dominated by a p3/2 subshell-closed configuration with significant
admixture of a 3α cluster component [22–25]. The additional neutron in 13C creates a covalent
bond between the 3α cluster [18]. Several experimental approaches are actively pursued to
uncover the complex structures of C isotopes [26]. In 12C, direct detection of decay products
from excited cluster states is used to gain information about the decaying state [27, 28], such
as the excited Hoyle 0+ state that is expected to play a major role in the nucleosynthesis
process in stars [29]. In 13C, elastic and inelastic scattering processes and nuclear (transfer)
reactions are utilized to populate cluster states [30–33]. In these experiments, mainly energies
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and decay properties of excited states are determined. Complementary to these, an accurate
determination of the nuclear charge radius of 13C relative to 12C provides information on the
structural change when compared with nuclear structure calculations. For 12C, already several
results from elastic electron scattering (e−-scattering) [34–37] and muonic atom spectroscopy
(µ-atoms) [38, 39] exist. However, for 13C, only a single e−-scattering [40] but comparable
µ-atoms results [38, 41] are available. Both methods are model-dependent. In combination
with ab initio atomic structure calculations, CLS can provide a model-independent result that
not only serves as a benchmark value for theory but also for the other available experimental
methods.
Another interesting structure in light nuclei are nucleon-halos, where one or two nucleons are
well separated from the remaining core [42]. For example, in lithium, the size of the nucleus
continuously decreases in 6−9Li with the addition of neutrons. Adding another neutron yields
the unbound 10Li, while adding two neutrons results in 11Li which exists as a 9Li core with
a two-neutron halo [19, 43–47]. In beryllium, single- and two-neutron halos are present in
11Be and 14Be, respectively [20, 48–53]. In contrast to the more common neutron-rich halo
nuclei, the neutron-deficient isotope 8B is expected to consist of a 7Be core and a proton-halo
[54–60]. However, the existence of a proton-halo in 8B, which has not been found in any other
element so far, has yet to be confirmed with a precise direct measurement of the nuclear charge
radius. This work is part of the endeavor to establish the nuclear charge radius of 8B using
CLS. By combining high-precision CLS measurements with ab-initio nonrelativistic quantum
electrodynamics (NRQED) calculations in helium-like 10,11B3+, absolute reference radii can
be determined that are so far not available to the required precision from e−-scattering or
µ-atoms. The proton-halo would then be confirmed by determining the radius of 8B relative to
the references and the already known radius of 7Be.
As a first test of this combined experimental and theoretical approach, previously the well-known
nuclear charge radius of 12C was determined from measurements of the 1s2s 3S1 → 1s2p 3P0,1,2
transition frequencies at the Collinear Apparatus for Laser Spectroscopy and Applied Science
(COALA) [61, 62] in combination with NRQED calculations up to the order mα7 [63–65].
While the uncertainty of the absolute nuclear charge radius of 12C extracted from this approach
is currently limited by the theoretical precision, which is two orders of magnitude lower than
the experimental precision, the fine-structure splittings of the 3P0,1,2 states serve as valuable
benchmark values for theory. These can be used to identify the leading order terms in the
next higher order mα8 that are needed to further improve the theoretical precision. With
the expected improvements and the increased precision due to the lower Z, in 10,11B3+, the
available theoretical precision would meet the requirements to identify the halo character of 8B.
However, the nonzero nuclear spins of 10,11B constitute an additional challenge. The hyperfine
structure in light helium-like systems is modulated by hyperfine-induced mixing, which shifts
the center-of-gravity frequencies of the individual 3S1 → 3PJ transitions. With a nuclear spin
of 1/2, 13C4+ is an ideal system to systematically investigate these shifts. When results from
NRQED are available for 10,11B3+, the underlying calculations must simultaneously reproduce
the experimental results for 12,13C4+.

In this work, measurements of the 1s2s 3S1 → 1s2p 3P0,1,2 transition frequencies of 13C4+,
produced with an electron beam ion source (EBIS) at COALA, are presented. The transition
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frequencies are used to determine the isotope shift of 12,13C4+ using the previous results for
12C4+ from [64]. In combination with NRQED calculations, δ⟨r2⟩12,13 is determined and com-
pared to existing values from e−-scattering and µ-atoms as well as new theoretical values that
were provided by M. Heinz et. al. In combination with the precisely known charge radius of
12C, the differential radius determined within this work is used to derive an improved absolute
radius for 13C that can also be compared to literature. The essential experimental results that
enable the precise determination of the nuclear charge radius are the absolute frequencies of
the nine transitions between the hyperfine structure states of 13C4+. Therefore, great emphasis
was placed on an accurate description of the absolute frequency determination and potential
systematic errors. For example, in light systems with transitions in the laser-accessible UV-
regime, the influence of photon recoils can be large, as the velocity change of a light system
upon a single photon absorption is large [20, 64]. An accurate treatment of the laser-atom
interactions enables a thorough analysis of systematic uncertainties that ideally are neither
under- nor overestimated.
Within this work, the Python package qspec was developed that provides a module to simu-
late interactions of an atom with classical lasers. Here, it was used to accurately estimate
uncertainties originating from photon recoils and the Zeeman effect. Additionally, the de-
scription of time-evolved quantum interference (QI) effects was tested using measurements
of the 5s 2S1/2 → 5p 2P3/2 transition in 87Sr+. Fits of fluorescence spectra were carried out
with a modular system of lineshape models that is also included in qspec. The module can be
compared to the well-established satlas2 package that is used by laser spectroscopy groups at
KU Leuven, CERN/ISOLDE and JYVL [66, 67], but provides additional models, features and a
performance boost.
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2 Theoretical background

This chapter aims to provide the theoretical background required for this work. An introduction
to nuclear and atomic structure theory, the interaction between light and matter and the
experimental method of collinear laser spectroscopy is given.

2.1 Nuclear structure

Nuclear structure refers to the formation of a nucleus from its constituents, the protons and
neutrons and to some extend their constituents, the quarks. This section provides an overview
of the nuclear structure of 12,13C especially and chiral effective field theory and the in-medium
similarity renormalization group in general, which is a state-of-the-art framework for ab initio
nuclear structure calculations.

2.1.1 Nuclear structure of 12,13C

Carbon is the family of nuclei which have six protons. The isotopic chain of carbon contains
two stable isotopes, 12C and 13C, which have six and seven neutrons, respectively. Some basic
properties of the 12,13C nuclei are listed in Tab. 2.1. In the nuclear shell-model picture, the
protons and six of the neutrons each occupy the two 1s1/2 states of the s-shell and the four
1p3/2 states of the p-shell. The extra neutron of 13C then occupies a 1p1/2 state, resulting in
a nuclear spin of I = 1/2. Due to the unpaired neutron, 13C has a smaller binding energy
per nucleon than 12C that in turn is strongly bound due to the closed 1p3/2 neutron subshell.
Directly produced from the 3α fusion process, the occurrence of 12C in nature is favored with a
natural abundance of 98.94(6)% [68]. The nuclear charge radius of the stronger bound 12C is
larger than that of 13C [34–41]. This behavior also can be observed in other light nuclei such
as Li [19], Be [20] or B [21] and can be explained with the formation of clusters of nucleons,
predominantly α-cluster consisting of two protons and two neutrons. Adding neutrons to an
existing cluster structure increases the binding strength between the clusters while the total
binding energy per nucleon decreases. Hence, 12,13C may be explained by three α-clusters
that are bound together [22–25]. In reality, any system will not purely exhibit a cluster
structure or an idealized shell model configuration but be a mixture of different structures.
This superposition of fundamentally different structures makes these systems computationally
challenging and, therefore, interesting cases for benchmarking nuclear structure calculations
which will be elucidated in the following.
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Table 2.1: Basic nuclear properties of 12,13C.

Property 12C 13C Reference

Natural abundance (%) 98.94 (6) 1.06 (6) [68]
Mass (u) 12 13.003 354 835 34 (25) [69]
Binding energy per nucleon (MeV) 7.680 145 (5) 7.469 850 (5) [69]
Nuclear spin 0 1/2− [70]
Nuclear magnetic moment (µN) 0 0.702 369 (4) [70]
Nuclear g-factor 0 1.404 738 (8) [70]
Proton shell configuration 1s21/2 1p

4
3/2 1s21/2 1p

4
3/2

Neutron shell configuration 1s21/2 1p
4
3/2 1s21/2 1p

4
3/2 1p1/2

2.1.2 Chiral effective field theory

This section gives an overview over the framework of chiral effective field theory (EFT) and the
in-medium similarity renormalization group (IMSRG) approach that was used to determine
the theoretical nuclear charge radii presented in this work. The theoretical description and the
used naming conventions are based on [6, 71, 72]. For a more detailed overview, please refer
to these articles. To motivate the use of chiral EFT, a short summary of other methods is given
first.

Status of other methods

The formation of nuclei is governed by the strong interaction and the electromagnetic force
acting between the charged protons. Therefore, a true ab initio description of nuclear struc-
ture needs to be derived from the description of the quark-gluon dynamics. The theoretical
framework for this is quantum chromodynamics (QCD) [6]. Finding solutions for systems of
light quarks at low energies (E ≪ 1GeV), as applicable in the case of neutrons and protons,
is computationally challenging due to the running of the coupling constant of the strong
interaction αS. The perturbative approach, ordering contributions to the solution based on
their importance using a power series in αS fails since the coupling constant is of the order of
one at this energy scale. The state-of-the-art non-perturbative approach to solve these “strong
QCD” problems is Lattice QCD. It was successful in predicting the mass of several light hadrons
[73]. Recently, the determination of nuclear charge radii of light nuclei came in reach using a
new method called wave function matching, that makes use of the framework of chiral EFT
[74, 75].
Any nuclear structure theory can make use of the fact that the inner structures of the protons
and neutrons are not resolved at low energies. The inner degrees of freedom are “frozen”
and the dynamics are governed only by the interaction of the colorless hadrons. In classical
approaches, phenomenological two-body potentials, such as the Argonne v18 potential, are
used to describe the nucleon-nucleon dynamics [76, 77]. However, these approaches have
difficulties in including necessary (n ≥ 3)-body interactions since there is no experimental
data to fix the respective model parameters. An example of an extension to the Argonne v18
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potential is the Illinois-7 potential [78]. Although these approaches are successful in predicting
binding energies in light nuclei up to A = 12, the results are model-dependent and it is difficult
to specify theoretical uncertainties. Moreover, the underlying fundamental symmetries of QCD
must be included explicitly, as there is no direct connection to QCD [71].

Derivation of the theory

Chiral EFT is directly derived from the QCD Lagrangian and, hence, inherently maintains
the chiral and gauge symmetries of QCD. Contributions to free-space nucleon interactions
are ordered based on importance in a power counting expansion [71] and combined to build
nuclear systems. Therefore, it is an ab initio theory in the sense that it is directly founded
in QCD and does not start out with a certain model potential but with the fundamental
interactions that produce the many-body potentials. In the following, the fundamentals of
QCD are introduced.

QCD symmetries QCD describes the dynamics of quarks, i.e., the elementary constituents
of the proton and the neutron. There are six so-called flavors of quarks that can be split into
two sets of three depending on whether their charge is positive or negative. The first set has
charge 2/3 in units of the elementary charge e and includes the up, charm and top quarks (u, c,
t), the second set has charge −1/3 and includes the down, strange and bottom quarks (d, s, b).
All quarks are spin-1/2 particles. The strong interaction acts between the quarks which have a
so-called color charge that can take three different values: red, green and blue. Quarks only
appear in bound states with other quarks such that the bound system is colorless. This can
either be a combination of all three colors or a pair of a color and its anticolor (negative color
charge). This phenomenon is called confinement. The strong interaction between the color
charges is described by a local non-abelian gauge symmetry SU(3)color. Consequently, there
are eight gauge bosons, the gluons, corresponding to the eight generators of SU(3)color that
mediate the force between the quarks. The QCD lagrangian can be written as [71]

LQCD = − 1

2g2
Tr(Ga

µνG
µν
a ) + q̄iiγµ(Dµ)ijq

j − q̄iMqi = L0
QCD − q̄Mq, (2.1)

where G is the gluon field strength tensor with a indexing the eight gluons and µ and
ν indexing space-time, g is the gauge coupling constant, qi are the quark fields qTi (x) =
(ui(x), di(x), ci(x), ...)with color 3-index i,Dµ is the gauge covariant derivative that couples the
quark fields to the gluon field, γµ are the Dirac matrices and M is the mass tensor defining the
masses of the quarks. The Einstein summation notation is applied in all indexes. The colorless
protons and neutrons only consist of the two lightest quarks (u, d) which have masses 2.2 and
4.7MeV/c2 [79]. Taking only these two into consideration such that qTi (x) = (ui(x), di(x))
and setting their masses to zero since mu/d ≪ 1GeV, the QCD Lagrangian is given by the
mass-independent L0

QCD. This Lagrangian obeys an additional symmetry. The two quarks are
identical with respect to the strong interaction. Hence, for both chiralities I ∈ {L,R}, there
exists an independent set SU(2)I of unitary transformations whose generators can be used to
define conserved axial (A = L−R) and vector (V = L+R) currents [71]
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Aµ
k = q̄γµγ5

σk

2
q, V µ

k = q̄γµσk

2
q, (2.2)

where σk are the Pauli-matrices, the generators of SU(2). This is called chiral symmetry. In
reality, the quarks are not massless. Hence, chiral symmetry is only an approximation and
the axial and vector currents are not conserved. A consequence of the explicitly broken chiral
symmetry is the existence of light Goldstone bosons [71, 80, 81]. The number of these bosons
is equal to the number of generators of the corresponding broken symmetry group SU(2) and
can be identified as the three pions |π−⟩ = |dū⟩, |π+⟩ = |ud̄⟩ and |π0⟩ = 1√

2
(|uū⟩ − |dd̄⟩). The

pions are crucial in explaining the attractive force between the colorless nucleons. Single pion
exchange is responsible for the long-range behavior of the nucleon-nucleon (NN) interaction
and two-pion exchange is the main contribution to the intermediate range attractive force
(∼ 0.9 fm) [71]. A strong repulsive behavior between nucleons at small distances (≲ 0.7 fm) is
a consequence of the spin-spin interaction of the quarks [82, 83].

Power counting expansion An effective field theory (EFT) can be build based on these
fundamental interactions. Contributions to the full Lagrangian are ordered based on importance
in a power counting expansion in Ω/Λχ with leading order (LO) Ω0/Λ0

χ. Here, Ω is the
energy scale of the system defined by the momenta of the nucleons and Λχ is the energy
above which additional degrees of freedom are resolved. The breakdown energy Λχ is directly
associated with themass of the lightest particle or field excitation that is not explicitly considered
in the EFT. For example, in pion-less perturbative EFT, where no particles are considered
other than the nucleons, only contact interactions contribute and the breakdown energy is
Λχ = mπc

2 ≈ 140MeV [79], implicating the condition Q ≪ mπc
2. In so-called pion-full chiral

EFT, there are two contributions to the LO of the power counting expansion: The contact
interaction and the single pion exchange. The breakdown energy becomes the mass of the
next heavier particles, the σ-meson [72] and hence, Λχ = mσc

2 ≈ 500MeV [79]. There was a
long standing controversy about the existence of the σ-meson which is believed to be rather a
two-pion molecule than a classical quark-antiquark pair [84, 85]. However, its existence is
confirmed now and its name was changed to f0(500). The considered energies in pion-full EFT
are of the order of the pion mass Q ≈ mπc

2. It must be ensured that Q is well below the energy
of ∆ resonances E∆ − Ep/n ≈ 300MeV. Otherwise, these also need to be considered explicitly
[72, 86]. The Lagrangians of the LO in pion-full chiral EFT can be found in [71] and will not be
discussed here. The next-to-leading-order (NLO) terms are of the order of Ω2/Λ2

χ and include
two-pion exchanges and higher order contact interactions. Note that there are no contributions
of the order of Ω/Λχ due to the parity invariance of the strong interaction, as only terms linear
in the particle momenta contribute. At the next-to-next-to-leading-order (N2LO), in addition
to the two-body interactions, also three-body interactions need to be considered. This is a
consequence of treating the nucleons as point-like particles, which are actually extended bodies
distorted in the proximity of other nucleons [6, 71]. The mathematical expressions of the
individual contributions are directly linked to Feynman diagrams. In Tab. 2.2, a collection of the
Feynman diagrams contributing to the power counting expansion is shown for two-body and
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three-body interactions up to N3LO. Higher order terms up to N4LO and four-body interactions
are already developed and considered, e.g., in [6, 71]. The contact interaction contributions
depend on free coupling parameters which need to be derived from QCD or experimental
results from two-nucleon scattering or deuteron properties [6].

Table 2.2: Selection of Feynman diagrams of the power counting expansion. The numbers
next to the diagrams specify the amount of free parameters that need to be added
at the given order. The three dots below indicate that there are more than the
drawn diagrams. The missing columns in N2LO indicate that there are no new loop
and contact interaction diagrams at this order. Vertices of dimension ∆ = 0, 1, 2
and 4 are drawn as dots, circles, squares and diamonds, respectively. The table is
adapted from those found in [6, 71].

NN 3N

LO
O(Q0/Λ0

χ)

2

NLO
O(Q2/Λ2

χ)

7

N2LO
O(Q3/Λ3

χ)

0 2

N3LO
O(Q4/Λ4

χ)

12 0

Renormalization The Lagrangians associated with the contact-interaction and loop diagrams
in Tab. 2.2 generally include infinities. For large momentum transfers q in contact interactions,
higher order terms become indistinguishable from the LO contact interaction due to the
shorter duration of the dynamics, in accordance with the uncertainty principle ∆E∆t ≳ h̄

2 .
Consequently, infinitely many higher order terms would have to be considered as q → ∞. To
regularize the theory, a cutoff-momentum Λ is introduced that defines an upper bound to the
momentum transfer. Since ∆p∆x ≳ h̄

2 , this cutoff defines the minimum size of structures that
can be resolved with the EFT and may therefore alternatively be called the resolution scale.
This introduces a new issue: Physical results should not depend on the artificially defined
resolution. To get rid of this dependence, the EFT is renormalized by making the coupling
parameters dependent on the resolution scale Λ. The coupling constants become “running
couplings”. The differential equation that can be derived for Λ are called renormalization
group (RG) equations and in general can be written as [87]

Λ
dCi

dΛ
(Λ) = β(Ci(Λ)), (2.3)
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with the coupling parameter Ci and a function β that defines the running of the coupling.

2.1.3 In-medium similarity renormalization group

The idea of the similarity renormalization group (SRG) is to decouple low-energy from high-
energy states while renormalizing all operators and keeping low-energy observables unchanged
to improve the convergence of many-body calculations [6, 88]. This is achieved by applying a
unitary transformation U(s) to all operators such that [6]

H(s) = U(s)HU †(s) ≡ Trel + VNN(s) + V3N(s), (2.4)

where Trel is the relative kinetic energy of the system and VNN(s) and V3N(s) are the trans-
formed two-body and three-body potentials constructed from the respective diagrams in Tab. 2.2
that now depend on a flow parameter s. The derivative of Eq. (2.4) with respect to s is the
flow equation [6]

dH(s)

ds
=

dVNN(s)

ds
+

dV3N(s)

ds
= [η(s),H(s)], η(s) =

dU(s)

ds
U †(s) = −η†(s). (2.5)

with the commutator [a, b] = ab− ba. Here, n-body interactions only enter the n-body part
of the flow equation. In this free-space SRG approach, the evolution of the NN interactions
with s is completely determined by the free-space solution of Eq. (2.5) and remains valid for
all nuclei [89]. However, the computational cost of this method increases exponentially with
the mass number A, as the Hamiltonian needs to be represented in a Jacobi or single-particle
basis [90].
The in-medium similarity renormalization group (IMSRG) solves this problem by normal-
ordering the Hamiltonian with respect to a reference state |Φ⟩. The transformed Hamiltonian
is then usually written as [90, 91]

H(s) = E(s) + f(s) + Γ(s) +W (s) +O(4-body operators), (2.6)

where E(s) = ⟨Φ|H(s)|Φ⟩, and f(s), Γ(s) and W (s) are the normal-ordered one- to three-
body contributions. The normal-ordered Hamiltonian describes the residual interaction beyond
the expectation value of the trivial reference state. Here, free-space 3N interactions already
enter the zero-body in-medium contribution E(s) [91]. Solving the flow equation, brings
H(s → ∞) into a block-diagonal form such that the eigen energy E(s → ∞) of |Φ⟩ becomes
the correlated energy that includes the admixture of all considered particle-hole excitation
states.
The mean-square nuclear charge radius of a system in the reference state is derived by deter-
mining the expectation value of the proton radius operator [91, 92]
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R2
p =

1

Z

A∑︂
i=1

(ri −R)2Pp(i), R =
1

A

A∑︂
i=1

ri, Pp(i) =

{︄
1 if proton
0 else

(2.7)

where R is the center-of-mass coordinate of the nucleus, Pp(i) is a projection operator for
the ith nucleon, Z is the number of protons and A the number of nucleons. The charge radius
is determined by considering additional corrections through [93]

RC =

√︄
⟨R2

p⟩+ ⟨r2p⟩+
N

Z
⟨r2n⟩+

3h̄2

4m2
pc

2
+ ⟨r2⟩so, (2.8)

where ⟨r2p⟩ = 0.8770 fm2 and ⟨r2n⟩ = −0.1149 fm2 are the proton and neutron mean-square
charge radii, 3h̄2/(4m2

pc
2) = 0.033 fm2 is the relativistic Darwin-Foldy correction, ⟨r2⟩so is a

spin-orbit correction and N is the number of neutrons. The proton radius is the older larger
value that was questioned by the proton radius puzzle [94, 95] and got replaced by a smaller
value in the latest review of particle physics [79]. The spin-orbit correction depends on the
nucleus and is especially relevant for halo nuclei [96]. The wavefunctions in position space
required to compute RC are linear combinations of perturbatively constructed natural orbitals.
For details see [92].

2.2 Atomic structure

In order to gain information about the nuclear structure of an atom via laser spectroscopy, a
precise quantitative description of the atomic structure is required. In the following sections,
the properties of 13C4+ and the atomic structure theory required for the analysis presented in
this work are described. All energy values in the following sections are given either as energies
in eV, vacuum wavelengths in nm or transition frequencies in MHz or GHz, depending on their
order of magnitude.

2.2.1 Atomic structure of C4+

In helium-like systems, the nucleus and two negatively charged electrons form a three-body
system. The two electrons, being spin-1/2 particles, are coupled to either have a total spin of
S = 0 (singlet) or S = 1 (triplet). Since radiative transitions between these two couplings are
strongly suppressed due to their insensitivity to the electric component of electro-magnetic
waves, they can be viewed as two separate systems. The level scheme of helium-like systems
in general and C4+ in particular is shown in Fig. 2.1.

In C4+, the transition into the first excited state 1s2p 1P1 with a transition energy of E =
308 eV corresponding to a transition wavelength of λ = 4.0nm [97] and a natural linewidth
of ∆ν = 141GHz is far out of reach for high-precision laser spectroscopy. However, as a
consequence of the Pauli exclusion principle, the lowest-lying triplet state is already the
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3/2

1/2

3/2

1/2

3/2

1/2

3/2
5/2

S=0 S=1

E = 308 eV, λ = 4.0 nm
𝜏 = 1.1 ps, Δ𝜈 = 141 GHz

E = 299 eV, λ = 4.1 nm
𝜏 = 21 ms, Δ𝜈 = 7.7 Hz E = 5.45 eV, λ = 227.6 nm

𝜏 = 18 ns, Δ𝜈 = 9.0 MHz

12C4+ 13C4+ 12C4+ 13C4+F
F

Figure 2.1: Level scheme of the lowest states in helium-like 12,13C4+ relevant for this work.
The hyperfine structure splittings of the triplet states relative to each other are
to scale based on the results of this work. The fine-structure energies are not to
scale. Energies E, corresponding transition wavelength λ, mean lifetimes τ and
natural transition linewidth ∆ν are indicated.

1s2s 3S1 state. This metastable state lies 299 eV (4.1nm) above the ground state of the singlet
system, into which it decays via a magnetic dipole transition with a mean lifetime of τ = 21ms
[97]. This high-lying metastable state enables addressing C4+ with optical frequencies by
exciting the electron from the 2s shell into the 2p shell of the triplet system. The wavelengths
of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions are in the UV-regime between 227.2nm and 227.9nm
and have natural linewidths of only 9.0MHz [97].
In 13C4+, the electronic states split into additional states due to the magnetic interaction of the
electrons with the spin-1/2 nucleus. Therefore, the three available transitions in 12C4+ become
nine transitions in 13C4+. The splittings of the transitions are of the order of 50GHz. Since
it is the goal of this work to extract the difference of the nuclear charge radii of 12C and 13C,
the additional energy shift due to the hyperfine structure in 13C4+ needs to be determined to
extract the shift caused purely by the electrostatic change of the potential inside the nucleus.

