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Zusammenfassung

In der vorliegenden Arbeit werden molekulare Übergangsmetallkomplexe mit einer quan-
tenchemischen Multikonfigurationsmethode in Verbindung mit Ligandenfeldtheorie (LFT)
untersucht. Die Ligandenfeldtheorie ist ein bewährtes Modell zur Parametrisierung der
elektronischen und magnetischen Eigenschaften von Übergangsmetallkomplexen. Die in
dieser Arbeit verwendete Parametrisierung ist das Angular Overlap Model (AOM), das das
Ligandenfeld lokal parametrisiert, d.h. jeder Parametersatz bezieht sich auf ein bestimmtes
Metall-Liganden-Paar. Der Vorteil des AOM im Vergleich zu anderen Ligandenfeldpara-
metrisierungen ist somit die Möglichkeit, den Einfluss bestimmter Liganden in einem
Komplex zu beurteilen. Im Gegensatz dazu können globale Parameter nur ganze Kom-
plexe beschreiben. Der Nachteil dieses Ansatzes ist die hohe Anzahl von Parametern, die
oft zu unterbestimmten Problemen führt, die eine AOM-Parametrisierung erschweren.
Übliche Ansätze zur Lösung dieses Problems sind Annahmen und künstliche Beziehungen
zwischen Parametern, die zu voreingenommenen Ergebnissen führen können.
In dieser Arbeit werden mithilfe von complete active space (CAS)-Rechnungen und dem

in der Quantenchemie-Software ORCA implementierten Ligandenfeldtheorie-Modul Ener-
gien der elektronischen Zustände berechnet, die für die Bestimmung der AOM-Parameter
erforderlich sind. Die berechneten Daten sind äquivalent zu den Informationen, die mit
spektroskopischen Methoden gewonnen werden, die die Energiedifferenz angeregter Zu-
stände liefern, z. B. UV/Vis-Spektroskopie. Der Einsatz von Berechnungsmethoden bringt
eine Reihe von Vorteilen gegenüber spektroskopischen Messungen mit sich, vor allem die
eindeutige Zuordnung von Zuständen und die Möglichkeit, strukturelle Momentaufnah-
men anstelle von thermisch gemittelten Strukturen zu untersuchen. Diese Eigenschaften
können genutzt werden, um Strukturen mit geringer Symmetrie zu erzeugen, die weniger
entartete elektronische Zustände aufweisen und daher AOM-Parametrisierungen erlauben,
die auf der Basis experimenteller Daten unmöglich wären. Auf diese Weise ist es nicht
mehr notwendig, eine Unterbestimmung des AOM durch die Festlegung von Parametern
oder die Einführung von Beziehungen zu vermeiden. Es handelt sich also um einen Ansatz,
der die Wichtigkeit solcher Annahmen mindert und daher objektivere Parametrisierungen
ermöglicht.
Es wird gezeigt, dass der Ansatz der asymmetrischen Strukturprobe bekannte Trends

zuverlässig reproduziert, sodass damit Lücken in experimentellen Serien gefüllt werden
können, wenn weitere experimentelle Daten schwer zu erhalten oder zu interpretie-
ren sind. Weiterhin wird gezeigt, dass die unvoreingenommene Parametrisierung von
Ammoniak-Liganden eine signifikante π-Wechselwirkung ergibt, was im Widerspruch
zu bisher üblichen Näherungen bei der AOM-Parametrisierung steht. Die Arbeiten zur
Bestätigung des Ansatzes werden durch eine Software unterstützt, die das asymmetri-
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sche Struktursampling und die AOM-Parametrisierung durchführt. Diese Software wird
ebenfalls in dieser Arbeit vorgestellt und ihre Entwicklungsversionen wurden für alle hier
durchgeführten theoretischen Untersuchungen verwendet.
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Abstract

In this work, molecular transition metal complexes are investigated with a quantum
chemical multiconfigurational method in conjunction with ligand field theory (LFT). Ligand
field theory is an established tool to parameterize electronic and magnetic properties
of transition metal complexes. The parameterization used is the angular overlap model
(AOM), which parameterizes the ligand field locally, i.e. each parameter set refers to a
specific metal-ligand pair. The advantage of the AOM compared with other ligand field
schemes is thus the possibility to assess the effect of particular ligands in a complex instead
of relying on global parameters that can only describe whole complexes. The downside
of this approach is the high number of parameters, often leading to underdetermined
problems that make an AOM fit difficult. Common approaches to solve this issue are
artificial relationships and assumptions that introduce biased parameters.
In this work, complete active space (CAS) calculations and the ab initio ligand field the-

ory routine implemented in the ORCA quantum chemistry software are used to calculate
electronic state energies that are necessary to fit AOM parameters. The calculated data is
equivalent to the information obtained by spectroscopic methods that yield the energy
difference of excited states, e.g. UV-Vis spectroscopy. The use of computational methods
comes with an array of advantages compared to spectroscopic measurements, most impor-
tantly the unambiguous assignment of states and the possibility to investigate structural
snapshots instead of thermally averaged structures. These properties can be used to
create structural samples of low symmetry, which have fewer degenerate electronic states
and therefore permit AOM parameterizations that are impossible when only considering
experimental data. By this, it is not necessary anymore to avoid AOM underdetermination
by fixing parameters or introducing relational rules. It is thus an approach to remove bias
and obtain more objective parameter sets.
The asymmetric structure sample approach is shown to reproduce known trends reliably,

so it can be used to fill data gaps in series, for which experimental data is difficult to
obtain or interpret. It is also shown that the unbiased parameterization of ammonia
ligands yields a significant π interaction, which is in contrast to common approximations
in the AOM parameterization. The proof of concept works are supported by a software
that performs the asymmetric structure sampling and the AOM parameterization. This
software is also presented in this work and its development versions were used for all
computational investigations performed here.
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1 Introduction

Transition metal complexes are a class of compounds that consist of a transition metal
(TM), and a coordination sphere around this metal. The molecules making up the coordina-
tion sphere are called ligands, and the vast amount of possible metal-ligand combinations
represent a rich and diverse field of chemistry. There are molecular complexes as well as
coordination subunits in solids, and while their phase is different, they share some char-
acteristics. The chemical (e.g. reactivities, redox properties) and physical (e.g. electronic
spectra, magnetism) properties of TM complexes are dominated by their valence electrons
in the d or f shell, respectively. Their electronic structure makes TM complexes have a
variety of properties, occurrences and applications. A famous example is haemoglobin,
which includes a haem group consisting of an iron ion coordinated by a porphyrin struc-
ture and one or two axial ligands. Transition metals are generally very common active
centres in proteins.[1] Just as they are catalytically active in biological systems, TM com-
plexes are used as homogeneous[2] and heterogeneous[3,4] catalysts in various applications.
Metal-organic frameworks, which enjoy a lot of attention in current research, also contain
coordination subunits, similar to regular crystals.[5]
The colourful appearance of many TM complexes fascinated chemists early on, and

these colours are often caused by d-d transitions, enabled by a partly filled valence
shell. These complexes have a d1 to d9 (lanthanoids and actinoids f1 to f13) electron
configuration.[6] Bethe was the first to provide a theoretical framework for the description
of the corresponding electron transitions in 1929.[7] Derived from subunits in crystals,
he assumed the transition metal to be surrounded by negatively charged ligands, the
electrostatic potential of which would cause the d orbitals to split in energy. The basis
set for this quantum chemical treatment are the metal d orbitals only, so this approach
is a considerable simplification compared to more complete quantum chemical models.
Due to its origin, the model was termed “crystal field theory” (CFT), and it enabled some
explanations on the colour and also magnetism[8,9] of TM complexes. It provided chemists
and physicists with a tool to describe the electron configuration of transition metals and
the impact that a coordination sphere has on them. Conceptually, it was very successful,
but over the years it became apparent that it is not well suited to predict the energies of
electron transitions and lacked some consideration for neutral ligands that exert almost
no electrostatic field but still cause a significant d orbital energy splitting. Since the
underlying concept of treating the metal d orbitals only was proven to be qualitatively
correct, the model was not abandoned, but developed further. Researchers started to fit
the crystal field parameters to experimental data instead of calculating them from the
molecular geometry. This empirically fitted parameterization was called ligand field theory
(LFT), and remains in use today. The transition from the ab initio crystal field calculation
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of properties to empirical parameterization happened successively and no sharp distinction
was made by researchers at that time. Due to this, CFT and LFT are often conflated until
today, but chapter 3 explains how they differ.
Regarding its empirical nature, LFT is not meant to predict these properties, but rather

to rationalize experimental observations. We will see in chapter 3 why a prediction of
these properties is not possible with LFT, and in fact this was never its purpose.[10,11] Its
parameters are empirically fitted to experimental or calculated data and generally, the
parameters obtained for one complex cannot be transferred to another. The true strength
of LFT is that the parameters used can be interpreted and yield a much simpler picture than
for example a complete quantum chemical treatment of the electronic structure. Common
for all schemes is the usage of Racah parameters A,B,C that represent electron-electron
interactions, with B being the one that is most often interpreted as an electronic repulsion
parameter. The effect of the ligands on the metal d electrons can be covered in various
parameterizations and there is no universal scheme that suits every complex.
Generally, an arbitrary set of parameters can be chosen to cover vaguely defined effects, a

practice that has been criticized due to the lacking relevance of such a parameterization.[12]
In this regard, it is important to emphasize that a parameterization that works is not
necessarily one that is useful. Probably the most popular parameterization is the use of ∆
in octahedral complexes, where a single parameter suffices to capture all one-electron
metal-ligand interactions. It represents the ligand field strength in a single parameter and
is the origin of the spectrochemical series. It is a very useful parameter for octahedral,
homoleptic complexes. However, it is also an example of the ambiguity that is carried with
the parameterization flexibility. The single parameter∆ often defines the energy difference
between eg and t2g orbitals, but is sometimes also taken to be the first electronic transition
energy. These quantities can be equal by coincidence, but are usually different.[13]
Other parameter sets like Ds,Dt ,Dq are able to cover more asymmetric complexes, so

a different approach might be chosen for each complex.[13] The focus of this work lies
on the angular overlap model (AOM), which is a parameterization scheme that seeks to
partition metal-ligand interactions in arbitrary complexes.[14] It uses parameters that are
local to each metal-ligand-pair in a complex, and represents this local interaction in terms
of σ and π parameters. The AOM is a very general LFT parameterization scheme, since
any metal-ligand interaction and thus any complex, independent of its symmetry, can in
principle be parameterized. Its main problem is the fact that this approach leads to large
sets of parameters, making it notoriously underdetermined. This problem together with
the fact that electronic spectra tend to have broad bands with rather low intensities for
d-d transitions means that a complete parameterization in terms of the AOM is often hard
to achieve and subject to many assumptions and simplifications.[13]
Quantum chemical calculations are an established tool for the prediction and inter-

pretation of chemical properties in molecules and solids.[15] There is a wide array of
methods that can be used to calculate structural, electronic and thermodynamic properties
with different levels of accuracy. From a ligand field perspective, the most important
properties are the energies of electronic states, which is of course the same information
that is experimentally obtained from electronic spectra. As we will show in chapter 2 and
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3, there is a clear theoretical connection between quantum chemical complete active space
(CAS) calculations and the quantities that are parameterized by LFT. CAS calculations are
commonly used to investigate electronic transitions that are specified by a set of orbitals.
If this set is chosen to be the metal d orbitals, the energy of electronic d states can be
calculated to a satisfactory accuracy and enables a direct connection of the quantum
chemical approach and LFT.[16]
Just as LFT can be used to parameterize experimental results, it is possible to apply it on

calculated data, too. Quantum chemical calculations permit investigations that are almost
impossible to perform experimentally, such as bond length scans, the investigation of
structural snapshots in contrast to averaged spectra, ligand exchange or the investigation of
non-existing molecules. The combination of computational methods with LFT thus allows
to express obtained results with chemically intuitive parameters that can be interpreted
much more easily than the overwhelming amount of detailed data that is generated by an
average electronic structure calculation.
We will see in chapter 5 that the quantum chemical approach can also be used to lift

the underdetermination problem of the AOM, enabling the investigation of complexes
that were so far not parametrizable. The possible inaccuracies that are always part of
calculated data are unproblematic due to the interpretative nature of LFT. In chapter 5, it
is shown that trends are reproduced correctly and that calculated data is reliable enough
to interpret calculated data that is not backed up by experimental results. With the
confirmation that the data obtained by this approach is qualitatively correct, several
trends along the periodic table are investigated. The exchange of metals and ligands is
assessed in section 5.1, as well as bond length dependencies and correlations of ligand
field strength and chemical hardness. Since the quantum chemical approach allows for an
exact assignment of electronic states, experimental results with ambiguous interpretations
can be reassessed. Doing this, it was possible to assign spectral transitions in two copper
ammine complexes, and it is shown in section 5.2 that this is also experimental evidence
on ammonia π interactions. Along with the applications in 5.1 and 5.2, a software
was developed specifically for fitting AOM parameters to calculated data. A detailed
presentation of further applications, limitations and technical details of this software can
be found in section 5.3.
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2 Multiconfiguration methods

In this first theory chapter, quantum chemical basics are presented which are necessary to
understand the foundations of ligand field theory (LFT). Please note that we will not discuss
how well the methods perform and how successful certain models have been applied, as
this is covered in general inorganic chemistry textbooks and reviews. LFT is concerned
with the description of d–d electronic transitions and the d electron configuration of
the ground state. Both topics can be covered when employing multiconfiguration wave
functions, so we will focus on the discussion of these. The introduction of standard
quantum chemical approaches will be short and, most notably, will skip most of the
Hartree–Fock (HF) approach. We will then see how multiconfiguration wave functions are
set up systematically and how the complete active space approach works, which is crucial
for the understanding of ab initio LFT. This chapter is mainly based on refs. [17–19].
Additional sources are refs. [20–23]. For more information on fundamental quantum
chemistry, recommended literature is ref. [18] and for a detailed description of the ground
state electronic structure methods (especially HF), ref. [17].

2.1 Basics

Quantum chemistry is interested in the prediction of measurable quantities, also termed
physical observables. Key to this prediction is the usage of operators and wave functions,
where the application of the operator Ô on the wave function f yields the quantity of
interest as the eigenvalue o.

