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Abstract

Despite its importance, accessing information in storage systems or raw data is challenging or
impossible for most people due to the sheer amount and heterogeneity of data as well as the
overheads and complexities of existing systems. In this thesis, we propose several approaches to
improve on that and therefore democratize information access.

Data-driven and AI based approaches make it possible to provide the necessary information access
for many tasks at scale. Unfortunately, most existing approaches can only be built and used
by IT experts and data scientists, yet the current demand for data scientists cannot be met by
far. Furthermore, their application is expensive. To counter this, approaches with low overhead,
i.e., without the need for large amounts of training data, manually annotating or extracting
information, and extensive computation are needed. However, such systems still need to adapt
to special terminology of different domains, and the individual information needs of the users.
Moreover, they should be usable without extensive training; we thus aim to create ready-to-use
systems that provide intuitive or familiar ways for interaction, e.g., chatbot-like natural language
input or graphical user interfaces.

In this thesis, we propose a number of contributions to three important subfields of data explo-
ration and processing: Natural Language Interfaces for Data Access & Manipulation, Personalized
Summarizations of Text Collections, and Information Extraction & Integration. These approaches
allow data scientists, domain experts and end users to access and manipulate information in a
quick and easy way.

First, we propose two natural language interfaces for data access and manipulation. Natural
language is a useful alternative interface for relational databases, since it allows users to formulate
complex questions without requiring knowledge of SQL. We propose an approach based on weak
supervision that augments existing deep learning techniques in order to improve the performance
of models for natural language to SQL translation.
Moreover, we apply the idea to build a training pipeline for conversational agents (i.e., chatbot-like
systems allowing to interact with a database and perform actions like ticket booking). The pipeline
uses weak supervision to generate the training data automatically from a relational database and
its set of defined transactions. Our approach is data-aware, i.e., it leverages the data characteristics
of the DB at runtime to optimize the dialogue flow and reduce necessary interactions.
Additionally, we complement this research by presenting a meta-study on the reproducibility and
availability of natural language interfaces for databases (NLIDBs) for real-world applications, and
a benchmark to evaluate the linguistic robustness of NLIDBs.

Second, we work on personalized summarization and its usage for data exploration. The central
idea is to produce summaries that exactly cover the current information need of the users. By
creating multiple summaries or shifting the focus during the interactive creation process, these
summaries can be used to explore the contents of unknown text collections. We propose an
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approach to create such personalized summaries at interactive speed; this is achieved by carefully
sampling from the inputs.
As part of our research on multi-document summary, we noticed that there is a lack of diverse
evaluation corpora for this task. We therefore present a framework that can be used to automatically
create new summarization corpora, and apply and validate it.

Third, we provide ways to democratize information extraction and integration. This becomes
relevant when data is scattered across different sources and there is no tabular representation that
already contains all information needed. Therefore, it might be necessary to integrate different
structured sources, or to even extract the required information pieces from text collections first
and then to organize them. To integrate existing structured data sources, we present and evaluate
a novel end-to-end approach for schema matching based on neural embeddings.
Finally, we tackle the automatic creation of tables from text for situations where no suitable
structured source to answer an information need is available. Our proposed approach can execute
SQL-like queries on text collections in an ad-hoc manner, both to directly extract facts from text
documents, and to produce aggregated tables stating information that is not explicitly mentioned
in the documents. Our approach works by generalizing user feedback and therefore does not need
domain-specific resources for the domain adaption. It runs at interactive speed even on commodity
hardware.

Overall, our approaches can provide a quality level compared to state-of-the-art approaches, but
often at a fraction of the associated costs. In other fields like the table extractions, we even provide
functionality that is—to our knowledge—not covered by any generic tooling available to end users.
There are still many interesting challenges to solve, and the recent rise of large language models
has shifted what seems possible with regard to dealing with human language once more. Yet, we
hope that our contributions provide a useful step towards democratization of information access.
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Zusammenfassung

Trotz ihrer Bedeutung ist der Zugang zu Informationen in Speichersystemen oder Rohdaten für die
meisten Menschen aufgrund der schieren Menge und Heterogenität der Daten, sowie des Overheads
und der Komplexität der bestehenden Systeme schwierig oder unmöglich. In dieser Arbeit schlagen
wir mehrere Ansätze zur Verbesserung dieser Situation und damit zur Demokratisierung des
Informationszugangs vor.

Datengetriebene und KI-basierte Ansätze machen es möglich, den notwendigen Informationszugang
für viele Aufgaben skalierbar zur Verfügung zu stellen. Leider können die meisten existierenden
Ansätze nur von IT-Expert*innen und Data Scientists erstellt und genutzt werden, wobei es je-
doch längst nicht genug Data Scientists gibt. Zudem ist der Einsatz teuer. Um dem abzuhelfen,
werden Ansätze mit geringem Overhead benötigt, d. h. ohne die Notwendigkeit großer Mengen
von Trainingsdaten, manueller Annotation oder Extraktion von Informationen und umfangreicher
Berechnungen. Solche Systeme müssen sich jedoch an die spezielle Terminologie verschiedener
Disziplinen und den individuellen Informationsbedarf der Nutzer anpassen. Darüber hinaus soll-
ten sie ohne umfangreiches Training nutzbar sein; wir wollen daher direkt nutzbare Systeme
schaffen, die intuitive oder vertraute Interaktionsmöglichkeiten bieten, z. B. Chatbot-ähnliche
natürlichsprachliche Eingaben oder grafische Benutzeroberflächen.

In dieser Arbeit schlagen wir eine Reihe von Beiträgen zu drei wichtigen Teilbereichen der Da-
tenexploration und -verarbeitung vor: Natürlichsprachliche Schnittstellen für Datenzugriff und
-manipulation, personalisierte Zusammenfassungen von Textsammlungen und Informationsextrak-
tion und -integration. Diese Ansätze ermöglichen es Data Scientists, Fachleuten und Endanwen-
der*innen, schnell und einfach auf Informationen zuzugreifen und sie zu bearbeiten.

Als Erstes schlagen wir zwei natürlichsprachliche Schnittstellen für den Datenzugriff und die Da-
tenmanipulation vor. Natürliche Sprache ist eine nützliche alternative Schnittstelle für relationale
Datenbanken, da sie es den Anwender*innen ermöglicht, komplexe Fragen zu formulieren, ohne
dass sie Kenntnisse über SQL benötigen. Wir schlagen einen auf weak supervision basierenden
Ansatz vor, der bestehende Deep-Learning-Techniken augmentiert, um die Leistung von Modellen
für die Übersetzung von natürlicher Sprache zu SQL zu verbessern.
Außerdem wenden wir die Idee an, um eine Trainingspipeline für conversational agents (d.h.
Chatbot-ähnliche Systeme, die es ermöglichen, mit einer Datenbank zu interagieren und Aktionen
wie Ticketbuchungen durchzuführen) zu konstruieren. Die Pipeline nutzt weak supervision, um
die Trainingsdaten automatisch aus einer relationalen Datenbank und einer Reihe von definierten
Transaktionen zu generieren. Unser Ansatz ist data-aware, d.h. er nutzt die Dateneigenschaften
der DB zur Laufzeit, um den Dialogfluss zu optimieren und die notwendigen Interaktionen zu
reduzieren.
Darüber hinaus ergänzen wir diese Forschung, indem wir eine Metastudie über die Reproduzierbar-
keit und Verfügbarkeit von natürlichsprachlichen Interfaces für Datenbanken (NLIDBs) für reale
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Anwendungen sowie einen Benchmark zur Bewertung der linguistischen Robustheit von NLIDBs
vorstellen.

Als Zweites befassen wir uns mit personalisierten Zusammenfassungen und deren Nutzung für
die Datenexploration. Die zentrale Idee ist es, Zusammenfassungen zu erstellen, die genau den
aktuellen Informationsbedarf der Nutzenden abdecken. Durch die Generierung mehrerer Zusam-
menfassungen oder die Verschiebung des Fokus während des interaktiven Erstellungsprozesses
können diese Zusammenfassungen zur Exploration des Inhalts unbekannter Textsammlungen ver-
wendet werden. Wir schlagen einen Ansatz vor, um solche personalisierten Zusammenfassungen in
interaktiver Geschwindigkeit zu erstellen; dies wird durch sorgfältiges Sampeln aus den Eingaben
erreicht.
Im Rahmen unserer Forschung zu Multi-Dokument-Zusammenfassung haben wir einen Mangel an
diversen Evaluierungskorpora für diese Aufgabe ausgemacht. Wir stellen daher ein Framework
vor, das zur automatischen Erstellung neuer Zusammenfassungskorpora verwendet werden kann,
wenden es an und validieren es.

Als Drittes stellen wir Möglichkeiten zur Demokratisierung der Informationsextraktion und -inte-
gration vor. Dies wird dann relevant, wenn die Daten über verschiedene Quellen verstreut sind und
es keine tabellarische Darstellung gibt, die bereits alle benötigten Informationen enthält. Daher
kann es notwendig sein, verschiedene strukturierte Quellen zu integrieren oder sogar die benötig-
ten Informationen zunächst aus Textsammlungen zu extrahieren und sie dann zu organisieren.
Um bestehende strukturierte Datenquellen zu integrieren, präsentieren und evaluieren wir einen
neuartigen Ende-zu-Ende-Ansatz für Schema-Matching, der auf neuronalen Embeddings basiert.
Abschließend befassen wir uns mit der automatischen Erstellung von Tabellen aus Text für Situa-
tionen, in denen keine geeignete strukturierte Quelle zur Beantwortung eines Informationsbedarfs
verfügbar ist. Der von uns vorgeschlagene Ansatz kann SQL-ähnliche Abfragen auf Textsammlungen
ad hoc ausführen – sowohl um Fakten direkt aus Textdokumenten zu extrahieren, als auch um
durch Filterung, Aggregation und Gruppierung Tabellen mit Informationen zu erstellen, die nicht
explizit in den Dokumenten erwähnt werden. Unser Ansatz basiert auf der Generalisierung von
Benutzerfeedback und benötigt daher keine domänenspezifischen Ressourcen für die Anpassung an
die jeweilige Fachsprache. Er läuft in interaktiver Geschwindigkeit sogar auf Standard-Hardware.

Zusammengefasst können unsere Ansätze ein Qualitätsniveau bieten, das mit State-of-the-art-
Ansätzen vergleichbar ist, aber das in vielen Fällen zu einem Bruchteil der damit verbundenen
Kosten. In anderen Bereichen, wie z.B. bei der Extraktion von Tabellen, bieten wir sogar Funktio-
nen, die – unseres Wissens nach – bisher von keinem generischen Tool für Endbenutzer*innen
bereitgestellt werden. Es verbleiben noch viele interessante Herausforderungen und die kürzlichen
Fortschritte bei großen Sprachmodellen (LLMs) hat die Grenzen des Möglichen im Umgang mit
menschlicher Sprache noch einmal verschoben. Dennoch hoffen wir, dass unsere Beiträge einen
nützlichen Schritt zur Demokratisierung des Informationszugangs darstellen.
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1. Introduction

1.1. The Need for Democratization

Getting (the right) information from large amounts of data is important in many fields, from
research over healthcare and public service to journalism: Researchers have to find relevant existing
work. City administrations want to learn about the needs of their citizens from large numbers of
complaints. Fiscal authorities try to uncover tax evasion and money laundering. Journalists need
facts and statistics to back their articles. And healthcare professionals interpret test results and
patients files to learn about their patients and how to help them.

Computers with their ability to quickly store and process enormous amounts of data, and the
progresses in artificial intelligence (AI) (e.g., pattern detection, automatic translation, language
modelling and much more) offer great new opportunities for that. Data-driven AI methods and
learned models are therefore getting more and more important to solve these issues at scale [e.g.,
Bar+15; Mor+19; Sko+19]. They can help to take decisions (e.g., which material to use, which
articles to believe in, which paper to read, or which company to check more thoroughly) in an
informed and therefore advantageous way.

Unfortunately, those approaches are often associated with high effort and overhead, and can only
be used by AI experts. A wide application, however, can only be reached by a democratization that
makes these approaches usable for more people. That importance is underlined by the growing
demand for data scientists that currently cannot be met by far [Bur23; DP22; Wor23], slowing
down scientific, industrial and societal development and progress.

One central reason for this high demand lies in the high manual effort in finding and preparing the
right data. Different studies say that data scientists spend up to 80% of their time on preparation
tasks like data cleaning, organizing and annotating it manually [Ana21; Pre16]. Being able to
reduce this amount, e.g., through approaches that require less annotated data, or automatically
extract relevant information from raw data, would allow them to concentrate more on building
models, analyzing the data itself, and creating value.

Another reason preventing the wide application of these approaches are the overheads of the
approaches itself, e.g., for training them, running predictions on thousands of documents, or
waiting for the results. This makes analysis and exploration of new data expensive—or might
completely prevent it, if the users do not have access to the necessary computing power, but cannot
upload their data, e.g., due to legal or privacy reasons, to an external provider either. Smaller
models and approximation can help here to get the necessary answers faster and at much lower
costs.

Finally, even with reduced efforts and costs to build and run AI-based approaches, there will most
likely not be enough experts available such that every process, company and institution can profit
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from the advantages. One can only expect a wide adaptation if these tools can directly be used
by those people currently doing the job manually (e.g., handling insurance claims). Therefore,
these systems need to guide the users and require as little of complicated actions from them as
possible—while that level of automatization has to be reached with low overhead again.

To summarize, systems with low overhead and complexity (both with regard to ease of use and
computation) can lead to a democratization that allows (data) scientists, domain experts and end
users to access information, and explore and analyze data without special knowledge, skills and
complicated training. In this thesis, we present contributions to tackle these directions, as we will
discuss below.

1.2. Challenges

This thesis aims to show how the rapid advances in artificial intelligence, more precisely in the
field of text and information processing, can be applied in a way that benefits as many as possible.
To do so, and make information that is present “somewhere” really available to a user, this thesis
tries to overcome a series of challenges:

Dealing with large amounts of data: In many cases, large amounts of data, e.g., text documents,
need to be processed to distill the information a user needs. Yet, users can often only read or
manually process a small fraction of them in a reasonable time. As a result, they have to work
with incomplete or suboptimal information. Moreover, for exploratory use-cases, the time spent
processing irrelevant sources has to be considered as “wasted”, limiting the possible scope of
explorations. A good system should therefore automatize time-consuming steps, reducing the
overall time to explore data and access information drastically.

Interactive exploration of data is needed: To explore data and get an overview of it, users need
both useful and quick responses. As an example, many people will more probably issue a new
adapted search query than looking at the second page of Google search results when the first ten
results out of millions of possibilities do not match their expectations. Systems need to produce
short and concise results with little information. Since the computer cannot magically “know” what
they mean exactly, interaction and multiple tries have to be possible. Therefore, results have to
be produced in a short timespan, preferably without the need for special or powerful hardware.
Thus, one needs to find ways to guarantee low processing and interaction times, preferably on
commodity hardware.

Dealing with domain-specific language & individual information needs: Human language is
highly ambiguous, context-depending, subjective and, in particular, domain-specific. This can
already be seen inside a field (e.g., the word collection has different meanings in software engineer-
ing and natural language processing) and is even stronger across disciplines. Yet, domain-specific
words like medical terminology are often important and semantically bearing for the tasks applied
to the data, thus, adapting a system to them is crucial. A particular challenge is treating numbers
correctly, since they often offer even less hints on their semantics than words do. Systems for
information access and exploration will only be of use when they can deal with these properties
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of language; they need to bridge between the user’s wording and the terms of existing resources
such that, e.g., technical terms are correctly extracted from input documents, or that the user
can interact with them using their domain-specific language. Involving domain experts for this
adaption is costly and often not feasible. AI approaches can resolve some of the challenges men-
tioned before by automatically processing data and, e.g., applying text extraction—but this again
requires some kind of adaption to the specific use case. Additionally, users might expect a different
granularity of details; things that are considered as the same for one person might need to be
treated as completely different for another. Thus, not only the correct handling of input, but
also a customization of outputs is needed. In short, it would be very hard to build a “one fits all”
solution. To accomplish all this adjustment, AI approaches often require annotated data for training
or fine-tuning, which unfortunately might be difficult and expensive to acquire or might not be
available at all. A good system nevertheless needs to adapt to the user and provide customized
results—without introducing a big overhead to do so.

Heterogeneity of data: The data relevant for an information need might be in an unusable format
(e.g., running text instead of structured tables) for the task at hand, preventing directly computing
or compiling the result representation needed. Therefore, automatic approaches to transfer them
from one format into another might be required. Relevant information might be spread across
sources (like different databases or text files) and those sources might follow different naming
conventions (e.g., schemata of various tables in a data lake). Hence, implicitly or explicitly unifying
these information sources is another challenge. Often, the schema or underlying structure might
be completely unknown to those using it, be it with data lakes for companies or in exploratory
scenarios for end users. Hence, approaches to organize and explore large amounts of heterogeneous
data are needed.

Overwhelmed users: Programming is not a skill that basically everybody is capable of; even
computer science students after their first year of study struggle with holding viable mental models
of the tasks and what they are doing [Ma+07]. A more humorous approach to show how difficult
it can be to give precise instructions that really lead to the expected result, is asking people to write
down the instructions to make a peanut butter and jelly sandwich and show them what happens
when one follows the instructions without using additional knowledge.1 Thus, to democratize
information access, systems need to work without programming or specifying rules, regular
expressions, or complex queries. Instead of requiring the user to guide the computer, computers
have to guide the users, since even with ready-to-use systems, many users are overwhelmed,
both with the question where to find the relevant information and then how to actually access
it. Therefore, one has to create systems that are intuitively to use and only require a minimum
of learning. The more complex a system is, the more training or instructions its usage needs, the
more barriers are introduced and the less it will be adapted by (domain) users.

Overhead and other downsides of existing approaches: Many learned approaches try to solve
both problems that are hard to formalize (e.g., semantic understanding), and those that would
profit from mathematic rigorousness (e.g., aggregation and result computation), end-to-end, hence
one cannot expect even simple summing operations to be correct all the time when depending on
1See, e.g., this video: https://www.youtube.com/watch?v=cDA3_5982h8
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such components. This in particular holds for large language models (LLMs) which are currently
applied to a lot of research areas. They often provide astonishing levels of natural language
understanding (NLU), but are expensive to use (high computation or per-query costs). Enforcing a
domain-adaptation (e.g., through carefully crafted prompts and examples) can be difficult. Often,
parts of the results are not based on the inputs but derived from background knowledge, but there
is a lack of transparency with regard to what answers are based on, and updating the background
knowledge (by retraining) is highly expensive. Finally, it can be hard to detect when good-looking
but wrong results are produced [Ban+23].

1.3. Problems & Solutions

In this thesis, we will show how we overcame these challenges by several contributions to the fields
of Natural Language Interfaces for Data Access & Manipulation, Personalized Summarizations of Text
Collections, and Information Extraction & Integration.

In summary, the methods proposed in this thesis tackle two central facets: First, they try to ensure
that it becomes possible to use automatic processing of data in certain or arbitrary domains at all.
Second, the approaches should put users at the center, be accessible to them and tailored to their
needs. To accomplish this, in this thesis we will propose a series of new approaches united by the
fact that they make the application of the novel technologies possible in the first place through low
effort and low cost—and at the same time try to keep the barriers to actually use them as low as
possible.

It is probably not surprising that the challenges mentioned above cannot be solved for every
kind of information and data at once. We will thus focus on one kind of information and query
representation. While formalization, e.g., through mathematical expressions, play a central role for
some subfields of knowledge representation, in many other areas text or words are used extensively.
In this thesis, we will therefore concentrate on several fields that are related to human language.
Such textual knowledge can both exist in structured form (e.g., tables and databases), and highly
unstructured (as running text). For both of these kinds, in this thesis we will present approaches
to address the challenges mentioned above.

We thus need to present ways to deal with large amounts of data, in forms of big databases and
data lakes, and as written text. The systems we propose need to provide the users with ways
to mentally handle the amount of diverse information contained in that data. Additionally, they
need to scale well from a computational perspective, to deliver the answers to information needs
in time—often in only minutes or even seconds. Our approaches should work out of the box on
domains not seen or known before. They need to correctly deal with domain-specific terminology
(e.g., column names or entities to be extracted) and should adapt to the users’ formulations and
not vice versa. All systems proposed in this thesis will have a low overhead, reaching this domain
adaption without the need to involve domain experts and by requiring substantially lower amounts
of feedback or annotations than most state-of-the-art systems. While this thesis is not a one in
the area of human computer interaction, we will nevertheless put a focus on building systems
that can be used by end users, e.g., through providing graphical or natural language interfaces.
Finally, we will explore how existing resources like language models (LMs) can be leveraged to
profit from their rapid advancements for, e.g., NLU without introducing the downsides of many
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current end-to-end natural language processing (NLP) approaches (e.g., hallucination, prediction
instead of computation for mathematical tasks).

We will now quickly show how we contribute to democratization in the different fields mentioned
before. For the details, we refer to the following chapters.

Natural Language Interfaces for Data Access & Manipulation: To access structured data or to
even manipulate it, one usually needs knowledge about the structure of the data and must be
proficient in a query language like SQL or SPARQL. Being able to instead interact with the data
using well-known human language would lower the barrier drastically. Natural language interfaces
for databases (NLIDBs) and conversational agents (CAs) allow this. However, the construction of
such systems often involves a high degree of effort and expenses, since example data needs to be
collected and manually annotated. We therefore propose approaches to automatically generate
such training data from considerably smaller amounts of input data (weak supervision) in Chapter
3. We show how this idea can be used to generate both NLIDBs (DBPal, see Section 3.1) and CAs
(CAT, see Section 3.3) with drastically reduced effort and cost, and therefore allow for a wide
application. At the same time, we analyze how the computer can lead users in their interaction
with the data such that they can perform this interaction without knowledge about the structure
of the data. In addition to own approaches, we evaluate the progress of the community to build
real-world systems for that field (see Section 3.2).

Personalized Summarizations of Text Collections: While tabular data at least has a structure
(even if the user might not know it), for running texts often neither the users nor the computer
have any information about the underlying structure and relations. Getting such an overview
manually comes at high costs/effort for large text collections (e.g., the Panama Papers). Thus, aid
by the computer is desirable: automatically generated summaries can be helpful to drastically
reduce the amounts of pages that have to be read to gain insights. Therefore, they can support
experts like journalists, and in general make relevant contents directly accessible to a wider range
of people. Yet, by their nature, summaries are lossy, only a fraction of the information contained in
hundreds of pages can be condensed in a few lines of text. To make sure this subset then covers the
useful information, i.e., the one that is relevant for the information need of the user, we propose an
approach for generating personalized summarizations (Sherlock, see Section 4.1). Our approach
works interactively and without domain or user specific data (which would be hard to gather).
Additionally, we address how such approaches can be evaluated. As part of that, we propose
and apply a framework for automatic acquisition of additional summarization corpora (Fandom
Corpora, see Section 4.2).

Information Extraction & Integration: A textual summarization can be very useful to get an
overview of a text collection and the information contained in it. Yet, in order to answer many
kinds of questions or to assess hypotheses, a more structured kind of summary is needed—like a
tabular representation. The third and last big area of our research therefore deals with providing
such structured information to the users. As a central part to accomplish this, we present an
approach where user and computer together fill a user-defined table from a suitable text collection
in an interactive process (WannaDB, see Section 5.2). To do so, the computer requests feedback
actions from the user and generalizes the information received to fill large parts of the table without
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requiring the users to read the corresponding source texts. Furthermore, we present an approach
to combine existing tables and databases with different schemata and even across languages (see
Section 5.1). Again, the focus here is to make these approaches widely applicable both with regard
to the associated costs and efforts as well as the necessary skills.

1.4. This Thesis

In the following chapter (Chapter 2), we will describe the design principles used, and outline the
usage and the core ideas of our approaches, before covering the details of them in Chapters 3 to 5.
Afterwards, a summary and an outlook follow in Chapter 6. The details and extensive evaluation
results for all approaches discussed in this thesis can be found in Part II, Chapters 7 to 19, where
the publications we created in the last years to advance research in these areas are included in this
thesis.
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2. Approach & Contributions

Figure 2.1.: Overview of the research directions and projects covered in this thesis.

In this chapter, we will give an overview of the directions towards democratization of information
access we propose in this thesis. We will start with an exemplary use-case where all proposed
research directions are used for exploring data and resolving an information need. Afterwards, we
will spotlight the common principles used when building all of our approaches. The remaining
structure of the chapter will follow the three directions previously introduced in Section 1.3, namely
Natural Language Interfaces for Data Access & Manipulation, Personalized Summarizations of Text
Collections, and Information Extraction & Integration. For each of these directions, we present one
or more systems that allow information access through these means (see Figure 2.1). However, we
argue that these approaches should not be seen in isolation, but can—when needed—be used as a
full pipeline for data exploration, which we will outline in the last section of this chapter.

2.1. Application Example

In April 2016, over 100 media outlets from all over the world present their first results of analysis
of the Panama Papers, a collection of 11.5 million text documents, containing information about
more than 200,000 offshore companies, largely founded with the aim of tax evasion and hiding
other kinds of frauds and crimes. These news publications are the result of a one-year long careful
analysis by many trained data journalists, using special tools like Nuix.1

1https://www.nuix.com/
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Imagine a journalist working for a smaller news outlet. Triggered by this event, they get the task to
report on companies and people from their town or area that are or were involved in frauds. They
probably do not have experience with professional tools to extract information from large text
collections, they cannot program, and their company cannot afford to provide powerful computing
infrastructure or pay high computing or license fees. Yet, their audience wants to know about
the local impact of the scandal right away. Manually scrolling through databases and reading
thousands of pages of text is not an option.

Our tool chain provides an alternative: The journalist might start by accessing existing structured
data, like a database of registered companies, through a natural language interface (NLI) as we
propose it with DBPal and CAT (see Chapter 3). Using natural language interfaces for the data
access makes this possible for them if they do not know SQL. And even if they do, posing queries
in natural language instead of needing to remember the correct syntax, column names and value
representations will be much easier and faster for most users. The NLI helps to learn, explore
a domain, and get structured results for questions. For some use-cases, that might already be
enough, but in our example, the journalist needs more information that is not covered yet, since
the data source does not elaborate on any wrong behavior in the past.

A first approach would therefore be unifying resources to combine data from multiple structured
sources. This can help to get more data points for the same issue covered in multiple sources, or to
even find new patterns and connections. The journalist may, e.g., link company information and a
legal case database. To bridge between the different domain-specific wording in the two sources,
embedding-based matching as we propose in Section 5.1 can be used.

A second approach to find additional connections and facts can be applied when no suitable
structured data is available: find and exploit information in unstructured data (e.g., text collections).
In our sample case, the journalist might access the public part of the Panama Papers or other
collections disclosing similar information, like the Offshore Leaks from 2013.

This will often again be a multistep approach: First, the journalist needs to check whether the text
collection contains relevant information (e.g., whether companies from the area are mentioned).
In other use-cases, a user might not even know exactly what they are looking for: a journalist
might have received a large collection of internal emails from a company by a whistleblower and
is now openly exploring what might be covered in them, assuming they will contain information
about some kind of misbehavior but not knowing the details of what that might be. In both cases
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(targeted and open exploration), a system for personalized summarization as we propose it with
Sherlock (see Chapter 4) can be very useful, as it provides the user with an overview of the contents
of a document collection that are related to a certain aspect. Moreover, the interaction paradigm
allows them to adjust that focus during the exploration based on the result received so far and
does not require them to already exactly know what they are looking for in advance.

Once they have an overview of the unstructured data at hand, in the final step, the journalist might
again be interested in more structured results to answer specific questions. In our example, they
might have learned that indeed their city or state is mentioned in multiple places throughout the
document collection and now want to compile a list of the specific companies involved, so they
can check them more thoroughly. Our final contribution WannaDB (see Section 5.2) can help
them with that. It allows specifying custom result table structures and have them filled in a mostly
automatic process from source text documents, based on some rounds of interactive feedback to
adjust for domain-specific language.

In our example, our journalist ends with a short table of companies, involved financial institutes or
transaction details, created from the large document collection of offshore transaction leaks. They
can now start writing their first article on that topic, or have at least a direction to continue their
investigation. Hence, they might now grab their phone and contact an informant that might know
more about an aspect they just learned about—but might come back to the data later to check
more ideas, aspects, and hypotheses. The tools we propose helped them to gain these insides in a
short timespan, with little costs for exploration and without any programming.
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2.2. Design Principles

Before we go into detail on the different directions, we outline the design principles we followed
for all of them to face the challenges described in Section 1.2.

To create systems that can be of use for many people, we apply four basic design principles
throughout our research:

Automatization: Moving long, complex or repetitive tasks (e.g., extracting information or compar-
ing entries) from the user to the computer both reduces the necessary skills and knowledge,
and allows for scale-up.

Usability: Second, again to not depend on skills like programming or another strong computer
or data science background, all systems should provide an interface that the user is already
familiar with or can quickly learn—e.g., by the use of natural language or a graphical
interface.

(Cost) Efficency: Third, we need to keep direct (e.g., license fee and computation bills) or indirect
costs (e.g., caused by the time the user needs to spend) for information access low. We reach
that by using open and comparatively small resources, by reducing the amount of annotated
data that needs to be present, and, in particular, by approximation and sampling.

Responsiveness: Our systems can (thanks to the previous principle) be made fast. The last
principle is to exploit this, such that the user can quickly interact with them, either to adjust
their request, or directly as part of the process. Therefore, even with approximate systems,
users can improve the result quality by pursuing further actions with the system—but, in
contrast to other systems, they only need to do this until they reached a quality that matches
their information need.

2.3. Natural Language Interfaces for Data Access & Manipulation

Our first research area are natural language interfaces for data access and manipulation. Natural
language is a promising alternative interface to database management systems (DBMSs) because
it enables non-technical users to formulate complex questions in a more concise manner than they
could with SQL. In the last years, the number of deep learning approaches for translating natural
language to SQL grew [KK23; Kim+20; Qin+22], and also the usage of foundational large language
models (LLMs) for that task gained traction. Even with LLMs like ChatGPT, this problem is not
magically solved, since they can advance the natural language understanding (NLU) component of
the task, but they still require good mechanisms to generate suitable prompts [Gao+23], so one
needs a trained system accompanying the LLM to reach high quality. Alternatively, the possible
quality that can be reached with open source LLMs is much lower than the quality of state-of-the-art
closed ones [Sun+23], but can be drastically improved with fine-tuning [Gao+23]. Hence, all
of these approaches require an enormous amount of training data in order to provide accurate
translations. This training data is extremely expensive to curate, since it generally requires humans
to manually annotate natural language examples with the corresponding SQL queries (or vice
versa).
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Based on these observations, we propose a new approach that augments existing deep learning
techniques in order to improve the performance of models for natural language to SQL (NL2SQL)
translation (see Section 3.1). More specifically, we present a novel training pipeline that automat-
ically generates synthetic training data in order to (1) improve overall translation accuracy, (2)
increase robustness to linguistic variation, and (3) specialize the model for the target database. As
we show, our training pipeline is able to improve both the accuracy and linguistic robustness of
state-of-the-Art NL2SQL translation models.

As part of the research on this topic, we also developed and published a benchmark called Para-
phraseBench (see Section 3.1.3), that tests how well an NL2SQL approach can deal with linguistic
variations of the same query. Our evaluations show that the quality of the translation can vary
drastically for different natural language (NL) formulations of the same SQL query, and hint which
kinds of variations models generalize rather good or bad, too.

Contributions: We present DBPal, a fully pluggable natural language to SQL (NL2SQL) training
pipeline that automatically synthesizes training data in order to improve the translation accuracy of
an existing deep learning-based model. We propose several data augmentation techniques that give
the model better coverage and make it more robust towards linguistic variation in NL queries. We
propose a new benchmark that systematically tests the robustness of a natural language interface
for databases (NLIDB) to different linguistic variations. Using a state-of-the-art deep learning
model, we show that our training pipeline can improve translation accuracy by up to almost 40%.

To complement this research, we present a meta-study on the reproducibility and availability of
research approaches for NLIDBs for real-world applications (see Section 3.2). While we were
working on DBPal, Yu et al. [Yu+18b] published the Spider benchmark and challenge that fostered
research on (cross-domain) NL2SQL and received a lot of submissions. Three years after the
publication, we wanted to know whether the challenge really lead to (usable) progress, i.e., whether
researchers and practitioners can use or build on the approaches submitted to the leaderboard of
the shared task. Our analysis, however, lead to the conclusion that many of those approaches are
not reproducible. We therefore propose changes for future benchmarks and tasks for (not only)
NLIDBs and present a prototypical implementation called UniverSQL that makes these approaches
easier to use in information access systems. We hope that this lowered barrier encourages (future)
participants of these challenges to add support for actual usage of their submissions.

Contributions: We show that current benchmarks, especially the Spider challenge [Yu+18b] and
the related challenges SparC [Yu+19b] and CoSQL [Yu+19a] are not sufficient to measure all
relevant aspects and support the emergence of ready-to-use NLIDBs. Yet, to foster research not
only on NLIDBs but on systems that integrate and use them, we publish an API called UniverSQL to
integrate submissions to the challenges into research prototypes and existing systems. Its core
functionality is a wrapper implementation to allow the execution of arbitrary queries on pre- or
custom-trained models. We additionally provide two sample implementations of this wrapper for
existing NL2SQL translators (EditSQL [Zha+19] and IRNet [Guo+19]). The code is published
under an open source license. Finally, we provide an overview of the advantages and flaws of
Spider and other benchmarks and provide ideas on how the evaluation of NLIDBs could advance.

As the final topic in this research field, we concentrated on natural language interfaces that allow
not only information access but also manipulation. To guide users, and to make sure they only
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perform intended actions, such interfaces are often implemented as so-called conversational agents
(CAs) (i.e., chatbot-like interfaces to e.g., book a cinema ticket). However, developing such an
agent requires both immense amounts of training data and NLP expertise. Therefore, we propose
CAT, an approach that can be used to easily create CAs for transactional databases (see Section
3.3).

The key features of our approach are the use of weak supervision and data-awareness. We suggest
a procedure to automatically generate training dialogues given a database and a set of transactions
with only minimal manual overhead. We then use it to train a CA. As a major difference to existing
CAs, agents synthesized by our approach are data-aware: We introduce a data-driven dialogue
policy that leverages the data characteristics to request information from the user to minimize the
number of dialogue turns, i.e., to fulfill a user request as quickly as possible. By incorporating
the current data distributions of the database, we can reach markedly more efficient dialogues for
many databases.

Contributions: We propose an approach called CAT that uses weak supervision to synthesize the
required training data to train a state-of-the-art CA for a given OLTP database. Furthermore, our
system provides an out-of-the-box integration of the resulting agent with the database. Agents
created with our system are data-aware, i.e., decide which information should be requested from
the user based on database distributions. We showcase our system by a demonstration scenario2
with a fully synthesized CA for a movie database which allows a user to reserve tickets, cancel
existing reservations and list movie theater screenings. We show both the creation of the agent
using our system and the usage of the agent itself, and publish our approach as open source.

2.4. Personalized Summarizations of Text Collections

Our second research area deals with the use of personalized summaries for the exploration of
unknown data collections. The idea is to offer the user a way to automatically produce summaries
that cover certain aspects of a text collection. While these summaries can be used on their own,
e.g., to add descriptions to a text collection, we argue that the possibility to interactively create
multiple different summaries (e.g., with different degree of details or covered topics) can be very
useful to understand large collections of topic-related documents and has real-world applications
in journalism, medicine, and many more.

To make sure that the required level of customization is reached, we focus on providing the results
at interactive speed. Key to our system is that the summarization model is refined by user feedback
(i.e., marking important and irrelevant parts of a proposed summary) and called multiple times
to improve the quality (i.e., the level of detail and focus relevant for the user) of the summaries
iteratively. Such an approach was proposed by Avinesh P. V. S. and Meyer [AM17] where they use
an integer linear program (ILP) to compute an optimal solution. Yet, since solving time grows
exponentially with the number of constraints (e.g., the sentences to consider), each iteration
may take hours. We therefore propose a sampling-based approach that builds on top of this, to
guarantee interactive speeds even for large text collections to keep the user engaged in the process
(see Section 4.1). As we show in our evaluation, our system can provide a similar quality level as
the model that is working on the full corpus, but in a fraction of its runtime.
2See Section 10.5 and https://link.tuda.systems/cat-video
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Contributions: We present Sherlock, an approach for interactive summarization of large text
collections that uses sampling to provide interactive response times. As a main contribution,
we propose a method to select the sample size based on iteration time thresholds and evaluate
multiple different sampling strategies. Since choosing a suitable sample is not a trivial task, we
study the effectiveness of multiple sampling strategies and the impact of the sample size on the
summarization quality. To this end, we employ importance-based and stratified sampling, and
benchmark them in a systematic experimental setup on different document collections.

As part of our research on multi-document summary (MDS), we noticed that there is a lack of
diverse evaluation corpora for this task: large state-of-the-art corpora for training neural networks
to create abstractive summaries are mostly limited to the news genre,3 as it is expensive to acquire
human-written summaries for other types of text at a large scale.

We therefore propose a novel automatic corpus construction approach (see Section 4.2) to tackle
this issue, and present three new large open-licensed summarization corpora based on our approach
that can be used for training abstractive summarization models. Our constructed corpora contain
fictional narratives, descriptive texts, and summaries about movies, television, and book series
from different domains. All sources use a creative commons (CC) license, hence we can provide
the corpora for download. We provide our automatic construction approach as a ready-to-use
framework to create custom corpora with desired parameters like the length of the target summary
and the number of source documents that have to be summarized each. The main idea behind
our automatic construction approach is to use existing large text collections (e.g., thematic wikis),
automatically classify whether the texts can be used as (query-focused) multi-document summaries,
and then align them with potential source texts. We show the usefulness of our automatic
construction approach by running state-of-the-art summarizers on the corpora and through a
manual evaluation with human annotators.

Contributions: We present a framework that can be used to create new summarization corpora
and discuss reasonable choices for the parameters. We provide three new sample corpora created
with our automatic construction pipeline (FandomCorpora). In a comprehensive evaluation based
on these corpora (using traditional and neural network based methods) we validate that our
pipeline is able to automatically create corpora of use for state-of-the-art summarizers. We make
our code available as open source.

2.5. Information Extraction & Integration

As a third area, we provide ways to democratize information extraction and integration. This
becomes relevant when data is scattered across different sources and there is no tabular represen-
tation that already contains all information needed. Therefore, it might be necessary to integrate
different structured sources, or to even extract the required information pieces from text collections
first and then to organize them. Only with these aggregated representations, one might really be
able to create value and derive knowledge from the data. Yet, when manually done, these tasks
require a lot of time and effort. In this part of the thesis, we thus explore how existing resources
3News corpora often completely rely on existing texts and are therefore relatively cheap to construct. Different
approaches use, e.g., a teaser that is published with the article [PXS18] or even the headline as the summary
[NGV12], and therefore require no manual annotation.
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(like language models (LMs) and embeddings) can be leveraged to provide the required NLU for
information extraction and integration tasks, in a way that they can be automized with a low
overhead.

Since data is often stored in different sources, it needs to be integrated to gather a global view
that is required in order to create value and derive knowledge from it. A critical step in data
integration is therefore schema matching which aims to find semantic correspondences between
elements of two schemata. When large amounts of data have to be integrated (e.g., when database
systems of companies are unified after a merger, or to distill knowledge from large data lakes),
tools to reduce the manual effort involved in schema matching are required. We propose a novel
end-to-end approach for schema matching based on neural embeddings and compare it to existing
solutions for the automatic determination of schema correspondences (see Section 5.1). The main
idea is to use a two-step approach consisting of a table matching step followed by an attribute
matching step. In both steps, we use embeddings on different levels, either representing the whole
table or single attributes. Our results show that our approach is able to determine correspondences
in a robust and reliable way and (compared to traditional schema matching approaches) can find
non-trivial correspondences.

Contributions: We present and evaluate an end-to-end approach for schema matching using
neural embeddings. As part of this, we propose and analyze different matchers on multiple
levels (i.e., tables and columns) to identify a set of possible table and attribute correspondences.
Furthermore, we compare them to existing approaches for automatic schema matching.

Based on these results, we then extended our scope: can we create a structured representation
as requested by the user even when there are no existing tabular representations of the required
contents, but just based on textual documents? Can we go beyond the fixed label sets of existing
extraction approaches and fill arbitrary table columns that the user requested? Can a system do so
without extensive computation and large overhead for adaption to support ad-hoc exploration?
And will embeddings again be useful to find these non-trivial correspondences?

We hence propose a new system that allows users to interactively perform structured explorations of
text collections in an ad-hoc manner (see Section 5.2). The main idea is to include user interaction
to support extraction as requested and even ad-hoc SQL queries over text collections. We implement
this using a new two-phased approach: first, a superset of information nuggets from the texts is
extracted using existing extractors such as named entity recognizers. Then, the extractions are
interactively matched to a structured table definition as requested by the user based on embeddings.
In our evaluation, we show that this approach is thus able to extract structured data from a broad
range of (real-world) text collections in high quality without the need to design extraction pipelines
upfront. This approach makes it possible to automatically extract and organize relevant contents
from large text collections, using a simple graphical interface. Users do not need programming
skills for that. However, if they have, they can leverage their knowledge of SQL to pose more
complex queries and compute aggregation results directly as part of this process.

Contributions: We propose WannaDB, a system that can execute SQL-like queries on text col-
lections in an ad-hoc manner, both to extract facts from text documents, and apply filtering,
aggregations and grouping. Our system can therefore directly produce tables stating information
that is not explicitly mentioned in the documents, and hence not discoverable by pure extraction
or search approaches. Our system implements a novel extraction and querying pipeline that
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first extracts information nuggets independently of the query and then at runtime uses a novel
interactive table filling approach that aims to map the information nuggets to a table specified
by the user in the form of an attribute list or SQL query. For this table filling, it requests and
generalizes feedback from the user. We conduct a wide range of experiments on text collections
from different domains to validate our approach. Finally, we make our source code and the data
sets used for evaluation available as open source.

2.6. Low Overhead Approaches for the Data Science Pipeline

As already outlined in Section 2.1, our approaches can be applied to perform typcial steps of the
data science pipeline. A graphical representation how the steps interconnect can be found in Figure
2.2.

Figure 2.2.: Typical steps of the data science pipeline that our approaches can be applied to

Our methods can be used to learn about the contents of textual documents and whether they are
suitable and relevant for an information need. Next, they can be applied to extract the relevant
information into a structured format and integrate it with existing other data. Our approaches
for data access can then be used to query and aggregate this structured data. Afterwards, a new
information need might emerge where the tools can be applied again.

Our approaches have several advantages compared to existing ones: They can be used by non-
experts and therefore alleviate the need for data scientists. This is also underlined by the focus on
usability to allow a usage for even more people.

The approaches require less training or information than many other approaches and therefore
enable cheap adaption and querying. This makes open exploration of data possible. Instead of
focusing on single domain, we apply generalization as key principle, to allow for wide applications
and therefore a democratization in many fields.
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3. Natural Language Interfaces for Data Access &
Manipulation

In a world where ever more data is generated, processed, and relied upon, it becomes continually
more significant that data is not only accessible to a small group of people. Information can be
contained in text, relational databases, knowledge graphs, and many other formats—but users do
not want to deal with heterogeneous sources. They are interested in accessing information easily.
The borders between structured and unstructured information keep blurring: when using Google
for factual questions, infoboxes might show the answer without the need to open a search result.
That result might even be wrapped in a generated sentence when voice search was used, and it is
irrelevant whether the sentence was extracted from a web page or generated from a database.

On the other hand, there are good reasons why these different ways of storing information exist.
Information access methods should leverage the capabilities of each approach, while providing
convenient and ideally unified interfaces. With this goal in mind, natural language interfaces
(NLIs) emerged as a data retrieval method, leveraging one of our most flexible and intuitive means
of communication.

Relational databases are an essential type of information storage. They provide a structured
representation that allows direct access to the relevant subset of information, as well as automatic
computation of aggregated results that might be needed for a decision. To query them, users
require knowledge of the domain, query language (e.g., SQL), and database schema. Contrarily, the
vision for natural language interfaces for databases (NLIDBs) encompasses the ability of any user
to interactively explore large datasets without help or extensive manual preparation work [JPP17].
As one of the biggest challenges, the application of NLIDBs requires the means to translate natural
language (NL) into SQL queries (NL2SQL)—for a recent comprehensive overview of methods and
open problems, refer to Kim et al. [Kim+20]. However, before such NLIDBs can be widely used as
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one of many interfaces for information access (i.e., users can enter their information request using
arbitrary words and get a correct answer without knowledge about the database), further research
is needed.

In this thesis, we discuss two approaches that can be used by users without knowledge of SQL
or the structure of a database to work with the information stored in it. First, we concentrate on
SELECT-queries and propose an approach to build a read-only NLIDB called DBPal (see Section 3.1).
Afterwards we propose an approach for building conversational agents that allow both accessing
and manipulating structured data in a database called CAT (see Section 3.3). Both approaches can
be applied to new domains with a low overhead, since they do not depend on large amounts of
annotated training data. Instead, they apply a weak supervision approach, where existing data and
templates are generalized and paraphrased by the computer to automatically generate sufficient
amounts of training data in short time and at low costs. To complement this research, we present a
meta-study on the reproducibility and availability of research approaches for NLIDBs for real-world
applications in Section 3.2.

3.1. Natural Language Interfaces for Databases: DBPal

SQL, despite its expressiveness, may hinder users with little or no relational database knowledge
from exploring and making use of the data stored in a database management system (DBMS). In
order to effectively analyze such data, users are required to have prior knowledge of the syntax
and semantics of SQL. These requirements set a high bar of entry for information access and data
exploration, and have therefore triggered new efforts to develop alternative interfaces that allow
non-technical users to interact with (their) data more conveniently. In addition to visual data
exploration tools [e.g., Cro+15b; TAB], in particular NLIDBs seem to be such a highly promising
alternative, since they enable users to pose questions in a concise and familiar manner.

Many approaches to construct these NLIDBs, however, require large amounts of domain-specific
training data, and manual tuning. Furthermore, they focus solely on the translation and do not
consider further measures to support the user when exploring the database through the interface.
We therefore propose a complete system that enables users to build robust NL interfaces for different
databases with low manual overhead.

Publications: The work on DBPal was mainly published in two peer-reviewed publications. The
general idea and a prototypic implementation was published in the demo paper “Fuat Basik,
Benjamin Hättasch, Amir Ilkhechi, Arif Usta, Shekar Ramaswamy, Prasetya Utama, Nathaniel
Weir, Carsten Binnig, and Ugur Çetintemel. ‘DBPal: A Learned NL-Interface for Databases’. In:
Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. ACM, 2018” (see Chapter 7). It contained a system
architecture for both the translation component and the training data generation. We concentrated
on end-users without knowledge of the database structure and discussed which features a graphical
user interface suitable for them should have. We implemented such an interface prototypically
and explained both the approach and its exemplary usage in the paper and a video.
The full approach, including improved components and an extensive evaluation, was then pub-
lished as “Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi, Shekar
Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen Eger, et al. ‘DBPal: A
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Fully Pluggable NL2SQL Training Pipeline’. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. ACM, 2020” (see Chapter 8). In the paper, we analyze why
available training data for NL2SQL may not be sufficient and why automatic approaches are needed
to create data for adaption of translators. We therefore propose a system that augments existing
deep learning techniques in order to improve the performance of models for NL2SQL translation.
More specifically, we present a novel training pipeline that automatically generates synthetic
training data in order to improve overall translation accuracy, increase robustness to linguistic
variation, and specialize the model for the target database. We show that our training pipeline is
able to improve both the accuracy and linguistic robustness of state-of-the-art NL2SQL translation
models. Moreover, we present a new benchmark to explicitly evaluate the linguistic robustness.
In addition to these two publications, we published preprints of our research on ArXiv [Uta+18;
Wei+19b].

Contributions of the author: I was a co-author of the publications. My central responsibilities in
this project comprised literature research and description, making improvements to the training
data generation component, conducting experiments and confirming results of previous ones,
integrating DBPal into a speech assistant, and publishing the Paraphrase Benchmark corpus that
was created as part of the project. I wrote parts of the manuscripts of the publications and helped
to refine the remainder. All authors agree with the use of the publication for this dissertation.

3.1.1. Our Approach

In the last years, the number of deep learning approaches for translating natural language to SQL
grew [KK23; Kim+20; Qin+22]. The usage of foundational large language models (LLMs) for
that task gained traction, yet, zero-shot approaches (e.g., prompting ChatGPT) do currently not
provide the same quality as existing trained models, as benchmarks like Bird1 show. Therefore,
accompanying learned models are needed to pre- and post-process inputs and outputs or to
generate advanced prompts adapted to the inputs. These require suitable training and evaluation
data. Furthermore, invoking closed models for translation may not always be possible, be it because
of the associated costs or privacy issues.

More traditional approaches for NL2SQL translation [Iye+17; Wan+15; XLS17] can be used
locally and at lower costs, but they rely on supervised learning approaches that require substantial
amounts of training data, too. The same holds for open source LLMs, which currently provide
an inferior translation quality compared to the widely used closed models [Sun+23], but can be
drastically improved with fine-tuning [Gao+23].

This training data is costly to acquire, in particular since many approaches require domain-specific
data. As such, additional manual effort is needed for each new database schema, which severely
limits the portability of these approaches to new domains. In order to address this fundamental
limitation, we have built DBPal as a complete system that enables users to build robust NL interfaces
for different databases with low manual overhead.

At its core, DBPal implements a novel training pipeline for NLIDBs that synthesizes its training data
using the principle of weak supervision [Cra+00; Deh+17]. The basic idea of weak supervision is
1https://bird-bench.github.io/
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Figure 3.1.: DBPal training pipeline, and lifecycle of a query at runtime

to leverage various heuristics and existing datasets to automatically generate large (and potentially
noisy) training datasets instead of handcrafting them.

In its basic form, only the database schema is required as input in order to generate a large
collection of pairs of natural language queries and their corresponding SQL statements, that can
then be used to train our language translation model. In order to maximize our coverage across
natural language variations, we use additional input sources to automatically augment the training
data using a collection of techniques. One such augmentation step is an automatic paraphrasing
process using an off-the-shelf paraphrasing database [PC16].

Figure 3.1 shows how our fully functional prototype is both trained and used at runtime. At the
core of our prototype is a neural translator, trained by DBPal’s pipeline, which translates incoming
NL queries into SQL queries. Importantly, our fully pluggable training pipeline is agnostic to the
actual translation model; that means DBPal is designed to improve the accuracy of existing NL2SQL
deep learning models (e.g., SyntaxSQLNet [Yu+18a]) by providing specific training data for a
given database schema.

Training Phase: During the training (or fine-tuning) phase, our training pipeline provides existing
NL2SQL deep learning models with large corpora of synthesized training data. This training
pipeline, described further the next section, consists of three steps to synthesize the training data:
(1) generator, (2) augmentation, and (3) lemmatizer. Once training data is synthesized by DBPal’s
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pipeline, it can then be used (potentially together with existing manually curated training data) to
train existing neural translation models that can be plugged into the training pipeline.

Runtime Phase: The runtime phase can leverage this trained model, as shown on the right-hand
side of Figure 3.1. The Parameter Handler is responsible for replacing the constants in the input
NL query with placeholders to make the translation model independent of the actual database and
help to avoid retraining the model if the underlying database is updated. For example, for the
input query shown (i.e., “What are cities whose state is Massachusetts?”), the parameter handler
replaces “Massachusetts” with the appropriate schema element using the placeholder @STATE. The
lemmatizer then combines different variants of the same word to a single root. For example, the
words “is”, “are”, and “am” are all mapped to the root word “be”. Then, the neural translator works
on these pre-processed and generalized NL input queries and creates output SQL queries, which
also contain placeholders. In the example, the output of the Neural Translator is: SELECT name
FROM cities WHERE state = @STATE. Finally, the post-processor replaces the placeholders
with the actual constants such that the SQL query can be executed. The result is then presented to
the user using a tabular visualization. We showcase the exemplary usage of the system in Section
7.4.

Additionally, the pre-processor components and the post-processor are also involved in order to
handle complex SQL queries such as JOINS and nested statements. The details of the pre- and
post-processing are explained further in Sections 8.4 and 8.5.

Interactive Query Auto-Completion: In addition, we propose a component for real-time auto-
completion and query suggestion to help users who may be unfamiliar with the database schema
or the supported query features. This may also increase translation accuracy by leading them to
enter less ambiguous queries. Consider a user exploring a geographical information database and
starting to type “show me the names ”—at this point, the system suggests possible completions
such as “of states”, “of rivers”, or “of cities” to make users aware of the different options they
have. The core of the proposed auto-completion feature is a language model based on the same
sequence-to-sequence model and trained on the same dataset as the query translator. More details
can be found in Section 7.3.3.

3.1.2. Training Pipeline

In the following, we describe our training pipeline and focus in particular on the data generation
framework. The details of the full training pipeline are explained further in Section 8.3.

Generator: In the first step, the generator uses the database schema along with a set of seed
templates that describe typical NL-SQL pairs to generate an initial training set. In the second step,
augmentation, the training data generation pipeline then automatically adds to the initial training
set of NL-SQL pairs by leveraging existing general-purpose data sources and models to linguistically
modify the NL part of each pair.

The main idea is that each seed template covers a typical class of SQL queries (e.g., a SELECT-
FROM-WHERE query with a simple predicate). Composing the seed templates is only a minimal,
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one-time overhead, and all templates are independent of the target database (i.e., they can be
reused for other schemas). Furthermore, in DBPal, we assume that the database schema provides
human-understandable table and attribute names, but the user can optionally annotate the schema
to provide more readable names if required; deriving readable schema names automatically is an
orthogonal issue.

The schema information is then used to instantiate these templates using table and attribute names.
Additionally, manually predefined dictionaries (e.g., to cover synonyms) can be used to instantiate
simple variations of NL words and phrases (e.g., “Show me” and “What is” for the SELECT clause).
We propose a list of approximately 100 seed templates. A typical training set that can be generated
from these templates contains around one million NL-SQL pairs for a simple, single-table database
schema and around two to three million for more complicated schemas.

Augmentation: A core aspect of our pipeline is the augmentation step, that automatically expands
the training data produced by our generator in order to offer more accurate and linguistically
robust translations. During augmentation, the training data generation pipeline automatically adds
new NL-SQL pairs by leveraging existing general-purpose data sources and models to linguistically
vary the NL part of each pair. The goal of the augmentation phase is thus to cover a wide spectrum
of linguistic variations for the same SQL query, which represent different versions of how users
might phrase the query in NL. This augmentation is the key to make the translation model robust
and allows DBPal to provide better query understanding capabilities than existing standalone
approaches. Section 8.3.2 describes this process in more detail.

Lemmatization: Finally, in the last step of the data generation procedure, the resulting NL-SQL
pairs are lemmatized to normalize the representation of individual words. During this process,
different forms of the same word are mapped to the word’s root in order to simplify the analysis
(e.g., “cars” and “car’s” are replaced with car). The same lemmatization is applied at runtime, too.

3.1.3. Evaluation: Paraphrase Bench

To measure how well a model can cope with linguistic variations, we crafted an open-source
benchmark called ParaphraseBench.2

The schema of our new benchmark models a medical database comprised of hospital patients with
attributes such as name, age, and disease. In total, the benchmark consists of 399 carefully crafted
pairs of NL-SQL queries.

To test the linguistic robustness of the given translation model, queries are grouped into one of
the following categories depending on the linguistic variation that is used in the NL query: naïve,
syntactic paraphrases, morphological paraphrases, semantic paraphrases, and lexical paraphrases, as
well as a category where queries have some missing information. These categories are formulated
along the guidelines of paraphrase typologies discussed in Vila, Martí, and Rodríguez [VMR11] and
Bhagat and Hovy [BH13]. While the NL queries in the naïve category represent a direct translation of
their SQL counterpart, the other categories are more challenging: syntactic paraphrases emphasize
structural variances, lexical paraphrases pose challenges such as synonymous words and phrases,
2https://link.tuda.systems/paraphrase-bench
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semantic paraphrases use changes in lexicalization patterns that maintain the same semantic
meaning, morphological paraphrases add affixes, apply stemming, etc., and the missing category
includes implicit references to concepts. Exemplary queries for the categories are:

Naïve “What is the average length of stay of patients where age is 80?”

Syntactic “Where age is 80, what is the average length of stay of patients?”

Morphological “What is the averaged length of stay of patients where age equaled 80?”

Lexical “What is the mean length of stay of patients where age is 80 years?”

Semantic “On average, how long do patients with an age of 80 stay?”

Missing Information “What is the average stay of patients who are 80?”

Unlike other benchmarks that test for exact syntactic match of SQL queries, our benchmark
tests instead for semantic equivalence. Since the test set is (relatively) small (i.e., 57 queries
per category), we manually enumerated possible semantically equivalent SQL query answers.
However, if the benchmark were to be extended, one could use an equivalence checker (e.g., Cosette
[Chu+17]) to verify correctness. We think that our benchmark is a good complement to existing,
larger benchmarks (see Section 3.2).

3.1.4. Key Findings

We will now show that the presented training pipeline is able to improve the performance of
existing NL2SQL translation techniques. A complete evaluation including all details and additional
microbenchmarks can be found in Section 8.6.

We first compare our proposed augmentation techniques to the training process using SyntaxSQLNet
[Yu+18a] with the well-known Spider [Yu+18b] benchmark that consists of over 10, 000 NL
questions paired with the corresponding SQL queries. The benchmark contains 200 database
schemas, each of which has several tables, representing real-world database deployments. The data
in the benchmark is very diverse and spans 138 distinct domains (e.g., automotive, social networking,
geography). In addition to the diverse data, the corresponding SQL queries contain almost all
common SQL patterns, including nested queries. Based on the complexity of the corresponding SQL
query (i.e., the number of SQL components), each question is assigned a difficulty level. Further
information on the dataset can be found in Section 3.2.1. SyntaxSQLNet is a state-of-the-art deep
learning model that uses pre-trained GloVe word embeddings [PSM14] when parsing the words
in the input sentences. Using GloVe embeddings already allows the model to handle variations of
individual words efficiently.

In this benchmark, accuracy is measured by computing the number of correctly translated NL
phrases divided by the total number of queries. A query is deemed to be correctly translated only
if it exactly matches the provided “gold standard” SQL query for the NL input, without allowing
for semantically equivalent answers. Unlike other datasets, Spider uses different databases (i.e.,
schemas and data) for training and testing (i.e., a database schema is used exclusively for either
training or testing, but not both). This allows us to evaluate how well the model will generalize to
new domains.
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Easy Medium Hard Very Hard Overall
SyntaxSQLNet 0.445 0.227 0.231 0.051 0.248
DBPal (Train) 0.472 0.300 0.252 0.107 0.299
DBPal (Full) 0.480 0.323 0.279 0.122 0.317

(a) Spider benchmark

Naive Syntactic Lexical Morph. Semantic Missing Mixed Overall
SyntaxSQLNet 0.281 0.228 0.070 0.175 0.175 0.088 0.140 0.165
DBPal (Train) 0.930 0.333 0.404 0.667 0.228 0.088 0.193 0.409
DBPal (Full) 0.947 0.632 0.544 0.667 0.491 0.158 0.298 0.531

(b) ParaphraseBench benchmark

Table 3.1.: Accuracy on the Spider and Paraphrase benchmarks of a SyntaxSQLNet model trained
with our approach compared to the original model without fine-tuning by DBPal. Values
between 0 and 1, higher is better. Our approach can outperform the original model for
all difficulty levels and linguistic variation categories.

Table 3.1a shows the accuracy for SyntaxSQLNet using the Spider dataset for three different
configurations. First, as a baseline, we show the performance of the base SyntaxSQLNet model
trained using the data from Spider’s training set. The DBPal (Train) configuration uses the
SyntaxSQLNet model finetuned with our training pipeline, i.e., with additional synthetic data
generated by DBPal using the schemas of the training set in Spider only. Finally, the DBPal (Full)
version uses the schemas from both the training and test set of Spider to generate additional
synthetic training data. Note, however, that DBPal never sees actual NL-SQL pairs from the test set
during the training process, only the schemas (in the DBPal (Full) configuration).

As shown, both configurations of DBPal improve upon the original model across all difficulty levels.
In the DBPal (Train) case, we see that, with the addition of synthetic training data generated only
using schema information from the training set, DBPal is already able to outperform the baseline
model. This is due to the fact that our novel training pipeline is able to supplement the existing
training data with additional query patterns (e.g., nested subqueries) that are not present (or
numerous enough) in the training data. As shown, this helps substantially for the harder queries,
with DBPal being able to outperform the baseline by more than 2× for the “very hard” category
due to the fact that the training pipeline introduces new query patterns (e.g., nested queries) to
the model.

In general, DBPal (Full) is able to leverage additional query patterns from the synthetic data
generation pipeline that are specific for the test schemas. With this information, DBPal (Full) is
able to generate training examples that provide the model with additional information (e.g., table
names, column names, column values) that is specific to test databases. As shown in Table 8.2,
the added synthetic data for the test schemas in Spider when using DBPal (Full) is able to offer
additional performance improvement over DBPal (Train). More concretely, with the help of the
additional generated training data, we can further improve translation accuracy across all query
difficulties of Spider by 15− 27%. This shows that even though generalizing models are very useful
to support different databases without manual training, an automatic adaption approach like the
one proposed by us—that adds information on the target scheme during training—can further
improve the translation quality.
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To test the robustness of our system against linguistic variations, we test it on the ParaphraseBench
introduced in Section 3.1.3. The results can be found in Table 3.1b. Again, the model trained with
our pipeline can outperform the baseline model on all categories (by about 0.25). Additionally
incorporating schema information of the target databases can increase the translation accuracy
even further, from 0.165 to 0.531.

In general, the results of our training data augmentation fall into two categories. On one hand,
there are query pattern categories (e.g., Naive, Morphological) where the improvement can be
mainly attributed to the additional patterns introduced with our training data generation baseline.
Here, additional target schema knowledge provides little to no benefit.

For other categories (e.g., semantic, missing), target schema knowledge makes a large difference,
and may lead to a doubled accuracy. Here, we find that schema information is particularly helpful
because it allows the model to learn complex, domain-specific NL mappings. For example, consider
the example semantic query: “On average, how long do patients older than 80 stay?” Clearly, the
semantic meaning of the phrase “older than” refers implicitly to the “age” attribute of the patient,
but this would not be easy to derive from a generic training set. However, by providing training
data specifically generated from the target schema, DBPal is able to help the model to better learn
these mappings.

In summary, our evaluation shows that our approach is suitable to boost the quality of existing
NL2SQL approaches. Furthermore, we can show that the automatic generation of new NL-SQL-pairs
for a specific schema provides an improvement over automatically generating generic training data.

3.2. Natural Language Interfaces for Databases: Meta Study on other
Approaches

While we were working on DBPal, Yu et al. [Yu+18b] published the Spider benchmark and
challenge,3 that fostered research on (cross-domain) NL2SQL. The challenge received over 100 sub-
missions in different categories, quickly raising the accuracy for translation without value prediction
from about 25% to over 70% on the test set of the challenge in the following years. Two similar
challenges for context-depending/multi-turn translation (SParC) [Yu+19b] and conversational
text-to-SQL translation (CoSQL) [Yu+19a] followed, receiving not as many submissions as Spider,
but still showing a substantial improvement over the baselines published with the datasets. But
how useful are those submissions when one now wants to build a system that requires NL2SQL?
That was something we wanted to find out in a meta study:

Publication: We published this work as “Benjamin Hättasch, Nadja Geisler, and Carsten Binnig.
‘Netted?! How to Improve the Usefulness of Spider & Co’. In: Proceedings of the Second International
Conference on Design of Experimental Search & Information REtrieval Systems, Padova, Italy, September
15-18, 2021. Volume 2950. CEUR Workshop Proceedings. CEUR-WS.org, 2021” (see Chapter
9). In the fullpaper, we analyzed the usefulness of submissions to the Spider, SParC, and CoSQL
challenges for future research and found that these are not sufficient to measure all relevant
aspects and support the emergence of ready-to-use NLIDBs. Additionally, we presented UniverSQL,
3Yale Semantic Parsing and Text-to-SQL Challenge: https://yale-lily.github.io/spider
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a prototypical implementation of an interface between submission entries and custom systems
requiring NL2SQL. As a final contribution, we provided ideas how benchmarks and shared tasks
for NLIDBs should be adapted in the future to focus not only on high scores but also support real
usage of submissions.

