
Computer Science
Department
Software Engineering Group

Automatic Data Dependence
Analysis by Deductive
Verification
Automatische Datenabhängigkeitsanalyse durch deduktive Verifikation
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
Genehmigte Dissertation im Fachbereich Informatik von Asmae Heydari Tabar aus Teheran, Iran
Tag der Einreichung: 1.03.2024, Tag der Prüfung: 24.04.2024

1. Gutachten: Prof. Dr. Reiner Hähnle
2. Gutachten: Prof. Dr. Philipp Rümmer
Darmstadt, Technische Universität Darmstadt

Automatic Data Dependence Analysis by Deductive Verification
Automatische Datenabhängigkeitsanalyse durch deduktive Verifikation

Accepted doctoral thesis in the department of Computer Science by Asmae Heydari Tabar

Date of submission: 1.03.2024
Date of thesis defense: 24.04.2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-267225
URL: https://tuprints.ulb.tu-darmstadt.de/26722
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

https://tuprints.ulb.tu-darmstadt.de/26722
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

To Mahsa Zhina Amini.

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation – abgesehen von den in ihr
ausdrücklich genannten Hilfen – selbstständig verfasst wurde und dass die „Grundsätze
zur Sicherung guter wissenschaftlicher Praxis an der Technischen Universität Darmstadt“
und die „Leitlinien zum Umgang mit digitalen Forschungsdaten an der TU Darmstadt“ in
den jeweils aktuellen Versionen bei der Verfassung der Dissertation beachtet wurden.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 1.03.2024
A. Heydari Tabar

v

Acknowledgments

I am in debt of gratitude to Prof. Dr. Reiner Hähnle for giving me the opportunity to work
with him and providing a friendly work environment where everyone can grow while
rooting for each other. I appreciate him always being available and providing guidance
while never losing sight of the big picture. Working at the Software Engineering group is
a luxury where people’s well-being and happiness always come first.

I am grateful to Prof. Dr. Philipp Rümmer for agreeing to be the second reviewer of
my thesis and for his previous guidance regarding my academic career. I also appreciate
the examination committee members, Prof. Dr. Christian Bischof, Prof. Dr. Georgia
Chalvatzaki, and Prof. Dr. Dr. Mira Mezini, for their time and effort.

This work would not have been possible without the everyday help of Dr. Richard Bubel.
I appreciate his kindness, patience, and humbleness. It is a privilege to learn from him.

I am thankful for my former colleagues, whom I always look up to, Dr. Dominic
Steinhöfel and Dr. Eduard Kamburjan, who were always supportive, kind, and humorous.
The same goes for my current colleagues (in alphabetic order): Stefan Dillmann, Daniel
Drodt, Lukas Grätz, Anna Schmitt, Marco Scaletta, and Dr. Adele Veschetti. I also
appreciate our kind and patient secretary, Claudia Roßmann.

Special thanks to Dr. Richard Bubel and Daniel Drodt for providing constructive and
detailed feedback on my thesis.

Through working at the Software Engineering group, I had the privilege of meeting
great scientists who took my work seriously and tried to promote it in different ways they
could. Particularly, I am heart-warmed by the support of Prof. Dr. Ina Schaefer, Prof. Dr.
Marieke Huisman, and Prof. Dr. Einar Broch Johnsen.

I would like to thank my parents for their tireless encouragement throughout my life to
pursue a career in science. This is for them.

I was lucky to meet my boyfriend, Tobias Hamann, during and through doing my Ph.D.
I appreciate his presence in my life every day. I could not have undertaken this journey
without his unconditional love and support.

During my Ph.D., funding was provided by the Software Factory 4.0 project, Technical
University of Darmstadt, and the DEEP-SEA project, for which I am grateful.

vii

Abstract

In the realm of High-Performance Computing (HPC), the parallelization of programs holds
significant importance. However, the correctness of parallelization hinges on the reliable
exclusion of certain data dependences, such as read-after-write dependences, where a
read access follows a write access on a given memory location. It is imperative that data
dependence analyses are not only correct but also as precise as possible to seize every
opportunity for parallelization.

While various static, dynamic, and hybrid analysis approaches have been proposed
within the HPC community, none have been based on program logic and deductive
verification, despite the significant advantages this approach offers, including soundness,
precision, and modularity.

In this thesis, we present an automatic, sound, and highly precise approach to generate
data dependences based on deductive verification. We define a program logic based on
precise semantics for data dependences. As loops are usually the main source of paral-
lelization in HPC applications, we equip our approach with an automatic loop invariant
generation technique in the same program logic. To achieve full automation, we incorpo-
rate predicate abstraction tailored to the needs of data dependence analysis. To retain
as much precision as possible, we generalize logic-based symbolic execution to compute
abstract data dependence predicates.

We provide a prototype demonstrating that fully automatic data dependence analysis
based on deductive verification is feasible and is a promising alternative to the dependence
analyses commonly used in HPC. Implementing our approach for Java atop a deductive
verification tool, we conducted evaluations demonstrating its ability to analyze data
dependences highly precisely for representative code extracted from HPC applications.

ix

Zusammenfassung

Im Bereich des High-Performance Computing (HPC) kommt der Parallelisierung von
Programmen eine große Bedeutung zu. Die Richtigkeit der Parallelisierung hängt jedoch
vom zuverlässigen Ausschluss bestimmter Datenabhängigkeiten ab, beispielsweise von
Read-After-Write-Abhängigkeiten, bei denen ein Lesezugriff auf einen Schreibzugriff auf
einen bestimmten Speicherort folgt. Es ist zwingend erforderlich, dass Datenabhängigkeits-
analysen nicht nur korrekt, sondern auch so präzise wie möglich sind, um jede Gelegenheit
zur Parallelisierung zu nutzen.

Während in der HPC-Community verschiedene statische, dynamische und hybride
Analyseansätze vorgeschlagen wurden, basierte keiner auf Programmlogik und dedukti-
ver Verifizierung, trotz der erheblichen Vorteile, die dieser Ansatz bietet, einschließlich
Korrektheit, Präzision und Modularität.

In dieser Arbeit stellen wir einen automatischen, korrekten und hochpräzisen An-
satz zur Generierung von Datenabhängigkeiten basierend auf deduktiver Verifizierung
vor. Wir definieren eine Programmlogik basierend auf einer präzisen Semantik für Da-
tenabhängigkeiten. Da Schleifen in der Regel die Hauptquelle der Parallelisierung in
HPC-Anwendungen sind, statten wir unseren Ansatz mit einer automatischen Technik zur
Erzeugung von Schleifeninvarianten in derselben Programmlogik aus. Um eine vollständi-
ge Automatisierung zu erreichen, integrieren wir eine Prädikatenabstraktion, die auf die
Anforderungen der Datenabhängigkeitsanalyse zugeschnitten ist. Um so viel Präzision wie
möglich beizubehalten, verallgemeinern wir die logikbasierte symbolische Ausführung,
um abstrakte Datenabhängigkeitsprädikate zu berechnen.

Der vorgestellte Ansatz wurde protptypisch implementiert und zeigt, dass eine voll-
automatische Datenabhängigkeitsanalyse auf Basis deduktiver Verifizierung machbar ist
und eine vielversprechende Alternative zu den im HPC üblicherweise verwendeten Ab-
hängigkeitsanalysen darstellt. Wir implementierten unseren Ansatz für Java auf einem
deduktiven Verifizierungstool und führten Evaluierungen durch, die seine Fähigkeit de-
monstrierten, hochpräzise Datenabhängigkeiten für repräsentativen Code zu analysieren,
der aus HPC-Anwendungen extrahiert wurde.

xi

Contents

Acknowledgments vii

Abstract ix

Zusammenfassung xi

1. Introduction 1
1.1. State of the Art . 2
1.2. Approach . 2
1.3. Contributions . 3
1.4. Overview of Publications . 4
1.5. Structure of The Thesis . 4

2. Preliminaries 7
2.1. Java Dynamic Logic . 7

2.1.1. Syntax . 7
2.1.2. Semantics . 11
2.1.3. Reasoning . 12
2.1.4. Update Application and Simplification Rules 14
2.1.5. Symbolic Execution Rules . 15
2.1.6. Memory Locations and Heap . 17
2.1.7. Soundness and Completeness of the Calculus 19

2.2. KeY . 20
2.2.1. Prover Core . 20
2.2.2. Reasoning about Programs . 21

2.3. Data Dependence Analysis . 21
2.4. Loop Invariant Generation with Predicate Abstraction 24

2.4.1. Predicate Abstraction . 25
2.4.2. Predicate Refinement . 26
2.4.3. Loop Invariant . 27

xiii

3. Data Dependence-Aware Program Logic 29
3.1. Semantics of Read and Write Memory Accesses 30
3.2. Memory Access Updates . 31
3.3. Specification of Data Dependence Properties 33
3.4. Reasoning about Data Dependence Properties 34

3.4.1. Modified Calculus Rules . 34
3.4.2. Update Simplification Rules . 35
3.4.3. Axiomatization . 37

4. Automatic Loop Invariant Generation for Data Dependence Analysis 41
4.1. Reconciling Predicate Abstraction and Symbolic Execution 42
4.2. Data Dependence Loop Invariant Generation with Predicate Abstraction . . 48

4.2.1. Predicate Abstraction . 49
4.2.2. Predicate Refinement . 51

4.3. Reasoning . 54
4.3.1. Verification of the Data Dependence Loop Invariant 54
4.3.2. Renamed Memory Access Update Application 54
4.3.3. Subsumption Relations . 54
4.3.4. Embedding Predicate Abstraction 55

5. Automatic Loop Invariant Generation for Inter-Iteration Data Dependence
Analysis 61
5.1. Inter- vs. Intra-Iteration Loop Data Dependences 62
5.2. Specification of Intra-Iteration Data Dependence Properties 62

5.2.1. Syntax and Semantics . 62
5.3. Loop Invariant Generation . 68

5.3.1. Symbolic Execution . 68
5.3.2. Predicate Abstraction . 70

5.4. Reasoning . 71
5.4.1. Update Application and Simplification Rules 71
5.4.2. Subsumption Relations . 73
5.4.3. Embedding Predicate Abstraction 75

6. Nested Loop Invariant Generation 77
6.1. Generation Algorithm . 78

6.1.1. Computation of the Inner Loop Invariant 79
6.1.2. Using the Inner Loop Invariant . 80

xiv

6.2. Anonymization of Memory Access Updates 81
6.2.1. Syntax and Semantics . 81
6.2.2. Update Application Rules . 82

6.3. Anonymization of a Sequence of Memory Access Updates 83
6.3.1. Syntax and Semantics . 84
6.3.2. Update Application Rules . 86

7. Multi-Dimensional Arrays 89
7.1. Syntax and Semantics . 89
7.2. Calculus Rules . 92
7.3. Proof Search Strategy . 96

8. Experimental Results 97
8.1. Single Loops . 97

8.1.1. Test Cases . 98
8.1.2. Evaluation . 109

8.2. Nested Loops . 110
8.2.1. Test Cases . 112
8.2.2. Evaluation . 117

8.3. Threats to Validity . 117

9. Related Work 119
9.1. Data Dependence Profilers . 119

9.1.1. Static . 119
9.1.2. Dynamic . 121
9.1.3. Hybrid . 121

9.2. Loop Invariant Generation . 122
9.3. Others . 123

10.Conclusion and Future Work 125

Bibliography 129

A. Semantics 139
A.1. Semantics of Dependence Predicates . 139
A.2. Semantics of History Dependence Predicates 139
A.3. Semantics of ˆ︃noWaR . 140
A.4. Semantics of Inter-Iteration History and Access Predicates 141

xv

B. Sequent Calculus Rules 143
B.1. Axiomatization of Data Dependences . 143

B.1.1. Rules for noWaR . 143
B.1.2. Rules for noWaW . 144
B.1.3. Rules for noR . 144
B.1.4. Rules for noW . 145

B.2. Shift Write Rule . 145
B.3. Renamed Memory Access Update Application 146
B.4. Subsumption Rules for History Data Dependence Predicates 147
B.5. Relation of wPred with History Data Dependence Predicates 148

B.5.1. Relation of wPred and noWHist 148
B.5.2. Relation of wPred and noRHist 148
B.5.3. Relation of wPred and noWaRHist 149
B.5.4. Relation of wPred and noWaWHist 150

B.6. Update Application on Inter-Iteration Data Dependence Predicates 151

C. Proof of Sequent Calculus Rules 153
C.1. Proof of Soundness and Completeness of writeAccessAppOnNoRaW . . . 153
C.2. Proof of Soundness and Completeness of readAccessAppOnNoRaW 154
C.3. Proof of Theorem 4.1.1 . 156
C.4. Proof of Theorem 4.1.2 . 157
C.5. Proof of Soundness and Completeness of renamedReadAppOnNoRHist . . 158
C.6. Proof of Theorem 5.3.1 . 159
C.7. Proof of Soundness and Completeness of matrixRangeMinusSingleton . . 162

xvi

List of Figures

2.1. Grammar of JavaHPC . 8
2.2. Grammar of JavaDL . 10
2.3. Excerpt of JavaDL semantics . 13
2.4. A selection of update application and simplification rules 15
2.5. Example of update application . 16
2.6. Different data dependence types . 22
2.7. Child loops of Listing 2.3 . 23
2.8. Sign analysis domains. 25

3.1. Excerpts of JavaDLDep Semantics . 32
3.2. Selection of memory access update rules 36
3.3. Axiomatization of data dependence predicates 38
3.4. Example of a formal verification proof of a noRaW property 40

4.1. Order between memory locations . 49
4.2. Order between data dependence predicates 50
4.3. Selection of rules for renamed memory access update application 55
4.4. Subsumption relations between history data dependence predicates 55
4.5. Relation of access and history predicates 56
4.6. Relation of rPred and noRHist rules . 56
4.7. Relation of rPred and noWHist rules . 57
4.8. Relation of rPred and noRaWHist rules 59

5.1. Program semantics of JavaDLˆ︃Dep . 64
5.2. Semantics of selected inter-iteration history predicates 67
5.3. Predicate abstraction lattice for inter-iteration predicates 71
5.4. Selected rules for application update on inter-iteration predicates 72
5.5. Renamed update application on inter-iteration predicates 74
5.6. Subsumption relations between inter-iteration predicates 74

6.1. Anonymized memory access update application rules 83

xvii

6.2. Anonymized sequence of memory access updates application 88

7.1. Two-dimensional rectangular shaped array 91
7.2. Different Java arrays . 91
7.3. Matrix range minus singleton . 94
7.4. Matrix range minus matrix range . 95

8.1. Loop invariants for Listing 8.1 . 98
8.2. Loop invariants for Listing 8.2 . 99
8.3. Loop invariants for Listing 8.3 . 100
8.4. Loop invariants for Listing 8.4 . 101
8.5. Loop invariants for Listing 8.5 . 102
8.6. Loop invariants for Listing 8.6 . 103
8.7. Loop invariants for Listing 8.7 . 104
8.8. Loop invariants for Listing 8.8 . 105
8.9. Loop invariants for Listing 8.9 . 106
8.10.Loop invariants for Listing 8.10 . 107
8.11.Loop invariants for Listing 8.11 . 108
8.12.Loop invariants for Listing 8.12 . 110
8.13.Loop invariants for Listing 8.13 . 112
8.14.Loop invariants for Listing 8.14 . 113
8.15.Loop invariants for Listing 8.15 . 114
8.16.Loop invariants for Listing 8.16 . 115
8.17.Loop invariants for Listing 8.17 . 116
8.18.Loop invariants for Listing 8.18 . 116

xviii

List of Tables

8.1. Data dependence loop invariant generation for single loops 111
8.2. Inter-iteration data dependence loop invariant generation for single loops . 111
8.3. Data dependence loop invariant generation results for nested loops 117

xix

List of Algorithms

1. Data Dependence Loop Invariant Generation Algorithm 52
2. Dependence Predicate Weakening Heuristics 53

3. Data Dependence Loop Invariant Generation Algorithm for Nested Loops . . 78

xxi

List of Definitions

Definition 2.1.1. Programs Prg . 8
Definition 2.1.2. Signature Σ . 9
Definition 2.1.3. Update . 9
Definition 2.1.4. Syntax of JavaDL . 10
Definition 2.1.5. Semantics of JavaDL . 11
Definition 2.1.6. Variable assignment . 12
Definition 2.1.7. Modification of state . 12
Definition 2.1.8. Evaluation Function val . 12
Definition 2.1.9. Validity . 12
Definition 2.1.10. Location . 17
Definition 2.1.11. Soundness and completeness of a rule 19
Definition 2.3.1. Data dependence . 21
Definition 2.4.1. Abstract domain . 26
Definition 2.4.2. Partial order set . 26
Definition 2.4.3. Abstract language . 26

Definition 3.1.1. Domains, JavaDLDep states 30
Definition 3.2.1. Memory access update . 31
Definition 3.2.2. Sequential memory access updates 31
Definition 3.2.3. Semantics of JavaDLDep . 33
Definition 3.3.1. Data Dependence Predicate 33

Definition 4.1.1. Shift state update rule schema [49] 43
Definition 4.1.2. Renamed memory access update predicate 44
Definition 4.1.3. Memory access predicate 46
Definition 4.1.4. Rule schema shiftRead . 46
Definition 4.1.5. History data dependence predicate 47
Definition 4.2.1. Abstract domain . 49
Definition 4.2.2. Data Dependence abstract language 50
Definition 4.2.3. Data dependence loop invariant 50

xxiii

Definition 5.2.1. Domain, JavaDLˆ︃Dep State 63
Definition 5.2.2. Projection . 65
Definition 5.2.3. Inter-iteration data dependence predicates: semantics . . . 65
Definition 5.2.4. Marker update semantics 67

Definition 6.2.1. Sequence of anonymized memory accesses updates 81
Definition 6.2.2. Anonymized memory access update 81
Definition 6.2.3. Length of anonymized sequence of memory accesses updates 81
Definition 6.2.4. Renamed anonymized memory access update 82
Definition 6.3.1. Sequence of sequence of anonymized memory accesses

updates . 84
Definition 6.3.2. Extended projection . 84
Definition 6.3.3. Anonymized sequence of sequences of memory access update 84
Definition 6.3.4. Length of anonymized sequence of sequence of memory

accesses updates . 85
Definition 6.3.5. Renamed anonymized sequence of sequences of memory

access update . 85

Definition 7.1.1. Infinite union . 89
Definition 7.1.2. Matrix range . 90
Definition 7.1.3. Well-formed matrix predicate 91

xxiv

List of Theorems, Corollaries, and
Propositions

Proposition 2.1.1. Soundness[32] . 19
Proposition 2.1.2. Relative Completeness[32] 19

Theorem 3.4.1. Soundness and Completeness of JavaDL Calculus 39
Corollary 3.4.1. Soundness of JavaDL Calculus 39

Theorem 4.1.1. Soundness and completeness of dualityAccAndRenamedAcc 45
Theorem 4.1.2. Soundness and completeness of shiftRead 46

Theorem 5.3.1. Soundness and completeness of shiftNextUpdate 69
Theorem 5.4.1. Soundness and Completeness of JavaDLˆ︃Dep Calculus 75
Corollary 5.4.1. Soundness of JavaDLˆ︃Dep Calculus 75

xxv

1. Introduction

Widespread usage of multi-core processors calls for a need for parallel programs to benefit
from this capacity to the full extent. As most legacy software are sequential programs,
the need to identify parallelization opportunities in sequential programs is raised in the
HPC community.

The process of transforming a sequential program to its parallel equivalent can be
performed manually by developers who possess the domain knowledge, automatically with
auto-parallelizers, or semi-automatically with the help of parallelization recommendation
systems. Either way, the performance gained by parallelization is usually worthless
(especially in safety-critical applications) if the result is incorrect.

Soundness of the program parallelization process depends on preserving the program
semantics. To preserve the semantics, parallelization process must not violate the data
dependences.1,2 Therefore, one of the core steps in the parallelization process is identifying
data dependences. Informally, two code statements depend on each other, whenever they
access the exact memory location and at least one of them writes.

Identifying and even testing data dependences is undecidable as it generalizes the reach-
ability problem. Restricting the domain and performing exact memory-based dependence
analysis, it can be reduced to an NP-complete problem [1] and solved by approximation.
State-of-the-art approaches approximate the solution differently but all suffer from over-
and/or under-approximation. In addition, they lack a rigorous, formal definition of data
dependences, which makes it impossible to formally argue about their correctness.

For the reasons stated, we see room for a more precise static approach to data dependence
analysis with verifiable results.

1Not to be confused with much simpler data flow properties that are commonly analyzed by static checking.
2In the HPC community the term dependence (pl. dependences) is used rather than dependency / dependencies.
We follow their convention.

1

1.1. State of the Art

State-of-the-art data dependence profilers are classified into static, dynamic, and hybrid
approaches.

Static data dependence analysis approaches [1–15] profile data dependences based on
the information available at compile time. They produce sound results but suffer from
over-approximation. Since the value of pointers and array indices usually can not be
resolved at compile time, these techniques are conservative and tend to over-approximates
data dependences, which means that they can report data dependences that do not occur
at run time. The presence of data dependences either cancels parallelization or declares
the need for restructuring before parallelization. Therefore, over-approximating data
dependences entails missing parallelization opportunities or expensive parallelization.

On the other hand, dynamic data dependence analysis approaches [16–22] rely on
runtime information. Although they do not suffer from over-approximation, they have
the major drawback of under-approximation. These analyses are optimistic as they rely
on actual program runs. This can cause missing data dependences that do not belong to
the paths traversed in the current execution, resulting in parallelization where it leads
to incorrect results. In addition, these techniques have a high runtime overhead as the
whole program must be executed several times under realistic load.

To benefit from the soundness of static approaches while reducing their
over-approximation by using the runtime information, hybrid data dependence analysis
approaches [23–26] emerged. They solved the soundness problem by limiting their
application to a specific loop shape and function. Although they have reduced the over-
approximation and high overhead problems compared to the dynamic approaches, their
result is still unverified and can not guarantee sound parallelization.

1.2. Approach

The approach presented in this thesis makes automatic data dependence analysis based
on deductive [27] verification of imperative programs with loops over arrays possible. The
code to be analyzed, as well as data dependence relations, are formalized in a program
logic. Automated deduction is used to conjecture and formally verify data dependences.

We define a program logic to model data dependence with formal semantics. The
logic permits to specify and verify dependences with full precision for any loop-free and
non-recursive program. The soundness of our approach is provable as it is based on a
program logic. We use predicate abstraction [28, 29] to generate data dependence loop
invariants with high precision. Due to path coverage and value sensitivity, full precision is

2

achievable in principle.
Deductive verification of functional properties requires human interaction and non-trivial

formal specifications [27]. However, it can be a fully automatic technique if properties and
specifications are either sufficiently generic and/or can be inferred automatically [30, 31].
We show that this applies to data dependence analysis, too. In addition, since deductive
verification systems are procedure-modular [27], there is no need to analyze a whole
program. Analysis can focus on the typically compact and computation-intensive parts.

In consequence, our approach establishes deductive verification as a new, viable alterna-
tive in the portfolio of dependence analysis tools.

1.3. Contributions

Our main methodological contributions are:

• defining formal semantics of data dependences;

• extending a program logic for deductive verification [32] to make formal verification
of data dependences possible;

• an automatic and fully precise approach to verify data dependences in loop-free
and non-recursive programs;

• an automatic and highly precise approach to express and verify data dependences
in programs with loops;

• a predicate abstraction loop invariant generation approach that can synthesize sound
data dependence loop invariant;

• distinguishing between data dependences within a loop iteration and across loop
iterations; and

• the capability to verify data dependences conjectured by state-of-the-art approaches.

Our technical contributions include:

• the concept of data dependence-aware program logic; and

• combination of symbolic execution and predicate abstraction in a program logic and
deductive framework that permits to verify and propagate data dependences.

3

1.4. Overview of Publications

I contributed to the following papers prior to finishing this thesis.

Publications Included in This Thesis
• A Program Logic for Dependence Analysis (IFM 2019) [33]: I contributed to this

paper by writing the data dependence program logic, implementing and evaluating
it. This publication is the base of Chapter 3.

• Safer Parallelization (ISoLA 2020) [34]: My contribution is writing the Restructuring
for Parallelization section. The connection made between different parallelization
patterns and data dependences in different chapters of this thesis is based on this
publication.

• Automatic Loop Invariant Generation for Data Dependence Analysis (FormaliSE@ICSE
2022) [35]: I contributed to this paper by developing and implementing the loop
invariant generation algorithm and the program logic. This publication is the base
of Chapter 4.

Other Publications
Following publications are not included in my thesis. My contributions are evaluating the
approach and researching the related work.

• Modeling Non-deterministic C Code with Active Objects (FSEN 2019) [36]

• Automated model extraction: From non-deterministic C code to active objects (SCP
2021) [37]

1.5. Structure of The Thesis

The remainder of this document is organized as follows:

Chapter 2: Preliminaries This chapter gives an overview of the four pillars that this
thesis stands on: Java Dynamic Logic (JavaDL), KeY system, data dependence analysis,
and loop invariant generation with predicate abstraction.

Chapter 3: Data Dependence-Aware Program Logic This chapter formally defines data
dependences and provides a program logic for data dependence analysis of loop-free and
non-recursive programs.

4

Chapter 4: Automatic Loop Invariant Generation for Data Dependence Analysis For
analyzing loops, we need loop invariants. This chapter explains how we adapt different
techniques to generate data dependence loop invariants.

Chapter 5: Automatic Loop Invariant Generation for Inter-Iteration Data Dependence
Analysis We take the approach developed in the previous chapter a step further and
focus on the data dependences spanning over different loop iterations.

Chapter 6: Nested Loop Invariant Generation To make our approach widely applicable,
we extend the loop invariant generation approach introduced in the previous chapters to
support nested loops.

Chapter 7: Multi-Dimensional Arrays As nested loops often iterate overmulti-dimensional
arrays, and such loops constitute the majority of HPC applications, we extend the under-
lying program logic with support for multi-dimensional arrays.

Chapter 8: Development in KeY and Experiments We implemented our approach in the
KeY system. In this chapter, we go through different test cases to showcase the benefits of
our approach over the state-of-the-art.

Chapter 9: Related Work This chapter classifies different research areas that tackle the
same or similar problems as this thesis from various aspects.

Chapter 10: Conclusion and FutureWork This chapter concludes the thesis and discusses
further opportunities for expanding our approach.

5

2. Preliminaries

This chapter introduces the preliminary concepts needed for this thesis. We begin with
the JavaDL program logic (Section 2.1) that is the program logic used in this thesis.
JavaDL expresses properties about Java programs. We describe the calculus that is used
to reason about the validity of these properties. We follow closely the definition of
JavaDL as presented in [32]. Following chapters extend JavaDL to reason about data
dependences. The verification framework KeY [32] that is based on JavaDL is introduced
in Section 2.2. Approaches developed in this thesis are all realized by implementing them
in KeY. In Section 2.3 the concept of data dependence is explained as it is the core focus
for verification in this thesis. Section 2.4 explains the generation of loop invariants that is
essential for analyzing data dependences in loops.

2.1. Java Dynamic Logic

Java dynamic logic (JavaDL) [32] is an instance of dynamic logic (DL) [38, 39] for
sequential deterministic Java programs. Dynamic logic is an extension of first-order logic
for reasoning about the behavior of programs.

In this section we give an overview on the syntax, semantics, and calculus of JavaDL.
As well as addressing memory handling and formulation of soundness and completeness.
The definitions below are adopted from [32] to which we refer for a full account.

2.1.1. Syntax

For ease of presentation we use the Java fragment given by the grammar in Figure 2.1.
We call it JavaHPC . This fragment supports primitive types int, boolean, array type
int[] for one-dimensional integer arrays of fixed length (length), and array type
int[][] for two-dimensional integer arrays of fixed length and width. We assume that
all rows have the same length (e.g. for int[][] a, width is a[0].length). We assume
the domain of int to be integers Z and that variables of type int[] and int[][] refer
to existing array objects. Note that JavaHPC assignments are not expressions.

7

⟨stmnt⟩ ::= ⟨lhs⟩ ‘=’ ⟨exp⟩‘;’ | ⟨stmnt⟩ ⟨stmnt⟩
| ‘if’ ‘(’ ⟨exp⟩ ‘)’ ‘{’ ⟨stmnt⟩ ‘}’ ‘else’ ‘{’ ⟨stmnt⟩ ‘}’
| ‘while’ ‘(’ ⟨exp⟩ ‘)’ ‘{’ ⟨stmnt⟩ ‘}’

⟨exp⟩ ::= ⟨var⟩ | ⟨var⟩ ‘[’ ⟨exp⟩ ‘]’ | ‘(’ ⟨exp⟩ ‘)’ | ⟨aexp⟩ | ⟨bexp⟩

⟨aexp⟩ ::= Z |⟨var⟩‘.length’ | ‘-’⟨exp⟩ | ⟨exp⟩⊛⟨exp⟩ (⊛∈{‘+’, ‘-’, ‘*’, ‘/’})

⟨bexp⟩ ::= ‘true’ | ‘false’ | ‘!’⟨exp⟩ | ⟨exp⟩ ⊛ ⟨exp⟩ (⊛ ∈ { ‘&&’, ‘||’ })
| ⟨exp⟩ ⊛ ⟨exp⟩ (⊛ ∈ {‘<’, ‘<=’, ‘==’, ‘>=’, ‘>’})

⟨lhs⟩ ::= ⟨var⟩ (not of array type) | ⟨var⟩ ‘[’ ⟨exp⟩ ‘]’

⟨var⟩ ::= x x ∈ PV

Figure 2.1.: Grammar of JavaHPC (a fragment of the Java programming language)

We define JavaHPC for a streamlined presentation. The implementation covers full
Java, includes aliasing, array creation, and etc.

JavaDL addresses aliasing from two different aspects. For example, whether int[] a
and int[] b are aliases of each other, and whether a[i] and a[j] are aliases of each
other.

PV denotes the set of all program variables with infinitely many variables for each type.
Variables of type int[] cannot occur on the left side of an assignment, except as part of
an array access and different variables of type int[] denote different array objects. We
omit the straightforward typing rules.

i = 0;
while (i < a.length - 1) {

a[i] = a[i+1];
i=i+1;

}
Listing 2.1: Array shift program

Example 2.1.1. An example program in JavaHPC with program variables i and a of
types int and int[], respectively, is in Listing 2.1. The program shifts the content of
array a to the left by one.

Definition 2.1.1 (Programs Prg). The set of all sequences of deterministic executable
JavaHPC statements.

8

JavaDL extends first-order logic with two modalities over programs ⟨·⟩· (“diamond”),
[·]· (“box”), and a syntactic category called updates. A modality takes a prg ∈ Prg,
and a JavaDL formula φ (possibly also containing modalities) as arguments. Formula
ψ → [prg]φ is equivalent to the Hoare triple [40] {ψ} prg {φ} in case ψ, and φ are
first-order formulas. If prg is executed in any state for which formula ψ holds, and if prg
terminates then formula φ holds in the final state. This corresponds to partial correctness.
On the other hand, by using the diamond modality the sequence of statements prg, has
to terminate and in the final state φ must hold for the formula to be valid. This is called
total correctness.

A type hierarchy is extracted from the JavaHPC program under verification. In a type
hierarchy T = (Sort,⪯), Sort is a set of type names with reflexive and transitive subtype
relation ⪯: Sort × Sort. The set of types contains at least (i) ⊤, Any, Heap, Field,
LocSet, boolean, int, where ⊤ is the unique root of T , Any is the supertype of all
types except Heap and Field; (ii) any JavaHPC type declared or used in the program
under verification (closed w.r.t. supertypes).

Definition 2.1.2 (Signature Σ). A T -typed JavaDL signature ΣT = (PSym, FSym,VSym)
consists of non-empty sets:

• PSym of predicate symbols p : T1 × . . .× Tn, Ti ∈ T

• FSym of function symbols f : T1 × . . .× Tn → S, Ti, S ∈ T

• VSym of first-order variables v : T, T ∈ T

Predicate symbols of arity 0 are propositional variables and function symbols of arity 0
are constants. Predicate and function symbols are partitioned into rigid PSymr/FSymr and
non-rigid PSymnr/FSymnr symbols. Interpretation of non-rigid symbols depends on the
state, thus they capture side effects of program execution. Logic (first-order) variables are
always rigid. JavaDL is closed under all first-order operators, quantifiers, and modalities.
The set of program variables PV is the set of all non-rigid constants, which are disjoint
from rigid logic (first-order) variables. The latter can be bound by quantifiers and may
not occur in programs. Program variables may occur in programs and first-order terms,
but cannot be quantified over.

JavaDL includes a syntactic category named updates, which represent state changes.

Definition 2.1.3 (Update). An elementary update is written as l := r with l : T ∈ PV and
r a term of type T ′ with T ′ ⪯ T . The meaning is that of an assignment, where the value of
term r is assigned to program variable l. An update u can be applied to a term {u}t, to a
formula {u}φ or it can be composed with another update u′ into a sequential update u;u′

9

⟨term⟩ ::= v (v ∈ VSym)
| f [‘(’ ⟨term⟩‘,’ …‘,’ ⟨term⟩ ‘)’]opt (f ∈ FSym)
| ‘{’⟨update⟩‘}’⟨term⟩

⟨fml⟩ ::= tt | ff | p [‘(’ ⟨term⟩‘,’ …‘,’ ⟨term⟩ ‘)’]opt (p ∈ PSym)
| ⟨term⟩ .= ⟨term⟩ (equality)
| ¬ ⟨fml⟩ | ⟨fml⟩ ⊛ ⟨fml⟩ (⊛ ∈ {∧,∨,→}) (propositional connectives)
| Qv ‘.’ ⟨fml⟩ (Q ∈ {∃, ∀}, v ∈ VSym)
| ‘[’⟨stmnt⟩‘]’⟨fml⟩ | ‘{’⟨update⟩‘}’⟨fml⟩

⟨update⟩ ::= x ‘:=’ ⟨term⟩ (x ∈ PV) (elementary update)
| ⟨update⟩ ‘||’ ⟨update⟩ (parallel update)
| ⟨update⟩ ‘;’ ⟨update⟩ (sequential update)

Figure 2.2.: Grammar of JavaDL

or a parallel update u∥u′. Parallel updates are applied simultaneously, i.e., they do not
influence each other; in case a variable occurs more than once on the left-hand side of a
parallel update, the syntactically last update wins. Set of all updates defined on signature
Σ is UpdΣ.

We give examples of JavaDL formulas and their intuitive meaning:

Example 2.1.2. Let i, j be program variables, i0, j0 rigid constants of type int.

1. Formula (i .
= i0 ∧ j

.
= j0) → ⟨i=i-j; j=i+j; i=j-i;⟩(i .

= j0 ∧ j
.
= i0)

means: if the program in the diamond is executed in an initial state, where i, and
j have the values i0, and j0, then the program terminates and in its final state the
program variables have their initial value swapped.

2. Formula {i := i+1}(i ≥ 0) is equivalent to formula i ≥ 0 except that the value of
i is increased by one.

3. Formula (i .
= i0 ∧ j

.
= j0)→ {j := i∥i := j}(i .

= j0 ∧ j
.
= i0) means the same

as the formula in 1., but expresses the effect of the program with a parallel update.
Parallel updates are executed simultaneously, this means parallel updates do not
influence each other.

10

Definition 2.1.4 (Syntax of JavaDL). Syntax of JavaDL includes, terms, formulas, and
updates. Terms and formulas are defined inductively as in standard typed first-order logic
and are given in Figure 2.21. We list only the non-standard cases:

• If φ is a JavaDL formula and prg a legal program fragment (sequence of statements)
then ⟨prg⟩φ and [prg]φ are JavaDL formulas.

• If φ is a JavaDL formula, t a term of type T and u an update (elementary or parallel),
then {u}φ is a JavaDL formula and {u}t is a term of type T . We say “u is applied to
φ (to t)”.

2.1.2. Semantics

Classical first-order logic, evaluates a formula (or term) regarding to one interpretation
(or model) that gives meaning to rigid symbols. JavaDL, like other modal logics, expresses
properties relating execution states, and has a big-step Kripke semantics. Each state s
in the set of states S of a given program can be seen as an interpretation of symbols,
specifically, of program variables.

Definition 2.1.5 (Semantics of JavaDL). Given a signature ΣT for type hierarchy T .
JavaDL semantics is defined over a Kripke structure K = (D,S, [[·]]), consisting of a non-
empty domain D, a set of states S, and state transition relation [[·]]. The set of states S is
infinite and non-empty. State s ∈ S assigns meaning to (rigid and non-rigid) symbols.

• s assigns to each type T ∈ T its domain s(T) = DT respecting the subtype relation,
i.e. DT ⊆ DT ′ for T ⪯ T ′.