Ôf = o · f (2.1)

Due to the probabilistic interpretation of the wave function, we can obtain the average
or expectation value of an operator Ô for a system described by the wave function f by
multiplying with the complex conjugate of f and integrating over all space (indicated by
dτ).

∫︂
f∗Ôf dτ = o

∫︂
f∗f dτ (2.2)

In the more compact Dirac notation, the integrands are placed in bras (⟨f |) and kets (|f⟩),
and the above equation is then written as

⟨f |Ô|f⟩ = o⟨f |f⟩ (2.3)
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where the complex conjugation is implicit. In the following definitions, both notations are
given, but from subsection 2.1.1 on we will stick to the Dirac notation.
The wave function specifies the state of the system of interest and the operator cor-

responds to the observable that we want to predict. A few restrictions are in place for
operators and wave functions. The wave function must be an eigenfunction to the operator,
otherwise it would not yield an eigenvalue. Operators and wave functions can be complex
(i.e. have imaginary parts), but the observables must be real. This is fulfilled when the
operator is hermitian, i.e. it satisfies the relation

∫︂
f∗i Ôfj dτ =

∫︂
fjÔ

∗
f∗i dτ

⟨fi|Ô|fj⟩ =
[︂
⟨fj |Ô|fi⟩

]︂∗ (2.4)

Eigenfunctions of hermitian operators are always orthogonal, which means that the
integral ⟨fi|fj⟩ equals zero for i ̸= j. If they are also normalized (which is optional), they
are called orthonormal and we can write

⟨fi|fj⟩ =
∫︂
fif

∗
j dτ = δij =

{︄
1 if i = j

0 if i ̸= j
(2.5)

where δij is called the Kronecker delta. Normalization is generally not required, but can
be handy under several circumstances. There are more properties and restrictions to the
operators, but for understanding LFT, only the ones mentioned above are needed. The
most important point to keep in mind is that there is an operator to every observable and
a wave function that describes the state of a system.
As chemists are most often interested in molecules and their electronic structures, a

natural focus on the electronic energy operator and the corresponding wave functions
arises. The electronic energy operator is so important that it has its own name, Hamiltonian,
and its eigenvalue equation is called Schrödinger equation.

ĤΨ = EΨ (2.6)

Electronic structure investigations generally revolve around the solution of the Schrö-
dinger equation for a given system, and a colossal amount of research effort has been put
into the approximation of its solution. We will not define the Hamiltonian until later in
this chapter, and instead focus on the wave functions first. Until then, we simply take Ĥ
as a known term.

2.1.1 Wave functions

Since the wave function specifies the state of a system, it must take the coordinates of the
investigated particles as parameters. An N -electron wave function Ψ is thus a function of
the positions of the electrons, and Ψ = Ψ(x1, x2, . . . , xN ). Since electrons are fermions, a
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wave function of two or more of them must be antisymmetric, that means it must change
its sign upon the exchange of two electrons. This property is a formulation of the Pauli
exclusion principle.

Ψ(x1, x2, . . . , xN ) = −Ψ(x2, x1, . . . , xN ) (2.7)

To ensure the wave functions antisymmetry, it can be constructed as a Slater determinant.
They are antisymmetrized sums of products of one-electron wave functions called orbitals.
The general property of determinants to change their sign when two rows or columns are
exchanged guarantees that the exclusion principle is fulfilled.

|Ψ⟩ = 1√
2

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

χ1(x1) χ1(x2) . . . χ1(xN )
χ2(x1) χ2(x2) . . . χ2(xN )
... . . . ...

χN (x1) χN (x2) . . . χN (xN )

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓
= |χ1χ2 . . . χN ⟩ (2.8)

As indicated in the above equation, we can write a determinant in the shorter Dirac
notation, where only its diagonal elements are listed. The Schrödinger equation then
becomes

Ĥ|Ψ⟩ = E|Ψ⟩ (2.9)

In practice, the orbitals χ in the determinant are linear combinations themselves. They
are defined as a sum of K basis functions ϕ.

χi =

K∑︂

j=1

cijϕj (2.10)

Accordingly, there are up to K orbitals available for the construction of the determinant
|Ψ0⟩. The number of basis functions almost always exceeds the number of electrons in the
system and due to this, not all orbitals enter the ground state determinant. The orbitals
that are not part of the determinant are called virtual or unoccupied orbitals, the other
ones are occupied orbitals. The selection of occupied orbitals is called a configuration.
Section 2.2 deals with the variational principle which provides a criterion for how wave
functions should be composed in order to accurately approximate a true state.

2.1.2 Spatial orbitals

In the next sections, we use spin orbitals χ to define most expressions. They implicitly
contain the spin coordinate and are thus useful for indexing and constructing the matrices
we will encounter. Nonetheless, quantum chemical calculations are commonly based on
spatial orbitals that are defined as a product of a spatial and a spin function:

χ(x⃗) = γ(r⃗)σ(ω) (2.11)

7



Here, γ is the spatial function, depending on the spatial coordinates r⃗ and the spin function
σ that depends on the spin coordinate ω. Only two spin functions are allowed, namely
α(ω) and β(ω), and they are orthonormal such that ⟨α(ω)|α(ω)⟩ = 1 and ⟨α(ω)|β(ω)⟩ =
⟨β(ω)|α(ω)⟩ = 0. For the sake of brevity, the spin function is often included into the
spatial orbital symbol in form of a bar. The spatial orbital ψ without bar includes the spin
function α(ω), and β(ω) with bar.

ψ(x⃗) = γ(r⃗)α(ω)

ψ(x⃗) = γ(r⃗)β(ω)
(2.12)

In a closed-shell system, each spatial orbital corresponds to two spin orbitals:

ψ1 = χ1, ψ1 = χ2 (2.13)

Most chemists intuitively use spatial orbitals as their basis of expressing electron configu-
rations and concepts like occupation numbers, HOMO, LUMO and SOMO. We will use
spatial orbitals in the ligand field theory part of this work.

2.2 Variational principle

We stated that the application of a hermitian operator on an eigenfunction of this operator
yields a real eigenvalue. We also saw in the last section that the respective function is
constructed in a way that it adheres to the antisymmetry principle and that it consists
of linear combinations of one-electron functions. Any many-electron wave function is
defined in the given basis by the choice of the coefficients c in Equation 2.10. The question
that arises naturally is: what is a “good” wave function and consequently, how to choose
the coefficients if we use linear combinations as in Equation 2.10?
The variational principle states that in a given basis, the smallest possible electronic

energy is still larger than the “true” one. That means that the wave function that yields
this smallest energy is also the best approximation to the “true” wave function. In the
given form of the many-electron wave function, the coefficients c can be tweaked such
that a minimal eigenvalue is achieved. That makes them the variational parameters in
this approach, and most quantum chemical methods aim for the variational minimization
of the electronic energy.
Different methods for minimization can be employed, but it is a common (although not

necessary) restriction to keep the variational parameters linear. It is in principle possible
to have, say, an exponent as variational parameter, but its optimization is much more
complicated and thus not practical in common quantum chemical calculations.
Each additional basis function increases the parameter space in which the wave function

can be optimized and thus improves the electronic energy, but it also increases the
computational effort that is necessary to find an optimal solution.1 Thus, the choice of
basis functions is crucial for the description of any electronic structure. Most often for
1Although additional basis functions do not always improve the electronic energy significantly.
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molecular investigations, atomic orbitals are employed: functions that are centred on
the atoms in the investigated molecule. Their linear combinations are called molecular
orbitals, and the corresponding approach linear combination of atomic orbitals (LCAO). Let
us recall the symbols in Equation 2.10: χi are molecular orbitals, to which we will only
refer as orbitals in the rest of the text. The coefficients cij are the variational parameters,
and ϕj are the basis functions, commonly atomic orbitals.

2.2.1 Linear variational problems

The variational principle tells us that we must minimize the electronic energy with respect
to the variational parameters. Let us assume a wave function f that is a linear combination
of basis functions (not a Slater determinant!), similar to Equation 2.10. The energy
associated with this function, derived from Equation 2.9, is

E =
⟨f |Ĥ|f⟩
⟨f |f⟩ (2.14)

with |f⟩ =∑︁i ci|xi⟩. The numerator can be expanded as

⟨f |Ĥ|f⟩ =
K∑︂

i

K∑︂

j

cicj⟨xi|Ĥ|xj⟩

=
K∑︂

i

K∑︂

j

cicjHij

= c21H11 + c1c2H12 + c2c1H21 + c1c3H13 + · · ·+ c2KHKK

(2.15)

The Hamiltonian is hermitian, so Hij = Hji and the above sum can be compacted slightly.

⟨f |Ĥ|f⟩ = c21H11 + 2c1c2H12 + 2c1c3H13 + · · ·+ c2KHKK (2.16)

Proceeding similarly, we obtain for the denominator

⟨f |f⟩ =
K∑︂

i

K∑︂

j

cicj⟨xi|xj⟩

=

K∑︂

i

K∑︂

j

cicjSij

= c21S11 + 2c1c2S12 + 2c1c3S13 + · · ·+ c2KSKK

(2.17)

To find the minimum energy associated with the given Hamiltonian and function, we
need to take the partial derivatives of the energy and equal them to 0. Before taking the
derivative, it is beneficial to restructure Equation 2.14 such that there is no fraction.

⟨f |f⟩E = ⟨f |Ĥ|f⟩ (2.18)
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We now take the derivative and apply the product rule on the left term.

E · ∂

∂ck
⟨f |f⟩+ ⟨f |f⟩ ∂E

∂ck
=

∂

∂ck
⟨f |Ĥ|f⟩ (2.19)

Since ∂E/∂ck = 0, the equation simplifies further and we can expand it.

E · ∂

∂ck

⎛
⎝

K∑︂

i

K∑︂

j

cicjSij

⎞
⎠ =

∂

∂ck

⎛
⎝

K∑︂

i

K∑︂

j

cicjHij

⎞
⎠ (2.20)

After taking the derivatives, we get

E ·
(︄

K∑︂

i

2ciSik

)︄
=
∑︂

i

2ciHik (2.21)

The overlap integrals are shifted to the right, the equation is divided by 2 and ci is factored
out.

0 =
K∑︂

i

ci(Hik − ESik) (2.22)

Since the partial derivative needs to be taken for all ck, we obtain K such equations,
making up a linear equation system that can be solved for E. This equation system can be
expressed in a determinantal form, the equation is then called secular equation and the
determinant accordingly secular determinant.

0 =

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

H11 − ES11 H12 − ES12 . . . H1K − ES1K
H21 − ES21 H22 − ES22 . . . H2K − ES2K

... ...
HK1 − ESK1 HK2 − ESK2 . . . HKK − ESKK

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(2.23)

There are two very important points arising from the above result. First: We saw that
any function that is a linear combination of basis function leads to a secular equation
when minimized for the energy with respect to the linear variational parameters. Second
and maybe not as obvious: The resulting equation is a polynomial of Kth degree (if the
determinant is expanded), so solving it for E will yieldK values, each with a separate set of
coefficients. The lowest Ek is by definition the ground state energy, and the corresponding
set of coefficients defines the ground state wave function. It is common to label ground
state symbols with an index 0. The larger energies and sets of coefficients represent
excited states, and we will use this property of the linear variational problem as basis for
the next sections.
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2.2.2 The matrix equivalence

Let us go a step back to Equation 2.21 and collect the set of equations in matrix form. We
can order it in terms of a hamiltonian matrix, an overlap matrix and a set of coefficients
and obtain

E

⎛
⎜⎜⎜⎝

S11 S12 . . . S1K
S21 S22 . . . S2K
... ...

SK1 SK2 . . . SKK

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
...
cK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

H11 H12 . . . H1K

H21 H22 . . . H2K
... ...

HK1 HK2 . . . HKK

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
...
cK

⎞
⎟⎟⎟⎠ (2.24)

or

ESc = Hc (2.25)

We assume that the functions we use are orthonormal. In this case, Sij = δij and the
overlap matrix becomes unity.

Ec = Hc (2.26)

as stated above, there are K solutions for E, and we can express this by introducing a
matrix C that collects the sets of coefficients c and an matrix E which is diagonal with
the corresponding energies Ek as elements. The resulting expression

EC = HC (2.27)

is a well-known problem and corresponds to the diagonalization of H, with the matrices
E and C containing the eigenvalues and eigenvectors, respectively.
In the rest of this text, all electronic problems are expressed in the matrix form, even

when we refer to the secular equation. It is important to keep in mind that the expression
“diagonalizing the hamiltonian matrix” means the same as “solving the linear variational
problem for the given Hamiltonian and wave function”.

2.2.3 The electronic Hamiltonian

For the connection of the quantum chemical approach and LFT, we need to further specify
the elements of the matrix H. They are integrals of the type ⟨xi|Ĥ|xj⟩, representing
the electronic energy contributions, so we are concerned with the mathematical form of
the Hamiltonian Ĥ. We will operate in the Born–Oppenheimer picture, which takes the
positions of the nuclei as fixed, while the positions of the electrons are flexible and thus
the parameters of the wave function. This assumption is very common and justified by the
fact that electrons are at least 1000 times lighter than nuclei and thus move much faster.
Please notice that we are using atomic units for the definition of the Hamiltonian.

Ĥ = −1

2

∑︂

i

∇2
i −

∑︂

i

∑︂

A

qA
riA

+
∑︂

i>j

1

rij
(2.28)
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The first term is the kinetic energy of the electrons, the second is the electrostatic attraction
of the electrons to all nuclei with charge q, indexed withA. The last part is the electrostatic
repulsion between the electrons i and j. All sums presented here always include all
electrons or all nuclei, respectively. It can be very convenient to group the terms of the
electronic Hamiltonian into a one-electron part ĥ, only depending on individual electron
coordinates and a two-electron part ĝ that includes electron-electron interactions.

Ĥ =
∑︂

i

ĥi(xi) +
∑︂

i>j

ĝij(xi, xj) (2.29)

This grouping is a common way to reduce the complexity of the integral notation occurring
when applying the Hamiltonian on a wave function.