2.2.2 Hyperfine structure

In this work, hyperfine structure (HFS) refers to the splitting of atomic energy levels arising
due to the electro-magnetic moments of the nucleus of dipole or higher order. The derivation
of the hyperfine structure formulas is based on the formulas and notations used in [98–100].
The interaction Hamiltonian of the hyperfine structure can be written as [98–100]

12



HHFS =
∑︂
k≥1

[︂
M (k) ⊗ T (k)

]︂(0)
0

≡
∑︂
k≥1

M (k) · T (k) ≡
∑︂
k≥1

k∑︂
λ=−k

(−1)λM
(k)
−λ · T (k)

λ , (2.9)

where M (k) and T (k) are irreducible tensor operators of rank k in the nuclear and elec-
tronic space, respectively. Let the states of the atomic system be denoted by the state vector
|αI, γJ ;FM⟩ where I, J and F are the nuclear spin, the total electronic angular momentum
and the total angular momentum of the complete system, respectively. α as well as γ are
tuples of the remaining quantum numbers required to uniquely identify the quantum states.
By applying the Wigner-Eckart theorem multiple times, the geometrical part of HHFS can be
calculated to separate the nuclear from the electronic system. Using Eq. (C.1) and (2.105)
from [98], results in

⟨αI, γJ ;Fm|HHFS|α′I ′, γ′J ′;F ′m′⟩

=
∑︂
k≥1

(−1)F−m

(︃
F 0 F ′

−m 0 m′

)︃
⟨αI, γJ ;F ||M (k) · T (k)||α′I ′, γ′J ′;F ′⟩ (2.10)

=
∑︂
k≥1

(−1)I
′+J+F

{︃
I J F
J ′ I ′ k

}︃
⟨αI||M (k)||α′I ′⟩ ⟨γJ ||T (k)||γ′J ′⟩ δFF ′δmm′ , (2.11)

where (:::) and {:::} are the Wigner-3j and -6j symbols and reduced matrix elements are
denoted by ⟨·|| · ||·⟩. For the atomic systems treated in this work, the off-diagonal elements of
M (k) can be neglected such that I = I ′. However, in 13C4+, the off-diagonal elements of T (k)

give rise to hyperfine-induced mixing.
Due to the parity-conserving nature of the strong nuclear and the electromagnetic force which
are, to very good approximation, the main contributors to the nuclear structure, the odd electric
and the even magnetic moments in Eq. (2.11) vanish in the laboratory frame. Note that there
is an ongoing effort to probe magnetic quadrupole moments in octupole-deformed nuclei in
which the contribution of parity-violating forces such as the weak interaction but also possible
“beyond-the Standard Model” forces are enhanced due to energetically close lying states with
opposite parity and equal spin [101, 102].
In most measurements of electronic transitions, the multipole expansion can be limited to the
magnetic dipole (k = 1) and electric quadrupole (k = 2) order due to experimental precision.
In 13C4+, the k = 2 term completely vanishes due to the rotational symmetry of the spin-1/2
nucleus. Defining the nuclear magnetic dipole and spectroscopic electric quadrupole moments
as

µI := ⟨αI(mI = I)|M (1)
0 |αII⟩ , eQ

2
:= ⟨αII|M (2)

0 |αII⟩ , (2.12)

allows to express Eq. (2.11), again by using the Wigner-Eckart theorem, as

13



⟨αI, γJ ;Fm|Hk≤2
HFS |αI, γ

′J ′;Fm⟩

= (−1)I+J+F

{︃
I J F
J ′ I 1

}︃√︃
(2I + 1)(I + 1)

I
µI ⟨γJ ||T (1)||γ′J ′⟩

+ (−1)I+J+F

{︃
I J F
J ′ I 2

}︃√︄
(2I + 3)(I + 1)

I(2I − 1)

eQ

2
⟨γJ ||T (2)||γ′J ′⟩ . (2.13)

What remains to be specified in more detail are the matrix elements of the electronic tensor
operators T (k). If the off-diagonal elements can be neglected, Eq. (2.13) can be rewritten into
a simpler expression. By defining the hyperfine structure constants [100]

A :=
µI ⟨γJJ |T (1)

0 |γ′JJ⟩
IJ

=
µIBe
IJ

(2.14)

B := 2eQ ⟨γJJ |T (2)
0 |γ′JJ⟩ = eQ

∂2Ve
∂z2

, (2.15)

where Be and ∂2Ve/∂z
2 are the expectation values of the magnetic flux density and the

curvature of the electrostatic potential of the electrons at the nucleus, respectively. The
eigenvalues of HHFS are given by [100]

Ek≤2
HFS = A

K

2
+B

3
4K(K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (2.16)

K := F (F + 1)− I(I + 1)− J(J + 1). (2.17)

If the off-diagonal elements ⟨γJ ||T (k)||γ′J ′⟩ need to be considered, the complete Hamiltonian
H = H0 +HHFS needs to be diagonalized, i.e., the eigenvalue equations [99]

EF
γJC

F
γJ = EγJC

F
γJ +

F+I∑︂
γ′J ′

J ′=F−I

⟨αI, γJ ;Fm|HHFS|αI, γ′J ′;Fm⟩CF
γ′J ′ (2.18)

must be solved. Here, EγJ are the eigenvalues of the fine-structure Hamiltonian H0 which
is independent of the quantum number F and CF

γJ are the components of the eigenvectors.
Equation (2.18) cannot be parameterized and fitted to spectroscopy data without using input
from atomic theory. A list of the matrix elements of T (1) of the 1s2p 3P0,1,2 and 1P1 states in
helium-like systems is given in [99]. The values for 13C4+, used in this work, are listed in
Tab. 2.3. For the calculations, Johnson et al. used relativistic configuration-interaction wave
functions including contributions from Coulomb and Breit-Rabi interactions. The nuclear
moments can be found, e.g., in [70]. For 13C, a nuclear magnetic moment of 0.702369(4)µN is
specified.
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Table 2.3: Values of the matrix elements ⟨γJ ||T (1)||γ′J ′⟩ ≡
⟨(2S + 1)J ||T (1)||(2S′ + 1)J ′⟩ for the 1s2p 3P0,1,2 and 1P1 states
in 13C4+ taken from [99]. All values are given in units of
e2

4πε0
1

4πa20

1
mpc

= 13 074.70MHz, where mp is the proton mass
and a0 the Bohr radius.

T (1) ||30⟩ ||31⟩ ||32⟩ ||11⟩

⟨30|| 0 2.8606 0 −2.0372
⟨31|| 2.8606 2.7045 3.2263 −3.6508
⟨32|| 0 3.2263 5.8064 4.6926
⟨11|| −2.0372 −3.6508 4.6926 0.050184

2.2.3 Zeeman effect

For a given quantum number F , an external magnetic field shifts the otherwise degenerate
energy levels |FmF ⟩. This shift can be considered by extending the Hamiltonian with the
energy contribution of the magnetic dipole of the atom in an external magnetic field

HZeeman = −µ ·B. (2.19)

The only external magnetic field that contributes to the measurements presented in this
work is that of the earth. Since it is weak compared with the hyperfine structure splitting, it
can be treated perturbatively. Its eigenvalues can be written as

EmF
= −mF gFµBB, (2.20)

where gF , µB and B are the Landé factor, the Bohr magneton and the absolute value of the
magnetic flux density, respectively. The factor gF in terms of the angular momentum quantum
numbers S,L, J, I, F and the Landé factors gl = −1, gs = −2.0023 and gI = µI/(µNI) with
the nuclear magneton µN and the nuclear spin I is then given by

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
+ gI

µN
µB

F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
(2.21)

gJ = gl
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
+ gs

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (2.22)

It should be noted that Eq. (2.21) strictly only holds for LS-coupling and if there is no
hyperfine-induced mixing. However, for the investigated transitions in 13C4+, these assumptions
are sufficiently fulfilled given the size of the Zeeman effect induced by the magnetic field of
the earth, which can be roughly estimated from the size of the Bohr magneton 1.4MHz/G and
Bearth ≈ 0.5G to be of the order of 1MHz.
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The energy shift of an atomic transition between two states |FmF ⟩ → |F ′mF ′⟩ is then given by

∆EmF→mF ′ = (mF gF −mF ′gF ′)µBB, (2.23)

so that for π transitions (∆mF := mF ′ −mF = 0)

∆Eπ
mF

= mF (gF − gF ′)µBB (2.24)

and for σ± transitions (∆mF = ±1)

∆E±
mF

= ∆Eπ
mF

∓ gF ′µBB. (2.25)

In laser spectroscopy, transitions are driven by polarized laser light. In the rotating frame of
the atom, linearly polarized light can drive π transitions and, depending on the quantization
axis, also σ± transitions, but only to the same proportion. Circularly polarized light on the
other hand favors either σ− or σ+ transitions. Consequently, linearly polarized light leads
to a symmetric splitting of the transition energies, whereas circularly light leads to a shift of
the mean transition energy. Therefore, the Zeeman effect can cause a systematic shift in the
determination of transition frequencies from fluorescence spectra. A detailed estimation of the
Zeeman effect in 13C4+ is provided in Sec. 5.2.3.

2.2.4 Finite nuclear-size effect

The Hamiltonian HHFS defined in Eq. (2.9) only describes the energy of the electrons in the
electromagnetic potential of the nucleus if they are outside of the nucleus. Since in the most
cases, the nucleus is much smaller than the extent of the electronic wave functions, this
approximation suffices. However, with sufficient precision or in large nuclei, the shift of the
hyperfine-structure energies due to the nuclear volume becomes visible. This “finite-size”
effect, which enters all orders of the electromagnetic multipole expansion, is also named the
Breit-Rosenthal-Crawford-Schawlow effect [103, 104]. The latter being usually only used to
designate the respective contribution to hyperfine-structure anomalies of the magnetic dipole
order. The leading, electric monopole order is included in the fine-structure energies EγJ . For
a point-like nucleus, it is given by

M (0) · T (0) = −
∑︂
i

Ze2

4πε0

1

ri
, (2.26)

where Z is the nuclear charge number and ri the distance between the ith electron and the
nucleus. The finite-size effect is the deviation of the fine-structure energies from Eq. (2.26)
due to the probability of the electrons to be located inside the nuclear volume. This can be
utilized to extract the mean-square nuclear charge radius or differences thereof from atomic
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energies, which is shown in the following. The Hamiltonian of the finite-size effect can be
written straightforward as

Hfs = − e2

4πε0

Z∑︂
j=1

∑︂
i

(︃
1

|ri − rj |
− 1

ri

)︃
, (2.27)

where the second term removes the contribution that has already been included in the
approximation of a point-like nucleus. Using the Laplace expansion

1

|ri − rj |
=

∞∑︂
l=0

4π

2l + 1

l∑︂
m=−l

(−1)m
rl<
rl+1
>

Y −m
l (θi, φi)Y

m
l (θj , φj), (2.28)

with r< := min(ri, rj), r> := max(ri, rj) and the normalized spherical harmonic functions
Y m
l in lowest order (l = 0), taking only the monopole contribution into account, leads to the

approximation

Hfs ≈ − e2

4πε0

Z∑︂
j=1

∑︂
i

(︃
1

ri
Θ(ri − rj) +

1

rj
Θ(rj − ri)−

1

ri

)︃

= − e2

4πε0

Z∑︂
j=1

∑︂
i

(︃
1

rj
− 1

ri

)︃
Θ(rj − ri), (2.29)

where Θ is the Heaviside function. To calculate the energy eigenvalues, it is sufficient to
treat the positions of the indistinguishable protons using a probability density function

ρ(r) = ⟨αI| 1
Z

Z∑︂
j=1

δ(r − rj)|αI⟩

=

∫︂
...

∫︂
1

Z

Z∑︂
j=1

δ(r − rj)|ΨαI(r1, ..., rZ)|2d3r1...d3rZ , (2.30)

where δ(r − rj) is the Dirac delta distribution, so that for any operator f(rj)
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⟨αI|
Z∑︂

j=1

f(rj)|αI⟩ =
∫︂

⟨αI|
Z∑︂

j=1

f(r)δ(r − rj)|αI⟩d3r

= Z

∫︂
f(r)

⎡⎣∫︂ ...

∫︂
1

Z

Z∑︂
j=1

δ(r − rj)|ΨαI(r1, ..., rZ)|2d3r1...d3rZ

⎤⎦d3r

= Z

∫︂
f(r)ρ(r)d3r. (2.31)

The eigenvalues of the Hamiltonian for the finite-size effect in an ion with charge Q are then

Efs = ⟨αI, γJ |Hfs|αI, γJ⟩

=

∫︂
ρ(r)

⎡⎣− Ze2

4πε0

Z−Q∑︂
i=1

∫︂
...

∫︂
ri≤r

|ΨγJ(r1, ..., rZ−Q)|2
(︃
1

r
− 1

ri

)︃
d3r1...d3rZ−Q

⎤⎦d3r. (2.32)

Equation (2.32) is the starting point of the derivation of the finite-size contribution to the
isotope shift of atomic transitions which was introduced originally by E. C. Seltzer [105] and is
also referenced in [100]. There, also the electronic wave functions are written as a probability
density function. To transform Eq. (2.32) into the differential form, the probability density or
wave functions can simply be replaced by differences of these functions.
The expression in the square brackets, in the following named g(r), depends only on the
electronic wave functions and is independent of the proton density ρ. Therefore, Eq. (2.32)
may be written as [105]

Efs =

∫︂
ρ(r)g(r)d3r (2.33)

=

∞∫︂
0

ρr(r)FγJ

[︃
r2 +

C2

C1
r4 +

C3

C1
r6 +O(r8)

]︃
dr (2.34)

= FγJ

[︃
⟨r2⟩+ C2

C1
⟨r4⟩+ C3

C1
⟨r6⟩+O(⟨r8⟩)

]︃
= FγJΛαI , (2.35)

where in Eq. (2.34), a spherically symmetric nuclear charge distribution ρr was assumed.
Note that odd radial moments vanish due to the same argument given in Sec. 2.2.2 why the odd
electric multipole moments in the hyperfine structure Hamiltonian vanish. The numbers Ck are
called the Seltzer coefficients [105]. An explicit expression of FγJ is given below in Sec. 2.2.5,
Eq. (2.43). The contribution of the finite-size effect to the difference of a transition energy
between two isotopes A and A′ can be expressed by replacing FγJ with FγJ→γ′J ′ = Fγ′J ′ −FγJ

and ⟨r2k⟩ with δ⟨r2k⟩AA′
= ⟨r2k⟩A

′
− ⟨r2k⟩A in Eq. (2.35). Hence, the moments of the nuclear

charge distribution and the differences thereof can be extracted from electronic transition
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frequencies if the energy eigenvalues of a hypothetical point-like nucleus and FγJ→γ′J ′ can be
calculated to sufficient precision.
It should be noted that in addition to the Breit-Rosenthal effect, also a distribution of the
magnetization inside the nuclear volume leads to a shift of the hyperfine structure energies.
This effect is called the Bohr-Weisskopf effect [106] and is usually also used in connection with
hyperfine-structure anomalies. It plays a particular important role in highly-charged heavy
ions such as hydrogen- or lithium-like Bi where the valence electron has a large overlap with
the nucleus so that the energies significantly deviate from Eq. (2.9). In the example of Bi, the
two finite-size effects are unwanted contributions to the atomic energy levels that significantly
increase the difficulty of testing bound-state QED calculations [107, 108].

2.2.5 Nonrelativistic QED in helium-like systems

Nonrelativistic quantum electrodynamics (NRQED) calculations can be used to determine the
electronic energy levels in helium-like systems and the electronic contribution to the isotope
shift to very high precision [100, 109, 110]. Improved NRQED calculations have been carried
out by Yerokhin et al. for C4+ [65] and are used in this work to determine the differential
mean-square nuclear charge radius δ⟨r2⟩12,13 between 12C and 13C. In the following, the theory
used for the NRQED calculations is described mainly based on the conventions used in [110].
The nonrelativistic Hamiltonian of a multi-electron atom with a point-like nucleus is given by
[100, 110]

H(2) =
P 2

2M
+
∑︂
i

p2i
2m

+
e2

4πε0

⎛⎝∑︂
i<j

1

|ri − rj |
−
∑︂
i

Z

|ri −R|

⎞⎠ , (2.36)

where P is the total momentum of the nucleus, M the mass of the nucleus, pi the momenta
of the electrons, m the electron mass, ri the positions of the electrons and R the position of
the nucleus. By using that the sum of all momenta vanishes in the rest-frame of the atom,
Eq. (2.36) can be rewritten into

H(2) =
∑︂
i

p2i
2µ

+
∑︂
i<j

pi · pj
M

+
e2

4πε0

⎛⎝∑︂
i<j

1

|ri − rj |
−
∑︂
i

Z

ri

⎞⎠ , (2.37)

where µ = mM/(m+M) is the reduced mass and ri are the radial distances of the electrons
to the center of gravity. It is numerically advantageous to use dimensionless units [100].
Redefining pi → µcα p̃i, ri → h̄ r̃i/(µcα) and H(2) → c2H̃

(2) yields the Hamiltonian specified
in [110]

19



H̃
(2)

µα2
= H(2)

∞ +
µ

m
H

(2)
rec =

⎡⎣∑︂
i

(︃
p̃2i
2

− Z

rĩ

)︃
+
∑︂
i<j

1

|r̃i − r̃j |

⎤⎦+
µ

m

⎡⎣m

M

∑︂
i<j

p̃i · p̃j

⎤⎦ . (2.38)

The first step to the solution of this eigenvalue problem for helium-like systems is to find
(eigen-) wave functions Ψ(r1, r2) and the eigenvalues of H(2)

∞ , as described in [111]. In short,
the energy of a reference state, which is an eigenvalue of H(2)

∞ , is minimized by varying the
parameters of the wave functions that span the basis set. The set of wave functions used dates
back to E. A.Hylleraas [112] and explicitly includes correlations between the two electrons.
The optimization technique was first implemented to sufficient precision by V. I. Korobov [113,
114].
With the wave functions of H(2)

∞ constructed, all additional energy contributions are treated as
perturbations. The corrections arising from quantum electrodynamics are represented by a
power series in the fine-structure constant α such that energy eigenvalues E can be written as
[110]

E = mα2E (2) +mα4E (4) +mα5E (5) +mα6E (6) +mα7E (7) +O(mα8). (2.39)

where the first corrections enter at order mα4. This expansion does not strictly include only
powers of natural numbers, but also includes terms which depend on lnα. The contribution of
the recoil, also called mass-polarization term H

(2)
rec and relativistic corrections are considered

as part of a power series of E (n) in m/M

E (n) = E (n)
∞ + E (n)

M + E (n)

M2 +O(M3). (2.40)

Here, E (2)
∞ directly corresponds to the eigenvalue of H(2)

∞ . If calculating isotope shifts, the
first order recoil correction E (2)

M can be identified as the sum of normal and specific mass shift
[110]

E (2)
M = −m

M
E (2)
∞ +

(︂ µ

m

)︂2
⟨H(2)

rec⟩ (2.41)

Taking the difference of Eq. (2.41) for two nuclei with mass numbers A and A′ and reversing
the coordinate transformations yields the usual formula for the mass shift
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hνA
′ − hνA = mc2α2(E (2)

MA′ − E (2)
MA

)

=
mc2α2

µ̃A,A′

(︂
mE (2)

∞ + µ
µ

m

⟨︁∑︂
i<j

p̃i · p̃j
⟩︁)︂

=
1

µ̃A,A′ (KNMS +KSMS) =
K

µ̃A,A′ (2.42)

where µ̃A,A′
= MAMA′/(MA′ −MA) and KNMS/SMS are the normal and specific mass shift

constants. The mass shift used in this work not only includes the E (2)
M term, but all mass-

dependent terms up to order mα6. The fine and hyperfine structure splittings contribute
as relativistic corrections in E (4). The finite-size effect to the lowest order depends on the
mean-square nuclear charge radius as specified in Eq. (2.35). Higher orders can be neglected
for light nuclei such as C. The field-shift constant in SI-units is given by

FγJ =
Ze2

6ε0

∑︂
i

∫︂
...

∫︂
|ΨγJ(ri = 0)|2d3rj ̸=i, (2.43)

where the integral term corresponds to the probability density of the ith electron to be located
at the nucleus. The energy of a transition under the assumption of a point-like nucleus Epoint-like

i→f
calculated with Eq. (2.39) together with the field-shift constant determined from Eq. (2.43)
can be used to extract the mean-square nuclear charge radius ⟨r2⟩ from measurements of an
atomic transition energy E

exp
i→f with

⟨r2⟩ =
E

exp
i→f − E

point-like
i→f

Fi→f
. (2.44)

Through this approach, the charge radius of 12C was determined using only laser spectroscopy
and atomic structure calculations of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions in 12C4+ [63, 64].
This was the first time, the “all-optical” approach was used in a helium-like ion in the optical-
wavelength range where MHz-precision can be reached. However, currently, the best available
atomic structure calculations have “only” a precision of 0.1 to 1GHz for absolute transition
frequencies [63, 64]. In this work, the isotope shifts of the same transitions between 12C
and 13C are determined. In this differential approach, the atomic structure calculations are
more precise, since all mass-independent contributions to the power series in Eq. (2.40) cancel.
While for absolute energies, the calculations up to order mα7 were not sufficient to reach the
experimental precision, for the isotope shift, an expansion up to order mα6 suffices to surpass
it.
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2.2.6 Isotope shift

In this work, the isotope shift refers to the difference of a transition energy, or its corresponding
frequency, between two isotopes. The isotope shift between two isotopes with mass number A
and A′ can be defined as

δEAA′

i→f = EA′

i→f − EA
i→f = h(νA

′

i→f − νAi→f). (2.45)

With Eq. (2.42) and (2.44), the usual formula for the isotope shift of a transition is recovered

hδνAA′

i→f =
Ki→f

µ̃A,A′ + Fi→fδ⟨r2⟩
AA′

. (2.46)

The differential mean-square nuclear charge radius between the two isotopes can be calcu-
lated by modifying Eq. (2.46) into

δ⟨r2⟩AA′
=

δE
exp
i→f − δE

point-like
i→f

Fi→f
=

hδνAA′

i→f −Ki→f/µ̃
A,A′

Fi→f
, (2.47)

where δνAA′

i→f corresponds to an experimentally determined isotope-shift frequency and
Ki→f/µ̃

A,A′ to the mass-shift contribution determined by theory as described in Sec. 2.2.5.
Note that for the purpose of extracting δ⟨r2⟩AA′

, in Eq. (2.45), the νi→f can be arbitrary linear
combinations of transition energies. With this, the precision of δ⟨r2⟩AA′

can be increased when
more than one transition is accessible in the experiment. In case of the transitions in C4+

measured within this work and [63, 64], the best precision is achieved by defining νi→f as the
center of gravity of all 1s2s 3S1 → 1s2p 3P0,1,2 transitions

νi→f =
∑︂

t∈3S1→ 3PJ′

wtνt, wt =
(2F + 1)(2F ′ + 1)(2J ′ + 1)

3(2I + 1)(2J + 1)

{︃
J ′ J 1
F F ′ I

}︃2

, (2.48)

where wt is the relative line strength of the transition |JF ⟩ → |J ′F ′⟩ between two hyperfine-
structure states if there was no hyperfine-induced mixing. In case of 12C, with a nuclear spin of
zero, F ≡ J and F ′ ≡ J ′. The atomic structure calculations yield the energies of the states
and not the transition frequencies. In this case, Eq. (2.48) can be rearranged into [110]

Ei→f = E(3P)− E(3S), E(2S+1L) =
∑︂
J,F

(2F + 1)E(2S+1LJ,F )

(2I + 1)(2S + 1)(2L+ 1)
. (2.49)

Explicit expressions of Eq. (2.48) and (2.49) are given Tab. 2.4.
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Table 2.4: Formulas for the center-of-gravity transition frequencies
ν̄J ′ of the 1s2s 3S1,→ 1s2p 3P0,1,2 transitions in 12,13C4+ as
functions of the individual transition frequencies νJ ′(F, F ′)
and center-of-gravity level energies ĒJ and Ē

′
J ′ of the in-

volved states as functions of the individual level energies
EJ(F ) and E′

J ′(F ′) of the hyperfine-structure states.

Transition Center-of-gravity transition frequency
3S1 → 3P0 ν̄0 :=

1
3ν0(

1
2 ,

1
2) +

2
3ν0(

3
2 ,

1
2)

3S1 → 3P1 ν̄1 :=
2
9ν1(

1
2 ,

1
2) +

1
9ν1(

1
2 ,

3
2) +

1
9ν1(

3
2 ,

1
2) +

5
9ν1(

3
2 ,

3
2)

3S1 → 3P2 ν̄2 :=
1
3ν2(

1
2 ,

3
2) +

1
15ν2(

3
2 ,

3
2) +

3
5ν2(

3
2 ,

5
2)

3S → 3P ν̄ := 1
9 ν̄0 +

1
3 ν̄1 +

5
9 ν̄2

Energy level Center-of-gravity level energy
3S1 Ē1 :=

1
3E1(

1
2) +

2
3E1(

3
2)

3P0 Ē
′
0 := E′

0(
1
2)

3P1 Ē
′
1 :=

1
3E

′
1(

1
2) +

2
3E

′
1(

3
2)

3P2 Ē
′
2 :=

2
5E

′
2(

3
2) +

3
5E

′
2(

5
2)

3P Ē
′
:= 1

9Ē
′
0 +

1
3Ē

′
1 +

5
9Ē

′
2

2.3 Fluorescence spectroscopy

In an atomic system, the energy difference E between two electronic states is directly related
to a transition frequency ν0 through the Planck constant E = hν0. If the energy, or frequency
ν, of a photon matches that of the transition, an electron in the initial state can be transferred
into the final state by absorbing the photon. From the energetically upper state, the electron
can spontaneously decay to a lower state by emitting a photon into a random direction whose
distribution is given by the properties of the two states. By systematically changing the
frequency of the incoming photons and counting the spontaneously emitted photons, the
transition frequency between the two states can be extracted from the resulting resonance
spectrum. This method is called fluorescence spectroscopy.
To define the frequency of the incident photon in the optical regime precisely enough to
extract nuclear structure information, using a laser is inevitable. It should be noted, however,
that nuclear structure information from frequency measurements has been obtained since the
1920s. With the invention of the frequency comb, frequency measurements with 10−18 relative
precision in the optical regime became possible [115–118]. However, even with a hypothetical
arbitrarily precisely defined laser frequency, the precision of the extracted transition frequency
will be limited due to the Doppler effect caused by the thermal motion of the probed atoms,
which causes a broadening of the resonance spectrum. This is called Doppler-broadening.
Different approaches can be pursued to overcome this limitation. Within this work, collinear
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laser spectroscopy is used to compress the Doppler width of 13C4+ ions through electrostatic
acceleration.