• s assigns to each function symbol f : T1 × . . . × Tn → T a function s(f) : DT1 ×
. . .×DTn → DT .

• s assigns to each predicate symbol p : T1× . . .×Tn a relation s(p) : DT1 × . . .×DTn .

• All s ∈ S coincide on their domain and the interpretation of rigid functions and
predicates.

• A state transition relation [[·]] : Prg × S × S that associates each program prg
with all pairs of states (s, s′) such that if prg is executed in s then it terminates
in s′ in accordance to Java’s program semantics as defined in the Java Language
Specification (JLS) [41].

1Terms, formulas, and updates need to be well-typed.

11

• As JavaDL is deterministic, there is at most one tuple (s, s′) ∈ [[prg]] for each program
prg and state s ∈ S.

Definition 2.1.6 (Variable assignment). A variable assignment β : VSym→ D maps each
first-order variable v of type T to an element of its domain DT .

Definition 2.1.7 (Modification of state). We write s[x ← d] for the state s′ coinciding
with s, except for the value of program variable x of type T , which is evaluated to d ∈ DT .

Definition 2.1.8 (Evaluation Function val). Let K be a Kripke structure, s a state, β a
variable assignment. Let f be a function symbol, t, ti (i ∈ N) terms, and x, y ∈ PV . The
evaluation function valK,s,β maps terms to values of their domain, and updates to a pair of
states. It is defined in Figure 2.3. The semantics of parallel updates implies that when the
same program variable is assigned more than once within a parallel update, then only the
textually last assignment is relevant.

The semantics of assignments with side effect-free right hand sides is identical to that
of elementary updates. This becomes important in the calculus where updates are used
to represent the effect of assignments.

Definition 2.1.9 (Validity). K is a Kripke structure, s a state, β a variable assignment.
Let p be a predicate symbol. We define the validity relation |= for formulas in Figure 2.3
Write K |= φ iff K, s, β |= φ holds for all s ∈ S and all β. Formula φ is valid, written |= φ,
iff K |= φ holds for all Kripke structures K.

The evaluation function valK,s,β : Prg → 2S maps programs prg to sets of states.
Programs are deterministic, so the result is either the empty set, when prg does not
terminate if started in s, otherwise, a singleton set with the final state reached by prg
started in s. The semantics for diamond (box) means that after executing prg, there exists
a state (for all states) property φ holds, which is equivalent to total (partial) correctness
for deterministic programming languages.

2.1.3. Reasoning

Reasoning about validity of formulas is done using sequent calculus that follows the
symbolic execution [42–45] paradigm to handle formulas containing programs. A sequent
is an abstract data structure with schema φ1, . . . , φn =⇒ ψ1, . . . , ψm consisting of two
sets of formulas and has the same meaning as the formula

⋀︁
i=1,...,n φi →

⋁︁
i=1,...,m ψi.

12

Update

valK,s,β(x := t) = s′ with s′ = s[x← valK,s,β(t)]

valK,s,β(u1||u2) = valK,s,β(u2)(valK,s,β(u1))

valK,s,β(u1;u2) = s′′ with s′′ = valK,s′,β(u1) and s′ = valK,s,β(u2)

valK,s,β({u1}u2) = valK,s′,β(u2) with valK,s,β(u1) = s′

Terms

valK,s,β(v) = β(v) for a first-order variable v ∈ VSym

valK,s,β(x) = s(x) x ∈ PV

valK,s,β(f(t1, . . . , tn)) = s(f)(valK,s,β(t1), . . . , valK,s,β(tn))

valK,s,β({u}t) = valK,s′,β(t) with valK,s,β(u) = s′

Formulas

K, s, β |= q(t1, . . . , tn) iff (valK,s,β(t1), . . . , valK,s,β(tn)) ∈ s(q)
K, s, β |= ¬φ iff K, s, β ̸|= φ

K, s, β |= φ ∧ ψ iff K, s, β |= φ and K, s, β |= ψ (similarly ∨,→, . . .)

K, s, β |= ∀x;φ iff for all d ∈ DT : K, s, βd
x |= φ (similarly ∃x;φ)

K, s, β |= ⟨prg⟩φ iff valK,s,β(prg) = {(s, s′)} and K, s′, β |= φ

K, s, β |= [prg]φ iff valK,s,β(prg) ⊆ {(s, s′)} and K, s′, β |= φ

K, s, β |= {u}φ iff K, s′, β |= φ with valK,s,β(u) = s′

Programs

valK,s,β(stmnt1; stmnt2) := {(s, s′′)| (s, s′) ∈ [[stmnt1]] and (s′, s′′) ∈ [[stmnt2]]}
valK,s,β(x = t) := {(s, s′) | s′ = s[x← valK,s,β(t)]

valK,s,β(if(b) {stmnt1} else {stmnt2})
:= {(s, s′) | (K, s, β |= b and (s, s′) ∈ [[stmnt1]])

or (K, s, β ̸|= b and (s, s′) ∈ [[stmnt2]])}
valK,s,β(while(b){stmnt}):= {(s, t) | there is a sequence s = s0 . . . sn = t with

K, si, β |= b, (si, si+1) ∈ [[stmnt]], i < n

and K, t, β ̸|= b}

Figure 2.3.: Excerpt of JavaDL semantics

13

Formulas φ1, . . . , φn are called antecedent and ψ1, . . . ψm succedent. A sequent calculus
rule schema has the form

ruleName

premises⏟ ⏞⏞ ⏟
Γ1 =⇒ ∆1 · · · Γk =⇒ ∆k

Γ =⇒ ∆⏞ ⏟⏟ ⏞
conclusion

cond

where Γ, Γi, ∆, ∆i are schematic variables matching formula sets, and cond is a decidable
side condition. Sequent calculus rules are applied bottom-to-top to construct a proof.

A sequent calculus proof for the validity of a formula φ is a tree (i) whose nodes are
labeled with a sequent and (ii) for each inner node n with children n1, . . . , nk there is a
rule r with k premises such that r’s conclusion matches the sequent of n and the sequent
at child nk is equal to the instantiated i-th premise of r. A proof is closed if at all leaves an
axiom rule was applied, i.e., a rule without premises (k = 0).

For rewrite rules we use the following notion

lhs⇝ rhs

where lhs and rhs are both either schematic terms, or schematic formulas, or schematic
updates. Rewrite rules are sound if for all Kripke structure K, state s, and variable
assignent β evaluation of lhs is equal to evaluation of rhs. An example for a rewrite rule
is t .= t⇝ true.

JavaDL calculus rules can be categorized into three groups. The first group is the
first-order logic rules. As dynamic logic is an extension of first-order logic, all the first-
order logic rules hold in dynamic logic, too. Update application and simplification rules
(Figure 2.4) form the second group, which realizes the effect of updates on other updates,
formulas, and terms. The third group is the Symbolic Execution rules for dealing with
programs. We skip the first-order logic rules and briefly explain the other two groups.

2.1.4. Update Application and Simplification Rules

A selection of update application and simplification rules is shown in Figure 2.4. Application
of an update on a formula results in propagation of update to the subterms below the
(rigid) operator. Ultimately, the update can either be simplified away, or it is applied to
the target program variable. In applying an update to a modal operator, the program prg
must first be eliminated using the Symbolic Execution rules. Only afterwards can the
resulting update be applied on φ.

14

Schematic variables

x, y: program variables, t, t1, . . . , tn: terms,
φ: formulas, p: rigid predicate,
Γ, ∆: context formulas, u, u1, u2: updates,

Update-on-Term

{x := t}x⇝ t {x := t}y ⇝ y, for y ̸= x

Update-on-Formula

{u}p(t1, . . . , tn)⇝ p({u}t1, . . . , {u}tn) {u}(φ ◦ ψ)⇝ ({u}φ) ◦ ({u}ψ)
◦ ∈ {∧,∨,→, . . .}

Update-on-Update

{u}(x := t)⇝ x := {u}t {u1}{u2}φ⇝ {u1∥{u1}u2}φ

Figure 2.4.: A selection of update application and simplification rules

Application of an update on an elementary update is propagated to the term in the
right hand side of the update. The left hand side of an elementary update (here x) does
not refer to a value, but refers to a location that its value is stored. Therefore, it can not
be changed by an update. A cascade of two update applications {u1}{u2} is converted
into the application of a single parallel update. Due to the last-win semantics for parallel
updates, this is possible by applying the first update to the second, and replacing the
sequential composition by parallel composition.

2.1.5. Symbolic Execution Rules

We explain a few rule schemata that deal with programs to explain how the calculus
uses Symbolic Execution to eliminate programs and thus reducing a sequent to a pure
first-order sequent.

The calculus decomposes complex statements into simpler ones until the first active
statement can be atomically executed, e.g., an assignment of a side effect-free expression to
a local variable. Rule assignmentLocalVariable symbolically executes such an assignment
by representing it in the logic as an update. The sequent rule schema

assignmentLocalVariable
Γ =⇒ {u}{x := t}[r]φ,∆
Γ =⇒ {u}[x=t; r]φ,∆

15

∗
i .
= i0,j

.
= j0 =⇒ j .

= j0

...
i .
= i0,j

.
= j0 =⇒ {j := i∥i := j}(i .

= j0)

i .
= i0,j

.
= j0 =⇒ {i := i-j∥j := i∥i := j}(i .

= j0)

...
i .
= i0,j

.
= j0 =⇒ {i := i-j}{j := i+j}{i := j-i}(i .

= j0)

...
i .
= i0, j

.
= j0 =⇒ [i=i-j; j=i+j; i=j-i;]i .

= j0

Figure 2.5.: Example of a application of rewrite rules for turning a sequence of update
applications into one parallel update

moves an assignment into an update where x is a schema variable matching a local
program variable, t a side-effect free expression (without memory accesses) of compatible
type and u, r and φ are schema variables matching an update, a statement and a formula,
respectively. Γ and ∆ match sets of formulas. For update simplification, there exist rules
that allow any sequence of update applications to be rewritten into a single parallel update.

Example 2.1.3. Figure 2.5 shows a sequent calculus proof for the following sequent

i .
= i0, j

.
= j0 =⇒ [i=i-j; j=i+j; i=j-i;]i .

= j0.

After three times of applying the rule assignmentLocalVariable assignments inside the
program are turned to a sequence of update applications. Applying the rules Update-on-
Update and Update-on-Term (Figure 2.4) we end up with a parallel update consisting
of three elementary updates. The first and last update are updating i, therefore the first
one is discarded. In the following proof we show the use of rewrite rules for turning
a sequence of update applications into one parallel update. After applying the rules
Update-on-Formula and Update-on-Term (Figure 2.4) we end up with the formula j .

= j0
on the right side. According to antecedent the formula holds and the final sequent can be
discharged with close.

Rule conditional symbolically executes a conditional statement. Schema variable b
matches a local program variable of type boolean. As b is symbolic and is evaluated to
either true or false depending on the state, the calculus must consider both possibilities.

16

The rule splits the proof into two branches, one where it assumes b to be true and the
then -branch is executed, the other where b is assumed to be false and Symbolic Execution
continues with the else -branch.

conditional
Γ, {u}b =⇒ [stmnt1;r]φ,∆ Γ, {u}¬b =⇒ [stmnt2;r]φ,∆
Γ =⇒ {u}[if (b) {stmnt1} else {stmnt2} r]φ,∆

The two following rule schemata permit reasoning about loops.

unwindLoop
Γ =⇒ {u}[if (b) {stmnt; while (b) {stmnt}} r;]φ,∆

Γ =⇒ {u}[while (b) {stmnt} r;]φ,∆

Rule schema unwindLoop does not terminate when the loop has no fixed bound on the
number of iterations. Hence, in program verification the concept of a loop invariant is
used to describe the behavior of a loop:

loop_inv

Γ =⇒ {u}LoopInv,∆
Γ, {u}{v}(b ∧ LoopInv) =⇒ {u}{v}[stmnt]LoopInv,∆

Γ, {u}{v}(¬b ∧ LoopInv) =⇒ {u}{v}[r]φ,∆
Γ =⇒ {u}[while (b) {stmnt} r;]φ,∆

The loop invariant rule splits the proof into three branches where we have to prove that
the loop invariant 1. holds initially, 2. is preserved by the loop body, and, 3. together with
the negated loop guard, is sufficiently strong to prove that after executing the remaining
program r the postcondition φ holds.

The second and third branch execute the loop body for an arbitrary iteration and the
remaining program after the loop, respectively. Hence, we must “forget” any knowledge
about current values embodied in update u and context Γ,∆, because it might have
changed in previous iterations. This is realized by a so-called anonymizing update v, which
assigns an unknown value to each local program variable and location that possibly has
been changed.

2.1.6. Memory Locations and Heap

A JavaDL-specific domain isDLocSet = 2Location for type LocSet, representing the power
set of locations. Locations are used to abstract away from addresses.

Definition 2.1.10 (Location). The pair (o, f), with term o ∈ DObject and term f ∈ DField

where type Field represents an object’s field, is a memory location.

17

Type LocSet models memory regions as location sets. The LocSet data type has
a constructor for singleton sets of memory locations singleton(obj, fld). The set of
memory locations for an array element is singleton(a,arr(i)) with i ∈ Dint, and
a ∈ DT [], where injective function arr : int → Field and i ∈ Dint. Intuitively,
location singleton(a,arr(i)) for array element a[i] is the memory location where
its value is stored. Set of memory locations associated with a sub-array is shown as
arrayRange(a, l, h) with l, h ∈ Dint, and a ∈ DT []. For pretty-printing we use a[l..h] to
express the set of locations {(a, i) | l ≤ i ≤ h}, and a[i] to express singleton(a,arr(i)).

There are fixed interpreted function symbols on LocSet for standard operations union,
intersect, setMinus, etc. Program variables are not modeled as memory locations,
as they are not on the heap. The set allLocs denotes all possible locations.

Canonical domains are fixed for the primitive types, for instance, type int is mapped in
all states to Z. Interpretation of rigid function symbols representing arithmetic operations
like + is fixed to their canonical semantics, similar for comparison predicates like ≤, ≥.

The heap is modeled by type Heap which is axiomatized as a theory of arrays with
functions select and store. Function select(h, o, f) looks up the value stored in
heap h for field f of object o, while store(h, o, f, x) updates in heap h the value stored
in field f of object o with value v. Programs access and modify the heap stored in the
global program variable heap : Heap. Semantically, an element h of DHeap is a function
h : DObject ×DField → DAny, mapping memory locations to values. Let s be a state that
maps program variable o : Object to some non-null value, x a program variable:

valK,s,β(o.f = x;) = s′ with (2.1)

s′(y) =

⎧⎨⎩ s′(heap)(u, g) =
{︃
s(x) , if u = s(o) and g = s(f)
s(heap)(u, g) , otherwise , y = heap

s(y) , otherwise

The calculus rules for reading from and writing to an object field are:

readAttribute
Γ =⇒ o ̸ .= null,∆
Γ, o ̸ .= null =⇒ {x := select(heap, o, f)}[r]φ,∆

Γ =⇒ [x = o.f ; r]φ,∆
writeAttribute

Γ =⇒ o ̸ .= null,∆
Γ, o ̸ .= null =⇒ {heap := store(heap, o, f, se)}[r]φ,∆

Γ =⇒ [o.f = se; r]φ,∆

18

Similarly, the calculus rules for reading from and writing to an array element are:

readArrayElement
Γ =⇒ a ̸ .= null,∆
Γ, a ̸ .= null =⇒ {x := select(heap, a,arr(i))}[r]φ,∆

Γ =⇒ [x = a[i]; r]φ,∆
writeArrayElement

Γ =⇒ a ̸ .= null,∆
Γ, a ̸ .= null =⇒ {heap := store(heap, a,arr(i), se)}[r]φ,∆

Γ =⇒ [a[i] = se; r]φ,∆

2.1.7. Soundness and Completeness of the Calculus

The most important property of the JavaDL calculus as any other validity calculus is
soundness. This property makes only valid formulas derivable. The whole calculus is
sound if and only if all its rules are sound.

Proposition 2.1.1 (Soundness[32]). If a sequent Γ =⇒ ∆ is derivable in the JavaDL
calculus, then it is valid, i.e., the formula

⋀︁
φ∈Γ φ =⇒

⋁︁
ψ∈∆ ψ is logically valid.

Intuitively, if the premisses of a rule application are valid sequents, then the conclusion
also is valid.

Another property of a program verification calculus is completeness, which means all
valid sequents should be derivable. However, this is impossible because JavaDL includes
first-order arithmetic, which is already inherently incomplete [46]. In addition to this
argument, a complete calculus for JavaDL would yield a decision procedure for the Halting
Problem, which is undecidable. Thus, a logic like JavaDL cannot ever have a calculus
that is both sound and complete. Nevertheless, it is possible to define a notion of relative
completeness [47], which intuitively states that the calculus is complete up to the inherent
incompleteness in its first-order part. A relatively complete calculus contains all the rules
that are necessary to prove valid program properties. It only may fail to prove such valid
formulas whose proof would require the derivation of a nonprovable first-order property.

Proposition 2.1.2 (Relative Completeness[32]). If a sequent Γ =⇒ ∆ is valid, i.e., the
formula

⋀︁
φ∈Γ φ =⇒

⋁︁
ψ∈∆ ψ is logically valid, then there is a finite set Γ of logically valid

first-order formulas such that the sequent Γ =⇒ ∆ is derivable in the JavaDL calculus.

Definition 2.1.11 (Soundness and completeness of a rule). A rule

Γ1 =⇒ ∆1 Γ2 =⇒ ∆2

Γ =⇒ ∆

19

of a sequent calculus is:

• sound, if whenever Γ1 =⇒ ∆1 and Γ2 =⇒ ∆2 are valid so is Γ =⇒ ∆;

• complete, if whenever Γ =⇒ ∆ is universally valid then also Γ1 =⇒ ∆1 and
Γ2 =⇒ ∆2 are valid.

For nonbranching rules and rules with side conditions the obvious modifications have to
be made.

2.2. KeY

KeY [32] is a multi-purpose formal verification system that uses JavaDL as the program
logic. Its main application is the formal verification of Java programs specified by Java
Modeling Language (JML) [48] annotations. KeY fully supports the Java Card language
[32]. Information flow analysis, test case generation, and a debugging tool are other
applications that have been realized in KeY.

2.2.1. Prover Core

The core of KeY is a theorem prover implementing a sequent calculus. Schematic sequent
calculus rules in KeY are specified as taclets. They contain the declarative, logical content
of the rule schemata, and pragmatic information such as in which context and when a rule
should be applied by an automated reasoning strategy and how it is to be presented to the
user. Taclets usually have one main formula of a sequent in focus that can be manipulated
and automated proof search does not implement backtracking. They are optimized for
automated proof search in typed first-order logic and logic-based symbolic execution in
JavaDL [32].

Taclets provide flexibility for the various application scenarios in KeY, and they dispense
with the need to support higher-order quantification in the logic. This makes interaction
with the prover easier for humans and other programs. But also, the proximity of modeling
languages such as JML and of the language of SMT solvers to typed first-order logic make
it simple to import and export formulas from KeY ’s program logic. On the one hand, this
makes it possible to have JML-annotated Java as an input language of KeY, on the other
hand, using SMT solvers as a backend increases the degree of automation [32].

20

2.2.2. Reasoning about Programs

Given a Java program and its JML specification, KeY first translates it into proof obligations.
They are formulas that their validity corresponds to correctness of the program with
respect to its specification. JavaDL is used for showing this validity. As programs directly
appear in JavaDL formulas, the pre-processing step of generating the proof obligations is
relatively small.The rest of the verification process is deductive.

KeY performs symbolic execution on the programs, and with help of JavaDL updates
it handles the programs in the calculus. Symbolic execution resembles executing the
program, using symbolic instead of concrete values for the program variables. Ultimately
programs are removed from formulas, and the verification problem is reduced to the
problem of proving the logical validity of formulas in first-order predicate logic with
built-in theories.

These remaining tasks are usually also handled within KeY itself. Alternatively, KeY
allows sending such verification problems to external Satisfiability Modulo Theories (SMT)
solvers. These are then used as trusted black boxes that can automatically determine the
validity of some first-order formulas, thereby sacrificing some traceability for sometimes
better automation and performance than offered by KeY itself [49].

2.3. Data Dependence Analysis

In HPC, one of the most important tasks is to find opportunities for parallelization of
sequential programs, for example, of loop bodies. This requires to identify program
segments that cannot possibly influence each other’s outcome: a prerequisite for being
able to run them in parallel without changing semantics. The central notion employed
is an analysis of read and write data dependences. For example, a read-after-write data
dependence (termed RaW) in a piece of code prg with respect to a memory location x
is defined as follows: for a possible execution sequence e of prg started in an arbitrary
state, there is a write access to x in e which has a subsequent read access to x in e.

Based on Bernstein [50] and Banerjee [2] definitions of data dependences, we define
data dependence on memory locations as following.

Definition 2.3.1 (Data dependence). There is a data dependence on memory location loc
if there are memory accesses acc1 and acc2 such that

• both acc1 and acc2 access loc, and at least one of these accesses is a write;

• during sequential execution, acc1 is executed before acc2.

21

Data dependence Notation Example

Flow dependence RaW(x) x = y; … z = x;
Anti-dependence WaR(x) y = x; … x = z;

Output dependence WaW(x) x = y; … x = z;

Figure 2.6.: Different data dependence types with examples. x,y, and ,z are memory
locations.

i = 0;
while (i < a.length - 1) {

a[i] = a[i]+1;
i++;

}

Listing 2.2: Increasing value of array elements

Accordingly, there are three types of data dependence: read-after-write (RaW, aka flow
dependence), write-after-read (WaR, aka anti-dependence), and write-after-write (WaW,
aka output dependence). To state that there exists a data dependence on memory location
loc the notation RaW(loc), etc. is used.

Figure 2.6 summarizes the data dependence types with examples.
Data dependences that span over different loop iteration are called inter-iteration data

dependences.

Example 2.3.1. In Listing 2.2 there is WaR data dependence on elements of array a for
1 ≤ i ≤ a.length - 2. This is an inter-iteration data dependence as, for example,
a[1] is read in iteration one and written in iteration two.

Importance of Data Dependence Analysis

Pattern based parallelization is a common parallelization approach that uses parallel
design patterns [51], which allow making best use of parallel programming interfaces
such as OpenMP. When such patterns cannot be implemented directly, it can be necessary
to apply code transformations beforehand to suitably reshape the input program [34].
Finding the data dependences in the sequential code is a crucial step in parallelization
process. Parallelization in presence of data dependences causes concurrency-related errors
such as deadlocks and data races.

22

i = 0; sum = 0;
while (i < a.length) {

sum += a[i];
i++;

}

Listing 2.3: Sum of array elements

i = 0;
sum_1 = 0;

while (i < a.length/2) {
sum_1 += a[i];
i++;

}

i = a.length/2;
sum_2 = 0;

while (i < a.length) {
sum_2 += a[i];
i++;

}

Figure 2.7.: Child loops of Listing 2.3

Here we go through the relation of existence and absence of certain kind of data
dependences with the application of different parallel design patterns.

If there is no inter-iteration data dependence between different iterations of a loop, it
can be parallelized according to DoAll pattern. In DoAll pattern all iterations of a loop
can be executed in parallel. For example, in Listing 2.2 all loop iterations can be executed
in parallel as the loop has DoAll pattern.

With a WaR data dependence on a memory location between different iterations of a
loop, it is possible to parallelize the loop with reduction pattern. For example there is
an inter-iteration WaR data dependence on variable sum in Listing 2.3. Consequently,
different iterations of the loop are not independent. However, if this data dependence is
detected it can be resolved using a temporary variable.

Figure 2.7 shows the result of parallelizing the loop in Listing 2.3 with reduction pattern
assuming two threads are available. First, we split the iteration space of the loop into
two partition and assign each of them a thread. In each thread sum of the array elements
accessed by the corresponding child loop is computed. In the end, the master thread
calculates the result sum = sum_1 + sum_2.

In cases that the data accessed by the loop (or function) can be partitioned into multiple
sections, the loop can be ran in parallel on those sections. This pattern is called geometric
decomposition and it is applicable when all the child loops (or child functions) can be

23

i = 0; b = 0;
while (i < a.length) {

b = f(a[i]);
g(b);
i++;

}

Listing 2.4: Pipeline example

parallelized with DoAll or reduction pattern.
If the loop (or function) body can be divided into a sequence of statements that can

execute independently pipeline pattern is applicable. If there is a WaR or WaW data
dependence between these statements, pipeline is applicable after restructuring the loop
[52]. For example, in Listing 2.4 function f is called for each element of array a and the
result is written on b. Then, function g is called for variable b. Functions f and g create
a pipeline of tasks that can execute in parallel. Meaning that g(b) can be executed in
parallel to f for a new array element.

Therefore, showing absence of inter-iteration data dependences opens the opportunity
for applying DoAll, reduction, and geometric decomposition patterns. In addition, showing
absence of intra-iteration RaW data dependence indicates an opportunity for applying
pipeline pattern. In this case, the auto-parallelizer does not need to apply different
restructuring techniques and after each of them check if parallelization is possible.

2.4. Loop Invariant Generation with Predicate Abstraction

A loop invariant is a formula describing an over-approximation of all states reachable by
repeated execution of a loop’s body while the loop condition is true. Using a loop invariant
essentially is an inductive argument, proving that the invariant holds for any number of
loop iterations and, thus, still holds when the loop terminates [32].

A loop specification is similar to a method contract in that it formalizes an abstraction
of the relationship between the state before a method or loop is executed and the state
when the method or loop body, respectively, terminates. In that sense a loop invariant
is both the precondition and postcondition of the loop body. Yet, in most cases, a useful
loop invariant is more difficult to find than a method contract because it relates the initial
state with the states after every loop iteration [32].

Abstract interpretation [53] is a framework for static analysis of programs. It is defined

24

⊤

≤ 0 ≥ 0

< 0 .
= 0 > 0

⊥

Figure 2.8.: Sign analysis domains.

by fixing its abstract domain. Abstract domain is a set of formulas that can describe
properties of an abstract state of the program. The set of abstract states has a partial
order relation. Abstract domain equipped with this partial order relation forms an abstract
language that can describe an abstract state of the program. For reasoning, it is easier to
work on an abstract domain than using the concrete domain, as for example it ensures
termination.

Example 2.4.1. We might be interested in checking that after executing

i = 0; while(i < N) i++;

the value of i > 0 under the assumption that N > 0. This can be achieved by using abstract
interpretation and abstracting the value of i using the abstract sign domain depicted in
Figure 2.8. Termination of the abstract interpretation is guaranteed by the finiteness of
the lattice.

Predicate abstraction [28] is a well-known abstract interpretation technique in which
the abstract domain is constructed from a finite set of predicates over program variables.
It approximates the set of reachable states by iterating over the loop and stopping when
the fixpoint is reached. The loop invariant is constructed at the fixpoint.

In this section we summarize a version of loop invariant generation by predicate ab-
straction adapted to deductive verification [29]. It pursues a bottom-up approach, i.e. it
starts with the code under analysis to construct a loop invariant without the need to rely
on external specifications (though these can be used, if available).

2.4.1. Predicate Abstraction

An initial set of predicates Dinit is provided (by the user, heuristics, etc.) that approximates
the set of reachable states at loop entry. Predicate abstraction refines this set by iteratively
applying the strongest postcondition transformer to the loop body. Each iteration produces

25

a larger approximation of the set of reachable states. This set is abstracted at each loop
entry by calling an automatic theorem prover to show whether a predicate holds in the
current state. This process is often called predicate refinement 2.4.2.

For a set of predicates P related to a loop we define the abstract domain that abstracts
the (infinite) set of concrete states as following:

Definition 2.4.1 (Abstract domain). The abstract domain DP consists of the atomic
formulas constructed from PSym and PV, i.e. DP = {p(pv) | p ∈ PSym and pv ∈ PV}.

Definition 2.4.2 (Partial order set). Partial order set is a tuple ⟨S,⊑⟩ where S is a set
and ⊑: S × S is a partial order relation which is a reflexive, antisymmetric, and transitive
[54].

Based on the partial order relation between the predicates of the abstract domain the
abstract language is defined.

Definition 2.4.3 (Abstract language). The abstract language is a partial order set on the
abstract domain LP = ⟨DP ,⊑⟩ [55].

2.4.2. Predicate Refinement

In predicate refinement, the loop body is iteratively executed and abstracted. At each
iteration, the loop body is symbolically executed. For that, the loop is unwound once
applying the loopUnwind rule. Now information about this iteration is provided in form
of updates on the modality. Predicate abstraction needs to use this information to abstract
the current set of reachable states. It would work better if this information is provided in
the form of formulas. For reconciling predicate abstraction and symbolic execution, we
follow the approach suggested in [56] and we explain it in Section 4.1.

The new sequent resulting from unwinding the loop and turning the updates to formulas
is used for abstraction. In this sequent, the program formula is substituted by a predicate
from the current set of predicates. The automated theorem prover (here, KeY) tries to
prove the predicate. If it is proven, it remains in the set of predicates and is used in
the next round of abstraction. Meaning, that it is a candidate for abstracting the loop.
Otherwise, it is replaced by a more precise predicate based on the partial order relation.
Such sequent is formed for each predicate in the current set of predicates and subsequently
the theorem prover is called. This forms a full round of predicate refinement.

The iterative process of predicate refinement continues until fixpoint is reached. The
fixpoint can be calculated in different ways. We assume if in two consecutive iterations
of predicate abstraction the set of predicates does not change, the fixpoint is reached.
Reaching the fixpoint is guaranteed since the abstract domain is finite.

26

2.4.3. Loop Invariant

Predicate refinement stops when the fixpoint is reached. The loop invariant is a Boolean
combination of the predicates left in the predicate set. We follow the approach in [56] that
only allows conjunctions of the predicates. Although this is less expressive than supporting
arbitrary Boolean combinations, it is much cheaper to compute.

Loop invariant LI is a conjunction of pi’s, where pi ∈ DP . By construction, when the
fixpoint is reached all pi’s left in the predicate set are proven to initially hold be preserved
by the loop body.

Loops with Branching Statements

When symbolic execution reaches a branching statement, it splits the proof into multiple
branches. We need to represent these differing executions on the branches within a single
loop invariant. This is achieved by joining proof branches according to the symbolic state
merging framework of [57]. In the simplest approach, a fully precise merged sequent is
constructed by encoding the differences as implications of the (negated) branch condition
(for instance, from an if statement).

Invariants generated for such loop bodies with multiple control flow still are mere
conjunctions over predicates, but since the merged sequent serves as input of the next
iteration of predicate refinement, it is guaranteed that the loop invariants cover the union
of all possible control flows.

27

3. Data Dependence-Aware Program Logic

In this chapter, we extend JavaDL, defined in Section 2.1, to dependence-aware program
logic JavaDLDep that formalizes data dependences. While our presentation uses JavaDL
as a logical framework, our approach can be easily transferred to other program logics for
imperative languages.

A standard programming language semantics based on traces, i.e. finite or infinite
sequences of states (see Section 2.1.2), is insufficient to characterize read and write
dependences, as shown by a simple consideration: take two programs consisting of a
single assignment stmnt ≡ x = 42; and stmnt′ ≡ x = y;. If stmnt and stmnt′ are
started in state s with s(y) = 42 both yield exactly the same trace, however, stmnt′ has a
read access that stmnt has not. Traces do not record memory access.

Rather than supplying a special purpose semantic construct, we give a general solution.
It is well-known (e.g., [58]) that non-functional properties (such as dependences) can often
be formally specified with the help of ghost variables. These are memory locations not
part of the program under verification that record meta properties of program execution
(e.g., memory accesses). We could add ghost variables r, w to states that record read and
write access at each state change. For example, the state after executing stmnt′ in s is:
{x ↦→ 42, y ↦→ 42, r ↦→ {y}, w ↦→ {x}}. This state can be distinguished from the state
that results from executing stmnt in s: {x ↦→ 42, y ↦→ 42, r ↦→ {}, w ↦→ {x}}. With this
approach we can not record the order of memory accesses.

Therefore, in our semantics we extend the notion of state to a pair that includes a
function for assigning meaning, and a finite sequence that records the whole history of
memory accesses in the current execution. The sequence is not accessible in the syntax.
Instead, we introduce memory access updates to represent changes in this sequence.

In this chapter, we define the semantics of read and write memory accesses (Section 3.1)
and the syntactic representation of them (Section 3.2). After formally defining data
dependence properties in Section 3.3, we introduce sequent calculus rules for reasoning
about them in Section 3.4.

29

3.1. Semantics of Read and Write Memory Accesses

Definition 3.1.1 (Domains, JavaDLDep states). Given a non-empty domainD, a JavaDLDep
state s = (σ,Acc) is a pair of

• an interpretation σ assigning each
– type T its domain σ(T) = DT ⊆ D, DT ̸= ∅, with the type hierarchy reflected

in the subset relation of their domains,
– function symbol f : T1×. . .×Tn → T to a function σ(f) : DT1×. . .×DTn → DT ,
– predicate symbol p : T1 × . . .× Tn a relation σ(p) ⊆ DT1 × . . .×DTn;

• a finite sequence Acc = ⟨acc1⟩ ◦ · · · ◦ ⟨accn⟩ of memory read and write accesses with

acci ::= Read(ls) | Write(ls)

where ls ∈ DLocSet. For acci and accj with i < j, accj has happened after acci.

We write often s(f) instead of σ(f), when s = (σ,Acc).

Example 3.1.1. ⟨Read({(o, f)})⟩ ◦ ⟨Write({(u, g)})⟩ shows a sequence of length two, with
a read access to memory location (o, f) then a write access to location (u, g).

From now on we evaluate programs and formulas relative to states that contain variable
Acc that records the trace of memory accesses during execution of a program. We only
track heap memory access and not access to local program variables. One semantic rule
(from Section 2.1.6) in need of modification is heap assignment (2.1). Let s = (σ,Acc)
be a state that maps program variable o : Object to some non-null value, x a program
variable:

valK,s,β(o.f = x;) = s′ with s′ = (σ′, Acc′) where (3.1)

σ′(y) =

⎧⎨⎩ σ′(heap)(u, g) =
{︃
σ(x) , if u = σ(o) and g = σ(f)
σ(heap)(u, g) , otherwise , y = heap

σ(y) , otherwise
and Acc′ = Acc ◦ ⟨Write({σ(o), σ(f)})⟩

The rule now records write access (x is a program variable and the read access to it is not
recorded). With the trace of memory accesses stored inAcc it is possible to formally specify
dependence properties like read-after-write as follows: Given a state s and a location set
ls then there is a read-after-write iff there are i, j with i < j, s(acci) = (Write, ls′) and
s(accj) = (Read, ls′′) such that ls ∩ ls′ ∩ ls′′ ̸= ∅.

30

There is an advantage of maintaining the whole access history in each state: it is
sufficient to know only the final state to define data dependences. Hence, having the
history in the final state makes it sufficient to look at a big-step semantic relation. This is
important, because we base logical reasoning about dependences on the big-step program
logic introduced in Sect. 2.1.3 and the existing tools.

3.2. Memory Access Updates

For efficiency, Acc which keeps track of read and write memory accesses, is not exposed
in the JavaDLDep syntax. Instead, we only record changes to Acc. JavaDL updates keep
track of state changes syntactically. Therefore, we introduce a new kind of updates, called
memory access updates.

Definition 3.2.1 (Memory access update). The syntax of a memory access update is

⟨update⟩ ::= …| \R ‘(’⟨term⟩‘)’ | \W ‘(’⟨term⟩‘)’

where the term given as argument denotes a location set. Its semantics is defined as
follows:

valK,s,β(\R(loc)) = s′ where s′ = (σ,Acc′) with s = (σ,Acc) and
Acc′ = Acc ◦ ⟨Read(valK,s,β(loc))⟩

valK,s,β(\W(loc)) = s′ where s′ = (σ,Acc′) with s = (σ,Acc) and
Acc′ = Acc ◦ ⟨Write(valK,s,β(loc))⟩

To keep the notion succent, we use \M to show \R or \W, and M for showing Read or
Write.

