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Abstract

In this thesis, we condition a Brownian motion on spending limited time outside an
interval. More precisely, we bound the occupation time outside the interval by a deter-
ministic constant. This is accomplished by conditioning on approximations of the event
in question and passing to the weak limit.
We start our analysis with the case of an unbounded interval, where we describe the
resulting process in terms of a path decomposition. In particular, we exactly determine
the distributions of the total occupation time outside and the last entrance time into
the interval. Additionally, we provide limiting theorems for the mentioned quantities as
the starting point tends to ∞ or −∞, respectively.
If the interval is bounded, we focus on starting points inside. In this setting, we prove
that the resulting process does not leave the interval at all, but satisfies the very same
SDE as a Brownian motion which is conditioned to stay inside the interval. This result is
a very rare extreme example of entropic repulsion. On our way, we explicitly determine
the exact asymptotic behavior of the probability that a Brownian motion spends limited
time outside the interval during the first T time units, as T →∞.
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Zusammenfassung

In dieser Arbeit bedingen wir eine Brownsche Bewegung darauf, nur begrenzt Zeit
außerhalb eines Intervalls zu verbringen. Genauer beschränken wir die Aufenthalts-
zeit außerhalb des Intervalls durch eine deterministische Konstante. Dies wird durch
Bedingen auf Approximationen des besagten Ereignisses und Übergang zum schwachen
Grenzwert erreicht.
Wir starten unsere Analyse mit dem Fall eines unbeschränkten Intervalls, in dem wir den
resultierenden Prozess durch eine Pfadzerlegung beschreiben. Insbesondere bestimmen
wir die exakten Verteilungen der gesamten Aufenthaltszeit außerhalb des Intervalls und
der letzten Eintrittszeit in dasselbe. Zudem formulieren wir Grenzwertsätze für die
genannten Größen, wenn der Startpunkt gegen ∞ bzw. −∞ divergiert.
Falls das Intervall beschränkt ist, fokussieren wir uns auf Startpunkte innerhalb. In
diesem Setting beweisen wir, dass der resultierende Prozess das Intervall überhaupt
nicht verlässt, sondern genau die gleiche stochastische Differentialgleichung löst wie eine
Brownsche Bewegung, die darauf bedingt wird innerhalb des Intervalls zu bleiben. Dieses
Resultat ist ein sehr ungewöhnliches Extrembeispiel entropischer Abstoßung. Auf dem
Weg dorthin bestimmen wir die exakte Asymptotik der Wahrscheinlichkeit, dass eine
Brownsche Bewegung innerhalb der ersten T Zeiteinheiten wenig Zeit außerhalb des
Intervalls verbringt, für T →∞.
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1 Introduction

1.1 Motivation and Overview

Conditioning stochastic processes on avoiding certain sets is a classical problem in prob-
ability theory. In [Doo57], Doob developed his celebrated theory of h-transforms. This
lead, in particular, to the result that a Brownian motion starting in y > 0 which is con-
ditioned to avoid the negative half-line is nothing but a three-dimensional Bessel process
starting in y. A more modern presentation of this result can be found in [Pit75]. Pro-
ceeding from Doob’s work, similar problems have been considered for more complicated
processes and more complicated or time-dependent sets to be avoided. Many examples
are referred to in the introduction of [Bar20].

In this thesis, we proceed in a different direction: We condition a Brownian motion
on spending limited time outside of intervals. More formally, our setting will be as fol-
lows: We consider a Brownian motion B = (Bt)t≥0 with starting point y ∈ R as well as
a non-trivial interval I ( R and define

ΓT :=

∫ T

0

1{Bt 6∈I}dt, T ∈ [0,∞],

to be the occupation time of B outside of I until time T . Given a maximum occupation
time s > 0, our aim is to condition the process B on the event {Γ∞ ≤ s}, which has
probability 0:

Lemma 1.1. In the above setting, we have P(Γ∞ ≤ s) = 0.

Later on, we will in fact determine the exact asymptotic behavior of P(ΓT ≤ s) as T →∞
(cf. the proof of Proposition 2.9 as well as Theorem 3.2). For now, we restrict ourselves to
the above result and provide an elementary proof based on the strong Markov property
of B:

Proof. Since Ic contains an open interval of finite length, it suffices to prove that B
spends an infinite amount of time in each such interval. By the scaling property and
translation invariance of B, it suffices to consider the interval (−1, 1). Setting τ 0 := 0,
we define the a.s. finite stopping times

σn := inf{t ≥ τn−1 : Bt = 0} and τn := inf{t ≥ σn : |Bt| = 1}, n ∈ N.

The strong Markov property implies that ({τn−σn ≥ 1})n∈N is a family of independent
events with

P(τn − σn ≥ 1) = P(τ 1 − σ1 ≥ 1) > 0, n ∈ N.

1



1 Introduction

Hence the second Borel-Cantelli lemma yields

P
(∫ ∞

0

1{Bt∈(−1,1)}dt =∞
)
≥ P(τn − σn ≥ 1 for infinitely many n ∈ N) = 1

proving the claim.

Consequently, it is not possible to simply consider the conditional law P(B ∈ · |Γ∞ ≤ s).
We bypass this problem by approximating the event {Γ∞ ≤ s} in perhaps the most
natural way: Instead of restricting the occupation time on the whole infinite time axis,
we restrict it on a large but finite time horizon T ≥ 0 and let T tend to ∞. More
formally, we consider the probability measures

P(B ∈ · |ΓT ≤ s), T ∈ [0,∞),

and show that, as T → ∞, they converge weakly on the space C([0,∞)). Here and
in what follows, this function space is, as usual, endowed with the topology of locally
uniform convergence and the corresponding Borel σ-algebra.
Provided that a weak limit exists and assuming for a moment that I is closed to sim-
plify the argument, it is straightforward to check that the total occupation time of a
corresponding limiting process X outside I must be bounded by s: For every T0 ≥ 0,
the event

CT0 :=

{
f ∈ C([0,∞)) :

∫ T0

0

1{ft 6∈I}dt ≤ s

}
is closed in C([0,∞)) with P(B ∈ CT0 |ΓT ≤ s) = 1 for each T ≥ T0 so that the port-
manteau theorem implies P(X ∈ CT0) = 1. Taking T0 →∞ yields the claim.
Naively, one might expect that the allowed s time units outside I are exhausted because
the enforced condition already is a very severe restriction in comparison to the typical
behavior of B. However, this is not the case: The limiting process will a.s. spend less
than s time units outside I. While this is true for every choice of I, the behavior of the
resulting process is still fundamentally different depending on whether I is bounded or
not.
In Chapter 2, we deal with the case that I is unbounded. Under the additional as-
sumption that B starts on the boundary point of I, this problem was already considered
in [RY10] and [BB11]. The focus of our contribution lies on a thorough analysis of the
resulting process and its properties in dependence on the starting point y ∈ R, which
can be chosen arbitrarily. In Theorem 2.1, we give an explicit description of the limiting
process Xy in terms of a path decomposition. In particular, we determine the distribu-
tion of its last entrance time into I, which is a.s. finite. Theorem 2.2 provides the exact
law of the occupation time of Xy outside I. In Theorem 2.4, we finally discuss how the
distributions of the two quantities just mentioned behave asymptotically as y → ±∞
by providing weak limit theorems.
Chapter 3 is concerned with the case that I is bounded. In this setting, we focus on
starting points inside I. In Theorem 3.1, we show that the resulting process is exactly
the diffusion obtained when conditioning B (by a similar limiting procedure) on not
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leaving I at all. In particular, the limiting process does not only spend less than s time
units outside I but a.s. absolutely no time. The key to this result is Theorem 3.2, where
we determine the exact asymptotic behavior of Py(ΓT ≤ s) as T → ∞, including all
terms of sub-exponential and polynomial order. In Corollary 3.3, we briefly discuss why
a limiting process cannot exist in the usual sense for starting points outside I.
The fact that the allowed time outside I is not exhausted completely is in line with re-
lated research, as we will discuss in the following section. However, our extreme results
in the case of a bounded interval are utterly unusual.

1.2 Entropic Repulsion and Related Work

Our results can be seen seen as instances of a phenomenon called entropic repulsion. The
term entropy was introduced by the physicist Clausius as the name of a thermodynami-
cal state function. It is derived from the (Ancient) Greek word τρoπη, meaning turning
or transformation, and is supposed to bear resemblance to the word energy (see p. 390
in [Cla65]). Naturally, the notion of entropy and, more specifically, of entropic repulsion
found its way into the probabilistic language through mathematical physics and statisti-
cal mechanics: One of the first high-impact papers by probabilists explicitly mentioning
entropic repulsion is [BDZ95], which deals with the lattice free field. In connection
with Brownian motion, the notion of entropic repulsion first appeared in [BB10], where
Benjamini and Berestycki characterize it as follows:

Roughly speaking, entropic repulsion describes the fact that the easiest
way to achieve a certain global constraint for a random process is to
achieve much more than required. [BB10, p. 820]

Kolb and Savov gave a similar description of entropic repulsion:

This phenomenon [...] usually refers to the fact that conditioning on
an unlikely event often results in a process whose behavior appears to
be even more unlikely than the one which the process is conditioned
on. [KS16, p. 4085]

Despite the fact that the notion of entropic repulsion has not been used in the context
of Brownian motion at that time, the result going back to [Doo57] mentioned at the
beginning of this introduction can also be regarded as an instance of this phenomenon:
A Brownian motion starting in y > 0 which is conditioned to stay non-negative a.s. has
a strictly positive minimum. As already mentioned, the proof is based on Doob’s theory
of h-transforms, which he develops in the very same paper.
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In the following subsections, we discuss a few more results related to this thesis. In all
presented theorems, entropic repulsion is clearly visible. Nevertheless, with the excep-
tion of the rather exotic penalization discussed in Subsection 1.2.5, each of the limiting
processes somehow makes use of the respective conditions and may, in a suitable sense,
even come arbitrarily close to exhausting the condition with positive probability.
The setting will always be as follows: Let B = (Bt)t≥0 be a standard Brownian mo-
tion. Further, for each t ≥ 0, let Ft ⊆ B(C([0,∞))) be the initial σ-algebra associated
with B(C([0, t])) under the canonical projection C([0,∞))→ C([0, t]).

1.2.1 Uniformly Bounded Local Time Everywhere

In [BB10], Benjamini and Berestycki condition B on having uniformly bounded local
time, w.l.o.g. by the constant 1, at every point. Clearly, the resulting process (Xt)t≥0

must be transient with lim supt→∞
|Xt|
t
≥ 1 a.s. We recall that the unconditioned Brow-

nian motion B grows significantly slower: According to the law of the iterated logarithm
(see, e.g., Theorem 5.1 in [MP10]), we have

lim sup
t→∞

Bt√
2t log(log(t))

= 1 a.s.

Nevertheless, it turns out that limt→∞
|Xt|
t

exists and is equal to a constant γ > 4.5 a.s.
This means that, even though the process is already forced to grow untypically fast, it
still grows more than 4.5-times faster than required.
To formulate the precise result, let (Lxt )t≥0,x∈R be a jointly continuous version of the
Brownian local time, i.e., a real-valued stochastic process such that

R× [0,∞)→ R, (x, t) 7→ Lxt ,

is a.s. continuous with

Lxt = lim
ε↘0

1

2ε

∫ t

0

1{|Bs−x|≤ε}ds, t ≥ 0, x ∈ R, a.s.

For the existence of such a random field, alternative characterizations and further in-
formation, we refer to Chapter 6 of [MP10], Chapter VI of [RY99] and Chapter 29
of [Kal21]. Note that some other authors use a definition, which differs from the above
by a factor of 2.
The event we would like to condition on is given by {supt≥0,x∈R L

x
t ≤ 1} and has proba-

bility 0. To approximate this event, let τ ′a := inf{t ≥ 0 : |Bt| = a} be the first exit time
from (−a, a) for each a > 0. Moreover, we define

γ :=
3

1− 2j−2
0

≈ 4.5860 . . . ,

where j0 denotes the first non-negative zero of the Bessel function J0 of the first kind
and order 0. The announced result, which can be found in Remark 4 on Theorem 2
of [BB10], can be stated as follows:

4
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Theorem 1.2. As a→∞, the probability measures

P

(
B ∈ ·

∣∣∣∣∣ sup
t∈[0,τ ′a], x∈R

Lxt ≤ 1

)
(1.1)

converge weakly on the Skorokhod space D([0,∞)) to the law of a process X = (Xt)t≥0

satisfying

P
(

lim
t→∞

Xt

t
= γ

)
= P

(
lim
t→∞

Xt

t
= −γ

)
=

1

2
.

Theorem 2 of [BB10] actually is a one-sided version of this result: If the first exit time τ ′a
is replaced by the first hitting time τa := inf{t ≥ 0 : Bt = a} for each a > 0, the limiting
process X escapes to∞ with limt→∞

Xt
t

= γ a.s. The chosen approximation of the event
of interest is closely connected with the proof, which we summarize in the following
paragraph.
Apart from a few coupling arguments, the key ingredient of the proof is the Ray-Knight
theorem: It connects the law of the local time at time τa, when considered as a process of
the space variable x, with the laws of squared Bessel processes of dimensions 0 and 2 (see,
e.g., Theorem VI.52.1 in [RW00]). In particular, it implies that {supt≤τa,x∈R L

x
t ≤ 1} is,

for each a > 0, essentially equivalent to the condition that a suitable two-dimensional
Brownian motion stays inside the unit ball D ⊆ R2 until time a. This is used at first
to establish the existence of the limiting process X by proving that the probability
measures in (1.1) form a Cauchy sequence w.r.t. a suitable topology of local convergence
in total variation. Afterwards, it is used again to associate an eigenvalue problem for
the Laplacian on the unit disc D with Dirichlet boundary condition on the one hand
with the growth rate γ on the other hand.
We remark that Theorem 5 of [BB10] provides a similar result for the symmetric simple
random walk. Further, the still unpublished preprint [Mot14] suggests that the growth
rate γ in the above countinuous time setting highly depends on the chosen approximation
of {supt≥0,x∈R L

x
t ≤ 1}.

1.2.2 Limited Local Time in 0

Multiple authors have considered a standard Brownian motion B with restricted local
time (Lt)t≥0 := (L0

t )t≥0 in the starting point 0.

In [RVY06], Roynette, Valois and Yor develop multiple rather general penalization re-
sults w.r.t. several classes of functionals of B. In this subsection, we restrict ourselves
to the presentation of a special case of their result concerning local time in 0: If (Lt)t≥0

is forced to be bounded by 1, then the local time in 0 of the resulting process is uni-
formly distributed on [0, 1]. After its last zero, which is finite a.s., the absolute value of
the limiting process behaves like a three-dimensional Bessel process (cf. the result going
back to [Doo57] mentioned before) and hence diverges to ∞ a.s. The detailed result,
which is a special case of Proposition 3.11 as well as Theorems 3.13 and 4.8 of [RVY06]
with h+ = h− = 1[0,1], reads as follows:

5
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Theorem 1.3. (a) The process

(Mt)t≥0 :=
(
1− Lt ∧ 1 + |Bt|1{Lt≤1}

)
t≥0

is a martingale w.r.t. the filtration generated by B and solves the SDE problem

Mt = 1, dMt = sgn(Bt)1{Lt≤1}dBt, t ≥ 0.

(b) There exists a probability measure Q on C([0,∞)) satisfying

Q(At) = lim
T→∞

P(B ∈ At |LT ≤ 1) = E [1AtMt] , At ∈ Ft, t ≥ 0.

(c) Let X = (Xt)t≥0 ∼ Q be a corresponding limiting process. Further, let (LXt )t≥0 be
its local time process in 0 and

g := sup{t ≥ 0 : Xt = 0} ∈ [0,∞]

its last zero. Then the following assertions hold:

(i) The last zero g is finite a.s.

(ii) The total local time LX∞ := limt→∞ L
X
t is uniformly distributed on [0, 1].

(iii) The processes (Xt∧g)t≥0 and (Xg+t)t≥0 are independent.

(iv) For each l ∈ [0, 1], conditioned on {LX∞ = l}, the process (Xt∧g)t≥0 is a standard
Brownian motion stopped at inf{t ≥ 0 : LXt = l}.

(v) The process (|Xg+t|)t≥0 is a three-dimensional Bessel process starting in 0.

(vi) The sign of (Xg+t)t≥0 is uniformly distributed on {−1, 1}.

Part (b), in particular, implies that P(B ∈ · |LT ≤ 1) converges to Q weakly on C([0,∞))
as T →∞ (cf. Theorem 5 of [Whi70]).
Part (a) is a consequence of the so-called balayage formulas (see, e.g., Section VI.4
of [RY99]). Part (b) follows by direct calculations involving the Markov property and
an application of Kolmogorov’s existence theorem. Finally, the proof of part (c) is based
on martingale theory, a progressive enlargement of the filtration and Itô’s formula.

Remark 1.4. The existence of a weak limit and the construction of a corresponding
limiting process is shown independently and with a different focus by Benjamini and
Berestycki in Theorem 2 of [BB11], where a proof based on Itô’s excursion theory (see,
e.g., Section III.4.3 of [IW81]) is given. The key argument is that conditioning on the
event {LT ≤ 1} is asymptotically equivalent, as T → ∞, to conditioning on B having
exactly one excursion which is longer than T before the local time exceeds 1.

Applying the mentioned results of [RVY06] to h+ = 21[0,1] and h− = 0 instead, one
obtains a biased version of Theorem 1.3, where the resulting process (Xt)t≥0 a.s. escapes
to +∞. More precisely, it satisfies the assertions (i)-(iv) of Theorem 1.3 and, with g
defined as above, the process (Xg+t)t≥0 is a three-dimensional Bessel process starting
in 0.
Intermediate cases, in a suitable sense, are covered as well by the results of [RVY06].
Theorem 2 of [Deb09] provides a similar result for the symmetric simple random walk.

6
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Since the local time is a pathwise non-decreasing process of time, we have

{LT ≤ 1} = {Lt ≤ 1 for all t ∈ [0, T ]}, T ≥ 0.

Consequently, Theorem 1.3 implies that, if we condition B on {Lt ≤ 1 for all t ≥ 0},
the resulting process X will be transient, i.e., satisfy limt→∞ |Xt| =∞ a.s. If we instead
condition B on {Lt ≤ t for all t ≥ 0}, the resulting process X will trivially remain a
Brownian motion and hence be recurrent, i.e., satisfy sup{t ≥ 0 : Xt = 0} = ∞ a.s.
These observations naturally lead to the question how B behaves when being conditioned
on

{Lt ≤ f(t) for all t ≥ 0}
for a general function f : [0,∞)→ (0,∞). In particular, it is of interest if a sharp tran-
sition between transience and recurrence occurs and, if so, at which growth rate of f .
Replacing f by t 7→ sups∈[0,t] f(s), one may assume that f is non-decreasing. Noting

that the scaling property of B implies Lt
d
=
√
tL1 for each t ≥ 0, it is reasonable to only

consider functions f growing slower than
√
· in the sense that f√

· is non-increasing.
The problem was first discussed by Benjamini and Berestycki: Under the above assump-
tions on f , Theorem 1 of [BB11] states that the family

(P(B ∈ · |Lt ≤ f(t) for all t ∈ [0, T ]))T≥0 (1.2)

of approximating probability measures on C([0,∞)) is tight and that

I(f) :=

∫ ∞
1

f(t)

t
3
2

dt <∞ (1.3)

implies that any subsequential weak limit is transient a.s. The authors also conjecture
that this integral test is sharp in the sense that I(f) =∞ implies that any subsequential
weak limit is recurrent a.s.
In [KS16], Kolb and Savov prove that the approximating probability measures in (1.2)
actually converge weakly and verify the above conjecture – both under mild technical
assumptions on f , which are satisfied by functions in the critical regime of the integral
test.
In the transient case, Theorem 1 of [KS16] characterizes the limiting process X explic-
itly. In particular, it is shown that |X| a.s. eventually behaves like a three-dimensional
Bessel process. Additionally, a description of the marginal laws of the (right-continuous
inverse) local time of X in 0 is given.
In the recurrent case covered by Theorems 3 and 4 of [KS16], another kind of entropic
repulsion phenomenon is discovered: Confirming a second conjecture of [BB11], it is
proved that the local time process of X in 0 is, with high probability, asymptotically

dominated by a deterministic function f̃ : [0,∞)→ (0,∞) with limt→∞
f̃(t)
f(t)

= 0. More-
over, the set of all such functions is characterized analytically.
Instead of dealing with the local time itself, Kolb and Savov mainly work with the
right-continuous inverse local time

(τl)l≥0 := (inf{t > 0 : Lt > l})l≥0,

7
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which is a stable subordinator of index 1
2

(see, e.g., p. 240 in [RY99]). The corresponding
time-changed version of the conditioning events is given by

(Ol)l≥0 := ({τλ > f−1(λ) : λ ∈ [0, l]})l≥0,

where f−1 : [0,∞)→ [0,∞) is a non-decreasing left-inverse of f . The first main step of
the proof is to determine the exact asymptotic behavior of P(Ol) and, in the recurrent

case, of
∫ l

0
P(Oλ)dλ as l→∞. This is done with the help of the one large jump principle

of (τl)l≥0, which can be seen as the time-changed equivalent to the one long excursion
principle used in [BB11] (see Remark 1.4). Regarding the integral, a thorough case
distinction w.r.t. to jump sizes of (τl)l≥0 is necessary. With the help of the asymptotics,
the limiting behavior of the inverse local time can be analyzed in both cases. Then Itô’s
excursion theory is used to prove the claimed weak convergence as well as the explicit
description of the limiting process in the transient case.
In [Bar20], the results of [KS16] are generalized to suitable classes of recurrent Markov
processes. The integral test distinguishing between recurrence and transience of the
resulting process becomes

I(f) :=

∫ ∞
1

f(t)dν(t) <∞, (1.4)

where ν denotes the Lévy measure of the inverse local time subordinator of the considered
Markov process. In the Brownian case, this measure has a Lebesgue density given by

R \ {0} → R, t 7→ 1(0,∞)(t)
1

√
2πt

3
2

,

so that the tests (1.3) and (1.4) are equivalent.