Contributions of the author: I was the lead author of the publication and thus responsible for
structuring both the study and the further parts of the publication, conducting the analysis and
writing the manuscript. The co-author Nadja Geisler supported in confirming the experiments
and provided parts of the ideas on how to improve challenges in the future. The prototypical
implementation of the interface was partly done by students under the supervision of Nadja Geisler
and me. The co-author Carsten Binnig contributed invaluable feedback. All authors agree with the
use of the publication for this dissertation.

3.2.1. Benchmarks for NLIDBs

Modern data driven approaches would not be possible without big amounts of data, but curating
and annotating it is out of scope for many researchers. Thus, public datasets and benchmarks play
an important role for the development and evaluation of NL2SQL translators. We will therefore
give a quick overview of them here:

The Spider challenge [Yu+18b] has become one of the standard evaluations for NLIDBs since its
publication in 2018, being cited over 620 times by the publication time of this thesis. The main
leaderboard of the shared task has more than 80 entries (as of October 2023). The dataset aims
to surpass most existing datasets in size by at least one order of magnitude. At the same time,
it covers a diverse set of simple and complex SQL queries. This provides the necessary basis for
data-driven systems to translate joins, nestings etc., and challenges them to do so to achieve good
performance on the development and test data splits. One has to highlight the manually annotated
and high-quality data, which deservedly makes it the currently most important benchmark for
NL2SQL translators.

Alongside the dataset, Spider provides a shared task that encourages building NLIDB systems
capable of generalizing to new databases and performing well across domains, without the need to
expensively create a new training dataset for each database. The split ensures that each database
occurs in exactly one set (training, development, and test). This provides a concrete task description
and evaluation process, allowing accurate and comparable measurements of success. The Spider
shared task encourages the submission of models to show up in the leaderboard. There are two
variants: the original task does not check value accuracy, but there is also a leaderboard for systems
that handle/predict values (not just queries with placeholders).

SparC [Yu+19b] is the multi-turn variant of Spider. It deals with cross-domain semantic parsing
in context and is comparable to Spider in size, complexity and databases. However, queries are
arranged in user interactions, providing dialogue-like context. Therefore, it is not sufficient to just
translate the current NL utterance into SQL, but information from previous queries has to be taken
into account. Analogous to Spider, SparC features a leaderboard for variants with and without
value handling. Although this challenge was published just nine months after the Spider challenge,
it received considerably fewer submissions so far (22 on the main leaderboard as of October 2023).
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Spider (-v) Spider (+v) SparC CoSQL
Entries 62 7 17 10
Diff. appr. 51 5 15 8
- Publications 36 (58 %) 6 (86 %) 8 (47 %) 9 (90 %)
- Code 20 (32 %) 4 (57 %) 4 (24 %) 5 (50 %)

Table 3.2.: Analysis of the leaderboard entries for Spider (with (+v) and without (-v) value predic-
tion), SparC & CoSQL. We checked how many different approaches are presented, how
many of them reference a publication and how often there is code to at least try to
reproduce the approach. Originally printed in Hättasch, Geisler, and Binnig [HGB21].

Spider (-v) Spider (+v) SparC CoSQL
Repositories 15 2 4 5
- Empty? 2 (13 %) 0 (0 %) 0 (0 %) 1 (20 %)
- Code? 13 (87 %) 2 (100 %) 3 (75 %) 4 (80 %)
- Checkpoints 9 (60 %) 2 (100 %) 3 (75 %) 2 (40 %)
- Own data? 2 (13 %) 0 (0 %) 0 (0 %) 0 (0 %)

Table 3.3.: Analysis of the available repositories for the different challenges. We report whether
the repositories are empty or contain code, whether checkpoints/pre-trained models
are provided for download and whether the usage of this approach on own data/tables
is in some way prepared. Originally printed in Hättasch, Geisler, and Binnig [HGB21].

CoSQL [Yu+19a] takes the challenge to the level of a real conversational agent, but one, that
should get its information from a database and not resort to world knowledge incorporated in
a (large) language model. It consists of both dialogues and annotated SQL queries simulating
real-world DB exploration scenarios. Therefore, the system has to maintain a state. CoSQL defines
several challenges, the simplest one mainly adds further context to interpret compared to SparC,
the other ones cover generation of suitable responses and intention detection/classification. At the
time of our analysis, the challenge was public for around 20 months.

Besides these challenges, there is another benchmark that is commonly used: The WikiSQL
Benchmark [ZXS17] is a large dataset (though smaller than Spider) that also features a leaderboard.
Unfortunately, it consists only of a small number of unique query patterns [Fin+18] (in fact, half
of the questions in the dataset are generated from one single pattern). In particular, it contains
neither joins nor nestings. Furthermore, the NL questions are often low quality (i.e., many are
grammatically incorrect), some do not have a proper semantic meaning and make little sense when
read by humans, and some NL questions do not have the same meaning as the associated SQL
query.

3.2.2. Key Findings

As mentioned above, the Yale challenges were widely adopted for evaluating NLIDBs. But how
well do the growing scores on their leaderboards really reflect the progress in the community
for this task? In our study in June 2021, we evaluated the state of the submissions, particularly
with regard to how reproducible the submissions are and whether they can be used for real world
translation tasks.
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We print two tabular representations of our analysis (as of June 2021) here in Tables 3.2 and 3.3.
We report results on both variants of the Spider challenge, as well as the main task of the other two
challenges, since the leaderboards of the other variants contained at maximum two entries (all
without code) except for the baselines provided by the authors of the challenges. In the following,
we will outline our key results/interpretations of the state, for the details we refer to Chapter 9.3.

Taking the different challenges and variations together, there were 96 leaderboard entries in June
2021. Some of them are only small variations of the same system, nevertheless, this boils down to
79 different approaches. 59 or 61.5% of the entries of those approaches were published in some
way, the remaining approaches were anonymous or contained only names of authors or institutions
(so far). For 40 (42%) of the submissions, a link to code was provided, yet, some repositories are
empty, or the link was invalid.

In total, we analyzed 26 repositories. Three of them (12%) were completely empty, the others
except for one contained code. More than half of them (16 or 62%) provided pre-trained models
for download. However, for most of the approaches, there is no preparation for the use of the
models outside the evaluation scripts at all.

To summarize, only about a third (33) of the leaderboard entries had at least some code that could
be used as a starting point for reproduction. Even worse, this was not evenly spaced, e.g., only
for two of the top ten submissions to the main Spider challenge (and for four of the top twenty)
code was provided. Only two submissions [LSX20; Shi+20] to the original Spider task provide a
Juypter Notebook or a command line interface such that users can translate own queries.

Overall, we therefore had to conclude that reproducibility of the approaches submitted to the
leaderboards of all challenges is at best mediocre, which is in line with problems of the community
and especially research in computer science where reproducibility is still a challenge and publishing
code and artifacts that allow others to redo the experiments is still optional.4

3.2.3. Improvements

The results show that there is still room for improvement, having leaderboards with high scores on
it does not really “solve” the task. But how could this be improved?

The fast-moving (research) world makes it hard to really invest time to “finish” research approaches
and bring them to a state where they can be easily reproduced and used by others. Yet, doing this
can boost both the usage of the proposed approaches for real-world applications, and increase the
productivity of the overall community that has to spend less time trying to figure how to run other
approaches for comparison or to build upon them.

In our perspective, this issue can (and should) be tackled two-fold: On one hand, authors of a
shared task can make it easier for participants to turn their approaches and models into directly
usable systems, by already providing a suitable framework. On the other hand, participants should
be encouraged to really make that effort. This could be done by badges or special leaderboards –
but ultimately also by requiring publishing information for reproduction as part of the submission
to a shared task.
4Despite efforts like reproducibility badges in the ACM Digital Library: https://www.acm.org/publications/
policies/artifact-review-and-badging-current
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Making it easy to turn approaches into systems: To foster research not only on NLIDBs but
on systems that integrate and use them, we published an API called UniverSQL5 to integrate
submissions to the challenges into research prototypes and existing systems. Its core functionality
is a wrapper implementation to allow the execution of arbitrary queries on pre- or custom-trained
models, more details can be found in Section 9.4). We additionally provide two sample implemen-
tations of this wrapper for existing NL2SQL translators (EditSQL [Zha+19] and IRNet [Guo+19]).
The code is published under an open source license.

Encouraging or enforcing reproducibility: First and foremost, this requires publication of code.
It is fine that submissions are anonymous until the approach was reviewed and published. But we
advocate that once names are revealed, it should also be necessary to reference publication and
code. Authors of a challenge set the requirements for submissions to be included in a leaderboard—
and they should take advantage of that. To make that code then really usable, often already small
actions would help: pinning versions of dependencies (especially machine learning libraries often
introduce breaking changes in just months), run the code on a second machine under a different
username, add an installation script to download required external data or add environment
variables for configuration. Each of these steps can make it substantially easier to run foreign code
(or your own after a while). We therefore argue that shared tasks like Spider should require this in
the future for submissions to their leaderboards, and find it a great pity that most of the current
submissions are difficult to reproduce and even more difficult to utilize for further research.

Finally, we argue that future benchmarks should go beyond that and take the user’s perspective
into account. One way to do so could be end-to-end benchmarks that do not only evaluate the
translation accuracy but the real performance in a data exploration task from input to the output
(SparC and especially CoSQL do this to some extent). But there are many other interesting questions:
We can measure the accuracy of a system like an NLIDB, but what accuracy should we strive for?
Are all errors equally bad? Can a slightly wrong translation still be sufficient? What is the influence
of a suboptimal translation? Will the user be satisfied by a system with 100% translation accuracy?
Or do they expect something that cannot be accomplished even by perfectly working systems?
Answering such questions is hard, it can probably not always be automated, and it is difficult to
frame the answer as a bunch of numbers. Yet, a framework to assess a system with respect to these
kinds of questions would help to better decide on which improvements it is worth to focus. We
therefore hope that this user perspective will be considered more regularly in computer science
research—not as a separate field of research, but an integral part to drive research in a direction
that is suitable to support humans best in whatever they want to accomplish.

3.3. Conversational Agents: CAT

Until now, we only considered read access to a database and thus NL2SQL translation of SELECT
queries. As the final part of this research direction, we will now propose a low overhead approach
for a system for editing/manipulating data stored in a database using natural language.

Online transaction processing (OLTP) databases are often the backbone for applications such as
hotel room or cinema ticket booking applications. These applications already allow manipulating
5https://link.tuda.systems/univerSQL
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the data in the database in a safe and designed way—but require users to remember application-
specific commands or the correct usage of user interfaces. Natural language interfaces can provide
an intuitive alternative to interact with such applications by allowing users to directly express
their needs. Moreover, consumer products like Amazon Alexa or Apple Siri further raise the
expectations of customers to interact using natural language. As a result, companies began
developing conversational agents for supporting simple tasks or even basic business processes.
For instance, a customer of an insurance company could report a claim or check the status of an
existing report using such a CA.

However, developing a conversational agent (i.e., a chatbot-like interface) to allow end-users to
interact with an application using natural language requires both immense amounts of training
data and natural language processing (NLP) expertise. This motivates our approach, which can be
used to easily create conversational agents for transactional databases.

Publication: We published this work as “Marius Gassen, Benjamin Hättasch, Benjamin Hilprecht,
Nadja Geisler, Alexander Fraser, and Carsten Binnig. ‘Demonstrating CAT: Synthesizing Data-Aware
Conversational Agents for Transactional Databases’. In: Proc. VLDB Endow. 15.12 (2022)” (see
Chapter 10). In that demo paper, we show how for a given OLTP database, one can use weak
supervision to synthesize the required training data to train a state-of-the-art conversational agent,
allowing users to interact with the OLTP database. The approach and the web app we provide
to bundle it, allow creating such a CA both without immense amounts of training data and NLP
expertise. As a major difference to existing conversational agents, agents synthesized by our
approach CAT are data-aware. This means that the agent decides which information should be
requested from the user based on the current data distributions in the database, which typically
results in markedly more efficient dialogues compared with non-data-aware agents.

Contributions of the author: The first ideas and basic implementation of this approach were
developed in a master thesis by Marius Gassen, co-supervised by Benjamin Hilprecht, Carsten
Binnig and me. Together with Marius Gassen and Benjamin Hilprecht, I was then co-author of the
first (unsuccessful) publication attempt to VLDB 2020. Afterwards, I took the lead of revising the
paper and was thus responsible for completely reworking the manuscript, creating new graphics
and a new demo video,6 and coordinating the revision and submission process. The co-authors
Nadja Geisler, Alexander Fraser and Carsten Binnig contributed invaluable feedback. All authors
agree with the use of the publication for this dissertation.

3.3.1. Problem

Developing a task-oriented dialogue system for a given OLTP application (e.g., allowing users to
buy a movie ticket) is a daunting task because this not only requires large amounts of annotated
training data (i.e., actual dialogues between users and the system) for every application but also a
manual integration with the existing database.

For instance, creating a conversational agent for a cinema ticketing system requires training data
consisting of user utterances (e.g., “I want to reserve four seats tonight”), along with filled slots (e.g.,
6https://link.tuda.systems/CAT-video
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no_seats=4) and annotated user intents (e.g., “reserve seats” or “inform about available shows”).
These dialogues, however, are expensive to gather and annotating them is a large manual error-
prone effort which requires extensive domain-knowledge. Worse, neither the training dialogues
nor the integration with the existing database can be reused for a different domain.

Another drawback of existing approaches to build task-oriented dialogue systems is the lack of
integration between the task-oriented dialogue system and the OLTP database, which is often
the backbone of the business process. In current systems, a large amount of information must be
provided manually even though it is already implicitly available in the database (for instance the
required slots/attributes, the associated data types, the affected tables, etc.). Moreover, existing
dialogue systems learn the order and types of information to request from the user purely from
the manually created user dialogues. Not taking the data characteristics into account results in
inefficient dialogues, as we describe below.

3.3.2. Idea

The main idea is to use weak supervision to synthesize the required training data to train a state-
of-the-art conversational agent from a given OLTP database and a set of transactions (i.e., an OLTP
workload with user-defined functions) with only minimal manual overhead. We implement this
approach in a system we call CAT. Given a database and a set of transactions, the user only has
to provide a few example formulations for each intent instead of numerous annotated example
dialogues. Using a data-driven simulation, our approach generates annotated dialogues of possible
user interactions from those intents, which can then be leveraged to train a conversational agent.
This alleviates the extensive process of manually creating dialogues, which has to be repeated for
every domain and database.

To perform correct transactions based upon the interaction with the user, the conversational agent
needs to fill in correct values. To do this, it is often required to uniquely identify entities of the
database. For instance, in order to book cinema tickets, the corresponding customer ID is required.
Often the customer will not have the unique ID at hand but only information such as their name
or address. We propose a data-aware approach; i.e., one that considers the data characteristics
at runtime to (1) deal with incomplete information (e.g., a customer who cannot remember an
ID) and (2) request the most suitable information to narrow down the set of candidates as quickly
as possible. Different from existing conversational approaches which take a pure learning-based
approach to determine what to ask for, CAT uses information such as database statistics (e.g.,
selectivities). For example, once the user provided their name, the agent might ask them for the
city they live in, knowing that based on the entries in the database this is sufficient to uniquely
identify the customer ID (while another name requires a different attribute to narrow down the
options).

3.3.3. Architecture

The goal of our system is to synthesize conversational natural language interfaces for database
transactions while avoiding the shortcomings of existing task-oriented dialogue systems. To
address these problems, our approach leverages the information about a given database and a set
of transactions: this is done for training data generation with weak supervision, but also at runtime
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Figure 3.2.: Overview of our conversational agent creation framework CAT , showing both the
creation and the usage of an agent. Published in Gassen et al. [Gas+22].

to take data characteristics into account to steer the user dialogue (e.g., identifying the movie a
user wants to see) more efficiently.

For instance, a cinema could have a customer database storing the reservations for movie screenings.
A typical transaction to be made accessible using a conversational agent is the ticket booking process,
where the users have to specify their customer_id, the screening_id and the number of tickets.
In order to integrate such a task into a typical existing task-oriented dialogue system, we would
first have to model the tasks the conversational agent supports (e.g., buy a ticket) along with slots,
i.e., the required attributes for the task (e.g., the screening_id and customer_id).

All this information, however, is typically already available in the given database and the set of
its transactions (e.g., implemented as stored procedures or user-defined functions). Therefore,
the main idea of CAT is to automatically extract and leverage this information instead of asking
the user to manually specify it. Moreover, CAT then uses this information to synthesize annotated
dialogues which are needed to train the conversational agent. Hence, instead of collecting this
training data for every domain and database manually, we automate this process. Moreover, the
agent and the database are tightly integrated afterwards, and the agent can directly execute the
desired transactions without any manual overhead—in contrast to existing task-oriented dialogue
systems where a dedicated database integration would have to be developed for every domain.

This tight integration also allows us to use characteristics of the given database (e.g., data statistics)
at runtime to guide the dialogue. For instance, to identify the movie a user is interested in, the
agent asks the users for properties of the movie (e.g., genre or actors playing in the movie). In the
following, we give a brief overview of how CAT works as depicted in Figure 3.2:

Training Data Generation (Offline): In order to generate a conversational agent, we require train-
ing data for both the natural language understanding (NLU) and the dialogue management (DM)
models [ZE16]. The NLU model translates user utterances (e.g., ”I want to watch ’Forrest Gump’”)
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into annotated slots (movie_title='Forrest Gump') and user intents (ticket reservation).
For the NLU training, we generate utterances using a few base templates that are provided by the
developer. To form full sentences from these templates, the existing data in the database can be
used. In addition, we increase the variety of the natural language by using automated paraphrasing,
as we did already for NLIDBs (see Section 3.1.2). Furthermore, to learn typical dialogue flows, i.e.,
what high-level action to take next (e.g., retry a task after an abort), we generate additional training
data using the idea of dialogue self-play [Sha+18], i.e., we simulate different users interacting
with a conversational agent. CAT then uses this training data to train state-of-the-art models for
NLU and DM using the RASA open source conversational AI framework.7 More details can be found
in Section 10.3.

Data-aware Dialogues (Runtime): At runtime, the dialogue outlines created in the last step
already determine the high-level flow of the dialogue. In addition, the conversational agent has
to decide on the low-level flow, to determine which information should be requested next from a
user to uniquely identify an entity required for a task, e.g., it could decide to ask for the movie
title to identify the movie. In current approaches, this selection is usually done by learned models
operating just on the previous input by this user [Sha+18]. In contrast, in order to efficiently
narrow down the candidate movies, our approach takes information such as the selectivity of
attributes already in the database into account. In addition, we allow adding an annotation to
the database schema indicating which of the attributes are probably unknown to the customer.
For instance, even though the screening_id is very useful and ultimately required for the
transaction, the user will most likely not be aware of it and the conversational agent should thus
not request it from the user. This results in more succinct dialogues, since the agent quickly gathers
the information needed for a transaction.

In particular, the best information (i.e., a so-called slot) to request depends on (i) the probability
that the user knows a certain attribute and (ii) how much this attribute narrows down the current
set of candidates. Learning both factors end-to-end means learning the database content along
with user preferences simultaneously, and again requires a large amount of data. We thus propose
a different approach and explicitly keep track of the candidates (e.g., the screenings that match
the previous user preferences) and request the next attribute based on the data distribution of
the candidates and the likelihood that the user can provide this information. Moreover, while
existing task-oriented dialogue systems implicitly assume that the database consists of just a single
table [Sha+18], we can seamlessly integrate foreign-key dependencies, e.g., a user can provide
information about actors to narrow down the set of possible screenings via the movie relation.

Another advantage of this data-awareness is that no retraining is required in case data changes.
The updated database is simply leveraged at runtime to steer the dialogue. More details on the
data-aware dialogue steering can be found in Section 10.4.

3.3.4. Key Findings

We compared several configurations of CAT to state-of-the-art approaches for intent classification
and slot filling, using the widely used ATIS spoken conversation corpus [HGD90]. In contrast to
all baselines that require manually crafted training data, our approach only relies on synthesized
7https://rasa.com/
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training data, but still reaches comparable performance for slot filling. Moreover, on the intention
classification task, it even outperforms multiple baselines.

To evaluate the effectiveness of our data-aware slot selection policy, we compared it to static and
random selection strategies using a movie database and again the ATIS dataset. The speedup (in
terms of interaction turns) compared to a random strategy can be up to 80% for large tables with
many dimensions to join. When large amounts of data similar to the production entries are already
available at training time, the static strategy can reach a similar performance as our data-aware
policy, but will not adapt to data distribution changes at runtime. Additionally, it cannot react to
systematic problems in uniquely identifying entries of some tables (caused by data characteristics
like almost identical entries). An integrated caching strategy leads to an average response latency
of only a few milliseconds.

3.4. Discussion & Future Research

Natural language interfaces can simplify the daily routine for professional users who can use their
intuitive human language to get required data from a structured source instead of building complex
SQL queries. Furthermore, they allow people without computer science (CS) knowledge to access
and manipulate structured data. Using natural language in text and speech interfaces may be more
accessible for, e.g., elderly or visually impaired people than a graphical user interface and therefore
enable them to book a ticket for a train or an event online or at a machine without the need for
personal interaction that cannot be provided for demographic or economic reasons [AR22].

As we showed in this chapter, the underlying task of NL2SQL translation is not sufficiently solved yet.
This is also underlined by the recent BIRD challenge8 by Li et al. [Li+23]. The benchmark features
95 big databases and over 10k NL-SQL-pairs. It compares the submission accuracy on the test set
to a human accuracy on the same data, showing that even the best approaches are currently more
than 30 percentage points below the human performance of 92%. Moreover, the authors find that
zero-shot approaches using state-of-the-art LLMs only achieve an execution accuracy of 40% on
the benchmark, whereas more complex approaches combining dedicated learned components and
prompting ChatGPT [e.g., Don+23; Liu+23] can outperform state-of-the-art models for generic
NL2SQL translation. This confirms that training data is still needed for improving the quality of
NLIDBs. Furthermore, the analysis shows the importance of database values for accurate NL2SQL
translation. This is in line with our findings on the advantages of data-aware approaches we
sketched above. Our approaches can help to both generate suitable training data and provide a
database integration.

The high associated costs for querying a closed model render may render using them useless for sce-
narios requiring a low overhead. Furthermore, the typical issues (e.g., hallucination, privacy/data
protection issues, lack of explainability) of LLMs have to be taken into account. An alternative
could be fine-tuning open-source LLMs as suggested by Gao et al. [Gao+23]—which again requires
training data.

In addition to the direct usage of LLMs for NL2SQL translation, it makes sense to further evaluate
how they can be of help for components other than the translation itself in the future. Possible
directions would be the generation of additional templates for weak supervision approaches,
8https://bird-bench.github.io/
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additional paraphrasing of NL utterances, or hybrid approaches where it is possible to directly
query a LLM when the results of the low overhead model are not sufficient.

Further improvements to DBPal could be made by introducing additional preprocessing steps,
e.g., a component that maps between human-readable and abbreviated table names like the one
proposed by Zhang et al. [Zha+23].
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4. Personalized Summarizations of Text
Collections

In the last chapter, we discussed ways to democratize access when data is nicely structured in a
database. But what when this is not the case? When users are confronted with large, unsorted
text collections, maybe not even knowing what exact topics they cover?

There already exist systems for text exploration like [Glo+13] and [FG17] that allow data scientists
of varying skill levels and even novice users to interactively analyze unstructured text document
collections—however, those systems concentrate mainly on keyword searches and document
ranking.

While keyword-based search systems are important to filter down the number of relevant documents,
they still do not support users in semantically understanding the document collection. Imagine for
example a journalist who just received a large collection of documents to start an investigative
case, a lawyer who needs to screen a large collection of e-mail conversations, or fiscal authorities
trying to detect tax evasion and money laundering in leaks like the Panama Papers or the even
bigger Pandora Papers—with terabytes of data and millions of documents each, processing them is
only possible if the tax offices have suitable tools at hand.

In all these examples, an important step to better understand the collection of texts and find the
overall relation and event structure of those documents is to produce a concise textual summary
that captures most of the important information relevant to a user’s individual goal. Yet, we argue
that there is not the single information that is most relevant to all users, but each of them will have
a different focus and so should the summaries, too.
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Figure 4.1.: Web-based interface for Sherlock, allowing to mark parts of the summary as relevant
or irrelevant, and view and adapt annotations from previous iterations.

We therefore present a system to automatically generate summaries with low overhead, that is
(mainly) intended for exploration purposes (see Section 4.1). To complement this research, we
propose a way to automatically acquire additional corpora for the development and testing of
multi-document summary (MDS) systems in Section 4.2.

4.1. Personalized Summarization: Sherlock

Users like journalists or lawyers confronted with a large collection of unknown documents need
to find the overall relation and event structure of those documents. An important step for this
understanding process is to produce a concise textual summary that captures the information most
relevant to a user’s aims (e.g., degree of details or covered topics). While there is a broad range of
automatic text summarization approaches, only few of them produce different summaries targeted
at the individual user. Moreover, we want to achieve that adaption to the user with low overhead,
i.e., at low costs and without long training times.

An approach for automatic summarization that provides customization through interaction and not
by other costly actions like model fine-tuning was proposed by Avinesh P. V. S. and Meyer [AM17];
unfortunately, their approach does not scale for large corpus sizes. We leverage techniques from
database research and propose a sampling-based system that builds on their approach which allows
a real-world usage to achieve democratization.
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Publications: The work on Sherlock was mainly published in three peer-reviewed publications, of
which two are part of this dissertation: We published the vision and general idea in the extended
abstract “Benjamin Hättasch. ‘Towards Interactive Summarization of Large Document Collections’.
In: Proceedings of the First Biennial Conference on Design of Experimental Search & Information
Retrieval Systems, Bertinoro, Italy, August 28-31, 2018. Volume 2167. CEUR Workshop Proceedings.
CEUR-WS.org, 2018” (see Chapter 11). Afterwards, we created a first demo that integrated a basic
sampling approach into an existing system by Avinesh P. V. S. and Meyer [AM17] for personalized
summarization and published it as “Avinesh P. V. S., Benjamin Hättasch, Orkan Özyurt, Carsten
Binnig, and Christian M. Meyer. ‘Sherlock: A System for Interactive Summarization of Large
Text Collections’. In: Proc. VLDB Endow. 11.12 (2018)”. The creation of this demo was led by
Avinesh P.V.S. and is therefore not part of this dissertation. Finally, we created a full version of the
sampling approach and published it as “Benjamin Hättasch, Christian M. Meyer, and Carsten Binnig.
‘Interactive Summarization of Large Document Collections’. In: Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2019, Amsterdam, The Netherlands, July 5,
2019. ACM, 2019” (see Chapter 12). This includes the careful evaluation of multiple sampling
strategies and the development of a cost model for the sampling size.

Contributions of the author: I was the lead author of both publications considered here. As
mentioned above, the demo application not considered in this thesis was created by Avinesh P.V.S.
building upon a prototypical implementation in the context of a master thesis by Orkan Özyurt
co-supervised by me and the other authors of the paper. For the main publications, I was responsible
for developing and evaluating the sampling approach and writing the manuscripts. The co-authors
of the second publication, Christian M. Meyer and Carsten Binnig provided invaluable feedback.
All authors agree with the use of the publication for this dissertation.

4.1.1. Our Approach

The task of producing textual summaries from a collection of documents is a well-established task
in the text analysis community [NM11]. Despite a lot of research in this area, it is still a major
challenge to automatically produce summaries that are on par with human-written ones. To a
large extent, this is due to the complexity of the task: a good summary must include the most
relevant information, omit redundancy and irrelevant information, satisfy a length constraint, and
be cohesive. But an even bigger challenge is the high degree of subjectivity in the summarization
task, as it can be seen in the small overlap of what is considered important by different users
[AM17]. Optimizing a system towards one single best summary that fits all users, as it is assumed
by current state-of-the-art systems, is highly impractical and diminishes the usefulness of a system
for real-world use cases.

Avinesh P. V. S. and Meyer [AM17] have shown that user feedback significantly improves the
quality of the summary. However, each iteration of taking user feedback into account to create a
new summary can take from several seconds for small document collections to hours for larger
collections, since the runtime will grow exponentially with the input length, as shown in Figure
4.2 (black line). Since the customization of the summary depends on the user’s feedback, it is one
of the most important aspects to keep users involved in the exploration process. Yet this can hardly
be reached with long iteration times of multiple hours, even waiting times of minutes or multiple
seconds can already cause the user to lose interest. A previous study [LH14] has shown that even
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Figure 4.2.: Scalability of Text Summarization Models. Adapted from Avinesh P. V. S. et al.
[Avi+18].

small delays of more than 500ms significantly decrease a user’s activity level, dataset coverage,
and insight discovery rate.

We therefore propose our system Sherlock that builds on top of the research of Avinesh P. V. S. and
Meyer [AM17]. In order to provide interactive response times in each iteration of the summarization
procedure, we are using a novel approximate summarization model. The main idea of this
approximate summarization model is similar to approximate query processing in databases: instead
of looking at the complete document collection in every iteration, we only consider a sample from
the documents per iteration to compute the summary. As a main contribution, we propose a
method to select the sample size based on iteration time thresholds and evaluate multiple different
sampling strategies. As we show in Figure 4.2, that way our approximate summarization model can
provide interactive latency for each interaction loop independent of the size of the text collection
that is being summarized (yellow and red line).

Sherlock consists of two major components as shown in Figure 4.3: a web-based user interface to
collect the user’s feedback and a backend that refines the text summarization model. The backend
hosts multiple components: a document store (input docs in Figure 4.3) including the required
indexes, the summarization component that accumulates the user feedback and learns to create
summaries for every iteration as well as our approximate model to execute the summarization
process at interactive speeds.

User Interface: The web-based interface allows users to summarize a collection of textual doc-
uments in an interactive manner. A screenshot of the interface can be seen in Figure 4.1. In a
typical setup, a user would need to read all the documents and manually summarize them. In our
interactive setup, the user receives a summary, annotates all important and unimportant (parts of)
sentences, and submits them as feedback for the next iteration where a refined summary is created
by Sherlock and the user provides the next round of feedback.
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Figure 4.3.: System Overview of Sherlock. Adapted from Hättasch, Meyer, and Binnig [HMB19].

Interactive Backend: The main task of the backend is to compute the summary for each iteration
by taking the documents and the user feedback into account. In our system, we currently employ
the summarization model as presented in [AM17] which maximizes the weighted occurrence of
concepts in the summary by using an integer linear program (ILP). The first summary which is
presented to the user is based on a model without any user feedback. Afterwards, in every iteration
the summarization model is refined based on the user feedback of all previous iterations; i.e., the
user can adjust the concept weights and hence the ILP needs to be re-executed. Instead of using
the full document corpus as input, our backend uses samples of a given size, which will influence
runtime and expected quality.

4.1.2. The Approximate Summarization Model

The main idea of our approximate summarization model is to take the user feedback of the last
iteration into account, adjust the summarization model, and then return a new version of the
summary to the user. As discussed before, in order to achieve interactive response times in every
iteration, the approximate summarization model takes a sample of the overall document collection
as input. The sampling strategy and the sample size have a big impact on the performance and the
quality of the summarization model. More details can be found in Section 12.3.

Sampling Strategy: We suggest an importance-based strategy (called TOP-K as well), that takes
the importance of a sentence into account when sampling from the underlying document collection
(i.e., more important sentences are sampled with a higher likelihood). Our intuition is that
sentences with a higher information density (containing more concepts rated as important) are
more relevant to the user. As concepts, we use bigrams as suggested by Avinesh P. V. S. and Meyer
[AM17]. We initialize the weight of a concept using the document frequency; i.e., the number
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of documents in the collection the concept appears in. The information density of a sentence is
the average weight of all concepts in the sentence. Based on the user feedback, we increase and
decrease the weights of the concepts, yielding refined information density scores. In every iteration,
we induce a sentence ranking and select only the top-k sentences based on the information density.
The strategy can be further extended by first clustering the input sentences based on sentence
embeddings [Con+17], and then independently sampling from these clusters to create more
widely-focused summaries. We call this variant STRATIFIED. The sampling strategy introduces
some computation overhead but allows exploitation of collected feedback already in the sampling
process. Other evaluated strategies can be found in Section 12.3.

Sample Size Estimation: Our sampling strategy requires choosing a sample size. This parameter
should not be selected arbitrarily, since a small sample might not contain relevant sentences, but
a big one will increase the runtime and might cause the user to stop giving feedback before the
desired quality level is reached.

At the core of our system, as discussed before, an ILP solver is used that maximizes the accumulated
weight of all concepts in the summary for a given summary length (i.e., consists of sentences mainly
containing the highest-rated distinct concepts based on the user feedback). In order to set the
sample size, we use a cost model to estimate the response time of the system. The main intuition
behind our cost model is that each sentence in the input to the ILP produces additional constraints
that have to be respected for finding the summary in the next iteration by the solver. Fewer
constraints make it easier for the solver to find a solution and therefore reduce the computation
time. The cost function thus only depends on the sample size (which directly translates into the
number of constraints) but not the summary length, since this is only present as a single constraint
in the ILP. Hence, different summary lengths with the same amount of input concepts will still
yield similar runtimes of the summarization system.

4.1.3. Key Findings

First, our experiments (see Section 12.4.1) confirm that our cost function closely resembles the
actual runtime of the ILP solver. With just a few calibration runs, it can therefore be used to derive
the maximum sample size k such that the runtime stays below a chosen interactivity threshold
(e.g., 500ms).

As discussed before, the sample size should not be purely selected based on the estimated runtime,
but should be big enough to allow for a certain quality of the result. We therefore compared the
quality (i.e., similarity to (human-written) gold summaries) of our system and the original one for
a wide range of artificial and human-written datasets, using different sample sizes and amounts of
feedback (see Section 12.4.1 for the details). As a result, we see that the quality of summaries
produced with only 10% sample size is nearly the same as for the full data and the mean quality of
the system working on a quarter of the input data is indistinguishable from the mean quality of the
original system while the length of each iteration is only about 20% of the one from the original
system. This knowledge can be used to guide a user that is asked to specify a computation budget.

Additionally, one should make sure the sample contains enough sentences to fill the full summary
and the summarizing model is still able to choose from different sentences, even if that requires
slightly more runtime than advised by the cost function.
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Figure 4.4.: Mean ROUGE2 scores for running the system for 10 iterations with our two sam-
pling strategy variants compared to random sampling as baseline on our summaries
(MIXED, RARE and FREQUENT from left to right) as well as real data (rightmost plot,
original DUC06 & DUC07). 380 different summaries were used per plot. ROUGE2
scores are always between 0 and 1, higher scores are better. Adapted from Hättasch,
Meyer, and Binnig [HMB19].

Finally, we want to show that our complex sampling strategies provide an advantage over trivial
approaches like random sampling. To do this, we also considered different kinds of summaries.
All details can be found in Section 12.4.2.

There are two important dimensions of textual summaries that have a major impact on how well a
sampling strategy works: The first dimension is which concepts are included in a summary (i.e.,
frequent ones or rare ones). The second dimension is whether the summary is topically focused
(for users who are interested in particular details) or if it contains a wide range of concepts (for
users who want to get an initial overview).

In order to evaluate our sampling strategies on these different summary types, we artificially
created different summaries that follow the above-mentioned properties from the existing DUC06
[DUC06] and DUC07 [DUC07] corpora. That way, we can control the content of the summaries
and make sure they still have the syntactic properties and word distributions of a real text. We
create three categories: summaries with concepts that appear frequently (called FREQUENT),
summaries with only concepts that are rare (called RARE), and ones with a random mix of rare and
frequent concepts (called MIXED). Furthermore, we use the summaries included in the original
DUC corpora. All gold summaries have a length of about 250 words.

As we show in Figure 4.4, both variants of our sampling strategy clearly outperform random sam-
pling; thus both can be used to generate high-quality summaries in only a few iterations. Moreover,
as expected, both strategies work better on the summaries of types MIXED and FREQUENT and
are less effective on summaries of type RARE since the sampling strategies prefer more important
concepts over less important ones.

Our system also works reasonably well on the original summaries from the DUC06 and DUC07
corpora, but the scores are much lower on average (see right-most plot of Figure 4.4). Yet this is
not caused by the algorithm or sampling strategies, but by the fact that the gold summaries of
the DUC corpora are abstractive and not extractive ones (i.e., summaries are not composed of full
sentences from input documents but newly written using other words). This is in contrast to the
summaries used for the left three plots of which are extractive, leading to a higher possible overlap
between the reference summary and the summary produced by our system.
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Our experiments show that our system can indeed reach a speedup compared to the original one
that allows for interactive usage. Furthermore, the quality of the resulting summaries will not be
negatively influenced by sampling.

4.2. Evaluation: Fandom Corpora

While working on Sherlock, we noticed that there is a lack of high-scaled datasets for evaluation
of MDS systems. Existing resources are mostly limited to the news genre [e.g., Her+15; NGV12;
PXS18] and a handful of shared tasks [e.g., DUC06]. The news corpora have been used successfully
for training a wide range of neural architectures [e.g., GMG18; GDR18; NZZ17; NCL18; PXS18;
SLM17], but are limited to texts that are typically too short to qualify as general-purpose summaries.
For example, CNN/DailyMail provides only bullet-point summaries, Gigaword contains headlines
as the summary of an article’s first sentence, and the NYT corpus pairs news articles with their
abstracts. To break new ground in the automatic summarization of other genres, we require new
corpora that can cover other text genres and summary types on the one side, but are large enough
to train neural networks on the other side. However, manually creating corpora is hard, since they
require human-written (gold) summaries of text at a large scale. Acquiring them is expensive and
additionally requires extensive quality assurance measures, especially when crowd-workers are
employed for that. Furthermore, the desired properties (e.g., the size, or having summaries for a
wide range of topics vs. a single domain) might differ across applications. Thus, to accompany our
research on (personalized) summarizations, we created a novel approach to automatically build
summarization corpora from existing text collections.

Publication: We published this work as “Benjamin Hättasch, Nadja Geisler, Christian M. Meyer,
and Carsten Binnig. ‘Summarization Beyond News: The Automatically Acquired Fandom Corpora’.
In: Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille,
France, May 11-16, 2020. European Language Resources Association, 2020”. In this paper, we
present a novel automatic corpus construction approach to tackle issues mentioned before, as
well as three new large open-licensed summarization corpora based on our approach that can be
used for training abstractive summarization models. We provide a ready-to-use framework that
implements our automatic construction approach to create custom corpora with desired parameters
like the length of the target summary and the number of source documents from which to create
the summary. The main idea behind our automatic construction approach is to use existing large
text collections (e.g., thematic wikis) and automatically classify whether the texts can be used as
(query-focused) multi-document summaries and align them with potential source texts. We show
the usefulness of our automatic construction approach by running state-of-the-art summarizers on
the corpora and through a manual evaluation with human annotators.

Contributions of the author: I was the lead author of the publication and thus responsible for de-
veloping and implementing the approach, conducting the experiments, and writing and submitting
the manuscript. The co-authors Nadja Geisler, Christian M. Meyer and Carsten Binnig contributed
invaluable feedback. All authors agree with the use of the publication for this dissertation.
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Figure 4.5.: Fandom Corpus Construction Pipeline. Adapted from Hättasch et al. [Hät+20a].

4.2.1. Our Approach

The central idea of our approach is using existing large text collections (e.g., thematic wikis),
automatically classifying whether texts can be used as (query-focused) multi-document summaries,
and then aligning them with potential source texts.

As an important first step for developing such an automatic construction approach, we use the
Fandomwikis (formerly known as wikia). They currently consist of more than 385,000 communities
on different franchises (movies, television series, games, books, and more) with over 50 million
pages in total. The sizes of the different communities range from only a few pages to well over
100,000 content pages. Most of those wikis use an open Creative Commons Attribution Share-Alike
license, allowing us to use and redistribute their articles.

The Fandom wikis often contain articles describing the same topic in multiple levels of detail—there
are articles giving a general overview of a character, event or place as well as articles focusing on a
single aspect of it (e.g., a relationship, scene or time) in detail. Those articles normally reference
each other through links. Our main idea is to automatically identify such overview articles or
sections that qualify as a summary and align them with the potential source documents (i.e., the
detailed articles) if the supposed alignment quality is high enough.

This allows to generate multiple different corpora with user-defined properties. For example, it is
possible to vary the target length of the summaries, but also the difficulty of the summarization
task, which we control by the ratio between the sizes of summary and source documents. The
corpora can be constructed based on a single community or cover a broader range of topics by
merging contents from multiple wikis.

The essential stages of our approach to create topic-specific multi-document summarization corpora
are: (1) parsing and cleaning of input documents, (2) selecting potential candidates for abstractive
summaries from those input documents and assigning summary candidates to them, and (3)
choosing the final set of abstractive summaries based upon a newly developed quality threshold
and splitting the selected summaries into training, validation, and test set if needed. An overview
can be found in Figure 4.5.

In the first step, wiki dumps are processed and non-content pages are automatically discarded
based on metadata. Afterwards, the contents are preprocessed: We split the pages into sections
including their respective titles, extract the links between pages and convert the content into plain
text. This includes removing link texts, tables, templates and other kinds of wiki markup. The
second and third step, which are the core of our automatic construction approach, are implemented
in a general way, to allow transferring it to sources different from (fandom) wikis, too. We will
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now give an overview on the underlying ideas of the two core steps, more details on them as well
as the first step can be found in Section 13.2.

Finding Summary Candidates: The identification of summary candidates is the most crucial
step for creating high-quality corpora automatically. At a high-level, a corpus that is useful for
abstractive summarization should group a set of documents with at least one possible summary of
these documents. In addition, many of the automatic summarization approaches take a “query” as
input that represents the information needs of the user, i.e., describes what aspects are important.

Hence, in this step, we aim to select triples (i.e., a set of source documents, a summary, and a
query) that represent good candidates from a given cleaned data dump for the final corpus. For
both the source documents and summaries our pipeline uses sections of the wiki articles since they
are coherent and self-contained portions of text. As a query describing the section, we combine the
title of an article with the section title, e.g., “Luke Skywalker: Birth”.

As a pre-filtering step to identify sections that qualify as possible summary candidate triples, we
use the following heuristics:

1. Only sections with a length between certain threshold values are considered as summaries.
These thresholds can be adapted based on the task at hand. More details on the parameter
selection can be found in Section 13.2, where we also list the parameters used to create the
three sample corpora that we published.

2. We discard summary candidates having only few linked documents (i.e., potential source
documents). Again, the number of source documents is a user parameter that will influence
the difficulty of the summarization task.

3. After applying these purely statistical heuristics, we compute the content alignment between
summary and source documents as the overlap between sources and summary candidates.
On that score, a threshold will be applied; the lower the value, the more candidate summaries
and source documents will be selected but the difficulty increases. We use the number of
shared bigrams to approximate the similarity. This overlap shows howmuch the summary and
source texts contain similar concepts, but it can only be a first hint whether the information
in the sources is sufficient to re-create the abstractive summary given a particular user-query.

This step will result in a much shorter list of candidates for triples, but the quality still varies
drastically: for some of them, the summary is indeed a high-quality summary of the extracted
documents complying with the query, while for others it is hardly possible to find the information
of the summary in the source documents. Hence, in a final step, we need to identify the usefulness
of each triple and select only those which exceed a predefined quality threshold.

Choosing the final set of summaries: To check whether the information in the sources is sufficient
to re-create a given abstractive summary, we try to reconstruct its contents by extracting matching
snippets from the source documents. This can be done automatically and will result in a quality
score for each alignment between summary and source texts. As we will show in Section 4.2.2,
this computable score corresponds to a human quality assessment. Only texts with a certain score
on this automatic reconstruction approach will be considered a valid summary, and are included in
the final corpus.
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For the automatic reconstruction, which can be seen as extractive summarization with a known
target, we use the base idea from our summarization approach Sherlock as presented in Section 4.1.
The procedure is modelled as an ILP. The main intuition is that the ILP extracts the sentences with
the most important concepts from the source documents to form a summary within a maximal
length. To model the importance of sentences, we weight concepts according to their frequency in
the human-written text (i.e., the selected candidate summary from the Fandom wiki). By doing
so, we reward the system for a summary that contains many concepts of the abstractive reference
summary. We use bigrams as concepts and ignore those consisting solely of stopwords. The ILP
will receive a high score when the extractive summary contains many concepts from the reference
summary, and hence it is possible to construct a similar summary from the source texts.

In our publication, we used two different optimization objectives for the ILP. Both approaches
use only syntactical features and no semantic ones (e.g., embeddings). They do not require time-
intensive training and can be computed within a few seconds. We will print one variant here, and
refer for details and the other variant to Section 13.2):

max
∑︂
i

wici

∀j.
∑︂
j

ljsj ≤ L

∀i, j.sjOccij ≤ ci

∀i.
∑︂
j

sjOccij ≥ ci

∀i.ci ∈ {0, 1}
∀j.sj ∈ {0, 1}

where ci refers to the individual concepts and L to the maximal summary length (which we set
according to the selected range of the target length for the abstractive summaries). Moreover,
sentences are referred to as sj with length lj and Occij meaning that concept ci occurs in that
sentence.

This ILP formulation intends to maximize the overall sum of weights for distinct covered concepts,
while making sure that the total length of all selected sentences stays below a given threshold and
the weight of a concept is only counted if it is part of a selected sentence.

With both variants, it is possible to create high-quality corpora, as we will now show.

4.2.2. Analysis of the Corpora Created with our Framework

Properties

In the previous section, we have presented our new approach for automatically constructing
summarization corpora. Using this approach, we have created three different sample corpora (one
for Harry Potter, two for Star Wars) using the Fandom wikis as input. The resulting corpora have
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unique properties of these corpora which differentiate them from other available corpora and, thus,
are a valuable contribution on their own.

First, our corpora do not feature news texts with their typical peculiarities (e.g., all important
sentences at the beginning) but a mix of encyclopedic and narrative (story-telling) texts. In contrast
to other sources, in Fandom wikis there are not a few dozens but thousands of articles about a
certain topic. If the corpus is constructed from a single community, all articles are from the same
domain (i.e., a closed world). However, it is also possible to utilize the common structure of the
different communities and build a corpus containing texts of different domains, e.g., to train more
general summarizers.

Additionally, new corpora are fast and cheap to construct, with just a minimum of manual work
needed. There are many communities with (ten)thousands of articles, and the wikis are still
growing. Moreover, communities are available in many different languages, hence this approach
can be used to create corpora for various languages (e.g., one of our sample corpora is in German).
The Creative Commons License of the texts allows us to offer the resulting corpora for download
instead of only publishing tools for re-creating the corpora. This is in contrast to many existing
news-based corpora, which depend on crawling and thus the availability of external resources.

Last but not least, the abstractive texts in our corpora are of high quality since they are written by
volunteers with intrinsic motivation and not by poorly paid crowd workers rushing through the
task.

Statistics

Detailed statistics of the created corpora can be found in Section 13.4. The sizes of the summaries
match traditional multi-document summarization corpora like the DUC challenges. The average
number of source documents per summary lies between 19 and 25 documents, again similar to
existing corpora. The average length of the source documents varies between the communities and
thus corpora, influencing the hardness of the task. The size of the final corpus varies depending
on the size of the Fandom community and the quality threshold. For our sample corpora, it
ranges from 250 topics, which is similar to the DUC’06 dataset used for traditional summarization
approaches, to 1,300 topics, which is a size that can be used to train deep learning approaches.

Additionally, it is possible to combine topics from multiple communities into a single training
corpus. This has an effect on the domain distribution and topic heterogeneity as well. A corpus
constructed from a single community covers topics from only one domain, with the main difference
between documents being whether they are about an event, a place, a being, or a thing. Mixed
corpora may contain texts from totally different domains (e.g., about a movie, a video game and
baking recipes). The heterogeneity of writing styles, levels of detail, narrating styles and more,
comes from the nature of the wiki itself and is inherently contained in all the corpora.

In summary, it can be seen that, from a statistical perspective, it is possible to generate corpora
with various properties matching typical needs of current (multi-)document summarization tasks.
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Figure 4.6.: Human agreement with automatically generated extractive summaries for concept-
based creationmethod. Average values for the sentences of 39 annotated documents,
possible values between 0 and 3 (best). Published in Hättasch et al. [Hät+20a].

Quality Evaluation

Besides some task-depending parameters like the target length of the summaries, the size of
the corpus on the one hand and its quality on the other hand will be strongly influenced by the
threshold applied to the ILP objective score for selecting the final set of summaries. This holds
for both methods, since there is a correlation—summaries with a high score on one method will
achieve a high (but slightly different) score with the other ILP as well, as we show in Section 13.4.

The correlation justifies using either of the twomethods as a quality indicator. However, the question
of how the quality of the summary really correlates to the score of the extraction remains. To assess
this, we asked human annotators to evaluate the quality of 39 equally distributed summaries. We
asked them to decide for each sentence in the human abstract if it is covered by the extractive
summary (0) not at all, (1) partially, (2) mostly, or (3) fully. The human decision is averaged for
the full summary and correlated to the score of the extraction. The results can be found in Figure
4.6 for the concept-based approach. For all details of the experiment and the evaluation of the
second approach, see Section 13.4. There you will also find a sample of a human abstract and
the corresponding extractive summary, to intuitively demonstrate that extractive summaries are a
good proxy to judge the quality of source documents for abstractive summarization. It can be seen
that a higher ILP score does indeed correlate with a better human evaluation. Based on this, we
have chosen the ILP-thresholds for the selection of the summaries.

As the final step of our evaluation, we now want to show the quality of the alignment of a summary
and its source texts (i.e., how well the summary can not only be reconstructed from the source texts
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Systems
Harry Potter Star Wars (en) Star Wars (de)

Candidates Selected Candidates Selected Candidates Selected

Luhn 0.0308 0.0365 0.0523 0.0560 0.0357 0.0412
LexRank 0.0729 0.0881 0.1049 0.1083 0.0784 0.0849
LSA 0.0421 0.0545 0.0533 0.0584 0.0512 0.0624
KL 0.0528 0.0655 0.0808 0.0780 0.0524 0.0617
ICSI 0.0360 0.0419 0.0423 0.0496 0.0353 0.0412

UB1 0.1744 0.2885 0.2341 0.4115 0.3354 0.5811
UB2 0.2609 0.3746 0.3050 0.4726 0.3847 0.6164

Table 4.1.: Average ROUGE-2 values for different baselines on all candidates as well as the subset
of summaries selected in the final step with the sentence-based approach and a
minimum objective score of 50 for each of the three sample corpora. Values between
0 and 1, higher is better.

but really summarizes them with regard to a query). We use several baseline summarizers, namely
TF*IDF [Luh58], LexRank [ER04], LSA [SJ04], KL-Greedy [HV09], and ICSI [GF09] to evaluate
this. Additionally, we apply the best scoring model combination for extractive summarization by
Kedzie, McKeown, and Daumé III [KMD18], a combination of a Seq2Seq model as extractor and an
Averaging Encoder. A short description of all these approaches can be found in Section 13.4. The
goal is to show that the quality of the automatically created corpora is high enough that state-of-the
art summarizers can perform reasonably well on those corpora—but that the task is on the other
hand not too trivial, thus the corpora will be of value for training and benchmarking.

For the assessment of summary quality based upon a reference summary, we compute and report
the ROUGE metrics. Owczarzak et al. [Owc+12] show that these metrics strongly correlate with
human evaluations of this similarity. In addition, to judge the quality of the baselines, we also
computed the upper bound that an extractive summarizer could achieve in the best case. An
extractive summarization system normally cannot re-create the human-written abstractive text
exactly, since the abstractive sentences differ from the sentences of the source texts that can be
extracted. Hence, the best overlap between an abstractive and the best extractive text is usually
below 100%. To take this into consideration, we compute and report those upper bounds for
extractive systems, as suggested by Peyrard and Eckle-Kohler [PE16] (more details in Section
13.4).

We benchmark all three corpora with both extraction methods and a quality threshold of 50. Table
4.1 shows the benchmark results of all candidates without the last filtering step compared to the
results for the selected summaries for the three sample corpora. One can see that the average
scores for all systems are higher on the selected summaries, proving that these are, on average,
better pairs of summary and source documents. However, in relation to the upper bounds (UB1
and UB2), even the best performing baseline (LexRank) can only reach one third to one fifth of the
upper bound on ROUGE-2 (for ROUGE-1 and SU4 it is at least half or better).

Training multiple sequence-to-sequence models with the training data from the corpora (see
Section 13.4 for detailed results) leads to different results, e.g., depending on the amount and
length of the source documents, the linking style of the wiki, and the overall size of the training
data set. A combined corpus with summaries from different domains can help to handle the lack
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Figure 4.7.: ROUGE2 score distribution for running both our original system and the variant with
separate feedback on the datasets described before. The second variant reaches the
same average scores with fewer iterations. Scores between 0 and 1, higher is better.

of training data, but we find that a specialized model will outperform this more general model
when there is enough training data available.

The results reflect our findings from previous research, e.g., on Sherlock (see Section 4.1), and thus
we believe that the quality of our automatically constructed corpora is on par with the manually
created ones used in previous evaluations. Moreover, the fact that state-of-the-art summarizers
can only reach one third to one fifth of the upper bound on ROUGE-2 also emphasizes that multi-
document summary is still a challenging task in general and needs further research, which we
hope to stimulate with publishing this benchmark approach.

4.3. Discussion & Future Research

Personalized and focused summarizations are an important tool to get an overview of complicated
and large topics. A real world example can be found in a pilot project called “Vermerkomat” of
the State of Baden-Württemberg, Germany. It prepares customized information collections for
politicians and ministry staff such that they can take informed decisions [Het23].

Our experiments show that Sherlock can be used for such personalized extractive summarization. A
clearly visible adaptation to the user’s focus is reached with merely a handful of rounds of feedback
(5-10), even though our system works without a learned model and hence without training data,
and with execution times of only seconds on a CPU. However, one can see that the quality usually
does not substantially improve further after some iterations. We find that this is often caused by
the system converging to a local optimum; this happens when the ILP solver only incorporates
sentences into the summary it already got (positive) feedback on. The user can then not give new
feedback, and further iterations will always produce the same summary.

As follow-up work to the state published, we therefore started testing a separation of the selection of
sentences for the summary and for feedback. First evaluation results are promising: We displayed
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additional sentences for feedback in place of sentences where more than half of the concepts
already received feedback. As shown in Figure 4.7, this leads to better quality in shorter time. The
average quality that was before reached after 10 iterations is now already achieved with 8 rounds
of feedback. Afterwards, the quality improves further. In the future, we want to investigate that
more thoroughly, and, inter alia, evaluate different strategies to select the sentences for feedback.

Another interesting direction would be extending the feedback process with language models:
by representing concepts additionally in an embedding space, the system could automatically
distribute weights to unseen concepts based upon the distance in the embedding space, and thus
profit from additional information with the same amount of user interaction.

Finally, one could create a hybrid approach where our approach is still used to create an extractive
summary, but this is then refined to an abstractive summary using an large language model (LLM)
as suggested by Ghadimi and Beigy [GB22]. This would combine the advantages of both directions:
the efficiency and low costs of our system is leveraged, and the costs for the LLM prediction stay
low, too, since it only needs to process the summary and not all source documents. The LLM could
then perform semantic deduplication such that our system can incorporate more concepts in its
summary without increasing the amount of text the user has to read.

For evaluating summarization approaches, recent advantages for better text comparison like ROUGE-
SEM [Zha+24] might be useful. They might help to evaluate the performance of summarization
systems more realistically and therefore lead to more targeted enhancements.
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5. Information Extraction & Integration

The quality of decisions is directly influenced by the available data and the ease of access to it.
Important decisions should thus be made based on a holistic view using all available data. However,
data is often scattered across different heterogeneous sources and may additionally not be in a
format that allows to draw direct conclusions from it. Textual representations might be useful to
get an overview, but many decisions require quantification and structured aggregation. It might be
needed to compute results based on scattered information to create value and derive knowledge
from it. This requires structured representations of the information, e.g., in tabular form.

However, for many tasks, there is no existing database that contains all required information.
Source data might exist in structured form, but not yet at the same place, e.g., distributed in
separate databases of two formerly separate companies that are now merging. Or it might not
even be present in structured representation yet, but only as text. In this part of our research, we
will therefore develop approaches to automatically integrate or extract information into structured
representations. Deriving these structured representations customized to the user’s (information)
needs can be the first required step for making wise decisions—either for a task itself or to choose
how to continue explorations and investigations.

5.1. Applying Embeddings to Information Integration: It’s AI Match

As a first step towards customized representations, we therefore investigated how existing rela-
tional databases with different schemata can be integrated with low overhead using pre-trained
embeddings. This is not only relevant for many data science projects that need to combine data
from different independent sources, but also within companies, where data typically resides in
different systems. Data Integration can help to mitigate these issues since it allows creating a
global view over independent data sources. To accomplish that, semantic correspondences between
elements of these different schemata have to be found.
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Publication: We published this work as “Benjamin Hättasch, Michael Truong-Ngoc, Andreas
Schmidt, and Carsten Binnig. ‘It’s AI Match: A Two-Step Approach for Schema Matching Using
Embeddings’. In: 2nd International Workshop on Applied AI for Database Systems and Applications
(AIDB20). In conjunction with the 46th International Conference on Very Large Data Bases, Virtual,
August 31 - September 4, 2020. Virtual, 2020” (see Chapter 14). In this paper, we propose a novel
end-to-end approach for schema matching based on neural embeddings. The main idea is to use a
two-step approach consisting of a table matching step followed by an attribute matching step. In
both steps, we use embeddings on different levels—either representing the whole table or single
attributes. Our results show that our approach is able to determine correspondences in a robust
and reliable way and—compared to traditional schema matching approaches—can find non-trivial
correspondences.

Contributions of the author: I was the lead author of the publication. A first prototypic im-
plementation of the approach was implemented by Michael Truong-Ngoc in the context of his
master thesis, co-supervised by the other authors and me. My tasks consisted of refining the final
approach, selecting the experimental design of the publication, and conducting or confirming the
necessary experiments, literature research, and writing the manuscript. The co-authors Michael
Truong-Ngoc, Andreas Schmidt, and Carsten Binnig contributed invaluable feedback. All authors
agree with the use of the publication for this dissertation.

A critical step in data integration is schema matching, which aims to find semantic correspon-
dences between elements of two schemata. Traditionally, this was done by experts with a good
understanding of the semantics of the data [Hul97]. However, modern schemata are becoming
larger and more complex, making manual schema matching both more time-consuming and more
error-prone [RB01]. In order to reduce the manual effort involved in schema matching, many
solutions for the automatic determination of schema correspondences have already been developed
[Che+12; DR02; Geo05; LN07; MIA17; NHN19; PKT09; Pin+15; RB01; SMJ19].

A major problem of many automatic schema matching approaches is, however, that they fail if
the semantic similarity is hard to detect. For example, instance-based column matchers typically
fail to match columns that contain disjoint but semantically similar values such two tables with
different street names or even worse the same content in different languages (e.g., French and
English). Another example are name-based matchers that rely on sources such as WordNet to
identify column matches: while these approaches can detect hard-to-match cases (such as columns
that use synonyms as names), they fail if this knowledge is not encoded in the resource. A detailed
analysis of existing approaches and their shortcomings can be found in Section 14.2.

5.1.1. Our Approach

To bridge the semantic gap when integrating data from different sources, we propose a novel
end-to-end approach for schema matching based on neural embeddings (see Section 14.3 for
explanations of how embeddings can be constructed and used for measuring similarity). While
neural embeddings have already been used for individual tasks of schema matching (i.e., table or
attribute matching), we suggest a new holistic approach that uses neural embeddings on different
levels to combine table and attribute matching. To be more precise, in a first step, we use neural
embeddings to match the elements of a schema on the table level. For each table in the target
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Figure 5.1.: End-to-end process for schema matching, consisting of two steps (table matching
and attribute matching). In the first step, possible matches between the tables are
produced either on the basis of the available schema information (SCHEMA BASED),
or on the basis of the instances (INSTANCE BASED) of tables or using both together
(COMBINED). Optionally, after the first step, a user can confirm or reject possible table
matches. For the next step, matches between the individual attributes of the remain-
ing table pairs are determined. This can be done using table and attribute names
(NB_MATCHER), natural language comments in the database schema (CB_MATCHER),
or instances of a table (IB_MATCHER). Either thresholding or ranking can be applied to
the resulting similarity values to determine the final matches. Adapted from Hättasch
et al. [Hät+20b].

schema, we propose either all tables from the source schema where the similarity is above a
certain threshold or the n matches with the highest similarity. In the second step, the system
then determines suggestions as to which attributes from the corresponding tables fit together.
In addition, after the first step, a user can optionally review and select those table pairs that
should be kept for the second step. This holistic approach allows our approach to find non-trivial
correspondences such as those discussed before. An overview of our approach can be seen in
Figure 5.1, we will now give a short overview of the two steps proposed.

Table Matching: Two general approaches are possible here: First, the schema information can
be used in the form of table name and attribute names. Tables with semantically similar schema
information are probably used to store similar content. Second, exactly these contents of the tables
can be examined: we can use the contents of each table to compute embeddings for the tables
(either based on all attributes or a subset of it). These embeddings can then be compared to other
embeddings to find possible (partial) table matches. Since the candidate pool for this comparison is
a cross product of the attributes of all tables which we wanted to avoid with the two-step approach
and the calculation of the data embeddings can be expensive to compute, a combined approach
is advisable: first the number of table pairs to be examined is reduced schema-based, and then
the candidate pool is further reduced using an instance-based approach. For optimization, some
intermediate results of the table matching can be stored for the attribute matching step following
afterwards. More details on our table matching procedure can be found in Section 14.5.

Attribute Matching: In this step, we only use the table candidates that qualify based on table
matching, as discussed before. For the attribute matching, we can again use schema or instance
information, analogous to table matching. If no further auxiliary information (e.g., strict type

57



annotations) is available, all attributes of a source table must be compared with those of the target
table. We again propose two different types of matchers: Name-based matching uses the table
information such as table name and attribute names, as well as available comments. Instance-
based matchers inspect the contents of the columns to find attributes with semantically equivalent
instances. We explain our attribute matching procedure in further detail in Section 14.6.

5.1.2. Matching Strategies & Key Findings

Gromann and Declerck [GD18] have shown in their investigations that for aligning ontologies
better results can be achieved with word embeddings than with traditional string comparison
methods. We wanted to investigate whether this also holds for matching relational databases.
Furthermore, we examine the use of embeddings that can dynamically generate vectors for each
input, thus avoiding out-of-vocabulary errors and not requiring explicit handling of multi-word
expressions.

We conducted an extensive series of experiments for different strategies and combinations of
strategies for both steps that can in detail be found in Section 14.5 (table matching) and Section
14.6 (attribute matching). The experiments were carried out on the English Mondial DB,1 the
German Terra DB,2 five XDR schemes3 for customer orders (CIDX, Excel, Noris, Paragon and
Apertum), the OAEI Benchmark,4 two film datasets,5 and the Adult dataset.6

Step 1: Table Matching

For computing table similarity using a table embedding that relies on schema information, we
represent each table by a vector for the (equally weighted) combination of table name and all
attribute names. The representations are determined using the pre-trained Google USE [Cer+18]
model. We show that with such multilingual embeddings, cross-lingual table matching is possible,
where purely syntactical approaches will mostly fail.

A qualitative analysis (see Section 14.5.1) of pure schema-based table matching shows that the
reason for low precision values at lower thresholds is probably due to similar schematic information
in the different tables. For example, almost all tables contain the attribute name in slightly modified
form. Nevertheless, the experiments show that if the attributes are sufficiently unique, it is possible
to determine schema-based table correspondences with embeddings.

Alternatively to only using schema information to compute embeddings, we can also use instances
to compute table embeddings. Even with well-existing schema information, additional instance
information can help to further increase matching accuracy [Do05]. Studies show that traditional
methods can even achieve better results with instance-based matching than with name-based
matching (depending on the quality of the instances) [LN07].
1https://www.dbis.informatik.uni-goettingen.de/Mondial/
2https://www.sachsen.schule/~terra2014/index.php
3https://dbs.uni-leipzig.de/bdschemamatching
4Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/2009/benchmarks/
5https://github.com/AhmedSalahBasha/schema-matching/blob/master/imdb.csv and https://
github.com/AhmedSalahBasha/schema-matching/blob/master/rotten_tomatoes.csv

6http://archive.ics.uci.edu/ml/datasets.html
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Figure 5.2.: Instance-Based TableMatching – The similarity of tables is inferred from the averaged
similarity value for each attribute correspondence. Adapted from Hättasch et al.
[Hät+20b].

