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Abbreviations and Notation

a.e. almost everywhere

a.s. almost surely

BOBYQA bound optimization by quadratic approximation

CCG concise confidence gain

CDF cumulative distribution function

CEL cross-entropy loss

C&W Carlini-Wagner

DNN deep neural network

DRO distributionally robust optimization

EAD elastic net attacks to DNNs

FGSM fast gradient sign method

GAS gradient alignment score

i.i.d. independent and identically distributed

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KLD Kullback-Leibler divergence

MACER robust training via maximizing the certified radius

MDI mean decrease in impurity

PASS perceptual similarity score

PGD projected gradient descent

PCA principle component analysis

ReLU rectified linear unit

RO robust optimization

RV random variable

SCG simple confidence gain

SLLN strong law of large numbers

SO stochastic optimization

SSIM structural similarity index
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Symbol Value Specification Meaning
n = 3 · number of pixels ∈ N number of color channel values per image
[m] = {1, . . . ,m} set of positive integers up to m
sign Rn → {−1, 0, 1}n sign function
ReLU(·) = (·)+ rectified linear unit (ReLU)
softmax R+ × Rd → Rd softmax operator
t ∈ R+ softmax temperature
log = loge = ln natural logarithm
RV(·) set of ·-valued random variables (RVs)ˆ︁X = {0, . . . , 255}n set of feasible color channel values
X = [0, 1]n normalized set of relaxed color channel values
Πp

R(·) = argminr∈R ∥ · −r∥p projection of r onto R w.r.t. p-norm
X ∈ RV(X ) RV of relaxed color channel values
x ∈ X relaxed color channel values
C ⊆ N set of class label
C ∈ RV(C) random variable of class labels
c ∈ C class label
P = {(pc) ∈ [0, 1]C :

∑︁
c pc = 1} probability simplex

p = (pc)c∈C = F (x) ∈ P prediction confidence vector
δ ∈ Rn adversarial perturbation˜︁x = x+ δ ∈ Uεp

p (x) adversarial example of x
Θ ⊆ Rdim(Θ) set of feasible deep neural network (DNN) weights
θ ∈ Θ vector of DNN weights
F Θ× Rn → P soft classifier
f Θ× Rn → C hard classifier
Fσ Θ× Rn → P smoothed soft classifier (Def. 3.4)
fh Θ× Rn → C hard smoothed hard classifier (Def. 3.4)
fs Θ× Rn → C soft smoothed hard classifier (Def. 3.4)ˆ︂Fσ(θ, x) RV(P) approx. smoothed soft classifier (Def. 3.5)ˆ︂fh(θ, x) RV(C) approx. hard smoothed hard classifier (Def. 3.5)ˆ︁fs(θ, x) RV(C) approx. soft smoothed hard classifier (Def. 3.5)
N ∈ N cardinality of the training data set
{(xi, ci) : i ∈ [N ]} ⊆ X × C training data set
M(·) set of probability measures on the set ·
∼ distributional equality
D ∼ (X,C),∈ M(Rn × C) joint distribution of features and labels
diracx(·) = 1[x ∈ ·] Dirac measure in xˆ︁D = N−1

∑︁
i∈[N ] dirac(xi,ci) empirical joint distribution of features and labels

A ⊆ M(Rn) ambiguity set of adversarial distributions
A ∈ A adversarial distribution
εp > 0 p-norm perturbation bound
Bεp
p (x) = {x+ δ ∈ Rn : ∥δ∥p ≤ εp} closed p-norm ball with radius εp around x

Bεp
p = Bεp

p (0) closed p-norm ball with radius εp around 0

Uεp
p (x) = (Bεp

p (x) ∩ X )− x adversarial uncertainty set around x
Sεp
p (x) = {x+ δ ∈ Rn : ∥δ∥p = εp} p-norm sphere with radius εp around x

Sεp
p = Sεp

p (0) p-norm sphere with radius εp around 0
I = diag(1, . . . , 1) identity matrix of appropriate dimension
N (µ,Σ) ∈ M(Rn) normal distribution with exp. µ and cov. Σ
Φ R → [0, 1] cumulative distribution function (CDF) of N (0, 1)
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Assumption 0.1. Throughout the entire document, whenever the argmax operation is applied to a confidence
vector p ∈ P, we will assume that there is a unique largest component, i.e.⃓⃓⃓⃓

argmax
c∈C

pc

⃓⃓⃓⃓
= 1.

We can enforce this via some strict ordering ≺ on C and

argmax
c∈C

pc := min
≺

{︃
c ∈ C : pc = max

c′∈C
pc′

}︃
.

This significantly improves readability in several formulas without introducing significant notational inaccu-
racy, since such decision boundaries are lower-dimensional Lebesgue nullsets in the input space X ⊂ Rn.
This comes from the fact that the logits FK−1(x) of a ReLU-based K-layer DNN F = FK are computed by a
series of piecewise affine linear transformations F1, . . . , FK−1. Therefore, the points where the largest logit
FK−1(θ, x)c is not unique, form lower-dimensional planes in the input space. Finally, the softmax layer FK

preserves monotonicity, meaning that these planes coincide with the decision boundaries, i.e. the points
where there is no unique class of largest prediction confidence F (θ, x)c = pc.
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1 Introduction

1.1 Abstract

Recent results demonstrated that images can be adversarially perturbed to a visually indistinguishable
extent in order to misguide classifiers with high standard accuracy into making confident misclassifications.
Adversarial examples may even be targeted to a class the attacker chooses [93, 100, 47] and transfer
between different DNNs in a black-box setting [86, 52, 15, 6, 10, 57, 86, 105, 100, 89, 30, 90, 43, 82, 47],
meaning that perturbations computed on one DNN are likely to confuse other DNNs. This poses a concrete
and acute security risk in digital domains like content moderation [6], but also in physical contexts like
facial recognition and autonomous driving [85, 24] where adversarial samples proved to survive printing
and re-capturing [42]. The phenomenon was first discovered in 2014 by Szegedy et al. [86] and has been
subject of hundreds of papers ever since, both from an attacker’s and a defender’s point of view. There
seems to be no apparent end to an arms race of frequently published attacks and defenses as no universal,
provable and practical prevention method has been developed yet.

In this work, we show that verifying ReLU-based DNNs against adversarial examples is NP-hard (cf. Proposi-
tion 1.5). Furthermore, we model the adversarial training problem as a distributionally robust optimization
problem (DRO) to provide a formal framework for two of the most promising defenses so far: Randomized
fast gradient sign method (FGSM)-based adversarial training and randomized smoothing. Additionally,
we propose two step size schemes for multi-step adversarial attacks that yield unprecedented low true-
label-confidences (cf. Contribution 4.1). To make p-norm bounded attacks more comparable for different
values of p, we define two norm rescaling functions (4.3) and (4.4) before validating them on ImageNet
(cf. Contribution 4.2). Moreover, we give an explanation as to why first-order adversarial training is
successful from an empirical data augmentation perspective despite lacking the mathematical guarantees
from Danskin’s Theorem (Theorem 3.1) by analyzing cosine similarities of model parameter gradients on
ImageNet (cf. Contribution 4.3). Finally, we give an update on the performance results from [92, 93] of
bound optimization by quadratic approximation (BOBYQA) black-box attacks on CIFAR-10 by exposing
instances of the two aforementioned state-of-the-art defenses to it (cf. Contribution 4.4).

This thesis is structured as follows: Chapter 1 introduces the concept of adversarial examples, embeds this
work into the literature, formulates the problem of interest, presents our theoretical results and summarizes
our main contributions. Then, Chapter 2 showcases gradient-based white-box and zeroth-order black-box
attacks, in particular BOBYQA. Subsequently, Chapter 3 deals with the defensive strategies of adversarial
training and randomized smoothing. In Chapter 4, we numerically derive the four latter contributions from
above. Finally, Chapter 5 concludes this thesis and suggests possible directions for future research.
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1.2 Adversarial Examples

The phenomenon of adversarial examples for image classification tasks was first discovered by Szegedy et al.
[86] in 2014. However, already in the 2000s, analogous observations in other domains like spam filters and
malware detection were made [8, 7, 18, 38, 50]. To develop an understanding of adversarial examples, we
start with an intuitive definition before formalizing it. In fact, there is no standardized definition to date,
but they agree in the following key conditions:

• The clean sample was correctly classified by the DNN.

• The perturbed sample is wrongly classified by the DNN.

• Both samples are visually similar.

There are two immediate problems with this definition resulting from the ambiguity of the term ’visually
similar’:

(1) Meaning: What does ’visually similar’ mean? Possible meanings, from most restrictive to most lenient,
include:

(a) Both images are (almost) visually indistinguishable to humans, cf. Figure 1.1 with at most
ε∞ = 0.02 difference in each color channel value of every pixel.

(b) There are no obvious perturbation artefacts noticeable to humans, i.e. the images might look
different but both look natural, cf. Figure 1.2 with at most ε∞ ≈ 0.01 difference in each color
channel value of every pixel.

(c) The perturbed image is still labelled correctly by humans, but is allowed to look artificially altered,
cf. Figure 1.3 with at most ε∞ = 0.1 difference in each color channel value of every pixel.

We will mostly follow (a) and (b) via ε∞ ≤ 0.04 since it poses the strongest constraints and still
allows us to compute remarkably successful attacks, regularly with true-label-confidences of 0% up to
arbitrarily many decimals with Algorithm 4, as just indicated and discussed in Contribution 4.1.

(2) Quantification: How to measure the similarity perceived by humans at scale, i.e. with a computer? As
a distance metric, p-norms for p ∈ {1, 2,∞} have prevailed for that purpose due to being ubiquitous in
mathematics and being suitable constraints as they induce convex level sets with continuous boundary.
Alternatives include p = 0, i.e. there is a maximum number of perturbed pixels and metrics that try to
replicate human perception like Voronoi Cells [36] and the perceptual similarity score (PASS)[75] or
the structural similarity index (SSIM) [26] because p-norms have been shown to be inappropriate
[89] and neither necessary nor sufficient for visual similarity [81].

For comparability, we stay consistent with previous literature and focus on p-norms for p ∈ {1, 2,∞}.

To formalize this intuition, we state the definition of adversarial examples used in this work.

Definition 1.1 (Adversarial Example). Consider a hard classifier f : Θ×X → C and a pair (x, c) of a feature
vector with its ground truth label. An input ˜︁x := x+ δ with δ ∈ Uεp

p , i.e. ∥δ∥p ≤ εp and ˜︁x ∈ X := [0, 1]n, is
called an (untargeted) (p, εp)-adversarial example with adversarial perturbation δ if f(θ, x) = c and f(θ, ˜︁x) ̸= c.
If f assigns ˜︁x to a specific, previously chosen class ˜︁c ̸= c, then ˜︁x is called targeted.

10
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Figure 1.1: Picture of a syringe (label 845) from the ImageNet validation data set. Clean image (a) correctly
classified by naturally pretrained PyTorchDNNwith confidence of 65.85% and indistinguishably
perturbed sample (b) with 0.00% confidence for ’syringe’ and 99.99% confidence for the targeted
label ’screw’ (label 783).

(a) clean, ε∞ = 0 (b) adversarial, ε∞ ≈ 0.01

Figure 1.2: Picture of an airplane (label 0) from the CIFAR-10 test data set. Clean image (a) correctly
classified by naturally trained MadryLab DNN [23] and distinguishable but natural looking
sample (b) classified as target label ’ship’ (label 8).
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(a) clean, ε∞ = 0 (b) adversarial, ε∞ = 0.1

Figure 1.3: Picture of a go-kart (label 573) from the ImageNet validation data set. Clean image (a) correctly
classified with confidence of 97.74% by naturally pretrained PyTorch DNN and visibly perturbed
sample (b) with 0.00% confidence for ’go-kart’ and 100.00% confidence for ’rifle’ (label 764).

The attacker aims to find such perturbations δ. On the contrary, the defender attempts to train the DNN in
a way to achieve a notion of robustness, like the following, against them.

Definition 1.2 (Adversarial Robustness). A hard classifier f : Θ × Rn → C is called (p, εp)-robust with
perturbation radius εp ≥ 0 in a point x ∈ X if there exist no (p, εp)-adversarial example for x. The classifier f
is referred to as globally (p, εp)-robust (with some confidence) if it is (p, εp)-robust in all points x ∈ X (or they
at least represent a set with empirical probability larger than that confidence in the data set).

Remark 1.3 (Other Notions of Adversarial Robustness). Note that there are alternative definitions of
adversarial robustness. For example, often the maximum or average perturbation radius εp for each image
to remain correctly classified over a validation set is considered. There are also distributionally robust
analogies to the aforementioned point-wise, metric bounded robustness that leverage probability measure
metrics [53].

Given the unprecedented success and especially generalization capability of DNNs to unseen images in
recent times, it might be surprising that such small image corruptions, that pose no challenge to the human
eye, are so detrimental. Naturally, this raises the question where this susceptibility originates from. Up to
now, there is no definitive answer as to why the phenomenon of adversarial examples exists. However, there
are multiple theories for the root cause. Some of the main lines of argument can be clustered as follows.

• High Dimensionality: Images are data of high-dimensional shape. Consequently, [29] sees a high
likelihood that the input space contains some direction of steep loss ascent for the classifier. Further,
adversarial robustness does not remove adversarial examples but rather makes them harder to find by
introducing small deformations into the loss landscape that mask the true gradient, or more precisely,
make the gradient less meaningful locally, cf. Section 2.1.2.

• Low Probability Regions: Adversarial examples represent blind spots close to the thin empirical data
distribution as they are unnaturally perturbed [86, 63, 104, 67]. During training, the classifier accepts
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being incorrect there, even with high confidence, since the probability distribution puts low emphasis
on these regions. Beyond that, [86] conjectures that the set of such blind spots is dense around the
empirical data manifold making it almost always possible to find adversarial examples close to a clean
sample.

• Nearby Decision Boundaries: In general, feeding into the first two explanations, small distances of
natural samples to decision boundaries allow for adversarial examples but also randomly corrupted
images to be misclassified [90]. Both phenomenons seem to be highly correlated [27].

• Model Capabilities: DNNs behave locally too linearly, according to [30]. Further, robustness increases
with and even requires higher model capacity [43, 52]. Fundamentally, [10, 25, 59] show that
convolutional neural networks do not understand the concept of the labels but only the visual shapes
and patterns, which are sensitive to alterations. As a consequence, DNNs posses inherently wrong
decision boundaries [21].

Despite multiple promising explanations and computational results, it is hard to determine a unique, true
theory due to their low comparability, which can be attributed to different choices w.r.t. model architecture,
learning procedure, data sets, success metrics and the assumed defense and attack taxonomy. Furthermore,
the results in this young field tend to be more empirical than theoretical, rarely validated by a third party
(one exception is [52]) and, most importantly, often with a short life span as the timeline of defensive
distillation showcased [61, 62, 63, 9].

Developing methods to compute strong adversarial examples must not happen with malicious intentions in
mind. One the one hand, training with adversarial examples not only increases adversarial robustness [82],
but also appears to improve generalizability by acting as a regularizer [69, 80, 32]. On the other hand,
attacking DNNs with adversarial examples is the method of choice for upper bounding robustness because
rigorous methods using mixed-integer linear programming [49] or satisfiability modulo theories [35], that
guarantee lower bounds, are hardly applicable to state-of-the-art DNN sizes from a complexity standpoint.

1.3 Related Work

Locally, this work is most closely related to different sets of papers, depending on the contribution of interest.
Our theoretical contributions from Section 1.4 and Proposition 1.5 relate to the entire adversarial deep
learning community. The numerical Contributions 4.1 and 4.2, regarding adversarial step lengths for zero
true-label-confidence and p-norm rescaling, find application in all fields that investigate p-norm bounded
adversarial attacks. Our Contribution 4.3, regarding Danskin’s Theorem (Theorem 3.1), specifically provides
answers to questions posed in [80] and [95], i.e. why adversarial training increases robustness and when
strong adversaries are necessary for training or weak ones suffice. Our response is consistent with the
interpretation of adversarial training given in [98]. Lastly, the experiments regarding targeted BOBYQA
black-box attacks can be seen as an update of [92, 93] to modern defenses and strengthen the advice from
[3] and [89] about incorporating zeroth-order attacks into attack portfolios for evaluating defenses.

More broadly, we want to embed our work regarding BOBYQA attacks (B) and gradient-based adversarial
attacks (G) into the threat model taxonomy of Table 1.1.

For almost each combination of the above and even more aspects, [64, 10, 100, 16, 78, 65, 104, 99] include
suitable attacks or reference papers dealing with that type of attack. Note that in the cases with an asterisk,
the roles of objective function and constraint are reversed. Similarly, the defenses considered here, namely

13



Attribute Possibilities
knowledge white-box (G), gray-box, black-box (B)
goal confidence reduction, untargeted miscl. (G), targeted miscl. (B), min. perturb.*
image/target given (B, G), selectable
constraints p-norm (B, G), none, guaranteed miscl.*, other (e.g. PASS, SSIM, Voronoi Cells)
applicability scope individual (B, G), universal
derivative degree zeroth-order (B), first-order (G), second-order

Table 1.1: Threat Model Taxonomy, cf. [64, 100].

Attribute Possibilities
application time proactive (A), reactive (S)
robustness guarantees empirical (A), certified (S)
specificity attack-sensitive, attack-agnostic (A, S)

Table 1.2: Defense Categorization, cf. [100].

adversarial training (A) [3, 80, 95, 43, 28, 77, 82, 104] and randomized smoothing (S) [57, 69, 101, 60,
16, 70, 78, 27, 103], can be categorized as in Table 1.2.

Within the proactive defenses, i.e. the ones happening prior to query-time, one distinguishes approaches
that modify the architecture [101] or - as in the case of (A), defensive distillation [61, 62, 63, 9] and others
from [45] - the training procedure. The reactive defenses take place at query-time and roughly split into
two groups: They either manipulate all images before evaluating the DNN, as in the case of (S) and feature
squeezing [97, 96], or they rely on detecting adversarial examples [51] and reconstructing a clean version
[54].

1.4 Problem Formulation

1.4.1 Network Architecture and Layers

To model the adversarial attack and training problems, we start by describing the RGB encoding of images.
Each picture has a width and height that determine its total number of pixels. Each pixel’s color is represented
by its three color channels, namely red, green and blue. They take values in {0, . . . , 255} as they allocate
eight bits or one byte of storage each. Defining n as the total number of color channel values per image,
i.e. the image resolution times three, an image x can be represented as x ∈ ˆ︁X := {0, . . . , 255}n. During
training and attacking, multiple operation like scaling, averaging and convolutions are performed. Under
these, ˆ︁X is not closed. Taking gradients is not even possible in this discrete set. Hence, we will internally
work with the normalized relaxation X := [0, 1]n instead.