1.2.3 Limited Number of Down-Crossings

As already mentioned in the previous subsection, [RVY06] contains penalization results
w.r.t. different classes of functionals of B. Besides functionals of local time, supremum
and infimum, the authors also consider functionals associated with the number of down-
crossings. For the sake of simplicity, we, once again, restrict ourselves to the presentation
of the special case of their result which is most closely related to this thesis.
Let a, b ∈ R with a < b and let m ∈ N0. If B is conditioned on having at most m down-
crossings through the interval [a, b], the number of down-crossings of the resulting process
will be uniformly distributed on {0, . . . ,m}. With probability 1

2
, the limiting process

will up-cross the interval again after its last down-crossing. After the last (down- or up-
)crossing, it will essentially behave like a three-dimensional Bessel process. In particular,
the limiting process is transient.
For the sake of completeness, let us recall the formal definition of the number of down-
crossings: Setting τ 0 := 0, we first define the a.s. finite stopping times

σn := inf{t ≥ τn−1 : Bt > b} and τn := inf{t ≥ σn : Bt < a}, n ∈ N.

8
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Then
DT :=

∑
n∈N

1{τn≤T}, T ≥ 0,

is the number of down-crossings of B through [a, b] up to time T .
The announced result, which follows immediately from Theorems 3.21 and 4.11 of [RVY06]
by applying them to

G : N0 → R, n 7→ max

{
n

m+ 1
, 0

}
,

reads as follows:

Theorem 1.5. (a) There exists a probability measure Q on C([0,∞)) satisfying

Q(At) = lim
T→∞

P(B ∈ At |DT ≤ m), At ∈ Ft, t ≥ 0.

(b) Let X = (Xt)t≥0 ∼ Q be a corresponding limiting process. For each t ≥ 0, let DX
t

be the number of down-crossings of the process X through [a, b] until time t and
let DX

∞ := limt→∞D
X
t be the total number of down-crossings. Further, let

g := inf{t ≥ 0 : DX
t = D∞t } and g := inf{t ≥ g : Xt > b}

(with the usual convention inf ∅ := ∞) be the times the last down-crossing and the
subsequent up-crossing end, respectively. Then the following assertions hold:

(i) The number of down-crossings DX
∞ is uniformly distributed on {0, . . . ,m}.

(ii) We have P(g <∞) = 1
2
.

(iii) For each n ∈ {0, . . . ,m}, conditioned on {DX
∞ = n}, the process (Xt∧g)t≥0 is a

standard Brownian motion stopped at the end of the n-th down-crossing.

(iv) Conditioned on {g = ∞}, the processes (Xt∧g)t≥0 and (Xg+t)t≥0 are indepen-
dent. Moreover, (2b−a−Xg+t)t≥0 is a three-dimensional Bessel process started
at 2(b− a) and conditioned to stay above b− a.

(v) Conditioned on {g <∞}, the processes (Xt∧g)t≥0, (X(g+t)∧g)t≥0 and (Xg+t)t≥0

are independent. Moreover, (2b−a−X(g+t)∧g)t≥0 is a three-dimensional Bessel
process started at 2(b − a) and stopped when hitting b − a for the first time.
Finally, (Xg+t − a)t≥0 is a three-dimensional Bessel process started at b− a.

Similar to Theorem 1.3, part (a) implies that P(B ∈ · |DT ≤ m) converges to Q weakly
on C([0,∞)) as T → ∞. The proof is similar as well: At first, it is shown that there
exists a martingale (Mt)t≥0 w.r.t. the filtration generated by B satisfying

lim
T→∞

P(B ∈ At |DT ≤ m) = E [1AtMt] , At ∈ Ft, t ≥ 0.

Together with Kolmogorov’s existence theorem, this guarantees the existence of Q. The
process (Mt)t≥0 is, in fact, determined explicitly in Proposition 3.20 of [RVY06]. The

9
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proof of part (b) is based on the optional stopping theorem, a progressive enlargement
of the filtration and Itô’s formula.
The structural similarity between the above result and Theorem 1.3 is not a mere co-
incidence. According to Theorem 1.2.15 of [NRY09], there exists a universal σ-finite
measure W on C([0,∞)), which is described explicitly in Theorem 1.1.6 of [NRY09],
such that the limiting laws Q of the two mentioned results are absolutely continuous
w.r.t. W. In fact, this abstract theorem holds for a rather large class of penalizations by
functionals. Roughly speaking, the crucial assumption is the existence of a determin-
istic compact interval J ⊆ R such that those sample paths in C([0,∞)), which leave J
eventually, do not get penalized anymore after leaving J for the last time. According
to Theorem 1.2.14 of [NRY09], the assumptions in particular require the expected pe-
nalization (in our setting: the probability of the conditioning) to decay like a multiple
of 1√

T
as T →∞.

1.2.4 Limited Maximum Excursion Length

In [RVY09], Roynette, Valois and Yor condition B on having uniformly bounded ex-
cursion lengths. In other words, they force every completed excursion of B (i.e., every
excursion returning to 0) to last for at most 1 time unit. Then the supremum of the
lengths of all completed excursions of the resulting process will have the same distribu-
tion as the square of a uniform distribution on [0, 1]. Further, the limiting process will
a.s. have a finite last zero after which the absolute value of the limiting process behaves
like a three-dimensional Bessel process.
Before we formulate the result, we introduce some notation. Let

gt := sup{s ∈ [0, t] : Bs = 0} and dt := inf{s ≥ t : Bs = 0}, t ≥ 0,

be the last zero before and the first zero after time t, respectively. Than the length of
the excursion around t is given by dt − gt for each t ≥ 0. We define

ΣT := sup{dt − gt : t ≥ 0, dt ≤ T}, T ≥ 0, (1.5)

to be the supremum of the lengths of all excursions completed before time T . Further,
for each t ≥ 0, let Et := t− gt be the duration the ongoing excursion at time t already
lasts. Theorem 2.1 of [RVY09] then states:

Theorem 1.6. (a) There exists a probability measure Q on C([0,∞)) satisfying

Q(At) = lim
T→∞

P(B ∈ At |ΣT ≤ 1), At ∈ Ft, t ≥ 0.

(b) Let X = (Xt)t≥0 ∼ Q be a corresponding limiting process and let ΣX
∞ be the supre-

mum of the lengths of all its completed excursions (which is defined similar to (1.5)).
Further, let LX∞ be the total local time of X in 0 and let

g := sup{t ≥ 0 : Xt = 0} ∈ [0,∞]

be its last zero. Then the following assertions hold:

10
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(i) The last zero g is finite a.s. and satisfies P(g < t) = E[Et∧σ] for each t ≥ 0
with σ := inf{t ≥ 0 : Et = 1}.

(ii) The random variable
√

ΣX
∞ is uniformly distributed on [0, 1].

(iii) The processes (Xt∧g)t≥0 and (Xg+t)t≥0 are independent.

(iv) The process (|Xg+t|)t≥0 is a three-dimensional Bessel process starting in 0.

(v) The sign of (Xg+t)t≥0 is uniformly distributed on {−1, 1}.

(vi) The random variable
√

2
π
LX∞ is exponentially distributed with parameter 1.

Similar to Theorems 1.3 and 1.5, part (a) implies that P(B ∈ · |ΣT ≤ 1) converges
to Q weakly on C([0,∞)) as T → ∞. The general structure of the proof is similar as
well: Using a generalization of Itô’s formula, it is shown that some explicitly constructed
process (Mt)t≥0 is a (local) martingale w.r.t. the filtration generated by B. The existence
of Q is then guaranteed by proving

lim
T→∞

P(B ∈ At |ΣT ≤ 1) = E [1AtMt] , At ∈ Ft, t ≥ 0.

To this end, the asymptotic behavior of P(ΣT ≤ 1) as T →∞ is determined. The first
two assertions of part (b) are proved with the help of Itô’s excursion theory. The proof
of the remaining assertions is based on a progressive enlargement of the filtration and
Itô’s formula.
Theorem 3 of [Deb09] provides a similar result for the symmetric simple random walk.

1.2.5 Limited Number of Passages of the Integrated Process

As a final example, we discuss a result of [Pro15], where Profeta penalizes B by func-
tionals of the integrated Brownian motion

Z := (Zt)t≥0 :=

(∫ t

0

Bsds

)
t≥0

.

Letting z > 0 and setting τ 0
z := 0, we define

τnz := inf{t > τn−1
z : Zt = z}, n ∈ N.

On the one hand, the stopping time τnz is a.s. finite (and well-defined) for each n ∈ N
since Z is recurrent. On the other hand, the sequence (τnz )n∈N is a.s. strictly increasing
due to Bτnz 6= 0 a.s. for all n ∈ N. Formally, both properties of (τnz )n∈N follow immediately
from the density formulas developed in Section 3 of [McK63]. Consequently, it is justified
for each n ∈ N to call τnz the time of the n-th passage of Z through z.
Theorem 3.3(ii) of [Pro15] now shows that the process obtained by conditioning B such
that Z passes through z at most m ∈ N0 times does not depend on m. This can be seen
as a very rare extreme example of entropic repulsion. Further properties of the resulting
process are discussed in Theorem 2.4 and Corollary 2.8 of [Pro15]. The results may be
summarized as follows:

11



1 Introduction

Theorem 1.7. There exist a harmonic function hz : R× (−∞, z)→ R and a probability
measure Qz on C([0,∞)) with

Qz(At) = lim
T→∞

P(B ∈ At | τm+1
z > T )

= E
[
1At

hz(Bt, Zt)

hz(0, 0)
1{τ1z>t}

]
, A ∈ Ft, t ≥ 0, m ∈ N0.

A corresponding limiting process (Xz
t )t≥0 ∼ Qz satisfies

P
(∫ ∞

0

Xz
sds = −∞

)
= 1

and

P
(∫ t

0

Xz
sds < a for all t ≥ 0

)
=
h(0, z − a)

h(0, 0)
, a ∈ (0, z].

Similar to theorems from previous subsections, the first statement implies weak conver-
gence of the conditional laws to Qz. The function hz is given explicitly by a double
integral.
The main ingredients of the proof are the Markov property of (B,Z) as well as the
asymptotic behavior of P(τm+1

z > T ) as T → ∞ for m ∈ N0. The latter is obtained by
analytic calculations involving integral transforms, which Profeta himself describes as
“purely computational and rather technical” [Pro15, p. 158].
At least for z ↘ 0, occupation times of the limiting process above curves have been
studied. In particular, Theorem 6.1 of [GJW99] shows that, for any k > 0, the expected
time spend above t 7→ −ktα is finite if, and only if, α < 9

10
holds.
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2 Limited Time Outside an
Unbounded Interval

2.1 Overview and Main Results

In this chapter, we allow a Brownian motion with an arbitrary starting point to spend
limited time in the negative half-line. More precisely, we fix y ∈ R and let B = (Bt)t≥0

be a Brownian motion starting in y. For each T ≥ 0, let

ΓT :=

∫ T

0

1{Bs<0}ds

be the time B spends below 0 until time T . In Theorem 2.1, we will show that

P(B ∈ · |ΓT ≤ 1)

convergences weakly in C([0,∞)) as T → ∞. The limiting process can informally be
described as follows: Up to a random time g ≥ 0, the distribution of which we will
determine explicitly, the limiting process is a Brownian bridge starting in y, ending in 0
and conditioned to have limited occupation time. Afterwards, it is a three-dimensional
Bessel process. For y > 0, the event {g = 0} occurs with positive probability. If it
occurs, the Bessel process starts immediately so that the limiting process stays positive
all the time. A rigorous construction is given below.
Even though we allow the limiting process to spend a total of 1 time unit below 0, its
actual total occupation time Γ below 0 is a.s. strictly smaller than 1. In Theorem 2.2,
we will explicitly determine the distribution of Γ. As discussed in the introductory
chapter, the phenomenon that the condition is not exhausted completely can be seen
as an instance of entropic repulsion and occurs frequently when conditioning stochastic
processes on negligible events.
Our Theorems 2.1 and 2.2 generalize Theorem 4 of [BB11], which covers the special
case y = 0. This result in turn can be seen as a special case of Theorem 3.1 of [RY10]
(applied to h := 1

2
1[0,1]), which discusses more general restrictions of the occupation

time of a standard Brownian motion in the negative half-line. However, the two results
were proved independently with completely different methods. The main upshot of the
present work is the complete understanding of the limiting process for general y ∈ R.
In particular, we describe the distributions of the last zero g = gy and the occupation
time Γ = Γy below 0 of the limiting process as explicit functions of y.
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2 Limited Time Outside an Unbounded Interval

Without relying on the explicit distributions, Proposition 2.3 will provide an identity
connecting the distributions of g and Γ as well as the first entrance time of the limiting
process to the negative half-line.
Finally, we will take a closer look at the behavior of the distributions of gy and Γy as
functions of y. As y → −∞, the transformed occupation time y2(1−Γy) is approximately
exponentially distributed while the weak limit of y2(1− gy) has some other explicit dis-
tribution (see part (b) of Theorem 2.4). In particular, Γy and gy both converge weakly
to 1 as y → −∞. For y > 0, we have to take into account that the limiting process may
stay positive permanently. Conditioned on spending time below 0 at all, the distribution
of Γy is independent of y for y ≥ 0 while the conditional distribution of gy

y2
converges

weakly to an inverse chi-squared distribution as y → ∞ (see part (a) of Theorem 2.4).
In particular, conditional on the existence of a zero, the last zero diverges weakly to ∞
as y →∞.
In comparison with the overview given in Section 1.1, the above assumptions on the con-
sidered interval and the maximum allowed occupation time are made w.l.o.g.: In view
of the scaling property of Brownian motion, it is straightforward to replace the single
time unit the process is allowed to spend outside [0,∞) by any other amount s > 0 of
time. Since Brownian motion is homogeneous in space and symmetric, similar results
hold when limiting the time to be spent outside another unbounded interval.

In order to make the informal description of the limiting process given above rigorous,
we introduce an auxiliary notation: Let

q(t, u) := qy(t, u) := P
(∫ t

0

1{b′s<0}ds ≤ u

)
, t, u ≥ 0, (2.1)

be the probability that a Brownian bridge (b′s)s∈[0,t] of length t with b′0 = y and b′t = 0
spends at most u time units below 0. Explicit formulas for q are given in (2.4), (2.7)
and (2.8).
Now the limiting process X can be constructed as follows:

1. Depending on the sign of y, let g = gy be a non-negative random variable with

P(g ≤ x) =



1{x≤1}

√
x

2
+ 1{x>1}

(
1− 1

2
√
x

)
, x ≥ 0, y = 0,

∫ x
0
qy(t, 1) 1√

t
e−

y2

2t dt

2
∫ 1

0
1√
t
e−

y2

2t dt
, x ≥ 0, y < 0,

2
√

2πy +
∫ x

0
qy(t, 1) 1√

t
e−

y2

2t dt

2
√

2πy + 4
, x ≥ 0, y > 0.

(2.2)

We will see in Corollary 2.8 that the law of g is well-defined with P(g < ∞) = 1
in all three cases. A plot of the distribution function of g for different values of y
can be found in Figure 2.1 at the end of this section.
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2. Let b = (bt)t∈[0,1] be a process which, if restricted to {g = x} for x ≥ 0, is a
standard Brownian bridge conditioned on∫ x

0

1{√
xb s
x

+y− s
x
y<0

}ds ≤ 1.

3. Let Z = (Zt)t≥0 be a three-dimensional Bessel process starting in 0, independent
of (g, b).

4. For y > 0, let Y = (Yt)t≥0 be a three-dimensional Bessel process starting in y,
independent of (g, b, Z).

5. We define the process X = (Xt)t≥0 by

X :=

(
1{g>0, t<g}

(
√
gb t

g
+ y − t

g
y

)
+ 1{g>0, t≥g}Zt−g + 1{g=0,y>0}Yt

)
t≥0

.

Theorem 2.1. As T →∞, the probability measures P(B ∈ · |ΓT ≤ 1) converge weakly
on C([0,∞)) to the law of X.

Let

Γ := Γy :=

∫ ∞
0

1{Xs<0}ds =

∫ g

0

1{Xs<0}ds

be the total time X spends below 0. By construction of X, we have Γ ≤ 1. The
distribution function of Γ has the following explicit form:

Theorem 2.2. We have

P(Γ ≤ u) =



∫ u
0

1√
t
e−

y2

2t dt∫ 1

0
1√
t
e−

y2

2t dt
, u ∈ [0, 1], y ≤ 0,

√
2πy + 2

√
u√

2πy + 2
, u ∈ [0, 1], y ≥ 0.

(2.3)

A plot of this distribution function for different values of y can be found in Figure 2.1
at the end of this section. Noting

q(t, u) = 1, u ≥ t ≥ 0, (2.4)

a comparison of (2.2) and (2.3) yields

2P(g ≤ u) = P(Γ ≤ u), u ∈ [0, 1], y ≤ 0. (2.5)

This identity is not a mere coincidence. Let

τ := inf{t ≥ 0 : Xt ≤ 0}

be the first entrance time of the limiting process to the negative half-line. Noting g > 0
and τ = 0 a.s. for y ≤ 0, Proposition 2.3 below provides a generalization of (2.5), which
is valid for all y ∈ R. We will prove this result, which is a consequence of the arcsine laws
and the strong Markov property, without relying on the explicit formulas (2.2) and (2.3).
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Proposition 2.3. We have

2P(g ∈ (0, u]) = P(τ + Γ ≤ u), u ∈ [0, 1].

Finally, let us discuss the behavior of the distributions of gy and Γy, respectively,
as y → ±∞. According to (2.2) and (2.3), we have

P(gy = 0) = P(Γy = 0) =

√
2πy√

2πy + 2
> 0, y > 0.

In particular, the random variables gy and Γy both converge weakly to 0 as y → ∞.
Note that the event {gy = 0} = {Γy = 0} (with equality up to a set of probability 0)
corresponds to the situation where the limiting process stays positive all the time. For-
mula (2.3) implies

P(Γy ≤ u |Γy > 0) =
√
u = P(Γ0 ≤ u), u ∈ [0, 1], y ≥ 0.

Consequently, conditioned on spending time below 0 at all, the distribution of the oc-
cupation time Γy below 0 is given by the square of a uniform distribution on [0, 1] for
each y ≥ 0. In particular, this conditional distribution is independent of the starting
point y ≥ 0. The reason is as follows: After the limiting process Xy (starting in y ≥ 0)
hits 0 for the first time, it behaves in distribution like the limiting process X0 (starting
in 0).
The following theorem covers the behavior of gy as y →∞ conditioned on the existence
of a zero as well as the behavior of Γy and gy as y → −∞:

Theorem 2.4. (a) As y →∞, the conditional distribution P
(
gy

y2
∈ · | gy > 0

)
converges

weakly to an inverse chi-squared distribution with Lebesgue density

R→ [0,∞), s 7→ 1{s>0}
1√

2πs3
e−

1
2s . (2.6)

In particular, gy conditional on {gy > 0} diverges in distribution to ∞ as y →∞.

(b) As y → −∞, the random variable y2(1−Γy) converges weakly to an exponential dis-
tribution with parameter 1

2
while y2(1−gy) converges weakly to a random variable g′

with distribution function given by

P(g′ ≤ u) =


∫ ∞

0

2z√
2π(2z − u)

e−z dz, u ≤ 0,

1− 1

2
e−

u
2 , u ≥ 0.