In instance-based matching, a distinction is made between horizontal and vertical matching
[LN07]. Vertical matchers compare column contents of individual attributes and infer attribute
correspondences, while horizontal matchers attempt to identify duplicates (i.e. two or more
representations of the same object) between two schemata.

We propose an approach for vertical schema matching that uses embeddings to represent the
entire content of a column by a single vector and then compares them with each other (see Figure
5.2). Since we aim to evaluate (word) embeddings, we only consider string attributes here. If the
resulting vector representations for attributes are sufficiently similar, an attribute correspondence
can be assumed.

Such a column vector could naïvely be constructed by averaging the vector representations obtained
from a pre-trained model of all instances, analogous to the sentence embedding approach from
Arora, Liang, and Ma [ALM16]. However, this approach assumes that all instances are equally
important. Analogous to stopwords in classical natural language processing (NLP) approaches,
there may be instances that contribute less to the semantic meaning, for example placeholders like
not-in-universe, unknown, NONE etc. Such noise instances [Dil19] may dominate the representation
if no countermeasures are taken. The averaging approach also ignores the order of instances, but
these are usually irrelevant to the semantic meaning of an attribute [Geo05].

The aim of our approach is therefore to combine instances to form a single vector representation for
attributes that most closely reflects the semantics of the attribute, using frequency values but also
relativizing them if necessary (to avoid statistical bias [Mug02]). Sampling based on frequency
values can be used for this purpose. At the same time, however, the frequency of an instance is not
a clear indicator of whether the information is relevant or not: if not applied carefully, sampling
might amplify the noise and thus de-emphasize the representation.

We evaluated three sampling methods:

Distinct Sampling: Ignore duplicates when generating the combined representation. This might
lead to information loss if the instances are not equally distributed.

N-Random-Sampling: Take n random instances, sampled with the same probability over the
distribution in the column. this leads mostly to a balanced sample if the sample sets are
large enough so that the column is well represented, and is considered the safest way to
counteract a statistical bias in the resulting subset [Jaw12]. N-Random-Sampling can also
be used to validate the semantic representation of a column with word embeddings: for this
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purpose, sample sets containing randomly selected instances taken from the column are
compared and should have a cosine similarity close to one.

N-Most-Common Sampling (with distinct sampling): Select the n most frequent (distinct)
instances to compute the common representation. This method will discard rare values and
ensure that even frequent placeholders will only be included once in the representation. Due
to the computation overhead, this method is only beneficial if there are certain instances
that occur considerably more frequently than others.

After a representation has been found for the individual attributes, all attributes of the possible
source and target table must now be compared to each other. Depending on the task, a user can
tune different parameters for that—e.g., to choose whether tables should only be matched when
they contain mostly the same types of data, or when one is more fine-grained than the other, too.
Different versions of aggregated scores over whole tables can then be used to find full or partial
matches.

Our experiments (see Section 14.5, Experiment 2) show that our approach works fine for an
interactive approach, where the system pre-filters potential matches and the user then confirms
the correct match from a short list of possible table pairs. In our experiments, filtered lists of an
average length of 5 entries will in about 75% of the cases contain the correct correspondence. A
qualitative analysis shows that the representation of columns containing abbreviations or artificial
IDs often resemble each other. At this point, an additional syntactical comparison for exact matches
could help to distinguish between them. A combination of schema- and instance-based matching
strategies can be used to reduce the necessary amount of computation, since the runtime of
instance-based matching will scale quadratically with the number of attributes and additionally
depends on the number of instances.

The experiments show that the described procedure can be used to find correspondences that
would not be recognized by syntactic matchers without, e.g., requiring domain-specific ontologies.
With the table matching step, it is possible to severely restrict the set of attributes to be compared,
thus to considerably reduce the calculation time for attribute matching or to allow more complex
operations to be performed per comparison.

Step 2: Attribute Matching

In order to determine not only tables that might contain related content, but also exact correspon-
dences between attributes of different tables, the candidates from the previous step must now be
refined. Our approach can both be used to create 1:1 relationships or a list of possible attribute
correspondences, which can then be used directly or presented for feedback. Table correspondences
from table matching for which no attribute correspondence could be confirmed are automatically
rejected.

We can re-use concepts from table matching, but need to at least adapt weights and thresholds. As
before, both structural information (such as table and attribute titles, or comments) and the actual
instances can be used for this purpose.

A simple approach is name-based attribute matching, which only considers the names of the
individual attributes without including any additional information like neighboring elements or
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Figure 5.3.: Cosine similarities between the instance representations of the attributes of the Adult
dataset for representations based on BERT and Google USE. For BERT, even dissimilar
attributes have similarity values of at least 0.65, while for Google Use the range is
much wider. Published in Hättasch et al. [Hät+20b].

data type information. The similarity of the attribute-matcher thus purely relies on the cosine-
similarity of the embedding representation for two attribute names.

Moreover, analogous to the approaches introduced in the last section, the instances can be used for
attribute matching, too. To do so, we again combine the representations of all or a sample of the
entries of an attribute. We can show that our attribute embeddings are robust when sampling; i.e.,
the representations based upon different samples from the instances of an attribute are similar to
the one for another representation of the same attribute based upon a different sample (see Section
14.6, Experiment 6). However, it is not sufficient that the representations are robust even with
sampling, they must also differ as much as possible from the representations of the other attributes.
Here, our experiments (see Section 14.6, Experiment 7) show that sampling is useful for spreading
the range of values and thus ensuring that dissimilar attributes have a lower similarity value while
the similarity value of related attributes remains high.

Moreover, the (dis-)similarity of the attribute embeddings depend on the pre-trained embedding
method used. In Figure 5.3, one can see the similarity between the representations for different
attributes of the Adult dataset. We use BERT embeddings on the one hand and representations
based upon Google USE on the other. With BERT, even very different attributes have similarity
metric values of at least 0.65, while the range is significantly larger when using USE, making it
much easier to automatically tune suitable thresholds.

Our experiments (see Section 14.6, Experiment 5) further demonstrate that it is reasonable to not
perform the handling of multi-word expressions and domain-specific vocabulary through additional
steps, but to use contextualized embeddings that can handle them inherently.

Finally, we compare our different strategies to state-of-the-art approaches provided by the COMA
3.0 framework [DR02]. Details on our settings, the baseline approaches and all numbers can
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Figure 5.4.: F1 Scores for the name-based (NB) and instance-based (IB) variant of our approach
to all 38 matching problems of the OAEI benchmark, compared matchers from the
COMA framework. Values between 0 and 1, higher is better. Published in Hättasch
et al. [Hät+20b].

be found in Section 14.6, Experiments 4 and 8. The resulting F1 scores for our two matching
approaches and the baselines on 38 matching problems from the OAEI benchmark can be found in
Figure 5.4. We show the results of our approaches applied stand-alone, even though there are no
instances to use for about two thirds of the attributes. For productive use, however, it would be
advisable to combine this approach with a name-based approach and prepend a pre-selection step
based upon the availability of instances.

It can be seen that our name-based approach almost always performs better for those problems
where the name-based variant of COMA already performs well, but performs worse for problems
where COMA already has difficulties. Our instance-based approach provides very high precision of
0.98. The seemingly low recall of 0.26 can be explained by the sparsity of instances. Most of the
correspondences of these attributes can be found by the instance-based matcher, which can roughly
maintain its quality-level even for the problems where the other three approaches have severe
difficulties. Instance-based matching can therefore help to find correspondences when attribute
names are not meaningful or semantically difficult to compare, for example due to domain-specific
language. Overall, one can assume that a balanced combination of our two approaches would beat
both the simpler and the complex (combined) baseline approach.

As a reference for the determination of the computation time for semantic representations with
Google USE, we measured the runtimes for the RT dataset on a server with NVIDIA® TESLA®
V100 graphics card with 16GB memory. The implementation of the instance-based and thus most
complex matching took under three minutes to calculate all column vectors of the dataset (which
has 10 columns with an average of 10, 000 instances).

Summary

To summarize, we find that neural word embeddings can be utilized to propose a small set of
possible candidates for schema matching, which is crucial for data integration. Word embeddings
can be used to bridge the semantic gap for several matching variants. Our approach can be used
instead of but in particular as a supplement to existing syntactic and semantic matchers. The use
of models pre-trained for general tasks seems to be sufficient, as long as the database does not
predominantly contain abbreviations and very specific terms. It is advisable to use contextualized
embeddings.
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Both structural data like schema information and comments as well as the textual data instances
themselves can be used for matching, whereby the effectiveness of the individual approaches
strongly depends on the schemata. In instance-based approaches, sampling can help to increase
the distinction between similar and dissimilar attributes while reducing the number of instances to
be considered. This also makes it possible to use the approach for databases with very large numbers
of instances. Instance-based approaches work well with different types of entities. Weaknesses are
found, for example, with attributes that all contain human names: the embeddings are good for
finding other attributes with names, but a further subdivision (e.g., between actors and directors)
is difficult.

5.2. Ad-hoc Information Extraction & Organization: WannaDB

Before, we showed how existing structured representations can be combined to match the users’
needs. The right information at hand allows wise decisions, whether in research, engineering,
finance, healthcare, or other fields.

One example would be a journalist, writing an article about the safety of electric cars. To prove
that electric cars are not causing more fatal fires than those with a combustion engine [Dia23],
they have to extract the mode of drive and accident details from numerous reports of car accidents.

Another example is research and development, where progress can only be made by taking
previous findings into account. Academic publishing companies have realized that simply providing
access to papers and books is not enough to meet the needs of researchers, engineers, and other
professionals, which are often looking for certain details in a specific subfield, and that in a quick-
to-use representation. As a result, research platforms like SpringerMaterials7 are built, providing
enhanced and interactive visualizations, tabular overviews, and domain-specific search functions
backed by extensive and carefully curated databases. They offer users to directly access values,
e.g., certain material properties, instead of having to gather them from different parts of, e.g., the
more than 350 volumes of the Landolt-Börnstein book series that is one of the central data sources
for this material sciences platform.

However, creating such a platform requires an enormous (manual) effort, and users from other
domains can therefore not expect that a similar resource exists for their information need. The
amount of knowledge humans accumulated grows with an unprecedented speed [Ful82; Sch13].
Researchers might have access to hundreds or thousands of relevant pages of text,8 but it is not
possible to process all of them manually. Instead, they need a tabular representation that is built
from extracted or aggregated representations of the contents with a certain user-defined focus.
Most existing data discovery techniques require technical background knowledge and are not
easily accessible to domain experts from, e.g., finance or healthcare. Thus, when thousands of
papers were published to get the COVID-19 pandemic under control [Har+20], large amounts of
numbers had to be manually collected from patients files or status reports, to uncover trends and
assess efficiencies. Automating data collection in a way that it is usable for medical researchers
and professionals without a data or computer science (CS) background allows them to concentrate
less on manual extraction work and more on treating people or drawing conclusions.
7https://materials.springer.com
8Thanks to the progress of open access, every second new publication is now provided openly, and the number is
growing [Piw+18]
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We therefore propose an approach that puts domain experts and knowledge workers in the driver’s
seat, acting as their own personalized data scientist. Our system allows them to interactively
extract domain-specific information from text collections, organize it in tabular form, and find
answers without requiring a trained data scientist. We leverage our knowledge about embeddings
and the use of concrete instances for automatic alignment as described in Section 5.1 to achieve
this further democratization level of exploration.

Publications: We published this work in multiple publications. The overall vision and general idea
was published as “Benjamin Hättasch. ‘WannaDB: Ad-hoc Structured Exploration of Text Collections
Using Queries’. In: Proceedings of the Second International Conference on Design of Experimental
Search & Information REtrieval Systems, Padova, Italy, September 15-18, 2021. Volume 2950. CEUR
Workshop Proceedings. CEUR-WS.org, 2021” (see Chapter 15).
A first implementation was then presented and evaluated in “Benjamin Hättasch, Jan-Micha
Bodensohn, and Carsten Binnig. ‘ASET: Ad-hoc Structured Exploration of Text Collections’. en.
In: 3rd International Workshop on Applied AI for Database Systems and Applications (AIDB21). In
conjunction with the 47th International Conference on Very Large Data Bases, Copenhagen, Denmark,
August 16 - 20, 2021. Copenhagen, Denmark, 2021. arXiv: 2203.04663” (see Chapter 16).
The paper proposed a two-phase approach for the core component to extract information and
match it to the target attributes. In this paper, we propose a new system that allows users to
perform structured explorations of text collections in an ad-hoc manner. The main idea is to use
a new two-phase approach that first extracts a superset of information nuggets from the texts
using existing extractors such as named entity recognizers and then matches the extractions to a
structured table definition as requested by the user based on embeddings.
Later, we published a demo paper as “Benjamin Hättasch, Jan-Micha Bodensohn, and Carsten
Binnig. ‘Demonstrating ASET: Ad-hoc Structured Exploration of Text Collections’. In: SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM,
2022” (see Chapter 17). This demo features the system with a graphical user interface that allows
people without machine learning or programming expertise to explore text collections efficiently.
For the demo paper, we created a completely reworked version of the algorithm, that we again
improved for the full paper “Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban,
and Carsten Binnig. ‘WannaDB: Ad-hoc SQL Queries over Text Collections’. In: Datenbanksysteme
für Business, Technologie und Web (BTW 2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme” (DBIS), 06.-10, März 2023, Dresden, Germany, Proceedings. Volume P-331.
LNI. Gesellschaft für Informatik e.V., 2023” (see Chapter 18). This features the full application
cycle including target structure deduction, interactive table extraction, interactive grouping, and
result computation. It features an extensive evaluation and not only earned the reproducibility
badge but was also awarded as best long paper of BTW’23.
Our latest progress for the query execution procedure and the user interaction is contained in a
paper currently under submission as “Benjamin Hättasch, Liane Vogel, Gard Jenset, Jan-Micha
Bodensohn, Chandrima Roy, and Carsten Binnig. ‘WannaDB in Action: Deploying Ad-hoc SQL-
over-Text Exploration in an Industrial Scenario’. In: Under submission (2023)” (see Chapter 19). In
this paper, we showcase the potential real-world deployment of our tool in an industrial scenario
and conduct a multipart user study to prove its usefulness for real world applications.

Contributions of the author: The research on WannaDB was carried out over the course of more
than three years, with me being the project lead. I was therefore responsible for selecting and
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developing approaches to try, selecting research directions, and evaluating them. The research
on this project was partially funded by the Softwarecampus program. That allowed me to hire
three people supporting me with the research. Substantial parts of the implementation were
done by Jan-Micha Bodensohn, who was working first as a bachelor thesis student and then as a
student helper, both under my supervision, on the project. Liane Vogel worked as Ph.D. student
part-time on the project and was supervised with regard to it by me, too. She contributed to
the literature research and carried out parts of the evaluation. Jonas July joined the team for a
few months as an additional student helper and contributed to the implementation of the demo
system. As part of the program, I also discussed and evaluated potential real-world application
scenarios and use-cases with the industry partner Springer Nature, in particular with Gard Jenset,
my contact there. As the project lead, I was responsible for selecting the publication strategy,
planning the contents of each publication, and creating major parts of the manuscripts. The
co-authors Jan-Micha Bodensohn, Liane Vogel, Gard Jenset, Matthias Urban, Chandrima Roy, and
Carsten Binnig contributed invaluable feedback. All authors agree with the use of the publication
for this dissertation.

5.2.1. Motivation, Challenges & Idea

One example of an extraction task that can be tackled with our system is financial news-gathering,
where analysts must quickly obtain key figures like revenue, earnings per share, or mergers and
acquisitions from company reports and press releases. Unfortunately, this task is cumbersome and
error-prone when done by hand. Furthermore, off-the-shelf extraction systems often cannot extract
all information the user is interested in. As domain experts and knowledge workers typically do not
have the technical skills to craft custom extraction pipelines, they might experience a context gap,
i.e., they are unable to bridge between their specific terminology and the labels used by existing
extraction approaches. Moreover, knowledge workers are often not allowed to send sensitive data
to third-party APIs, so one cannot always expect to have a domain-specific pre-trained language
model at hand. Learning a dedicated extraction model for such a task is often infeasible, since
domain practitioners often lack both the required training data and the ability to train or fine-tune
a model. Finally, a learned model is in most cases not interpretable by humans, leading to a lack of
trust in the results [Sch+22].

These problems are even more significant for the open-ended exploration of text collections, where
the relevant attributes are not known upfront. Users need a data-first approach that allows them
to quickly get insights without long feedback loops. Again, being able to quickly organize the data
in tabular form can be of great help. Such a table may serve as the basis for further exploration
and analysis, for example by revealing subsequent avenues of investigation, by providing initial
answers through the computation of aggregates such as sums or averages, or by further filtering
the document collection based on particular attribute values.

With WannaDB, we present such a tool that enables users to derive tabular representations from
text collections and even run SQL-like queries on it. WannaDB extracts and organizes information
by incorporating user feedback. Instead of defining manual extraction rules (like, e.g., in [GB19]),
users only need to confirm or rectify a small amount of guessed extractions.

Through user interaction, WannaDB gives users the opportunity to steer the extraction process and
does not require large amounts of training data to adjust to new domains. Compared to trained
black-box extraction models, WannaDB transparently shows the user what is extracted from the
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texts and gives them the opportunity to fix incorrect extractions right away. Approaches like this
are supported by a recent study [Sch+22], that emphasizes the importance of keeping the human
in the loop to both increase efficiency and trust in tools and results. Moreover, this will get even
more relevant in the future as regulations such as the European General Data Protection Regulation
or the upcoming AI Act include a “right to explain”.

The granularity of information that can be possibly extracted by WannaDB goes far beyond the
one of classical named entity recognition and, in particular, incorporates the context in the target
definition (e.g., finding the pharmaceutical company conducting a clinical trial as described in the
current document vs. finding companies or even all kinds of organizations in that text). WannaDB
even manages to do so for numeric values with different semantics, e.g., finding both the number
of people vaccinated once and twice in daily status reports on the COVID-19 pandemic.

One could now argue that the task of information extraction from text could easily be addressed
using large language models such as GPT-3 [Bro+20] or LLaMA [Tou+23]. However, their high
resource requirements and long runtimes currently inhibit their use in exploratory settings, as we
demonstrate even for smaller models such as BART [Lew+20]. In contrast, WannaDB requires
only a one-time pre-processing per text collection on a single GPU, after which the text collection
can be explored at minimal cost on typical consumer hardware (even on CPU-only machines). In
addition, language models are often accessible only through an API and employ pay-per-query
business models, where users are reluctant to openly explore the data as they have to pay for every
single query. By contrast, WannaDB is released as an open-source tool that domain experts can
apply directly to their own data.

Finally, our approach combines the advantages of language models or embeddings with the
strict calculation possibilities and deterministic behavior of the SQL data query language. It can
produce tables stating information that is not explicitly mentioned in the documents and hence not
discoverable by pure extraction or search approaches, and can perform numerical reasoning on the
data without the need to rely on the limited mathematical abilities of a language model [Hen+21].

5.2.2. Design Considerations

First, we aim to provide insights into the relevant design considerations we made. Text collections
from various domains can have substantial differences, but the task of extracting attributes from
the texts and bringing the results into a structured form always follows the same steps. Whether a
user needs to extract data from COVID-19 status updates or patient files, different text collections
have certain things in common:

1. The available data is usually focused around a topic.

2. That data mostly follows a certain structure (similar chapters/sections, level of detail, length).

3. The language used in the text collection is usually quite homogeneous, but might be strongly
specialized for a certain topic.

4. Often, a clear distinction which part of the collection covers which event or entity is possible
(e.g., each incident report covers one incident, each patient file reports on one patient, each
paragraph in an episode guide describes one episode of a TV series).
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5. In many cases, questions to a text collection are of exploratory nature, i.e., they are required
to find out what should be investigated further (e.g.: Are there certain noticeable incidents?
Or should one continue the exploration with a new hypothesis?).

These considerations result in several challenges, but also chances to tackle the problem of infor-
mation extraction from text collections:

1. The homogeneity of language and structure inside a document collection enables to build sys-
tems that automatically extract and organize the relevant information. Yet, the heterogeneity
across document collections makes it very hard to construct a one-fits-all approach.

2. Since the data is often already partitioned or can simply be split into documents covering a
single topic at once, we can assume that one document corresponds to one row in the target
table (e.g., covering properties of different airline incidents or the situation on different days).

3. The exploratory nature of the queries requires a quick and cheap answer, but also allows this
answer to be approximate, as this will still be sufficient to quickly decide whether an avenue
of investigation is promising or not.

We therefore decided to address the task with an approximating approach that tries to quickly
generalize simple domain-specific information. Thereby, we massively lower the table building
costs in trade for exactness of the created table that the user probably does not need for exploratory
tasks. Furthermore, we exploit the semantic partitioning of the text collections into documents
and create one table row per document. The extracted table can be seen as the materialized result
of a join, we will extract a wide table (e.g., containing information about an incident itself but
also the airline and airport involved) which the user might split if needed instead of requiring the
computer to make assumptions about the schema. Finally, we concentrate on the current need of
the user, thus our approach works lazily—instead of creating a complex knowledge base upfront,
tables are created and filled only when the user needs them for the first time.

5.2.3. Exemplary Usage

In this exemplary usage scenario, we aim to show how WannaDB can be used to satisfy an
information need based on a text collection. Imagine, e.g., a data journalist who just obtained a
large collection of airline incident reports and is now looking for noticeable events, like a high
rate of incidents for a certain carrier or airport. They use WannaDB for that purpose. The data
journalist starts by loading the collection of text files into WannaDB and triggers the pre-processing
of the files, a process that needs to be done only a single time for each text collection.

Next, the data journalist enters a SQL-like query as a starting point for their exploration (e.g.,
SELECT airline, airport, COUNT(*) GROUP BY airline, airport). As there is
no pre-existing table yet, the FROM-part of a typical SQL query can be omitted, simplifying the
query syntax. After entering the query, WannaDB presents a list of possible matches for each
required attribute (e.g., airline) found in texts of the collection, as shown in Figure 18.2. Not all
found matches will be correct right away, therefore WannaDB relies on some user input to adjust
the results. The data journalist confirms a few of the correctly found matches, corrects wrong
matches by choosing the relevant extraction or marks if the required attribute does not occur in a
given text (see Figure 18.2). Meanwhile, WannaDB continuously updates the list of all guessed
matches during this interactive phase, leveraging the feedback. The user interface allows to quickly
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Figure 5.5.: Architecture & exemplary usage: The offline extraction phase obtains information
nuggets from the documents. The online phase then infers the required structure
from a query, matches between the extracted information nuggets and the user’s
schema, performs the grouping, and executes the query. Published in Hättasch et al.
[Hät+23a].

identify entries that stand out and get an impression of the quality already achieved. Once the
data journalist is satisfied with the quality of the matches, they continue with the next attribute of
their query.

After all attributes are processed, WannaDB will execute the query on the resulting table. If the
query contains grouping operations, the data journalist might be asked again for some interactive
feedback (e.g., to confirm that Lufthansa and LH refer to the same airline, but LHS does not).
WannaDB will again try to transfer this feedback to other rows. In the end, the data journalist
will receive an answer to their query and can export the resulting table to a spreadsheet, a SQLite
table, or a Pandas Dataframe for further investigation. If they have further queries to submit
to WannaDB, the interactive matching process only needs to be repeated for new attributes, as
WannaDB leverages existing results from previous queries.

5.2.4. Our Multi-Stage Approach

Our system tackles the problem using a multi-stage-approach with two stages: an offline stage
to extract information nuggets (i.e. short information-bearing text snippets), followed by the
interactive stage to answer the query by table extraction and if required interactive filtering or
grouping. The overall workflow is visualized in Figure 5.5.

68



5.2.5. Stage 1: Offline Extraction

In the first stage we employ off-the-shelf information extractors to extract a superset of potentially
relevant information nuggets (e.g., named entities) from the given text collection. This step is
independent of user queries and can thus be executed offline to prepare the text collection for
ad-hoc exploration by the user. The extractors process the collection document-by-document to
generate the corresponding extractions. Clearly, a limiting factor of WannaDB is which kinds of
information nuggets can be extracted in the extraction stage, since only this information can be
used for the subsequent matching stage. As a default, we use named entity recognizers from Stanza
[Qi+20] and spaCy [Hon+20]. In general, WannaDB can be used with any extractor that produces
label-mention pairs; i.e., a textual mention of an information nugget in the text (e.g., American
Airlines) together with a natural language descriptor representing its semantic type called label
(e.g., Company). Moreover, additional information about the extraction (e.g., its position in the
document and the surrounding sentence) is also stored and used for computing the embeddings,
as we describe below.

After extraction, the information nuggets are pre-processed to derive their actual data values (i.e.,
a canonical representation, e.g., for timestamps) from their mentions. For this we also rely on
state-of-the-art systems for normalization [Man+14]. The nuggets are then represented based on
the following signals: (1) label – the entity type determined by the information extractor (e.g.,
Company),9 (2) mention – the textual representation of the entity in the text (e.g., Lufthansa), (3)
context – the sentence in which the mention appears, (4) position – the position of the mention in
the document. Each information nugget representation comprises embeddings for the individual
signals (1-4). We compute semantic representations for the natural language signals using FastText
[Mik+18] (1), Sentence-BERT [RG19a] (2) and BERT [Dev+19] (3), and normalize the position
by dividing it by the document length.

5.2.6. Stage 2: Interactive Table Filling

To produce the results for the users, the core of our system is filling a table with a structure
explicitly or implicitly requested by the user. This requires automatically selecting a (the best)
matching nugget from a document for a given attribute—or deciding to actively leave a cell
empty if the document does not contain the requested information. To bridge between the
information contained in the embeddings and user/domain specific terminology that is not reflected
in generally available language models, we use user interaction/feedback that is then generalized.
Our experiments show that the selection of which elements to give feedback to can drastically
influence the number of interactions needed to reach a certain correctness of the table filling and
thus the overall quality that can be reached with a reasonable amount of interactions. Hence, a
good table filling algorithm should carefully steer the feedback process.

We therefore developed multiple versions of such an algorithm. Their common idea is exploring the
embedding space to find the areas that probably contain the correct nuggets for a given attribute,
and then using this knowledge to fill the cells for the remaining documents that the user did not
give feedback to.
9We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.
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Figure 5.6.: Sketch of the tree-based (explore-away) strategy (executed per attribute). Each node
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expansion, the nodes closest to X are marked in ■ orange. The candidates selected
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V1: Tree-based explore away strategy

Our first version therefore used a tree-based strategy, where the tree represents confirmed matching
nuggets (instead of a set as often used by kNN-based approaches). Different from kNN-searches,
subspace clustering, or other techniques tackling similar problems, using a tree-based representation
(where each node represents a nugget from the input texts) allows us to implement a new explore-
away strategy that can grow the covered embedding space for the group of related information
nuggets with every confirmed match. Our tree-based exploration strategy works in three steps:

1. Find a root node: First, the exploration strategy finds an initial matching node to serve as
the root of the tree. This is done by sampling extractions based on their distance to the initial
attribute embedding (based only on the attribute name). We start with low distances that result
in conservative samples close to the initial attribute embedding and gradually raise the sampling
temperature to include samples from farther away if the close-by samples do not yield any matching
extractions to select as root.

2. Explore-away Expansion: As a second step, we now explore the embedding space by expanding
the search tree using our explore-away strategy in the embedding space. We explain the expansion
step based on the example in Figure 5.6 where node X is to be expanded. To expand that node X,
we determine its potential successors succ(X) based on the following two constraints: (1) The
extractions in succ(X) must be closer to X than to any other already expanded extraction (e.g.,
nodes G, H, I, and K qualify in our example). (2) The extractions in succ(X) must be further
away from the rest of the tree than the node we expand (e.g., H is closer to A than X is to its parent
(and hence closest node) D and therefore not a candidate; however, nodes G, I, and K remain as
candidates).
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Figure 5.7.: Schematic visualization of the new distance-based table filling algorithm.
1) WannaDB presents initial guesses (distance to attribute name embeddings)
2) The user gives feedback for one entry (row)
3) WannaDB updates its guesses (distances to confirmed elements) and (in later
versions) tunes thresholds and adds new nuggets
4) Once the user is satisfied with the quality, remaining rows are filled with best
guesses

Afterwards, the search strategy selects the k nuggets10 in succ(X) that are closest to X (e.g., G and
I in our example) to gather user feedback. A user can then confirm whether the proposed nuggets
actually match the attribute; matching nuggets are added to a queue of nuggets to be expanded in
the next iterations. In case the queue is empty, the explore-away strategy returns to step 1 to start
with an additional root node, or it terminates if a user-defined threshold of confirmed matches
is reached. Overall, this procedure thus identifies groups of information nuggets (represented as
trees) that match to a certain user-requested attribute.

3. Static Matching: Once a user-defined threshold of confirmed matches is reached for every
user attribute, the system stops collecting feedback and continues with a static matching procedure:
the system leverages the distances between the embeddings of extracted information nuggets and
the different groups of embeddings identified in step 2 to populate the remaining cells without
asking the user for feedback.

More details can be found in Chapter 16. This table filling strategy already provided good results
on many attributes (see Section 5.2.7, but left rooms for improvements for others. Probably even
more important was, however, the experience of the user when using the system. By requesting a
yes/no feedback from them, there was no possibility to actively point the system to the correct
nugget for a cell, even if the user already saw it in the text snippet they had to read to give feedback.
We therefore completely reworked our algorithm for the second publication.

V2: Distance-based Version with Rich Feedback

For the second version of our approach, we introduced new feedback actions: Instead of giving
yes/no-feedback on a single attribute, the user is presented with a document with the best guess
for the matching nugget preselected. They can now either confirm that nugget, select another one
from the highlighted parts of the text, or state that there is no matching nugget in the text at all.
10This number determines the degree of the search trees. We experimented with different degrees and found that 2

results in the best performance.
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As a second major change, we move away from completely automatically selecting which elements
go give feedback to. Instead, we leverage the human ability to quickly identify those elements in a
bunch that stand out, by presenting a list of, e.g., 10 probable matches together with the sentence
around them and letting the user decide which of these to confirm or correct. This list can be filled
by different strategies, as we will discuss below.

The new version populates the user table in an attribute-by-attribute fashion, too. In the following,
we describe the table filling procedure for an attribute called airline, a schematic visualization of
the steps can be found in Figure 5.7, in Figure 5.9 we show a pseudocode representation of our
algorithm (including the extensions we will describe in the next sections).

For each information nugget, the system caches a distance that represents the (un-)certainty
with which it believes that the information nugget matches the attribute. At first, this distance is
initialized as the cosine distance between the nugget’s label embedding (e.g., Organization) and
the embedding of the attribute name airline (step 1 in the figure). Later on, this distance will
be updated with the distance to the closest confirmed matching nugget, allowing the system to
capitalize on more signals like the textual mentions (e.g., American Airlines) of other matching
information nuggets.

For each document with no confirmed match, the system considers the information nugget with
the lowest cached distance as the currently guessed match. The system presents a list of the
documents with the most uncertain current guesses to the user for feedback. The user can then
provide feedback for any of these guesses (step 2). They may either confirm the match, select
another information nugget from the document as the match, or state that the document does not
contain a matching information nugget. In case their feedback results in a confirmed match, this
matching information nugget is used to update the distances on all other remaining information
nuggets (step 3). Since the distance between each nugget and its previously closest confirmed
match is cached, only one new distance (the one between it and the recent match) needs to be
calculated for this update. Therefore, our new version has a complexity of O(n),11 leading to fast
updates after the interaction even when scaling up the number and length of input documents
(see Section 5.2.7). Afterwards, the document is removed from the list of remaining documents,
and the list of guesses presented to the user for feedback is updated.

Finally, the user may decide (based on the list of most uncertain guesses that is presented to them)
to terminate the interactive table filling procedure and continue with the next attribute, in which
case the remaining documents’ cells will be populated with their currently guessed matches (step
4). Thus, for each document without a manually confirmed nugget, WannaDB fills the cell with
the information nugget with the lowest cached distance. Furthermore, WannaDB uses a distance
threshold for each attribute to decide when a cell should be left empty instead.

With the new version of the approach, we were able to improve the quality that could be reached
with the same amount of interactions (see Section 5.2.7).

An intuition that our system indeed explores the vector space and leverages closeness can be found
in Figure 5.8. It shows a low-dimensional projection of the guesses of the system after different
numbers of feedback iterations compared to the gold standard shown in the same way. It can be
seen that the selection quickly converges towards the correct values.

11With regard to the number of nuggets.
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Figure 5.8.: Visualization of the explored vector space for three attributes from the aviation dataset.
The important dimensions for each attribute are highlighted using UMAP and plotted
as a hexbin visualization, showing the guesses of WannaDB after 1, 5, 10, 15, 20, and
25 interactions compared to the gold selection in the last column. Adapted from
Hättasch et al. [Hät+23b].

V3: Advanced Selection Strategies & Automatic Threshold Tuning

For this version of the algorithm, we evaluated multiple strategies to fill the list that WannaDB asks
for feedback for. Moreover, we introduced automatic tuning for the distance threshold that before
was a hyperparameter.

In the interactive table filling phase, WannaDB presents a ranked list of documents with their
currently guessed matches to the user for feedback (see Figure 18.2) and will continuously update
the list after every given feedback. This allows the user to quickly identify (incorrect) entries that
stand out and to get an impression of the quality already achieved. After evaluating different
strategies, including a random one and one sampling stratified from the distribution of distances,
we settled on the following strategy: The ranked list is centered around the maximum distance
that a nugget may have to a confirmed one to still be considered a valid value for a table (called
threshold in the following) and thus presumably shows both correct guesses with a low certainty, and
incorrect guesses, where WannaDB would profit most from feedback. Each feedback is processed
as described in the previous section, additionally, the extended version adjusts the threshold after
each interaction accordingly.

To summarize, WannaDB uses a threshold for two purposes: (a) to decide when it is better to leave
a cell empty than to use a very unlikely guess (mostly because the desired value is not mentioned
in the document) and (b) to select guesses to present to the user where feedback will have as
much effect as possible. This threshold is automatically tuned during the runtime of WannaDB to
fit the data at hand. Given the approximate query setting WannaDB is built for, we decided to use
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1 for attribute in query.attributes: # Process each attribute separately
2 for nugget in all_nuggets:
3 nugget.distance = compute_distance(attribute, nugget) # Compute initial

distances↪→

4

5 while interactive_feedback_phase: # Interactively get user feedback
6 ranked_list = make_ranked_list(threshold, documents)
7 feedback = get_user_feedback(ranked_list)
8 match feedback:
9 # Positive feedback (confirmation, manual correction, or custom selection):

10 case ConfirmNugget(document, selection):
11 confirmed_nugget = get_nugget_for_selection(selection)
12 if confirmed_nugget is None: # The selection does not correspond to a nugget?
13 confirmed_nugget = create_and_add_nugget(selection)
14 find_similar_nuggets_in_other_documents(selection, document)
15 # Mark this particular cell as manual confirmed...
16 set_match(document, confirmed_nugget)
17 # ... and update distances for all nuggets based on user feedback
18 for nugget in all_nuggets:
19 new_distance = compute_distance(nugget, confirmed_nugget)
20 nugget.distance = min(new_distance, nugget.distance)
21 # Negative feedback:
22 case NoMatchInDocument(document):
23 # Direct effect only on the given document...
24 leave_empty(document)
25 update_guessed_matches(documents)
26 adjust_threshold(feedback) # ... but both feedback types can have effects

indirectly through threshold adjustment on other document's rows, too↪→

27

28 for document in documents: # Only consider values up to a given maximum distance
29 if current_guess(document).distance < threshold:
30 set_match(document, current_guess(document)) # compute final result table
31 else:
32 leave_empty(document)
33

34 def adjust_threshold(feedback): # Feedback can be further exploited in certain
cases↪→

35 match feedback:
36 case ConfirmNugget(document, confirmed_nugget):
37 if confirmed_nugget.distance > threshold:
38 increase_threshold(confirmed_nugget)
39 case NoMatchInDocument(document):
40 if current_guess(document).distance < threshold:
41 decrease_threshold(document)
42

43 def decrease_threshold(document): # Consider fewer matches as valid (especially
those above last marking as incorrect that are currently accepted nevertheless)↪→

44 nuggets = ranked_list.between(threshold, document)
45 min_dist = min(n.distance for n in nuggets)
46 threshold = min(min_dist, threshold)
47

48 def increase_threshold(confirmed_nugget): # Consider more matches as valid
(especially those below last confirmation that are currently discarded because
of the threshold)

↪→

↪→

49 nuggets = ranked_list.between(confirmed_nugget, threshold)
50 max_dist = max(n.distance for n in nuggets)
51 threshold = max(max_dist, threshold)

Figure 5.9.: Pseudocode representation of our interactive algorithm for table extraction, including
threshold adjustment. Adapted from [Hät+23a], in contrast to the published version
the interactive adding of custom selections was integrated.
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a common threshold for all regions forming in the embedding space instead of individually tuning
it, to keep the number of interaction cycles low.

The adjustment of the threshold is shown in Figure 5.9 (line 34-51). The general idea is to
incorporate the additional knowledge gained from the user confirming a nugget even though it
was above the threshold or correcting an entry below the threshold. This feedback action will
only affect a specific nugget directly, but other similarly well fitting nuggets from other documents
might still be wrongly accepted or discarded because of the threshold, which is therefore carefully
adapted after feedback actions: If the user confirms a nugget from the ranked list that is above
the threshold, all nuggets between the threshold and this nugget should be considered as a good
guess. In the case that any of the nuggets is still above the threshold after the calculation of the
new distances, the threshold is adapted accordingly. In contrast, if the user states that for a nugget
with a distance below the threshold there is no match in the document, the threshold is decreased
to also exclude other matches that are in the list above the nugget if necessary. The threshold is
only adapted in these two cases, where implicit hints about the quality assessment by the user can
be incorporated.

V4: Interactive Adding of Nuggets

While the two-stage approach makes it possible to run our table filling strategy by providing a
defined and restricted list of nuggets to calculate distances in the vector space between, it also
poses a severe limitation: only those elements extracted in the first place can be used to fill the
table, even when the user manually inspects a source document and sees the correct entry, they
can not select the “correct” value if that one was not extracted in the first stage. Since that will
both negatively influence the quality and be unsatisfactory for the user, we started to implement
countermeasures in later versions of the project. At first, we allowed selecting arbitrary text spans
when manually correcting a potential match. Next, we treated these spans like automatically
generated extractions and added them to the vector space such that other close nuggets to this
manually confirmed one could be found. Additionally, WannaDB searches for exact and similar
occurrences of that text span in other source documents and treats them the same way, to go
further beyond the manually corrected document. This version of the interactive matching is
covered in Chapter 19. A pseudocode representation of our final algorithm version can be found in
Figure 5.9. As part of our current research, we investigate how the user feedback can be further
generalized to find even more potentially relevant, but previously unrecognized, nuggets during
the matching step based on this kind of feedback.

5.2.7. Key Findings

In the following, we present the key findings from our work onWannaDB. As part of our evaluations,
we conducted expert interviews, which underline the use of tools to extract and organize information
without coding in exploratory or prototypic scenarios. We also did a small user study, where
the users liked the ability to quickly try many queries, and favored that our system adapts to
their use of terminology and not vice versa. Our experiments show that our system works both
substantially better and faster than a learned few-shot system that received the same amount of
domain information from the user. We can show how the interaction model we introduced directly
influences the quality. Finally, we confirm that real users can achieve a similar result quality as
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Figure 5.10.: F1 scores for different versions of our table filling algorithm for different attributes
and the average of the aviation dataset. ■ tree based version, ■ first ranking based
version,■ with improved selection strategies and■ with interactive adding of extrac-
tions at runtime. Additionally, the ■ fraction of required nuggets that are extracted
by our default extraction stage are shown.
It can be seen that our algorithm improves over time. In particular, all versions
achieve decent quality on all attributes that are mostly extracted, but only the ■ lat-
est version can reach a high F1 score on all attributes, while the others fail on those
where the extraction stage cannot sufficiently extract suitable nuggets in the first
place. Values between 0 and 1, higher is better.

predicted in our simulations. The full evaluation of the end-to-end system as well as individual
aspects and components can be found in the Sections 16.4, 18.6 and 19.5.

Datasets: For the evaluation of our system, we mainly used three datasets: Aviation, a text
collection based on 100 aviation accident reports, COVID-19, again 100 documents describing the
situation of the Covid-19 pandemic in Germany and focusing on numeric attributes with a lot of
cases where the system should deliberately keep the resulting cell empty, and T-REx, an adapted
version of the T-REx dataset [ElS+18] which is based on Wikipedia articles with aligned Wikidata
triples from which we extracted three subsets (about Nobel laureates, countries, and skyscrapers).
More details on the datasets can be found in Chapter 18. For each of these datasets, we either
manually annotated the correct values for each attribute and document (Aviation, COVID-19) or
used the existing alignment (T-REx).

Evolution of the System Quality

The core contribution of our system is the interactive table matching algorithm. As described before,
we continuously refined this component throughout our research. In Figure 5.10, we present the
results of running those different versions on the same data and with the same number (25) of
interactions per attribute. We use the Aviation dataset and the same default extraction stage for all
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Figure 5.11.: Table filling results. It can be seen that ■ WannaDB outperforms the ■ few-shot
BART model (fine-tuned on 20 datapoints) on every dataset. Published in Hättasch
et al. [Hät+23b].

experiments. To visualize how the different versions react to the highly attribute-specific extraction
stage quality, we visualize the fraction of the required nuggets that were successfully extracted.

It can be seen that even the first version (■) already provided high accuracy and recall (measured
by the combining F1 score) for most attributes, on average 0.65. However, for some attributes the
table is filled with a much lower quality than for others or not at all (e.g., for weather conditions).
One reason can be that the currently employed information extractors are not able to extract the
necessary information nuggets from the text (■). In particular, aircraft_damage and weather_con-
dition are examples where not only a large heterogeneity of mentions can be found, but also very
domain-specific terminology is used.

With the distance-based approaches, we focused on providing lower runtimes and a better user
experience. That caused slight decreases in the quality for single attributes. However, on average,
the second and third version (■■) reach an even slightly better quality than the old version (F1
scores of around 0.69).

To avoid having to rely on domain-specific extractors, we especially concentrated on dealing with
missing extractions in the last version of our algorithm (■) and integrated a new interaction
paradigm to improve. It can be seen that with the final version, those attributes are suddenly filled
with a much higher quality. This final improvement boosts the average F1 score to 0.87, which is
able to outperform large trained models, as we will show below.

End-to-End Quality

To measure the end-to-end performance of WannaDB, we simulate a fixed amount of user feedback
(20 interactions per attribute) for a list of target table columns on each text collection and measure
the resulting performance (F1 score, measuring correct filling or leaving cells empty) for each of
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these attributes. We compare these scores to a few-shot training/refining approach that received
the same amount of input/feedback, i.e., a BART [Lew+20] sequence-to-sequence model fine-tuned
on 20 labeled examples, simulating the scenario of replacing the internal workings of WannaDB by
a learned model. The details are explained in Section 19.5.1.

The results of our system in comparison to the few-shot baseline are shown in Figure 5.11. It can be
seen that WannaDB consistently outperforms the few-shot baseline approach on all datasets. The
highest performance difference is notable on the COVID-19 dataset, where WannaDB reaches an
F1 score of 80%, whereas the BART baseline models only reach 50%. We suspect that this is partly
due to the limited capabilities of language models such as BART when working with numerical
values [Hen+21], as there are many numerical attributes contained in the COVID-19 dataset, such
as the incidence or the number of patients in intensive care. Additionally, we noticed that the BART
baseline models have difficulties when many of the texts do not mention the required values and
thus many cells need to be left empty. Meanwhile, WannaDB shows consistently good performance
extracting numerical attributes, as well as having fewer problems when dealing with missing data.

Effects & Costs of Interaction

A central measure to reach high quality results with low overhead (i.e., without hard or costly
to acquire domain-specific resources), is the use of interaction. We therefore quickly show how
interaction influences the correctness of the table filling on two of our datasets here. More details
can be found in Sections 18.6 and 19.5.

First, we simulate the interactive matching process with different interaction limits (i.e., the number
of interactions per extracted query attribute). To show the generalization abilities based on “simple”
feedback, we disabled the adding of custom text spans for this experiment. We present the results
on the Aviation dataset here, more details and the results for the other datasets can be found in
Section 18.6.3. As we can see in Figure 5.12, for some attributes, WannaDB achieves very high F1
scores with only one interaction with the user (e.g., for event date or aircraft registration number).
These are attributes where the entity type of the extracted information nugget is very similar
to the attribute name or the pattern of the extracted information nugget is rather unique. For
example, the extraction has the named entity tag DATE which is similar to event date. For other
attributes though, the performance of WannaDB strongly depends on the amount of interactive
feedback. However, important is that WannaDB can typically provide high quality with only a few
interactions, given that suitable nuggets were extracted in the first place. For most attributes, the
first 5− 10 interactions massively improve the F1score and achieve gains of up to 0.5.

Runtime & Scalability

The number of interactions needed to achieve a good quality directly influences the time the user
has to spend with interaction. As part of the user study described in Section 19.5, we asked real
users to use WannaDB to extract a subset of the attributes from our datasets (with known gold
standard). Figure 5.13 shows the quality achieved by users using the system for the first time,
compared to the estimated quality of a simulated user. This experiment confirms that one can
achieve high quality table fillings with a low number of interactions. Furthermore, the performance
of real users is close to the one of a simulated user. Moreover, our experiments show the real

78



# Feedback Interactions

F1
-S

co
re

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

event date location city location state airport code
airport name aircraft damage aircraft registration number

aircraft make aircraft model far description air carrier
weather condition

Figure 5.12.: F1 scores ofWannaDB for the different attributes of the Aviation datasets for different
amounts of feedback iterations per attribute (1-40). For most attributes, already a
small amount of interactions drastically improves the quality, and more interactions
lead to continuous improvements. Published in Hättasch et al. [Hät+23a].
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Figure 5.13.: F1 scores of WannaDB when used by real users as part of a user study, using the
COVID-19 dataset, dependent on the amount of feedback a user gave for each at-
tribute. The lines indicate the table filling quality achieved by the simulated user
feedback. It can be seen that even with a small number of interactions (<10), a high
quality can be achieved. The performance by the participants is mostly similar to
the one of a simulated user. Published in Hättasch et al. [Hät+23b].
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duration these interactions correspond to: None of our test users needed more than five minutes for
up to thirty interactions, two thirds of the attribute fillings were even carried out in two minutes or
less. It seems highly unrealistic that a human could perform the same extraction from a hundred
documents without technical support in a span even close to this time.

As WannaDB is an interactive tool, it is critical to achieve a short latency when processing user
interactions and incorporating the feedback to populate the table cells, since too much waiting
time for users makes a system uncomfortable to use [LH14; Sch+22]. We therefore aimed at low
computation times in between the interactions to keep the users in the loop.

To check whether we reached that aim, we measure the time needed for our system to process 20
user interactions per attribute and apply the feedback to automatically fill the remaining cells. We
compare that to the time needed for training and prediction of the few-shot approach described
above. For these measurements, we use a consumer machine and GPU. For the few-shot approach
described above, we only report the performance for training and prediction on a machine with a
GPU designed for machine learning, since the approach would need multiple hours per attribute
on a consumer machine. Details, e.g., on the setup, can be found in Section 19.5.1.

Figure 5.14 visualizes the results of our runtime measurements averaged over multiple runs.
It can be seen that running WannaDB takes orders of magnitudes less time compared to the
languagemodel-based BART approach. On our largest dataset T-Rex: Skyscrapers (2683 documents),
WannaDB takes on average 47 seconds on a machine with a CPU only, whereas the BART model
nearly takes an hour to predict the cell values from all the 2683 documents, even though it is
running on a much more powerful machine with a GPU designed for machine learning. Overall,
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our runtime analysis shows that WannaDB is indeed usable in an interactive fashion and does not
cause long waiting times for the user as a system based on a language model like BART would.

As discussed in Section 5.2.6, our table filling approach has a complexity of O(n) with regard to
the number of nuggets. We can therefore expect our system to scale well with a growing number
of documents, which is confirmed by this experiment. Furthermore, the pre-processing stage can
be fully parallelized on the document level, again allowing for a good scalability.

5.3. Discussion & Future Research

Finding insights in large data collections/lakes is a problem with real-world applications from
various domains [e.g., FK14; RV13].

Schema matching can be one method to make sense of the data—by combining different tables.
As we showed above, our approach can find relevant correspondences with low overhead, allowing
it to scale for large numbers of tables and attributes. Recent studies have shown that prompting
approaches can reach high accuracies for schema matching [Nar+22], but as usual with high costs.
To improve the natural language understanding (NLU) of our approach without massively increasing
the overhead, it would be an interesting future research direction to use foundational models for
databases, e.g., as proposed by Vogel, Hilprecht, and Binnig [VHB23] for the representation of
table structures and contents while keeping our matching algorithm itself untouched.

For heterogeneous data lakes, information first has to be extracted and organized into a structured
representation. Existing systems for extraction are often either domain-specific [e.g., Bri99] or
require manual adaption to the application domain [e.g., Caf+07; GB19]. Furthermore, many of
them aim at representing a document by a full table that automatically captures its content instead
of allowing users to specify their needs [Aro+23]. Moreover, existing low-overhead approaches are
often too simple, working mostly only on the syntactical level (e.g., regular expressions, extracting
only certain HTML DOM fields). For a more extensive overview of existing approaches and how
they relate to our work, we refer to Sections 18.7 and 19.6.

Our approach WannaDB provides an alternative to get approximate, high-quality results quickly
and at low costs. Our system leverages the advantages of learned language models, in particular
their ability to capture linguistic variations, while avoiding costly (domain-specific) fine-tuning
and predictions. Furthermore, it does not suffer from the problem of hallucination [May+20] that
transformer-like models regularly experience, since they aim to also generate values for attributes
even if no information nugget is present in the text. WannaDB instead generates an empty value in
that case.

Recently, large language models such as GPT-3 [Bro+20] with billions of parameters have shown
remarkable performance for information extraction tasks. However, there are several ways in which
we argue that our approach is better suitable for the exploration of text collections than large
language models are: while the pre-processing of text collections with our system is a one time
effort and afterwards users can explore the collection freely, large language models need to process
all texts of a text collection again whenever the user poses a new query. Due to the size of language
models, this takes time and requires substantial computing resources. Currently, large language
models provided over APIs have restrictive limits or are only available through pay-per-query offers,
which restricts the open-ended exploration of text collections as every query leads to additional
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costs. Furthermore, privacy concerns, copyright issues or fear of data leakage might prevent the
use of hosted large language models (LLMs). Countering these issues by running a local copy of a
large language model is only an alternative when sufficient computing resources are available. In
comparison, our system only requires a machine with a consumer GPU for pre-processing once
for each new text-collection, the exploration also works on a typical consumer computer without
using a GPU (as we have shown before).

However, we believe that our approach can be further improved by leveraging the abilities of LLMs
for partial aspects, without processing large parts of the document collection with them. We showed
that one shortcoming of our system is that it can only work well when a superset of relevant nuggets
was extracted in the preprocessing stage. With the fourth version of our table filling approach (see
Section 5.2.6), we introduced a way to add additional nuggets at runtime. While this also tries to
find similar new extractions in further documents, the generalization abilities are currently quite
basic and mostly on a syntactical level. In future research, we therefore want to evaluate models
and approaches that are able to perform additional extractions based on samples given by the user.
One way here could be to go in the direction of the recently presented EVAPORATE-CODE by Arora
et al. [Aro+23], that uses LLMs to generate code for domain specific extractions.

Another interesting research direction would be the integration of data cleaning methods [IC19]
into our system. Outlier detection could help to decide whether a (numeric) value seems suitable
based upon the other values found for the current attribute. When the value differs greatly, our
system could then decide to keep a cell empty or use another value with a similar distance to the
confirmed nuggets. Since outlier detection would only be applied as a validation step, approaches
with low overhead, e.g., statistical or distance-based outlier detection could be used. Furthermore,
our first approaches for semantic grouping could be extended using ideas from data deduplication.
To support more complex target schemata (e.g., consisting of multiple tables and allowing to extract
multiple lines from a single document), we currently investigate the application of low-overhead
generic relation extraction approaches [e.g., ZC21] for the extraction stage that produce additional
hints for the interactive table filling.

Finally, the transparency of our system can be further increased by adding visualizations explaining
why certain values were selected. These visualizations might even offer additional possibilities for
feedback generalization, e.g., through confirming several table rows based upon the closeness to the
same confirmed nugget. Therefore, it would be interesting to integrate them into the interactive
matching strategy.
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6. Conclusion

6.1. Summary

The necessary information access for many important tasks can only be provided at scale using AI
approaches. Yet, systems following most of the existing approaches can only be built and used by
IT experts and data scientists. Furthermore, the necessary adaptation and execution causes a high
overhead and substantial costs.

A wide application of these approaches can therefore only be achieved by democratizing them by
reducing their overhead and improving their usability. In this thesis, we thus presented approaches
that bring democratization to three important subfields of data exploration and processing: Natural
Language Interfaces for Data Access & Manipulation, Personalized Summarizations of Text Collections,
and Information Extraction & Integration.

Our proposed systems all allow for automatization in their fields. Another common property is their
efficiency, which allows using them with less data than required by state-of-the-art approaches, or
with less computing power required. The systems provide fast results for quick adjustment to the
information needs of the users. An additional focus is put on the usability, to not restrict the usage
of these tools to people with a strong computer science or data science background.

Natural Language Interfaces for Data Access & Manipulation

First, we concentrated on natural language interfaces for data access and manipulation. Natural
language is a useful alternative interface for relational databases, since it allows users to formulate
complex questions without requiring knowledge of SQL. With DBPal (see Section 3.1) we proposed
an approach that augments existing deep learning techniques in order to improve the performance
of models for natural language to SQL (NL2SQL) translation. It generates synthetic training
data adapted to a given database using weak supervision. This allows domain adaption of the
model without the need to costly acquire training data (e.g., through annotation by experts or
crowd workers). Our evaluation showed that our training pipeline can substantially improve the
translation accuracy. Furthermore, we published ParaphraseBench, a benchmark to evaluate how
well our and other approaches deal with linguistic variations of the same queries (see Section
3.1.3).

To complement this research, we presented a meta-study on the reproducibility and availability of
natural language interfaces for databases (NLIDBs) for real-world applications in Section 3.2. Our
analysis led to the conclusion that many NL2SQL approaches are not reproducible. We provided an
analysis of reasons and potential ways to counter this in the future.
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As the final topic in this research field, we concentrated on natural language interfaces that allow
not only information access but also manipulation. These conversational agents (CAs) behave like
chatbots and guide a user through an interaction like booking a cinema ticket. We proposed an
alternative training pipeline called CAT (see Section 3.3) for creating these CAs with low overhead.
While classic approaches require a lot of manually crafted training data, our approach uses weak
supervision to generate the training data automatically from a relational database and its set of
defined transactions. Our approach is data-aware, i.e., it leverages the data characteristics of the
DB at runtime to optimize the dialogue flow and reduce necessary interactions.

Personalized Summarizations of Text Collections

Our second research area dealt with the use of personalized summaries for the exploration of
unknown data collections. The central idea is to produce summaries that exactly cover the current
information need of the users. By creating multiple summaries or shifting the focus during the
interactive creation process, these summaries can be used to explore the contents of unknown
text collections. We proposed Sherlock (see Section 4.1), an approach to create such personalized
summaries at interactive speed. To do so, we built on an existing optimization model for the
customization, but reduced its runtime from hours per iteration to only seconds. This massive
speedup is achieved by sampling. We proposed a method to select the sample size based on
iteration time thresholds and evaluated multiple different sampling strategies. Since choosing a
suitable sample is not a trivial task, we studied the effectiveness of multiple sampling strategies
and the impact of the sample size on the summarization quality. As we showed in our evaluation,
our system can provide a similar quality level as the model that is working on the full corpus—at a
fraction of runtime.

As part of our research on multi-document summary (MDS), we noticed that there is a lack of
diverse evaluation corpora for this task. We therefore presented a framework that can be used
to automatically create new summarization corpora and discussed reasonable choices for the
parameters. We provided three new sample corpora created with our automatic construction
pipeline (FandomCorpora, see Section 4.2). In a comprehensive evaluation, we validated that
our pipeline is able to automatically create corpora of use for the training and evaluation of
state-of-the-art summarizers.

Information Extraction & Integration

In the third and last research area, we provided ways to democratize information extraction and
integration. This becomes relevant when data is scattered across different sources and there is
no tabular representation that already contains all information needed. Therefore, it might be
necessary to integrate different structured sources, or to even extract the required information
pieces from text collections first and then to organize them.

To integrate existing structured data sources, we presented and evaluated a novel end-to-end
approach for schema matching based on neural embeddings in Section 5.1. As part of this, we
proposed and analyzed different matchers on multiple levels (i.e., tables and columns) to identify
sets of possible table and attribute correspondences. Our results showed that our approach is
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able to determine correspondences in a robust and reliable way and can (compared to traditional
schema matching approaches) find non-trivial correspondences.

Finally, we tackled the automatic creation of tables from text for situations where no suitable
structured source to answer an information need is available. Our proposed approach WannaDB
(see Section 5.2) can execute SQL-like queries on text collections in an ad-hoc manner, both to
directly extract facts from text documents, and apply filtering, aggregations and grouping. Our
system can therefore directly produce tables stating information that is not explicitly mentioned in
the documents, and hence not discoverable by pure extraction or search approaches. To do so,
we implemented a novel extraction and querying pipeline that first extracts information nuggets
independently of the query and then at runtime uses a novel interactive table filling approach that
aims to map the information nuggets to a table specified by the user in the form of an attribute
list or SQL query. For this table filling, it requests and generalizes feedback from the user. With
an extensive evaluation, we showed that our system can indeed fill high-quality tables with only
a few user interactions and at interactive speed. A user study confirmed the practical usage for
real-world data science scenarios.

In summary, we presented a range of low overhead tools and approaches that allow tackling tasks
that could previously only be handled by data scientists. Thus, our approaches democratize the
fields of Natural Language Interfaces for Data Access & Manipulation, Personalized Summarizations
of Text Collections, and Information Extraction & Integration and are therefore a step towards
democratization of information access.

6.2. Discussion & Future Research

Overall, we have shown that our systems can provide a quality level comparable to state-of-the-art
approaches, but often at a fraction of the associated costs. In fields like the table extractions,
we even provide functionality that was—to our knowledge—not covered by any generic tooling
available to end users before. Our contributions can be combined into a full pipeline: query existing
databases to identify what information is missing, get an overview of the contents of a document
collection to check whether it is suitable to augment the database with regard to the information
need, fulfill a first approximate extraction and integrate it, then use NLIDBs again to query it and
start the cycle over if necessary.

We have focused on low overhead systems, providing this functionality with low associated costs and
manual efforts. Yet, since we are working with human language, we need components for natural
language understanding (NLU), for semantic and not just syntactic processing. Therefore, to reach
sufficient quality, our approaches can be only applied to data in languages where suitable generic
resources (like language models (LMs)/embeddings) are available. Luckily, there are nowadays
more and more LMs for rare languages and multi-language embeddings [e.g., CC18; LAW21;
UR20]. We already evaluated how well our schema matching approach works cross-lingually, and
applied our corpus construction framework to German texts. In the future, it would be interesting
to adapt and evaluate our other contributions for different languages or even multi-language
settings.

As we discussed before, there are some subtasks where prompting large language models (LLMs)
outperforms previous approaches (e.g., NL2SQL, paraphrasing, generalization (rules) from exam-
ples), yet the high costs and runtimes per request might prevent using these approaches. For future
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Figure 6.1.: Vision: Self-organizing databases with low overhead

research, it therefore seems reasonable to combine our low overhead approaches with components
that use LLMs for certain subtasks, as discussed in Sections 3.4, 4.3, and 5.3.

We are still convinced that many tasks profit from our low overhead approaches with their core
properties (local processing without sending data to foreign servers, low computation effort, low
manual effort). The best example for this is our extraction system, that allows for exploratory
scenarios that would otherwise not be possible at acceptable overhead. Furthermore, compared
to the usage of an LLM, it profits from the higher transparency, no hallucinations, and the split
between extraction and the computation of aggregation results (instead of prediction).

In Sections 2.1 and 2.6, we described how our tools can be combined to perform multiple actions
for data exploration and organization. In the future, we want to go a step further and envision a
self-organizing database (see Figure 6.1), where the users can input data in a variety of formats
and the system automatically organizes and integrates it based upon the data itself and the queries
users pose to it. To build such a system, we want to integrate the components we discussed in this
thesis (extraction from text, interactive summarization, NL interfaces, and integration techniques)
and enrich them with further components for handling of multi-modal data, output generation,
and schema updating.

Moreover, we want to further improve our individual low overhead approaches by integrating
ideas from other related fields (e.g., data cleaning, semantic sampling, relation extraction), by
leveraging LLMs without substantially increasing the overhead, by applying our approaches to
more languages, and by additional work on the usability aspects of our systems. We hope that
with this we can again advance democratization of information access.
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7. DBPal: A Learned NL-Interface for Databases
(SIGMOD’18)

Abstract

In this demo, we present DBPal, a novel data exploration tool with a natural language interface.
DBPal leverages recent advances in deep models to make query understanding more robust in the
following ways: First, DBPal uses novel machine translation models to translate natural language
statements to SQL, making the translation process more robust to paraphrasing and linguistic
variations. Second, to support the users in phrasing questions without knowing the database
schema and the query features, DBPal provides a learned auto-completion model that suggests to
users partial query extensions during query formulation and thus helps to write complex queries.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Fuat Basik,
Benjamin Hättasch, Amir Ilkhechi, Arif Usta, Shekar Ramaswamy, Prasetya Utama, Nathaniel
Weir, Carsten Binnig, and Ugur Çetintemel. ‘DBPal: A Learned NL-Interface for Databases’. In:
Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018. ACM, 2018. doi: 10.1145/3183713.3193562”. The
contributions of the author of this dissertation are summarized in Section 3.1.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org. SIGMOD’18, June 10–15,
2018, Houston, TX, USA. © 2018 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery. Author’s version, reformatted for this thesis.
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Figure 7.1.: An example session in DBPal

7.1. Introduction

Structured Query Language (SQL), despite its expressiveness, may hinder users with little or no
relational database knowledge from exploring and making use of the data stored in an RDBMS.
In order to effectively leverage their data sets, users are required to have prior knowledge about
the schema information of their database, such as table names, columns and relations, as well
as a working understanding of the syntax and semantics of SQL. These requirements set “a high
bar for entry” for democratized data exploration, and thus have triggered new research efforts
to develop alternative interfaces that allow non-technical users to explore and interact with their
data conveniently. While visual data exploration tools have recently gained significant attention,
Natural language interfaces for databases (NLIDBs) appear as highly promising alternatives since
they enable users to pose complex ad-hoc questions in a concise and convenient manner.

For example, imagine that a medical doctor starts her new job at a hospital and wants to find out
about the age distribution of patients with the longest stays in the hospital. This question typically
requires the doctor – when using a standard database interface directly – to write a complex nested
SQL query. Even with a visual exploration tool such as Tableau [Ter+15] or Vizdom [Cro+15a], a
query like this is far from being trivial since it requires the user to execute multiple query steps
and interactions: the user first needs to find out what “longest stay” means and then use the
information to visualize the age distribution for those patients. Alternatively, with an exploration
tool supported by a natural language interface, the query would be as simple as stating “What
is the age distribution of patients who stayed longest in the hospital?” However, understanding
natural language questions and translating them accurately to SQL is a complicated task, and thus
NLIDBs have not yet made their way into commercial products.

In this demo paper, we introduce DBPal, a relational database exploration tool that provides an
easy-to-use natural language (NL) interface aimed at improving the transparency of the underlying
database schema and enhancing the expressiveness and flexibility of human-data interaction
through natural language. Different from existing approaches, our system leverages deep models

90



to provide a more robust query translation. In the following, we outline the two key features of
DBPal that are based on deep models.