For our purposes, it suffices to define a DNN soft classifier F as a composition of K layers Fk which are
parameterized by weights θ ∈ Θ. Given an input x, this map

F := F[K] := F1 ◦ . . . ◦ FK : Θ× Rn → P

assigns class probabilities pc from the probability simplex P := {(pc) ∈ [0, 1]C :
∑︁

c pc = 1} to each of the
classes in C. To ensure that the sum is normalized, the last layer FK is a softmax layer, that transforms
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Figure 1.4: Visualization of a 3× 3 kernel applied to a picture of a face [33].

the penultimate layer’s neurons FK−1(x), called logits, into class probabilities in a monotonic, smooth way.
Concretely, we denote

pc := F (θ, x)c := softmax(t, FK−1(θ, x))c :=
exp(FK−1(θ, x)c/t)∑︁

j∈C exp(F[K−1](θ, x)j/t)
∀c ∈ C

for some temperature t > 0 with more on its purpose provided in Section 1.4.2. The associated hard
classifier f is derived by

f : Θ×X → C, x ↦→ argmax
c∈C

pc,

while keeping Assumption 0.1 for uniqueness in mind. For instance, the widely used ReLU-based ResNet50
convolutional DNN architecture [34] consist of K = 52 layers: 48 of them perform convolutions (c.f. Figure
1.4) using learnable kernels of different sizes to extract features like shapes and patterns, another two
execute max- and average-pooling to summarize details and reduce the image resolution in the beginning
and the end [48]. Ultimately, this process concludes with a fully connected layer that combines these
features to form meaningful structures for classification and the aforementioned softmax layer to output the
class label probabilities [48]. Depending on the precise setup, this equates to about |Θ| ≈ 2.5 · 107 trainable
parameters. To learn them and to attack DNNs, we choose the cross-entropy loss (CEL) as our objective
function.

1.4.2 Loss Function Choice

A loss function L : P × C → R+ takes in a prediction confidence vector p ∈ P and the ground-truth label
c ∈ C to output a penalty depending on the prediction quality. Similar to [16] and [78], we want to motivate
the use of the CEL

LCE(F (θ, x), c) := − log (F (θ, x)c)

as a smooth approximation to the, arguably more expressive, but discontinuous {0, 1}-loss

L01(F (θ, x), c)) := 1

[︃
argmax

c′∈C
F (θ, x)c′ ̸= c

]︃
. (1.1)
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First, we observe

F (θ, x)c = softmax(t, FK−1(θ, x))c →

{︄
1− L01(F (θ, x), c)) if t→ 0,

1/|C| if t→ ∞.
(1.2)

Using (1.1) and the approximate relationship between softmax and argmax from (1.2) for low temperatures
t ∈ (0, 1], we derive

Pδ[f(θ, x+ δ) = c] = Pδ

[︃
argmax

c′∈C
F (θ, x+ δ)c′ = c

]︃
= Eδ

[︃
1

[︃
argmax

c′∈C
F (θ, x+ δ)c′ = c

]︃]︃
= Eδ

[︁
1− L01(F (θ, x+ δ), c))]

]︁
≈ Eδ [F (θ, x+ δ)c] .

Taking the logarithm on both sides to punish low true-label-confidences over-proportionally hard, we finally
arrive at the CEL LCE due to

log (Pδ[f(θ, x+ δ) = c]) ≈ log (Eδ [F (θ, x+ δ)c])

≥ Eδ [log (F (θ, x+ δ)c)]

= −Eδ

[︁
LCE(F (θ, x+ δ), c)

]︁
.

Here, we employed Jensen’s inequality and the concavity of the logarithm. Consequently, minimizing the
expected CEL increases the lower bound on (the logarithm of) the probability of correct classification. This
motivates the incoming use of the CEL in (DRO) and its derived problems as a smooth approximation to the
discontinuous {0, 1}-loss for low temperatures, like the common and here employed t = 1. Note that there
is another perspective that motivates the CEL as a special case of the Kullback-Leibler divergence (KLD)
[80].

1.4.3 Robust Optimization Problems

Using the network and loss modelling from above, we formulate the different robust optimization problems.
We start with the standard supervised classification training setup

min
θ∈Θ

RCO(θ) := E(X,C)∼D
[︁
LCE (F (θ,X), C)

]︁
. (CO)

In practice, the data distribution D of the pair of (X × C)-valued ground-truth RVs (X,C) in the clean
optimization (CO) problem is unknown. It is approximated by the distribution ˆ︁D within a representative
training data set {(xi, ci) : i ∈ [N ]} ⊆ X × C that ideally can be seen as independent and identically
distributed (i.i.d.) realizations of (X,C). Replacing D by

ˆ︁D :=
1

N

∑︂
i∈[N ]

dirac(xi,ci)

as in [68] yields the empirical clean optimization problem

min
θ∈Θ

ˆ︁RCO(θ) :=
1

N

∑︂
i∈[N ]

LCE (F (θ, xi), ci) . (E-CO)

16



With the same ideas, we now introduce the adversarial case. Consider (CO), but with the image RV X being
perturbed by some Rn-valued noise ∆ with an unknown distribution A that the adversary may choose out
of the ambiguity set A ⊆ RV(Rn). Then, we obtain the distributionally robust optimization problem

min
θ∈Θ

RDRO(θ) := R(D,A, θ) := E(X,C)∼D

[︃
sup

∆∼A∈A
E∆∼A

[︁
LCE (F (θ,Π∞

X (X +∆)), C)
]︁]︃
. (DRO)

This will be the foundation of our framework, which is visualized in Figure 1.5. Notice that, by the
unboundedness of the logarithm in the CEL, the adversary can achieve arbitrarily high loss, making the
inner supremum necessary. In contrast, the training problem has an objective value bounded below by
zero, justifying it as a minimization problem. In our case of p-norm bounded adversaries with perturbation
radius εp, the ambiguity set A only contains distributions with support on Bεp

p . As X +∆ may sometimes
be outside of X , we clip it via the ∞-norm projection Π∞

X : Rn → X . From that point of view, the clean
optimization problem (CO) can be interpreted as

min
θ∈Θ

RCO(θ) = R(D,A0, θ), (CO)

meaning a minimization in the presence of an incapable adversary with A0 = {dirac0}. Similarly, its
empirical analogue (E-CO) can be expressed as

min
θ∈Θ

ˆ︁RCO(θ) = R(ˆ︁D,A0, θ). (E-CO)

To derive the robust optimization problem that motivates standard adversarial training, consider a maximally
dangerous adversary with A ⊇ Adirac := {diracx : x ∈ Uεp

p (x)}, enabling to choose ∆ ∼ diracδ for the
strongest perturbation δ ∈ Uεp

p (x) := (Bεp
p (x) ∩ X )− x. This transforms (DRO) into

min
θ∈Θ

RRO(θ) := R(D,Adirac, θ) = E(X,C)∼D

[︄
sup

δ(θ,X,C)∈Uεp
p (X)

LCE (F (θ,X + δ), C)

]︄
(RO)

with an inner adversarial problem and an outer training problem, which is usually solved by alternating
inner maximization and outer minimization (cf. Section 3.1) based on Danskin’s Theorem (Theorem 3.1).
As before, it is empirically approximated via sampling by

min
θ∈Θ

ˆ︁RRO(θ) := R(ˆ︁D,Adirac, θ) =
1

N

∑︂
i∈[N ]

sup
δi(θ,xi,ci)∈U

εp
p (xi)

LCE (F (θ, xi + δi), ci) . (E-RO)

For the singleton A(x) = Anormal(x) :=
{︂
N (0, σ2I)|Uεp

p

}︂
, we obtain the stochastic optimization problem

min
θ∈Θ

RSO(θ) := R(D,Anormal, θ) := E(X,C)∼D

[︃
E∆∼N (0,σ2I)|Uεp

p

[︁
LCE (F (θ,X +∆), C)

]︁]︃
(SO)

that motivates randomized smoothing (cf. Section 3.2). It is again approximated in the sense of a Monte
Carlo simulation withM realizations by

min
θ∈Θ

ˆ︁RSO(θ) := R(ˆ︁D, Anormal, θ) =
1

MN

∑︂
i∈[N ]

∑︂
j∈[M ]

LCE (F (θ, xi + δij), ci) (E-SO)

with i.i.d. realizations (δij) ∼ N (0, σ2I)|Uεp
p
. Since all of the above problems, including the inner ones on

its own, are non-linear and non-convex optimization problems, solving them is NP-hard [56, 84]. Especially,
the highly irregular loss landscape and the high dimension complicate finding optimal solutions.
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ˆ︁D ≈ D

Figure 1.5: Overview of the adversarial training problems from Section 1.4.3.

1.4.4 NP-hardness of Certifying Robustness

Besides that, also certifying the robustness of a ReLU-based DNN is NP-hard. We show this by leveraging
the following result.

Theorem 1.4 (Verifying Properties in DNNs with ReLUs is NP-Complete, cf. [35] App. I). Let F : Θ×Rn → P
be a soft classifier with ReLU-activations and let ϕ denote a property that is a conjunction of linear constraints
on the inputs x ∈ Rn and outputs p ∈ P of F , i.e. ϕ(x, p) := ϕ1(x) ∧ ϕ2(p). We say that ϕ is satisfiable on F
if there exists an assignment A for x and p such that both

F (θ, xA) = pA and ϕ(xA, pA)

hold true. Then, given F and ϕ, it is NP-hard to determine if ϕ is satisfiable on F .

Choosing and modelling the appropriate property ϕ, we deduce the following statement.

Proposition 1.5 (Certifying robustness is NP-hard). Consider a soft classifier F : Θ× Rn → P and a ground
truth pair (x, c) ∈ X × C. Then, it is NP-hard to determine if there exists an adversarial example ˜︁x, which may
be targeted or untargeted and bounded 1- or ∞-norm. In particular, it is NP-hard to find such ˜︁x, if it exists.
Proof. The second part of the claim follows from the first since finding an appropriate adversarial example
implies its existence. Consequently, using Theorem 1.4, it remains to express the requirements above in
terms of linear constraints ϕ1(x) and ϕ2(p). Clearly, for ∞-norm bounds, we see

˜︁x ∈ Uε∞
∞ ⇐⇒ 0 ≤ ˜︁xi ≤ 1

∧ xi − ε∞ ≤ ˜︁xi ≤ xi + ε∞
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and similarly, for 1-norm bounds we observe

˜︁x ∈ Uε1
1 ⇐⇒ 0 ≤ ˜︁xi ≤ 1

∧ xi − ˜︁xi ≤ νi

∧ ˜︁xi − xi ≤ νi

∧
∑︂
i∈[N ]

νi ≤ ε1.

Remembering pc = F (θ, x)c and
f(θ, x) ∈ argmax

c∈C
pc,

we can reformulate the demand for targeted miss-classification to a class ˜︁c via
p˜︁c > pc ∀c ∈ C \ {˜︁c} =⇒ f(θ, x) = ˜︁c.

and
p˜︁c ≥ pc ∀c ∈ C \ {˜︁c} ⇐= f(θ, x) = ˜︁c,

respectively. The distinction originates from the undefined behaviour in the unlikely case of a non-unique
most probable class label, cf. Assumption 0.1. Keeping this in mind, an untargeted attack is inevitably
successful if

∃λ ∈ [0, 1] s.t. λ ≥ pc ∀c ∈ C \ {˜︁c} and λ < p˜︁c.
Making the second inequality non-strict, yields the corresponding necessary condition. ■

Remark 1.6. • The statement of Proposition 1.5 may be misleading since we and countless other papers
demonstrated that finding adversarial examples is usually tractable for varying image dimensions,
DNN architectures and attack taxonomies in the absence of defence mechanisms. Often, this can be
done computationally efficient and in a reasonable amount of time using a few gradient ascent steps
∇xL

CE(F (θ, x), c) for untargeted misclassification or descent steps −∇xL
CE(F (θ, x),˜︁c) for targeted

misclassification. However, Proposition 1.5 allows that finding adversarial examples can be done
quickly sometimes but shows that there is no algorithm that always finds them guaranteed, if existent,
while keeping the running time polynomial.

• The inherent difficulty suggested by Proposition 1.5 is still a problem at scale:

– Despite recent advancements based on mixed-integer linear programming [49], satisfiability
modulo theories [35] or randomized smoothing [57, 69, 101, 60, 16, 70, 78, 27, 103], most
defenses lack (strong) certified lower robustness bounds. Therefore, trying to compute adversarial
perturbations via potent attacks for different εp is often the method of choice to bound the
robustness from above as tightly as possible [17]. This has to be done at as many points of the
empirical data manifold as computationally tractable to overcome the curse of dimensionality
associated with high-resolution images [104].

– In analogy, standard adversarial training methods augment the data set by computing adversarial
perturbations for each image in each epoch. This also results in a considerable computational
effort.

This is why, in these two cases, it is common practice to resort to approximate solutions to the inner
adversarial problem.
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1.5 Contributions

The contributions of this thesis are twofold: On the one hand, theoretical results regarding the following
aspects are presented:

• In Proposition 1.5, we leverage a result from [35] to show that executing a successful targeted
or untargeted adversarial attack on an ReLU-based DNN by finding an adversarial perturbation is
NP-hard.

• We provide a common framework for distributionally robust (DRO), stochastic (SO) and robust
optimization (RO) in the context of adversarial deep learning and present their corresponding empirical
counterparts, cf. Section 1.4. Each of them is motivated by their underlying assumption on the
perturbations that the DNN will face. This framework is especially useful since several papers do not
explicitly state the problem, that a specific attack or defense solves. From that perspective, randomized
smoothing [57, 69, 101, 60, 16, 70, 78, 27, 103] can be seen as an attempt to solve (SO) and standard
adversarial training [3, 80, 95, 43, 28, 77, 82, 104] as an attempt to solve (RO).

On the other hand, we supply new numerical results by answering below questions:

• To ensure visual similarity, adversarial images are commonly given a maximum allowed p-norm
distance to the respective clean sample. The most popular choices in the literature are p ∈ {1, 2,∞}.
Each of them induces a differently sized and shaped set of allowed perturbations. Clearly, by the
well-known inequality ∥ · ∥r ≤ n1/r−1/p∥ · ∥p for r, p ∈ [1,∞], r ≤ p, it holds

∥ · ∥∞ ≤ ∥ · ∥2 ≤ ∥ · ∥1 (1.3)

and
∥ · ∥1 ≤

√
n∥ · ∥2 ≤ n∥ · ∥∞. (1.4)

In the case of images, n is given by the product of the number of pixels per image and the three color
channels. For CIFAR-10 with 32 × 32 pixel images, this equates to 3, 072 and for the compressed
256 × 256 pixel (and usually 224 × 224 center-cropped) ImageNet data set to 196, 608 (150, 528)
dimensions. As a consequence, these inequalities are weak for (1, . . . , 1)⊤ despite being tight for
unit vectors. Hence, (1.3) and (1.4) only provide bounds on the radius for the p-norm balls to be
nested. These values span a broad interval of radii in between them on how to choose εp for the
attack strengths to be comparable. We propose a transformation that recognizes the p-norm ball’s
Lebesgue-volume as the main criterion for scaling εp and show that both scaling functions induce
similarity between attacks on ImageNet to different degrees, cf. Contribution 4.2.

• In the process of validating this contribution on ImageNet, we proposed two projected gradient
descent (PGD) attacks with harmonically and geometrically decaying step lengths. They showed
no downsides and some upsides in our analysis when compared with constant step sizes from the
literature. Most notably, the harmonically decreasing step lengths enabled finding adversarial examples
with unprecedented zero true-label-confidences, cf. Contribution 4.1.

• Adversarial training relies on computing adversarial examples at training-time for the model to learn
on. Finding those adversarial inputs is generally accomplished by a gradient ascent scheme in the
input space, bounded by a p-norm ball around the natural query. Apart from this, a generic stochastic
gradient descent scheme via backpropagation in the space of model parameters is performed, just like
in the non-adversarial setting. From a data science perspective, augmenting the training data by the
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type of adversarial inputs you want the model to classify correctly, seems reasonable. In fact, most
papers on this topic [3, 80, 95, 43, 28, 77, 82, 104] take that perspective and do not legitimize the
approach any further whilst presenting state-of-the-art robustness results. A mathematical motivation,
only mentioned in [52] of all the incorporated data science papers here, comes from Danskin’s Theorem
(Theorem 3.1). However, numerous assumptions of it are violated in the context of supervised image
classification so that it is not self-evident that this approach works in practice. To this end, we provide
numerical results that help to explain the success of such ascending-descending algorithms for robust
image classification training despite these infringements. Using these results, we suggest an answer
to the questions raised in [80, 95] about when strong adversaries are necessary for training, when
weak ones suffice and how they induce robustness: The accuracy, to which the adversarial problem is
solved, should be decreasing over the course of the training to reduce costs and the robustness comes
from Danskin’s Theorem being in some sense insensitive to assumption violations in practice. This
training idea remains to be tested in a future work, cf. Contribution 4.3.

• BOBYQA-based black-box attacks have been considered in two papers [92, 93]. There, it has been
tested against naturally and adversarially trained DNNs on MNIST, CIFAR-10 and ImageNet. The
defenses included defensive distillation [63, 61, 62] for MNIST and CIFAR-10 as well as single- and
multi-step gradient adversarial training [23] for CIFAR-10 and ImageNet. However, recent findings [10,
9] suggest that defensive distillation proves ineffective against 2-norm Carlini-Wagner (C&W) attacks
and the attacked gradient-based pretrained DNNs from [23, 52] significantly relied on the so-called
gradient masking effect [52, 15, 6, 57, 101, 105, 3, 89, 90, 104]. Therefore, we give an update to the
reported results in [92, 93] by confronting state-of-the-art defenses with the BOBYQA-based black-box
attack. Concretely, we attack DNNs from [95] and [78], which are trained via a randomly initialized
FGSM (R-FGSM) to prevent gradient masking and a randomized smoothing approach, respectively.
In conclusion, the BOBYQA-based attack looses much of its effectiveness when facing these defenses
on CIFAR-10 but should be added to and remain in the portfolio of test attacks conducted to defenses
for various reasons, cf. Contribution 4.4.
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2 Adversarial Problem and Attacks

In this chapter, we focus on the problem of creating adversarial examples. Specifically, we present selected
methods within two branches of attacks: First, we give an overview of commonly applied gradient-based
methods in a white-box setting [42, 52, 10, 101, 105, 37, 100, 3, 80, 89, 60, 16, 95, 30, 43, 82, 104]
and motivate the randomization of some of them via phenomenons called gradient masking [6], gradient
obfuscation [3] and catastrophic adversarial overfitting [95]. Then, we give a brief introduction to zeroth-
order adversarial attacks with a focus on the BOBYQA-based targeted black-box attack from [92, 93].