In particular, Γy and gy both converge in distribution to 1 as y → −∞.
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Let us recall that inf{t ≥ 0 : B1
t = 0}, the first zero of a Brownian motion starting in 1,

precisely has the Lebesgue density given in (2.6) (see, e.g., Remark 2.8.3 in [KS91]). By
the scaling property, 1

y2
inf{t ≥ 0 : By

t = 0} has the same distribution for each y > 0.

Consequently, we can expect a result similar to part (a) to hold for the first zero of Xy.
On the other hand, the distribution of the time between the first zero and the last zero
of Xy – conditional on their existence – does not depend on y as a consequence of the
strong Markov property. As y → ∞, the influence of this portion becomes negligible
compared to the amount of time needed to reach zero in the first place.
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Figure 2.1: Distribution functions of gy and of Γy, respectively, for several values of y

17



2 Limited Time Outside an Unbounded Interval

While it certainly is possible to use an abstract martingale approach as in [RY10]
to establish Theorem 2.1, we follow a more illustrative path decomposition ansatz as
in [BB11]. In contrast to [BB11], we cannot rely on symmetry arguments and it is non-
trivial to check that g is well-defined (i.e., a.s. finite).
The outline of the rest of this chapter is as follows: Section 2.2 is concerned with the
distribution of g and, in particular, the well-definedness of g. The subsequent two sec-
tions are devoted to the proof of Theorem 2.1, which is based on a path decomposition
(see Proposition 2.15) around

gT := max{s ∈ [0, T ] : Bs = 0},

the last zero of B before time T . The key step will be Proposition 2.9, which states that
the conditional distribution of gT under {ΓT ≤ 1} converges to the law of g, the last
zero of the limiting process, in total variation as T → ∞. In Section 2.5, we will prove
the remaining results. For the sake of completeness, we finally collect and prove a few
required auxiliary results, such as the mentioned path decomposition, in Section 2.6.
Most parts of the first five sections of this chapter were published in [AS22].

2.2 Formulas for q and Finiteness of g

Before we start proving Theorem 2.1, we take a closer look at the distribution of g given
in (2.2). More precisely, we provide explicit formulas for q (and hence for the distribution
of g) and check that g is a.s. finite. This is crucial for the limiting process X to be well-
defined. We start with an auxiliary result, which follows straight from formula (2.15)
in [BO99]:

Lemma 2.5. Given y 6= 0 as well as T > 0 and z ∈ R, let (bzt )t∈[0,T ] be a Brownian
bridge of length T with bz0 = y and bzT = z. We define

τ z := min{s ∈ [0, T ] : bzs = 0}

(with the convention min ∅ := T ). Then we have

P(τ z ∈ dt) =
|y|
√
T√

2πt3(T − t)
e

(y−z)2
2T

− z2

2(T−t)−
y2

2t dt, t ∈ (0, T ).

This is a proper probability density integrating to 1 if and only if zy ≤ 0 holds.

Proof. Let us consider a Brownian bridge (b̄zt )t∈[0,T ] of length T with b̄zT = (y− z) sgn(y)
and b̄z0 = 0. Using a symmetry argument in the case y > 0, we get

τ z
d
= min{s ∈ [0, T ] : b̄zs = |y|}.

The claim now follows immediately from formula (2.15) of [BO99]. Note that this formula
is valid for all η ∈ R and not only for η < β (compare Theorem 2.1 in [BO99]).
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Combining this lemma with Lévy’s result that the occupation time below 0 of a standard
Brownian bridge is uniformly distributed (see [Lév40]), we compute the distribution
function q = qy (see (2.1)) of the occupation time of a Brownian bridge with drift
starting in y.

Lemma 2.6. Given t > 0 and u ∈ [0, t), we have

q(t, u) =



u

t
, y = 0,

∫ u

0

√
t(u− x)|y|√

2πx3(t− x)3
e
y2

2t
− y

2

2x dx, y < 0,

∫ t−u

0

√
tuy√

2πx3(t− x)3
e
y2

2t
− y

2

2x dx+

∫ t

t−u

√
ty√

2πx3(t− x)
e
y2

2t
− y

2

2x dx, y > 0.

(2.7)

After a linear time change, formula (E-4) of [Pec], which is proved using Girsanov’s
theorem, provides the alternative representation

q(t, u) =



−2

(
t− u
t

(
1− y2

t

)
− 1

)
Φ

(
y
√
t− u√
tu

)
+

√
2u(t− u)y√

πt3
e
y2

2t
− y

2

2u , y ≤ 0,

1 + 2

(
u

t

(
1− y2

t

)
− 1

)
Φ

(
− y

√
u√

t(t− u)

)
+

√
2u(t− u)y√

πt3
e
y2

2t
− y2

2(t−u) , y ≥ 0,

(2.8)

for all t > 0 and u ∈ [0, t), where Φ : R → R denotes the distribution function of the
standard normal distribution. We remark this formula just for the sake of completeness
and will not rely on it in what follows.

Proof of Lemma 2.6. The formula for y = 0 is a classical result by Lévy (see [Lév40]).
Now let y 6= 0 and let (b′s)s∈[0,t] be a Brownian bridge of length t with b′0 = y and b′t = 0.
Furthermore, let τ ′ := min{s ∈ [0, t] : b′s = 0} be the first zero of b′, which is a.s. strictly
smaller than t. Then

(
b̂s
)
s∈[0,1]

:=

(
1√
t− τ ′

b′τ ′+s(t−τ ′)

)
s∈[0,1]

is a standard Brownian bridge independent of τ ′ (see Corollary 2.17). By Lévy’s re-

sult,
∫ 1

0
1{b̂s<0}ds is uniformly distributed on [0, 1]. Now let y < 0. We observe b′s < 0
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for all s < τ ′. Together with Lemma 2.5, we obtain

q(t, u) = P
(∫ t

τ ′
1{b′s<0}ds ≤ u− τ ′

)
= P

(∫ 1

0

1{b̂s<0}ds ≤
u− τ ′

t− τ ′

)
=

∫ u

0

P
(∫ 1

0

1{b̂s<0}ds ≤
u− x
t− x

)
P(τ ′ ∈ dx)

=

∫ u

0

u− x
t− x

·
√
t|y|√

2πx3(t− x)
e
y2

2t
− y

2

2x dx.

Given y > 0, we similarly observe b′s > 0 for all s < τ ′ and obtain

q(t, u) = P
(∫ t

τ ′
1{b′s<0}ds ≤ u

)
= P

(∫ 1

0

1{b̂s<0}ds ≤
u

t− τ ′

)
=

∫ t

0

P
(∫ 1

0

1{b̂s<0}ds ≤
u

t− x

)
P(τ ′ ∈ dx)

=

∫ t

0

(
u

t− x
∧ 1

) √
ty√

2πx3(t− x)
e
y2

2t
− y

2

2x dx

proving the claim.

Next we prove that g is a.s. finite. This will essentially follow from the subsequent lemma
as we will see in Corollary 2.8 below. The more general formulation of the lemma will
help us to determine the distribution of Γ (see Theorem 2.2). Besides, it is rather difficult
to verify the formulas directly for a single u > 0.

Lemma 2.7. We have∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt =

∫ u

0

1√
t

e−
y2

2t dt, u ≥ 0, y < 0

and ∫ u

0

1√
t

e−
y2

2t dt+

∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt = 4
√
u, u ≥ 0, y > 0.

Corollary 2.8. The random variable g, as defined in (2.2), is a.s. finite.

Proof of Corollary 2.8. For y = 0, the claim is clear from the definition. Applying (2.2)
and (2.4) as well as Lemma 2.7 with u = 1, we obtain

P(g <∞) =

∫∞
0
q(t, 1) 1√

t
e−

y2

2t dt

2
∫ 1

0
1√
t
e−

y2

2t dt

=

∫ 1

0
1√
t
e−

y2

2t dt+
∫∞

1
q(t, 1) 1√

t
e−

y2

2t dt

2
∫ 1

0
1√
t
e−

y2

2t dt
= 1, y < 0.
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Similarly, we get

P(g <∞) =
2
√

2πy +
∫ 1

0
1√
t
e−

y2

2t dt+
∫∞

1
q(t, 1) 1√

t
e−

y2

2t dt

2
√

2πy + 4
= 1, y > 0,

proving the claim.

Proof of Lemma 2.7. Noting q(t, 0) = 0 for all t > 0, both formulas hold for u = 0.
Hence it suffices to show that the derivatives of the left- and the right-hand side coincide
in both cases.
First we consider y < 0. Given t > 0, an application of (2.7) and of Leibniz’s rule yields

d

du
q(t, u)

1√
t

e−
y2

2t =
d

du

∫ u

0

(u− x)|y|√
2πx3(t− x)3

e−
y2

2x dx =

∫ u

0

|y|√
2πx3(t− x)3

e−
y2

2x dx

for all u ∈ (0, t). Now fix u0 > 0. Noting∫ ∞
u0

sup
u∈(0,u0)

∣∣∣∣ d

du
q(t, u)

1√
t

e−
y2

2t

∣∣∣∣ dt =

∫ ∞
u0

sup
u∈(0,u0)

∣∣∣∣∣
∫ u

0

|y|√
2πx3(t− x)3

e−
y2

2x dx

∣∣∣∣∣ dt
=

∫ ∞
u0

∫ u0

0

|y|√
2πx3(t− x)3

e−
y2

2x dxdt

=

∫ u0

0

2|y|√
2πx3(u0 − x)

e−
y2

2x dx

<∞,

we can differentiate w.r.t. u ∈ (0, u0) under the integral
∫∞
u0

. Together with Leibniz’s

rule applied to the integral
∫ u0
u

and with Tonelli’s theorem, we obtain

d

du

∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt =

∫ ∞
u

d

du
q(t, u)

1√
t

e−
y2

2t dt− q(u, u)
1√
u

e−
y2

2u

=

∫ ∞
u

∫ u

0

|y|√
2πx3(t− x)3

e−
y2

2x dxdt− 1√
u

e−
y2

2u

=

∫ u

0

2|y|√
2πx3(u− x)

e−
y2

2x dx− 1√
u

e−
y2

2u

=

∫ u

0

|y|
√
u√

2πx3(u− x)
e
y2

2u
− y

2

2x dx · 2√
u

e−
y2

2u − 1√
u

e−
y2

2u

for all u ∈ (0, u0) and consequently for all u > 0. Given a Brownian bridge (b′s,u)s∈[0,u]

of length u with b′0,u = y and b′u,u = 0, Lemma 2.5 implies

1 = P(min{s ∈ [0, u] : b′s,u = 0} ∈ (0, u)) =

∫ u

0

|y|
√
u√

2πx3(u− x)
e
y2

2u
− y

2

2x dx
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so that we can deduce

d

du

∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt = 1 · 2√
u

e−
y2

2u − 1√
u

e−
y2

2u =
1√
u

e−
y2

2u =
d

du

∫ u

0

1√
t

e−
y2

2t dt

for all u > 0, as claimed.
Now we consider y > 0. Given t > 0, an application of (2.7) and of Leibniz’s rule yields

d

du
q(t, u)

1√
t

e−
y2

2t

=
d

du

∫ t−u

0

uy√
2πx3(t− x)3

e−
y2

2x dx+
d

du

∫ t

t−u

y√
2πx3(t− x)

e−
y2

2x dx

=

∫ t−u

0

y√
2πx3(t− x)3

e−
y2

2x dx− uy√
2π(t− u)3u3

e−
y2

2(t−u) +
y√

2π(t− u)3u
e−

y2

2(t−u)

=

∫ t−u

0

y√
2πx3(t− x)3

e−
y2

2x dx (2.9)

for all u ∈ (0, t). Now fix u0, ε > 0. We get

∫ ∞
u0

sup
u∈(ε,u0)

∣∣∣∣ d

du
q(t, u)

1√
t

e−
y2

2t

∣∣∣∣ dt =

∫ ∞
u0

sup
u∈(ε,u0)

∣∣∣∣∣
∫ t−u

0

y√
2πx3(t− x)3

e−
y2

2x dx

∣∣∣∣∣ dt
=

∫ ∞
u0

∫ t−ε

0

y√
2πx3(t− x)3

e−
y2

2x dxdt

=

∫ ∞
0

∫ ∞
u0∨(x+ε)

y√
2πx3(t− x)3

e−
y2

2x dtdx

=

∫ ∞
0

2y√
2πx3((u0 − x) ∨ ε)

e−
y2

2x dx

<∞

so that we can differentiate w.r.t. u ∈ (ε, u0) under the integral
∫∞
u0

. Similar to the

previous case, the integral
∫ u0
u

can be differentiated with the help of Leibniz’s rule.
Together with q(u, u) = 1 and (2.9) in the second step, we obtain

d

du

(∫ u

0

1√
t

e−
y2

2t dt+

∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt

)
=

1√
u

e−
y2

2u +

∫ ∞
u

d

du
q(t, u)

1√
t

e−
y2

2t dt− q(u, u)
1√
u

e−
y2

2u

=

∫ ∞
u

∫ t−u

0

y√
2πx3(t− x)3

e−
y2

2x dxdt
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for all u ∈ (ε, u0) and consequently for all u > 0. Substituting x = y2

z2
, we get∫ ∞

u

∫ t−u

0

y√
2πx3(t− x)3

e−
y2

2x dxdt =

∫ ∞
0

∫ ∞
x+u

y√
2πx3(t− x)3

e−
y2

2x dtdx

=

∫ ∞
0

2y√
2πx3u

e−
y2

2x dx

=

∫ ∞
0

2yz3√
2πy6u

e−
z2

2
2y2

z3
dz

=
2√
u

∫ ∞
0

2√
2π

e−
z2

2 dz

=
2√
u

proving

d

du

(∫ u

0

1√
t

e−
y2

2t dt+

∫ ∞
u

q(t, u)
1√
t

e−
y2

2t dt

)
=

d

du
4
√
u, u > 0.

This completes the proof.

2.3 Convergence of the Distribution of the Last Zero

Recall that

gT := max{s ∈ [0, T ] : Bs = 0}

denotes the last zero of B before time T > 0 with the convention max ∅ := 0. As already
mentioned at the end of Section 2.1, the following result is the key part of the proof of
Theorem 2.1:

Proposition 2.9. As T → ∞, the probability measures P(gT ∈ · |ΓT ≤ 1) converge to
the law of g in total variation.

To prove this result, we compute the asymptotics of the density

P(gT ∈ dx,ΓT ≤ 1)

dx
, x > 0,

and of the conditioning probability P(ΓT ≤ 1) as T →∞. The latter has essentially been
computed before in Section 2.8 of [RY10]. Here we give a different argument. Regarding
the latter, the main idea is to condition on gT . To avoid a case distinction and obtain
the rather compact formula (2.2), we additionally condition on BT . After considering
the mass in 0, corresponding to the case that the process has no zero, the proposition
follows from Scheffé’s lemma.

23



2 Limited Time Outside an Unbounded Interval

Proof of Proposition 2.9.
Step 1: We start by explicitly computing the density P(gT∈dx,ΓT≤1)

dx
and its asymptotics

for x > 0. Let x0 ≥ 0 and T > x0 + 1. Moreover, let z > 0 and let bz = (bzt )t∈[0,T ]

be a Brownian bridge of length T starting in y and ending in z. Once again with
the convention max ∅ := 0, we define γzT := max{s ∈ [0, T ] : bzs = 0}. Conditioned
on {γzT > 0} (i.e., on the existence of a zero of bz), the process

(
b̂zs
)
s∈[0,1]

:=

(
1√
γzT

(
bzsγzT − y + sy

))
s∈[0,1]

is a standard Brownian bridge independent of γzT (see Proposition 2.16). Consequently,

the process (
√
tb̂zs

t
+y− s

t
y)s∈[0,t] is a Brownian bridge of length t starting in y and ending

in 0 for each t > 0. Using T > x0 + 1 in the first step and recalling B0 = y, we get

P(gT ∈ (0, x0],ΓT ≤ 1)

= P
(
gT ∈ (0, x0],ΓgT ≤ 1, BT > 0

)
=

∫ ∞
0

P
(
γzT ∈ (0, x0],

∫ γzT

0

1{bzs<0}ds ≤ 1

)
P(BT ∈ dz)

=

∫ ∞
0

P
(
γzT ∈ (0, x0], γzT

∫ 1

0

1{
bz
sγz
T
<0
}ds ≤ 1

)
P(BT ∈ dz)

=

∫ ∞
0

P
(
γzT ∈ (0, x0], γzT

∫ 1

0

1{√
γzT b̂

z
s+y−sy<0

}ds ≤ 1

)
P(BT ∈ dz)

=

∫ ∞
0

∫
(0,x0]

P
(
t

∫ 1

0

1{√
tb̂zs+y−sy<0

}ds ≤ 1

)
P(γzT ∈ dt)P(BT ∈ dz)

=

∫ ∞
0

∫
(0,x0]

P
(∫ t

0

1{√
tb̂zs
t

+y− s
t
y<0
}ds ≤ 1

)
P(γzT ∈ dt)P(BT ∈ dz)

=

∫ ∞
0

∫
(0,x0]

q(t, 1)P(γzT ∈ dt)P(BT ∈ dz). (2.10)

Let
(
b̄zs
)
s∈[0,T ]

be a Brownian bridge of length T starting in z and ending in y. According

to Lemma 2.5, we have

P(min{s ∈ [0, T ] : b̄zs = 0} ∈ dt) =
z
√
T√

2πt3(T − t)
e

(z−y)2
2T

− y2

2(T−t)−
z2

2t dt, t ∈ (0, T ),

and hence

P(γzT ∈ dt) = P(T −min{s ∈ [0, T ] : b̄zs = 0} ∈ dt)

=
z
√
T√

2π(T − t)3t
e

(z−y)2
2T

− y
2

2t
− z2

2(T−t) dt, t ∈ (0, T ).
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Combining this with (2.10), we obtain

P(gT ∈ (0, x0],ΓT ≤ 1)

=

∫ ∞
0

∫ x0

0

q(t, 1)
z
√
T√

2π(T − t)3t
e

(z−y)2
2T

− y
2

2t
− z2

2(T−t) dt
1√
2πT

e−
(z−y)2

2T dz

=
1

2π

∫ x0

0

q(t, 1) e−
y2

2t

∫ ∞
0

z√
t(T − t)3

e−
z2

2(T−t) dzdt

=
1

2π

∫ x0

0

q(t, 1) e−
y2

2t
1√

t(T − t)
dt

=
1

2π

∫ x0

0

q(t, 1)
1√

t
(
1− t

T

) e−
y2

2t dt · 1√
T
.

Since x0 > 0 has been chosen arbitrarily, we can deduce

P(gT ∈ dx,ΓT ≤ 1)

dx
=

1

2π
q(x, 1)

1√
x
(
1− x

T

) e−
y2

2x · 1√
T

∼ 1

2π
q(x, 1)

1√
x

e−
y2

2x · 1√
T
, T →∞, x > 0. (2.11)

Step 2: Next we compute the asymptotics of P(ΓT ≤ 1) and, combining it with (2.11),
prove

P(gT ∈ dx |ΓT ≤ 1)

dx
→ P(g ∈ dx)

dx
, T →∞, x > 0.

To this end, let T > 1.
First we consider y = 0. Using the scaling property of B, Lévy’s arcsine law and the
definition of the derivative, we get

P(ΓT ≤ 1) = P
(∫ 1

0

1{Bs<0}ds ≤
1

T

)
=

2

π
arcsin

(
1√
T

)
∼ 2

π
arcsin′(0)

1√
T

=
2

π
· 1√

T
, T →∞.

Combining this with (2.11) in the first step, using (2.4) and (2.7) in the second step as
well as (2.2) in the third, we deduce

P(gT ∈ dx |ΓT ≤ 1)

dx
→ 1

4
q(x, 1)

1√
x

= 1{x≤1}
1

4
√
x

+ 1{x>1}
1

4
√
x3

=
P(g ∈ dx)

dx
, T →∞, x > 0, y = 0.
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Now let y < 0 and let B0 = (B0
t )t≥0 be a Brownian motion starting in 0. Using the

scaling property and the symmetry of B0, we obtain

P(ΓT ≤ 1) = P
(∫ T

0

1{B0
s<−y}ds ≤ 1

)
= P

(∫ 1

0

1{
B0
s<−

y√
T

}ds ≤ 1

T

)
= P

(∫ 1

0

1{
B0
s>−

y√
T

}ds ≥ 1− 1

T

)
= 1− P

(∫ 1

0

1{
B0
s>−

y√
T

}ds ≤ 1− 1

T

)
.

Applying formula (12) of [Tak98] and substituting z = t
T

, we deduce

P(ΓT ≤ 1) =
1

π

∫ 1
T

0

1√
z(1− z)

e−
y2

2zT dz =
1

π

∫ 1

0

1√
t(1− t

T
)

e−
y2

2t dt · 1√
T
.