Robust Natural-Language-to-SQL Translation: We propose a robust query translation framework
based on the state-of-the-art sequence-to-sequence model for machine translation. Our notion
of model robustness is defined as the effectiveness of the translation model to map linguistically
varying utterances to finite pre-defined relational database operations. Take, for example, the SQL
expression SELECT * FROM patients WHERE diagnosis=’flu’. There are numerous corresponding
natural language utterances for this query, such as ”show all patients with diagnosis of flu” or
simply ”get flu patients”. We aim to build a translating system that is invariant towards these
linguistic alterations, no matter how complex or convoluted. The main challenge hereby is to
curate a comprehensive training set. While existing approaches for machine translation require
a manually created training set, we designed a novel synthetic training set generation approach
that uses only the database schema as input and generates a wide spectrum of pairs of SQL and
natural language queries. To further extend the spectrum of natural language variations, we rely
on existing language models learned from large text corpora such as Wikipedia to automatically
paraphrase and add noise to the training set.

Interactive Query Auto-Completion: We provide real-time auto-completion and query suggestion
to help users who may be unfamiliar with the database schema or the supported query features.
This helps our system improve translation accuracy by leading the user to enter less ambiguous
queries. Consider a user exploring a US geographical information database and starting to type
”show me the names ” — at this point, the system suggests possible completions such as of states,
of rivers, or of cities to make the user aware of the different options she has. The core of the
auto-completion feature is a language model based on the same sequence-to-sequence model and
trained on the same dataset as the query translator.

A screenshot of our prototype of DBPal — which implements the aforementioned features — is
shown in Figure 7.1. We also recommend the readers to watch the video1 which shows a recording
of a representative user session. The remainder of this paper is organized as follows: We first
discuss related prior work in Section 7.2. In Section 7.3, we introduce the system architecture
of DBPal. Then, we describe the system demonstration scenario in 7.4. Lastly, in Section 7.5 we
discuss some limitations of our current prototype and planned future extensions.

7.2. Related Work

NLIDBs have been studied in the database research community since the 1990s [And+95; Pop+03].
Most of this work relied on classical techniques for semantic parsing and used rule-based approaches
for the translation into SQL. However, these approaches have commonly shown poor flexibility for
the users who use questions with different linguistic styles using paraphrases and thus failed to
support complex scenarios.

More recent approaches tackled some of these limitations. For example, the system ATHENA
[Sah+16] relies on a manually crafted ontology that is used to make query translation more
1https://vimeo.com/user78987383/dbpal
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Figure 7.2.: An overview of the DBPal system.

robust by taking different ways of phrasing a query into account. However, since ontologies are
domain-specific, they need to be hand-crafted for every new database schema. On the other hand,
the system NaLIR [LJ14a] relies on an off-the-shelf dependency parser that could also be built on
top of a deep model. However, it still implements a rule-based system that struggles with variations
in vocabulary and syntax. Our system attempts to solve both of those issues by being both domain
independent and robust to grammatical alterations.

Furthermore, some recent approaches leverage deep models for end-to-end translation similar to
our system (e.g., [Iye+17]). However, a main difference between our system and [Iye+17] is that
their approach requires manually handcrafting a training set for each novel schema/domain that
consist of pairs of natural language and SQL queries. In contrast, our approach does not require
a hand-crafted training set. Instead, inspired by [Wan+15], our system generates a synthetic
training set that requires only minimal annotations to the database schema. It should be noted
that ”no need for manual input” does not mean that our approach does not need training when
switching to a schema.

Finally, none of the above-mentioned approaches combine their translation pipelines with additional
functions such as auto-completion. These features not only make query formulation easier by
helping users to phrase questions even without knowing the database schema, but they also help
users to write less ambiguous queries that can be more directly translated into SQL.

7.3. System Architecture

The DBPal system consists of three general components: a web-based user interface, a novel query
translator, and an interactive auto-completion feature to help users to phrase questions as shown
in Figure 7.2. In the following, we first describe the design of each of these components.
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7.3.1. User Interface Design

We designed a web-based interface that allows users to explore the data in a given database via
natural language questions or commands. The interface guides users to perform the exploration
in two ways: first, it serves the database schema information and its stored records as tabular
views to help users be aware of the accessible information. Second, it applies the auto-completion
function as users type in their questions into the form. A primary goal of this input suggestion
or auto-completion feature is to steer a user to write an English utterance that is more likely to
be correctly translated to SQL by our system. Once the natural language query is submitted, the
server translates the query in multiple steps.

7.3.2. Natural Language-to-SQL Translation

The main novelty of DBPal is that the query translation from natural language to SQL is modeled
as a language translation problem using a state-of-the art Recurrent Neural Network (RNN) model
[SVL14]. A major challenge when using such a model is the need for a large and comprehensive
training set mapping natural language to SQL. While existing work already has shown that a
manually curated training corpus can be used to train a NL-to-SQL sequence-to-sequence model
[Iye+17], such an approach imposes a high overhead for every new database schema that needs
to be supported.

Our approach is therefore different since it can automatically “generate” a training set for any
given database schema automatically as shown in Figure 7.3 (left-hand side). The main idea is
that in a first step called Training Data Instantiation, we generate a small training set by using a
set of simple templates that describe SQL-NL pairs and instantiate them using a given database
schema. In the second step called Training Data Augmentation, we automatically enrich the simple
instantiated SQL-NL pairs by applying different techniques that leverage existing language models
to paraphrase but also to introduce noise etc. The goal of the augmentation is to cover a wide
spectrum of ways users might ask questions against the given database.

Training Data Instantiation: The observation is that SQL – as opposed to natural language – has
a much limited expressivity. We therefore use query templates to instantiate different possible SQL
queries that a user might phrase against a given database schema such as:

Select {Att}(s) From {Table} Where {Filter}

The SQL templates cover a variety of different types of queries from simple select-from-where
queries up to more complex aggregate-grouping queries and some simple nested queries.

For each SQL template, we define one or more natural language (NL) templates as counterparts
for direct translation such as:

{SelectPhrase} the {Att}(s) {FromPhrase} {Table}(s) {WherePhrase} {Filter}

Reflecting the larger expressivity of spoken language versus SQL, our NL templates contain slots
for speech variation (e.g., SelectPhrase, FromPhrase, WherePhrase) in addition to the slots
for database items (Tables, Attributes, ...) present in the SQL templates. To instantiate the initial
training set, the generator repeatedly instantiates each of our natural language templates by filling
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in their slots. Table, column and filter slots are filled using the schema information of the database,
while a diverse array of natural language slots is filled using a manually-crafted dictionary of
synonymous words and phrases. For example, the SelectPhrase can be instantiated using What is
or Show me. Thus, an instantiated SQL-NL pair might look like this:

SELECT name FROM patient WHERE age=20 and
Show me the name of all patients with age 20

It is also of importance to balance the training data when instantiating the slots with possible values.
If we naively replace the slots of a query template with all possible combinations of slot instances
(e.g., all attribute combinations of the schema), then instances that result from templates with
more slots would dominate the training set and add bias to the translation model. An imbalance of
instances can result in a biased training set where the model would prefer certain translations over
other ones only due to the fact that certain variations appear more often.

Finally, in the current prototype, for each initial NL template, we additionally provide somemanually
curated paraphrased NL templates that follow particular paraphrasing techniques as discussed in
[VMR11], covering categories such as syntactical, lexical or morphological paraphrasing. Although
they are crafted manually, these templates are all database schema independent and can be applied
to instantiate NL-SQL pairs for any possible schema without additional manual effort. Moreover,
instantiated paraphrased SQL-NL pairs will still be fed into the automatic paraphrasing that is
applied next during automatic augmentation.

Training Data Augmentation: In order to make the trained deep model more robust, we apply
the following post-processing steps after the template instantiation phase:

First, we augment the training set by duplicating NL-SQL pairs, but randomly selecting words of
a sentence and paraphrase them using The Paraphrase Database (PPDB) [PC16] as the lexical
resource. Second, another problem is missing or implicit information in queries. For example, a
user might query the “patients with flu” instead of the “patients diagnosed with flue” and thus the
information about the table column might be missing in a user query. To make the translation
more robust against missing information, we copy individual NL-SQL pairs, then randomly select
words and remove them from the natural language utterances. Third, for each resulting natural
language query pair, we lemmatize the words. Finally, constants such as numbers or strings are
replaced by special tokens.

In the future, we plan on extending our augmentation techniques; e.g., one avenue is to enhance
our automatic paraphrasing using PPDB by paraphrasing multi-word phrases and clauses. We also
plan to investigate the idea of using an off-the-shelf part-of-speech tagger to enrich each word in a
given query and make the model more robust towards syntactic paraphrasing.

Training the Model: We follow a similar architecture of a sequence-to-sequence (seq2seq) model
from [SVL14] for machine translation tasks. Our model maps the natural language input directly
to SQL output queries, which could be seen as the target language. The model itself consists
of two recurrent neural networks, namely, the encoder and decoder. We use a bidirectional
encoder-decoder architecture as proposed by [BCB15]. During training, we also apply a dropout
on embedding layer to avoid over-fitting to our training corpus, which only consists of a small
vocabulary (i.e., SQL keywords as well as schema information of the given database).
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Figure 7.3.: An overview of our Learned Query Translator

Runtime Usage of Model: Our learned model is used at runtime to translate an input natural
language query coming from a user to an executable SQL query as shown in Figure 7.3 (right-hand
side). The runtime pipeline comprises also of multiple steps: First, we handle input parameters
(e.g., “New York”) and replace them by special tokens (e.g., “CITY_NAME”). The reason is that
we want to be able to translate queries for unseen constants correctly. Second, a complex query
handler tries to split a natural language query into multiple simple queries that are translatable
by our model and combines them using SQL operators such as nesting or joining. Third, after
translation, the special tokens are again replaced by their real values in the SQL query in the
post-processing phase. For the first two tasks, we rely on another set of deep models. Describing
the details of these runtime-models, however, is beyond the scope of the demo paper.

7.3.3. Interactive Auto-Completion

To improve the search performance of users, we provide an auto-completion mechanism on queries.
This well-known paradigm not only enhances the search behavior, but also helps to increase
translation accuracy by leading the user into less ambiguous queries. Considering the abstraction
between user and the schema, auto-completion becomes even more crucial. The core of the
auto-completion system consists of a generic deep learning model and a modified search algorithm
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that gives priority to database specific elements. Given an input sequence, the model performs a
breadth-first search in the candidate space, and returns the most probable completions of potential
user queries.

7.4. Demonstration

The demonstration presents our first prototype of DBPal that allows users to select from two data
sets: the ParaphraseBench2 that consists of a simple one-table dataset of hospital patients and tests
the robustness against linguistic variations, and Geo880 (called ‘Geo’ in this paper), a benchmark
dataset of geographical information of the United States that has been commonly tested upon by
prior NLIDBs such as [Iye+17] and [Sah+16]. We will allow the user to query both the Patients and
Geo datasets with increasingly difficult utterances as shown below. All queries can be formulated
with and without the auto-completion feature being enabled.

7.4.1. Simple SQL-like Queries

We first provide the user with a list of straightforward functions that line up with the functionality
of single-table SQL queries such as simple filter queries and aggregations (e.g. MAX, MIN, COUNT)
and GROUP BY statements. We allow the user to play around with the canonical utterances that
are syntactically similar to their SQL counterparts for single table in both the Patients and Geo
contexts. Example queries include:

• ”show me the distinct names of patients where diagnosis is flu”

• ”for each gender, what is the minimum length
of stay of patients?”

• ”what is the name and capital of states where name is not Mississippi and population is less
than 5000000”

– ”return the count of mountains where state name is Colorado”

7.4.2. Paraphrased and Fragmented Queries

After working with simple queries, we then allow users to alter their earlier queries to make them
less syntactically and semantically aligned with a corresponding SQL query. This can involve
restructuring the word syntax of the query, paraphrasing words and phrases with ones that are
semantically equivalent, or removing words from the query that are superfluous and/or that do
not alter the semantics of the query. Example for this part of the demo are:

• ”distinct names of flu patients”

• ”find the shortest patient length of stay from each gender”

• ”enumerate Colorado’s mountains”
2https://link.tuda.systems/paraphrase-bench
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7.4.3. Complex Queries

In the last part, we give the user freedom to query the system with whatever utterances they can
come up with. These may include contextual questions or more nuanced requests; for example:

• ”Who is the oldest patient?”

• ”Show the flu patient with the longest length of stay”

• ”Select the highest point and area from all states”

7.5. Limitation and Future Work

The current prototype of DBPal already shows a significant improvement over other state-of-the-art-
systems such as NaLIR [LJ14a] or ATHENA [Sah+16] when dealing with paraphrasing and other
linguistic variations. Its main limitation, however, is the lack of coverage for more complicated
queries such as different forms of nesting in SQL. However, this is not necessarily a limitation
upon the translation model itself, but rather of the training set generation. We are currently
extending the training data instantiation phase with additional templates and lexicons as well as
the augmentation phase to add more complex natural language queries. Another future avenue of
development is allowing users to incrementally build queries in a chatbot-like interface, where
the system can ask for clarifications if the model can not translate a given input query directly.
We expect that this feature will also be especially helpful for handling nested queries. Finally,
integration with other deep models (e.g., for Question-Answering) seems to be another promising
avenue for future exploration.
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8. DBPal: A Fully Pluggable NL2SQL Training
Pipeline (SIGMOD’20)

Abstract

Natural language is a promising alternative interface to DBMSs because it enables non-technical
users to formulate complex questions in a more concise manner than SQL. Recently, deep learning
has gained traction for translating natural language to SQL, since similar ideas have been successful
in the related domain of machine translation. However, the core problem with existing deep
learning approaches is that they require an enormous amount of training data in order to provide
accurate translations. This training data is extremely expensive to curate, since it generally requires
humans to manually annotate natural language examples with the corresponding SQL queries (or
vice versa).

Based on these observations, we propose DBPal, a new approach that augments existing deep
learning techniques in order to improve the performance of models for natural language to SQL
translation. More specifically, we present a novel training pipeline that automatically generates
synthetic training data in order to (1) improve overall translation accuracy, (2) increase robustness
to linguistic variation, and (3) specialize the model for the target database. As we show, our DBPal
training pipeline is able to improve both the accuracy and linguistic robustness of state-of-the-art
natural language to SQL translation models.
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8.1. Introduction

In order to effectively leverage their data, DBMS users are required to not only have prior knowledge
about the database schema (e.g., table and column names, entity relationships) but also a working
understanding of the syntax and semantics of SQL. Unfortunately, despite its expressiveness, SQL
can often hinder non-technical users from exploring and making use of data stored in a DBMS.
These requirements set “a high barrier to entry” for data exploration, and have therefore triggered
new efforts to develop alternative interfaces that allow non-technical users to explore and interact
with their data conveniently.

For example, imagine that a doctor wants to look at the age distribution of patients with the longest
stays in a hospital. To answer this question, the doctor would either need to write a complex
nested SQL query or work with an analyst to craft the query. Even with a visual exploration tool
(e.g., Tableau [Ter+15], Vizdom [Cro+15a]), posing such a query is nontrivial, since it requires
the user to perform multiple interactions with an understanding of the nested query semantics.
Alternatively, with a natural language (NL) interface, the query is as simple as stating: “What is
the age distribution of patients who stayed longest in the hospital?”

Based on this observation, a number of Natural Language Interfaces to Databases (NLIDBs) have
been proposed that aim to translate natural language to SQL (NL2SQL). The first category of
solutions are rule-based systems (e.g., NaLIR [LJ14a; LJ14b]), which use fixed rules for performing
translations. Although effective in specific instances, these approaches are brittle and do not
generalize well without substantial additional effort to support new use cases. More recently,
deep learning techniques [Iye+17; Wan+15; XLS17] have gained traction for NL2SQL, since
similar ideas have achieved success in the related domain of machine translation. For example,
generic sequence-to-sequence (seq2seq) [ZXS17] models have been successfully used in practice
for NL2SQL translation, and more advanced approaches like SyntaxSQLNet [Yu+18a], which
augments deep learning models with a structured model that considers the syntax and semantics
of SQL, have also been proposed.

However, a crucial problem with deep learning approaches is that they require an enormous
amount of training data in order to build accurate models [HAE16; Sun+17]. The aforementioned
approaches have largely ignored this problem and assumed the availability of large, manually-
curated training datasets (e.g., using crowdsourcing). In almost all cases, however, gathering and
cleaning such data is a substantial undertaking that requires a significant amount of time, effort,
and money.

Moreover, existing approaches for NL2SQL translation attempt to build models that generalize to
new and unseen databases, yielding performance that is generally decent but does not perform as
well as running new queries on the databases used for training. That is, the training data used to
translate queries for one specific database, such as queries containing words and phrases pertaining
to patients in a hospital, does not always allow the model to generalize to queries in other domains,
such as databases of geographical locations or flights.

In order to address these fundamental limitations, we propose DBPal, a fully pluggable NL2SQL
training pipeline that can be used with any existing NL2SQL deep learning model to improve
translation accuracy. DBPal implements a novel training pipeline for NLIDBs that synthesizes its
training data using the principle of weak supervision [Cra+00; Deh+17].
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Figure 8.1.: Lifecycle of a NL query through a Neural Translator trained by DBPal’s training pipeline

The basic idea of weak supervision is to leverage various heuristics and existing datasets to
automatically generate large (and potentially noisy) training data instead of manually handcrafting
training examples. In its basic form, only the database schema is required as input to generate a
large collection of pairs of NL queries and their corresponding SQL statements that can be used to
train any NL2SQL deep learning model.

In order to maximize our coverage across natural linguistic variations, DBPal also uses additional
input sources to automatically augment the training data through a variety of techniques. One
such augmentation step, for example, is an automatic paraphrasing process using an off-the-shelf
paraphrasing database [PC16]. The goal of these augmentation steps is to make the model robust
to different linguistic variations of the same question (e.g., “What is the age distribution of patients
who stayed longest in the hospital?” and “For patients with the longest hospital stay, what is the
distribution of age?”).

In our evaluation, we show that DBPal, which requires no manually crafted training data, can
effectively improve the performance of a state-of-the-art deep learningmodel for NL2SQL translation.
Our results demonstrate that an NLIDB can be effectively bootstrapped without requiring manual
training data for each new database schema or target domain. Furthermore, if manually curated
training data is available, such data can still be used to complement our proposed data generation
pipeline.

In summary, we make the following contributions:

• We present DBPal, a fully pluggable natural language to SQL (NL2SQL) training pipeline that
automatically synthesizes training data in order to improve the translation accuracy of an
existing deep learning model.

• We propose several data augmentation techniques that give the model better coverage and
make it more robust towards linguistic variation in NL queries.

• We propose a new benchmark that systematically tests the robustness of a NLIDB to different
linguistic variations.

• Using a state-of-the-art deep learning model, we show that our training pipeline can improve
translation accuracy by up to almost 40%.
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The remainder of this paper is organized as follows. First, in Section 8.2, we introduce the
overall system architecture of DBPal. Next, in Section 8.3, we describe the details of DBPal’s novel
training pipeline, which is based on weak supervision. We then show how the learned model for
NL2SQL translation is applied at runtime in Section 8.4. Furthermore, we discuss the handling of
more complex queries like joins and nested queries in Section 8.5. In order to demonstrate the
effectiveness of DBPal, we present the results of our extensive evaluation in Section 8.6. Finally,
we discuss related work in Section 8.7 and then conclude in Section 8.8.

8.2. Overview

In the following, we first discuss the overall architecture of a NLIDB and then discuss DBPal, our
proposed training pipeline based on weak supervision that synthesizes the training data from a
given database schema.

8.2.1. System Architecture

Figure 8.1 shows an overview of the architecture of our fully functional prototype NLIDB, which
consists of multiple components, including a user-interface that allows users to pose NL questions
that are automatically translated into SQL. The results from the user’s NL query are then returned
to the user in an easy-to-read tabular visualization.

At the core of our prototype is a Neural Translator, which is trained by DBPal’s pipeline, that
translates incoming NL queries coming from a user into SQL queries. Importantly, our fully
pluggable training pipeline is agnostic to the actual translation model; that is, DBPal is designed to
improve the accuracy of existing NL2SQL deep learning models (e.g., SyntaxSQLNet [Yu+18a]) by
generating training data for a given database schema.

Training Phase

During the training phase, DBPal’s training pipeline provides existing NL2SQL deep learning mod-
els with large corpora of synthesized training data. This training pipeline, described further in
Section 8.2.2, consists of three steps to synthesize the training data: (1) generator, (2) augmen-
tation, and (3) lemmatizer. Once training data is synthesized by DBPal’s pipeline, it can then be
used (potentially together with existing manually curated training data) to train existing neural
translation models that can be plugged into the training pipeline.

Runtime Phase

The runtime phase can leverage a model (Neural Translator) that was trained by DBPal, as shown
on the right-hand side of Figure 8.2. The Parameter Handler is responsible for replacing the
constants in the input NL query with placeholders to make the translation model independent
from the actual database and help to avoid retraining the model if the underlying database is
updated. For example, for the input query shown in Figure 8.2 (i.e., “What are cities whose state is
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Massachusetts?”), the Parameter Handler replaces “Massachusetts” with the appropriate schema
element using the placeholder @STATE. The Lemmatizer then combines different variants of the
same word to a single root. For example, the words “is”, “are”, and “am” are all mapped to the root
word “be”. Then, the Neural Translator works on these anonymized NL input queries and creates
output SQL queries, which also contain placeholders. In the example shown in Figure 8.2, the
output of the Neural Translator is: SELECT name FROM cities WHERE state = @STATE.
Finally, the Post-processor replaces the placeholders with the actual constants such that the SQL
query can be executed.

8.2.2. Training Pipeline

The basic flow of the training pipeline is shown on the left-hand side of Figure 8.2. In the following,
we describe the training pipeline and focus in particular on the data generation framework. The
details of the full training pipeline are explained further in Section 8.3.

Generator

In the first step, the Generator uses the database schema along with a set of seed templates that
describe typical NL-SQL pairs to generate an initial training set. In the second step, Augmentation,
the training data generation pipeline then automatically adds to the initial training set of NL-SQL
pairs by leveraging existing general-purpose data sources and models to linguistically modify the
NL part of each pair.

The main idea is that each seed template covers a typical class of SQL queries (e.g., a SELECT-
FROM-WHERE query with a simple predicate). Composing the seed templates is only a minimal,
one-time overhead, and all templates are independent of the target database (i.e., they can be
reused for other schemas). Furthermore, in DBPal, we assume that the database schema provides
human-understandable table and attribute names, but the user can optionally annotate the schema
to provide more readable names if required; deriving readable schema names automatically is an
orthogonal issue.

The schema information is then used to instantiate these templates using table and attribute names.
Additionally, manually predefined dictionaries (e.g., to cover synonyms) can be used to instantiate
simple variations of NL words and phrases (e.g., “Show me” and “What is” for the SELECT clause).
Currently, DBPal contains approximately 100 seed templates. A typical training set that can be
generated from these templates contains around 1 million NL-SQL pairs for a simple, single-table
database schema and around 2-3 million for more complicated schemas.

Augmentation

A core aspect of our pipeline is the Augmentation step that automatically expands the training data
produced by our Generator in order to offer more accurate and linguistically robust translations.
During augmentation, the training data generation pipeline automatically adds new NL-SQL pairs
by leveraging existing general-purpose data sources and models to linguistically vary the NL part
of each pair. The goal of the augmentation phase is thus to cover a wide spectrum of linguistic
variations for the same SQL query, which represent different versions of how users might phrase
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Figure 8.2.: DBPal’s Training and Runtime Phases

the query in NL. This augmentation is the key to make the translation model robust and allows
DBPal to provide better query understanding capabilities than existing standalone approaches.
Section 8.3.2 describes this process in more detail.

Lemmatization

Finally, in the last step of the data generation procedure, the resulting NL-SQL pairs are lemmatized
to normalize the representation of individual words. During this process, different forms of the
same word are mapped to the word’s root in order to simplify the analysis (e.g., “cars” and “car’s”
are replaced with “car”). The same lemmatization is applied at runtime during the aforementioned
pre-processing step.

8.3. Training Phase

In this section, we describe DBPal, our fully pluggable training data generation pipeline, which
is designed to improve the translation accuracy and linguistic robustness of existing NL2SQL
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deep learning models. After describing the steps of our training pipeline in detail, we discuss an
optimization procedure of the data generation process to increase the model quality via parameter
tuning. Finally, we elaborate on the model training process, including a description of the details
of the model architecture and the hyperparameters used in training.

8.3.1. Data Instantiation

The main observation of the instantiation step is that SQL, as opposed to NL, has significantly less
expressivity. We therefore use query templates to instantiate different possible SQL queries that a
user might phrase against a given database schema, such as:

Select {Attribute}(s) From {Table} Where {Filter}

The main idea of data instantiation is that the space of possible SQL queries a user might phrase
against a given database schema can be defined using a set of SQL templates. The SQL templates
cover a variety of query types, from simple SELECT-FROM-WHERE queries to more complex group-
by aggregation queries, as well as some simple nested queries. For each SQL template, we define
one or more NL templates as counterparts for direct translation, such as:

{SelectPhrase} {Attribute}(s) {FromPhrase} {Table}(s) {WherePhrase} {Filter}

It is important to note that we do not use actual constants in the filter predicates. Instead, we
use placeholders (e.g., @AGE) that represent an arbitrary constant for a given table attribute.
This makes the model trained on the generated data independent of concrete values used in the
database; thus retraining is not required after inserts or updates.

To account for the expressivity of NL compared to SQL, our templates contain slots for speech
variation (e.g., SelectPhrase, FromPhrase, WherePhrase) in addition to slots for database objects
(e.g., tables, attributes). Then, to instantiate the initial training set, the Generator repeatedly
instantiates each of our NL templates by filling in the corresponding slots. Table, column, and
filter slots are filled using information from the database’s schema, while a diverse array of NL slots
are filled using manually crafted dictionaries of synonymous words and phrases. For example, the
phrases “what is” or “show me” can be used to instantiate the SelectPhrase. A fully instantiated
NL-SQL pair might look like:

Instantiated NL: Instantiated SQL:
Show the names of all patients with age 20. SELECT name FROM patients WHERE age

= 20

An important part of training data instantiation is balancing the number of NL-SQL pairs that are
instantiated per template. If we naively replace the slots of a query template with all possible
combinations of slot instances (e.g., all attribute combinations from the schema), then instances
that result from templates with more slots would dominate the training set and bias the model.
More specifically, an imbalance of instances can lead to a biased training set where the model
would prefer certain translations over others only due to the fact that certain variations appear
more often. We therefore randomly sample from the possible instances to get a good coverage of
different queries and to keep the number of instances per query template balanced.

Finally, for each initial NL template, we additionally provide some manually curated paraphrased
NL templates that follow particular paraphrasing techniques [VMR11], covering categories such as
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syntactical, lexical, and morphological paraphrasing. The existence of multiple corresponding NL
templates for each SQL template allows us to systematically cover a range of possible linguistic
variations. Importantly, the paraphrased templates can be applied to instantiate the training data
for any given schema, and the instantiated NL-SQL pairs are also automatically paraphrased during
automatic data augmentation.

For example, consider the following paraphrased NL template and a corresponding instantiation:

Paraphrased NL Template: Instantiated NL Template:
For {Table}(s) with {Filter}, what is their {At-
tribute}(s)?

For patients with age @AGE, what is their name

We further expand upon our augmentation techniques in the following section.

8.3.2. Data Augmentation

Unsurprisingly, numerous ways exist to express the same idea in NL. For example, the questions
“Show me the names of all patients older than 18” and “What are the names of patients who have
an age greater than 18?” are semantically equivalent. Therefore, to make the NL2SQL model
more robust to these linguistic variations, we apply the following augmentation steps for each
instantiated NL-SQL pair.

Automatic Paraphrasing

First, we augment the training set by generating duplicate NL-SQL pairs. This process involves
randomly selecting words/subphrases of the NL query and paraphrasing them using the Paraphrase
Database (PPDB) [PC16] as a lexical resource, for example:

Input NL Query:
Show the names of all patients with age @AGE.

PPDB Output:
demonstrate, showcase, display, indicate, lay

Paraphrased NL Query:
Display the names of all patients with age @AGE.

PPDB is an automatically extracted database containing millions of paraphrases in 27 different
languages. DBPal uses PPDB’s English corpus, which provides over 220 million paraphrase pairs
consisting of 73 million phrasal and 8 million lexical paraphrases, as well as 140 million paraphrase
patterns, which capture a wide range of meaning-preserving syntactic transformations. The
paraphrases are extracted from bilingual parallel corpora totaling over 100 million sentence pairs
and over 2 billion English words.

During paraphrasing, we randomly replace words and subphrases of the input NL query with
available paraphrases provided by PPDB. For example, searching in PPDB for a paraphrase of the
word enumerate, as in “Enumerate the names of patients with age 80”, we get suggestions such as
“list” or “identify” as alternatives.
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An important question is how aggressively to apply automatic paraphrasing. We therefore provide
two parameters to tune the automatic paraphrasing in DBPal. The first parameter sizepara defines
the maximum size of the subclauses (in number of words) that should be replaced in a given
NL query. A second parameter numpara defines the maximum number of paraphrases that are
generated as linguistic variations for each subclause. For example, setting sizepara = 2 will replace
subclauses of size 1 and 2 (i.e., unigrams and bigrams) in the input NL query with paraphrases
found in PPDB. Furthermore, setting numpara = 3, each of the unigrams and bigrams will be
replaced by at most 3 paraphrases.

Setting these two parameters in an optimal manner is, however, not trivial: if we set both parameters
to high values, we can heavily expand our initial training set of NL-SQL query pairs using many
different linguistic variations, which hopefully will increase the overall robustness of DBPal. At the
same time, we might also introduce noise into the training dataset, since PPDB also includes some
paraphrases that are of low quality.

DBPal has default values for all of these parameters that we have empirically determined to have
the best performance on multiple database schemas, which are used in our evaluation in Section
8.6. In order to optimize these parameters to increase the overall model accuracy for a given
input database schema, we provide an optimization procedure that we discuss in Section 8.3.3.
Our procedure automatically finds a parameterization of the data generator that balances, among
others, the trade-off between these two dimensions: size of the augmented training data and noise
in the training data.

Missing Information

Another challenge of input NL queries is missing or implicit information. For example, a user
might ask for “patients with influenza” instead of “patients diagnosed with influenza”, where the
referenced attribute (i.e., “diagnosis”) is never explicitly stated.

Therefore, to make the translation more robust to missing or implicit context, we randomly drop
words and subphrases from the NL training queries. For example, from the sentence “patients
diagnosed with influenza”, DBPal might decide to drop the word “diagnosed”, allowing the translation
model to be able to successfully answer the question “Who are the patients with influenza?”

Similar to paraphrasing, an interesting question is: which words or subphrases should be removed
and how frequently should we remove them? Again, aggressively removing words increases the
training data size, since more variations are generated. On the other hand, however, we might
introduce noisy training data that leads to a drop in translation accuracy and, counterproductively,
produces less linguistically robust models.

In order to tune how aggressively we drop words and subphrases, we follow a similar protocol
as the paraphrasing process by randomly selecting words in the NL query and removing them
in a duplicate. Thus, we additionally introduce a parameter named nummissing that defines the
maximum number of query duplicates with removed words for a given input NL query. We also
include a parameter randDropp that defines how often the generator will choose to remove words
from a particular NL query at all. Analogously to automatic paraphrasing, we set these two
parameters for a given input database schema automatically using the procedure described in
Section 8.3.3.
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Other Augmentations

For the automatic data augmentation, we apply some additional techniques to increase the lin-
guistic variations. One example is the use of available linguistic dictionaries for comparatives and
superlatives. For example, by using these resources, we can replace the general phrase greater
than in an input NL query by older than if the domain of the schema attribute is set to age.

In the future, we plan on extending our augmentation techniques in a variety of ways. For example,
one possible avenue is to enhance our automatic paraphrasing using other language sources and
not only PPDB. We also plan to investigate the idea of using an off-the-shelf part-of-speech tagger
to annotate each word in a given NL query. These annotations can be used in different forms
(e.g., we could use them in the automatic paraphrasing to identify better paraphrases or to infer a
request for a nested query). Another idea is to use part-of-speech tags to apply the word removal
only for certain classes of words.

8.3.3. Optimization Procedure

One important challenge of the automatic data generation steps is to instantiate the training data
such that the translation model will provide a high accuracy. For example, the template-based
training data instantiation step also has parameters that can be tuned to control the number of
basic NL-SQL pairs that are instantiated for each template. Without tuning these parameters,
the data generation process could introduce bias in the generated training data based on a given
schema if we exhaustively generate all possible NL-SQL pairs. Furthermore, the augmentation steps
require several parameters for each step that define how aggressively paraphrasing and removing
information is applied to an input NL query.

We therefore attempt to automatically optimize the configuration of the generator parameters
given a particular database schema. The intuition behind this strategy comes from observations
made about the translation model’s behavior. In particular, we note that models are typically very
susceptible to overfitting to over-represented NL-SQL queries. For example, if we overpopulate the
training set with the SQL count queries (the natural language parallel will usually include words
like “how many”), the model will likely output a count query for all aggregations simply because
it sees particular NL words that most commonly appeared with the word count during training.
Queries like “How large is the area of Alaska?” might be therefore be mapped to a count instead of
sum simply for this reason.

Table 8.1 lists all parameters that are available in DBPal to tune the data generation process and
explains their meanings. As mentioned before, these parameters define the main characteristics
of the training data instantiation and augmentation steps, and thus they have an effect on the
accuracy and robustness of the translation model. In order to find the optimal parameter values
of the data generation process for a given schema automatically, we model the data generation
procedure as the following function:

Acc = Generate(D,T, φ)

The inputs of this function are the database D that describes the schema and contains some sample
data, a test workload T of input NL queries and expected output SQL queries, as well as a possible
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Parameter Explanation
Data Instantiation

sizeslotfills Maximum number of instances created for a NL-SQL template pair
using slot-filling dictionaries.

sizetables Maximum number of tables supported in join queries.
groupByp Probabilities of generating a GROUP BY version of a generated query

pair.
joinboost, aggboost, nestboost Control the balance of various types of SQL statements relative to

each other and the number of templates used.
Data Augmentation

sizepara Maximum size of subclauses that are automatically replaced by a
paraphrase.

numpara Maximum number of paraphrases that are used to vary a subclause.
nummissing Maximum number of words that are removed for a given input NL

query.
randDropp Probability of randomly dropping words from a generated query.

Table 8.1.: Parameters of the Data Generation Procedure

instantiation of all the tuning parameters φ listed in the Table 8.1. The output of the generation
procedure Acc is the accuracy of our model that is trained on the generated dataset using D as
well as φ and then evaluated using the test workload T . It is important to note that we can either
use a test workload T that is created automatically by using a random sample of the generated
training data (i.e., we split the test set from the training set) or by providing a small representative
set of NL-SQL query pairs that are curated manually.

The goal of the optimization procedure is to find a parameter set φ that maximizes the accuracy
Acc. Automatic optimization techniques are useful for global optimization problems that evalu-
ate expensive black-box functions; as such it has become popular for optimizing deep learning
models that take in a seemingly arbitrary set of hyperparameters, such as the number of layers or
perceptrons per layer of a convolutional neural network (CNN). However, instead of applying the
optimization procedure to our translation model, we extrapolate one step backwards and attempt
to optimize the nature of the training set to which the model will be exposed.

In machine learning, there exist several strategies for automatically tuning hyperparameters. In
DBPal, we use a random search approach to automatically tune the hyperparameters φ of the
function Generate. For each candidate set of parameters, the entire system pipeline, including
data generation and model training (labeled Generate(D,T, φ)), is completed and the accuracy is
returned. Random search is a standard technique for hyperparameter-tuning and differs from grid
search, which is an alternative to random search, mainly in that it searches the specified subset of
hyperparameters randomly instead of exhaustively.

The major benefit of random search is the reduced runtime in practice to find a set of hyperpa-
rameters that increases the accuracy of the learned model. However, unlike grid search, with
random search we are not guaranteed to find the optimal combination of hyperparameters. In
the experimental evaluation, we show that by using random search, we can find parameters for
the data generation process to produce training data that can provide a high accuracy for the
trained model. We also experimented with more sophisticated hyperparameter search strategies
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like Bayesian optimization, which did not find to improve the accuracy over the random search
strategy.

8.3.4. Neural Translation Model

As previously mentioned, DBPal is fully pluggable and is designed to improve the accuracy of
any existing NL2SQL deep learning model. Therefore, importantly, existing models, ranging
from simple seq2seq to more complex ones like SyntaxSQLNet [Yu+18a], can be used for the
translation and still benefit from our proposed training pipeline. Additionally, since a great deal of
ongoing work is currently focused on producing better NL2SQL models, our approach is similarly
able to improve the performance of any new advancements that the NL community develops for
translation. Since our main contribution of this work is the novel data generation approach, a
detailed discussion of deep model architectures is beyond the scope of this paper.

8.4. Runtime Phase

In this section, we describe the query translation pipeline. The complete process of the runtime
phase is shown in Figure 8.2 (right-hand side). From the given input NL query to the output
SQL query, three major processing phases are performed: pre-processing, query translation, and
post-processing. The output SQL query is then executed against the database and the result is
returned to the user interface in tabular form, as shown in Figure 8.1.

8.4.1. Pre-Processing and Query Translation

The input to the pre-processing step is a NL query formulated by the user, such as the following:

User NL Query (with constants):
Show me the name of all patients with age 80

As previously mentioned, during pre-processing, parameter values (i.e., constants) are replaced
with special placeholders. This step is performed to translate queries independently of the database
content. The resulting intermediate query is as follows:

Input NL Query (without constants): Output SQL Query (without constants):
Show me the name of all patients with age
@AGE

SELECT name FROM patient WHERE
age=@AGE

Replacing the constants in the input NL query with their placeholders is a nontrivial task. The
process might not be deterministic, since the same constant might map to different columns. This
sub-task, commonly referred to as “variable anonymization,” has been identified by other groups
as an important challenge in the NL2SQL pipeline. In their work towards systematic benchmarking
for NL2SQL systems, [Fin+18] acknowledge that anonymization can be treated as a separate task,
and provide benchmarks with and without having already performed the anonymization. As such,
our paper follows the former setup and evaluates on test sets with pre-anonymized values.
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In practice, as a temporary solution in the basic version of DBPal, we build an index on each
attribute of the schema that maps constants to possible attribute names. Moreover, the user might
have provided a string constant in the input NL query that is only similar to the one used in the
database (e.g., the user provides “New York City” instead of “NYC”). In the current version of DBPal,
we use a similarity function to replace constants with their most similar value that is used in the
database. We therefore search the possible column values and compute a string similarity metric
with the string constant provided by the user. In our prototype, we currently use the Jaccard index,
but the function can be replaced with any other similarity metric. In cases where the similarity of
all values for the user-specified string is too low (which could mean that the value does not exist in
the database), we use the constant as given by the user and do not replace it.

Finally, as a last step of pre-processing, we lemmatize the input NL query to normalize individual
words and thus increase the similarity of the training data (which we also lemmatize) and the
input NL query the user provides at runtime. After all pre-processing steps are applied, the trained
model is used to map the anonymized and lemmatized NL query into an output SQL query, as
shown previously.

8.4.2. Post-Processing

After pre-processing and translation, a post-processing phase is applied. First, the placeholders
in the output SQL query are replaced by the appropriate database constants. Then, we use SQL
syntax knowledge to repair potential translation errors of the model.

The first step is simply the inverse step of the pre-processing phase. For example, the placeholder
in the output SQL query shown before should be replaced by the according constant that was
present in the user input:

Output SQL Query (with constants):
SELECT name FROM patient WHERE age=80

Hence, we need to replace the placeholder in the SQL output of the model with the constant used
in the input NL query (e.g., @AGE is replaced by 80 in the example above).

In the second step of the post-processing phase, DBPal uses knowledge about the SQL syntax to
repair potential translation errors that might result from applying the model. One typical example
is that the attributes used in the output SQL query and the table names do not match (e.g., the
query asks for patient names but the table patient is not used in the FROM clause). In this case, the
post-processing step adds missing tables to the FROM clause. The most likely join path is selected
from the schema using the shortest join path between the table already present in the FROM clause
and the missing table. This is similar to the general join handling, which we discuss in detail in the
next section.

8.5. Complex Queries

In the previous sections, we have shown both the training and runtime phase of DBPal for example
queries with single tables. In this section, we discuss how we extend these techniques to handle
joins and nested queries as well.
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8.5.1. Join Queries

In order to handle NL input queries that require a join, we extend the template-based instantiation
during the training phase such that the attribute slots of a query can be filled with attribute names
from multiple tables in the same instance. Attribute slots can be present in different parts of a query
(e.g., the SELECT or WHERE clause). The maximum number of distinct tables that are used during
slot-filling can be defined using a parameter called sizetables, which is a tuning parameter of the
data generation process, as previously discussed. Furthermore, we also change the instantiation of
table names in the generated SQL query. Instead of enumerating all required tables in the FROM
clause, we add a special placeholder @JOIN. An example for an instantiated NL-SQL pair that use
a join might look as follows:

SQL Query (Training Set): NL Query (Training Set):
SELECT AVG(patient.age) FROM @JOIN
WHERE doctor.name=@DOCTOR.NAME

What is the average age of patients treated by
doctor @DOCTOR.NAME

At runtime, our translation model then outputs a SQL query with a@JOIN placeholder when it sees
an input NL query with attributes from multiple tables (i.e., it outputs a SQL query without concrete
table names in the FROM clause). The @JOIN placeholder is then replaced in the post-processing
step with the actual table names and the join path that contains all tables required by the query.
From experience, we observe that this reduces the overall model complexity, since the model does
not need to predict actual table names for the FROM clause.

Furthermore, as explained before in Section 8.4, for single-table queries our translation model
sometimes produces erroneous SQL queries where the table name in the FROM clause does not
match the attribute names used. These errors are handled in the post-processing step, where we
must infer the correct table names from the attributes used in the SQL query. Thus, increasing the
model complexity to predict both the join paths and table names increases the rate of errors that
would need to be handled in the post-processing phase. The introduction of the JOIN placeholder
rectifies these issues.

DBPal’s post-processing phase uses the schema information to infer table names and a join path
from the attributes in the SQL output of the model. In case multiple join paths are possible to
connect all the required tables, we select the join path that is minimal in its length.

8.5.2. Nested Queries

Handling arbitrary nested queries is a hard task on its own. In our current prototype, we only
handle a subset of possible SQL nestings by adding additional templates that represent common
forms of nested queries where the slots for the outer and inner query can be instantiated individually.
An example for a NL-SQL template pair looks as follows:

SQL Template: NL Template:
Select {Attribute}(s) From {Table} Where (Select
{MaxMinAttribute} From {Table} Where {Filter}))

{SelectPhrase} the {Attribute}(s)
{FromPhrase} {Table} {WherePhrase}
{MaxMinAttribute}
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Algorithm Easy Medium Hard Very Hard Overall
SyntaxSQLNet 0.445 0.227 0.231 0.051 0.248
DBPal (Train) 0.472 0.300 0.252 0.107 0.299
DBPal (Full) 0.480 0.323 0.279 0.122 0.317

Table 8.2.: Spider Benchmark Results

This template is then instantiated during the first phase of the data generation process. For example,
the following pair of instantiated queries could be generated for the training set from the previous
template pair:

SQL Query (Training Set): NL Query (Training Set):
SELECT name FROM mountain WHERE
height = (SELECT MAX(height) FROM
mountain WHERE state=@STATE.NAME)

What is name of the mountain with maximum
height in @STATE.NAME

The instantiated queries are augmented automatically in the same way as for non-nested queries. In
its current version, DBPal only supports uncorrelated nestings in the WHERE clause using different
keywords (e.g., EXISTS, IN), as well as nested queries where the inner query returns an aggregate
result. However, the nesting capabilities of DBPal can easily be extended by further adding templates
that are instantiated in the first phase of the data generation.

8.6. Experimental Evaluation

The main goal of our evaluation is to show that the presented training pipeline is able to im-
prove the performance of existing NL2SQL translation techniques. Therefore, in Section 8.6.1, we
first compare our proposed augmentation techniques to the training process using SyntaxSQL-
Net [Yu+18a] with the well-known Spider [Yu+18b] benchmark. Based on this analysis, in
Section 8.6.2, we introduce a new benchmark for NLIDBs that better tests linguistic variations for
NL2SQL translation and present experimental results. Finally, Section 8.6.3 presents the results of
several microbenchmarks that test different aspects of DBPal’s training pipeline.

8.6.1. Existing Benchmark: Spider

The first benchmark that we use to show the effectiveness of our proposed techniques is Spi-
der [Yu+18b]. In the following, we describe the benchmark at a high-level, and then we show
how DBPal can effectively improve the accuracy of SyntaxSQLNet [Yu+18a] on the Spider bench-
mark. SyntaxSQLNet is a state-of-the-art deep learning model that uses pre-trained GloVe word
embeddings [PSM14] when parsing the words in the input sentences. Using GloVe embeddings
already allows the model to handle variations of individual words efficiently.

Setup

Spider [Yu+18b] is a popular openly-available dataset that consists of over 10, 000 NL questions
paired with the corresponding SQL queries. The benchmark contains 200 database schemas, each of
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which has several tables, representing real-world database deployments. The data in the benchmark
is very diverse and spans 138 distinct domains (e.g., automotive, social networking, geography). In
addition to the diverse data, the corresponding SQL queries contain almost all of the common SQL
patterns, including nested queries.

Based on the complexity of the corresponding SQL query (i.e., the number of SQL components),
each question is assigned a difficulty (i.e., easy, medium, hard, very hard). The benchmark includes
queries from each of these categories, allowing us to test how different approaches compare in a
diverse set of scenarios. In this benchmark, accuracy is measured by computing the number of
correctly translated NL phrases divided by the total number of queries. A query is deemed to be
correctly translated only if it exactly matches the provided “gold standard” SQL query for the NL
input, without allowing for semantically equivalent answers.

Unlike existing datasets, Spider uses different databases (i.e., schemas and data) for training and
testing (i.e., a database schema is used exclusively for either training or testing, but not both).
This allows us to evaluate how well the model will generalize to new domains.

Results

Table 8.2 shows the accuracy for SyntaxSQLNet using the Spider dataset for three different config-
urations. First, as a baseline, we show the performance of the base SyntaxSQLNet model trained
using the data from Spider’s training set. The DBPal (Train) configuration uses the baseline
SyntaxSQLNet (i.e., trained using Spider’s training set), but we augmented the training data
with additional synthetic data generated by DBPal using the schemas of the training set in Spider
only. Finally, the DBPal (Full) version uses the schemas from both the training and test set of
Spider to generate additional synthetic training data. Note, however, that DBPal never sees actual
NL-SQL pairs from the test set during the training process, only the schemas in the DBPal (Full)
configuration.

As shown, both configurations of DBPal improve upon the baseline performance of SyntaxSQLNet
across all difficulty levels. In the DBPal (Train) case, we see that with the addition of synthetic
training data generated only using schema information from the training set, DBPal is already able
to outperform the baseline SyntaxSQLNet model. This is due to the fact that our novel training
pipeline is able to supplement the existing training data with additional query patterns (e.g., nested
subqueries) that are not present (or numerous enough) in the training data. As shown, this helps
significantly for the harder queries, with DBPal being able to outperform the baseline by more than
2× for the “very hard” category due to the fact that the training pipeline introduces new query
patterns (e.g., nested queries) to the model.

In general, DBPal (Full) is able to leverage additional query patterns from the synthetic data
generation pipeline that are specific for the test schemas. With this information, DBPal (Full) is
able to generate training examples that provide the model with additional information (e.g., table
names, column names, column values) that is specific to test databases. As shown in Table 8.2,
the added synthetic data for the test schemas in Spider when using DBPal (Full) is able to offer
additional performance improvement over DBPal (Train). More concretely, with the help of the
additional generated training data, we can further improve translation accuracy across all query
difficulties of Spider by 15− 27%.
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Algorithm Naive Syntactic Lexical Morph. Semantic Missing Mixed Overall
SyntaxSQLNet 0.281 0.228 0.070 0.175 0.175 0.088 0.140 0.165
DBPal (Train) 0.930 0.333 0.404 0.667 0.228 0.088 0.193 0.409
DBPal (Full) 0.947 0.632 0.544 0.667 0.491 0.158 0.298 0.531

Table 8.3.: Patients Benchmark Results

8.6.2. New Benchmark: Patients

While Spider covers both a wide variety of schemas from different domains and different SQL query
patterns, it does not comprehensively test different linguistic variations. Hence, we introduced a
new open-source NL2SQL benchmark1 that is available online specifically to test a model’s linguistic
robustness.

Setup

The schema of our new benchmark models a medical database comprised of hospital patients with
attributes such as name, age, and disease. We refer to this dataset as the Patients benchmark. In
total, the benchmark consists of 399 carefully crafted pairs of NL-SQL queries.

To better test the linguistic robustness of the given translation model, queries are grouped into one
of the following categories depending on the linguistic variation that is used in the NL query: naive,
syntactic paraphrases, morphological paraphrases, semantic paraphrases, and lexical paraphrases,
as well as a category where queries have some missing information. These categories are formulated
along the guidelines of paraphrase typologies discussed in [VMR11] and [BH13]. While the
NL queries in the naive category represent a direct translation of their SQL counterpart, the
other categories are more challenging: syntactic paraphrases emphasize structural variances,
lexical paraphrases pose challenges such as synonymous words and phrases, semantic paraphrases
use changes in lexicalization patterns that maintain the same semantic meaning, morphological
paraphrases add affixes, apply stemming, etc., and the missing category includes implicit references
to concepts.

Unlike other benchmarks that test for exact syntactic match of SQL queries, Patients tests instead
for semantic equivalence. Since the test set is (relatively) small (i.e., 57 queries per category),
we manually enumerated possible semantically equivalent SQL query answers. However, if the
benchmark were to be extended, one could use an equivalence checker (e.g., Cosette [Chu+17])
to verify correctness.

In the following, we show an example query for each of these categories:

Naive “What is the average length of stay of patients where age is 80?”

Syntactic “Where age is 80, what is the average length of stay of patients?”

Morphological “What is the averaged length of stay of patients where age equaled 80?”

Lexical “What is the mean length of stay of patients where age is 80 years?”
1https://link.tuda.systems/paraphrase-bench
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Semantic “On average, how long do patients with an age of 80 stay?”

Missing Information “What is the average stay of patients who are 80?”

Results

In this section, we show how our proposed techniques compare using the previously described
Patients benchmark. Table 8.3 shows the performance of SyntaxSQLNet (Baseline), our proposed
synthetic data generation using only information from the training set (DBPal (Train)), and
synthetic data generation using schema information from both the training and testing set (DBPal
(Full)).

In the results, we see that our proposed synthetic data generation techniques can help improve
the performance of SyntaxSQLNet across all of the linguistic variation categories. In particular,
our techniques improve the translation accuracy by almost 25% by generating additional training
data over only the training set and can provide a more than 35% accuracy improvement over
SyntaxSQLNet by leveraging schema information about the test databases.

In general, the results of our training data augmentation fall into two categories. On one hand,
there are query pattern categories where the baseline DBPal augmentation achieves almost all
of the observed performance improvement (e.g., Naive, Morphological). In these cases, DBPal
improves model performance by providing training examples for classes of queries that are not
well-covered by the Spider training set, and the target schema knowledge provides virtually no
additional benefit.

The second category of query patterns is where there is a large performance difference between
DBPal (Train) and the target schema augmentation version, DBPal (Full), where accuracy is
often doubled (e.g., semantic, missing). In these categories, the additional schema information is
particularly helpful because it allows the model to learn complex, domain-specific NL mappings.
For example, consider the example semantic query: “On average, how long do patients older than
80 stay?” Clearly, the semantic meaning of the phrase “older than” refers implicitly to the “age”
attribute of the patient, but this would not be easy to derive from a generic training set. However,
by providing training data specifically generated from the target schema, DBPal is able to help the
model to better learn these mappings.

8.6.3. Microbenchmarks

In the following, we present the results of our microbenchmarks, which include: (1) an analysis
of Spider results based on SQL pattern coverage; (2) the sensitivity of DBPal when using only
a fraction of seed templates; and (3) our hyperparameter optimization techniques described in
Section 8.3.3.
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Algorithm Both DBPal Spider Unseen
SyntaxSQLNet 0.375 0.000 0.244 0.013
DBPal (Train) 0.458 0.000 0.287 0.026
DBPal (Full) 0.462 0.250 0.317 0.040

Table 8.4.: Pattern Coverage Breakdown for Spider

Pattern Coverage Breakdown

To understand the specific benefits of DBPal, we analyzed our results for the Spider benchmark
from Section 8.6.1 based on query pattern coverage in the training data. Table 8.4 shows the same
overall performance results reported in Table 8.2 broken down by query patterns in the test set
using the following categories: the query pattern of the test query was found in (1) both the Spider
training set and augmented data generated by DBPal; (2) only the augmented DBPal data; (3) only
the training set of Spider; and (4) neither of them. For example, the simple SELECT COUNT(*)
query pattern appears in both training sets, whereas only the Spider training dataset has coverage
for multiple nested subqueries.

In general, we see that DBPal improves accuracy for all four categories, demonstrating that our
data augmentation process can improve linguistic robustness irrespective of which training set
contains individual query patterns. That is, DBPal’s generated data actually helps the model to
generalize and be more linguistically robust to patterns that are not explicitly covered in our seed
templates. This effect can be seen for patterns that appear only in the Spider training dataset
(Spider), where DBPal improves the model performance by about 30%. Even more impressive is
the over 3× improvement for test queries where the query patterns never explicitly appear in any
training set (Unseen).

Again, as observed in our other results, the additional augmentation step using the target schema
further increases accuracy. For the Both category, this enables model specialization of those patterns
to the target schema, whereas for the Spider and Unseen categories, it helps the model to learn to
translate patterns with no DBPal coverage to the target schema.

Finally, one notable result is for the query patterns that appear only in DBPal’s seed templates. As
expected, the baseline SyntaxSQLNet model has never seen these query patterns (since they do not
appear in Spider) and thus has 0% accuracy, whereas DBPal achieves 25% accuracy by learning
from augmented examples of these patterns.

Seed Templates

Since DBPal generates additional training data by instantiating seed templates, the number of
templates used during training can impact the overall benefit of our training pipeline. Therefore,
to demonstrate the impact of the seed templates, Figure 8.3 shows the normalized accuracy (i.e.,
performance compared to using all of the templates) using the Patients benchmark when varying
the number of templates used during training.

For this experiment, we train the same SyntaxSQLNet model using the previously mentioned Spider
training data and include additional training data that is generated for the Patients schema only
using a random subset of the available seed templates. For example, in the 10% case, we augment
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Figure 8.3.: Normalized Accuracy for Fractions of Seed Templates

the Spider data with additional training examples that are instantiated using a randomly selected
10% of the available seed templates on the Patients schema. Importantly, the random subsets are
selected prior to instantiation, which means templates covering certain patterns are excluded.

As shown, the addition of only 10% of the available seed templates is able to improve the overall
accuracy when running the Patients test queries by more than 4×. Adding even more of the
available seed templates (i.e., 50%) offers an additional 15% accuracy improvement, showing that
additional templates are able to capture distinct NL2SQL patterns.

Hyperparameter Optimization

As described in Section 8.3.3, we apply an automatic hyperparameter optimization procedure to
tune the parameters of our training data generator. In this experiment, we show the results of
applying our optimization procedure for generating the training data for the Spider benchmark we
used in our experiments in Section 8.6.1.

As a test workload T to tune the hyperparameters of our data generation pipeline, we used the full
GeoQuery query test set of 280 pairs provided by [Iye+17]. The rationale is that the GeoQuery
queries are partially included in the Spider test set and thus represents a good test set for the
hyperparameter tuning, since the queries can be seen as representative on the one hand but also
independent of the actual Spider test set. For the experiment, we sampled 68 random sets of
hyperparameters. For every set of randomly sampled hyperparameters, we then trained a given
model for up to a 6 hour time limit (which we saw is the typical time a model needs to converge
when trained on Spider and DBPal training data).

Figure 8.4 shows the distribution of the accuracy recorded from running the optimization pro-
cedure, which trains a model on every dataset that was generated using the randomly sampled
hyperparameters. Of the 68 parameter sets we evaluated, 59 converged within their 6 hour time
limit. The worst model returned had an accuracy of 37.5%, while the best had an accuracy of
55.5%. The mean accuracy of all 59 models was 48.4%, with a standard deviation of 3.5%.

We used the hyperparameters which returned the highest accuracy as the basis for all other
experiments previously described in this section.
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Figure 8.4.: Histogram of Test Accuracy for Enumerated Parameter Configurations

8.7. Related Work

The task of synthesizing SQL queries from natural language (NL) has been studied extensively
within both the NLP and database research communities since the late 1970s [Pop+04; ZM96]. A
1995 study [And+95] extensively discusses challenges that need to be addressed pertaining to
Natural Language Interfaces for Databases (NLIDBs); their list includes linguistic coverage and
database portability.

NLIDBs have a long history in the database research community [And+95; LJ14a; LJ14b; PEK03;
Ran+05b; Sah+16]. Most of this work relied on classical techniques for semantic parsing and used
rule-based approaches for the translation into SQL. However, these approaches have commonly
shown poor flexibility for the users who phrase questions with different linguistic styles using
paraphrases and thus failed to support realistic scenarios.

More recent approaches tackled some of the limitations of the original NLIDBs. For example,
the system ATHENA [Sah+16] relies on a manually crafted ontology that is used to make query
translation more robust by taking different ways of phrasing a query into account. Yet, since
ontologies are domain-specific, they need to be hand-crafted for every new database schema. On
the other hand, the NaLIR[LJ14a] system relies on an off-the-shelf dependency parser that could
also be built on top of a deep model. However, it still implements a rule-based system that struggles
with variations in vocabulary and syntax. Our system attempts to solve both of those issues by
being domain-independent as well as robust to linguistic variations.

Within the NLP community, this task is most commonly treated as a semantic parsing problem
where the goal is to model a mapping of NL to a corresponding logical form, in this case SQL.
Earlier works, such as [BEM14; BL14; LJK11; ZC07], employ variants of CCG parsers [CC04]
to parse NL utterances into an executable lambda calculus notation. It should be noted that the
grammar of logical form notation is far more simplistic than that of a complex query language like
SQL; as such, a single NL query can be mapped to an arbitrarily complex SQL statement crossing
many tables and involving many layers of nesting.
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Recent success in employing neural network sequence-to-sequence (seq2seq) modeling for syntactic
constituency parsing by [Vin+15] has spurred efforts in adapting the same solution for semantic
parsing. That is, they pose logical form synthesis as a neural machine translation task, adapting
systems for translating English to Czech or French to instead treat the logical form as the target
foreign language. In both settings, mapping to lambda calculus [DL16; DL18] or directly to
SQL [Cai+18; Fin+18; Iye+17], the seq2seq architecture has shown competitive performance
with statistical approaches that rely heavily upon hand-crafted lexical features.

In general, seq2seq models consist of a large number of parameters that require vast amounts
of training examples. This poses a substantial challenge, as collecting diverse enough training
data comprising pairs of NL utterances and logical form or SQL queries requires expensive expert
supervision. Iyer et al. [Iye+17] attempts to deal with this data bottleneck by performing an
online learning mechanism in which the model alternates between training and making predictions.
Human judges identify incorrect predictions that need to be corrected by a crowdsourced worker
with SQL expertise.

Alternatively, a solution more similar to ours is introduced by [Wan+15], whose approach produces
pairs of canonical utterances aligned with their corresponding logical forms using a seed lexicon.
However, they again use crowdsourcing to paraphrase the canonical utterances into more fluent
sentences that include syntactic alterations and context specific predicates. While less efficient
than an on-the-fly system, this form of crowdsourced annotation is much less costly, given worker’s
SQL expertise is not required.

The main contribution of this work addresses the training data bottleneck from a slightly different
angle. We attempt to completely eliminate any manual annotation effort by a user who is not
well-versed in SQL. Rather, the user needs to be familiar only with the given new domain in
order to sufficiently annotate the new schema’s elements with their NL utterances. We argue
that our extensive linguistically-aware templates provide a comparable breadth of coverage as
that of manually collected training data. Additionally, our strategy of employing PPDB [PC16] to
automatically paraphrase the sentence can approximate a human doing the same task.

Previous work on Natural Language Processing (NLP) has heavily relied on classical statistical
models to implement tasks such as semantic parsing that aim to map a natural language utterance
to an unambiguous and executable logical form [ZM96]. More recent results on semantic parsing
such as [DL16; JL16] have started to employ deep recurrent neural networks (RNNs), particularly
seq2seq architectures, to replace traditional statistical models. RNNs have shown promising
results and outperform the classical approaches for semantic parsing, since they make only few
domain-specific assumptions and thus require only minimal feature engineering.

An important research area aiming to allow non-experts to specify ad-hoc queries over relational
databases are keyword search interfaces [YQC10]. Recently, there have been extensions to keyword-
based search interfaces to interpret the query intent behind the keywords in the view of more
complex query semantics [Ber+13; Blu+12; TL08]. In particular, some of them support aggregation
functions, boolean predicates, etc.

Some recent approaches leverage deep models for end-to-end translation similar to our system
(e.g., [Iye+17]). However, a main difference of our system to [Iye+17] is that their approach
requires manually handcrafting a training set for each novel schema/domain that consist of pairs
of NL and SQL queries. In contrast, our approach does not require a hand-crafted training set.
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Instead, inspired by [Wan+15], our system generates a synthetic training set that requires only
minimal annotations to the database schema.

Another recent paper that also uses a deep model to translate NL to SQL is [XLS17]. First, the
approach in this paper is a more classical approach based on identifying the query intent and
then filling particular slots of a query. In their current version [XLS17], they can only handle a
much more limited set of NL queries compared to DBPal. Furthermore, their approach leverages
reinforcement learning to learn from user feedback in case the query could not be translated
correctly, which is an orthogonal issue that could also be applied to DBPal.

Finally, in addition to its primary focus on generating labels for unlabeled training data, Snorkel
[Rat+17a] also incorporates data augmentation techniques to generate additional heuristically
modified training examples [Dao+19; Rat+17b]. Unlike Snorkel, DBPal presents many optimiza-
tions that are specific to the task of NL2SQL translation, including slot-fill dictionaries, random
word-dropout, and paraphrasing techniques to increase the linguistic robustness of the generated
training data. Additionally, DBPal includes an optimization procedure for hyperparameter tuning
that leverages schema information to further specialize the generated training examples for the
target use case.

8.8. Conclusion & Future Work

In this paper, we presented DBPal, a fully pluggable natural language to SQL (NL2SQL) training
pipeline that generates synthetic training data to improve both the accuracy and robustness to
linguistic variation of existing deep learning models. In combination with our presented data
augmentation techniques, which help improve the translational robustness of the underlying
models, DBPal is able to improve the accuracy of state-of-the-art deep learning models by up to
almost 40%.

Longer term, we believe that an exciting opportunity exists to expand DBPal’s techniques to
tackle broader data science use cases, ultimately allowing domain experts to interactively explore
large datasets using only natural language [JPP17]. In contrast to the typical notion of one-shot
SQL queries currently taken by DBPal, data science is an iterative, session-driven process where
a user repeatedly modifies a query or machine learning model after examining intermediate
results until finally arriving at some desired insight, which will therefore necessitate a more
conversational interface. These extensions would require the development of new techniques for
providing progressive results [Tur+18; Zgr+17] by extending past work on traditional SQL-style
queries [Cro+16; Gal+17] and machine learning models [Sha+19].

Finally, we believe there are also interesting opportunities related to different data models (e.g.,
time series [Eic+17]) and new user interfaces (e.g., query-by-voice [Lyo+16]).
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9. Netted?! How to Improve the Usefulness of
Spider & Co. (DESIRES’21)

Abstract

Natural language interfaces for databases (NLIDBs) are an intuitive way to access and explore
structured data. That makes challenges like Spider (Yale’s semantic parsing and text-to-SQL
challenge) valuable, as they produce a series of approaches for NL-to-SQL-translation. However,
the resulting contributions leave something to be desired. In this paper, we analyze the usefulness
of those submissions to the leaderboard for future research. We also present a prototypical
implementation called UniverSQL that makes these approaches easier to use in information access
systems. We hope that this lowered barrier encourages (future) participants of these challenges
to add support for actual usage of their submissions. Finally, we discuss what could be done to
improve future benchmarks and shared tasks for (not only) NLIDBs.
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contributions of the author of this dissertation are summarized in Section 3.2.
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this thesis.
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9.1. Introduction

In a world where ever more data is generated, processed, and relied upon, it becomes continually
more significant that data is not only accessible to a small group of people. Information can be
contained in text, relational databases, knowledge graphs, and many other formats—but users do
not want to deal with heterogeneous sources. What they are interested in is accessing information
easily. The borders between structured and unstructured information keep blurring: when using
Google for factual questions, infoboxes might show the answer without the need to open a search
result. That result might even be wrapped in a generated sentence when voice search was used, and
nobody cares whether the sentence was extracted from a web page or generated from a database.