2.3.1 Resonance lineshapes

To extract transition frequencies from fluorescence spectra, the frequency position of a resonance
signal, caused by exciting an atom from a lower state into an upper state, needs to be determined.
In collinear laser spectroscopy, the resonance signal of a single electronic transition is usually
given by a Voigt profile, which is a convolution of a Lorentz and a Gauss profile [119]

V(ν,∆νL, σ) =

∞∫︂
∞

L(ν − ν ′,∆νL)G(ν ′, σ)dν ′ (2.50)

L(ν,∆νL) =
1

2π

Γ

ν2 + 1
4∆ν2L

(2.51)

G(ν, σ) =
1√
2πσ

exp
(︃
− ν2

2σ2

)︃
, (2.52)

where∆νL is the full width at half maximum (FWHM) of the Lorentzian and σ is the standard
deviation of the Gaussian. The FWHM of the Voigt profile within 0.02% accuracy is given by
[120]

∆νV ≈ 0.5346∆νL +
√︂

0.2166∆ν2L + 8 ln(2)σ2. (2.53)

The Gaussian part of the Voigt profile originates from the Doppler-shifted laser frequencies
due to the motion of the atoms or ions and thus describes their velocity distribution. This is
called Doppler-broadening. While the Gaussian shape naturally occurs for particle ensembles
in thermal equilibrium, in collinear laser spectroscopy, where the velocity distribution of the
ions is compressed along the axis of acceleration, the Gaussian shape most commonly stems
from statistical fluctuations of the voltage potentials. Depending on the ion beam properties,
the Gauss function can be replaced by any other velocity distribution to define more specialized
lineshapes.
The Lorentzian part of the Voigt originates from the finite lifetime of the excited state τ involved
in the laser-driven transition. The minimum width of the Lorentzian corresponds to the natural
linewidth of the transition and is related to the lifetime through

∆νL,min =
1

2πτ
. (2.54)

However, it can be broadened by effects that are homogeneous with respect to the ion
velocities. The most important effects here are collision and saturation broadening. Both
effects can be imagined as a decrease of the mean lifetime of the excited state. In the former,
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collisions with other particles depopulate the excited state while in the latter, stimulated
emission increases the rate of the population transfer from the upper to the lower state. Here
the Lorentz width increases with the laser intensity I according to

∆νL,sat = ∆νL

√︃
1 +

I

I0
, (2.55)

where I0 is the saturation intensity. Typical values for the saturation in measurements with
C4+ are estimated in Sec. 5.2.3. Similar to the Gaussian, also the Lorentzian lineshape needs
to be replaced in some cases. For example, if the interaction time of an ion with the laser T is
short compared with τ , which can be especially relevant for slow transitions of highly-charged
light ions, the lineshape becomes a squared sinc function [119]

S(ν, T ) =
1

π2T

sin2(πνT )

ν2
, (2.56)

with an FWHM of the central peak of

∆νS ≈ 5.6

2πT
. (2.57)

In the case of 13C4+, the interaction time until the first fluorescence photons can be detected
is 67ns which is well above the mean lifetime of the excited states of 18ns. Another example
of an effect that causes a distorted Lorentz shape is quantum interference which is explained
in Sec. 2.4.5.

2.3.2 Collinear laser spectroscopy

Collinear laser spectroscopy (CLS) has proven to be a valuable method to extract information
about the nuclear structure of nuclei across the entire nuclear chart [11, 12]. In particular,
nuclear charge radii and electro-magnetic moments of nuclei determined from CLS serve
as important benchmark values for nuclear structure theory, as in [21, 121–125] for some
recent examples. While CLS experiments at on-line facilities like CERN/ISOLDE, NSCL/FRIB,
JYVL or ANL focus on the investigation of short-lived radioactive isotopes, off-line setups
such as the one used within this work are specialized to achieve highest precision. Here,
quasi-simultaneous collinear-anticollinear laser spectroscopy is used to determine the absolute
electronic transition frequencies of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions in 13C4+. These can
be used in combination with the results in 12C4+ to extract the differential nuclear charge
radius between the two isotopes in a nuclear-model independent way. Figure 2.2 depicts the
principle setup of a collinear laser spectroscopy experiment.

Doppler compression In collinear laser spectroscopy, ions are electrostatically accelerated by
a potential difference U between the ion source region and the laser-ion interaction region.
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Figure 2.2: Upper row: The principle of collinear laser spectroscopy. Ions are produced on a
high-voltage potential USource in the source region. After electrostatic acceleration,
the ions are electrostatically bent (UBender) to be superposed with a collinear and/or
an anticollinear laser beam. In the fluorescence detection region (FDR), the velocity
of the ions is adjusted to scan the laser frequencies over the resonance signal by
applying an additional voltage UFDR and utilizing the Doppler effect. Lower row:
The basic electrostatic potentials in collinear laser spectroscopy. The potential
differences are not to scale.

The relativistic velocity component β in the direction of acceleration is given by

β =

⌜⃓⃓⎷1− 1(︂
γ0 +

qU
mc2

)︂2 , γ =
1√︁

1− β2
, β =

v

c
, (2.58)

where c is the speed of light and γ0, q andm are the time-dilation factor of the initial velocity,
the electric charge and the mass of the ion, respectively. Taking the derivative of Eq. (2.58)
with respect to U shows that the velocity spread ∆β decreases with increasing velocity as the
energy spread q∆U stays constant

∆β =
1

β

q∆U

γmc2
. (2.59)

Hence, the Doppler broadening is strongly compressed and an acceleration voltage of a few
10 kV is sufficient to reduce it to the natural linewidth [126].

Collinear-anticollinear measurements For the moving ions, the laser frequency ν in the
rest-frame of the accelerated ions is shifted from the laboratory frequency νlab by

ν = νlabγ(1− β cosα), (2.60)
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where α is the angle between the laser and the ion beam in the laboratory frame. If the laser
is aligned in collinear (c, α = 0) or anticollinear (a, α = π) direction, Eq. (2.60) simplifies to

ν = νlabγ(1∓ β). (2.61)

To achieve a sub-MHz precision, the kinetic ion energy needs to be known to a few meV which
is impossible due to the limited knowledge of the exact ion source potential and additional
contact potentials of the order of typically a few V. To circumvent this problem, a spectrum can
be recorded simultaneously in collinear and anticollinear direction. By multiplying Eq. (2.61)
of both cases with each other using the resonant laser frequencies νc/a, the rest-frame transition
frequency ν0 can be readily obtained without knowing the ion velocity

ν20 = νcνaγcγa(1− βc)(1 + βa)
βc=βa
= νcνa, (2.62)

where the last step indicates that it must be ensured to address ions of the same velocity in
both cases/measurements.

Doppler tuning Due to the working principle of the laser that requires a fixed resonator size
to maintain lasing at a single frequency, it is advantageous to stabilize the laser frequencies
to fixed values and scan the acceleration voltage instead. This is called “Doppler tuning” and
changes the velocity and, hence, the laser frequencies in the rest-frame of the ions. Since the
laser frequencies cannot be set exactly to values where the resonances appear at the same
scan voltage for both laser configurations, βc ̸= βa and thus, the last step in Eq. (2.62) does no
longer hold. However, this error can be corrected if the difference ∆U := Uc − Ua between the
two voltages at which the resonances appear is determined. Depending on the accuracy with
which the laser frequencies were chosen, a linear correction suffices

ν20 = νcνa

(︃
1− q∆U

βγmc2

)︃
. (2.63)

The sensitivity to β, i.e., to the absolute voltage increases only slowly with an increasing
voltage difference such that a few V difference between the resonance positions do not introduce
any resolvable systematic shifts. An estimation of potential systematic errors due to an unknown
absolute voltage is given in Sec. 5.2.3.

2.3.3 Photon recoil

The energy and the momentum of a photon are given by Eγ = hν and pγ = hν/c, respectively.
When absorbing a photon, the atom gains its momentum so that nonrelativistically in the initial
rest frame of the atom
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patom = mv = hν/c = pγ (2.64)

Since this also changes the kinetic energy of the atom, the energy of the photon needs to
be slightly higher than the transition energy hν0 of the transition that gets excited. This extra
energy can be derived straightforward

hδνrec := hν − hν0 =
1

2
mv2

(2.64)⇔ δνrec =
hν2

2mc2

(2.62)⇔ δνrec =
hνcνa
2mc2

. (2.65)

To fulfill momentum and energy conservation upon absorption of a photon, the small
correction δνrec due to the photon recoil needs to be applied to Eq. (2.63), such that finally

ν0 =

√︄
νcνa

(︃
1− q∆U

βγmc2

)︃
− δνrec. (2.66)

Therefore, the transition frequency determined with Eq. (2.66) directly corresponds to
energies derived from atomic theory. While the momentum transfer of a single photon can be
treated exactly with Eq. (2.66), repeated scattering of photons leads to systematic effects due
to the stochastic nature of the process. Since spontaneous emission of photons is isotropic with
respect to the laser beam axis, the atom on average accelerates in the propagation direction
of the laser if multiple photon absorption and spontaneous emission cycles occur. The mean
velocity gained per absorption is given by Eq. (2.64). Due to the Doppler effect, this also
changes the resonant laboratory-frame laser frequency to good approximation by

νβ
(2.64)
=

hν2

mc2
(2.65)
= 2δνrec. (2.67)

Since the shift is positive for both collinear and anticollinear geometry, photon recoils can
lead to a systematic shift in the transition frequency determination. Therefore, this effect was
investigated with simulations of the laser-atom interactions described in Sec. 2.4.4 that are
then used to estimate a systematic uncertainty in Sec. 5.2.3.

2.4 Laser-atom interactions

The interaction between a thermalized atom and one or more lasers can be described quantum
mechanically using the Lindblad master equation. In the following, the derivation of the
master equation is outlined. Additionally, a Monte-Carlo approach and the rate equations
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are described. Solutions of the equations derived here are implemented in the qspec package,
described in Sec. 3. For a more detailed derivation of the Lindblad master equation, see for
example [127–129].

2.4.1 Hamiltonian of an atom in classical Laser fields

The complete Hamiltonian of an atom interacting with a laser may be written as

H = HA +HL +HR +HAL +HAR, (2.68)

where HA describes the atom, HL the laser field, HR the thermal reservoir or vacuum and
HAL and HAR the interaction of the atom with the laser field and the vacuum, respectively. This
Hamiltonian which needs to be described in second quantization can be vastly simplified for
the application of CLS.
The atom can be described by a set of internal states |i⟩ and its kinetic energy. In the rest-frame
of the atom the kinetic energy is zero. Neglecting photon recoils for now, the atomic system is
given by

HA =
∑︂
i

h̄ωiσ̂ii, (2.69)

with the energy eigenvalues h̄ωi and the system operator σ̂ij = |i⟩ ⟨j|. The thermal reservoir
is assumed to be an energy continuum of photons in thermal equilibrium. Hence, it is large
so that the interaction with the atom will effectively not change its state and thus, HR can be
neglected. In the dipole approximation, the interaction of the atom with the reservoir can be
written as [128]

HAR = h̄
∑︂
i,j
i̸=j

σ̂ij

∑︂∫︂
HR

αR(ω)b̂k,qe
−iωt + α∗

R(ω)b̂
†
k,qe

iωt d3k, (2.70)

where αR(ω) is the coupling strength between the atom and the reservoir, and b̂
†
k,q is a

reservoir excitation operator that creates a photon with wavenumber |k| = ω/c and polarization
q while b̂k,q annihilates a photon with the same properties. The sum-integral extends over all
possible wavenumbers and polarizations spanning the Hilbert space of the reservoir HR.
In CLS, the laser beam is usually a collimated Gaussian beam with a spectral width below
100 kHz, which in most cases is much smaller than the natural linewidth, and a laser power
above 1µW. Similarly to the large thermal reservoir, it follows that changes to the laser field
through photon absorption and emission can be neglected. Hence HL can be removed from
Eq. (2.68). Moreover, in first approximation and in the rest-frame of the atom, a laser beam k
can be described as a classical monochromatic plane wave of the form
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Ek = qε cos(ω̃kt), (2.71)

where ε is the amplitude of the electric field, q is the complex polarization vector and
ω̃k = 2πν is the angular frequency of the laser. Using again the dipole approximation, the
laser-atom interaction can be written as

HAL = h̄
∑︂
k

∑︂
i,j
i̸=j

σ̂ijΩ
k
ij cos(ω̃kt), (2.72)

where Ωk
ij = εdij · q/h̄ are the complex-valued Rabi frequencies with the atomic dipole

transition elements dij .

2.4.2 The Lindblad master equation

To solve the dynamics of this problem computationally, the dependencies on “fast rotating”
terms eiωt in Eq. (2.70) and (2.72), where ω lies in the optical regime, need to be removed.
Following [129], this is achieved by applying the transformation

H ′ = U †HU + ih̄
dU †

dt
U, U := exp(−itHA/h̄) (2.73)

to get

H ′
A = 0 (2.74)

H ′
AR = h̄

∑︂
i,j

ωi<ωj

∑︂∫︂
HR

αR(∆ij)σ̂
†
ij b̂e

i∆ijt + h.c. dk′

≡ ih̄
∑︂
i,j

ωi<ωj

(︂
σ̂†
ijF̂ (t)− F̂

†
(t)σ̂ij

)︂
(2.75)

H ′
AL = h̄

∑︂
k

∑︂
i,j

ωi<ωj

1

2

(︂
Ωk∗

ij σ̂
†
ije

i∆̃
k
ijt +Ωk

ij σ̂ije
−i∆̃

k
ijt
)︂

(2.76)

where ∆ij := ωj −ωi−ω, ∆̃k

ij := ωj −ωi− ω̃k, with ωi < ωj after applying the rotating-wave
approximation (RWA), and F̂ is a time-dependent Langevin-force operator that couples the
system to the thermal reservoir. The system Hamiltonian

HS := H ′
A +H ′

AL (2.77)
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only describes coherent dynamics, whereas H ′
AR perturbs the coherence and can dissipate

energy into the reservoir. Under the set of conditions described below, the density matrix of
the system

ρS := TrR(ρ) =
∑︂∫︂

|b⟩∈HR

⟨b|ρ|b⟩ (2.78)

evolves according to the Lindblad master equation [127–129]

∂ρS
∂t

= − i

h̄
[HS, ρS] +

∑︂
i,j

ωi<ωj

Γij(n̄ij + 1)D[σ̂ij ]ρS + Γijn̄ijD[σ̂†
ij ]ρS (2.79)

D[σ̂]ρ := σ̂ρσ̂† − 1

2
(σ̂†σ̂ρ+ ρσ̂†σ̂) (2.80)

n̄ij
e.g.
=

[︃
exp

(︃
h̄ωij

kBT

)︃
− 1

]︃−1

(2.81)

where n̄ is the distribution of thermal photons with the Boltzmann constant kB and the
temperature T , D[σ̂] is the Lindblad superoperator and Γij is the spontaneous decay rate of
state |j⟩ into |i⟩. Note that for optical frequencies n̄ij(h̄ωij ≫ kBT ) ≈ 0. While the system
Hamiltonian is not limited to the simplifications made here, the following assumptions about
the reservoir interaction need to be made for Eq. (2.79) to be valid:

1. Only dipole interactions are considered, i.e., energy contributions of the form Edipole =
αS(1) · T (1), where S(1) is a dipole moment of the system and T (1) the dipole moment of
an external field.

2. The coupling of the atom to the thermal reservoir is weak, so that Γij ≪ ωij . Terms of
the order α3

R and higher are neglected.

3. Energy corrections of the system eigenstates due to the interaction with the thermal
reservoir and self-interaction are neglected.

4. System and thermal reservoir are decoupled and the reservoir is in thermal equilibrium
from the beginning, so that ρ(t) = ρS(t)⊗ ρR(0).

5. The dynamics of fast oscillating terms of the order ωij + ω ≫ |ωij − ω| are neglected
(RWA).

Note that HS is still explicitly time-dependent. This time dependence can be removed with a
unitary transformation if the laser-driven transitions do not form loops. The required unitary
transformation is introduced in Sec. 3.3.3.
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2.4.3 Rate equations

For simulations surrounding CLS, the accurate coherent solution of the master equation is
often not required, since dipole transitions mostly have short lifetimes compared with the
usual interaction time in the experiment. In this case, it is sufficient to assume that coherences
between atomic states are in equilibrium so that the off-diagonal density matrix elements are
time-independent, ∂ρij/∂t = 0 for i ̸= j. The description of the state dynamics can then be
limited to the diagonal elements of ρ which yields the rate equations [130]

∂ρii
∂t

=
∑︂
j ̸=i

(︄∑︂
k

Rk
ij

)︄
(ρjj − ρii) + (n̄ij + 1)(Γijρjj − Γjiρii) + n̄ij(Γjiρjj − Γijρii), (2.82)

where Rk
ij are the elements of a symmetric matrix Rk that describes the stimulated emission

and absorption rates induced by laser k. Specific expressions for Rk
ij , Γij as well as the dipole

transition elements dij are given in Sec. 3 for a general atomic system with hyperfine structure.
In Fig. 2.3, a solution of the rate equations for a closed transition is compared with the solution
of the master equation and a Monte-Carlo master equation approach discussed in the next
section. In Sec. 5.1.3, the rate equations are used to simulate a fluorescence spectrum obtained
from saturation spectroscopy.

2.4.4 Monte-Carlo master equation

The Lindblad master equation defined in Eq. (2.79) does not include the mechanical dynamics
of the atom in the laser field. Including the momentum of the atom in the system Hamiltonian
requires solving the time evolution of 3-dimensional1 probability density functions for the n
discrete internal states of the atom. This is computationally challenging. A simpler approach is
a Monte-Carlo simulation that evolves the system Hamiltonian coherently until a spontaneous
decay event occurs that resets the system. When this happens, the coherence information is
lost and the Hamiltonian can be adjusted to describe the changed situation after the decay, e.g.,
due to a changed momentum. The basic principle of this approach is to evolve the Hamiltonian
according to the Schrödinger equation

ih̄
∂ψ(t)

∂t
= Hψ(t), (2.83)

with the complex state vector ψ(t), and let the dissipative interaction with the reservoir
decrease the norm |ψ(t)|2 according to the rates Γij such that

|ψ(0)|2 = 1 and |ψ(t → ∞)|2 = 0. (2.84)

The Hamiltonian that fulfills these conditions can be written as [131, 132]
16-dimensional for the complete phase-space if spatial variations of the laser fields are included.
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H = HS −
ih̄

2

∑︂
n

Cn. (2.85)

where Cn are the transition operators that, in case of the Hamiltonian described in Sec. 2.4.2
are given by

C− = Γ(n̄+ 1)σ̂†σ̂, C+ = Γn̄σ̂σ̂†, (2.86)

where all the indexes ij were omitted for better visibility. An incoherent interaction occurs
whenever the norm |ψ(t)|2 falls below a uniformly randomly generated number c ∈ (0, 1]. The
state of the atom afterwards is determined by the relative probabilities of the transitions at the
time when the “collapse of the state vector” occurs

pn(t) =
⟨ψ(t)|Cn|ψ(t)⟩∑︁
i

⟨ψ(t)|Ci|ψ(t)⟩
. (2.87)

The time evolution of the new state vector is again governed by the Schrödinger equation.
Advantageously, the Hamiltonian that defines the time evolution after the collapse can be
altered since the coherence is lost. For example, the detunings of the lasers in H ′

AL can be
adjusted to move into the rest-frame of the atom after a momentum change. This can be
used to classically simulate photon recoils while retaining a coherent time evolution of the
system states. Figure 2.3 shows results of the simulation of photon recoils caused by driving
the closed 3S1, F = 3/2 → 3P2, F

′ = 5/2 transition of 13C4+ with a laser. The time evolution of
the atomic states calculated with the Monte-Carlo approach perfectly follows the result from
the standard master equation approach. The result obtained from solving the rate equations
deviates during the first 0.1µs and then reproduces the same equilibrium state as the coherent
methods. The number of photon recoils defined as nrec := δvx/vrec follow distributions with
frequency-dependent means that itself follow a Lorentzian centered around the resonance
frequency with a slight shift towards larger frequencies. The mean number of photon recoils
reaches 2.4 in resonance and drops below 1 roughly at a distance of one natural linewidth
from the center frequency.

2.4.5 Photon scattering rate

In fluorescence spectroscopy, a resonance signal is obtained from photons spontaneously
emitted by an atom that passes the acceptance angle of the detector. The rate of photons
scattered into a direction ksc through spontaneous decay can be calculated from the system
density matrix ρS by defining a detection operator [100]
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Figure 2.3: (a) The time evolution of the 3S1 and 3P2 states of 13C4+ driven by a laser being
resonant with the F = 3/2 → F ′ = 5/2 transition, which was simulated with
the qspec package introduced in Sec. 3. The Monte-Carlo (MC) master equation
approach (solid line) is compared to solutions of the conventional master equation
(dashed line) and the rate equations (dotted line). To produce the shown statistics
in the solution of the MC master equation, ∼10 000 ions were simulated. (b) The
velocity distribution of ions now in the 3P2 state at the time they were excited after
a total propagation time of 0.29µs for different laser frequencies in units of the
recoil velocity vrec = 0.135m/s. The simulation is started in the rest-frame of each
ion such that v(t = 0) = 0.

D(ksc) :=
1

4π

∑︂
q∈P(ksc)

∑︂
f∈F

∑︂
i,j∈If

√︁
ΓfiΓfj

(q · dfi)(d∗fj · q∗)
dfi · d∗fj

σ̂ij , (2.88)

where F is the set of all final states, If is the set of all states whose spontaneous decay into
state |f⟩ is detectable and P(ksc) is a basis set of polarizations for a photon with propagation
direction ksc. Calculating the expectation value is straightforward and yields

dΓ
dΩ

(ksc) := Tr(ρSD(ksc)) =
1

4π

∑︂
q∈P(ksc)

∑︂
f∈F

∑︂
i,j∈If

√︁
ΓfiΓfj

(q · dfi)(d∗fj · q∗)
dfi · d∗fj

ρ∗ij , (2.89)

with the density matrix elements ρij . In order to solve Eq. (2.89) for an actual atomic system,
specific coordinate systems need to be chosen. A possible choice is described in Sec. 3.3.2.
This scattering rate also includes quantum interference (QI) effects. In Sec. A.1, it is used to
simulate the fluorescence spectrum of 87Sr+ and to compare it to a perturbative QI scattering
rate described in [133] that does not take optical population transfer into account. The
hyperfine structure spectrum of a closed electronic transition in terms of the perturbative
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scattering rate can be written as [133, 134]

dΓ
dΩ

(ksc) :=
1

4π

I

I0

(︃
Γ

2

)︃3

⎡⎢⎢⎣∑︂
F ′

f(q,ksc, F, F
′)

∆2
FF ′ + (Γ/2)2

+
∑︂
F ′,F ′′

F ′ ̸=F ′′

g(q,ksc, F, F
′, F ′′)

(∆FF ′ + i
2Γ)(∆FF ′′ − i

2Γ)

⎤⎥⎥⎦

f(q,ksc, F, F
′) = AF ′

F +BF ′
F p(q,ksc)

g(q,ksc, F, F
′, F ′′) = CF ′F ′′

F p(q,ksc)

I0 =
h̄Γω3

12πc2
, (2.90)

where the geometric factor p(ksc, q) takes values in [−0.5, 1] and depends on the polarization
of incident and the directions of detectable scattered photons, I0 is the saturation intensity
and Γ is the natural linewidth of the closed electronic transition. The coefficients AF ′

F , BF ′
F and

CF ′F ′′
F purely depend on angular momentum algebra and can be calculated according to the

formulas in [133].
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3 Python package qspec

The analysis of experimental results often requires writing many code scripts or programs
that are based on functions that describe the physics of the experiment. In a certain field of
science, those functions are most probably the same for many users. To facilitate the analysis
and simulation of laser spectroscopy experiments, the qspec Python package was developed. It
provides common physical functions, models and simulations but also more general methods for
data processing. Whenever useful, the functions are compatible with numpy arrays, enabling
fast processing of large data samples. Apart from numpy, a minimal set of scientific Python
packages are required. These are the established packages scipy [135], sympy and matplotlib
[136]. As parts of the qspec package are written in C++, currently only Windows systems are
supported. However, the package may be extended to Linux-based systems or Mac OS in the
future. Other Python packages whose contents overlap with the qspec package are satlas2
which is used by laser spectroscopy groups at KU Leuven, CERN/ISOLDE and JYVL for fitting
of online data [66, 67] and, e.g., the PyLCP package for simulating laser cooling of alkali atoms
[137]. How qspec differs from these existing packages is illustrated in the following. The qspec
package is available on the Python Package index (PyPi) [138].

3.1 Structure

The qspec package consists of seven main modules. These are named algebra, analyze, models,
physics, simulate, stats and tools and are summarized in the following. All functions and
variables can be accessed directly without the need to specify the correct module by importing
the entire package.

qspec.algebra The algebramodule contains functions related to angular momentum coupling
such as Wigner-j-symbols, reduced dipole matrix elements and relative transition strengths for
electronic transitions. It makes use of the sympy package to determine algebraic expressions of
these objects.

qspec.analyze The analyze module contains general purpose routines for data fitting as well
as a convenience class for King plots [139]. For fitting nonlinear data, these routines include
wrappers that extend the scipy.optimize.curve_fit and the scipy.odr.odr routine, which use least
square optimization and orthogonal distance regression, respectively.
For fitting linear functions to data, the algorithm developed by York et. al. [140] and the
Monte-Carlo method explained in the supplementary material of [141] were implemented.
The latter can also be used to fit a straight line to data points in an n-dimensional vector
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space. Both algorithms take correlations between all vector components of the data points into
consideration.

qspec.models The models module contains classes and helper functions to primarily, but not
exclusively, create lineshape models of fluorescence spectra in a modular way for nonlinear
curve-fitting. This module can be compared to the satlas2 Python package which is commonly
used by laser spectroscopy groups at KU Leuven, CERN/ISOLDE and JYVL [66, 67]. In models,
additional features such as a numerical convolution of two models or consideration of quantum
interference (QI) effects are available. Themodelsmodule is described in more detail in Sec. 3.2.

qspec.physics The physicsmodule provides basic physical relations and observables surround-
ing collinear laser spectroscopy (CLS). Examples are relations between particle energy, velocity,
acceleration voltage and Doppler-shifted laser frequency or functions to calculate hyperfine
structure or Zeeman shifts, refractive indices, photon recoils, etc.

qspec.simulate The simulate module offers simulations of laser-atom interactions. The core
feature is an object-oriented solver for the master, rate and Schrödinger equations, written in
C++ for better performance, which can be set up as easy as drawing an atomic level scheme.
Additional functions to calculate, e.g., quantum interference effects in fluorescence spectra are
also included. The simulate module is described in Sec. 3.3.

qspec.stats The stats module contains routines for the statistical analysis of data. In addition
to basic statistical measures such as the (weighted) average or median, the module also provides
a Monte-Carlo error propagator. In combination with the nonlinear curve fitters of the analyze
module, this can be used to calculate uncertainty bands of fitted functions under consideration
of all parameter correlations.

qspec.tools The toolsmodule provides multidimensional methods for data processing, general
mathematical functions as well as general functions useful for scripting. Some examples are
the conversion between lists and dictionaries, merging intervals, rounding to n significant
decimal places, transforming vectors or printing colored text to the console.