2.1 First-Order White-Box Attacks

First-order white-box attacks are optimizationmethods to create targeted or untargeted adversarial examples.
The term ’white-box’ refers to the assumption that the DNN is fully known to the attacker from the
architecture down to every single weight. The attacks are of ’first-order’ as they only perform first derivative
function evaluations, i.e. only gradients and no Hessians are computed. There is a large collection of such
attacks, however, there are two kinds of attacks that stand out in terms of the attention they receive in the
literature. They differ in the way they incorporate the goals of similarity and misclassification:

• The first category minimizes the distortion under the constraint of misclassification: In 2014, Szegedy
et al. [86] proposed the L-BFGS attack that solves the problem

min˜︁x∈X γ∥x− ˜︁x∥22 + LCE(F (θ, ˜︁x),˜︁c)
targeted to a class ˜︁c as a relaxed proxy for the more desirable but ill-constrained problem

min˜︁x∈X ∥x− ˜︁x∥22 s.t. f(˜︁x) = ˜︁c,
which minimizes the 2-norm distortion under the constraint of a targeted misclassification. The loss
term in the relaxed problem removes the constraint by incentivizing high prediction confidences of
the target label ˜︁c. On a similar note, in 2017, Carlini et al. [10] proposed three attacks, called C&W
ℓp-attacks for each p ∈ {0, 1, 2}, that also take the similarity goal into account by adding a penalty
term. The p = 2 version has experienced the largest recognition so far [10, 82, 104]. There, they
also removed the box-constraint ˜︁x ∈ X via a component-wise hyperbolic tangent transformation˜︁x = (tanh(w) + 1)/2 and incorporated the targeted misclassification goal by maximizing the gap
between the target class’ logit and the other logits. More precisely, they proposed solving

min
w∈Rn

⃦⃦⃦⃦
1

2
(tanh(w) + 1)− x

⃦⃦⃦⃦2
2

+ γZ

(︃
1

2
(tanh(w) + 1)

)︃
,

Z(y) := max{FK−1(y)c : c ̸= ˜︁c} − FK−1(y)˜︁c.
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Later, the C&W ℓ2-attack was considered in a randomized version [104] and embedded into a class of
more general class of elastic net attacks to DNNss (EADs) [14, 82].

• We consider the category of attacks that bound the distortion and optimize the misclassification in the
form of the prediction confidence or loss. Explicitly, we express the misclassification goal as the CEL
and incorporate the similarity goal as a p-norm constraint. We focus on the inner problem

sup
δ∈Uεp

p (x)

LCE (F (θ, x+ δ), c) (ADV-UNT)

of the robust optimization problem (RO) for untargeted misclassification and

min
δ∈Uεp

p

LCE (F (θ, x+ δ),˜︁c) (ADV-TAR)

for targeted attacks. Common attempts to approximate solutions to these problems are clustered
within the template of the next section.

2.1.1 Attack Template

Within the framework of Algorithm 1, we can express many of the p-norm bounded white-box attacks from
the literature.

Algorithm 1 − FO-WB-Attack

Input: image x ∈ X , true label ˜︁c ∈ C, target label c ∈ C ∪{none}, norm exponent p ≥ 1, adversarial radius
εp > 0, soft classifier F : Θ × X → P, number of adversarial steps S ∈ N, adversarial step length
(ωs)s∈[S] ⊆ R+, adversarial randomization R ∈ RV(Rn)

Output: adversarial example ˜︁x ∈ x+ Uεp
p (x)

1: # random offset
2: ˜︁x := Πp

Uεp
p
(x+R)

3: for s = 1, . . . , S do
4: # gradient computation
5: if ˜︁c = none then
6: gs := ∇xL

CE(F (θ, ˜︁x), c)
7: else
8: gs := −∇xL

CE(F (θ, ˜︁x),˜︁c)
9: end if

10: # gradient normalization
11: if p = ∞ then
12: gs := sign(g)
13: else
14: gs := gs/∥gs∥p
15: end if
16: # update
17: ˜︁x := Πp

Uεp
p

(˜︁x+ ωsgs)

18: end for
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In fact, the popular family of FGSM and PGD attacks with their randomized counterparts R-FGSM and
R-PGD can be categorized as shown in Table 2.1.

Name p ωs S R ˜︁c Examples
Untargeted FGSM ∞ ε 1 0 none [30, 80, 101, 95, 60, 80]
Targeted FGSM ∞ ε 1 0 chosen ˜︁c [42, 43]
Least-Likely FGSM ∞ ε 1 0 ˜︁c = argminc′∈C pc′ [89]
Untargeted R-FGSM ∞ ε 1 U

[︂
Bεp
p

]︂
none [95]

Targeted R-FGSM ∞ ε− σ 1 N (0, σ2) none [89]
Least-Likely R-FGSM ∞ ε− σ 1 N (0, σ2) none [89]
PGD Single-Step 1 ε 1 0 none [80]

2 ε 1 0 none [101, 80]
Untargeted PGD Multi-Step ∞ constant > 1 0 none [52, 23]
Targeted PGD Multi-Step ∞ 1/255 > 1 0 chosen ˜︁c [42, 43]
Least-Likely PGD Multi-Step ∞ ≥ ε/S > 1 0 ˜︁c = argminc′∈C pc′ [89]
R-PGD Multi-Step ∞ constant > 1 U

[︂
Bεp
p

]︂
none [52]

Table 2.1: p-Norm bounded first-order attacks categorized as variants of Algorithm 1.

As we will see in Section 3.1, these attacks also play a crucial role in adversarial training. There, they are
utilized to compute adversarial examples for the DNN to learn on.

2.1.2 Randomization and a False Sense of Security

To motivate the use of the randomization term R ∈ RV(Rn) in Algorithm 1, we give a short introduction to
three phenomenons called gradient masking [6, 65], gradient obfuscation [3, 89, 105] and catastrophic
adversarial overfitting [95, 65].

The term ’gradient masking’, introduced in [6], describes the behaviour of DNNs during adversarial training
where they are incentivized to flatten their loss landscape x ↦→ LCE(F (θ, x), c) to minimize gradient lengths.
One the one hand, this is desirable from a defensive point of view as gradient lengths become less expressive
for the steepness of the local loss landscape. One the other hand, it rarely removes large fluctuations that
can still be exploited by adversaries, cf. Figure 2.1.

(a) natural (b) defended

Figure 2.1: Loss landscape in the case of masked gradients, with (b) adversarially trained to mask its
gradients and (a) being a naturally trained (substitute) model. Image from [65].

However, Figure 2.1 highlights another way in which this poses a challenge to the attacker: The gradient’s
direction becomes a less meaningful indicator of the local loss landscape. This observation was coined
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’gradient obfuscation’ in [3]. More generally, it describes the introduction of small artefacts in the loss
landscape around the training images to misguide the attacker into directions that do not increase the loss
when making a step of significant length, cf. Figure 2.2.

(a) large ϵ1 and ϵ2 (b) small ϵ1 and ϵ2

Figure 2.2: Loss landscape in the case of obfuscated gradients, with (b) zoomed in on (a). Here, ϵ1 is
the coordinate into the direction g := ∇xL

CE(F (θ, x), c) and ϵ2 into a direction orthogonal to g.
Note that g, pointing towards ϵ1, is only a good local approximation in (b) but not in (a), hence
misguiding attackers. Image from [89].

However, that confusion only applies to adversaries that take gradient information precisely and exclusively
in the clean sample x. Beyond that, performing adversarial training exclusively with single-step methods
like FGSM can cause ’catastrophic adversarial overfitting’, which was discovered in [95]. It refers to a
distortion of the naturally trained decision boundaries in a way that makes the DNN even more susceptible
to black-box, multi-step or randomized attacks, cf. Figure 2.3. In fact, the DNN might even be more precise
on FGSM perturbed images than clean ones after training due to ’label leaking’ [43].

Figure 2.3: Training timeline of a normal decision boundary evolving into a distorted decision boundary.
(Left) shows the loss surface before catastrophic overfitting with a FGSM adversarial direction
v1 := ∇xL

CE(F (θ, x), c) and a random direction v2. The red point marks an adversarial example
x+ v1 generated from x with label ’dog’. (Middle) displays the loss surface after learning with
x + v1. The distortion starts occurring. (Right) demonstrates that as training continues, the
decision boundary distortion grows uncontrollably such that overall local robustness decreases.
Image from [37].
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Therefore, gradient obfuscation and catastrophic overfitting motivate to first perform a slight random
perturbation R to get stronger attacks, both from an offensive as well as a defending perspective. One
method to test a DNN for all three concepts involves performing white- and black-box attacks [105] to
expose a possible ’false sense of security’ [3] provided by them. Since white-box adversaries have more
information about the victim, they should perform superior. But if these phenomenons constitute the main
line of defense, then the transferred or model-based black-box attacks outperform the white-box attacks
due to being unfazed by small or misleading gradients and distorted decision boundaries in the original
model. This holds by design of these attacks: Transferred attacks use a naturally trained substitute model to
compute the adversarial example via first-order methods and model-based attacks only use point evaluations
of the defended model. We will learn more on that in the next section.

2.2 Zeroth-Order Black-Box Attacks

This section gives a concise introduction to black-box attacks against DNNs [15, 6, 92, 93, 57, 105, 100, 3,
89, 82] with main emphasis on the BOBYQA-based targeted attack [92, 93] that will be run in the numerical
tests of Section 4.4. Black-box attackers, as opposed to white-box attackers, posses no knowledge about the
victim DNN and only the ability to receive the prediction confidence vector (pc)c∈C = F (θ, x) of samples
they query. This is a weaker attacker model compared to white-box adversaries, who can obtain gradients.
Nevertheless, it is an important attacker model for at least two reasons: They represent a sanity check for
the aforementioned ’false sense of of security’ [3] given by the phenomenons explained in Section 2.1.2.
Furthermore, the black-box setting is arguably the more realistic one in the real-world, e.g. when attacking
an online classification tool like clarifai.com from an user standpoint like [6] did.

2.2.1 Two Common Approaches

Black-box attacks can be categorized into two disjoint groups with distinct approaches:

• Attacks based on transferability between different DNNs create an adversarial example on a naturally
trained substitute classifier to which they have white-box access. Consequently, this allows the appli-
cation of first-order methods on that proxy model. Transferability, i.e. the tendency that adversarial
samples of an originally attacked DNN also confuse other DNNs, was discovered simultaneously with
the phenomenon of adversarial examples for image classification in 2014 by Szegedy et al. [86].
Subsequently, it was reproduced and further investigated in countless other papers [52, 15, 6, 10, 57,
105, 100, 3, 89, 30, 90, 43, 82, 47].

• Model-based attacks, like ZOO [15], TR-Attack [99], BOBYQA [92, 93] and others [93], rely on
approximating properties of the input’s loss landscape x ↦→ LCE(F (θ, x), c) solely via the zeroth-order
information gained from repeated querying. Most notably, this involves estimating first and second
derivatives of the loss function via finite differences [15, 6, 99] or developing a local interpolation
model of the loss [92, 93].

Up to now, transferred black-box attacks are more prominent in the literature. However, there are arguments
to be made for (a) model-based, (b) targeted black-box attacks to receive more attention:
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(a) As demonstrated in [92] and [43], increasing the number of gradient steps in white-box attacks
increases the attacker’s success, but it decreases transferability to other DNNs. Hence, assuming
modern DNNs become increasingly robust to single-step attacks, then attackers might not be successful
at performing transferred black-box attacks at all.

(b) Similarly, [47] showed that targeted attack transfer less than untargeted ones. Subsequently, taking a
closer look at model-based targeted black-box attacks, like BOBYQA, seems appropriate.

Beyond that, a further investigation is overdue when considering that [92] and [93] are the only papers
investigating BOBYQA and showing its competitiveness relative to other black-box attacks. In general,
BOBYQA is a state-of-the art zeroth-order optimizer [12, 13] which finds application in other domains
where the number of queries is to be minimized, e.g. climate modelling [87]. Hence, we will examine the
methodology of model-based targeted BOBYQA black-box attacks below.

2.2.2 The BOBYQA Algorithm

We start by summarizing the main ideas of the BOBYQA method [72, 73, 71] before delving into the
implementation for creating adversarial examples [13, 92, 93]. First, consider the targeted misclassification
problem (ADV-TAR) for p = ∞, i.e.

min
δ∈Uε∞∞

LCE (F (θ, x+ δ),˜︁c) . (ADV-TAR)

For notational simplicity, we omit the fixed parameters θ and x to define ψ˜︁c(·) := LCE(F (θ, x+ ·),˜︁c). Addi-
tionally, we resolve the notation of the adversarially exploitable neighbourhood to reformulate (ADV-TAR)
as box-constrained nonlinear program

min
δ∈Rn

ψ˜︁c(δ) s.t. ∥δ∥∞ ≤ ε∞ and x+ δ ∈ [0, 1]n.

To derive the problem BOBYQA will solve, we note that [92, 93] minimize a related objective

Ψ˜︁c(δ) := ψ˜︁c(δ)−∑︂
c ̸=˜︁c ψc(δ),

instead. However, both functions are closely related and induce the same ordering on δ ∈ Rn as they have
the same level sets

ψ˜︁c(δ1) ≤ ψ˜︁c(δ2)
⇐⇒ − log(F (θ, ˜︁x1)˜︁c) ≤ − log(F (θ, ˜︁x2)˜︁c)
⇐⇒ F (θ, ˜︁x1)˜︁c ≥ F (θ, ˜︁x2)˜︁c
⇐⇒ 1

F (θ, ˜︁x1)˜︁c ≤ 1

F (θ, ˜︁x2)˜︁c
⇐⇒ 1− F (θ, ˜︁x1)˜︁c

F (θ, ˜︁x1)˜︁c ≤ 1− F (θ, ˜︁x2)˜︁c
F (θ, ˜︁x2)˜︁c

⇐⇒ exp
(︃
log

(︃
1− F (θ, ˜︁x1)˜︁c
F (θ, ˜︁x1)˜︁c

)︃)︃
≤ exp

(︃
log

(︃
1− F (θ, ˜︁x2)˜︁c
F (θ, ˜︁x2)˜︁c

)︃)︃
⇐⇒ exp (log(1− F (θ, ˜︁x1)˜︁c)− log(F (θ, ˜︁x1)˜︁c)) ≤ exp (log(1− F (θ, ˜︁x2)˜︁c)− log(F (θ, ˜︁x2)˜︁c))
⇐⇒ exp(Ψ˜︁c(δ1)) ≤ exp(Ψ˜︁c(δ2))
⇐⇒ Ψ˜︁c(δ1) ≤ Ψ˜︁c(δ2).

27



We adopt this objective and w.l.o.g. suppose some fixed target class ˜︁c to define Ψ := Ψ˜︁c and formulate the
problem to be solved

min
δ∈Rn

Ψ(δ) s.t. ∥δ∥∞ ≤ ε∞ and x+ δ ∈ [0, 1]n. (2.1)

BOBYQA approaches this problem by setting up and iteratively improving a quadratic interpolation model

Qk(δ) := ck + g⊤k δ + δ⊤Hkδ

with symmetric Hessian Hk that satisfies the interpolation conditions

Qk(δ) = Ψ(δ) ∀δ ∈ Ik := {δk1 , . . . , δkd} (INT-CND)

in each iteration k. The set of interpolation points Ik has cardinality d ∈ {n+ 1, . . . , n(n+ 1)/2 + n+ 1} to
allow for anything from a linear estimation with d = n+ 1 and Hk = 0 up to Qk being uniquely determined
by (INT-CND) for d = n(n+ 1)/2 + n+ 1. To improve the model, we approximately solve the trust region
problem

min
δ∈Rn

Qk(δ) s.t. ∥δ∥2 ≤ rk, ∥δ∥∞ ≤ ε∞ and x+ δ ∈ [0, 1]n (TRP)

via first-order information ∇δQk(δ
k
ibest

) in the best solution seen so far

δkibest ∈ argmin
δ∈Ik

(Ψ(δ)).

Subsequently, we use the obtained approximate minimizer δk∗ to replace a specifically chosen point δkiout in
Ik to derive Ik+1. That means concretely

δk+1
i :=

{︄
δki if i ̸= iout,

δk∗ if i = iout
∀i ∈ [d].

Note that in some cases BOBYQA does not update Ik+1 according to (TRP) but performs an alternative
iteration called RESCUE to promote good linear independence between the interpolation points. Moreover,
the choice of the radius rk and leaving index iout takes multiple criteria like roundoff errors and interpo-
lation point distance into account to ensure numerical stability. We refer interested readers to [72] for a
comprehensive presentation. To obtain the new quadratic model Qk+1, we do not solve (INT-CND) from
scratch in each iteration. Instead, we compute an update model

QU (δ) := Qk+1(δ)−Qk(δ) =: cU + g⊤U δ + δ⊤HUδ

via the update interpolation conditions

QU (δ
k+1
i ) =

{︄
0 if i ̸= iout,

Ψ(δk+1
i )−Qk(δ

k+1
i ) if i = iout,

∀i ∈ [d] (INT-UPD)

and add QU to Qk once calculated. Remembering that n ≈ 3 ·103 for CIFAR-10 and n ≈ 2 ·105 for ImageNet,
it is generally reasonable to work with d≪ n(n+ 1)/2 + n+ 1. Then, (INT-UPD) is underdetermined, i.e.
there are unused degrees of freedom. BOBYQA resolves this lack of uniqueness by incentivizing the Hessian
to change as little as possible from iteration k to k + 1 w.r.t. the Frobenius norm

∥H∥F :=

√︄∑︂
i∈[n]

∑︂
j∈[n]

H2
ij
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in the so-called least Frobenius norm update problem

min
cU ,gU ,HU

∥HU∥F s.t. (INT-UPD). (LFNU)

If Ik is chosen appropriately [73], then (LFNU) is a strictly convex minimization problem with its unique
optimizer given by the solution of the (d+ 1 + n)× (d+ 1 + n) linear system of equations⎛⎝A 1⊤ D⊤

1 0 0
D 0 0

⎞⎠ ·

⎛⎝ ξ

cU
gU

⎞⎠ =

⎛⎝P0
0

⎞⎠ (OPT-CND)

with (Aij)ij = (δk+1
i

⊤
δk+1
j /2)ij ∈ Rd×d, D :=

(︂
δk+1
1 | . . . |δk+1

d

)︂
∈ Rn×d, 1 := (1, . . . , 1) ∈ R1×d and

(Pi)i ∈ Rd given by the right-hand side of (INT-UPD). Its solution yields the coefficients for QU , where the
Hessian is given by

HU :=
∑︂
i∈[d]

ξi · δk+1
i δk+1

i

⊤
.

Again, rather than solving (OPT-CND) in each iteration separately, it is beneficial in terms of runtime and
roundoff errors to compute the inverse of the system matrix once and update it each time one interpolation
point is substituted. Choosing the first set of interpolation points I0 appropriately, allows for an efficient
computation of the initial inverse. For details, we refer to [73, 71]. In conclusion, the model for the next
iteration is given by

Qk+1(δ) = Qk(δ) +QU (δ) = ck + cU + (gk + gU )
⊤δ + δ⊤(Hk +HU )δ

and satisfies (INT-CND) by construction. This process terminates if δkibest is a satisfactory solution to (2.1).
In the context of adversarial examples, this is the case when

f
(︂
θ, x+ δkibest

)︂
= ˜︁c.

Otherwise, the algorithm stops when the maximum number of iterations or - as in our case - the maximum
number of 3, 000 function evaluations is reached. The general BOBYQA algorithm is implemented in the
Py-BOBYQA package [13] for Python. This implementation is the backbone of the code in [92, 93] which
we modified in order to attack modern adversarial defenses.