2.2.4 Approximations and Hartree–Fock

Before we turn to multi-configurational methods, let us make a short digression to the
single-configuration approach. Since the orbitals that make up a Slater determinant
are composed of basis functions with variational coefficients (see Equation 2.10), the
variational principle can be applied and there must be a set of coefficients for which the
electronic energy is minimal. There are two problems that hinder a straightforward solu-
tion, and they will become apparent when expanding the Hamiltonian in the Schrödinger
equation.
If we use a single, normalized Slater determinant as wave function, the associated

energy is
E0 = ⟨Ψ0|Ĥ|Ψ0⟩ (2.30)

(2.31)
and the expansion of the Hamiltonian leads to

E0 =
∑︂

i

⟨χi|ĥ|χi⟩+
∑︂

i

∑︂

j<i

⟨χiχj |ĝ|χiχj⟩ − ⟨χiχj |ĝ|χjχi⟩ (2.32)

The two-electron operator gives rise to two terms, the first one is called Coulomb integral,
the second one exchange integral. The problem with these terms is that the interaction of
a molecular orbital χi with another molecular orbital χj depends on the exact functional
form of χj . Vice versa, the interaction of χj with χi depends on the exact form of χi. The
next catch is that we cannot apply the rules for linear variational problems here; Slater
determinants are antisymmetrized and thus we do not deal with a matrix diagonalization
problem.
As it is not the actual focus of this work, I want to give a short summary on how the

Hartree–Fock procedure approximates a solution to these problems. The linear varia-
tional problem can be restored by introducing independent one-electron operators, the
eigenvalues of which are the orbital energies in

F̂χi = εiχi (2.33)
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This Fock operator still contains the dependency on the other orbitals, so the solution
is found in multiple iterative steps. A set of starting orbitals is guessed, with which the
Fock eigenvalue equation is solved. The obtained set of eigenvectors (the variational
coefficients) will differ from the starting set, so in a next step this new set is used to solve
the Fock equation again. This procedure is repeated until the obtained coefficients are
sufficiently close to the ones from the last iteration, i.e. considered converged.
With this scheme, we obtain a wave function that is the best solution to the Fock

eigenvalue equation in a given basis set, but it can be shown that it is also the best wave
function for the complete electronic energy expression in Equation 2.32.
The Hartree–Fock wave function as a single determinant is the origin of many concepts of

electronic structures in chemistry. The HF method constructs molecular orbitals from basis
functions, and we can interpret the particular compositions found. We can see whether
atomic orbitals mix, what the highest occupied and the lowest unoccupied orbitals look like
or if an electron is delocalized or not. Most importantly, the determinant can be directly
associated with a configuration, i.e. which orbitals are occupied and which are not. In the
single-determinant picture, a configuration represents an electronic state, and heuristically
the exchange of an occupied with an unoccupied orbital is then an excited state. This is
where the somewhat sloppy idea comes from that upon excitation, an electron is moved
from an occupied into an unoccupied orbital.2 The predictive power of HF calculations is
extremely limited for several reasons, and cannot be used to obtain quantitative results.
Due to HF missing a large part of electron correlation effects, energies and derived
properties that are predicted by it are not reliable. Reaction enthalpies for example are
usually of the same magnitude as the error of HF energies. So-called post-Hartree–Fock
methods aim to improve on this, and we will deal with the most straightforward way of
improving the results obtained by quantum chemical calculations in the next section.
Another method that is used in parallel with HF is density functional theory (DFT),

which is generally more successful than HF. DFT is formally exact and does only depend on
the electron density as variable, but in practice, the electron density must be approximated.
Kohn-Sham (KS)-DFT uses a wave function to approximate the electron density, and this
wave function is a Slater determinant composed of basis functions, just as in the HF
method. However, the operators employed in KS-DFT are defined differently compared to
HF and therefore the optimized determinants of KS-DFT and HF calculations are not the
same.

2.3 Configuration Interaction

The HF approach deals with a single determinant and is designed to approximate the
ground state energy of the system. If we want to include excited states or perhaps need to
take a degenerate ground state into account, we can expand a wave function |Φ⟩ in terms

2And the wrong notion that the energy difference of electronic states is the energy difference of two orbitals.
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of determinants |Ψ⟩ as basis functions.

|Φ⟩ =
D−1∑︂

i=0

Ci|Ψi⟩ (2.34)

where D is the total number of determinants. We assume them to be orthonormal, such
that ⟨Ψi|Ψj⟩ = δij , but how they are constructed is discussed in the next subsection.
We saw that solving the Schrödinger equation for any wave function that depends

linearly on its variational parameters (here Ci) will lead to a secular equation, which is
equivalent to the diagonalization of the matrix

⎛
⎜⎜⎜⎜⎜⎝

⟨Ψ0|Ĥ|Ψ0⟩ ⟨Ψ0|Ĥ|Ψ1⟩ ⟨Ψ0|Ĥ|Ψ2⟩ . . . ⟨Ψ0|Ĥ|ΨD⟩
⟨Ψ1|Ĥ|Ψ0⟩ ⟨Ψ1|Ĥ|Ψ1⟩ ⟨Ψ1|Ĥ|Ψ2⟩ . . . ⟨Ψ1|Ĥ|ΨD⟩
⟨Ψ2|Ĥ|Ψ0⟩ ⟨Ψ2|Ĥ|Ψ1⟩ ⟨Ψ2|Ĥ|Ψ2⟩ . . . ⟨Ψ2|Ĥ|ΨD⟩

... . . . ...
⟨ΨD|Ĥ|Ψ0⟩ ⟨ΨD|Ĥ|Ψ1⟩ ⟨ΨD|Ĥ|Ψ2⟩ . . . ⟨ΨD|Ĥ|ΨD⟩

⎞
⎟⎟⎟⎟⎟⎠

(2.35)

which will yield D energy eigenvalues and eigenvectors, with the lowest eigenvalue being
the ground state energy while the others are excited state energies. Each state is thus
composed of several determinants and the coefficients we obtain in the diagonalization
procedure can tell us how “important” certain determinants are for a given state. An
interpretation is only possible if we know how the excited determinants are defined.

2.3.1 Constructing excited determinants

The decision of how the excited determinants are constructed is limited by the basis that
we chose to compose the orbitals χ. If we restrict ourselves to the given basis, the only
possibility to compose excited determinants is by exchanging occupied and virtual orbitals.
In the ground state determinant, let χa and χb be any two occupied orbitals.

|Ψ0⟩ = |χ1χ2 . . . χaχb . . . χN ⟩ (2.36)

Let χr and χs be any two virtual orbitals. If we exchange, say χa and χr, we are describing
an excited state, where the electron that occupied χa is excited into χr. The determinant
that corresponds to this excited configuration can be written as:

|Ψr
a⟩ = |χ1χ2 . . . χrχb . . . χN ⟩ (2.37)

Since there are several occupied and virtual orbitals, many configurations can be formed.
In the same manner, doubly excited determinants can be constructed, where two occupied
orbitals are exchanged with two virtual ones. We write these as

|Ψrs
ab⟩ = |χ1χ2 . . . χrχs . . . χN ⟩ (2.38)

Any number of excitations is possible as long as the basis set size permits. These additional
determinants can be used to systematically improve the total wave function, by forming a
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linear combination of determinants that takes increasing advantage of the basis set size
with every added term:

|Φ⟩ = c0|Ψ0⟩+
∑︂

ar

cra|Ψr
a⟩+

∑︂

abrs

crsab|Ψrs
ab⟩+ . . . (2.39)

The sum over ar includes every single excitation, the one over abrs every double excitation,
and so on.
This is a systematic way of constructing the wave function in Equation 2.34. Since we

enhance the total wave function with additional configurations, this approach is called
configuration interaction (CI).3 If every possible excitation is regarded, it is called full CI
and its solution does not depend on whether we use the basis functions as orbitals or
linear combinations of them. By applying this scheme, we use the basis set size to its
full capacity; each possible determinant that can be constructed in the given set is then
present in the solution and the total wave function is the best approximation to the true
wave function in the given basis. If the wave function shall be further improved, it is
necessary to include more basis functions, which in turn allows more determinants to be
constructed. The determinantal approach thus leads to two axes of improvement: the
basis set size and the number of excited determinants. It is intuitive that this scheme leads
to numerous determinants to deal with. The total number of determinants D that can be
formed with N electrons and K basis functions is

D =

(︃
K

N

)︃
(2.40)

which is unmanageably large for every system that is of chemical interest. Even for small
basis sets, the number of possible excitations leads to a computational load that is too
big to justify. In general, full CI is more of a concept than a method, but there are good
approximations that can be derived from this approach.
Because the additional determinants resemble electron configurations, we can carefully

interpret the resulting eigenvalues and eigenvectors. In the single-determinantal approach,
a state corresponds directly with an electron configuration, which is an approximation. In
reality, a state is not defined by a single configuration, instead the complete solution would
include all possible determinants with an infinite basis set. An interpretation in terms of
single configurations may still be permitted in some cases, when a particular determinants’
coefficient is close to one and this state can be seen as composed of essentially a single
configuration. On the other hand, states with significant contributions from multiple
configurations point to near-degeneracies and show that a single-determinantal approach
will not yield a reliable result for the given system.

2.3.2 The CI matrix elements

In order to see how any ligand field parameterization is derived, we need to understand
how the elements of the CI matrix are expressed in terms of one and two-electron integrals.
3Although configuration mixing might be a more descriptive term, since the resulting wave functions are
admixtures of configurations.
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We saw in the last section that we can separate the electronic Hamiltonian into one-electron
and two-electron parts. Let us now take a look at the CI matrix in Equation 2.35, and
define the additional determinants as the ones corresponding to excited configurations.

⎛
⎜⎜⎜⎝

⟨Ψ0|Ĥ|Ψ0⟩ ⟨Ψ0|Ĥ|Ψr
a⟩ ⟨Ψ0|Ĥ|Ψrs

ab⟩ . . .

⟨Ψr
a|Ĥ|Ψ0⟩ ⟨Ψr

a|Ĥ|Ψr
a⟩ ⟨Ψr

a|Ĥ|Ψrs
ab⟩ . . .

⟨Ψrs
ab|Ĥ|Ψ0⟩ ⟨Ψrs

ab|Ĥ|Ψr
a⟩ ⟨Ψrs

ab|Ĥ|Ψrs
ab⟩ . . .

... ... ... . . .

⎞
⎟⎟⎟⎠ (2.41)

In the above matrix,4 the excited configurations are subsumed into one matrix element,
so for example the element ⟨Ψ0|Ĥ|Ψr

a⟩ is itself a matrix and represents multiple elements:

⟨Ψ0|Ĥ|Ψr
a⟩ =

(︂
⟨Ψ0|Ĥ|Ψt

i⟩ ⟨Ψ0|Ĥ|Ψt
j⟩ ⟨Ψ0|Ĥ|Ψt

k⟩ . . .
)︂

(2.42)

The matrix elements depicted here are thus matrices themselves, which is important to
keep in mind. If we separate the Hamiltonian in this matrix, we can also separate the
matrix into a one-electron and a two-electron matrix while their structure each remains
the same.5 This leads to the following hamiltonian matrix:

H =

⎛
⎜⎜⎜⎝

⟨Ψ0|ĥ|Ψ0⟩ ⟨Ψ0|ĥ|Ψr
a⟩ ⟨Ψ0|ĥ|Ψrs

ab⟩ . . .

⟨Ψr
a|ĥ|Ψ0⟩ ⟨Ψr

a|ĥ|Ψr
a⟩ ⟨Ψr

a|ĥ|Ψrs
ab⟩ . . .

⟨Ψrs
ab|ĥ|Ψ0⟩ ⟨Ψrs

ab|ĥ|Ψr
a⟩ ⟨Ψrs

ab|ĥ|Ψrs
ab⟩ . . .

... ... ... . . .

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

⟨Ψ0|ĝ|Ψ0⟩ ⟨Ψ0|ĝ|Ψr
a⟩ ⟨Ψ0|ĝ|Ψrs

ab⟩ . . .
⟨Ψr

a|ĝ|Ψ0⟩ ⟨Ψr
a|ĝ|Ψr

a⟩ ⟨Ψr
a|ĝ|Ψrs

ab⟩ . . .
⟨Ψrs

ab|ĝ|Ψ0⟩ ⟨Ψrs
ab|ĝ|Ψr

a⟩ ⟨Ψrs
ab|ĝ|Ψrs

ab⟩ . . .
... ... ... . . .

⎞
⎟⎟⎟⎠

(2.43)

If the basis set used in the determinants is orthonormal, the elements can be further
simplified by a set of rules, called Slater’s rules. By comparison of how many orbitals of the
two determinants in ⟨Ψi|ĥ|Ψj⟩ or ⟨Ψi|ĝ|Ψj⟩ are different, the elements can be expressed
in defined integrals over these orbitals. The rules differ for one-electron and two-electron
operators and are listed below. The list entries below begin with the number of different
orbitals.

4According to Brillouin’s theorem, the elements ⟨Ψ0|Ĥ|Ψr
a⟩ and ⟨Ψr

a|Ĥ|Ψ0⟩ are 0, but this is a rather
distracting detail here.

5This is a separation that only serves to partition the expressions into manageable pieces for the reader.
Diagonalizing a sum of matrices is generally not the same as summing up diagonalized matrices.
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One-electron operator

0 : ⟨. . . χaχb . . . |ĥ| . . . χaχb . . .⟩ =
∑︂

j

⟨χj |ĥ|χj⟩

1 : ⟨. . . χaχb . . . |ĥ| . . . χrχb . . .⟩ = ⟨χa|ĥ|χr⟩
2+ : ⟨. . . χaχb . . . |ĥ| . . . χrχs . . .⟩ = 0

(2.44)

Two-electron operator

0 : ⟨. . . χaχbχc . . . |ĝ| . . . χaχbχc . . .⟩ =
1

2

∑︂

i

∑︂

j

⟨χiχj ||χiχj⟩

1 : ⟨. . . χaχbχc . . . |ĝ| . . . χrχbχc . . .⟩ =
∑︂

j

⟨χaχj ||χrχj⟩

2 : ⟨. . . χaχbχc . . . |ĝ| . . . χrχsχc . . .⟩ = ⟨χaχb||χrχs⟩
3+ : ⟨. . . χaχbχc . . . |ĝ| . . . χrχsχt . . .⟩ = 0

(2.45)

with ⟨χaχb||χrχs⟩ = ⟨χaχb|ĝ|χrχs⟩ − ⟨χaχb|ĝ|χsχr⟩.
In an actual CI calculation, these integrals are solved and the resulting eigenvalues are

ab initio approximations to the ground state and the excited states, limited by the basis
set size and how well the chosen basis functions cover the molecular structure in general.