3.2 Modular lineshape models

The models module was built to serve as a new basis for fitting and analyzing fluorescence
spectra using the group-internal analysis program PolliFit. For this, a complete new graphical
user interface (GUI) which supports all features of models and vastly extends the functionality
of the previous GUI was implemented. Although so far, only the specific data-file format
produced by the group-internal data acquisition system is supported, other data formats may
be added in the future. The underlying models itself can be used independently of the GUI and
specific file formats.
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3.2.1 Modular system

The general structure of the modular system is depicted in Fig. 3.1. All models inherit from the
super class Model. Instances of Model are callable with a defined number of arguments which
are an x-value and the parameters of the defined fit model. Different models can be combined
by specifying the attribute model which is always the first argument of the constructor of a
model and can either be None or another Model instance. For example, a Gaussian peak with a
variable amplitude that is shifted along the x- and y-axis

Model

Model model
int size

None __init__(Model model)
ndarray __call__(ndarray x, *args)
None _add_arg(str name, float val, bool fix, bool link)
float dx()
float min()
float max()
list[list[float]] intervals()

Empty,
NPeak,
Offset,
Amplifier,
Custom,
YPars

Listed

list[Model] models

Splitter

list[float] racah_intensities

None racah()

Hyperfine,
HyperfineQI,
HyperfineMixed

Convolved

Model model_1

GaussConvolved,
LorentzConvolved,
GaussChi2Convolved

Spectrum

float fwhm()

Lorentz,
LorentzQI,
Gauss,
Voigt,

VoigtDerivative,
VoigtAsy,
VoigtCEC,
GaussChi2

Summed Linked

Figure 3.1: Inheritance diagram of the classes contained in qspec.models including charac-
teristic attributes and methods. Attribute types are colored purple. The solid
arrow lines indicate inheritance. The diagram was generated using the program
PlantUML.

f(x, σ, p0, x0, y0) = p0 exp
[︃
(x− x0)

2

2σ2

]︃
+ y0 (3.1)

may be defined by combining three models as in the following lines of code.

1 f = Offset(NPeak(Gauss(), n_peaks=1), offset=[0])
2 # f.names = ['sigma', 'x0', 'p0', 'off0e0']

Here, a gaussian model with the parameter σ is passed to an NPeak model, which creates a
single amplitude parameter p0 and x-axis shift parameter x0, that is then passed to the Offset
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model which adds a zeroth-order polynomial as y-axis offset, i.e., a constant y0. The line
starting with # is a comment that shows the names of the model parameters.
Once a model is defined, it can be further customized by modifying the behavior of the
individual parameters. Parameters can be free, fixed, functions of other parameters, have hard
bounds or be constraint by an expectation value with an uncertainty that is considered during
fitting. The following lines of code define a model of two separated Gauss peaks, where σ0 is
expected to assume the value 5(0.9) and σ1 = 2σ0.

1 f = Summed([Gauss(), Gauss()])
2 f.set_fix(0, '5(0.9)')
3 f.set_fix(1, '2 * sigma__0')
4 # f.names = ['sigma__0', 'sigma__1',
5 # 'center__0', 'int__0', 'center__1', 'int__1']

If multiple data sets are to be fitted with the same model and shared parameters, the Linked
model can be used. Consider the following lines of code.

1 models = [Gauss() for _ in range(3)]
2 for m in models:
3 m.set_link(0, True)
4 f = Linked(models)
5 # f.names = ['sigma__0', 'sigma__1', 'sigma__2']
6 # f.fixes = [ False, 'sigma__0', 'sigma__0']

Here, three Gauss models are created and their σ are specified to be linked. The Linked
model has σ1 and σ2 fixed to σ0 and takes a list of x-arrays as the first argument when called.
In CLS, spectra often show hyperfine structures caused by multiple nuclear states [142–144].
The Hyperfine model or a sum thereof facilitate fitting hyperfine spectra and only require
the peak model, the total angular momenta J, J ′ of the electronic states and the nuclear
spin I for instantiation. Variations of the Hyperfine model are available that also consider
quantum-interference effects and hyperfine-induced mixing. Models that use lineshapes that
cannot be described by a Voigt, such as the quantum-interference model or a model that
correctly describes the Doppler compression of thermally distributed ions, often do not include
the Gauss or Lorentz contribution appearing in the experiment. These models require to
calculate a convolution integral for which an analytic expression is often not available. For this,
qspec.models provides the Convolved model which solves the convolution integral numerically.
It is clear that combining or linking models and data sets which also need to solve integrals
quickly get computationally expensive. Therefore, the number of required model function calls
was minimized. A performance test of qspec.models is described in the following section.

3.2.2 Benchmark

The computation of a fit model should be fast to enable the analysis of large amounts of data.
The performance of the models module was tested by comparing its execution time to that of
the satlas2 package for a fit with shared parameters to different data sets. The data sets are
randomly generated hyperfine structure spectra of a J = 1/2 → J ′ = 3/2 transition with nuclear
spin I = 7/2. The following model was used to fit a single data set
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Figure 3.2: Performance of qspec compared with the satlas2 package for fitting different
numbers of linked data sets. The computing time of satlas2 divided by that of
qspec grows linearly with the number of linked data sets as shown in the plot inset.
The results of satlas2 are correctly reproduced by qspec.

f(x,Γ, σ, Al, Au, Bu, p0, x0, y0)

=
∑︂

|Fu−Fl|≤1

p0Voigt[x− x0 − δxu(Au, Bu) + δxl(Al),Γ, σ] + y0 (3.2)

where Γ and σ are the Lorentz and Gauss widths, δxl/u are the hyperfine structure shifts of
the lower and the upper states according to Eq. (2.16), Al/u and Bu are the hyperfine structure
constants, p0 is the signal height and x0 and y0 are the x- and y-axis offsets, respectively. The
fits of the individual data sets are linked by sharing all fit parameters except p0 and y0. This
benchmark test was adopted from the documentation of satlas2 where it was compared to its
predecessor satlas. There, a 100-times lower computing time was found for satlas2. Figure 3.2
shows the computing time of satlas2 and qspec as well as the ratio of these. The qspec package
further reduces the computing time by a factor that increases linearly with the number of
linked data sets. In the case of this test, a factor of 4 is achieved at around 15 linked data sets.
This test proves that qspec is capable of supporting the analysis of large data sets and can serve
as an alternative to the established satlas2 package. The speed improvement and features
that are not available in satlas2 such as numerical convolutions, consideration of quantum
interference effects and using soft bounds for parameters are advantages of the qspec package.
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3.3 Simulation of laser-atom interactions

Controlling the population dynamics of the electronic states of an atom in laser fields allows for
many interesting applications such as optical population transfer [145], polarizing ion beams
in storage rings [146, 147], driving Raman transitions [148] or quantum computing [149].
To predict and interpret experimental results, accurate and fast calculations of the dynamics
are required. A powerful and well-established tool to solve the dynamics of open quantum
systems in general is the qutip Python package [132]. However, it requires the user to set up
simulations by manually defining Hamiltonians which can be quite challenging and laborious
if large atomic systems are to be investigated. The qspec.simulate module provides an intuitive
object-oriented user interface that is comparable to drawing an atomic level scheme and is
described in Sec. 3.3.1. The mathematical objects required to solve the Schrödinger, master or
rate equations are generated automatically from the definition of the laser-atom system, which
is described in Sec. 3.3.3. The simulate module also allows to include the mechanical dynamics
of atoms in laser fields using a Monte-Carlo approach for the master equation. This is used in
Sec. 5.2.3 to estimate systematic shifts caused by photon recoils in CLS. It should be noted that
other Python packages exist that also describe laser-atom interactions. However, often they are
developed for a specific application such as, e.g., the PyLCP package for laser cooling of alkali
atoms [137]. Although the fundamental structure of qspec.simulate is designed to be as general
as possible and easy to expand, currently the implemented functions are limited to applications
surrounding laser spectroscopy with “classical” lasers. An evaluation of upgradability and an
overview of features planned for the future are given in Sec. 3.3.4. An introduction to the
mathematical description of laser-atom interactions as they are implemented in qspec.simulate
is provided in Sec. 2.4.

3.3.1 Structure of qspec.simulate

The classes that define a laser-atom interaction are depicted in Fig. 3.3. An Atom object holds a
list of states |SL; JI;Fm⟩ and a DecayMap object that defines the spontaneous decay channels.
A State is defined by its quantum numbers. The user specifies the eigenfrequency of the
decoupled |SL; J⟩ state. Additional shifts are calculated from hyperfine structure constants
and the electro-magnetic Environment. A state label, that does not have to be unique, is used to
link states through the DecayMap. Here, a list of label pairs is identified with a list of Einstein
Aji coefficients. A Laser object defines an electro-magnetic plane wave that has a frequency,
intensity, Polarization and direction. The Polarization encapsulates the complex amplitude
of the electro-magnetic wave which is specified either in cartesian coordinates directly or in
the rotating frame of the atom as q = (qσ− , qπ, qσ+)T. The transformation between the two
coordinate systems is derived from the specified quantization axis and is described in more
detail in Sec. 3.3.2. An atom and a list of lasers are combined in an Interaction object. The
Interaction object generates the Hamiltonian in dipole and rotating-wave approximation as
well as rate matrices from the properties of the atom and the lasers to be used in a set of solvers.
How the Hamiltonian is constructed is described in detail in Sec. 3.3.3. Currently, the solvers
include the Einstein rate equations, the Schrödinger equation, the master equation as well as
a Monte-Carlo solver for the master equation which also allows to simulate the mechanical
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Light

Matter

Polarization

ndarray vec
ndarray q_axis
bool vec_as_q

None def_q_axis(ndarray q_axis, bool q_fixed)
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float freq
float intensity
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ndarray k

State

float freq_j
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list[float] hyper_const
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None update(Environment environment)
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list[tuple[str]] labels
list[float] a

float get(str label_0, label_1)

Atom

list[State] states
DecayMap decay_map
float mass

float get_state_indexes(list[str] labels, list[float] f)
ndarray scattering_rate(ndarray rho, theta, phi, i, j)
None plot()

Environment

ndarray E
ndarray B

Interaction

Atom atom
list[Laser] lasers
float delta_max
bool controlled
float dt

None resonance_info()
ndarray rates(ndarray t, delta v, y0)
ndarray schroedinger(ndarray t, delta v, y0)
ndarray master(ndarray t, delta v, y0)
ndarray mc_master(ndarray t, delta v, y0,

bool dynamics, int ntraj)

Figure 3.3: Classes contained in qspec.simulate that are used to set up a simulation including
characteristic attributes and methods. The single dashed arrow lines indicate that
objects of a class are contained in attributes of another class. The diagram was
generated using the program PlantUML.

dynamics of the atom in the laser fields. The differential equations underlying the solvers are
introduced in Sec. 2.4. The solvers must be fine-tuned to the time scale of the interaction by
using the controlled attribute or by manually setting the integration steps dt. The solvers return
the population of the atomic states in their distinct format, i.e., population vectors, state vectors
or density matrices. The density matrix of the system, or an array thereof, can be passed to
the Atom object to calculate the scattering rate into a solid angle Ω according to Eq. (2.89).

3.3.2 Coordinate transformations

Specific coordinate systems need to be fixed to relate the polarization of a laser to σ± and
π transitions in the atom and those to a scattering rate into a solid angle in the laboratory
coordinate system. The inner structure of an atomic system is commonly described in a complex
spherical basis. If the quantization axis is arbitrarily chosen to be the z-axis, the spherical basis
vectors in cartesian coordinates are given by
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e−1 =
1√
2

⎛⎝1
i
0

⎞⎠ e0 =

⎛⎝0
0
1

⎞⎠ e+1 =
1√
2

⎛⎝−1
i
0

⎞⎠ . (3.3)

If the polarization of light is expressed in the spherical basis, then the polarization components
proportional to e−1, e0 and e+1 excite the σ−, π and σ+ transitions, respectively. Therefore,
qspec.simulate transforms the polarization vector into the complex spherical basis using the
unitary transformation

T =
1√
2

⎛⎝ 1 −i 0

0 0
√
2

−1 −i 0

⎞⎠ . (3.4)

The user specifies the polarization, i.e., the complex-valued electric field amplitude, either
in cartesian or directly in spherical coordinates with respect to a user-defined quantization
axis. For example, the following line of code creates σ+ polarization with respect to ex which
is the default laser propagation direction.

1 pol = Polarization([0, 0, 1], vec_as_q=True, q_axis=[1, 0, 0])
2 # pol.x = [0., 0.70710678j, 0.70710678]
3 # pol.q = [0., 0., 1.]

The attributes x and q are the resulting polarization vectors in cartesian and spherical
coordinates, respectively. In the atomic system, where the quantization axis was set to ez,
the above defined polarization is not pure σ+ light anymore. By transforming the cartesian
polarization vector x according to the rotation R of the quantization axis of the atom (here ez)
onto the user-defined quantization axis of the polarization (here ex), the resulting vector can
be expressed in the spherical basis of the atom
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q′ = T (Rx) =

⎛⎝ 1√
2
1

⎞⎠ . (3.5)

The dynamics of the state population in the atom can be calculated now by distributing the
laser power according to q′. Note that in the presence of an external magnetic flux density B,
the rotation R is extended by the rotation of ez onto B.
Light emitted from the atom in the laboratory frame is best described in spherical polar coordi-
nates as depicted in Fig. 3.4. The angles (θ, φ) are defined so that er lies in the polarization
plane for θ = 0. The orthonormal unit vectors of the spherical polar coordinate system are
[134]

er =

⎛⎝ sin(θ)
cos(θ) sin(φ)
cos(θ) cos(φ)

⎞⎠ eθ =

⎛⎝ cos(θ)
− sin(θ) sin(φ)
− sin(θ) cos(φ)

⎞⎠ eφ =

⎛⎝ 0
− cos(φ)
− sin(φ)

⎞⎠ . (3.6)

The angle-dependent scattering rate defined in Eq. (2.89) can be calculated straightforward
by transforming the spherical transition dipole moments d′ = (d−1, d0, d+1)

T into the laboratory
frame

d = T−1d′ =
1√
2

⎛⎝−i[d−1 − d+1]
−i[d−1 + d+1]√

2d0

⎞⎠ (3.7)

and calculating the scalar products eθ · d and eφ · d of the two possible polarizations [133].
The integral

Γsc =

∫︂∫︂
Ω

dΓsc
dΩ′ (θ, φ) cos(θ)dθdφ (3.8)

gives the total scattering rate into the solid angle Ω. The scattering rate into the full 4π
solid angle does not depend on off-diagonal elements of the density matrix and thus can be
obtained faster by multiplying the spontaneous decay rate with the excited state population
for all detectable decay channels

Γsc(4π) =
∑︂
f∈F

∑︂
i∈If

Γfiρii. (3.9)
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3.3.3 Construction of differential equations

To solve the differential equations describing the laser-atom interactions introduced in Sec. 2.4,
the required mathematical objects such as rate matrices and Hamiltonians need to be con-
structed from the user-specified state information. The user specifies states |i⟩ with eigen-
frequencies νi, that are linked through spontaneous decay, as well as lasers with frequencies
ν̃k, intensities Ik and polarizations qk. Interaction objects combine the atomic states with the
lasers by first creating a symmetric map

Mk
ij =

{︄
1 |i⟩ ↔ |j⟩ driven by laser k
0 else

(3.10)

of all states. Two states |i⟩ and |j⟩ are only driven by laser k if the following conditions are
fulfilled

E 3P0, F=1/2

3S1, F=1/2

3S1, F=3/2

0

0 1

2 3

4 5 6 7

Simplified graph

Figure 3.5: Transformation scheme for a Hamiltonian of a π-polarized laser that drives a
3S1, F = 1/2 → 3P0, F

′ = 1/2 transition. The degenerate magnetic sublevels
depict the diagonal elements of the Hamiltonian before (black) and after (green)
the unitary transformation U is applied. Laser-driven transitions are shown as
solid orange arrows. The energy shifts from the transformation are shown as
dashed colored arrows. The black dotted arrows show the propagation path
through the six independent graphs. The resonance condition∆max can be chosen
freely. Note that here, the laser would additionally drive the transitions 2 ↔ 5 and
3 ↔ 6 if ∆max > |ω2 − ω5 − ω̃|. This would change the graph and thus, also the
transformation U .
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|Jj − Ji| ≤ 1, 0 ↮ 0 (3.11)
|Fj − Fi| ≤ 1, 0 ↮ 0 (3.12)
|mj −mi| ≤ 1, 0 ↮ 0 if ∆J, F = 0 (3.13)

Aji > 0, νj > νi (3.14)
Ik > 0 (3.15)

(qk)mj−mi ̸= 0, νj > νi (3.16)
||νj − νi| − ν̃k| ≤ ∆max, (3.17)

with the Einstein Aji coefficient and a frequency value ∆max set by the user to cut off
fast oscillations in coherent dynamics. Using this map of laser-driven transitions, the objects
required to construct the differential equations introduced in Sec. 2.4 can be obtained from
the Aji defined by the DecayMap object, angular momentum algebra and the symmetric rate
matrix Rk following the conventions in [130, 133]

Γ̃ij =

{︄
Aji ωi < ωj

Aij else
(3.18)

aij = (−1)I+Jj+Fi+1
√︁
2Fi + 1

√︁
2Jj + 1 ⟨Fi,mi; 1,mj −mi|Fjmj⟩

{︃
Jj Ji 1
Fi Fj I

}︃
(3.19)

dij =

√︄
3πε0c3h̄Γ̃ji

ω3
ij

aij (3.20)

Ωk
ij = E

dij(q
k)mj−mi

h̄
Mk

ij =

√︃
2Ik
ε0c

dij(q
k)mj−mi

h̄
Mk

ij (3.21)

Γij = a2ijAji (3.22)

Rk
ij =

|Ωk
ij |2Γ̃ji

(ω̃k − |ωj − ωi|)2 + 1
4 Γ̃

2

ji

, (3.23)

where ω := 2πν are angular frequencies, Γ̃ is a symmetric matrix of natural linewidths and
⟨· · · · | · ·⟩ are the Clebsch-Gordan coefficients.
For the Schrödinger and master equation, the Hamiltonian of the system given in Eq. (2.77)
is required. For computational efficiency, it is desirable to have a time-independent Hamilto-
nian which does not depend on exponential functions. Hence, qspec.simulate transforms the
Hamiltonian into an interaction picture and applies the rotating-wave approximation (RWA)
to remove fast oscillating terms. However, if there is more than one laser driving a single
transition or if multiple lasers form a loop of laser-driven transitions, the time-dependence
cannot be eliminated completely. qspec.simulate automatically detects these loops and cal-
culates the time-dependent Rabi frequencies. The algorithm implemented within this work
can be imagined as a graph search in the undirected graph defined by the map Mk

ij . It is
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illustrated and described in Fig. 3.5 based on a π-polarized laser with frequency ω̃ that drives
the 1s2s 3S1, F = 1/2 → 1s2p 3P0, F ′ = 1/2 transition in 13C4+. The resulting time-independent
Hamiltonian in this case is given by

H = (ω2 − ω0 − ω̃)(σ̂22 + σ̂33) +
Ω

2
(σ̂02 + σ̂13) +

Ω∗

2
(σ̂20 + σ̂31), (3.24)

where the indexes numerate the states depicted in Fig. 3.5 from left to right. Note that here,
ω0 = ω1 and ω2 = ω3, due to the degeneracy of the magnetic substates. With the Hamiltonian
constructed, qspec.simulate uses the two C++ libraries Eigen and Boost.Numeric.Odeint to
perform matrix operations and integrate the differential equations, respectively. The following
code example solves the master equation for the 8× 8 density matrix of the system displayed
in Fig. 3.5 for 101 laser frequencies in the interval [−50MHz, 50MHz] and 291 time steps in
the interval [0µs, 0.29µs]. This results in 1 881 024 complex-valued density-matrix elements.
On an Intel® Core™ i7-9700K CPU, the master equation (line 32) took 58ms to compute. The
computing time of the other lines can be neglected.

1 import numpy as np
2 import qspec as qs
3 from qspec.simulate import *
4
5 mass = 13.001161 # Mass of 13C4+

6 a_ps = 56.21 # Einstein coefficient (MHz)
7 a_hyper = 42234.8 # HFS constant of the S state (MHz)
8 nu0 = 1_316_147_920.6 # Transition frequency (MHz)
9 dnu = qs.hyperfine(i=0.5, j=1, f=0.5, a=a_hyper) # HFS shift (MHz)

10
11 s = construct_electronic_state(
12 0., s=1, l=0, j=1, i=0.5, hyper_const=[a_hyper], label='s')
13
14 p = construct_electronic_state(
15 nu0, s=1, l=1, j=0, i=0.5, label='p')
16
17 decays = DecayMap([('s', 'p')], [a_ps])
18 c13 = Atom(s + p, decay_map=decays, mass=mass)
19
20 intensity = 1169 # Laser intensity (uW / mm2)
21 polarization = Polarization([0, 1, 0], vec_as_q=True)
22 laser = Laser(nu0 - dnu, intensity, polarization)
23
24 delta_max = 500 # Maximum laser detuning
25 interaction = Interaction(c13, [laser], delta_max=delta_max)
26 interaction.resonance_info()
27
28 delta = np.linspace(-50, 50, 101) # Create 101 frequency steps (MHz)
29 times = np.linspace(0, 0.29, 291) # Create 291 time steps (µs)
30
31 # Solving the master equation gives an array with shape (101, 8, 8, 291)
32 rho = interaction.master(times, delta=delta)
33 sc_rate = c13.scattering_rate(rho) # 4π scattering rate (MHz)
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3.3.4 Outlook

The core feature of the qspec.simulate module is the automatic construction of all mathematical
objects required to simulate laser-atom interactions from a simple specification of the system.
For this, arbitrary atomic systems that only consist of discrete states can be specified. The
differential equation solvers use multiprocessing to enable fast solutions for large parameter
spaces. These features constitute a strong basis for an expansion of the module to a larger set
of physical systems. New features that are straightforward to implement are, e.g., molecular
systems or finite laser linewidths γ ≪ Aji that lead to dephasing. A larger effort would
be the addition of the quantized radiation field to include the quantum dynamics of weak
electro-magnetic fields or the inclusion of time- and position-dependent electric and magnetic
fields. Other interesting expansions are time-dependent laser intensities and velocities. These
would allow to simulate pulsed lasers and “classically” trapped ions, respectively. This also
requires some caution. The simulation of pulsed lasers suggests high-energy laser pulses
that drive non-dipole transitions or even ionize the atom. The implementation of a quantum-
mechanically accurate description of high-energy laser pulses interacting with a general atom
would be a large effort that is not foreseen in the nearer future. However, the addition of
time-dependent incoherent transition rates between arbitrary states could be an option to
effectively approximate such systems.
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4 Experimental setup

The measurements discussed in this work were carried out at the Collinear Apparatus for
Laser Spectroscopy and Applied Science (COALA) located in the Institute for Nuclear Physics
at the Technical University of Darmstadt. An overview of the setup and its application is
given in [61]. The most recent updates for the C4+ measurements are outlined in [62]. The
beamline has been utilized in various high-precision collinear laser spectroscopy experiments
and demonstrated a level of precision comparable to that of ion trap experiments [145, 150,
151]. Measurements of already known electronic transitions were used for high-precision
high-voltage determination to provide a calibration reference for the most precise high-voltage
dividers [152, 153]. Most recently, measurements with 12C4+ were conducted that provide the
absolute transition frequencies required to calculate the isotope shifts and the nuclear charge
radii presented in this work [63, 64]. This chapter gives a detailed description of the current
setup including all additional upgrades installed for the measurements with 13C4+.

4.1 Electron beam ion source

A beam of 13C4+ ions is produced in an electron beam ion source (EBIS-A, DREEBIT GmbH).
A detailed characterization of the source is given in [63]. Here, only the information that is
relevant for this work is given. A cross-sectional view of the ion-optical elements inside the
EBIS and a sketch of the applied potentials is shown in Fig. 4.1. An electron beam with a beam
current of 85± 2mA is produced on a voltage potential of −2.1 kV by heating a cathode with
a DC current of 4.20± 0.05A and focused into the trap region with permanent magnets that
produce a homogeneous magnetic field parallel to the electron-beam direction with a magnetic
induction of B ≈ 600mT. The three segments of the axial electrostatic trap AT1, AT2 and
AT3 can be set on individual voltages U0, UA and UB1, UB2 defining the high-voltage, the trap
and the wall potentials, respectively. The voltage of the wall segment in beamline direction
(AT3) can be rapidly switched between high (UB1) and low (UB2) to enable pulsed operation
of the EBIS. Alternatively, it can be set to a voltage UA < ULeak < U0 to produce a constant leak
current of ions. The wall segment in opposing direction is fixed to the high-voltage potential
U0.
The ions are produced in the focus of the electron beam on the trap potential UA through
electron-impact ionization and charge breeding. Once formed, the positively charged ions
are confined axially by the electrostatic trap electrodes and radially by the negatively charged
electron beam. Within this work, 13C4+ ions were produced by introducing 99%-enriched
13CH4 methane gas at a pressure of 6 · 10−8 mbar into the EBIS. After leaving the trap region
as a pulsed or continuous beam, the ions pass the electron collector, repeller, an einzellens,
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Figure 4.1: Upper row: Ion optical elements of the electron beam ion source (EBIS) of type
EBIS-A from DREEBIT GmbH with cathode (Cath), axial trap electrodes (AT1-3),
electron collector (Coll) and repeller electrode (Rep). Lower row: The electrostatic
potentials in the EBIS. The potential differences are not to scale. The figure was
drawn based on those in [63, 154].

xy-steerer as well as a velocity filter (Wien filter, WF). The repeller redirects the electrons onto
the collector which is cooled with deionized water to carry away the dissipated energy of the
electron beam. In the velocity filter, ions are separated by their charge-to-mass ratio using
a magnetic flux density B from a permanent magnet and a tunable electric field E = UWF/d
perpendicular to B according to

q

m
=

2

UA

(︃
UWF
Bd

)︃2

, (4.1)

where UA = 12.5 kV, the magnetic flux density B ≈ 0.5T and the distance between the
velocity-filter electrodes d = 1.89mm. After passing the velocity filter, the ions are entering
the main beamline.