Staying consistent with [92, 93], we left all major parameter unchanged, e.g. d = n+ 1 with H = 0. This
allows the validation of our results on BOBYQA against the natural and MadryLab defense [23]. Additionally,
our results against R-FGSM adversarial training and randomized smoothing can be seen as a direct update
as we include two additional contemporary defenses.

To further reduce the number of optimization dimensions and minimize the number of queries per attack,
[92, 93] employ a strategy called ’hierarchical lifting’ which originates from [31] and has previously been
leveraged to adversarial attacks in [15]. The main idea is to compute the perturbation δ within a sequence
of growing lower-dimensional subspaces

(︁
Rbl

)︁
l≥0

on different levels l ≥ 0, instead of on Rn directly. These
subspaces consist of bl blocks of pixels that form a grid for each color channel on the image. For each block,
one virtual pixel is determined as a representative. These pixels form a vector η̂l ∈ Rbl that is optimized with
the BOBYQA algorithm. Subsequently, these values are mapped back onto the image via the selection matrix
Sl ∈ {0, 1}n×bl before being interpolated to the actual pixels of their respective blocks via an interpolation
matrix Ll ∈ {0, 1}n×n in a piece-wise constant manner, cf. Figure 2.4.
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Figure 2.4: BOBYQA block-lifting with piece-wise constant interpolation of a sparse grid onto the whole
image: Sorting matrix S assigns optimization variables η̂ onto a sparse grid of pixels that get
optimized by the BOBYQA approach. Finally, the surrounding pixels are perturbed according to
their closest neighbours via a lifting matrix L. Image from [93].

This process is applied recursively to each of the resulting blocks on the next level l + 1, yielding a tree of
optimization problems with solutions (η̂l)l≥0 where each node has bl+1 = 4bl children. The perturbations of
their parents are inherited and considered as fixed. Initially, the image is divided into b0 = 2 · 2 · 3 problems,
i.e. four image quadrants per color channel. Each level of the tree is traversed in an order that tries to
manipulate more influential blocks of pixels first to increase the chance of a premature termination. To this
end, the blocks on each level are sorted by the variance of mean intensity among the neighboring blocks to
identify regions of high contrast like contours and patterns. The result is a sequence of perturbations

ηl := LlSlη̂l = LlSl
∑︂
i∈[bjl ]

η̂il ∈ Rn ∀l ∈ {0, . . . , ⌊log4(n/3)⌋ − 1}

that add up to the perturbation δ. Hence, in the case of 32× 32× 3 CIFAR-10 images, there are no more
than four levels of problems. This strategy is called hierarchical block-lifting and visualized in Figure 2.5.

Figure 2.5: BOBYQA hierarchical block-lifting: Recursive application of the block-lifting to the lower-
dimensional subproblems yields a tree of optimization problems to be solved by the BOBYQA
algorithm. The subproblems are traversed in order of decreasing variance of mean intensity
among adjacent blocks. Image from [93].
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(a) clean, ε∞ = 0 (b) adversarial, ε∞ = 9/255

Figure 2.6: Picture of a horse (label 7) from the CIFAR-10 test data set. Clean image (a) correctly classified
by adversarially trained LocusLab [95] DNN and noticeably perturbed sample (b) classified as
target label ’cat’ (label 3). High ε∞ ≈ 0.04 allows to see the applied block-lifting.

Figure 2.6 presents a successful targeted attack that was computed with this method. The high perturbation
radius ε∞ = 9/255 accentuates the hierarchical block-wise perturbations. In contrast, Figure 1.2 shows
another targeted attack but with ε∞ = 3/255 and no obvious signs of the BOBYQA attack.

Having understood the concept of such attacks, we again take the dimensionality reduction one step further:
Since bl grows exponentially in l, hierarchical lifting is combined with another clustering technique, referred
to as domain sub-sampling. It relies on partitioning the set of blocks [bl] into disjoint subsets of size kl which
are characterized by matrices Ωj ∈ {0, 1}bl×kl . The meta-variables optimized on these clusters are denoted
by η̃jl ∈ Rkl for j ∈ ⌈bl/kl⌉, yielding

η̂l =

⌈bl/kl⌉∑︂
j=1

Ωj η̃
j
l ∈ Rbl ∀l ∈ {0, . . . , ⌊log4(n/3)⌋ − 1}.

To summarize, at each level l and for each cluster j on that level, the adversary improves the existing
solution to (2.1) by computing a higher resolution perturbation δ via solving

min
η̃jl∈R

kl

Ψ

⎛⎝x+
∑︂
l′<l

ηl′ + LlSl

⎛⎝∑︂
j′<j

η̂j
′

l +Ωj η̃
j
l

⎞⎠⎞⎠
s.t.

⃦⃦⃦⃦
⃦⃦∑︂
l′<l

ηl′ + LlSl

⎛⎝∑︂
j′<j

η̂j
′

l +Ωj η̃
j
l

⎞⎠⃦⃦⃦⃦
⃦⃦
∞

≤ ε∞

x+
∑︂
l′<l

ηl′ + LlSl

⎛⎝∑︂
j′<j

η̂j
′

l +Ωj η̃
j
l

⎞⎠ ∈ [0, 1]n

with the BOBYQA algorithm. We refer to [92, 93] for additional information on the quantity and size of
these clusters as well as the assignment of blocks to clusters. We adopted the default setting from the
accompanying GitHub repository of [93] as these settings proved successful for them and us.
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3 Robustification Problem and Methods

The previous chapter introduced the creation of adversarial examples mainly from an attacker’s point of
view. This chapter presents two ways in which they are leveraged to rubistify DNNs as a defender. We focus
on two of the most promising robustification methods, namely standard adversarial training with first-order
adversary [3, 80, 95, 43, 28, 77, 82, 104] in Section 3.1 and randomized smoothing with Gaussian noise
[57, 69, 101, 60, 16, 70, 78, 27, 103] in Section 3.2. Both defenses, and in fact many more from the
non-detection-based in Section 1.3, are different in their approach, but share the common goal of making the
classifier more regular in the sense of a less curvy and more linear loss landscape x ↦→ LCE(F (θ, x), c). Doing
so, the attacker is offered less regions nearby to the natural image in X to be exploited for misclassification.

3.1 Adversarial Training by Robust Optimization

3.1.1 Adversarial Training Scheme

Standard adversarial training can be seen as an attempt to approximately solve the robust optimization
problem

min
θ∈Θ

1

N

∑︂
i∈[N ]

sup
δi(θ,xi,ci)∈U

εp
p (xi)

LCE (F (θ, xi + δi), ci) (E-RO)

during training. To do this, a solution to the inner adversarial problem

sup
δ∈Uεp

p (x)

[︁
ξ(θ, δ, c) := LCE (F (θ, x+ δ), c)

]︁
(ADV-UNT)

is estimated for each image in the training data set {(xi, ci) : i ∈ [N ]} in every epoch for the DNN to learn on.
We formulate a generic adversarial training in Algorithm 2 to roughly encapsulate the different approaches
in the literature [52, 101, 105, 37, 100, 3, 80, 95, 43, 28, 77, 82]. Here, we compute the approximate
solutions to (ADV-UNT) by applying the first-order white-box methods from Section 2.1. Apart from this, a
stochastic gradient descent procedure via backpropagation is performed, just like in natural training.

Within the template of Algorithm 2, we can express both defenses that we will test later. The R-FGSM training
from LocusLab [95] uses p = ∞, εp ∈ {2.5/255, 5/255}, F = ResNet50, S = 1, ω1 = εp, R = U

[︁
Bεp
p

]︁
, α = 1

for ImageNet and F = ResNet110, εp = 8/255 for CIFAR-10. The multi-step PGD training from MadryLab
[23] does not clearly state their training attacks, but it is a deterministic PGD approach with S > 1,R = 0 and
constant attack step size as indicated in https://github.com/MadryLab/robustness/issues/25.
Further questions regarding the other parameters remained unanswered. More details can be found in
the respective papers and GitHub repositories. Tables 4.2 and 4.8 give a structured summary of the most
important parameters.

There is a data scientific and a mathematical perspective to motivate adversarial training as in Algorithm 2:
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Algorithm 2 − Adversarial-Training

Input: training set ({(xi, ci) : i ∈ [N ]} ⊆ X × C, weight α ∈ [0, 1], batch size B ∈ N, number of epochs
E ∈ N, soft classifier F : Θ×X → P, parameter initialization θ0 ∈ Θ, learning rate (βs)e∈[E] ⊆ R+,
norm exponent p ≥ 1, adversarial radius εp > 0, number of adversarial steps S ∈ N, adversarial step
length (ωs)s∈[S] ⊆ R+, adversarial randomization R ∈ RV(Rn)

Output: trained soft classifier F (θE , ·) : X → P

1: # epochs
2: for e = 1, . . . , E do
3: # partition
4: ∪̇Be := [N ] with |Be| ≈ B
5: # batches
6: for i ∈ Be do
7: # perturb
8: ˜︁xi := FO-WB-Attack(xi, ci,none, p, εp, F (θe−1, ·), S, (ωs), R)
9: # backpropagate

10: ge := ge + α∇θL
CE(F (θe−1, ˜︁xi), ci) + (1− α)∇θL

CE(F (θe−1, xi), ci)
11: end for
12: ge := ge/B
13: # update
14: θe := θe−1 − βege
15: end for

• Data Augmentation: Classifiers that are trained to classify clean images are trained on a data set
containing as many natural images as possible to learn the map from unperturbed image data to the
class labels, i.e. with α = 0. Analogously, if a DNN is trained with adversarial robustness in mind,
the goal for the classifier is to learn the map from adversarially perturbed data to the class labels.
Therefore, it seems reasonable to let the classifier train on adversarial examples, i.e. with α > 0. More
generally, data augmentation has been successfully applied in many machine learning applications
by artificially increasing the size of the training data set via generic label-preserving operations like
scaling, flipping, cropping or rotating training data [83].

• Danskin’s Theorem: A standard result in the field of robust optimization is Danskin’s Theorem. It
provides a characterization of directional derivatives and (sub-)gradients of functions that are defined
as the optimal value of a maximization problem. In the min-max setting of (E-RO), this maximization
corresponds to (ADV-UNT) while the first-order information provided by Danskin’s Theorem is used
to minimize the robust loss w.r.t. the model parameters θ.

All referenced papers either do not justify the methodology or constrict themselves to the first perspective,
apart from [52] which shortly mentions the mathematical background. Interestingly, the assumptions of
Danskin’s Theorem are generally violated in the considered settings. Therefore, it is not clear why adversarial
training proves practically successful in multiple domains [22]. Section 3.1.2 is the theoretical prerequisite
to understand and motivate Contribution 4.3, which tries to bridge the gap between the non-existent
theoretical guarantees and the empirical success.
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3.1.2 Danskin’s Theorem

Danskin’s Theorem was first formulated by J. M. Danskin in 1967 in [19] and states the following.

Theorem 3.1 (Danskin’s Theorem, cf. [19], [4], [5]). Assume φ : Rd1 × U → R to be a continuous function
of two arguments r ∈ Rd1 and u ∈ U for a compact set U ⊆ Rd2 . Further, suppose that φ(·, u) is convex for
every u ∈ U . By compactness and continuity, the sets

U∗(r) := argmax
u∈U

φ(r, u) ∀r ∈ Rd1

of maximizers are well-defined. So, we can also define the convex map

ϕ : Rd1 → R : r ↦→ max
u∈U

φ(r, u).

• Then, the directional derivative of ϕ at r in the direction v ∈ Rd1 is given by

ϕ′(r; v) = max
u∈U∗(r)

φ′r(r, u; v),

where φ′r(r, u; v) denotes the directional derivative of φ(·, u) at and w.r.t. r in the direction v.

• If φ(·, u) is differentiable for all u ∈ U∗(r) and ∇rφ(r, ·) is continuous on U∗(r) for each r ∈ Rd1 , then
the subgradients are given by

∂ϕ(r) = conv {∇rφ(r, u) : u ∈ U∗(r)} ∀r ∈ Rd1 .

• In particular, if U∗(r) is a singleton, i.e. U∗(r) = {u∗}, and φ(·, u∗) is differentiable at r, then ϕ is
differentiable at r and the gradient is given by ∇ϕ(r) = ∇rφ(r, u

∗).

The underlying idea is to use Danskin’s Theorem to compute

∇θL
CE(F (θ, ˜︁x), c) = ∇θξ(θ, δ

∗, c)

with adversarial example ˜︁x = x+ δ∗ and exact solution δ∗ of (ADV-UNT). Hypothetically, if all of the above
assumptions are satisfied, Theorem 3.1 would indeed directly imply how descent directions of the loss w.r.t.
the model parameters can be found. They could be immediately employed to perform a gradient descent
scheme.

Corollary 3.2 (θ-Descent Direction via Danskin, cf. [52] Cor. C.2). Assume δ∗ ∈ Uεp
p (x) to be the unique

solution to the inner adversarial maximization (ADV-UNT) for a pair (x, c) ∈ X × C. Further, suppose that
ξ(·, δ, c) is convex for every δ ∈ Uεp

p (x) and ξ(·, 0, c) is differentiable. Then, −∇θξ(θ, δ
∗, c) is a descent direction

of ξ(·, 0, c) in θ as long as θ is not optimal already.

Proof. Since ξ(·, ·, c) is continuous, Uεp
p (x) is compact and the loss of the soft classifier F is assumed to be

differentiable w.r.t. θ, we can apply Danskin’s Theorem (Theorem 3.1) to get differentiability of ξ w.r.t. θ.
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We use the smoothness of LCE(F (·, x), c) to rewrite the directional derivative as a scalar product in the first
equality and uniqueness of δ∗ in the second equality to calculate

ξ′θ(θ, 0, c;∇θL
CE(F (θ, x+ δ∗))) = max

δ∈Uεp
p

∇θL
CE(F (θ, x+ δ), c)⊤∇θL

CE(F (θ, x+ δ∗), c)

= ∇θL
CE(F (θ, x+ δ∗), c)⊤∇θL

CE(F (θ, x+ δ∗), c)

= ∥∇θL
CE(F (θ, x+ δ∗), c)∥22

≥ 0.

Note that the inequality and signs flip when considering the derivative in the opposite direction. Strict
inequality follows from ∇θL

CE(F (θ, x+ δ∗), c) ̸= 0, which holds true if θ is not optimal. This comes from
the fact that stationarity is a necessary optimality condition for unconstrained problems and the lack of
constraints on θ ∈ Θ in (E-RO). ■

However, even when all other assumptions are fulfilled, the validity of Theorem 3.1 is very sensitive
towards inexactness in the computation of U∗(r), i.e. the solutions of maxu∈U φ(r, u), as our example below
highlights.

Example 3.3 (Failure of Danskin’s Theorem with Absolute Tolerance). For some arbitrary tolerance τ > 0,
consider the quadratic function

φ : R× [−1, 1] → R, (r, u) ↦→ (r − u)2 + τu

2
.

It has a ascending symmetric valley along the line (0,−τ/2) + {(r, u) ∈ R2 : r = u} that roughly bisects the
third and first quadrant, as can be seen in Figure 3.1.

Then, we see by direct calculation that U∗(0) = {1} is the unique maximizer along r = 0. However, on the
opposite side of U , there is a point of comparable value with a difference of only

φ(0, 1)− φ(0,−1) = τ.

Despite this, comparing the gradient

∇φ(r, u) =
(︃

r − u
u− r + τ

)︃
in these points, yields

∇φ(0, 1) =
(︃

−1
τ + 1

)︃
and ∇φ(0,−1) =

(︃
1

τ − 1

)︃
with an enclosed angle of

cos(∡(∇φ(0, 1),∇φ(0,−1))) =
⟨∇φ(0, 1),∇φ(0,−1)⟩2

∥∇φ(0, 1)∥2∥∇φ(0,−1)∥2
=

τ2 − 2√
τ4 + 4

→ −1

when τ ↘ 0. This means that the angle ∡(∇φ(0, 1),∇φ(0,−1)) between the gradients approaches π when
τ vanishes. Hence, maximizing φ(0, ·) slightly imprecisely on U = [−1, 1], with an absolute tolerance larger
than τ , already yields a completely different optimizer u∗ and almost entirely opposing gradients. □
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Figure 3.1: Isolines of φ(r, u) with gradients in (0, 1) and (0,−1) for τ = 0.1. Gradients are scaled by a
factor of 0.2 for visualization.

So we have seen that even for a fairly simple quadratic problem in two dimensions, we must solve the
maximization subproblem exactly to have the theoretical guarantees of Theorem 3.1. This is especially
concerning since our actual adversarial problem (ADV-UNT) is highly non-linear and of much higher
dimension n. In fact, solving such problems exactly is NP-hard [84]. Beyond that, local maxima of the inner
problem tend to have clustered optimal values and appear almost uniformly distributed within the feasible
region Uεp

p (x) [52].

Fundamentally, it is not only hard to satisfy the prerequisites of Theorem 3.1 to leverage Corollary 3.2, but
actually not possible in the context of (ADV-UNT) because multiple assumptions are generally violated by
default. Understanding ξc := ξ(·, ·, c) : Rdim(Θ) ×

(︁
Uεp
p (x) ⊆ Rn

)︁
→ R+ as φ : Rd1 ×

(︁
U ⊆ Rd2

)︁
→ R, we

identify multiple shortcomings:

• ξc is not continuous w.r.t. x and might not even be defined on the entirety of Uεp
p (x) as the CEL can

contain singularities on Uεp
p (x), cf. Contribution 4.1.

• Consequently, argmaxδ∈Uεp
p (x) ξc(θ, δ) is not well-defined as (ADV-UNT) is unbounded above.

• ξc is not convex w.r.t. θ in all δ ∈ Uεp
p (x).

• ξc is not differentiable w.r.t θ for all δ ∈ Uεp
p (x) when ReLU-activations are used.

Example 3.3 and all of the above considerations might suggest that there is no chance of capitalizing on
Danskin’s Theorem for Algorithm 2. Fortunately, in practice, this method proved to be successful anyway in a
large number of papers [52, 101, 105, 37, 100, 3, 80, 95, 43, 28, 77, 82]. In Section 4.3, we attempt to give
an explanation for this and answer the question from [80], why adversarial training increases robustness.
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3.2 Robustification by Randomized Smoothing

Randomized smoothing [57, 69, 101, 60, 16, 70, 78, 27, 103] can be seen as an attempt to solve

min
θ∈Θ

ˆ︁RSO(θ) =
1

MN

∑︂
i∈[N ]

∑︂
j∈[M ]

LCE (F (θ, xi + δij), ci) (E-SO)

for someM ∈ N and i.i.d. samples (δij) ∼ N (0, σ2I). Hence, it trains the DNN to be accurate under Gaussian
white noise. Smoothing with differently distributed RVs is possible. However, isotropic Gaussian smoothing
is preferred as it puts more emphasis on small perturbations close to the empirical data distribution without
completely neglecting outliers. Other than that, there are signs that it induces smoother decision boundaries
than uniform smoothing [101, 55] and many papers [57, 101, 16, 78, 103] achieve promising results with
it. Nevertheless, other structurally different and remarkably successful smoothing techniques exist [69,
70, 60]. For the above reasons and the sake of comparability to existing theoretical and empirical results,
we consider Gaussian smoothing. In particular, isotropic Gaussian smoothing induces a tight bound on
2-norm robustness, as Theorems 3.8 and 3.12 will show. To the best of our knowledge, there have not been
established similar bounds for other pairs of RVs and (p-)norms since the result in [16] for p = 2.