2.4 Cherry-picking determinants

As we have seen above, CI is clearly not a viable approach to solve an electronic structure
problem, but there are possibilities to reduce the computational complexity. Many deter-
minants do not contribute significantly to the energies one might be interested in (most
prominently the ground state energy), although they increase the computational load just
as much as more important determinants do. The obvious solution to that problem is the
omission of determinants that are considered “unimportant”, and the subsequent question
is how to tell the important and the unimportant ones apart.
Before presenting possible simplification approaches we have to be aware that every

scheme that includes more determinants without reaching the full CI limit is dependent
on the chosen orbitals. While in full CI we could just take the basis functions as orbitals
and obtain the same results, reduced CI schemes profit from optimizing the orbitals first.
It is common to choose an optimized (HF) ground state determinant as reference for the
generation of excited determinants.
Common are so-called truncated CI schemes, for example CI singles (CIS), CI singles

and doubles (CISD). The idea is to restrict the excitation level to singly or doubly excited
states, so Equation 2.39 is cut after the second or third summand. It is chemically intuitive
in the sense that multiply excited states are much rarer and their determinants should
be less relevant. Although they do work and are certainly more popular than full CI,
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truncated CI schemes are superseded by coupled cluster approaches and have low practical
relevance.6
The most interesting approach with regard to LFT are active space schemes. Instead of

choosing a certain general excitation level as a chemically reasonable limit, the excitations
are selected depending on a specific set of active orbitals. For example, a researcher
might be interested in a specific transition in photochemistry, say the π electrons in a
dyeing agent or the d excitations in a transition metal complex. The chosen orbitals
would then include the bonding and antibonding π orbitals or the five antibonding d
orbitals respectively. These orbitals make up the active space, and we do not restrict the
level of excitation in the determinants constructed from that active space. Notice that
we must choose a set of occupied orbitals as well as a set of virtual ones, otherwise no
excitations are possible at all. In the chosen set, all possible excitations of the active orbitals
are constructed, which means that the CI calculation is performed on a smaller sized
configurational space. This method is called complete active space (CAS). Commonly, three
spaces are distinguished in a CAS calculation: the occupied orbitals are doubly occupied
and not subject to any excitation. Still, they are part of the total wave function and thus
contribute to the electronic state energies. The active orbitals make up the CI space, all
excitations are performed within that space. The virtual orbitals do not contribute to the
excited states. 7 It is common to use a (n,m) notation for active spaces, indicating that n
electrons are distributed over m spatial orbitals.

2.4.1 Active space example

In a spin orbital basis, let us assume a ground state determinant for eight electrons,
|Ψ0⟩ = |χ1χ2 . . . χ7χ8⟩ and 12 additional virtual orbitals with the indices 9 to 20. Say we
further choose the orbitals 7 to 10 to be in the active space, making the orbitals χ1 to
χ6 occupied and the orbitals χ11 to χ20 virtual. To keep the example easy to overview,
we write the occupied orbitals as dots and focus on the active space. The full CI wave
function within the active space is then written:

|Φ⟩ = c7,8| . . . χ7χ8⟩
+ c7,9| . . . χ7χ9⟩+ c8,9| . . . χ8χ9⟩
+ c7,10| . . . χ7χ10⟩+ c8,10| . . . χ8χ10⟩
+ c9,10| . . . χ9χ10⟩

(2.46)

As illustrated, the occupied orbitals remain fixed, the ones in the active space are exchanged
in the excited determinants and the virtual ones do not enter the function at all.
Let us repeat the above example with spatial orbitals, to clarify the shorthand notation

for active spaces and ease the coming transition to ligand field theory. In a closed-shell
system, the eight electrons would occupy four spatial orbitals, and the ground state
6Mainly because coupled cluster approaches are more accurate and do not suffer from the truncated CI size
consistency problem.

7Another flavour of active space schemes is restricted active space (RAS), where more restrictions are employed
on the excitations that are allowed in the active space.[24]
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determinant would be |Ψ0⟩ = |ψ1ψ1ψ2ψ2ψ3ψ3ψ4ψ4⟩. Since the spatial orbitals 1, 2 and
3 are inactive, this would be abbreviated |Ψ0⟩ = | . . . ψ4ψ4⟩. The unoccupied orbitals
that enter the active space are ψ5 and ψ5, and all the higher ones do not enter the wave
function at all. As the active space consists of two spatial orbitals and two electrons, its
shorthand notation is (2, 2). The CI wave function is then:

|Φ⟩ = c4,4| . . . ψ4ψ4⟩
+ c4,5| . . . ψ4ψ5⟩+ c5,4| . . . ψ5ψ4⟩
+ c4,5| . . . ψ4ψ5⟩+ c5,4| . . . ψ5ψ4⟩
+ c5,5| . . . ψ5ψ5⟩

(2.47)

In the open shell case with a triplet ground state, the ground state determinant would be
|Ψ0⟩ = | . . . ψ4ψ5⟩, but the CI wave function would be exactly the same as for the singlet
ground state. This is an important detail: the multiplicity of the ground state plays no
role for the construction of the CAS wave function, only the selection of orbitals and the
number of electrons. On the other hand, it is of course possible to choose a set of active
orbitals from which the true ground state cannot be constructed. For this reason, it is
common to start with a determinant that was optimized by a ground state electronic
structure method like HF, ensuring a reasonable selection of molecular orbitals.
In the next chapter, we will see how ligand field theory and the CAS approach are very

similar in many regards and that LFT is in fact just a highly compact parameterization of
the CI matrix. The rules for the matrix elements in the above sets of equations will help to
understand how ligand field parameters are derived.

2.4.2 Multiconfiguration self-consistent field methods

Since the accuracy of truncated CI and active space methods depends on the orbitals that
make up the determinants, it is useful to optimize these, too. In a simple case, we could
perform an HF calculation to obtain orbital coefficients cij and use the resulting wave
function as a reference. When performing an active space calculation afterwards in order
to optimize the determinant coefficients Ci, we will likely get a very good approximation
to the ground state energy, but the excited states might be less accurate due to the focus
of the reference determinant.
In multiconfiguration self-consistent field (MCSCF) methods, both sets of coefficients

are optimized in an alternating process. For each diagonalization performed on the CI
matrix of the CAS, another SCF optimization of the orbital coefficients is conducted such
that the orbital coefficients cij are not only optimized with regard to the ground state,
but possibly to excited states, too.
While the diagonalization of the CAS-CI matrix always yields all eigenvalues and vectors,

the underlying reference determinant has a large impact on the accuracy of the states. If
the orbital coefficients cij are optimized such that the energy of one particular state is
minimal, it is a state-specific CASSCF calculation. If they are optimized that two to all states
are minimal (on average), it is called state-average CASSCF. Of course, the state-specific
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method could be separately performed for each particular state, which would yield the
best approximation for the state energies. In consequence however, the orbitals of the
different states would not be orthonormal any more and for example the prediction of
transition moments (i.e. intensities) is not possible. All active space calculations presented
in the main text are state-average CASSCF calculations.
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3 Ligand Field Theory and the Angular
Overlap Model

Ligand field theory is an approach to explain and understand the optical and magnetic
properties of transition metal complexes. It is constructed from perturbation theory or
effective Hamiltonian theory, respectively, and assumes the metal valence d orbitals1 to be
the basis functions. All LFT schemes have in common that they parameterize the electronic
energies obtained in the given basis, and the flavours of LFT are distinguished by the
chosen sets of parameters.
Historically, LFT is a generalization of crystal field theory and the underlying concept is

the same. Due to its little practical relevance and the fact that it can be viewed as special
case of LFT, we will not treat crystal field theory here. Before we dive into the ligand
field parameterization schemes, we will specify a few terms that were introduced more
generally in the last chapter, such as the Hamiltonian, the employed basis functions and
the possible configurations resulting from the basis. We will construct a CI matrix for the
given basis and then show how the elements of this matrix can be parameterized.
After the presentation of the general ligand field parameterizations we narrow the scope

further by focusing on the angular overlap model. Its derivation and common adjustments
are laid out, providing the theoretical foundation to understand the main discussions in
the publications that make up the main body of this work.
The content of this chapter is mainly based on refs. [6, 13, 22, 25], where ref. [22] is

especially detailed on the connection of ligand field theory and the quantum chemical
treatment of electronic structure problems. The derivation of the AOM is presented in
large detail in ref. [26] and the d–s mixing extension in ref. [27]

3.1 Ligand Field Theory

Ligand field theory is a perturbation or effective Hamiltonian approach, where a perturba-
tion operator is used to describe the electronic energies in a d orbital basis. As usual in
perturbation theory, we approximate effects that are considered a perturbation as addition
Ĥ1 to an unperturbed Hamiltonian Ĥ0 and expansions of the wave function Ψ.

Ĥ = Ĥ0 + Ĥ1 (3.1)
In the case of ligand field theory, the unperturbed Hamiltonian contains the kinetic energy
of the electrons and their electrostatic interactions with the (fixed) nuclei. What is left to
1Or f orbitals, but these are not subject of this work.
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be a perturbation is the electron-electron repulsion G and the ligand field VLF , a vaguely
specified effect that the ligands have on the electrons.

Ĥ1 = ĤLF =
N∑︂

i

V̂ LF (ri) +
N∑︂

i<j

Ĝij(ri, rj) (3.2)

This is abbreviated further to include the sums into the operator symbols.

ĤLF = V̂ LF + Ĝ (3.3)

The one-electron ligand field operator is V̂ LF , the two-electron operator is Ĝ. Since V̂ LF

and ĤLF are both termed ligand field operator, some confusion can arise here. Generally,
the symbol is given to avoid this, or we refer to either the total or one-electron ligand field
operator.
The unperturbed Hamiltonian Ĥ0 is of little interest to us in the context of LFT. The

solutions to its eigenvalue equation are the degenerate, unperturbed electronic states
which only serve as an energy basis in the ligand field picture. Since spectroscopic methods
can only capture energy differences, this basis energy cancels in experiment and has no
practical relevance. We will encounter it again at the very end of the AOM section, where
it is incorporated in a single parameter.

3.1.1 The d orbital basis

Central to CFT and LFT is that they work on a d orbital basis. Consequently, they can
only describe electronic transitions between states that differ (mainly) in their d electron
configuration. As another consequence, LFT loses validity as soon as the actual bonding
situation in a complex requires strong mixing of the transition metal d orbitals with ligand
orbitals.
Most approaches to quantum chemical wave functions of electrons in molecules use

atomic orbitals that are linearly combined to form molecular orbitals. This scheme is
called linear combination of atomic orbitals (LCAO) and manifests such that the basis
functions in Equation 2.10 are atomic orbitals, consisting of a radial part and an angular
part.

ϕ = R(r)Y ml
l (θ, φ) (3.4)

They are located at an atom, hence the name, so the used spherical coordinates r, θ, φ are
related to the position of the atom. The radial part is commonly a Slater-type function or a
Gaussian, but its exact shape does not matter to us. The angular dependent part Y ml

l is a
complex spherical harmonic which defines the type of the orbital via the quantum numbers
l and ml. The d orbitals have l = 2, for which the spherical harmonics are listed in the
appendix. Very often, chemists do not use the complex spherical harmonics themselves,
but linear combinations that do not have an imaginary part. There is no fundamental
reason for this, but the real spherical harmonics are somewhat easier to visualize and
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have clearer directional properties. The real d orbitals are based on the following linear
combinations:

Y2,−2 = − i√
2
(Y 2

2 − Y −2
2 ) =

√︃
15

16π
sin2(θ) sin(2φ)

Y2,−1 =
i√
2
(Y 1

2 + Y −1
2 ) =

√︃
15

4π
sin(θ) cos(θ) sin(φ)

Y2,0 = Y 0
2 =

√︃
5

16π
(3 cos2(θ)− 1)

Y2,1 = − 1√
2
(Y 1

2 − Y −1
2 ) =

√︃
15

4π
sin(θ) cos(θ) cos(φ)

Y2,2 =
1√
2
(Y 2

2 + Y −2
2 ) =

√︃
15

16π
sin2(θ) cos(2φ)

(3.5)

Accordingly, the basis functions that are employed in LFT are linear combinations of the
complex spherical harmonics and the basis is defined in terms of d orbitals. The spherical
harmonics are orthonormal and thus, all simplification rules from the last chapter can be
used.

dml
= R(r)Y2,ml

(θ, φ) (3.6)

In the context of the real spherical harmonics, ml is substituted by the geometrical
descriptors xy, yz, z2, xz, x2 − y2. According to the above definition of the basis functions,
the orbitals that are employed are linear combinations of these which are also orthonormal:

d′i =
∑︂

ml

cml,idml

=
∑︂

ml

cml,iR(r)Y2,ml
(θ, φ)

(3.7)

It might be helpful to note that in most publications, the coefficients cml,i are implicitly
chosen such that the orbitals d′i coincide with the basis functions dml

. This is the case
if in each linear combination, one of the coefficients is 1 while the others are 0. For a
free ion, the orbitals are degenerate, and the results for any chosen set of coefficients are
equal. Only when ligands are present that lift the degeneracy of the d orbitals, it might
be necessary to adapt the coefficients such that the state energies are minimal. Similarly,
we choose the orbitals d′i such that they coincide with dml

in the next sections.
On another note, the term d orbital canmean three slightly different functions depending

on the context. Quite generally, d orbital means any orbital which has l = 2 and accordingly,
dml
and d′i are often used interchangeably. In most mathematical operations, they also

behave equally, so their exact specification does not matter. A slightly closer look can
be necessary when the symbol d means the spherical harmonics without the radial part.
Again, this might not matter since e.g. under rotations, the radial part remains unaltered.
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Table 3.1: Determinants of all possible d1 configurations, ordered by MS =
∑︁
ms and

ML =
∑︁
ml.