Definition 3.2.2 (Sequential memory access updates). Several memory access updates
\M1(loc1) ; \M2(loc2) can be combined sequentially using the sequential update operator
“;”. The semantics is defined as following given program state s = (σ,Acc)

valK,s,β(\M1(loc1); \M2(loc2)) =s
′′ where

s′ = (σ,Acc′) and Acc′ = Acc ◦ ⟨M1(valK,s,β(loc1))⟩

and

s′′ = (σ,Acc′′) with Acc′′ = Acc′ ◦ ⟨M2(valK,s,β(loc2))⟩

31

Programs

valK,s,β(x = t) := {(s, s′) | s′ = (σ′, Acc′) with s = (σ,Acc), where

σ′ = σ[x← valK,s,β(t)] and

Acc′ = Acc◦accK,s,β(t)}
(x ∈ PV)

valK,s,β(a[i] = t) := {(s, s′) | s′ = (σ′, Acc′) with s = (σ,Acc), where

σ′ = σ[a[i]← valK,s,β(t)] and

Acc′ = Acc ◦ accK,s,β(t) ◦ accK,s,β(i) ◦ ⟨Write(a[i])⟩}
valK,s,β(if(b) {stmnt1} else {stmnt2})

:= {(s, s′′) | s′ = (σ,Acc′) with s = (σ,Acc) where

and Acc′ = Acc ◦ accK,s,β(b),

and s′′ = (σ,Acc′′) where

((K, s′, β |= b, (s′, s′′) ∈ [[stmnt1]])

or (K, s′, β ̸|= b and (s′, s′′) ∈ [[stmnt2]]))}
valK,s,β(while(b) {stmnt}) := {(s, t) | there is a sequence s = s0 . . . sn = t with

K, si, β |= b, i < n and K, t, β ̸|= b and

(s′i, si+1) ∈ [[stmnt]], i < n with

s′i = (σi, Acci ◦ accK,s′i,β
(b))}

Figure 3.1.: Excerpts of JavaDLDep Semantics

32

Definition 3.2.3 (Semantics of JavaDLDep). The semantics of JavaDLDep is an extension
of the semantics of JavaDL. Definition 3.2.1 and Figure 3.1 show this extension. The
valuation function valK,s,β uses the function

accK,s,β : Term→ MemoryAccess∗

to extract all read accesses needed to evaluate a given term from left to right.

accK,s,β(c) = ∅ (c rigid constant or a local program variable)
accK,s,β(a[i]) = ⟨Read(a[i])⟩

accK,s,β(f(t1, . . . , tn)) = accK,s,β(t1)◦. . .◦ accK,s,β(tn)
(f is a rigid function symbol)

In this manuscript, we are only interested in partial correctness, and hence, we restrict
ourselves to the box modality (Figure 3.1).

3.3. Specification of Data Dependence Properties

Memory accesses can be tracked through Acc, but how are properties about the content
of Acc expressed, given that it is not directly accessible in the syntax? This is achieved
with defining non-rigid data dependence predicates that allow expressing data dependence
properties of memory locations.
Definition 3.3.1 (Data Dependence Predicate). The syntax of data dependence predicates
is
⟨fml⟩ ::= … | noRaW ‘(’⟨term⟩‘)’ | noWaR ‘(’⟨term⟩‘)’ | noWaW ‘(’⟨term⟩‘)’

| noR ‘(’⟨term⟩‘)’ | noW ‘(’⟨term⟩‘)’
where the term given as argument denotes a location set. The semantics of data depen-
dence predicate noRaW specifies that there has not been a read memory access to the
location set loc after a write memory access to it. It is defined as follows (the semantics of
noWaR and noWaW are analogous; see Appendix A.1):

s(noRaW) = {(ls) | s = (σ,Acc), Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩

for all i, j = 1 . . . n for which i < j

and Mi = Write and Mj = Read

it holds that ls ∩ lsi ∩ lsj = ∅}

33

Predicate noR is specifying an absence of read memory accesses, and its semantics is
defined as following (the semantics of noW is analogous and mentioned in Appendix A.1)1:

s(noR) = {(ls) | s = (σ,Acc), Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,Mi ∈ {Read,Write}
and for all i = 1 . . . n for which Mi = Read it holds that ls ∩ lsi = ∅}

Data dependence predicates take a location set loc as argument and evaluate to true
iff in the memory access history of the current state for no location in loc there is a
read-after-write, write-after-read, write-after-write, read or write access, respectively.
They allow us to express properties such as the following which says: if there was no
read-after-write before execution of program p to the memory location (o,f) then there
is no read-after-write after execution of p.

noRaW({(o,f)})→ ⟨p⟩noRaW({(o,f)})

Data dependence predicates are non-rigid, because their value not only depends on the
value of their argument, but also on the memory accesses recorded in Acc.

3.4. Reasoning about Data Dependence Properties

For reasoning about the data dependence properties some of the existing JavaDL sequent
calculus rules need to be modified to incorporate memory access updates. Update simpli-
fication rules are needed to establish the effect of different kinds of updates on each other.
Moreover, the effect of memory access updates on data dependence predicates should be
formalized in terms of sequent calculus rules.

3.4.1. Modified Calculus Rules

With memory access updates we can design assignment rules that reflect the semantics
defined in Section 3.1. We modify rules from Section 2.1.6 for reading from memory
location (o, f) and assigning a side effect-free expression se over local variables to it, as

1Although predicate symbols noR and noW do not represent data dependence properties they are crucial for
verifying data dependence properties. Therefore, we call them data dependence predicates for uniformity.

34

following:

readAttribute
Γ =⇒ o ̸ .= null,∆

Γ, o ̸ .= null =⇒ {x := select(heap, o, f) ∥ \R({(o, f)})}[r]φ,∆
Γ =⇒ [x = o.f ; r]φ,∆

writeAttribute
Γ =⇒ o ̸ .= null,∆

Γ, o ̸ .= null =⇒ {heap := store(heap, o, f, se) ∥ \W({(o, f)})}[πω]φ,∆
Γ =⇒ [π o.f = se; ω]φ,∆

Rules readAttribute and writeAttribute realize the idea of associating a read memory
access update with each select operation and a write memory access update with each
store operation.

Similarly, rules for accessing array elements are modified:

readArrayElement
Γ =⇒ o ̸ .= null,∆

Γ, o ̸ .= null =⇒ {x := select(heap, a,arr(i)) ∥ \R(a[i])}[r]φ,∆
Γ =⇒ [x = a[i]; r]φ,∆

writeArrayElement
Γ =⇒ o ̸ .= null,∆

Γ, o ̸ .= null =⇒ {heap := store(heap, a,arr(i), se) ∥ \W(a[i])}[πω]φ,∆
Γ =⇒ [π a[i] = se; ω]φ,∆

3.4.2. Update Simplification Rules

In Figure 3.2 a selection of memory update simplification rules are shown. In this figure
update su represents elementary or parallel state updates with no memory access updates.
Update \M is a read (\R), write (\W), or a sequence of memory access updates.

Rule reorderUpdate that allows to swap state and memory access updates is responsible
for establishing the normal form. This rule is sound, because state updates cannot change
the value of Acc. All rules are designed to maintain the order of memory access updates
as required.

Rule accessOnStateUpdate and accessOnAccess are adaptations of Update-on-Update
rule category from Figure 2.4. In rule accessOnStateUpdate the cascade of two update

35

Schematic variables
su = Elementary or parallel state updates
\M = Read (\R), write (\W), or a sequence of memory access updates
Update Simplification Rules

reorderUpdate
\M(loc) ∥ su⇝ su ∥ \M(loc)

accessOnStateUpdate
{\M(loc)}{su}φ⇝ {\M(loc) ∥ {\M(loc)}su}φ

accessOnAccess
{\M1(loc1)}{\M2(loc2)}φ⇝ {\M1(loc1); \M2({\M1(loc1)}loc2)}φ

applyStateUpdateOnAccess
{su}\M(loc)⇝ \M({su}loc)

applyAccessOnElementary
{\M(loc)}x := t⇝x := {\M(loc)}t

Figure 3.2.: Selection of memory access update application and simplification rules

applications {\M(loc)}{su} is converted into the application of a single parallel update.
Due to the last-win semantics for parallel updates, this is possible by applying the first
update to the second, and replacing the sequential composition by parallel composition.

Similarly, in Rule accessOnAccess the cascade of two memory access update applica-
tions {\M1(loc1)}{\M2(loc2)} is converted into the application of a single parallel update.
However, instead of {\M1(loc1) ∥ \M2({\M1(loc1)}loc2)}φ (parallel memory access updates)
we end up with {\M1(loc1) ; \M2({\M1(loc1)}loc2)} (sequential memory access updates)
as unlike state updates, memory access updates can only be sequential.

Application of state update on a memory accesses update is depicted in the rule
applyStateUpdateOnAccess. Here the update is moved inward and applied on the loca-
tion set loc. As loc can be a complex term including memory access updates and data
dependence predicates, the memory access update can affect its evaluation.

For applying a memory access update on an elementary update the rule
applyAccessOnElementary is used, which is adaptation of the rule {u}(v := t) ⇝ v :=
{u}t in Figure 2.4 with u being a memory access update.

Symbolic execution accumulates updates in front of the modality. To reason efficiently,
we designed update simplification rules that allow to establish a normal form:

u1 ∥ . . . ∥un ∥ m1 ; . . . ; mo,

36

where:

• ui are state updates as introduced in Section 2.1.1, and

• mj , mk are combined memory access updates with the property that if j < k then
mj is symbolically executed before mk.

3.4.3. Axiomatization

The axiomatization of data dependence predicates in the calculus is given by rules for
the application of memory access updates to data dependence predicates. A selection of
these rules is provided in Figure 3.3. After the symbolic execution rules of the calculus
have eliminated the program and updates have been normalized, what is left, are proof
obligations of the form Γ =⇒ {su ∥ mau}φ,∆. In this sequent su is an elementary or a
parallel state update with no memory access update, and mau is sequence of memory
access updates. The memory access updates are applied one by one from right to left. The
order of application of the memory access updates is opposite of their chronological order.
The reason is that we are interested in a memory access update if it happens after another
specific memory access update and forms a data dependence. For evaluating the data
dependence predicates Update-on-Formula rules are used. Some of the specific update
application rules required for noRaW are explained below.

• stateUpdateAppOnNoRaW: A state update su cannot change the content of Acc.
Consequently, the extension of predicate noRaW remains unchanged and the update
can be propagated inwards as it might affect the evaluation of loc.

• writeAccessAppOnNoRaW: Similar to application of a state update, a write access
applied to noRaW can also be propagated inwards. The justification is that we process
the memory access sequence from the end, i.e. when applying the update we look
at the final entry and in this case a write cannot invalidate the no read-after-write
property.

• readAccessAppOnNoRaW: In case of a read access \R(loc1), for noRaW(loc2) to
hold, one must prove that no write to any location in loc2 happened before. First,
the read memory access update \R(loc1) is propagated inwards. For the common
locations of loc1 and loc2 there is a read from a location for which we want to show
the no read-after-write property. This property holds only if no write memory access
happened before. For all other locations noRaW still must be shown.

37

stateUpdateAppOnNoRaW
{su}noRaW(loc)⇝ noRaW({su}loc)

writeAccessAppOnNoRaW condI

{\W(loc1)}noRaW(loc2)⇝ noRaW({\W(loc1)}loc2)

readAccessAppOnNoRaW condI

{\R(loc1)}noRaW(loc2)⇝
noW(loc1 ∩ ({\R(loc1)}loc2)) ∧ noRaW(({\R(loc1)}loc2) \ loc1)

knownNoRaW
Γ,noRaW(loc1) =⇒ if (loc2 ⊆ loc1) then (true) else (noRaW(loc2 \ loc1)),∆

Γ,noRaW(loc1) =⇒ noRaW(loc2),∆

knownNoR
Γ,noR(loc) =⇒ noRaW(loc),∆

knownNoW
Γ,noW(loc) =⇒ noRaW(loc),∆

condI: loc2 does not contain data dependence predicates

Figure 3.3.: A selection of rules for axiomatization of data dependence predicates.
loc, loc1, and loc2 are of type LocSet.
For the rest of the rules, see Appendix B.1

.

38

• knownNoRaW: For showing that noRaW(loc2) holds it is sufficient to know that
noRaW(loc1) holds and loc2 is a subset of loc1, otherwise, one only needs to show
the property for those locations in loc2 not contained in loc1.

• knownNoR and knownNoW: These rules exploit that if there is no read (write) to
any location in loc then there is also no read-after-write to any location in loc.

Note. For soundness, it is important to propagate \R(loc1) inwards. In practice loc2 often
does not contain data dependence predicates,2 such that {\R(loc1)}loc2 is automatically
simplified to loc2 by the prover.

Except the rules mentioned above and a few related ones, only a few calculus rules
of [32] needed to be modified. These were minor technical changes which we mention
gradually.

There are similar calculus rules for application of state and memory access updates on
other data dependence predicates in Appendix B.1.

Theorem 3.4.1 (Soundness and Completeness of JavaDL Calculus). The calculus rules of
JavaDL program logic are sound and complete.

Corollary 3.4.1 (Soundness of JavaDL Calculus). Since all the rules in JavaDL are sound,
its calculus is sound.

As examples, we provide the proof of soundness and completeness of the rules
writeAccessAppOnNoRaW, and readAccessAppOnNoRaW introduced in Figure 3.3 in
Appendices C.1 and C.2, respectively.

Example 3.4.1. Figure 3.4 shows the outline of a sequent calculus proof for the sequent:

a ̸ .= null, b ̸ .= null, a ̸ .= b, noW(a[0]) =⇒
[a[0]=v; z=b[0];]noRaW(a[0]).

It expresses that if we start in a state with no write access to a[0], and where a and b
refer to different existing array objects, then after executing a[0]=v; z=b[0]; there is
no read-after-write access to a[0]. Program variables v and z are local program variables
and the accesses to them are not recorded. First, the program is symbolically executed
and update normalization takes place. Subsequent update simplification eliminates state
update su, as it does not affect the data dependence property. This results in the sequent:

a ̸ .= null, b ̸ .= null, a ̸ .= b, noW(a[0]) =⇒

{\W(a[0]); \R(b[0])}noRaW(a[0])
2This can be checked syntactically.

39

∗
Ψ =⇒ noRaW(a[0])

...
Ψ =⇒ noRaW({\W(a[0])} a[0])

Ψ =⇒ {\W(a[0])}(noW(

.
=∅⏟ ⏞⏞ ⏟

b[0] ∩ {\R(b[0])}a[0]) ∧ noRaW(a[0]))
Ψ =⇒ {\W(a[0]); \R(b[0])}noRaW(a[0])

...
Ψ =⇒ {su ∥ \W(a[0]); \R(b[0])} noRaW(a[0])

...
a ̸ .= null, b ̸ .= null, a ̸ .= b, noW(a[0])⏞ ⏟⏟ ⏞

Ψ:=

=⇒ [a[0]=v; z=b[0];]noRaW(a[0])

with su := heap := store(heap,a[0],v) ∥
z := select(store(heap,a,arr(0),v),b,arr(0))

Figure 3.4.: Example of a formal verification proof of a noRaW property

Now rule readAccessAppOnNoRaW is applied in a variant for combined memory access
updates. The intersection of the two location sets inside the noW is provably empty and
noW(∅)⇝ true. The read memory access \R(b[0]) can be removed, because its location
set is disjoint from a[0]. 3 Now write memory access \W(a[0]) can be moved inwards
with applying writeAccessAppOnNoRaW rule. After further simplification we apply
noWnoRaW rule (Ψ′ contains noW(a[0]) to close the proof.

3This is easily justified formally by using {\W(a[0])}{\R(b[0])} instead of {\W(a[0]); \R(b[0])} and
the original rule readAccessAppOnNoRaW, but would result in a longer, more technical proof.

40

4. Automatic Loop Invariant Generation for
Data Dependence Analysis

To analyze and verify data dependences in programs with loops we need to synthesize
data dependences that hold in each loop iteration. Traditional loop invariants specify (or
rather: over-approximate) the set of states reachable both at the beginning and at the end
of each loop iteration. In addition, we need to specify dependences that occur during an
arbitrary loop iteration, including dependences between different iterations (Chapter 5).
Consequently, we need to design a dependence-aware loop invariant generation technique.

For automatic loop specification generation we focus on the data dependence analysis
and not on the termination. In our application area HPC, loops are for-loops whose
termination can easily be established.

In addition, we focus on dependences among array types, because these are by far the
most relevant data structure in HPC. If there is a parallelization opportunity at all, then
it occurs typically in terms of array segments that can be processed in parallel. Array
intervals of the form a[i..j] for 0 ≤ i ≤ j < a.length are a natural data abstraction.
They induce a lattice via the “contains more memory locations” order (Figure 4.1). Also
the dependence relations form a lattice with “no dependence” as the top element (Figure
4.2). The existence of lattice abstractions for dependences and program data is one reason
why predicate abstraction [28] is an appropriate loop invariant generation technique.

The loop invariant generation process works on a language of abstraction predicates
based on the mentioned lattices (Section 4.2.1), viewed as an abstract domain on which to
express data dependence loop invariants. Predicate abstraction normally works by abstract
interpretation [53] of the code to generate invariant candidates [29]. For retaining full
precision concerning the analyzed program, we use fully precise, logic-based symbolic
execution [32, Chapter 3]. To achieve this, we use deductive verification based on an
extended symbolic execution calculus that can generate abstract dependence predicates
(Section 4.2.2). The main technical difficulty we need to solve is to combine formula-based
predicate abstraction and state-based symbolic execution in a deductive framework.

The loop invariant generation process itself follows a fixpoint iteration approach: a loop
body is symbolically executed by calling the deductive verifier to produce a data depen-

41

dence invariant candidate. Then the same loop body is executed once more, assuming the
invariant holds. If the invariant is re-established at the end, then it is valid. Otherwise,
the differing data dependence invariant candidates (at the beginning and at the end of
one iteration, respectively) are combined into the least common abstraction and a further
iteration is performed. The process ends, once a fixpoint is reached.

Some complications need to be considered: first, symbolic execution of a loop body in
general results in more than one possible control flow, so it branches into many different
symbolic execution paths. This is handled with a symbolic path merging rule [57]. Second,
bounds in the lattice in Figure 4.1 are symbolic and not necessarily known. There is an
unknown number of sequence of arrays a[i..j] ⊆ · · · ⊆ a[i′..j′] with symbolic bounds such
that i > i′ and j < j′. As usual in abstract interpretation, termination is enforced by
widening steps that are heuristically triggered.

We focus on the generation of the part of the loop invariant concerned with data
dependences and call it data dependence loop invariant. Additionally, we need to ensure that
array accesses are within their bounds. For this we rely on existing predicate abstraction
techniques for deductive verification [56].

The loop invariants we generate are conjunctions of predicates that capture atomic
data dependences between memory areas. For example, the predicate noR(loc) specifies
that no location in the memory location set loc is read. To simplify the presentation,
we consider only location sets that describe contiguous memory ranges of arrays. The
extension to general memory locations is straightforward.

The memory locations associated with an array form a lattice using the subset relation
on their extension. An excerpt is shown in Figure 4.1.

In Section 4.1, we develop foundations for adapting predicate abstraction in symbolic
execution. We use this foundation to produce data dependence loop invariant automatically
in Section 4.2. We end the chapter with sequent calculus rules for embedding predicate
abstraction in JavaDLDep (Section 4.3).

4.1. Reconciling Predicate Abstraction and Symbolic Execution

For generating loop invariants we use the predicate abstraction technique explained in
Section 2.4. It starts with an initial set of predicates describing the initial state of the loop.
This set is iteratively refined till reaching a fixpoint.

To refine a given set of data dependence predicates D we combine predicate abstraction
with symbolic execution. This allows us to refine D while at the same time, symbolically
executing the loop body. After unwinding the loop (applying the loopUnwind rule), the

42

sequent to be proven has the following shape:

Γ, . . . =⇒ {u}[while (b) { body }]φ,∆

Our forward symbolic execution calculus, including unwinding, accumulates state
updates in front of modalities. However, for technical reasons, predicate abstraction is
easier to implement, if state changes are expressed as equations corresponding to the
strongest postcondition, not as weakest preconditions that result from update application.
Hence, we need to rewrite updates accordingly using state shifting rules. A state update
shifting technique that turns state updates into formulas usable in predicate abstraction
was discussed in [49]. It works by:

1. translating updates into equations, which are then added to the antecedent, and

2. transforming the remaining formulas into their strongest postcondition.

To retain access to pre-update values all program variables occurring on the left-hand side
of an elementary update must be renamed.

Definition 4.1.1 (Shift state update rule schema [49]).

shiftStateUpdate
{u′}Γ, upd =⇒ φ, {u′}∆

Γ =⇒ {u}φ,∆
,

where upd =
⋀︁
i∈{1,...,n} ai

.
= {u′}{u}ai with:

• u′ = a1 := a′1|| . . . ||an := a′n

• a′i ∈ FSymr fresh constants for all i ∈ {1, . . . , n}

• {a1, . . . , an} = updated(u) with updated : UpdΣ → 2PV

updated(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a u = a := t

updated(u1) ∪ updated(u2) u = u1||u2

updated(u2) u = {u1}u2

Update u′ substitutes each updated program variable ai with a fresh constant a′i rep-
resenting the old (pre-update) value of ai. Formula upd links the old instances with
the updated ones. Weiß [49] showed that {u′}Γ, upd is the strongest postcondition of Γ
under u.

The idea behind this rule is, instead of transforming φ to its weakest precondition
under update u, to transform the rest of sequent into its strongest postcondition. This is

43

done by advancing the symbolic state of the sequent. The technique is known as priming.
Formula upd(u, u′) establishes the relation between the original update u and its renamed
(“primed”) version u′. The effect of this rule is that, instead of computing the pre-state of
formula φ locally, we advance the symbolic state of the sequent.

Example 4.1.1. Assuming array a is not null, after applying rule schema
assignmentLocalVariable to Listing 2.1 we obtain the sequent:

a ̸ .= null =⇒ {i := 0}
[while (i < a.length - 1) {a[i] = a[i+1]; i++;}]φ

After applying shiftStateUpdate we have:

a ̸= null, i .
= {i := i′}({i := 0}i) =⇒

[while (i < a.length - 1) {a[i] = a[i+1]; i++;}]φ

After unwinding the loop and simplifying the antecedent, assuming we are in the
branch, where the while condition holds, the sequent above becomes:

a ̸ .= null, i .
= 0 =⇒ {i := i+1∥a[0] := a[1]∥\R(a[1]); \W(a[0])}

[while (i < a.length - 1) {a[i] = a[i+1]; i++;}]φ

Applying the shiftUpdate rule again and simplifying gives:

a ̸ .= null, i′ .= 0, i′ < a.length - 1, i .
= 1, a[0] .

= a[1] =⇒
{\R(a[1]); \W(a[0])}

[while(i < a.length-1) {a[i] = a[i+1]; i++;}]φ

We use shiftStateUpdate rule for turning state updates into formulas. To address
memory access updates we need further rules. To this end we define two dependence-
aware shift rules corresponding to read and write access, respectively.

Read and write memory accesses are not stored explicitly as values of a program variable,
but in terms of memory access updates and non-rigid dependence predicates, so we need
a technique to rewrite formulas containing dependence predicates into their strongest
postcondition. Technically, we achieve this by introducing dual access predicates that
contain the renamed location sets.

Definition 4.1.2 (Renamed memory access update predicate). The syntax of a renamed
memory access update is

⟨update⟩ ::= …| \R′ ‘(’⟨term⟩‘)’ | \W′ ‘(’⟨term⟩‘)’

44

where the term given as argument denotes a location set. Their semantics is defined as
follows:

valK,s,β(\R′(loc)) = s′ where

s′ =

⎧⎨⎩ (σ, accseq), if s = (σ, accseq ◦ ⟨Read(valK,s,β(loc))⟩)

sChoice(s, valK,s,β(loc)), otherwise

valK,s,β(\W′(loc)) = s′ where

s′ =

⎧⎨⎩ (σ, accseq), if s = (σ, accseq ◦ ⟨Write(valK,s,β(loc))⟩)

sChoice(s, valK,s,β(loc)), otherwise

We assume function sChoice(s, valK,s,β(loc)) that takes state s and location set
valK,s,β(loc) and returns some state. This way, we ensure that the evaluation function is a
total and well-defined function.

Intuitively the renamed memory access update removes the last recorded memory access
of a given state and acts as an ‘inverse’ to the corresponding memory access update. The
semantics is the inverse of the memory access updates. This corresponds to the duality
between weakest precondition and strongest postcondition. For instance, rule
dualityAccAndRenamedAcc, with a side condition that loc does not contain data depen-
dence predicates, uses this duality:

dualityAccAndRenamedAcc {\R′(loc)}{\R(loc)}φ⇝ φ

Theorem 4.1.1 (Soundness and completeness of dualityAccAndRenamedAcc). Rule
dualityAccAndRenamedAcc is sound and complete.

Proof of Theorem 4.1.1 is shown in Appendix C.3.
With multiple sequential memory access updates {\M1(loc1); \M2(loc2); . . . ; \Mn(locn)}φ,

shifting process starts from the chronologically latest memory access update \Mn(locn)
towards the first one \M1(loc1). Finally, to link the renamed memory accesses update with
the original memory access updates, we define memory access predicates, which play the
role of formula upd in shiftStateUpdate.

45

Definition 4.1.3 (Memory access predicate). The syntax of a memory access predicate is

⟨fml⟩ ::= …| rPred ‘(’⟨term⟩, ⟨term⟩‘)’ | wPred ‘(’⟨term⟩, ⟨term⟩‘)’

where the term given as first argument denotes a location set and the second term an
integer. Its semantics specifies that the i-th most recent memory access of the given kind
was limited to locations ls and is defined as follows (the semantics of wPred is analogous):

s(rPred) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

and Mn−i = Read and lsn−i = ls}

Using the renamed memory access updates and memory access predicates, we can shift
memory access updates. The rule for shifting a renamed memory access update for read
is as follows:

Definition 4.1.4 (Rule schema shiftRead).

{\R′(loc)}Γ,rPred(loc, 0) =⇒ φ, {\R′(loc)}∆
Γ =⇒ {\R(loc)}φ,∆

cond

With the side condition cond that loc does not contain data dependence predicates.

As before, we transform all formulas of a sequent into their strongest postcondition.
Technically, we achieve this by applying the renamed memory access update \R′(loc) to
all formulas and adding the formula rPred(loc, 0). The latter says that in the new state
of the sequent, the most recent memory access, which is labeled by 0, was a read access
on loc. The rule schema shiftWrite is completely analogous, see Appendix B.2.

After shifting and update simplifications, the resulting sequent expresses now any
symbolic state in terms of formulas instead of updates. This enables predicate abstraction.

Theorem 4.1.2 (Soundness and completeness of shiftRead). Let Γ,∆ be sets of formula,
a formula φ, and the location set loc ∈ DLocSet. If and only if

|= {\R′(loc)}Γ,rPred(loc, 0) =⇒ φ, {\R′(loc)}∆

and loc does not contain data dependence predicates, then the following holds:

Γ =⇒ {\R(loc)}φ,∆.

Theorem 4.1.2 is proven in Appendix C.4.

46

Example 4.1.2. Continuing Example 4.1.1, in a state with no data dependence on array
a (noDep(a[0..a.length-1])) we obtain the sequent:

a ̸ .= null, i′ .= 0, i′ < a.length - 1, i .
= 1, a[0] .

= a[1],

noDep(a[0..a.length-1]) =⇒
{\R(a[1]); \W(a[0])} [while (i < a.length - 1) {a[i] = a[i+1]; i++;}]φ

Applying shiftRead, then shiftWrite and update simplification rules:

a ̸ .= null, i′ .= 0, i′ < a.length - 1, i .
= 1, a[0] .

= a[1],

noR(a[0..a.length-1] \ a[1]), noW(a[1..a.length-1]),
rPred(a[1],1), wPred(a[0],0) =⇒

[while (i < a.length - 1) {a[i] = a[i+1]; i++;}]φ

Memory access updates (\R(a[1]), \W(a[0])) in the first sequent are turned into
antecedent formulas rPred(a[1],1), wPred(a[0],0). Application of the renamed
memory access update increased the second argument of rPred(loc, lb) by one (we will
explain this in Section 4.3) and excluded locations, where a read and write access took
place, from the initial dependence predicate noDep(a[0..a.length-1]). The rewrite
rules are discussed later Section 4.3.

Example 4.1.2 exhibits that sequents are still missing information. After applying
shiftRead and before applying shiftWrite to memory access \W(a[0]), the information that
noW(a[0..a.length-1]) held is missing. As a remedy we introduce history predicates
that record historical information before a memory access update.

Definition 4.1.5 (History data dependence predicate). The syntax of the history data
dependence predicates is

⟨fml⟩ ::= noRHist ‘(’⟨term⟩, ⟨term⟩‘)’ | noWHist ‘(’⟨term⟩, ⟨term⟩‘)’ | …

where the first argument is a location set and second an integer. The semantics is as
follows:

s(noRHist) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

for all 0 < j ≤ n− i with

Mj = Read it holds that ls ∩ lsj = ∅}

47

(analogously for noWHist in Appendix A.2) and

s(noRaWHist) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

and for all 0 < j < k ≤ n− i with

Mj = Write and Mk = Read

it holds that ls ∩ lsj ∩ lsk = ∅}

(analogously for noWaRHist,noWaWHist, see Appendix A.2).

History predicates are introduced by applying a renamed memory access update on
a dependence predicate. This enables us to keep the necessary precision in the shifted
sequent. They are sufficient for our purpose, but do not result in a complete calculus. For
that, exact history information at an arbitrary position in the past is needed.The nature of
data dependence analysis that is concerned about the flow of memory accesses demands
such information.

Example 4.1.3. With history predicates the final sequent of Example 4.1.2 becomes:

a ̸ .= null, i′ .= 0, i′ < a.length - 1, i .
= 1, a[0] .

= a[1],

noR(a[0..a.length-1] \ a[1]), noW(a[1..a.length-1]),
rPred(a[1],1), wPred(a[0],0),

noRHist(a[0..a.length-1],2),noWHist(a[0..a.length-1],1) =⇒
[while(i < a.length - 1) { a[i] = a[i+1]; i++;}]φ

By turning the updates over a modality to formulas in the antecedent, we can use this
information to refine the set of predicates.

4.2. Data Dependence Loop Invariant Generation with Predicate
Abstraction

We propose a version of loop invariant generation by predicate abstraction [29] adapted
to deductive verification and dependence analysis. It is a suitable technique, because
(i) we work in a specific domain (data dependence) that suggests effective heuristics,

48

a[l..h]

a[l1..h1]

a[l1] . . . a[h1]

. . . a[ln..hn]

a[hn]. . .a[ln]

∅

Figure 4.1.: Order betweenmemory locations corresponding to array ranges and elements,
where for all 1 ≤ i ≤ n it holds that l ≤ li ≤ hi ≤ h

(ii) data dependences are specified by predicates (Definition 3.3.1), (iii) there are abstract
domains that provide appropriate approximation. We pursue a bottom-up approach, i.e.
we start with the code under analysis to construct a loop invariant without the need to
rely on external specifications (though these can be used, if available).

4.2.1. Predicate Abstraction

The set of all memory location terms is DLocSet. The location terms occur as arguments
of dependence predicates in loop invariants: Dependence properties are expressed in our
logic with unary non-rigid predicates PSymDep = {noRaW, noWaR, noWaW, noR, noW}.
These predicates take a set of memory locations as argument and specify that there are
no flow, anti-, or output dependences and no read or write accesses to any of the memory
locations in their argument, respectively. Again, the predicates PSymDep induce a lattice
based on the partial order of read and write accesses they exclude. For example, if there
is no read access on location set loc, there can not be any flow dependence (RaW) or
anti-dependence (WaR) on any loc′ ⊆ loc. Put differently, noR(loc) implies noRaW(loc′)
and noWaR(loc′). An excerpt of the dependence predicate lattice is in Figure 4.2.

It is worth noting that predicates noAaR, and noAaW which mean no access after a
read access and no access after write access are virtual predicates. They are not important
in reasoning and are skipped in the refinement process.

In predicate abstraction the atomic formulas are equipped with an abstraction relation
based on a partial order. For this we use the product of the dependence predicate lattice
(for the predicate symbols) and the location set lattice (for their arguments). As both
lattices are partially ordered, their product lattice is also partially ordered.

49

noDep(loc)

noR(loc)

noAaR(loc′)

noW(loc)

noAaW(loc′)

noWaR(loc′′) noRaW(loc′′) noWaW(loc′′)

true

Figure 4.2.: Order between dependence predicates with locations sets loc′′ ⊆ loc′ ⊆ loc
induced by the lattice in Figure 4.1

Definition 4.2.1 (Abstract domain). The abstract domain DDep consists of the atomic for-
mulas constructed from PSymDep and DLocSet, i.e. DDep = {dp(loc) | dp ∈ PSymDep and
loc is of type LocSet}.

Definition 4.2.2 (Data Dependence abstract language). The abstract language LDep =
⟨DDep,⊑Dep⟩ is the abstract domain DDep equipped with the partial order ⊑Dep that is
induced by logical consequence.

Using our defined abstract language, the data dependence loop invariant for a loop
over array a, is defined as follows:

Definition 4.2.3 (Data dependence loop invariant). A data dependence loop invariant
LIDep has the form

⋀︁
i dpi, where dpi ∈ DDep.

Concerning the functional properties required for sufficiently strong loop invariants,
recall that we focus on dependence properties over arrays. In consequence, we restrict
functional invariant generation to arithmetic constraints over array bounds and loop
counters. This aspect is taken from the literature [29, 56].

Example 4.2.1. The precise data dependence loop invariant of the while loop in Listing 2.1
is

noR(a[0] ∪ a[i+1..a.length-1]) ∧
noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1])

50

The functional part of the loop invariant is 0 ≤ i ≤ a.length − 1 which implies
i .
= a.length− 1 after the final iteration when the guard is false. The conjunction of

both invariants constitutes the overall loop invariant.

The quality of the generated loop invariants depends on the level of abstraction embodied
in the initial set of predicates provided for predicate abstraction. In the following section
we describe how the current set of dependence predicates DDep is initialized and refined
through symbolic execution.

4.2.2. Predicate Refinement

The initial set of data dependence predicates starts at the top element of the domain
(Figure 4.2) and assumes there were no read or write accesses on the arrays in the code
until then. For the example in Listing 2.1 the initial data dependence predicate set is

Dinit = {noDep(a[0..a.length-1])} ⊆ DDep .

To refine a given set of data dependence predicates D we use logic modeling tool box
introduced in Section 4.1. This allows us to refine D while symbolically executing the
loop body. After unwinding the loop, the sequent to be proven has the following shape:

Γ, . . . =⇒ {u}[while (b) {body}]φ,∆

Update u contains the state changes (including memory accesses) accumulated during
symbolic execution of the previous loop iteration. By applying sequent calculus rules
shiftStateUpdate, shiftRead and shiftWrite, the concise information stored in u is repre-
sented in the form of formulas. This formulas are used to refine the set of predicates.

Algorithm 1 shows data dependence loop invariant generation. If Dold and Dref differ
then the antecedent of the current sequent is replaced by the latter and one further loop
iteration is symbolically executed. The refinement cycle continues until the invariant
candidate reaches a fixpoint. This means the dependence predicate set stays unchanged
after some number of refinement steps.

The returned conjunction of predicates is a data dependence loop invariant. It is
guaranteed to be correct, but not necessarily inductive, as it might fail to imply the
postcondition.

Refinement is performed in function refine after each symbolic execution of a loop
iteration and subsequent shifting of memory access updates. The task is to refine a set
of memory access predicates D ⊆ DDep until it becomes provable in the current sequent
context. Each dp ∈ D implied by the current sequent (without the program formula) stays

51

function loopInvariantGenerator
input :Sequent seq : pre =⇒ [loop]post
output :Loop Invariant
Dold, Dref ← Dinit, ∅;
while Dold ̸= Dref do

seq ← Apply rule unwindLoop on seq;
seq ← Symbolic execution on seq;
seq ← Merge branches below seq;
/* seq has now the form pre′ =⇒ {u}[loop]post */
seq ← apply shift update rules on u in seq;
Dref , Dold ← refine(seq,Dold), Dref ;
seq ←

(︁⋀︁
Dref =⇒ [loop]post

)︁
;

end
return

⋀︁
Dref ;

function refine
inputs :Sequent seq : pre =⇒ [loop]post

Dependence invariant candidate D
output :Refined candidate Dref
Dref ← ∅;
foreach dp ∈ D do

isProveable← prove(pre =⇒ dp);
if isProveable then

Dref ← Dref ∪ {dp};
else

Dref ← Dref ∪ refine(seq,weaken(dp, seq));
end

end
return Dref ;
Algorithm 1: Data Dependence Loop Invariant Generation Algorithm

in D. Otherwise, dp is replaced by a weaker version. Weakening conforms to the lattices
in Figures 4.1–4.2 and is described in Algorithm 2. Once we find a weaker predicate
implied by the current sequent, it is added to D and we do not descend further in the
lattice. If no provable weaker version is found, dp is replaced with the bottom element
true, amounting to its removal from D.