The dominated convergence theorem yields

P(ΓT ≤ 1) ∼ 1

π

∫ 1

0

1√
t

e−
y2

2t dt · 1√
T
, T →∞.

Combining this with (2.11) and (2.2), we obtain

P(gT ∈ dx |ΓT ≤ 1)

dx
→

q(x, 1) 1√
x

e−
y2

2x

2
∫ 1

0
1√
t
e−

y2

2t dt
=

P(g ∈ dx)

dx
, T →∞, x > 0, y < 0.

Finally, we consider y > 0. Since B0 is symmetric, we have

P(ΓT ≤ 1) = P
(∫ T

0

1{B0
s<−y}ds ≤ 1

)
= P

(∫ 1

0

1{
B0
s<−

y√
T

}ds ≤ 1

T

)
= P

(∫ 1

0

1{
B0
s>

y√
T

}ds ≤ 1

T

)
.

Using formula (12) of [Tak98] and the density of the arcsine distribution, we deduce

P(ΓT ≤ 1) = 1− 1

π

∫ 1− 1
T

0

1√
z(1− z)

e−
y2

2zT dz

=
1

π

∫ 1

0

1√
z(1− z)

dz − 1

π

∫ 1− 1
T

0

1√
z(1− z)

e−
y2

2zT dz

=
1

π

(∫ 1− 1
T

0

1√
z(1− z)

(
1− e−

y2

2zT

)
dz +

∫ 1

1− 1
T

1√
z(1− z)

dz

)
. (2.12)
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Recalling arcsin′(0) = 1, the definition of the derivative yields

√
T

∫ 1

1− 1
T

1√
z(1− z)

dz =
√
T

∫ 1
T

0

1√
(1− z)z

dz

= 2
√
T arcsin

(
1√
T

)
→ 2, T →∞. (2.13)

To obtain the asymptotics of the first term in (2.12), we split the integral at 1
2
. Noting

1− e−
y2

2zT ≤ 1− e−
y2

T ≤ y2

T
, z ∈

[
1

2
, 1

]
,

the dominated convergence theorem implies

√
T

∫ 1− 1
T

1
2

1√
z(1− z)

(
1− e−

y2

2zT

)
dz → 0, T →∞. (2.14)

Using the substitution t = y2

x2
and integration by parts, we get∫ ∞

0

1√
t

(
1− e−

y2

2t

)
dt =

∫ ∞
0

2y

x2

(
1− e−

x2

2

)
dx =

√
2πy.

In particular, we have

∫ ∞
0

sup
T≥1

∣∣∣∣∣∣ 1√
t(1− t

T
)

(
1− e−

y2

2t

)
1{t≤T2 }

∣∣∣∣∣∣ dt ≤
∫ ∞

0

sup
T≥1

∣∣∣∣∣
√

2√
t

(
1− e−

y2

2t

)
1{t≤T2 }

∣∣∣∣∣ dt
=

∫ ∞
0

√
2√
t

(
1− e−

y2

2t

)
dt <∞

so that we can apply the dominated convergence theorem: Together with the substitu-
tion z = t

T
, we get

√
T

∫ 1
2

0

1√
z(1− z)

(
1− e−

y2

2zT

)
dz =

∫ T
2

0

1√
t(1− t

T
)

(
1− e−

y2

2t

)
dt

→
∫ ∞

0

1√
t

(
1− e−

y2

2t

)
dt

=
√

2πy, T →∞. (2.15)

In view of the three limits (2.13), (2.14) and (2.15), equation (2.12) implies

P(ΓT ≤ 1) ∼ 1

π
(
√

2πy + 2)
1√
T
, T →∞. (2.16)
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Combining this with (2.11) and (2.2), we can deduce

P(gT ∈ dx |ΓT ≤ 1)

dx
→

q(x, 1) 1√
x

e−
y2

2x

2
√

2πy + 4
=

P(g ∈ dx)

dx
, T →∞, x > 0, y > 0.

Step 3: Based on the results of step 2 and taking account of the mass in 0 in the
case y > 0, we finally prove the claimed convergence in total variation. As a consequence
of T > 1, the reflection principle and the dominated convergence theorem, we have

P(gT = 0,ΓT ≤ 1) = P(Bt > 0 for all t ∈ [0, T ])

= P(B0
t < y for all t ∈ [0, T ])

= P(|B0
T | < y)

= 1{y>0}
2√
2π

∫ y

0

e−
z2

2T dz · 1√
T

∼ 1{y>0}
2√
2π
y · 1√

T
, T →∞.

Combining this with (2.16) and using (2.2), we obtain

P(gT = 0 |ΓT ≤ 1)→ 1{y>0}

√
2πy√

2πy + 2
= P(g = 0), T →∞. (2.17)

Recalling P(g <∞) = 1, as shown in Corollary 2.8, we deduce

∫
(0,∞)

P(gT ∈ dx |ΓT ≤ 1)

dx
dx = P(gT > 0 |ΓT ≤ 1)

→ P(g > 0) =

∫
(0,∞)

P(g ∈ dx)

dx
dx, T →∞.

Since we have already proved

P(gT ∈ dx |ΓT ≤ 1)

dx
→ P(g ∈ dx)

dx
, T →∞, x > 0,

Scheffé’s lemma implies that the restriction of P(gT ∈ · |ΓT ≤ 1) to ((0,∞),B((0,∞)))
converges in total variation to the corresponding restriction of the law of g as T → ∞.
Combining this with (2.17) yields the claim.
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2.4 Proof of the Weak Convergence

To prove the weak convergence claimed in Theorem 2.1, we will (additionally) condition
on gT , the last zero before T . In view of Proposition 2.9, the following result guarantees
that it essentially suffices to show the weak convergence of the conditioned process.

Proposition 2.10. On a measurable space (Ω,F), let µ∞, µ1, µ2, . . . be probability mea-
sures such that (µn)n∈N converges to µ∞ in total variation. Given a metric space E,
let ν∞, ν1, ν2, . . . : Ω× B(E)→ [0, 1] be Markov kernels from (Ω,F) to (E,B(E)) satis-
fying νn(t, · )⇒ ν∞(t, · ) as n→∞ for µ∞-almost every t ∈ Ω. Then we have∫

Ω

νn(t, · )µn(dt)⇒
∫

Ω

ν∞(t, · )µ∞(dt), n→∞.

Proof. Let F ⊆ E be closed. For each n ∈ N, we have∫
Ω

νn(t, F )µn(dt) ≤
∫

Ω

νn(t, F ) |µn − µ∞|(dt) +

∫
Ω

νn(t, F )µ∞(dt)

≤ |µ∞ − µn|(Ω) +

∫
Ω

νn(t, F )µ∞(dt),

where |µ∞−µn| denotes the variation of the signed measure µ∞−µn. Applying Fatou’s
lemma and the portmanteau theorem, we deduce

lim sup
n→∞

∫
Ω

νn(t, F )µn(dt) ≤ lim
n→∞

|µ∞ − µn|(Ω) + lim sup
n→∞

∫
Ω

νn(t, F )µ∞(dt)

≤ 0 +

∫
Ω

lim sup
n→∞

νn(t, F )µ∞(dt) ≤
∫

Ω

ν∞(t, F )µ∞(dt)

so that the portmanteau theorem yields the claim.

Around gT , we can decompose (Bt)t∈[0,T ] into a scaled Brownian bridge with drift and, up
to sign, a scaled Brownian meander (see Definition 2.14 and Proposition 2.15). Propo-
sition 2.11 below, which can be considered mathematical folklore, shows that a scaled
Brownian meander of infinite length is nothing but a three-dimensional Bessel process
starting in 0. Recall that Z is such a process.

Proposition 2.11. Let t0 > 0 and x ∈ [0, t0]. Moreover, let (B+
s )s∈[0,1] be a Brownian

meander. Then we have

lim
T→∞

P
((√

T − xB+
t

T−x

)
t∈[0,t0−x]

∈ A
)

= P((Zt)t∈[0,t0−x] ∈ A), A ∈ B(C([0, t0 − x])),

and consequently (√
T − xB+

t
T−x

)
t∈[0,t0−x]

⇒ (Zt)t∈[0,t0−x], T →∞.
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Proof. Let f : C([0, t0 − x])→ R be a Borel-measurable bounded function, e.g., f = 1A

for some A ∈ B(C([0, t0 − x])), and let T > t0. Section 4 of [Imh84] provides the change
of measure formula

P
(
(B+

s )s∈[0,1] ∈ ·
)

= E
[

1

Z1

√
π

2
1(Zs)s∈[0,1]∈ ·

]
. (2.18)

Together with the scaling property of Z, we get

E
[
f

((√
T − xB+

t
T−x

)
t∈[0,t0−x]

)]
= E

[
1

Z1

√
π

2
f

((√
T − xZ t

T−x

)
t∈[0,t0−x]

)]
= E

[√
T − x
ZT−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
.

Given a three-dimensional Brownian motion (Wt)t≥0 with Z = ‖W‖2, the process

Z ′ := (Z ′t)t≥0 := (‖Wt0−x+t −Wt0−x‖2)t≥0

is a three-dimensional Bessel process independent of (Zt)t∈[0,t0−x]. The triangle inequality
implies ZT−x ≤ Z ′T−t0 + Zt0−x. Combining this with the scaling property of Z ′ and the
dominated convergence theorem, we obtain

E
[√

T − x
ZT−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
≥ E

[ √
T − x

Z ′T−t0 + Zt0−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
= E

[ √
T − x√

T − t0Z ′1 + Zt0−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]

=

√
T − x√
T − t0

E

 1

1 +
Zt0−x√
T−t0Z′1

· 1

Z ′1

√
π

2
f
(
(Zt)t∈[0,t0−x]

)
→ E

[
1

Z ′1

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
, T →∞.

On the other hand, the triangle inequality also implies ZT−x ≥ Z ′T−t0 −Zt0−x. Together
with limT→∞ Z

′
T−t0 =∞ a.s., a similar computation yields

lim sup
T→∞

E
[
1{2Zt0−x≤Z

′
T−t0

}

√
T − x
ZT−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
≤ E

[
1

Z ′1

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
.
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Using ZT−x ≤ Z ′T−t0 + Zt0−x again, we get

0 ≤ E
[
1{2Zt0−x>Z

′
T−t0

}

√
T − x
ZT−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
≤
√
π

2
‖f‖∞E

[
1{3Zt0−x>ZT−x}

√
T − x
ZT−x

]

=

√
π

2
‖f‖∞E

1{
3Z t0−x

T−x
>Z1

} 1

Z1


→
√
π

2
‖f‖∞E

[
1{0>Z1}

1

Z1

]
= 0, T →∞.

As a consequence of (2.18), we have E
[

1
Z′1

√
π
2

]
= 1. Using this fact as well as the

independence of Z ′ and (Zt)t∈[0,t0−x] in the final step, we can deduce

E
[
f

((√
T − xB+

t
T−x

)
t∈[0,t0−x]

)]
= E

[√
T − x
ZT−x

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
→ E

[
1

Z ′1

√
π

2
f
(
(Zt)t∈[0,t0−x]

)]
= E

[
f
(
(Zt)t∈[0,t0−x]

)]
, T →∞,

proving the claim.

Finally, we are ready to prove Theorem 2.1. In view of the topological structure
of C([0,∞)), it suffices to prove weak convergence in C([0, t0]) for each t0 > 0 (see
Theorem 5 of [Whi70]). If there exists a zero before time T > t0, we use the mentioned
path decomposition and the auxiliary result we just proved. If there is no zero before T ,
we simply use the fact that Brownian motion conditioned to stay positive is nothing but
a three-dimensional Bessel process.

Proof of Theorem 2.1. Let t0 > 0 and T > t0. Conditioned on {gT > 0}, the process

(b′s)s∈[0,1] :=

(
1
√
gT

(
BsgT − y + sy

))
s∈[0,1]

is a standard Brownian bridge while

(B+
s )s∈[0,1] :=

(
1√

T − gT

∣∣BgT+(T−gT )s

∣∣)
s∈[0,1]

is a Brownian meander. Moreover, the two processes, gT and the sign of BT are mutually
independent (see Proposition 2.15). Rewriting the definitions, we get

(Bt)t∈[0,T ]

=

(
1{t<gT }

(
√
gT b

′
t
gT

+ y − t

gT
y

)
+ 1{t≥gT } sgn(BT )

√
T − gTB+

t−gT
T−gT

)
t∈[0,T ]

.
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Now let x > 0 and T ≥ x+ 1. Using this assumption in the first step and the mentioned
independence in the third, we obtain

P
(
(Bt)t∈[0,t0] ∈ ·

∣∣ΓT ≤ 1, gT = x
)

= P
(
(Bt)t∈[0,t0] ∈ ·

∣∣Γx ≤ 1, BT > 0, gT = x
)

= P

((
1{t<x}

(√
xb′t

x
+ y − t

x
y

)
+ 1{t≥x}

√
T − xB+

t−x
T−x

)
t∈[0,t0]

∈ ·

∣∣∣∣∣ . . .
. . .

∣∣∣∣∣
∫ x

0

1{√
xb′s
x

+y− s
x
y<0

}ds ≤ 1, BT > 0, gT = x

)

= P

((
1{t<x}

(√
xb′t

x
+ y − t

x
y

)
+ 1{t≥x}

√
T − xB+

t−x
T−x

)
t∈[0,t0]

∈ ·

∣∣∣∣∣ . . .
. . .

∣∣∣∣∣
∫ x

0

1{√
xb′s
x

+y− s
x
y<0

}ds ≤ 1

)
. (2.19)

On the one hand, we have

P

((√
xb′t

x
+ y − t

x
y

)
t∈[0,x]

∈ ·

∣∣∣∣∣
∫ x

0

1{√
xb′s
x

+y− s
x
y<0

}ds ≤ 1

)

= P

((
√
gb t

g
+ y − t

g
y

)
t∈[0,x]

∈ ·

∣∣∣∣∣ g = x

)
. (2.20)

On the other hand, Proposition 2.11 implies

P
((√

T − xB+
t−x
T−x

)
t∈[x,t0]

∈ ·
)
⇒ P

(
(Zt−x)t∈[x,t0] ∈ ·

)
, T →∞. (2.21)

Note that this convergence and the following considerations are trivial for x > t0. The
law in (2.19) is supported on

Cx := {f ∈ C([0, t0]) : f(x) = 0} ∈ B(C([0, t0])),

which can be identified with the product space

{f ∈ C([0, x]) : f(x) = 0} × {f ∈ C([x, t0]) : f(x) = 0}.

Since the individual spaces are separable, the Borel σ-algebra on Cx is precisely the
product σ-algebra. Further, the law in (2.19) is nothing but the product measure of the
left-hand sides of (2.20) and (2.21) as a consequence of the independence of the path
decomposition. The product measure of the right-hand sides of (2.20) and (2.21) is noth-
ing but P((Xt)t∈[0,t0] ∈ · | g = x) by (the independence assumptions in the) construction
of X. Combining (2.19) with (2.20) and (2.21), Theorem 2.8 in [Bil99] consequently
yields

P
(
(Bt)t∈[0,t0] ∈ ·

∣∣ΓT ≤ 1, gT = x
)
⇒ P((Xt)t∈[0,t0] ∈ · | g = x), T →∞,

on Cx and hence also on C([0, t0]).
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For y > 0, we additionally have (see, e.g., Example 3 in [Pin85])

P
(
(Bt)t∈[0,t0] ∈ ·

∣∣ΓT ≤ 1, gT = 0
)

= P
(
(Bt)t∈[0,t0] ∈ ·

∣∣Bt > 0 for all t ∈ [0, T ]
)

⇒ P
(
(Yt)t∈[0,t0] ∈ ·

)
= P

(
(Xt)t∈[0,t0] ∈ ·

∣∣ g = 0
)
, T →∞.

In view of Proposition 2.9 and of P(g = 0) = 0 for y ≤ 0, Proposition 2.10 yields

P
(
(Bt)t∈[0,t0] ∈ ·

∣∣ΓT ≤ 1
)

=

∫
[0,∞)

P
(
(Bt)t∈[0,t0] ∈ ·

∣∣ΓT ≤ 1, gT = x
)
P(gT ∈ dx |ΓT ≤ 1)

⇒
∫

[0,∞)

P
(
(Xt)t∈[0,t0] ∈ ·

∣∣ g = x
)
P(g ∈ dx)

= P
(
(Xt)t∈[0,t0] ∈ ·

)
, T →∞.

Since t0 > 0 has been chosen arbitrarily, Theorem 5 of [Whi70] yields the claimed weak
convergence in C([0,∞)).

2.5 Proofs of the Remaining Results

To prove Theorem 2.2, we condition on g, the last zero of the limiting process, and
perform an explicit calculation using Lemma 2.7.

Proof of Theorem 2.2. Let u ∈ [0, 1]. By construction of X, we have

Γ =

∫ g

0

1{Xs<0}ds =

∫ g

0

1{√
gb s
g

+y− s
g
y<0

}ds.

Now let (b′s)s∈[0,1] be a standard Brownian bridge. Using u ≤ 1 and the definition of b
in the second step, we obtain

P(Γ ≤ u) = P(g ≤ u) +

∫ ∞
u

P
(∫ g

0

1{√
gb s
g

+y− s
g
y<0

}ds ≤ u

∣∣∣∣ g = x

)
P(g ∈ dx)

= P(g ≤ u) +

∫ ∞
u

P
( ∫ x

0
1{√

xb′s
x

+y− s
x
y<0
}ds ≤ u

)
P
( ∫ x

0
1{√

xb′s
x

+y− s
x
y<0
}ds ≤ 1

)P(g ∈ dx)

= P(g ≤ u) +

∫ ∞
u

q(x, u)

q(x, 1)
P(g ∈ dx).
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For y < 0, we apply (2.2) and (2.4) as well as Lemma 2.7 in the final step to deduce

P(Γ ≤ u) =

∫ u
0
q(x, 1) 1√

x
e−

y2

2x dx

2
∫ 1

0
1√
x

e−
y2

2x dx
+

∫∞
u
q(x, u) 1√

x
e−

y2

2x dx

2
∫ 1

0
1√
x

e−
y2

2x dx

=

∫ u
0

1√
x

e−
y2

2x dx

2
∫ 1

0
1√
x

e−
y2

2x dx
+

∫∞
u
q(x, u) 1√

x
e−

y2

2x dx

2
∫ 1

0
1√
x

e−
y2

2x dx
= 2

∫ u
0

1√
x

e−
y2

2x dx

2
∫ 1

0
1√
x

e−
y2

2x dx
.

For y > 0, we similarly get

P(Γ ≤ u) =
2
√

2πy +
∫ u

0
q(x, 1) 1√

x
e−

y2

2x dx

2
√

2πy + 4
+

∫∞
u
q(x, u) 1√

x
e−

y2

2x dx

2
√

2πy + 4

=
2
√

2πy +
∫ u

0
1√
x

e−
y2

2x dx+
∫∞
u
q(x, u) 1√

x
e−

y2

2x dx

2
√

2πy + 4

=
2
√

2πy + 4
√
u

2
√

2πy + 4
.

For y = 0, we can proceed as in the proof of Theorem 4 in [BB11]: Applying (2.2) as
well as (2.4) and (2.7), we obtain

P(Γ ≤ u) =

√
u

2
+

∫ 1

u
q(x,u)

q(x,1)
√
x
dx

4
+

∫∞
1

q(x,u)

q(x,1)
√
x3

dx

4

=

√
u

2
+

∫∞
u

u√
x3

dx

4
=
√
u =

∫ u
0

1√
x
dx∫ 1

0
1√
x
dx

showing the claim.

As already mentioned, we prove Proposition 2.3 without relying on the explicit distri-
butions of g, τ and Γ but on the arcsine laws and the strong Markov property. Instead
of working with the explicit definition of g given in (2.2), we use the characterization
of g as the conditioned limiting law of gt, proved in Propositon 2.9.

Proof of Proposition 2.3. Let u ∈ [0, 1] and T > 2. Further, let τ̄ := inf{t ≥ 0 : Bt = 0}
be the first zero of B. By the strong Markov property, (B̄t)t≥0 := (Bτ̄+t)t≥0 is a standard
Brownian motion independent of τ̄ . For each t ≥ 0, we define

ḡt := sup{s ∈ [0, t] : B̄s = 0} and Γ̄t :=

∫ t

0

1{B̄s<0}ds.

On {τ̄ ≤ T}, we have

gT = τ̄ + ḡT−τ̄ and ΓT = 1{y≤0}τ̄ + Γ̄T−τ̄ =

{
τ̄ + Γ̄T−τ̄ , y ≤ 0,

Γ̄T−τ̄ , y ≥ 0.
(2.22)
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Using the symmetry of B̄ in the first step and the arcsine laws in the second, we obtain

2P(ḡT−t ≤ u− t, B̄T−t > 0) = P(ḡT−t ≤ u− t) = P(Γ̄T−t ≤ u− t), t ∈ [0, u].