Randomized smoothing, as we consider it [16, 78, 103], is a two step process: At training time, the images
are adversarially attacked and perturbed with Gaussian noise before backpropagation takes place in the
model parameter space. At query time, the input is perturbed multiple times by Gaussian noise and the
results are fed into a ’voting function’ [57] that merges these classification results into a final output.
Following the chronology, we will first introduce the noise injection during training before looking at the
rationale of repeated querying.

3.2.1 Noise Injection at Training Time

Training F with noisy images is necessary for the smoothed soft classifier Fσ to be sufficiently accurate
when smoothing at query time. In resemblance of Pseudocode 1 of [78], this can be accomplished by a
version of the generic training scheme of Algorithm 3.

Note that in line eight, Algorithm 1 must compute the gradient

g = ∇xL
CE(Fσ(θ, x), c) = ∇xEδ∼N (0,σ2I)[F (θ, x+ δ)].

As an estimate, [78] computes a stochastic gradient via Monte Carlo sampling

g ≈ ∇xL
CE

⎛⎝ 1

Mtrain

∑︂
j∈[Mtrain]

F (θ, x+ δj)c

⎞⎠ = −∇x log

⎛⎝ 1

Mtrain

∑︂
j∈[Mtrain]

F (θ, x+ δj)c

⎞⎠
for someMtrain ∈ N and i.i.d. realizations (δj) ∼ N (0, σ2). In a trade-off between accuracy and cost, [78]
recommendsMtrain ∈ {1, 2, 4, 8}.
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Algorithm 3 − Smoothing-Training

Input: training set ({(xi, ci) : i ∈ [N ]} ⊆ X × C, weight α ∈ [0, 1], batch size B ∈ N, number of epochs
E ∈ N, soft classifier F : Θ×X → P, parameter initialization θ0 ∈ Θ, learning rate (βs)e∈[E] ⊆ R+,
norm exponent p ≥ 1, adversarial radius εp > 0, number of adversarial steps S ∈ N, adversarial step
length (ωs)s∈[S] ⊆ R+, adversarial randomization R ∈ RV(Rn), smoothing variance σ2 ∈ (0,∞)

Output: trained soft classifier F (θE , ·) : X → P

1: # epochs
2: for e = 1, . . . , E do
3: # partition
4: ∪̇Be := [N ] with |Be| ≈ B
5: # batches
6: for i ∈ Be do
7: # perturb
8: ˜︁xi := FO-WB-Attack(xi, ci,none, p, εp, Fσ(θe−1, ·), S, (ωs), R)
9: # backpropagate

10: ge := ge + α∇θL
CE(F (θe−1, ˜︁xi), ci) + (1− α)∇θL

CE(F (θe−1, xi), ci)
11: end for
12: ge := ge/B
13: # update
14: θe := θe−1 − βege
15: end for

3.2.2 Smoothing at Query Time

Having obtained a robust classifier that can deal with Gaussian noise injection, we can further smooth its
prediction at query time by drawing multiple normal distributed samples around the query. To formalize
this idea, we need the definitions below.

Definition 3.4 (Smoothed Classifiers, cf. [78]). For a soft classifier F : Θ×Rn → P , define the corresponding
smoothed soft classifier under isotropic Gaussian noise by the convolution

Fσ : Θ× Rn → P, (θ, x) ↦→
(︁
F (θ, ·) ∗ N (0, σ2I)

)︁
(x) = Eδ∼N (0,σ2I)[F (θ, x+ δ)]

with variance σ2 ∈ (0,∞). By extension, for a hard classifier

f : Θ× Rn → C, (θ, x) ↦→ argmax
c∈C

F (θ, x),

denote the derived smoothed hard classifier with voting function v : P × C → R by

fv : Θ× Rn → C, (θ, x) ↦→ argmax
c∈C

Eδ∼N (0,σ2I)[v(F (θ, x+ δ), c)].

For v(p, c) := pc, we obtain the soft smoothed hard classifier

fs : Θ× Rn → C, (θ, x) ↦→ argmax
c∈C

Eδ∼N (0,σ2I)[F (θ, x+ δ)c].
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The choice v(p, c) := 1
[︁
argmaxc′∈C pc′ = c

]︁
gives us the hard smoothed hard classifier

fh : Θ× Rn → C, (θ, x) ↦→ argmax
c∈C

Pδ∼N (0,σ2I)[f(θ, x+ δ) = c].

As presented in Section 1.4.2, the CEL can be understood as a smooth approximation to the {0, 1}-loss and
the approximation gets tighter for sinking temperature t > 0. The aforementioned convergence directly
implies

Eδ[F (θ, x+ δ)c] → Pδ[f(θ, x+ δ) = c] as t↘ 0.

Therefore, the voting functions of fh and fs are more likely to agree for lower temperatures and more likely
to disagree for higher ones. Also note that [16, 78, 103] are distinguished by the voting function they use.
As before, it is infeasible to compute the expectations in Definition 3.4 exactly. Instead, they are once again
estimated with a Monte Carlo simulation.

Definition 3.5 (Approximated Smoothed Classifiers). For each (θ, x) ∈ Θ × Rn, define the approximated
smoothed classifiers as the RVs

ˆ︂Fσ(θ, x) :=
1

Mquery

∑︂
j∈[Mquery]

F (θ, x+ δj) ∈ RV(P),

ˆ︁fh(θ, x) := argmax
c∈C

1

Mquery

∑︂
j∈[Mquery]

1[f(θ, x+ δj) = c] ∈ RV(C)

and ˆ︁fs(θ, x) := argmax
c∈C

1

Mquery

∑︂
j∈[Mquery]

F (θ, x+ δj) ∈ RV(C)

forMquery ∈ N and i.i.d. samples (δj) ∼ N (0, σ2I).

Mquery can be significantly larger thanMtrain as accuracy is more and speed less relevant than during training.
For instance [78], adviceMquery to be possibly as high as 128 when evaluating the robustness of the DNN.
Nevertheless, for regular usage a more moderate sample size seems appropriate to reduce costs and waiting
times.

Beyond that, Definitions 3.4 and 3.5 prompt another approach to interpreting problems (SO) and (E-SO):
The stochastic optimization problem (SO) can be interpreted as natural training without adversary (CO) of
the smoothed soft classifier

RSO(θ) = E(X,C)∼D
[︁
E∆∼N (0,σ2I)

[︁
LCE (F (θ,X +∆), C)

]︁]︁
= E(X,C)∼D

[︁
LCE (Fσ(θ,X), C)

]︁
.

Similarly, ifM :=Mtrain =Mquery and the i.i.d. samples (δj) ∼ N (0, σ2I) from Definition 3.5 are assumed
to be independent for different images, then the empirical stochastic optimization problem (E-SO) reduces
to the empirical clean optimization problem (E-CO) for the approximated smoothed soft classifier

ˆ︁RSO(θ) =
1

MN

∑︂
i∈[N ]

∑︂
j∈[M ]

LCE (F (θ, xi + δij), ci) =
1

N

∑︂
i∈[N ]

ˆ︂Fσ(θ, xi).

To establish some desirable convergence properties from ˆ︂Fσ to F , we formulate the following lemma. For
readability and because they stay unchanged, we omit the indices on the sample sizeM and the dependence
of all classifiers on θ from now on in this section.
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Lemma 3.6. For i.i.d. RVs (δj) ∼ N (0, σ2I) with finite variance σ2 ∈ (0,∞), the approximated smoothed
classifiers are unbiased, in the sense that

Fσ(x) = E
[︂ˆ︂Fσ(x)

]︂
and fs(x) = argmax

c∈C
E

⎡⎣ 1

M

∑︂
j=[M ]

1[f(x+ δj) = c]

⎤⎦ .
Furthermore, they are consistent estimators not only in probability, but even almost surely, meaning

ˆ︂Fσ(x)
a.s.→ Fσ(x) asM → ∞

and ˆ︁fs(x) a.s.→ fs(x) asM → ∞

in any point x ∈ Rn.

Proof. Let x ∈ Rn and σ2 ∈ (0,∞) be arbitrary. Viewing ˆ︂Fσ(x+ δj) ∈ RV(P) and ˆ︁fs(x+ δj) ∈ RV(C) as
RVs for all j ∈ [M ], we can apply well-known results from probability theory to deduce the claim. For
faithfulness, we use δj ∼ δ for all j ∈ [M ] to derive

E
[︂ˆ︂Fσ(x)

]︂
=

1

M

∑︂
j∈[M ]

Eδj [F (x+ δj)]

=
1

M

∑︂
j∈[M ]

Eδ[F (x+ δ)]

=
M

M
Eδ[F (x+ δ)]

= Fσ(x)

and

E

⎡⎣ 1

M

∑︂
j∈[M ]

1[f(x+ δj) = c]

⎤⎦ =
1

M

∑︂
j∈[M ]

Eδj [1[f(x+ δj) = c]]

=
1

M

∑︂
j∈[M ]

Pδj [f(x+ δj) = c]

=
1

M

∑︂
j∈[M ]

Pδ[f(x+ δ) = c]

=
M

M
Pδ[f(x+ δ) = c]

= Pδ[f(x+ δ) = c].

Hence, taking argmax in the second equality concludes the first part of the proof. For the second part, we
note that the a.s. convergence follows from the strong law of large numbers (SLLN) for ˆ︂Fσ(x) and from
Borel’s law of large numbers [94] for ˆ︁fs(x). Finally, convergence in probability is universally implied by a.s.
convergence. ■

Because a.s. convergence implies convergence in probability, Hoeffding’s inequality provides a probabilistic
bound on the convergence speed of the approximated smoothed soft classifier to the smoothed classifier.
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Proposition 3.7 (Probabilistic Bound on Convergence of Sampling Accuracy). In the context of Lemma 3.6,
it holds

P
[︂⃦⃦⃦ˆ︂Fσ(x)− Fσ(x)

⃦⃦⃦
∞

≥ κ
]︂
≤ exp

(︁
−2κ2M

)︁
∀κ ≥ 0.

Proof. Recalling ˆ︂Fσ(x)c ∈ [0, 1] and E
[︂ˆ︂Fσ(x)c

]︂
= Fσ(x)c from Lemma 3.6, Hoeffding’s inequality implies

the bound for each class c ∈ C. The uniform bound follows from component-wise application. ■

The exponential upper bound gives us hope to achieve a decent approximation accuracy with sufficient
confidence κ even for moderateM if the variance σ2 is comparatively small. In this section, we defined the
main mathematical objects of randomized smoothing and how they can be approximated in practice. The
next section will use these objects to derive a theoretical certified robustness bound of Gaussian smoothing.

3.2.3 Certified Robustness

Certified robustness bounds provide a neighbourhood around a clean image in which the classifiers prediction
does not change. Therefore, from the perspective of p-norm bounded attacks it is the most natural and
favourable robustness guarantee. Improving upon previously shown robustness guarantees in [46] and [44],
[16] proved a tight 2-norm robustness bound for Gaussian smoothing which we will retrace in this section.

Theorem 3.8 (Certified 2-Norm Robustness via Randomized Smoothing, cf. [16] Thm. 1). Suppose
f, fh : Θ × Rn → C and ∆ ∼ N (0, σ2I) as in Definition 3.4. Further, assume that for a label cA ∈ C, there
exist confidences pA, pB ∈ [0, 1] such that

P[f(θ, x+∆) = cA] ≥ pA ≥ pB ≥ max
c ̸=cA

P[f(θ, x+∆) = c]. (3.1)

Then, ˆ︁fh(θ, x+ δ) = cA for all δ ∈ Br
2 with radius

r := r(σ, pA, pB) :=
σ

2

(︁
Φ−1(pA)− Φ−1(pB)

)︁
.

We defer the proof for later when we have established some preliminary results in the form of Lemmas 3.10
and 3.11. Instead, we first make the below remark.

Remark 3.9. We observe the following:

• There are no assumptions on f . This is beneficial when it is unclear to what extent the DNN is
well-behaved or suffices some regularity conditions like in a black-box setting.

• The certified radius of robustness r(σ, pA, pB) is monotonically increasing in σ and pA as well as
monotonically decreasing in pB. This is consistent with the intuition that the smoothed classifier is
more robust towards small shifts δ when it is confident in distinguishing the most probable class cA
from the runner-up cB.

• When pA → 1 and pB → 0 converge, then r → ∞ diverges. This is reasonable due to the Gaussian
distribution being supported on all of Rn. So, for f(θ, x+∆) = cA to hold a.s., it must hold f(θ, ·) ≡ cA
almost everywhere (a.e.).
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• The confidences pA and pB cannot be determined precisely. However, Lemma 2, Theorem 3 and
Algorithm 2 in [103] as well as [16] and [43] provide in-depth information on their estimation.

• Theorem 2 of [103] shows an analogous result for the soft smoothed hard classifier fs. It gives a
different approach to certification and allows for direct maximization of r via the robust training via
maximizing the certified radius (MACER) algorithm. The bounds for fs and fh converge as t ↘ 0
with the justification from Section 1.4.2 [43].

As a first step towards proving Theorem 3.8, we recall a standard result from mathematical statistics called
Neyman-Pearson Lemma.

Lemma 3.10 (Neyman-Pearson, cf. [58], [16] Lem. 3). Let X,Y ∈ RV(Rn) be RVs with densities ρX , ρY
and let h : Rn → {0, 1} be a deterministic or random function. Then,

∃γ > 0 s.t. P[h(X) = 1] ≥ P[X ∈ S≤] for S≤ :=

{︃
z ∈ Rn :

ρY (z)

ρX(z)
≤ γ

}︃
(3.2)

implies P[h(Y ) = 1] ≥ P[Y ∈ S≤] and conversely,

∃γ > 0 s.t. P[h(X) = 1] ≤ P[X ∈ S≥] for S≥ :=

{︃
z ∈ Rn :

ρY (z)

ρX(z)
≥ γ

}︃
(3.3)

implies P[h(Y ) = 1] ≤ P[Y ∈ S≥].

Proof. We assume w.l.o.g. that h is random because the deterministic case can be dealt with by setting
P[h(x) = 0] = 1− P[h(x) = 0] ∈ {0, 1}. For the first implication, we estimate

P[h(Y ) = 1]− P[Y ∈ S≤] =

∫︂
Rn

P[h(z) = 1]ρY (z)dz −
∫︂
S≤

ρY (z)dz

=

[︄∫︂
S≤

c
P[h(z) = 1]ρY (z)dz +

∫︂
S≤

P[h(z) = 1]ρY (z)dz

]︄

−

[︄∫︂
S≤

P[h(z) = 1]ρY (z)dz +

∫︂
S≤

P[h(z) = 0]ρY (z)dz

]︄

=

∫︂
S≤

c
P[h(z) = 1]ρY (z)dz −

∫︂
S≤

P[h(z) = 0]ρY (z)dz

≥ γ

[︄∫︂
S≤

c
P[h(z) = 1]ρX(z)dz −

∫︂
S≤

P[h(z) = 0]ρX(z)dz

]︄

= γ
[︂ ∫︂

S≤
c
P[h(z) = 1]ρX(z)dz +

∫︂
S≤

P[h(z) = 1]ρX(z)dz

−
∫︂
S≤

P[h(z) = 1]ρX(z)dz −
∫︂
S≤

P[h(z) = 0]ρX(z)dz
]︂

= γ

[︄∫︂
Rn

P[h(z) = 1]ρX(z)dz −
∫︂
S≤

ρX(z)dz

]︄
= γ [P[h(X) = 1]− P[X ∈ S≤]]

≥ 0.
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In the first inequality, we used

ρY (z) ≤ γρX(z) ∀z ∈ S≤ and ρY (z) > γρX(z) ∀z ∈ Sc
≤

and in the second, our assumption on the non-negativity of both factors. The other implication works
analogously by reversing both inequalities. ■

Building upon this general result, we focus on our distribution of interest, namely isotropic Gaussians.

Lemma 3.11 (Neyman-Pearson for Gaussian White Noise, cf. [16] Lem. 4). Let X ∼ N (x, σ2I) and
Y ∼ N (x+ δ, σ2I) be Rn-valued RVs, i.e. X,Y ∈ RV(Rn) with densities ρX , ρY . Again, consider a random or
deterministic function h : Rn → {0, 1} and some scalar β ∈ R. Denoting the half-spaces induced by δ and β by

S≤ := {z ∈ Rn : δ⊤z ≤ β} and S≥ := {z ∈ Rn : δ⊤z ≥ β}, (3.4)

we assert
P[h(X) = 1] ≥ P[X ∈ S≤] =⇒ P [h(Y ) = 1] ≥ P[Y ∈ S≤] (3.5)

and conversely
P[h(X) = 1] ≤ P[X ∈ S≥] =⇒ P [h(Y ) = 1] ≤ P[Y ∈ S≥]. (3.6)

Proof. The claim is a consequence of Lemma 3.10 for X and Y being the isotropic Gaussian from the
assumption. Hence, what remains to be checked is that for each β there exists some γ > 0 such that the
half spaces induced by δ and β coincide with those induced by γ-bounded density ratios. More precisely, we
show

∀β ∈ R ∃γ = γ(β) s.t. {z ∈ Rn : δ⊤z ≤ β} =

{︃
z ∈ Rn :

ρY (z)

ρX(z)
≤ γ

}︃
and {z ∈ Rn : δ⊤z ≥ β} =

{︃
z ∈ Rn :

ρY (z)

ρX(z)
≥ γ

}︃
,

legitimizing the notational ambiguity of S≤ and S≥ between Lemmas 3.10 and 3.11. Plugging in Gaussian
densities component-wise, we calculate

ρY (z)

ρX(z)
=

exp
(︂
− 1

2σ2

∑︁
i∈[n](zi − (xi + δi))

2
)︂

exp
(︂
− 1

2σ2

∑︁
i∈[n](zi − xi)2

)︂
= exp

⎛⎝ 1

2σ2

∑︂
i∈[n]

(2ziδi − δ2i − 2xiδi)

⎞⎠
= exp

(︂
c1δ

⊤z + c2

)︂
for constants c1 := 1/σ2 and c1 := −(2δ⊤x+ ∥δ∥22)/(2σ2). Choosing γ := exp(c1β + c2), we observe

δ⊤z ≤ β ⇐⇒ exp(c1δ⊤z + c2) ≤ γ

δ⊤z ≥ β ⇐⇒ exp(c1δ⊤z + c2) ≥ γ,

which concludes the proof. ■
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We return to our primary goal of proving the result on certified 2-norm robustness via randomized smoothing.