Termination is ensured provided that after a finite number of weakening steps the
bottom element (true) of the lattice in Figure 4.2 is reached for any noX(loc) ∈ D. We
achieve this by ensuring that the number of used location sets in LS, and hence, DDep
is finite. For example, if noR(loc) is not implied by the current sequent, we try out
noRaW(loc) and noWaR(loc), as well as noR(loc′) for proper subsets loc′ ⊂ loc. The loc′

52

function weaken
inputs :Data dependence predicate noX(a[low..high])

Sequent seq : pre =⇒ [loop]post
output :Set of weaker predicates weakened
weakened← ∅;
index← index from loop;
step← increment from loop;
if noX is in {noR, noW} then

weakened← weakened ∪ noRaW(a[low..high]) ;
weakened← weakened ∪ noWaR(a[low..high]) ;

end
if noX is noW then

weakened← weakened ∪ noWaW(a[low..high]) ;
end
if first refinement iteration ; // done only once
then

weakened←
weakened ∪ noX(a[low]) ∪ noX(a[low + step..high− step]) ∪ noX(a[high]);

end
if low < index < high then

weakened← weakened ∪ noX(a[low..index]);
weakened← weakened ∪ noX(a[index..high]);

end
return weakened

Algorithm 2: Dependence Predicate Weakening Heuristics

are determined heuristically based on trigger occurrences in the current sequent: If a
predicate with location set a[low..high] needs to be weakened, we split the location set
into a[low], a[low + step..high− step], and a[high], where we use the increment for the
loop counter variable as value for step. To ensure termination we perform this refinement
only once, otherwise splitting might not terminate, because low and high are symbolic.
The second split along the loop index reflects the heuristics that location sets before
the current loop index are accessed differently than locations after the loop index. For
example, in the program of Listing 2.1 all array elements up to index i+1 have been read,
while noR(a[i+ 2..a.length− 1]) holds.

53

4.3. Reasoning

For reasoning, we extend JavaDLDep calculus to support the newly introduced updates
and predicates.

4.3.1. Verification of the Data Dependence Loop Invariant

We described a data dependence loop invariant generation process. If we obtain a
conjectured set D of data dependence predicates for a given piece of code prg, then it is
easily possible to verify (or disprove) it with the logic developed here.

It is sufficient to encode D as a data dependence loop invariant, i.e. as a conjunction
of dependence predicates and prove the sequent pre, D, I =⇒ [prg](D ∧ I), where pre
contains possible assumptions on initial values of prg and I is the functional invariant
containing boundary values.

In the following, we mention a selection of sequent calculus rules developed for realizing
the logic behind data dependence loop invariant generation process. These rules reflect
the chronological order of memory access updates.

4.3.2. Renamed Memory Access Update Application

Intuitively, application of a renamed memory access update ages memory access and
history data dependence predicates. Rules renamedReadAppOnNoR,
renamedReadAppOnReadPred and renamedReadAppOnNoRHist in Figure 4.3 are ex-
amples of the rules reflecting this effect. Rules for application of renamed read memory
access update on the rest of memory access and history data dependence predicates are
analogous, see Appendix B.3. Rules for application of renamed write memory access
update are analogous and therefore omitted.

4.3.3. Subsumption Relations

In addition to subsumption relations depicted in Figure 4.2 and realized by rules like
knownNoR, knownNoRaW and etc. (Subsection 3.4.3), there are subsumption relations
between history data dependence predicates. Figure 4.4 shows examples of such rules.
Intuitive meaning of them is as following:

• Rule schema noRImpliesNoRHist states that if predicate noR(loc) holds after n
memory accesses of Acc, it also holds after lb memory accesses in it where lb < n.

54

renamedReadAppOnNoR
{\R′(rLoc)}noR(loc)⇝ noRHist({\R′(rLoc)}loc, 1)

renamedReadAppOnReadPred
{\R′(rLoc)}rPred(loc, lb)⇝ rPred({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

renamedReadAppOnNoRHist
{\R′(rLoc)}noRHist(loc, lb)⇝ noRHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

Figure 4.3.: Selection of rules for renamed memory access update application

noRImpliesNoRHist noR(loc)⇝ noRHist(loc, lb)

noRHistOnBothSides

Γ,noRHist(loc1, lb1), lb1 ≤ lb2 =⇒ noRHist(loc2 \ loc1, lb2),∆
Γ,noRHist(loc1, lb1), lb1 > lb2 =⇒ noRHist(loc2, lb2),∆

Γ,noRHist(loc1, lb1) =⇒ noRHist(loc2, lb2),∆

Figure 4.4.: Excerpts of subsumption relations between history data dependence predi-
cates

• In the rule noRHistOnBothSides, having lb1 ≤ lb2 and consequently n− lb1 ≥ n−
lb2 infers that noRHist(loc1, lb1) takes into account a larger sequent of memory
accesses therefore it has more information than noRHist(loc2, lb2) regarding the
read memory accesses on loc1 ∩ loc2.

Subsumption relations between other predicates are analogous and can be found in
Appendix B.4.

4.3.4. Embedding Predicate Abstraction

Intuitively, the formula rPred(loc, lb) holds in a state

s = (σ, ⟨M1(loc1)⟩ . . . ⟨Mn−lb(locn−lb)⟩ . . . ⟨Mn(locn)⟩)

if and only if Mn−lb = Read and locn−lb = loc. In other words, the formula rPred(loc, lb)
expresses that the lb-th most recent memory access is a read access on exactly the locations

55

⟨M1(loc1)⟩ ◦ . . . ◦ ⟨Mn−(lb+1)⟩⏞ ⏟⏟ ⏞
noRHist(loc,lb+1)

◦
rPred(loc,lb)⏟ ⏞⏞ ⏟

⟨Mn−lb(locn−lb)⟩ ◦⟨Mn−(lb−1)(locn−(lb−1))⟩ ◦ . . . ◦ ⟨Mn(locn)⟩

Figure 4.5.: Subsequences of accesses referred to by rPred(loc, lb) and
noRHist(loc, lb+ 1) (0 ≤ lb < n)

readPredANDnoRHistSameLabel

Γ,rPred(loc1, lb),noRHist(loc2, lb), loc1 ∩ loc2
.
= ∅ =⇒ φ,∆

Γ,rPred(loc1, lb),noRHist(loc2, lb) =⇒ φ,∆

readPredANDnoRHistRightSameLabel

Γ,rPred(loc1, lb) =⇒ loc1 ∩ loc2
.
= ∅ ∧ noRHist(loc2, lb+ 1),∆

Γ,rPred(loc1, lb) =⇒ noRHist(loc2, lb),∆

readPredAFTERnoRHist

Γ,rPred(loc1, lb),noRHist(loc2, lb+ 1),noRHist(loc2 \ loc1, lb) =⇒ φ,∆

Γ,rPred(loc1, lb),noRHist(loc2, lb+ 1) =⇒ φ,∆

Figure 4.6.: Relation of rPred and noRHist rules

in loc. Similarly, the formula noRHist(loc, lb+ 1) holds in state s if there has been no
read access on any location in loc up to and including Mn−(lb+1). Figure 4.5 visualizes
the subsequences of memory accesses that determine the validity of formulas.

Meaningful relations between access predicates and history data dependence predicates
can be established only when they have the same label or the difference is 1. Otherwise,
a rule has to consider an arbitrary number of memory accesses between the two points
described by an access predicate and a history data dependence predicate.

Relation of rPred and noRHist

Figure 4.6 shows the rules needed for establishing the logical relation between rPred
and noRHist.

56

readPredANDnoWHistRightSameLabel

Γ,rPred(loc1, lb) =⇒ noWHist(loc2, lb+ 1),∆

Γ,rPred(loc1, lb) =⇒ noWHist(loc2, lb),∆

readPredAFTERnoWHist

Γ,rPred(loc1, lb),noWHist(loc2, lb+ 1),noWHist(loc2, lb) =⇒ φ,∆

Γ,rPred(loc1, lb),noWHist(loc2, lb+ 1) =⇒ φ,∆

Figure 4.7.: Relation of rPred and noWHist rules

In state s, predicate noRHist(loc2, lb) indicates that there has not been a read memory
access on loc2 from M1 until and including Mn−lb, while rPred(loc1, lb) states that Mn−lb
is a read memory access. If noRHist(loc2, lb) holds this access should not be on loc2 or
its subsets (loc1 ∩ loc2

.
= ∅). Rule readPredANDnoRHistSameLabel reflects this fact.

For proving noRHist(loc2, lb) in addition toMn−lb, none of the accesses before it should
a read on loc2 or its subsets. This information is aggregated in noRHist(loc2, lb + 1).
Rule readPredANDnoRHistRightSameLabel concerns this matter.

Rule schema readPredAFTERnoRHist states that having rPred(loc1, lb+ 1), predicate
noRHist(loc2, lb) would hold if it has not been violated by the corresponding memory
access of rPred(loc1, lb+ 1).

Rules for establishing the relation of wPred and noWHist are analogous, and can be
seen in Appendix B.5.1.

Relation of rPred and noWHist

Rules for establishing the relation of rPred and noWHist are shown in Figure 4.7. Rule
schema readPredANDnoWHistRightSameLabel states that two different memory accesses
can not happen at the same time. If Mn−lb is a read, for proving noWHist(loc2, lb) we
only need to show that there has not been a write access on loc2 up to Mn−lb. Rule
schema readPredAFTERnoWHist shows that knowing there has not been a write access
on loc2 up to Mn−lb, and Mn−lb is read we can deduce that noWHist(loc2, lb).

Rules for establishing the relation of wPred and noRHist are analogous and included
in Appendix B.5.2.

57

Relation of rPred and noRaWHist

Rules for establishing the relation of rPred and noRaWHist are shown in Figure 4.8.
We explain the intuitive meaning of these rules below:

• Rule readPredANDnoRaWHistSameLabel: Knowing that at n− lb in Acc there is a
read access on loc1 and at the same time noRaWHist holds for loc2, we can deduce
that noWHist holds for loc1 ∩ loc2 up to n− lb.

• Rule readPredANDnoRAWHistoryRightSameLabel: To show noRaWHist while
having a read access at the same time, for memory locations that are not accessed
we need need to show noRaWHist up to this access. For the loc1 ∩ loc2 we only
need to show that noWHist holds right before the read access.

• Rule readPredBEFOREnoRaWHist: If noRaWHist holds at a point (n− lb) in Acc
and right before this point ((n− lb) + 1) there has been a read, we can deduce that
before this access ((n− lb) + 1 + 1) predicate noWHist held on loc1 ∩ loc2.

• Rule readPredBEFOREnoRaWHistRight: To show that noRaWHist holds at a point
(n− lb) in Acc while knowing that right before this point ((n− lb) + 1) there has
been a read, we need to show that before this access ((n− lb) + 1 + 1) predicate
noWHist held on loc1 ∩ loc2.

Rules for establishing the relation of wPred with noWaRHist and noWaWHist are
analogous. These rules can be seen in Appendices B.5.3 and B.5.4, respectively.

The Curious Case of wPred

There is a special rule for relating two wPred to each other. They must indicate write
accesses to the same location sets if they have the same label. The reason is that the
labels are unique. The intersection between their accessed location sets must be checked
in the case of different labels. If this intersection is non-empty, then noWaWHist does
not hold for it from when the most recent write access has happened. Rule schema
writePredANDwritePred shows this fact.

58

readPredANDnoRaWHistSameLabel

Γ,rPred(loc1, lb),noRaWHist(loc2, lb),noWHist(loc1 ∩ loc2, lb+ 1) =⇒ φ,∆

Γ,rPred(loc1, lb),noRaWHist(loc2, lb) =⇒ φ,∆

readPredANDnoRaWHistRightSameLabel

Γ,rPred(loc1, lb) =⇒ noRaWHist(loc2 \ loc1, lb+ 1) ∧ noWHist(loc1 ∩ loc2, lb+ 1),∆

Γ,rPred(loc1, lb) =⇒ noRaWHist(loc2, lb),∆

readPredBEFOREnoRaWHist

Γ,rPred(loc1, lb+ 1),noRaWHist(loc2, lb), noWHist(loc1 ∩ loc2, lb+ 2) =⇒ φ,∆

Γ,rPred(loc1, lb+ 1),noRaWHist(loc2, lb) =⇒ φ,∆

readPredBEFOREnoRaWHistRight

Γ,rPred(loc1, lb+ 1) =⇒ noRaWHist(loc2 \ loc1, lb) ∧ noWHist(loc1 ∩ loc2, lb+ 2),∆

Γ,rPred(loc1, lb+ 1) =⇒ noRaWHist(loc2, lb),∆

Figure 4.8.: Relation of rPred and noRaWHist rules

59

writePredANDwritePred

Γ,wPred(loc1, lb1),wPred(loc2, lb2), lb1
.
= lb2, loc1

.
= loc2 =⇒ φ,∆

Γ,wPred(loc1, lb1),wPred(loc2, lb2), lb1 ̸
.
= lb2,

loc1 ∩ loc2 ̸
.
= ∅ →

∀ LocSet loc ∈ loc1 ∩ loc2; ¬noWaWHist(loc,min(lb1, lb2)) =⇒ φ,∆

Γ,wPred(loc1, lb1),wPred(loc2, lb2) =⇒ φ,∆

Theorem 3.4.1 and Corollary 3.4.1 still hold after adding the new calculus rules intro-
duced in this section. As an example, we provide the proof of soundness and completeness
of rule renamedReadAppOnNoRHist in Appendix C.5.

60

5. Automatic Loop Invariant Generation for
Inter-Iteration Data Dependence Analysis

So far we generate and verify logical formulas expressing the absence of data dependences
on memory location sets for a given piece of code. For example, in case of noRaW(ls),
there is no execution that contains first a write on a location in l ∈ ls that is later followed
by a read on l.

This is a rather strong property that might preclude parallelization in cases, where
it is actually warranted. Assume noRaW(ls) does not hold for a given loop body over
ls. As long as the RaW happens within one loop iteration, the loop is still parallelizable.
Only when a write happens to a location l ∈ ls in one iteration and a read from l is a
subsequent iteration, there is a problem. Data dependences spanning over more than one
iteration are called inter-iteration.Those that are confined to the same iteration are called
intra-iteration dependence.

Our approach (Chapter 4) can be extended to permit intra-iteration dependences, but
to exclude critical inter-iteration dependences. It is achieved by relaxing noX dependence
predicates, so they distinguish between different loop iterations and tolerate intra-iteration
dependences.

The loop invariant generation algorithm for JavaDLDep can now be reused for JavaDLˆ︃Dep,
an extension of JavaDLDep for reasoning about inter-iteration data dependences. It is
merely necessary to (i) replace the unwindLoop rule by a version that alsomarks the start of
a new iteration, (ii) a shifting rule for the new kind of updates, as well as (iii) axiomatization
and simplification rules for the new data inter-dependence predicates.

In Section 5.1 we briefly compare inter- and intra-iteration data dependences. We ex-
plain our approach in specifying intra-iteration data dependences in Section 5.2. Updating
the data dependence loop invariant generation algorithm with necessary changes is the
subject of Section 5.3. Developing sequent calculus rules for reasoning about intra-iteration
data dependences is covered in Section 5.4.

61

5.1. Inter- vs. Intra-Iteration Loop Data Dependences

The data dependence analysis approach introduced in the previous chapters can analyze
the data dependences whether they are within one loop iteration or spread across different
iterations. In pattern based parallelization, depending on the parallelization pattern, some
data dependences are more important than the others. If the pattern parallelizes the loop
body (e.g., Pipeline pattern), the data dependence profiler must extract data dependences
inside the body. On the other hand, the conventional way of parallelizing loops is to
divide the iteration space and run the sub-loops in parallel (e.g., DoAll and Loop Splitting
patterns). In this case, there is no need to profile data dependences occurring inside the
loop body, as it is executed sequentially. In such applications only the data dependences
between different loop iterations matter. Data dependences spanning over more than one
iteration are called inter-iteration, cross-iteration, or loop-carried dependence.

5.2. Specification of Intra-Iteration Data Dependence Properties

The granularity of tracking data dependences of JavaDLDep as presented in Chapters 3
and 4 is too fine-grained for certain loop parallelization patterns, because it tracks all data
dependences. For example, a simple loop parallelization that assigns each loop iteration
its own process requires that there are no data dependences between two different loop
iterations, but is oblivious to data dependences within the same iteration. The approach
sketched in Chapters 3 and 4 is not able to distinguish between intra- and inter-iteration
dependences and prevents taking advantage of such a parallelization opportunity.

Therefore we extend JavaDLDep by adding support for inter-iteration data dependence
predicates that permit dependences stretching between different loop iterations.

We also adapt the loop invariant generation algorithm (Algorithm 1) to generate corre-
sponding loop invariants.

5.2.1. Syntax and Semantics

We extend the logic JavaDLDep to JavaDLˆ︃Dep for reasoning about inter-iteration depen-
dences. To specify and reason about inter-iteration dependences, JavaDLˆ︃Dep provides

three additional non-rigid predicates: ˆ︂noRaW, ˆ︂noWaR taking four arguments of type
LocSet, and ˆ︂noWaW with three arguments of type LocSet. Their semantics is like the
dependence predicates withoutˆ︁·, except that they are only sensitive to data dependences
that stretch over different loop iterations. The extra arguments express history contexts
and will be explained in Definition 5.2.3.

62

1 sum = 0; i = 0;
2 while (i < a.length) {
3 a[i] = b[i] + c[i];
4 sum += a[i];
5 i=i+1;
6 }

Listing 5.1: Program arraySum: component-wise array addition

Example 5.2.1. Consider the program arraySum in Listing 5.1, which adds the content
of arrays b and c component-wise and stores the result in array a. In addition, it computes
the sum over all elements stored in a. Formula noRaW(a[0..a.length]) does not hold
after execution of arraySum, as array element a[i] is written in line 3 and read in line 4.
In contrast, ˆ︂noRaW(a[0..a.length],empty,empty,empty) expresses that there are
no read-after-write dependences across loop iterations and it holds after execution of the
program.

As different iterations need to be distinguished, thememory access sequence of JavaDLˆ︃Dep
states must provide more structure than JavaDLDep. Instead of a sequence of memory
accesses, JavaDLˆ︃Dep uses a sequence of sequences of memory accesses ˆ︂Acc. Each element
in ˆ︂Acc (i.e. a sequence of memory accesses) consists of the memory accesses of a single
loop iteration.

Definition 5.2.1 (Domain, JavaDLˆ︃Dep State). Given a non-empty domain D, a JavaDLˆ︃Dep
state s = (σ, ˆ︂Acc) is a pair of

• an interpretation σ as in JavaDLDep (Def. 3.1.1) and

• a finite sequence ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn of sequences of memory read and write
accesses ˆ︂acci ::= acci,1 ◦ . . . ◦ acci,m, where acci,j ::= ⟨Read(ls)⟩ | ⟨Write(ls)⟩,
ls ∈ DLocSet, and⃝ is the concatenation between elements of ˆ︂Acc (using big circles
saves brackets and helps readability).

The semantics is defined in Figure 5.1.
Executing an assignment x = t from side-effect free1 expression t to a local variable x

in a state s = (σ, ˆ︂Acc) terminates in a state s′ which is almost identical to state s except
1Side-effect free has its usual meaning: not changing the state. Although memory access updates change
the state, we consider them side-effect free.

63

valK,s,β(x = t) := {(s, s′) | s′ = (σ′, ˆ︂Acc′) with s = (σ, ˆ︂Acc), σ′ = σ[x← valK,s,β(t)] and

ˆ︂Acc′ = ˆ︂Acc ◦ ⟨accK,s,β(t)⟩ = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn ◦ accK,s,β(t)

= ˆ︂acc1⃝ · · · ⃝ ˆ︂accn−1⃝ (accn,1 ◦ · · · ◦ accn,m ◦ accK,s,β(t))}

(x ∈ PV)

valK,s,β(a[k] = t) := {(s, s′) | s′ = (σ′, ˆ︂Acc′) with s = (σ, ˆ︂Acc), σ′ = σ[a[k]← valK,s,β(t)]

and

ˆ︂Acc′ = ˆ︂Acc ◦ accK,s,β(t) ◦ accK,s,β(k) ◦ ⟨Write(a[k])⟩}

valK,s,β(if(b) {stmnt1} else {stmnt2})

:= {(s, s′′) | s′ = (σ, ˆ︂Acc′) with s = (σ, ˆ︂Acc) and ˆ︂Acc′ = ˆ︂Acc ◦ accK,s,β(b),

and s′′ = (σ, ˆ︂Acc′′) where

((K, s′, β |= b, (s′, s′′) ∈ [[stmnt1]])

∨ (K, s′, β ̸|= b and (s′, s′′) ∈ [[stmnt2]]))}

valK,s,β(while(b){stmnt})

:= {(s, t) | there is a sequence s = s0 s
′
0 · · · sn = t with

K, si, β |= b, i < n and K, t, β ̸|= b and

(s′i, si+1) ∈ [[stmnt]] with s′i = (σi, ˆ︂Acci⃝ accK,s′i,β
(b))

(ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn and ˆ︂acci = acci,1 ◦ · · · ◦ acci,mi , i ∈ {1 . . . n})

Figure 5.1.: Program semantics of JavaDLˆ︃Dep

64

for the value of variable x and the possible extension of read memory accesses resulting
from evaluating t. As an assignment inside a loop body does neither start nor end the
current loop iteration, the reads are appended to the sequence of memory accesses of
the current iteration (i.e., the last element of ˆ︂Acc). Similarly for valK,s,β(a[k] = t) and
valK,s,β(if(b) {stmnt1} else {stmnt2}). In contrast, a loop ends the current iteration
and starts a new one with each evaluation of its guard. This is reflected in the semantics
by appending a new sequence to ˆ︂Acci at start of each loop iteration i. A minor observation
is that on loop exit the final evaluation of the loop guard (evaluating to false) starts a
new iteration and thus ends the current one.

It remains to define the semantics for the inter-iteration dependence predicates, which
will enable us to specify and reason about inter-iteration data dependences. To streamline
the definition of their semantics, we first introduce two projection functions that aggregate
the locations of all read/write accesses for a given sequence of memory accesses:

Definition 5.2.2 (Projection). For ˆ︂acc = acc1 ◦ . . . ◦ accn the projection function for read
accesses

⏐↓
R
defined as⏐↓

R
ˆ︂acc := {ls | ls = n⋃︂

i=1

lsi where acci = ⟨Read(lsi)⟩}

collects all memory locations read in loop iteration ˆ︂acc. The projection function for
write accesses

⏐↓
W

is defined analogously:

⏐↓
W

ˆ︂acc := {ls | ls = n⋃︂
i=1

lsi where acci = ⟨Write(lsi)⟩}.

Example 5.2.2. Let ˆ︂acc := ⟨Read(a[0])⟩ ◦ ⟨Write(a[1])⟩ ◦ ⟨Read(a[2])⟩ be a sequence
of memory accesses. Then

⏐↓
R
ˆ︂acc = {a[0],a[2]} and ⏐↓

W
ˆ︂acc = {a[1]}.

Definition 5.2.3 (Inter-iteration data dependence predicates: semantics). Let ls, rLs, wLs,
futRLs and futWLs denote location sets in DLocSet. The semantics of predicate symbols
ˆ︂noRaW (similar for predicate ˆ︂noWaR, see Appendix A.3) and ˆ︂noWaW is defined as follows:

s(ˆ︂noRaW) = {(ls, rLs,wLs, futRLs) | s = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn),
rLs,wLs, futRLs ∈ DLocSet such that ls ∩ (wLs ∪

⏐↓
W

ˆ︂accn) ∩ futRLs = empty

and

if n > 1 : (ls,empty,empty, futRLs ∪ rLs ∪
⏐↓
R
ˆ︂accn) ∈ s′(ˆ︂noRaW)

with s′ = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn−1)}

65

s(ˆ︂noWaW) = {(ls,wLs, futWLs) | s = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,),wLs = ⏐↓
W

ˆ︂accn,
wLs and futWLs ∈ DLocSet such that ls ∩ wLs ∩ futWLs = empty and

if n > 1 : (ls,
⏐↓
W

ˆ︂accn, futWLs ∪ wLs) ∈ s′(ˆ︂noWaW)
with s′ = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn−1)}

The second and third argument of ˆ︂noRaW are the read and write accesses encountered
so far in the current iteration, the fourth argument accumulates the read accesses in the
already processed iterations in the recursive step. When ls ∩ (wLs ∪

⏐↓
W

ˆ︂accn) ∩ futRLs =
empty in already processed iterations there is no read access on the location sets that are
written in the current iteration. At the end of processing each iteration, arguments rLs
and wLs are reset to empty and by futRLs ∪ rLs ∪

⏐↓
R
ˆ︂accn we accumulates all the location

sets that have been subjected to a read access during this iteration in argument futRLs.

Example 5.2.3. Consider the states

s1 = (σ1, ⟨Read(a[0])⟩ ⃝ ⟨Write(a[0])⟩ ⃝ ⟨⟩) and
s2 = (σ2, ⟨Write(a[0])⟩ ⃝ ⟨Read(a[0])⟩ ⃝ ⟨⟩)

both of which just completed an iteration. To determine that there is no read-after-write
on array element a[0], i.e. formula ˆ︂noRaW(a[0],empty,empty,empty) is satisfied
in si, we establish (a[0],empty,empty,empty) ∈ si.2 As the final memory access
sequence is empty, the conditions before the recursive step in the semantics are obviously
satisfied. For the first recursive step, we check

(a[0],empty,empty,empty) ∈ s′1(ˆ︂noRaW)

with s′1 = (σ1, ⟨Read(a[0])⟩ ⃝ ⟨Write(a[0])⟩). This is straightforward and it remains to
check

(a[0],empty,empty,empty) ∈ s′′1(ˆ︂noRaW)

with s′′1 = (σ1, ⟨Read(a[0])⟩). This holds as a[0] ∩ (empty ∪ empty) ∩ empty = empty.
For state s2 we have to check instead in the final recursive step that

(a[0],empty,empty, a[0]) ∈ s′′2(ˆ︂noRaW)

with s′′2 = (σ2, ⟨Write(a[0])⟩). This does not hold as a[0] ∩ (empty ∪ a[0]) ∩ a[0] = a[0] ̸=
empty.
2In the rewrite rules we also need other arguments than empty.

66

Inter-Iteration History Data Dependence Predicates

s(ˆ︂noRHist) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,
0 ≤ label < n, and for all 0 < i ≤ n− label

it holds that
⏐↓
R
ˆ︂acci ∩ loc = empty}

s(ˆ︂noRaWHist) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,
0 ≤ label < n, and for all 0 < i < j ≤ n− label

it holds that
⏐↓
R
ˆ︂accj ∩ ⏐↓

W
ˆ︂acci ∩ loc = empty}

s(ˆ︂rPred) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,
0 ≤ label < n,

loc =
⏐↓
R
ˆ︂accn−label}

ˆ︂noWHist, ˆ︂noWaRHist, ˆ︂noWaWHist, ˆ︂wPred are defined analogously in Appendix A.4

Figure 5.2.: Semantics of selected inter-iteration history data dependence predicates

In updates we need to represent that a new iteration starts (i.e., the previous itera-
tion ends) syntactically to group memory access updates. This is done with a “marker”
update \next, between which the memory access updates for a single iteration are
grouped.

Definition 5.2.4 (Marker update semantics). The semantics of marker update \next is
defined as

valK,s,β(\next) = s′with s′ = (σ, ˆ︂Acc⃝ ⟨ε⟩) and s = (σ, ˆ︂Acc)
and thus starts a new iteration by appending a new empty sequence of memory accesses3
to ˆ︂Acc.

During loop invariant generation (not for using loop invariants), we need predicates
to express up to which iteration a given data dependence property holds. We need to
3Note that ⟨ε⟩ is not an empty sequent but rather a sequent that contains an empty sequent.

67

define inter-iteration versions of the history predicates (see Section 4.1) as well as the
corresponding read and write predicates. These predicates are ˆ︂noRaWHist, ˆ︂noWaRHist,

ˆ︂noWaWHist, ˆ︂noRHist, ˆ︂noWHist, as well as ˆ︂rPred and ˆ︂wPred. All have the type
signature LocSet× int. For example, ˆ︂noRaWHist(ls, i) expresses that no read-after-
write access occurs on the locations in ls up to the i-th preceding iteration.4 The semantics
is summarized in Figure 5.2 together with that of the \next update and \next′ update,
which is needed to shift⃝ (see Section 5.4).

5.3. Loop Invariant Generation

For analyzing and verifying inter-iteration data dependences in programs with loops we
need to synthesize inter-iteration data dependences that hold in each loop iteration.

The setting is same as in Chapter 4: (i) analyzing terminating programs as it is the case
in Parallelizable HPC programs, (ii) concentrating on inter-iteration data dependences
among array types as the most relevant data structure in HPC.

We use the same approach for loop invariant generation as in Chapter 4. Let a set
of abstract predicates D contain formulas that express inter-iteration data dependence
properties known to hold in the state before executing the loop. Now the loop is unwound
once. Afterwards we check which of the formulas in D hold in the state reached. The
provable ones are kept in D, the others are replaced with weakened versions (determined
using an abstraction lattice) that can be proven. Then the process restarts with unwinding
the loop once more, until the set D is stable. Using a finite lattice and appropriate
weakening operations, this happens after finitely many rounds.

5.3.1. Symbolic Execution

Instead of the usual unwindLoop, we define the following rule:

markedUnwindLoop
Γ =⇒ {u}{\next}[if (b) {s; while (b) {s}} r;]φ,∆

Γ =⇒ {u}[while (b) {s} r;]φ,∆

Rule markedUnwindLoop marks the beginning of each loop iteration with \next update.
Memory access updates that belong to the same iteration appear between two \next.

4Unlike the second argument in history data dependence predicates (Definition 4.1.5) that was showing the
i-th preceding memory access update.

68

Forward symbolic execution calculus, including markedUnwindLoop, accumulates state
updates in front of modalities. As discussed before in Section4.1, predicate abstraction
is easier to implement, if state changes are expressed as equations corresponding to the
strongest postcondition, not as weakest preconditions that result from update application.
Hence, we need to rewrite updates accordingly using state shifting rules.

We need to be able to shift the \next update, hence, we replace the previous shift rules
(shiftRead and shiftWrite) with

shiftNextUpdate

{
u⏟ ⏞⏞ ⏟

su′|| . . . ; \W′(wls1); . . . ; \R′(rls1); \next′}Γ,
ˆ︂rPred(

⋃︁
i=1...n

rlsi, 0), ˆ︂wPred(
⋃︁

j=1...m

wlsj , 0)) =⇒ [while (b) {s} r;]φ, {u}∆

Γ =⇒ {su||\next; \R(rls1); . . . ; \W(wls1); . . .}[while (b) {s} r;]φ,∆

where su is an state update that does not contain memory access updates,
\R(rls1), . . . , \W(wls1), . . . is a sequence of n read and m write updates (n,m ∈ N0).
The while-statement implies that rule shiftNextUpdate can only be applied once a loop
iteration is complete, but the next one has not yet started. Shifting the preceding updates
is equivalent to replacing all formulas in the sequent by their strongest postcondition.
This is achieved by applying a similar update consisting of the corresponding renaming
updates on each of the sequent formulas.

Predicates ˆ︂rPred(
⋃︁

i=1...n
rlsi)) and ˆ︂wPred(

⋃︁
j=1...m

wlsj)) keep the information about the

read and write memory accesses in the current iteration of the post state.
The implicit assumption in shiftNextUpdate are that:

• update {su||\next; \R(rls1); . . . ; \W(wls1); . . .} only contains one \next update;
and

• loop body s does not contain a nested loop (we investigate nested loops in the next
chapter).

Theorem 5.3.1 (Soundness and completeness of shiftNextUpdate). Let Γ,∆ be sets of
formulas, a formula φ, and location sets rlsi, wlsj ∈ DLocSet for i = 1 . . . n and j = 1 . . .m.
If and only if

{
u⏟ ⏞⏞ ⏟

. . . ; \W′(wls1); . . . ; \R′(rls1); \next′}Γ,
ˆ︂rPred(

⋃︁
i=1...n

rlsi, 0), ˆ︂wPred(
⋃︁

j=1...m
wlsj , 0)) =⇒ [while (b) {s} r;]φ, {u}∆

69

and rlsi and wlsj do not contain data dependence predicates, then the following holds:

Γ =⇒ {\next; \R(rls1); . . . , \W(wls1); . . .}[while (b) {s} r;]φ,∆.

Theorem 5.3.1 is proven in Appendix C.6.

Example 5.3.1. We prove the following sequent, the loop body s is the one of pro-
gram arraySum in Listing 5.1.

ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅) =⇒

{i := 0||sum := 0}[while (i<a.length) {s}] ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅)

First, unwind the loop by applying rule markedUnwindLoop, continue on the branch
where the loop guard is true, and symbolically execute the loop iteration until we are left
with the sequent

ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅) =⇒
{u||\next; \R(b[0]); \R(c[0]); \W(a[0]); \R(a[0])}

[while (i<a.length) {s}] ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅)

where update u contains the state updates that are not of interest here. We shift the
updates and obtain the following sequent (u′ denotes the renamed update corresponding
to u):

{u′||\R′(a[0]); \W′(a[0]); \R′(c[0]); \R′(b[0]); \next′}ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅),
ˆ︂rPred(a[0], 0), . . .=⇒ [while (i<a.length) {s}] ˆ︂noRaW(a[0..a.length], ∅, ∅, ∅)

After applying the update simplification rules we obtain a first-order formula over inter-
interation predicates that can be used in the loop invariant generation algorithm.

We discuss the new update application and simplification rules that are needed here in
Subsection 5.4.1.

5.3.2. Predicate Abstraction

Weakening of abstract predicates is based on a lattice induced by predicates PSymˆ︃Dep
considering the partial order relation between them. These subsumption relations are
shown in Figure 5.3. For example, if there is a no read-after-write data dependence on
memory location set l′′, there cannot be such a dependence on any memory locations l′′′

with l′′′ ⊆ l′′. Neither inside a loop iteration nor between different iterations like ˆ︂noRaW.

70

noDep(l)

noR(l) noW(l)

noAaR(l′) noAaW(l′)

noWaR(l′′)

̂noWaR(l′′′, wLs, rLs, futWLs)

noRaW(l′′)

̂noRaW(l′′′, rLs, wLs, futRLs)

noWaW(l′′)

̂noWaW(l′′′, wLs, futWLs)

true

with l′′′ ⊆ l′′ ⊆ l′ ⊆ l

Figure 5.3.: Partial view on predicate abstraction lattice for inter-iteration data depen-
dence predicates

The calculus rules realizing the lattice are discussed in Subsection 5.4.2. Predicate
refinement step stays as before.

The loop invariant is the conjunction of predicates remained in D after reaching the
fixpoint.

5.4. Reasoning

As a result of introducing new predicates (ˆ︂noRaW, ˆ︂noWaR, and ˆ︂noWaW) and updates
(\next and \next′), we need to define corresponding sequent calculus rules.

5.4.1. Update Application and Simplification Rules

The most important update application and simplification rules of JavaDLˆ︃Dep are shown
in Figure 5.4. We explain their intuitive meaning below.

• readAccessOnInterIterationNoRaW: The read access happening in the current iter-
ation is accumulated in the rLs argument of ˆ︂noRaW.

• writeAccessOnInterIterationNoRaW: The write access happening in the current
iteration is accumulated in the wLs argument of ˆ︂noRaW.

71

readAccessOnInterIterationNoRaW cond

{\next; \R(loc1)}ˆ︂noRaW(loc2, rLs,wLs, futRLs)⇝

{\next}ˆ︂noRaW({\R(loc1)}loc2, ({\R(loc1)}rLs) ∪ loc1, {\R(loc1)}wLs, {\R(loc1)}futRLs)

writeAccessOnInterIterationNoRaW cond

{\next; \W(loc1)}ˆ︂noRaW(loc2, rLs,wLs, futRLs)⇝

{\next}ˆ︂noRaW({\W(loc1)}loc2, {\W(loc1)}rLs, ({\W(loc1)}wLs) ∪ loc1, {\W(loc1)}futRLs)

checkNoRaWForIteration cond

{u||\next}ˆ︂noRaW(loc, rLs,wLs, futRLs)⇝
({u||\next}(loc ∩ wLs ∩ futRLs = empty)) ∧

{u}ˆ︂noRaW({\next}loc,empty,empty, {\next}futRLs ∪ {\next}rLs)

checkNoRaWForLastIteration cond

{\next}ˆ︂noRaW(loc, rLs,wLs, futRLs)⇝ {\next}(loc ∩ wLs ∩ futRLs = empty)

cond: loc, loc1, loc2, rLs, wLs, futRLs, and lb do not contain data dependence predicates

Figure 5.4.: Selected rules for application update on inter-iteration predicates

72

• checkNoRaWForIteration: After all the accesses in the current iteration are accu-
mulated in the corresponding argument of ˆ︂noRaW, it is time for {\next} to be
applied. We need to make sure that location sets written in the current iteration wLs,
and location sets that are read up to the current iteration (excluding the current
iteration) futRLs are disjoint from the targeted location set loc (emptiness check).
Otherwise, a read-after-write has happened. Location sets read in this iteration
are added to the futRLs argument so that they can be used in the next iteration of
loop invariant generation process. Arguments rLs and wLs are reset to empty in
preparation for accumulating accesses of the next iteration.