On the other hand, there are good reasons why these different ways of storing information exist.
Information access methods should leverage the possibilities of each while providing convenient
and ideally unified interfaces. With this goal in mind, natural language interfaces emerged as a
data retrieval method, leveraging one of our most flexible and intuitive means of communication.

Relational databases are an essential type of information storage. To query them, users require
knowledge of the domain, query language (e.g., SQL), and database schema. Contrarily, the vision
for natural language interfaces to databases (NLIDBs) encompasses the ability of any user to
interactively explore large datasets without help or extensive manual preparation work [JPP17].
As one of the biggest challenges, the application of NLIDBs requires the means to translate natural
language (NL) into SQL queries (NL2SQL) (for a recent comprehensive overview of methods and
open problems refer to Kim et al. [Kim+20]). However, before such NLIDBs can be used as one
of many interfaces for information access (i.e., users can enter their information request using
arbitrary words and get a correct answer without knowledge about the database), further research
is needed.

Contributions: We show that current benchmarks, especially the Spider challenge [Yu+18b] and
the related challenges SparC [Yu+19b] and CoSQL [Yu+19a] are not sufficient to measure all
relevant aspects and support the emergence of ready-to-use NLIDBs. Yet, to foster research not
only on NLIDBs but on systems that integrate and use them, we publish an API called UniverSQL1
to integrate submissions to the challenges into research prototypes and existing systems. Its core
functionality is a wrapper implementation to allow the execution of arbitrary queries on pre- or
custom-trained models. We additionally provide two sample implementations of this wrapper for
existing NL2SQL translators (EditSQL [Zha+19] and IRNet [Guo+19]). The code is published
under an open source license.

Finally, we provide an overview of the advantages and flaws of Spider and other benchmarks and
provide ideas on how the evaluation of NLIDBs could advance.

We hope that this research encourages the use of NLIDBs and further development of approaches
and benchmarks. Hopefully, this will help make more information accessible to everyone, regardless
of their of background.

1https://link.tuda.systems/univerSQL
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Outline: The rest of the paper is organized as follows: After briefly describing the Spider challenge
and its siblings in Section 9.2, we analyze how reproducible and usable the submissions to the shared
tasks are in Section 9.3. In Section 9.4, we present our prototypical implementation UniverSQL that
makes more of these systems usable for research. We examine strengths, weaknesses, and possible
further developments of benchmarks in Section 9.5, before providing a brief final summary in
Section 9.6.

9.2. What are SPIDER, SparC and CoSQL?

The Spider challenge [Yu+18b] has become one of the standard evaluations for NLIDBs since its
publication in 2018. So far, it was cited 217 times and 71 submissions were made to the shared
task. The dataset aims to surpass most existing datasets in size by at least one order of magnitude.
At the same time it covers a diverse set of simple and complex SQL queries. This provides the
necessary basis for data-driven systems to translate joins, nestings etc., and challenges them to do
so to achieve good performance on the development and test data splits.

Alongside the dataset, Spider provides a shared task: Since such a dataset is expensive to create,
it is not feasible to create one every time the NLIDB is applied to a new database. The authors
suggest that this problem is solved by NLIDB systems capable of generalizing to new databases
and performing well across domains. This idea is not entirely new: Systems by e.g., Rangel et al.
[Ran+05a] or Wang, Berant, and Liang [WBL15] already attempted to be domain-independent in
one way or another. However, Spider is the first dataset of its size, complexity and quality. The
split ensures that each database occurs in exactly one set (training, development, and test). This
provides a concrete task description and evaluation process, allowing accurate and comparable
measurements of success.

Yu et al. [Yu+18b] also propose a way of categorizing SQL queries with regard to difficulty in the
context of the translation task. The concept regards the number of SQL components, selections,
and conditions to label a query as easy, medium, hard, or extra hard. A SQL query is estimated to
be harder if it contains more SQL keywords, e.g., a query is considered to be hard if it contains
nestings, the EXCEPT keyword, or three (or more) columns in the SELECT statements, three (or
more) WHERE conditions, and a GROUP BY over two columns. Even more structures or keywords
in one query are considered extra hard. The Spider shared task encourages the submission of
models to show up in the leaderboard. There are two variants: the original task does not check
value accuracy, but there is also a leaderboard for systems that handle/predict values (not just
queries with placeholders).

SparC [Yu+19b] is the multi-turn variant of Spider. It deals with cross-domain semantic parsing
in context and is comparable to Spider in size, complexity and databases. However, queries are
arranged in user interactions, providing dialogue-like context. Therefore, it is not sufficient to just
translate the current NL utterance into SQL, but information from previous queries has to be taken
into account. Analogous to Spider, SparC features a leaderboard for variants with and without
value handling.

CoSQL [Yu+19a] takes the challenge to the level of a real conversational agent. It consists of both
dialogues and annotated SQL queries simulating real-world DB exploration scenarios. Therefore,
the system has to maintain a state. CoSQL defines several challenges, the simplest one mainly
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Spider (-v) Spider (+v) SparC CoSQL
Entries 62 7 17 10
Diff. appr. 51 5 15 8
- Publications 36 (58 %) 6 (86 %) 8 (47 %) 9 (90 %)
- Code 20 (32 %) 4 (57 %) 4 (24 %) 5 (50 %)

Table 9.1.: Analysis of the leaderboard entries for Spider (with (+v) and without (-v) value predic-
tion), SparC & CoSQL. We checked how many different approaches are presented, how
many of them reference a publication, and how often there is code to at least try to
reproduce the approach.

Spider (-v) Spider (+v) SparC CoSQL
Repositories 15 2 4 5
- Empty? 2 (13 %) 0 (0 %) 0 (0 %) 1 (20 %)
- Code? 13 (87 %) 2 (100 %) 3 (75 %) 4 (80 %)
- Checkpoints 9 (60 %) 2 (100 %) 3 (75 %) 2 (40 %)
- Own data? 2 (13 %) 0 (0 %) 0 (0 %) 0 (0 %)

Table 9.2.: Analysis of the available repositories for the different challenges. We report whether
the repositories are empty or contain code, whether checkpoints/pre-trained models
are provided for download and whether the usage of this approach on own data/tables
is in some way prepared.

adds further context to interpret compared to SparC, the other ones cover generation of suitable
responses and intention detection/classification.

9.3. How Reproducible and Usable are the Challenge Submissions?

All three challenges (SPIDER, SparC and CoSQL) feature a public leaderboard where different
approaches and their scores on the public, development as well as the unpublished test set are
listed. In this section, we will investigate the state of the submissions, particularly with regard to
how reproducible the submissions are and whether they can be used outside of the exact task. An
overview of our analysis can be found in Tables 9.1 and 9.2 (as of June 2021). We will quickly
interpret those results.

SPIDER: The leaderboard for the primary Spider task (without value handling) featured 62
entries in June 2021. Some of them are only small variations of the same system, nevertheless,
this boils down to 51 different approaches. Yet, only little more than half (36 or 58%) of those
approaches are published in some way, the remaining approaches are anonymous or contain only
names of authors or institutions (so far). For 25 submissions, a link to code is provided, yet, some
repositories are empty or the link is invalid. In total, 20 approaches (32%) have at least some code
that could be used as starting point for reproduction. Unfortunately, this is not evenly spaced, only
for two of the top ten current submissions (and for four of the top twenty) code is provided.
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Two approaches deserve special mention: Shi et al. [Shi+20] provide a Jupyter Notebook for
translation of user-specified queries on custom data2 and the code of Lin, Socher, and Xiong
[LSX20] allows interaction with pretrained checkpoints through a command line interface.

SPIDER (with Value Predection): This variation of the task (additionally covering value handling
necessary for translating real NL queries) unfortunately received substantially fewer submissions
(seven entries for five approaches and all but one with publication). Four approaches, provide code
(only two of six publications).

SparC: Although this challenge was published just nine months after the Spider challenge, it
received considerably fewer submissions so far. The leaderboard for the variant without value
handling has 17 entries for 15 different approaches. For less than half of them (47%) publications
are referenced, for 24% there is code and three submissions provide pre-trained models for
download. For the variant with value prediction, there are only two entries, out of which only one
references a publication and no code is provided at all. We therefore did not include this variant in
Tables 9.1 and 9.2.

CoSQL: At the time of writing, the challenge was public for around 20 months. There were
only baseline implementations or entries without publications for two of the three variants, only
one entry included value handling. The main task received ten submissions by eight different
approaches with a publication ratio of 90%. For half of the approaches there is code, but in only
two cases checkpoints can be downloaded and there is no preparation for the use of the models
outside the evaluation scripts at all.

Overall, we have to conclude that reproducibility of the approaches submitted to the leader-
boards of all challenges is at best mediocre, which is in line with problems of the community and
especially research in computer science where reproducibility is still a challenge. ACM conferences
try to tackle this through reproducibility challenges and badges in the ACM Digital Library.3 Yet,
publishing code and artifacts that allow others to redo the experiments is still optional.

While it is surely not feasible to change the whole publishing and reviewing process at once,
we think that shared tasks are a good place to start. Of course, it is fine that submissions are
anonymous until the approach was reviewed and published. But we advocate that once names are
revealed, it should also be necessary to reference publication and code. Authors of a challenge set
the requirements for submissions to be included in a leaderboard—and they should take advantage
of that.

Moreover, it should be honored when authors of an approach or research prototype invest that
extra time to make it directly usable for others and their research.

A very good example (from a slightly different domain) is SentenceBERT [RG19b]. Although it
is an implementation accompanying a research paper, it is extremely easy to use: install via pip,
import, specify which model to use. The installation scripts will install dependencies and the
2https://github.com/awslabs/gap-text2sql/blob/main/rat-sql-gap/notebook.ipynb
3https://www.acm.org/publications/policies/artifact-review-and-badging-current
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system will download required files/checkpoints, making it possible to build research on top of it
in minutes.

That case is already the cream of the crop, in many cases significantly less effort would help: pinning
versions of dependencies (especially machine learning libraries often introduce breaking changes
in just months), run the code on a second machine under a different username, add an installation
script to download required external data or add environment variables for configuration. Each of
these steps can make it substantially easier to run foreign code (or your own after a while). It is
not about providing perfectly fast and robust industry-grade software for production use—that
is something (academic) researchers usually cannot accomplish and also should not spend their
time on—but to allow quick prototypical usage to decide whether it is feasible to use an approach
in research and maybe investing time in improving it. We therefore argue that shared tasks like
Spider should require this in the future for submissions to their leaderboards, and find it a great
pity that most of the current submissions are difficult to reproduce and even more difficult to utilize
for further research.

9.4. Does it Translate?

As shown in the last section, in June 2021 there were 86 submission in total for Spider and SparC.
If one wants to build a system on top of them, currently one has to pick one of the best performing
approaches from the leaderboard, obtain the code, install dependencies, download pre-trained
models (if any) and then find a way to run the code not on the benchmark data but on individual
natural language queries. There has to be a better way. The Spider and SparC challenges do not
enforce a certain architecture (i.e., their aim is to foster research on all kinds of approaches to solve
the task and not tie it down to, e.g., a hyperparameter optimization for a fixed architecture). This
has the downside of making it even harder to use the resulting approaches in other applications.
As a community service, we therefore provide a simple API implementation called UniverSQL that
can be used in prototypes for information access, i.e., ones that use NLIDBs (and maybe other
components) but do not focus on implementing them. The idea is that this API can be used as a
unified interface to NLIDBs regardless of their architecture. This allows researchers to concentrate
on their task—and allows them to make use of approaches that would otherwise be difficult to use.

UniverSQL is a small python application that serve as a translation server. The API allows unified
access to most important functionalities (select a database, select a translator, do the actual
translation) and some convenience and debugging functions like logging. It can be used for
individual translations but also for (context preserving) multi-turn interactions as in the SparC
challenge. An overview of available endpoints can be seen in Figure 9.1.

The core of UniverSQL is a wrapper implementation to allow running arbitrary queries on pre-
trained models. We provide two sample implementations of this wrapper for systems from the
Spider leaderboard: EditSQL [Zha+19] and IRNet [Guo+19]. It also includes a script to set up
these two systems and download required dependencies and model dumps. We publish our code
together with an extensive documentation how to create wrappers for other NL2SQL approaches
and scripts for simple setup. We hope that this itself evolves into a challenge where researchers
provide such a wrapper implementation and installation script for their approach and will therefore
maintain a ready to use list as part of the published code.4

4https://link.tuda.systems/univerSQL
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Figure 9.1.: Endpoints of the UniverSQL API
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9.5. What Are We (still) Missing?

Modern data driven approaches would not be possible without big amounts of data, but curating
and annotating it is out of scope for many researchers. Hence, it is not surprising that Spider and
SparC, but also other datasets, have strongly advanced research in the field. However, we believe
that further advancements are still possible:

We already outlined some flaws of Spider such as a missing focus on reproducibility. Yet, we also
want to highlight advantages like the manually annotated and high-quality data, which deservedly
currently makes it the most important benchmark for of NL-2-SQL translators.

In addition to Spider, there are other datasets and approaches for benchmarking of NLIDBs, but, like
Spider, they have some flaws. We will take a glance at some of them, to outline typical problems:

The WikiSQL Benchmark by Zhong, Xiong, and Socher [ZXS17] is a large dataset (though smaller
than Spider) that also features a leaderboard. Unfortunately, it consists only of a small number
of unique query patterns [Fin+18] (in fact, half of the questions in the dataset are generated
from one single pattern). In particular, it contains neither joins nor nestings. Furthermore, the
NL questions are often low quality (i.e., many are grammatically incorrect), some do not have a
proper semantic meaning and make little sense when read by humans and some NL questions do
not have the same meaning as the associated SQL query.

Utama et al. [Uta+18] published ParaphraseBench, an approach that tries to measure translation
difficulty by dividing queries into classes. The benchmark was manually curated but is quite small
and covers only one table.

A recent paper by Gkini et al. [Gki+21] tries to benchmark existing translation systems. They focus
on system aspects like execution times or resource consumption and not on translation accuracy.
However, their analysis leaves some open questions: First, their dataset which is unfortunately
not publicly available (yet) appears to be quite small, it consists only of 216 keyword-based and
241 natural language queries. Second, although they cite Spider, they did not include the high-
performing approaches from the leaderboard in their evaluation. Overall, this approach does not
appear sufficient for an evaluation that takes the user’s perspective into account.

Even if we combined all these approaches, the result would still not be the best way to evaluate
NLIDBs. Therefore, we will conclude with a brief outlook on what is still needed and what would
be possible in this area.

As mentioned before, it would probably boost the usage of the approaches if they allowed for
direct/easy use. Enforcing this is not an inherent part of a benchmark but could be done as part of
the setup of a shared task.

Much more difficult but probably also even more important is taking the user’s perspective into
account. One way to do so could be end-to-end benchmarks that do not only evaluate the translation
accuracy but the real performance in a data exploration task from input to the output (SparC and
especially CoSQL do this to some extent). But there are many other highly interesting questions:
We can measure the accuracy of a system like an NLIDB, but what accuracy should we strive for?
Are all errors equally bad? Can a slightly wrong translation still be sufficient? What is the influence
of a suboptimal translation? Will the user be satisfied by a system with 100% translation accuracy?
Or do they expect something that cannot be accomplished even by perfectly working systems?
Answering such questions is hard, it can probably not always be automated, and it is difficult to
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frame the answer as a bunch of numbers. Yet, a framework to assess a system in respect to these
kinds of questions would help to better decide on which improvements it is worth to focus. We
therefore hope that this user perspective will be considered more regularly in computer science
research—not as a separate field of research but an integral part to drive research in a direction
that is suitable to support humans best in whatever they want to accomplish.

9.6. Conclusion

In this paper, we analyzed the reproducibility and preparation for use in further research of the
submissions to the Spider, SparC and CoSQL challenges. Unfortunately, we found that only for about
40% of the submissions code is available and for even fewer submissions artifacts like pre-trained
model dumps are provided. Additionally, the code is in most cases only capable to do the batch
translation of specific data required for the evaluation scripts of the challenges, but not prepared
for use on other real world data. We therefore presented a prototypical API implementation called
UniverSQL that provides a simple interface for NL to SQL translation and boils down the task of
adapting an approach for individual translation to implementing a simple wrapper class. The
implementation is provided as open source software. Finally, we analyzed further shortcomings
of Spider and other benchmarks and advocated for a stronger user perspective when designing
similar benchmarks in the future.
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10. Demonstrating CAT: Synthesizing Data-Aware
Conversational Agents for Transactional
Databases (VLDB’22)

Abstract

Databases for OLTP are often the backbone for applications such as hotel room or cinema ticket
booking applications. However, developing a conversational agent (i.e., a chatbot-like interface)
to allow end-users to interact with an application using natural language requires both immense
amounts of training data and NLP expertise. This motivates CAT, which can be used to easily
create conversational agents for transactional databases. The main idea is that, for a given OLTP
database, CAT uses weak supervision to synthesize the required training data to train a state-of-
the-art conversational agent, allowing users to interact with the OLTP database. Furthermore,
CAT provides an out-of-the-box integration of the resulting agent with the database. As a major
difference to existing conversational agents, agents synthesized by CAT are data-aware. This means
that the agent decides which information should be requested from the user based on the current
data distributions in the database, which typically results in markedly more efficient dialogues
compared with non-data-aware agents. We publish the code for CAT as open source.

Bibliographical Information
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Benjamin Hättasch, Benjamin Hilprecht, Nadja Geisler, Alexander Fraser, and Carsten Binnig.
‘Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases’.
In: Proc. VLDB Endow. 15.12 (2022). url: https://www.vldb.org/pvldb/vol15/p3586-
h%5C%e4ttasch.pdf”. The contributions of the author of this dissertation are summarized in
Section 3.3.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit https:
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the owner/author(s). Publication rights licensed to the VLDB Endowment. Proceedings of the VLDB
Endowment, Vol. 15, No. 12 ISSN 2150-8097. Author’s version, reformatted for this thesis.
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Figure 10.1.: Exemplary Dialogue with a Conversational Agent synthesized by CAT

10.1. Introduction

Motivation: Natural language interfaces are becoming ubiquitous because they provide an intu-
itive way to interact with applications such as web shops, online ticketing systems, etc. In particular,
they allow users to directly express their needs instead of having to remember application-specific
commands or the correct usage of user interfaces. Moreover, consumer products like Amazon
Alexa or Apple Siri further raise the expectations of customers to interact using natural language.
As a result, companies began developing conversational agents for supporting simple tasks or even
basic business processes. For instance, a customer of an insurance company could report a claim
or check the status of an existing report using such a conversational agent.

Yet, developing a task-oriented dialogue system for a given OLTP application (e.g., allowing users
to buy a movie ticket) is a daunting task because this not only requires large amounts of annotated
training data (i.e., actual dialogues between users and the system) for every application but also a
manual integration with the existing database.

For instance, creating a conversational agent for a cinema ticketing system requires training data
consisting of user utterances (e.g., “I want to reserve four seats tonight”), along with filled slots (e.g.,
no_seats=4) and annotated user intents (e.g., “reserve seats” or “inform about available shows”).
These dialogues, however, are expensive to gather and annotating them is a large manual error-
prone effort which requires extensive domain-knowledge. Worse, neither the training dialogues
nor the integration with the existing database can be reused for a different domain.
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Figure 10.2.: Overview of CAT , showing both the creation and the usage of an agent.

Another drawback of existing approaches to build task-oriented dialogue systems is the lack of
integration between the task-oriented dialogue system and the OLTP database, which is often
the backbone of the business process. In current systems, a large amount of information must be
provided manually even though it is already implicitly available in the database (for instance the
required slots/attributes, the associated data types, the affected tables, etc.). Moreover, existing
dialogue systems learn the order and types of information to request from the user purely from
the manually created user dialogues. Not taking the data characteristics into account results in
inefficient dialogues, as we describe below.

Contributions: In this demo we introduce CAT, a framework to synthesize conversational agents
for a given database and a set of transactions (i.e., an OLTP workload with user-defined functions)
with only minimal manual overhead. Given a database and a set of transactions, the user only has to
provide a few example formulations for each intent instead of a large number of annotated example
dialogues. Using a data-driven simulation, our approach generates annotated dialogues of possible
user interactions from those intents, which can then be leveraged to train a conversational agent.
This alleviates the extensive process of manually creating dialogues, which has to be repeated for
every domain and database.

An inherent challenge is that for database transactions, it is often required to uniquely identify
entities of the database. For instance, in order to book cinema tickets, the corresponding customer
ID is required. Often the customer will not have the unique ID at hand but only information such
as their name or address. In contrast to existing conversational approaches, CAT is data-aware;
i.e., it considers the data characteristics at runtime to (1) deal with incomplete information (e.g., a
customer who cannot remember an ID) and (2) request the most suitable information to narrow
down the set of candidates as quickly as possible. Different from existing conversational approaches
which take a pure learning-based approach to determine what to ask for, CAT uses information
such as database statistics (e.g., selectivities). For example, once the user provided their name, the
agent might ask them for the city they live in, knowing that based on the entries in the database
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this is sufficient to uniquely identify the customer ID (while another name requires a different
attribute to narrow down the options).

The contributions of this demo paper can be summarized as follows:
• Automated Training Data Generation: We suggest a procedure to automatically generate

training dialogues given a database and a set of transactions with only minimal manual
overhead. We then use it to train a conversational agent.

• Data-driven Dialogue Policy: We introduce a conversational agent policy that leverages the
data characteristics to request information from the user to minimize the number of dialogue
turns, i.e., to fulfill a user request as quickly as possible.

• Demo Scenario: We showcase CAT by a demonstration scenario with a fully synthesized
conversational agent for a movie database which allows a user to reserve tickets, cancel
existing reservations and list movie theater screenings. We show both the creation of the
agent using our system and the usage of the agent.

Outline: In the remainder of this paper, we first introduce the system architecture of CAT (Sec-
tion 10.2), before we define our training data generation (Section 10.3) and the data-driven
dialogue policy (Section 10.4). Finally, we describe the demo application (Section 10.5).

10.2. Overview of CAT

The goal of CAT is to synthesize conversational natural language interfaces for database transactions
while avoiding the shortcomings of existing task-oriented dialogue systems. To address these
problems, CAT leverages the information about a given database and a set of transactions: this
is done for training data generation with weak supervision, but also at runtime to take data
characteristics into account to steer the user dialogue (e.g., the movie a user wants to see) more
efficiently.

For instance, a cinema could have a customer database storing the reservations for movie screenings.
A typical transaction to make accessible using a conversational agent is the ticket booking process,
where the users have to specify their customer_id, the screening_id and the number of
tickets. In order to integrate such a task into a typical existing task-oriented dialogue system, we
would first have to model the tasks the conversational agent supports (e.g., buy a ticket) along with
slots, i.e., the required attributes for the task (e.g., the screening_id and customer_id).

All this information, however, is typically already available in the given database and the set of
its transactions (e.g., implemented as stored procedures or user-defined functions). Therefore,
the main idea of CAT is to automatically extract and leverage this information instead of asking
the user to manually specify it. Moreover, CAT then uses this information to synthesize annotated
dialogues which are needed to train the conversational agent. Hence, instead of collecting this
training data for every domain and database manually, we automate this process. Moreover, the
agent and the database are tightly integrated afterwards, and the agent can directly execute the
desired transactions without any manual overhead—in contrast to existing task-oriented dialogue
systems where a dedicated database integration would have to be developed for every domain.
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This tight integration also allows us to use characteristics of the given database (e.g., data-statistics)
at runtime to guide the dialogue. For instance, to identify the movie a user is interested in, the
agent asks the users for properties of the movie (e.g., genre or actors playing in the movie). In the
following, we give a brief overview of how CAT works as depicted in Figure 10.2:

Training Data Generation (Offline): In order to generate a conversational agent, we require train-
ing data for both the natural language understanding (NLU) and the dialogue management (DM)
models [ZE16]. The NLU model translates user utterances (e.g., ”I want to watch ’Forrest Gump’”)
into annotated slots (movie_title='Forrest Gump') and user intents (ticket reservation).
For the NLU training, we generate utterances using a few base templates that are provided by
the developer. To form full sentences from these templates, the existing data in the database
can be used. In addition, we increase the variety of the natural language by using automated
paraphrasing, as done by Weir et al. [Wei+19b] for natural language interfaces for databases.
Furthermore, to learn typical dialogue flows, i.e., what high-level action to take next (e.g., retry
a task after an abort), we generate additional training data using the idea of dialogue self-play
[Sha+18], i.e., we simulate different users interacting with a conversational agent. CAT then uses
this training data to train state-of-the-art models for NLU and DM using the RASA open source
conversational AI framework.1

Data-aware Dialogues (Runtime): At runtime, the dialogue outlines created in the last step
already determine the high-level flow of the dialogue. In addition, the conversational agent has
to decide on the low-level flow, to determine which information should be requested next from a
user to uniquely identify an entity required for a task, e.g., it could decide to ask for the movie
title to identify the movie. In current approaches, this selection is usually done by learned models
operating just on the previous input by this user [Sha+18]. In contrast, in order to efficiently
narrow down the candidate movies, CAT takes information such as the selectivity of attributes
already in the database into account. In addition, we allow adding an annotation to the database
schema indicating which of the attributes are probably unknown to the customer. For instance,
even though the screening_id is very useful and ultimately required for the transaction, the
user will most likely not be aware of it and the conversational agent should thus not request it from
the user. This results in more succinct dialogues, since the agent quickly gathers the information
needed for a transaction.

In particular, the best information (i.e., a so-called slot) to request depends on (i) the probability
that the user knows a certain attribute and (ii) how much this attribute narrows down the current
set of candidates. Learning both factors end-to-end means learning the database content along
with user preferences simultaneously, and again requires a large amount of data. We thus propose
a different approach and explicitly keep track of the candidates (e.g., the screenings that match
the previous user preferences) and request the next attribute based on the data distribution of
the candidates and the likelihood that the user can provide this information. Moreover, while
existing task-oriented dialogue systems implicitly assume that the database consists of just a single
table [Sha+18], we can seamlessly integrate foreign-key dependencies, e.g., a user can provide
information about actors to narrow down the set of possible screenings via the movie relation.

1https://rasa.com/
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Database and Transaction

screening

screening_id

movie_id

date
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reservation

customer_id

screening_id

no_tickets

movie

movie_id

title

FUNCTION ticket_reservation(IN customer_id, IN screening_id, IN ticket_amount)

Manually defined templates

Extracted Tasks and Schema Information
ticket_reservation: customer_id (customer), screening_id (screening), ticket_amount (inte-
ger), …
Natural Language Templates
The movie title is {title}; I need {no_tickets} tickets; The screening is on the {date}; …

Generated Training Data

DM Training Data
customer: request_reservation
bot: identify_screening
customer: abort_task
NLU Training Data
”The movie title is Forrest Gump.” -> intent: inform(movie_title);
slots: movie_title='Forrest Gump'

Figure 10.3.: Exemplary inputs & results for CAT ’s training data generation pipeline.

Another advantage of this data-awareness is that no retraining is required in case data changes.
The updated database is simply leveraged at runtime to steer the dialogue.

10.3. Training Data Generation

Both the natural language understanding (NLU) and dialogue management (DM) [ZE16] compo-
nents are learned models and thus require dedicated training data, which is expensive to collect.
Consequently, we try to automate the training data generation as much as possible. We now
describe the training data generation pipeline for both models, examples for inputs and results can
be found in Figure 10.3:

Dialogue Management (DM): The high-level flow of dialogues in CAT is derived from training
data synthesized using a so-called dialogue simulation [Sha+18]. CAT simulates typical dialogues
between the conversational agent and the user who communicate with each other using predefined
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actions (e.g., request_reservation). The set of possible actions in CAT is derived automatically
from the transaction definition.

By sampling different user behavior during the simulation (e.g., sometimes performing the whole
action and sometimes aborting it) the synthesized dialogue flows consist of different outlines that
are later incorporated into the agent. Different from Shah et al. [Sha+18], we do not model
the process of uniquely identifying entities in detail in this dialogue self-play, e.g., asking for the
right slots to find the exact screening is not incorporated in this step. Instead, we only include
the high-level action (e.g., identify_screening, see Figure 10.3). Which information from a
set of candidates is requested to uniquely identify the screening is then decided at runtime (see
Section 10.4).

Natural Language Understanding (NLU): Moreover, in addition to the training data for high-
level dialogue flows, CAT also synthesizes training data for the NLU model. To this end, we
require utterances of a user (’I want to see the movie ’Forrest Gump’”) along with annotated
slots (title='Forrest Gump') and user intents (e.g., reserve a ticket or ask for information
about a movie) as ground truth labels. Gathering this information is a substantial manual effort—
collecting dialogues would come at the cost of simulating dialogues with testers. Even if dialogue
traces are available, annotating them with the intents remains a manual effort. We thus take a
different route, and let the developer specify a few natural language templates (e.g., ”I want to
watch {movie_title}”). By filling the placeholders with actual data stored in the database, we
synthesize annotated natural language statements, which we automatically paraphrase afterwards
to further augment the training data. Different from Shah et al. [Sha+18] where the user similarly
specifies templates, we do not use crowdsourcing for this since this incurs high costs and might
not be feasible for many transactions but instead utilize automated paraphrasing approaches.

Initial Evaluation Results: We compared several configurations of CAT to state-of-the-art ap-
proaches for intent classification and slot filling, using the widely used ATIS spoken conversation
corpus [HGD90]. While all baselines require manually crafted training data, CAT only relies on
synthesized training data, but still reaches comparable performance for slot filling. Moreover, on
the intention classification task, CAT even outperforms multiple baselines.

10.4. Data-Aware Dialogues

We decide which information to request from the user for the unique identification of entities (e.g.,
ask for the movie title to find the screening) at runtime by keeping track of the current set of
candidate entities (e.g., screenings that match with the already expressed user preferences) and
select those attributes which narrow down this set as quickly as possible, the informative attributes.
To do this, we choose the attribute with the highest entropy.

Note that the optimal attribute is not necessarily part of the table storing the entity. For instance,
if a customer does not recall the exact movie title, it might be beneficial to ask for actors appearing
in the movie. Since keeping track of candidates happens at runtime, it is not feasible to join every
possible table with the set of candidates. Instead, we employ a priori information on the number
of unique values of an attribute as well as the distribution of which attributes users were aware of
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Figure 10.4.: Schema Annotation in CAT ’s GUI

in previous sessions, and iteratively join additional tables to the current candidate set to provide
improved next attributes to request from the user.

However, informative attributes are not useful if the user is not aware of them, e.g., while customer
IDs quickly narrow down the set of customers, it is very unlikely that the user has such an ID at
hand. Hence, the second dimension is the User Awareness. We address this two-fold: First, the
developer can specify that certain attributes should preferably not be requested, e.g., IDs or other
technical fields. Second, we learn from interactions with the conversational agent which attributes
the users are likely to know. We combine both this probability and the informativeness of the
attribute to score candidate attributes to request next.

Initial Evaluation Results: To evaluate the effectiveness of our data-aware selection policy, we
compared it to static and random selection strategies using a movie database and again the ATIS
dataset. The speedup (in terms of interaction turns) compared to a random strategy can be up to
80% for large tables with many dimensions to join. When large amounts of data similar to the
production entries are already available at training time, the static strategy can reach a similar
performance as our data-aware policy, but will not adapt to data distribution changes at runtime.
Additionally, it cannot react to systematic problems in uniquely identifying entries of some tables
(caused by data characteristics like almost identical entries). An integrated caching strategy leads
to an average response latency of only a few milliseconds.
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10.5. Demonstration Scenario

In our demo, we showcase how a conversational agent for a cinema database supporting screening
reservations and cancellations can be synthesized. It is fully integrated with the underlying
database and allows users to interact using natural language to complete the domain-specific tasks.

To synthesize the required training data, we first annotate the schema and provide several natural
language templates for the transactions using CAT ’s GUI, as depicted in Figure 10.4. This is in fact
the only database-dependent task for developers who want to synthesize an agent. We then start
our training data generation to obtain both natural language statements for the NLU model and
dialogue flows for the DM models. Afterwards, we trigger the training of these state-of-the-art
models and generate the integration code with the database. With the completion of these steps, we
have synthesized a conversational agent which interacts with users and triggers the right database
transaction with the correct parameters at runtime.

The users can use this trained conversational agent to interact with the database as depicted in
Figure 10.1. For instance, if the user wants to buy movie tickets, the agent will request the required
information and execute the transaction upon confirmation. In the demo video, it can be seen how
the agent identifies the intents and reacts to the user statements. It uses the information entered to
identify their account, corrects misspellings, and asks the user to choose from a list of screenings
fulfilling the preferences they have expressed. Finally, this triggers the execution of the transaction
and the result is shown.
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11. Towards Interactive Summarization of Large
Document Collections (DESIRES’18)

Abstract

We present a new system for custom summarizations of large text corpora at interactive speed. The
task of producing textual summaries is an important step to understand collections of topic-related
documents and has many real-world applications in journalism, medicine, and many more. Our
system consists of a sampling component that ranks and selects sentences from a given corpus
and uses an integer-linear program (ILP) to produce the summary. Both components are called
multiple times to improve the quality of the summarization iteratively. The human is brought into
the loop to gather feedback in every iteration about which aspects of the intermediate summaries
satisfy their individual information needs. That way, our system can provide a similar quality level
as an ILP-approach working on the full corpus but with a constant runtime independent of the
corpus size.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hättasch.
‘Towards Interactive Summarization of Large Document Collections’. In: Proceedings of the First
Biennial Conference on Design of Experimental Search & Information Retrieval Systems, Bertinoro,
Italy, August 28-31, 2018. Volume 2167. CEUR Workshop Proceedings. CEUR-WS.org, 2018. url:
https://ceur-ws.org/Vol-2167/short6.pdf”. The contributions of the author of this
dissertation are summarized in Section 4.1.

DESIRES 2018, Bertinoro, Italy. © 2018 Copyright held by the author(s). Reformatted for this thesis.

11.1. Introduction

Users like journalists or lawyers confronted with a large collection of unknown documents need
to find the overall relation and event structure of those documents. An important step for this
understanding process is to produce a concise textual summary that captures the information most
relevant to a user’s aims (e.g. degree of details or covered topics). While many automatic text
summarization approaches have been suggested, there exist only a few that produce different
summaries targeted at the individual user. One of those is the system recently proposed by
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P.V.S. and Meyer [AM17].1 A major limiting factor however is that their system does not scale for
large corpus sizes since the runtime of their approach which uses an ILP solver at its core grows
exponentially with the amount of sentences and may take hours for each iteration. This hinders
the user from performing an adequate amount of feedback rounds to get a suitable level of quality
and customization.

Therefore, in our work we build upon their system but introduce a ranking based sampling
component. That results in a constant computation time of each iteration depending on the sample
size instead of the corpus size. With this new approximate summarization model we can guarantee
interactive speeds even for large text collections to keep the user engaged in the process. The
original system consists of a web-based interface that allows the user to provide feedback and a
backend which computes the summaries using an ILP. The user requests a summary and can then
annotate the concepts of the summary i.e. mark them as important or unimportant for her current
goal. This process will be repeated iteratively until the user is satisfied with the quality.

11.2. Overview

The main idea of this work is to enable the original system to achieve interactive response time
on arbitrary large document collections with a similar quality of the resulting summary. A study
[LH14] has shown that even small delays (more than 500ms) significantly decrease a user’s activity
level, dataset coverage, and insight discovery rate, hence one should aim for lower runtimes.

Instead of looking at the complete document collection in every iteration, our approach only
considers a sample from the documents per iteration and thus trades performance for quality of
the summary. For creating the sample, two important factors thus play a role: The first factor is
the sample size (i.e., the number of sentences in the sample), which determines the runtime of
the summarization method; the second factor is the sampling procedure, that determines which
sentences are part of the sample.

For deciding about the sample size, we need to be able to estimate the runtime for solving the ILP
which mainly depends on its complexity (in number of constraints). In order to do so, we devised
a cost function that maps the number of constraints to an estimated runtime. We use this function
to derive the maximum sample size k such that the runtime stays below a chosen interactivity
threshold.

For deciding which sentences should be contained in the sample, we developed a novel heuristic
called information density that is computed for each sentence. It ranks the sentences by the weight
density of concepts in it normalized by the sentence length. We then only select the top-k sentences
based on this heuristic. The intuition is that sentences with a higher information density (containing
more concepts rated as important) are more relevant to the user. With this sampling strategy, we
are already able to archive a similar quality as the original system at a fraction of the runtime.

Our future work includes developing more advanced sampling strategies that can further improve
the quality and increase the amount of feedback on different concepts. One direction would
be to devise stratified sampling strategies using additional importance measures for (groups of)
sentences. Furthermore, in addition to the current oracle-based approach for evaluation that gives
feedback according to reference summaries we plan a user study.
1In order to get a better overview of how the system works, we recommend the readers to watch this video: http:
//vimeo.com/257601765
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12. Interactive Summarization of Large Document
Collections (HILDA’19)

Abstract

We present a new system for custom summarizations of large text corpora at interactive speed.
The task of producing textual summaries is an important step to understand large collections of
topic-related documents and has many real-world applications in journalism, medicine, and many
more. Key to our system is that the summarization model is refined by user feedback and called
multiple times to improve the quality of the summaries iteratively. To that end, the human is
brought into the loop to gather feedback in every iteration about which aspects of the intermediate
summaries satisfy their individual information needs. Our system consists of a sampling component
and a learned model to produce a textual summary. As we show in our evaluation, our system
can provide a similar quality level as existing summarization models that are working on the full
corpus and hence cannot provide interactive speeds.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hättasch,
Christian M. Meyer, and Carsten Binnig. ‘Interactive Summarization of Large Document Collections’.
In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2019,
Amsterdam, The Netherlands, July 5, 2019. ACM, 2019. doi: 10.1145/3328519.3329129”.
The contributions of the author of this dissertation are summarized in Section 4.1.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. HILDA’19, July 5, 2019, Amsterdam,
Netherlands © 2019 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery. Author’s version, reformatted for this thesis.
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Figure 12.1.: Scalability of Text Summarization Models [Avi+18]

12.1. Introduction

Motivation: Existing data-centric systems for interactively manipulating, analyzing and exploring
large data sets focus particularly on structured data. However, in many use cases the relevant
data sources are not structured but are only present as a collection of texts. There already exist
systems for text exploration like [Glo+13] and [FG17] that allow data scientists of varying skill
levels and novice users to interactively analyze unstructured text document collections—however,
those systems concentrate mainly on keyword searches and document ranking.

While keyword-based search systems are important to filter down the number of relevant documents,
they still do not support users in semantically understanding the document collection. Imagine for
example a journalist who just received a large collection of documents to start an investigative case,
or a lawyer who needs to screen a large collection of e-mail conversations. In all these examples,
an important step to better understand the collection of text and find the overall relation and event
structure of those documents is to produce a concise textual summary that captures most of the
important information relevant to a user’s individual goal.

The task of producing textual summaries from a collection of documents is a well-established task
in the text analysis community [NM11]. Despite a lot of research in this area, it is still a major
challenge to automatically produce summaries that are on par with human-written ones. To a
large extent, this is due to the complexity of the task: a good summary must include the most
relevant information, omit redundancy and irrelevant information, satisfy a length constraint, and
be cohesive. But an even bigger challenge is the high degree of subjectivity in the summarization
task, as it can be seen in the small overlap of what is considered important by different users
[AM17]. Optimizing a system towards one single best summary that fits all users, as it is assumed
by current state-of-the-art systems, is highly impractical and diminishes the usefulness of a system
for real-world use cases.

In a recent paper [AM17], we have shown that user feedback significantly improves the quality of
the summary. However, each iteration of learning to create a new summary based on the user’s
feedback can take from several seconds for small document collections to hours for larger collections,
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as shown in Figure 12.1 (black line). Since the customization of the summary depends on the
user’s feedback, it is one of the most important aspects to keep users involved in the exploration
process. Yet this can hardly be reached with long iteration times of multiple hours, even waiting
times of minutes or multiple seconds can already cause the user to lose interest. A previous study
[LH14] has shown that even small delays of more than 500ms significantly decrease a user’s activity
level, dataset coverage, and insight discovery rate.

Contributions: In this paper, we present Sherlock that allows users to interactively summarize
large text collections. In order to provide interactive response times in each iteration of the
summarization procedure, we are using a novel approximate summarization model. The main idea
of the approximate summarization model is similar to approximate query processing in databases:
instead of looking at the complete document collection in every iteration, we only consider a
sample from the documents per iteration to compute the summary. As a main contribution, we
propose a method to select the sample size based on iteration time thresholds and evaluate multiple
different sampling strategies. As we show in Figure 12.1, that way our approximate summarization
model can provide interactive latency for each interaction loop independent of the size of the text
collection that is being summarized (orange and blue line).

We already presented a demo of Sherlock at VLDB 2018 [Avi+18]. However, sampling on natural
language is not a trivial task. In this paper, our main goal is studying the effectiveness of multiple
sampling strategies and the impact of the sample size on the summarization quality. To this end,
we employ importance-based and stratified sampling, and we benchmark them in a systematic
experimental setup on different document collections.

A related paper was recently published for sampling training data for machine learning [Par+19].
In their paper, the authors suggest to use controlled sampling for architecture selection to predict
the errors introduced by the approximate model. While their work concentrated mainly on
classical models learned from structured data, we will investigate the effects of sampling for textual
summarization models with different desired properties (e.g., subjective importance of concepts or
wide vs. focused textual summaries).

Outline: The remainder of the paper is structured as follows: In Section 12.2 we describe the high-
level idea of our system for interactive summarization and then propose different sampling strategies
and explain the sample size estimation in Section 12.3. We then show an initial experimental
evaluation of our novel sampling strategies on the model quality in Section 12.4.

12.2. System Overview

Sherlock [Avi+18], our system for interactive summarization, consists of two major components,
as shown in Figure 12.2: a web-based user interface to collect the user’s feedback and a backend
that refines the text summarization model. The backend hosts multiple components: a document
store (input docs in Figure 12.2) including the required indexes, the summarization component
that accumulates the user feedback and learns to create summaries for every iteration as well as
our approximate model to execute the summarization process at interactive speeds.
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Figure 12.2.: System Overview of Sherlock.

User Interface: The web-based interface allows users to summarize a collection of textual doc-
uments in an interactive manner. A screenshot of the interface is included in Figure 12.2. In a
typical setup, a user would need to read all the documents and manually summarize them. In our
interactive setup, the user receives a summary, annotates all important and unimportant (parts of)
sentences, and submits them as feedback for the next iteration where a refined summary is created
by Sherlock and the user provides the next round of feedback.

Interactive Backend: The main task of the backend is to compute the summary for each iteration
by taking the documents and the user feedback into account. In our system, we currently employ
the summarization model as presented in [AM17] which maximizes the weighted occurrence of
concepts in the summary by using an integer linear program (ILP). The first summary which is
presented to the user is based on a model without any user feedback. Afterwards, in every iteration
the summarization model is refined based on the user feedback of all previous iterations; i.e., the
user can adjust the concept weights and hence the ILP needs to be re-executed. Instead of using
the full document corpus as input, our backend uses samples of a given size (from very small to full
data) resulting in different iteration times and expected quality. The details of our approximate
summarization model are explained in the next section.

12.3. Approximate Summarization Model

The main idea of our approximate summarization model is to take the user feedback of the last
iteration into account, adjust the summarization model, and then return a new version of the
summary to the user. As discussed before, in order to achieve interactive response times in every
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iteration, the approximate summarization model takes a sample of the overall document collection
as input. The sampling strategy and the sample size have a big impact on the performance and the
quality of the summarization model. In the following subsections, we discuss both these aspects in
detail.

12.3.1. Sampling Strategies

In this first subsection, we discuss which sentences should be sampled in every iteration to refine
the trained summarization model. There are numerous possibilities. In this paper, we suggest and
evaluate three sampling strategies tailored towards training textual summarization models:

Random: This is the simplest sampling strategy where we just use a fixed number of randomly
selected sentences in each iteration. This method is used as a baseline compared to the more
sophisticated sampling strategies discussed next.

Importance-based (called TOP-K as well): Instead of sampling randomly, we suggest a second
strategy that takes the importance of a sentence into account when sampling from the underlying
document collection (i.e., more important sentences are sampled with a higher likelihood). Our
intuition is that sentences with a higher information density (containing more concepts rated as
important) are more relevant to the user. As concepts, we use bigrams in our system, as suggested
by [AM17]. We initialize the weight of a concept using the document frequency; i.e., the number
of documents in the collection the concept appears in. The information density of a sentence is
the average weight of all concepts in the sentence. Based on the user feedback, we increase and
decrease the weights of the concepts, yielding refined information density scores. In every iteration,
we induce a sentence ranking and select only the top-k sentences based on the information density.
This strategy introduces some computation overhead but allows exploitation of collected feedback
already in the sampling process.

Stratified: In the third sampling strategy, we additionally divide the input sentences into a fixed
number of clusters based on sentence embeddings [Con+17]. Each of those clusters is individually
ranked as discussed before. Based on the feedback, more sentences from clusters with better
feedback are sampled. This allows dealing with diverse topics and causes the sampling to initially
better explore all information available (instead of only the frequent concepts).

12.3.2. Sample Size Estimation

For all the before-mentioned sampling strategies one needs to choose the sample size as a parameter.
This parameter should not be selected arbitrarily since a too small or too large sample size might
have a negative impact on the overall quality—by not sampling relevant sentences as well as by
changing the runtime of the summarization procedure which is important to enable the user to
give interactive feedback.

At the core of our system, as discussed before, an ILP solver is used that maximizes the accumulated
weight of all concepts in the summary for a given summary length (i.e. consists of sentences mainly
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Figure 12.3.: Number of constraints in ILP in relation to estimated / actual runtime for finding the
best summary (in seconds).

containing the highest-rated distinct concepts based on the user feedback). In order to set the
sample size, we use a cost model to estimate the response time of the system. In future, we will
extend this cost model to enable us to estimate the resulting quality of the summarization model
when using only a sample of a given size.

The main intuition behind our cost model is that each sentence in the input to the ILP produces
additional constraints that have to be respected for finding the summary in the next iteration by
the solver. Fewer constraints make it easier for the solver to find a solution and therefore reduce
the computation time. The cost function thus only depends on the sample size (which directly
translates into the number of constraints) but not the summary length, since this is only present as
a single constraint in the ILP. Hence, different summary lengths with the same amount of input
concepts will still yield similar runtimes of the summarization system. We verify those findings at
the beginning of our evaluation (Section 12.4.1).

12.4. Experimental Evaluation

12.4.1. Exp. 1: Sample Size

In a first experiment, we analyze the accuracy of our cost model to estimate the sample size. As
discussed before, the cost function in Sherlock maps the number of constraints to an estimated
runtime. We use this function to derive the maximum sample size k such that the runtime stays
below a chosen interactivity threshold (e.g., 500ms). Figure 12.3 compares the actual runtime
of the ILP model with the estimated runtime of our cost model (blue line). Both show a Pearson
correlation coefficient of 0.96 to 0.97.

Furthermore, another important question is the effect of using a sample as input to the summariza-
tion model. Figure 12.4 shows the results of running the summarization procedure on different
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Figure 12.4.: Mean recall of bigrams (ROUGE2 metric) for running the system with 5 different
sample sizes (from 10% to full data) on 615 different data sets (artificial and real
data). All experiments use the TOP-K strategy.

Figure 12.5.: Mean ROUGE2 scores for running the system for 10 iterations with three different
strategies (RANDOM, TOP-K, STRATIFIED) on our summaries (MIXED, RARE and
FREQUENT from left to right) as well as real data (rightmost plot, original DUC06 &
DUC07). 380 different summaries were used per plot. ROUGE2 scores are always
between 0 and 1, higher scores are better.

sample sizes using the TOP-K strategy (while STRATIFIED behaved similar in this experiment)
over the different iterations (shown on the x-axis) to collect feedback from users. For collecting
feedback, we simulate users in all our experiments who give perfect feedback to produce summaries
(i.e., users always mark concepts as important if they appear in the gold summary). As a result,
we see that the quality of summaries produced with only 10% sample size is nearly the same as
for the full data and the mean quality of the system working on a quarter of the input data is
indistinguishable from the mean quality of the original system while the length of each iteration is
only about 20% of the one from the original system.

Another interesting observation is that the sample cannot be arbitrarily small—it still has to contain
enough sentences to fill the full summary and the summarizing model should still be able to choose
from different sentences. In our current prototype, we thus select the sample size based on our cost
model such that the desired interaction threshold is met but the sample size still contains enough
sentences to fill the full summary (i.e., sample size must be larger than the summary length).
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12.4.2. Exp. 2: Sampling Strategy

In the second experiment, we evaluate the different sampling strategies and their robustness for
different kinds of summaries. There are two important dimensions of textual summaries that have
a major impact on how well a sampling strategy works: The first dimension is which concepts are
included in a summary (i.e., frequent ones or rare ones). The second dimension is whether the
summary is topically focused (for users who are interested in particular details) or if it contains a
wide range of concepts (for users who want to get an initial overview).

In order to evaluate our sampling strategies on these different summary types, we create different
summaries (called gold summaries) that follow the above-mentioned properties. To control the
content of the summaries and make sure they still have the syntactic properties and word distribu-
tions of a real text, we use sentences from the existing summarization corpora DUC06 and DUC07
to create the gold summaries.1

Below, we first describe the setup for two experiments we conducted and then discuss the results at
the end. We fix the sample size to 20% of the input documents for all different sampling strategies
(RANDOM, TOP-K, STRATIFIED).

Exp. 2a: Rare vs. Frequent: In this experiment, we test the dependence of the sampling strategies
on the frequency of the concepts. We therefore create three different classes of summaries: (1)
summaries with random concepts containing both rare and frequent concepts (called MIXED), (2)
summaries with concepts that appear frequently (called FREQUENT), and summaries with only
concepts that are rare (called RARE). Furthermore, we use the summaries included in the original
DUC corpora.

Exp. 2b: Focused vs. Wide: In this experiment, we want to test the sampling strategies on
summaries with a rather focused or a wide set of topics. In order to create those summaries, we use
the GloVe word embeddings [PSM14] and sample sentences where words are uniformly distributed
over the vector space (called WIDE) or sentences where words are clustered in a certain region
(called FOCUSED).

All gold summaries have a length of about 250 words.

Discussion of Results: The results of Exp. 2a (Rare vs. Frequent) are shown in Figure 12.5.
Again, as before, we show the ROUGE2 metric over the different iterations of producing a summary,
whereas users provide perfect feedback in each iteration. For the result in Figure 12.5, we see
that TOP-K and STRATIFIED sampling clearly outperform the RANDOM sampling strategy and
thus both can be used to generate high-quality summaries in only a few iterations. Moreover, as
expected, both strategies work better on the summaries of types MIXED and FREQUENT and are
less effective on summaries of type RARE since the sampling strategies prefer more important
concepts over less important ones.

Our system also works reasonably well on the original summaries from the DUC06 and DUC07
corpora, but the scores are much lower (see right-most plot of Figure 12.5). Yet this is not caused
by the algorithm or sampling strategies but by the fact that the gold summaries of the DUC corpora
1https://www-nlpir.nist.gov/projects/duc/data.html
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Figure 12.6.: ROUGE2 scores for running the system for 10 iterations on a WIDE summary (left)
andmean ROUGE2 scores for 50 artificial datasets with FOCUSED summaries (right).

are abstractive and not extractive (i.e., summaries are not composed of full sentences of the input
documents but handwritten by users). This is in contrast to the summaries used for the left three
plots of Figure 12.5 which are extractive, leading to a higher upper bound for the ROUGE2 metric.

Finally, a clear difference between the TOP-K and STRATIFIED sampling strategy can be seen in
the results for Exp. 2b (Focused vs. Wide) as shown in Figure 12.6. Here, the STRATIFIED strategy
shows a clear benefit over TOP-K when used on a WIDE summary (left plot) instead of FOCUSED
ones (right plot) at least in the first few iterations. The intuition is that STRATIFIED sampling is
better able to include sentences required for the breadth of WIDE summaries. The reason why
TOP-K performs better in the latter iterations is that the sampling is more efficient (and covers also
the desired breadth) when enough user feedback was collected. In the future, we thus want to
look into combinations of TOP-K and STRATIFIED sampling.
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13. Summarization Beyond News: The
Automatically Acquired Fandom Corpora
(LREC’20)

Abstract

Large state-of-the-art corpora for training neural networks to create abstractive summaries are
mostly limited to the news genre, as it is expensive to acquire human-written summaries for other
types of text at a large scale. In this paper, we present a novel automatic corpus construction
approach to tackle this issue as well as three new large open-licensed summarization corpora based
on our approach that can be used for training abstractive summarization models. Our constructed
corpora contain fictional narratives, descriptive texts, and summaries about movies, television, and
book series from different domains. All sources use a creative commons (CC) license, hence we
can provide the corpora for download. In addition, we also provide a ready-to-use framework
that implements our automatic construction approach to create custom corpora with desired
parameters like the length of the target summary and the number of source documents from
which to create the summary. The main idea behind our automatic construction approach is to use
existing large text collections (e.g., thematic wikis) and automatically classify whether the texts
can be used as (query-focused) multi-document summaries and align them with potential source
texts. As a final contribution, we show the usefulness of our automatic construction approach by
running state-of-the-art summarizers on the corpora and through a manual evaluation with human
annotators.
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13.1. Introduction

Motivation: Abstractive summaries help users to understand new text collections efficiently but
writing these summaries is time-consuming and complex. Automatic summarization aims to elimi-
nate or reduce the manual process. Since the advent of deep learning, automatic summarization
methods require huge corpora to properly train neural architectures. The CNN/DailyMail dataset
[Her+15], Gigaword [NGV12], and the New York Times (NYT) corpus [PXS18] are currently the
largest summarization corpora. They have been used successfully for training a wide range of
neural architectures, including recurrent neural networks [NZZ17], pointer-generator networks
[SLM17], attention mechanisms [GDR18; PXS18], and approaches based on reinforcement learning
[GMG18; NCL18].

All of these corpora are limited to the news genre where texts are typically too short to qualify as
general-purpose summaries. For example, CNN/DailyMail provides only bullet-point summaries,
Gigaword contains headlines as the summary of an article’s first sentence, and the NYT corpus
pairs news articles with their abstracts. To break new ground in the automatic summarization of
other genres, we require new corpora that can cover other text genres and summary types on the
one side but are large enough to train neural networks on the other side. However, constructing
summarization corpora is still a manual task today and thus requires excessive resources which
limits the variety of available corpora significantly.

Contributions: In this paper, we propose a novel approach to automatic construction of large
summarization corpora. The main idea behind our approach encompasses the use of existing large
text collections (e.g., thematic wikis) and automatically classifying whether the texts can be used
as (query-focused) multi-document summaries as well as aligning them with potential source texts.

As an important first step for developing such an automatic construction approach, we use the
Fandomwikis (formerly known as wikia). Fandom.com is a community page dedicated to providing
a place for enthusiasts to discuss and share knowledge about their favorite entertainment content.
It currently consists of more than 385,000 communities on different franchises (movies, television
series, games, books, and more) with over 50 million pages in total. The sizes of the different
communities range from only a few pages to well over 100,000 content pages. Most of those wikis
use an open Creative Commons Attribution Share-Alike license, allowing us to use and redistribute
their articles.

The Fandom wikis often contain articles describing the same topic in multiple levels of detail—there
are articles giving a general overview of a character, event or place as well as articles focusing on a
single aspect of it (e.g., a relationship, scene or time) in detail. Those articles normally reference
each other through links. Our main idea is to automatically identify such overview articles or
sections that qualify as a summary and align them with the potential source documents (i.e., the
detailed articles) if the supposed alignment quality is high enough.

We show that it is possible to generate multiple different corpora with user-defined properties
using this idea. For example, it is possible to vary the target length of the summaries, but also the
difficulty of the summarization task which we control by the ratio between the sizes of summary
and the source documents. Finally, we also allow users to choose whether the contents of a
constructed corpus should be retrieved from a single community or whether a more general corpus
is constructed from multiple communities at once.
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Figure 13.1.: Fandom Corpus Construction Pipeline

To summarize, in this paper we make the following contributions: (1) We present a framework
that can be used to create new summarization corpora and discuss reasonable choices for the
parameters. (2) We provide three new sample corpora created with our automatic construction
pipeline. (3) We provide a comprehensive evaluation based on these corpora, using traditional
and neural network based methods to validate that our pipeline is able to automatically create
corpora of use for state-of-the-art summarizers. (4) We make our code available as open source
under the MIT License. It can be found along with the data and a user documentation at https:
//link.tuda.systems/fandom-corpora.

Outline: We first give an overview of our automatic corpus construction pipeline and report
important properties of our approach. Then we show the results of our evaluation before discussing
potential future work and wrapping up our contribution.

13.2. Automatic Corpus Construction

In this section, we describe the steps of our automatic approach to create topic-specific multi-
document summarization corpora. The essential stages of our approach are: (1) parsing and
cleaning of input documents, (2) selecting potential candidates for abstractive summaries from
those input documents and assigning summary candidates to them, and (3) choosing the final
set of abstractive summaries based upon a newly developed quality threshold and splitting the
selected summaries into training, validation, and test set if needed. An overview can be found in
Figure 13.1.

As mentioned before, in this paper we use the Fandom wikis as an example set of source documents,
but we believe that our approach can be easily extended to other sources: while step (1) is source
specific and has to be implemented for each new set of sources, steps (2) and (3), which are the
core of our automatic construction approach, are implemented in a general way.

13.2.1. Overview of the Pipeline

Parsing and Cleaning the Sources: The first step of our pipeline encompasses parsing the sources
and cleaning the data for the automatic corpus construction.

As already mentioned, we use the Fandom wikis as a document source in this paper. Database
dumps can be downloaded from the “Special:Statistics” page of each Fandom community. Each
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Min. summary length [words] 150
Max. summary length [words] 400
Extractive summary length [words] 250
Target-source-ratio 2
Min. source doc count 5
Min. bigram overlap 50%

Table 13.1.: Parameter settings for corpus creation used for the sample corpora of this paper.

dump consists of a large xml-file containing all contents of that wiki. In addition to the articles, this
covers metadata on media files, discussion pages, category overviews, special pages and other sites
not relevant to our task. For example, the English Star Wars wiki1 contains about 150,000 content
pages but over half a million pages in total. Hence, all non-article pages have to be discarded. This
can be done by specifying an article namespace to use or by using rules to ignore certain page title
prefixes (e.g., “Help:” or “Talk:”).

Afterwards, the contents are preprocessed: We split the pages into sections including their respective
titles, extract the links between pages and convert the content into plain text. This includes
removing link texts, tables, templates and other kinds of wiki markup.

Finding Summary Candidates: The identification of summary candidates is the most crucial
step for creating high-quality corpora automatically. At a high-level, a corpus that is useful for
abstractive summarization should group a set of documents with at least one possible summary of
these documents. In addition, many of the automatic summarization approaches take a “query” as
input that represents the information needs of the user i.e., describes what aspects are important.

Hence, in this step, we aim to select triples (i.e., a set of source documents, a summary, and a
query) that represent good candidates from a given cleaned data dump for the final corpus. For
both the source documents and summaries our pipeline uses sections of the wiki articles since they
are coherent and self-contained portions of text. As a query describing the section, we combine the
title of an article with the section title, e.g., “Luke Skywalker: Birth”.

To identify sections that qualify as possible summary candidate triples we use the following
heuristics: (1) Only sections with a length between certain threshold values are considered as
summaries. These thresholds can be adapted based on the task at hand. The default values for all
parameters used for the sample corpora in this paper can be found in Table 13.1. (2) We discard
summary candidates having only few linked documents (i.e., potential source documents). Again,
the number of source documents is a parameter that can be set by the user. Higher values increase
the difficulty of the summarization task since the summary content has to be extracted from more
input documents, but may also drastically decrease the number of candidates overall. (3) After
applying these purely statistical heuristics, we compute the content alignment between summary
and source documents as the overlap between sources and summary candidates. The required
minimal overlap, too, is a parameter that can be set by the user for creating a corpus; the lower
the value, the more candidate summaries and source documents will be selected but the difficulty
increases. In this paper, we use the number of shared bigrams to approximate the similarity. The
quantity of overlap shows how much the summary and source texts contain similar concepts, but
1Wookieepedia, https://starwars.fandom.com
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it can only be a first hint as to whether the information in the sources is sufficient to re-create
the abstractive summary given a particular user-query. Therefore, in addition to the overlap, we
create extractive summaries from the selected candidate sources based on the abstractive summary.
An automatically calculated quality score for the extractive summary is used to select the set of
summaries and source documents to form the final corpus.

In addition to the user-tuneable parameters of the fully-automatic process, users can also specify
preferences as to which contents are particularly relevant. The Fandom wikis, for example, use a
category system, as most wikis do. As a default, articles from all categories are extracted, but it is
possible to restrict the categories, e.g., to discard all articles about non-fictional characters (i.e.
actors, directors, film crew, ...) from a corpus about a movie franchise.

Selecting Summaries for the Corpus: The heuristics mentioned above help to identify possible
candidates for triples consisting of a summary, a list of source documents, and a query—however,
their quality can vary significantly as we show in our evaluation in Section 13.4. For some of them,
the summary is indeed a high-quality summary of the extracted documents complying with the
query, while for others it is hardly possible to find the information of the summary in the source
documents. Hence, in a final step, we need to identify the usefulness of each triple and select only
those which exceed a predefined quality threshold.

The selected summaries can optionally be split into training, validation, and test set. The split
sizes—like all other parameters of the pipeline—can be adapted by the user of the framework
according to their needs.

13.2.2. Extractive Summaries for Final Selection

Building an extractive summary involves choosing the best subset of sentences from the sources
that form a summary of their content. In this paper, the extractive summarization procedure is
modelled as an Integer Linear Program (ILP) based on the ideas of Boudin, Mougard, and Favre
[BMF15], and Avinesh P. V. S. and Meyer [AM17]. The main intuition is that the ILP extracts the
sentences with the most important concepts from the source documents to form a summary within
a maximal length. To model the importance of sentences, we weight concepts according to their
frequency in the human-written text (i.e., the selected candidate summary from the Fandom wiki).
By doing so, we reward the system for a summary that contains many concepts of the abstractive
reference summary. We use bigrams as concepts and ignore those consisting solely of stopwords.

To find good candidate triples, we use the objective score of the ILP for extractive approximation
of the summary. This score is high if the extractive summary contains many concepts from the
reference summary, hence resembling it well. For the final corpus, we only use summaries with a
score higher than a certain threshold. In our evaluation in Section 13.4.2, we show how different
values for this threshold impact the overall corpus quality.

In this paper, we use two different optimization objectives for the ILP. In both formulations, ci
refers to the individual concepts and L to the maximal summary length (which we set according
to the selected range of the target length for the abstractive summaries). Moreover, sentences are
referred to as sj with length lj and Occij meaning that concept ci occurs in that sentence. The
first ILP formulation, as shown below, intends to maximize the overall sum of weights for distinct
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covered concepts, while making sure that the total length of all selected sentences stays below a
given threshold and the weight of a concept is only counted if it is part of a selected sentence.

max
∑︂
i

wici

∀j.
∑︂
j

ljsj ≤ L

∀i, j.sjOccij ≤ ci

∀i.
∑︂
j

sjOccij ≥ ci

∀i.ci ∈ {0, 1}
∀j.sj ∈ {0, 1}

The second objective is simpler and tries to maximize the weight of the distinct selected sentences.
Therefore, it is rewarded if an important concept appears in multiple sentences.

max
∑︂
j

sj
∑︂
i

wiOccij

∀j.
∑︂
j

ljsj ≤ L

∀j.si ∈ {0, 1}

In our experiments, we evaluate both of these ILP formulations with regard to the final corpus
quality. Both approaches use only syntactical features and no semantic ones (e.g., embeddings).
They do not require time-intensive training and can be computed within a few seconds. Yet, it
would be easy to exchange this component of the pipeline, if needed for a certain application.

13.3. Properties of Our Corpora

In the previous section, we have presented our new approach for automatically constructing
summarization corpora. Using this approach, we have created three different sample corpora
(one for Harry Potter, two for Star Wars) using the Fandom wikis as input. In this section, we will
now discuss the unique properties of these corpora which differentiate them from other available
corpora and, thus, make them a valuable contribution on their own. These sample corpora are all
available for download with the sources of our construction pipeline.