Proof of Theorem 3.8. To show the robustness property fs(θ, x + δ) = cA for all δ ∈ Br
2 of the smoothed

classifier, we need to show

Pδ[fs(θ, x+ δ +∆) = cA] > Pδ[fs(θ, x+ δ +∆) = cB] ∀x ∈ Rn, cB ∈ C \ {cA}.

Now, w.l.o.g. fix arbitrary δ ∈ Br
2, x ∈ Rn and cB ̸= cA. Additionally, define the RVs

X := x+∆ ∼ N (x, σ2I)

Y := x+ δ +∆ ∼ N (x+ δ, σ2I)

to reformulate the assumption (3.1) to

P[f(θ,X) = cA] ≥ pA and P[f(θ,X) = cB] ≤ pB (3.7)

and the claim to
P[f(θ, Y ) = cA] > P[f(θ, Y ) = cB]. (3.8)

To get started, we want to comply with the framework of Lemma 3.11 by defining the half-spaces

SA := {z ∈ Rn : δ⊤(z − x) ≤ σ∥δ∥2Φ−1(pA)}, (3.9)

SB := {z ∈ Rn : δ⊤(z − x) ≥ σ∥δ∥2Φ−1(1− pB)}. (3.10)

We compute

P[X ∈ SA] = P
[︂
δ⊤(X − x) ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︂
δ⊤N (0, σ2I) ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︂
σδ⊤N (0, I) ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︁
σ∥δ∥2N (0, 1) ≤ σ∥δ∥2Φ−1(pA)

]︁
= P

[︁
N (0, 1) ≤ Φ−1(pA)

]︁
= Φ(Φ−1(pA))

= pA

and similarly

P[X ∈ SB] = P
[︂
δ⊤(X − x) ≥ σ∥δ∥2Φ−1(1− pB)

]︂
= P

[︂
δ⊤N (0, σ2I) ≥ σ∥δ∥2Φ−1(1− pB)

]︂
= P

[︂
σδ⊤N (0, I) ≥ σ∥δ∥2Φ−1(1− pB)

]︂
= P

[︁
σ∥δ∥2N (0, 1) ≥ σ∥δ∥2Φ−1(1− pB)

]︁
= P

[︁
N (0, 1) ≥ Φ−1(1− pB)

]︁
= 1− Φ(Φ−1(1− pB))

= pB.
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Using (3.7), these identities yield

P[f(θ,X) = cA] ≥ P[X ∈ SA] and P[f(θ,X) = cB] ≤ P[X ∈ SB].

Applying the Gaussian Neyman-Pearson Lemma 3.11 with h(z) := 1[f(z) = cA] and h(z) := 1[f(z) = cB],
respectively, we conclude

P[f(θ, Y ) = cA] ≥ P[Y ∈ SA] and P[f(θ, Y ) = cB] ≤ P[Y ∈ SB].

Connecting both inequalities by showing P[Y ∈ SA] > P[Y ∈ SB] would complete the chain of inequalities
to

P[f(θ, Y ) = cA] ≥ P[Y ∈ SA] > P[f(θ, Y ) = cB] ≤ P[Y ∈ SB]

and prove the reformulated claim in (3.8). To this end, we first compute

P [Y ∈ SA] = P
[︂
δ⊤(Y − x) ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︂
δ⊤N (δ, σ2I) ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︂
δ⊤N (0, σ2I) + ∥δ∥22 ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︂
σδ⊤N (0, I) + ∥δ∥22 ≤ σ∥δ∥2Φ−1(pA)

]︂
= P

[︁
σ∥δ∥2N (0, 1) + ∥δ∥22 ≤ σ∥δ∥2Φ−1(pA)

]︁
= P

[︁
σ∥δ∥2N (0, 1) ≤ σ∥δ∥2Φ−1(pA)− ∥δ∥22

]︁
= P

[︃
N (0, 1) ≤ Φ−1(pA)−

∥δ∥2
σ

]︃
= Φ

(︃
Φ−1(pA − ∥δ∥2

σ
)

)︃

(3.11)

and analogously

P [Y ∈ SB] = P
[︂
δ⊤(Y − x) ≥ σ∥δ∥2Φ−1(pB)

]︂
= P

[︂
δ⊤N (δ, σ2I) ≥ σ∥δ∥2Φ−1(pB)

]︂
= P

[︂
δ⊤N (0, σ2I) + ∥δ∥22 ≥ σ∥δ∥2Φ−1(pB)

]︂
= P

[︂
σδ⊤N (0, I) + ∥δ∥22 ≥ σ∥δ∥2Φ−1(pB)

]︂
= P

[︁
σ∥δ∥2N (0, 1) + ∥δ∥22 ≥ σ∥δ∥2Φ−1(pB)

]︁
= P

[︁
σ∥δ∥2N (0, 1) ≥ σ∥δ∥2Φ−1(pB)− ∥δ∥22

]︁
= P

[︃
N (0, 1) ≥ Φ−1(pB)−

∥δ∥2
σ

]︃
= Φ

(︃
Φ−1(pB − ∥δ∥2

σ
)

)︃
.

(3.12)

Hence, by combining (3.11) and (3.12), we derive

P[Y ∈ SA] > P[Y ∈ SB] ⇐⇒ ∥δ∥2 <
σ

2

(︁
Φ−1(pA)− Φ−1(pB)

)︁
. (3.13)

Noting that the right hand side coincides with the definition of the certified 2-norm radius of robustness r,
we obtain the statement. ■
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Before we prove that this bound is tight, we want to mention an alternative view on randomized smoothing
from Appendix A in [78] that yields another independent proof of Theorem 3.8: There, the smoothed
soft classifier Fσ(θ, ·) is understood as the Weierstrass transform of the original soft classifier F (θ, ·). Then,
Lipschitz continuity of Fσ(θ, ·)c and its Gaussian quantiles Φ−1(F (θ, ·)c) is established in Lemmas 1 and
2, respectively. These results are utilized to directly deduce the certified 2-norm radius by the Lipschitz
continuity of Φ−1(Fσ(θ, ·)c) and the confidence quantile gap Φ−1(pA)− Φ−1(pB). In contrast to the proof
in [16], this proof fosters the intuition that smoothing at query time is another technique to stabilize the
DNN prediction, here in terms of Lipschitz continuity.

Finally, we show that there is no larger certified 2-norm radius than the one from Theorem 3.8.

Theorem 3.12 (Tightness of certified 2-norm robustness bound, cf. [16] Thm. 2). In the setting of Theorem
3.8, suppose pA + pB ≤ 1 to hold. Then, we have

∀δ ̸∈ Br
2 ∃f : Θ× Rn → C s.t. (3.1) and fs(θ, x+ δ) ̸= cA. (3.14)

Proof. We inherit the notation from the proof of Theorem 3.8. Now, we construct the hard classifier˜︁f : Rn → C by setting

˜︁f(x)
⎧⎪⎨⎪⎩
:= cA if x ∈ SA,

:= cB if x ∈ SB,

∈ C \ {cA, cB} else.

Provided that pA + pB ≤ 1, the assumption pA ≥ pB implies 1− pB ≥ pA and therefore, by monotonicity
of the CDF, also Φ−1(1 − pB) ≥ Φ−1(pA). Consequently SA and SB from (3.9) are disjoint, making ˜︁f
well-defined. Additionally, it satisfies the outer inequalities of (3.1) with equality, due to

P
[︂ ˜︁f(x+∆) = cA

]︂
= P[X ∈ SA] = pA

and
P[ ˜︁f(x+∆) = cB] = P[X ∈ SB] = pB.

From the derivation of (3.13), we know that our assumption ∥δ∥2 > r is equivalent to P[Y ∈ SA] < P[Y ∈
SB]. Plugging in the definitions of the RVs and sets, this translates to

P
[︂ ˜︁f(x+ δ +∆) = cA

]︂
< P

[︂ ˜︁f(x+ δ +∆) = cB

]︂
.

In terms of the corresponding smoothed classifier ˜︁fσ, this constitutes a misclassification ˜︁fσ(x + δ) ̸= cA
which shows the asserted tightness property. ■

Remark 3.13. The assumption pA + pB ≤ 1 is mild. Having some pA (and potentially a pB) valid for (3.1),
one can always obtain a (tighter) pB via pB := 1− pA that is also feasible for (3.1). In fact,

max
cB∈C\{cA}

P[f(x+∆) = cB] ≤
∑︂

cB∈C\{cA}

P[f(x+ δ) = cB]

= 1− P[f(x+∆) = cA]

≤ 1− pA

=: pB

is a valid choice for pB whenever pA was feasible.
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To summarize, Theorems 3.8 and 3.12 establish a direct relationship between Gaussian smoothing at query
time and 2-norm robustness in the sense that the set of provably harmless perturbations is precisely a 2-norm
ball without additional assumptions of the DNN. In practice, the base classifier F should be trained with
adversarial examples and Gaussian noise beforehand via Algorithm 3 to make sufficiently good predictions
on noisy images in order to increase the spread between pA and pB.
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4 Numerical Tests

The final chapter of this work presents the numerical experiments that we conducted to derive Contributions
4.1, 4.2, 4.3 and 4.4. In each section, we focus on showcasing the most conclusive statistics for the respective
claim. Nevertheless, the Python Code is available in the supplementary material and GitHub repository for
replication of all our results. The first three contributions are based upon our own Python implementation,
while the last contribution largely employs the code from [92, 93] that itself leverages the Py-BOBYQA
[13] and robustness [23] packages. In all our presented experiments, we only attack unseen images
that have been classified correctly in their natural version.

4.1 Data Sets

Our computations focus on two of the most frequently used publicly available data sets, namely ImageNet
and CIFAR-10. We introduce them by providing some basic information.

4.1.1 ImageNet

ImageNet [20] is a large image database widely used for computer vision tasks. It contains more than
14 million hand-annotated high-resolution images which are assigned to 20, 000 classes. Since 2010, the
ImageNet project hosts the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [76] in which
numerous object detection and image classification algorithms compete. The different entries are compared
on the basis of a subset of the ImageNet data set that has received minor updates until 2017. It contains
more than 1.2 million training images, 100, 000 test images and 50, 000 validation images from a selection
of 1, 000 classes. This subset and the results achieved on it in the competition and elsewhere represent a
quasi-standard baseline for various computer vision tasks. Our experiments are performed on the validation
images from the 2012 ILSVRC, which will be referred to as ’ImageNet’ in the following. As common practice,
we resize and center-crop the images to a resolution of 224 × 224 pixels before usage. Examples of the
resulting pictures can be observed in Figures 1.1, 1.3, 4.5 and 4.8.

4.1.2 CIFAR-10

The CIFAR-10 data set [41], named after the ’Canadian Institute for Advanced Research’, is a subset of the
’80 Million Tiny Images’ data set [88] that contains over 79 million labelled 32× 32 low-resolution images
within more than 75, 000 classes. CIFAR-10 consists of ten classes with 5, 000 training and 1, 000 test images
each. Our tests are performed on random samples of the 10, 000 test images. Figure 4.1 gives an overview
of the ten CIFAR-10 classes along with some exemplary samples and Figure 1.2 showcased an adversarial
example classified as ’ship’ of an image originally labelled as ’airplane’.
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Figure 4.1: All ten classes of the CIFAR-10 data set with a selection of images. Image from [40].

4.2 p-Norm Rescaling and Zero True-Label-Confidence

This section derives and presents our first two Contributions 4.1 and 4.2. We propose two transformation
functions T and T that can be used to translate perturbation radii between different p-norms such that they
induce attacks of comparable strength w.r.t. the top-1 and top-5 accuracies as well as the CEL. The top-k
accuracy denotes the proportion of images where the true label c is among the k predictions c′ with highest
confidence pc′ .

Additionally, we trialed different step schemes in PGD attacks and discovered that harmonically declining
step lengths can reduce the true-label-confidence pc to practically zero, i.e. below machine precision. To
the best of our knowledge, this is unprecedented in the literature as it mainly focused on constant step sizes
up to now, cf. Table 2.1.

4.2.1 Transformation Function

The first transformation function scales the p-norm radii according to the Lebesgue volume of the resulting
balls Bεp

p . Intuitively speaking, this should offer adversaries with different p-norms the same amount of
perturbation options even though they are arranged in different shapes. To this end, we recall the general
formula for the Lebesgue volume of a p-norm ball of radius εp in Rn. Going back to Dirichlet and Liouville
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(cf. [1] Section 1.8), an inductive proof shows

L
(︁
Bεp
p

)︁
=

(︂
2Γ

(︂
1
p + 1

)︂
εp

)︂n

Γ
(︂
n
p + 1

)︂ ∀p ∈ [1,∞],

where Γ denotes the gamma function. Plugging in the considered values of p and simplifying via Γ(m+1) =
m!, we obtain

L
(︁
Bεp
p

)︁
=

⎧⎪⎨⎪⎩
(2εp)n

n! if p = 1,
(
√
πεp)n

Γ(n/2+1) =
(
√
πεp)n

(n/2)! if p = 2,
(2εp)

n if p = ∞,

where we assumed n to be even in the case of p = 2. This holds true for CIFAR-10 and appropriately cropped
ImageNet samples. Hence, to determine the radii ε1 and ε2 such that L

(︁
Bεp
p

)︁
= L

(︁
Bε∞
∞

)︁
, we first compute

(2ε1)
n

n!
= (2ε∞)n

⇐⇒ ε1 =
n
√
n!ε∞ ∼ n

e
2n
√
2πnε∞

=⇒ ε1 ≈ λ1∞ε∞ :=

{︄
55378.6875 · ε∞ if n = 150, 528 (ImageNet),
1131.9422 · ε∞ if n = 3, 072 (CIFAR-10).

(4.1)

Since n! is too large to be computed and stored explicitly for the above n, we used Stirling’s formula

n! ∼
(︂n
e

)︂n√
2πn.

By the inequalities in [74] that bound

n! =
(︂n
e

)︂n√
2πn · ern with

1

12n+ 1
< rn <

1

12n
∀n ∈ N,

the relative approximation error is well below 10−5 (10−7) for CIFAR-10 (ImageNet) since n > 104 (n > 106)
and therefore rn < 10−5 (rn < 10−7) and exp(rn) = 1 + rn +O(r2n) by Taylor’s Theorem. An analogous
calculation for the 2-norm radius shows

(
√
πε2)

n

(n/2)!
= (2ε∞)n

⇐⇒ ε2 =
n
√︁

(n/2)!
2√
π
ε∞ ∼

√︃
2n

eπ
2n
√
πn · ε∞

=⇒ ε2 ≈ λ2∞ε∞ :=

{︄
187.7675 · ε∞ if n = 150, 528 (ImageNet),
26.8628 · ε∞ if n = 3, 072 (CIFAR-10).

(4.2)

Combining these numbers λ1∞ and λ2∞, we deduce the missing rescaling factors as depicted in Figure 4.2.

The black arc weights originate from (4.1) and (4.2) and the gray ones are derived either by using symmetry
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p = 2 p = ∞

λ2∞/λ1∞
1/λ1∞λ1∞/λ2∞

1/λ2∞

λ1∞

λ2∞

Figure 4.2: Rescaling factors for p ∈ {1, 2,∞} to equalize the p-norm balls’ Lebesgue volume.

(solid) or transitivity (dashed) of the volume equality. We formalize this graph into a norm rescaling function

T p2
p1 : R+ → R+, εp1 ↦→ εp2 := εp1 ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if p1 = p2,
λ2∞/λ1∞ if (p1, p2) = (1, 2),
1/λ1∞ if (p1, p2) = (1,∞),
λ1∞/λ2∞ if (p1, p2) = (2, 1),
1/λ2∞ if (p1, p2) = (2,∞),
λ1∞ if (p1, p2) = (∞, 1),
λ2∞ if (p1, p2) = (∞, 2)

(4.3)

for p ∈ {1, 2,∞}. For comparison, we use ∥ · ∥p2 ≤ n1/p2−1/p1∥ · ∥p1 for p1, p2 ∈ [1,∞], p2 ≤ p1 to define a
second transformation function

T
p2
p1 : R+ → R+, εp1 ↦→ εp2 := εp1 ·

{︄
1 if p1 ≤ p2,
n

1
p2

− 1
p1 if p1 > p2,

(4.4)

that insures εp2 to be the smallest radius with Bεp1
p1 ⊆ Bεp2

p2 . The motivation behind this transformation
is to have a baseline for T to be compared with. Theoretically, (4.4) should make the p2-norm bounded
adversary at least as capable the p1-norm bounded one due to this inclusion. Figure 4.3 visualizes both
transformations for unit balls in R2.

4.2.2 Hypothesis and Metrics

We expect that scaling the perturbation radii to equal Lebesgue volume via T from (4.3) will yield similarly
strong p-norm bounded attacks for p ∈ {1, 2,∞} since the adversary has the same exploitable space around
the clean image to explore. However, the balls are differently shaped and therefore allow for perturbations
with different characteristics. For instance, the 1- and 2-norm would allow one pixel to be adjusted massively
when keeping the others sufficiently natural. The ∞-norm does not allow such trade-offs and bounds each
of the n color channel values separately, cf. Figure 4.3.
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Figure 4.3: Unit p-norm spheres (solid) for p ∈ {1, 2,∞}, T p
∞-scaled spheres (dashed) and T p

∞-scaled
spheres (dash-dotted) for p ∈ {1, 2} in n = 2 dimensions.

As a baseline, we execute the entire process analogously for the transformation T from (4.4) which creates
nested p-norm balls. Here, we hypothesize that attacks with a perturbation set Bεp1

p1 ⊆ Bεp2
p2 , which is a

subset of the one from a different attack, to be weaker than its counterpart.

Our metrics for measuring the attacks strengths are the top-1 and top-5 accuracy as well as the true-label-
confidence pc or equivalently the CEL, i.e. − log(pc). To make sure that the scaled norms also preserve
visual faithfulness to a comparable degree, we will additionally examine the average p-norm distortions for
all p ∈ {1, 2,∞}, not only the one imposed on the attack, and show some of the perturbed samples.

4.2.3 Setup and Implementation

We perform our experiments on the ImageNet validation data set and use a first-order white-box attack
similar to Algorithm 1. However, we modified the step lengths and the randomization method in our
implementation presented in Algorithm 4: In contrast to Algorithm 1, and therefore to most of the existing
literature [42, 52, 101, 105, 37, 100, 3, 80, 89, 60, 16, 95, 30, 43], we use harmonically and geometrically
declining step lengths, instead of a constant ones, when perturbing the images. We expect the smaller
steps towards the end to be beneficial for finding tiny regions of high loss. Furthermore, in addition to
the deterministic steps, we consider random perturbations at each iteration, instead of only once at the
beginning with the hope to circumvent obfuscated gradients more effectively. However, we found these
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modifications to have little to no effect on relevant metrics like the top-1 and top-5 accuracy on ImageNet
with ε∞ = 3/255 for the naturally trained PyTorch DNN and the adversarially trained ones from MadryLab
[23] and LocusLab [95]. In fact, there was only one setting in which the performance difference between
all six step schemes w.r.t. one of these metrics exceeded 0.2%pt (percentage points): Our declining step
schemes slightly outperformed the established constant one in terms of top-5 accuracy reduction when
attacking the naturally trained DNN, cf. Figure 4.4.
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Figure 4.4: Comparison of our proposed decaying step schemes with a constant one using step length
ω = ε∞/S from the literature [89] when attacking the naturally pretrained PyTorch DNN on
500 images from the ImageNet validation data set with ε∞ = 3/255.