4.1.1 Production of 13C4+ from CH4 and CO2

In addition to 13CH4, tests with 13CO2 were performed to investigate the impact of a secondary
element heavier than C on the production of highly charged C. In particular, the use of CO2 is
mandatory to investigate the radioactive isotope 14C, which is planned in the future, due to
higher exemption levels. To quantify the production, the ion current on a Faraday cup behind
the velocity filter is used to monitor the ion current while a mass scan is performed. Exemplary
mass spectra of both gas compounds are depicted in Fig. 4.2. The two spectra were taken
in direct succession, starting with CH4. In the CH4 spectrum, more residual N and O gas is
present which can be reduced by repeatedly purging the source reservoir. By chance, the 13C4+

peak ended up having the same height for both investigated gas compounds, as can be seen
in the inset plot in Fig. 4.2. Consequently, using CH4 to produce a beam of 13C4+ ions yields
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20% more beam current if the source reservoir is properly purged. However, given the similar
production rates, both gas compounds are suitable for measurements with C4+.
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Figure 4.2: m/q-separated ion current behind the velocity filter for an EBIS operation with CH4

and CO2. The 99%-enriched 13CH4 methane or 13CO2 carbon-dioxide gases yield
the six different charge states of 13C. Residual air inside the source gives rise to
small peaks of N and O. In contrast to using 12C, the small peak of the bare 13C6+

ion is well separated from the H+
2 peak.

4.2 Laser spectroscopy beamline

A sketch of the entire beamline is divided into Fig. 4.3 and 4.4. Figure 4.3 shows the ion source
region and the injection into the main collinear beamline. Up to three ion sources can be
connected to the switchyard to allow for easy changes between ion species without mounting or
dismounting ion sources. In Fig. 4.3 only those ion sources used in the present work are shown.
All ion sources are at least equipped with an einzellens and an xy-steerer for beam alignment
before injection into the beam-merging switchyard. Here, electrostatic benders deflect the
ions by either 60◦ or 10◦ to be superposed with the laser beams. The switchyard and bender
designs are based on a switchyard element used at the Extra Low ENergy Antiproton (ELENA)
ring at CERN [155] and modified for the purpose of CLS including additional ports. It features
five larger (DN160CF) and one smaller port (DN40CF) angled at 60◦ to each other. The small
one is located on the main beamline axis and is equipped with a viewglas and serves as the
laser entry or exit port for collinear and anticollinear laser spectroscopy, respectively. Another
DN100CF port is located at an angle of 10◦ with respect to the beamline axis and the laser
entry port. Three pairs of bending electrodes are used to transfer the ion beam between the
ports. A motorized beam-diagnostic station centered on top of the switchyard can be moved
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Figure 4.3: The source region of the COALA beamline up to the first diagnostic station used
for beam alignment. Electrodes are colored based on their purpose, with cyan
indicating those that can be floated to change the potential energy of the ions,
blue indicating beam shaping elements such as einzellenses and the quadrupole
doublet, green and red indicating bending elements in the x- and y-direction, re-
spectively, magenta indicating ion detectors and yellow indicating magnets.

Figure 4.4: The laser spectroscopy region of the COALA beamline. Diagnostic stations are
used to visualize the ion and laser beams at the start and end of the region. An
optical pumping drift tube can be floated on a voltage Upump. Two einzellenses
can be used to focus the ion beam. The fluorescence detection region (FDR) is
floated on a scan voltage Uscan and used to detect the fluorescence photons.

into the beamline and consists of a rotatable Faraday-cup behind a variable iris aperture. For
more details about the switchyard, see [63]. The first ion optical elements after the switchyard
are a quadrupole doublet to shape the ion beam and a second xy-steerer for beam alignment.
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(a) (b) (c)

1 mm

Figure 4.5: The ion beam on the microchannel plate detector (MCP) in continuous mode at
(a) the first diagnostic station, (b) the second diagnostic station and (c) in pulsed
mode at the second diagnostic station. The orange circles roughly correspond
to the 4σ-width of the collinear laser beam and were drawn by hand during the
experiment to superpose the ion and the laser beam. A second picture of the ion
beam is located above the main spot in (a) and caused by a reflection from the
second surface of the glass plate that guides the light towards the camera. The
colors of the pictures were inverted for better visibility.

From here, the ions propagate 2.4m without additional guiding to the fluorescence detection
region (FDR), see Fig. 4.4.
Immediately behind the second xy-steerer as well as the FDR, beam diagnostic stations are
located to investigate the shape and intensity of the ion beam as well as the positions of the
ion and laser beams. One of the diagnostic stations is shown in the inset plot of Fig. 4.4. Each
of the stations consists of the following elements in beam propagation order: A microchannel
plate detector (MCP), a phosphor screen, a 45◦ beam splitter, a variable iris aperture and
a Faraday-cup. A camera on a vacuum viewport mounted above the beam splitter records
and transmits the ion and the laser beam spots on the phosphor screen. The ion beam spot
is generated indirectly by the electrons emitted after ion impact from the MCP, which are
accelerated towards the screen using a high voltage of 3.6 kV. In collinear geometry, the laser
beam passes through the MCP and becomes also visible on the phosphor screen. This is used
for ion-laser-beam alignment which is one of the main purposes of the diagnostic stations. In
anticollinear geometry, however, the laser beam has to first pass the 45◦ beam splitter before
it hits the phosphor screen. This leads to a parallel displacement of the beam and the spot
can therefore not be used for beam alignment. A detailed description of the beam alignment
procedure is given in Sec. 4.4.2. In Fig. 4.5, the ion beam is shown for continuous (a & b)
and pulsed operation (c). Contrary to the continuous beam, the pulsed ion beam enlarges
significantly over the 5m distance from the EBIS to the MCP detector. Therefore, an additional
einzellens between the first diagnostic station and the FDR was used to refocus the pulsed
beam. Unfavorably, this also causes the ion beam to deflect due to a slight misalignment of that
lens, significantly increasing the uncertainty of the ion-laser beam angle as the iris apertures
cannot serve as reference points anymore.
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4.3 Fluorescence detection region

In the fluorescence detection region (FDR), the ions are brought in resonance with the collinear
or anticolliner laser beam by floating it on a voltage between −500 and 500V. Photomultiplier
tubes (PMT, Sens-Tech P25PC with UV glass) with an active diameter of 22mm are used to
detect the scattered fluorescence photons. The FDR is optimized for high detection efficiency
of signal photons while suppressing unwanted photons from the laser or the environment. A
computer-generated image of the FDR is shown in Fig. 4.6(a).

Figure 4.6: (a) Computer-generated image of the fluorescence detection region (FDR) in the
(elliptical-mirror + lens)-configuration without mounting parts for better visibility.
In this view, the ions enter from the top-right and pass the elliptical mirror (1) in
the first FDR segment before they enter the lens-based segment that consists of
a concave spherical mirror (2) as well as an aspherical (3) and a spherical lens
(4). All optics have diameters of 75mm. (b) Picture of the inner part of the new
lens system. The rectangular hole was covered with low reflective, low outgassing
MetalVelvet™ foil from Acktar Ltd.

The FDR of COALA comprises two consecutive, easily exchangeable segments. Within this
work, three different types of segments were used. Two elliptically shaped mirrors were
developed and characterized within [156, 157] and are designed to maximize the geometric
detection efficiency. The elliptical mirrors have different surface properties. One version
features a hand-polished bare aluminum surface which has a high reflectivity into the deep-UV.
However, this version is limited by its surface smoothness. The other version is made up
of MIRO® sheets (ALANOD GmbH & Co. KG), which are bent into an elliptical shape, have
smooth surfaces, but drop in reflectivity towards smaller wavelengths. Both mirror systems
have high fluorescence light collection efficiency but also high laser background count rates.
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A new lens-based segment has been designed and built within this work to complement the
elliptical mirror system. The properties of the lens system and a comparison of both systems is
given in the following section.

4.3.1 Lens-based FDR

Assembly The new lens-based FDR comprises two plano-convex UV-fused silica lenses and a
concave aluminum mirror. Both, the first lens and the mirror are situated inside the vacuum
and designed to efficiently collimate the light emitted in their focal points towards the vacuum
viewport. The outer lens concentrates the collimated light onto the photo cathode of the PMT.
The optics have a standard diameter of 75mm. The hand-polished reflective surface of the
mirror has a curvature radius of 45mm and is positioned at the same distance from the beam
axis. It was manufactured by the mechanical workshop of the Institut for nuclear physics at TU
Darmstadt. The custom made inner lens (EKSMA optics) has an aspheric surface to correct for
the spherical aperture. It has an effective focal length of 60mm at 588nm, corresponding to
a back focal length of 31.7mm from the flat surface, and a center thickness of 41.3mm. The
aspheric lens equation and the corresponding parameters in units of mm describing the curved
surface are given by

f(x) =
x2

r +
√︁
r2 − (1 + k)x2

+ a4x
4 + a6x

6 + a8x
8 + a10x

10, (4.2)

r = 27.5, k = −1.099,

{a4, ..., a10} = {3.24294 · 10−6, 1.22320 · 10−9,−3.30436 · 10−13, 3.90447 · 10−16}.

The outer spherical lens has a curvature radius of 41.4mm, a center thickness of 29.9mm and
an effective focal length of 90.3mm (LA4384 from Thorlabs). The lens-based FDR segment can
be optimized for different wavelengths by continuously adjusting the distance zlens between
the inner lens and the beam axis as well as the distance between the PMT and the outer lens.
The latter is changed by varying the position zPMT of the PMT with respect to the beam axis.

Configuration space The lens-based FDR segment was planned and simulated with the
ray-tracing program FRED (Photon Engineering) to test its geometric efficiency. The geometric
efficiency used to characterize the FDR is defined in the raytracing simulations as

Geometric efficiency :=
Photonic power impinging active PMT surface

Photonic power emitted from the source volume
(4.3)

In Fig. 4.7, the geometric efficiency of the segment is plotted against the two available degrees
of freedom for the wavelengths 408nm, 227.6nm and 190nm. The first two wavelengths were
chosen since they were used in the experiments described in this work, whereas the latter is
both, the transition wavelength of helium-like N5+ and close to the end of the transmittance
curve of UV-fused silica. The simulations neglect internal absorption and scattering of the
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Figure 4.7: Geometric efficiency in dependence of the distance of the inner lens (x-axis) and
the photomultiplier tube (PMT) (y-axis) relative to the beam axis for the wave-
lengths (a) 408 nm (b) 227.6 nm and (c) 190 nm determined using raytracing simu-
lations. The dashed vertical and horizontal lines mark the back focal length of the
inner lens and the focus point of the outer lens, respectively. The red dots mark the
configuration that was used in the measurements presented in this work for the
respective wavelength. The displayed x-ticks are the available discrete positions
on the lens positioning rail.

lenses. Although this leads to a slight overestimation of the geometric efficiency in the case of
190-nm light, it simplifies the interpretation of the simulations since the internal transmittances
of the lenses strongly depend on the purity of the fused silica and already varies for the
optics used within this work. The reflectivity of the aluminum mirror was estimated based
on reflectivity measurements in [157] and by comparing the fluorescence spectra recorded
with the elliptical mirror and the lens-based system. For the aforementioned wavelengths,
reflectivities of 80%, 60% and 50% were assumed, respectively. Parts of the FDR segment
which are not part of the optical system were not included in the simulations since those would
add additional assumptions about the optical properties of the used materials but also increase
the simulation time. The light source in the simulation was defined as a cylindrical volume
with a length of 80mm, corresponding to the length of each FDR segment used at COALA, and
a radius of 0.7mm which is the usual size of the laser beam, see also Sec. 4.4.3. A total number
of 50 000 rays were created per (zlens, zPMT) value at random positions inside the cylindrical
volume according to a uniform distribution. The initial propagation directions of the rays were
randomly generated according to an isotropic distribution at their points of origin.
The results of the simulations show quite a large tolerance regarding the positioning of the
variable elements. The inner lens can deviate up to 4mm from the optimal position to still
get 90% of the maximum geometric efficiency. The optimal position corresponds to the focal
length of the lens, as expected. The efficiency is even more insensitive to the position of the
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PMT relative to the outer lens due to the large active surface of the PMT compared to the size
of the focal point of the lens. Deviations of 10mm from the optimal position still yield 90% of
the maximum efficiency. The optimal position of the PMT is substantially off from the focus
point of the outer lens. This can be explained with light that is not perfectly collimated by the
inner lens and, therefore, falls off in intensity with increasing distance from the outer lens.
The geometric efficiency slightly increases towards shorter wavelength due to the increasing
numerical aperture of the inner lens. The position of the inner lens was set very close to the
simulated optimum for 227.6nm in the experiment as indicated by the red dot in Fig. 4.7(b).
For measurements with Sr+ at 408nm, the lens position was not changed.
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Figure 4.8: Geometric efficiency in dependence of the emission position along the beam axis
and the source radius for the elliptical mirror system (a) and the lens-based system
(b). (c & d) show the geometric efficiency in dependence of transversal shifts of
the source, for elliptical mirror and lens-based system, respectively. The z-axis
coincides with the optical axis of the lens system. The setup of the simulation is
indicated in the coordinate systems in the center. Light rays are emitted randomly
from uniformly distributed positions inside a cylindrical volume and into isotropi-
cally distributed directions with respect to their points of origin. This simulation
was performed for a wavelength of 227.6 nm.
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Spatial tolerance Additional simulations were performed to test and compare the stability
of the geometric efficiency of both the elliptical mirror and the lens-based system against
the variation of experimental parameters at a wavelength of 227.6nm. Figure 4.8 illustrates
the variation of the cylindrical source radius, the emission position along the beam axis as
well as its transversal position. To determine the emission position, the cyllindrical light
source was divided into 1-mm sections. The elliptical mirror exhibits a geometric efficiency
of approximately 15% almost along the entire covered beam axis but drops in efficiency to
10% for larger beam radii above 2mm. The lens system shows a constant efficiency of more
than 20% for beam radii below 3mm. However, it drops to 10% at a distance from the focal
point of the lens of 7mm on the beam axis. Figure 4.8(c-d) shows a comparable concentric
efficiency pattern for both FDR segments when the light source is shifted off-axis. However,
the lens system is less sensitive to these shifts.

Solid angle of detection The emission pattern of a fluorescing atomic system is in general not
isotropic, in fact, it can even correspond to the classical dipole radiation pattern, completely
suppressing photon emission towards the oscillation direction of the laser field. Therefore, it
is of interest to specify the emission-angle-dependent geometric efficiency of the FDR. For a
quantitative analysis of quantum interference effects which can appear in fluorescence spectra
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Figure 4.9: Geometric efficiency in dependence of the emission angle from a cylindrical fluo-
rescence source for (a) the elliptical mirror and (b) the lens-based segment. The
coordinate system and parameterization of the angles used in the graphs is shown
in the center. For a specific pair of angles (θ, φ), light rays are emitted randomly
from uniformly distributed positions inside the source volume into the direction
ksc.
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with close lying intermediate excited atomic states it is essential to predict the asymmetric
fluorescence spectrum. Results of raytracing simulations performed with 227.6nm light by
iterating through the emission angles (θ, φ) in discrete steps are shown in Fig. 4.9. The light is
emitted from randomly distributed positions inside a cylindrical source volume that emulates
the ion beam, as depicted in the coordinate system in Fig. 4.9. The resulting angular detection
patterns clearly show the unique geometries of the two distinct segments. In either case, a
brighter central spot originates from emitted light which is reaching the PMT directly without
being reflected by a mirror surface. This spot is increased in the elliptical-mirror segment in θ
due to the flat mirrors orthogonal to the beam axis and in the lens-based segment in θ and
φ due to the large inner condenser lens. The elliptically curved mirror surfaces extend the
central pattern in φ, covering a large portion of the full solid angle. The concave mirror in the
lens-based segment reflects light emitted from the focal point of the lens back into its origin,
essentially copying the lens system with reduced efficiency.

Signal-to-noise ratio The maximum geometric efficiencies of both FDR segments can be
compared directly to the signal ratio between experimental spectra. While a 1 to 7 times higher
signal rate was found experimentally for the elliptical mirror at 227.6nm, the lens-system excels
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Figure 4.10: Comparison of the lens-based and the elliptical-mirror segments of the FDR.
Plotted is the ratio (lens/mirror) of the following important parameters: (a) signal,
(b) laser background, and (c) signal-to-noise ratio. The data is taken from the
13C4+ measurements described in Sec. 5.2.2 when both segments were in use
simultaneously. The colors indicate collinear (blue) and anticollinear (orange)
measurements. The plotted error bars are only the statistical uncertainties of the
fits and do not necessarily represent the actual variations during any given series
of measurements. The horizontal lines indicate the unweighted mean values of
the data.
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at suppressing laser background light. Typical off-resonance count rates with a laser power of
0.5mW were 400 kHz and 10 kHz in collinear and 150 kHz and 1 kHz in anticollinear geometry,
respectively. This is also confirmed by straylight simulations which yield a straylight detection
efficiency of 3.8% for the elliptical-mirror and 0.028% for the lens-system. A comparison of the
ratio between lens-based and elliptical-mirror segment for the signal, background as well as the
signal-to-noise ratio for collinear and anticollinear geometry is given in Fig. 4.10. The shown
data includes all non-modulated (see Sec. 5.1.2) measurements with 13C4+ that were recorded
with the lens-based system in place and for which both segments passed the filtering in the
analysis process, as described in Sec. 5.2.2. In 90% of the measurements, the fluorescence
spectra recorded with the lens-based segment showed a better signal-to-noise ratio than those
recorded with the elliptical-mirror segment.

Conclusion The lens-based FDR segment was characterized using raytracing simulations and
extensively tested in the course of the measurements with 13C4+. While the total geometric
efficiency to detect fluorescence light from a collinear beam is generally lower for the lens-based
system compared with the elliptical mirror system, the strong laser background suppression
yields a higher signal-to-noise ratio for 227.6nm light. The property to achieve similar signal-to-
noise ratios as the elliptical mirror system for two orders of magnitude lower count rates at the
same laser power is essential to prevent saturation of the PMTs in experiments were a large laser
power cannot be avoided. The uv-fused silica lenses and available degrees of freedom ensure
optimal detection efficiency from 190nm to the near-infrared. The system has a tolerance
of several mm regarding ion/laser-beam position and size such that elaborate adjustment
procedures are not required. The sensitivity to the angular emission pattern of photons from
the ion beam enables an investigation and a utilization of quantum interference (QI) effects
which are almost completely suppressed in the elliptical mirror system. The sensitivity to QI
effects is demonstrated with the fluorescence spectrum of 87Sr+ in Sec. A.1.

4.4 Laser setup

The experiments described in the next chapter require two frequency-stabilized laser beams
with well-known frequencies. If collinear laser spectroscopy is performed, the laser beam
position is additionally stabilized. This section outlines the laser setup from production until
alignment with the ion beam.

4.4.1 Laser beam production

The laser setup is depicted in Fig. 4.11. Two continuous-wave laser beams, to be used in collinear
and anticollinear geometry, were generated using solid-state Ti:sapphire lasers (Matisse 2
TS from Sirah Lasertechnik) that are optically pumped by frequency-doubled, diode-pumped
Nd:YVO4 lasers (Millenia eV from MKS-Spectra-Physics). The pump lasers provide up to
20W and 25W of continuous-wave light at a wavelength of 532nm. The Ti:sapphire lasers
can be set to arbitrary wavelengths between 662nm and 1050nm by altering their resonators
which consist of multiple frequency-selective elements. Optical reference cavities are used for
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Figure 4.11: Sketch of the laser setup in the laser laboratory. Two identical setups are used to
produce laser light that is used in collinear and anticollinear geometry. For each
case, the laser light produced by an Nd:YVO4 (532 nm) pumped Ti:sapphire laser
is frequency-doubled twice and sent to the beamline laboratory. The frequencies
are measured and stabilized using a frequency comb. The sketch was drawn
based on the manufacturer drawings and [153].

long-term frequency stability. For the measurements with 13C4+, the Ti:sapphire lasers were
operated between 906nm and 914nm. The infrared light was then frequency-doubled twice
using a lithium triborate crystal (LBO) and a beta barium borate crystal (BBO) to wavelengths
between 226.5nm and 228.5nm (Wavetrain 2 from Sirah Lasertechnik). A telescope composed
of lenses with focal lengths of 75mm and 200mm was used together with a 35-µm-pinhole to
produce a Gaussian beam profile with a diameter below 1mm at the beamline. For the collinear
beam, the first telescope was used to enlarge the laser beam due to the approximately three
times longer beam path. Then a second telescope, located directly in front of the beamline and
consisting of two identical lenses with focal lengths of 50mm, was used to refocus the beam
into the beamline [158].
The laser frequencies were simultaneously measured and stabilized with a frequency comb
(FC1500 from Menlo Systems). For this, a sample of the infrared light from each Ti:sapphire
laser was coupled into the frequency comb and mixed with the pulsed light of the comb laser.
Measured with fast photodiodes, the difference frequency of the mixed light gives rise to a beat
signal for each spectroscopy laser which was stabilized to 60MHz by controlling the resonator
length of the reference cavity used for short-term stabilization of the Ti:sapphire laser. To
obtain the absolute frequencies of the lasers, the frequency of the comb mode that produces
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the 60MHz signal needs to be determined. For this, the laser frequencies were measured in
parallel with a wavelength meter (WSU30 from HighFinesse) to an accuracy of 30MHz which
allows an unambiguous assignment of the beat signal to the correct comb mode. Using this
stabilization method, a standard deviation ranging from 0.2MHz to 1MHz was achieved for
the stabilized quadrupled frequency.

4.4.2 Laser beam position stabilization

The long path of the collinear laser beam leads to a trembling motion at the position of the
FDR due to air movement and vibrating optical elements. This causes unwanted structures
in the laser background of the fluorescence spectrum [63], see also Fig. 5.4(a). A reduction
of this effect is particularly important for the measurements with 13C4+ due to its hyperfine
structure splitting which causes the smallest resonance signals to be a factor of three smaller
compared with the smallest resonance in 12C4+. A laser beam position stabilization system
(MRC-systems) has been set up to reduce this effect and to counteract a drift of the laser beam
[159]. The setup of the laser beams in front of the entrance windows to the beamline are
shown in Fig. 4.12.
A comparison of the stability of the laser beam on the second detector with and without the
second stabilization stage active is shown in Fig. 4.13. The stabilization system returns the
position coordinates and the intensity of the laser beam as voltages which can be transformed
into length units with

(a) (b)

D2
D1

M1

M2

Overlap check

Figure 4.12: The path of the collinear (cyan) and anticollinear (orange) laser beam in the
beamline laboratory. (a) The site of the coupling window for the anticollinear
laser beam located next to the laser laboratory. The piezo-actuated mirror M1 is
used to stabilize the collinear laser beam to detector D1 located in (b), the site
of the collinear coupling window. The second piezo-actuated mirror M2 is used
for the stabilization to detector D2. Both laser beams follow the complete path
and were superposed by eye at the marked position where both beams enter and
leave the beamline area.
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Figure 4.13: The position of the collinear laser beam on the second detector of the position
stabilization system during one minute of recording time. Enabling the second
stabilization stage significantly reduces the scattering of the data and eliminates
all slow drifts.

rx/y =
w

πI
Ux/y, (4.4)

where w is the 2σ-width of the beam profile at the detector that can be calculated from the
results in Sec. 4.4.3, U is the position in volts and I is the intensity in volts. The results show a
significant improvement in stability when the second stage is active, reducing the standard
deviation of the position of the collinear laser beam on the second detector from 34µm to
3.7µm. In addition to the reduction of the fast trembling motion of the laser beam, slow
changes on a time scale of seconds, as visible in the y-coordinates in Fig. 4.13, are eliminated
completely.

4.4.3 Laser- and ion-beam alignment

Well aligned ion and laser beams are required to achieve the targeted precision. The sizes of
the cross sections as well as the positions and angles of the laser beams in the FDR need to be
matched. The size of the cross section of a laser beam is the most challenging to adjust as already
small translations of the focusing lens lead to large changes in the beamline and can also lead to
positional variations. However, its effect on transition frequency measurements is smaller and
once set, it is also sturdier than the location of the beam. The cross sections of the laser beams
have been measured with a beam profiler (Thorlabs BC106N-UV) and adjusted to be of the
same size at the position of the FDR before the start of the measurement campaign. In Fig. 4.14,
the laser beam radii are plotted as functions of the position in the beamline. The uncertainties
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Figure 4.14: The radii w (= 2σ of a Gaussian) of the collinear and anticollinear laser beams
along their paths as set up before the measurements. The beam profiles where
measured with a CCD-camera and adjusted to have approximately the same size
inside the FDR. The positions of the FDR and the variable iris apertures aremarked
in grey.

in the plot are only statistical uncertainties from the beam profile measurements. At the
FDR, the laser beams have sizes of 0.706(8)mm in collinear and 0.670(12)mm in anticollinear
geometry. The divergences of the beams are comparable. However, the collinear laser beam
deviated from a perfect Gaussian beam, exhibiting an M2 value of 1.5(1). A repetition of the
beam profile measurements after the 13C measurement campaign indicates that unsuccessful
efforts undertaken to fix the beam profile changed the focus of the collinear laser beam at
some point such that the beam diameter at the FDR was then 0.470(2)mm. However, this has a
minor influence on the determination of transition frequencies. Although the laser beam profile
contributes to the main systematic uncertainty which originates from the spatial distribution of
ion velocities, it is only a second order effect as a linear relation between the velocity and the
position of an ion in the beam leads to no systematic shift for symmetric laser beam profiles. A
detailed discussion of this contribution is given in Sec. 5.2.3.
The locations of the laser beams are not as stable as the focuses of the beams due to spatial
drifts of the pump lasers, in particular after cold starts. However, the optimal alignment can
be restored quickly. The following alignment procedure was repeated at the beginning of
each measurement day for all 13C4+ measurements shown in this work, excluding necessary
preceding steps in the laser laboratory:

1. Optimize the laser power of the collinear laser beam through the beamline using maxi-
mally closed iris apertures.
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2. Optimize the laser background of the collinear laser beam by translating and tilting the
beam and setting the size of all iris apertures in collinear geometry. The laser power is
monitored and kept at the maximum.