Using T − u > 1 in the first step, inserting the first part of (2.22) in the third step and
recalling that τ̄ is independent of both ḡ and Γ̄, we can deduce

2P(gT ∈ (0, u],ΓT ≤ 1) = 2P(gT ∈ (0, u], BT > 0)

= 2P(gT ≤ u,BT > 0, τ̄ ≤ u)

= 2P(ḡT−τ̄ ≤ u− τ̄ , B̄T−τ̄ > 0, τ̄ ≤ u)

=

∫
[0,u]

2P(ḡT−t ≤ u− t, B̄T−t > 0)P(τ̄ ∈ dt)

=

∫
[0,u]

P(Γ̄T−t ≤ u− t)P(τ̄ ∈ dt)

= P(Γ̄T−τ̄ ≤ u− τ̄ , τ̄ ≤ u).

Noting {ΓT ≤ u} ⊆ {τ̄ ≤ u} for y ≤ 0, the second part of (2.22) implies

2P(gT ∈ (0, u],ΓT ≤ 1) = P(Γ̄T−τ̄ ≤ u− τ̄ , τ̄ ≤ u) = P
(
1{y>0}τ̄ + ΓT ≤ u, τ̄ ≤ u

)
= P

(
1{y>0}τ̄ + ΓT ≤ u

)
= P

(
1{y>0}τ̄ + ΓT ≤ u,ΓT ≤ 1

)
proving

2P(gT ∈ (0, u] |ΓT ≤ 1) = P
(
1{y>0}τ̄ + ΓT ≤ u

∣∣ΓT ≤ 1
)
. (2.23)

As a consequence of Proposition 2.9, the left-hand side converges to 2P(g ∈ (0, u])
as T → ∞. Now assume that the distribution function of τ + Γ is continuous in u.
Then, in view of the very same proposition, a path decomposition and conditioning
argument similar to that in the proof of Theorem 2.1 implies that the right-hand side
of (2.23) converges to

P
(
1{y>0} inf{t ≥ 0 : Xt = 0}+ Γ ≤ u

)
= P(τ + Γ ≤ u)

as T → ∞. For general u ∈ [0, 1], the claimed equality now is a consequence of the
right-continuity of distribution functions.

Theorem 2.4 follows from the formulas for the distribution functions of gy and Γy by
direct computations.

Proof of Theorem 2.4. Part (a): Let u > 0 and y > 2√
u
. Equations (2.2) and (2.7) imply

P
(
gy

y2
> u

∣∣∣∣ gy > 0

)
=

1

4

∫ ∞
uy2

qy(t, 1)
1√
t

e−
y2

2t dt

=
1

4

∫ ∞
uy2

∫ t−1

0

y√
2πx3(t− x)3

e−
y2

2x dx+

∫ t

t−1

y√
2πx3(t− x)

e−
y2

2x dxdt. (2.24)
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Regarding the first double integral, we use Tonelli’s theorem and two linear substitutions
to obtain ∫ ∞

uy2

∫ t−1

0

y√
2πx3(t− x)3

e−
y2

2x dxdt

=

∫ ∞
0

∫ ∞
uy2∨(x+1)

y√
2πx3(t− x)3

e−
y2

2x dtdx

=

∫ uy2−1

0

2y√
2πx3(uy2 − x)

e−
y2

2x dx+

∫ ∞
uy2−1

2y√
2πx3

e−
y2

2x dx

=

∫ 1

0

2y(uy2 − 1)√
2π(uy2 − 1)3z3(uy2 − (uy2 − 1)z)

e
− y2

2(uy2−1)z dz

+

∫ ∞
u

2y3√
2π(sy2 − 1)3

e
− y2

2(sy2−1) ds

=
1

y

∫ 1

0

2
(
u− 1

y2

)√
2π
(
u− 1

y2

)3
z3
(
u−

(
u− 1

y2

)
z
) e
− 1

2

(
u− 1

y2

)
z

dz

+

∫ ∞
u

2√
2π
(
s− 1

y2

)3
e
− 1

2

(
s− 1

y2

)
ds.

Noting that the initial assumption on y implies 3
4
u ≤ s − 1

y2
≤ s for all s ≥ u, the

dominated convergence theorem yields∫ ∞
uy2

∫ t−1

0

y√
2πx3(t− x)3

e−
y2

2x dxdt→ 0 +

∫ ∞
u

2√
2πs3

e−
1
2s ds, y →∞.

Regarding the second double integral in (2.24), two linear substitutions lead to∫ ∞
uy2

∫ t

t−1

y√
2πx3(t− x)

e−
y2

2x dxdt

=

∫ ∞
u

∫ sy2

sy2−1

y3√
2πx3(sy2 − x)

e−
y2

2x dxds

=

∫ ∞
u

∫ 1

0

y3√
2π(sy2 − 1 + z)3(1− z)

e
− y2

2(sy2−1+z) dzds

=

∫ ∞
u

∫ 1

0

1√
2π(s− 1

y2
+ z

y2
)3(1− z)

e
− 1

2

(
s− 1

y2
+ z
y2

)
dzds.

As above, we can apply the dominated convergence theorem to deduce∫ ∞
uy2

∫ t

t−1

y√
2πx3(t− x)

e−
y2

2x dxdt→
∫ ∞
u

∫ 1

0

1√
2πs3(1− z)

e−
1
2s dzds

=

∫ ∞
u

2√
2πs3

e−
1
2s ds, y →∞.
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Combining the two limits with (2.24), we get

P
(
gy

y2
> u

∣∣∣∣ gy > 0

)
→
∫ ∞
u

1√
2πs3

e−
1
2s ds, y →∞,

proving the first claim. The second claim follows immediately.

Part (b): Similar to part (a), it suffices to prove the weak convergence of y2(1 − Γy)

and y2(1 − gy). Let u ≥ 0 and y < −
√
u. Substituting t = y2

y2+2z
or equivalently

z = −y2(t−1)
2t

and applying the dominated convergence theorem, we obtain

∫ 1− u
y2

0

y2

2
√
t

e
y2

2 e−
y2

2t dt =

∫ ∞
u
2

(
1− u

y2

)−1

y2
√
y2 + 2z

2|y|
e−z

2y2

(y2 + 2z)2
dz

=

∫ ∞
0

1{u
2
≤
(

1− u
y2

)
z
}( y2

y2 + 2z

) 3
2

e−z dz

→
∫ ∞

0

1{u2≤z} e−z dz = e−
u
2 , y → −∞. (2.25)

Together with (2.3), we deduce

P(y2(1− Γy) ≥ u) = P
(

Γy ≤ 1− u

y2

)
=

∫ 1− u
y2

0
1√
t
e−

y2

2t dt∫ 1

0
1√
t
e−

y2

2t dt

=

∫ 1− u
y2

0
y2

2
√
t
e
y2

2 e−
y2

2t dt∫ 1

0
y2

2
√
t
e
y2

2 e−
y2

2t dt
→ e−

u
2 , y → −∞,

proving the claimed convergence of y2(1− Γy).
Recalling P(gy <∞) = 1 and using (2.5), we deduce

P(y2(1− gy) ≤ u) = 1− P
(
gy < 1− u

y2

)
= 1− 1

2
P
(

Γy < 1− u

y2

)
→ 1− 1

2
e−

u
2 = P(g′ ≤ u), y → −∞.
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Now let u ≤ 0 and y < 0. Using (2.7), substituting x = y2

y2+2z
as above and applying the

dominated convergence theorem with majorant 4z√
2π(2z−u)

e−z, we obtain∫ ∞
1− u

y2

qy(t, 1)
y2

2
√
t

e
y2

2 e−
y2

2t dt

=

∫ ∞
1− u

y2

∫ 1

0

(1− x)|y|y2

2
√

2πx3(t− x)3
e
y2

2 e−
y2

2x dxdt

=

∫ 1

0

(1− x)|y|y2√
2πx3

(
1− u

y2
− x
) e

y2

2 e−
y2

2x dx

=

∫ ∞
0

2z|y|y2
√

(y2 + 2z)3

(y2 + 2z)
√

2πy6
(
1− u

y2
− y2

y2+2z

) e−z
2y2

(y2 + 2z)2
dz

=

∫ ∞
0

4z√
2π
(
2z − uy2+2z

y2

) e−z
y2

y2 + 2z
dz

→
∫ ∞

0

4z√
2π(2z − u)

e−z dz, y → −∞.

Recalling P(gy < ∞) = 1 again, applying (2.2) and combining the above convergence
with (2.25), we deduce

P(y2(1− gy) ≤ u) = P
(
gy > 1− u

y2

)

=

∫∞
1− u

y2
qy(t, 1) 1√

t
e−

y2

2t dt

2
∫ 1

0
1√
t
e−

y2

2t dt

=

∫∞
1− u

y2
qy(t, 1) y2

2
√
t
e
y2

2 e−
y2

2t dt

2
∫ 1

0
y2

2
√
t
e
y2

2 e−
y2

2t dt

→

∫∞
0

4z√
2π(2z−u)

e−z dz

2
= P(g′ ≤ u), y → −∞,

proving y2(1− gy)⇒ g′.

2.6 Auxiliary Path Decomposition Results

For the sake of completeness and for the reader’s convenience, we collect and prove a few
path decomposition results concerning Brownian motions and bridges in this section. In
preparation of the proofs, we start with a random version of the scaling property of
Brownian motion.
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Proposition 2.12. Let (Wt)t≥0 be a standard Brownian motion independent of some
σ-algebra G. Moreover, let σ be a G-measurable random variable taking values in [0,∞).
Then W σ :=

(
1√
σ
Wσt

)
t≥0

is a standard Brownian motion independent of G.

Proof. By the classical scaling property, W s := ( 1√
s
Wst)t≥0 is a Brownian motion inde-

pendent of G for each s > 0. We deduce

P({W σ ∈ F} ∩G) =

∫
[0,∞)

P({W σ ∈ F} ∩G |σ = s)P(σ ∈ ds)

=

∫
[0,∞)

P({W s ∈ F} ∩G |σ = s)P(σ ∈ ds)

=

∫
[0,∞)

P(W s ∈ F )P(G |σ = s)P(σ ∈ ds)

=

∫
[0,∞)

P(W ∈ F )P(G |σ = s)P(σ ∈ ds)

= P(W ∈ F )P(G), F ∈ B(C[0,∞)), G ∈ G,

proving the claim.

Our next auxiliary result states that a Brownian motion with a suitable non-linear time
change becomes a Brownian bridge.

Lemma 2.13. Let (Wt)t≥0 be a standard Brownian motion. Then
(
sW 1−s

s

)
s∈(0,1]

is a

standard Brownian bridge.

Proof. The process
(
sW 1−s

s

)
s∈(0,1]

is a centered Gaussian process whose covariance func-

tion is given by

E
[
sW 1−s

s
· tW 1−t

t

]
= st

(
1− s
s
∧ 1− t

t

)
= (s ∧ t)− st, s, t ∈ (0, 1].

Consequently, it must be a standard Brownian bridge.

Before we state the main path decomposition result, let us recall the definition of a
Brownian meander.

Definition 2.14. Let (Wt)t≥0 be a standard Brownian motion and let

γ1 := max{s ∈ [0, 1] : Ws = 0}

be its last zero before time 1. A stochastic process B+ = (B+
t )t∈[0,1] is called (standard)

Brownian meander if it satisfies

B+ d
=

(
1√

1− γ1

|Wγ1+(1−γ1)s|
)
s∈[0,1]

.
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2 Limited Time Outside an Unbounded Interval

Further, let us recall that (Bt)t≥0 is a Brownian motion with starting point y ∈ R and
that

gT := max{s ∈ [0, T ] : Bs = 0}

is the last zero of B before time T > 0 with the convention max ∅ := 0. The next
proposition shows that, conditioned on {gT > 0} or equivalently on the existence of a
zero before time T , we can decompose (Bt)t∈[0,T ] around gT into a Brownian bridge, a
Brownian meander and the sign of the endpoint such that the four parts of the decom-
position are independent. In the special case y = 0, this result can, for instance, be
found in Section 7 of [YY13]. Regarding the general case, we start by generalizing (the
proof of) Theorem 7.1.1 in [YY13] concerning the bridge part. Afterwards, we deduce
the remaining claims from the special case y = 0 by considering the Brownian motion
started in the first zero. Formally, the statement reads as follows:

Proposition 2.15. Let T > 0. Conditioned on {gT > 0}, the process

(b′s)s∈[0,1] :=

(
1
√
gT

(
BsgT − y + sy

))
s∈[0,1]

is a standard Brownian bridge while

(B+
s )s∈[0,1] :=

(
1√

T − gT

∣∣BgT+(T−gT )s

∣∣)
s∈[0,1]

is a Brownian meander. Moreover, these two processes, gT and sgn(BT ) are mutually
independent.

Proof. By time inversion, (Wt)t≥0 :=
(
t
(
B 1

t
− y
))
t≥0

is a standard Brownian motion.
Moreover,

σT := inf

{
t ≥ 1

T
: Wt = −yt

}
= inf

{
t ≥ 1

T
: B 1

t
= 0

}
=

1

gT

is a stopping time with respect to the filtration (Gt)t≥0 generated by (Wt)t≥0. From
now on, we condition on {gT > 0} or equivalently on {σT < ∞}. By the strong
Markov property, (WσT+t−WσT )t≥0 is a standard Brownian motion independent of GσT .
According to Proposition 2.12, the process

(
W̄t

)
t≥0

:=

(
1
√
σT

(WσT+σT t −WσT )

)
t≥0
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is a standard Brownian motion independent of GσT as well. We obtain

(b′s)s∈(0,1] =

(
1
√
gT

(
sgTW 1

sgT

+ sy
))

s∈(0,1]

=

(
s
√
gT

(
W 1

sgT

+
y

gT

))
s∈(0,1]

=

(
s
√
σT

(
WσT

s
−WσT

))
s∈(0,1]

=

(
s
√
σT

(
WσT+σT

1−s
s
−WσT

))
s∈(0,1]

=
(
sW̄ 1−s

s

)
s∈(0,1]

.

According to Lemma 2.13, this process is a standard Brownian bridge. Moreover, it is
independent of GσT . By continuity, both properties extend from (b′s)s∈(0,1] to (b′s)s∈[0,1].
Since (Wt)t≥0 (with its natural filtration (Gt)t≥0) is constructed from (Bt)t≥0 by time
inversion and σT = 1

gT
holds, the triple ((B+

s )s∈[0,1], gT , sgn(BT )) is GσT -measurable and

hence independent of (b′s)s∈[0,1].
Now consider the (Bt)t≥0-stopping time

τT := min{s ∈ [0, T ] : Bs = 0}

(with the convention min ∅ := T ). Since we condition on {gT > 0}, which is equivalent
to the existence of a zero, we have τT < T and BτT = 0. By the strong Markov
property, (BτT+t)t≥0 is a (standard) Brownian motion independent of τT . According to
Proposition 2.12, the process

(
B̄t

)
t≥0

:=

(
1√

T − τT
BτT+(T−τT )t

)
t≥0

is a Brownian motion independent of τT as well. We define

ḡ := max{s ∈ [0, 1] : B̄s = 0} =
gT − τT
T − τT

.

Then

(B+
s )s∈[0,1] =

(
1√

T − gT

∣∣BgT+(T−gT )s)

∣∣)
s∈[0,1]

=

(
1√

1− ḡ
1√

T − τT

∣∣BτT+(T−τT )(ḡ+(1−ḡ)s)
∣∣)

s∈[0,1]

=

(
1√

1− ḡ
∣∣B̄ḡ+(1−ḡ)s

∣∣)
s∈[0,1]
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2 Limited Time Outside an Unbounded Interval

is a Brownian meander. Now the path decomposition result for starting point y = 0 (see
Lemma 7.6.1 in [YY13]) implies that (B+

s )s∈[0,1] and ḡ and sgn(B̄1) are independent. On
the other hand, ((B+

s )s∈[0,1], sgn(B̄1)) is independent of τT . We deduce the independence
of (B+

s )s∈[0,1] and gT = τT + ḡ(T − τT ) and sgn(BT ) = sgn(B̄1).

If the underlying process already is a Brownian bridge (with drift), we use another kind
of time inversion and the strong Markov property to show that the process up to the
last zero is again a Brownian bridge.

Proposition 2.16. Given T > 0 and z ∈ R, let (b′t)t∈[0,T ] be a Brownian bridge of
length T with b′0 = y and b′T = z. We define

γT := max{s ∈ [0, T ] : b′s = 0}

with the convention max ∅ := 0. Conditioned on {γT > 0}, the process(
1
√
γT

(
b′sγT − y + sy

))
s∈[0,1]

is a standard Brownian bridge independent of γT .

Proof. The centered Gaussian process

(Wt)t≥0 :=

(
t+ 1√
T

(
b′ T
t+1
− 1

t+ 1
(z − y)− y

))
t≥0

satisfies

E[WtWs] =
(t+ 1)(s+ 1)

T
cov

(
b′ T
t+1
, b′ T

s+1

)
=

(t+ 1)(s+ 1)

T

((
T

t+ 1
∧ T

s+ 1

)
− T

(t+ 1)(s+ 1)

)
= s ∧ t, s, t ≥ 0.

Consequently, (Wt)t≥0 is a standard Brownian motion. Moreover,

σT := inf

{
t > 0 : Wt = − 1√

T
(z − y)− t+ 1√

T
y

}
= inf

{
t > 0 : b′ T

t+1
= 0
}

is a stopping time with respect to the filtration (Ft)t≥0 generated by (Wt)t≥0. From now
on, we condition on {γT > 0} or equivalently on {σT < ∞}. By the strong Markov
property, (WσT+t −WσT )t≥0 is a Brownian motion independent of FσT . According to
Proposition 2.12, (

W̄t

)
t≥0

:=

(
1√

σT + 1

(
WσT+(σT+1)t −WσT

))
t≥0

is a Brownian motion independent of FσT as well. Noting γT = T
σT+1

and

(b′s)s∈(0,1] =

(
s√
T
WT−s

s
+ y +

s

T
(z − y)

)
s∈(0,1]

,
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we get (
1
√
γT

(
b′sγT − y + sy

))
s∈(0,1]

=

(
1
√
γT

(
sγT√
T
WT−sγT

sγT

+
sγT
T

(z − y) + sy

))
s∈(0,1]

=

(
s√

σT + 1

(
WσT+1−s

s
+

1√
T

(z − y) +
σT + 1√

T
y

))
s∈(0,1]

=

(
s√

σT + 1

(
WσT+(σT+1) 1−s

s
−WσT

))
s∈(0,1]

=
(
sW̄ 1−s

s

)
s∈(0,1]

.

According to Lemma 2.13, this process is a standard Brownian bridge. Moreover, it
is independent of FσT and hence of γT . Continuity of (b′s)s∈[0,1] in 0 finally yields the
claim.

Reversing time and passing to a special case, we obtain the following result:

Corollary 2.17. Let (b′s)s∈[0,t] be a Brownian bridge of length t with b′0 = y and b′t = 0.
We define

τ := min{s ∈ [0, t] : b′s = 0}.

Then (
1√
t− τ

b′τ+s(t−τ)

)
s∈[0,1]

is a standard Brownian bridge independent of τ .
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3 Limited Time Outside a Bounded
Interval

3.1 Overview and Main Results

In this chapter, we will encounter a very rare extreme example of entropic repulsion: If
Brownian motion is forced to spend only limited time outside a bounded interval, then
the resulting process does not spend any time at all outside the interval. In other words,
the resulting process does not make any use of the possibility to leave the interval, which
is somewhat surprising.
In order to explain this result in precise terms, let us first introduce some basic notation.
Fix s > 0, let B = (Bt)t≥0 be a Brownian motion starting in y ∈ (−1, 1) and let

ΓT :=

∫ T

0

1{|Bt|≥1}dt, T ≥ 0,

be the time B spends outside the interval (−1, 1) until time T . By the scaling property
and translation invariance of Brownian motion, one can immediately transfer our results
to the case of an arbitrary bounded interval.
Our main result can be stated as follows:

Theorem 3.1. As T →∞, the probability measures

Py(B ∈ · |ΓT ≤ s) and Py(B ∈ · |ΓT = 0)

converge weakly to the same limit on C([0,∞)). The limiting process (Xt)t≥0 satisfies
the SDE

X0 = y, dXt = dWt −
π

2
tan

(
πXt

2

)
dt, t ≥ 0, (3.1)

where (Wt)t≥0 is a standard Brownian motion.