• checkNoRaWForLastIteration: This rule is similar to the checkNoRaWForIteration
rule, except that it is only looking at the last iteration. Therefore, \next is the only
update to be applied. This rule only performs the emptiness check.

Analogous rules can be found in Appendix B.6.
Figure 5.5 shows rules for application of renamed updates on data dependence predi-

cates. Here, we briefly mention their intuitive meaning:

• renamedReadAccessOnInterIterationNoRaW: The renamed read access happening
in the current iteration is subtracted from the rLs argument of ˆ︂noRaW.

• renamedWriteAccessOnInterIterationNoRaW: The renamed write access happen-
ing in the current iteration is subtracted from the wLs argument of ˆ︂noRaW.

• interIterationNoRaWToHistory: Application \next′, ages the ˆ︂noRaW for one itera-
tion and turns it to history predicate.

• renamedNextOnNoRaWHist: Application \next′, ages the ˆ︂noRaWHist for one
iteration.

5.4.2. Subsumption Relations

Subsumption relations between data dependence predicates are shown in Figure 5.3.
For example, if there is a no read-after-write data dependence on memory location set
l′, there cannot be such a dependence on any memory locations l′′ with l′′ ⊆ l′. Neither
inside a loop iteration nor between different iterations like ˆ︂noRaW.

There are subsumption relations between relaxed data dependence predicates, they
imply their history versions. Similarly, there are subsumption relations between relaxed
history data dependence predicates. Rule schemas realizing these relations are shown in
Figure 5.6.

73

renamedReadAccessOnInterIterationNoRaW cond

{\next′; \R′(loc1)}ˆ︂noRaW(loc2, rLs,wLs, futRLs)⇝

{\next′}ˆ︂noRaW({\R′(loc1)}loc2, ({\R′(loc1)}rLs) \ loc1, {\R′(loc1)}wLs, {\R′(loc1)}futRLs)

renamedWriteAccessOnInterIterationNoRaW cond

{\next′, \W′(loc1)}ˆ︂noRaW(loc2, rLs,wLs, futRLs)⇝

{\next′}ˆ︂noRaW({\W′(loc1)}loc2, {\W′(loc1)}rLs, ({\W′(loc1)}wLs) \ loc1, {\W′(loc1)}futRLs)

interIterationNoRaWToHistory cond

{u||\next′}ˆ︂noRaW(loc, rLs,wLs, futRLs)⇝ {u} ˆ︂noRaWHist({\next′}loc, 1)

renamedNextOnNoRaWHist cond

{u||\next′} ˆ︂noRaWHist(loc, lb)⇝ {u} ˆ︂noRaWHist({\next′}loc, {\next′}lb+ 1)

cond: loc, loc1, loc2, rLs, wLs, futRLs, and lb do not contain data dependence predicates

Figure 5.5.: Selected rules for application of renamed update on inter-iteration predicates

noRSubsumuption noR(loc) ⇝ ˆ︂noRHist(loc, lb)

interNoRaWSubsumption ˆ︂noRaW(loc) ⇝ ˆ︂noRaWHist(loc, lb)

interNoRaWLocSetSubsumption

Γ, ˆ︂noRaWHist(loc, lb1), lb1 ≤ lb2 =⇒ ˆ︂noRaWHist(loc \ loc, lb2),∆
Γ, ˆ︂noRaWHist(loc, lb1), lb1 > lb2 =⇒ ˆ︂noRaWHist(loc, lb2),∆

Γ, ˆ︂noRaWHist(loc, lb1) =⇒ ˆ︂noRaWHist(loc, lb2),∆

Figure 5.6.: Subsumption relations between inter-iteration data dependence predicates

74

5.4.3. Embedding Predicate Abstraction

Part of the sequent calculus rules needed for embedding the predicate abstraction in
symbolic execution, are rules regarding ˆ︂rPred and ˆ︂wPred.

Shifting utilizes the predicates ˆ︂rPred and ˆ︂wPred to capture knowledge about the
post-state. This information is used by our calculus with rules like:

interReadPredANDNoRAtHistSameLabel
Γ, ˆ︂rPred(loc1, lb), ˆ︂noRHist(loc2, lb), loc1 ∩ loc2

.
= ∅ =⇒ φ,∆

Γ, ˆ︂rPred(loc1, lb), ˆ︂noRHist(loc2, lb) =⇒ φ,∆

or

interReadPredANDNoRAtHistRightSameLabel
Γ, ˆ︂rPred(loc1, lb) =⇒ loc1 ∩ loc2

.
= ∅ ∧ ˆ︂noRHist(loc2, lb+ 1),∆

Γ, ˆ︂rPred(loc1, lb) =⇒ ˆ︂noRHist(loc2, lb),∆

Rule interReadPredANDNoRAtHistSameLabel derives from the assumptions that there
was no read on location set loc1 and in the same iteration locations in loc1 have been read,
and the fact that loc1 and loc2 do not share any memory locations.

Rule interReadPredANDNoRAtHistRightSameLabel simplifies the proof obligation that
there is no read on loc2 at the same iteration that loc1 is read, by splitting it into two
conjuncts: The first conjunct expresses that loc1 and loc2 do not share a common memory
location and the second conjunct requires then only to prove that there was no read up-to
(and including) the preceding iteration (lb+ 1).

Theorem 5.4.1 (Soundness and Completeness of JavaDLˆ︃Dep Calculus). Calculus rules of
JavaDLˆ︃Dep program logic are sound and complete.

Corollary 5.4.1 (Soundness of JavaDLˆ︃Dep Calculus). Since all the rules in JavaDLˆ︃Dep are
sound, its calculus is sound.

75

6. Nested Loop Invariant Generation

The data dependence loop invariant generation technique developed in Chapter 4 only
supports simple loops. In this chapter, we extend the data dependence program logic to
generate loop invariants for nested loops.

In our application area HPC nested loops are executed over multi-dimensional arrays.
We show how to support programs that contain doubly nested loops over two-dimensional
arrays. The generalization to more deeply nested loops on N -dimensional (N > 2) arrays
is a straightforward extension and omitted from the presentation.

We outline the steps required to generate data dependence loop invariants: The first
step is to provide an initial set of abstract predicates. Following the technique described
in Chapter 4, we initialize the data dependence predicate set with the top element in the
abstraction lattice in Figure 4.2. In the second step the nested loop for which the loop
invariant is generated is unwound and symbolically executed by applying rule unwindLoop
(see Subsection 2.1.5). Symbolic execution of the outer loop eventually reaches the inner
loop. To symbolically execute the inner loop (and continue with the statements after the
loop), unwinding the inner loop is not a viable option.

Instead we restart the loop invariant generation process for the inner loop to compute a
loop invariant LIinner that describes its data dependences invariants LIDepinner and functional
properties as precisely as possible. The inner data dependence loop invariant is generated
using the data dependence loop invariant generation algorithm developed in Chapter 4.
Afterwards, we use the computed loop invariant LIinner to approximate the effect of the
inner loop by use of the third premise of rule loop_inv (see Subsection 2.1.5) for the
inner loop. This eliminates the inner loop, and symbolic execution of the outer loop body
continues with the remaining statements.

In this chapter, we develop an algorithm for generating data dependence invariants for
nested loops in Section 6.1. We introduce an anonymizing update and its surrounding
calculus in Section 6.2. In Section 6.3, we go a step further and introduce a specialized
anonymizing update for inter-iteration data dependences.

77

6.1. Generation Algorithm

Computation of the outer and inner loop invariant are intertwined: Each time we reach
the inner loop during the computation of the outer loop invariant, we generate a fresh
loop invariant for the inner loop. This takes into account the changes resulting from
unwinding the outer loop as a precondition in generating the inner loop invariant. It
provides significant precision, in particular, for loops that are not perfectly nested. 1

A copy of the current set of predicates describing the outer loop is used as the initial set
of predicates for the generation of inner loop invariant. Otherwise, the computation of
loop invariant follows the data dependence loop invariant generation Algorithm 1.

We explain Algorithm 3 along the example in Listing 6.1.

function invariantGenerator
input :Sequent seq : pre =⇒ [loop] post, Data Dependence Predicate set Dinit
output :Loop Invariant
Dold, Dref ← Dinit, ∅;
while Dold ̸

.
= Dref do

seq ← Apply rule unwindLoop on seq;
seq ← Symbolic execution on seq;
if nested then

seqinner ← pre =⇒ {u}[innerLoop] true;
LIinner ← invariantGenerator(seqinner, Dref);
seqinner ← Apply rule loop_inv− usecase on seqinner for LIinner;
seq ← Replace innerLoop with LIinner;

else
seq ← Merge branches below seq;
/* seq has now the form pre′ =⇒ {u}[loop]post */
seq ← Apply shift update rules on u in seq;
Dref , Dold ← refine(seq,Dold), Dref ;
seq ←

(︁⋀︁
Dref =⇒ [loop] post

)︁
;

end
end
return

⋀︁
Dref ;

Algorithm 3: Data Dependence Loop Invariant Generation Algorithm for Nested Loops

1Commonly, loops with no statements between the outer and inner loop are called perfectly nested.

78

1 i = 0; j = 0;
2 while (i < N) {
3 j = 0;
4 while(j < M) {
5 a[i][j] = a[i][j] + 1;
6 j++;
7 }
8 i++;
9 }

10

Listing 6.1: Increment Elements of 2D Array

6.1.1. Computation of the Inner Loop Invariant

To compute the inner loop invariant the data dependence loop invariant generation
algorithm is run on the inner loop for each iteration of the outer loop. We do not use the
postcondition during the loop invariant generation process, so we simply take the formula
true as postcondition.

Example 6.1.1. Listing 6.1, shows an imperfect nest of loops with the assumption that
the array object is not null and no access happens outside of the array bounds. After the
first unwind of the outer loop (line 2) and symbolically executing its body, we reach the
inner loop (line 4). The sequent used as input for the algorithm to generate the inner
loop invariant is:

a.length ≥ N - 1,a[0].length ≥ M - 1,a ̸ .= null,

i .
= 0,j .

= 0,noDep(a[0..a.length-1][0..a[0].length-1]),i < N =⇒

[while (j<M) { a[i][j] = a[i][j]+1; j++;}] true .

The generated loop invariant for the inner loop is:

noR(a[i..a.length-1][j..a[0].length-1]) ∧
noW(a[i..a.length-1][j..a[0].length-1]) ∧
noRaW(a[0..a.length-1][0..a[0].length-1]) ∧
noWaW(a[0..a.length-1][0..a[0].length-1]) ∧
i .
= 0 ∧ i < N ∧ 0 ≤ j ≤ M ∧

a ̸ .= null ∧ a.length ≥ N - 1 ∧ a[0].length ≥ M - 1.

79

6.1.2. Using the Inner Loop Invariant

After computation of the inner loop invariant LIinner , we return to the generation of the
outer loop invariant where symbolic execution stopped at the beginning of the inner loop.
Using LIinner, we apply the loop invariant rule loop_inv (see Section 2.1.3) on the inner
loop. The rule splits the proof in three branches. The first two premises ensure correctness
of the loop invariant, which we can safely ignore, because our approach guarantees the
generation of correct loop invariants.2 We continue on the branch opened by the third
premise, called use case, where symbolic execution commences with the first statement
after the inner loop.

Example 6.1.2. Continuing Example 6.1.1, the use case branch of rule loop_inv is

{u}{v}
(︁
noR(a[i..a.length-1][j..a[0].length-1]) ∧

noW(a[i..a.length-1][j..a[0].length-1]) ∧

noRaW(a[0..a.length-1][0..a[0].length-1]) ∧

noWaW(a[0..a.length-1][0..a[0].length-1]) ∧

i .
= 0 ∧ i < N ∧ a ̸ .= null ∧ a.length ≥ N - 1 ∧ a[0].length ≥ M - 1 ∧

j .
= M

)︁
=⇒ {u}{v}[i++;] true

where v is an anonymizing update.
Conjunction of 0 ≤ j ≤ M from the inner loop invariant, and j ≥ M negation of the inner
loop guard results in j .

= M.

As mentioned in Section 2.1.3, application of the loop invariant rule requires to use an
anonymizing update v to “forget” the part of the pre-state that might have been changed in
the loop. Anonymizing the values of program variables and object fields possibly modified
by the loop is done by assigning them a fixed but unknown value. Technically, this is
achieved by introducing fresh Skolem constants (for details see [32]).

In the data dependence program logic, however, simply anonymizing the values of
memory locations is insufficient, because the loop potentially also performs memory
accesses. Hence, the anonymizing update v has to anonymize these accesses as well.
Anonymizing memory accesses differs from anonymizing the memory state, because
accesses are not recorded as a value of a variable, but represented by memory access
updates. The idea is to introduce an anonymizing memory access updates that represents
an unknown sequence of arbitrary read or write memory accesses (including possibly no
2Even otherwise, they could be ignored, because they are checked once the outer loop invariant is available.

80

access). In the next two sections we lay out the theoretical foundations for anonymizing
memory access updates.

6.2. Anonymization of Memory Access Updates

We introduce an anonymizing memory access update that represents an unknown sequence
of arbitrary read or write memory accesses on an unknown set of memory locations.

6.2.1. Syntax and Semantics

For defining the semantics of anonymized memory access updates, we need a helper
function:

Definition 6.2.1 (Sequence of anonymized memory accesses updates). The function
anonAcc : ZZ→ MemoryAccess∗ gives a sequence of (possibly empty) unknown memory
accesses for the specified length.

We can now define syntax and semantics of anonymized memory access updates.

Definition 6.2.2 (Anonymized memory access update). An anonymized memory access
update is defined by extension of the update grammar rule:

⟨update⟩ ::= …| \anonAcc‘(’⟨term⟩‘)’

where the argument term is of type int. Its semantics is

valK,s,β(\anonAcc(id)) = s′ where s′ = (σ,Acc′) with s = (σ,Acc) and
Acc′ = Acc ◦ anonAcc(valK,s,β(id))

To use anonymizing memory updates in the calculus (see next section), we need to be
able to find out the length of an anonymized sequence of memory access updates.

Definition 6.2.3 (Length of anonymized sequence of memory accesses updates). The
length of a sequence of anonymized memory access updates is given by anonLength :
int→ int. Let id denote a term of type int, then

valK,s,β(anonLength(id)) = n where anonAcc(valK,s,β(id)) = acc1 ◦ · · · ◦ accn

81

Example 6.2.1. For the sequent in Example 6.1.2 the anonymizing update v is specified
as

v := v′ || \anonAcc(id)
where v′ takes care of anonymizing the program variables and array content (for details
see [32]) and id is a fresh Skolem constant of type int.

As before, to enable shifting (“priming”), we need an update to compute the strongest
postcondition in presence of an unknown sequence of memory accesses.

Definition 6.2.4 (Renamed anonymized memory access update). The syntax of a renamed
anonymized memory access update is:

⟨update⟩ ::= …| \anonAcc′‘(’⟨term⟩‘)’

where the argument term is of type int and the semantics is as follows:

valK,s,β(\anonAcc′(id)) = s′ where s′ = (σ,Acc′) with s = (σ, acc1 ◦ · · · ◦ accn) and

Acc′ =

{︃
acc1 ◦ · · · ◦ accn−valK,s,β(anonLength(id)), if valK,s,β(anonLength(id)) < n

ε , otherwise }

Example 6.2.2. Our approach generates the following data dependence invariant for the
outer loop in Listing 6.1

noR(a[i..a.length-1][0..a[0].length-1]) ∧
noW(a[i..a.length-1][0..a[0].length-1]) ∧
noRaW(a[0..a.length-1][0..a[0].length-1]) ∧
noWaW(a[0..a.length-1][0..a[0].length-1]) ∧
0 ≤ i ≤ N ∧ 0 ≤ j ≤ M ∧
a ̸ .= null ∧ a.length ≥ N - 1 ∧ a[0].length ≥ M - 1.

6.2.2. Update Application Rules

A selection of the rules for the new update kinds \anonAcc(id) and \anonAcc′(id) is
shown in Figure 6.1. We explain them briefly below.

• Rule shiftAnonAcc, like previous shifting rules, achieves shifting for anonymized
memory access updates, i.e. it replaces all formulas in the sequent by their strongest
postcondition. In contrast to the previous shifting rules, it does not add information
on the memory locations accessed in the anonymized update, because these are
unknown.

82

shiftAnonAcc
{\anonAcc′(id)}Γ =⇒ φ, {\anonAcc′(id)}∆

Γ =⇒ {\anonAcc(id)}φ,∆

anonAccApp
{\anonAcc(id)}noRHist(loc, lb)⇝
noRHist({\anonAcc(id)}loc, {\anonAcc(id)}i− anonLength(id))

renamedAnonAccApp
{\anonAcc′(id)}noRHist(loc, lb)⇝
noRHist({\anonAcc′(id)}loc, {\anonAcc′(id)}i+ anonLength(id))

Figure 6.1.: A selection of calculus rules for (renamed) anonymized memory access
update

• Rule anonAccApp applies the anonymized memory access update \anonAcc(id)
to a formula noRHist(loc, lb), which expresses that there was no read on any
location in ls, except possibly for the preceding i accesses. Applying the update
modifies the number of preceding accesses to the shorter sequence of accesses in
the pre-state. This means instead of going back i steps, we only need to go back
lb− anonLength(id) steps.

• On the other hand, we have rule renamedAnonAccApp for a renaming update
\anonAcc′(id), but instead of decreasing the number of steps going back, we need to
increase them by the number of the memory accesses represented by the anonymized
update.

6.3. Anonymization of a Sequence of Memory Access Updates

The anonymizing memory access update \anonAcc(id) is insufficient for analyzing inter-
iteration data dependences as it abstracts away from location sets. Hence, we need to go
a step further and introduce an anonymizing memory access update that is sufficiently
equipped for analyzing inter-iteration data dependences with high precision.

83

6.3.1. Syntax and Semantics

Similar to anonymization of memory access updates, for defining the semantics of
anonymized sequence of memory access updates, we need a helper function:

Definition 6.3.1 (Sequence of sequence of anonymized memory accesses updates). The
function ˆ︂anonAcc : ZZ → SequenceOfMemoryAccess∗ gives a sequence of sequence of
(possibly empty) memory accesses for the specified length.

We extend Definition 5.2.2 to contain all the location sets that are read in multiple array
iterations.

Definition 6.3.2 (Extended projection). For itrSeq = ˆ︂acci ⃝ . . .⃝ ˆ︂accj the extended
projection function is defined as

⏐↓
R
(itrSeq) :=

j⋃︂
k=i

nk⋃︂
l=1

{ls(k,l) | ˆ︂acck = acc(k,1) ◦ . . . ◦ acc(k,nk) and

acc(k,l) = ⟨Read(ls(k,l))⟩}

collects all memory locations read in loop iterations i to j. We extend the write projection
function analogously:

⏐↓
W
(itrSeq) :=

j⋃︂
k=i

nk⋃︂
l=1

{ls(k,l) | ˆ︂acck = acc(k,1) ◦ . . . ◦ acc(k,nk) and

acc(k,l) = ⟨Write(ls(k,l))⟩}.

Using the anonymized sequence of memory access updates and the extended projection
functions, we can define syntax and semantics of anonymized sequence of sequences of
memory access updates.

Definition 6.3.3 (Anonymized sequence of sequences of memory access update). An
anonymized sequence of sequences of memory access update is defined by extension of the
update grammar rule:

⟨update⟩ ::= …| ˆ︂\anonAcc ‘(’⟨term⟩, ⟨term⟩, ⟨term⟩‘)’

84

where the first two arguments are of type LocSet and the third term is of type int. Its
semantics is as follows:

valK,s,β(ˆ︂\anonAcc(rLocs, wLocs, id)) = s′ where s′ = (σ, ˆ︂Acc′) with s = (σ, ˆ︂Acc),ˆ︂Acc′ = ˆ︂Acc⃝ ˆ︂anonAcc(valK,s,β(id)),

rLocs =
⏐↓
R

ˆ︂anonAcc(valK,s,β(id)), and

wLocs =
⏐↓
W

ˆ︂anonAcc(valK,s,β(id)).

To use ˆ︂\anonAcc in the calculus (see next section), we need to be able to find out the
length of an anonymized sequence of sequence of memory access updates.

Definition 6.3.4 (Length of anonymized sequence of sequence of memory accesses up-
dates). The length of anonymized sequence of sequence memory accesses updates is given
by ˆ︂anonLength : int→ int. Let id denote a term of type int, then

valK,s,β(ˆ︂anonLength(id)) = n where valK,s,β(ˆ︂\anonAcc(id)) = ˆ︂acc1⃝ . . .⃝ ˆ︂accn
Example 6.3.1. For the sequent in Example 6.1.2 the anonymizing update v is specified
as

v := v′ || ˆ︂\anonAcc(id)
where id is a fresh Skolem constant of type int and v′ takes care of anonymizing the
program variables and array content (for details see [32]).

As before, to enable shifting (“priming”), we need an update to compute the strongest
postcondition in presence of an unknown sequence of sequences of memory accesses.

Definition 6.3.5 (Renamed anonymized sequence of sequences of memory access update).
The syntax of a renamed anonymized memory access update is:

⟨update⟩ ::= …| ˆ︂\anonAcc′ ‘(’⟨term⟩, ⟨term⟩, ⟨term⟩‘)’

where the first two arguments are terms of type LocSet the last argument term is of
type int and the semantics is as follows:

valK,s,β(ˆ︂\anonAcc′(rLocs, wLocs, id)) = s′ = (σ, ˆ︂Acc′) with s = (σ, ˆ︂acc1⃝ . . .⃝ ˆ︂accn),
and ˆ︂Acc′ = {︄ ˆ︂acc1⃝ . . .⃝ ˆ︂acc

n−valK,s,β(ˆ︂anonLength(id)), if valK,s,β(
ˆ︂anonLength(id)) < n

ε , otherwise
rLocs =

⏐↓
R
valK,s,β(ˆ︂\anonAcc′(id)), and

wLocs =
⏐↓
W
valK,s,β(ˆ︂\anonAcc′(id)).

85

Example 6.3.2. Our approach generates the following inter-iteration data dependence
invariant for Listing 6.1 under the assumption that the array object is not null and no
access happens outside of the array bounds.

noR(a[i..a.length-1][0..a[0].length-1]) ∧
noW(a[i..a.length-1][0..a[0].length-1]) ∧
ˆ︂noRaW(a[0..a.length-1][0..a[0].length-1]) ∧
ˆ︂noWaR(a[0..a.length-1][0..a[0].length-1]) ∧
ˆ︂noWaW(a[0..a.length-1][0..a[0].length-1]) ∧
0 ≤ i ≤ N ∧ a ̸ .= null ∧ a.length ≥ N - 1 ∧ a[0].length ≥ M - 1.

6.3.2. Update Application Rules

A selection of the rules for the new update kinds ˆ︂\anonAcc(rLocs, wLocs, id) and
ˆ︂\anonAcc′(rLocs, wLocs, id) is shown in Figure 6.2. We explain them briefly below.

• Rule shiftItrAnonAcc, like other shifting rules, realizes shifting for a anonymized
sequence of memory access updates, i.e. it replaces all formulas in the sequent by
their strongest postcondition. Similar to shiftAnonAcc, it does not add information
on the memory locations accessed in the sequence of anonymized updates, as these
are unknown.

• Rule itrAnonAccApp applies anonymized sequence of memory access updates
ˆ︂\anonAcc(rLocs, wLocs, id) to formula ˆ︂noRaW(ls, rLs,wLs, futRLs), which expresses

that there is no read-after-write data dependence on any location in ls, at the current
iteration location sets rLs and wLs are read and written, respectively. Processed
loop iterations up to now have read futRLs. The update has to be applied on all
arguments to keep the soundness. Location sets rLocs and wLocs are added to the
location sets rLs and wLs that are read and written in the current iteration of the
loop.

• Rule itrAnonAccAppOnHist applies the anonymized sequence of memory access
updates to a formula ˆ︂noRHist(loc, lb), which expresses that there was no read
on any location in loc, except possibly for the preceding lb iterations. Applying
the update modifies the number of preceding iterations to a shorter sequence in
the pre-state. This means instead of going back lb iterations, we only need to go
back lb+ anonLength(id) iterations.

86

• Rule renamedItrAnonAccApp acts opposite of rule itrAnonAccApp by eliminat-
ing rLocs and wLocs from location sets rLs and wLs.

• Rule renamedItrAnonAccAppOnHist has an opposite effect of itrAnonAccAppOnHist,
instead of decreasing the number of steps going back we need to increase them by
the number of iterations represented by anonLength(id).

Still the Theorem 3.4.1 and subsequently Corollary 3.4.1 hold.

87

shiftItrAnonAcc
{ ˆ︂\anonAcc′(rLocs, wLocs, id)}Γ =⇒ φ, { ˆ︂\anonAcc′(rLocs, wLocs, id)}∆

Γ =⇒ { ˆ︂\anonAcc(rLocs, wLocs, id)}φ,∆

itrAnonAccApp

{ ˆ︂\anonAcc(id)}ˆ︂noRaW(ls, rLs,wLs, futRLs)⇝
ˆ︂noRaW({ ˆ︂\anonAcc(rLocs, wLocs, id)}ls, ({ ˆ︂\anonAcc(rLocs, wLocs, id)}rLs) ∪ rLocs,

({ ˆ︂\anonAcc(rLocs, wLocs, id)}wLs) ∪ wLocs, futRLs)

itrAnonAccAppOnHist

{ ˆ︂\anonAcc(id)} ˆ︂noRHist(loc, lb)⇝
ˆ︂noRHist({ ˆ︂\anonAcc(rLocs, wLocs, id)}loc,

({ ˆ︂\anonAcc(rLocs, wLocs, id)}lb)− ˆ︂anonLength(id))

renamedItrAnonAccApp

{ ˆ︂\anonAcc′(rLocs, wLocs, id)}ˆ︂noRaW(ls, rLs,wLs, futRLs)⇝
ˆ︂noRaW({ ˆ︂\anonAcc′(rLocs, wLocs, id)}ls, ({ ˆ︂\anonAcc′(rLocs, wLocs, id)}rLs) \ rLocs,

({ ˆ︂\anonAcc′(rLocs, wLocs, id)}wLs \ wLocs, futRLs)

renamedItrAnonAccAppOnHist

{ ˆ︂\anonAcc′(id)} ˆ︂noRHist(loc, lb)⇝
ˆ︂noRHist({ ˆ︂\anonAcc′(rLocs, wLocs, id)}loc,

({ ˆ︂\anonAcc′(rLocs, wLocs, id)}lb) + ˆ︂anonLength(id))

Figure 6.2.: A selection of calculus rules for (renamed) anonymized sequence of memory
access updates application

88

7. Multi-Dimensional Arrays

On the theoretical side there is no major difference between one- and multi-dimensional
arrays. In Java, multi-dimensional arrays are defined as an array of arrays. The general
shape can be complex (see Figure 7.2a). Our application area HPC (and many others)
use mostly two dimensional arrays to describe matrices, hence, it proves advantageous
to provide means to represent the location set of such matrix-like arrays for this more
specific form.

Section 7.1 extends the theory of location sets by a constructor that describes rectangular
array shapes. This allows us to achieve a higher degree of automation when reasoning over
matrix arrays in comparison to describing them using general location set functions. In
Section 7.2 we develop sequent calculus rules to realize the extension to theory of location
sets theory. In the end, in Section 7.3, we briefly mention how the prover chooses which
rule has to be applied, as this is one of the challenging aspects of the implementation.

7.1. Syntax and Semantics

We define the constructor for rectangular shaped array as a definitional extension of
infinite union infiniteUnion{x} [32].

The function symbol infiniteUnion{T x}(t) is defined as a variable binding func-
tion that binds variable x in t. Intuitively, when t is of type LocSet it represents the
mathematical set

⋃︁
x t. We define it formally based on definitions in [32].

Definition 7.1.1 (Infinite union). Infinite union is a function with the following signature:

infiniteUnion{T x} : LocSet→ LocSet

where T x is a variable of type T . The semantics is defined as follows:

valK,s,β(infiniteUnion{T x}(t)) =
⋃︂
a∈DT

valK,s,βa
x
(t).

89

Example 7.1.1. Infinite union is sufficiently expressive to describe a variety of loca-
tion sets. For example, we can define arrayRange(a,low,high) for an array a as
infiniteUnion{int x}(if (low ≤ x ∧ x ≤ high) then (a[x]) else (empty))

The infinite union can be used to describe the memory locations for an arbitrary multi-
dimensional array of any shape and in particular also for rectangular shaped arrays. But
the expressive power, comes with high automation costs.

Hence, we introduce a function symbol (constructor) similar to arrayRange [32] to
represent memory locations of a two-dimensional array restricted to rectangular form.

For a rectangular shaped two-dimensional array a location sets take the form of finite
unions of contiguous segments a[i..j][k..l].These must be generalized to finite unions of
N -dimensional rectangles: a[i1..j1] . . . [iN ..jN].

We only focus on two-dimensional rectangular shaped arrays, here. The extension to
the N -dimensional rectangular shaped arrays is straightforward.

Definition 7.1.2 (Matrix range). Matrix range is a function with the following signature:

matrixRange : Heap× Object× int× int× int× int→ LocSet.

matrixRange(heap,matrix, rowL, rowH, colL, colH) is the union of all the array ranges
it is referencing:

matrixRange(heap,matrix, rowL, rowH, colL, colH) :=

infiniteUnion{int rowI; }(
if (rowI ≥ rowL ∧ rowI ≤ rowH)

then (arrayRange(select(heap,matrix,arr(rowI)), colL, colH))

else (empty))

In matrixRange(heap,matrix, rowL, rowH, colL, colH), if the lower bound of rows
rowL (columns colL) is less than or equal to the upper bound of rows rowH (columns
colH) then it is describing memory locations of a two-dimensional array. Otherwise, it is
the empty location set.

Example 7.1.2. In Figure 7.1, matrixRange(heap,a,i,j,k,l) is a rectangular shaped
sub-array of the two-dimensional array a[0..N][0..M] with 0 ≤i ≤j ≤N and
0 ≤k ≤l ≤M.

Multi-dimensional Java arrays are modeled as a one-dimensional arrays with references
to other one-dimensional array. A multi-dimensional array does not need to have arrays

90

0

N

M

k l
i

j

Figure 7.1.: Two-dimensional rectangular shaped array a[0..N][0..M] and rectangular
shaped sub-array of it described by matrixRange(heap,a,i,j,k,l)

0

1

2

3

4

null

(a) A two-dimensional Java array
(b) A two-dimensional array constructed by

matrixRange

Figure 7.2.: Different Java arrays

of the same length at each level [41]. The referenced arrays can be the same objects, or
null. Figure 7.2a shows an example of a two-dimensional Java array. In Figure 7.2a,
array elements at index 0 and 2 are referencing to two different one-dimensional arrays
with different length. Elements 0 and 1 both are referencing to the same array (aliasing).
Array element 3 is not referencing to any array and element 4 is self-referencing. Figure
7.2b shows a rectangular shaped two-dimensional array, constructed by matrixRange.

As mentioned before in HPC and many other application scenarios two-dimensional
arrays are used to describe matrices and could be described by our matrixRange func-
tion. But as Java arrays in general are more complex, for instance they can have a
non-rectangular shape (7.2a), we need to specify explicitly if an array adheres to the
rectangular shape so that we can use matrixRange. For example, for having a rectan-
gular all the rows should have the same length a[0].length. Therefor, we introduce
predicate symbol wellFormedMatrix, defined as follows:

Definition 7.1.3 (Well-formed matrix predicate). The syntax of well-formed matrix predi-

91

cate is symbol with the following syntax:

wellFormedMatrix : Heap× Object.

The predicate wellFormedMatrix(heap, matrix) is defined as follows:

• matrix ̸= null,

• ∀ row; select(heap,matrix,arr(row)) ̸= null,

• ∀ row1; ∀ row2;

length(select(heap,matrix,arr(row1))) =

length(select(heap,matrix,arr(row2))),

• ∀ row; matrix ̸= select(heap,matrix,arr(row)),

• ∀ row1; ∀ row2; (row1 ̸= row2) →

select(heap,matrix,arr(row1)) ̸= select(heap,matrix,arr(row2)),

• ∀ matrix2; (matrix ̸= matrix2) → ∀ row; ∀ row2;

select(heap,matrix,arr(row)) ̸= select(heap,matrix2,arr(row2)).

The first three properties are describing the rectangular shape of a matrix and the rest
help to exclude sharing while proving.

The assumptions about the rectangular shape of the matrix make the automation of
simplification rules easier.

7.2. Calculus Rules

We define the standard set operations (∪,∩, \,⊂) for matrixRange as well. These
operations are realized through calculus rules. As a result of introducing predicate
symbol matrixRange, we need to define corresponding sequent calculus rules. There
are axiomatic rules for replacing matrixRange and wellFormedMatrix with their
respective definitions. Besides these rules, there are several derived rules that are more
amenable for proof automation. In the following we explain some of these rules.

92

matrixRangeMinusSingleton
matrixRange(heap,matrix, rowL, rowH, colL, colH) \ singleton(o,arr(sCol))
⇝

if (matrix .
= o ∨ sCol < colL ∨ colH < sCol)

then (matrixRange(heap,matrix, rowL, rowH, colL, colH))

else (if (∃k; k ≥ rowL ∧ k ≤ rowH ∧ o = select(heap,matrix,arr(k)))
then (matrixRange(heap,matrix, rowL, sRow - 1, colL, colH) ∪

matrixRange(heap,matrix, sRow + 1, rowH, colL, colH) ∪
matrixRange(heap,matrix, sRow, sRow, colL, sCol - 1) ∪
matrixRange(heap,matrix, sRow, sRow, sCol + 1, colH)))

else (matrixRange(heap,matrix, rowL, rowH, colL, colH))

if wellFormedMatrix(matrix, heap) holds, and
sRow is a fresh constant of type int such that(︁
∃k; k ≥ rowL ∧ k ≤ rowH ∧ o = select(heap,matrix,arr(k))

)︁
→

sRow ≥ rowL ∧ sRow ≤ rowH ∧ o = select(heap,matrix,arr(sRow))

RulematrixRangeMinusSingleton formalizes how to reduce the set difference operation
on a matrixRange location set and a singleton location set
(singleton(o,arr(sCol))) under the assumption that thematrix term is a two-dimensional
array that satisfies the well-formedness conditions.

If the singleton location set can be shown to be outside of the matrix range, then the
result is the whole matrix range. This is, for instance, the case when the column index
sCol is outside of the column range of the matrix range, or also for the special case where
o refers to the matrix array. Otherwise, the singleton location set is part of the matrix
range. In this case, there is a row k in the matrix that overlaps with the singleton location
set, the side condition states that this row is sRow. Due to well-formedness of matrix,
sRow is unique. If there is no such row k, then sRow is unspecified. The rule decomposes
the matrix range to four different matrix range location sets (possibly empty) to exclude
the singleton location set. These matrix ranges are shown in Figure 7.3 that are covering
the whole matrix range except the singleton location set. The result is union of these
location sets.

93

matrixRange(heap,matrix, sRow + 1, rowH, colL, colH)

matrixRange(heap,matrix, rowL, sRow - 1, colL, colH)

matrixRange(heap,matrix,
sRow, sRow, colL, sCol - 1)

matrixRange(heap,matrix,
sRow, sRow, sCol + 1, colH)

Figure 7.3.: Matrix range minus singleton

matrixRangeMinusMatrixRange
matrixRange(heap, a, aRowL, aRowH, aColL, aColH) \

matrixRange(heap, b, bRowL, bRowH, bColL, bColH)

⇝

if (a ̸ .= b ∨ bRowH < aRowL ∨ bRowL > aRowH ∨
bColL > aColH ∨ bColH < aColL)

then (matrixRange(heap, a, aRowL, aRowH, aColL, aColH))

else (matrixRange(heap, a, aRowL, bRowL - 1, aColL, aColH) ∪
matrixRange(heap, a, bRowH + 1, aRowH, aColL, aColH) ∪
matrixRange(heap, a, aRowL, aRowH, aColL, bColL - 1) ∪
matrixRange(heap, a, aRowL, aRowH, bColH + 1, aColH)

if wellFormedMatrix(a, heap) holds.