ML\MS
1
2 −1

2

2 |dxy⟩ |dxy⟩
1 |dyz⟩ |dyz⟩
0 |dz2⟩ |dz2⟩
-1 |dxz⟩ |dxz⟩
-2 |dx2−y2⟩ |dx2−y2⟩

3.1.2 Configurations and the CI matrix

In the previous chapter, we discussed the structure of the CAS wave functions, which are
constructed by linearly adding the determinants of each excited state to the ground state
determinant. Phrased slightly differently, the CAS wave function must contain all possible
electron configurations.
The construction of excited states is possible by using a scheme following the second

quantization approach of using excitation operators. Starting from a state where the
electrons are distributed over a selection of orbitals, the application of an excitation
operator replaces a selected occupied orbital with a selected virtual one. Doing this
for all combinations of occupied and virtual orbitals will yield each singly excited state
determinant. To obtain double and higher excitations, an appropriate number of distinct
excitation operators needs to be applied to the original determinant, up to a maximum
excitation level equal to the number of electrons.
The basis that we use in LFT always consists of the five d orbitals, which makes ten

basis functions in total when regarding spin.2 In the simplest case of one electron, single
excitations are the maximum making ten different configurations. To get an overview, it is
convenient to arrange them in a table where one axis is the total spin of the configuration
and the other is the total angular momentum. The d1 case is presented in Table 3.1.
Obviously, the determinants are just single functions and in the resulting 10×10 CI matrix,
there would be no two-electron integral. This is the simplest case for an open d shell, but
according to Equation 2.40, the number of possible configurations increases strongly if
more electrons are included. The number of configurations for each possible number of d
electrons is shown in Table 3.2.
An acceptable balance between example completeness and simplicity is provided by

the d2 case, where all possible one and two electron integrals appear. There are 45
configurations as shown in Table 3.3. Although these are too many to present or discuss
the whole CI matrix, it is at least possible to keep the overall structure in mind and to
collect all configurations in a single table. In the next section, the d2 case serves as example
system for the more detailed discussion of LFT.
As we have seen in the last chapter, a configuration interaction approach can be used to

2For actinoides and lanthanoides, the basis consists of the seven f orbitals, leading to fourteen basis functions.
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Table 3.2: Number of possible configurations for 10 basis functions and n electrons. Note
that due to the electron–hole analogy, partly filled and partly empty orbitals
behave equal in the construction of excited state configurations.

Electron configuration d0, d10 d1, d9 d2, d8 d3, d7 d4, d6 d5

Number of configurations 1 10 45 120 210 252

Table 3.3: Determinants of all possible d2 configurations, ordered byMS =
∑︁
ms and

ML =
∑︁
ml.

ML\MS -1 0 1

-4 |dxydxy⟩
-3 |dxydyz⟩ |dxydyz⟩, |dxydyz⟩ |dxydyz⟩
-2 |dxydz2⟩ |dxydz2⟩, |dxydz2⟩,

|dyzdyz⟩
|dxydz2⟩

-1 |dxydxz⟩, |dyzdz2⟩ |dxydxz⟩, |dxydxz⟩,
|dyzdz2⟩, |dyzdz2⟩

|dxydxz⟩, |dyzdz2⟩

0 |dxydx2−y2⟩, |dyzdxz⟩ |dxydx2−y2⟩,
|dxydx2−y2⟩, |dyzdxz⟩,
|dyzdxz⟩, |dz2dz2⟩

|dxydx2−y2⟩, |dyzdxz⟩

1 |dyzdx2−y2⟩, |dz2dxz⟩ |dyzdx2−y2⟩,
|dyzdx2−y2⟩, |dz2dxz⟩,
|dz2dxz⟩

|dyzdx2−y2⟩, |dz2dxz⟩

2 |dz2dx2−y2⟩ |dz2dx2−y2⟩,
|dz2dx2−y2⟩, |dxzdxz⟩

|dz2dx2−y2⟩

3 |dxzdx2−y2⟩ |dxzdx2−y2⟩,
|dxzdx2−y2⟩

|dxzdx2−y2⟩

4 |dx2−y2dx2−y2⟩
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obtain the electronic state energies. This requires setting up the CI matrix in the chosen
basis and its diagonalization. It is futile to present a whole CI matrix here, so instead
we discuss just a section of it. The matrix below is a section of the 45 × 45 CI matrix
constructed from the d2 configuration.

Hsection =

⎛
⎝
⟨dxydyz|Ĥ|dxydx2−y2⟩ ⟨dxydyz|Ĥ|dxydyz⟩ ⟨dxydyz|Ĥ|dxydyz⟩
⟨dxydz2 |Ĥ|dxydx2−y2⟩ ⟨dxydz2 |Ĥ|dxydyz⟩ ⟨dxydz2 |Ĥ|dxydyz⟩
⟨dxydz2 |Ĥ|dxydx2−y2⟩ ⟨dxydz2 |Ĥ|dxydyz⟩ ⟨dxydz2 |Ĥ|dxydyz⟩

⎞
⎠ (3.8)

The Hamiltonian is a sum of one and two-electron operators, and thus the matrix can be
written as sum, too:

Hsection (3.9)
=Vsection +Gsection (3.10)

=

⎛
⎝
⟨dxydyz|V̂ LF |dxydx2−y2⟩ ⟨dxydyz|V̂ LF |dxydyz⟩ ⟨dxydyz|V̂ LF |dxydyz⟩
⟨dxydz2 |V̂ LF |dxydx2−y2⟩ ⟨dxydz2 |V̂ LF |dxydyz⟩ ⟨dxydz2 |V̂ LF |dxydyz⟩
⟨dxydz2 |V̂ LF |dxydx2−y2⟩ ⟨dxydz2 |V̂ LF |dxydyz⟩ ⟨dxydz2 |V̂ LF |dxydyz⟩

⎞
⎠ (3.11)

+

⎛
⎝
⟨dxydyz|Ĝ|dxydx2−y2⟩ ⟨dxydyz|Ĝ|dxydyz⟩ ⟨dxydyz|Ĝ|dxydyz⟩
⟨dxydz2 |Ĝ|dxydx2−y2⟩ ⟨dxydz2 |Ĝ|dxydyz⟩ ⟨dxydz2 |Ĝ|dxydyz⟩
⟨dxydz2 |Ĝ|dxydx2−y2⟩ ⟨dxydz2 |Ĝ|dxydyz⟩ ⟨dxydz2 |Ĝ|dxydyz⟩

⎞
⎠ (3.12)

The integrals we encounter in these matrices can be simplified with the rules presented in
Equation 2.44 and Equation 2.45. We do not have a case in this matrix section where the
configurations on the bra and ket are identical, so only the rules for differences ≥ 1 apply.

Vsection +Gsection (3.13)

=

⎛
⎝
⟨dyz|V̂ LF |dx2−y2⟩ 0 ⟨dxy|V̂ LF |dxy⟩
⟨dz2 |V̂ LF |dx2−y2⟩ 0 0

⟨dz2 |V̂ LF |dx2−y2⟩ 0 0

⎞
⎠ (3.14)

+

⎛
⎝
∑︁

j⟨djdyz||djdx2−y2⟩ ⟨dxydyz||dxydyz⟩
∑︁

j⟨dxydj ||dxydj⟩∑︁
j⟨djdz2 ||djdx2−y2⟩ ⟨dxydz2 ||dxydyz⟩ ⟨dxydz2 ||dxydyz⟩∑︁
j⟨djdz2 ||djdx2−y2⟩ ⟨dxydz2 ||dxydyz⟩ ⟨dxydz2 ||dxydyz⟩

⎞
⎠ (3.15)

Additional properties of the terms found can be used to further simplify the problem. In a
last step, we use the hermiticity of the Hamiltonian, which says that ⟨a|Ĥ|b⟩ = ⟨b|Ĥ|a⟩∗.
Since we deal with real basis functions in LFT, the complex conjugation can be omitted.
After applying these simplifications, it is apparent that the one-electron integrals have

very limited variety. They can be collected in a symmetric 5× 5 matrix:

(VLF )ij = ⟨di|V̂ LF |dj⟩ (3.16)

such that only 15 unique elements remain. In the context of LFT, no attempt to solve
these integrals is made. Instead, they are subject to parameterization, and it is this
parameterization that is the very essence of ligand field theory.

26



Although their expression seems to be more complicated, we start with the treatment
of the two-electron integrals. The next section deals with the further simplification and
subsequent parameterization of these terms.

3.1.3 Two-electron integrals

The parameterization of the two-electron integrals is derived from the free ion, with the
assumption that the electron-electron interaction is independent of the involved d orbital.
The exact derivation for the expression of the two-electron part is lengthy and can be

found for example in section 6.8 of ref. [25]. It bases on the expansion of the Coulomb
operator 1/rij in terms of spherical harmonics, which makes it possible to integrate over
the angular coordinates. The definition of the two-electron integrals ⟨χiχj |ĝ|χrχs⟩ then
becomes:

⟨χiχj |ĝ|χrχs⟩ = δmi
s,m

r
s
· δ

mj
s,ms

s
· δ

(mi
l+mj

l ),(m
r
l +ms

l )

·
∞∑︂

k=0

ck(limi
l, l

rmr
l )c

k(lsms
l , l

jmj
l )R

k(nilinjlj , nrlrnsls)
(3.17)

The coefficients in the above equation depend on the principal quantum number n, the
orbital quantum number l, the magnetic quantum number ml and the spin quantum
numberms. The Kronecker deltas emerge from the integration over the angular coordinate
φ, the coefficients ck, called Gaunt integrals, represent the integration over the other
angular coordinate θ. The Gaunt integrals are zero unless k meets certain conditions,
which only leaves the remaining values for k = 0, 2, 4. The values for these ck are
tabulated for example in ref. [25], p.178f. The integral Rk represents the integration over
the electron-nucleus distance r and are not integrated explicitly. Our restriction to a single
central atom and its d orbitals requires all ni to be equal and l = 2, which means that the
values of Rk are independent of the orbitals that enter the integral. Hence, we shorten it
and define Rk = F k under the given restrictions.
With the known quantities in Equation 3.17, every two-electron integral occurring in

the CI matrix can be expressed in terms of F k. By convention, they are either given in a
weighted form, called Condon-Shortley parameters,

F0 = F 0

F2 =
1

49
F 2

F4 =
1

441
F 4

(3.18)

or in terms of Racah parameters, which are linear combinations of Fk.

A = F0 − 49F4

B = F2 − 5F4

C = 35F4

(3.19)
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As mentioned at the beginning of the section, this derivation was originally done for free
ion terms, where the one-electron term is neglected and all d orbitals have the same
energy. The presence of a ligand field does not necessarily decrease the validity of the
above derivation, but allows a physical interpretation of the Racah parameters. They are
thus suitable for the description of free ions and complexes alike.
The value of the parameters is always positive, the coefficient of A is constant for a

given electron number. More relevant is the parameter B (and C), which depicts the
electronic repulsion and as such it decreases when the d orbitals spatially increase. This is
due to the increased average distance of the electrons that occupy said orbitals. In most
complexes, B is decreased compared to the free ion, leading to the interpretation that
the presence of ligands expands the valence d orbitals. This spatial expansion is called
nephelauxetic effect. In order to understand an important part of the critique of ligand
field theory, we need to pay attention the fact that the derivation assumes the radial parts
of the d orbitals to depend only on the quantum numbers n and l. For a set of d orbitals,
they are equal, although the spatial expansion is known to be dependent on the complex
geometry and affects the d orbitals differently.

3.1.4 One-electron integrals

Now, what is ligand field theory? LFT is an approximation to the d electron part of an
electronic spectrum. It parameterizes the integrals that occur if we approach the electronic
problem in an active space picture. The parameterization scheme of the two-electron
integrals is the same among different flavours of LFT, while the parameterization of the
one-electron integrals distinguishes them. Each of its sub-models is thus only described
in how it parameterizes the one-electron integrals which are commonly subsumed and
referred to in matrix form with the elements:

(VLF )ij = ⟨di|V̂ LF |dj⟩ (3.20)

This matrix is called one electron ligand field matrix, but often abbreviated to just ligand
field matrix. Its elements are real and it is symmetric, so only up to 15 of its 25 elements
are unique. In practice, the number of unique elements is usually smaller.
An important fact is that the eigenvalues of VLF are the d orbital energies. As chemists

tend to rationalize trends and observation in terms of orbitals and orbital energies, this is
an important basis for discussion. Although they are no observables, they help understand
the effects of ligands on transition metals.
With the given derivations of the ligand field operator and matrix elements, we can

make a clear distinction between CFT and LFT. In CFT, the elements of VLF are pre-
dicted by defining the ligand field operator as electrostatic interaction operator. The only
experimental data that is used for the computation of electronic states is the geometry
of the complex. It is thus an ab initio theory, because all parts of the calculation of any
property are derived from first principles. On the contrary, LFT is an empirical theory, since
the expressions obtained by the ab initio treatment are parameterized with the help of
experimental data. As with all empirical theories, LFT is in constant danger of producing
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meaningless parameters, and because of this their interpretation is usually carried out
carefully.
The simplest way to parameterize the one-electron integrals is to treat them as parame-

ters themselves. This approach is somewhat straightforward, but suffers from the fact that
the obtained parameters have no physical meaning. A simple reproduction of experimental
data is not an end in itself. Due to this, the matrix elements are usually parameterized
with specified parameter sets that take the molecule’s geometry into account. Widespread
parameterization schemes make use of the symmetry of the investigated complex, which
relates the elements of VLF to each other, and in doing so reduces the number of parame-
ters needed. The parameterization of the ligand field splitting in octahedral complexes is
an example of such a reduction by symmetry, where only a single parameter∆ is sufficient.
In the next section, we will derive and discuss the angular overlap model (AOM), which
parameterizes VLF in terms of additive ligand contributions.

3.2 Angular Overlap Model

In deriving the angular overlap model, we largely follow the approach of Schäffer and
Jørgensen,[14,28] in the notation presented by Deeth and Foulis in the SI of ref. [27].
Further useful sources for understanding the derivation are refs. [29, 30] for a general
overview on the AOM and refs. [31, 32] for specific information about rotations of
spherical harmonics. As all ligand field theory schemes, the AOM is concerned with
the parameterization of the one-electron integrals ⟨di|V̂ LF |dj⟩. We will go through the
assumptions and steps that are necessary to derive the AOM in this section. First and most
importantly, the ligands’ perturbations on the metal d orbitals are assumed to be additive.
The ligand field effect of each ligand L can be expressed in a separate ligand field matrix
and the total one is then expressed as

VLF =
∑︂

L

VLF,L (3.21)

Accordingly, we need to derive the individual ligand field matrices next.