This result shows that a Brownian motion which is forced to spend less than s time
units outside a bounded interval will end up not leaving the interval at all, as announced
above.
We note that one does not recover the case of limited occupation time in the negative
half-line discussed in Chapter 2 by exhausting (0,∞) by bounded intervals: On the one
hand, a Brownian motion which starts in ỹ > 0 and is conditioned on spending at most
one time unit outside (0,∞) will spend some time in (−∞, 0] with positive probabil-
ity. On the other hand, a Brownian motion which starts in ỹ > 0 and is conditioned on
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3 Limited Time Outside a Bounded Interval

spending at most one time unit outside an arbitrary interval of the form (0, a) with a > ỹ
will not spend any time in (−∞, 0] ⊆ R \ (0, a).
In addition to the above theorem, our methodology allows us to exhibit the exact asymp-
totic behavior of Py(ΓT ≤ s), as T →∞, explicitly:

Theorem 3.2. As T →∞, we have

Py(ΓT ≤ s)

∼
cos
(
πy
2

)
2

19
6

√
3π

13
6 s

1
6T

1
3

exp

(
−π

2

8
T +

3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s

)
, y ∈ (−1, 1),

as well as

lim
T→∞

Px(ΓT ≤ s)

Py(ΓT ≤ s)
= 0, x ∈ R \ (−1, 1), y ∈ (−1, 1). (3.2)

This asymptotic behavior is of interest in its own right due to the explicitness of the
unusual polynomial and subexponential terms as well as the discontinuity w.r.t. the
starting point implied by (3.2). It should be compared to the probability that B never
leaves (−1, 1): The classical formula for first exit probabilities (see, e.g., Example 5a
in [DS53]) yields

Py(ΓT = 0) = Py(|Bt| < 1 for all t ∈ [0, T ])

=
4

π

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)πy

2

)
e−

(2k+1)2π2

8
T

∼ 4

π
cos
(πy

2

)
e−

π2

8
T , y ∈ (−1, 1), T →∞. (3.3)

If we do not start inside [−1, 1] as assumed above, we cannot expect a limiting process
to exist on the Wiener space C([0,∞)) or the Skorokhod space D([0,∞)) since such a
process would have to jump into [−1, 1] immediately:

Corollary 3.3. Fix y ∈ R \ [−1, 1] and set τ := inf{t ≥ 0 : |Bt| = 1}. Then we have

lim
T→∞

Py(τ ≥ ε |ΓT ≤ s) = 0, for any ε > 0.

For starting points on the boundary, i.e., for y ∈ {−1, 1}, the existence of a limiting
process remains an open problem.

Let us outline the general strategy behind the proof of these results: Roughly speaking,

using an analysis of the Laplace transform of T 7→ Py(ΓT ≤ s) e
π2

8
T and an applica-

tion of Tauberian arguments, we are able to prove Theorem 3.2. However, the required
monotonicity in the Tauberian theorems seems to be difficult to establish for arbitrary
starting points y ∈ (−1, 1). We bypass this problem by applying the Tauberian argu-
ment to a specific initial distribution ν supported on (−1, 1) for which monotonicity of
a suitable function can be established. Then it remains to prove the convergence of the
quotient Py(ΓT≤s)

Pν(ΓT≤s)
for y ∈ (−1, 1). Theorem 3.2 together with tightness of the family of

conditional laws will imply our main result.
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Although our way of approximating the event {Γ∞ ≤ s} seems to be the most natural
one, we note that the resulting process depends on the chosen limiting procedure. Even
for s = 0, i.e., when conditioning B on not spending any time outside (−1, 1), it was
shown in [Kni69] that different approximations lead to different processes. More pre-
cisely, given y ∈ (−1, 1) and letting (σl)l≥0 be the right-continuous inverse local time
of B in 0, the laws Py(B ∈ · |Γσl ≤ s) converge weakly on C([0,∞)), as l → ∞, to the
law of a process (X ′t)t≥0 satisfying the SDE

X ′0 = y, dX ′t = dWt −
sgn(X ′t)

1− |X ′t|
dt, t ≥ 0,

where (Wt)t≥0 is a standard Brownian motion.
Further, while Theorem 3.2 provides the precise asymptotic behavior of T 7→ Py(ΓT ≤ s)
for y ∈ (−1, 1), a complementing result for y ∈ R \ (−1, 1) remains an open question.
Here we conjecture, e.g.,

Py(ΓT ≤ s) ∼ 2
17
6 s

1
6

√
3π

11
6 T

2
3

exp

(
−π

2

8
T +

3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s

)
∼
( πs

2T

) 1
3 P0(ΓT ≤ s), y ∈ {−1, 1}, T →∞,

which would, in particular, be in accordance with (3.2). We are, in fact, able to prove the
corresponding asymptotics of the Laplace transform. However, the asymptotic inversion

requires a priori knowledge of monotonicity-type properties of T 7→ Py(ΓT ≤ s) e
π2

8
T ,

which, unfortunately, we cannot ensure for any deterministic starting point y ∈ R.

The structural outline of the rest of this chapter is as follows. In Section 3.2, we prove
Theorem 3.2 following the strategy mentioned above: After some preliminaries, Sub-
section 3.2.1 contains a thorough analysis of the Laplace transform and its asymptotic
behavior. In Subsection 3.2.2, this is used to determine the exact asymptotic behavior
of the T 7→ Pν(ΓT ≤ s) for a special initial distribution ν. In Subsection 3.2.3, we finally
study the precise dependence of T 7→ Py(ΓT ≤ s) on the starting point y. Section 3.3
finishes the proof of Theorem 3.1 and includes the proof of Corollary 3.3.
Most parts of this chapter are contained in the preprint [AKS23].

3.2 Proof of the Asymptotics

Let us now start with the proof of Theorem 3.2. To this end, let y ∈ [−1, 1]. Recalling
the behavior of Py(ΓT = 0) cited in (3.3) for y ∈ (−1, 1) and observing Py(ΓT = 0) = 0
for y ∈ {−1, 1}, we may focus on the analysis of

R := Ry,s : [0,∞)→ [0, 1], T 7→ Py(ΓT ∈ (0, s]).

Let
H := {λ ∈ C : Re(λ) > 0}
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be the complex right half-plane. The key tool in deriving the asymptotics of R is Ing-
ham’s Tauberian theorem. It connects the asymptotic behavior of the Laplace transform
of R at 0 with that of R at∞. However, we will not be able to apply Lemma 3.4 directly
to R due to the required regularity conditions. The version of Inghams’s Tauberian the-
orem we will work with reads as follows (cf. Theorem 1′ in [Ing41]):

Lemma 3.4. Let S : [0,∞)→ [0,∞) be a non-decreasing function such that

Ŝ(λ) := λ

∫ ∞
0

S(T ) e−λT dT ∈ C, λ ∈ H, (3.4)

converges. Let D ⊆ C \ {0} be a domain containing all positive real numbers. Fur-
thermore, let U, V : D → C be holomorphic with U(λ), V (λ) ∈ R>0 for sufficiently
small λ ∈ R>0 and with

Ŝ(λ) ∼ U(λ) eV (λ), for real λ↘ 0,

as well as

Ŝ(λ) = O
(
U(|λ|) eV (|λ|)) , λ→ 0, λ ∈ H. (3.5)

Denoting by d : D → [0,∞] the distance function to Dc, assume that there is some k > 1
with

λV ′(λ)↘ −∞,
√
V ′′(λ)

|V ′(λ)|
= o

(
d(λ)

λ

)
, λkV ′(λ)↗ 0, for real λ↘ 0. (3.6)

Further, assume

sup
z∈C
|z|<d(λ)

|V ′′(λ+ z)| = O(V ′′(λ)), for real λ↘ 0, (3.7)

and

sup
z∈C
|z|<d(λ)

|U(λ+ z)| = O(U(λ)), for real λ↘ 0.

Then we have

S(T ) ∼ U(h(T )) eTh(T )+V (h(T ))

h(T )
√

2πV ′′(h(T ))
, T →∞,

where h is the inverse of −V ′|(0,ε) for sufficiently small ε > 0.

Remark 3.5. (a) In (3.6), the notations ↘ and ↗ denote monotone convergence. In
particular, λV ′(λ)↘ −∞ for real λ↘ 0 implies d

dλ
(λV ′(λ)) ≥ 0 and V ′(λ) < 0 for

all sufficiently small λ ∈ R>0. Thus there exists an ε > 0 with V ′′(λ) ≥ −V ′(λ)
λ

> 0
for all λ ∈ (0, ε) so that −V ′|(0,ε) is strictly decreasing. Noting limλ↘0−V ′(λ) =∞,
it must have an inverse h : (T0,∞)→ (0, ε) for a suitable T0 > 0.
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(b) In [Ing41], the function S is assumed to satisfy S(0) = 0 because the result itself (but
not the proof) is presented in terms of the Laplace-Stieltjes transform: Assuming

in our formulation additionally that S(0) = 0, an integration by parts shows that Ŝ
is nothing but the Laplace-Stieltjes transform of S (see the beginning of the proof
or, e.g., Proposition I.13.1 in [Kor04]). From the proof (as well as from the nature
of the result), it is evident that the assumptions on S may be relaxed in the above

way if we confine ourselves to defining Ŝ by (3.4).

(c) For future use, we remark that the assumption that S is globally non-decreasing
can be relaxed: It suffices to assume that S is non-decreasing for sufficiently large
arguments. Once again, this is apparent from the proof (as well as from the nature
of the result).

(d) In [Ing41], assumption (3.5) is replaced by a weaker condition which does not require
uniformity on all of H but only on the complex wedge {λ ∈ H : |λ| ≤ cRe(λ)} for
each c > 0. The assumption that D contains the whole positive axis is relaxed
in [Ing41] as well.

3.2.1 Analysis of the Laplace Transform

Throughout this subsection, we consider y ∈ [−1, 1]. Our first step is to compute the
Laplace transform of R. For the purpose of readability, let us define

v : (0,∞)→ C, λ 7→
√

2λ tanh(
√

2λ),

and

u := uy : (0,∞)→ C, λ 7→ cosh(y
√

2λ)

cosh(
√

2λ)
.

These functions are related to the functions U and V to which we will apply Ingham’s
Tauberian theorem (Lemma 3.4). The following result essentially is formula 3.1.4.4
in [BS02]:

Lemma 3.6. For almost every T > 0, we have

R(T ) =
2√
2π

∫ s

0

∫ ∞
0

ρr,x(T )dxdr,

where (ρr,x : (0,∞)→ R)r,x>0 is a family of functions with Laplace transforms given by

(L(ρr,x))(λ) = u(λ) e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
, λ, r, x > 0.

Proof. By symmetry, it suffices to prove the claim for y ∈ [0, 1]. For the time being,
let y = 1. We start by observing

FT (s) := R1,s(T ) = P0

(∫ T

0

1(−2,0)c(Bt)dt ≤ s

)
, s, T ≥ 0.
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Now let η, λ > 0. Kac’s theory developed in [Kac49] and [Kac51] shows the existence
and uniqueness of a function ψη,λ ∈ C0(R,R) (vanishing at infinity) which is C1 on R\{0}
as well as C2 on R \ {−2, 0} and solves the ordinary differential equation (ODE)

ψ′′η,λ(x) = 2
(
λ+ η1(−2,0)c(x)

)
ψη,λ(x), x ∈ R \ {−2, 0},

subject to ψ′η,λ(0−)− ψ′η,λ(0+) = 2. Moreover, this function satisfies∫ ∞
−∞

ψη,λ(x)dx =

∫ ∞
0

∫ ∞
0

e−ηr−λT FT (dr)dT =

∫ ∞
0

e−λT
∫ ∞

0

e−ηr FT (dr)dT. (3.8)

Setting c1 :=
√

2(λ+ η) and c2 :=
√

2λ, it is straightforward to check that a solution
(and hence the only one) of the above ODE problem is given by

ψη,λ(x) :=
2

(c2 + c1)2 e4c2 −(c2 − c1)2
·


2c2 e2(c2+c1) ec1x, x < −2,

(c2 − c1) e−c2x +(c2 + c1) e4c2 ec2x, x ∈ [−2, 0],

((c2 − c1) + (c2 + c1) e4c2) e−c1x, x > 0.

Piecewise integration yields∫ ∞
−∞

ψη,λ(x)dx

= 2
2c2 e2(c2+c1) e−2c1

c1

(c2 + c1)2 e4c2 −(c2 − c1)2
+ 2

(c2 − c1) e2c2 −1
c2

+ (c2 + c1) e4c2 1−e−2c2

c2

(c2 + c1)2 e4c2 −(c2 − c1)2

+ 2
((c2 − c1) + (c2 + c1) e4c2) 1

c1

(c2 + c1)2 e4c2 −(c2 − c1)2

=
2

c1c2

· ((c2 + c1) e2c2 +(c2 − c1))2

((c2 + c1) e2c2)2 − (c2 − c1)2

=
2

c1c2

· (c2 + c1) e2c2 +(c2 − c1)

(c2 + c1) e2c2 −(c2 − c1)

=
2

c2(e2c2 −1) + c1(e2c2 +1)

(
e2c2 +1

c1

+
e2c2 −1

c2

)
=

2

c2
e2c2 −1
e2c2 +1

+ c1

(
1

c1

+
e2c2 −1
e2c2 +1

c2

)

= 2

∫ ∞
0

exp

(
−
(
c2

e2c2 −1

e2c2 +1
+ c1

)
x

)(
1

c1

+
e2c2 −1
e2c2 +1

c2

)
dx

= 2

∫ ∞
0

e−
√

2λ tanh(
√

2λ)x e−
√

2(λ+η)x

(
1√

2(λ+ η)
+

tanh(
√

2λ)√
2λ

)
dx.

Using, e.g., formulas 4.5.27 and 4.5.28 of [EMOT54], the integrand can be written in-
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volving a Laplace transform as follows:∫ ∞
−∞

ψη,λ(x)dx

= 2

∫ ∞
0

e−
√

2λ tanh(
√

2λ)x

∫ ∞
0

e−(η+λ)r

(
1√
2πr

+
tanh(

√
2λ)x√

2λ
√

2πr3

)
e−

x2

2r drdx

=
2√
2π

∫ ∞
0

e−ηr
∫ ∞

0

1 · e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
dxdr

=
2√
2π

∫ ∞
0

e−ηr
∫ ∞

0

∫ ∞
0

e−λT ρr,x(T )dTdxdr

=

∫ ∞
0

e−λT
∫ ∞

0

e−ηr
2√
2π

∫ ∞
0

ρr,x(T )dxdrdT,

observing u1(λ) = 1 and using the definition of ρr,x in the third step. In view of
equation (3.8), the uniqueness of the Laplace(-Stieltjes) transform implies that FT has

a Lebesgue density which is given by FT (dr)
dr

= 2√
2π

∫∞
0
ρT (r, x)dx for almost all T, r > 0.

Noting FT (0) = 0, integration yields the claim for y = 1.
Now let y ∈ [0, 1) and τ := inf{t ≥ 0 : |Bt| = 1} (with B0 = y). Observing R−1,s = R1,s,
we get

Ry,s(T ) =

∫ T

0

R1,s(T − t)P(τ ∈ dt), s, T ≥ 0.

The Laplace(-Stieltjes) transform of τ is given by E e−λτ = uy(λ) for each λ > 0 (see,
e.g., Example 5a in [DS53]). Recalling u1(λ) = 1 for all λ > 0, the claim now follows
straight from the fact that the Laplace transform of a convolution is nothing but the
product of the individual Laplace(-Stieltjes) transforms.

The next lemma shows that one can exchange the order of integration to obtain the
Laplace transform of R. The resulting formula can be extended to the half-plane

H← :=

{
λ ∈ C : Re(λ) > −π

2

8

}
= H − π2

8
:

Lemma 3.7. The functions u and v as well as λ 7→ v(λ)
2λ

are well-defined and holomor-
phic on H←. (The singularity of the latter in 0 is removable.) Moreover, the Laplace
transform of R is well-defined on H← and satisfies

(L(R))(λ) =
2u(λ)√

2π

∫ s

0

∫ ∞
0

e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
dxdr, λ ∈ H←. (3.9)

Proof. The functions z 7→ z tanh(z) and z 7→ tanh(z)
z

as well as z 7→ cosh(yz)
cosh(z)

are well-

defined (after removing the singularity of the second in 0), holomorphic and even on{
z ∈ C :

z2

2
∈ H←

}
⊆ C \

{
(2n+ 1)π

2
i : n ∈ Z

}
.
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Consequently, the three functions mentioned in the lemma are well-defined and holo-
morphic as well.
For all r, x > 0, this implies that the Laplace transform of the function ρr,x introduced
in Lemma 3.6 has a (unique) holomorphic extension to H←. Now let K ⊆ H← be

compact. By continuity,
⋃
λ∈K{u(λ), v(λ), v(λ)

2λ
, λ} is bounded by some mK > 0. Let-

ting Zr ∼ N (mKr, r) be normally distributed with mean mKr and variance r > 0, we
obtain ∫ s

0

∫ ∞
0

sup
λ∈K

∣∣∣∣u(λ)√
2π

e−v(λ)x−λr−x
2

2r ·1 ·
(

1√
r

+
v(λ)x

2λ
√
r3

)∣∣∣∣ dxdr

≤
∫ s

0

∫ ∞
0

mK√
2π

emKx+mKs−x
2

2r e
m2
K (s−r)

2

(
1√
r

+
mKx√
r3

)
dxdr

= mK emKs+
m2
Ks

2

∫ s

0

∫ ∞
0

(
1 +

mKx

r

)
· 1√

2πr
e−

(x−mKr)
2

2r dxdr

= mK emKs+
m2
Ks

2

∫ s

0

E
[
1{Zr≥0}

(
1 +

mKZr
r

)]
dr

≤ mK emKs+
m2
Ks

2

∫ s

0

1 +
mK

r
(mKr + E|Zr −mKr|)dr

= mK emKs
m2
Ks

2

∫ s

0

1 +m2
K +mK

√
2

πr
dr

<∞.

The dominated convergence theorem thus yields the continuity of the right-hand side
of (3.9) as a function of λ ∈ H←. Now let γ be a closed path in H←. Bounding
the path integral by the length of γ multiplied with the supremum of the integrand
on K := trace(γ), the above computation implies∫ s

0

∫ ∞
0

∫
γ

∣∣∣∣u(λ) e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)∣∣∣∣ dλdxdr <∞,

which allows us to apply Fubini’s theorem. Since L(ρr,x) is holomorphic, Cauchy’s
integral theorem implies∫

γ

∫ s

0

∫ ∞
0

u(λ) e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
dxdrdλ

=

∫ s

0

∫ ∞
0

∫
γ

(L(ρr,x))(λ)dλdxdr = 0.

By Morera’s theorem,

H← → C, λ 7→ 2u(λ)√
2π

∫ s

0

∫ ∞
0

e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
dxdr,

is holomorphic. By Lemma 3.6 and Tonelli’s theorem, it coincides with L(R) on (0,∞)
and hence, by the identity theorem for holomorphic function, on all of H←.
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Introducing

w : H← → C, λ 7→ (v(λ))2

2
− λ,

we can rewrite the Laplace transform of R in the following way, which is more suitable
for our further analysis:

Lemma 3.8. For each λ ∈ H← \ {0}, we have

(L(R))(λ) =
u(λ)√
2πλ

(√
2π − 2 ew(λ)s

∫ ∞
0

e−
(x+v(λ)

√
s)2

2 dx+ (v(λ)− 1)

∫ s

0

1√
r

e−λr dr

)
.