First of all, our corpora do not feature news texts with their typical peculiarities (e.g., all important
sentences at the beginning) but a mix of encyclopedic and narrative (story-telling) texts. In contrast
to other sources, in Fandom wikis there are not a few dozens but thousands of articles about a
certain topic. If the corpus is constructed from a single community, all articles are from the same
domain (i.e., a closed world). However, it is also possible to utilize the common structure of the
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Corpus Star Wars (en) Star Wars (de) Harry Potter
Quality Threshold 50 50 50 20

# Articles 148,348 39,356 15,993 15,993
Candidates 5,659 999 1,466 1,466
Selected Summaries (train/valid/test) 882 / 109 / 107 221 / 28 / 28 205 / 23 / 26 1,171 / 146 / 147
Avg. Summary Length 261.14 270.79 270.06 245.47
Avg. # of Source Docs per Summary 24.69 20.15 19.79 17.11
Avg. Source Length per Doc 1,143 855 3,087 3,400
Avg. Overall Source Length per Summary 28,236 17,241 61,111 58,188

Table 13.2.: Properties of the three sample corpora. For each, the amount of textual documents,
the amount of candidates for a topic (target summary and matching source docu-
ments), and the amount of documents selected by the quality threshold (split into
train, validation and test sets) are reported. For the Harry Potter corpus, the sizes of a
second variant with a lower quality threshold are listed. For the selected summaries,
the average length of the summary (in words) as well as the average size of the input
documents (in words) and their average number per summary are reported.

different communities and build a corpus containing texts of different domains, e.g., to train more
general summarizers.

Additionally, new corpora are fast and cheap to construct with just a minimum of manual work
needed. There are many communities with lots of articles (e.g., Star Trek with 47,181 articles, Dr.
Who with 71,425 articles) and the wikis are still growing. Moreover, communities are available in
many different languages, hence this approach can be used to create corpora for various languages
(e.g., one of our sample corpora is in German). The Creative Commons License of the texts allows
us to offer the resulting corpora for download instead of only publishing tools for re-creating the
corpora. This is in contrast to many existing news-based corpora such as Zopf [Zop18] which
depend on crawling and thus the availability of external resources.

Last but not least, the abstractive texts in our corpora are of high quality since they are written by
volunteers with intrinsic motivation and not by poorly paid crowd workers rushing through the
task. A sample for such an abstractive text which shows the high-quality can be seen in Figure
13.4.

13.4. Analysis & Results

In our analysis, we show the validity of our pipeline and the usefulness of the generated data using
three sample corpora created with our approach (two in English, one in German). We start by
analyzing the properties of the automatically constructed corpora, then discuss the design decisions
and validity of our pipeline steps, and finally run state-of-the-art summarizing systems on the data
and evaluate their performance.

161



13.4.1. Statistics of Corpora

As a first analysis, we computed several statistics about the three sample corpora we constructed us-
ing our pipeline. The goal is to showwhether, from a purely statistical perspective, the automatically
constructed corpora are similar to manual (human-created) ones.

The results can be found in Table 13.2. The abstractive summaries have an average length of
260–270 words, the extractive summaries were created using a target length of 250 words, hence
they have an average length little below that value. This length is similar to traditional multi-
document summarization corpora like the DUC ’06 and DUC ’07 datasets2. It is a lot longer than
the average length of 50 words of the live blog corpus [APM18] and drastically longer than the
headline summaries of multiple news-based corpora such as Gigaword [NGV12].

The average number of source documents per summary lies between 19 and 25 documents. This
as well is similar to the DUC ’06 and DUC ’07 datasets, higher than the ten documents considered
in the DUC ’04 and TAC ’083 challenges, and about one half to one fourth of the amount of snippets
per summary for the live blog corpora. The average length of the source documents is one to two
magnitudes higher than for the live blog corpora, resulting in a higher overall source length to
extract the important concepts from. Especially for Harry Potter, the overall length is two to three
times higher than for the other two corpora, making this task especially hard.

The size of the final corpus varies depending on the size of the Fandom community and the quality
threshold. For our sample corpora, it ranges from 250 topics, which is similar to the DUC ’06
dataset used for traditional summarization approaches, to 1,300 topics, which is a size that can be
used to train deep learning approaches. Additionally, it is possible to combine topics from multiple
communities into a single training corpus.

This has an effect on the domain distribution and topic heterogeneity as well. A corpus constructed
from a single community covers topics from only one domain, with the main difference between
documents being whether they are about an event, a place, a being or a thing. Mixed corpora
may contain texts from totally different domains (e.g., about a movie, a video game and baking
recipes). The heterogeneity of writing styles, levels of detail, narrating styles and more, comes
from the nature of the wiki itself and is inherently contained in all of the corpora.

In summary, it can be seen that, from a statistical perspective, it is possible to generate corpora
with various properties matching typical needs of current (multi-)document summarization tasks.

13.4.2. Validation of the Pipeline

Our pipeline requires some parameters. Most of them are straightforward and can be adapted
directly, according to the task at hand (e.g., the target length of the summaries) or have a direct
impact on the difficulty of the dataset (e.g., the range of the amount of source documents or the
length ratio between source and target). The most important parameter is the quality threshold
(and connected to it the method to generate a score for the extractability of the summary from the
sources). In this section, we evaluate how this parameter influences the overall corpus quality.
2https://duc.nist.gov/
3https://tac.nist.gov/2008/
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Figure 13.2.: Correlation between the objective scores of concept- and sentence-based extraction
method on the same data.

First, we compare the two extraction modes (i.e., the two different ILPs described in Section 13.2).
Figure 13.2 shows the correlation between the scores of both methods. It can be seen that the
score of the sentence-based method is always equal or higher than the one of the concept-based
method on the same data. The reason is that the sentence-based method will always get at least the
same score for the summary selected by the concept-based method, but the score will be higher as
soon as at least one duplicate concept is in it. However, normally both approaches produce similar
but nonetheless different summaries, and the quality of a summary produced by the concept-based
method might be better than a sentence-based one with a higher score, because for the first one
duplicate concepts were not rewarded.

The correlation justifies using either of the two methods as a quality indicator. However, the
question how the quality of the summary really correlates to the score of the extraction remains. To
assess this, we asked human annotators to evaluate the quality of 39 equally distributed summaries.
We asked them to decide for each sentence in the human abstract if it is covered by the extractive
summary (0) not at all, (1) partially, (2) mostly, or (3) fully. The human decision is averaged for the
full summary and correlated to the score of the extraction. The results can be found in Figure 13.3.
It can be seen that a higher ILP score does indeed correlate with a better human evaluation. Based
on this we have chosen the ILP-thresholds for the selection of the summaries. Our experiments
suggest a value of about one fifth of the target length (250/5 = 50) for the sentence-based method,
while for the concept-based method the corresponding threshold would be slightly lower since
duplicates are not counted.

In addition, we show a sample for a human abstract and the corresponding extractive summary
in Figure 13.4, to intuitively demonstrate that extractive summaries are a good stub to judge
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Figure 13.3.: Human agreement with automatically generated extractive summaries for concept-
based and sentence-based creation method. Average values for the sentences of
39 annotated documents, possible values between 0 and 3 (best).
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Human-written abstract

At Hogwarts School of Witchcraft and Wizardry, sixth years are typically 16 to 17 years of age, although some may
be older, if they have had to repeat a year like Marcus Flint. The sixth year is the year in which students advance to
N.E.W.T.-level classes. [...] Neither the core classes nor the elective courses are available to any student who does not
meet said requirements. While students do have the opportunity to choose whether they wish to continue in particular
subjects, those who begin studying N.E.W.T.-level subjects in their sixth year are expected to carry on with the subject
into the seventh year, and sit the N.E.W.T. exam in that subject. [...] Students in the sixth year may also elect to take
part in Apparition lessons for a fee of twelve Galleons. [...]

Extractive summary

The fifth year is also the year in which students receive career counselling from their Heads of House. Sixth years are
typically sixteen to seventeen years of age, although some may be older, if they have had to repeat a year like Marcus
Flint did. Sixth years may also elect to take part in Apparition lessons for a fee of twelve Galleons. [...] Depending on
the minimum requirements of the professor teaching the subject at that time, students are allowed to sit any number of
classes as long as they meet said requirements. While students do have the opportunity to choose whether they wish to
continue in particular subjects, those who begin studying N.E.W.T.-level subjects in their sixth year are expected to carry
on with the subject into the seventh year and sit the N.E.W.T. exam in that subject. [...]

Figure 13.4.: Sample human abstract and the corresponding auto-generated extractive summary
(concept-based) for topic “Sixth year: During the sixth year” (00943) from the Harry
Potter corpus. Due to spacing reasons, only excerpts are shown. From 10 sentences
in the human abstract, 7 are fully covered by the extractive summary, one sentence
mostly and two sentences not at all, leading to a human evaluation score of 2.3 with
an optimization score of 107.6 for the extraction ILP.

the quality of source documents for abstractive summarization. While we can see that a good
quality of the extractive summary implies that the source documents are useful for abstractive
summarization of the given documents, there is still room for improvement: First, some sentences
might be missing in the extractive summary simply because the length of the extractive summary
is typically lower than the abstractive one (since not the full length could be exploited). A second
problem can be found in the Harry Potter wiki, but it is likely that it will frequently occur in other
domains as well: in many cases all names of people or places in a summary are linked to articles
about them, adding these articles to the source documents. Yet, without co-reference resolution
and explicit query handling, the system is prone to selecting sentences about the wrong entity as
input. More generally speaking, there is a lack of real understanding of the extracted contents in
our construction pipeline. The approach works solely on a syntactic level and does not use any
semantic features such as synonyms at the moment. We want to address this as an extension of
our pipeline in future work.

13.4.3. Corpora Quality

In these experiments, we ran multiple well-known techniques that were successfully used for single
and multi-document summarization. The goal is to show that the quality of the automatically
created corpora is high enough that state-of-the art summarizers can perform reasonably well
on those corpora. Our implementations are based upon the implementation by Avinesh P. V. S.,
Peyrard, and Meyer [APM18]. For the assessment of summary quality based upon a reference
summary, we compute and report the ROUGE metrics. Owczarzak et al. [Owc+12] show that
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Systems
Harry Potter Star Wars (en) Star Wars (de)

R1 R2 SU4 R1 R2 SU4 R1 R2 SU4

Luhn 0.1669 0.0308 0.1366 0.2440 0.0523 0.2045 0.1725 0.0357 0.1378
LexRank 0.3702 0.0729 0.2850 0.3845 0.1049 0.3103 0.3579 0.0784 0.2711
LSA 0.3113 0.0421 0.2454 0.3135 0.0533 0.2550 0.3081 0.0512 0.2350
KL 0.2407 0.0528 0.1897 0.3087 0.0808 0.2546 0.2213 0.0524 0.1742
ICSI 0.2224 0.0360 0.2041 0.3041 0.0423 0.2507 0.2199 0.0353 0.1984

UB1 0.5585 0.1744 0.3802 0.5793 0.2341 0.4210 0.6095 0.3354 0.4859
UB2 0.5465 0.2609 0.4137 0.5700 0.3050 0.4491 0.6089 0.3847 0.5111

Table 13.3.: Average scores (ROUGE-1, ROUGE-2, ROUGE-SU4) for different baseline systems on
all candidates of all three sample corpora. Values between 0 and 1, higher is better.

Systems
Harry Potter Star Wars (en) Star Wars (de)

R1 R2 SU4 R1 R2 SU4 R1 R2 SU4

Luhn 0.1791 0.0365 0.1475 0.2605 0.0560 0.2195 0.1830 0.0412 0.1491
LexRank 0.3855 0.0881 0.3053 0.3929 0.1083 0.3227 0.3662 0.0849 0.2849
LSA 0.3267 0.0545 0.2635 0.3293 0.0584 0.2722 0.3226 0.0624 0.2541
KL 0.2753 0.0655 0.2176 0.3116 0.0780 0.2609 0.2321 0.0617 0.1902
ICSI 0.2440 0.0419 0.2245 0.3223 0.0496 0.2683 0.2350 0.0412 0.2125

UB1 0.6261 0.2885 0.4742 0.6830 0.4115 0.5656 0.7513 0.5811 0.6815
UB2 0.6265 0.3746 0.5122 0.6835 0.4726 0.5939 0.7569 0.6164 0.7027

Table 13.4.: Average scores (ROUGE-1, ROUGE-2, ROUGE-SU4) for different baseline systems on
selected summaries (score of sentence-based extraction ILP greater or equal to the
quality threshold of 50) of all three sample corpora. Values between 0 and 1, higher is
better.
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these metrics strongly correlate with human evaluations of this similarity. We report the ROUGE-1
(R1) and ROUGE-2 (R2) metrics (without stemming or stopword removal) as well as ROUGE-SU4
(SU4) as the best skip-gram matching metric.

Baseline Summarizers: As state-of-the-art summarizers, we use the following systems:

TF*IDF [Luh58]: The sentences are scored with the term frequency times the inverse document
frequency for all their terms, ranked by this score and greedily extracted.

LexRank [ER04]: This well-known graph-based approach constructs a similarity graph G(V,E)
for all sentences V with an edge between them if their cosine-similarity is above a certain
threshold. The summary is built by applying the PageRank algorithm on this graph and,
again, extracting greedily.

LSA [SJ04]: This approach uses singular value decomposition to reduce the dimensions of the
term-document matrix to extract the sentences containing the most important latent topics.

KL-Greedy [HV09]: This approach tries to minimize the Kullback-Leibler (KL) divergence between
the word distributions of the summary and the source documents.

ICSI [GF09]: This approach is based on global linear optimization. It extracts a summary by
solving a maximum coverage problem that considers the most frequent bigrams in the source
documents. Hong et al. [Hon+14] found this to be among the state-of-the-art systems for
multi-document summary.

We applied all of these approaches to all topics of our corpora. Due to large input sizes, LexRank,
LSA, KL-Greedy and ICSI did not terminate in a reasonable time on some topics. The affected
topics varied for each approach.

In addition, to judge the quality of the baselines, we also computed the upper bound that an
extractive summarizer could achieve in the best case. An extractive summarization system normally
cannot re-create the human-written abstractive text exactly, since the abstractive sentences differ
from the sentences of the source texts that can be extracted. Hence, the best overlap between an
abstractive and the best extractive text is usually below 100%. To take this into consideration,
we compute and report those upper bounds for extractive systems as suggested by Peyrard and
Eckle-Kohler [PE16]. This is done using the first ILP from Section 13.2.2 with slightly adapted
concepts and weights: we compute one upper bound based on unigrams (UB1) and one upper
bound based on bigrams (UB2). For both of them, the concepts are not weighted but the maximum
coverage of distinct n-grams is counted. As for the baselines, the ROUGE scores for the created
extractive summary compared to the abstractive text are computed.

Neural Summarizers: In addition to the baseline systems mentioned above, we also evaluate the
data using learned models. To do so, we use the best scoring model combination for extractive
summarization by Kedzie, McKeown, and Daumé III [KMD18], a combination of a Seq2Seq model
as extractor and an Averaging Encoder. Yet, our datasets use a compatible data format, hence all
other models evaluated in that paper can be used on our data as well4. For training, the extractive
summary provides a binary decision for every input sentence, i.e. whether it should be part of the
4Kedzie, McKeown, and Daumé III [KMD18] provide reference implementations with an unified interface for all
evaluated models at
https://github.com/kedz/nnsum/
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Corpus Extraction Quality Validation Test: Human Abstracts Test: Auto-Extractive
Mode Threshold R2 R1 R2 SU4 R1 R2 SU4

Star Wars (en) concept 50 0.0876 0.4461 0.1501 0.4148 0.4729 0.1807 0.3369
sentence 50 0.0864 0.4375 0.1476 0.4042 0.4721 0.2096 0.3310

Harry Potter
concept 50 0.0655 0.3557 0.0714 0.3321 0.3754 0.0876 0.2528
sentence 50 0.0692 0.3528 0.0699 0.3290 0.3657 0.0802 0.2473
sentence 20 0.0460 0.3673 0.0690 0.3384 0.3775 0.0888 0.2562

Star Wars (de) concept 50 0.1127 0.4197 0.1700 0.3984 0.4189 0.1606 0.3066
sentence 50 0.1294 0.4365 0.1852 0.4146 0.4456 0.2086 0.2957

Combined (en) concept 50 0.0749 0.4136 0.1151 0.3825 0.4500 0.1501 0.3126
sentence 50 0.0753 0.3927 0.0947 0.3629 0.4019 0.1079 0.2729

Table 13.5.: Average ROUGE values for Seq2Seq models (neural baseline) trained on the different
training sets and tested on the original human abstracts and the auto-generated
extractive abstracts of the respective test sets. Rouge values between 0 and 1, higher
is better.

summary or not. For generation, a probability is inferred for every sentence and then used to rank
them and extract greedily.

We benchmark all three corpora with both extraction methods and a quality threshold of 50.
Additionally, we run the benchmark on the Harry Potter corpus with sentence-based extraction and
a threshold of 20, and on a combined dataset (Star Wars, Harry Potter and Star Trek5, all English).
All experiments use 200-dimensional GloVe vectors to represent words.

Analysis of the Summarization Quality: Table 13.4 shows the benchmark results of the selected
summaries for the three sample corpora. We report the ROUGE-1, ROUGE-2 and ROUGE-SU4
scores for the different baseline systems. All experiments use a target length of 250 words, if
not stated otherwise. This corresponds to the length of the commonly used DUC ’06 and DUC
’07 datasets. When compared to the benchmark runs on all candidates of the corpora (see Table
13.3), one can see that the average scores for all systems are higher on the selected summaries,
proving that these are, on average, better pairs of summary and source documents. However,
in relation to the upper bounds (UB1 and UB2), even the best performing baseline (LexRank)
can only reach one third to one fifth of the upper bound on ROUGE-2 (for ROUGE-1 and SU4 it
is at least half or better). This reflects our findings from other papers, e.g., Avinesh P. V. S. and
Meyer [AM17], and thus we believe that the quality of our automatically constructed corpora
is on par with the manually created ones used in previous evaluations. Moreover, the fact that
state-of-the-art summarizers can only reach one third to one fifth of the upper bound on ROUGE-2
also emphasizes that multi-document summary is still a challenging task in general and needs
further research which we hope to stimulate with this paper.

This is also stressed by the following findings: Table 13.5 shows the results of training multiple
sequence-to-sequence models with the training data from the corpora. We tested them both on
the original human abstracts and the extractive summaries that were automatically created based
on them to see the effect of the abstraction. The scores on the extractive test set are higher for
all models, as expected. The test on the human abstracts can be compared to the results of the
5https://memory-alpha.fandom.com/
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non-neural baselines from Table 13.4. We can see that the neural approach outperforms the other
baselines on the Star Wars corpora. Especially for the German variant the result is surprisingly good
even though we are not using German embeddings but rather standard GloVe vectors. However, for
the Harry Potter corpus, the neural baseline cannot even outperform the LexRank baseline. We find
three reasons for that: first, the total length of the source documents (which is two to three times
higher than for the other two corpora), second the linking style of the wiki (see Section 13.4.2)
and third the comparatively low amount of training data. It can be seen that scores for the model
trained on the variant with lower quality threshold (leading to a five times higher corpus size) are
similar or even higher. Getting similar results from training data of a worse quality supports the
assumption that the amount of training data is a problem here.

For those cases, we test a combined corpus, where texts from multiple domains are combined. We
can see that this can be used to handle the lack of training data, but that a specialized model will
outperform this more general model when there is enough training data available.

13.5. Future Work

With this paper, we present ready-to-use data and an approach to generate more. Of course, there
is still room for improvement and extensions of the pipeline:

One important point is the generation of extractive summaries. As discussed in Section 13.4.2,
our pipeline does not exploit semantic features yet. The use of semantic word representations,
word sense disambiguation, co-reference resolution, or entity linking could create better extractive
summaries and serve as a better basis for quality threshold decisions.

A second important point is the length of the source documents to be summarized. Since wiki
authors are encouraged to add a lot of hyperlinks between the texts, the list of source documents
might contain articles not entirely relevant for the topic, making it very hard to solve the summa-
rization task. Future work should focus on developing methods to choose more relevant subsets of
the source texts. Semantic features could play an important role here as well.

Finally, we think that our approach can also work as a basis to generate data for other tasks. One
example is hierarchical summarization [Chr+14]: Fandom communities about television series
often contain articles about every single episode, about each season and articles about certain
aspects of the full series. These articles all have different levels of detail and form a hierarchy that
can be extracted using some simple manual rules.

13.6. Conclusion

In this paper, we presented a novel automatic corpus construction approach and three open-licensed
corpora for multi-document summarization based on this approach. All corpora are available
online to be used directly by other researchers, together with a ready-to-use framework to create
custom corpora with desired parameters like the length of the target summary and the amount of
source documents to create the summary from. We verified the pipeline and showed the usefulness
of the corpora, including the fact that state-of-the-art summarizers cannot yet solve all challenges
posed by our new corpora. Our data could contribute to the further development of systems for
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(semi-)automatic multi-document summarization, especially those exploiting the query or relying
on user feedback. The framework can be used to generate further training and test data for these
systems or serve as basis to generate data for other tasks, such as hierarchical summarization.

170



14. It’s AI Match: A Two-Step Approach for
Schema Matching Using Embeddings
(AIDB’20)

Abstract

Since data is often stored in different sources, it needs to be integrated to gather a global view
that is required in order to create value and derive knowledge from it. A critical step in data
integration is schema matching which aims to find semantic correspondences between elements of
two schemata. In order to reduce the manual effort involved in schema matching, many solutions
for the automatic determination of schema correspondences have already been developed.

In this paper, we propose a novel end-to-end approach for schema matching based on neural
embeddings. The main idea is to use a two-step approach consisting of a table matching step
followed by an attribute matching step. In both steps we use embeddings on different levels either
representing the whole table or single attributes. Our results show that our approach is able to
determine correspondences in a robust and reliable way and compared to traditional schema
matching approaches can find non-trivial correspondences.
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Japan. Reformatted for this thesis.
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14.1. Introduction

Motivation: The quality of decisions is directly influenced by the available data and the ease of
access to it. Important decisions should thus be made based on a holistic view using all available
data. However, data is often scattered into different heterogeneous sources. This is not only the
case for many data science projects that need to integrate data from different independent sources
but is also relevant within companies, where data typically resides in different systems. Data
Integration can help to mitigate these issues since it allows to create a global view over independent
data sources.

A critical step in data integration is schema matching which aims to find semantic correspon-
dences between elements of two schemata. Traditionally, this was done by experts with a good
understanding of the semantics of the data [Hul97]. However, modern schemata are becoming
larger and more complex, making manual schema matching both more time-consuming and more
error-prone [RB01]. In order to reduce the manual effort involved in schema matching, many
solutions for the automatic determination of schema correspondences have already been developed
[Che+12; DR02; Geo05; LN07; MIA17; NHN19; PKT09; Pin+15; RB01; SMJ19].

Contribution: A major problem of many automatic schema matching approaches is that they
fail if the semantic similarity is hard to detect. For example, instance-based column matchers
typically fail to match columns that contain disjoint but semantically similar values such two tables
with different street names or even worse the same content in different languages (e.g., French
and English). Another example are name-based matchers that rely on sources such as WordNet to
identify column matches: while these approaches can detect hard-to-match cases (such as columns
that use synonyms as names), they fail if this knowledge is not encoded in the resource.

In this paper, we thus propose a novel end-to-end approach for schema matching based on neural
embeddings to mitigate these issues. The main idea is to use a two-step approach consisting of a
table matching step followed by an attribute matching step. In both steps we use embeddings on
different levels (i.e., representing the whole table but also only single attributes). This allows our
approach to find non-trivial correspondences such as those discussed before.

Summarized the main contributions of this paper are:
(1) First, we provide an analysis of existing approaches to automatically support schema matching.
(2) We then present our end-to-end approach for schema matching using neural embeddings.
(3) We propose and analyze different matchers on multiple levels (i.e., tables and columns) to
identify a set of possible table and attribute correspondences. (4) We evaluate our approach
on several benchmarks and real-world data sets. Our results show that our approach is able to
determine correspondences in a robust and reliable way and compared to traditional schema
matching approaches can find non-trivial correspondences.

Outline: This paper is structured as follows: In Section 14.2 we give an overview about existing
approaches for schema matching. Afterwards, in Section 14.3 we show how neural embeddings
can be used for schema matching in general and which challenges and problems can arise. In
Section 14.4 we give an overview of our two-step approach, which will be further elaborated and
evaluated in Sections 14.5 and 14.6. Finally, in Section 14.7, we summarize our results and give
an outlook on possible further work.
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14.2. Previous Approaches

Conventional supporting approaches for schema matching use syntactical features like Levenshtein
distance or n-grams to compute the similarity between different schema information. More recent
approaches also try to consider semantic aspects such as synonyms and hypernyms or rely on
machine learning (ML). In the following, we give an overview of the existing matching approaches
and then discuss their shortcomings compared to our approach.

There already exist multiple matching frameworks that integrate many of the before mentioned
matchers or even combine them in so-called hybrid matchers. One prominent example is the
COMA/COMA++ framework by Do and Rahm that provides reference implementations for various
approaches [DR02]. Due to space constraints, however, we are not discussing the details of these
matching frameworks in this paper.

14.2.1. Schema-Based Approaches

Schema-based approaches, as the name already implies, try to derive similarities from the available
schema information such as tables and attribute identifiers, available comments and data types as
well as constraints.

Islam and Inkpen [II08] present a method which derives the similarity of two texts by a combination
of semantic and syntactic information. Their approach initially determines syntactic similarity
using a modified version of the Longest Common Subsequence (LCS) metric, which provides an
alternative method for the edit distance. Subsequently, the semantic similarity is determined
corpus-based. They also propose an optional word order similarity calculation, which classifies
two texts as similar if common words have the same order in their respective text. The final result
for the similarity of two texts is then derived by normalizing and combining the three similarity
metrics. This method has the disadvantage that a significantly large corpus of schema similarities
must be available in order to learn enough semantic knowledge.

The approach of Lee et al. [Lee+09] compares the semantics of attributes to overcome semantic
heterogeneity in the healthcare domain. It consists of two components: word similarity and
word affinity. The similarity of two words is determined using domain-specific knowledge and
WordNet (synsets). The affinity of two words is deduced from overlapping characters, hyponymy
and hyperonymy relationships.

Chen et al. [Che+12] present a hybrid algorithm that determines correspondences using concepts.
To extract the concepts, again WordNet-synsets as well as the tree structure of the hyperonymy-
hyponymy relationship is used. Afterwards, concepts are compared both syntactically (name) and
semantically (WordNet node) and conceptual relationships at node level are transformed into
conjunctive normal forms to confirm semantic relationships and derive similarity values.

14.2.2. Instance-Based Approaches

In contrast to schema-based approaches, instance-based approaches attempt to derive similarities
between attributes from the values belonging to them.
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Partyka et al. [PKT09] examine the values of the attributes to be compared and try to derive their
similarity to the entropy-based distribution (EBD).

While earlier approaches determined this distribution by means of n-grams, which are, however,
highly dependent on overlapping instances, Partyka et al. take a different approach to determine
the EBD. Their TSim algorithm uses the normalized Google Distance (NGD), together with the
cluster method K-Medoid: Individual keywords are extracted from the instances and afterwards
grouped by K-Medoid. EBD values for these clusters are then calculated by semantic comparisons
of the instances with the NGD to derive attribute correspondences.

Mahdi and Tiun [MT14] combine strengths of regular expressions for numerical instances and
semantic relations from WordNet for text-based instances to determine correspondences instance-
based. Similarly, Mehdi et al. [MIA17] propose a combination of regular expressions and an
external auxiliary source. Attributes are first classified as numeric, text-based, or mixed based on
their instances. Samples of instances from each class are then extracted and compared. Regular
expressions are applied to numeric and mixed instances to examine instances for syntactic similar-
ities based on patterns. To measure the semantic similarity of text-based instances, the Google
Similarity Distance (Google Similarity Distance) [CV07] is used.

14.2.3. ML-Based Approaches

WordNet and other lexical dictionaries are limited in their scaling and do not cover all terms. For
this reason, Zhang et al. [Zha+14] present a name-based ontology matching approach based
on word embeddings (vector representations of words, see next section for more details) of the
Word2Vec model. A hybrid approach combining word embeddings and editing distances achieved
the best results in their experiments.

The combined approach of Fernandez et al. [Fer+18] also relies on syntactic comparison methods
and Word2Vec. They additionally present the concept of Coherent Groups for combining word
embeddings for compound words. Their approach first determines correspondences using syntactic
comparison methods such as the edit distance for attribute names and the Jaccard similarity for
instances. Word embeddings for names are then used to both remove incorrect correspondences
and add missing ones. In a comparison between the pre-trained Word2Vec and a domain-specific
trained model, the former achieved better results.

The approach of Nozaki et al. [NHN19] is based purely on the word embeddings of Word2Vec,
which are used to semantically compare text-based columns and to determine correspondences
with sufficiently high semantic similarity. For this purpose, word vectors are generated for all
instances of a column; instances consisting of compound words by the sum of the word vectors of
their subwords, with subwords being ignored if they do not appear in the dictionary. The sum of
all instance vectors finally forms the attribute vector.

Gentile et al. [Gen+17] present a method to reduce the search space for entity matching. The
approach attempts to group similar tables by representing tables with Word2Vec vectors. They
test three different approaches to generate a vector representation (table embedding) for a whole
table: attribute model, where the embedding is generated using the table attributes, entity model,
which is based on the so-called ”subject column” (a column of type string with the highest number
of different values), and a combination of both. Their evaluation shows that table embeddings are
a promising method for reducing the search space without explicit expert knowledge.
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Chen et al. [Che+19] designed a hybrid neural network that is trained to predict the semantics of
table columns without metadata and only with instances. Table contents are vectorized using word
embeddings and fed into the neural network as input for training and prediction. In comparison to
Word2Vec, their RNN-based embeddings could provide better results.

Sahay et al. [SMJ19] present a hybrid method that combines schema information and instance
information to find similar attributes. A vector representation is generated using schema and
instance features of a column. These vectors are then grouped using k-means Clustering and only
columns within clusters are compared using syntactic comparison methods such as edit distance.

14.2.4. Discussion

This short summarization shows that research in the field of automatic schema matching already
produced a lot of approaches. Hence, as mentioned before, simple schema-based or instance-based
matchers have problems to discover semantic correspondences. More recent approaches based
on machine-learning aim to address these shortcomings similar to our approach; some of those
approaches already propose to use neural embeddings. Different from those approaches, however,
a major novelty of our approach is that we take a two-step approach that uses neural embeddings
at different levels (i.e., tables and columns) and also to combine different aspects (i.e., schema
information and instances).

14.3. Using embeddings for Matching

In this section, we first will provide the necessary background to explain why neural embeddings
(in particular word embeddings) provide a good starting point for schema matching.

14.3.1. Similarity based on Embeddings

In a nutshell, word embeddings represent words by vectors and map the—in many languages—
unlimited number of words to a space with a fixed number of dimensions. One usually speaks
of embeddings if the representation, in contrast to, for example, one-hot-encoding, contains
information that goes beyond syntactic features, i.e. the words are not arranged arbitrarily in
vector space, but rather from a semantic point of view. A typical possibility is to represent words
by means of other words in whose context they often occur.

What makes word embeddings interesting for schema matching is that they can be used to compare
semantic similarity between strings, hence improve over simple syntactic approaches like string-edit
distances. In the case of schemamatching, for example, attribute names can be represented by word
embeddings. The similarity of two embeddings is computed by applying vector distance metrics,
especially cosine similarity [Mik+13] which can be computed with low computing capacities using
simple operations. Although vector components of word vectors of different word embeddings
models can be negative, word vectors are often trained in such a way that the cosine similarity is
between 0 and 1 in almost all cases and negative only in very rare cases [BP19]. Values near 0
indicate low semantic similarity, while values near 1 indicate high semantic similarity.
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In contrast to simple string comparison, word embeddings can cover different syntactical variations
for the same or similar concept (e.g., synonyms or abbreviations) and for contextualized word
embeddings also different semantic meanings with the same syntax (i.e. ambiguities). However,
there are also additional challenges: one difficulty is the merging of semantics and relationship of
words [HRK15]. Words like coffee and cup are semantically not identical, but are often mentioned
in the same context. This relationship is expressed in similar representations for many kinds of
embeddings [Far+16].

14.3.2. Different Embedding Approaches

Word embeddings are usually trained on large corpora of text and therefore cover the relations
between common words. The first generation of word embeddings like Word2Vec [Mik+13] or
GloVe [PSM14] were explicitly created for comparing single words. There exist simply to obtain
pre-trained models that can be used for this task without additional knowledge about there internal
function or need for training [KR15]. Although these models were trained on large corpora (e.g.,
the English Wikipedia or Google News), their vocabulary is still limited: As a result, they do
not support most of the multi-word expressions directly, and it is not possible to generate word
representations especially for domain specific terms.

There are several approaches to generate embeddings for expressions consisting of multiple words
like sentences or paragraphs [LM14; Soc+12]. However, such models do not work very well for
combining attribute names or instances because the combination of table values does not form
grammatically correct sentences [Fer+18].

An alternative to off-the-shelf sentence embedding models is to use the average vector of all
individual words with pre-trained embeddings for single words. This method was developed by
Castro Fernandez et al. [Fer+18] using Word2Vec for matching schema attribute names. They
concluded that comparing the average vectors of multi-words is not an optimal solution for attribute
matching and instead proposed Coherent Groups as an alternative method for comparing multi-
words with Word2Vec. Coherent Groups consider multi-word expressions as groups of individual
words. The method calculates the similarity of two groups of words, such as two attributes, by
comparing the individual words in pairs. The average of all comparisons then determines the
similarity between the two attributes.

Another problem are out-of-vocabulary (OOV) errors: traditional word embedding models can only
represent words they have already seen during training, which works well for texts about common
topics but may fail for databases with domain-specific element names and content. The amount of
out-of-vocabulary words can be reduced by training or fine-tuning on domain specific texts. Yet
this requires computing resources and suitable training corpora. The usage of embeddings only
trained using the Distributional Hypothesis [Har54] (i.e. words are represented by the context they
usually appear in) is therefore difficult for schema matching.

Contextualized word embeddings models like ELMo [Pet+18], BERT [Dev+18] or Google Universal
Sentence Encoder (USE) [Cer+18] are trained for additional tasks like machine translation (using
both suitable data and an adequate internal model architecture), so that the resulting word vectors
are semantically more meaningful. Since they can also generate word vectors dynamically (i.e. find
a representation for unseen words), no methods for the aggregation of multiple words and handling
of OOV are required. This is done using WordPiece tokenization and breaking down unseen or rare
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Figure 14.1.: End-to-end process for schema matching, consisting of two steps (table matching
and attribute matching). In the first step, possible matches between the tables are
produced either on the basis of the available schema information (SCHEMA BASED),
or on the basis of the instances (INSTANCE BASED) of tables or using both together
(COMBINED). Optionally, after the first step, a user can confirm or reject possible
table matches. For the next step, matches between the individual attributes of
the remaining table pairs are determined. This can be done using the table and
attribute names (NB_MATCHER), natural language comments in the database schema
(CB_MATCHER), or instances of a table (IB_MATCHER). Either thresholding or ranking
can be applied to the resulting similarity values to determine the final matches.

words into subwords or characters. Therefore, partial semantic meanings (for segmentation into
subwords) or at least syntactic information (for character level encoding) are preserved even for
complex unknown terms and expressions and the downsides of the above-mentioned approaches
can be avoided.

During the pre-training of these models, attention was paid to covering as much semantic variability
and many domains as possible. Therefore, the pre-trained models should be sufficient for many
application purposes. If, however, many domain-specific acronyms are used in a database (especially
in the schema information), a preprocessing step with a domain-specific dictionary can be helpful.
For example, it can be assumed that the generated word vector for purchase order is semantically
more meaningful than that for PO.

For the evaluation of our approach in the next sections, we will mainly use a multilingual Google
USE model that was trained on 16 different languages.1 Yet, the described approach works with
any contextualized word embedding.

14.4. Overview of Our Approach

In the following, we present our novel end-to-end process for schema matching. As mentioned
before, our approach consists of two steps that build on each other (table matching and attribute
matching). For each step, we will propose and test different matchers based on neural embeddings.
An overview of our approach can be seen in Figure 14.1.

While neural embeddings have been used already for individual tasks of schema matching (i.e.,
table or attribute matching), we suggest a new holistic approach that uses neural embeddings on
1https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
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(a) fixed t = 0.5 and varying n values (b) fixed n = 8 and varying t values

Figure 14.2.: Experiment 1 – Cross-lingual schema-based tablematching on geographic databases
with different parameter settings. Precision, recall and F1 metric are reported. For a)
a qualitative analysis of one setting is shown, for b) the average number of found
possible correspondences for different similarity thresholds t can be found.

different levels to combine table and attribute matching. To be more precise, in a first step, we use
neural embeddings to match the elements of a schema on the table level. For each table in the
target schema, we propose either all tables from the source schema where the similarity is above
a certain threshold or the n matches with the highest similarity. In the second step, the system
then determines suggestions as to which attributes from the corresponding tables fit together. In
addition, after the first step, a user can optionally review and select those table pairs that should
be kept for the second step.

In the following, we give an overview of the two steps of our matching procedure.

Table Matching: Two general approaches are possible here: First, the schema information can
be used in the form of table name and attribute names. Tables with semantically similar schema
information are probably used to store similar content. Second, exactly these contents of the tables
can be examined: we can use the contents of each table to compute embeddings for the tables
(either based on all attributes or a subset of it). These embeddings can then be compared to other
embeddings to find possible (partial) table matches. Since the candidate pool for this comparison is
a cross product of the attributes of all tables which we wanted to avoid with the two-step approach
and the calculation of the data embeddings can be expensive to compute, a combined approach
is advisable: first the number of table pairs to be examined is reduced schema-based, and then
the candidate pool is further reduced using an instance-based approach. For optimization, some
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intermediate results of the table matching can be stored for the attribute matching step following
afterwards.

Attribute Matching: In this step, we only use the table candidates that qualify based on table
matching, as discussed before. For the attribute matching, we can again use schema or instance
information, analogous to table matching. If no further auxiliary information (e.g., strict type
annotations) is available, all attributes of a source table must be compared with those of the
target table. In this paper, we are considering again two different types of matchers: Name-based
matching uses the table information such as table name and attribute names, as well as available
comments. Instance-based matchers inspect the contents of the columns to find attributes with
semantically equivalent instances.

14.5. Step 1 – Table Matching

In the following, we discuss the details of our first step and present and evaluate different approaches
for table matching using schema information and instance information for computing a table
embedding.

14.5.1. Structure-Based Matching

As discussed before, in a first step we use our table matcher to reduce the search space for the
subsequent attribute matching step. It should therefore recognize as many table correspondences
as possible (while still delivering as few incorrect correspondences as possible to have a noticeable
effect). A high recall is hence more important than good precision.

Table matching is initially a ranking problem (ranking all target tables for a source table based
on the supposed similarity). Afterwards, the pool of candidates has to be restricted: by taking
the best n correspondences, by applying a similarity threshold t, or both. In our experimental
evaluation, we therefore check if it is possible to determine suitable values for these parameters.

Gromann et al. [GD18] have shown in their investigations, that for aligning ontologies better
results can be achieved with word embeddings than with traditional string comparison methods.
We will now investigate whether this also holds for matching relational databases. Furthermore,
we examine the use of next-generation embeddings that can dynamically generate vectors for each
input, thus avoiding out-of-vocabulary errors and not requiring explicit handling of multi-word
expressions.

For computing table similarity using a table embedding that relies on schema information, we
represent each table by a vector for the (equally weighted) combination of table name and all
attribute names. The representations are determined using the pre-trained Google USE model.
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Figure 14.3.: Instance-Based Table Matching – The similarity of tables is inferred from the aver-
aged similarity value for each attribute correspondence.

Experiment 1: Schema-Based Table Matching: In this experiment we test the matching exclu-
sively on the basis of schema information. The main goal of this experiment (as well as the other
experiments in this section) is to show the matching quality of our approach for table matching in
isolation. An end-to-end evaluation and a comparison with existing approaches as baselines will
be presented in the experiments in Section 14.6.2.

For the table matching experiments, the English Mondial DB2 and the German Terra DB3 are used.
Both databases contain geographic content such as mountains, rivers, deserts, or islands and have
similar tables since the later one was derived from the first one for teaching purposes [DR13]. We
manually aligned them as a gold standard. In the following, we show the results using these data
sets with varying parameters.

First, we test the effects of the parameter n (i.e. only the best n correspondences are considered)
with a fixed minimum cosine similarity threshold t of 0.5. The results can be seen in Figure 14.2a.
75% of the correspondences are detected with n = 5, with n > 8 even 90% or more. Second,
we fix n = 8 and vary the threshold t (see Figure 14.2b). As expected, the average number of
matching candidates shrinks for higher similarity thresholds, and so does the recall while the
precision increases. At a threshold of t = 0.8 only very few correspondences (0.2 per table on
average) are suggested, hence the recall is low. However, the remaining suggestions have a good
quality, which manifests itself in a high precision (> 0.55).

A qualitative analysis of the results shows that the reason for low precision values at lower thresholds
is probably due to similar schematic information in the different tables. For example, almost
all tables contain the attribute name in slightly modified form. Nevertheless, the experiment
shows that if the attributes are sufficiently unique, it is possible to determine schema-based table
correspondences with embeddings.

14.5.2. Instance-Based Matching

Alternatively to only using schema information to compute embeddings, we can also use instances
to compute table embeddings. Even with well-existing schema information, additional instance
information can help to further increase matching accuracy [Do05]. Studies show that traditional
methods can even achieve better results with instance-based matching than with name-based
matching (depending on the quality of the instances) [LN07].
2https://www.dbis.informatik.uni-goettingen.de/Mondial/
3https://www.sachsen.schule/~terra2014/index.php
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In instance-based matching, a distinction is made between horizontal and vertical matching
[LN07]. Vertical matchers compare column contents of individual attributes and infer attribute
correspondences, while horizontal matchers attempt to identify duplicates (i.e. two or more
representations of the same object) between two schemata. There exists work by Ebraheem et al.
[Ebr+18] for the recognition of duplicates in schemata (Entity Resolution or Record Linkage) with
word embeddings. They investigate both the use and adaptation of pre-trained models, and the
training of new embeddings for this purpose.

We propose an approach for vertical schema matching that uses embeddings as shown in Figure
14.3: embeddings in our approach are used to represent the entire content of a column by a single
vector and then to compare them with each other. Since this paper aims at the evaluation of (word)
embeddings, we only consider string attributes here. If the resulting vector representations for
attributes are sufficiently similar, an attribute correspondence can be assumed.

The most naïve approach to construct this vector is to determine the vector representations of all
instances through the pre-trained model, and then to average these to obtain the representation
of the attribute. This is inspired by the naïve but solid [ALM16] baseline approach for sentence
embeddings, where a sentence is represented by the average of the individual word vectors of all
its words.

However, this approach assumes that all instances are equally important. Analogous to stopwords in
classical NLP approaches, there may be instances that contribute less to the semantic meaning, for
example placeholders like not-in-universe, unknown, NONE etc. Such instances are also called noise
[Dil19] and may dominate the representation if no countermeasures are taken. The averaging
approach also ignores the order of instances, but these are usually irrelevant to the semantic
meaning of an attribute [Geo05].

The aim is therefore to combine instances to form a single vector representation for attributes that
most closely reflects the semantics of the attribute, using frequency values but also relativizing
them if necessary (to avoid statistical bias [Mug02]). Sampling based on frequency values can
be used for this purpose. At the same time, however, the frequency of an instance is not a clear
indicator of whether the information is relevant or not: if not applied carefully, sampling might
amplify the noise and thus de-emphasize the representation. Three possible sampling methods
are:

Distinct Sampling Ignore duplicates when generating the combined representation. This might
lead to information loss if the instances are not equally distributed.

N-Random-Sampling Take n random instances. Each instance is sampled with the same proba-
bility, hence to get a random distribution over distinct instances, distinct sampling should be
performed first. The subset resulting from the selection is in most cases balanced if the sample
sets are large enough so that the column is well represented. The method is considered the
safest way to counteract a statistical bias in the resulting subset [Jaw12].

N-Random-Sampling can also be used to validate the semantic representation of a column
with word embeddings: for this purpose, at least two sample sets are taken from the column
containing randomly selected instances. The comparison of the semantic representations of
the two samples should give a cosine similarity close to one. We will use this technique to
test our instance representations in Experiment 6.
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N-Most-Common Sampling (with distinct sampling) Here the instances that occur most fre-
quently are selected. To do this, first a ranking by frequency is created and then each of
the n most frequent (distinct) instances is taken to compute the common representation.
This method will discard rare values and ensure that even frequent placeholders will only be
included once in the representation. Depending on the size of the tables, the calculation can
be much more complex than the other two sampling methods. Hence, this method is only
beneficial if there are certain instances that occur considerably more frequently than others.

After a representation has been found for the individual attributes, all attributes of the possible
source and target table must now be compared to each other. In a basic approach, all possible
correspondences with a certain quality are searched for, which requires two threshold values: First,
it must be determined from which similarity of the attribute representation one can assume that
they match. Second, a ratio is required to determine the minimum fraction of attributes that must
match in order for the tables to be considered match candidates.

The choice of this parameter depends on the desired matching scenario: If one only wants to match
tables that contain mostly the same types of data, the parameter must be set relatively high. If,
on the other hand, tables are also to be found that contain basically the same entities but have
different purposes and therefore mostly store different attributes for these entities, it should be
close to 0. In order to be able to distinguish whether two tables really have little in common or
whether one table is only more fine-grained than the other, the comparison must also be carried
out in both directions. Unless a weighting of the columns is known, all attributes of a table should
be considered for that calculation.

An alternative approach to directly comparing individual attribute similarities is to average the
similarity values of all pairs of attribute representations to obtain a single similarity value for each
pair of tables. These can then be used to derive the best table correspondence(s) for a given table. It
can be useful to incorporate not all similarity scores for attribute pairs into this common similarity
score for table pairs, but to ignore all attribute pairs with a score below a certain threshold. This
allows it to obtain meaningful values for all matching problems where partial matches of tables
are also relevant (i.e., not only the best 1:1 correspondence is searched for). Further fine-tuning
(e.g., additional normalization with the ratio of selected to overall attributes of a table) may be
needed depending on the schemata to match.

Experiment 2: Instance-Based Table Matching: In order to see the effect of the parameters of
our instance-based table matcher, we again compare the two geographical databases. Although
the databases contain many similar instances, a syntactical matcher would find only a fraction
of these matches, since one database contains English and the other German content. We use
N-Most-Common Sampling and only consider non-numerical attributes. For each attribute in the
target table, only the best match in the source table is considered (although it might be selected for
multiple target attributes). We require a match of at least half of the attributes (col_ratio = 0.5)
and test the effect of different thresholds ta above which two attributes are assumed to be similar.
The results can be found in Figure 14.4. With an instance-based threshold of ta = 0.95, almost
75% of the table correspondences can be found with an average of five table suggestions per target
table. A qualitative analysis shows that the representation of columns containing abbreviations
or artificial IDs often resemble each other. At this point, an additional syntactical comparison for
exact matches could help to distinguish between them.
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Figure 14.4.: Experiment 2 – Cross-lingual instance-based table matching on geographic
databases. Precision, recall and F1 metric as well as the average number of found
possible correspondences are reported for different attribute similarity thresholds
ta and a fixed attribute match ratio of 0.5. We also show a qualitative analysis of a
fixed parameter setting.

14.5.3. Compound Grouping Approach

For the instance-based matching described above, it would be necessary to compare the attributes of
all tables with each other, hence the runtime will scale quadratically with the number of attributes
and additionally depends on the number of instances. It is therefore advisable to combine the
two approaches and work on groups of tables (analogous to the fragment based matching by Do
[Do05]), i.e. to first reduce the number of tables to be compared by schema-based matching and
then to exclude further candidates on an instance-based basis to increase precision. To obtain
a high recall, the thresholds must be selected as low as possible in the first step, whereby the
selection should be based on the possible computing effort for the second step, since the computing
effort for the first step is negligible in comparison.

Experiment 3: Matching with Schema-Based Grouping: In the final experiment for this section,
a combined approach will be investigated. For this purpose, all tables with a similarity of at least
t = 0.5 are determined as described in Experiment 1. These correspondences are then refined
instance-based using the procedure described in Experiment 2, again using a col_ratio of 0.5.
Figure 14.5 summarizes the results for different instance matching thresholds ta. Compared to the
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Figure 14.5.: Experiment 3 – Two-step cross-lingual table matching on geographic databases. In
the first step, schema-based matching with t = 0.5 is applied. Afterwards, instance-
based matching is performed on the resulting groups. Precision, recall and F1 metric
as well as the average number of found possible correspondences are reported for
different attribute similarity thresholds ta and a fixed attribute match ratio of 0.5. We
also show a qualitative analysis of a fixed parameter setting.

experimental results of the individual strategies, the best F1 value was achieved with ta = 0.95. For
each target table, an average of 2.7 tables were suggested, with 70% of the table correspondences
being found.

The experiments show that the described procedure can be used to find correspondences that
would not be recognized by syntactic matchers without, for example, requiring domain-specific
ontologies. With the table matching step, it is possible to severely restrict the set of attributes to
be compared, thus to considerably reduce the calculation time for attribute matching or to allow
more complex operations to be performed per comparison.
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Precision Recall F1

COMA NodeNames 0.494 0.472 0.451

Our Approach (NB) 0.502 0.516 0.507

COMA AllContextInst 0.577 0.465 0.489

Our Approach (IB) 0.979 0.257 0.405

Table 14.1.: Experiments 4 & 8 – Average values for name-based (NB) and instance-based (IB)
version of our approach compared to the two COMA baselines. Values between 0
and 1, higher is better.

14.6. Step 2 – Attribute Matching

In order to determine not only tables that might contain related content, but also exact correspon-
dences between attributes of different tables, the candidates from the previous step must now be
refined. Depending on the parameter selection, either 1:1 relationships or a list of possible at-
tribute correspondences are created, which can then be used directly or confirmed manually. Table
correspondences from table matching for which no attribute correspondence could be confirmed
are automatically rejected.

Matching at attribute level is done in a similar way to matching at table level in many places,
but the parameters such as weights and thresholds must be selected differently. As before, both
structural information (such as table and attribute titles or comments) and the actual instances
can be used for this purpose. In the following, the adjustments compared to table matching are
explained and the individual approaches are evaluated.

14.6.1. Name-Based Attribute Matching

Section 14.5.1 already showed how table and attribute names can be represented and then
compared using embeddings. In this section, we use an embedding-based attribute-matcher which
only considers the names of the individual attributes without including any additional information
like neighboring elements or data type information. The similarity of the attribute-matcher thus
purely relies on the cosine-similarity of the embedding representation for two attribute names.

Experiment 4: Name-Based Attribute Matching: To compare the attribute-matcher with other
matching baselines we use the OAEI Benchmark4 from 2009, which includes ontologies with
different matching challenges. In this benchmark, a reference ontology comprising 33 classes, 64
properties and 76 instances must be matched to modified ontologies. The modified ontologies
embody 51 match problems, including, for example, the replacement of element labels with
random or foreign words. Since the data to be matched was created by modifying the individual
attributes, there are 1:1 matches that must be found.
4Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/2009/benchmarks/

185

http://oaei.ontologymatching.org/2009/benchmarks/


Figure 14.6.: Experiments 4 & 8 – Precision, Recall and F1 Scores for applying the two COMA
baselines and the name-based (NB) and instance-based (IB) variant of our approach
to all 38 matching problems of the OAEI benchmark.

In order to enable comparability with other strategies, we will consider only the 38 matching
problems in which there are instances in general. However, the data is sparse, hence even for them
only about 1/3 of the attributes contain instances. As a baseline for comparison we use the COMA
3.0 framework already introduced in Section 14.2, which provides reference implementations
for standard matching techniques in so-called workflows. These workflows usually consist of a
combination of different (complex) matchers, i.e. the application of similarity metrics (partially
using auxiliary information).

For this experiment, we use the NodesNameW strategy of COMA 3.0, which only considers the
attribute names and evaluates their similarities using syntactical comparison methods such as the
Levenshtein distance to show how much a neural embedding matcher can improve over a standard
matcher. In later experiments, we also compare to more sophisticated matchers in COMA. Different
from the simple COMA matcher, our name-based matcher searches for the best correspondence
between vector representations of attribute names. It turns out that the embedding-based approach
provides on average both better precision and higher recall (see Table 14.1). The results of the
individual matching problems can be found in Figure 14.6. It can be seen that our embedding-based
approach almost always performs better for those problems where the name-based variant of COMA
already performs well, but performs worse for problems where COMA already has difficulties.

Experiment 5: Static vs. Contextualized Embeddings: After having shown that using word
embeddings has an advantage over traditional models, we will now examine the intuition mentioned
in Section 14.3 that contextualized embeddings are better suited for this purpose than traditional
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Aggr. Precision Recall F1

Our Appr. (W2V)
CG 0.65 0.26 0.37

Sum 0.35 0.61 0.44

Our Appr. (GloVe)
CG 0.52 0.32 0.4

Sum 0.27 0.69 0.39

Our Appr. (ELMo) - 0.43 0.58 0.5

Table 14.2.: Experiment 5 - Precision, Recall and F1 for matching on the XDR benchmark using
static embeddings (Word2Vec (W2V) & Glove) with Coherent Group (CG) or Sum Ag-
gregation method compared to a contextualized embedding (ELMo). Values between
0 and 1, higher is better.

Figure 14.7.: Experiment 7 – Cosine similarities between instance representations for different
movie attributes using BERT and different sampling approaches. Values between 0
and 1, similar attributes should have a value close to 1.
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static embeddings. The classical static embeddings word2vec and GloVe are compared with the
contextualized ELMo. The latter takes the context into account, but in contrast to BERT and Google
USE it is still unidirectional, allowing a fairer comparison.

For this experiment, we use the five XDR schemes5 for customer orders (CIDX, Excel, Noris, Paragon
and Apertum) as a benchmark. They do not contain instances, but only schema elements, and there
are many abbreviations and composite element names such as qty, contactName, POShipTo,
or SupplierReferenceNo. In a pre-processing step, compound words were separated into
partial words and known abbreviations such as PO were translated into their written form using a
dictionary.

The average precision, recall and F1 score can be found in Table 14.2. For each possible schema
pair, all attributes were compared using our representation approach with the different embedding
models and all attribute pairs with a similarity of at least 0.8 were selected as correspondence. For
the Word2Vec and Glove models, a distinction was made between the two aggregation methods
Coherent Groups and Sum (see Section 14.3). For ELMo the representation could directly be
computed using the model itself, regardless of whether the expressions were single or multiple
words.

The two static embeddingsword2vec andGloVe reach similar F1 values depending on the aggregation
method. While the precision is higher with Coherent Groups, more correspondences are found with
the Sum aggregation method. The contextualized model ELMo is a compromise between Precision
and Recall and thus reaches the highest F1 value.

The low recall values when using coherent groups can be explained by OOV errors. For example,
in the correspondence (orderNum, customerOrderRef) the subwords num and ref have no
vectors and lead to a similarity of 0. Furthermore, for Coherent Groups, the threshold of 0.8 is
very high, since the average value of all partial comparisons of the word groups tends to be lower
due to unequal subwords. Therefore, in most cases only attribute correspondences with nearly or
complete name equality were suggested.

Sum aggregation, on the other hand, produced many incorrect correspondences, since unequal
attributes often contain identical subwords: the attributes contactName and companyName
incorrectly have a similarity of more than 0.8, since half of the resulting word vectors consist of the
vector for the subword name.

The contextualized word embeddings model ELMo also frequently produces incorrect correspon-
dences due to identical subwords, but to a lesser extent than the sum aggregation method. Since
ELMo can form vectors for whole sentences, these vectors are not only generated purely from the
vectors of the subwords, but also from the property of how subwords stand in context to each other.
For this reason additional synonyms like (contactPhone, telephone) or (contactEmail,
mail) could be found.

The experiment demonstrates that it is reasonable to not perform the handling of multi-word
expressions and domain-specific vocabulary through additional steps, but to use contextualized
embeddings that can handle them inherently.
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Figure 14.8.: Experiment 9 – Cosine similarities between the instance representations of the
attributes of the Adult dataset for representations based on BERT and Google USE.
For BERT, dissimilar attributes also have similarity values of at least 0.65, while for
Google Use the range is much wider.

14.6.2. Instance-Based Attribute Matching

In Section 14.5.2 we introduced the matching of attributes using instances and based on sampling.
Again, we use the same embedding for instances of a column as for the table based matcher using
either SUM or AVG to compute a vector representation for all (sampled) values of a column. Based
on such a column embedding, the cosine distance is used as similarity metric.

Experiment 6: Robustness of Instance Representations: For this experiment we again use the
OAEI benchmark and additionally two film data sets from the Internet Movie Database (IMDB)6
and the Rotten Tomatoes Database (RT)7. In addition to 6000 to 7500 real film titles, these two
data sets contain names of actors, genres and countries. To test the quality of the representation of
a column, subsets of the attribute instances are formed according to different patterns, represented
and then compared to other representations of the same attribute. We test the following patterns
using this data sets:

Overlapping Divide Column in two random but equally sized parts (might contain overlaps).

Distinct Remove duplicates and then split the remainder into two parts of equal size.

N-Random Take N random distinct samples and split those into two parts.

Our results show that for all attributes, the cosine similarity is nearly one for the overlapping
method, and at least 0.9 for the distinct method. Even with N = 10, hence only 5 instance per
5https://dbs.uni-leipzig.de/bdschemamatching
6https://github.com/AhmedSalahBasha/schema-matching/blob/master/imdb.csv
7https://github.com/AhmedSalahBasha/schema-matching/blob/master/rotten_tomatoes.csv
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vector, the representations have a similarity of at least 0.8 (e.g., for IMDB genres or surnames). If
the instances have some internal structure (for example, non-normalized addresses consisting of
streets and house numbers), the similarity measures are even closer to 1 even for these very small
samples.

However, it is not sufficient that the representations are robust even with sampling, they must
also differ as much as possible from the representations of the other attributes. Therefore, in the
following we will further investigate the effect of sampling.

Experiment 7: Effects of Instance Sampling: For this experiment we again use the two movie
data sets and additionally the movie-specific IIMB ontology from the OAEI benchmark. For all
attributes, representations without sampling and with Distinct N-Most-Common sampling (see
Section 14.5.2) are calculated. The sample size is adapted to the attribute in a way that it takes
into account all instances appearing more frequently than average (considering the standard
deviation). The results using the widely used BERT embeddings can be found in Figure 14.7.
For attributes with a very high degree of similarity, it usually remains high even after sampling,
especially for attributes that are actually semantically similar (e.g., IMDB_title and RT_title).
Faulty matches are partially attenuated by sampling, but there are cases where the similarity
remains high (e.g., IIMB_actor_born_in and RT_title). Generally it is found that sampling
is useful for spreading the range of values and thus ensuring that dissimilar attributes have a lower
similarity value while the similarity value of related attributes remains high.

Now that we have examined the components of the instance-based approach, we will evaluate
the quality of the actual matching and compare it to other approaches, both traditional and
embedding-based.

Experiment 8: Instance-Based Attribute Matching: Analogous to Experiment 4, we again use the
OAEI benchmark and compare our approach with a COMA reference implementation. As baseline,
we use the more complex COMA 3.0 matching workflow AllContextInstW. Among other things,
it analyzes schema information such as table paths and element names, but also includes the
instances themselves and, according to the authors, should (only) be used if instance information is
available. It is meant to be used stand-alone. In order to avoid introducing additional parameters,
we compare it to an embedding-based matcher that works purely on instances. For productive
use, however, it would make sense to combine this approach with a name-based approach and the
correspondence pre-selection step.

The average results can again be found in Table 14.1, the results for the individual matching
problems can be found in Figure 14.6. Our approach provides very high precision. The seemingly
low recall can be explained by the fact that there are instances for only about 1/3 of the attributes.
Most of the correspondences of these attributes can be found by the instance-based matcher, which
can roughly maintain its quality-level even for the problems where the other three approaches
have severe difficulties. Instance-based matching can therefore help to find correspondences
when attribute names are not meaningful or semantically difficult to compare, for example due
to domain-specific language. Overall, one can assume that a balanced combination of our two
approaches would beat both the simpler and the complex (combined) baseline approach.
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14.6.3. How useful is Google USE?

For the evaluation of our methods in this paper we mainly used vector representations based
on Google USE (see Section 14.3.2 for the advantages). In the following we will briefly draw a
comparison to the well-known BERT embeddings.

Experiment 9: Quality of Word Embedding Model: For this we proceed analogously to Nozaki
et al. [NHN19], who investigated instance-based matching with the classical Word Embedding
model Word2Vec: For all attributes an averaged representation is calculated as described in Section
14.5.2 without sampling—once with BERT and once with Google USE. This representation is then
compared with the representation of all other attributes.

The results for this experiment on the Adult dataset,8 which Nozaki et al. used in their experiments
too, can be found in Figure 14.8. In both models, the similarity metric is highest between the
attributes marital-status and relationship, which correspond semantically. However, with BERT,
even very different attributes have similarity metric values of at least 0.65, while the range is
significantly larger when using Google USE. This shows that at least without any special fine-tuning
the use of Google USE is preferable for the purpose of attribute matching.

14.6.4. Runtime

As a reference for the determination of the computation time for semantic representations with
Google USE, we measured the runtimes for the RT dataset on a server with NVIDIA® TESLA®
V100 graphics card with 16GB memory. The implementation of the instance-based and thus most
complex matching took under three minutes to calculate all column vectors of the RT dataset
(which has 10 columns with an average of 10, 000 instances).

14.7. Conclusion & Future Work

We have shown that neural word embeddings can be utilized to propose a small set of possible
candidates for schema matching which is crucial for data integration. Our experiments prove
that word embeddings can be used to bridge the semantic gap for several matching variants. Our
approach can be used instead of but in particular as a supplement to existing syntactic and semantic
matchers.

The use of models pre-trained for general tasks seems to be sufficient as long as the database
does not predominantly contain abbreviations and very specific terms. It is advisable to use
contextualized embeddings.

Both structural data like schema information and comments as well as the textual data instances
themselves can be used for matching, whereby the effectiveness of the individual approaches
strongly depends on the schemata. In instance-based approaches, sampling can help to increase
the distinction between similar and dissimilar attributes while reducing the number of instances to
be considered. This also makes it possible to use the approach for databases with very large numbers
8http://archive.ics.uci.edu/ml/datasets.html
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of instances. Instance-based approaches work well with different types of entities. Weaknesses
are found, for example, with attributes that all contain human names: the embeddings are good
for finding other attributes with names, but a further subdivision (e.g., by actors and directors) is
difficult.

In the future, it would be interesting to further look at pre-processing of the textual elements
before they are represented by embeddings (e.g., resolving of acronyms) and to include additional
auxiliary information such as thesauri. It should also be checked whether the results can be further
improved by fine-tuning of the embeddings: on the one hand, this could be done by additional
training on corpora with domain-specific texts, on the other hand, analogous to Kolyvakis et al.
[KKK18], one could try to adapt the word vectors to the existing schema matching problem by using
structured external domain knowledge. As an orthogonal problem, the instance-based approach
could be further improved to additionally support purely numerical attributes, i.e., to examine if it
is possible to learn some kind of embedding for sets of numerical values beyond existing approaches
like regular expressions, value range limits, averages, etc. Finally, one could also further investigate
matchers that use embeddings to compare natural language comments, which are available for
some schemata, with each other or with table and attribute names.
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15. WannaDB: Ad-hoc Structured Exploration of
Text Collections Using Queries (DESIRES’21)

Just tell me what you want, what you
really, really want!

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hättasch.
‘WannaDB: Ad-hoc Structured Exploration of Text Collections Using Queries’. In: Proceedings of the
Second International Conference on Design of Experimental Search & Information REtrieval Systems,
Padova, Italy, September 15-18, 2021. Volume 2950. CEUR Workshop Proceedings. CEUR-WS.org,
2021. url: https://ceur-ws.org/Vol-2950/paper-23.pdf”. The contributions of the
author of this dissertation are summarized in Section 5.2.

DESIRES 2021 – 2nd International Conference on Design of Experimental Search & Information REtrieval
Systems, September 15–18, 2021, Padua, Italy. © 2021 Copyright for this work by its authors. Use
permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). Reformatted for
this thesis.