3.2.1 The local frame

To express the ligands’ perturbation on the metal d orbitals, we apply a mathematical
scheme that significantly simplifies the complexity of the problem. Each ligand is treated
in a local coordinate frame, where we find the expressions for the local ligand field matrix.
This matrix has a simple shape, as we will see. To move the ligand field matrix into the
global frame, a rotation of the d orbitals is applied. This rotation accounts for the actual
position of the ligand in the global frame and is treated in the next subsection.
The local coordinate frame in which the ligand field matrix is constructed is chosen

such that the metal lies in its origin, while the ligand resides on the z-axis at an arbitrary
distance. The AOM assumes that the ligand field contribution from this ligand emerges
from the overlap of the ligand’s orbitals with the valence metal d orbitals. We will specify
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the ligand orbitals later on, but for now we just take them as |ϕL,k⟩. In order to express
the one electron ligand field operator V̂ LF in terms of orbital overlap, we use the ligand
orbitals as operators.

V̂ LF =
∑︂

k

|ϕL,k⟩⟨ϕL,k| (3.22)

The sum includes all k ligand orbitals, so we capture the overlap of all ligand orbitals with
each metal orbital. When inserting the ligand field operator into the one-electron integral
expressions, we obtain a sum of metal-ligand orbital integrals.

(VLF,L,loc)ij = ⟨dloc,i|V̂ LF |dloc,j⟩ =
∑︂

k

⟨dloc,i|ϕL,k⟩⟨ϕL,k|dloc,j⟩ (3.23)

The two bra-ket expressions are the overlap integrals of the metal and ligand orbitals SiL
with i being the ml of the respective metal d orbital. We can now integrate the overlap
integrals to obtain the matrix elements, but there is a faster way: non-zero integrals are
only found if the symmetry of the metal orbitals differs from the symmetry of the ligand
orbital. In Figure 3.1, atomic orbitals are plotted and ordered by symmetry to illustrate
the overlap possibilities. The σ-type dz2 orbital for example will overlap only with another
orbital of σ-type symmetry, like an s or pz orbital. This argument also applies to the other
integrals, so the dxz and dyz orbitals can only overlap with orbitals of π symmetry in the
same orientation, and lastly there is an overlap for the dxy and dx2−y2 orbitals with δ
symmetry ligand orbitals. All other integrals are zero. When aligning e.g. a σ-type orbital
and a π-type orbital along the z-axis, it is apparent that the positive overlap is as large as
the negative overlap, such that the total overlap is zero.
Speaking in mathematical terms, the integral over antisymmetric functions is zero, and

the product of a symmetric and an antisymmetric function is again antisymmetric. Only
products of the same symmetry will be symmetric and thus have non-vanishing integrals.
Since the elements inVLF,L,loc are products of the overlap integrals, the only remaining

elements are on the diagonal, where we find SiL2. These overlap integrals are the
parameters of the AOM, and we label them according to their symmetry, i.e.:

Sz2,L
2 = eσ

Sxz,L
2 = eπx

Syz,L
2 = eπy

Sxy,L
2 = eδ1

Sx2−y2,L
2 = eδ2

(3.24)

Writing the complete single-ligand local ligand field matrix, we get:
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Figure 3.1: Spherical harmonics for l = 1, 2, 3 labelled by the usual atomic orbital labels
and ordered by their rotational symmetry with respect to the z-axis as given in
the reference frame. Red lobes are positive values, blue ones negative.
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VLF,L,loc =

⎛
⎜⎜⎜⎜⎝

z2 xz yz x2 − y2 xy
z2 eσ
xz eπx

yz eπy

x2 − y2 eδ1
xy eδ2

0

0

⎞
⎟⎟⎟⎟⎠

(3.25)

Of course, we do not expect the parameters eλ to be equal in size, since the orbital
overlap decreases in the sequence eσ > eπ > eδ.

3.2.2 The global frame

Given the local ligand field matrix, the next task is its translation into the global coordinate
frame. To clarify the necessary operations, let us first recall Equation 3.5 and write the
linear combinations in a matrix notation:

d =

⎛
⎜⎜⎜⎜⎝

dz2
dxz
dyz

dx2−y2

dxy

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0

0 −1/
√
2 0 1/

√
2 0

0 i/
√
2 0 i/

√
2 0

1/
√
2 0 0 0 1/

√
2

−i/
√
2 0 0 0 i/

√
2

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

Y 2
2

Y 1
2

Y 0
2

Y −1
2

Y −2
2

⎞
⎟⎟⎟⎟⎠

= Cy (3.26)

Here, d and y are the real and complex spherical harmonics, respectively, aligned in
column matrices. The matrix C that defines the linear combination coefficients is the
matrix for the transformation of the complex into the spherical harmonics.
If we take the above basis to be the global one, there exists a local basis with a similar

definition:

dloc = Cyloc (3.27)

Multiplying with C−1 from the left, we obtain C−1dloc = yloc and C−1d = y. We are
looking for a matrix F that transforms the local d orbital basis into the global one, i.e.3

Fdloc = d

d†
locF

† = d† (3.28)

It is known that for complex spherical harmonics, such a rotation is performed with the
Wigner D matrices, which are applied to the conjugate transposed vector from the right.

y†
locD = y† (3.29)

This can be brought into the same form as Equation 3.28 by taking its conjugate transpose.

D†yloc = y (3.30)
3Since the d orbitals are real, we could substitute the conjugate transpose (†) with the transpose (T ).

32



Taking Equation 3.28 and subsequently substituting d with Equation 3.26, 3.30 and the
variant of Equation 3.27, we find the sought after expression for F:

CD†C−1dloc = Fdloc (3.31)
⇒ CD†C−1 = F (3.32)

At this point it is noteworthy that C is unitary, so C−1 = C†.
The searched rotation F is a translation of the complex Wigner D matrix into the space

of the real spherical harmonics. The D matrix is defined as a rotation along the Euler
angles α, β, γ. Since our goal is to rotate the local basis into the global frame, we must
perform a backwards rotation from the global position of the local axis. The position of
the local axis corresponds to the position of the ligand and is commonly given in spherical
coordinates θ, ϕ. Another coordinate ψ defines the orientation of the ligand on the axis,
or the orientation of the x and y axes in the local frame, respectively. To perform the
backwards rotation, we define α = −ψ, β = −θ, γ = −ϕ and define the parameters of D
and F: 4

F(θ, ϕ, ψ) = CD†(−ψ,−θ,−ϕ)C−1 (3.33)

Now that we have defined the rotation matrix F that we were looking for, we can
translate the local ligand field matrix VLF,L,loc into the global frame.
We write the global ligand field matrix in terms of a vector product

VLF,L = dV̂ LFd
T (3.34)

and subsequently substitute the d basis vectors with the expressions from Equation 3.28
and get:

VLF,L = FdlocV̂ LFd
T
locF

T (3.35)

where the conjugate transposed is replaced with the transposed, because all occurring
vectors and matrices are real. The central part of the right-hand side is the diagonal, local
ligand field matrix from Equation 3.25, so this reduces to

VLF,L = FVLF,L,locF
T (3.36)

The elements of the local matrix are, according to matrix multiplication rules:

(VLF,L)ij =
∑︂

λ

(F)iλeL,λ(F
T)λj (3.37)

We can further transpose FT again by exchanging its indices, leaving two instances of F.

(VLF,L)ij =
∑︂

λ

(F)iλeL,λ(F)jλ (3.38)

4There are different conventions for the angles inD and whether an active or passive rotation is carried out.
The reader is referred to refs. [31] and [32] for further details.
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The elements e of VLF,L,loc are each affected by one column of F, so these columns
can be identified as belonging to a specific interaction type. Consequently, we replace
the column indices with labels for these interactions, such that λ = σ, πx, πy, δ1, δ2. The
elements of F are called angular overlap factors and its columns are generally tabulated
as Fσ(θ, ϕ), Fπx(θ, ϕ, ψ), Fπy(θ, ϕ, ψ), . . . . Expanding Equation 3.21 with the expressions
derived above, we obtain the following equation for the matrix elements vij of the total,
global ligand field matrix VLF :

(VLF )ij = vij =
∑︂

L

∑︂

λ

FL,λ,iFL,λ,jeL,λ (3.39)

As we can see, the metal-ligand orbital overlap eL,λ is scaled by the position of the ligand
in the global frame. When defining the parameters e, we implicitly assumed this scaling
factor to be one; reasonably so since in the local frame, overlap is maximized. In a
rotated frame, this overlap must be smaller than or equal the reference and indeed we
find Fλ,i to fulfil this expectation. Fλ,i can thus be interpreted to be the angular part of
the metal-ligand overlap integral, hence the name of the model.

3.3 Common adjustments to the AOM

The final equation of the last section, Equation 3.39, is the expression for the ligand field
matrix elements as originally derived by Schäffer and Jørgensen.[14] Since then, several
adjustments have been made, of which we will focus on the ones that are important for
chapter 5.

3.3.1 d–s mixing

In chapter 2, we saw that the determinants in a CI matrix are constructed from molecular
orbitals χ. A central point to LFT is that the molecular orbital basis regarded for con-
structing excited configurations consists of the valence d orbitals, i.e. the basis functions
ϕ in Equation 2.10 are d functions. When treating complexes of certain symmetries,
some encountered states have energies that are not parametrizable with the parameters
employed in Equation 3.39. Square planar complexes are well known for such orbital
energy sequences, where the dz2 orbital has a lower energy than expected. It was assumed
that this orbital mixes with the unoccupied s orbital of the metal, lowering its energy. This
effect is called d–s mixing, its formalization is presented in refs. [27, 33–35] and we will
generally stick to the derivation presented in ref. [27].
Any two metal orbitals that overlap with one or more ligand orbitals can mix. From a

symmetry perspective, this can be rationalized by the irreducible representation of the d
orbital: any d orbital that is found in the totally symmetric representation of the given
point group can mix with the s orbital and might have a lower energy than it would be
expected from a pure d orbital basis.
The conceptual problem of this idea is that the basis of the problem needs an expansion,

since we would need to add the s orbital, obtain a 6× 6 ligand field matrix and compute
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the state energies from there. To avoid this, the d–s interaction contribution is treated
as second order correction and the ligand field matrix collapsed back to its 5× 5 shape,
adding a correction term to the ligand field matrix.
The 6× 6 ligand field matrix can be written as composition of a 1× 1 matrix and the

known 5× 5 ligand field matrix:

Vds =

(︃
∆+ ξ cT

c VLF

)︃
(3.40)

Where ∆ is the energy difference between the unperturbed d and s orbital energies, ξ
is the effect of the ligand field operator on the s orbital, ⟨s|V̂ LF |s⟩, and the vectors c
and cT are the d–s interaction terms ⟨s|V̂ LF |di⟩. The corresponding eigenvalue equation
(equivalent to Equation 2.26), yields the energy including by d–s mixing Eds.

Vds =

(︃
∆+ ξ cT

c VLF

)︃(︃
µ
m

)︃
= Eds

(︃
µ
m

)︃
(3.41)

Here, µ is the extension of the eigenvector to include the s orbital and required to be
non-zero, otherwise there would be no d–s mixing. Due to this, it can be eliminated and
the dimension of the problem is reduced again to 5× 5:

Vm−
(︃

ccT

∆+ ξ − Eds

)︃
m = Edsm (3.42)

This can be simplified further under the assumption that the d–s mixing is after all very
small and the energy gap between d and s orbitals ∆ is large compared to ξ − Eds.

(︃
V − ccT

∆

)︃
m = Edsm (3.43)

We now need to define the elements in c. Like the rest of the ligand field contributions, it
is first defined in a local frame:

ci,L,loc = ⟨di|V̂ LF,L,loc|s⟩ (3.44)

Just like the vectors in Equation 3.28, this expression can be transformed into the global
frame using the rotation matrix F:

ci,L =
∑︂

j

FL,ij⟨dj |V̂ LF,L,loc|s⟩ (3.45)

Like the other parameters, most interactions cancel due to symmetry. We can use Figure 3.1
for illustration, the only non-zero integral is ⟨dz2 |V̂ LF |s⟩. The sum over j thus simplifies
to j = 1, which means the used FL,ij are effectively the same as for the σ interaction.

ci,L = FL,σ,i⟨dz2 |V̂ LF,L,loc|s⟩ (3.46)
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In order to parameterize the effect of d–s mixing, eds is introduced,

eL,ds =
⟨dz2 |V̂ LF,L,loc|s⟩2

∆
(3.47)

and we set:
bi,L = FL,σ,i

√
eL,ds (3.48)

The obtained vector b is additive if multiple ligands are considered, so

b =
∑︂

L

bL

bi =
∑︂

L

FL,σ,i
√
eL,ds

(3.49)

Note that this sum defines a vector element, and the total d–s mixing correction is expressed
by

VLF = V − bbT (3.50)
This means that the sum over the ligands is taken before the vector product is calculated.
An element in the matrix of bbT is then:

(︁
bbT

)︁
ij
=

(︄∑︂

L

FL,σ,i
√
eL,ds

)︄(︄∑︂

L

FL,σ,j
√
eL,ds

)︄
(3.51)

Including d–s mixing accounts for the corresponding energy changes, but causes some
complications. The main conceptual problem is that the parameter eds is global, although
apparently linked to a particular ligand by the sum overL. This contradicts the very essence
of the AOM: the introduction of ligand specific parameters that are independent of the
global symmetry. Of course, global symmetry always plays a role and AOM parameters are
never truly local due to ligand-ligand interactions. Still, the notion of a set of parameters
per ligand is somewhat lost, and it is hard to tell the physical meaning of the parameters
eds.
The other complication affects the structure of the AOM equation system, although it

can be considered a technical detail that is solved. Without d–s mixing, it is linear and
therefore rather easy to solve. The d–s mixing term is nonlinear, which excludes many
well established algorithms from working and can also prevent fast heuristic calculations
with pencil and paper.