Proof. Let λ ∈ H←. Then we have

∫ s

0

ew(λ)r

∫ ∞
0

e−
(x+v(λ)

√
r)2

2
x+ v(λ)

√
r√

r
dxdr

=

∫ s

0

ew(λ)r e−
(v(λ)

√
r)2

2
1√
r

dr

=

∫ s

0

1√
r

e−λr dr. (3.10)

Noting that

∫ ∞
0

sup
r∈[ε,s]

∣∣∣∣e− (x+v(λ)
√
r)2

2
x+ v(λ)

√
r

2
√
r

∣∣∣∣ dx ≤ ∫ ∞
0

e−
x2

2
+x|v(λ)|

√
s+
|v(λ)|2s

2
x+ |v(λ)|

√
s

2
√
ε

dx

is finite for each ε ∈ (0, s), we are allowed to differentiate w.r.t. r under the x-integral
in the following computation. Integrating by parts w.r.t. r in the second step and
using (3.10) in the third, we get

∫ s

0

∫ ∞
0

e−v(λ)
√
rx−λr−x

2

2 dxdr

=

∫ s

0

ew(λ)r

∫ ∞
0

e−
(x+v(λ)

√
r)2

2 dxdr

=
ew(λ)s

w(λ)

∫ ∞
0

e−
(x+v(λ)

√
s)2

2 dx−
√

2π

2w(λ)
+

∫ s

0

ew(λ)r

w(λ)

∫ ∞
0

e−
(x+v(λ)

√
r)2

2
x+ v(λ)

√
r

2
√
r

dxdr

=
1

w(λ)

(
ew(λ)s

∫ ∞
0

e−
(x+v(λ)

√
s)2

2 dx−
√

2π

2
+

∫ s

0

1

2
√
r

e−λr dr

)
. (3.11)

Substituting x by
√
rx in the first step and plugging in (3.10) and (3.11) in the third,
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we get ∫ s

0

∫ ∞
0

e−v(λ)x−λr−x
2

2r

(
1√
r

+
v(λ)x

2λ
√
r3

)
dxdr

=

∫ s

0

∫ ∞
0

e−v(λ)x
√
r−λr−x

2

2

(
1 +

v(λ)x

2λ
√
r

)
dxdr

=

∫ s

0

∫ ∞
0

e−v(λ)x
√
r−λr−x

2

2

(
−w(λ)

λ
+
v(λ)

2λ
· x+ v(λ)

√
r√

r

)
dxdr

= − w(λ)

λ
· 1

w(λ)

(
ew(λ)s

∫ ∞
0

e−
(x+v(λ)

√
s)2

2 dx−
√

2π

2
+

∫ s

0

1

2
√
r

e−λr dr

)

+
v(λ)

2λ

∫ s

0

1√
r

e−λr dr.

Inserting this into (3.9) and simplifying, we obtain the claimed formula.

Let us now start with the asymptotic analysis of L(R) near its rightmost singularity,
i.e., near −π2

8
. In view of Ingham’s Tauberian theorem (Lemma 3.4), we translate −π2

8

to the origin. To this end, we set u→ := u
(
· −π2

8

)
and similarly define v→ and w→.

Lemma 3.9. We have

v→(λ) = −π
2

4λ
+

3

2
+

3 + π2

3π2
λ+O(λ2), λ→ 0, λ ∈ H,

and

w→(λ) =
π4

32λ2
− 3π2

8λ
+
π2 + 21

24
+O(λ), λ→ 0, λ ∈ H.

For y ∈ (−1, 1), we uniformly get

u→(λ) ∼ cos

(
y

√
π2

4
− 2λ

)
π

2λ
, λ→ 0, λ ∈ H.

Proof. Recalling

tan(z) = −
(
z − π

2

)−1

+
1

3

(
z − π

2

)
+O

((
z − π

2

)3
)
, z → π

2
,

we obtain

−z tan(z) =
π

2

(
z − π

2

)−1

+ 1− π

6

(
z − π

2

)
+O

((
z − π

2

)2
)
, z → π

2
.

On the other hand, a Taylor expansion yields√
π2

4
− 2λ− π

2
= − 2

π
λ− 4

π3
λ2 − 16

π5
λ3 +O(λ4), λ→ 0, λ ∈ H. (3.12)
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Using zi tanh(zi) = −z tan(z) for z ∈ C \
{ (2n+1)π

2
: n ∈ Z

}
in the second step and the

above two expansions in the third, we get

v→(λ)

=

√
2λ− π2

4
tanh

(√
2λ− π2

4

)

= −
√
π2

4
− 2λ tan

(√
π2

4
− 2λ

)

=
π

2

(
− 2

π
λ− 4

π3
λ2 − 16

π5
λ3 +O(λ4)

)−1

+ 1− π

6

(
− 2

π
λ+O(λ2)

)
+O(λ2)

= − π2

4λ

(
1−

(
− 2

π2
λ− 8

π4
λ2 +O(λ3)

))−1

+ 1− π

6

(
− 2

π
λ+O(λ2)

)
+O(λ2)

= − π2

4λ

∞∑
n=0

(
− 2

π2
λ− 8

π4
λ2 +O(λ3)

)n
+ 1 +

π2

3π2
λ+O(λ2)

= − π2

4λ

(
1− 2

π2
λ− 8

π4
λ2 +

4

π4
λ2 +O(λ3)

)
+ 1 +

π2

3π2
λ+O(λ2)

= − π2

4λ
+

3

2
+

3 + π2

3π2
λ+O(λ2), λ→ 0, λ ∈ H.

We deduce

w→(λ) =
(v→(λ))2

2
− λ+

π2

8
=

1

2

(
π2

16λ2
− 3π2

4λ
+

9

4
− 3 + π2

6

)
+
π2

8
+O(λ)

=
π4

32λ2
− 3π2

8λ
+
π2 + 21

24
+O(λ), λ→ 0, λ ∈ H.

Recalling cosh(iz) = cos(z) for each z ∈ C and cos(π
2
−z) ∼ z as z → 0 and using (3.12),

we finally obtain

u→(λ) =

cosh

(
y
√

2λ− π2

4

)
cosh

(√
2λ− π2

4

) =

cos

(
y
√

π2

4
− 2λ

)
cos

(√
π2

4
− 2λ

)

=

cos

(
y
√

π2

4
− 2λ

)
cos
(
π
2
− 2

π
λ+O(λ2)

) ∼ cos

(
y
√

π2

4
− 2λ

)
2
π
λ

, λ→ 0, λ ∈ H,

uniformly in y ∈ (−1, 1).

Let us now introduce the objects needed in Ingham’s Tauberian theorem (Lemma 3.4):
We define

S := Sy : [0,∞)→ [0,∞), T 7→ e
π2

8
T R(T ),

55



3 Limited Time Outside a Bounded Interval

and

Ŝ := Ŝy : H → C, λ 7→ λ

∫ ∞
0

S(T ) e−λT dT = λ · (L(R))

(
λ− π2

8

)
.

Moreover, we consider the complex wedge

D :=
{
λ ∈ H : | arg(λ)| < π

4

}
,

where arg is a branch of the complex argument function taking values in [−π, π], as well
as the holomorphic function

V : D → C, λ 7→
(

π4

32λ2
− 3π2

8λ
+
π2 + 21

24

)
s.

We observe V (λ) ∈ R>0 for sufficiently small λ ∈ R>0. More importantly, the asymptotic

behavior of the transform Ŝ has the required structure:

Lemma 3.10. We have

Ŝ(λ) ∼ 16

π2
λu→(λ) eV (λ) for real λ↘ 0,

as well as

Ŝ(λ) = O
(
|λu→(λ)| eV (|λ|)) , λ→ 0, λ ∈ H,

both uniformly in y ∈ [−1, 1].

Proof. Regarding the uniformity, we note that only u→ (implicitly) depends on y,
while v→ and w→ do not. We start by observing∣∣∣∣∫ s

0

1√
r

e
−
(
λ−π

2

8

)
r

dr

∣∣∣∣ ≤ e|λ|s
∫ s

0

1√
r

e
π2

8
r dr = O(1), λ→ 0, λ ∈ H.

Together with Lemmas 3.8 and 3.9, we get

Ŝ(λ)

=
λu→(λ)√

2π
(
λ− π2

8

)
·
(√

2π − 2 ew
→(λ)s

∫ ∞
0

e−
(x+v→(λ)

√
s)2

2 dx+ (v→(λ)− 1)

∫ s

0

1√
r

e
−
(
λ−π

2

8

)
r

dr

)
=

16λu→(λ)

π2
√

2π
(1 + o(1))

·
(

ew
→(λ)s

∫ ∞
0

e−
(x+v→(λ)

√
s)2

2 dx+O

(
1

λ

))
, λ→ 0, λ ∈ H, (3.13)
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uniformly in y ∈ [−1, 1]. Noting that Lemma 3.9 implies limλ↘0 v
→(λ)

√
s = −∞, we

deduce

Ŝ(λ) =
16

π2
λu→(λ)(1 + o(1))

(
ew
→(λ)s

∫ ∞
v→(λ)

√
s

1√
2π

e−
x2

2 dx+O

(
1

λ

))
∼ 16

π2
λu→(λ) eV (λ), for real λ↘ 0,

uniformly in y ∈ [−1, 1]. Since Lemma 3.9 also implies

(Re v→(λ))2

2
=

1

2

(
−π

2

4
Re

1

λ
+

3

2
+O(|λ|)

)2

=
π4

32

(
Re

1

λ

)2

− 3π2

8
Re

1

λ
+O(1)

≤ π4

32

∣∣∣∣1λ
∣∣∣∣2 − 3π2

8

∣∣∣∣1λ
∣∣∣∣+O(1) =

V (|λ|)
s

+O(1), λ→ 0, λ ∈ H,

we obtain∣∣∣∣ew→(λ)s

∫ ∞
0

e−
(x+v→(λ)

√
s)2

2 dx

∣∣∣∣ ≤ ∫ ∞
0

∣∣∣∣e−x22 −xv→(λ)
√
s−
(
λ−π

2

8

)
s

∣∣∣∣ dx
=

∫ ∞
0

e−
x2

2
−xRe v→(λ)

√
s−Reλs+π2

8
s dx

= e
(Re v→(λ))2

2
s e−Reλs+π2

8
s

∫ ∞
0

e−
(x+Re v→(λ)

√
s)2

2 dx

= O
(

eV (|λ|) )O(1), λ→ 0, λ ∈ H.

Plugging this into (3.13), we deduce∣∣Ŝ(λ)
∣∣ =

16|λu→(λ)|
π2
√

2π
(1 + o(1))

∣∣∣∣ew→(λ)s

∫ ∞
0

e−
(x+v→(λ)

√
s)2

2 dx+O

(
1

λ

)∣∣∣∣
= O

(
|λu→(λ)| eV (|λ|) ), λ→ 0, λ ∈ H,

uniformly in y ∈ [−1, 1].

3.2.2 Inversion when Starting in the QSD

As already noted in the outline of the proof in Section 3.1, it seems unclear how to
prove monotonicity of Sy, which is required to apply Ingham’s Tauberian theorem
(Lemma 3.4), for any deterministic starting point y ∈ R. For a specific starting dis-
tribution ν, however, the monotonicity of the corresponding function is rather easy to
check. This allows us to rigorously derive the asymptotic behavior of Pν(ΓT ∈ (0, s])
as T →∞ in a first step. Let

τ := inf{t ≥ 0 : |Bt| = 1}

be the first exit time of B from the interval (−1, 1). We recall that there is a unique
distribution ν supported on (−1, 1) which satisfies

Pν(τ ≥ t, Bt ∈ dy) = e−
π2

8
t dν(y), y ∈ (−1, 1), t ≥ 0. (3.14)
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This distribution is called quasi-stationary distribution (qsd) in the literature. It has a
Lebesgue density given by

dν(y) =
π

4
cos
(πy

2

)
dy, y ∈ (−1, 1). (3.15)

Note that the dependence on y is the same as in Theorem 3.2. For more details and
further results concerning quasi-stationary distributions of diffusions, we refer to [KS12],
[CMS13] and [CV23]. The monotonicity of

Sν : [0,∞)→ [0,∞), T 7→ e
π2

8
T Pν(ΓT ∈ (0, s]),

now follows straight from the strong Markov property and (3.14):

Pν(ΓT+t ∈ (0, s]) ≥ Pν(ΓT+t ∈ (0, s], τ ≥ t)

= Eν
[
1{τ≥t}PBt(ΓT ∈ (0, s])

]
= e−

π2

8
t Pν(ΓT ∈ (0, s]), T, t ≥ 0.

This is an observation by Kolb. Preparing the application of Inghams’s Tauberian theo-
rem (Lemma 3.4) to Sν , we check that the function V satisfies the technical assumptions
of the theorem:

Lemma 3.11. The function V satisfies the conditions stated in (3.6) and (3.7).

Proof. The derivatives of V are given by

V ′(λ) =

(
− π4

16λ3
+

3π2

8λ2

)
s and V ′′(λ) =

(
3π4

16λ4
− 3π2

4λ3

)
s, λ ∈ D.

In particular, we have λV ′(λ) ↘ −∞ and λ4V ′(λ) ↗ 0 for real λ ↘ 0 (see part (a) of
Remark 3.5 for the notation). Noting that the distance of λ to Dc is given by d(λ) = λ√

2
for λ ∈ D ∩ R>0, we get√

V ′′(λ)

|V ′(λ)|
= o(1) = o

(
d(λ)

λ

)
, for real λ↘ 0.

For every sufficiently small λ ∈ R>0 and each z ∈ C with |z| < d(λ), we obtain

|V ′′(λ+ z)|
V ′′(λ)

=
λ4

|λ+ z|4
·

∣∣∣∣∣ 3π4

16
− 3

4
π2(λ+ z)

3π4

16
− 3

4
π2λ

∣∣∣∣∣ ≤
(

1

1− 1√
2

)4

· 2,

verifying the conditions stated in (3.7).

As seen in part (a) of Remark 3.5, there are constants ε, T0 > 0 such that −V ′|(0,ε) has
an inverse h : (T0,∞)→ (0, ε). This function can be determined explicitly and behaves
as follows:
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Lemma 3.12. The function h satisfies

h(T ) ∼
(
π4s

24T

) 1
3

and h(T )
√

2πV ′′(h(T )) ∼
√

3π
7
6

2
1
6

s
1
6T

1
3 , T →∞,

as well as

Th(T ) + V (h(T )) =
3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s+O

(
1

T
1
3

)
, T →∞.

Proof. Recalling

V ′(λ) =

(
− π4

24λ3
+

3π2

23λ2

)
s, λ > 0,

the function h must satisfy

T

s
(h(T ))3 =

π4

24
− 3π2

23
h(T ), T ∈ (T0,∞),

so that Cardano’s formula yields

h(T ) =

(
π4s

25T
+

√
π8s2

210T 2
+
π6s3

29T 3

) 1
3

+

(
π4s

210T
−
√

π8s2

210T 2
+
π6s3

29T 3

) 1
3

=

(
π4s

25T

) 1
3

(√1 +
2s

π2T
+ 1

) 1
3

−

(√
1 +

2s

π2T
− 1

) 1
3

 , T ∈ (T0,∞).

This implies h(T ) ∼
(
π4s
24T

) 1
3 as T →∞. We deduce

h(T )
√

2πV ′′(h(T )) =

√
2π

(
3π4

24(h(T ))2
− 3π2

4h(T )

)
s

∼

√
3π5s

23

(
24T

π4s

) 2
3

=

√
3π

7
6

2
1
6

s
1
6T

1
3 , T →∞.

Observing(√
1 + z − 1

) 1
3

= z
1
3 · 1(√

1 + z + 1
) 1

3

= z
1
3

(
1

2
1
3

+O(z)

)
, z → 0, (3.16)

we obtain

Th(T ) =

(
π4sT 2

25

) 1
3

(√1 +
2s

π2T
+ 1

) 1
3

−

(√
1 +

2s

π2T
− 1

) 1
3


=

(
π4sT 2

25

) 1
3

((
2

1
3 +O

(
1

T

))
−
(

2s

π2T

) 1
3
(

1

2
1
3

+O

(
1

T

)))

=
π

4
3

2
4
3

s
1
3T

2
3 − π

2
3

2
5
3

s
2
3T

1
3 +O

(
1

T
1
3

)
, T →∞.
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Similarly, (3.16) yields

H(z) :=
1(√

1 + z + 1
) 1

3 −
(√

1 + z − 1
) 1

3

=
1

2

((√
1 + z + 1

) 2
3 + z

1
3 +

(√
1 + z − 1

) 2
3

)
=

1

2

((
2

2
3 +O(z)

)
+ z

1
3 + z

2
3

(
1

2
2
3

+O(z)

))
=

1

2
1
3

+
1

2
z

1
3 +

1

2
5
3

z
2
3 +O(z), z → 0,

which implies

V (h(T )) =
π4s

25

(
25T

π4s

) 2
3
(
H

(
2s

π2T

))2

− 3π2s

8

(
25T

π4s

) 1
3

H

(
2s

π2T

)
+
π2 + 21

24
s

=
π4s

25

(
25T

π4s

) 2
3

(
1

2
2
3

+
1

2
1
3

(
2s

π2T

) 1
3

+

(
1

22
+

1

2

)(
2s

π2T

) 2
3

+O

(
1

T

))

− 3π2s

23

(
25T

π4s

) 1
3

(
1

2
1
3

+
1

2

(
2s

π2T

) 1
3

+O

(
1

T
2
3

))
+
π2 + 21

24
s

=
π

4
3

2
7
3

s
1
3T

2
3 − 2π

2
3

2
5
3

s
2
3T

1
3 +

π2 + 12

24
s+O

(
1

T
1
3

)
, T →∞.

The claim follows by adding the expansions of Th(T ) and V (h(T )).

For the sake of completeness, we record the following result, which is clear from a
heuristic point of view. The proof is an easy coupling argument.

Lemma 3.13. Let x, y ∈ R with |y| ≥ |x|. Then we have

Py (ΓT ≤ s) ≤ Px (ΓT ≤ s) , T ≥ 0.

Proof. By symmetry, we may w.l.o.g. assume x, y ≥ 0. Let (B1
t )t≥0 and (B2

t )t≥0 be
independent standard Brownian motions. Further, let τx,y := inf{t ≥ 0 : B1

t = −x+y
2
}.

By the strong Markov property, the processes (W x
t )t≥0 and (W y

t )t≥0 defined by

W x
t :=

{
x+B1

t , t ≤ τx,y,

−x+y
2

+B2
t−τx,y , t ≥ τx,y,

t ≥ 0,

and

W y
t :=

{
y +B1

t , t ≤ τx,y,
x+y

2
−B2

t−τx,y , t ≥ τx,y,
t ≥ 0,
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are Brownian motions starting in x and y, respectively. For every t ≤ τx,y, we ob-
serve W y

t −W x
t = y − x and W x

t ≥ −
y−x

2
showing |W y

t | ≥ |W x
t |. For each t ≥ τx,y, we

have |W y
t | = |W x

t |. Consequently,∫ T

0

1{|Wx
t |≥1}dt ≤

∫ T

0

1{|W y
t |≥1}dt, T ≥ 0,

holds proving the claim.

Integrating in Lemma 3.10 w.r.t. ν, we can finally apply Ingham’s Tauberian theorem
(Lemma 3.4) to obtain the asymptotic behavior of Sν :

Proposition 3.14. We have

Sν(T ) ∼ 2
7
6

√
3π

7
6 s

1
6T

1
3

exp

(
3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s

)
, T →∞.

Proof. Equation (3.15) implies
∫ 1

−1
8
π

cos
(
πy
2

)
dν(y) = 2. Trivially, the constant function

U : D → (0,∞), λ 7→ 2, satisfies all requirements of Lemma 3.4. We define

Ŝν : H → C, λ 7→ λ

∫ ∞
0

Sν(T ) e−λT dT.

Now let λ ∈ H. Lemma 3.13 implies

sup
y∈[−1,1]

∫ ∞
0

|Sy(T ) e−λT |dt

= sup
y∈[−1,1]

∫ ∞
0

Py(ΓT ∈ (0, s]) e−Re
(
λ−π

2

8

)
T dT

≤
∫ ∞

0

P0(ΓT ≤ s) e−Re
(
λ−π

2

8

)
T dT

= L(R0,s)

(
Re

(
λ− π2

8

))
+

∫ ∞
0

P0(ΓT = 0) e−Re
(
λ−π2/8

)
T dT,

which is finite as a consequence of Lemma 3.7 and equation (3.3). Since ν is a probability
measure, Fubini’s theorem is applicable and yields

Ŝν(λ) = λ

∫ ∞
0

∫ 1

−1

Sy(T ) e−λT dν(y)dT

= λ

∫ 1

−1

∫ ∞
0

Sy(T ) e−λT dTdν(y) =

∫ 1

−1

Ŝy(λ)dν(y).

Using the uniformity in Lemma 3.10 and in the last assertion of Lemma 3.9 in the first
step as well as the dominated convergence theorem in the second, we obtain∫ 1

−1

Ŝy(λ)dν(y) ∼
∫ 1

−1

8

π
cos

(
y

√
π2

4
− 2λ

)
eV (λ) dν(y)

→
∫ 1

−1

8

π
cos
(πy

2

)
eV (λ) dν(y) = U(λ) eV (λ), for real λ↘ 0.
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Setting C1 := {λ ∈ C : |λ| ≤ 1}, continuity implies

sup
λ∈C1,y∈[−1,1]

∣∣∣∣∣cos

(
y

√
π2

4
− 2λ

)∣∣∣∣∣ <∞.
Again using the uniformity in Lemma 3.10 and in the last assertion of Lemma 3.9 in the
first step, we obtain∫ 1

−1

Ŝy(λ)dν(y) = O

(∫ 1

−1

8

π

∣∣∣∣∣cos

(
y

√
π2

4
− 2λ

)∣∣∣∣∣ eV (|λ|) dν(y)

)
= O

(
U(|λ|) eV (|λ|)) , λ→ 0, λ ∈ H.