3. Center the spot of the collinear laser beam on the detectors of the beam stabilization
system.

4. Adjust the position of the anticollinear beam to that of the collinear beam at its entrance
to and exit from the beamline laboratory (beam path of 14m).

5. Optimize the size of all iris apertures in anticollinear geometry for minimal background
counts at the PMTs.

6. Adjust the positions of the ion beam on the two MCP-detectors (beam path of 2.6m)
using the xy-steerers before and after the switchyard.

7. (Optional) Float the FDR to the resonance position and optimize the count rate using the
xy-steerers before and after the switchyard.
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5 Collinear laser spectroscopy in 13C4+

The frequencies of the 1s2s 3S1 → 1s2p 3P0,1,2 electronic transitions in helium-like 13C4+ were
measured with collinear laser spectroscopy (CLS). The isotope shift, the hyperfine structure
constants and the shift of the nuclear charge radius relative to 12C were determined. This
chapter outlines the complete process, from data collection to the determination of the nuclear
charge radius of 13C.

5.1 Fluorescence spectra of 13C4+

Spectroscopy data is taken with the Python/Labview software program Tilda, which is based
on a field programmable gate array (FPGA) [126]. An 18-bit digital-to-analog converter (DAC)
is controlled by the FPGA to produce a low voltage ranging from −10 to 10V which is amplified
by a factor of 50.293(1) before being applied to the fluorescence detection region (FDR). The
modified ion velocity changes the frequency of the laser in the rest-frame of the ions, as
explained in Sec. 2.3.2. At each voltage step, signal pulses from the photomultiplier tubes
(PMT) were counted during a dwell time of 1ms. After a scan, consisting typically of 61 steps,
the scan is repeated in opposite direction. The number of required scans per measurement
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Figure 5.1: Standard fluorescence spec-
trum of the F = 3/2 →
F ′ = 1/2 component in
the 1s2s 3S1 → 1s2p 3P0

transition of 13C4+ recorded
with the digital-to-analog
converter (DAC) of Tilda.
The x-axis shows the volt-
age output of the DACwhich
is amplified by a factor of
50.293(1). A Gaussian was
fitted to the data. The resid-
uals show the difference be-
tween the data and the fit.
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varied between 1 000 and 10 000 depending on the transition strength and the laser geometry.
The final fluorescence spectrum is obtained by summing up the photon events assigned to the
same scan voltage. A standard fluorescence spectrum in dependence of the DAC voltage is
depicted in Fig. 5.1. To extract a resonance frequency, it is necessary to calculate the Doppler
shift from the acceleration voltage of the ions. Section 5.1.1 describes how the scan voltage
that is applied to the FDR is calibrated.

5.1.1 Calibration of the Doppler shift

When passing the FDR, the ions may experience a potential that can deviate from the ap-
plied scan voltage, e.g., due to contact voltages relative to the ion source or field penetration
into the FDR. As shown in Eq. (2.62), the knowledge of the exact ion velocity and hence,
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Figure 5.2: Calibration of the voltage potential in the FDR. The vertical axis displays the volt-
age determined from spectroscopic measurements relative to the expected total
acceleration voltage for the elliptical mirror system with MIRO® sheets (blue) and
the lens system (orange). The horizontal axis displays the DAC-voltages at which
the resonances appeared. Note that the vertical axis offsets stem from contact
voltages and the unknown initial potential in the ion source. The linear fit was
carried out using the algorithm described in [140] and considers the uncertain-
ties of both axes. The final voltage amplification factors of the two systems are
50.277(1) for the MIRO® and 49.504(1) for the lens system. The deviations from
the amplification factor measured directly with a voltmeter of 50.293(1) originate
from electric field penetrations, see text.
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the acceleration voltage, is not required in the collinear-anticollinear approach. However,
when performing Doppler-tuning, knowing the potential difference between collinear and
anticollinear measurements is substantial to ensure βc = βa. To determine the true FDR poten-
tial for calculating the Doppler shift, an effective amplification factor of the voltage amplifier
was determined for the different segments of the FDR. For this, frequency measurements of a
single transition in 169Tm+, produced in a surface ionization source, have been carried out at
different DAC voltages by adjusting the laser frequency [160]. By comparing the shift of the
resonance peak in voltage space with the laser frequency change, the voltage amplification
factor can be corrected. In order to calculate the actual voltage potential spectroscopically, the
absolute transition frequency was determined using quasi-simultaneous (anti-) collinear laser
spectroscopy beforehand.
There are three distinct geometries used in the FDR as detailed in Sec. 4.3: A hand-polished el-
liptic aluminium mirror with a metal mesh closing its open side, an elliptic mirror of aluminium
MIRO® sheets but without a metal mesh [156, 157], and a lens system. The hand-polished
mirror with the mesh was not calibrated, as it constitutes a full metal housing and, hence,
does not distort the voltage potential. The lens system includes a metal-mesh directly in
front of the dielectric lens but the sides of the mounting scaffold where left open during the
measurements, causing a significant field penetration. Figure 5.2 displays the results of the
scan potential calibration. While the amplification factor in the mirror system deviates only
slightly from the expected value, the lens system exhibits a noticeable difference. Nonetheless,
this should not pose a problem as long as the correct amplification factor is known. The
corresponding systematic uncertainty contribution can be calculated by using the uncertainties
of the determined amplification factors of 50.277(1) (MIRO®) and 49.504(1) (lens) and the
maximum distance between the collinear and anticollinear peak in the amplified-voltage space,
which was δU = 0.3V. This implies that any systematic error arising from this effect cannot
exceed 2 kHz.

5.1.2 Background-free laser spectroscopy

The motion of the laser beam affects the background rate and generates structures in the
count rate. When fitted, these lead to shifts in the determined resonance centers, which
cannot be accounted for in the lineshape model. The collinear geometry is predominantly
affected due to the 16-m long beam path through air. To reduce the motion of the laser beam,
a beam position stabilization system was installed, as described in Sec. 4.4.2. Additionally,
small dwell times of only 1ms were used to average out the laser background. However,
these methods were not always sufficient to eliminate the background structures completely.
As a solution, a measurement scheme was developed that inherently produces a flat laser
background [159, 161]. Examples of fluorescence spectra taken with the usual method and
the special measurement scheme are shown in Fig. 5.3.
For the background-free spectra, a function generator was used to produce a square-wave
potential modulating the ground potential of the voltage amplifier that applies the scan voltage
to the FDR. By splitting each photo-multiplier tube (PMT) into two channels which are gated
using a TTL-signal synchronized to the modulated ground potential, the fluorescence spectrum
is simultaneously recorded at two different scan voltages. If the fluctuations in the laser

71



20

21

22

23

24

25

Ph
ot

on
 e

ve
nt

s 
(1
03

 c
ou

nt
s)

(a)
Gauss fit
Data

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b)
Gauss fit
Data

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(c)

Differential
Gauss fit
Data

−200 0 200 400
Relative frequency (MHz)

−0.5

0.0

0.5

Fi
t r

es
id

ua
ls

−200 0 200 400
Relative frequency (MHz)

−0.5

0.0

0.5

−200 0 200 400
Relative frequency (MHz)

−0.5

0.0

0.5

Figure 5.3: The three types of spectra used within this work. (a) shows a standard fluores-
cence spectrum with no voltage modulation which was used for most of the
measurements. (b) shows a background-free fluorescence spectrum produced
with a square-wave potential alternating between 0V and 4V corresponding to
a frequency change of 0.6GHz. (c) shows a background-free dispersion fluores-
cence spectrum with a square-wave potential alternating between −0.25V and
0.25V. For the dispersion spectra, the derivative of a Gaussian was used as the fit
model. The spectra shown here were recorded using the collinear laser geometry.

background are slower than the modulation frequency of the square-wave potential, the laser
background will always be identical in the two channels of each PMT. Thus, by subtracting the
signals from each other, any background structures can be removed. For the measurements
conducted within this work to determine the transition frequencies of 13C4+, a modulation
frequency of 769Hz was chosen which corresponds to a period of 1.3ms. Even though the
period is longer than the dwell time, any beat averages out after the minimum number of 1 000
voltage scan cycles.
The two voltages that define the square wave can be chosen arbitrarily to produce a background-
free spectrum. Two distinct cases were used within this work. In the first case, one voltage
is set to zero, which produces a typical resonance spectrum and the second voltage is set
sufficiently high to not produce any signal events in the given scan range. This yields a normal,
but background-free resonance as shown in Fig. 5.3(b). In the second case, both voltages
are equally shifted from zero by only a small amplitude of 0.25V but with opposite signs.
This yields a dispersion spectrum as visible in Fig. 5.3(c) since it corresponds essentially to an
experimentally taken difference quotient. The chosen voltage amplitude is small enough to
justify fitting the derivative of a Gaussian. The resonance position is determined by using the
central zeropoint of the derivative. Note that spectra recorded with the voltage modulation
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lose a factor of two in signal-to-noise ratio (SNR) since half of the signal and background are
discarded (first factor of

√
2) and the subtraction increases the noise (second factor of

√
2).

Fits to all three types of spectra show similar and featureless scattering of the residuals.

5.1.3 Test of saturation spectroscopy

The new background-free laser spectroscopy technique introduced in Sec. 5.1.2 enables the
use of large dwell times by eliminating fluctuations in the laser background. This is essential
if the laser frequency needs to be scanned directly as the used Ti:sapphire laser takes about
200ms to set the next frequency value. Directly scanning the laser frequency enables the
utilization of saturation spectroscopy to potentially improve the precision of the extracted
resonance frequencies of C4+. A first attempt of performing collinear saturation spectroscopy
was undertaken with 12C prior to the measurements with 13C presented in this work [159].
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Figure 5.4: Fluorescence spectrum from saturation spectroscopy. (a) The raw on-resonance
and off-resonance signals. The scattering of the data is larger than the signal
height due to the long dwell time required in a direct laser-frequency scan. (b) The
data resulting from subtracting the off-resonance from the on-resonance data. A
pump dip appears at the velocity class saturated by the anticollinear pump laser.
The difference of a Gaussian (blue) and a small Lorentzian (green) to account for
the pump dip is fitted to the data to give the full shape (purple). Additionally, the
solution of the rate equations for Gauss distributed velocities is fitted with free
pump laser power, pump dip position, y-axis offset and signal scale (orange). The
residuals show the data and the simulation fit relative to the sum fit.
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To saturate the 3S1 → 3P2 transition in 12C for a single velocity class, the anticollinear pump
laser was operated at the maximal available power of 2mW inside the beamline and stabilized
to a fixed frequency. The second, collinear scan laser was used at a power of 1.1mW to scan
the fluorescence spectrum. Due to the fast decay of the population in the 3P2 state back to the
3S1 state, probing the saturated transition requires the simultaneous presence of the pump
and scan laser. Consequently, the laser background here is much higher than in conventional
fluorescence spectra. When combined with a long dwell time of 1 s, this results in significant
scattering of the number of photon events from the laser background, rendering the spectrum
useless if the background is not subtracted. This is demonstrated in Fig. 5.4(a). By subtracting
the off-resonance recorded background as described in Sec. 5.1.2, a clear spectrum with a
small pump dip emerges, see Fig. 5.4(b).
To extract the transition frequency from the spectrum, the position of the pump dip must
be determined. This can be achieved by fitting a Gaussian, with a subtracted Lorentzian to
describe the pump dip in the data. The laser frequency at which the collinear scan laser is in
resonance with the same velocity class as the anticollinear pump laser can be extracted from
the position of the Lorentzian. The spectrum presented was recorded for approximately thirty
minutes. The position of the pump dip has a statistical uncertainty of 4.8MHz, which is three
times larger than the uncertainty of the position of the main peak. The fitted full width at
half maximum (FWHM) of the pump dip is 29(20)MHz, which is consistent with an expected
saturation-broadened natural linewidth of approximately 17MHz and 6 times narrower than
the main peak (

√︁
8 ln(2)σ = 179(6)MHz). However, the low dip intensity causes the relatively

large statistical uncertainty of the dip position.
Alternatively, the rate equations can be solved with variable parameters and fitted to the data
to have a better approximation of the real lineshape. The result of fitting the solution of the
rate equations for Gauss distributed velocities using the pump laser power, pump dip position,
y-axis offset and signal scale as free parameters is shown in Fig. 5.4(b) and was performed
with the qspec package described in chapter 3. The solution slightly deviates from the fit of a
sum of Gaussian and Lorentzian, as can be seen in the fit residuals. The pump-dip position
shifts by 1.2(3)MHz while its uncertainty estimated by the fit routine remains similar. The
fitted laser power of 1.54(48)mW is consistent with the measured value of 2mW but has a large
uncertainty. It should be noted that the convergence of the fit is quite unstable and depends to
some degree on the start parameters of the fit. The Gauss distribution had to be fixed in order
for the fit to converge properly. These issues are consequences of the weak pump dip but also
of the missing baseline which was not measured to increase the number of data points in the
pump dip while decreasing the measurement time. Yet, also the resolution of the pump dip
still poses a problem.
Thus, the extended measurement time per spectrum, challenging laser power requirements, and
resulting low pump dip statistics render the use of saturation spectroscopy in C4+ impractical
with the given experimental setup. However, increasing the depth of the pump dip by operating
the pump laser at a higher laser power may result in reduced scattering of transition frequencies
caused by interactions with different velocity classes, which is presently the primary contribution
to the systematic uncertainty [63, 64]. A detailed analysis of the systematic uncertainties is
given in Sec. 5.2.3. In the case in which an operation of the EBIS in pulsed mode is inevitable,
less stringent requirements would already lead to an improvement in precision of the extracted
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transition frequency due to the up to ten times larger Doppler width of the corresponding
spectra. Measurements recorded in the pulsed operation mode are presented in Sec. 5.6.
Within this work, an attempt was made to utilize optical population transfer between the two
hyperfine structure ground states in 13C4+ as the ions pass the pumping drift tube in front of
the FDR to induce a pump dip. However, the branching ratios are distributed in a way that
either a large pump dip would occur in a resonance peak of a weak transition or a small pump
dip would occur in a peak of a strong transition. In both cases, it is likely that the relative
amount of ions with the appropriate velocity and flight path to be both pumped and probed
was too small to observe a pump dip.

5.2 Determination of transition frequencies

The resonance frequencies of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions have been determined from
the recorded fluorescence spectra. Due to the hyperfine structure splitting in 13C4+, there are
nine distinct resonance frequencies. Each pair of collinear (c) and anticollinear (a) resonance
spectra yields a single rest-frame frequency value. At least 21 measurement pairs were taken
for each transition to minimize statistical fluctuations. Spectra were recorded in the order
ac-ca to compensate for linear drifts in the kinetic energy of the ions. The final resonance
frequencies are compiled in Tab. 5.1.

Table 5.1: Measured resonance frequencies of the 3SJ → 3PJ ′ tran-
sitions in 13C4+. Results for the two segments of the FDR
are given relative to the final results and only with their
statistical uncertainty which is the error of the weighted
mean. The final results are derived from both segments
and their uncertainties including statistical and systematic
contributions, see text. All values are given in MHz.

(J, F ) → (J ′, F ′) ν(J,F )→(J ′,F ′)

Segment 1 Segment 2 Final

(1, 1/2) → (0, 1/2) −0.2 (0.7) 0.1 (0.5) 1 316 147 920.6 (1.9)
(1, 3/2) → (0, 1/2) −0.1 (0.3) 0.1 (0.3) 1 316 084 566.3 (1.8)

(1, 1/2) → (1, 1/2) 2.4 (1.1) −1.0 (0.7) 1 315 749 143.7 (1.9)
(1, 1/2) → (1, 3/2) 0.2 (1.0) −0.1 (0.8) 1 315 781 189.1 (2.0)
(1, 3/2) → (1, 1/2) −0.1 (0.8) 0.1 (0.8) 1 315 685 791.2 (2.0)
(1, 3/2) → (1, 3/2) −0.4 (0.2) 0.3 (0.2) 1 315 717 838.5 (1.8)

(1, 1/2) → (2, 3/2) 0.4 (0.6) −0.1 (0.2) 1 319 813 468.4 (1.8)
(1, 3/2) → (2, 3/2) 0.3 (0.8) −0.1 (0.4) 1 319 750 116.8 (1.8)
(1, 3/2) → (2, 5/2) 0.1 (0.1) 0.0 (0.1) 1 319 798 680.5 (1.8)
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5.2.1 Fitting fluorescence spectra

The fluorescence spectra are fitted using the least-square optimization function optimize.leastsq
provided by the scipy Python package [135]. Since the natural linewidth of the measured
transition is only 9MHz [97] while the full width at half maximum of the resonances is about
150MHz due to residual Doppler-broadening, the Lorentzian part is neglected and either a
Gaussian of the form

f(x, [x0, σ, a, y0]) = a exp
[︃
−(x− x0)

2

2σ2

]︃
+ y0, (5.1)

or in the case of dispersion spectra, the derivative of a Gaussian

g(x, [x0, σ, a, y0]) = a
(x− x0)

σ
exp

[︃
−(x− x0)

2

2σ2

]︃
+ y0, (5.2)

is used to fit the data. In both cases, a y-axis offset is used to account for non-zero baselines
and the parameter a is given in units of the y-axis. The uncertainties of the fit results are scaled
to yield χ2

red = 1. In Fig. 5.3 examples of fits to the three types of recorded spectra are shown.
The fits to the data were performed in the frequency space of the rest-frame of the ions.
Therefore, the parameter x0 yields the position of a resonance as a frequency value. To
determine the Doppler shift, the acceleration voltage without the scan voltage is required.
Since the starting potential of the ions is not known accurately, the acceleration voltage
was determined in the analysis process to fulfill the conditions that it stays constant during
the recording of a collinear-anticollinear pair and that the determined rest-frame resonance
frequencies agree within 1MHz. The two resonance positions are then used with Eq. (2.66) to
get the electronic transition frequency. Note that this process of determining the acceleration
voltage is not required to have sufficient accuracy in the determination of transition frequencies,
however, it was used as a uniform criterion to determine the actual acceleration voltage.

5.2.2 Selection criteria of measurements

Not all recorded spectra were used to determine the transition frequencies due to insufficient
statistics or a non-constant laser background which lead to inconclusive or wrong fits. The
discarded spectra primarily come from the first segment of the FDR, which was always equipped
with an elliptical mirror with significant more laser background compared to the lens system,
see Fig. 4.10. Additionally, the weaker transitions and the measurements using a modulated
scan voltage often yielded a very poor SNR and also had to be rejected. Hence, to filter
reliable spectra, four conditions were defined which need to be fulfilled. The definitions are
based on the statistics of all measurements across all transitions, as resonance peaks should
only vary in height. Since a single transition frequency measurement requires one collinearly
and one anticollinearly recorded spectrum, both are rejected even if only one does not fulfill
the conditions. The four boundary conditions and their numerical values are depicted in
the histograms shown in Fig. 5.5. It should be noted that defining useful objective criteria
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Figure 5.5: Statistics of the observables used to filter reliable fluorescence spectra. Both the
unfiltered (grey) and the filtered (orange) data is shown. Some of the far outliers
in the unfiltered cases extend beyond the bounds of the histogram. (a) shows the
full width at half maximum (FWHM) of the Gaussian fits, (b) shows the χ2

red of the
Gaussian fits, (c) shows the χ2

red of fits of a constant to each spectrum and (d)
shows the ratio of the χ2

red of constant fits and Gaussian fits.

to discard samples of a statistical distribution inevitably also leads to the rejection of some
useful data. However, this does not introduce any systematic shift as the desired observable
to be extracted from the data, which is the x-axis position of the maximum of the Gaussian
peak, is statistically independent from the chosen selection criteria. The individual transition
frequencies of the nine transitions in 13C4+ vary within their statistical uncertainties depending
on the chosen criteria. The center-of-gravity frequency of the entire fine-structure, which
is used to determine the differential mean-square nuclear charge radius, shifts by less than
0.2MHz. The alternatives to the objective criteria would be to manually select useful spectra or
to include all spectra. The former would be a subjective choice which could lead to a systematic
shift. The latter would mean to include measurement that do not show a clear resonance
signal. Some examples of barely rejected fluorescence spectra are shown in Fig. 5.6.
The first chosen criterion is based on the peak width. The most common full width at half
maximum (FWHM)was determined by fitting a Gaussian to the histogram depicted in Fig. 5.5(a)
and is about 154MHz. To be considered valid, the measurement should be within the 3σ-range
of the fitted Gaussian. The fit was chosen over statistical estimators such as the standard
deviation or percentiles because it is more robust against statistical outliers and thus, describes
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Figure 5.6: Fluorescence spectra of 13C4+ that are barely rejected by different selection criteria.
(a & b) With σ = 34.5MHz and 93.9MHz, the Gaussian fits have a smaller and a
larger peak width than the minimum and maximum accepted value, respectively.
The tolerated range is indicated in red. (c) The differential Gaussian fit is rejected
due to a ratio χ2

const/χ
2
Gauss = 1.7 < 2. The constant fit and its 1σ uncertainty is

indicated in red.

the distribution in the proximity of the mean much better, which is more likely to contain
meaningful spectra. The second criterion shown in Fig. 5.5(b), is χ2

red ≤ 3 for the Gauss fits to
the fluorescence spectra, which corresponds to the 99.73-percentile for the subset of spectra
recorded with the second FDR segment. Here, the percentiles instead of a fit to the histogram
were used due to the asymmetric distribution and the fact that it contains far less outliers. The
latter is also the reason why the criterion was defined using only data from the second FDR
segment. A constant function of the form

c(x, y0) = y0 (5.3)

was fitted to each fluorescence spectrum to check the significance of the peak. The resulting
distribution of the χ2

red is depicted in Fig. 5.5(c). The minimum accepted value corresponds to
the 4.5-percentile of the χ2

red of the constant fits. As illustrated in Fig. 5.5(d), the final condition
requires the ratio of the χ2

red of constant fits and Gaussian fits to exceed two. This number was
chosen arbitrarily and raises the significance of the peak in accepted measurements.
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5.2.3 Systematic uncertainties

The systematic uncertainties in collinear laser spectroscopy measurements with C4+ have been
discussed in detail in [63]. The systematic measurements that are discussed therein were not
repeated within this work due to the consistent behavior of the experiment throughout the
measurement campaign. In this section, the systematic contributions found in [63] are revisited
and applied to the slightly altered experimental conditions underlying this work. Where useful,
additional considerations about the systematic contributions are given. A summary of all
considered systematic uncertainties is given in Tab. 5.2.

Table 5.2: Summary of all systematic uncertainties of the transi-
tion frequency measurements in 13C4+. The total sys-
tematic uncertainty is given by the geometric sum of all
individual uncertainties.

Contribution Symbol Uncertainty (MHz)

Spatial velocity distribution ∆νspatial 1.72
Laser- and ion-beam alignment ∆νangle 0.09
Photon recoils ∆νrec 0.41
Laser polarization ∆νpol 0.24
Absolute voltage ∆νU 0.00
Amplification factor ∆νδU 0.00

Total systematic uncertainty ∆ν 1.79

Spatial velocity distribution In the previous measurements with 12C4+, the dominant con-
tribution to the systematic uncertainty was identified to originate from an inhomogeneous
distribution of the ion velocities in the ion-beam cross section. This is a consequence of bend-
ing the ion beam electrostatically by 60◦. In combination with a misalignment between the
collinear and anticollinear laser beam, this leads to different velocities being addressed by the
two lasers (βc ̸= βa) and, therefore, to a systematic frequency shift as Eq. (2.66) is no longer
applicable. Other potential systematic errors, mostly experimentally indistinguishable from
this contribution, were estimated to be significantly smaller. A systematic shift of 8.6MHz was
measured when misaligning the two laser beams by 1mm at the entrances to the beamline.
This corresponded to an angle of 0.38mrad and a horizontal displacement of approximately
0.55mm between the laser beams at the position of the FDR [63]. The artificial misalignment
in the systematic measurement was roughly a factor of five larger than the achieved precision
in overlapping the laser beams. Thus, based on experimental conditions, the spatial systematic
uncertainty was estimated to be ∆νspatial = 8.6MHz/5 = 1.7MHz, which was also confirmed
by ion-optical simulations in [63]. Note that the theoretical contribution of the changed
Doppler shift due to the angle between the laser beams is small compared to this experimental
value as discussed in the next paragraph. Hence, the main contribution to this frequency shift
can be ascribed to addressing different velocities in the ion beam with the two lasers caused
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by a parallel shift of the two laser beams. Contrary to a misalignment of the angle, which
always leads to a positive frequency shift in the anticollinear case, the effect of a displacement
changes sign when moving from left to right. Thus, frequency shifts due to the laser beam
overlap should be randomly distributed variables that are symmetrically centered around zero,
corresponding to perfect alignment. Note that this still holds true if the laser beams differ
in size but are symmetric in the direction in which the ion velocities change. Therefore, this
systematic uncertainty should be referred to as an enhanced statistical uncertainty. As such, it
should depend on the number of measurement series since the laser alignment was readjusted
at the start of each series. In the following, its applicability to the measurements carried out
within this work is discussed and residual systematic contributions are estimated.