3.3.2 δ interactions

The most straightforward change that is common to almost all applications of the AOM
is the disregard of any metal-ligand δ interaction. These interactions are assumed to
be very weak, and thus employing eδ1 and eδ2 would not improve the understanding of
the metal-ligand interaction but increase the number of total parameters. Consequently,
λ = σ, πx, πy.
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3.3.3 The basis energy E

When considering the ligand field, the most important property is the splitting of the d
orbital energies and the subsequent splitting of electronic terms according to the one-
electron operator. It is intuitive and often pointed out in textbooks that the ligand field
has a spherical part which shifts all d orbitals by the same energy. It also subsumes the
energy obtained from the zeroth order perturbation energy, which is a constant for a given
element. From the investigation of d-d transitions, this field contribution can of course
never be obtained, since all states are equally affected. In consequence, most ligand field
schemes omit its explicit calculation.
Obtaining the electronic state energies from CASSCF calculations permits the param-

eterization of this spherical contribution. Since it affects all d orbitals equally, it can be
written as a product of a parameter and the identity matrix:

E · I (3.52)

In hindsight the selection of the symbol E for the spherical contribution is a bit unfortu-
nate, since it is used for too many other relevant quantities. It nonetheless needs to be
introduced as such, since chapter 5 uses this notation.
On a side note: when the metal-ligand bonds in a complex are increased until the ligands

are effectively removed, E does not become the unperturbed energy E0. The electron-
electron interaction that is present in the perturbative term still applies, so somewhat
counterintuitive the total ligand field Hamiltonian ĤLF includes an effect that does not
strictly arise from the ligands.

3.3.4 AOM master equation

The above-mentioned adjustments are the ones that are used in chapter 5, so we are
ready to write the AOM equation for the ligand field matrix, as it will be used for the
parameterization of all following problems.

VLF = E · I+
∑︂

L

FLVLF,L,locF
−1
L − bbT (3.53)

In order to parameterize the ligand field matrix, its elements are written as follows:

vij = δijE +
∑︂

L

∑︂

λ

FL,λ,iFL,λ,jeL,λ −
∑︂

L

Fds,i
√
eL,ds ·

∑︂

L

Fds,j
√
eL,ds (3.54)

This set of equations has to be solved when using the AOM for a parameterization of d
electronic states, no matter whether they are determined experimentally or by ab initio
methods. In chapter 5, more details are provided about how this resulting equation system
is solved and which problems may arise.
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With the AOM master equation 3.54 and the two-electron parameterization in subsec-
tion 3.1.3, it is now possible to express each element in the CI matrix in terms of AOM
and Racah parameters. We can plug in numbers for the parameters and diagonalize the
CI matrix to obtain the energies of the electronic states as eigenvalues. In an optimization
process (without specification), the chosen parameters are adapted such that the found
electronic states reproduce a set of reference states as well as possible. This approach
would be the direct one. The indirect approach is a two-step parameterization, where only
the two-electron integrals are parameterized and the one-electron integrals in VLF are
just parameters themselves, optimized to reproduce a given set of states. In the second
step, each vij with i ≥ j is expressed with Equation 3.54, again in an optimization process
such that the AOM parameters reproduce the matrix elements vij as well as possible. We
employ the second, indirect approach in chapter 5.

3.4 Interpretation

In the last two chapters, the necessary equations to describe an electronic structure
problem in a d orbital basis are presented. After all, a parameterization is only worth
consideration when its parameters can be interpreted in some way and when the scope of
applicability is clear. We will only scratch the surface of the LFT interpretation here, since
extensive discussions are provided for the cases in chapter 5.

3.4.1 The ligand field operator

Lacking some clearness, the meaning of the ligand field operator could be described as
“containing the effects of the ligands on the metal d electrons”. Since the operator is never
actually specified physically, it has no rigorous meaning. Still we can think of physical
laws that would be incorporated in such a one-electron operator. The most prominent
effect is the electrostatic interaction with negatively charged ligands. If we take this as the
only source of the ligand field, we could define V̂ LF as an electrostatic repulsion operator,
leading to crystal field theory. With ligands like water and ammonia, it is however clear
that this cannot be the only source of interaction between d electrons and ligands, and in
fact crystal field theory has been shown to have poor predictive power.
From the perspective of molecular orbital theory, we can consider the ligand field to be

the mixing of ligand and d orbitals, similar to the overlap considerations in the derivation
of the AOM. The mixing must be weak (otherwise, the assumption of a pure d orbital basis
would be flawed), and the part we consider to be d orbitals are in fact the antibonding
MOs. From this perspective, the ligand field operator would simulate the orbital mixing
effect by changing the d orbital energies without needing to include ligand orbitals into
the basis set.
The notion of the antibonding character of the considered orbitals is useful to keep

in mind; confusion can arise about why ligands even bond with the metal when they
apparently increase the overall energy of the system. Would a separation not end in a
more favourable situation? Since the bonding MOs that consist mainly of ligand AOs
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Figure 3.2: Interpretation of AOM parameters depending on the sign and magnitude.

are doubly occupied, their bonding contribution is usually larger than the antibonding
character of the partly filled (mainly) d orbitals. Furthermore, other metal orbitals also
participate in bonding, which is not regarded in LFT. This leads to the next important part
of our interpretation: the strength of a ligand field, represented by the increase in energy
of the d orbitals, does not hold any information about the thermodynamic stability of a
complex.

3.4.2 AOM parameters

The parameters defined by the angular overlap model are defined such that each ligand
has its own set of parameters, which represent the σ and π interactions of the ligand with
the metal d electrons. Generally speaking, positive parameters can be viewed as electron
donating; they increase the energy of the d orbitals. The MO interpretation of positive
parameters is an orbital mixing where the ligands orbitals are lower in energy, and the d
orbital is shifted due to being the antibonding linear combination. Most “classical” ligands
like halides, water, ammonia, cyanates, etc. have positive parameters. In general, the
σ interaction is stronger than the π interaction, which can be rationalized by the larger
overlap of possible metal-ligand MOs.
Negative parameters are associated with an electron-accepting interaction. No known

ligand is expected to have a negative eσ, but ligands that show π backbonding like CO,
CN– and phosphines are thought to have negative eπ parameters. We could not always
confirm this view from ab initio calculations and as reasoned in the next section, LFT could
be generally unreliable for those ligands. In the molecular orbital perspective, negative
AOM parameters mean that there are ligand orbitals that are higher in energy than the
metal d orbitals, so the d orbital would in fact be the bonding linear combination.

3.4.3 The two-electron operator

The parameterization of the two-electron operator is based on free metal ions without a
ligand sphere. Nonetheless, the obtained parameters are successfully used in any standard
ligand field parameterization, where especially the Racah parameter B can be interpreted
to represent ligand field dependent electron-electron repulsion.
An important assumption in the derivation of this parameterization is that the electron-

electron interaction is equal in all d orbitals, e.g. it does not make a difference whether
we find a pair of electrons in the dxy or the dz2 orbital. This assumption is perfectly fine
for free atoms and ions, since all orbitals of the same l are equivalent. However, in an MO
picture of LFT, the d orbitals mix differently: due to the different energies of ligand orbitals
and the varying overlap with the metal d orbitals, the resulting MOs do not have the same
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d orbital contribution. If this covalency in a set of d orbitals is much more pronounced
than in another, the assumption of equal electron-electron interactions is not fulfilled
anymore and thus the Racah parameters cannot capture them adequately. This case is
sometimes termed a strong differential covalency, and extensively discussed for example in
chapter 7 of ref. [36].
When expressing the electronic states of the d electrons in terms of a diagonalized CI

matrix with parameterized integrals, the two-electron parameters cannot capture any
asymmetry of the complex. The stronger the actual mixing of metal and ligand orbitals, the
more important this problem becomes. Consequently, a reproduction of experimentally or
calculated electronic state energies may fail. Although it is not possible to predict exactly
what any fitting routine would yield in this case, it is to be expected that the one-electron
parameters vij are adjusted accordingly to account for the energies of electronic states that
cannot be accounted for with the Racah parameters. In other words, the insufficiency of
the Racah parameterization for the two-electron integrals would leak into the one-electron
parameterization and thus spoil the AOM parameterization.
When considering ligands with π backbonding such as CO, metal d orbitals that exert

a π interaction with the ligand are lowered in energy. This is only possible when the
occupied ligand orbitals are slightly higher in energy than the metal d orbitals. This
leads to strong mixing compared to the orbitals affected by an antibonding σ interaction,
corresponding to a more covalent bond. Thus, these ligands can be expected to always
break the assumption of equal electron-electron interaction in all d orbitals. No good fit
can be obtained in such a situation, and we should refrain from applying LFT to these
complexes.

3.4.4 CASSCF vs. Experiment

In the method developed in this work (see chapter 5), we do not use experimental data5
to fit AOM parameters. In fact, the whole routine that was developed for the presented
research can only work with calculated state energies. It is important to mention that these
calculated energies are not meant to accurately reproduce experimental data. It has been
shown that CASSCF calculations are sufficient to reproduce trends and qualitative results.
The results can be improved for example by the use of perturbation theory or inclusion of
solvent models. Since LFT is a model that helps to understand the electronic structure of
complexes on a qualitative level, an increased accuracy compared to a standard CASSCF
calculation is most often not needed to improve the obtained parameters. LFT was never
meant to be a predictive tool and regarding this, it is valid to focus on qualitative results.
Compared to the experimental data, CASSCF calculations have the inherent advantage

of being conceptually very close to ligand field theory. The identification of electronic
states is naturally given, while it is a difficult task to assign experimental electronic
transitions. An active space of d orbitals corresponds almost exactly to the ligand field
basis, leading to a similar CI matrix. Another advantage is the possibility to interpret the
LFT parameterization from an MO perspective. By examining the MO coefficients, the
5With two exceptions in chapter 5.
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ligand admixture can be quantified directly and cases of strong differential covalency or
d–s mixing can be identified, as shown in section 5.3.
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4 History of the Angular Overlap Model

The purpose of this chapter is to provide an overview of the development of the angular
overlap model. It is not exhaustive, but I do not want to list publications with arbitrary
experimental data; it can rather be seen as a short trip through different applications and
developments.

4.1 Origins

The first formulation of the angular overlap model by Schäffer and Jørgensen was pub-
lished in 1965,[14] after preliminary conceptual work by Yamatera[37,38], McClure[39]
and Jørgensen, Schmidtke et al.,[40–42] who related ligand field parameters to interaction
types, regarding the ligand positions. Models that were very similar to the AOM were
thus in use before and Smith stated in a later review, that “There is still a widespread
feeling that the AOM is distinguished more for its elegance and simplicity than for its practical
utility in the solution of chemical problems.”[43] The actual achievement of Schäffer and
Jørgensen might be seen in be the clearer presentation and unification of the existing
local approaches. Notations commonly seen in older local ligand field parameterizations
are the Ξ2 model, where Ξ represented a geometrical factor similar to F in the AOM
notation,[41,43,44] and the usage of δσ and δπ parameters, which account for whole energy
levels affected by σ and π bonding, respectively.[39]
As in the publication of Jørgensen et al., the AOM employed the Wolfsberg-Helmholz

model for orbital overlap considerations.[45] When specifying the metal-ligand overlap
operator in the derivation of the AOM, we implicitly used this model to derive the propor-
tionality eλ ∼ S2.
From today’s perspective it is remarkable that the title of the 1965 publication contains

“an attempt to revive the ligand field approaches”, which shows that at least a part of the
ligand field community was concerned about the LCAO approach superseding LFT as a
more powerful but somewhat complicated model.[46] Schäffer himself stated that the idea
of the AOM was the inclusion of “the approximate consequences of molecular orbital models”
into ligand field parameters.[26] With this in mind, our interpretation of LFT from an MO
perspective in the theory chapter might be actually close to what the authors originally
intended.
The AOM was successfully applied to numerous problems, so many that an attempt to

provide an overview here would be futile. It was common from the beginning to omit
the eδ parameters, although some authors formally correctly defined e′λ = eλ − eδ.[43]
Several applications are discussed chapter 5, where original research papers are cited for
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comparisons. A selection of reviews discussing experimental data can be found that often
also contain parts of the derivation of the AOM.[13,29,43,47,48]

4.2 AOM for f-shell elements

Going back to the derivation of the AOM, we saw that the overlap factors F are basically
rotations in a basis of real spherical harmonics. Since we are interested in the transition
metals with partly filled d shells, we used the corresponding Wigner matrices for l = 2.
Using the rotations for real spherical harmonics with l = 3 will yield overlap factors for
f orbitals, as originally derived by Urland in 1976,[49] and slightly later by Warren in
1977.[50] 1 It is perhaps interesting that one of the most important preliminary works that
led to the AOM was in fact concerned with the treatment of lanthanoides.[41]
Much of the early work on the AOM of f elements was performed by Urland[52–54]

(although he also contributed to the coordination chemistry of d elements[55]) and
Warren[56,57], followed by many others.
The extension of the AOM to f elements can be considered to be established and proven

to work at many occasions. As of today, there is still research complemented by the
AOM.[30,58–63] As a final remark on f elements, investigating them with ligand field theory
comes with a catch: as Bendix pointed out in a conference talk, f element chemists are
always 87% more frustrated than d element chemists. That is because the one electron
ligand field operator has 28 uniquely defined elements for f orbitals, as opposed to 15
when treating d orbitals.[64]

4.3 The divide

In 1977, Smith published a paper where he investigated different chlorocuprates and
found that using the standard AOM parameterization, he could not fit experimental
data to a satisfactory precision.[33] Complexes with near-planar geometries showed an
unexpectedly low energy for the dz2 orbital, which the usual AOM parameters could not
account for. Smith proposed that due to the symmetry of the complexes (D4h, D2d and
D3h), where the dz2 orbital transforms in the same irreducible representation as the metal
s orbitals, a mixing between 3d and 4s orbitals could occur, lowering the energy of the
dz2 orbital. A similar mechanism would be possible for 3d and 4p orbitals, as long as they
transform in the same representation. This idea of d–s mixing was mentioned by Schäffer
a few years earlier, but he dismissed it as not being helpful.[65]
Interestingly, another paper by Cruse and Gerloch was published in the same year, who

fitted AOM parameters to the [CuCl4]2– subunit in Cs2CuCl4, not mentioning the low
energy of the dz2 orbital.[66] The experimental data used by them was the same as in the
publication by Smith.[67,68]
The concept of d–s and d–p mixing proposed by Smith was apparently not acceptable for