Rule matrixRangeMinusMatrixRange formalizes reducing the set difference operation
on two matrixRange location sets (a and b). The rule is under the assumption that the
two-dimensional array a, which is the first argument of the set difference operation, is
well-formed. If the matrix range b does not have an overlap with a the set difference
results in the whole matrix range a. Similarly, if a and b are different objects they can not
have shared location sets, since a is well-formed. Otherwise, a and b are the same object
and they are overlapping in some location sets. Similar to matrixRangeMinusSingleton,

94

a

b

matrixRange(heap, a, aRowL, bRowL - 1, aColL, aColH)

matrixRange(heap, a, bRowH + 1, aRowH, aColL, aColH)

matrixRange(heap, a, aRowL, aRowH,
aColL, bColL - 1)

matrixRange(heap, a, aRowL, aRowH,
bColH + 1, aColH)

Figure 7.4.: Matrix range minus matrix range

the result of set difference operation is union of four different matrix ranges (possibly
empty) depicted in Figure 7.4.

matrixRangeMinusMatrixRangeSpecialCase
matrixRange(heap,matrix, a1RowL, a1RowH, a1ColL, a1ColH) \

matrixRange(heap,matrix, a2RowL, a2RowH, a2ColL, a2ColH)

⇝

if (a2RowL ≤ a1RowL ∧ a2RowH ≥ a1RowH ∧
a2ColL ≤ a1ColL ∧ a2ColH ≥ a1ColH)

then (empty)
else (matrixRange(heap,matrix, a1RowL, a1RowH, a1ColL, a1ColH) \

matrixRange(heap,matrix, a2RowL, a2RowH, a2ColL, a2ColH))

if wellFormedMatrix(matrix, heap) holds.

Rule matrixRangeMinusMatrixRangeSpecialCase formalizes the set difference oper-
ation for two matrixRange of the same array object. The assumption is that two-
dimensional array matrix is well-formed. If the second argument is covering a bigger
range than the first argument, the result is an empty location set. Otherwise, the set
difference operation is carried on as usual.

Still the Theorem 3.4.1 and subsequently Corollary 3.4.1 hold. As an example we
provide the proof for rule matrixRangeMinusSingleton in Appendix C.7.

95

7.3. Proof Search Strategy

At different states in the proof, there is a subset of rules that are applicable, and one of
them must be chosen. A proof search strategy implements how the choice takes place.

Proof search strategy in KeY is defined as a weighted cost function of a feature vector.
Each taclet can have one or multiple features. The cost of applying a taclet in a proof state
is a function (e.g. sum) of the costs associated with its features. When multiple taclets
are applicable, the taclet with the least application cost is applied. Features turn syntactic
criteria of the current proof state into a cost.

To reason effectively and efficiently within the theory presented in this thesis, several
features are defined for guiding the proof search. One of these features that focuses is
on reasoning about location sets is covered. Sub-arrays of two-dimensional arrays are
described by set operations over the matrixRange location set constructor. Several of
the provided simplification rules for computing the difference or intersection of these
matrix ranges are only applicable under certain conditions, like one range contained in
the other or existence of some overlapping area.

Generally, showing these conditions requires performing proof, but often this can also
be determined on a purely syntactical basis using features like covered that allows safe
guesses on two values expressed as polynomials.
Rule matrixRangeMinusMatrixRangeSpecialCase uses covered feature to measure the
existence of such an overlap by comparing the involved indices. The “success” case of the
rule is when the condition holds. If the indices are expressed as polynomials, checking
the condition can sometimes be done syntactically. Hence, the proof search strategy was
equipped with features covered that if they can determine that the indices are in the
expected order, the rule is assigned a finite cost, while otherwise the feature will assign
infinite cost, effectively preventing the rule to be applied (resulting in avoiding the useless
“unsuccessful” branch of the conditional term to be taken).

96

8. Experimental Results

We have implemented a prototype of our data dependence analysis approach using the
KeY deductive verifier and tackled the following challenges:

• extending the core logic to support data dependences by new update types and
non-rigid predicates;

• adding several lemmas for dealing with location sets (singletons, array ranges, and
matrices); and

• adapting the proof search strategy by defining new features.

Like the majority of HPC applications, we focus on loops over arrays and matrices. This
chapter shows the result of our analysis for single loops and nested loops in Sections 8.1
and 8.2 , respectively. Test cases in this are inspired by well-known HPC test suites such as
Polybench [59] and NAS[60]. We focus on the computation intensive parts of test cases
from theses test suits. The result shows that our approach is highly precise.

We have conducted our experiments on a computer with a Core i7-8750H CPU @ 2.2
GHz, 6 Cores (12 Logical Processors). The number of processors does not affect the
performance of KeY as it is not parallelized. 2 GB memory is allocated to KeY. For each
proof, the timeout is set on 5 seconds. The maximum number of steps per proof is 5000,
unless it is stated otherwise. Proofs include generating abstract predicates and conducting
symbolic execution.

8.1. Single Loops

In the following test cases the precondition is:

noDep(a[0..a.length-1]) ∧ a ̸ .= null ∧ a.length > N.

Predicate noDep(a[0..a.length-1]) helps to focus on the isolated loop, since the data
dependence history before encountering a loop is usually irrelevant for loop parallelization.
Knowing the length of array (a.length > N) prevents out of bounds array accesses. The
post condition is set to true and expresses reachability.

97

noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
ˆ︂noRaW(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaR(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty)

a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.1.: Loop invariants for Listing 8.1

8.1.1. Test Cases

Array Increase

Listing 8.1 increases the value of array elements by one. There is only one type of data
dependence present in this loop: an intra-iteration WaR.

while (i <= N) {
a[i] = a[i] + 1;
i = i + 1;

}

Listing 8.1: Array increase

Figure 8.1a shows the generated loop invariant. It is fully precise and correctly captures
the intra-iteration WaR data dependence.

Since the WaR data dependence is an intra-iteration data dependence, it is allowed in
the inter-iteration loop invariant. Figure 8.1b shows the fully precise inter-iteration loop
invariant.

Array Access with a Function Call

In Listing 8.2, function f takes an integer as argument. We assume that function f is
deterministic and pure. Meaning that it only depends on the value of its argument and it

98

noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
ˆ︂noRaW(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaR(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.2.: Loop invariants for Listing 8.2

does not modify the heap. Therefore, function f does not read or write the array elements.
Therefore, the generated loop invariants in Figures 8.2 are the same as the invariants
generated for Listing 8.1.

i = 0;
while (i <= N) {

a[i] = f(a[i]);
i=i+1;

}

Listing 8.2: Array access with a Function

Intra-iteration Data Dependence

Similar to Listing 8.1, in Listing 8.3 there is a WaR data dependence on all elements of
array a. In addition, there is a read in line 5 following the write in line 4, which together
they form a RaW data dependence. The result is shown in Figure 8.3a and it is correctly
excluding predicates noWaR and noRaW from the loop invariant.

Since both of the data dependence in Listing 8.3 are intra-iteration data dependences,
they are both ignored by the inter-iteration loop invariant in Figure 8.3b.

99

1 i = 0;
2 sum = 0;
3 while (i <= N) {
4 a[i] = a[i] + 1;
5 sum = sum + a[i];
6 i = i + 1;
7 }

Listing 8.3: Intra-iteration data dependence

noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
ˆ︂noRaW(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaR(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.3.: Loop invariants for Listing 8.3

100

noR(a[0] ∪ a[i+1..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
noRaW(a[0..a.length-2]) ∧ noWaW(a[0..a.length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(a) Loop invariant
noR(a[0] ∪ a[i+1..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
ˆ︂noRaW(a[0..a.length-2],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-2],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.4.: Loop invariants for Listing 8.4

Inter-Iteration Data Dependence

In Listing 8.4 there is WaR data dependence on all the elements of array a except a[0] as
it is never read. The generated loop invariant is shown in Figure 8.4a.

i = 0;
while (i <= N-1) {

a[i] = a[i+1];
i=i+1;

}

Listing 8.4: Inter-iteration data dependence

As this data dependence is an inter-iteration data dependence, it is taken into account
by the inter-iteration loop invariant in Figure 8.4b as well.

Inter- and Intra-Iteration Data Dependences

Similar to Listing 8.4, in Listing 8.5 there is a WaR data dependence. In addition, there
is a read in line 5 after the write in line 4 which together form a RaW data dependence.
Both data dependences are captured during the loop invariant generation process and the
result is shown in Figure 8.5a.

As the RaW data dependence is an intra-iteration one, it is ignored by the inter-iteration
loop invariant in Figure 8.5b.

101

1 i = 0;
2 sum = 0;
3 while (i <= N-1) {
4 a[i] = a[i+1];
5 sum = sum + a[i];
6 i=i+1;
7 }

Listing 8.5: Inter- and intra-iteration data dependences

noR(a[i+1..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
noWaW(a[0..a.length-2])

a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(a) Loop invariant

noR(a[i+1..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
ˆ︂noRaW(a[0..a.length-2],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-2],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.5.: Loop invariants for Listing 8.5

Although both loop invariants capture the data dependences precisely, they miss the
predicate noR(a[0]), due to the heuristic used for generating sub-arrays. Loosing the
full precision is undesirable, but it does not harm the data dependence analysis goal in
this testcase.

Conditional

In Listing 8.6, as mentioned in Subsection 2.4.3, when the symbolic execution engine
reaches the if-then-else, it splits the proof into two branches. To represent both proof
branches within a single loop invariant we join them using the symbolic state merging
framework [57]. In both proof branches elements of array a are written, but there is
no WaW data dependence on them. In addition, since elements of array a are not read
there can not be any RaW or WaR data dependence on them. Figure 8.6 includes loop
invariants generated for Listing 8.6.

Conditional with Different Number Of Memory Accesses in Different Branches

In Listing 8.7, there are different numbers of memory accesses in the if-then-else branches.
While the if-clause causes a WaR data dependence, the else-clause only writes on the

102

i = 0;
while (i <= N) {

if(i > N/2)
a[i] = 1;

else
a[i] = 0;

i=i+1;
}

Listing 8.6: Conditional write on array elements

noR(a[0..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noR(a[0..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.6.: Loop invariants for Listing 8.6

103

noR(a[i..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
noRaW(a[0..a.length-2]) ∧ noWaW(a[0..a.length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(a) Loop invariant
noR(a[0]) ∧ noW(a[i..N]) ∧
ˆ︂noRaW(a[0..a.length-2],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-2],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.7.: Loop invariants for Listing 8.7

array elements. Differences between the two branches do not cause a loss of precision in
the generated loop invariants in Figure 8.7a.

i = 0;
while (i < N) {

if(i > N/2)
a[i] = a[i+1];

else
a[i] = 0;

i=i+1;
}

Listing 8.7: Conditional with different number of accesses in different branches

Since the WaR data dependence, it is correctly captured by the inter-iteration loop
invariant in Figure 8.7b.

Both loop invariants capture the data dependences precisely, but they miss the predicate
noR(a[0]), due to the heuristic used for generating sub-arrays. This loss of precision
does not harm the data dependence analysis goal.

Conditional with Similar Data Dependences in Different Branches

Listing 8.8, there is WaR data dependence in both branches. The WaR data dependence
caused by the if-branch is an inter-iteration data dependence (unlike the one in the

104

noR(a[i+1..N-1]) ∧ noW(a[i..N-1]) ∧
noRaW(a[0..N-1]) ∧ noWaW(a[0..N-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(a) Loop invariant
noR(a[i+1..N-1]) ∧ noW(a[0] ∪ a[i..N-1]) ∧
ˆ︂noRaW(a[0..N-1],empty,empty,empty) ∧
ˆ︂noWaW(a[0..N-1],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.8.: Loop invariants for Listing 8.8

else-branch) and it is captured by the inter-iteration loop invariant. Loop invariants for
Listing 8.8 are shown in Figure 8.8.

i = 0;
while (i <= N-1) {

if(i > N/2)
a[i] = a[i+1];

else
a[i] = a[i] + 1;

i=i+1;
}

Listing 8.8: Conditional with similar data dependences in different branches

Conditional with Different Kind of Data Dependences in Different Branches

In Listing 8.9, the first half of the array is shifted to the right and the second half is shifted
to the left. Therefore, there is RaW data dependence on the first half and WaR data
dependence on the second half. The generated loop invariant is shown in Figure 8.9a over-
approximates both of the data dependences over the whole array. This over-approximation
is due to the adoption of the merge technique [57]. Since both of the data dependences
are inter-iteration they are allowed in the inter-iteration loop invariant in Figure 8.9b.

105

i = 1;
while (i <= N-1) {

if(i > N)/2)
a[i] = a[i+1];

else
a[i] = a[i-1];

i=i+1;
}

Listing 8.9: Conditional with different kind of data dependences in different branches

noR(a[i+1..a.length-2]) ∧ noW(a[0] ∪ a[i..a.length-2]) ∧
noWaW(a[0..a.length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 1 ∧ i ≤ N

(a) Loop invariant
noR(a[i+1..a.length-2]) ∧ noW(a[0] ∪ a[i..a.length-2]) ∧
ˆ︂noWaW(a[0..a.length-2],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 1 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.9.: Loop invariants for Listing 8.9

106

noR(a[0] ∪ a[i+1..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noR(a[0] ∪ a[i+1..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
ˆ︂noRaW(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.10.: Loop invariants for Listing 8.10

Inter-iteration Data Dependence with Abrupt Termination

In Listing 8.10, array elements are shifted to the left. The generated loop invariants in
Figure 8.10 show that our approach can deal with abrupt termination of loops.

i = 0;
while (i <= N) {

if(i == N)
break;

else
a[i] = a[i+1];

i=i+1;
}

Listing 8.10: Array shift program with abrupt termination

Stencil

Stencil programs are a subset of HPC applications that involves repeatedly updating
elements of arrays according to fixed patterns which is usually a function of neighboring
elements.

Listing 8.11 is an example of a stencil over a one-dimensional array where elements
value depend on their neighboring elements.

107

i = 1;
while (i < N) {

a[i] = a[i-1] + a[i+1];
i = i + 1;

}

Listing 8.11: A stencil over a one-dimensional array

noR(a[i+1..a.length-2]) ∧ noW(a[i..a.length-2]) ∧
noWaW(a[0..a.length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N

(a) Loop invariant
noR(a[i+1..a.length-2]) ∧
noW(a[0] ∪ a[i..a.length-1]) ∧
ˆ︂noWaW(a[0..a.length-2],empty,empty)

a ̸ .= null ∧ a.length > N ∧ i ≥ 1 ∧ i ≤ N

(b) Inter-iteration loop invariant

Figure 8.11.: Loop invariants for Listing 8.11

108

Non-linear Array Index

This experiment shows that our approach is capable of analyzing loops over arrays with
non-linear indices.

In Listing 8.12 there is intra-iteration WaR data dependence on array elements a[0]
and a[1].

while (i <= N) {
a[i] = a[i^2];
i = i + 1;

}
Listing 8.12: Non-affine array access

Figure 8.12a shows the generated loop invariant. Predicate noW(a[i..a.length-1])
stating that from i onward no array elements is written, implies that there are no data
dependence on a[i..a.length-1]. Although sound, this result is not precise enough.
A precise result would also include:

noWaR(a[2..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧
noWaW(a[0..a.length-1]).

The inter-iteration data dependence loop invariant is shown in Figure 8.12b. With
covering ˆ︂noWaW(a[0..a.length-1],empty,empty) it is more precise than the loop
invariant in Figure 8.12a, but it lacks the following predicate to be fully precise:

ˆ︂noWaR(a[0..a.length-1],empty,empty,empty) ∧
ˆ︂noRaW(a[0..a.length-1],empty,empty,empty).

8.1.2. Evaluation

Tables 8.1 and 8.2 show the experimental results for our general loop invariant generation
approach and the inter-iteration data dependence loop invariant, respectively. The average
time over three runs is shown in their third columns.

There are different factors affecting the time needed for generating the loop invariant.
For example, the number of iterations that the loop invariant generation algorithm needs
to reach the fixpoint. The fourth columns (No. of Iterations) show this factor. The presence

109

noW(a[i..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(a) Loop invariant
noW(a[i..a.length-1]) ∧
ˆ︂noWaW(a[0..a.length-1],empty,empty)

a ̸ .= null ∧ a.length > N ∧ i ≥ 0 ∧ i ≤ N+1

(b) Inter-iteration loop invariant

Figure 8.12.: Loop invariants for Listing 8.12

of conditionals and complicated array access patterns also affect the time needed for data
dependence loop invariant generation.

The number of proofs for symbolic execution and generating abstract predicates is
shown in the fifth columns (No. of Proofs).

The generated data dependence loop invariant is correct if it does not under-approximate
data dependences, and it is precise if it does not over-approximate. All of the generated
data dependence loop invariants are correct. In presence of conditionals (Listings 8.6 - 8.9)
our approach can lose precision. It is worth noting that the inter-iteration data dependence
loop invariant for Listing 8.6 is precise, as the conditional statement is only affecting the
intra-iteration data dependences.

Our approach loses precision while encountering non-affine array access Listing 8.12)
due to the design of sub-array generation (part of the weakening Algorithm 2). Compared
to the state-of-the-art approaches, we have the advantage of being able to analyze such
programs at all.

8.2. Nested Loops

Similar to Section 8.1, in the following test cases, except for Multiple Arrays in Section
8.2.1, the precondition is:

noDep(a[0..a.length-1]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M.

110

Table 8.1.: Data dependence loop invariant generation for single loops
Test case Precise Time (s) No. of Iterations No. of Proofs
Listing 8.1 ✓ 21.1 3 145
Listing 8.2 ✓ 21.1 3 145
Listing 8.3 ✓ 23.4 3 132
Listing 8.4 ✓ 74.7 4 161
Listing 8.5 ✓ 32.1 3 136
Listing 8.6 × 20.9 3 118
Listing 8.7 × 130.5 4 215
Listing 8.8 × 26.8 3 130
Listing 8.9 × 36.6 4 143
Listing 8.10 ✓ 28.2 3 154
Listing 8.11 ✓ 43.2 3 143
Listing 8.12 × 57.7 3 164

Table 8.2.: Inter-iteration data dependence loop invariant generation for single loops
Test case Precise Time (s) No. of Iterations No. of Proofs
Listing 8.1 ✓ 16.7 3 158
Listing 8.2 ✓ 17.8 3 158
Listing 8.3 ✓ 21.8 3 164
Listing 8.4 ✓ 20.5 4 164
Listing 8.5 ✓ 21.7 3 144
Listing 8.6 ✓ 14.0 3 112
Listing 8.7 × 44.7 3 154
Listing 8.8 × 23.7 3 144
Listing 8.9 × 24.2 3 182
Listing 8.10 ✓ 16.7 3 154
Listing 8.11 ✓ 21.33 3 144
Listing 8.12 × 20.6 4 164

111

noR(a[i..N-1][0..M-1]) ∧ noW(a[0..N-1][0..M-1]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M ∧
i ≥ 0 ∧ i ≤ N ∧ j ≥ 0 ∧ j ≤ M

Figure 8.13.: Loop invariants for Listing 8.13

Our approach demands matrices to have a rectangular shape (see Chapter 7), where the
length of all rows are equal to a[0].length. Predicate a[0].length > M emphasizes
that lower bound of the length of row 0 is known. In this section, we include an imperfect
nest of loops to show that our approach can deal with such cases in opposition to tools
that only handle perfectly nested loops.

At the time of writing this thesis, the implementation of our approach for generating
inter-iteration loop invariants for nested loops is not yet finished. Therefore, this section
only presents the result of implementing our general loop invariant generation for nested
loops.

8.2.1. Test Cases

Read from Matrix

In Listing 8.13, the assumption is that function f is deterministic and pure. As a result,
the loop is only reading the elements of matrix a. Therefore, there is no data dependence
on matrix a. The generated loop invariant in Figure 8.13 states that there is no write on
matrix a which implies that there can not be WaR, RaW, or WaW data dependence on
this matrix.

i = 0;
while (i <= N - 1) {

j = 0;
while (j <= M - 1) {

f(a[i][j]);
j = j+1;

}
i = i+1;

}

Listing 8.13: Nested loop reading from a matrix

112

noR(a[i..a.length-2][0..a[0].length-2]) ∧
noW(a[0..a.length-2][0..a[0].length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M ∧
i ≥ 0 ∧ i ≤ N ∧ j ≥ 0 ∧ j ≤ M

Figure 8.14.: Loop invariants for Listing 8.14

Conditional Read

In Listing 8.14, similar to Listing 8.13, the assumption is that the function f does not
read and write on the elements of matrix a. The loop is only reading the elements of
matrix a when the if-condition holds. The generated loop invariant in Figure 8.14, same
as Figure 8.13, states that there is no write on matrix a. This implies that there can not
be WaR, RaW, or WaW data dependence on matrix a.

i = 0;
while (i <= N - 1) {

j = 0;
while (j <= M - 1) {

if(j < (M/2))
f([i][j]);

j = j+1;
}
i = i+1;

}

Listing 8.14: Conditional read from matrix

Intra-Iteration Data Dependence in the Inner Loop

Listing 8.15 shows a nested loop with intra-iteration WaR data dependence in the inner
loop. The outer loop invariant in Figure 8.15 captures this data dependence and shows
that there is no RaW or WaW data dependence on matrix a. In addition, it shows that at
each iteration i, array elements of row i and onward are not read and are not written.

113

while (i <= N - 1) {
j = 0;
while (j <= M - 1) {

a[i][j] = a[i][j] + 1;
j = j+1;

}
i = i+1;

}

Listing 8.15: Nested loop with intra-iteration WaR data dependence

noR(a[i..a.length-2][0..a[0].length-2]) ∧
noW(a[i..a.length-2][0..a[0].length-2]) ∧
noRaW(a[0..a.length-2][0..a[0].length-2]) ∧
noWaW(a[0..a.length-2][0..a[0].length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M ∧
i ≥ 0 ∧ i ≤ N ∧ j ≥ 0 ∧ j ≤ M

Figure 8.15.: Loop invariants for Listing 8.15

Inter-Iteration Data Dependence in the Inner Loop

In Listing 8.16 there is inter-iteration WaR data dependence in the inner loop. The
generated loop invariant for the outer loop in Figure 8.16 shows that this data dependence
is correctly detected. Predicates about the matrix not being null and its dimensions lower
bounds are preserved by the loop and therefore appear in the loop invariant. In addition,
predicates showing the lower and upper bounds of the loop indices are generated precisely.
In this experiment, the maximum number of steps per proof is 10000.

while (i <= N - 1) {
j = 0;
while (j <= M - 2) {

a[i][j] = a[i][j + 1];
j = j+1;

}
i = i+1;

}

Listing 8.16: Shifting row elements to left

114

noR(a[i..a.length-2][0..a[0].length-2]) ∧
noW(a[i..a.length-2][0..a[0].length-2]) ∧
noRaW(a[0..a.length-2][0..a[0].length-2]) ∧
noWaW(a[0..a.length-2][0..a[0].length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M ∧
i ≥ 0 ∧ i ≤ N ∧
j ≥ 0 ∧ j ≤ M-1

Figure 8.16.: Loop invariants for Listing 8.16

Inter-Iteration Data Dependence in the Outer Loop

In Listing 8.17, there is inter-iteration WaR data dependence in the outer loop. It is
correctly captured by the precise loop invariant generated for the outer loop in Figure 8.17.
In this experiment, the maximum number of steps per proof is 10000.

while (i <= N - 2) {
j = 0;
while (j <= M - 1) {

a[i][j] = a[i+1][j];
j = j+1;

}
i = i+1;

}

Listing 8.17: Shifting matrix rows up

Multiple Arrays

This experiment shows that our approach is capable of dealing with multiple arrays. In
this test case the post condition is true as usual, and the precondition is:

noDep(a[0..a.length-1]) ∧ noDep(b[0..b.length-1])

a ̸ .= null ∧ a.length > N ∧ b ̸ .= null ∧ b.length > M ∧ N .
= M.

Figure 8.18 shows the precise loop invariant generated for Listing 8.18.

115

noR(a[i+1..a.length-2][0..a[0].length-2]) ∧
noW(a[i..a.length-2][0..a[0].length-2]) ∧
noRaW(a[0..a.length-2][0..a[0].length-2]) ∧
noWaW(a[0..a.length-2][0..a[0].length-2]) ∧
a ̸ .= null ∧ a.length > N ∧ a[0].length > M ∧
i ≥ 0 ∧ i ≤ N-1 ∧ j ≥ 0 ∧ j ≤ M

Figure 8.17.: Loop invariants for Listing 8.17

i = 0;
while (i <= N - 1) {

j = 0;
while (j <= M - 1) {

a[i] = b[j];
j = j+1;

}
i = i+1;

}

Listing 8.18: Multiple arrays

noW(a[i..a.length-2]) ∧ noR(b[j..b.length-2]) ∧
noW(b[0..b.length-2]) ∧ noR(a[0..a.length-2]) ∧
a ̸ .= null ∧ a.length > N ∧
b ̸ .= null ∧ b.length > M ∧
N .
= M ∧ i ≥ 0 ∧ i ≤ N ∧ j ≥ 0 ∧ j ≤ M

Figure 8.18.: Loop invariants for Listing 8.18

116

Table 8.3.: Data dependence loop invariant generation results for nested loops
Test case Precise Time (min) No. of Iterations No. of Proofs Proof Steps

Listing 8.13 ✓ 14.7 3 2046 5000
Listing 8.14 × 14.8 3 2046 5000
Listing 8.15 ✓ 37.9 3 2389 10000
Listing 8.16 ✓ 54.4 3 2452 10000
Listing 8.17 ✓ 73.1 3 2769 10000
Listing 8.18 ✓ 0.65 4 333 5000

8.2.2. Evaluation

Table 8.3 shows the result of our experiments with nested loops. All the generated loop
invariants are correct. Except for the loop invariant of Listing 8.14, all the results are
precise. In the generation of loop invariant for Listing 8.14, our approach loses precision
due to the presence of a conditional statement.

Unlike the results for single loops in Table 8.1, which our approach on average takes
around a minute to generate results, it takes several minutes to generate data dependence
loop invariants for nested loops over matrices. This is due to the presence of matrices
rather than nests of loops. As for Listing 8.18, our approach takes less than a minute to
analyze a nested loop over one-dimensional arrays.

Number of iterations that the loop invariant generation algorithm needs to reach the
fixpoint is shown in the fourth column (No. of Iteration). Column No. of Proofs shows the
number of proofs during the loop invariant generation process, and Proof Steps column
shows the maximum number of steps each proof is allowed to take.

8.3. Threats to Validity

Concerning internal threats to validity, there is the question whether our results for Java
can be transferred to C, the prevalent HPC language. This is possible, because the code of
interest in the HPC domain is restricted to loops over arrays with indexed access of an array
element being the sole use of pointer arithmetic. This maps precisely to the dependences
created by array accesses in Java. In fact, the programs used in our experiments were
obtained as a one-to-one model from their C counterparts.

117

Checking correctness of experimental outcomes and their interpretation is straightfor-
ward. Also the outcome, up to minor variations in observed user time, is deterministic.

As data dependence analysis is part of the parallelization process, state-of-the-art tools
do not report statistics of their data dependence analysis approaches separately. Tools
like [61] that report such statistics report it as the number of data dependences found in
the whole program. Therefore, there is no fair chance for a one-to-one comparison here.

The main external threat is the relatively small number and size of performed experi-
ments. However, this threat is mitigated for methodological reasons. The size and number
of code samples required for a representative selection is much smaller than for dynamic
and even for static approaches, because: (i) symbolic execution and the abstract domain
used in dependence invariants are able to detect and to express the desired dependences
by design; (ii) the symbolic approach can analyze small code fragments containing loops
that are the parallelization targets in isolation; (iii) complex functional properties can be
ignored.

Hence, we only need to ensure that the examples are representative for the HPC
application domain and cover to a sufficient degree the phenomena causing over- or
under-approximation in other approaches [10–15, 18, 19, 21, 22, 25, 62, 63]. These are
well-known and discussed in the examples above. In particular, our test cases contain
loops with conditional statements and we have shown that we can maintain correctness,
while dynamic data dependence analysis approaches can under approximate in presence
of conditionals and lead to incorrect results. Besides, our approach supports analyzing
non-linear array indices while dynamic approaches simply can not.

In addition, we need to ensure that our analysis is indeed automatic, as claimed.
We do not claim performance properties of our tool due to the small number of examples

and prototype status of the tool. We stress that we do not need to apply our tool to large
code bases (of thousands of code lines) but can work on isolated code sequences or loops
only. This is sufficient for our application scenario of code parallelization.

118

9. Related Work

Related work to this thesis are mainly categorized into two groups: (i) data dependence
profilers (Section 9.1), and (ii) loop invariant generation (Section 9.2). Section 9.3 covers
a few other topics that are investigating similar problems.

9.1. Data Dependence Profilers

Detecting data dependences in loops is often called data dependence test, or data dependence
profiling. As in most cases loops iterate over arrays, array data dependence test is also
common. Even if dependences are known precisely, which is a special case of reachability
and, therefore, undecidable, the problem is NP-hard [64]. It can be approximated statically,
dynamically, or in a hybrid fashion.

9.1.1. Static

Static auto-parallelizing tools and compilers use static data dependence analysis techniques.
Since they only use information available at compile time they are also called compiler-
based methods. These techniques conservatively over-approximate data dependences
that might not occur at runtime, as often the value of pointers and array indices can not
be resolved at compile time. Reporting false positives can result in lost parallelization
opportunities. Another shortcoming of these techniques and tools developed based on
them is that they are limited to loops with affine linear bounds and array indices [2, 4, 5,
10, 13].

On the other hand, these approaches are sound [8] as they do not miss any data
dependences.

Static dependence analyses [1–9] use several techniques that can be categorized as the
following: (i) systems of linear inequality constraints solved using integer programming [1,
2, 4, 7]; (ii) graph structures like reference trees [5], program dependence graphs [65,
66]; (iii) renaming [3, 67]; (iv) symbolic value propagation [6].

In [2] data dependence analysis is reduced to finding an integer solution for set of
inequality constraints. In this approach array and loop indices must be linear functions.

119

An integer programming algorithm is suggested in [4] to find data dependences between
array elements in nested loops where the loop bounds and array indices are affine functions
of loop indices. The Omega test [7] approximates dependence direction and distance
vector with integer programming. Describing the relation between iterations in which the
conflicting read/write occurs. Using dependence difference parameter was the approach
chosen in [1] leading to an exact method for data dependence analysis under very
restricted conditions. Static parallelization tools like autoPar [13] use such techniques for
data dependence analysis.

Reference tree is a decision tree introduced in [5] to approximate data dependences. It
is a relation between two array access which maps one iteration of array access into all
corresponding data dependents of another iteration. Other static data dependence analysis
approaches, use Program Dependence Graph (PDG) [65, 66]. Each PDG node represents
a statement of the program, and edges represent either control or data dependences.
JOANA [9] is a tool for software security analysis which uses PDG to find data dependences.
Through data dependences, it checks the leak in information flow. But this approach
also over-approximates data dependences since it is not value sensitive. LLVM [68] data
dependence analysis (used by [11]) uses PDG to extract data dependences but it does not
have indices, subscripts or multi-dimensional array accesses.

Starting from process tree, identify inter-process dependences, and then perform selec-
tive renaming, is the approach introduced in [3] to find data dependences.

Selective renaming is a version of the renaming technique introduced in [67]. Renaming
statically introduces a new name to distinguish independent occurrence of a variable or
dynamically allocates separate storage for a given static occurrence [3].

An approximate value-based approach is suggested in [6]. It performs a symbolic value
set propagation using a monotone data flow system to compute data dependence.

These approaches are conservative and over-approximate data dependences, i.e. they
might report false dependences, but do not miss existing ones [8]. In contrast, our
approach is based on a fully precise and faithful program logic using symbolic execution
interleaved with first-order reasoning to prove the absence of data dependences.

We are not limited to affine nested loops, and the loop index does not need to change
linearly. Our logic is able to represent non-linear integer constraints and the calculus is
able to prove some non-linear problems automatically. We have the possibility to export
sub-goals to be solved by SMT solvers [69]. Because of this, we can profit from the quickly
evolving capabilities in the automated reasoning area.

120

9.1.2. Dynamic

Dynamic parallelization tools [18–22] use dynamic data dependence analysis techniques
which captures data dependences at runtime. These analyses are optimistic (under-
approximating) as they rely on actual program runs. Therefore they might miss data
dependences that do not belong to the paths traversed in the current execution. In addition,
these techniques have an enormous runtime overhead (factor of 100 or more [26]).Increas-
ing the diversity of inputs, enlarges the set of data dependences identified by dynamic
analysis tools but also increases the overhead.

SD3 [18] and Prospector [19] divide the memory address space into multiple sections
and perform data-dependence analysis on the separately. As most of other parallelization
tools Prospector only analyzes loops, but SD3 takes the whole program into account.
Kremlin [20] uses hierarchical critical path analysis and profiles data dependences only
within specific code regions. Alchemist [21] and Tareador [22] use Valgrind [62] for data
dependence analysis. Valgrind is a dynamic binary analysis tool that uses shadow values
to track read and write accesses on memory locations and registers. Parwiz [16] and
Parceive [17] use a dynamic binary instrumentation tool (Intel Pin [63]) to instrument
the binary code of a program and detect data dependences.

Kremlin [20] is a parallelization recommendation system that profiles data dependences
only within specific code regions. It compresses memory accesses with stride patterns.

Our approach is static, but it uses symbolic execution and in this way retains some
advantages of the dynamic approaches: for example, it can distinguish between different
symbolic execution paths. The advantage is that even for a failed proof attempt (caused
by insufficient automation or by presence of data dependence), all path conditions from
proven symbolic execution paths can be safely used in conditional parallelization by
compilers.

9.1.3. Hybrid

There are a few tools that combine static and dynamic data dependence analysis. Sampaio
et al. [23] apply static dependence analysis and use the result for parallelization. It then
generates tests to validate at runtime whether the can be taken. Rus et al. [24] use
static analysis. They formulate conditions and insert them into the source code. These
conditions evaluate at runtime whether a loop can be parallelized or not.

DiscoPoP [25, 26] is a parallelization discovery tool that records memory accesses in
a signatures data structure. Signature is encoding an approximate representation of an
unbound set of elements with a bounded amount of state [70]. Using signatures reduces
memory overhead. DiscoPoP runs dynamic analysis only for code sections where the data

121

dependence detection requires runtime information, the framework has a lower profiling
overhead than the other approaches named here. DiscoPoP is focused on enhancing the
speed in finding parallelization opportunities. It uses the combination of the following
techniques to profile data dependences in a hybrid fashion.

• Using PLUTO to statically extract data dependences from loops. Then, excluding
loops and profiling only data dependences outside the loops. In the end, merging
static and dynamic dependences. This technique is limited to polyhedral loops.

• Using LLVM, statically identifying data dependences of scalar variables, not including
passed-by-reference parameters and pointers. Then, identifying memory instructions
that create the dependences and excludes them from parallelization. This method,
however, does not skip profiling polyhedral loops.

Compared to the hybrid tools, our approach is not limited to specific shapes of loops or
functions to produce sound results. In addition, we support multidimensional arrays and
pointers that are left out of analysis by the hybrid tools mentioned above.

9.2. Loop Invariant Generation

Different loop invariant generation techniques are general/generic in a sense that they
don’t cover data dependences, in contrast we’re domain specific. On the other hand,
these techniques are not general enough because they come with many limitations (only
covering polynomials, no arrays, only int, etc.), in contrast we cover a larger grammar.

Loop Invariant Generation with Predicate Abstraction
There is a vast research corpus on loop invariant generation using a variety of techniques
like abstraction interpretation (including shape analysis and predicate abstraction) [53,
71, 72], templates [73–76], recurrence equations [77, 78], learning [79], etc. Our
approach is an extension of [56] to loop invariant generation for dependence predicates.
All mentioned approaches focus on functional properties of a loop. To the best of our
knowledge, none of them has been adapted to generate loop invariants that capture (the
absence of) data dependences.

Flanagan [80] and Boogie verifier [81] approaches, also abstract a loop with predicates
containing free variables. But the logical calculus that quantifies over these variables
is different from the logical calculus that uses the invariant in a proof. Using the same
logical calculus for generating the loop invariant as the logical calculus that uses the loop
invariant in a proof, distinguishes our approach from Flangen [80] and Boogie verifier [81]

122

approaches. Our approach has the advantages of (i) being able to reuse the framework,
and (ii) not needing to translating the syntax of the generated loop invariant.

Loop Invariant Generation for Nested Loops
Loop invariant generation for nested loops with conditionals is rarely addressed in liter-
ature. The method in [82] generates loop invariants only when program variables are
integers and assignments to program variables are polynomial expressions. In contrast,
we allow arrays in addition to integer variables and assignments can include function and
procedure calls on program variables.