15.1. Motivation

In many domains, users face the problem of needing to quickly extract insights from large collections
of textual documents. For example, imagine a journalist who wants to write an article about airline
security that was triggered by some recent incidents of a well-known US airline. For this reason,
the journalist might decide to explore a collection of textual accident reports from the National
Transportation Safety Board in order to answer questions like ’What incident types are the most
frequent ones?’ or ’Which airlines are involved most often in incidents?’. And clearly, there are
many more domains where end users want to explore textual document collections in a similar
fashion.

Yet, existing approaches to answer such queries over new text collections force users to either
read through vast amounts of text and manually extract the relevant information before they can
compute an answer to their query or to build extraction pipelines (e.g., when using [Sa+16])
which however require substantial efforts.
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Report AAB-02-04
On March 5, 2000, about 1811
Pacific standard time (PST),
Southwest Airlines, Inc., flight
1455, a Boeing 737-300 (737),
N668SW, overran the departure
end of runway 8 after landing at
Burbank-Glendale-Pasadena…

Report AAB-06-01
On October 24, 2004, about 1235
eastern daylight time, a Beech King
Air 200, N501RH, operated by
Hendrick Motorsports, Inc., crashed
into mountainous terrain in Stuart,
Virginia, during a missed approach to
Martinsville/BlueRidge Airport (MTV),
Martinsville…

Report AAB-01-02
On September 25, 1999, about 1726
Hawaiian standard time, Big Island
Air flight 58, a Piper PA-31-350
(Chieftain), N411WL, crashed on the
northeast slope of the Mauna Loa
volcano near Volcano, Hawaii. The
pilot and all nine passengers on

board were killed, …

Report AAB-06-06
On November 22, 2004, about 0615
central standard time, a Gulfstream
G-1159A (G-III), N85VT, operated by
Business Jet Services Ltd., struck a
light pole and crashed about 3 miles
southwest of William P. Hobby
Airport (HOU), Houston, Texas, while
on an instrument…

SELECT date , airline , city FROM documents

date airline city

October 25, 1999 Sunjet Aviation, Inc. Aberdeen

September 25, 1999 Big Island Air Volcano

March 5, 2000 Southwest Airlines, Inc. Burbank

October 24, 2004 Hendrick Motorsports, Inc. Stuart

November 22, 2004 Business Jet Services Ltd. Houston

Report AAB-00-01
On October 25, 1999, about 1213
central daylight time (CDT), a Learjet
Model 35, N47BA, operated by
Sunjet Aviation, Inc., of Sanford,
Florida, crashed near Aberdeen,
South Dakota. The airplane departed
Orlando, Florida, for Dallas, Texas,
about 0920 eastern…

Figure 15.1.: Aim: Query a text collection and receive an approximate structured result without
manual extraction

Hence, we advocate for a different route where users can extract structured data relevant to satisfy
an information need from a collection of text documents without the need to program, train or
specify extraction systems.

Instead, the aim is to provide a system that allows users to explore new (unseen) text collections
by simply issuing a query to receive structured information from the corpus. In contrast to [ZB18]
this should not require data already in tabular form, rather the idea is to automatically identify
the relevant target structure and then, again automatically, fill it from unstructured text.

15.2. Contributions

Therefore, we propose WannaDB, a system for ad-hoc structured text exploration. The main idea
of WannaDB is that a user specifies their information need by composing SQL-style queries over the
text collection. For example, in Figure 15.1, the user issues a query to extract information about
dates, airlines, and cities of incidents. WannaDB then takes the query and evaluates it over the
given document collection by automatically populating the table(s) required to answer the query
with information nuggets from the documents.

194



SELECT...

User

issues

query

Extract & 

organize 

(additional)

relevant information

Approximate

KB

Compute & return

approximate result

Textual collection

containing information

Figure 15.2.: Pipeline & Usage of WannaDB

To do this, WannaDB uses a novel pipeline as shown in Figure 15.2 which first extracts a superset
of information nuggets from texts (e.g., all named entities), then determines the information need
from the query, and finally matches nuggets to the relevant attributes of the user’s query. As a
result, WannaDB allows answering the queries, even if the information is not explicitly stated in
the corpus but has to be calculated (e.g., when the query contains aggregation functions like AVG
or SUM). A main observation here is that in many cases a sample of extractions (i.e., a table with
partially missing or incorrect values) is sufficient to produce approximate results to answer the
user’s query.

15.3. Architecture & Initial Evaluation

WannaDB contains components to determine the information need from queries, aggregate the
relevant information, and compute the actual query result. For the extraction of possibly relevant
information nuggets, WannaDB relies on off-the-shelf extractors like Stanza [Qi+20]. The key
contribution of WannaDB, however, is a new matching approach that uses a novel embedding
space exploration algorithm incorporating interactive user feedback: The matching process is
done separately for each relevant attribute. It starts by selecting information embeddings close
to the attribute embedding. Afterwards, other embeddings that might be matches are searched
by applying several selection rules based on the closeness of embeddings to known matches.
Each candidate is presented for feedback (yes/no) to the user. The algorithm balances between
exploration and exploitation to select those information nuggets for feedback that quickly allow
identifying the areas in the embedding space relevant for the attribute with as little feedback
as possible. This area can then be used to populate the remaining rows in the target table.
Previously extracted information (and user feedback) can be reused for follow-up queries. A
detailed description of the matching process can be found in [HBB21].1

Our experiments on different text-collections each focused around certain topics lead to promising
results: 10 − 25 quick iterations of feedback for each attribute (i.e., confirming whether an
1See next Chapter
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information nuggets belongs in a certain column of a table) sufficed for high matching scores for
both textual and numeric attributes.

15.4. The Road Ahead

In the next steps, we want to enlarge the scope, i.e., support more general corpora. We also
want to leverage certainties from the extraction and matching process for the computation of the
approximate result and provide useful interfaces for the end users, not only through a standalone
application but also e.g., in form of a Jupyter Notebook extension.
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16. ASET: Ad-hoc Structured Exploration of Text
Collections (AIDB’21)

Abstract

In this paper, we propose a new system called ASET that allows users to perform structured
explorations of text collections in an ad-hoc manner. The main idea of ASET is to use a new two-
phase approach that first extracts a superset of information nuggets from the texts using existing
extractors such as named entity recognizers and then matches the extractions to a structured table
definition as requested by the user based on embeddings. In our evaluation, we show that ASET is
thus able to extract structured data from real-world text collections in high quality without the
need to design extraction pipelines upfront.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hät-
tasch, Jan-Micha Bodensohn, and Carsten Binnig. ‘ASET: Ad-hoc Structured Exploration of Text
Collections’. en. In: 3rd International Workshop on Applied AI for Database Systems and Applications
(AIDB21). In conjunction with the 47th International Conference on Very Large Data Bases, Copen-
hagen, Denmark, August 16 - 20, 2021. Copenhagen, Denmark, 2021. arXiv: 2203.04663”. The
contributions of the author of this dissertation are summarized in Section 5.2.

This work is published under a Creative Commons Attributions License (http://creativecommons. org/li-
censes/by/3.0), which permits distribution and reproduction in any medium as well allowing derivative
works, provided that you attribute the original work to the author(s) and AIDB 2021. 3rd International
Workshop on Applied AI for Database Systems and Applications (AIDB21), August 20, 2021, Copenhagen,
Denmark. Reformatted for this thesis.
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16.1. Introduction

Motivation: In many domains, users face the problem of needing to quickly extract insights from
large collections of textual documents. For example, imagine a journalist who wants to write an
article about airline security that was triggered by some recent incidents of a well-known US airline.
For this reason, the journalist might decide to explore a collection of textual accident reports from
the National Transportation Safety Board in order to answer questions like ’What incident types are
the most frequent ones?’ or ’Which airlines are involved most often in incidents?’. To be able to
formulate such answers to their questions, they would need to extract the relevant information,
then create a structured data set (e.g., by creating a table in a database or simply by using an Excel
sheet) and analyze frequency statistics such as the number of incidents per airline.

And clearly, there are many more domains where end users want to explore textual document
collections in a similar fashion. As another example, think of medical doctors who want to compare
symptoms and reactions to medical treatments for different groups of patients (e.g., old vs. young,
w/ or w/o a specific pre-existing condition) based on the available data coming from textual patient
reports. To do this, the doctor again would need to extract the relevant structured information
about age, pre-diseases, etc. from those reports before being able to draw any conclusions.

One could now argue that extracting structured data from text is a classical problem that various
communities have already tackled and several industry-scale systems already exist. For example,
DeepDive [Sa+16] or System-T [Lem+20] are examples of such systems that have developed
rather versatile tool suites to extract structured facts from textual sources. However, these systems
typically require a team of highly-skilled engineers that curate extraction pipelines to populate
a structured database from the given text collection or train machine learning-based extraction
models that come with the additional need to curate labeled training data. A major problem of
these solutions is the high effort they require and, thus, it can take days or weeks to curate such
extraction pipelines even if experts are involved. Even more importantly, such extraction pipelines
are typically rather static and can extract only a pre-defined (i.e., fixed) set of attributes for a
certain text collection only. This typically prevents more exploratory scenarios in which users ask
ad-hoc queries where it is not known upfront which information needs to be extracted or whether
a new data set should be supported on-the-fly.

Contributions: In this paper, we thus propose a new system called ASET that allows users to
explore new (unseen) text collections by deriving structured data in an ad-hoc manner; i.e., without
the need to curate extraction pipelines for this collection.

As shown in Figure 16.1, the main idea is that a user specifies their information need by composing
SQL-style queries over the text collection. For example, in Figure 16.1, the user issues a query to
extract information about dates, airlines, and cities of incidents. ASET then takes the query and
evaluates it over the given document collection by automatically populating the table(s) required
to answer the query with information nuggets from the documents. An important aspect here is
that using ASET, users can define their information needs by such a query in an ad-hoc manner.

ASET supports this ad-hoc extraction of structured information by implementing a new two-phase
approach: In the extraction phase, a superset of information nuggets is extracted from a text
collection. Afterwards, the information nuggets are matched to the required attributes in the
matching phase. To do so, ASET implements a new interactive approach for matching based on
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Report AAB-02-04
On March 5, 2000, about 1811
Pacific standard time (PST),
Southwest Airlines, Inc., flight
1455, a Boeing 737-300 (737),
N668SW, overran the departure
end of runway 8 after landing at
Burbank-Glendale-Pasadena…

Report AAB-06-01
On October 24, 2004, about 1235
eastern daylight time, a Beech King
Air 200, N501RH, operated by
Hendrick Motorsports, Inc., crashed
into mountainous terrain in Stuart,
Virginia, during a missed approach to
Martinsville/BlueRidge Airport (MTV),
Martinsville…

Report AAB-01-02
On September 25, 1999, about 1726
Hawaiian standard time, Big Island
Air flight 58, a Piper PA-31-350
(Chieftain), N411WL, crashed on the
northeast slope of the Mauna Loa
volcano near Volcano, Hawaii. The
pilot and all nine passengers on

board were killed, …

Report AAB-06-06
On November 22, 2004, about 0615
central standard time, a Gulfstream
G-1159A (G-III), N85VT, operated by
Business Jet Services Ltd., struck a
light pole and crashed about 3 miles
southwest of William P. Hobby
Airport (HOU), Houston, Texas, while
on an instrument…

SELECT date , airline , city FROM documents

date airline city

October 25, 1999 Sunjet Aviation, Inc. Aberdeen

September 25, 1999 Big Island Air Volcano

March 5, 2000 Southwest Airlines, Inc. Burbank

October 24, 2004 Hendrick Motorsports, Inc. Stuart

November 22, 2004 Business Jet Services Ltd. Houston

2

DATE: October 25, 1999, CARDINAL: about 1213, 
PRODUCT: Learjet Model 35, PRODUCT: N47BA, 

ORG: Sunjet Aviation, Inc., LOC: Sanford, 
LOC: Florida, LOC: Aberdeen, LOC: South Dakota, 
LOC: Orlando, LOC: Florida,  TIME: 0920 eastern

DATE: October 25, 1999, CARDINAL: about 1213, 
PRODUCT: Learjet Model 35, PRODUCT: N47BA, 

ORG: Sunjet Aviation, Inc., LOC: Sanford, 
LOC: Florida, LOC: Aberdeen, LOC: South Dakota, 
LOC: Orlando, LOC: Florida,  TIME: 0920 eastern

DATE: October 25, 1999, CARDINAL: about 1213, 
PRODUCT: Learjet Model 35, PRODUCT: N47BA, 
ORG: Sunjet Aviation, Inc., LOC: Sanford, 
LOC: Florida, LOC: Aberdeen, LOC: South Dakota, 
LOC: Orlando, LOC: Florida,  TIME: 0920 eastern

1

Report AAB-00-01
On October 25, 1999, about 1213
central daylight time (CDT), a Learjet
Model 35, N47BA, operated by
Sunjet Aviation, Inc., of Sanford,
Florida, crashed near Aberdeen,
South Dakota. The airplane departed
Orlando, Florida, for Dallas, Texas,
about 0920 eastern…

Figure 16.1.: Ad-hoc structured exploration of text collections with ASET: (1) a superset of infor-
mation nuggets is first extracted from the texts and then (2) matched to the relevant
attributes of the user query.
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DATE: October
25, 1999

DATE:  
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1999-10-25  ... 
...         ...

DEPARTURE ... SELECT
DEPARTURE, ...
FROM DOCUMENTS

On October 25,
1999 about 1213
CDT...

Figure 16.2.: Architecture of ASET: The extraction stage obtains information nuggets from the doc-
uments. The matching stage matches between the extracted information nuggets
and the user’s schema imposed by their query.

neural embeddings, which uses a tree-based exploration technique to identify potential matches
for each attribute.

Clearly, doing the matching for arbitrarily complex document collections and user queries is a
challenging task. Hence, in this paper, we aim to show a first feasibility study of our approach.
To that end, we focus on so-called topic-focused document collections here. In these collections
every document provides the same type of information (e.g., an airline incident) meaning that
each document can be mapped to one row of a single extracted table. Note that this is still a
challenging task, since arbitrary information nuggets must be mapped to an extracted table in an
ad-hoc manner. Clearly, extending this to more general document collections and queries that
involve multiple tables is an interesting avenue of future work.

To summarize, as the main contribution in this paper, we present the initial results of ASET. This
comprises a description of our approach in Sections 16.2 and 16.3 as well as an initial evaluation in
Section 16.4 on two real-world data sets. In addition, we provide code and data sets for download1
along with a short video of ASET.2

16.2. Overview of our Approach

Figure 16.2 shows the architecture of ASET. As mentioned before, ASET comprises two stages:
(1) the first stage extracts a superset of potential information nuggets from a collection of input
documents using extractors. This step is independent of the user queries and can thus be executed
offline to prepare the text collection for ad-hoc exploration by the user. (2) At runtime, a user
issues several queries against ASET. To answer a query, an online matching stage is executed that
aims to map the information nuggets extracted in the first stage to the attributes of the user table as
requested by a query. We make use of existing state-of-the-art approaches for information extraction
in the first stage. The core contribution of ASET is in the matching stage which implements a novel
tree-based approach as we discuss below.

1https://link.tuda.systems/aset
2https://link.tuda.systems/aset-video
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16.2.1. Stage 1: Offline Extraction

As shown in Figure 16.2, the extraction stage is composed of two steps. First, it derives the
information nuggets as label-mention-pairs (e.g., a date and its textual representation) from the
source documents using state-of-the-art extractors. Afterwards, a preprocessing step is applied,
which then canonicalizes the extracted values.

Extracting Information Nuggets: The extractors process the collection document by document
to generate the corresponding extractions. Clearly, a limiting factor of ASET is which kinds of
information nuggets can be extracted in the extraction stage since only this information can be
used for the subsequent matching stage. For this paper, we successfully employed state-of-the-art
information extraction systems, focusing particularly on named entity recognizers from Stanford
CoreNLP [Man+14] and Stanza [Qi+20]. In general, ASET can be used with any extractor
that produces label-mention pairs; i.e. a textual mention of a type in the text (e.g., American
Airlines) together with a label representing its semantic type (e.g., Company). Moreover, additional
information about the extraction (e.g., the full sentence around the mention) will also be stored
and used for computing the embeddings, as we describe below.

Preprocessing Extracted Data: In the last step of the extraction stage, the extractions are pre-
processed to derive their actual data values from their mentions (i.e. a canonical representation).
For this we also rely on state-of-the-art systems for normalization: As an example, we employ
Stanford CoreNLP’s [Man+14] built-in, rule-based temporal expression recognizer SUTime for
normalization of dates (e.g., turn October 25, 1999 and 25.10.1999 into 1999-10-25).

16.2.2. Stage 2: Online Matching

The second stage must match the extracted information nuggets to the user table to answer the
query. This stage consists of computing embeddings for the information nuggets and matching
them to the target attributes, using a new tree-based technique to identify groups of similar objects
in the joint embedding space of attributes and information nuggets.

Computing Embeddings: A classical approach to compute a mapping between information
nuggets and attributes of the user table would be to train a machine learning model in a supervised
fashion. However, this would require both training time and a substantial set of labeled training
data for each attribute and domain. Instead, our approach leverages embeddings to quantify the
intuitive semantic closeness between information nuggets and the attributes of the user table.3 For
the attributes of the user table, only the attribute names are available to derive an embedding. To
embed the information nuggets extracted in the first stage, however, we can use more information
and incorporate the following signals from the extraction: (1) label – the entity type determined by
the information extractor (e.g. Company),4 (2) mention – the textual representation of the entity in
3We use Sentence-BERT [RG19a] and FastText [Mik+18] to compute embeddings for the natural language signals.
4We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.
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the text (e.g., US Airways), (3) context – the sentence in which the mention appears, (4) position –
the position of the mention in the document.

Matching Step: To populate the values of a row (i.e. to decide whether an extraction is a match
for an attribute of a user table, like a specific DATE instance matches DEPARTURE in Figure 16.2),
we use a new tree-based technique to identify groups of related information nuggets that map to a
user attribute as we discuss in the next section. Using this technique, we suggest potential matches
to the user, who can confirm or reject those matches in an interactive manner (i.e., by reading the
extracted value and its context sentence). Previous approaches use only a distance metric (e.g.,
cosine distance) and often suffer from the curse of dimensionality, not providing a robust similarity
metric in higher-dimensional embedding spaces. Our approach allows users to quickly explore the
embedding space and find matches between extracted information nuggets and attributes more
efficiently.

16.3. Interactive Matching

In this section, we first give an overview of the interactive matching process before we discuss
the details of how ASET selects potential matches to present to the user. The matching is done
individually for the different attributes.

16.3.1. Overall Procedure

ASET implements an interactive matching procedure by confronting the user with information
nuggets derived from the document collection and asking them whether those nuggets belong to a
particular attribute. The main goal of the interactive matching procedure is to identify groups of
information nuggets in the embedding space belonging to a particular user-requested attribute
(e.g., airline names or incident types) as quickly as possible (i.e. after a low number of interactions).
However, finding information nuggets to present to the user as potential matches is not trivial.
Clearly, a first naive idea is to choose extractions that are close to the embedding of the requested
attribute (e.g., airline name) using a distance metric (e.g., cosine similarity). Yet, matches identified
by these simple distances provide only a limited information gain for identifying additional groups
of related objects in a high-dimensional space. Therefore, we are using a new tree-based exploration
strategy that can efficiently identify potential matches for each user-requested attribute as we
discuss next.

16.3.2. Tree-based Exploration Strategy

To identify the group of information nuggets in the embedding space that belong to a user-requested
attribute, we use the notion of a tree of confirmed matching extractions (instead of a set as often
used by kNN-based approaches). Different from kNN-searches, subspace clustering, or other
techniques tackling similar problems, using a tree-based representation allows us to implement a
new explore-away strategy that can grow the covered embedding space for the group of related
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Figure 16.3.: Sketch of the tree-based (explore-away) strategy (executed per attribute). Each
node represents an embedded information nugget to be included in the search tree.
Confirmed matches are marked in ■ blue, the next candidates in ■ green. Rejected
nuggets are marked in ■ black, unexplored ones in ■ gray. Node X is selected for
expansion, the nodes closest to X are marked in ■ orange. The candidates selected
by our explore-away strategy for user-feedback are G and I.

information nuggets with every confirmed match. Our tree-based exploration strategy works in
three steps:

1. Find a root node:: First, the exploration strategy finds an initial matching node to serve as
the root of the tree. This is done by sampling extractions based on their distance to the initial
attribute embedding (based only on the attribute name). We start with low distances that result in
conservative samples close to the initial attribute embedding, and gradually raise the sampling
temperature to include samples from farther away if the close-by samples do not yield any matching
extractions to select as root.

2. Explore-away Expansion:: As a second step, we now explore the embedding space by ex-
panding the search tree using our explore-away strategy in the embedding space. We explain the
expansion step based on the example in Figure 16.3 where node X is to be expanded. To expand
the node X, we determine its potential successors succ(X) based on the following two constraints:
(1) The extractions in succ(X) must be closer to X than to any other already expanded extraction
(e.g., nodes G, H, I, and K qualify in our example). (2) The extractions in succ(X)must be farther
away from the rest of the tree than the node we expand (e.g., H is closer to A than X is to its parent
(and hence closest node) D and therefore not a candidate; however, nodes G, I, and K remain as
candidates).

Afterwards, the search strategy selects the k nuggets5 in succ(X) that are closest to X (e.g., G and
I in our example) to gather user feedback. A user can then confirm whether the proposed nuggets
actually match the attribute; matching nuggets are added to a queue of nuggets to be expanded in
the next iterations. In case the queue is empty, the explore-away strategy returns to step 1 to start
5This number determines the degree of the search trees. We experimented with different degrees and found that 2
results in the best performance.
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with an additional root node, or it terminates if a user-defined threshold of confirmed matches
is reached. Overall, this procedure thus identifies groups of information nuggets (represented as
trees) that match to a certain user-requested attribute.

3. Static Matching:: Once a user-defined threshold of confirmed matches is reached for every
user attribute, ASET stops collecting feedback and continues with a static matching procedure:
ASET leverages the distances between the embeddings of extracted information nuggets and the
different groups of embeddings identified in step 2 to populate the remaining cells without asking
the user for feedback.

16.4. Initial Evaluation

In this section, we present an initial evaluation of our approach, showing that ASET can provide
high accuracies. For the evaluation, we use two different data sets, which we provide for download
together with our source code. We also have additional results showing that our novel tree-based
exploration technique is superior over using other techniques that are only based on distance
metrics (e.g., cosine similarity) in the embedding space. However, due to space restrictions, we
could not include these results in this paper.

Data Sets: We perform our evaluation on the two real-world data sets: Aviation and COVID19RKI.
Both data sets consist of a document collection and structured tables to serve as ground truth.

The Aviation data set is based on the executive summaries of the Aviation Accident Reports
published by the United States National Transportation Safety Board (NTSB).6 Each report describes
an aviation accident and provides details like the prevailing circumstances, probable causes,
conclusions, and recommendations. As a ground-truth, we compiled a list of 12 typical attributes
and manually created annotations that capture where the summaries mention the attributes’ values.

The second data set is based on the German RKI’s daily reports outlining the current situation
of the Covid-19 pandemic (e.g., laboratory-confirmed Covid-19 cases or the number of patients
in intensive care) in Germany.7 The focus of this data set is to evaluate whether our system can
also cope with numerical values which are particularly challenging for matching. To that end,
we compiled a list of seven numeric attributes and manually annotated the occurrences of those
attributes in the data set.

Initial Results: In this initial experiment, we evaluate the end-to-end performance of our system.
As a baseline to compare the quality of the matching stage of ASET to, we use COMA 3.0 [DR02]
which implements a wide set of classical matching strategies that also work out-of-the-box (i.e.,
similar to ASET they do not need to be trained for every new attribute to be matched).

Figure 16.4 shows the result of running ASET (using Stanza in the extraction stage) with 25
interactions per attribute in the matching stage. We report the average F1-score as well as the
6https://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx
7https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/
Gesamt.html

204

https://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html


Ø COMA Reca
ll

Ø ASE
T R

eca
ll

Ø ASE
T F

1

ev
en

t_d
ate

loc
ati

on
_ci

ty

loc
ati

on
_st

ate

air
po

rt_
cod

e

air
po

rt_
na

me

air
cra

ft_
da

mag
e

reg
istr

ati
on

_nu
mbe

r

air
cra

ft_
make

air
cra

ft_
mod

el

far
_de

scr
ipt

ion

air
_ca

rrie
r

wea
the

r_c
on

dit
ion

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

1.0

0.69

0.87
0.79

0.94

0.0

0.86

0.49

0.77

0.53

0.87

0.0

0.1

0.64 0.65

0.0

0.2

0.4

0.6

0.8

1.0

F1

Ø COMA Reca
ll

Ø ASE
T R

eca
ll

Ø ASE
T F

1
da

te

ne
w_ca

ses

ne
w_de

ath
s

inc
ide

nce

int
en

siv
e_c

are

va
cci

na
ted

tw
ice

_va
cci

na
ted

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.97

0.48

0.11

0.81

0.61

0.94

0.68

0.17

0.66 0.66

0.0

0.2

0.4

0.6

0.8

1.0

F1

Figure 16.4.: End-to-end evaluation (both stages) of our system on both the Aviation and the
COVID19RKI data set. We report the avg. F1-score and the F1-scores for all attributes
for ASET (all scores ranging from 0 to 1, higher is better).
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individual F1-scores for all attributes. The results show that ASET is able to accurately match
the extractions for most of the attributes of both data sets. For COMA 3.0, we decided to report
only the recall since the precision of matching values was overall low (depending on the selected
workflows it either finds hardly any matches or thousands of wrong matches).

16.5. Conclusions and Future Work

In this paper, we have proposed a new system called ASET for ad-hoc structured exploration of text
collections. Overall, we have shown that ASET is able to extract structured data from real-world
text collections in high quality without the need to manually curate extraction pipelines. In the
future, we plan to extend our system in several directions; e.g., to support more complex user
queries (e.g., with joins over multiple tables) or more complex document collections.
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17. Demonstrating ASET: Ad-hoc Structured
Exploration of Text Collections (SIGMOD’22)

Abstract

In this demo, we present ASET, a novel tool to explore the contents of unstructured data (text)
by automatically transforming relevant parts into tabular form. ASET works in an ad-hoc manner
without the need to curate extraction pipelines for the (unseen) text collection or to annotate
large amounts of training data. The main idea is to use a new two-phased approach that first
extracts a superset of information nuggets from the texts using existing extractors such as named
entity recognizers. In a second step, it leverages embeddings and a novel matching strategy to
match the extractions to a structured table definition as requested by the user. This demo features
the ASET system with a graphical user interface that allows people without machine learning or
programming expertise to explore text collections efficiently. This can be done in a self-directed
and flexible manner, and ASET provides an intuitive impression of the result quality.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hättasch,
Jan-Micha Bodensohn, and Carsten Binnig. ‘Demonstrating ASET: Ad-hoc Structured Exploration
of Text Collections’. In: SIGMOD ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022. ACM, 2022. doi: 10.1145/3514221.3520174”. The contributions
of the author of this dissertation are summarized in Section 5.2.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org. SIGMOD ’22, June 12–17,
2022, Philadelphia, PA, USA © 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version, reformatted for this thesis.
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Report AAB-02-04
On March 5, 2000, about 1811
Pacific standard time (PST),
Southwest Airlines, Inc., flight
1455, a Boeing 737-300 (737),
N668SW, overran the departure
end of runway 8 after landing at
Burbank-Glendale-Pasadena…

Report AAB-06-01
On October 24, 2004, about 1235
eastern daylight time, a Beech King
Air 200, N501RH, operated by
Hendrick Motorsports, Inc., crashed
into mountainous terrain in Stuart,
Virginia, during a missed approach to
Martinsville/BlueRidge Airport (MTV),
Martinsville…

Report AAB-01-02
On September 25, 1999, about 1726
Hawaiian standard time, Big Island
Air flight 58, a Piper PA-31-350
(Chieftain), N411WL, crashed on the
northeast slope of the Mauna Loa
volcano near Volcano, Hawaii. The
pilot and all nine passengers on

board were killed, …

Report AAB-06-06
On November 22, 2004, about 0615
central standard time, a Gulfstream
G-1159A (G-III), N85VT, operated by
Business Jet Services Ltd., struck a
light pole and crashed about 3 miles
southwest of William P. Hobby
Airport (HOU), Houston, Texas, while
on an instrument…

SELECT date , airline , airport FROM documents

date airline airport

October 25, 1999 Sunjet Aviation, Inc. John F. Kennedy

September 25, 1999 Big Island Air Hilo International

March 5, 2000 Southwest Airlines, Inc. Burbank-Glendale-Passadena

October 24, 2004 Hendrick Motorsports, Inc. Martinsville/Blue Ridge

November 22, 2004 Business Jet Services Ltd. William F. Hobby

Report AAB-00-01
On October 25, 1999, about 1213
central daylight time (CDT), a Learjet
Model 35, N47BA, operated by
Sunjet Aviation, Inc., of Sanford,
Florida, crashed near Aberdeen,
South Dakota. The airplane departed
Orlando, Florida, for Dallas, Texas,
about 0920 eastern…

Figure 17.1.: Ad-hoc structured exploration of text collections with ASET: (1) a superset of infor-
mation nuggets is first extracted from the texts and then (2) matched to the relevant
attributes of the user query.

17.1. Introduction

Motivation: In many domains, users face the problem of having to quickly extract insights from
large collections of textual documents. For example, imagine a journalist who wants to write an
article about airline security that was triggered by some recent incidents of a well-known US airline.
For this reason, the journalist might decide to explore a collection of textual accident reports
from the National Transportation Safety Board in order to answer questions like “What incident
types are the most frequent ones?” or “Which airlines are involved most often in incidents?” To
be able to formulate such answers to their questions, they would need to extract the relevant
information, create a structured data set (e.g., a spreadsheet or a database table), and analyze
frequency statistics such as the number of incidents per airline.

And clearly, there are many more domains where end users want to explore textual document
collections in a similar fashion. As another example, think of medical doctors who want to compare
symptoms and reactions to medical treatments for different groups of patients based on the available
data coming from textual patient reports. To do this, the doctor again would need to extract the
relevant structured information about age, pre-existing conditions, etc. from those reports before
being able to draw any conclusions.

One could now argue that extracting structured data from text is a classical problem that various
communities have already tackled and several industry-scale systems already exist: DeepDive
[Sa+16] or System-T [Lem+20] are examples of such systems that have developed rather versatile
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Matching Strategy:
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information 

nuggets

Process 
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Stage 1: Offline Extraction Stage 2: Online Matching

DATE: October
25, 1999

DATE:  
1999-10-25

1999-10-25  ...
...         ...

DEPARTURE ... SELECT
DEPARTURE, ...
FROM DOCUMENTS

On October 25,
1999 about 1213
CDT...

Figure 17.2.: Architecture of ASET: The extraction stage obtains information nuggets from the
documents. Thematching stagematches between the extracted information nuggets
and the user’s schema imposed by their query.

tool suites to extract structured facts from textual sources. However, these systems typically require
a team of highly-skilled engineers that curate extraction pipelines to populate a structured database
from the given text collection or train machine learning-based extraction models (that come with
the additional need to create labeled training data). A major problem of these solutions is the
high effort they require and, thus, it can take days or weeks to curate such extraction pipelines
even if experts are involved. Even more importantly, these extraction pipelines are typically rather
static and can only extract a pre-defined (i.e., fixed) set of attributes for a certain text collection.
This prevents more exploratory scenarios in which users ask ad-hoc queries where it is not known
upfront which information needs to be extracted or whether a new data set has to be supported
on-the-fly.

Contributions: In this demo, we thus showcase ASET, a system that allows users to explore
unseen text collections by deriving structured data in an ad-hoc manner; i.e., without the need
to curate extraction pipelines for a particular collection. We demonstrate ASET in a video1 and
provide our code and data sets for download.2

As shown in Figure 17.1, the main idea of ASET is that a user specifies their information need by
composing SQL-style queries or lists of attributes that define the table layout of the information
requested from the text collection. For example, in Figure 17.1, the user issues an ad-hoc query to
extract a table about incident dates, airlines, and airports. ASET then automatically populates the
required table(s) with information nuggets from the documents.

ASET supports this ad-hoc extraction of structured information by implementing a new two-phased
approach: In the extraction phase, a superset of information nuggets is extracted from a text
collection. Afterwards, the information nuggets are matched to the required attributes in the
matching phase. To do so, ASET implements a new interactive approach for matching based on
neural embeddings to identify potential matches for each attribute.

Since matching arbitrarily complex document collections and user queries is a challenging task,
we focus on so-called topic-focused document collections, in which each document provides the
same type of information (e.g., an aviation incident). Thus, each document can be mapped to one
row of a table. Note that this is still a challenging task since arbitrary information nuggets must be
mapped to an extracted table in an ad-hoc manner.
1https://link.tuda.systems/aset-video
2https://link.tuda.systems/aset
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A first version of the vision of ASET including an initial evaluation on two real-world data sets
was published at [HBB21]. In this demo we pick up the vision of the whole application cycle
presented at [Hät21]. As such, we present the integration of ASET ’s matching procedure into a
full system with an interactive user interface that is shown in our demo video (see Section 17.4).
The graphical interface makes it easier to use ASET (especially for people without strong computer
science knowledge). Moreover, compared to the original submission we also developed a new
interactive matching procedure that we describe in this paper (see Section 17.3): in our new
matching procedure, we leverage the human ability to quickly find patterns by presenting multiple
guessed matches at once, which allows users to quickly correct wrong matches. Multiple ways to
give feedback (confirm, fix, or mark that there is no match in the document) further enhance the
matching’s quality and flexibility.

17.2. Related Work

To the best of our knowledge, there is no other system working in the same way as ASET yet.
However, there are existing approaches with similar objectives and there is previous work on some
components of our approach.

Template Filling & Information Extraction: The goal of slot or template filling is similar to our
objective [GS96], yet in contrast to our approach, these template filling approaches are specifically
crafted for a fixed set of slots. Most early approaches used hand-crafted rules for that. Today,
another common approach to extract a fixed set of attributes is to learn a named entity recognizer
specifically for the desired entity types (e.g., [SJ19]). Named entity recognizers extract and classify
a set of broad entity types like organizations, locations, or products from natural language texts.
A common problem with training a named entity recognizer to extract a specific set of entity
types is the substantial amount of training data required. Curating this training data manually is
time-consuming and often costly, since it usually involves domain experts.

Some approaches (e.g., [Wei+19a]) attempt to avoid this problem by using active learning, which
allows the learning algorithm to query the user, e.g., by selecting training instances that the user
then labels by hand. Another strategy is distantly-supervised or weakly-supervised named entity
recognition (e.g, [Fri+17; Lia+20]). In contrast to our system, active learning and weak supervision
train named entity recognizers specifically for the desired set of entity types. Instead, we use the
output of conventional named entity recognizers to populate the user-provided attributes.

Knowledge Base Population: Knowledge base construction or population refers to the construc-
tion or expansion of graph-structured knowledge bases (in contrast to relational tables as used in
our approach). Extractive approaches like DeepDive [Sa+16], SystemT [Chi+10], and QKBFly
[Ngu+17] build upon (open) information extractors like ClausIE [CG13] to derive novel knowledge
from natural language texts. They also perform the adaption, cleaning, and combination stages
of the knowledge base building process, which include tasks like named entity disambiguation,
co-reference resolution, and canonicalization. However, most of these approaches require high
manual efforts to design extraction pipelines for each knowledge base.
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Schema Matching based on Embeddings: Schema matching refers to determining correspon-
dences between the tables and attributes of schemata from different sources. Approaches for
schema matching (e.g., [Hät+20b; Her+20]) are related to ASET since we frame the mapping
between the information extractors’ output and the user-provided list of attributes as a matching
problem.

17.3. System Architecture

Figure 17.2 shows the architecture of ASET. As mentioned before, ASET comprises two stages: (1)
the first stage extracts a superset of potentially relevant information nuggets from a collection of
input documents using off-the-shelf information extractors. This step is independent of the user
queries and can thus be executed offline to prepare the text collection for the ad-hoc exploration
by the user. (2) At runtime, a user issues several queries against ASET. To answer a query, a novel
interactive matching stage is executed that aims to map the information nuggets extracted in the
first stage to the attributes of the user table as requested by the query.

17.3.1. Stage 1: Offline Extraction

As shown in Figure 17.2, the extraction stage is composed of two steps. First, it derives the
information nuggets as label-mention-pairs (e.g., a date and its textual representation) from the
source documents using state-of-the-art extractors. Afterwards, a preprocessing step is applied
which automatically canonicalizes the extracted values, e.g., by applying normalization on temporal
expressions.

Extracting Information Nuggets: The extractors process the collection document-by-document
to generate the corresponding extractions. Clearly, a limiting factor of ASET is which kinds of
information nuggets can be extracted in the extraction stage, since only this information can be
used for the subsequent matching stage. As a default, we use the named entity recognizers from
Stanza [Qi+20]. In general, ASET can be used with any extractor that produces label-mention
pairs; i.e., a textual mention of an information nugget in the text (e.g., American Airlines) together
with a natural language descriptor representing its semantic type (e.g., Company). Moreover,
additional information about the extraction (e.g., its position in the document and the sentence
around it) will also be stored and used for computing the embeddings, as we describe below.

17.3.2. Stage 2: Online Matching

The second stage must match the extracted information nuggets to the user table to answer the
query. To do so, it first computes embeddings for the information nuggets and target attributes.
Afterwards, it uses a novel interactive matching strategy that incorporates user feedback to populate
the user table.
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Computing Embeddings: A classical approach to determine a mapping between information
nuggets and attributes of the user table would be to train a machine learning model in a supervised
fashion. However, this would require both training time and a substantial set of labeled training
data for each attribute and domain. Instead, our approach leverages embeddings to quantify the
intuitive semantic closeness between information nuggets and the attributes of the user table.3 For
the attributes of the user table, only the attribute names are available to derive an embedding. To
embed the information nuggets extracted in the first stage, however, we can use more information
and incorporate the following signals from the extraction: (1) label – the entity type determined
by the information extractor (e.g. ORG),4 (2) mention – the textual representation of the entity in
the text (e.g., US Airways), (3) context – the sentence in which the mention appears, (4) position –
the position of the mention in the document.

Matching Step: The interactive matching step populates the user table in an attribute-by-attribute
fashion. In the following, we describe the matching procedure for an attribute called airline:

For each information nugget, ASET caches a distance that represents the uncertainty with which it
believes that the information nugget matches the attribute. At first, this distance is initialized as
the cosine distance between the nugget’s label embedding (e.g., Organization) and the embedding
of the attribute name airline. Later on, this distance will be updated with the distance to the closest
confirmed matching nugget,5 allowing the system to capitalize on more signals like the textual
mentions (e.g., American Airlines) of other matching information nuggets.

For each document with no confirmed match, ASET considers the information nugget with the
lowest cached distance as the currently guessed match. ASET presents a list of the documents
with the most uncertain current guesses to the user for feedback (see Figure 17.3). The user can
then provide feedback for any of these guesses. They may either confirm the match, select another
information nugget from the document as the match, or state that the document does not contain
a matching information nugget. In case their feedback results in a confirmed match, this matching
information nugget is used to update the distances on all other remaining information nuggets.
Afterwards, the document is removed from the list of remaining documents, and the list of guesses
presented to the user for feedback is updated.

Finally, the user may decide (based on the list of most uncertain guesses that is presented to them)
to terminate the interactive matching procedure and continue with the next attribute, in which
case the remaining documents’ cells will be populated with their currently guessed matches.

17.4. Demonstration

The demonstration shows how ASET can be used to extract relevant information from a text
collection to satisfy an information need. In the video, we use the aviation incident data set
mentioned in the introduction section and demonstrate an exemplary research of a journalist
3We use Sentence-BERT [RG19a] and FastText [Mik+18] to compute embeddings for the natural language signals.
4We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.

5The distance between two information nuggets is calculated as the mean of the distances between their individual
embeddings as discussed before.
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Figure 17.3.: Screenshots of the ASET GUI showing the matching process (where the user is
asked to confirm or fix potential matches), and the summary window after successful
extraction and matching.
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based on this data. Other datasets we tested our system on include reports on the current COVID
situation in Germany and text collections with geographic or biographical information.

The application first allows the user to load a collection of text files for processing. ASET then
automatically extracts all named entities from the text files, applies normalization and computes
the embeddings. The user is then asked to specify the attributes (column titles) of the table they
need to satisfy their first information need. In the subsequent matching step, ASET presents a list
of possible matches for each attribute. The user can confirm some of them, correct wrong matches
by choosing the relevant extraction or mark if the required attribute does not occur in the given file
(see Figure 17.3). ASET continuously updates the list of guessed matches during this interactive
feedback phase, which allows the user to quickly identify (wrong) entries that stand out and get
an impression of the quality already achieved. Once the user is satisfied with the quality of the
matches, they continue with the next attribute.

Afterwards, the resulting table can be exported to a spreadsheet, as a SQLite table, or a Pandas
Dataframe for further investigation. Alternatively, the user can change the target scheme by adding
or removing attributes. ASET will leverage existing matching results to ensure that the interactive
matching does not have to be repeated for an attribute (unless the user explicitly enforces it). All
intermediate results are stored, allowing the user to pick up their analysis again on another day or
to pass it to another person for further investigation.

In our demo video6 we show how ASET can be used to first create a table of date, airline, and
airport for each accident from a collection of aviation incident reports with only few iterations of
feedback on possible matches. This table can then be opened in a spreadsheet software to filter the
accidents down to those from the last years or from certain airlines. Afterwards, ASET is used to
amend the registration numbers of the aircraft to the table, which can be used to further investigate
some of the cases.

17.5. Conclusion & Future Work

In this demo, we showcased a new system called ASET that allows users to extract structured
data from text collections in an ad-hoc manner without the need to manually design extraction
pipelines. We presented a graphical interface that allows people without any machine learning or
programming experience to use the system and described this usage. In the future, we plan to
extend ASET in several directions; e.g., to support more complex user queries containing JOINs or
more heterogeneous document collections.

6https://link.tuda.systems/aset-video
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18. WannaDB: Ad-hoc SQL Queries over Text
Collections (BTW’23)

Just tell it what you want, what you really,
really want

Abstract

In this paper, we propose a new system called WannaDB that allows users to interactively perform
structured explorations of text collections in an ad-hoc manner. Extracting structured data from
text is a classical problem where a plenitude of approaches and even industry-scale systems already
exist. However, these approaches lack in the ability to support the ad-hoc exploration of texts using
structured queries. The main idea of WannaDB is to include user interaction to support ad-hoc SQL
queries over text collections using a new two-phased approach. First, a superset of information
nuggets from the texts is extracted using existing extractors such as named entity recognizers.
Then, the extractions are interactively matched to a structured table definition as requested by
the user based on embeddings. In our evaluation, we show that WannaDB is thus able to extract
structured data from a broad range of (real-world) text collections in high quality without the
need to design extraction pipelines upfront.

Bibliographical Information

The content of this chapter was previously published in the peer-reviewed work “Benjamin Hättasch,
Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, and Carsten Binnig. ‘WannaDB: Ad-hoc SQL
Queries over Text Collections’. In: Datenbanksysteme für Business, Technologie und Web (BTW
2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme” (DBIS), 06.-10,
März 2023, Dresden, Germany, Proceedings. Volume P-331. LNI. Gesellschaft für Informatik e.V.,
2023. doi: 10.18420/BTW2023-08”. The contributions of the author of this dissertation are
summarized in Section 5.2.

This work is published under a Creative Commons Attribution License (http://creativecommons.org/li-
censes/by/3.0/), which permits distribution and reproduction in any medium as well allowing derivative
works, provided that you attribute the original work to the author(s) and BTW 2023. Datenbanksysteme
für Business, Technologie und Web (BTW 2023), Lecture Notes in Informatics (LNI), Gesellschaft für
Informatik, Bonn 2023. Reformatted for this thesis.
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SELECT report_date WHERE incidence_rate > 500;
SELECT region, AVG(incidence_rate) GROUP BY region HAVING AVG(incidence_rate) > 500;
SELECT AVG(vaccinated_twice) WHERE report_date > 21-01-01 AND report_date < 21-02-01;

Figure 18.1.: Exemplary ad-hoc information needs phrased as SQL-like queries in WannaDB. Two
classes of ad-hoc queries are supported: Queries that extract facts from individual
documents (e.g., first query) as well as queries that involve aggregation and grouping
(e.g., the latter two queries).

18.1. Introduction

A question like “What were the days with a COVID-19 incidence rate higher than 750 in Germany?”
can be answered with a simple SQL query if the relevant information is present in a database. Yet, in
case there are only written (i.e., textual) reports available such as those published by governmental
organizations like the RKI in Germany,1 the situation is much more complex: answering such
queries over collections of textual documents that each contain only a part of the information
needed requires that first the relevant attributes are extracted from each document, before they
are stored in a structured form (i.e., a spreadsheet or a database table) in order to make them
available for structured queries.

One could now argue that extracting structured data from text is a classical problem for which
there is a plethora of approaches and where even several industry-scale systems already exist:
for example, DeepDive [Sa+16] that was acquired by Apple or System-T [Lem+20] from IBM
are such systems that have developed rather versatile tool suites to extract structured facts from
textual sources. However, these systems require a team of highly-skilled engineers that compile
extraction pipelines, which often includes training particular machine learning models, and then
populate a structured database from the given text collection. And even more importantly, the
resulting extraction pipelines are typically static and can only be used to extract a pre-defined (i.e.,
fixed) set of attributes and tables for a certain text collection. This prevents exploratory scenarios
where users can ask ad-hoc queries regardless of whether a pipeline has been set up to extract the
attribute or not.

Hence, being able to ad-hoc execute SQL-like queries over a text collection without the need
to manually compose extraction pipelines would be a major step forward compared to existing
approaches for structured data extraction from text. Use cases with needs for such ad-hoc structured
querying of unstructured text can be found in various domains beyond the example mentioned
before, e.g., data scientists together with medical doctors looking for new insights through medical
reports or data journalists examining hundreds of documents as part of their investigations.
Structured queries provide a higher expressiveness (e.g., aggregation and filtering operations),
and more rigorousness in the calculation of the results compared to the usage of natural language
queries in classical question answering systems.

Contributions. In this paper, we hence propose WannaDB, a system that can execute SQL-like
queries on text collections in an ad-hoc manner. Examples for queries that WannaDB supports
can be found in Figure 18.1. Overall, WannaDB supports two classes of queries: (1) Ad-hoc Fact
1https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/
Gesamt.html
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Queries: queries that extract facts from text documents to construct table rows. This also involves
applying filter predicates and projection operations, as shown by the first query in Figure 18.1.
(2) Ad-hoc Aggregate Queries: queries that in addition involve aggregations and grouping over
multiple documents as shown by the two other queries in Figure 18.1, which come with additional
challenges like named entity disambiguation/cross-document co-reference resolution that we
discuss later in this paper. WannaDB can therefore directly produce tables stating information
that is not explicitly mentioned in the documents and hence not discoverable by pure extraction
or search approaches. To enable such ad-hoc SQL queries over a given text collection, WannaDB
implements a novel extraction and querying pipeline that builds on two key ideas:

The first key idea of WannaDB is that, different from existing approaches which aim to extract
information for a specific (i.e., fixed) information need from a given text collection, WannaDB
instead implements a holistic extraction approach that aims to extract a wide spectrum of information
from a given text collection (called information nuggets in the sequel). For this holistic extraction,
WannaDB implements a framework approach and relies on a set of different general-purpose
extraction methods, such as approaches for named-entity recognition. Moreover, during extraction,
WannaDB computes embeddings for all the information nuggets, taking several signals such as the
textual mentions itself, and the position in the text into account.

As a second key idea, to answer ad-hoc queries on top of the extracted information nuggets,
WannaDB implements a novel interactive matching approach that aims to map the information
nuggets to the information needs specified by the user in form of an SQL query: embeddings of the
extracted information nuggets together with the embeddings of the query attributes are used to
decide which information nuggets qualify for answering the query. For this matching, WannaDB
requests feedback from the user whether certain information nuggets are the correct values for the
required query attributes. The system carefully selects these requests to minimize the amount of
required feedback. The query attributes can be of a much finer granularity than the labels of the
extraction approaches used in the first stage (e.g., airline instead of ORG) and WannaDB can
even distinguish between similar attributes with just a small semantic difference (e.g., the amounts
of people vaccinated once and twice).

While other approaches that can extract tables from text such as learned sequence-to-sequence
models [WZL22] often suffer from a phenomenon called hallucination (i.e., they generate values
that are not in the actual source document), our approach can guarantee that the contents of
the produced result tables always originate from the queried documents. Moreover, compared to
learned question answering approaches, WannaDB can perform numerical reasoning on the data
without the need to rely on the limited mathematical abilities [Hen+21] of a language model.

In order to evaluate the abilities of WannaDB, we conduct a wide range of experiments on text
collections from different domains ranging from aviation reports over daily COVID-19 situation
reports to multiple text collections created from Wikipedia that cover different categories (Nobel
laureates, countries, and skyscrapers). We show that WannaDB not only outperforms other
baselines that can be used for ad-hoc query answering on text collections, but is also competitive
with approaches that are trained or refined on domain-specific data. Moreover, our evaluation
shows that typically only a few interactions per query attribute are sufficient to answer a query
over hundreds or thousands of source documents. Overall, answering an SQL query over text
documents with WannaDB (by providing minimal interactive feedback) only takes a few minutes,
compared to hours and hours of manually extracting information or refining an extraction pipeline
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without WannaDB. Finally, to make the results reproducible, we will make our source code and the
data sets used for evaluation available at https://link.tuda.systems/wannadb.

Outline. Next, we describe the functions of WannaDB in an exemplary usage scenario, before
we explain the different components in Section 18.3. In Section 18.4, the algorithms behind the
interactive components are discussed in further depth, followed by a short overview of the current
limitations in Section 18.5. We provide an evaluation of WannaDB in Section 18.6 and an overview
of existing and related work in Section 18.7, before we conclude in Section 18.8.

18.2. Exemplary Usage

In this exemplary usage scenario, we aim to show how WannaDB can be used to satisfy an
information need based on a text collection. Imagine, e.g., a data journalist who just obtained a
large collection of airline incident reports and is now looking for noticeable events, like a high
rate of incidents for a certain carrier or airport. They use WannaDB for that purpose. The data
journalist starts by loading the collection of text files into WannaDB for processing and triggers
the pre-processing of the files, a process that needs to be done only a single time for each text
collection.

Next, the data journalist enters an SQL-like query as a starting point for their exploration (e.g.,
SELECT airline, airport, COUNT(*) GROUP BY airline, airport). As there is
no pre-existing table yet, the FROM-part of a typical SQL query can be omitted, simplifying the
query syntax. After entering the query, WannaDB presents a list of possible matches for each
required attribute (e.g., airline) found in texts of the collection, as shown in Figure 18.2. Not all
the found matches will be correct right away, therefore WannaDB relies on some user input to
adjust the results. The data journalist confirms a few of the correctly found matches, corrects
wrong matches by choosing the relevant extraction or marks if the required attribute does not
occur in a given text (see Figure 18.2). Meanwhile, WannaDB continuously updates the list of all
guessed matches during this interactive phase, leveraging the feedback. The user interface allows
to quickly identify entries that stand out and get an impression of the quality already achieved.
Once the data journalist is satisfied with the quality of the matches, they continue with the next
attribute of their query.

After all attributes are processed, WannaDB will execute the query on the resulting table. If the
query contains grouping operations, the data journalist might be asked again for some interactive
feedback (e.g., to confirm that Lufthansa and LH refer to the same airline, but LHS does not).
WannaDB will again try to transfer this feedback to other rows. In the end, the data journalist will
receive an answer to their query and can export the resulting table to a spreadsheet, an SQLite
table, or a Pandas Dataframe for further investigation. If they have further queries to submit
to WannaDB, the interactive matching process only needs to be repeated for new attributes, as
WannaDB leverages existing results from previous queries.

18.3. System Overview & Architecture

In this section, we describe the architecture of WannaDB. It consists of two stages: an offline
stage to extract information nuggets (i.e. short information-bearing text snippets), followed by
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Figure 18.2.: Graphical user interface of WannaDB, more details can be found in our SIGMOD’22
demo [HBB22]. Left: potential matches over and under the threshold are shown, the
user is asked to either confirm or fix them. Right: Inspect a document and fix by
selecting the correct match.
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Figure 18.3.: Architecture & exemplary usage: The offline extraction phase obtains information
nuggets from the documents. The online phase then infers the required structure
from a query, matches between the extracted information nuggets and the user’s
schema, performs the grouping and executes the query.

the interactive stage to answer the query by table extraction and if required interactive filtering or
grouping. The overall workflow is visualized in Figure 18.3. Here, we give an overview of both
stages and the relevant components of WannaDB. More details of the table extraction as well as
grouping and filtering, which are the main contributions of WannaDB, are described in Section
18.4.

18.3.1. Stage 1: Offline Extraction

In the first stage we employ off-the-shelf information extractors to extract a superset of potentially
relevant information nuggets (e.g., named entities) from the given text collection. This step is
independent of user queries and can thus be executed offline to prepare the text collection for
ad-hoc exploration by the user. The extractors process the collection document-by-document to
generate the corresponding extractions. Clearly, a limiting factor of WannaDB is which kinds of
information nuggets can be extracted in the extraction stage, since only this information can be
used for the subsequent matching stage. As a default, we use named entity recognizers from Stanza
[Qi+20] and spaCy [Hon+20]. In general, WannaDB can be used with any extractor that produces
label-mention pairs; i.e. a textual mention of an information nugget in the text (e.g., American
Airlines) together with a natural language descriptor representing its semantic type called label
(e.g., Company). Moreover, additional information about the extraction (e.g., its position in the
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document and the surrounding sentence) is also stored and used for computing the embeddings,
as we describe below.

After extraction, the information nuggets are pre-processed to derive their actual data values (i.e.,
a canonical representation, e.g., for timestamps) from their mentions. For this we also rely on
state-of-the-art systems for normalization [Man+14]. The nuggets are then represented based
on the following signals: (1) label – the entity type determined by the information extractor (e.g.
Company),2 (2) mention – the textual representation of the entity in the text (e.g., Lufthansa), (3)
context – the sentence in which the mention appears, (4) position – the position of the mention in
the document. Each information nugget representation comprises embeddings for the individual
signals (1-4). We compute semantic representations for the natural language signals using FastText
[Mik+18] (1), Sentence-BERT [RG19a] (2) and BERT [Dev+19] (3) and normalize the position
by dividing it by the document length.

18.3.2. Stage 2: Interactive Query Execution

At runtime, a user issues queries and interacts with the system. WannaDB infers the table structure
required to answer a query, and employs a novel interactive matching stage to map the information
nuggets extracted in the first stage to the required query attributes.

Interactive Table Extraction. The first step of the interactive query execution of WannaDB is
the interactive table extraction from the text documents. In this step, a table with attributes is
filled by WannaDB to answer a given user query. The required table structure is automatically
inferred from the user’s SQL query. WannaDB checks which attributes are mentioned explicitly
as attributes to return, and as part of aggregation operations, or implicitly in filter predicates or
group-by statements. Then, WannaDB starts to fill the table with the derived schema by executing
the interactive table extraction algorithm.

In the interactive table extraction, the user interacts with WannaDB in order to fill the required
attributes of the result table with the information nuggets extracted before. To find matching
nuggets,WannaDB first computes embeddings for the target attributes similar to the ones computed
for the information nuggets in the offline phase.

A classical approach to determine a mapping between information nuggets and attributes of the
user table would be to train a machine learning model in a supervised fashion to classify to
which attribute the extracted information nugget should be mapped to. However, learning such
a classification model would require a substantial set of labeled training data for each attribute
and thus prevent ad-hoc queries. Instead, our approach leverages embeddings to quantify the
intuitive semantic closeness between information nuggets and the attributes of the user table. For
the attributes of the target table, only the attribute names are available to derive an embedding,
while for the extracted nuggets we can make use of more information as we described above.

WannaDB therefore employs a novel interactive matching strategy that incorporates user feedback
and operates in the joint embedding space of nuggets and target attributes. This strategy works
in an attribute-by-attribute fashion and collects user feedback (e.g., confirming or correcting a
possible match). WannaDB uses distances between possible and confirmed matches to populate the
2We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.
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remaining cells. This process is steered by carefully selecting potential matches that are presented
to the user for feedback to reach a high matching quality with as little feedback as possible.

Interactive Filtering & Grouping. After the interactive table extraction step, WannaDB executes
the interactive filtering and grouping stage for answering a user query. Remember, WannaDB
has the aim to work on text collections from domains without pre-existing resources like refined
language models or custom knowledge bases. Grouping and filtering the extracted table thus is
challenging, since it is filled with mentions from the text directly, hence applying these operations
might lead to faulty query results if entities are not correctly resolved: e.g., the table might contain
entries such as Deutsche Lufthansa and German Lufthansa Airline which both refer to the same
entity. Applying GROUP BY or a WHERE directly on such an extracted table would return multiple
lines (i.e., one for each different mention even though they refer to the same entity). WannaDB
therefore again uses interaction to perform those operations on the level of embeddings instead of
string representations, as will be described in detail in the next section.

18.4. Interactive Query Execution

WannaDB introduces novel embedding-based algorithms for interactive table extraction as well as
filtering and grouping. In this section, we describe these algorithms in further detail (see Figure
18.4 for a pseudocode representation).

18.4.1. Interactive Table Extraction

In the interactive table extraction stage, WannaDB populates the attributes of the table one by
one. To fill the cells of a certain attribute, WannaDB aims to select one matching information
nugget from each of the documents. To do so, WannaDB associates each information nugget with
a cached distance that corresponds to the certainty with which it believes that the nugget matches
the attribute. For each document, WannaDB considers the information nugget with the lowest
cached distance as the document’s currently guessed match. Furthermore, WannaDB uses a distance
threshold for each attribute to decide when a cell should be left empty instead. The details of how
this threshold is calculated and interactively adapted are explained in Section 18.4.2. The overall
procedure of the table extraction is shown in Figure 18.4.

In the beginning, each nugget’s cached distance is initialized as the cosine distance between the
nugget’s label embedding (e.g., Organization) and the embedding of the attribute name (e.g.,
Airline) (Figure 18.4, line 2-3). After initialization, the interactive feedback phase starts. WannaDB
presents a ranked list of documents with their currently guessed matches to the user for feedback
(see Figure 18.2) and will continuously update the list after every given feedback. This allows the
user to quickly identify (incorrect) entries that stand out and to get an impression of the quality
already achieved. The ranked list is centered around the threshold and thus hopefully shows both
correct guesses with a low certainty, and incorrect guesses, where WannaDB would profit most
from feedback.

The user can then provide feedback for any of these guesses (line 7): they may either confirm
the guess, select another information nugget from the document, or state that the document
does not contain a matching information nugget. In case their feedback results in a confirmed
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match, this matching information nugget is used to update the cached distances of all other
remaining information nuggets (line 13-16). To compute the distance between two information
nuggets, WannaDB calculates the mean of the cosine distances between their individual signal
embeddings. The distance updates ensure that a nugget’s cached distance is always the distance to
the closest confirmed match. Considering distances between information nuggets allows WannaDB
to capitalize on more signals like the textual mentions (e.g., American Airlines) of other matching
information nuggets.

Next, WannaDB updates the documents’ currently guessed matches by selecting the information
nuggets with the lowest cached distances (line 21). Finally, WannaDB then adjusts the threshold
accordingly (see Section 18.4.2 for more details). Moreover, the user can at any time decide
to terminate the interactive feedback phase and continue with the next attribute. All remaining
documents’ cells without explicitly confirmed matches will then be populated with their currently
guessed matches (line 24-28) if there is at least one with a distance that is low enough (i.e., below
the threshold).

18.4.2. Threshold Adjustment

WannaDB uses a threshold for two purposes: (a) to decide when it is better to leave a cell empty
than to use a very unlikely guess (mostly because the desired value is not mentioned in the
document) and (b) to select guesses to present to the user where feedback will have as much effect
as possible. This threshold is automatically tuned during the runtime of WannaDB to fit the data at
hand. Given the approximate query setting WannaDB is built for, we decided to use a common
threshold for all regions forming in the embedding space instead of individually tuning it, to keep
the number of interaction cycles low.

The adjustment of the threshold is shown in Figure 18.4 (line 30-47). The general idea is to
incorporate the additional knowledge gained from the user confirming a nugget even though it
was above the threshold or correcting an entry below the threshold. This feedback action will
only affect a certain nugget directly, but other similarly well fitting nuggets from other documents
might still be accepted or discarded wrongly because of the threshold, which is therefore carefully
adapted after feedback actions: If the user confirms a nugget from the ranked list that is above
the threshold, all nuggets between the threshold and this nugget should be considered as a good
guess. In the case that any of the nuggets is still above the threshold after the calculation of the
new distances, the threshold is adapted accordingly. In contrast, if the user states that for a nugget
with a distance below the threshold there is no match in the document, the threshold is decreased
to also exclude other matches that are in the list above the nugget if necessary. The threshold is
only adapted in these two cases, where implicit hints about the quality assessment by the user can
be incorporated.

18.4.3. Interactive Filtering & Grouping

In the following, we explain how interactive grouping is supported in WannaDB to tackle the
problem of different surface forms for the same entries. Filtering works similarly, but we omit the
details due to space limitations.
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1 for attribute in query.attributes: # Process each attribute separately
2 for nugget in all_nuggets:
3 nugget.distance = compute_distance(attribute, nugget) # Compute initial

distances↪→

4

5 while interactive_feedback_phase: # Interactively get user feedback
6 ranked_list = make_ranked_list(threshold, documents)
7 feedback = get_user_feedback(ranked_list)
8 match feedback:
9 # Positive feedback (confirmation or manually correction):

10 case ConfirmNugget(document, confirmed_nugget):
11 # Mark this particular cell as manual confirmed...
12 set_match(document, confirmed_nugget)
13 # ... and update distances for all nuggets based on user feedback
14 for nugget in all_nuggets:
15 new_distance = compute_distance(nugget, confirmed_nugget)
16 nugget.distance = min(new_distance, nugget.distance)
17 # Negative feedback:
18 case NoMatchInDocument(document):
19 # Direct effect only on the given document...
20 leave_empty(document)
21 update_guessed_matches(documents)
22 adjust_threshold(feedback) # ... but both feedback types can have effects

indirectly through threshold adjustment on other document's rows, too↪→

23

24 for document in documents: # Only consider values up to a given maximum distance
25 if current_guess(document).distance < threshold:
26 set_match(document, current_guess(document)) # compute final result table
27 else:
28 leave_empty(document)
29

30 def adjust_threshold(feedback): # Feedback can be further exploited in certain
cases↪→

31 match feedback:
32 case ConfirmNugget(document, confirmed_nugget):
33 if confirmed_nugget.distance > threshold:
34 increase_threshold(confirmed_nugget)
35 case NoMatchInDocument(document):
36 if current_guess(document).distance < threshold:
37 decrease_threshold(document)
38

39 def decrease_threshold(document): # Consider fewer matches as valid (especially
those above last marking as incorrect that are currently accepted nevertheless)↪→

40 nuggets = ranked_list.between(threshold, document)
41 min_dist = min(n.distance for n in nuggets)
42 threshold = min(min_dist, threshold)
43

44 def increase_threshold(confirmed_nugget): # Consider more matches as valid
(especially those below last confirmation that are currently discarded because
of the threshold)

↪→

↪→

45 nuggets = ranked_list.between(confirmed_nugget, threshold)
46 max_dist = max(n.distance for n in nuggets)
47 threshold = max(max_dist, threshold)

Figure 18.4.: Pseudo-Code representation of our interactive algorithm for table extraction, includ-
ing threshold adjustment.
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To resolve entities correctly, the interactive grouping algorithm is based on agglomerative clustering
using the distances between the information nugget embeddings for an attribute. Entries with the
same string representation are merged without interaction. For the remaining ones, the different
signals from the extraction phase are utilized. WannaDB presents all distinct members of two
clusters that should potentially be merged to the user and asks them to confirm whether these
all describe the same entity. If that is the case, the clusters are merged and the distances are
recalculated. To minimize the amount of necessary interactions with the user, WannaDB does
not always ask for the pair of clusters with the lowest distance, but chooses a pair with a higher
distance, using a step size that is adapted based on the last interactions. If the user confirms the
equivalence of the candidates, not only that pair but also those with a substantially lower distances
are merged. If the entries of the merging candidates are marked as different, WannaDB continues
to search for a better threshold for the distance between clusters using a binary search pattern.