Recalling Lemma 3.11, Lemma 3.4 is applicable and implies

Ŝν(λ) ∼ U(h(T )) eTh(T )+V (h(T ))

h(T )
√

2πV ′′(h(T ))
, T →∞.

The claim follows by inserting the asymptotics developed in Lemma 3.12.

3.2.3 Asymptotics for Deterministic Starting Points

In this subsection, we finally prove Theorem 3.2, i.e., we extend the precise asymptotics
to the case of deterministic starting points. To this end, we discuss how Py(ΓT∈(0,s])

Pν(ΓT∈(0,s])

behaves as T → ∞. Apart from the analysis in Subsection 3.2.1, our argument relies
on a rather elementary observation, which we have not seen used before. Moreover, the
proof will explicitly highlight the role of the density of ν as noted in the introduction of
the previous subsection.
We start with an auxiliary result, which, again, is a consequence of our analysis in
Subsection 3.2.1 and Ingham’s Tauberian theorem (Lemma 3.4):

Lemma 3.15. For any T0 > 0, we have

lim
T→∞

∫ T
T−T0 S1(t)dt∫ T

0
S1(t)dt

= 0.

Proof. Clearly, the constant function U : D → (0,∞), λ 7→ 16
π2 , satisfies the assumptions

of Lemma 3.4. Integrating by parts, noting u1 = 1 and applying Lemma 3.10, we get

λ

∫ ∞
0

(∫ T

0

S1(t)dt

)
e−λT dλ =

1

λ
Ŝ1(λ) ∼ U(λ) eV (λ), for real λ↘ 0,

and similarly

λ

∫ ∞
0

(∫ T

0

S1(t)dt

)
e−λT dλ = O

(
U(|λ|) eV (|λ|)) , λ→ 0, λ ∈ H.
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Since S1 is non-negative, its primitive function is non-decreasing. Recalling Lemma 3.11,
Lemma 3.4 is applicable and implies∫ T

0

S1(t)dt ∼ U(h(T )) eTh(T )+V (h(T ))

h(T )
√

2πV ′′(h(T ))
, T →∞.

Inserting the asymptotics developed in Lemma 3.12, we deduce∫ T

0

S1(t)dt ∼ 2
25
6

√
3π

19
6 s

1
6T

1
3

exp

(
3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s

)
, T →∞.

Recalling limT→∞ T
q − (T − T0)q = 0 for all q ∈ (0, 1), we deduce

lim
T→∞

∫ T−T0
0

S1(t)dt∫ T
0
S1(t)dt

= 1, T0 > 0,

proving the claim.

We remark that the argument in the above proof to obtain the asymptotics of
∫ T

0
Sy(t)dt

works for any starting point y ∈ R.
Let us define

σ := inf

{
T > 0 :

∫ T

0

1{|W 1
t |≥1}dt > s

}
,

where (W 1
t )t≥0 denotes a Brownian motion with start in 1, independent of B. In the

following argument by Kolb, who wishes to acknowledge a suggestion by Savov, we shall
split a path with τ ≤ T into a piece of length τ and an ingredient involving σ.

Lemma 3.16. Given λ1 > λ0 := π2

8
> 0, let e0 ∼ Exp(λ0) and e1 ∼ Exp(λ1) be

independent of σ. Then it holds

lim
T→∞

P(e1 + σ > T, e1 ≤ T )

P(e0 + σ > T, e0 ≤ T )
= lim

T→∞

∫ T
0
λ1 e−λ1t P(σ > T − t)dt∫ T

0
λ0 e−λ0t P(σ > T − t)dt

= 0.

Proof. Let T ≥ 0. We start by observing

P(e0 + σ > T, e0 ≤ T ) =

∫ T

0

λ0 e−λ0t P(σ > T − t)dt

= λ0 e−λ0T
∫ T

0

S1(T − t)dt = λ0 e−λ0T
∫ T

0

S1(t)dt.

In the same way, we obtain

P(e1 + σ > T, e1 ≤ T ) = λ1 e−λ0T
∫ T

0

e−(λ1−λ0)t S1(T − t)dt.
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Now let ε > 0. Taking Tε > 0 such that e−(λ1−λ0)t ≤ ε for all t ≥ Tε, we estimate∫ T

0

e−(λ1−λ0)t S1(T − t)dt =

∫ Tε

0

e−(λ1−λ0)t S1(T − t)dt+

∫ T

Tε

e−(λ1−λ0)t S1(T − t)dt

≤
∫ Tε

0

S1(T − t)dt+ ε

∫ T

Tε

S1(T − t)dt

=

∫ T

T−Tε
S1(t)dt+ ε

∫ T−Tε

0

S1(t)dt.

We conclude

P(e1 + σ > T, e1 ≤ T )

P(e0 + σ > T, e0 ≤ T )
≤
λ1

(∫ T
T−Tε S1(t)dt+ ε

∫ T−Tε
0

S1(t)dt
)

λ0

∫ T
0
S1(t)dt

≤
λ1

∫ T
T−Tε S1(t)dt

λ0

∫ T
0
S1(t)dt

+
λ1

λ0

ε, T ≥ Tε.

First letting T →∞, invoking Lemma 3.15, and then ε↘ 0, we get the claim.

We are now ready to control the behavior of Py(ΓT∈(0,s])

Pν(ΓT∈(0,s])
as announced at the beginning

of this subsection. Most parts of the argument are due to Kolb.

Lemma 3.17. Let y ∈ (−1, 1). We have

lim
T→∞

Py(ΓT ∈ (0, s])

Pν(ΓT ∈ (0, s])
=

4

π
cos
(πy

2

)
.

Proof. Defining

λn :=
(2n+ 1)2π2

8
and ϕn(y) :=

4(−1)n

π(2n+ 1)
cos

(
(2n+ 1)πy

2

)
, n ∈ N0,

a Lebesgue density fy : (0,∞)→ (0,∞) of τ under Py is given by (see, e.g., Example 5a
in [DS53] or equation (3.3) above)

fy(t) =
∞∑
n=0

λn e−λnt ϕn(y), t > 0. (3.17)

The dominated convergence theorem implies that fy is continuous. Now let τ1 and τ−1

be the first times B hits 1 and −1, respectively. Noting τ = τ−1 ∧ τ1, we observe

Py(τ ∈ A) ≤ Py(τ1 ∈ A) + Py(τ−1 ∈ A), A ∈ B((0,∞)).

Recalling that τ1 and τ−1 follow inverse-chi-squared distributions (see, e.g., Remark 2.8.3
in [KS91]) and thus have bounded Lebesgue densities under Py, the continuous density fy
of τ must be bounded as well. Therefore,

gy : (0,∞)→ R, t 7→ fy(t)− ϕ0(y)λ0 e−λ0t
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is a bounded continuous function. Furthermore, equation (3.17) implies

|gy(t)| = e−λ1t

∣∣∣∣∣
∞∑
k=1

ϕk(y)λk e−(λk−λ1)t

∣∣∣∣∣ ≤ e−λ1t
∞∑
k=1

|ϕk(y)|λk e−(λk−λ1), t ≥ 1.

Noting that the last series converges and recalling the boundedness of gy, there exists a
constant K > 0 with |gy(t)| ≤ K e−λ1t for all t > 0. Consequently, Lemma 3.16 yields∣∣ ∫ T

0
gy(t)P(σ > T − t)dt

∣∣∫ T
0
λ0 e−λ0t P(σ > T − t)dt

≤
K
∫ T

0
e−λ1t P(σ > T − t)dt

λ0

∫ T
0

e−λ0t P(σ > T − t)dt
→ 0, T →∞.

We deduce

Py(ΓT ∈ (0, s]) = Py(τ + σ > T, τ ≤ T )

=

∫ T

0

fy(t)P(σ > T − t)dt

= ϕ0(y)

∫ T

0

λ0 e−λ0t P(σ > T − t)dt+

∫ T

0

gy(t)P(σ > T − t)dt

∼ ϕ0(y)

∫ T

0

λ0 e−λ0t P(σ > T − t)dt, T →∞.

On the other hand, the characterization of the quasi-stationary distribution ν given
in (3.14) implies

Pν(ΓT ∈ (0, s]) = Pν(τ + σ > T, τ ≤ T ) =

∫ T

0

λ0e
−λ0tP(σ > T − t)dt, T ≥ 0,

proving the claim.

It essentially remains to combine Proposition 3.14 and Lemma 3.17:

Proof of Theorem 3.2. Let y ∈ (−1, 1). Lemma 3.17 and Proposition 3.14 imply

Py(ΓT ∈ (0, s])

=
Py(ΓT ∈ (0, s])

Pν(ΓT ∈ (0, s])
· e−

π2

8
T Sν(T )

∼ 4

π
cos
(πy

2

)
· 2

7
6

√
3π

7
6 s

1
6T

1
3

exp

(
−π

2

8
T +

3

2
7
3

π
4
3 s

1
3T

2
3 − 3

2
5
3

π
2
3 s

2
3T

1
3 +

π2 + 12

24
s

)
as T →∞. Comparing this with equation (3.3), we see that

Py(ΓT ≤ s) = Py(ΓT = 0) + Py(ΓT ∈ (0, s])

must have the same asymptotic behavior as T →∞ proving the first claim.
Now let x ∈ R \ (−1, 1). Using Lemma 3.13 and the case already settled, we get

lim sup
T→∞

Px(ΓT ≤ s)

P0(ΓT ≤ s)
≤ lim sup

T→∞

Py(ΓT ≤ s)

P0(ΓT ≤ s)
= cos

(πy
2

)
, y ∈ (−1, 1),
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which, taking y ↗ 1, implies

lim sup
T→∞

Px(ΓT ≤ s)

P0(ΓT ≤ s)
= 0,

proving the second claim.

3.3 Proofs of the Remaining Results

Let us now prove Theorem 3.1. To this end, let y ∈ (−1, 1). It is a classical result (see,
e.g., Example 1 in [Pin85]) that

Py(B ∈ · |ΓT = 0) = Py
(
B ∈ ·

∣∣ |Bt| < 1 for all t ∈ [0, T ]
)

converges weakly to a probability measure Qy on C([0,∞)) as T → ∞ and that the
limiting process (Xt)t≥0 ∼ Qy satisfies the SDE (3.1). Regarding the weak convergence
of Py(B ∈ · |ΓT ≤ s) as T → ∞, let us start by proving convergence of the finite
dimensional distributions, based on a sketch by Kolb.

Lemma 3.18. As T →∞, the probability measures Py(B ∈ · |ΓT ≤ s) converge to Qy

in finite dimensional distributions.

Proof. As before, let τ be the first exit time of B from (−1, 1). Further, let t1, . . . , td > 0
with t1 < . . . < td and let C1, . . . , Cd ∈ B(R). We start by observing that the first part
of Theorem 3.2 yields

lim
T→∞

Px(ΓT−t ≤ s)

Py(ΓT ≤ s)
=

cos
(
πx
2

)
cos
(
πy
2

) e
π2

8
t, x, y ∈ (−1, 1), t ≥ 0. (3.18)

Together with the strong Markov property, this implies

Py(Bt1 ∈ C1, . . . , Btd ∈ Cd, τ ≤ td |ΓT ≤ s)

≤ Py(τ ≤ td |ΓT ≤ s) ≤ P1(ΓT−td ≤ s)

Py(ΓT−td ≤ s)
· Py(ΓT−td ≤ s)

Py(ΓT ≤ s)
→ 0, T →∞. (3.19)

Further, Lemma 3.13 and (3.18) guarantee the existence of a T0 ≥ 0 with

Pxd(ΓT−td ≤ s)

Py(ΓT ≤ s)
≤ P0(ΓT−td ≤ s)

Py(ΓT ≤ s)
≤ e

π2

8
td

cos
(
πy
2

) + 1, xd ∈ (−1, 1), T ≥ T0. (3.20)

Now let

(pt : (−1, 1)× (−1, 1)→ [0,∞))t>0

be the family of (non-probability) transition densities of B absorbed in {−1, 1}. We
define x0 := y and t0 := 0. Using (3.19), the Markov property as well as (3.18) together
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with the dominated convergence theorem, which is applicable as a consequence of (3.20),
we obtain

lim
T→∞

Py(Bt1 ∈ C1, . . . , Btd ∈ Cd |ΓT ≤ s)

= lim
T→∞

Py(Bt1 ∈ C1, . . . , Btd ∈ Cd, τ > td |ΓT ≤ s)

= lim
T→∞

∫
(−1,1)d

1C1×···×Cd(x)
d∏
i=1

pti−ti−1
(xi−1, xi)

Pxd(ΓT−td ≤ s)

Py(ΓT ≤ s)
dx

=

∫
(−1,1)d

1C1×···×Cd(x)
d∏
i=1

pti−ti−1
(xi−1, xi)

cos
(
πxd

2

)
cos
(
πy
2

) e
π2

8
td dx

=

∫
(−1,1)d

1C1×···×Cd(x)
d∏
i=1

(
pti−ti−1

(xi−1, xi)
cos
(
πxi
2

)
cos
(πxi−1

2

) e
π2

8
(ti−ti−1)

)
dx,

where x1, . . . , xd are the components of x. As pointed out, e.g., in the proof of Theo-
rem 3.1 of [Kni69], the family (p̃t)t>0 of transition densities of the Markov process with
law Qy is precisely given by

p̃t(x1, x2) = pt(x1, x2)
cos
(
πx2

2

)
cos
(
πx1

2

) e
π2

8
t, x1, x2 ∈ (−1, 1), t > 0,

completing the proof.

To establish Theorem 3.1, it now suffices to prove tightness of the family of conditional
laws. The proof, which is due to Kolb, relies on Kolmogorov’s continuity theorem.

Lemma 3.19. The family (Py(B ∈ · |ΓT ≤ s))T≥0 of probability measures on C([0,∞))
is tight.

Proof. Let t0 > 0 and t1, t2 ∈ [0, t0] with t1 ≤ t2. Using the Markov property and
Lemma 3.13, we get

Ey
[
|Bt2 −Bt1|4

∣∣ΓT ≤ s
]

=
1

Py(ΓT ≤ s)
Ey
[
|Bt2 −Bt1|41{ΓT≤s}

]
≤ 1

Py(ΓT ≤ s)
Ey
[
|Bt2 −Bt1|41{ΓT−Γt2≤s}

]
=

1

Py(ΓT ≤ s)
Ey
[
|Bt2 −Bt1|4PBt2 (ΓT−t2 ≤ s)

]
≤ P0(ΓT−t2 ≤ s)

Py(ΓT ≤ s)
Ey
[
|Bt2 −Bt1|4

]
≤ P0(ΓT−t0 ≤ s)

Py(ΓT ≤ s)
3|t2 − t1|2, T ≥ t0.
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Since Theorem 3.2 implies lim supT→∞
P0(ΓT−t0≤s)
Py(ΓT≤s)

<∞ and the probabilities are contin-

uous in T , there must be a constant C > 0 with

Ey
[
|Bt2 −Bt1|4

∣∣ΓT ≤ s
]
≤ C|t2 − t1|2, t1, t2 ∈ [0, t0], T ≥ 0.

Now let ε > 0 and γ ∈ (0, 1
2
). As a consequence of the theorem of Kolmogorov-

Chentsov (see, e.g., Theorem 3.4.16 in [Str93] for an applicable version), there exists
a constant K > 0 (independent of T ) with

Py
(
|Xt2 −Xt1 | ≤ K|t2 − t1|γ for all t1, t2 ∈ [0, t0]

∣∣ΓT ≤ s
)
≥ 1− ε, T ≥ 0.

Moreover, the set

{f ∈ C([0, t0]) : |ft2 − ft1| ≤ K|t2 − t1|γ for all t1, t2 ∈ [0, t0]}

is compact in the space C([0, t0]). Hence we can apply Prohorov’s theorem to conclude
tightness on C([0, t0]). Corollary 5 in [Whi70] yields tightness on C([0,∞)).

Finally, we deduce Corollary 3.3 from Theorem 3.2:

Proof of Corollary 3.3. W.l.o.g., let ε ∈ (0, s) and T ≥ ε. By symmetry, we may as-
sume y > 1. Noting that the mapping t 7→ {ΓT+t ≤ s + t} is (weakly) monotonically
increasing on (−T,∞) w.r.t. inclusion, we, on the one hand, obtain

Py(τ ≥ ε,ΓT ≤ s) = Py(τ ∈ [ε, s],ΓT ≤ s) =

∫ s

ε

P1(ΓT−t ≤ s− t)Py(τ ∈ dt)

≤ P1(ΓT−ε ≤ s− ε)Py(τ ∈ [ε, s]).

Setting τ0 := inf{t ≥ 0 : Bt = 0}, we, on the other hand, get

Py(ΓT ≤ s) ≥ Py(τ0 ≤ ε,ΓT ≤ s)

≥
∫ ε

0

P0(ΓT−t ≤ s− t)Py(τ0 ∈ dt) ≥ P0(ΓT−ε ≤ s− ε)Py(τ0 ∈ (0, ε)).

Noting Py(τ0 ∈ (0, ε)) > 0, the second part of Theorem 3.2 yields the claim.
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4 Outlook

Let us finally give a brief overview of some open problems and possible directions of
further research.
Similar to the results of [BB11] and [KS16] concerning limited local time in 0 discussed in
Subsection 1.2.2, it is natural to ask what happens if the condition {ΓT ≤ s}, where s > 0
is constant, is replaced by

{Γt ≤ f(t) for all t ∈ [0, T ]}, T ≥ 0,

where f : [0,∞)→ [0,∞) belongs to a suitable class of non-decreasing functions.
Let us start with a discussion of the one-sided case: Up to a certain growth rate of f ,
the limiting process will eventually behave like a three-dimensional Bessel process and,
in particular, be transient. For functions f growing faster, the resulting process should,
apart from killing effects near the start, essentially behave like an unconditioned Brow-
nian motion and, in particular, be recurrent.
In the two-sided case, the situation is more sophisticated. If f is growing sufficiently
slowly, the resulting process should not leave the bounded interval at all, similar to the
situation with constant f we considered. This may even be the case whenever the growth
of f is strictly sub-linear. If f is growing fast enough, the limiting process will, in the
long term, essentially behave like a Brownian motion. A priori, there could additionally
be an intermediate regime where the resulting process leaves the interval but remains
(pathwise) a.s. bounded.
A first step towards analyzing these rather difficult problems might be to condition on
the significantly simpler event {ΓT ≤ f(T )}, similar to the approach in [BB11].

Another follow-up question consists in considering limited occupation times outside
time-dependent intervals, i.e., in replacing the functional ΓT by

Γ̃T :=

∫ T

0

1{Bt≤g(t)}dt or Γ̃T :=

∫ T

0

1{|Bt|≥g(t)}dt, T ≥ 0,

respectively, for some function g : [0,∞) → R, non-negative in the latter case. Again,
the asymptotic growth of g will be an important ingredient. However, brief but extreme
local fluctuations of g may have an influence as well.
Yet another possibility is to replace the considered process. In particular, one may study
more general (one-dimensional) Markov processes conditioned on having limited occu-
pation times, similar to the extensions of the results concerning limited local time in 0
given in [Bar20].
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4 Outlook

Furthermore, one could try to generalize the problems to multiple dimensions and con-
dition a multi-dimensional Brownian motion on spending limited time outside cones
or balls. Here it would be of particular interest how the additional spacial freedom
influences the repulsive behavior. The possibilities are endless...
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Notations

The following table lists some notations and abbreviations used throughout this thesis:

⇒ Weak convergence of probability measures or convergence in distribution
of random variables

1A The indicator function of a given set A

a.s. Abbreviation of “almost surely”

B(E) The Borel σ-algebra on a given topological space E

C(I) The space of real-valued continuous functions on a given interval I ⊆ R,
endowed with the topology of locally uniform convergence

d
= Equality in distribution

f |A The restriction of a given function f to a subset A of the domain of f

E[X] The expectation of a given random variable X

L(f) The Laplace transform of a given function f : [0,∞)→ C
N The set of natural numbers excluding 0

N0 The set of natural numbers including 0

Py Probability if the considered process is started in a given point y ∈ R
Pν Probability if the considered process is started in a given distribution ν

Re z The real part of a given complex number z ∈ C
SDE Abbreviation of “stochastic differential equation”

w.l.o.g. Abbreviation of “without loss of generality”

Given a topological space E, a probability measure Q : B(E) → [0, 1] is called a prob-
ability measure on E. Regarding the usage of Q, we remark that the field of rational
numbers does not appear (explicitly) in this thesis.

By ∼, we denote asymptotic equivalence of two functions, mapping from a common
subset of R to (0,∞), at a specified point. For instance, given f, g : [0,∞) → (0,∞),

we write f(T ) ∼ g(T ), as T →∞, if limT→∞
f(T )
g(T )

= 1 holds.
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