9.3. Others

Information Flow
There is some resemblance between data dependences and information flow [83]. Indeed,
both problems can be approached by deductive verification (our approach and [84, 85],
respectively). But whereas information flow is a relational property, data dependence is
essentially a reachability problem. Also, the latter is more fine-grained.

Static Analysis of Array Programs
Static analysis of array programs is another line of research close to our work. The
approach in [86] formulates the problem as a reasoning about permissions. They analyze
the loop body to obtain a permission precondition for a single loop iteration. Permission
is expressed as a maximum over the variables changed by the loop execution. Unlike our
approach, they only record type of memory accesses and not their order.

Specification Techniques for Capturing Loop Data Dependences
Specification techniques for capturing loop data dependences for correct loop paralleliza-
tion is another aspect of our work. Blom et. al. [87] suggests to generate iteration
contracts to capture data dependences between different loop iterations. Their tech-
nique needs user to provide part of the specification that our approach can generate
automatically.

123

10. Conclusion and Future Work

This thesis stems from the long-overlooked idea of solving HPC problems with formal ap-
proaches. State-of-the-art data dependence analysis tools suffer from over-approximation
and, occasionally, under-approximation. In contrast, our approach provides highly precise
and sound results.

In this thesis, we presented a static approach for data dependence analysis based on
deductive verification in an expressive program logic. It differs from existing approaches
in several important aspects and has the following advantages over state-of-the-art tech-
niques:

• program logic with a formally and mathematically rigorous semantics of data de-
pendences;

• sound calculus to reason about the program logic;

• loop invariant generation for data dependences; and

• highly precise results.

We defined data dependences formally and presented mathematically rigorous semantic
definitions. In addition, we provided a calculus for reasoning about absence of data
dependences in programs and we can argue formally about its soundness. To enable
automated reasoning, we presented a loop invariant generation technique based on
predicate abstraction to infer data dependence properties about loops.

Our approach is fully automatic. It proves the absence of dependences with full preci-
sion for loop-free and non-recursive programs. Equipped with automatic loop invariant
generation, it performs data dependence analysis with high precision in the presence of
loops. Our loop invariant generation approach has no under-approximation, meaning
no data dependence is missed. This enables a safe parallelization based on our analysis.
Although over-approximation can happen, our heuristics are highly precise as shown in
Chapter 8. They provide full precision (modulo arithmetic) for a sub-class of loops over
arrays with affine array index and linear changes in the loop counter. However, they need

125

further adjustments to provide the same level of precision for other applications, e.g.,
non-affine array accesses and nonlinear loop counters.

The inter-iteration data dependence analysis introduced in Chapter 5 makes our analysis
an ideal starting point for parallelizing loop iterations (e.g., applying DoAll, reduction, and
geometric decomposition patterns). The more assertive approach introduced in Chapter 4
that captures both intra- and inter-iteration data dependences is the more suitable option
for parallelizing loop bodies (e.g., applying pipeline pattern).

We feel encouraged that our prototype can replicate and improve results obtained from
leading data dependence analysis tools. In the future, we plan to take our approach
further in the following aspects.

Using Method Contracts
Formulating data dependence analysis problems as formal verification problems provides
an opportunity for using the powerful body of work in formal verification, for example
using method contracts.

Currently, we either inline function calls or treat them as a black box. In the latter case
we assume that the function does not read and write the data under analysis. For example,
in Listing 10.1 that array elements are arguments of function f. Assume that the function
does not read and write, the following data dependence loop invariant is generated:

noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
a ̸ .= null ∧ i ≥ 0 ∧ i ≤ a.length.

One possible direction for future work is to incorporate contracts of the called methods
in data dependence analysis. Assume the contract of method f states that it writes on
the array elements. This means that the write happening in the loop is happening after
the write in function f. Therefore there is WaW data dependence on location set a[i].
By taking contract of function f into account the following loop invariant should be
generated:

noR(a[i..a.length-1]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧
i ≥ 0 ∧ i ≤ a.length.

i = 0;
while (i <= a.length - 1) {

a[i] = f(a[i]);
i=i+1;

}
Listing 10.1: Array access with a function

126

Incorporating method contracts will make our approach more modular. Extending our
program logic to use and generate data dependence method contracts can eventually
make the data dependence analysis of recursive functions possible.

Loop Invariants with Disjunction
Invariants in loops over conditional statements, would be more precise if we take the
if-then-else conditions into account. This goal can be achieved by adapting the merge
technique [57] differently.

For example, for the loop in Listing 10.2 the current approach produces the following
invariant which is mere conjunctions over predicates:

noR(a[0]) ∧ noW(a[i..a.length-1]) ∧
noRaW(a[0..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
i ≥ 0 ∧ i ≤ a.length-1.

i = 0;
while (i < a.length - 1) {

if(i > (a.length - 1)/2)
a[i] = a[i+1];

else
a[i] = 0;

i=i+1;
}

Listing 10.2: Conditional with Different Memory Accesses

While adapting the merge technique [57] differently results in the following invariant
with a disjunction over the if-then-else condition:(︁

(i > (a.length - 1)/2 ∧ noR(a[0]) ∧ noRaW(a[0..a.length-1]))

∨
(i ≤(a.length - 1)/2 ∧ noR(a[0..a.length-1]))

)︁
∧

noW(a[i..a.length-1]) ∧ noWaW(a[0..a.length-1]) ∧
i ≥ 0 ∧ i ≤ a.length-1.

The latter invariant hints at a parallelization tool to split the loop into halves by applying
the reduction pattern. Then, parallelize the second half by applying the DoAll pattern,
and parallelize the first half only after taking a restructuring step (due to existence of
WaR).

127

Improving Precision
Although we offer high precision for a considerable sub-set of HPC applications, there is
room for improvement in particular for non-affine and nonlinear array accesses and loop
counters.

Merging into Parallelization Tools
Data dependence analysis is a step in the parallelization process. Our approach can be
integrated into an auto-parallelizer or a parallelization recommendation system. Paral-
lelization tools can delegate data dependence profiling of loops, and verification of the
profiled data dependences of loop-free programs to our tool.

Usage in Information Security
There is an open question that whether our data dependence analysis approach can be
used in the context of information flow security. For example, if early on we can show
that a confidential information is not read we can show that there is no information
leak. Therefore, our approach might be helpful to improve efficiency of information flow
analysis.

Generating Method Contracts
Part of each method contract states the memory locations that affect the execution of
the method (accessible in JML) and the locations that are affected by its execution
(assignable in JML). Both of these memory location sets can be formulated using data
dependence predicates, e.g., all memory locations except ls where noR(ls) affect the
execution of a method. Our approach can be enhanced to generate these parts of method
contracts automatically.

128

Bibliography

[1] William Pugh and David Wonnacott. “An Exact Method for Analysis of Value-based
Array Data Dependences”. In: Lang. and Compilers for Parallel Computing, 6th Intl.
Workshop. Ed. by Utpal Banerjee et al. Vol. 768. LNCS. Springer, 1993, pp. 546–566.

[2] Utpal Banerjee. “An introduction to a formal theory of dependence analysis”. In: The
Journal of Supercomputing 2.2 (1988), pp. 133–149. doi: 10.1007/BF00128174.

[3] Frances E. Allen et al. “A framework for determining useful parallelism”. In: Proc.
2nd Intl. Conf. on Supercomputing. Ed. by Jacques Lenfant. ACM, 1988, pp. 207–215.
doi: 10.1145/55364.55385.

[4] Paul Feautrier. “Dataflow analysis of array and scalar references”. In: Intl. J. of
Parallel Programming 20.1 (1991), pp. 23–53. doi: 10.1007/BF01407931.

[5] Dror E. Maydan, S. Amarsinghe, and Monica S. Lam. “Data Dependence and Data-
Flow Analysis of Arrays”. In: Lang. and Compilers for Parallel Computing, 5th Intl.
Workshop. Ed. by Utpal Banerjee et al. Vol. 757. LNCS. Springer, 1992, pp. 434–448.
doi: 10.1007/3-540-57502-2_63.

[6] Wolfram Amme et al. “Data Dependence Analysis of Assembly Code”. In: Intl. J. of
Parallel Programming 28.5 (2000), pp. 431–467. doi: 10.1023/A:1007588710
878.

[7] William Pugh. “The Omega test: a fast and practical integer programming algorithm
for dependence analysis”. In: Proc. Supercomputing ’91. Ed. by Joanne L. Martin.
ACM, 1991, pp. 4–13. doi: 10.1145/125826.125848.

[8] William Pugh and David Wonnacott. “Static Analysis of Upper and Lower Bounds
on Dependences and Parallelism”. In: ACM Trans. Program. Lang. Syst. 16.4 (1994),
pp. 1248–1278. doi: 10.1145/183432.183525.

[9] Gregor Snelting et al. “Checking probabilistic noninterference using JOANA”. In: it
- Information Technology 56.6 (2014), pp. 280–287.

129

https://doi.org/10.1007/BF00128174
https://doi.org/10.1145/55364.55385
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/3-540-57502-2_63
https://doi.org/10.1023/A:1007588710878
https://doi.org/10.1023/A:1007588710878
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/183432.183525

[10] Uday Bondhugula et al. “A practical automatic polyhedral parallelizer and locality
optimizer”. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA. Ed. by Rajiv Gupta and
Saman P. Amarasinghe. New York, NY, USA: ACM, 2008, pp. 101–113. doi: 10.
1145/1375581.1375595.

[11] Tobias Grosser, Armin Größlinger, and Christian Lengauer. “Polly - Performing
Polyhedral Optimizations on a Low-Level Intermediate Representation”. In: Parallel
Process. Lett. 22.4 (2012), p. 1250010. doi: 10.1142/S0129626412500107.

[12] Sara Royuela et al. “Compiler analysis for OpenMP tasks correctness”. In: Proceed-
ings of the 12th ACM International Conference on Computing Frontiers, CF’15, Ischia,
Italy. Ed. by Claudia Di Napoli et al. New York City, USA: ACM, 2015, 7:1–7:8. doi:
10.1145/2742854.2742882.

[13] Chunhua Liao et al. “Semantic-Aware Automatic Parallelization of Modern Applica-
tions Using High-Level Abstractions”. In: Int. J. Parallel Program. 38.5-6 (2010),
pp. 361–378. doi: 10.1007/s10766-010-0139-0.

[14] Pedro Ramos et al. “Automatic annotation of tasks in structured code”. In: Proceed-
ings of the 27th International Conference on Parallel Architectures and Compilation
Techniques, PACT 2018, Limassol, Cyprus. Ed. by Skevos Evripidou, Per Stenström,
and Michael F. P. O’Boyle. New York City, USA: ACM, 2018, 31:1–31:13. doi:
10.1145/3243176.3243200.

[15] Gleison Souza Diniz Mendonca et al. “Automatic Insertion of Copy Annotation in
Data-Parallel Programs”. In: 28th International Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD 2016, Los Angeles, CA, USA, October
26-28, 2016. Washington, DC, USA: IEEE Computer Society, 2016, pp. 34–41. doi:
10.1109/SBAC-PAD.2016.13.

[16] Alain Ketterlin and Philippe Clauss. “Profiling Data-Dependence to Assist Par-
allelization: Framework, Scope, and Optimization”. In: 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2012, Vancouver, BC, Canada.
IEEE Computer Society, 2012, pp. 437–448. doi: 10.1109/MICRO.2012.47.

[17] Andreas Wilhelm et al. “Parceive: Interactive parallelization based on dynamic
analysis”. In: 6th IEEE International Workshop on Program Comprehension through
Dynamic Analysis, PCODA 2015, Montreal, QC, Canada, March 2, 2015. IEEE Com-
puter Society, 2015, pp. 1–6. doi: 10.1109/PCODA.2015.7067176.

130

https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1007/s10766-010-0139-0
https://doi.org/10.1145/3243176.3243200
https://doi.org/10.1109/SBAC-PAD.2016.13
https://doi.org/10.1109/MICRO.2012.47
https://doi.org/10.1109/PCODA.2015.7067176

[18] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. “SD3: A Scalable Approach to
Dynamic Data-Dependence Profiling”. In: 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2010, pp. 535–546. doi: 10.1109/MICRO.2010.49.

[19] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. “Prospector: Discovering paral-
lelism via dynamic data-dependence profiling”. In: Proceedings of the 2nd USENIX
Workshop on Hot Topics in Parallelism, HOTPAR. Vol. 10. Berkeley, USA: USENIX
Association, 2010, pp. 395–416. url: https://faculty.cc.gatech.edu/
~hyesoon/prospector_4page.pdf.

[20] Saturnino Garcia et al. “Kremlin: rethinking and rebooting gprof for the multicore
age”. In: 32nd ACM SIGPLAN Conf. on Progr. Lang. Design and Implementation. Ed.
by Mary W. Hall and David A. Padua. New York, NY, USA: ACM, 2011, pp. 458–469.
doi: 10.1145/1993498.1993553.

[21] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. “Alchemist: A Transpar-
ent Dependence Distance Profiling Infrastructure”. In: The 7th Intl. Symp. on Code
Generation and Optimization. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 47–58. doi: 10.1109/CGO.2009.15.

[22] Vladimir Subotic et al. “Automatic Exploration of Potential Parallelism in Sequential
Applications”. In: International Supercomputing Conference ISC. Ed. by Julian Martin
Kunkel, Thomas Ludwig, and Hans Werner Meuer. Vol. 8488. LNCS. New York City,
USA: Springer, 2014, pp. 156–171. doi: 10.1007/978-3-319-07518-1_10.

[23] Diogo Nunes Sampaio et al. “POSTER: Hybrid Data Dependence Analysis for Loop
Transformations”. In: Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation. 2016, pp. 439–440. doi: 10.1145/2967938.
2974059.

[24] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. “Hybrid analysis: static
& dynamic memory reference analysis”. In: Proceedings of the 16th international
conference on Supercomputing. 2002, pp. 274–284. doi: 10.1145/514191.5142
29.

[25] Nicolas Morew et al. “Skipping Non-essential Instructions Makes Data-Dependence
Profiling Faster”. In: European Conference on Parallel Processing. New York City, USA:
Springer, 2020, pp. 3–17. doi: 10.1007/978-3-030-57675-2_1.

[26] Mohammad Norouzi. “Enhancing the Speed and Automation of Assisted Paral-
lelization”. PhD thesis. Technical University of Darmstadt, Germany, 2022. url:
http://tuprints.ulb.tu-darmstadt.de/22884/.

131

https://doi.org/10.1109/MICRO.2010.49
https://faculty.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://faculty.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://doi.org/10.1145/1993498.1993553
https://doi.org/10.1109/CGO.2009.15
https://doi.org/10.1007/978-3-319-07518-1_10
https://doi.org/10.1145/2967938.2974059
https://doi.org/10.1145/2967938.2974059
https://doi.org/10.1145/514191.514229
https://doi.org/10.1145/514191.514229
https://doi.org/10.1007/978-3-030-57675-2_1
http://tuprints.ulb.tu-darmstadt.de/22884/

[27] Reiner Hähnle and Marieke Huisman. “Deductive Verification: from Pen-and-Paper
Proofs to Industrial Tools”. In: Computing and Software Science: State of the Art and
Perspectives. Ed. by Bernhard Steffen and Gerhard Woeginger. Vol. 10000. LNCS.
Cham, Switzerland: Springer, 2019, pp. 345–373. doi: 10.1007/978-3-319-
91908-9_18.

[28] Susanne Graf and Hassen Saı̈di. “Construction of Abstract State Graphs with
PVS”. In: Computer Aided Verification, 9th Intl. Conf., CAV. Ed. by Orna Grumberg.
Vol. 1254. LNCS. New York, NY, USA: Springer, 1997, pp. 72–83. doi: 10.1007/3-
540-63166-6_10.

[29] Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko. “Predicate Abstraction for
Program Verification”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke
et al. New York City, USA: Springer, 2018, pp. 447–491. doi: 10.1007/978-3-
319-10575-8_15.

[30] Elvira Albert et al. “Certified Abstract Cost Analysis”. In: Fundamental Approaches
to Software Engineering, 20th Intl. Conf. FASE. Ed. by Esther Guerra and Mariëlle
Stoelinga. Vol. 12649. LNCS. New York City, USA: Springer, Apr. 2021, pp. 24–45.
doi: 10.1007/978-3-030-71500-7_2.

[31] Dominic Steinhöfel. “REFINITY to Model and Prove Program Transformation Rules”.
In: Proc. 18th Asian Symposium on Programming Languages and Systems (APLAS).
Ed. by Bruno C. d. S. Oliveira. LNCS. New York City, USA: Springer, 2020, pp. 311–
319. doi: 10.1007/978-3-030-64437-6_16.

[32] Wolfgang Ahrendt et al., eds. Deductive Software Verification—The KeY Book: From
Theory to Practice. Vol. 10001. LNCS. Cham, Switzerland: Springer, 2016. isbn:
978-3-319-49811-9. doi: 10.1007/978-3-319-49812-6.

[33] Richard Bubel, Reiner Hähnle, and Asmae Heydari Tabar. “A Program Logic for
Dependence Analysis”. In: Integrated Formal Methods - 15th Intl. Conf. IFM 2019. Ed.
byWolfgang Ahrendt and Silvia Lizeth Tapia Tarifa. Vol. 11918. LNCS. New York, NY,
USA: Springer, 2019, pp. 83–100. isbn: 978-3-030-34967-7. doi: 10.1007/978-
3-030-34968-4_5.

[34] Reiner Hähnle et al. “Safer Parallelization”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Engineering Principles - 9th International Sym-
posium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 12477. Lecture Notes in Computer Science. Springer, 2020, pp. 117–
137. doi: 10.1007/978-3-030-61470-6_8.

132

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-34968-4_5
https://doi.org/10.1007/978-3-030-34968-4_5
https://doi.org/10.1007/978-3-030-61470-6_8

[35] Asmae Heydari Tabar, Richard Bubel, and Reiner Hähnle. “Automatic Loop Invari-
ant Generation for Data Dependence Analysis”. In: 10th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2022,
Pittsburgh, PA, USA, May 22-23, 2022. ACM, 2022, pp. 34–45. doi: 10.1145/
3524482.3527649.

[36] NathanWasser, AsmaeHeydari Tabar, and Reiner Hähnle. “Modeling Non-deterministic
C Code with Active Objects”. In: Fundamentals of Software Engineering - 8th In-
ternational Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Revised Selected
Papers. Ed. by Hossein Hojjat and Mieke Massink. Vol. 11761. Lecture Notes in
Computer Science. Springer, 2019, pp. 213–227. doi: 10.1007/978-3-030-
31517-7_15.

[37] Nathan Wasser, Asmae Heydari Tabar, and Reiner Hähnle. “Automated model
extraction: From non-deterministic C code to active objects”. In: Science of Computer
Programming 204 (2021). Article 102597. issn: 0167-6423. doi: 10.1016/J.
SCICO.2020.102597.

[38] Vaughan R. Pratt. “Semantical Considerations on Floyd-Hoare Logic”. In: 17th
Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27
October 1976. IEEE Computer Society, 1976, pp. 109–121. doi: 10.1109/SFCS.
1976.27.

[39] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. Foundations of com-
puting. 2000.

[40] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun.
ACM 12.10 (1969), pp. 576–580. doi: 10.1145/363235.363259.

[41] James Gosling, William N. Joy, and Guy L. Steele Jr. The Java Language Specification.
Addison-Wesley, 1996. isbn: 0-201-63451-1.

[42] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—A Formal System
for Testing and Debugging Programs by Symbolic Execution”. In: ACM SIGPLAN
Notices 10.6 (June 1975), pp. 234–245. doi: 10.1145/800027.808445.

[43] James C. King. “Symbolic Execution and Program Testing”. In: Communications of
the ACM 19.7 (July 1976), pp. 385–394. doi: 10.1145/360248.360252.

[44] J. Mack Adams, James Armstrong, and Melissa Smartt. “Assertional checking and
symbolic execution: An effective combination for debugging”. In: Proceedings of the
annual ACM/CSC-ER conference. ACM Press, 1979, pp. 152–156. doi: 10.1145/
800177.810051.

133

https://doi.org/10.1145/3524482.3527649
https://doi.org/10.1145/3524482.3527649
https://doi.org/10.1007/978-3-030-31517-7_15
https://doi.org/10.1007/978-3-030-31517-7_15
https://doi.org/10.1016/J.SCICO.2020.102597
https://doi.org/10.1016/J.SCICO.2020.102597
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/800177.810051
https://doi.org/10.1145/800177.810051

[45] Roger B. Dannenberg and George W. Ernst. “Formal Program Verification Using
Symbolic Execution”. In: IEEE Trans. Software Eng. 8.1 (1982), pp. 43–52. doi:
10.1109/TSE.1982.234773.

[46] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I”. In: Monatshefte für Mathematik und Physik 38 (1931),
pp. 173–198.

[47] Stephen A Cook. “Soundness and completeness of an axiom system for program
verification”. In: SIAM Journal on Computing 7.1 (1978), pp. 70–90. doi: 10.
1137/0207005.

[48] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. “Preliminary design of JML: a
behavioral interface specification language for java”. In: ACM SIGSOFT Softw. Eng.
Notes 31.3 (2006), pp. 1–38. doi: 10.1145/1127878.1127884.

[49] BenjaminWeiß. “Deductive verification of object-oriented software: dynamic frames,
dynamic logic and predicate abstraction”. PhD thesis. Karlsruhe Institute of Technol-
ogy, 2011. isbn: 978-3-86644-623-6. url: https://d-nb.info/1010034960.

[50] Arthur J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE Trans.
Electron. Comput. 15.5 (1966), pp. 757–763. doi: 10.1109/PGEC.1966.26456
5.

[51] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. “Parallel Pro-
gramming with a Pattern Language”. In: Int. J. Softw. Tools Technol. Transf. 3.2
(2001), pp. 217–234. doi: 10.1007/s100090100045.

[52] Mohammad Norouzi Arab, Felix Wolf, and Ali Jannesari. “Automatic construct
selection and variable classification in OpenMP”. In: Proceedings of the ACM Inter-
national Conference on Supercomputing, ICS 2019, Phoenix, AZ, USA, June 26-28,
2019. Ed. by Rudolf Eigenmann, Chen Ding, and Sally A. McKee. ACM, 2019,
pp. 330–341. doi: 10.1145/3330345.3330375.

[53] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”.
In: Conf. Record of the 4th Symp. on Principles of Programming Languages. Ed. by
Robert M. Graham, Michael A. Harrison, and Ravi Sethi. New York, NY, USA: ACM,
1977, pp. 238–252. doi: 10.1145/512950.512973.

[54] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999. isbn: 978-3-540-65410-0. doi: 10.1007/978-3-662-
03811-6. url: https://doi.org/10.1007/978-3-662-03811-6.

134

https://doi.org/10.1109/TSE.1982.234773
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1145/1127878.1127884
https://d-nb.info/1010034960
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1007/s100090100045
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6

[55] Patrick Cousot and Radhia Cousot. “Formal Language, Grammar and Set-Constraint-
Based Program Analysis by Abstract Interpretation”. In: Proceedings of the seventh
international conference on Functional programming languages and computer ar-
chitecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995. Ed. by John
Williams. ACM, 1995, pp. 170–181. doi: 10.1145/224164.224199. url:
https://doi.org/10.1145/224164.224199.

[56] Benjamin Weiß. “Predicate abstraction in a program logic calculus”. In: Science of
Computer Programming 76.10 (2011), pp. 861–876. doi: 10.1016/j.scico.
2010.06.008.

[57] Dominic Scheurer, Reiner Hähnle, and Richard Bubel. “A General Lattice Model
for Merging Symbolic Execution Branches”. In: 18th International Conference on
Formal Engineering Methods ICFEM. Ed. by Kazuhiro Ogata, Mark Lawford, and
Shaoying Liu. Vol. 10009. LNCS. New York City, USA: Springer, 2016, pp. 57–73.
doi: 10.1007/978-3-319-47846-3_5.

[58] Elvira Albert et al. “A formal verification framework for static analysis—As well as its
instantiation to the resource analyzer COSTA and formal verification tool KeY”. In:
Software & Systems Modeling 15.4 (2016), pp. 987–1012. doi: 10.1007/S10270-
015-0476-Y.

[59] Tomofumi Yuki and Louis-Noël Pouchet. PolyBench/C 4.1. web.cse.ohio-state.
edu/~pouchet.2/software/polybench/, Last accessed on February 26,
2024.

[60] David H Bailey et al. “The NAS parallel benchmarks—summary and preliminary
results”. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing. 1991,
pp. 158–165.

[61] Zhen Li, Ali Jannesari, and Felix Wolf. “An Efficient Data-Dependence Profiler for
Sequential and Parallel Programs”. In: IEEE Intl. Parallel and Distrib. Processing
Symp. IEEE Computer Society, 2015, pp. 484–493.

[62] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight
dynamic binary instrumentation”. In: Proceedings of the ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation, San Diego, California,
USA, June. Ed. by Jeanne Ferrante and Kathryn S. McKinley. New York, USA: ACM,
2007, pp. 89–100. doi: 10.1145/1250734.1250746.

135

https://doi.org/10.1145/224164.224199
https://doi.org/10.1145/224164.224199
https://doi.org/10.1016/j.scico.2010.06.008
https://doi.org/10.1016/j.scico.2010.06.008
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/S10270-015-0476-Y
https://doi.org/10.1007/S10270-015-0476-Y
web.cse.ohio-state.edu/~pouchet.2/software/polybench/
web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/1250734.1250746

[63] Chi-Keung Luk et al. “Pin: building customized program analysis tools with dy-
namic instrumentation”. In: Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation. Ed. by Vivek Sarkar and Mary
W. Hall. New York City, USA: ACM, 2005, pp. 190–200. doi: 10.1145/1065010.
1065034.

[64] Kleanthis Psarris. “Program analysis techniques for transforming programs for
parallel execution”. In: Parallel Comput. 28.3 (2002), pp. 455–469. doi: 10.1016/
S0167-8191(01)00132-6.

[65] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Dependence
Graph and Its Use in Optimization”. In: ACM Trans. Program. Lang. Syst. 9.3 (1987),
pp. 319–349. doi: 10.1145/24039.24041.

[66] Feng Li, Antoniu Pop, and Albert Cohen. “Automatic Extraction of Coarse-Grained
Data-Flow Threads from Imperative Programs”. In: IEEE Micro 32.4 (2012), pp. 19–
31. doi: 10.1109/MM.2012.49.

[67] Ron Cytron and Jeanne Ferrante. “What’s In a Name? -or- The Value of Renaming for
Parallelism Detection and Storage Allocation”. In: Intl. Conf. on Parallel Processing.
Pennsylvania State University Press, 1987, pp. 19–27.

[68] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation”. In: International symposium on code generation
and optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86. doi: 10.1109/CGO.
2004.1281665.

[69] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, Last accessed on February 26, 2024.

[70] Daniel Sánchez et al. “Implementing Signatures for Transactional Memory”. In:
40th Annual IEEE/ACM Intl. Symp. on Microarchitecture. IEEE Computer Society,
2007, pp. 123–133. doi: 10.1109/MICRO.2007.24.

[71] Thomas A. Henzinger et al. “Abstractions from proofs”. In: Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy.
New York City, USA: ACM, 2004, pp. 232–244. doi: 10.1145/964001.964021.

[72] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. “Shape Analysis by Predicate
Abstraction”. In: Verification, Model Checking, and Abstract Interpretation, 6th Inter-
national Conference, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings.
Ed. by Radhia Cousot. Vol. 3385. Lecture Notes in Computer Science. New York City,
USA: Springer, 2005, pp. 164–180. doi: 10.1007/978-3-540-30579-8_12.

136

https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1016/S0167-8191(01)00132-6
https://doi.org/10.1016/S0167-8191(01)00132-6
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/MM.2012.49
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
www.SMT-LIB.org
https://doi.org/10.1109/MICRO.2007.24
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-540-30579-8_12

[73] Michael D. Ernst. “Summary of Dynamically Discovering Likely Program Invariants”.
In: 2001 International Conference on Software Maintenance, ICSM 2001, Florence,
Italy, November 6-10, 2001. Washington, DC, United States: IEEE Computer Society,
2001, pp. 540–544. doi: 10.1109/ICSM.2001.972767.

[74] Michael D. Ernst et al. “The Daikon system for dynamic detection of likely invariants”.
In: Sci. Comput. Program. 69.1-3 (2007), pp. 35–45. doi: 10.1016/j.scico.
2007.01.015.

[75] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. “Linear Invariant
Generation Using Non-linear Constraint Solving”. In: Computer Aided Verification,
15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Pro-
ceedings. Ed. by Warren A. Hunt Jr. and Fabio Somenzi. Vol. 2725. Lecture Notes
in Computer Science. New York City, USA: Springer, 2003, pp. 420–432. doi:
10.1007/978-3-540-45069-6_39.

[76] ThanhVu Nguyen et al. “Using dynamic analysis to discover polynomial and array
invariants”. In: 34th International Conference on Software Engineering, ICSE. Ed. by
Martin Glinz, Gail C. Murphy, and Mauro Pezzè. Washington, DC, United States:
IEEE Computer Society, 2012, pp. 683–693. doi: 10.1109/ICSE.2012.62271
49.

[77] Laura Kovács and Andrei Voronkov. “Finding Loop Invariants for Programs over
Arrays Using a Theorem Prover”. In: Fundamental Approaches to Software Engineer-
ing, 12th International Conference, FASE 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings. Ed. by Marsha Chechik and Martin Wirsing. Vol. 5503. Lecture
Notes in Computer Science. New York City, USA: Springer, 2009, pp. 470–485. doi:
10.1007/978-3-642-00593-0_33.

[78] Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. “Valigator: A Verifica-
tion Tool with Bound and Invariant Generation”. In: Logic for Programming, Artificial
Intelligence, and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar,
November 22-27, 2008. Proceedings. Ed. by Iliano Cervesato, Helmut Veith, and
Andrei Voronkov. Vol. 5330. Lecture Notes in Computer Science. New York City,
USA: Springer, 2008, pp. 333–342. doi: 10.1007/978-3-540-89439-1_24.

[79] Xujie Si et al. “Learning Loop Invariants for Program Verification”. In: Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS. Ed. by Samy Bengio et al. Cambridge, MA, USA: MIT
Press, 2018, pp. 7762–7773.

137

https://doi.org/10.1109/ICSM.2001.972767
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1109/ICSE.2012.6227149
https://doi.org/10.1109/ICSE.2012.6227149
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-540-89439-1_24

[80] Cormac Flanagan and Shaz Qadeer. “Predicate abstraction for software verification”.
In: The 29th Symp. on Principles of Prog. Lang. Ed. by John Launchbury and John C.
Mitchell. New York, NY, USA: ACM, 2002, pp. 191–202. doi: 10.1145/503272.
503291.

[81] Michael Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented
Programs”. In: Formal Methods for Components and Objects, 4th International Sym-
posium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised
Lectures. Ed. by Frank S. de Boer et al. Vol. 4111. LNCS. Salmon Tower Building New
York City, USA: Springer, 2005, pp. 364–387. doi: 10.1007/11804192_17.

[82] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. “Invariant Gener-
ation for Multi-Path Loops with Polynomial Assignments”. In: Verification, Model
Checking, and Abstract Interpretation - 19th International Conference, VMCAI. Ed. by
Isil Dillig and Jens Palsberg. Vol. 10747. LNCS. Springer, 2018, pp. 226–246. doi:
10.1007/978-3-319-73721-8_11.

[83] Andrei Sabelfeld and Andrew C. Myers. “Language-Based Information-Flow Secu-
rity”. In: IEEE Journal on Selected Areas in Communications 21.1 (2003), pp. 5–19.
doi: 10.1109/JSAC.2002.806121.

[84] Ádám Darvas, Reiner Hähnle, and David Sands. “A Theorem Proving Approach to
Analysis of Secure Information Flow”. In: Security in Pervasive Computing, Second
International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005, Proceedings.
Ed. by Dieter Hutter and Markus Ullmann. Vol. 3450. Lecture Notes in Computer
Science. Springer, 2005, pp. 193–209. doi: 10.1007/978-3-540-32004-
3_20. url: https://doi.org/10.1007/978-3-540-32004-3%5C_20.

[85] Christoph Scheben and Simon Greiner. “Information Flow Analysis”. In: Deductive
Software Verification—The KeY Book: From Theory to Practice. Ed. by Wolfgang
Ahrendt et al. Vol. 10001. LNCS. New York City, USA: Spinger, 2016. Chap. 13,
pp. 453–472. doi: 10.1007/978-3-319-49812-6_13.

[86] Jérôme Dohrau et al. “Permission Inference for Array Programs”. In: Computer Aided
Verification - 30th International Conference, CAV. Ed. by Hana Chockler and Georg
Weissenbacher. Vol. 10982. LNCS. Springer, 2018, pp. 55–74. doi: 10.1007/978-
3-319-96142-2_7.

[87] Stefan Blom, Saeed Darabi, and Marieke Huisman. “Verification of Loop Paralleli-
sations”. In: Fundamental Approaches to Software Engineering - 18th International
Conference, FASE. Ed. by Alexander Egyed and Ina Schaefer. Vol. 9033. LNCS.
Springer, 2015, pp. 202–217. doi: 10.1007/978-3-662-46675-9_14.

138

https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3%5C_20
https://doi.org/10.1007/978-3-319-49812-6_13
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-662-46675-9_14

A. Semantics

A.1. Semantics of Dependence Predicates

s(noWaR) = {ls | s = (σ,Acc), Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩
and for all i, j = 1 . . . n for which i < j

whereMi = Read andMj = Write,
it holds that ls ∩ lsi ∩ lsj = ∅}

s(noWaW) = {ls | s = (σ,Acc), Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩
and for all i, j = 1 . . . n for which i < j

whereMi = Write andMj = Write,
it holds that ls ∩ lsi ∩ lsj = ∅}

s(noW) = {ls | s = (σ,Acc), Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,Mi ∈ {Read,Write}
and for all j = 1 . . . n for whichMj = Write, it holds that ls ∩ lsj = ∅}

A.2. Semantics of History Dependence Predicates

s(noWHist) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

for all 0 < j ≤ n− i with

Mj = Write, it holds that ls ∩ lsj = ∅}

139

s(noWaRHist) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

and for all 0 < j < k ≤ n− i with Mj = Read

and Mk = Write, it holds that lsj ∩ lsk ∩ ls = ∅}

s(noWaWHist) = {(ls, i) | s = (σ,Acc), 0 ≤ i < n,

Acc = ⟨M1(ls1)⟩ ◦ . . . ◦ ⟨Mn−i(lsn−i)⟩ ◦ . . . ◦ ⟨Mn(lsn)⟩,

and for all 0 < j < k ≤ n− i with Mj = Write

and Mk = Write, it holds that lsj ∩ lsk ∩ ls = ∅}

A.3. Semantics of ˆ︂noWaR

s(ˆ︂noWaR) = {(ls,wLs, rLs, futWLs) | s = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn),
rLs,wLs, futRLs ∈ DLocSet such that ls ∩ (rLs ∪

⏐↓
R
ˆ︂accn) ∩ futWLs = ∅ and

if n > 1 : (ls, ∅, ∅, futWLs ∪ wLs ∪
⏐↓
W

ˆ︂accn) ∈ s′(ˆ︂noWaR)
with s′ = (σ, ˆ︂acc1⃝ · · · ⃝ ˆ︂accn−1)}

140

A.4. Semantics of Inter-Iteration History and Access Predicates

s(ˆ︂noWHist) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,
0 ≤ label < n,

and for all 0 < i ≤ n− label it holds that
⏐↓
W

ˆ︂acci ∩ loc = ∅}
s(ˆ︂noWaRHist) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,

0 ≤ label < n,

and for all 0 < i < j ≤ n− label

it holds that
⏐↓
W

ˆ︂accj ∩ ⏐↓
R

ˆ︂acci ∩ loc = ∅}
s(ˆ︂noWaWHist) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,

0 ≤ label < n,

and for all 0 < i < j ≤ n− label

it holds that
⏐↓
W

ˆ︂accj ∩ ⏐↓
W

ˆ︂acci ∩ loc = ∅}
s(ˆ︂wPred) = {(loc, label) | s = (σ, ˆ︂Acc), ˆ︂Acc = ˆ︂acc1⃝ · · · ⃝ ˆ︂accn,

0 ≤ label < n,

loc =
⏐↓
W

ˆ︂accn−label}

141

B. Sequent Calculus Rules

B.1. Axiomatization of Data Dependences

In the following su is state update with no memory access update.