One exception to this insensitivity to the step scheme arises when considering the true-label-confidence pc
or equivalently the CEL as success metric: When combining the runs for seed = 0 and seed = 42, we
find seven images that got perturbed by the deterministic harmonic step scheme so successfully that pc was
below machine precision of Python floats despite the natural images being correctly classified with up to
pc ≥ 95% confidence. In six out of these instances, the 16 step gradient attack was necessary and once eight
steps were enough. In analogy, the randomized harmonic steps reached that two times. In the respective
preceding attack with half that number of steps, the true-label-confidence was already below 10−34. In our
experiments, the constant and geometric step schemes did not reach such levels.

We suspect the geometric step lengths to be too short in the end to fully explore the vulnerable regions of
the loss landscape and the constant step sizes to be too long in the end causing oscillations around the zero
confidence area rather than entering it. An in-depth investigation of this is pending and could be subject of
future research. To the best of our knowledge, there are no publications reporting true-label-confidences of
similar magnitude. Hence, we formulate our first numerical contribution.

Contribution 4.1 (Zero True-Label-Confidence). PGD attacks on the naturally pretrained PyTorch ResNet50
DNN with ε∞ = 3/255 and our harmonically declining step size are able to perturb ImageNet adversarial
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examples with true-level-confidences of several magnitudes below 10−34. This causes Python floats to be
incapable from distinguishing them from zero and the CEL to be undefined. Consequently, the adversarial
problem (ADV-UNT) is unbounded from above for some images x and small perturbation radii ε∞.

Algorithm 4 − Perturb

Input: norm exponent p ≥ 1, radius εp > 0, number of samples num_samples ∈ N, data set data_set ∈
{ImageNet,CIFAR-10}, decay type decay ∈ {harmonic, geometric}, randomization rand ∈ {true, false}

Output: adversarial examples xkgauss, xkunif, xkbound, xknum_steps ∀num_steps ∈ {1, 2, 4, 8, 16}, k ∈
[num_samples]

1: for k = 1, . . . , num_samples do
2: # get random pair
3: (xk, ck) := U [data_set]
4: xkclean := xk

5: # execute gradient-free attacks
6: xkgauss := Π∞

X
(︁
N

(︁
xk, (εp/2)

2
)︁)︁

7: xkunif := Π∞
X
(︁
U
[︁
B

εp
p (xk)

]︁)︁
8: xkbound := Π∞

X
(︁
U
[︁
Sεp
p (xk)

]︁)︁
9: # execute first-order white-box attacks

10: for num_steps ∈ {1, 2, 4, 8, 16} do
11: # compute step sizes
12: if decay = geometric then
13: sum := Σ

num_steps−1
s=0 2−s = 2(1− 0.5num_steps)

14: ωs := εp2
−s/sum ∀s ∈ [num_steps]

15: else if decay = harmonic then
16: sum := Σ

num_steps
s=1 s−1

17: ωs := εps
−1/sum ∀s ∈ [num_steps]

18: end if
19: # perform gradient ascent
20: for s = 1, . . . , num_steps do
21: gs := ∇xL

CE(F (θ, xks), c
k)

22: if p = ∞ then
23: gs := sign(gs)
24: else
25: gs := gs/∥gs∥p
26: end if
27: if rand = true then
28: xks := xks + 0.1 · ωsU

[︁
Sεp
p

]︁
+ 0.9 · ωsgs

29: else
30: xks := xks + ωsgs
31: end if
32: end for
33: xknum_steps := Π∞

X

(︂
xknum_steps

)︂
34: end for
35: end for
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Since there are no apparent downsides and possibly small upsides to our method, we decided to employ
our step schemes in the numerical experiments conducted with Algorithm 4. It was executed on seed =
42 and also seed = 0 for validation purposes. The results did not differ significantly and in the following
we will always consider the results calculated for seed = 42.

The observations leading to Contribution 4.1 were our motivation to cap the number of steps in Algorithm 4
at 16. On the one hand, we wanted the best attack to be as strong as computationally practical in order to
give a good approximation to a solution of the inner problem (ADV-UNT) that Danskin’s Theorem demands.
On the other hand, more gradient steps further increased the number of samples with pc = 0 in machine
precision making the loss LCE(F (θ, x), c) and its gradients undefined. Figure 1.1 already presented one
such example on the seed = 21 with ε∞ = 0.02. Figure 4.5 presents another zero true-label-confidence
example from our productive framework, i.e. on seed = 42 for ε∞ = 3/255.
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(b) adversarial, ε∞ = 3/255

Figure 4.5: Picture of a perfume (label 711) from the ImageNet validation data set. Clean image (a) correctly
classified with confidence of 61.34% by naturally pretrained PyTorch DNN and adversarial
sample (b) with 0.00% confidence for ’perfume’ and 99.84% confidence for ’paper towel’ (label
700).

We normalize the proposed step lengths of the first-order attacks to insure xknum_steps ∈ B
εp
p (xk) via

∥xk − xknum_steps∥p =

⃦⃦⃦⃦
⃦⃦ ∑︂
s∈[num_steps]

ωsgs

⃦⃦⃦⃦
⃦⃦
p

≤
∑︂

s∈[num_steps]

ωs∥gs∥p = εp

without projections after each step that might disturb the trajectory of the gradient ascent method. The
gradient-free attacks suffice that by construction.

Note that all attacks take place in the linearly transformed domain of preprocessed images, i.e. each color
channel of the attacked images is normalized by the expectation and variance of the training data set before
being perturbed and queried to the DNN. This is a common procedure to improve the training success and
the here attacked DNNs were pretrained on such data. We calculated the inverse transformation afterwards
for presentation and to compare them to the originals. The perturbation radii εp still relate to the original
image representation in X of the 224× 224 center-cropped ImageNet samples.
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DNN Attack ε1 Attack ε2 Attack ε∞
Defense Train on p Arch. 3/255 651.5 1771 3/255 2.209 4.564 3/255 6/255
Natural Clean ResNet50 500 500 500 500 500 500 500 500

MadryLab [23] PGD 2,∞ ResNet50 500 500 500
LocusLab [95] R-FGSM ∞ ResNet50 500 500

Table 4.1: Number of attacked samples for each pair of decay and rand from the ImageNet validation
data set in the experiments regarding Danskin’s Theorem and norm rescaling. Baseline is
ε∞ = 3/255 ≈ 0.012 with εp for p ∈ {1, 2} chosen via T∞

p (left), T p
∞ (middle) and T p

∞ (right).

DNN Attack ε2 Attack ε∞
Defense Train on p Arch. 2.209 3/255 6/255

MadryLab [23] Multi-step 2,∞ ResNet50 3.0 4/255 8/255
LocusLab [95] R-FGSM ∞ ResNet50 2.5/255 5/255

Table 4.2: Training εp regarding the matching p from the ’p’-column for each attack configuration of the
experiments regarding Danskin’s Theorem and norm rescaling on the ImageNet validation data
set. Baseline is ε∞ = 3/255 ≈ 0.012 with attack ε2 = T 2

∞(3/255) ≈ 2.209.

Table 4.1 presents the number of samples that we tested in Algorithm 4 for each perturbation radius εp and
defense. The radii, which were used during training of each defended DNN, are listed in Table 4.2 below.

4.2.4 Results and Interpretation

Before we consider all metrics mentioned above, we note that, apart from the observation in Contribution
4.1, the results did not differ much between the harmonic and geometric step lengths, neither in the
deterministic nor the randomized case. Therefore, we often only present the metrics in a selection of these
cases. The other cases can be reproduced with or examined in the supplementary material.

We start by comparing the top-1 and top-5 accuracy listed in Tables 4.3 and 4.4. Here, T -scaling seems to
adapt the accuracy for p ∈ {1, 2} more precisely to the p = ∞ constrained attacks than T -scaling, especially
when looking at the top-5 accuracy. Nevertheless, considering that we only attacked samples that were
classified correctly originally, the reduction in precision is roughly similar for both rescalings, in particular
regarding the top-1 accuracy.

Next we examine the true-label-confidence through the perspective of the CEL in Table 4.5. We notice that
for most quantiles the T -transformed attacks lower bound and the T -transformed attacks generally upper
bound the CEL experienced by the original ∞-norm bounded attacks.

Step Avg. top-1 accuracy (%) Avg. top-5 accuracy (%)
Decay Rand ε∞ = 3/255 ε2 = T 2

∞(ε∞) ε1 = T 1
∞(ε∞) ε∞ = 3/255 ε2 = T 2

∞(ε∞) ε1 = T 1
∞(ε∞)

harm. false 29.66 30.97 30.69 38.86 45.83 43.03
harm. true 29.74 31.23 30.77 39.49 47.51 44.86
geom. false 29.66 31.00 30.74 38.89 46.57 43.34
geom true 29.74 31.26 30.80 39.57 48.14 45.09

Avg. 29.70 31.12 30.75 39.20 47.01 44.08

Table 4.3: Average accuracies over all attacks (excluding clean & Gaussian) with T -scaling according to
(4.3) on naturally trained ResNet50 on the ImageNet validation data set.
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Step Avg. top-1 accuracy (%) Avg. top-5 accuracy (%)
Dec. Rnd. ε∞ = 3/255 ε2 = T

2

∞(ε∞) ε1 = T
1

∞(ε∞) ε∞ = 3/255 ε2 = T
2

∞(ε∞) ε1 = T
1

∞(ε∞)
harm. false 29.66 30.54 30.26 38.86 38.86 37.06
harm. true 29.74 30.57 30.14 39.49 39.34 37.37
geom. false 29.66 30.51 30.26 38.89 39.06 37.14
geom. true 29.74 30.57 30.20 39.57 39.69 37.49

Avg. 29.70 30.55 30.22 39.20 39.24 37.27

Table 4.4: Average accuracies over all attacks (excluding clean & Gaussian) with T -scaling according to
(4.4) on naturally trained ResNet50 on the ImageNet validation data set.

Q(·) CEL Quantiles
ε∞ = 3/255 ε2 = T 2

∞(ε∞) ε1 = T 1
∞(ε∞) ε2 = T

2

∞(ε∞) ε1 = T
1

∞(ε∞)
10% 3.26 2.00 2.35 2.71 2.85
50% 17.64 12.68 14.26 18.90 22.30
90% 39.38 30.45 32.98 42.04 49.45

Table 4.5: Quantiles of CELs computed over union of all attacks (excluding clean & Gaussian) with all
different step schemes. T -scaling applied according to (4.3) (left) and T -scaling (4.4) (right)
on naturally trained PyTorch ResNet50 on ImageNet.

This observation still holds when separating the losses of different attacks and plotting their histograms as
done in Figure 4.6. Here, the right column relates to T , i.e. the smallest εp such that Uε∞

∞ ⊂ Uεp
p , while the

middle column corresponds to T , i.e. choosing εp such that L
(︁
Bεp
p

)︁
= L

(︁
Bε∞
∞

)︁
. In fact, comparing (c) and

(f) with (a), we again notice a tendency to slightly lower CEL values and, conversely, in (d) and (g) slightly
higher losses than in the baseline case (a).

Moreover, the left column relates to the largest εp such that Uεp
p ⊂ Uε∞

∞ , i.e. ε1 = ε2 = ε∞. It clearly
demonstrates the need for a radius transformation when using different p-norms because all attacks in (b)
and (e) were much weaker than (a) as imposing ε2 = 3/255 or ε1 = 3/255 is much more restrictive on the
attacker than ε∞ = 3/255.
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(a) ε∞ = 3/255 ≈ 0.012
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(c) ε2 = T 2
∞(ε∞) ≈ 2.209
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(d) ε2 = T
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∞(ε∞) ≈ 4.564
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(f) ε1 = T 1
∞(ε∞) ≈ 651.5
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(g) ε1 = T
1

∞(ε∞) ≈ 1171

Figure 4.6: CEL-histograms with bucket size 10 for p-norm bounded white-box attacks on naturally trained
ResNet50 DNN with deterministic harmonic step size for p ∈ {1, 2,∞} with T -rescaling accord-
ing to (4.4) (left & right) and T -scaling according to (4.3) (middle) on ImageNet.

The appropriateness of both rescaling functions generalizes to other step lengths, randomizations and adver-
sarially trained DNNs like the MadryLab net [23]. Figure 4.7 shows this at the example of T -transformation
and randomized step schemes for the same collection of attacks from Algorithm 4.
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(a) ε∞ = 3/255 ≈ 0.012, harm. rand.
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(b) ε2 = T 2
∞(ε∞) ≈ 2.209, harm. rand.
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(c) ε∞ = 3/255 ≈ 0.012, geom. rand.
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(d) ε2 = T 2
∞(ε∞) ≈ 2.209, geom. rand.

Figure 4.7: CEL-histograms for p ∈ {2,∞}-norm bounded white-box attacks on adversarially trained
ResNet50 DNN from MadryLab [23] with randomized step schemes and T -rescaling according
to (4.3) on ImageNet. Mind the different abscissas.

Note that this time, unlike to Figure 4.6, all gradient-based attacks are similarly strong and outperform
the gradient-free, randomized attacks by a margin that is much smaller than before. Overall, neglecting
the Gaussian attack, the CEL is about 12-fold lower compared to the naturally trained case. This indicates
the effectiveness of the adversarial training. The Gaussian attack has to be interpreted with caution as it
is not bounded by some εp-ball, but a clipped N (0, εp/2)-distribution around the clean sample. Given the
applied T -scaling, this causes Algorithm 4 to compute a clipped N (x, 1.105)-distribution on X = [0, 1]n

which resulted in unrecognizable pictures that fail to meet any of our intuitive definitions (a), (b) and
(c) from the introduction. However, focusing on the other attacks, we again observe that T -scaling, and
similarly T -scaling, assimilate the 2-norm bounded attacks to the ∞-norm bounded ones for different step
length decays as well as randomization schemes.

Up to now, we focused on the attacker’s misclassification goal. Shifting our attention to the constraint of
visual similarity, we note that different p-norms in attacks induce different p-norm distortions, cf. Table
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Attack Radius Distortion [Q(5%), Q(50%), Q(95%)]
∥x− ˜︁x∥∞ ∥x− ˜︁x∥2 ∥x− ˜︁x∥1

ε∞ = 3/255 ≈ 0.0118 [0.0118, 0.0118, 0.0118] [2.7013, 2.9219, 4.5642] [888.07, 966.66, 1770.80]
ε2 = T 2

∞(ε∞) ≈ 2.2090 [0.0405, 0.0640, 0.132] [1.3218, 1.4732, 2.2087] [302.06, 380.19, 557.52]
ε1 = T 1

∞(ε∞) ≈ 651.51 [0.0452, 0.0789, 0.1860] [1.5436, 1.8396, 2.8617] [403.62, 448.68, 651.38]

Table 4.6: 90% confidence interval and median of p-norm distortions for each attacker model. Quantiles
are computed over the union of all different step schemes, i.e. deterministic and randomized,
harmonic and geometric as well as all different number of steps. The radii for p ∈ {1, 2} results
from T -scaling according to (4.3) with ε∞ = 3/255 on naturally trained ResNet50 for ImageNet.
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(a) p = ∞, [0.0118, 2.2528, 722.15]
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(b) p = 2, [0.0543, 1.4561, 418.49]
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(c) p = 1, [0.0749, 1.4192, 353.64]

Figure 4.8: Image of an oxcart (label 690) from the ImageNet validation data set perturbed by Algorithm 4
with 16 deterministic harmonically decaying steps and bounded by different p-norms according
to the T -scaled constraint ε∞ = 3/255. Distortions are denoted in the format [∥x− ˜︁x∥∞, ∥x−˜︁x∥2, ∥x− ˜︁x∥1].

4.6. But, apart form the ∞-norm distortions ∥x− ˜︁x∥∞, they remain comfortably within a magnitude of the
T -scaled values.

Despite the significant discrepancy in the ∞-norm distortion, most images still look almost indistinguishable
from the clean sample or, at least, they do not exhibit obvious perturbation artefacts as can be seen in the
instance presented in Figure 4.8. Hence, our similarity standards (a) or (b) are generally satisfied as with
the original radius ε∞ = 3/255.

Consequently, not only the CEL and the top-1 or top-5 accuracy are comparable, but also most distortions
and the visual similarity are preserved to large extends by both norm transformation functions. This only
partially confirms the initial hypothesis since the T -scaling for nested p-norm balls delivered unexpectedly
good and similar results to the T -scaling that homogenizes the ball volumes. Summarizing our analysis
from above, we formulate our second numerical contribution.

Contribution 4.2 (p-Norm Rescaling). The proposed T - and T -scaling functions from (4.3) and (4.4) provide
a starting point to scale the perturbation radii on p-norm bounded adversarial attacks for different values of
p ∈ {1, 2,∞} in order to equalize attack strengths and keep visual distortions comparable. Depending on the
performance metric, one may be more appropriate than the other, but both give a reasonable estimate.
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4.3 Approximate Solutions in Danskin’s Theorem

This section tries to bridge the gap that we sketched in Section 3.1 between the non-existent theoretical
guarantees of Danskin’s Theorem (Theorem 3.1) and the empirical success of standard adversarial training
as in Algorithm 2.

4.3.1 Hypothesis and Metrics

Concretely, we join [80] in asking the question why adversarial training works in practice, i.e. increases
adversarial robustness in (E-RO). Theoretical explanations purely based on Danskin’s Theorem falter due to
multiple violations of its assumptions which can be catastrophic, c.f. Example 3.3. We hypothesize that
the model parameter gradient of the CEL ∇θL

CE(F (θ, x), c) is correlated enough between approximate
solutions and the (possibly existent) exact solution(s) of problem (ADV-UNT) to yield sufficiently precise
stochastic gradients for the adversarial training scheme in Algorithm 2 to decrease the CEL. We plan to
test our hypothesis by measuring the angles between aforementioned gradients for adversarial examples of
different strengths. By the observations leading to Contribution 4.1, we consider the 16 step gradient attack
in Algorithm 4 with deterministic, harmonically decreasing step scheme to be a reasonable approximation
of a true solution to (ADV-UNT), if it exists.

4.3.2 Setup and Implementation

The idea to measure the similarity of vectors via some notion of angles has been applied before: [52]
uses the angle between the input gradients of the respective loss ∇xL(F (θ, x), c) to explain transferability
of adversarial examples between DNNs, [89] compares different perturbations with it and [2] measures
the linearity of loss landscapes via the gradient alignment score (GAS). The GAS is given by the average
cosine similarity between input gradients of random images in a shared neighbourhood. In contrast, we
compute the cosine similarity and angles between the model parameter gradients of the loss ∇θL(F (θ, x), c)
in different adversarial examples according to Algorithm 5 to compare the parameter learning directions
they contribute to the update ge in adversarial training via Algorithm 2.