18.5. Current Limitations of WannaDB

In order to build a system that can quickly compute query results on various domains, we intro-
duce two limitations: First, WannaDB currently can only answer single-table queries on top of
document collections; i.e., we extract one table per document collection where each row of the
table corresponds to one document. However, this is not a severe limitation, since the extracted
table can be seen as the materialized result of a join. WannaDB will extract a wide table (e.g.,
containing information about an incident itself but also the airlines and airports involved)—but
only with the attributes that are required for a given query.

Second, the results produced by WannaDB are always approximate. While WannaDB can achieve a
high F1-score for all attributes (as we will show below), query results might be incomplete (i.e.,
values of attributes might be missing) or the extracted values might be dirty (e.g., a group-by
statement might result in two instead of one group due to a not fully correct clustering). However,
we believe that the query results of WannaDB are still of high value to users, providing them with a
trend and allowing them to decide if something interesting is contained in the document collection
in a short time.

18.6. Experimental Evaluation

In this evaluation, we aim to show the abilities of WannaDB on text collections from different
domains. We will demonstrate the end-to-end performance, compare our table filling approach to
non-interactive and learned models, and evaluate the effects of interaction, and the scalability of
WannaDB. To the best of our knowledge, there is no system working like WannaDB yet. Therefore,
we cannot compare our results end-to-end with existing systems. As the whole task of running SQL
queries over text collections is quite complex, there is no simple baseline for comparison either.
However, we evaluate the components of our approach individually, and show that WannaDB
performs better compared to various baselines. We perform our evaluation on three data sets from
very different domains. Each of them consists of a document collection as well as a ground-truth
extraction of structured data that we can use to evaluate the results of executing ad-hoc queries
with WannaDB.
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Aviation. The first data set is based on aviation accident reports published by the United States
National Transportation Safety Board (NTSB).3 Each report documents a severe aviation acci-
dent and provides details like the prevailing circumstances, probable causes, conclusions, and
recommendations. For the experiments, we use the executive summaries that the NTSB publishes
with each report. As a ground-truth, we compiled a list of twelve attributes based on frequently
occurring facts from the summaries. We then manually created annotations that capture where the
summaries mention the attributes’ values. The final data set comprises 100 annotated documents
and a table which provides the ground-truth structured data for all attributes.

COVID19. The second data set is based on the German RKI’s daily reports outlining the situation
of the Covid-19 pandemic in Germany.4 We again used the summaries of the full documents, which
contain information like the number of new laboratory-confirmed Covid-19 cases or the number of
Covid-19 patients in intensive care. We compiled a list of seven all-numeric attributes, which is in
particular challenging compared to string-valued attributes, since these are harder to separate into
different attributes in the embedding space. As a ground-truth for the experiments, we manually
annotated the occurrences of all these seven attributes again in 100 reports.

T-REx: Countries, Nobel & Skyscrapers. In addition to the data sets before that we explicitly
created for evaluating WannaDB, we adapted the T-REx data set [ElS+18] that was also used in
other papers. The original data set consists of 11 million Wikidata triples aligned with 3.09 million
Wikipedia abstracts. We extracted three subsets based on article categories from different domains:
Countries consists of 187 documents with three annotated attributes, Nobel challenges to extract
four attributes (date of birth and death, field of work and country) for 209 Nobel Prize laureates,
and Skyscrapers is by far the largest data set with 2683 documents containing annotations for three
attributes. All these data sets are quite sparse, since most of the time only a subset of the attributes
is contained in a document. Therefore, this data set is valuable to test how well WannaDB can
work when information in documents is missing.

Metrics. As a main metric, we report the F1 score in most experiments (values between 0 and 1,
higher is better) as an aggregated value that incorporates both the precision (i.e., the correctness
of the table cell values) of our approach and its recall (i.e., the extent to which table cells are filled
as expected). The F1 scores we report are calculated based on the ground truth and predictions
in the filled tables. We thereby consider cells (i.e., an attribute value) as true positives when
they are correctly filled with information from the text corresponding to that row, and as true
negatives when they are correctly left empty, in case the required information is not present in the
corresponding text. False positive predictions occur, when a cell is filled incorrectly. False negatives
occur when a cell is left empty that should have been filled with data from the text, and also for
incorrectly filled cells, as the correct nugget has not been found.

18.6.1. Exp. 1 – End-to-end Queries

To provide an indication of how WannaDB works end-to-end, we perform a qualitative analysis
on queries involving aggregation and grouping over multiple documents before we later-on show
quantitative results for WannaDB. For the experiments, we assume that a user always provides
3https://www.ntsb.gov/investigations/AccidentReports/Pages/Reports.aspx?mode=
Aviation

4https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/
Gesamt.html
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Figure 18.5.: End-to-end results for two queries executed on T-REx data sets. The tables show
the first five rows of the resulting table (one attribute column filled by WannaDB
plus aggregation results). The bracketed values indicate the ground truth values.
Additionally, precision (P) and recall (R) computed at cluster level, and mean Jaccard
Index (MJI) averaged over all clusters are reported.

correct feedback for WannaDB to execute the matching of extractions to query attributes. However,
we do not expect optimal feedback, i.e., the simulated feedback actions are not chosen in a way to
maximize speed of convergence. We report the results after using 20 simulated user interactions
(i.e., 20 times confirming an extraction or choosing an alternative one as a match for a query
attribute). We discuss the interaction effort that is needed for WannaDB to perform extractions in
a separate experiment.

Figure 18.5 shows the first five rows of the query results for two aggregation queries executed
on the T-REx Nobel and the T-REx Countries data sets. Additionally, precision and recall, as well
as a numeric score of the correctness of the clusters, can be seen. While WannaDB delivered the
correct values for the group-by operation, the aggregation (COUNT) deviates slightly from the
ground-truth. The reason is that for some documents, WannaDB could not extract the requested
information. As such, the results of WannaDB can be seen as an approximation of the true query
result that can be used for quickly gaining (initial) insights into text collections. Moreover, it is
important to note that existing extraction baselines—that in contrast to WannaDB do not support
ad-hoc queries—also do not provide perfect extractions (as we show in the following experiments).

18.6.2. Exp. 2 – Interactive Table Extraction

In the second experiment, we quantitatively evaluate how well WannaDB can fill a table specified
by a user’s query with information from the texts. For this, we focus on the quality of the interactive
table extraction, which is the most important step for WannaDB to provide high-quality query
results; i.e., if the table extraction is not able to provide high accuracy, grouping and filtering
will also not be able to provide high accuracy. For showing the quality of WannaDB, we run the
experiments in this section on all three data sets (Aviation, COVID19 and T-REx).

Baselines. To put the results ofWannaDB into perspective, we compare it to two baselines based on
BART [Lew+20]. BART is a state-of-the-art pre-trained transformer model, with a high capacity to
learn text-based tasks with minimal overhead of fine-tuning. Its robust architecture outperformed
older transformers, especially on tasks like question answering. We use the openly available
bart-large model from the Huggingface [Wol+19] library and formulate information extraction
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for individual query attributes as a sequence-to-sequence task (i.e., the input is a text document
and the output is the structured data extracted from the text). For fine-tuning BART for the
information extraction task on a particular data set (i.e., transforming a text into a table) we use
the following procedure: We split each data set into 75% that we use as train set for fine-tuning,
15% as validation set and 10% as a holdout test set. We then fine-tune one BART model on each
data set for 50 epochs with a learning rate of 1e− 5 and batch size of 2, which yielded the best
performance in our experiments. Moreover, we select the best checkpoint from the 50 epochs
based on the validation set for evaluation. Important to note here is that the resulting fine-tuned
BART models are an upper baseline for WannaDB, as they are trained supervised on the annotated
data and all possible query attributes; i.e., with this baseline we do not test the ad-hoc scenario
that we envision for WannaDB, but instead assume that all query attributes are known in advance.

For comparing WannaDB to a baseline that supports ad-hoc queries on a new (unseen) text
collection, we use a second variant that is also based on BART but not pre-trained on the particular
data set and query attributes. For this baseline, we instead use a BART model5 that is already
fine-tuned for extracting structured information from the SQuAD 2.0 data set [RJL18].6 For the
experiment, we use this fine-tuned model on an unseen data set and extract attributes that the
model has not seen during fine-tuning.

WannaDB vs. Baselines. The results of WannaDB in comparison with the two BART models are
shown in Figure 18.6a. For WannaDB, we report the median over 20 randomized runs, and again
use 20 simulated user interactions per attribute. As baselines, we use the two variants of BART
discussed before.7 BART models fine-tuned per data set (red bars) are able to achieve high F1
scores on the data and query attributes they were trained on, outperforming WannaDB on all data
sets. Nevertheless, this approach is relying on the availability of annotated training data, which
prevents ad-hoc queries. In comparison to the BART model that is used without fine-tuning on
a given data set and set of query attributes (yellow bar), WannaDB achieves substantially better
results. Especially for the Aviation and COVID19 data sets, WannaDB clearly outperforms this BART
baseline. On the T-REx data sets, WannaDB provides competitive or better performance depending
on the subset of data. We assume that BART’s performance on the T-REx data is influenced by
the fact that both the SQuAD data set it was fine-tuned on and the T-REx data set are based on
Wikipedia.

Generalization of BART. As we have seen, while fine-tuning a BART model per data set yields
the best performance, the BART model that is not fine-tuned for a data set provides inferior
performance up to a point that it cannot extract any attributes correctly. To understand the
generalization capabilities of BART in more depth and see if this is a systematic problem of BART,
we now systematically use BART on data sets it has not been fine-tuned for. To be more precise,
Figure 18.6b shows the results of two fine-tuned BART models: one fine-tuned on the Aviation data
set and then used on the T-REx Countries data set and another model that we used vice versa; i.e.,
we applied both of them to the respective other data set, for which they have not been fine-tuned.
The model fine-tuned on the Aviation data (reaching an F1 score of 91.95% tested in-domain on
the Aviation data) only achieves 21.23% when tested on the T-REx Countries data set. At the same
time, the model fine-tuned on the T-REx Countries data set (reaching an F1 score of 0.6633 on the
5Used Checkpoint: phiyodr/bart-large-finetuned-squad2 from Huggingface [Wol+19]
6In particular the fine-tuning task is QA on text collections which can be used to extract query attributes.
7The results of WannaDB and the second BART model that is used out-of-the-box are calculated on the whole data sets,
whereas the results of the first BART model that is fine-tuned for the given data set are computed only on the 10%
holdout test sets.
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in-domain test set) fails completely for extracting information correctly from the unseen aviation
data domain with an F1-score of 0.0. This shows that a fine-tuned BART model is a valid approach
to information extraction when annotated data is available and a fixed set of attributes is queried,
but the resulting models are not able to generalize ad-hoc to other domains. In contrast, the
results of WannaDB show that it can generalize well across data sets even without any particular
training per data set and that the interactive approach provides an advantage over using generic
embeddings or transformers directly.

Detailed Analysis of WannaDB. As a last point, we now zoom into the performance of WannaDB
and analyze the results for all data sets on a per-attribute level to show that WannaDB can provide
stable high performance and not just high performance for some query attributes. We used a
combination of two different named entity recognizers,8 Stanza [Qi+20] and SpaCy9 [Hon+20]
followed by our interactive matching approach.
Figure 18.7 shows thatWannaDB can provide high accuracy and recall (measured by the combining
F1 score, blue bars, right axis) for a wide spectrum of attributes from the three different data sets
used in our evaluation. However, for some attributes the table is filled with a much lower quality
than for others or not at all (e.g., for weather conditions). One reason can be that the currently
employed information extractors are not able to extract the necessary information nuggets from
the text (yellow bars). In particular, aircraft_damage and weather_condition are examples, where
not only a large heterogeneity of mentions can be found but also very domain-specific terminology
is used. Another reason for low table filling quality can be that the attributes occur in only a small
fraction of the documents, as in the case of the attribute owned_by (which only occurs in 6% of the
documents).

In conclusion, WannaDB has the advantage over fine-tuned BART models, that it neither requires
annotated training data, nor several hours of training time in order to work on unseen text
collections. Furthermore, it does not suffer from the problem of hallucination [May+20] that
transformer-like models regularly experience, since they aim to also generate values for attributes
even if no information nugget is present in the text. WannaDB instead generates an empty value in
that case.

18.6.3. Exp. 3 – Effects of Interaction

In the previous experiments, we assumed a fixed amount of user interaction. In the third part of
our evaluation, we instead investigate how the amount of interactive feedback given affects the
table filling performance of WannaDB. We therefore simulate the interactive matching process with
different interaction limits (i.e., the number of interactions per extracted query attribute). The
resulting F1 scores can be seen in Figure 18.8.

As we can see, for some attributes, WannaDB achieves very high F1 scores with only one interaction
with the user (e.g., for event date or aircraft registration number in the Aviation data set). These
are attributes where the entity type of the extracted information nugget is very similar to the
attribute name or the pattern of the extracted information nugget is rather unique. For example,
8WannaDB allows using multiple extractors at the same time, even if they produce overlapping nuggets. As default
configuration for WannaDB and our experiments, we employ a combination of two robust general purpose extractors
that are designed to work for a broad variety of domains. However, any other (combination of) extractors could be
used in WannaDB as well.

9Using the en_core_web_lg model
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the extraction has the named entity tag DATE which is similar to event date. For other attributes
though, the performance of WannaDB strongly depends on the amount of interactive feedback.
However, important is thatWannaDB can typically provide high quality with only a few interactions.
For most attributes, the first 5− 10 interactions massively improve the F1-score to achieve gains of
up to 0.5. This overall confirms the interactive matching procedures we presented in Section 18.4
and the algorithm to select the right threshold. Yet, as we can additionally see, for a few attributes
(e.g., weather condition), even many interactions cannot further improve the F1 scores. As we
showed in the last experiment, the reason is that none of the extractors used in WannaDB can
provide the information nugget for this attribute. Thus, as a future direction we want to combine
WannaDB with a much broader set of existing extraction approaches beyond the named entity
recognizers which we currently use, such as approaches for open information extraction.

18.6.4. Exp. 4 – Scalability

In our final experiment, we aim to assess the scalability of WannaDB to large text collections. Since
WannaDB is an interactive system, the response times experienced by users are the most important
performance metric. Across all used data sets, we measure that WannaDB takes on average 0.43
seconds to process a single user interaction.10 This latency includes all computations between two
user interactions; i.e., updating the cached distances and guessed matches as well as presenting
the next set of candidate matches to the user for feedback. In general, we find that the interaction
latency scales linearly with the number of nuggets. To measure the offline extraction phase, which
has to be executed only once per text collection, we report the runtime on our largest data set
T-REx Skyscrapers, which comprises 2, 683 documents. Running our default extraction phase takes
about 48 minutes and produces 102, 467 nuggets. Comparing runtimes across data sets, we again
find that the extraction runtime scales linearly with the number of generated nuggets.

In summary, it can be seen that WannaDB can scale to extensive text collections with thousands
of documents and more than 100, 000 information nuggets by finishing the offline phase in a
reasonable time and providing response times that allow for an interactive usage of the system
[LH14].

18.7. Related Work

Running SQL queries on text collections is a new task, and to the best of our knowledge, there is no
other system yet working in the same way as WannaDB. However, some parts of the task resemble
existing tasks and for some components of our approach there is previous work. Therefore, in
this section, we give an overview of the related work of different areas, including knowledge base
population and schema matching based on embeddings.

Information Extraction Systems. Existing approaches to answer queries over text collections
heavily rely on manual labor, requiring users either to read through vast amounts of texts and
extract relevant information manually, or to build specific extraction pipelines. One category
of information extraction systems focuses on the task of knowledge base population, where a
10We executed this and all other of our experiments on a consumer desktop machine (CPU: AMD Ryzen 9 3900X; RAM:

32GB @3000MHz; GPU: NVIDIA GeForce RTX 2070 SUPER with 8GB VRAM).
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graph-structured knowledge base is constructed or expanded based on knowledge from natural
language texts. Extractive approaches like DeepDive [Sa+16], SystemT [Chi+10], DefIE [BTN15],
and QKBFly [Ngu+17] build upon (open) information extractors like ClausIE [CG13] and also
perform the adaption, cleaning, and combination stages of the knowledge base building process.
Most of these approaches require high manual efforts to design extraction pipelines for each
knowledge base and domain specifically. Google Squared could be used to create fact-tables
similar to the ones we propose from web contents, but was unfortunately discontinued without
publications about the underlying techniques. Closest to our work are recent approaches for
query-driven on-the-fly knowledge base construction, such as QKBFly. Yet, QKBFly extracts general
subject-predicate-object triples and does not populate a user-defined table as WannaDB does. The
vision of INODE [Ame+21] is to provide an end-to-end data exploration system that is also able to
include information from natural language texts. For this task, the knowledge base population
approach LILLIE [Smi+22] extracts triples from text domain-independently. However, the system
has not been thoroughly evaluated for generalization to unseen domains. Recent approaches
use transformer models to tackle information extraction tasks like relation extraction [CN21;
EU21; Ngu+20] in an end-to-end fashion to avoid the errors accumulating in pipeline-based
approaches. However, transformer-based methods are costly to train and suffer from issues like
hallucination [May+20]. A more explainable approach to information extraction is introduced
by [Kov+22; Rec+21] with a framework for learning text classifiers with a human-in-the-loop.
Recently, [Sai+22] introduced an interactive system that allows users to specify templates that are
then used to perform zero-shot information extraction.

Text-To-Table. The idea of automatically transforming a text into a table was also approached by
[WZL22] as text-to-table task, which inversely tackles the well studied table-to-text problem. Yet,
their work is not directly comparable, since they assume that each text fills one or more entire
tables, while we assume that a text collection fills one table in which each text corresponds to a
row.

Template Filling & Named Entity Recognition. The goal of slot or template filling is similar to our
objective [GS96], yet in contrast to our approach, most template filling approaches are specifically
crafted for a fixed set of slots. A common approach to extract a fixed set of attributes from a
text is to learn a named entity recognizer specifically for the desired entity types (e.g., [SJ19]).
Named entity recognizers extract a set of entity types like organizations, locations, or products
from natural language texts. However, the training requires a substantial amount of annotated
data, and the learned system will not generalize to entity types not present in the training data.
Some approaches (e.g., [Che+15; Kho+17; Wei+19a]) attempt to avoid this problem by using
active learning, which allows the learning algorithm to query the user, for example by selecting
training instances that the user then labels by hand. Another strategy is distantly-supervised or
weakly-supervised named entity recognition (e.g., [Fri+17; Lia+20]). In contrast to our system,
these approaches train named entity recognizers specifically for the desired set of entity types,
whereas we use the output of conventional named entity recognizers to populate the user-provided
attributes. Together with the interactive matching, this allows WannaDB to generalize to unseen
domains without the costly training of domain-specific named entity recognizers.

Other Matching Tasks. Approaches for schema matching (e.g., [Hät+20b; Her+20]), are related
to WannaDB, too, since we frame the mapping between the information extractors’ output and the
user-provided list of attributes as a matching problem, but try to find correspondences between
attributes and possible values, and not between columns or even full tables. Another recent
approach focuses on matching texts to structured data, in particular also matching texts to table
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rows [ASP21]. Yet, this task differs from the matching task in WannaDB, as it assumes the tables
are given, whereas in WannaDB a table is filled through the matching.

Entity Disambiguation & Cross Document Co-Reference Resolution. The surface form of an
entity in a text is often not sufficient to uniquely identify it. Yet, knowing whether two mentions of
the same type describe the same entity is relevant for correct grouping in our case, but also existing
tasks like entity linking/knowledge base alignment. For the latter there are three main challenges
(see [Dre+10]): name variations (e.g., different mention forms, abbreviations, alternate spellings,
and aliases), entity ambiguity (same written form for different entities), and absence (i.e., the text
mentions a previously unknown entity). The last one is not relevant for our use-case, since we do
not rely on a given KB but build tables only based on the current text collection. We can concentrate
on the problem of ambiguity, i.e., decide, whether two nuggets that were matched as different rows
of the same attribute are in fact the same or represent different concepts. The field of computing
equivalence classes of textual mentions for the same entity is called cross-document co-reference
resolution (CCR). It was, e.g., tackled by [Cat+21; DW15; KCP18], but these existing approaches
often concentrate only on entities from certain domains or of certain types (like events).

Prior Results of WannaDB. A first version of the matching component of WannaDB including
an initial evaluation on two real-world data sets was published at [HBB21]. In this paper, we
pick up the vision of the whole application cycle presented at [Hät21]. As such, we present the
integration of the table extraction procedure of WannaDB into a full system. Moreover, compared
to the original submission, we also developed a new interactive matching procedure where we
leverage the human ability to quickly find patterns by presenting multiple guessed matches at once,
which allows users to quickly correct wrong matches. Multiple ways to give feedback (confirm,
fix, or mark that there is no match in the document) further enhance quality and flexibility of
matching. A demo of the interactive GUI for this matching process was presented at [HBB22].

18.8. Conclusions

In this paper, we presented WannaDB, a novel tool to explore the contents of unstructured data
(text) using SQL-like queries in an ad-hoc fashion and without the need to manually design
extraction pipelines upfront. It builds on embeddings and a novel interactive query execution
strategy and consists of components to infer the required table structure from the query, extract
and organize the required information from the text, group results on the embedding level and
execute the query. Our evaluation shows that the individual components of WannaDB can achieve
similar performance to models trained on large data sets for partial or related tasks, and gives
an impression of the end-to-end quality that makes WannaDB suitable for many exploratory use
cases.
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19. WannaDB in Action: Deploying Ad-hoc
SQL-over-Text Exploration in an Industrial
Scenario (Under Submission)

Abstract

WannaDB enables users to run SQL-like queries on extensive collections of textual documents. The
approach works by interactively extracting and organizing domain-specific information without the
need to manually specify extraction rules or provide large amounts of training data. In this paper,
we showcase the real-world deployment of our tool in an industrial scenario at Springer Nature
and conduct a multipart user study to prove its usefulness for real-world applications. Additionally,
we present improvements to our query execution procedure compared to previous publications, as
well as to the graphical user interface. Our code and documentation are open source.

Bibliographical Information

The content of this chapter is currently under submission as “Benjamin Hättasch, Liane Vogel,
Gard Jenset, Jan-Micha Bodensohn, Chandrima Roy, and Carsten Binnig. ‘WannaDB in Action:
Deploying Ad-hoc SQL-over-Text Exploration in an Industrial Scenario’. In: Under submission
(2023)”. The contributions of the author of this dissertation are summarized in Section 5.2.

19.1. Introduction

Having the right information at hand is crucial to making smart decisions, whether in research,
engineering, finance, healthcare, or other fields. Accessing data is easier than ever before, as data
from all areas, such as news, research papers, or government announcements, is published online
and available around the clock through modern IT systems. Yet, distilling the relevant information
from the sheer overwhelming amount of data is still an incredibly difficult task.

Academic publishing companies like Springer Nature have long since realized that simply providing
access to papers and books is not enough to meet the needs of researchers, engineers, and other
professionals. Instead, their focus has continuously shifted toward organizing information and
giving the users new means to find and access precisely what they need. Research platforms
like SpringerMaterials1 provide enhanced and interactive visualizations, tabular overviews, and
1https://materials.springer.com
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Figure 19.1.: Architecture & exemplary usage of WannaDB
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domain-specific search functions backed by extensive and carefully curated databases. Additionally,
tools and APIs for text and data mining support academic and industrial research.

Nevertheless, many data discovery techniques require technical background knowledge and are
not easily accessible to domain experts from, for example, finance or healthcare. According to
[KL10], there is a lack of easy to use tools for information extraction, as information overload can
limit the performance of knowledge workers and not all existing tools provide sufficient benefit.

We therefore propose an approach that puts domain experts and knowledge workers in the driver’s
seat, acting as their own personalized data scientist. WannaDB allows them to interactively extract
domain-specific information from text collections, organize it in tabular form, and find answers
without requiring a trained data scientist. In this paper, we demonstrate how this can be helpful
for tasks revolving around particular information needs, as well as the open-ended exploration of
large text collections.

One example of such an extraction task could be financial news-gathering, where analysts must
quickly obtain key figures like revenue, earnings per share, or mergers and acquisitions from
company reports and press releases. Unfortunately, this task is cumbersome and error-prone when
done by hand. Furthermore, off-the-shelf extraction systems often cannot extract all information the
user is interested in. As domain experts and knowledge workers typically do not have the technical
skills to craft custom extraction pipelines, they might experience a context gap, i.e., they are unable
to bridge between their specific terminology and the labels used by existing extraction approaches.
Moreover, knowledge workers are often not allowed to send sensitive data to third-party APIs, so
one cannot always expect to have a domain-specific pre-trained language model at hand. Training
a dedicated extraction model for such a task is often infeasible, since domain practitioners might
lack the required training data. Finally, a learned model is in most cases not interpretable by
humans, leading to a lack of trust in the results [Sch+22].

These problems are even more significant for the open-ended exploration of text collections, where
the relevant attributes are not known upfront. Users need a data-first approach that allows them
to quickly get insights without long feedback loops. Again, being able to quickly organize the data
in tabular form can be of great help. Such a table may serve as the basis for further exploration
and analysis, for example by revealing subsequent avenues of investigation, by providing initial
answers through the computation of aggregates such as sums or averages, or by further filtering
the document collection based on particular attribute values.

19.2. Overview of WannaDB

With WannaDB, we present such a tool that enables users to derive tabular representations from
text collections and even run SQL-like queries on it. WannaDB extracts and organizes information
by incorporating user feedback (see Figure 19.1). Instead of defining manual extraction rules (like,
e.g., in [GB19]), users only need to confirm or rectify a small amount of guessed extractions in
WannaDB (as can be seen in Figures 19.4 and 19.5).

Through user interaction, WannaDB gives users the opportunity to steer the extraction process and
does not require large amounts of training data to adjust to new domains. Compared to trained
black-box extraction models, WannaDB transparently shows the user what is extracted from the
texts and gives them the opportunity to fix incorrect extractions right away. Approaches like this
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are supported by a recent study [Sch+22], that emphasizes the importance of keeping the human
in the loop to both increase efficiency and trust in tools and results. Moreover, this will get even
more relevant in the future as regulations such as the European General Data Protection Regulation
or the upcoming AI Act include a “right to explain.”

The granularity of information that can be possibly extracted by WannaDB goes far beyond the
one of classical named entity recognition and, in particular, incorporates the context in the target
definition (e.g., finding the pharmaceutical company conducting a clinical trial as described in the
current document vs. finding companies or even all kinds of organizations in that text). WannaDB
even manages to do so for numeric values with different semantics, e.g., finding both the number
of people vaccinated once and twice in a daily status report on the COVID-19 pandemic.

One could now argue that the task of information extraction from text could easily be addressed
using large language models such as GPT-3 [Bro+20] or LLaMA [Tou+23]. However, their high
resource requirements and long runtimes currently inhibit their use in exploratory settings, as we
demonstrate even for smaller models such as BART [Lew+20]. In contrast, WannaDB requires
only a one-time pre-processing per text collection on a single GPU, after which the text collection
can be explored at minimal cost on typical consumer hardware (even on CPU-only machines). In
addition, language models are often accessible only through an API and employ pay-per-query
business models, where users are reluctant to openly explore the data as they have to pay for every
single query. By contrast, WannaDB is released as an open-source tool that domain experts can
apply directly to their own data.

Finally, our approach combines the advantages of language models or embeddings with the
strict calculation possibilities and deterministic behavior of the SQL data query language. It can
produce tables stating information that is not explicitly mentioned in the documents and hence not
discoverable by pure extraction or search approaches, and can perform numerical reasoning on the
data without the need to rely on the limited mathematical abilities [Hen+21] of a language model.

To allow for quick computation of query results on various domains, we build on two assumptions:
First, WannaDB is currently limited to single-table queries on top of domain-specific document
collections. In other words, we extract one table per document collection, where each row of the
table corresponds to one document. However, this is not a severe limitation, as the extracted table
can be seen as the materialized result of a join. For example, if a user needs information about a
company’s quarterly results along with general information about the company itself, WannaDB
will extract a wide table containing all the necessary attributes for the query.

Second, the results produced by WannaDB are always approximate. There might be some incom-
plete or dirty values, but the approach allows creating tabular representations that contain the
essence of a document collection with regard to certain user-specified attributes with only very
little user feedback. In short, we focus on providing low-cost exploration document collections
instead of exact results at much higher costs.

19.2.1. What does WannaDB provide?

WannaDB enables users to interactively extract domain-specific information and organize it in a
table without the need to manually specify extraction rules or provide large amounts of training
data. The basic idea is to first (independently of the user’s information need) extract possibly
relevant information snippets using off-the-shelf extraction systems, and then leverage a small
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Figure 19.2.: Excerpts of press releases from the healthcare domain with highlighted extrac-
tions/nuggets from applying the first stage of WannaDB.

amount of user feedback to bridge the context gap and select the right information to fill a tabular
representation with custom columns with information from the document collection.

The technical details and an extensive evaluation of our system were presented at [Hät+23a]. In
this paper, we showcase the real-world deployment of our tool in an industrial scenario at Springer
Nature and conduct a multipart user study to prove its usefulness for real world applications.
Additionally, we present changes we made to the interactive table filling procedure to overcome
previous shortcomings of our two-staged approach—allowing the user to select values that have
not been extracted by the generic extraction systems in the first stage, too, and to leverage that
information for the further table construction. Furthermore, we improved the graphical user
interface initially presented at [HBB22] based on various feedback we received. We publish our
code and documentation at https://link.tuda.systems/wannadb.

19.2.2. Lessons learned from the Industrial Deployment

In the remainder of this paper, we focus on the lessons learned from deploying WannaDB for an
industrial use case at Springer. First, we explain the industrial use case in Section 19.3, followed
by the details of how WannaDB works (Section 19.4). We then perform an evaluation, both with
end-to-end experiments and a user study.

As part of this study, we conducted expert interviews, which underline the use of tools to extract
and organize information without coding in exploratory or prototypic scenarios. The users liked the
ability to quickly try many queries, and favored that our system adapts to their use of terminology
and not vice versa. Our experiments show that our system works both substantially better and
faster than a learned few-shot system that received the same amount of domain information from
the user. Finally, our study confirms that real users can achieve a similar result quality as predicted
in our simulations. More details on the evaluation can be found in Section 19.5.
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Afterwards, we show similarities and distinctions of our system to existing approaches and tools in
Section 19.6, before we explain how WannaDB can be used for your own applications in Section
19.7 and conclude in Section 19.8.

19.3. Industrial Scenario

In the following, we sketch the usage of WannaDB at Springer Nature Data & Analytics Solutions.2
The description is based on a real scenario of a data science team that helps customers to answer
data-driven questions. An evaluation and a user study based on such scenarios are shown in Section
19.5.

Typically, customers approach Springer Nature with a vague question like “Can we somehow get
information on the current state of health equity from (publicly) available data?”. What data could
be used to answer that? A quick web search results in some statistics and reports by the World
Health Organization, as well as many press releases from the healthcare sector. As a result, the
data analyst working on the initial phase of this customer project ends up with a large collection
of short texts from a lot of subtopics: some of the texts are focusing on certain diseases, others
cover the medical situation in a certain area, some more describe clinical trials, etc.—examples
are shown in Figure 19.2. The files are united by the fact that they probably all cover the health
domain and therefore share a common terminology. Yet, they were written by different authors
and published by multiple organizations, so structure, level of detail and in particular their focus
will be different. In short, there are many diverse files, too many to read and understand in a
reasonable time—especially when considering that the analyst still does not really know whether
they really contain relevant information for them. Even categorizing them will already require a
lot of effort, either for developing classification rules or labeling data to train a learned model.

This is the first place where an open exploration tool like WannaDB can help. An analyst stumbling
through the dataset can use it to quickly check whether elements with the same meaning as they
saw in a randomly opened document also appear in many others. Yet, this is not about finding
exact words like it could be done with a keyword search, but instead checking, e.g., whether values
representing the revenue of a pharmaceutical producer and the associated time span occur—without
considering only fixed phrases like “revenue”, “last year”, or “Q4”. The analyst will useWannaDB to
quickly build an approximate table reporting these attributes for the document collection. For some
texts, this will work well. For others, the cells will stay empty or contain values that are clearly
unrelated. The analyst now knows that a subset of the texts deals with company key figures—but
others probably cover other topics. They can (again led by intuition and some randomness) now
repeat this process for other interesting attributes, like key numbers of clinical trials. WannaDB
thus helps them to get an intuition regarding which topics are covered in the document collection.
Furthermore, it can be used to divide the documents into these subtopics based on the presence or
absence of attributes that the analyst perceives as typical for a particular category. All this time,
the tool does not work with a fixed terminology, but instead based on the concepts that the analyst
mentally connects to the terms they enter.

The analyst may now decide that they want to dive deeper into one of the areas touched by the
data, e.g., have a closer look at certain diseases and regions. WannaDB can again help to quickly
2https://www.springernature.com/gp/products/database/data-solutions
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and approximately extract and organize potentially relevant values, like counts and percentages
of people affected by a disease or the regions the disease occurs in. The interactive approach
again bridges between the mental model and the terminology used, and allows getting answers
cheaply and without long waiting times. Furthermore, the SQL-like query structure enables filtering,
ordering, and aggregation operations and combination of attributes.

They may now continue with other parts of the data and try to fill other target structures, or they
may repeat the process on additional data like white papers to see whether they are suited to
supplement this data. Overall, WannaDB allows analysts and other practitioners to explore a data
collection, split it up, quickly get trends for some hypotheses, and learn whether the data is suitable
for fulfilling certain information needs before spending a lot of time and money on extracting
exactly the information required to transform it into a beneficial representation.

19.4. Interactive Query Execution

The architecture of WannaDB consists of two main stages, an offline extraction and pre-processing
stage and an online interactive query execution stage. In this paper, we give a high-level overview
of WannaDB’s system architecture. Further technical details can be found in our paper published
at BTW’23 [Hät+23a].

Extraction: During the extraction stage, short information-bearing text snippets are greedily
extracted from every document of the document collection using named entity recognizers (see
Figure 19.1, upper part). As a default, we use off-the-shelf named entity recognizers from
Stanza [Qi+20] and spaCy [Hon+20] as basic extraction systems. However, our system follows a
framework approach here and could integrate any approach that identifies interesting text spans.
In particular, this allows the usage of domain-specific resources that might be available in a company.
The extracted values are then turned into information nuggets, which comprise embeddings for
context information, in some cases a label, and the text span itself. These information nuggets are
the basis for the interactive query execution, as WannaDB identifies which information nuggets
contribute the most to answering the user’s query with the help of user interaction.

The extraction stage needs to be run only once per document collection (independent of information
need) and is fully parallelizable on the document level. The pre-processed extractions can easily
be shared between users. In the industrial context, this means that the preprocessing can be done
independently for every new document added to the exploration platform, be it uploaded by the
user or from an automatic scraping or curating process—when additional documents are added to
a text collection, the processing only needs to be done for the new documents without the need
to re-process previous documents. This is an advantage of WannaDB over approaches where the
latent embedding representation is dependent on all documents, and therefore has to be adapted
for every document as soon as additional data is added.

Interactive Query Execution: At runtime, a user issues queries and interacts with WannaDB to
execute them. The user can either enter an SQL-like query or specify a list of attributes they are
interested in (see Figure 19.3). WannaDB automatically infers the table structure required to
answer a query and employs a novel interactive table filling procedure to map the information
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Figure 19.3.: Main interface of WannaDB, where the user can enter a query or manually specify
attributes, manage the table’s cell values, and inspect the results.

Figure 19.4.: Interactive table filling view that shows WannaDB’s currently guessed values for an
attribute and allows the user to provide feedback.

Figure 19.5.: Detailed inspection view for a particular document and attribute. The user can read
the proposed table cell value in context, confirm it, adjust it by selecting another
proposed extraction or a custom text span, or state that no value for this attribute
occurs in the document. The list of proposed values at the bottom is ordered by the
closeness to the next manually-confirmed value for this attribute.
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nuggets extracted in the first stage to the required query attributes. To achieve that, WannaDB
operates in the joint embedding space of information nuggets and target attributes (i.e., columns
of the table), and decides which information from the document corresponding to the current
table row is the correct value for the attribute and should be used to fill the cell based on cosine
distances in the vector space. This provides transparency to the user, too: each automatically filled
cell value will be chosen based on the closeness to a manually confirmed other value. Thus, our
system does not only use the exploration of the vector space to fill the table, but that provides
explanations for the behavior of the system as well. The user can inspect this information during
the interaction phase and after the automatic filling of the remaining cells.

The interactive table filling works in an attribute-by-attribute fashion and by collecting user feedback:
WannaDB displays a list of potential table cell values together with the contexts they appear in (see
Figure 19.4). The user can select any of these rows and either confirm a cell value directly or switch
to the edit and inspection view (see Figure 19.5) to carefully review the proposed value and either
confirm it, select another proposed extraction or a custom text span, or state that the document at
hand does not contain a value for that attribute. This feedback is then used to recompute distances
between known and unknown values to update WannaDB’s guesses. The user continues to give
feedback until they are satisfied with the quality achieved. This process is steered by carefully
selecting which table value guesses are presented to the user for feedback to reach a high table
filling quality with as little feedback as possible. At the same time, since WannaDB always presents
multiple rows to the user at once, our approach can leverage the human ability to quickly identify
(incorrect) entries that stand out without the need to carefully read all rows the system is currently
unsure about.

To allow for empty cells in case a document does not state the required value, WannaDB applies a
distance threshold and only populates a table cell with its best-fitting value if this value’s distance
in the embedding space is lower than the threshold. This threshold is automatically tuned based
on the user’s feedback to account for variances in the closeness of vectors for different attributes.
By using only a single threshold per attribute, we treat the vector space uniformly, even though
the “closeness level” in a vector space will probably never completely correlate with the semantic
closeness. Our experiments, however, show that this threshold is normally enough to decide which
values should not be considered at all (i.e., which ones are so “off” that it is better to rather
keep a cell empty). By tuning only a single threshold per attribute, we can achieve that kind of
generalization with a minimal number of feedback interactions.

In addition to previously published versions of our approach, we now make it possible to manually
select arbitrary relevant text spans at runtime in case they were not (or only partially) extracted by
the greedy extraction stage. WannaDB will then use the manually-selected span to fill the cell for
the corresponding document. Furthermore, this new nugget is added to the embedding space, and
marked as a confirmed element there, such that existing nuggets from other documents close to it
can be selected as candidates by the system. As a further way to profit from this user feedback,
WannaDB will also scan other documents for potentially relevant text spans that are similar to this
manually-selected one and add them to the vector space to select the nuggets from. That way, we
overcome some of the issues of our strict two-staged approach without losing its advantages (i.e.,
the fast response times during the interactive query execution without the need for a powerful
machine).
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19.5. Evaluation on Real-World Data

The main focus of the evaluation in this paper is placed on the industrial usage of our tool, which
includes a multipart user study on a real-world scenario at Springer Nature. Additionally, we
show the end-to-end performance of WannaDB on real-world datasets and compare both the result
quality and the runtime to a learned few-shot approach using a similar amount of feedback. For
an in-depth technical evaluation of the individual components of our system, the scalability, as
well as a comparison with multiple further baselines, we refer to our paper published at BTW’23
[Hät+23a].

19.5.1. End-to-End Performance

To measure the end-to-end performance of WannaDB, we simulate a fixed amount of user feedback
(20 interactions per attribute) for a list of target table columns on each text collection and measure
the resulting performance (F1-score3) for each of these attributes. We compare these scores to
a few-shot training/refining approach that received the same amount of input/feedback, i.e., a
BART sequence-to-sequence model fine-tuned on 20 labeled examples. For both approaches, we
additionally measure the time needed to construct the full table, hence for our tool the time to
evaluate and incorporate the user feedback and for the few-shot approach the time needed for
training and prediction.

Few-shot Baseline: To put our results in perspective, we compare WannaDB with a few-shot
approach trained on the same number of labeled examples per attribute that is provided to
WannaDB in the evaluation setting: we fine-tune a BART [Lew+20] model from the Huggingface
[Wol+19] library on 20 randomly4 picked datapoints for each attribute of each dataset, simulating
the scenario of replacing the internal workings of WannaDB by a learned model. The information
extraction task is thereby formulated as a sequence-to-sequence task (i.e., the input is a text
document and the output is the structured data extracted from the text). Each model is trained for
up to 20 epochs, with a learning rate of 1e− 5. We split the 20 datapoints in 15 for training and 5
for validation and select the best checkpoint based on the performance on the validation set.

Datasets: For this evaluation, we use three datasets: Aviation, a text collection based on 100
aviation accident reports, COVID-19, again 100 documents describing the situation of the Covid-19
pandemic in Germany and focusing on numeric attributes with a lot of cases where the system
should deliberately keep the resulting cell empty, and T-REx, an adapted version of the T-REx
dataset [ElS+18] which is based on Wikipedia articles with aligned Wikidata triples from which
we extracted three subsets (about Nobel laureates, countries, and skyscrapers). More details on
3We thereby consider cells (i.e., an attribute value) as true positives when they are correctly filled with information
from the text corresponding to that row, and as true negatives when they are correctly left empty, in case the required
information is not present in the corresponding text. False positive predictions occur when a cell is filled incorrectly.
False negatives occur when a cell is left empty that should have been filled with data from the text, and also for
incorrectly filled cells, as the correct nugget has not been found.

4In contrast, one core functionality of WannaDB is to leverage the feedback to propose cells to give feedback to. This is
not possible here, since the few-shot approach requires all examples at once for fine-tuning and validation. Adapting
that would largely increase the runtime.
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Figure 19.6.: Table filling results. It can be seen that ■ WannaDB outperforms the ■ few-shot
BART model (fine-tuned on 20 datapoints) on every dataset.

the datasets can be found in [Hät+23a]. For each of these datasets, we either manually annotated
the correct values for each attribute and document (Aviation, COVID-19) or used the existing
alignment (T-REx).

Table Filling: The results ofWannaDB in comparison to the few-shot BART baseline for table filling
are visualized in Figure 19.6. It can be seen that WannaDB consistently outperforms the few-shot
baseline approach on all datasets. The highest performance difference is notable on the COVID-19
dataset, where WannaDB reaches an F1 score of 80%, whereas the BART baseline models only
reach 50%. We suspect that this is partly due to the limited capabilities of language models such
as BART when working with numerical values [Hen+21], as there are many numerical attributes
contained in the COVID-19 dataset, such as the incidence or the number of patients in intensive
care. Additionally, we noticed that the BART baseline models have difficulties when many of the
texts do not mention the required values and thus many cells need to be left empty. Meanwhile,
WannaDB shows consistently good performance extracting numerical attributes, as well as having
fewer problems when dealing with missing data. An intuition that our system indeed explores
the vector space and leverages closeness can be found in Figure 19.7. It shows a low-dimensional
projection of the guesses of the system after different numbers of feedback iterations compared to
the gold standard shown in the same way. It can be seen that WannaDB quickly converges to the
selection of the correct values for nearly all attributes of the dataset.

Runtime Analysis: As WannaDB is an interactive tool, it is critical to achieve a short latency when
processing user interactions and incorporating the feedback to populate the table cells, since too
much waiting time for users makes a system uncomfortable to use. We therefore measure the
time needed for our system to process 20 user interactions per attribute and apply the feedback
to automatically fill the remaining cells. For WannaDB, we report the time on a machine with
a CPU only (AMD Ryzen 9 3900X; RAM: 32GB @3000MHz) as well as on one equipped with a
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Figure 19.7.: Visualization of the explored vector space for the aviation dataset. The important
dimensions for each attribute are highlighted using UMAP and plotted as a hexbin
visualization, showing the guesses of WannaDB after 1, 5, 10, 15, 20, and 25 interac-
tions compared to the gold selection in the last column.
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Figure 19.8.: Average runtime per attribute in seconds - logarithmic scale. We compare ■ Wan-
naDB on a CPU and ■ WannaDB on a consumer GPU with a ■ few-shot BART model
on a server GPU. The ■ dots show the number of documents per dataset on the
same logarithmic scale. It can be seen that running ■■ WannaDB takes orders of
magnitudes less time than the ■ BART model.

GPU (NVIDIA GeForce RTX 2070 SUPER with 8GB VRAM). For the few-shot approach, we only
report the performance for training and prediction on a machine with a GPU designed for machine
learning (NVIDIA A100-SXM4-40GB). Using a consumer machine without an ML-optimized GPU,
this approach would take at least five hours per attribute, rendering it completely unusable for
exploratory scenarios.

Figure 19.8 visualizes the results of our runtime measurements; we report the average over 20 runs.
For better readability, we chose a logarithmic scale and visualize the average time per attribute in
seconds for each of our datasets, together with the respective dataset’s size. It can be seen that
running WannaDB takes orders of magnitudes less time compared to the language model-based
BART approach. On our largest dataset T-Rex: Skyscrapers (2683 documents), WannaDB needs
around 47 seconds total computation time for all calculations together (not including the time
waiting for the user to perform feedback actions) on a machine with a CPU only, whereas the BART
model nearly takes an hour to predict the cell values from all the 2683 documents, even though it
is running on a much more powerful machine. Even when incorporating the preprocessing time,
which only has to be done once for all attributes (our default extraction phase takes about 48
minutes and produces 102, 467 nuggets for the T-Rex: Skyscrapers dataset) and only use a consumer
GPU for that, our approach will be faster than a run for a single attribute with the BART model on
an ML-optimized machine. Overall, our runtime analysis shows that WannaDB is indeed usable in
an interactive fashion and does not cause long waiting times for the user as a system based on a
language model like BART would. It can also be seen that our system scales well with the number
of documents.
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Summary: In conclusion, this evaluation shows that WannaDB achieves continuously better
performance on all our datasets while at the same time being orders of magnitude faster than a
pre-trained language model such as BART. Additionally, WannaDB has several other advantages
over the baseline, such as being more transparent and interpretable (i.e., through the notion of
closeness between automatically selected and user-confirmed values) and not suffering from the
problem of hallucination that transformer-based models regularly experience [May+20], since
they aim to also generate values for attributes even if the information is not present in the text.
WannaDB instead leaves the corresponding cell empty.

19.5.2. User Study in the Industrial Scenario

WannaDB is an interactive tool that is intended to assist real-world users. Therefore, we also
want to evaluate the users’ experience of working with the system. Both the core algorithms
including the means of feedback and the graphical user interface were iteratively refined over
the last years [Hät21; HBB21; HBB22; Hät+23a]. In this study, we now want to systematically
evaluate WannaDB: in the first part, we want to learn about the expectations of data analysts, data
scientists and knowledge workers for such a tool and how well it integrates with their existing tool
chains and pipelines. In the second part of this study, we will focus on evaluating how intuitively
users can use the tool and how good the table filling quality is with real user feedback, as our
previous evaluations were based on simulated user feedback.

Method

We carried out our study with ten people overall. In the first part, we conducted two expert
interviews with senior data analysts working at Springer Nature in the areas of dataset curation
and visualization. The interviews considered the field of work of the participants, their relation
to working with unstructured data, and other tools they are currently using. The participants
were asked to assess the tool’s basic ideas and its application areas. To evaluate the usefulness of
WannaDB for them in a real word exploratory use case, this was combined with an open exploration
phase of our prototype with think-aloud reporting on data already familiar to them from their
current work.

For the second part of our study, we recruited eight PhD students with a computer science back-
ground. The users were given a short written introduction to WannaDB and a short explanation of
the scenario of extracting information from a text collection of status reports about the Covid-19
situation from the German RKI. Afterwards, they were asked to perform 7 tasks in a predefined
order. During those tasks, they received further information in the form of a short, written manual
explaining some backgrounds of the system and describing possible actions using some screenshots.
As the final part of the study, the users were asked to fill out a questionnaire including both rating
and free text questions.

1st Part – Insights and Results

The first interviewee needs to transform unstructured data into some kind of tabular representation
as part of his daily work routines, a task that currently consists of many “fairly manual” steps
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Figure 19.9.: User study table filling results. We visualize the table filling F1-score dependent on
the amount of feedback a user gave for each attribute, for the first attempt without
the manual (×) and the second attempt after reading the manual (⋆). The lines
indicate the table filling quality achieved by the simulated user feedback. It can be
seen that even with a small number of interactions (< 10), a high quality can be
achieved. Experience with the system (reading the manual before and using it for
the second time) mostly decreased the number of interactions required to achieve a
similar quality. The performance by the participants is mostly similar to the one of a
simulated user.

and often requires “quite complex coding.” For him, a useful exploration tool for textual contents
should “reduce the time spent on coding” and “on initial data collection” and “allow to quickly
and easily create tables.” He sees a strong chance of time saving when data can be transformed
“without the need to manually compose extraction pipelines.” When using WannaDB, he assumes
that people might need some time and training to come up with useful attributes, but likes the
possibility to quickly confirm extractions in an appealing interface (“seems to be useful to save
time”). Additionally, he is delighted that the tool performs generalization/adaption without him
needing to care about the machine learning processes.

The second interviewee works together with data experts on the one hand, and visualization and
UX experts on the other. As part of his tasks, he needs to learn what kind of information exists in
datasets to create suitable visualizations from that. His main tools are spreadsheets, running SQL
on databases and some rapid prototype coding. The process of developing visualizations often
requires multiple rounds of iterative improvements, where he has to wait to receive suitable data
and integrate it to then test new ideas and submit them for feedback. He would profit from the
ability to quickly generate approximate data while working together. Another important task for
him is filtering large datasets to build smaller datasets covering subtopics, which can be a prerequisite

251



0 1 2 3 4 5 6 7
minutes spent giving feedback

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

date
incidence
new_deaths
patients_intensive_care
without manual
with manual

Figure 19.10.: User study table filling results. We visualize the table filling F1-score dependent
on the minutes a user spent giving feedback for the attribute, for the first attempt
without the manual (×) and the second attempt after reading the manual (⋆). After
reading the manual and being more familiar with the tool, in the second attempt
users needed only about half the time to reach a comparable quality.

for several analytic and visualization steps. Finally, he emphasizes the fact that a simplified version
of a dataset, e.g., “a bar chart instead of a map” can often be the best way to convey a message.

Presented with the idea of the tool, he likes the idea since it “implies some kind of automation,
that automatically delivers you a result without heavy lifting.” He imagines that it can be used to
“run multiple queries, compare the results, and decide which, e.g., two out of five queries are the
ones you should continue with.” When using WannaDB for the first time, he needs some hints (“I’m
not sure whether I need to enter a specific name of a field of an existing dataset or whether I can
give it an arbitrary name like ’Bob’”) but then understands how he can specify the target structure
he is interested in. He also correctly infers from the interface how selecting a nugget or custom
text span are used to update the table of current guesses during the interactive table population.
After trying the tool, he points out that this “looks like it could help people to independently work
on data without needing to ask people to do this for you.” He imagines literacy review to be one
field of application, and compliments on the “filtering possibilies beyond [those in] Excel.”

In summary, both interviews confirm the intended application and the need for such a tool to
reduce manual processing steps in exploring datasets. Both participants commented positively on
the user experience and are interested in learning more about the tool in the future.
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2nd Part – Tasks

The second part of the study used a list of tasks that were handed out to the participants: First
(Task 1), users were asked to open 2-3 of the documents in order to get a first impression of the
data they will be working with. Next (Task 2), they were asked to load the document collection
into WannaDB, and to enter the attributes date and incidence (Task 3). WannaDB provides multiple
options to enter attributes, and we left open which option to choose, observing which way seemed
most convenient to the users. Afterwards, users were asked to start populating the table cells by
interacting with WannaDB. They were given no additional hints regarding the best strategies for
giving feedback apart from the guidance provided by the user interface. They could decide on
their own when to stop giving feedback based on whether they were satisfied with the reached
extraction quality. Only after finishing the cell population on their own, they were given a manual
to read through (Task 4), explaining more background on the internal workings of WannaDB. After
reading through the manual, we again asked the users to populate the table cells for the attributes
date and incidence (Task 5). Here, we wanted to measure how their strategies for giving feedback
change after knowing more about WannaDB, and whether that impacts the overall quality of the
extracted results. As a next task (Task 6), users should further explore WannaDB by entering
another attribute they were interested in. They were also allowed to look again at a few documents
to come up with another attribute to extract. As a last task (Task 7), users were asked to export
the extracted data to a csv file. Finally, users were sent a questionnaire to rate the usability of
WannaDB using the System Usability Scale (SUS) [Bro95] and to answer additional questions, as
well as to provide feedback on what they liked about the tool and what improvements they would
suggest.

2nd Part – Results

Overall, all participants in our user study were successful in completing the seven tasks. The initial
loading of the documents at the start (Task 2) and the exporting of the result table at the end
(Task 7) were performed without difficulties by all users, as they all were able to quickly detect the
functionality in the tool.

Table Filling Performance: For the tasks regarding the extraction of the attributes date and
incidence from the documents, we visualize the result quality in Figure 19.9 and 19.10. In Task
2, users were asked to fill the result table for the two attributes without having background
knowledge on the internal workings of WannaDB. The F1-score dependent on the number of
feedback interactions for each attribute is visualized using ×-shaped markers in Figure 19.9. It
can be seen that for the attributes date and incidence, users gave feedback between ∼ 5 − 25
times, and were able to reach F1-scores higher than 0.75%. In Figure 19.10 it can be seen that it
took users between 1 and 4.5 minutes to give feedback for each of the two attributes in this first
attempt, before they achieved an extraction quality they were satisfied with. The results of the
second attempt of filling the table (Task 5, after reading the manual), are visualized in both Figures
with ⋆-shaped markers. It shows that in the second attempt, both the number of interactions
(only up to 5 for the attribute date) and the time needed were reduced, while reaching extraction
qualities that are comparable to the first attempt. Additionally, we noticed during the study that the
participants now decided more deliberately which kind of feedback to give based on the state of the
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Figure 19.11.: Answers of the participants to rating questions in the post-survey questionnaire.
Scale from 1 – Strongly Disagree to 5 – Strongly Agree.

currently displayed entries. We find that our system allows for a steep learning curve, where some
background information from the manual, as well as being a bit more familiar with the tool in the
second attempt, helps to reduce the needed interaction time quickly. The resulting performance
values are similar to the ones when simulating the user feedback for the same amount of iterations
(assuming perfect feedback for randomly chosen entries). This affirms the results presented in
[Hät+23a].

Exploration Observations: In order to explore the text collection on their own and to get further
insights into the capabilities of WannaDB, users were also asked to add attributes they came up
with on their own and extract them from the documents with the help of our tool (Task 6). The
users chose the attributes deaths, intensive care, death percentage, state, and high incidence districts.
The attribute deaths was chosen independently by 5 out of 8 users. The users were free to decide
how much feedback they want to provide for extracting the attribute and when to stop the table
filling process. This lead to a wider range of results regarding the reached F1-scores for the custom
chosen attributes, as some users were more ambitious than others to reach a very good quality and
were therefore willing to provide more feedback.
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Figure 19.12.: User scores for the 10 questions from the System Usability Scale (SUS) [Bro95]
(higher scores are better).

Figure 19.13.: WannaDB achieves a SUS score of 80.31, which is part of the 85 − 89 percentile,
corresponding to a grade of A-.
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System Usability Scale: After completing the seven tasks, the participants were asked to fill
out a questionnaire containing the ten questions of the system usability scale (SUS) [Bro95]. We
visualize the average result per question (normalized to values between 0 and 10) in Figure 19.12.
Overall, WannaDB receives a SUS score of 80.31, which is part of the 85− 89 percentile (see Figure
19.13) and corresponds to the grade A-, the rating acceptable on the acceptability scale, and good
on the adjective rating scale developed by [BKM09].

Comments and Questionnaire Results: Furthermore, in the questionnaire, the participants were
asked to give a degree of agreement for some questions regarding the interaction with the tool,
the usefulness and the manual. The results can be found in Figure 19.11; overall the ratings are
positive.

Asked about potential use cases of WannaDB, participants imagined, e.g., a usage as “preparation
step to quickly generate plots over textual data”, to “verify whether certain information is sufficiently
present in a source” or to “evaluate free text answers in feedback surveys.” The participants
reported that they, e.g., liked the gamification aspects of optimizing the displayed scores through
feedback actions, “that there was no restrictions of what attributes/columns to extract”, allowing for
extraction of any imaginable attribute, the general idea of the iterative approach and generalization,
the quick reactions after feedback and the possibility to both confirm and correct entries, and “how
quickly the tool learned to extract values from text with only a few interactions.”

Think-aloud reporting during the usage of the tool led to ideas for improvements (see next section)
and other valuable insights:

The users liked that they could select a proposed extraction by simply clicking on it. We could
notice that different participants followed very different strategies for feedback, some always tried
to feedback the first or last entry, some preferred one type of feedback (confirming or correcting
entries), some tried to actively balance between them. Moreover, some assumed a sufficient quality
once no or even only a few wrong cells were visible in the table population view, while others
continued confirming even after they noticed some convergence for a certain time “to be sure.”
This may also depend on the reason to do such a task and whether there is an intrinsic interest in
the result.

We were also reminded that one cannot expect that all users carefully read instructional texts
in the software or a manual (by questions about topics explicitly stated there). However, it was
mentioned by multiple participants that they rely on short explanations and tooltip texts and prefer
them over just icons or very short labels.

Especially for attributes that require some more rounds of feedback, we could quickly notice that
the participants soon started detecting patterns, and then explicitly checked for them, e.g., by
looking at certain “typical” positions in the document when correcting an entry. Finally, participants
reported that exactly those attributes require more feedback to correctly fill than others, where
more simulated feedback was needed in our previous evaluations, too.

Suggested Improvements

We asked all participants for suggestions on how we could further improve the tool and got valuable
ideas that we plan to integrate in WannaDB. In particular, we will further improve the way the
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difference between cells filled with high confidence and those that will not be considered for the
result tables (distance threshold) will be visualized, since multiple participants needed explanations
from the manual to perceive the difference. Users suggested adding the ability to scroll through
extractions from more documents than only the 10 extractions that are currently presented by
WannaDB (Figure 19.4). Also suggested was a search functionality when inspecting a document
(Figure 19.5) and the ability to undo the last action, for example in cases where an extraction has
been confirmed by mistake. We also received other minor suggestions like adding a link from the
result table to the raw document a row was extracted from. Additionally, users suggested updates
to the provided manual that we will incorporate, and we also got further ideas on how to improve
the user interface to make it even more intuitive.

Overall, both parts of our study confirmed the usefulness for the planned application. We got very
positive feedback regarding most aspects of the existing user interface, the approach itself, and the
quality of the results.

19.6. Distinction from existing systems

Running SQL queries on text collections is a new task, and to the best of our knowledge, there is no
other system yet with the same capabilities as WannaDB. However, some parts of the task resemble
existing tasks and for some components of our approach there is previous work. Therefore, in this
section, we give an overview of the related work of different areas, as well as explain the distinction
of WannaDB from existing systems or approaches.

Information Extraction Systems: Existing approaches to answer queries over text collections
heavily rely on manual labor, requiring users to either read through vast amounts of text and
extract relevant information manually, or to build specific extraction pipelines.
One category of information extraction systems focuses on the task of knowledge base population,
where a graph-structured knowledge base is constructed or expanded based on knowledge from
natural language texts. One possibility to build them are manual annotations, possibly supported
by a tool that displays knowledge already gathered graphically (e.g., [SGL08] provides a visual
analytic system to explore connections between entities found in document collections). Extractive
approaches like DeepDive [Sa+16], SystemT [Chi+10], DefIE [BTN15], and QKBFly [Ngu+17]
build upon (open) information extractors like ClauseIE [CG13] and also perform the adaption,
cleaning and combination stages of the knowledge base building process. However, these ap-
proaches require high manual efforts to design extraction pipelines for each knowledge base and
domain specifically, whereas WannaDB generalizes to unseen domains and information needs.
Another line of work explores the generation and application of information extraction rules based
on user specified examples [Han+17; Sch+22]. Google Squared could be used to create fact-tables
similar to the ones we propose from web contents, but was unfortunately discontinued without
publications about the underlying techniques. Another approach for fact table creation is Jigsaw
[GB19], with a focus on scalable processing of large document collections. While they also work
with document level nuggets that are organized to fill the table rows, matches between them and
target attributes are not automatically inferred, but have to be specified with complex hand-crafted
extraction rules.
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Named Entity Recognition: WannaDB builds upon extractions from existing named entity recogni-
tion (NER) systems [Hon+20; Qi+20]. While named entity recognition is a sub-field of information
extraction, there are several reasons why it is not sufficient on its own for answering SQL queries
over text collections. Most importantly, training NER systems requires a substantial amount of
annotated data, and the learned system will not generalize to entity types not present in the
training data. Training domain-specific NER systems for information extraction is necessary, as
the extraction categories of most existing NER systems are not fine-grained enough to answer
specific information needs, e.g., companies and universities are often both tagged as organization.
To overcome this limitation, WannaDB employs a novel interactive table population approach to
match information from texts to the user’s query, without the costly training of domain-specific
named entity recognizers.

Supervised Learning Approaches: For the ad-hoc exploration of text collections, supervised
learning approaches are not easy to apply due to the lack of labeled training data. Building a
sufficiently large corpus of annotated training data is costly because, on the one hand, a very wide
range of possible domains has to be covered and, on the other hand, the SQL queries must be
varied depending on the user’s information need, which is difficult to realistically simulate when
creating a dataset.

Large Language Models: Very recently, large language models such as GPT-3 [Bro+20] with
billions of parameters have shown remarkable performance also for information extraction tasks.
However, there are several ways, in which WannaDB is better suitable for the exploration of text
collections, than large language models are: while the pre-processing of text collections with
WannaDB is a one time effort and afterwards users can explore the collection freely, large language
models need to process all texts of a text collection again whenever the user poses a new query.
Due to the size of language models, this takes time and requires substantial computing resources.
Currently, large language models provided over APIs have restrictive limits or are only available
through pay-per-query offers, which restricts the open-ended exploration of text collections as
every query leads to additional costs. To avoid pay-per-query costs, running a local copy of a
large language model is only an alternative when sufficient computing resources are available.
In comparison, WannaDB only requires a machine with a consumer GPU for pre-processing once
for each new text-collection, the exploration works also on a typical consumer computer without
using a GPU.

19.7. Ready to Use

WannaDB is not only a novel approach for information extraction and organizing, but a ready-
to-use tool both for individual usage and industrial deployment, covering preprocessing, query
interpretation, interactive matching and computation of the final results.

We created a graphical user interface for our tool, that is meant to be used by people regardless
of their background. In contrast to the first publication about this interactive tool [HBB22], we
iteratively improved the UI and added new capabilities like direct input and execution of SQL-like
queries.
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Additionally, we provide a stand-alone preprocessing script that can be used to perform the more
computing-heavy preprocessing step on a stronger server equipped with a GPU and then load that
preprocessed version of the document collection for the interactive matching using the GUI on a
normal consumer machine.

WannaDB is dually licensed under both an Open Source license for the free usage by end users or
the embedding in Open Source projects, and a commercial license for the integration in industrial
projects and closed-source tool chains. Code, documentation and further materials can be found
at https://link.tuda.systems/wannadb.

19.8. Conclusion & Future Work

In this paper, we showcased the usage of our tool in an industrial scenario from the healthcare
domain and conducted an extensive user study to prove its usefulness for real world applications.
Additionally, we presented improvements we applied to our query execution procedure compared
to previous publications, as well as further enhancements to the graphical user interface.

In our evaluation, we showed that WannaDB outperforms a few-shot baseline both with regard to
quality and runtime. Experts confirmed the suitability for the intended application in an industrial
scenario. Moreover, the participants of our user study rated the usability and intuitiveness of our
tool as high and were able to complete all tasks with a sufficient result quality in an adequate
amount of time. The results also confirmed the evaluation results using simulated users shown in
our previous publications.

In the future, we want to further leverage user inputs by generalizing manually added extractions
to additional extraction rules at runtime. Additionally, we plan to improve our software by adding
more export formats and creating a browser-based version of the user interface. We will consider
the feedback received in the study to make sure our software is intuitive and easy to use.
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Acronyms

AI artificial intelligence

CA conversational agent

CPU central processing unit

CS computer science

DBMS database management system

ILP integer linear program

IT information technology

LLM large language model

LM language model

MDS multi-document summary

NL natural language

NL2SQL natural language to SQL

NLI natural language interface

NLIDB natural language interface for databases

NLP natural language processing

NLU natural language understanding

OLTP online transaction processing

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language
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