Laser- and ion-beam alignment The alignment procedure of the laser beams, explained in
Sec. 4.4.3, was slightly changed within this work compared to the previous measurements
with 12C4+ due to the new beam stabilization system. Nonetheless, the two laser beams were
manually superposed across a distance of approximately 14m. A displacement of less than
0.5mm between the incoming and outgoing collinear and anticollinear beams was ensured,
including drifts of the laser beams during a measurement series. This conservative estimation
corresponds to an angle of 0.07mrad which closely approximates the angle used to derive the
systematic uncertainty for the beam overlap of 1.7MHz. Given that the laser-beam diameters
as well as the ion beam size are comparable to those of the previous experiment, this value
remains a valid assumption.
To determine the error caused by angles between the ion and the laser beams in Eq. (2.66),
the alignment of all three beams has to be considered. The largest potential error occurs when
there is an angle between the ion beam and one of the laser beams αIL and the angle between
the two laser beams αLL leads to an even larger tilt between the second laser and the ion beam.
The deviation between the experimentally determined transition frequency and the actual
resonance frequency is given by [63]

∆νangle = ν0

⃓⃓⃓
1− γ

√︁
(1 + β cos(αIL + αLL))(1− β cos(αIL))

⃓⃓⃓
. (5.4)

Before each measurement series, the ion beam was aligned with the spots of the collinear
laser beam on the two available MCP detectors, which are located 2.6m apart from each other.
The average diameter of the collinear laser beam in this region of the beamline is about 0.8mm,
see Fig. 4.14, and the maximum observed drift of the ion beam on either of the two detectors
during a measurement series was one laser beam diameter. Hence, αIL < 0.62mrad, resulting
in a maximum error of∆νangle = 0.09MHz, which is well below the estimated total uncertainty.

Photon recoils During the absorption process of a photon, its momentum hν/c is transferred
to that of the atom. Consequently, the photon energy required to excite an atomic transition
is larger than the actual transition energy. This mismatch is already considered in Eq. (2.66)
used to calculate rest-frame transition frequencies and does not add any systematic uncertainty.
However, the momentum transfer also changes the velocity of the ion, i.e., every time the atom
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decays back to the ground state spontaneously, it emits a photon isotropically with respect to
the laser beam axis and, hence, on average keeps the momentum of the absorbed photon. Since
the photons of the collinear and anticollinear laser propagate in opposite directions, the mean
atom velocities in the two cases diverge. This introduces an error in Eq. (2.66) if more than one
excitation occurs. Multiple photon absorption consistently yields a higher transition frequency.
In prior experiments, this systematic error was estimated using the maximum scattering rate
if the laser is perfectly in resonance [63, 151]. However, this approach overestimates the
uncertainty since the resonance center contributes much less to the determined transition
frequency than the flanks of the peak.
For this work, the mechanical process of photon absorption was simulated with the simulate
module of the qspec package. Using the Monte-Carlo solver for the master equation that
was introduced in Sec. 2.4.4, the expected number of photon momentum transfers and the
influence on the transition frequency for different laser intensities can be calculated. In Tab. 5.3,
the results of the simulations are summarized for the highest used laser intensities and also
compared to the simpler approach of estimating the mean number of photon momentum
transfers via n̄ = Γsct. Here Γsc is the scattering rate in resonance and t = 0.29µs is the
interaction time, i.e., the time-of-flight of the 12.5 kV beam of 13C4+ ions (Ekin = 50 keV)
through the FDR [63]. In the simulations, the influence on the determined frequency can
be estimated in two ways, either using the mean number of simulated photon momentum
transfers via ∆νrec = 2n̄δνrec or by fitting a Gaussian to the simulated fluorescence spectrum.
In the first case, n̄ is determined on the simulated velocity distribution in longitudinal direction
through n̄sim = δvx/vrec. Results of all three determinations are compared in Tab. 5.3.
The interpretation of the results requires some caution. The frequency shifts determined from
the Gauss fits directly correspond to experimental center frequencies, hence, δνrec needs to
be subtracted to get the actual frequency offset due to multiple photon momentum transfers.

Table 5.3: Results of the photon recoil simulations. The saturation parameters are calcu-
lated using the center intensity of a Gaussian laser beam I = 1169µW/mm2

given the maximum used laser power P = 0.9mW and the laser beam di-
ameter w0 = 0.7mm. The simulations yield a change in velocity for every
simulated atom that occupies the 3P state. The mean velocity change δvx is
divided by vrec = 0.135m/s to obtain n̄sim. The frequency change caused by
a single photon momentum absorption is 2δνrec = 0.6MHz. Uncertainties in
the simulation results are approximate estimates derived from running the
Monte-Carlo simulations multiple times.

Transition Saturation n̄calc n̄sim ∆νrec (MHz)

(J, F ) → (J ′, F ′) I/I0 Γsct δvx/vrec 2n̄calcδνrec 2n̄simδνrec Gauss fita

(1, 1/2) → (0, 1/2) 0.13 0.95 0.14(1) 0.56 0.08(1) 0.01(1)
(1, 3/2) → (1, 3/2) 0.39 2.30 0.65(1) 1.36 0.38(1) 0.18(1)
(1, 3/2) → (2, 5/2) 0.65 3.22 1.45(2) 1.92 0.86(2) 0.41(2)
a ∆νrec = νfit − δνrec, see text.
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This correction is already applied for the value listed in Tab. 5.3. The other method, which
was also used in [63, 151], yields frequency offsets based on mean numbers of momentum
transfers. Since only atoms in the 3P states contribute to the fluorescence spectrum at a given
time, only those atoms were considered. Here, the subtraction of δνrec is not required because
the atom momenta are calculated for the time when the atoms were still in the 3S1 state,
as described in Fig. 2.3. The results show that the error introduced by fitting a Gaussian
to a Doppler-broadened spectrum is much smaller than the estimated error when using the
scattering rate in resonance. The upper limit of the frequency shift ∆νrec = 0.41MHz due
to the finite photon momentum determined with the fit method is still well below the total
systematic uncertainty of 1.8MHz. Additionally, it is worth noting that the frequency shift
is particularly large in the closed 3S1, F = 3/2 → 3P2, F

′ = 5/2 transition while in all other
transitions, multiple photon momentum transfers are suppressed due to the optical population
transfer.

Laser polarization A non-linear laser polarization induces a shift in the determined transition
frequencies depending on the magnetic field vector inside the FDR. The upper limit of this
effect is given by a magnetic field vector aligned with the beam axis and completely circularly
polarized light. The only considerable magnetic field present in the FDR is that of the earth
with a magnetic flux density of approximately 50µT. In 13C4+, the 3S1, F = 1/2 → 3P1, F ′ = 1/2
transition undergoes the largest shift between ±1.6MHz, depending on the handedness of
the circularly polarized light. However, the magnetic field is not parallel to the beam axis.
According to the International Geomagnetic Reference Field (IGRF) model, the B-field in
Darmstadt is given by [162]

BIGRF = 16.915ex − 11.054ey + 44.545ez, (5.5)

where ex is the unit vector of the beam axis in collinear direction, ez faces upwards, or-
thogonal to the floor and ey completes the orthonormal basis, see also the coordinate system
in Fig. 3.4. In 2018, the magnetic field at the beamline has also been measured using a Hall
probe. The resulting B-field vector is

Bexp = 14.6(2.1)ex − 3.9(3.3)ey + 33.8(2.1)ez. (5.6)

The orientation of the vector agrees well with that of the theoretical vector, being tilted by
only 7.5(4.9)◦. However, the absolute value of the magnetic flux density, with 37.0(2.1)µT,
is only about 75% of the theoretical value, which might be due to shielding material in the
building structure. In the following, the larger theoretical field vector is used for the worst-case
estimation of potential systematic errors.
In either case, the maximum shift no longer appears with circularly polarized light but with a
mixture of linearly and circularly polarized light. This increases the demand on the linearity
of the polarization. No polarizing beam splitter or linear polarizer was used in front of the
beamline due to the limited available laser power and because the laser light coming from
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the second frequency-doubling stage is inherently linearly polarized in the z-direction. Hence,
if the laser beam only is reflected in the xy-plane or into the z-axis, the linear polarization
will be preserved. The ratio of linearly to circularly polarized light was tested using a linear
polarizer. A maximum value of 6.5% of circularly polarized light was found in front of the
beamline, including both the collinear and anticollinear site. This corresponds to a maximum
shift in the above mentioned transition of ∆νpol = 0.24MHz which is negligible compared
to the total systematic uncertainty of 1.8MHz. Additionally, systematic transition frequency
measurements with different polarizations have been performed within [63]. There, no
polarization-dependent frequency shift was detected exceeding the scattering of the data.

5.2.4 Derivation of the final transition frequencies

The final frequency values ν0 of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions are given by the mean
of all filtered measurements M including both segments of the FDR F weighted by their fit
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Figure 5.7: Statistics of the 1s2s 3S1, F = 3/2 → 1s2p 3P2, F
′ = 5/2 transition frequencies

measured with the lens segment of the FDR. The total 1σ uncertainty range is
shown in blue. The Gaussian plotted on the right is fitted to the histogram by only
varying its amplitude. The measurements are well within the total 1σ uncertainty
range. Single measurements systematically deviate from the mean value which
can be explained either by a drifting ion energy as in measurement 142 or by
misaligned laser beams.
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uncertainties σij such that

ν0 =
∑︂
i∈F

∑︂
j∈M

νij
σ2
ij

/︂∑︂
i∈F

∑︂
j∈M

1

σ2
ij

. (5.7)

The results from both FDR segments are correlated to some extend as the same experimental
conditions apply with only minor differences in laser and ion beam size. Consequently, the
additional results from the second segment cannot be used to decrease the uncertainty of the
combined results. Instead, the final statistical uncertainty of a transition is determined by
taking the minimum of the standard errors of their weighted means

σstat = min
i∈F

⌜⃓⃓⎷ 1∑︁
j∈M

σ−2
ij

. (5.8)

This only covers statistical uncertainties given by the fit but does not account for scattering of
the transition frequencies due to changing experimental conditions. As discussed in Sec. 5.2.3,
the systematic uncertainty mainly consists of statistical fluctuations observed in the resonance
positions which the fit does not account for. Hence, the statistical and systematic uncertainties
can be combined into a single total uncertainty by using the geometric sum

σ0 =
√︂

σ2
stat + σ2

sys. (5.9)

The resulting final transition frequencies and their uncertainties are summarized in Tab. 5.1.
As an illustration, Fig. 5.7 displays the individual frequencies of the 1s2s 3S1, F = 3/2 →
1s2p 3P2, F

′ = 5/2 transition as determined from the fits. The observed scattering of the data
for this transition, whose statistical uncertainty is negligible, demonstrates good agreement
with the total uncertainty.

5.3 Hyperfine structure of 13C4+

The precisely determined absolute transition frequencies listed in Tab. 5.1 enable an investi-
gation of the hyperfine structure, i.e., the hyperfine A parameter and the center-of-gravity
frequency. The latter can then be used to determine isotope shifts of the 3S1 →3P0,1,2 transitions
between 12,13C4+. These parameters can be determined by fitting the standard HFS formula
(Eq. (2.16)) to the nine resonance frequencies. Alternatively, the center of gravity can be
deduced by calculating the mean of the individual transitions weighted by the Racah intensities
as defined in Eq. (2.48). The results are compiled in Tab. 5.4 and both approaches are in good
agreement.
Due to hyperfine-induced mixing of the 3P0,1,2 and the 1P1 states, the determined center-of-
gravity frequencies deviate from a hypothetical transition frequency of 13C4+ with a vanishing
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Table 5.4: Center-of-gravity frequencies determined with different methods. The mean of
all 3S→ 3P transitions weighted by the Racah intensities (last row, first numeric
column) is used in the further analysis to determine the nuclear charge radius.
In case of the fit methods, only the hyperfine structure was fitted. The center-of-
gravity frequency of all transitions was determined by using the fine-structure
weights as in the weighted mean column.

Transition weighted mean standard fit hyperfine-induced fit
3S1 →3P0 1 316 105 684.4 (1.4) 1 316 105 684.7 (1.3) 0.3 1 316 103 946.9 (1.3) −1737.5
3S1 →3P1 1 315 728 273.3 (1.1) 1 315 728 273.0 (1.0) −0.3 1 315 728 925.4 (1.0) 652.1
3S1 →3P2 1 319 800 372.2 (1.2) 1 319 800 372.3 (1.2) 0.1 1 319 800 329.2 (1.2) −43.0

3S→3P 1 318 032 485.0 (0.8) 1 318 032 485.0 (0.8) 0.0 1 318 032 485.5 (0.8) 0.5
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Figure 5.8: Hyperfine structure (HFS) spectrum of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions in
13C4+ based on the experimentally determined frequencies listed in Tab. 5.1. The
shown peak heights correspond to the theoretical transition strengths used in
Eq. (2.48) to determine the center of gravity of the HFS spectrum. The grey dashed
lines mark the theoretical fine-structure transition frequencies if hyperfine-induced
mixing is considered and are shifted by up to 1.7GHz from the center-of-gravity
frequencies.

magnetic moment. By fitting Eq. (2.18) with off-diagonal elements that consider hyperfine-
inducedmixing to the nine resonance frequencies, corrected values of the three center-of-gravity
frequencies were determined. For the fit, the off-diagonal elements as well as ⟨11||T (1)||11⟩ of
the T (1) matrix were fixed to the theoretically determined values compiled in Tab. 2.3 so that
only the two diagonal elements ⟨31||T (1)||31⟩ and ⟨32||T (1)||32⟩were kept as free fit parameters.
The resulting frequencies are depicted as grey lines in Fig. 5.8. By computing the weighted
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Table 5.5: Hyperfine structure parameters determined
fromfits of Eq. (2.16) and Eq. (2.18) to the tran-
sition frequencies listed in Tab. 5.1. All values
are given in MHz.

HFS-parameter standard fit hyperfine-induced fit

A(3S1) 42 234.8 (0.9) 42 234.8 (0.9)
A(3P1) 21 364.3 (1.3) –
A(3P2) 19 425.6 (0.9) –

mean of these hyperfine center frequencies based on Eq. (2.48), the center of gravity of the
entire fine structure was obtained. This value deviates by only 0.5MHz from the value obtained
by taking the weighted mean of all nine transitions. This deviation is consistent with the
combined 1σ uncertainty of 1.1MHz of both analysis methods. No deviation is found when
not considering mixing with the 1P1 state. However, the center-of-gravity frequencies of the
individual fine-structure transitions deviate −1.74GHz in case of the 3P0 state, 0.65GHz in the
3P1 state and only −43MHz in the 3P2 state since it is separated by 4.1THz from the 3P1 state
while the 3P0,1 states lie within 0.4THz. The signs and the ratio of the shifts of the 3P0,1 states
can be explained with their energetic order and by counting the contributing F ′ quantum
numbers: Neglecting the mixing with the 3P2 state, only one of the two 3P1 states, i.e. F ′ = 1/2,
mixes with the single 3P0, F ′ = 1/2 state. Hence, the average transition to the 3P1 and the 3P0
states shifts approximately with the ratio 1 : −2. Deviations thereof are due to the mixing of
the 3P1 with the 3P2 state as well as the HFS splitting which changes the distance between
the transitions and thus the mixing contributions of the individual states. For F ′ = 1/2, an
admixture of 0.4359% of the 3P1 in the 3P0 state and vice versa was found. For F ′ = 3/2 and
the 3P1,2 states, the admixture is only 0.0027%. The shifts caused by hyperfine-induced mixing
can serve as interesting benchmark values for theory, similar to the fine-structure splitting in
12C4+ [64] or the splitting of the 3S1 state in 3He [163].
HFS parameters were determined from the fits of the HFS formulas to the transition frequen-
cies. In case of the hyperfine-induced-mixing model, only the ground state A-parameter can
be extracted directly since the A-parameters of the 3P states are not well-defined anymore.
However, the fitted diagonal elements of the T (1) matrix can be compared to the theoretical
values. The final HFS parameters are listed in Tab. 5.5. Both HFS models excellently agree in
the extracted splitting of the 3S1 ground state. Combined with existing experimental results in
3He [164], 6,7Li+ [165] and 11B3+ [147, 166], all splittings are consistent with an empirical
scaling law of ∆EHFS ∝ Z3.04 within 10MHz. The T (1) matrix elements determined from the
fit of the hyperfine-induced mixing model in units of e2

4πε0
1

4πa20

1
mpc

= 13 074.70MHz are

⟨31||T (1)||31⟩ = 2.704 36 (17), ⟨32||T (1)||32⟩ = 5.805 91 (28).

These agree within 1σ and 2σ, respectively, with the theoretical predictions from [99] listed in
Tab. 2.3, which suggests that also the fixed off-diagonal elements are reasonable predictions that
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can be used to derive the fine-structure transition frequencies. Note that fitting to the resonance
frequencies in all cases yields a χ2

red of only 0.36 which means that the systematic uncertainties
of the resonance frequencies are larger than the actual recorded statistical scattering, hinting
at a conservative uncertainty estimation.

5.4 Nuclear charge radius of 13C

The rms nuclear charge radius R13
C =

√︂
⟨r2⟩13 of 13C has been determined relative to the well-

known nuclear charge radius R12
C of 12C [34–37, 39, 64]. For this, the isotope shifts δν12,13 :=

ν13 − ν12 were obtained from the center-of-gravity frequencies of the 1s2s 3S1 → 1s2p 3P0,1,2

transitions. Table 5.6 lists the isotope shifts derived from the weighted mean approach described
in Sec. 5.3 and experimentally determined literature values from S. Ozawa et al. [167]. These
values are systematically lower than the values determined within this work but also have more
than three orders of magnitude larger uncertainties of a few GHz. Furthermore, Tab. II and
Fig. 3 of [167], which include the isotope shift values and the resonance signals, respectively,
suggest a negative isotope shift if assuming the definition used in this work. However, Tab. II
and Fig. 3 are inconsistent with more precise transition frequencies of 12C4+ given in Tab. I of
[167] that agree well with the new precise results from [63, 64]. Since no explicit definition
of the isotope shift is given in [167] and theoretically, the dominating positive mass shift
implies a positive isotope shift, the therein listed values are assumed to be taken with inverted
signs. Table 5.6 also includes the field shift constant F and the mass shift δνM required to
calculate the differential mean-square nuclear charge radius δ⟨r2⟩12,13 using Eq. (2.47). These
were determined through nonrelativistic QED atomic structure calculations, with terms up

Table 5.6: Isotope shifts δν12,13 := ν13−ν12 of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions
between 12C4+ and 13C4+. The transition frequencies of 12C4+ to calculate
the isotope shifts are taken from [63, 64]. The literature values are taken
fromS. Ozawa et al. [167] assuming an isotope shift definitionwith inverted
sign in this reference, see text. The field-shift constant F and mass
shift are theoretical values calculated by V. A. Yerokhin and K. Pachucki
[168] and used together with the isotope shifts to calculate the field shift
contribution.

Transition This work S. Ozawa et al.
3S1 →3P0 53 465.1 (2.3)MHz 45.6 (6.6)GHz
3S1 →3P1 51 080.5 (2.0)MHz 48.0 (6.0)GHz
3S1 →3P2 51 800.8 (2.1)MHz 40.5 (4.8)GHz
3S→3P 51 745.6 (1.4)MHz

mass shift 51 719.29 (25)MHz
field shift 26.3(1.4)MHz

F −211.5MHz/fm2
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Figure 5.9: Comparison of experimentally determined absolute and relative nuclear charge
radii of 12,13C determined with elastic electron scattering (e−-scattering, blue),
muonic atom spectroscopy (µ-atoms, orange) and CLS (green). Results from CLS
and e−-scattering were combined to get an improved R13

C (purple). The differential
mean-square nuclear charge radii from e−-scattering and µ-atoms are differences
of absolute radii while the CLS result is determined directly from the isotope shift
and ab initio atomic structure calculations using Eq. (2.47). The x-axis labels refer
to the references contributing to the data. The label c2 refers to the result from
this work [168].

to the order of mα6, by V. A. Yerokhin and K. Pachucki and will be published in [168]. The
isotope shift parameters are specifically calculated for the difference in the center-of-gravity
frequencies of the entire fine structure. R13

C serves as an additional benchmark value for nuclear
structure calculations as well as experimental results frommuonic atom spectroscopy (µ-atoms).
Experimentally determined absolute and differential mean-square nuclear charge radii of 12,13C
from literature and this work are plotted in Fig. 5.9 and listed in Tab. 5.7. Results from nuclear
structure calculations are discussed in Sec. 5.5.
ForR12

C , several consistent results from elastic electron-scattering (e−-scattering) measurements
by different groups exist [34–37]. In the analyses of the latest two measurements, dispersion
corrections are considered [35, 37]. Note that the authors of [37] recognize a difference in the
applied corrections that could not be traced back due to a lag of information about the analysis
in [35]. However, the results agree within 0.7σ. Results from µ-atoms can be found in [38,
39]. While the result from [38] agrees with all other charge radii for 12C, the precise result
from [39] predicts a nuclear charge radius that is 2.4σ larger than the weighted mean of the
e−-scattering results. R12

C was also determined all-optically by combining CLS measurements
[63, 64] and ab initio atomic structure calculations [65]. The result agrees well with those from
the other approaches, however, currently has a two orders of magnitude larger uncertainty
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Table 5.7: Absolute and relative nuclear charge radii of 12,13C determined with elastic
electron scattering (e−-scattering), muonic atom spectroscopy (µ-atoms) and
CLS. The last e−-scattering value is the weighted mean and its standard error
of all e−-scattering results. Combined results are given relative to the weighted
mean of the e−-scattering results.

Method R12
C (fm) Ref. R13

C (fm) Ref. δ⟨r2⟩12,13 (fm2) Ref.

e−-scattering 2.472 (15) [34]
2.471 0 (55) [35]
2.464 (12) [36]
2.478 (9) [37]
2.471 7 (42) [34–37] 2.440 (25) [40] −0.113 (49) [40]

µ-atoms 2.472 (16) [38] 2.480 (20) [38] −0.04 (13) [38]
2.482 9 (19) [39] 2.462 8 (39) [41] −0.099 (21) [39, 41]

CLS 2.45 (12) [64] 2.42 (12) [64, 168] −0.124 5 (66) [168]
+ e−-scattering 2.446 4 (45) [34–37, 168]

due to the limiting precision of the calculations.
R13

C is far less precisely known and from e−-scattering only a single value with comparable
precision exists [40]. Results from independent measurements described in [169] with R12

C =
2.395(28) fm and R13

C = 2.384(47) fm significantly deviate from the other e−-scattering results
that came later. Hence, they are not considered in the further discussion. The nuclear charge
radii determined with µ-atoms can be found in [38, 41] and are again larger than the e−-
scattering results. However, they still agree with the given uncertainty. Using the experimentally
determined isotope shift and the atomic factors listed in Tab. 5.6, the differential mean-square
nuclear charge radius δ⟨r2⟩12,13 was determined. The value agrees well with the combined
results from e−-scattering that, however, have much larger uncertainties than the present result.
Both δ⟨r2⟩12,13 derived from µ-atoms deviate by 1σ from the CLS result. An improved value for
the absolute nuclear charge radius R13

C was determined by combining the weighted mean of
R12

C from e−-scattering with the CLS results for δ⟨r2⟩12,13 from this work using

R13
C =

√︂
⟨r2⟩12 + δ⟨r2⟩12,13. (5.10)

The e−-scattering results were chosen as the reference for R13
C to be as model-independent

as possible. A small model-dependence in the e−-scattering results cannot be ruled out
completely but is expected to be smaller than that in µ-atoms. The contributing δ⟨r2⟩12,13 from
CLS is completely model-independent since it only depends on direct transition frequency
measurements and well tested ab initio atomic structure calculations. The uncertainty is on
par with the more precise result from µ-atoms and mainly limited by the uncertainty ∆R12

C
from e−-scattering. The R13

C determined within this work significantly deviates by −2.8σ from
the precise µ-atoms result. This is a strong indication that the model-independence claimed
in [41] is not sufficiently fulfilled. Although much better agreement is achieved if only the
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latest results from e−-scattering [37] are used, the radii determined with µ-atoms remain to
be too large. In the near future, new x-ray spectroscopy measurements with light µ-atoms are
planned which are promising to elucidate the discrepancies between the different experimental
methods [170].

5.5 Nuclear structure calculations

In-medium similarity renormalization group (IMSRG) ab initio nuclear structure calculations
were performed by M. Heinz et. al. to test their applicability in light nuclei [168]. Table 5.8
lists the results determined with the NN+3N interactions 1.8/2.0EM [171] and ∆N2LOGO [172,
173].1 1.8/2.0EM includes free-space NN interactions up to N3LO and 3N interactions at N2LO,
compare the Feynman diagrams in Tab. 2.2. The free parameters were fitted to NN scattering
data as well as properties of 2,3H and 4He. The interaction is regularized and renormalized
in the NN interactions with a soft resolution scale of λNN = 1.8 fm−1 (355MeV) and in the
3N interactions using a regulator function with cutoff momentum Λ3N = 2.0 fm−1 (394MeV).
∆N2LOGO includes both free-space NN and 3N interactions up to N2LO with cutoff momenta
λNN = Λ3N = 2.0 fm−1 (394MeV). In the construction of the chiral effective field theory, ∆
resonances are considered explicitly. This introduces additional diagrams to the power counting
expansion as the nucleons can be in an excited state after a pion-exchange. The free parameters
are fitted to NN scattering data, properties of nuclei with A ≤ 4 and nuclear matter properties,
compare also [173].
The nuclear structure of 12,13Cwas computed using the IMSRGwith the 1.8/2.0EM and∆N2LOGO
interactions as inputs to determine their mean-square nuclear charge radii. Calculations at the
effective two-body level (IMSRG(2)), where the last term W (s) in the expansion defined by
Eq. (2.6) is omitted, are performed routinely and are possible up to the nuclei 132Sn or 208Pb
at relatively low computational cost. The IMSRG(3), performed at the effective three-body
level, is significantly more expensive and the nuclei of 12C and 16O are on the verge of what
is currently possible. For this work, IMSRG(3) was only used with the 1.8/2.0EM interaction.
Uncertainties are given only for directly determined differential radii and in all cases include
general model space and solver uncertainties of 0.005 fm and an additional 10% uncertainty
for the Hamiltonian. An additional uncertainty of 0.005 fm is ascribed to the extended model
space in the effective three-body calculations. The uncertainties are only estimations of the
precision within the given IMSRG approximation but do not cover the uncertainty introduced
by approximating in the first place. More details about the interactions and many-body
calculations can be found in the respective references [171–173] and in the review article [91].