The presented results again originate from seed = 42 and are validated on the alternative seed = 0.
As previously, we use the sample sizes from Table 4.1 and the adversarial radii from Table 4.2. In fact, we
focus on the ImageNet validation data set and perturbations with ε∞ ∈ {3/255, 6/255}.

4.3.3 Results and Interpretation

As before, we will only present a selection of the metrics that we collected. Since the deterministic,
harmonically decaying step scheme was the strongest, cf. Contribution 4.1, its perturbation is our best
approximation to being optimal for (ADV-UNT). Hence, we will mainly focus our analysis on this setting.
Either way, the results did not differ significantly between the step lengths and randomizations. Generally
speaking, the geometric and randomized schemes yield slightly higher cosine similarities, i.e. smaller angles,
between the model parameter gradients of the CEL in the adversarial examples. Similarly, the mean and
median angles and cosine similarities never deviate to a degree that would change our interpretation of the
results, cf. Figure 4.11.
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Algorithm 5 − Similarity

Input: pairs (xi, ci), (xj , cj) ∈ X × C, parameterized soft classifier F (θ, ·) : X → P

Output: cosine similarity cos_sim(i, j), angle in radians rad_angle(i, j) and angle in degrees deg_angle(i, j)
between ∇θL

CE(F (θ, xi), ci) and ∇θL
CE(F (θ, xj), cj)

1: # compute model parameter gradients
2: gi := ∇θL

CE(F (θ, xi), ci)
3: gj := ∇θL

CE(F (θ, xj), cj)
4: # calculate cosine similarity
5: cos_sim(i, j) :=

⟨gi,gj⟩
∥gi∥2∥gj∥2

6: # transform to radian
7: rad_angle(i, j) := arccos(cos_sim(i, j))
8: # transform to degrees
9: deg_angle(i, j) := 180

π · rad_angle(i, j)

Figure 4.9 shows the median cosine similarities and angles between the gradients for different defenses. We
notice that the gradient-free attacks correlate with each other and the clean sample, but not with the images
attacked by first-order adversaries. Within them, a similar number of steps increases the similarity, which is
reasonable as the gradient ascent scheme is more likely to stop in positions close to each other. Interestingly,
even a single-step FGSM or two-step PGD perturbations produce samples with model gradients that, on
average, point in a direction that is noticeably related to the one of the 16 step attack. In fact, looking at
Figure 4.11, we see that often a single-step FGSM attack still offers valuable information during training
about the model parameter gradient of the CEL of stronger attacks and rarely points in an opposing direction
on the defended DNNs, i.e. generally encloses acute angles in (c), (d), (e) and (f). Small differences to the
completely orthogonal case with cosine similarity of zero and 90° angle as in the naturally trained cases (a)
and (b) can appear negligible, but [52] found deviations of similar size to contain sufficient information to
compute transferred attacks.

When the adversarial radius increases, this information gain of weak attacks seems to decrease, as can be
seen when comparing the left and right side of Figure 4.11. Similarly, relating Figure 4.9 and 4.10, the
effect seems to be stronger for smaller radii ε∞. Intuitively, when the attacks access a larger neighbourhood
to exploit, it highlights the shortcomings of weak adversaries like FGSM which effectively approximates the
loss linearly and maximizes this linear approximation on boundary of the box-constraint. This becomes
problematic for larger radii where the function x ↦→ ∇θL

CE(F (θ, x), c) has more space to change on the
perturbation set, which means that the approximation becomes imprecise and adversarial samples of stronger
attacks differ significantly.

Throughout the training, the angles between gradients ∇θL
CE(F (θ, x), c) from weak and strong attacks

shrink drastically: The influence of the MadryLab and LocusLab defenses is clearly visible in Figures 4.9
and 4.10 as well as in Figure 4.11 when comparing (a) and (b) with (c), (d), (e) and (f), respectively.
Consequently, over the course of adversarial training, the benefit of computing strong attacks declines. This
suggests a procedure in more adversarial steps are computed in the beginning of Algorithm 2 and less steps
as soon as the gradient similarities increase. Nevertheless, training with a weak FGSM adversary should also
yield sufficiently good model parameter gradients for the training procedure to enter the phase of highly
correlated gradients, as R-FGSM training proved successful in the LocusLab defense [95].
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(d) MadryLab training [23], angle in degrees
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(e) LocusLab training [95], cosine similarity
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(f) LocusLab training [95], angle in degrees

Figure 4.9: Medians of cosine-similarity (left) and angle in degrees (right) between∇θL
CE(F (θ, x+ δ), c) in

the adversarial examples of Algorithm 4. Heatmaps computed on ImageNet with perturbation
radius ε∞ = 3/255 and deterministic harmonic step size.

63



cle
an

ga
uss un

if
bo

un
d 1 2 4 8 16

attack

clean

gauss

unif

bound

1

2

4

8

16

at
ta

ck

1.0 0.76 0.71 0.95 0.16 0.06 0.03 0.02 0.02

0.76 1.0 0.82 0.75 0.22 0.05 0.01 0.01 0.03

0.71 0.82 1.0 0.7 0.23 0.04 0.01 0.03 0.02

0.95 0.75 0.7 1.0 0.17 0.07 0.02 0.02 0.02

0.16 0.22 0.23 0.17 1.0 0.19 0.15 0.1 0.12

0.06 0.05 0.04 0.07 0.19 1.0 0.35 0.19 0.18

0.03 0.01 0.01 0.02 0.15 0.35 1.0 0.39 0.33

0.02 0.01 0.03 0.02 0.1 0.19 0.39 1.0 0.46

0.02 0.03 0.02 0.02 0.12 0.18 0.33 0.46 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Natural training, cosine similarity
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(b) Natural training, angle in degrees
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(c) MadryLab training [23], cosine similarity

cle
an

ga
uss un

if
bo

un
d 1 2 4 8 16

attack

clean

gauss

unif

bound

1

2

4

8

16

at
ta

ck

0.0 6.5 7.37 9.5 21.4522.0622.5622.8423.01

6.5 0.0 7.02 10.8 21.1821.8622.3422.6522.89

7.37 7.02 0.0 11.1921.3222.5523.1823.0423.15

9.5 10.8 11.19 0.0 23.1123.9524.3824.5424.81

21.4521.1821.3223.11 0.0 4.87 6.16 6.81 7.15

22.0621.8622.5523.95 4.87 0.0 3.48 4.23 4.67

22.5622.3423.1824.38 6.16 3.48 0.0 2.71 3.11

22.8422.6523.0424.54 6.81 4.23 2.71 0.0 2.16

23.0122.8923.1524.81 7.15 4.67 3.11 2.16 0.0
0

10

20

30

40

50

60

70

80

90

(d) MadryLab training [23], angle in degrees
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(e) LocusLab training [95], cosine similarity
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(f) LocusLab training [95], angle in degrees

Figure 4.10: Medians of cosine-similarity (left) and angle in degrees (right) between∇θL
CE(F (θ, x+δ), c) in

the adversarial examples of Algorithm 4. Heatmaps computed on ImageNet with perturbation
radius ε∞ = 6/255 and deterministic harmonic step size.
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(a) Natural training, ε∞ = 3/255
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(b) Natural training, ε∞ = 6/255
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(c) MadryLab training [23], ε∞ = 3/255
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(d) MadryLab training [23], ε∞ = 6/255
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(e) LocusLab training [95], ε∞ = 3/255
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(f) LocusLab training [95], ε∞ = 6/255

Figure 4.11: Histograms of angles in degrees between model parameter gradients of CEL ∇θL
CE(F (θ, x+

δ), c) after one versus 16 gradient ascent steps on ImageNet with perturbation radius ε∞ =
3/255 (left) and ε∞ = 6/255 (right) and deterministic harmonic step size in Algorithm 4.

To recapitulate, we saw regarding the question from [80] that Danskin’s Theorem is not as sensitive to
violations of its assumptions in the context of the empirical robust training problem (E-RO) as it is in Example
3.3. The measured model gradient angles support our hypothesis and extend it by the observation that
these angles decrease through adversarial training. This suggests that weaker adversaries are needed in
late iterations of adversarial training, which can be a starting point to answer the question raised in [95]
about the necessity of strong adversaries during training. We deduce the following contribution.
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Contribution 4.3 (Danskin’s Theorem in Practice). Adversarial training has proven empirically successful
even though it lacks the theoretical justification of Danskin’s Theorem (Theorem 3.1). We can explain this by
the similarity between model parameter gradients ∇θL

CE(F (θ, x+ δ), c) of points in the perturbation set that
resulted from differently strong attacks. The angles seem to shrink during adversarial training, making weak
adversaries increasingly valuable. This motivates a training scheme with more gradient steps in the beginning
and less towards the end, which remains to be experimented with.

4.4 BOBYQA Black-Box Attacks Against Modern Defenses

Our final contribution aims to update the empirical study of targeted BOBYQA black-box attacks in [92, 93]
to state-of-the-art defenses. To this end, we attack the smoothed classifier from Hadi Salman [78] and the
R-FGSM trained DNN from LocusLab [95] besides the naturally trained and adversarially trained nets from
[23] that have already been tested in [93].

4.4.1 Question and Metrics

Concretely, we want to find out how the targeted BOBYQA black-box attack performs against modern
state-of-the-art randomized adversarial training and randomized smoothing. We chooseMquery = 1 for the
query-time Gaussian smoothing and stay consistent with the default settings recommended in the GitHub
repository of [93] regarding the parameters in the optimization and lifting process, c.f. Section 2.2.2.
The attack success is quantified by the CDFs of the adversarial success rate w.r.t. the number of function
evaluations of F (θ, ·) that have been executed.

4.4.2 Setup and Implementation

We forked the code from the GitHub repository to [93] before merely changing it and the underlying
robustness package [23] to accommodate for the two additional DNNs that we test. For comparability, we
also use the same seed = 1216 and randomized procedure to pick samples x and target labels ˜︁c uniformly
distributed from the CIFAR-10 test set. Table 4.7 presents the attack radii ε∞ and the corresponding number
of misclassification pairs (x,˜︁c) ∈ X × C that we attempt to create. Table 4.8 lists the radii that the models
were trained to be robust against. For all defenses, we chose the classifier with the most appropriate training
εp to withstand the attack.

DNN Attack ε∞
Defense Train on p Architecture 3/255 6/255 9/255

Natural [23] Clean ResNet50 500 500 500
MadryLab [23] Multi-step 2,∞ ResNet50 500 500 500
LocusLab [95] R-FGSM ∞ PreAct ResNet18 500 500 500

HadiSalman [78] Rand. Smoth. 2 ResNet110 500 500 500

Table 4.7: Number of tested pairs of sample and random target label from the CIFAR-10 test data set for
each attack configuration of the experiments regarding BOBYQA black-box attacks.

66



DNN Attack ε∞
Defense Train on p Architecture 3/255 6/255 9/255

MadryLab [23] Multi-step ∞ ResNet50 4/255 8/255 8/255
LocusLab [95] R-FGSM ∞ ResNet110 8/255 8/255 8/255

HadiSalman [78] Rand. Smoth. 2 PreAct ResNet18 0.375 0.625 1.0

Table 4.8: Training εp regarding p from the ’p’-column for each attack of the BOBYQA black-box attacks.
For HadiSalman [78]: Most robust smoothed models for 2-norm bounded PGD attacks with
ε2 = T 2

∞(ε∞) were chosen. Entries show the radius closest to ε2 that was tested for robustness.

4.4.3 Results and Interpretation

First of all, Figure 4.12 emphasizes the strong influence of the attack radius ε∞ and all adversarial defenses:
Each increment of 3/255 raises the overall attack success rate after at most 3, 000 queries and allows
successful perturbations to be found quicker for the natural and adversarially trained DNNs. The smoothed
classifier seems to react less sensitive to changes in the radius. All robustification methods mitigate BOBYQA’s
success well below 5%, 10% and 15% for ε∞ ∈ {3/255, 6/255, 9/255}, respectively. This holds, despite the
latter radius allowing for prominent perturbation artefacts similar to Figure 2.6 and therefore meeting
neither criterion (a) nor (b) from our intuitive definition of adversarial examples in the introduction.
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(a) ε∞ = 3/255 ≈ 0.012
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(c) ε∞ = 9/255 ≈ 0.035

Figure 4.12: CDF of the number of queries BOBYQA needs to successfully perform targeted attacks for
various attack radii ε∞ on 500 pairs of CIFAR-10 test images and target labels. Defenses
include natural PyTorch pretraining (blue), MadryLab [23] PGD adversarial training (green),
LocusLab [95] R-FGSM training (red) and HadiSalman [78] randomized smoothing (orange).

Taking into account that the attacks take place in a black-box setting with random target labels, this success
rate is still remarkable and alarming, especially the early jump of the smoothed DNN’s CDF. Here, already
dozens of queries suffice to misguide the classifier. Ultimately, neither of the more recently published
defenses outperforms the PGD-based MadryLab defense. We summarize our findings below.

Contribution 4.4 (BOBYQA-Attacks Against Modern Defenses). Targeted BOBYQA black-box attacks [92, 93]
retain moderate success against state-of-the-art implementations of adversarial training [95] and randomized
smoothing [78]. This performance and its unique model-based, rather than transferred, approach to black-box
attacks justifies it to be added to and remain in the portfolio of validation attacks for adversarial defenses.

A similar suggestion is made in [3] and [89] about zeroth-order adversarial attacks as a whole.
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5 Conclusion and Outlook

5.1 Conclusion

To summarize, we started by formulating the adversarial training problem as a distributionally robust
optimization problem (DRO). By considering specific ambiguity sets, we motivated standard adversarial
training and randomized smoothing as attempt to approximately solve the robust (RO) and the stochastic
robustification problem (SO), respectively. In the case of gradient-based adversarial training, we established
that Danskin’s Theorem (Theorem 3.1) does not apply and that this completely invalidates its claim in
Example 3.3. However, we provided a possible explanation as to why this approach remains to work
in practice, in part answering the question from [80] why adversarial training increases robustness, cf.
Contribution 4.3. As a consequence, we expect declining adversarial strength during training to be efficient
and give a possible answer to the question raised in [95] about when strong adversaries are necessary for
training and when weak ones suffice.

Proposition 1.5 showed the NP-hardness of determining p-norm robustness of a ReLU-based DNNs. Especially,
finding an adversarial example for sure, if it exists, is NP-hard. Despite this fact and many advancements
in adversarial defenses, DNN remain susceptible to adversarial attacks at query time. Beyond that, there
remains a shortage of certified defenses and certification procedures scalable to real-world-sized DNNs.
Hence, lower bounds on the robustness radius remain hard to obtain.

Therefore, determining upper bounds on the robustness, by finding strong adversarial examples close to
clean data points, remains crucial. The pool of such test attacks needs to be as diverse as the landscape of
competitive attacks itself with regards to attack and defense taxonomy as well as optimization strategy. Our
numerical results demonstrated the potency of the BOBYQA-based attack against state-of-the-art adversarial
training and randomized smoothing. In conjunction with the results from [92] and [93], this clearly shows
the competitiveness of this attack. Furthermore, due to its unique zeroth-order model-based black-box
nature, it is an outlier in the aforementioned landscape of attacks, considering that most attacks are of
first-order and take place in a white-box setting before potentially being transferred to the target DNN. We
therefore, for the time being, advocate for BOBYQA-based attacks being investigated more thoroughly and
being part of the evaluation set of adversarial defenses, cf. Contribution 4.4.

Moreover, we proposed two PGD attacks with harmonically and geometrically decaying step lengths.
The former enabled finding adversarial examples with unprecedented zero true-label-confidences, cf.
Contribution 4.1. Furthermore, we defined p-norm rescaling functions that make differently bounded
adversaries more comparable when choosing model parameters, pretrained models or interpreting results
of different origins. They follow the idea of nested level sets and equal Lebesgue volume, respectively. Both
showed promising results on ImageNet when measuring CEL as well as top-1 and top-5 accuracy against
various first-order adversaries and under different noises, cf. Contribution 4.2.
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5.2 Outlook

Regarding this work in particular, there are several open questions. The most pressing ones are listed below.

• Why is there such a small performance difference between constant step sizes and our proposed step
schemes from Algorithm 4 despite their vastly different nature? Is there further potential to increase
the threat strength by tuning these parameters? Do our proposed harmonic step lengths also produce
zero true-label-confidences for other p-norms and data sets as in Contribution 4.1? Is out hypothesis
about the reason of the absence of the phenomenon for the other two step schemes correct?

• Do our proposed p-norm rescaling functions from Contribution 4.2 also induce a similarly strong
adversarial attacks outside the considered test cases and data sets?

• How does our suggestion on adversarial training from Contribution 4.3 perform?

• On the one hand, how does the trade-off between the time to classify and the defensive gain develop
when increasing the number of samples Mquery during evaluation of a smoothed classifier in the
context of BOBYQA attacks? On the other hand how does the offensive gain behave when increasing
the number d of BOBYQA interpolation points from n+ 1 to 2n+ 1 like [39] to be reasonable for a
quadratic interpolation? Could this further strengthen our suggestion in Contribution 4.4 to recognize
BOBYQA attacks as a threat to modern defenses?

More broadly, in the view of the vitality of this research field, there are many directions for future work,
both on the attacking and on the defending side.

• New dimension- and query-reduction techniques, that identify the most influential pixels for the attack
to focus on, are desirable to speed up attacks and, by extension, also adversarial training. To this
end, [92] suggests to apply methods from compressed sensing and [6] uses principle component
analysis (PCA). However, there are numerous other approaches to find such pixels. For example, in
a white-box setting feature, importance can be measured by the mean decrease in impurity (MDI)
score [66], leveraging permutations and random forests, or several confidence gain metrics like simple
confidence gain (SCG) and concise confidence gain (CCG) [79]. In a black-box setting, there is a lack
of query-efficient feature selection techniques beyond the ones presented in [15, 92, 93].

• It is worthwhile investigating the effect of temperature at training on the robustness of the network,
possibly revisiting and combining defensive distillation [61, 62, 63, 9] with more recent defenses.

• There are signs that pretraining and semi-supervised learning improve robustness and complement
well with other defenses like randomized smoothing [103, 102, 91, 11]. In general, evaluating
combinations of state-of-the-art defense techniques remains a continuous task as the field progresses.

• A recent results [27] draws a strong connection between corruption robustness and adversarial
robustness, which goes hand in hand with the success of randomized smoothing, and calls for a deeper
collaboration between both fields.

• The notion of p-norm robustness is mathematically convenient but questionable for capturing the
essence of human visual perception [81] since, for instance, slight rotations and flips cause large εp
but pose no challenge to humans [89], showing that small p-norm distances are neither necessary
nor sufficient for visual similarity [81]. Therefore, exploring constraints in terms of more elaborate
metrics, like Voronoi Cells [36] and PASS [75], leveraging the SSIM [26], seems like an exciting
research direction to pursue.
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