B.1.1. Rules for noWaR

The side condition in readAccessAppOnNoWaR and writeAccessAppOnNoWaR is that loc2 does
not contain data dependence predicates.

stateUpdateAppOnNoWaR {su}noWaR(loc)⇝ noWaR({su}ls)

readAccessAppOnNoWaR {\R(loc1)}noWaR(loc2)⇝ noWaR({\R(loc1)}loc2)

writeAccessAppOnNoWaR
{\W(loc1)}noWaR(loc2)⇝ noR(({\W(loc1)}loc2) ∩ loc1) ∧ noWaR(({\W(loc1)}loc2) \ loc1)

knownNoWaR

Γ,noWaR(loc1) =⇒ if (loc2 ⊆ loc1) then (true) else (noWaR(loc2 \ loc1)),∆
Γ,noWaR(loc1) =⇒ noWaR(loc2),∆

knownNoR
Γ,noR(loc) =⇒ noWaR(loc),∆

knownNoW
Γ,noW(loc) =⇒ noWaR(loc),∆

143

B.1.2. Rules for noWaW

The side condition in readAccessAppOnNoWaW andwriteAccessAppOnNoWaW is that loc2 does
not contain data dependence predicates.

stateUpdateAppOnNoWaW {su}noWaW(loc)⇝ noWaW({su}loc)

readAccessAppOnNoWaW {\R(loc1)}noWaW(loc2)⇝ noWaW({\R(loc1)}loc2)

writeAccessAppOnNoWaW
{\W(loc1)}noWaW(loc2)⇝ noW(({\W(loc1)}loc2) ∩ loc1) ∧ noWaW(({\W(loc1)}loc2) \ loc1)

knownNoWaW

Γ,noWaW(loc1) =⇒ if (loc2 ⊆ loc1) then (true) else (noWaW(loc2 \ loc1)),∆
Γ,noWaW(loc1) =⇒ noWaW(loc2),∆

knownNoW
Γ,noW(loc) =⇒ noWaW(loc),∆

B.1.3. Rules for noR

The side condition in writeAccessAppOnNoR and readAccessAppOnNoR is that loc2 does not
contain data dependence predicates.

stateUpdateAppOnNoR {su}noR(loc)⇝ noR({su}loc)

writeAccessAppOnNoR {\W(loc1)}noR(loc2)⇝ noR({\W(loc1)}loc2)

readAccessAppOnNoR

Γ =⇒ if (loc1 ∩ {\R(loc1)}loc2 ̸
.
= ∅) then (false) else(noR({\R(loc1)}loc2)),∆

Γ =⇒ {\R(loc1)}noR(loc2),∆

knownNoR Γ,noR(loc1) =⇒ if (loc2 ⊆ loc1) then (true) else (noR(loc2 \ loc1)),∆
Γ,noR(loc1) =⇒ noR(loc2),∆

144

B.1.4. Rules for noW

The side condition in readAccessAppOnNoW and writeAccessAppOnNoW is that loc2 does not
contain data dependence predicates.

stateUpdateAppOnNoW {su}noW(loc)⇝ noW({su}loc)

readAccessAppOnNoW {\R(loc1)}noW(loc2)⇝ noW({\R(loc1)}loc2)loc)

writeAccessAppOnNoW

Γ =⇒ if(loc1 ∩ {\W(loc1)}loc2 ̸
.
= ∅) then(false) else(noW({\W(loc1)}loc2)),∆

Γ =⇒ {\W(loc1)}noW(loc2),∆

knownNoW
Γ,noW(loc1) =⇒ if (loc2 ⊆ loc1) then (true) else (noW(loc2 \ loc1)),∆

Γ,noW(loc1) =⇒ noW(loc2),∆

B.2. Shift Write Rule

shiftWrite
{\W′(loc)}Γ,wPred(loc, 0) =⇒ φ, {\W′(loc)}∆

Γ =⇒ {\W(loc)}φ,∆
cond

With the side condition cond that loc does not contain data dependence predicates.

145

B.3. Renamed Memory Access Update Application

renamedReadAppOnNoW
{\R′(rLoc)}noW(loc)⇝ noWHist({\R′(rLoc)}loc, 1)

renamedReadAppOnNoRaW
{\R′(rLoc)}noRaW(loc)⇝ noRaWHist({\R′(rLoc)}loc, 1)

renamedReadAppOnNoWaR
{\R′(rLoc)}noWaR(loc)⇝ noWaRHist({\R′(rLoc)}loc, 1)

renamedReadAppOnNoWaW
{\R′(rLoc)}noWaW(loc)⇝ noWaWHist({\R′(rLoc)}loc, 1)

renamedReadOnNoWAtHistory
{\R′(rLoc)}noWHist(loc, lb)⇝ noWHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

renamedReadOnNoRaWAtHistory
{\R′(rLoc)}noRaWHist(loc, lb)⇝ noRaWHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

renamedReadOnNoWaRAtHistory
{\R′(rLoc)}noWaRHist(loc, lb)⇝ noWaRHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

renamedReadOnNoWaWAtHistory
{\R′(rLoc)}noWaWHist(loc, lb)⇝ noWaWHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

renamedReadOnWritePred
{\R′(rLoc)}wPred(loc, lb)⇝ wPred({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1)

146

B.4. Subsumption Rules for History Data Dependence Predicates

noWImpliesNoWHist noW(loc)⇝ noWHist(loc, lb)

noRaWImpliesNoRaWHist noRaW(loc)⇝ noRaWHist(loc, lb)

noWaRImpliesNoWaRHist noWaR(loc)⇝ noWaRHist(loc, lb)

noWaWImpliesNoWaWHist noWaW(loc)⇝ noWaWHist(loc, lb)

noWHistOnBothSides

Γ,noWHist(loc1, lb1), lb1 ≤ lb2 =⇒ noWHist(loc2 \ loc1, lb2),∆
Γ,noWHist(loc1, lb1), lb1 > lb2 =⇒ noWHist(loc2, lb2),∆

Γ,noWHist(loc1, lb1) =⇒ noWHist(loc2, lb2),∆

noRaWHistOnBothSides

Γ,noRaWHist(loc1, lb1), lb1 ≤ lb2 =⇒ noRaWHist(loc2 \ loc1, lb2),∆
Γ,noRaWHist(loc1, lb1), lb1 > lb2 =⇒ noRaWHist(loc2, lb2),∆

Γ,noRaWHist(loc1, lb1) =⇒ noRaWHist(loc2, lb2),∆

noWaRHistOnBothSides

Γ,noWaRHist(loc1, lb1), lb1 ≤ lb2 =⇒ noWaRHist(loc2 \ loc1, lb2),∆
Γ,noWaRHist(loc1, lb1), lb1 > lb2 =⇒ noWaRHist(loc2, lb2),∆

Γ,noWaRHist(loc1, lb1) =⇒ noWaRHist(loc2, lb2),∆

noWaWHistOnBothSides

Γ,noWaWHist(loc1, lb1), lb1 ≤ lb2 =⇒ noWaWHist(loc2 \ loc1, lb2),∆
Γ,noWaWHist(loc1, lb1), lb1 > lb2 =⇒ noWaWHist(loc2, lb2),∆

Γ,noWaWHist(loc1, lb1) =⇒ noWaWHist(loc2, lb2),∆

147

B.5. Relation of wPred with History Data Dependence Predicates

B.5.1. Relation of wPred and noWHist

writePredANDnoWHistSameLabel

Γ,wPred(loc1, lb),noWHist(loc2, lb), loc1 ∩ loc2
.
= ∅ =⇒ φ,∆

Γ,wPred(loc1, lb),noWHist(loc2, lb) =⇒ φ,∆

writePredANDnoWHistRightSameLabel

Γ,wPred(loc1, lb) =⇒ loc1 ∩ loc2
.
= ∅ ∧ noWHist(loc2, lb+ 1),∆

Γ,wPred(loc1, lb) =⇒ noWHist(loc2, lb),∆

writePredAFTERnoWHist

Γ,wPred(loc1, lb),noWHist(loc2, lb+ 1),noWHist(loc2 \ loc1, lb) =⇒ φ,∆

Γ,wPred(loc1, lb),noWHist(loc2, lb+ 1) =⇒ φ,∆

B.5.2. Relation of wPred and noRHist

writePredANDnoRHistRightSameLabel

Γ,wPred(loc1, lb) =⇒ noRHist(loc2, lb+ 1),∆

Γ,wPred(loc1, lb) =⇒ noRHist(loc2, lb),∆

writePredAFTERnoRHist

Γ,wPred(loc1, lb),noRHist(loc2, lb+ 1),noRHist(loc2, lb) =⇒ φ,∆

Γ,wPred(loc1, lb),noRHist(loc2, lb+ 1) =⇒ φ,∆

148

B.5.3. Relation of wPred and noWaRHist

writePredANDnoWaRHistSameLabel

Γ,wPred(loc1, lb),noWaRHist(loc2, lb),noWHist(loc1 ∩ loc2, lb+ 1) =⇒ φ,∆

Γ,wPred(loc1, lb),noWaRHist(loc2, lb) =⇒ φ,∆

writePredANDnoWaRHistRightSameLabel

Γ,wPred(loc1, lb) =⇒ noWaRHist(loc2 \ loc1, lb+ 1) ∧ noWHist(loc1 ∩ loc2, lb+ 1),∆

Γ,wPred(loc1, lb) =⇒ noWaRHist(loc2, lb),∆

writePredBEFOREnoWaRHist

Γ,wPred(loc1, lb+ 1),noWaRHist(loc2, lb), noWHist(loc1 ∩ loc2, lb+ 2) =⇒ φ,∆

Γ,wPred(loc1, lb+ 1),noWaRHist(loc2, lb) =⇒ φ,∆

writePredBEFOREnoWaRHistRight

Γ,wPred(loc1, lb+ 1) =⇒ noWaRHist(loc2 \ loc1, lb) ∧ noWHist(loc1 ∩ loc2, lb+ 2),∆

Γ,wPred(loc1, lb+ 1) =⇒ noWaRHist(loc2, lb),∆

149

B.5.4. Relation of wPred and noWaWHist

writePredANDnoWaWHistSameLabel

Γ,wPred(loc1, lb),noWaWHist(loc2, lb),noWHist(loc1 ∩ loc2, lb+ 1) =⇒ φ,∆

Γ,wPred(loc1, lb),noWaWHist(loc2, lb) =⇒ φ,∆

writePredANDnoWaRHistRightSameLabel

Γ,wPred(loc1, lb) =⇒ noWaWHist(loc2 \ loc1, lb+ 1) ∧ noWHist(loc1 ∩ loc2, lb+ 1),∆

Γ,wPred(loc1, lb) =⇒ noWaWHist(loc2, lb),∆

writePredBEFOREnoWaWHist

Γ,wPred(loc1, lb+ 1),noWaWHist(loc2, lb), noWHist(loc1 ∩ loc2, lb+ 2) =⇒ φ,∆

Γ,wPred(loc1, lb+ 1),noWaWHist(loc2, lb) =⇒ φ,∆

writePredBEFOREnoWaWHistRight

Γ,wPred(loc1, lb+ 1) =⇒ noWaWHist(loc2 \ loc1, lb) ∧ noWHist(loc1 ∩ loc2, lb+ 2),∆

Γ,wPred(loc1, lb+ 1) =⇒ noWaWHist(loc2, lb),∆

150

B.6. Update Application on Inter-Iteration Data Dependence
Predicates

writeAccessOnInterIterationNoWaR

{\next; \W(loc1)}ˆ︂noWaR(loc2,wLs, rLs, futWLs)⇝

{\next}ˆ︂noWaR({\W(loc1)}loc2, ({\W(loc1)}wLs) ∪ loc1, {\W(loc1)}rLs, {\W(loc1)}futWLs)

readAccessOnInterIterationNoWaR

{\next; \R(loc1)}ˆ︂noWaR(loc2,wLs, rLs, futWLs)⇝

{\next}ˆ︂noWaR({\R(loc1)}loc2, {\R(loc1)}wLs, ({\R(loc1)}rLs) ∪ loc1, {\R(loc1)}futWLs)

checkNoWaRForIteration

{u||\next}ˆ︂noWaR(loc,wLs, rLs, futWLs)⇝ ({u, \next}(loc ∩ rLs ∩ futWLs = ∅)) ∧

{u}ˆ︂noWaR({\next}loc, ∅, ∅, {\next}futWLs ∪ {\next}wLs)

checkNoWaRForLastIteration

{\next}ˆ︂noWaR(loc,wLs, rLs, futWLs)⇝ {\next}(loc ∩ rLs ∩ futWLs = ∅)

writeAccessOnInterIterationNoWaW

{\next; \W(loc1)}ˆ︂noWaW(loc2,wLs, futWLs)⇝

{\next}ˆ︂noWaW({\W(loc1)}loc2, ({\W(loc1)}wLs) ∪ loc1, {\W(loc1)}futWLs)

readAccessOnInterIterationNoWaW

{\next; \R(loc1)}ˆ︂noWaW(loc2,wLs, futWLs)⇝

{\next}ˆ︂noWaW({\R(loc1)}loc2, {\R(loc1)}wLs, {\R(loc1)}futWLs)

checkNoWaWForIteration

{u||\next}ˆ︂noWaW(loc,wLs, futWLs)⇝ ({u, \next}(loc ∩ futWLs = ∅)) ∧

{u}ˆ︂noWaW({\next}loc, ∅, {\next}futWLs ∪ {\next}wLs)

checkNoWaWForLastIteration

{\next}ˆ︂noWaW(loc,wLs, futWLs)⇝ {\next}(loc ∩ futWLs = ∅)

151

C. Proof of Sequent Calculus Rules

C.1. Proof of Soundness and Completeness of
writeAccessAppOnNoRaW

Proof. We want to show that for all K, s, β with s = (σ, acc1 ◦ . . . ◦ accn−1) and side condition that
loc2 does not contain data dependence predicates, the following holds

K, s, β |= {\W(loc1)}noRaW(loc2) ⇐⇒ K, s, β |= noRaW({\W(loc1)}loc2).

Starting from the right side we have

K, s, β |= noRaW({\W(loc1)}loc2)
⇐⇒ Fig.2.3

valK,s,β({\W(loc1)}loc2) ∈ s(noRaW). (C.1)

From the semantics of JavaDL in Figure 2.3 we know

valK,s,β({\W(loc1)}loc2) = valK,s′,β(loc2) with s′ = valK,s,β(\W(loc1)). (C.2)

Based on Definition 3.2.1:

s′ = (σ, acc1 ◦ . . . ◦ accn−1 ◦ ⟨Write(valK,s,β(loc1))⟩). (C.3)

From C.2 together with C.1 we have

valK,s′,β(loc2) ∈ s(noRaW). (C.4)

We first show that

s(noRaW) = s′(noRaW).

For an arbitrary location set ls ∈ DLocSet

ls ∈ s(noRaW)
⇐⇒ Def. 3.3.1

for all 1 ≤ i ≤ n− 1 and i < j ≤ n− 1,

acci = ⟨Write(lsi)⟩ and accj = ⟨Read(lsj)⟩ it holds that ls ∩ lsi ∩ lsj = empty.

As in s′(C.3), accn = ⟨Write(valK,s,β(loc1))⟩ the following cases have to be considered:

153

• 1 ≤ i ≤ n− 1 and j = n, or

• i = n and i < j ≤ n.

Both cases are trivially closed. Therefore

for all 1 ≤ i ≤ n and i < j ≤ n,
acci = ⟨Write(lsi)⟩ and accj = ⟨Read(lsj)⟩ it holds that ls ∩ lsi ∩ lsj = empty

⇐⇒ Def. 3.3.1

ls ∈ s′(noRaW).

Together with C.4 this means

valK,s′,β(loc2) ∈ s′(noRaW)
⇐⇒ Def. 3.3.1

K, s′, β |= noRaW(loc2)
⇐⇒ Def. 3.2.1 and Fig. 2.3

K, s, β |= {\W(loc1)}noRaW(loc2)

C.2. Proof of Soundness and Completeness of
readAccessAppOnNoRaW

Proof. We want to show for all K, s, β with s = (σ, acc1 ◦ . . . ◦ accn−1) and side condition that loc2
does not contain data dependence predicates, the following holds

K, s, β |= {\R(loc1)}noRaW(loc2)
⇐⇒

K, s, β |= noW(({\R(loc1)}loc2) ∩ loc1) ∧ noRaW(({\R(loc1)}loc2) \ loc1).

Using the semantics of JavaDL (Figure 2.3), now the goal is to show

K, s, β |= {\R(loc1)}noRaW(loc2)
⇐⇒

K, s, β |= noW(({\R(loc1)}loc2) ∩ loc1)
and
K, s, β |= noRaW(({\R(loc1)}loc2) \ loc1).

154

We start from the left side

K, s, β |= {\R(loc1)}noRaW(loc2)
⇐⇒ Def. 2.1.9

K, s′, β |= noRaW(loc2) with s′ = valK,s,β(\R(loc1)) (C.5)

From Definition 3.2.1 we know

s′ = (σ, acc1 ◦ . . . ◦ accn−1 ◦ ⟨Read(valK,s,β(loc1))⟩). (C.6)

From the semantics of JavaDL (Figure 2.3) and C.5 we have

valK,s′,β(loc2) ∈ s′(noRaW).

Together with the semantics of JavaDL, Definition 3.2.1, and C.6, this means

valK,s,β({\R(loc1)}loc2) ∈ s′(noRaW). (C.7)

From Definition 3.3.1 we know that for an arbitrarily chosen ls ∈ DLocSet

ls ∈ s′(noRaW)
⇐⇒

for all i and j where 1 ≤ i < j ≤ n with acci = ⟨Write(lsi)⟩, accj = ⟨Read(lsj)⟩
it holds that ls ∩ lsi ∩ lsj = ∅.

Together with C.7 this means

valK,s,β({\R(loc1)}loc2) ∈ s′(noRaW)
⇐⇒

for all i and j where 1 ≤ i < j ≤ n with acci = ⟨Write(lsi)⟩, accj = ⟨Read(lsj)⟩
it holds that valK,s,β({\R(loc1)}loc2) ∩ lsi ∩ lsj = ∅.

From the definition of s′(C.6), we know that accn = ⟨Read(loc1)⟩. We divide loc2 int two disjoint
location sets ({\R(loc1)}loc2) ∩ loc1 and ({\R(loc1)})loc2 \ loc1. Now we need to show

valK,s,β({\R(loc1)}loc2) ∈ s′(noRaW)
⇐⇒ (︁

for j = n and for all i where 1 ≤ i ≤ n− 1 with acci = ⟨Write(lsi)⟩
it holds that valK,s,β(({\R(loc1)}loc2) ∩ loc1) ∩ lsi = ∅

)︁
and(︁
for all i and j where 1 ≤ i ≤ n− 1 and i < j ≤ n− 1 with acci = ⟨Write(lsi)⟩,
accj = ⟨Read(lsj)⟩
it holds that valK,s,β(({\R(loc1)}loc2) \ loc1) ∩ lsi ∩ locj = ∅

)︁
.

155

Using the Definition 3.3.1 this means that we need to show

valK,s,β({\R(loc1)}loc2) ∈ s′(noRaW)
⇐⇒

valK,s,β(({\R(loc1)}loc2) ∩ loc1) ∈ s(noW)
and
valK,s,β(({\R(loc1)}loc2) \ loc1) ∈ s(noRaW).

Together with C.7 this means

{\R(loc1)}noRaW(loc2)
⇐⇒

valK,s,β({\R(loc1)}loc2 ∩ loc1) ∈ s(noW)
and
valK,s,β({\R(loc1)}loc2 \ loc1) ∈ s(noRaW).

From Definition 2.1.9 this is equal to

K, s, β |= {\R(loc1)}noRaW(loc2)
⇐⇒

K, s, β |= noW({\R(loc1)}loc2 ∩ loc1)
and
K, s, β |= noRaW({\R(loc1)}loc2 \ loc1).

C.3. Proof of Theorem 4.1.1
Proof. We want to show for all K, s, β with s = (σ,Acc) and a side condition that loc does not
contain data dependence predicates, the following holds

K, s, β |= {\R(loc)}{\R′(loc)}φ ⇐⇒ K, s, β |= φ.

Starting from the left side, for all K, s, β we have

K, s, β |= {\R(loc)}{\R′(loc)}φ
⇐⇒ Fig. 3.2

K, s, β |= {\R(loc); \R′({\R(loc)}loc)}φ

Together with Definition 2.1.9 this means

K, t, β |= φ with valK,s,β(\R(loc); \R′({\R(loc)}loc)) = t (C.8)

156

From the side condition we know

{\R(loc)}loc = loc.

Together with C.8 this means

K, t, β |= φ with valK,s,β(\R(loc); \R′(loc)) = t.

Using Definitions 3.2.2 and 3.2.1 we have

valK,s,β(\R(loc); \R′(loc)) = valK,s′,β(\R′(loc)) with s′ = (σ,Acc ◦ ⟨Read(valK,s,β(loc))⟩).

From Definition 4.1.2 we end up with

valK,s′,β(\R′(loc)) = t = (σ,Acc).

Therefore s = t. Together with C.8 we have

K, s, β |= φ.

C.4. Proof of Theorem 4.1.2
Proof. We want to show for all K, s, β with s = (σ, acc1 ◦ . . . ◦ accn) and a side condition that loc
does not contain data dependence predicates if

K, s, β |= {\R′(loc)}Γ,rPred(loc, 0) =⇒ φ, {\R′(loc)}∆. (C.9)

then for all K, s, β the following holds

K, s, β |= Γ =⇒ {\R(loc)}φ,∆.

If there is a γ ∈ Γ with valK,s,β(γ) = false or if there is a δ ∈ ∆ with
valK,s,β(δ) = true then this is trivially true. Therefore, we assume that

K, s, β |=
⋀︂

(Γ ∪ ¬∆),

and aim to show that

K, s, β |= {\R(loc)}φ.

From Definition 2.1.9 we know

K, s, β |= {\R(loc)}φ ⇐⇒ K, s′, β |= φ

with s′ = valK,s,β(\R(loc))
=Def. 3.2.1 (σ,Acc ◦ ⟨Read(valK,s,β(loc))⟩).

157

The new goal is to show

K, s′, β |= φ.

From Theorem 4.1.1 we know that

K, s, β |=
⋀︂

(Γ ∪ ¬∆) ⇐⇒ K, s, β |= {\R(loc)}{\R′(loc)}
⋀︂

(Γ ∪ ¬∆).

Using Definition 3.2.1 we have

K, s, β |= {\R(loc)}{\R′(loc)}
⋀︂

(Γ ∪ ¬∆)

⇐⇒

K, s′′, β |= {\R′(loc)}
⋀︂

(Γ ∪ ¬∆), (C.10)

with s′′ = (σ,Acc ◦ ⟨Read(valK,s,β(loc))⟩).

Using C.9 for s′′ yields

K, s′′, β |= {\R′(loc)}Γ,rPred(loc, 0) =⇒ φ, {\R′(loc)}∆.

Together with C.10 this means that

K, s′′, β |= rPred(loc, 0) =⇒ φ. (C.11)

From definition of s′′ and Definition 4.1.3 we get that

K, s′′, β |= rPred(loc, 0),

which together with C.11 and s′ = s′′ we conclude

K, s′, β |= φ.

C.5. Proof of Soundness and Completeness of
renamedReadAppOnNoRHist

Proof. We want to show for all K, s, β where s = (σ, acc1 ◦ . . . ◦ accn) and
accn = ⟨Read(valK,s,β(rLoc))⟩, with the side condition that loc and lb do not contain data depen-
dence predicates, the following holds

K, s, β |= {\R′(rLoc)}noRHist(loc, lb) ⇐⇒
K, s, β |= noRHist({\R′(rLoc)}loc, {\R′(rLoc)}lb+ 1).

158

Considering the side conditions, the goal is to show

K, s, β |= {\R′(rLoc)}noRHist(loc, lb) ⇐⇒
K, s, β |= noRHist(loc, lb+ 1).

Starting from the left side we have

K, s, β |= {\R′(rLoc)}noRHist(loc, lb)
⇐⇒ Def. 2.1.9

K, s′, β |= noRHist(loc, lb) with valK,s,β({\R′(rLoc)}) =Def. 4.1.2

s′ = (σ, acc1 ◦ . . . ◦ accn−1)

⇐⇒ Fig. 2.3

(loc, lb) ∈ s′(noRHist)
⇐⇒ Def. 4.1.5

for all j, 0 < j ≤
=n−(lb+1)⏟ ⏞⏞ ⏟
n− 1− lb, and accj = ⟨Read(lsj)⟩

it holds that loc ∩ lsj = empty
⇐⇒ Def. 4.1.5

(loc, lb+ 1) ∈ s(noRHist)
⇐⇒ Fig. 2.3

K, s, β |= noRHist(loc, lb+ 1)

C.6. Proof of Theorem 5.3.1

Proof. We want to show for all K, s, β with s = (σ, ˆ︂Acc) and a side condition that location sets
rlsi, wlsj ∈ DLocSet for i = 1 . . . n and j = 1 . . .m do not contain data dependence predicates, if
the following holds

K, s, β |={
u⏟ ⏞⏞ ⏟

. . . ; \W′(wls1); . . . ; \R′(rls1); \next′}Γ,
ˆ︂rPred(

⋃︂
i=1...n

rlsi, 0), ˆ︂wPred(
⋃︂

j=1...m

wlsj , 0)) =⇒ ψ, {u}∆ (C.12)

then it holds that

K, s, β |= Γ =⇒ {\next, \R(rls1), . . . , \W(wls1), . . .}ψ,∆. (C.13)

159

If there is a γ ∈ Γ with valK,s,β(γ) = false or if there is a δ ∈ ∆ with
valK,s,β(δ) = true then this is trivially true. Therefore, we assume

K, s, β |=
⋀︂

(Γ ∪ ¬∆)

and aim to show

K, s, β |= {\next, \R(rls1), . . . , \W(wls1), . . .}ψ.

We prove the case that n = m = 1. For i, j > 1 the prove is similar.

Starting from C.13 we have

K, s, β |= {\next, \R(rls1), \W(wls1)}ψ
⇐⇒ Def. 2.1.9

K, s1, β |= {\R(rls1), \W(wls1)}ψ with s1 = valK,s,β(\next)

=Def. 5.2.4 (σ, ˆ︂Acc⃝ ⟨ε⟩)
⇐⇒ Def. 2.1.9

K, s2, β |= {\W(wls1)}ψ with s2 = valK,s1,β(\R(rls1)) =Def. 3.2.1

(σ, ˆ︂Acc⃝ ⟨ε⟩ ◦ ⟨Read(valK,s1,β(rls1))⟩)
⇐⇒ Def. 2.1.9

K, s3, β |= ψ with s3 = valK,s2,β(\W(wls1)) =Def. 3.2.1 (C.14)

(σ, ˆ︂Acc⃝ ⟨ε⟩ ◦ ⟨Read(valK,s1,β(rls1))⟩ ◦ ⟨Write(valK,s2,β(wls1))⟩).

The new goal is to show C.14.

160

From Theorem 4.1.1 we know that

K, s, β |=
⋀︂

(Γ ∪ ¬∆)

⇐⇒ Def.5.2.4

K, s, β |= {\next; \R(rls1); \W(wls1)}{\W′(wls1); \R′(rls1); \next′}
⋀︂

(Γ ∪ ¬∆)

⇐⇒

K, s′, β |= {\R(rls1); \W(wls1)}{\W′(wls1); \R′(rls1); \next′}
⋀︂

(Γ ∪ ¬∆),

with s′ = (σ, ˆ︂Acc⃝ ⟨ε⟩),
⇐⇒ Def. 4.1.2

K, s′′, β |= {\W(wls1)}{\W′(wls1); \R′(rls1); \next′}
⋀︂

(Γ ∪ ¬∆),

with s′′ = (σ, ˆ︂Acc⃝ ⟨ε⟩ ◦ ⟨Read(valK,s′,β(rls1))⟩)
⇐⇒ Def. 4.1.2

K, s′′′, β |= {\W′(wls1); \R′(rls1); \next′}
⋀︂

(Γ ∪ ¬∆), (C.15)

with s′′′ = (σ, ˆ︂Acc⃝ ⟨ε⟩ ◦ ⟨Read(valK,s′,β(rls1))⟩ ◦ ⟨Write(valK,s′′,β(wls1))⟩).

We see that s′′′ = s3, s′′ = s2, and s′ = s1.
Using C.12 for s′′′ yields

K, s′′′, β |= {
u⏟ ⏞⏞ ⏟

\W′(wls1); \R′(rls1); \next′}Γ,
ˆ︂rPred(rls1, 0), ˆ︂wPred(wls1, 0)) =⇒ ψ, {u}∆.

Together with C.15 this means

K, s′′′, β |= ˆ︂rPred(rls1, 0), ˆ︂wPred(wls1, 0) =⇒ ψ. (C.16)

In addition, from definition of s′′′ and Definitions of ˆ︂rPred in Figure 5.2 and ˆ︂wPred in Appendix
A.4 we have that

K, s′′′, β |= ˆ︂rPred(rls1, 0),

and

K, s′′′, β |= ˆ︂wPred(wls1, 0).

which together with C.16 and s′′′ = s3 we conclude C.14.

161

C.7. Proof of Soundness and Completeness of
matrixRangeMinusSingleton

Proof. We assume that K, s, β |= wellFormedMatrix(matrix, heap) holds, and sRow is a fresh
Skolem constant of type int where

K, s, β |= ∃k; k ≥ rowL ∧ k ≤ rowH ∧ o
.
= select(heap,matrix,arr(k))→

sRow ≥ rowL ∧ sRow ≤ rowH ∧ o
.
= select(heap,matrix,arr(sRow)). (C.17)

We want to show for all K, s, β, the following holds

K, s, β |= matrixRange(heap,matrix, rowL, rowH, colL, colH) \
singleton(o,arr(sCol))
.
=

if (matrix .
= o ∨ sCol < colL ∨ colH < sCol)

then (matrixRange(heap,matrix, rowL, rowH, colL, colH))

else (if (∃k; k ≥ rowL ∧ k ≤ rowH ∧ o
.
= select(heap,matrix,arr(k)))

then (matrixRange(heap,matrix, rowL, sRow - 1, colL, colH) ∪
matrixRange(heap,matrix, sRow + 1, rowH, colL, colH) ∪
matrixRange(heap,matrix, sRow, sRow, colL, sCol - 1) ∪
matrixRange(heap,matrix, sRow, sRow, sCol + 1, colH)))

else (matrixRange(heap,matrix, rowL, rowH, colL, colH))

From valK,s,β(C.17) and Definition 7.1.2 we have

K, s, β |= matrixRange(heap,matrix, rowL, rowH, colL, colH)
.
=

infiniteUnion{int sRow; }(
arrayRange(select(heap,matrix,arr(sRow)), colL, colH)).

Together with Definition 7.1.1 this means

K, s, β |= matrixRange(heap,matrix, rowL, rowH, colL, colH)
.
=⋃︂

rowL≤sRow≤rowH

arrayRange(select(heap,matrix,arr(sRow)), colL, colH). (C.18)

First case: if K, s, β |= matrix .
= o. Together with Definition 7.1.3 this means

K, s, β |= ∀ row; o ̸ .= select(heap,matrix,arr(row)).

162

Together with C.18 this means that the singleton and the array ranges can not overlap, therefore

K, s, β |= matrix
.
= o→

matrixRange(heap,matrix, rowL, rowH, colL, colH) \
singleton(o,arr(sCol))
.
=

matrixRange(heap,matrix, rowL, rowH, colL, colH).

Second case: if K, s, β |= sCol < colL ∨ colH < sCol.
We know that C.18 holds for all c such that colL ≤ c ≤ colH. Therefore sCol ̸ .= c, which means
the singleton and the array ranges can not overlap. This means

K, s, β |= sCol < colL ∨ colH < sCol→
matrixRange(heap,matrix, rowL, rowH, colL, colH) \
singleton(o,arr(sCol))
.
=

matrixRange(heap,matrix, rowL, rowH, colL, colH).

Third case: when it holds that

K, s, β |= matrix ̸ .= o ∧ sCol ≥ colL ∧ colH ≥ sCol ∧
∃k; k ≥ rowL ∧ k ≤ rowH ∧ o

.
= select(heap,matrix,arr(k)).

Together with C.17 this means

K, s, β |= o
.
= select(heap,matrix,arr(sRow))

Considering C.18, this shows overlap between the singleton and the matrix range which according

163

to the standard definition of set difference it has to be excluded. Therefore, we have

K, s, β |= matrix ̸ .= o ∧ sCol ≥ colL ∧ colH ≥ sCol ∧
∃k; k ≥ rowL ∧ k ≤ rowH ∧ o

.
= select(heap,matrix,arr(k))→

matrixRange(heap,matrix, rowL, rowH, colL, colH) \
singleton(o,arr(sCol))
.
=⋃︂

rowL≤r≤sRow - 1

arrayRange(select(heap,matrix,arr(r)), colL, colH) ∪

⋃︂
sRow + 1≤r≤rowH

arrayRange(select(heap,matrix,arr(r)), colL, colH) ∪

⋃︂
colL≤c≤sCol - 1

arrayRange(select(heap,matrix,arr(sRow)), colL, c) ∪

⋃︂
sCol + 1≤c≤colH

arrayRange(select(heap,matrix,arr(sRow)), c, colH).

164

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	State of the Art
	Approach
	Contributions
	Overview of Publications
	Structure of The Thesis

	Preliminaries
	Java Dynamic Logic
	Syntax
	Semantics
	Reasoning
	Update Application and Simplification Rules
	Symbolic Execution Rules
	Memory Locations and Heap
	Soundness and Completeness of the Calculus

	KeY
	Prover Core
	Reasoning about Programs

	Data Dependence Analysis
	Loop Invariant Generation with Predicate Abstraction
	Predicate Abstraction
	Predicate Refinement
	Loop Invariant

	Data Dependence-Aware Program Logic
	Semantics of Read and Write Memory Accesses
	Memory Access Updates
	Specification of Data Dependence Properties
	Reasoning about Data Dependence Properties
	Modified Calculus Rules
	Update Simplification Rules
	Axiomatization

	Automatic Loop Invariant Generation for Data Dependence Analysis
	Reconciling Predicate Abstraction and Symbolic Execution
	Data Dependence Loop Invariant Generation with Predicate Abstraction
	Predicate Abstraction
	Predicate Refinement

	Reasoning
	Verification of the Data Dependence Loop Invariant
	Renamed Memory Access Update Application
	Subsumption Relations
	Embedding Predicate Abstraction

	Automatic Loop Invariant Generation for Inter-Iteration Data Dependence Analysis
	Inter- vs. Intra-Iteration Loop Data Dependences
	Specification of Intra-Iteration Data Dependence Properties
	Syntax and Semantics

	Loop Invariant Generation
	Symbolic Execution
	Predicate Abstraction

	Reasoning
	Update Application and Simplification Rules
	Subsumption Relations
	Embedding Predicate Abstraction

	Nested Loop Invariant Generation
	Generation Algorithm
	Computation of the Inner Loop Invariant
	Using the Inner Loop Invariant

	Anonymization of Memory Access Updates
	Syntax and Semantics
	Update Application Rules

	Anonymization of a Sequence of Memory Access Updates
	Syntax and Semantics
	Update Application Rules

	Multi-Dimensional Arrays
	Syntax and Semantics
	Calculus Rules
	Proof Search Strategy

	Experimental Results
	Single Loops
	Test Cases
	Evaluation

	Nested Loops
	Test Cases
	Evaluation

	Threats to Validity

	Related Work
	Data Dependence Profilers
	Static
	Dynamic
	Hybrid

	Loop Invariant Generation
	Others

	Conclusion and Future Work
	Bibliography
	Semantics
	Semantics of Dependence Predicates
	Semantics of History Dependence Predicates
	Semantics of noWaR"0362noWaR
	Semantics of Inter-Iteration History and Access Predicates

	Sequent Calculus Rules
	Axiomatization of Data Dependences
	Rules for noWaR
	Rules for noWaW
	Rules for noR
	Rules for noW

	Shift Write Rule
	Renamed Memory Access Update Application
	Subsumption Rules for History Data Dependence Predicates
	Relation of wPred with History Data Dependence Predicates
	Relation of wPred and noWHist
	Relation of wPred and noRHist
	Relation of wPred and noWaRHist
	Relation of wPred and noWaWHist

	Update Application on Inter-Iteration Data Dependence Predicates

	Proof of Sequent Calculus Rules
	Proof of Soundness and Completeness of writeAccessAppOnNoRaW
	Proof of Soundness and Completeness of readAccessAppOnNoRaW
	Proof of Theorem 4.1.1
	Proof of Theorem 4.1.2
	Proof of Soundness and Completeness of renamedReadAppOnNoRHist
	Proof of Theorem 5.3.1
	Proof of Soundness and Completeness of matrixRangeMinusSingleton