The IMSRG results mostly underestimate the absolute nuclear charge radii and give too large
differences between 12,13C. A similar behavior for the absolute radii is found for (valence-
space) IMSRG calculations across the nuclear chart [174] and ascribed to overly attractive soft
NN-potentials at low resolution scales (cutoff momenta) λNN when many-body contributions
are omitted [6, 175]. In other words, the nuclear saturation density is overestimated as
nuclei exhibit smaller radii. Accordingly, when effective three-body interactions are included,
1EM: D. R. Entem & R. Machleidt, GO: Gothenburg–Oak Ridge.
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Table 5.8: Absolute and relative nuclear charge radii of 12,13C determined
using Eq. (2.8) with different in-medium similarity renormal-
ization group (IMSRG) calculations at the effective two- and
three-body level for the 1.8/2.0EM and the∆N2LOGO interaction,
see text. The listed experimental values are derived from the
combined elastic electron scattering results for 12C and the
differential radius determined within this work [168]. All values
are given in fm.

Interaction IMSRG approx. R12
C R13

C R13
C −R12

C

1.8/2.0EM IMSRG(2) 2.428 2.373 −0.055(11)
∆N2LOGO IMSRG(2) 2.418 2.372 −0.046(9)
1.8/2.0EM IMSRG(3) 2.530 2.419 −0.111(21)

Experiment — 2.4717(42) 2.4464(45) −0.0253(14)

1.8/2.0EM yields larger values for the radii of 12,13C such that the radius of 12C gets overestimated
and for 13C, the experimental result is almost reached. The larger increase of the radius of 12C
by 0.1 fm compared with 0.05 fm for 13C is most likely a consequence of the more challenging
structure of 12C and the need for higher-order many-body contributions in 12C. However,
also odd-even staggering may play an important role here. See, for example, [123] for
a comparison of odd-even staggering in Cu isotopes determined from collinear resonance
ionization spectroscopy and valence-space IMSRG calculations using the 1.8/2.0EM interaction.
The ∆N2LOGO interaction yields similar absolute radii as the two-body 1.8/2.0EM, however,
predicts the differential radius closest to the experimental result, agreeing within two theoretical
uncertainty ranges. This suggests that the finite size of a nucleon, which changes upon the
excitation of a ∆ resonance, is important to describe the emergence of the nuclear size of the C
isotopes. However, a clear statement is not possible at the current level of accuracy and given
the challenging structure of 12,13C.
In conclusion, the remaining discrepancies between theory and the experiment can be ascribed
to the complex structures of the 12,13C nuclei. As in other light nuclei, α-clustering of nucleons
increases the difficulty for the theoretical description as these deviate significantly from a
shell-model viewpoint. Hence, better agreement with experiment is achieved in heavier nuclei
using valence-space IMSRG. The change of the absolute nuclear charge radius with the inclusion
of effective three-body operators shows that the light nuclei require higher order many-body
contributions to be accurately described. However, with 12 and 13 nucleons, the two stable
C isotopes are challenging for IMSRG(3) calculations and close to the current computational
limits. Reducing the computational cost of IMSRG(3) calculations is a main research effort
and progress is expected in the near future. Also the development of new interactions are
promising ventures. For example, the ∆N2LOGO interaction is just getting established as a
standard and will be improved further.
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5.6 Transition frequencies from pulsed operation

Another interesting application of the EBIS that was skipped in the above discussion, is to
charge breed radioactive isotopes produced at accelerator facilities. However, these cannot
be fed into the EBIS as a gas but have to be injected into the trap as a pulsed beam. This
inevitably requires the EBIS to be operated in pulsed mode. Therefore, it is important to
test the feasibility of the determination of transition frequencies in pulsed operation and
compare the results with those from continuous operation. Frequency measurements of the
1s2s 3S1, F = 3/2 → 1s2p 3P2, F

′ = 5/2 transition in pulsed mode have been conducted within
this work. To produce a pulsed beam, the EBIS trap potential was set to a high voltage of
UA = 12.5 kV and the wall potential UB in beamline direction was switched between UA (open)
and UA + 90V (closed) for 1ms and 15ms intervals, respectively. An electron current of 84mA
and a gas pressure of 6 · 10−8 mbar was chosen similar to the measurements in continuous
operation. The emittance of the ions in the pulsed mode is much larger than in the continuous
mode due to the higher temperature and space charge effects in the propagating ion pulse.
This leads to a large divergence of the pulse at the position of the FDR. Therefore, the ion pulse
was refocused into the FDR to increase the laser-ion beam overlap using an einzellens located
directly in front of the FDR, see Fig. 4.4. A typical spectrum in pulsed mode recorded with the
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Figure 5.10: Resonance signal of the 1s2s 3S1, F = 3/2 → 1s2p 3P2, F
′ = 5/2 transition in pulsed

operation recorded with the lens-based FDR. (a) The time-resolved fluorescence
spectrum. The ion pulse reaches the FDR where it is excited by the anticollinear
laser beam at a flight time of 6µs after the wall potential of the EBIS was opened.
A time window of 2µs is used to select the ions which contribute to the projected
fluorescence spectrum. (b) The projected fluorescence spectrum summed over
all selected flight times. A Gaussian is fitted to the data.
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new lens-based FDR is shown in Fig. 5.10.
The ion pulse released from the EBIS has a time width of 2µs plus a slower tail of ions which
are decelerated by propagating through the falling wall potential. This slow tail is cut off

Table 5.9: Transition frequencies and their statistical uncertainties of the 1s2s 3S1, F =
3/2 → 1s2p 3P2, F

′ = 5/2 transition determined from the pulsed and continu-
ous spectra. The systematic uncertainty σsys of 1.8MHz in continuous mode
derived from the theoretical considerations described in Sec. 5.2.3 should be
added to the statistical uncertainties according to Eq. (5.9). All values are
given in MHz.

EBIS mode FDR segment mean weighted mean # data

continuous 1 mirror 1 319 798 680.69 (43) 1 319 798 680.51 (15) 131
continuous 2 lens /mirror 1 319 798 680.23 (15) 1 319 798 680.44 (7) 188
pulsed 1 mirror 1 319 798 676.5 (4.7) 1 319 798 676.7 (3.4) 32
pulsed 2 lens 1 319 798 682.8 (6.3) 1 319 798 681.6 (6.1) 32
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Figure 5.11: Absolute frequencies of the 1s2s 3S1, F = 3/2 → 1s2p 3P2, F
′ = 5/2 transition deter-

mined from the pulsed relative to the final value determined from the continuous
operation mode of the EBIS. The value of the continuous mode lies within the
1.2σ-uncertainty region of the combined statistical and systematic uncertainty
(blue) of all frequencies from pulsed operation. The standard deviation of the data
(green) is plotted to show the dominance of the statistical over the systematic
uncertainty. The Gaussian on the right is fitted to the histogram by only varying
its amplitude.
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from the spectra used to determine the transition frequency. The FWHM of the resonance
signal is 1.6GHz which aligns with the previous findings presented in [63]. The statistics of
all measurements and a comparison of results between the pulsed and continuous mode are
summarized in Tab. 5.9. The measured transition frequencies of both FDR segments are shown
in Fig. 5.11.
The transition frequencies determined from the measurements in pulsed operation agree well
with the precise results from continuous operation. The statistical uncertainty is significantly
larger in pulsed mode. However, test measurements in [63] showed that the FWHM can
be reduced by a factor of 3 by lowering the electron current to 25mA without reducing the
SNR. This can improve the statistical uncertainty and shows that a reduction to the limiting
systematic uncertainty of 1.8MHz in continuous operation at least for this strong transition
would be possible. Moreover, the scattering of the determined transition frequencies agrees
well with the given fit uncertainties as indicated by the agreement between the uncertainties
of the weighted and standard mean. This suggests that the systematic uncertainty in pulsed is
not much larger than in continuous operation.
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6 Conclusion and outlook

The 1s2s 3S1 → 1s2p 3P0,1,2 transition frequencies in helium-like 13C4+ were determined using
quasi-simultaneous collinear-anticollinear laser spectroscopy (CLS). The measurements were
carried out at the Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA) lo-
cated in the Institute for Nuclear Physics at the Technical University of Darmstadt. A continuous
beam of 13C4+ ions in the metastable 3S1 state that has a lifetime of only 21ms was produced
in an electron beam ion source (EBIS) and overlapped with two narrow-band continuous-wave
lasers. A precision-level of 2MHz, or 10−9 in relative precision, for absolute frequencies in
the UV-regime was achieved as in previous measurements of 12C4+ [63, 64]. The precision
is currently limited by the main systematic uncertainty arising from the interaction of two
not perfectly aligned laser beams with ions that have position-correlated momenta due to
electrostatic 60◦-bending. A small statistical uncertainty in the weakest transitions of the
hyperfine structure spectrum of 13C4+ was ensured by installing a beam position stabilization
for the collinear laser beam whose movement previously caused unwanted time-dependent
laser background. Additionally, a background-free measurement scheme was implemented
enabling collinear saturation spectroscopy, which could potentially eliminate the dominant
systematic uncertainty. However, in the case of C4+, the method was limited by statistics due to
the available laser power. The determination of absolute transition frequencies from resonance
signals produced in the pulsed operation mode of the EBIS, that have up to 10-times larger peak
widths, was demonstrated to reach statistical uncertainties that are on par with the limiting
systematic uncertainty.
To improve the data analysis process in collinear laser spectroscopy and determine realistic
uncertainties of effects such as photon recoils, the Zeeman effect or quantum interference,
the Python package qspec was developed within this work. A framework to create modular
lineshape models and an object-oriented simulator of laser-atom interactions was introduced.
The lineshape models can be combined to address arbitrary compositions of isotopes or isomers
across multiple data sets with shared parameters which freely can be constraint as functions
of other parameters, by hard bounds or by expectation values with uncertainties. Compared
with the well-established satlas2 package [66, 67], a performance improvement that increases
linearly with the number of fitted data sets was shown. The simulation module of qspec offers
a user-friendly interface to coherently simulate the dynamics of laser-atom interactions that
is as easy as drawing a level scheme. Many useful applications requiring knowledge about
the electronic state population in an atom can be thought of, such as saturation spectroscopy,
driving Raman transitions [148], polarizing ion beams in storage rings [146, 147] or even
simulating quantum computers [149]. In this work, quantum interference effects in 87Sr+
were investigated, see App. A.1, and systematic shifts caused by photon recoils and the Zeeman
effect were simulated.
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The absolute transition frequencies of 13C4+ that are accurately determined with the above
described efforts depict a hyperfine structure consistent with strong hyperfine-induced mixing.
The 3P0,1 states contain admixtures of 0.4359% of each other while the 3P1,2 states contain
0.0027% admixtures. The influence of mixing with the 1P1 state is negligible at the 2-MHz
precision level. The experimentally determined hyperfine structure splittings can be used as
benchmark values for non-relativstic quantum electrodynamics (NRQED) calculations. Here,
NRQED calculations up to the order mα6 were used to determine the differential mean-square
nuclear charge radius δ⟨r2⟩12,13. For this, the isotope shift of the center-of-gravity frequency of
all 1s2s 3S1 → 1s2p 3P0,1,2 transitions, which is unaffected by the hyperfine-induced mixing,
was determined by combining the results of this work with the results for 12C4+ from [63, 64].
Subtracting the hypothetical isotope shift of point-like nuclei and dividing by the field-shift
factor, both determined with NRQED calculations by V. Yerokhin et. al. [168], yields

δ⟨r2⟩12,13 = ⟨r2⟩13 − ⟨r2⟩12 = −0.1245 (66) fm2

δR12,13
C = R13

C −R12
C = −0.0253 (14) fm.

These values have three-times smaller uncertainties than the previous most precise result
from muonic atom spectroscopy and predict a 1σ larger charge radius difference between
12,13C. Although this deviation is still within statistics, the simultaneous over-estimation of the
absolute radii of 12C and 13C by muonic atom spectroscopy compared with elastic electron
scattering hints at a systematic shift of the muonic results. New measurements with light
µ-atoms, planned in the near future, are promising to resolve these discrepancies [170].
The experimentally determined nuclear charge radii were compared to in-medium similarity
renormalization group (IMSRG) ab initio chiral effective field theory calculations provided by
M. Heinz et. al. [168]. An agreement with absolute radii at the 3% level was demonstrated
with theoretical radii that are generally too small. The differential radius δR12,13

C is generally
overestimated in absolute terms and was best reproduced with the novel ∆N2LOGO interaction
that explicitly considers∆ excitation of nucleons upon pion exchange. The inclusion of effective
three-body contributions brings the absolute nuclear charge radii closer to the experimental
value while the difference between 12,13C increases further. The uncertainty introduced with
the truncation of the IMSRG flow equation at the three-body level will be investigated in the
near future.
Measurements of the 1s2s 3S1 → 1s2p 3P0,1,2 transitions in 14C4+, whose radius is only known
to the precision of the electron scattering results in 13C, are currently planned at COALA and
will help to improve the IMSRG results. More precisely, knowing both δR12,13

C and δR12,14
C as well

as the absolute nuclear charge radii in 12−14C will clarify the predictive power of the IMSRG
calculations as δR12,14

C will not be affected by odd-even staggering. Furthermore, the fine-
structure splittings in 14C will serve as an independent benchmark for atomic structure theory
and can be compared to those in 12C [64]. Based on the successful tests of CLS with C4+ from
the EBIS, the stable 10,11B isotopes will be addressed at COALA to provide absolute reference
radii for the search of the proton halo in 8B, which is planned at the Argonne National Lab
(ANL). Apart from the interest of nuclear theory in the halo nucleus, atomic theory especially
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benefits from the measurements in the two stable isotopes as in both, helium- and lithium-like
B3+,2+, electronic transitions in the optical regime are available. The 1s2s 3S1 → 1s2p 3P0,1,2

transitions in B3+ will be used to determine the absolute nuclear charge radii as in 12C4+

[64], which at the current state will provide the most precisely determined experimental
radii in B. Simultaneously, the differential radii between 10,11B will be determined from both
B3+ and the 2s 2S1/2 → 2p 2P1/2,3/2 transitions in B2+, as for 13C4+ in this work, to show the
validity of the ab initio differential mass shift calculations. Beyond that, helium-like N5+ can
be investigated. Here, the transitions have wavelengths around 190nm which constitutes a
technical challenge for the laser beam production and transport and also necessitates the use
of lens-based fluorescence detection segments, such as the one constructed and commissioned
within this work.
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A Appendix

A.1 Quantum interference tests in 87Sr+

To test the angle selectivity of the lens-based fluorescence detection region (FDR) segment
and the simulation module of the qspec package, the hyperfine structure spectrum of the
5s 2S1/2 → 5p 2P3/2 transition in 87Sr+ was measured for different laser polarizations. A level
scheme of 87Sr+ is depicted in Fig. A.1. The polarization can be imagined as a reference axis
for the unpolarized ion beam. Photons scattered through resonant excitation are emitted
according to a rotational symmetric angular distribution with respect to the polarization
axis. Therefore, the selection of a solid angle with the FDR influences the peak heights in
a fluorescence spectrum. However, it can also lead to asymmetric peaks in the presence of
quantum interference (QI) effects when multiple excited states overlap within their natural
linewidths [133]. Additionally, the interaction of the laser with the ions leads to population
transfer between the electronic states of the ions, also altering the peak heights. The occurrence
of both effects in the hyperfine structure of 87Sr+ can be used to test the theoretical description
of the photon scattering rate.
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Figure A.1: Level schemeof the 5s 2S1/2,
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Experimental setup The continuous beam of Sr+ ions was produced in the surface ionization
source situated at the 10◦ port of the switchyard of COALA. The production of the laser beam is
explained in Sec. 4.4 for measurements with C4+. For Sr+, the frequency-doubled 408 nm light
behind the first doubling stage was coupled into a polarization-maintaining single-mode fiber
to transport the linearly polarized continuous-wave laser beam to the beamline. There, a set
consisting of a λ/4, λ/2 plate and a linear polarizer was used in that order to control the angle
of the linearly polarized light. The λ/4 plate was only used to optimize the power through
the linear polarizer in case the laser beam is not completely linearly polarized after the fiber
port. The measurements were performed in anticollinear geometry. In the first test, the laser
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Figure A.2: Hyperfine structure spectrum of the 5s 2S1/2 → 5p 2P3/2 transition in 87Sr+ with
a polarization angle of 0◦ and 90◦ with respect to the PMTs direction in the FDR
recorded with the lens-based FDR segment. A perturbative quantum interference
model (orange) and two models that are linear combinations of Voigt profiles, one
with Racah coefficients as peak heights (green) and one with peak heights derived
from solving the master equation (blue), were fitted to the data. The residuals
show the difference between the data points and the Sim fit. For the fits with
the other models, also the difference to the Sim fit is depicted, which results in
smooth curves that emphasize the differences between the fit models.
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power was set to a low value of only 7(1)µW to prevent optical population transfer into the
metastable 4d 2D3/2,5/2 states and the second ground state of the hyperfine structure.

Fit models FigureA.2 shows the hyperfine structure spectrum of the 5s 2S1/2 → 5p 2P3/2

transition in 87Sr+ with a polarization angle of 0◦ and 90◦ relative to the vertical direction which
is the optical axis of the lens-based FDR segment. In 87Sr+, no sign of quantum interference
was found as fitting a sum of symmetric Voigt profiles yields reasonable agreement with the
data. This is expected for the achievable signal-to-noise ratio and the given separation of the
excited states. Therefore, here only the emergence of the peak heights was investigated using
different fit models. The first model is a sum of Voigt profiles whose peak heights correspond
to the theoretical intensities, i.e., the weights also used in Eq. (2.48). Hence, the relative peak
heights are completely fixed. The second model considers QI effects using the perturbative
approach for the scattering rate described by Eq. (2.90) that is only valid for laser intensities
I ≪ I0 and when the population of the internal states of the ion are in equilibrium. Here, the
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Figure A.3: The same hyperfine structure spectrum as in Fig. A.2 but with 50µW laser power
and an extra aperture with a diameter of 20mm in front of the outer lens in the
lens-based FDR segment in order to narrow down the solid angle and thus enhance
the sensitivity to quantum interference effects.
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relative peak heights are determined by a single fit parameter p(q,ksc) that encapsulates the
detector geometry. The Voigt profile is generated through a numerical convolution integral of
the QI Lorentzians with a Gaussian kernel.
The aforementioned Voigt model with fixed intensities and the QI model are simultaneously
fitted to the isotopes 86,88Sr which are just outside the shown frequency range in Fig. A.2.
Hence, the scattering rate slightly increases at the borders of the plot. The QI model only has
a single Gaussian width parameter σ for all isotopes which is introduced with the numerical
convolution. The third model is a sum of Voigt profiles whose peak heights are simulated
using the master equation solver of qspec.simulate and the differential scattering rate from
Eq. (2.89). In this model, the peak heights are governed by two parameters, one for the detector
geometry and one for the laser power that controls the rate of the optical population transfer.
For the parameter of the detector geometry, the angle between the linear polarization vector
and the z-axis, which points towards the PMT, was chosen. The actual detection geometry
was not taken into account explicitly. However, this parameter covers the complete value
range of the geometry parameter p(q,ksc) such that for any detector geometry, there exists
a polarization angle so that the lineshape of the differential scattering rate is equal to that
integrated over the angle-dependent geometric efficiency. The geometric efficiency for both
FDR segments is plotted in Fig. 4.9. The large number of mF states in the relevant 2S1/2,
2P1/2,3/2 and 2D3/2,5/2 levels in 87Sr+, corresponding to 1602 = 25 600 density matrix elements,
requires two simplifications to achieve reasonable computing times. The interaction time of
1µs passed at the position of the lens-based FDR segment is reduced to 0.2µs in the simulation.
As a consequence, the fitted laser power gets larger to compensate for the shorter interaction
time. This is only a valid simplification for small laser powers when the population in the
excited state is still proportional to the laser power. Additionally, the scattering rate was only
calculated for a single point in time and not integrated over a finite interaction region. In reality,
the mirror and the lens systems collect light emitted from the ion beam over a distance of 80

Table A.1: Agreement χ2
red of four different models fitted to the hyperfine structure spec-

trum of the 5s 2S1/2 → 5p 2P3/2 transition in 87Sr+. The Free, Voigt and Sim
fits all use sum of Voigt profiles with differently calculated amplitudes. The QI
fit considers quantum interference effects (QI) and is numerically convoluted
with a Gaussian. For details about the models, see text.

FDR segment Laser power (µW) Polarization Free fit Voigt fit QI fit Sim fit

mirror 7(1) 0◦ 1.29 1.47 1.41 1.46
mirror 7(1) 90◦ 1.32 1.80 1.80 1.47

lens 7(1) 0◦ 1.20 1.97 1.76 1.29
lens 7(1) 90◦ 1.17 1.73 1.20 1.38

mirror 50(3) 0◦ 3.22 16.99 15.89 7.62
mirror 50(3) 90◦ 5.83 64.40 50.29 8.89

lens 50(3) 0◦ 1.92 4.62 4.28 2.30
lens 50(3) 90◦ 1.85 6.96 3.60 2.57
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and 20mm, respectively, as shown in Fig. 4.8. During the time-of-flight over these distances,
the population of the states changes such that the time-integrated scattering rate may not be
reproducible with a scattering at a single point in time.

Fit results All three models approximately agree with the data but show slight deviations
as can be seen from the residuals in Fig. A.2 and the χ2

red listed in Tab. A.1. However, only
the simulation model is able to correctly describe the peak height of the F = 4 → F ′ = 4
resonance for 0◦ polarization. For this polarization, the peak height decreases due to both, the
detection geometry of the FDR segment and optical population transfer. For 90◦ on the other
hand, the angular contribution increases the peak height, counteracting the population transfer
and leading to a better agreement with the perturbative QI model. A second measurement
series was conducted with a larger laser power of 50(3)µW and a decreased angular detection
range by adding a 20-mm aperture between the window of the vacuum viewport and the outer
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Figure A.4: Hyperfine structure spectrum of the 5s 2S1/2 → 5p 2P3/2 transition in 87Sr+ with a
polarization angle of 0◦ and 90◦ recorded with the elliptical mirror FDR segment.
The Voigt and the QI model show significant deviations from the experimental
peak heights while the Sim model yields results that are close to those of a Voigt
fit with free peak intensities (yellow).
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lens of the lens-based FDR segment. This increases both, the optical population transfer and
QI effects. The resulting spectra are shown in Fig. A.3. Indeed, a bigger difference can be
seen between the two polarizations and the agreement of the two models that do not consider
pumping effects compared with the simulation model. However, none of the models is able
to describe the peak heights of the transitions from the F = 5 ground states correctly which
seems to be originating mainly from an underestimation of the 5 → 6 transition. This transition
is closed with respect to transferring population from the F = 5 to the F = 4 ground state and
thus, is expected to get stronger relative to the other transitions over time.
In Fig. A.4, the fluorescence spectra recorded with the elliptical mirror segment for 0◦ and
90◦ polarization are shown. Here the optical population transfer is even stronger than in the
lens-based segment, possibly owing to the longer interaction time of the ion with the laser
during which fluorescence photons are detected. Therefore, the Voigt model with fixed relative
intensities and the QI model significantly deviate from the data. However, the Sim model is still
able to describe the data relatively well. To test how well the peaks are described by a Voigt
profile, the Voigt model was additionally fitted with free peak intensities. While this model can
describe the peak intensities slightly better than the Sim model, it slightly deviates from the
experimental data in the same transitions, compare also the χ2

red in Tab. A.1. This is a clear
indication that a Voigt profile, which was used in all fit models, is not a sufficient description of
the experimental lineshape. Hence, this could be the main origin of the discrepancy between
the data and the Sim model, which only uses the solution of the master equation for the relative
scattering rates at the resonance centers. Therefore, a fit of the master equation to the full
spectrum would be desirable which, however, is currently not feasible with the complex system
of 87Sr+ in an acceptable computing time.

Polarization sensitivity Although optical population transfer is not considered in the per-
turbative QI model, it can still be used to test the sensitivity of the fluorescence signals of
an FDR segment to the laser polarization. FigureA.5 shows the QI parameter p(q,ksc) from
Eq. (2.90) in dependence of the polarization angle for the elliptical mirror and the lens-based
FDR segment. The function

f(x, a, b, c) = a cos2(x− c) + b (A.1)

was fitted to the data. While the elliptical mirror segment is almost completely insensitive
to the polarization, owing to a 4π solid angle of detection, the lens-based segment clearly
shows a polarization-dependence. The amplitude of the oscillation corresponds to ∼ 1/4 of
the maximum possible value when no aperture is used and to ∼ 1/2 for the 20mm aperture. A
shift of the parameter p(q,ksc) to smaller values is found that can be explained with optical
population transfer, which also changes the peak heights of the fluorescence spectrum.

In conclusion, the test with 87Sr+ shows that the simultaneous description of QI and optical
population transfer effects with qspec.simulate can explain the emergence of the relative peak
heights in hyperfine structure spectra. However, for the complex system of 87Sr+, simplifications
were required that may have lead to discrepancies to the experimental scattering rate when
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Figure A.5: The geometric parameter p(q,ksc) from Eq. (2.90) in dependence of the angle
between the linearly polarized laser light and the optical axis of the lens-based
FDR segment. The amplitude of the oscillation is a measure of the polarization
sensitivity of an FDR segment. The shaded area shows the 1σ uncertainty region
of the fit of Eq. (A.1) to the data. For the measurement with 50µW, the solid angle
of detection of the lens-based FDR segment was reduced, increasing QI effects.

there is much population transfer. Therefore, additional tests are needed with a simpler system
that preferably has a narrow hyperfine structure to amplify QI effects. One case could be
the D2 line in 6,7Li, which requires a charge exchange cell currently in development. The
polarization sensitivity of the elliptical mirror and the lens-based FDR segments were tested by
rotating the linear polarization vector of the incident laser beam. A polarization-sensitivity of
the lens-based segment was found that is small enough to be able to ignore QI effects in most
measurements but can be easily amplified by limiting the lens aperture in order to investigate or
even utilize QI effects. It was suggested by different authors to use QI effects to unambiguously
identify hyperfine structure peaks of different isotopes that are overlapping and that may not
be resolved at all in a certain detector geometry [133, 176, 177]. A QI-sensitive FDR could
be used, e.g., in 26Al, to improve the precision of the isomer shift between the I = 0 isomeric
state and the I = 5 ground state, which was recently used to test the completeness of the
quark-mixing Cabibbo-Kobayashi-Maskawa matrix of the Standard Model [144]. The qspec
package developed within this work contains the necessary tools to intensively investigate this
possibility.
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