Gerloch and Woolley, who had strong objections towards any molecular orbital interpreta-
1Warren cites ref. [51] for originally deriving the overlap factors, but it is not obtainable any more.
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tion of LFT and promoted a view that used electron density considerations only.2 Instead
of the mixing of metal orbitals, they favoured the idea of coordination voids, where a
coordination position could have a (negative) σ parameter assigned despite the absence of
a ligand.[70,71] They eventually came up with an alternative name for their interpretation
of LFT and the AOM: cellular ligand field (CLF).[72,73] This interpretation is often called
the Gerloch–Woolley (GW) picture in opposition to the Schäffer–Jørgensen (SJ) one.
In the following years, Gerloch, Woolley and also Deeth tried to justify the CLF and

the coordination void concept on many occasions.[36,74–78] Others preferred the concept
of d–s mixing, refined it and equally successful used AOM parameter sets including
eds.[34,35,79–82]
As a personal impression, the tone of discussion that was used by its protagonists, GW

and SJ, was harsh and sometimes personal. An example is Schäffers critique of the CLF:
“From a parametric point of view the void with its negative eσ parameter is no different
from a negative energy correction on the dz2 orbital’s energy, but Gerloch and co-workers
are able to see interesting chemistry in the void.”[82]
This dispute dominated many of their publications in the 80s and 90s and one has to

be aware of the different interpretations of ligand field theory by authors that might be
in favour of either the GW or the SJ picture. The disagreement was never really settled,
although some observations that were made throughout the years are in favour of the
original SJ picture of the AOM:
• The CLF assumes the metal d orbitals not to participate in metal-ligand bonding.
Instead, the bonds are mainly formed with the higher-lying s and p orbitals. This
assumption can be considered wrong: quantum chemical calculations clearly show a
significant d contribution to metal-ligandMOs, which is confirmed by all ground state
and excited state calculations in this work. Experimental evidence for metal-ligand
bonding via the metal d orbitals is also available by XAS studies.[83]

• Quantum chemical calculations also show that d orbitals in a CASSCF calculation
mix exactly as they are expected to in the SJ picture. Metal s character is consistently
found in d orbitals for cases where d–s mixing parameters are required and vice
versa.

• On a technical level, it is unclear where to place the coordination voids that are
required in the CLF in order to account for low d orbital energies. The only successful
applications were performed for planar complexes, where it is intuitive to place a
void cell on top and below the complex; more complicated examples do not provide
these obvious positions.

It is, however, impossible to prove or disprove one of the two interpretations. Both
parameterizations do work for the same cases, but this does not tell anything about their
validity. There are also cases that do not allow for a fit because they are too complicated
or the ligand field approach in general is unsuitable. Both approaches do fail in these
2Direct quote: “[...] the molecular orbital model has no role in the ligand-field theory of transition-metal
complexes.”[69]
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cases. For many complexes they yield the same set of parameters and are practically
indistinguishable. Nowadays, it seems as if the GW interpretation is declining, with Deeth
being the only active advocate of the coordination void.[84,85]

4.4 Phase-coupled ligation

When the AOM was not yet formulated as such, Orgel published a paper in 1961, where
he discussed the effect of planar, multidentate ligands with a delocalized π system on
a ligand field and predicted that these ligands should create a characteristic d orbital
splitting.[86] It was rooted in the idea that the orbital phases of HOMOs and LUMOs at the
ligating orbitals of conjugated π-systems would be symmetric and antisymmetric. This
means there are two π-interactions for the metal with each ligating atom, that affect the d
orbitals differently. This effect was called phase-coupled ligation or later occasionally Orgel
effect. Several orbital energy splittings could be explained by phase-coupled ligation,[87–89]
and Ceulemans and Vanquickenborne provided the first AOM treatment of this effect
in their publications in 1985.[90,91] Their approach was refined, but the general idea of
differentiating between an in-phase and an out-of-phase π interaction remained.[92–94]
It is not surprising that Gerloch and Woolley refused the concept of phase-coupled

ligation, as it emerged from an orbital mixing perspective.[36,77] Deeth recently attributed
the observed effect to π interactions of coordination voids.[84] While this interpretation
may be questionable, it highlighted the odd observation that planar complexes with non-
coupled, monodentate ligands show orbital energy sequences that resemble the Orgel
effect. This observation is confirmed for similar complexes in section 5.3, where cis and
trans complexes show a different orbital energy splitting, although they should be equal
when assuming identical AOM parameters. This difference should be spectroscopically
observable due to the different electronic states that emerge, but experimental evidence
for the particular ligand field splitting and a sound explanation are lacking.

4.5 LFT from a computational perspective

While the quantum chemical character of ligand field theory was always clear, its purpose
was the parameterization of experimental data. Computational methods were for a long
time not accurate enough to produce relevant data and rather used to verify assignments
of electronic spectra.[95] We have to keep in mind that KS-DFT and HF are methods that
are designed to predict the electronic ground state energies. They are not well suited for
excited state energies, and additional procedures like the Slater transition state method
need to be applied.[96,97] It was clear that excited determinants would be necessary to
obtain more accurate state energies.[98]
In the 2000s, two groups worked on employing KS-DFT to predict d-d electronic transi-

tion energies for subsequent ligand field theory parameterizations. Atanasov and Daul on
the one hand developed an approach that they called ligand field DFT (LFDFT).[99–102]
On the other hand, Anthon, Schäffer and Bendix developed a connection between LFT
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and DFT without giving it a specific name.[103–106] The two approaches are very similar in
the sense that they start from a ground-state determinant that was optimized by KS-DFT
and create excited determinants without further optimization from this ground-state
determinant. It can be seen as similar to a ground-state-specific CASSCF calculation with
KS-DFT as the underlying method. Since the results of multi-determinant methods depend
on the reference determinant, this approach yields different energies compared to the use
of an HF-optimized determinant.
Abandoning DFT as reference for excited determinants, Atanasov and Neese started

to focus on MCSCF methods to obtain excited state wave functions. This first-principles
approach was termed ab initio LFT (aiLFT) in their publication in 2011.[16] Ab initio ligand
field theory focuses on the connection of the CASSSCF method and LFT, and other than
the preceding methods based on KS-DFT, there is no empirical component to aiLFT. The
method is available in the ORCA quantum chemistry package since version 4,[107,108]
and has been refined to work with several extensions since ORCA 5.[109] It has been
successfully applied to a variety of complexes,[60,61,110–112] and represents the backbone
of this work.

4.6 AOM and molecular mechanics

Molecular mechanics (MM) simulations are well known for organic molecules of any size,
but also transition metal complexes have been investigated for a long time.[113–115] Due
to the variety of coordination numbers and bond angles and the ligand field stabilization
depending on the d electronic configuration, it is difficult to create general force fields
that work for multiple complexes. There are very well investigated systems, but the
problem remains that specialized force fields need to be defined specifically for particular
complexes.
A combination of MM with the AOM was employed by Bernhardt and Comba, who used

specific force fields to sample molecular geometries and the AOM to predict electronic
spectra and EPR g values.[116–120] The AOM was used here in conjunction with molecular
mechanics, but not to improve the force fields themselves. Deeth et al. presented an
approach that incorporated the AOM into force fields to account for the ligand field
stabilization energy.[121–123] The AOM with its local parameters is attractive in the regard
that it represents the effect of single ligands on the ligand-field stabilization energy.
Although this contribution is always only a part of a coordination complex force field, a
systematic treatment seems promising. Several implementations of ligand field parameters
(mainly AOM) were published during the last two decades, with Deeth being the most
active researcher in the field.[27,124–127]
As it will become apparent in chapter 5, AOM parameters are in fact not separate in

the same complex, although they formally parameterize a single metal-ligand interaction
each. Ligand-ligand interactions are clearly observable in many complexes and make a
transferable force field parameterization complicated. This was mentioned by Comba on
several occasions, although he considered the error to be acceptable.[116,117,119]
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4.7 Concluding remarks

As of today, the AOM has its place in ligand field theory for more than 70 years now.
It has been a valuable tool for the interpretation of electronic spectra and magnetic
properties and is often part of the basic knowledge of inorganic chemists. It is generally
used complementary to experiments and calculations and provides a means to clarify
results and make them understandable to other chemists. As often stated by Neese in
different variations: “A model gives scientists a language in which they can express their
ideas.” Despite all inaccuracies and dispute, this is greatly achieved by the angular overlap
model.
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5 Results and Discussion

The results of this work and their discussion were published in peer-reviewed publications
that are presented in this chapter. Each of these publications is summarized in the next
sections. On a sidenote, due to the margins in this document, the embedded publications
are scaled down to fit the page size. If a publication is desired in higher quality, they can
be found on the publishers websites.

5.1 Revisiting the Fundamental Nature of Metal-Ligand Bonding:
An Impartial and Automated Fitting Procedure for Angular
Overlap Model Parameters

M. Buchhorn, R. J. Deeth, V. Krewald, Chemistry - A European Journal 2022, 28, e202103775,
10.1002/chem.202103775
Since the establishment of ab initio ligand field theory by Atanasov, Neese and co-

workers, several publications showed the general feasibility of their approach.[60,111,129]
The implementation of a ligand field analysis in the ORCA software package made it
even easier to access ligand field parameters from CASSCF calculations, as it directly
yields the ligand field matrix VLF . The general problem of overparameterization for
highly symmetric complexes remained. In an interesting publication, Singh et al. fitted
AOM parameters to octahedral structures by lowering their symmetry towards a trigonal
distorted complex.[112] This distorted complex is asymmetric enough to allow for an
unambiguous fit of eσ and eπ.
In the presented publication, we pursue a very similar approach, although more gen-

eralized. Using aiLFT to obtain the ligand field matrix from CASSCF calculations, we
employed asymmetric distortions that do not depend on the original symmetry of the
molecule. These distortions are random, so the obtained point group should be C1 in most
of the cases. To preserve the transferability, i.e. ensure that the parameters obtained from
the distorted structure are the same as for the original, the distortions are very small and
do not affect the bond lengths. For testing purposes, we investigated series of tetrahedral
metal halides and were able to reproduce expected trends to full extent. We showed
that the impact of the distortions on the AOM parameters is small in the sense that they
are mostly stable for different structural samples of the same complex. Although small,
it is also shown that the distortions are enough to lift the degeneracy problem of the
ligand field matrix such that unambiguous fits to otherwise highly symmetric complexes
could be made. The initial series served as a confirmation that the asymmetry approach
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works, and we further demonstrated some computational experiments that are difficult
to do experimentally. Bond length scans were performed and substitutions of metals
and ligands were investigated. We showed that the dependence of AOM parameters on
metal-ligand bond lengths is different for σ and π interactions and can be correlated
the hardness of the ligands. We also investigated the effects of different ligands on each
other in heteroleptic complexes and discovered an interesting correlation between AOM
parameter and Pearson’s hardness of halide ligands.
The work published in Chem. Eur. J. served as a proof of concept. We showed that the

approach using distorted molecules of minimal symmetry is able to reproduce expected
result to a reasonable precision. Remaining deviations from the experiment are likely
caused by the inaccuracy of the underlying quantum chemical calculation and not by
the AOM parameterization. As stated at the very end of the theory chapter, this is not
concerning, since all expected trends are successfully reproduced.
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Revisiting the Fundamental Nature of Metal-Ligand
Bonding: An Impartial and Automated Fitting Procedure for
Angular Overlap Model Parameters
Moritz Buchhorn,[a] Robert J. Deeth,[b] and Vera Krewald*[a]

Abstract: The properties and reactivities of transition metal
complexes are often discussed in terms of Ligand Field
Theory (LFT), and with ab initio LFT a direct connection to
quantum chemical wavefunctions was recently established.
The Angular Overlap Model (AOM) is a widely used, ligand-
specific parameterization scheme of the ligand field splitting
that has, however, been restricted by the availability and
resolution of experimental data. Using ab initio LFT, we
present here a generalised, symmetry-independent and
automated fitting procedure for AOM parameters that is even
applicable to formally underdetermined or experimentally
inaccessible systems. This method allows quantitative evalua-

tions of assumptions commonly made in AOM applications,
for example, transferability or the relative magnitudes of AOM
parameters, and the response of the ligand field to structural
or electronic changes. A two-dimensional spectrochemical
series of tetrahedral halido metalates ([MIIX4]

2� , M=Mn� Cu)
served as a case study. A previously unknown linear relation-
ship between the halide ligands’ chemical hardness and their
AOM parameters was found. The impartial and automated
procedure for identifying AOM parameters introduced here
can be used to systematically improve our understanding of
ligand–metal interactions in coordination complexes.

Introduction

Transition metal compounds are relevant in many areas of
chemistry; they serve as catalysts, pigments, photosensitisers,
and drugs to name a few. They show an immense variance in
their properties, reactivities and stabilities, which is rooted in
the malleability of their electronic structures. Many examples in
the literature have shown that the interplay of synthesis,
spectroscopy and theory is essential for the targeted electronic
structure design of transition metal complexes with improved
properties.[1–6] An early and well-known example is the
electronic structure analysis of vanadyl in terms of a molecular
orbital picture.[7] This interplay rests on chemical concepts,
which are often derived from quantum mechanics or accurate
measurements, but are commonly applied and used in an
intuitive manner. With quantum chemistry being able to predict
electronic structures and thus contributing to explain exper-

imental observations,[3,8–12] detailed connections to established
chemical concepts can be made to quantitatively evaluate their
scope and limitations.

Ligand Field Theory (LFT) is one of the most successful
models in chemistry: by connecting readily available informa-
tion on structure, symmetry and chemical building blocks, it
can predict spectroscopic and magnetic properties of a vast
array of transition metal complexes.[13–15] LFT evaluates the
effect of ligands, or more specifically of the electrostatic field
created by the ligands, on the d or f electrons of a central
metal. When ligands are considered as point charges in a purely
ionic picture of bonding, Crystal Field Theory (CFT) emerges as
an extreme scenario within LFT.[13,16] While CFT can be deduced
from fundamental principles and therefore considered ab initio,
the representation of ligands as point charges or point dipoles
is a poor approximation to real electron distributions and CFT
gives d orbital splittings which are in quantitatively poor
agreement with experiment.[17]

LFT has been interpreted differently by various authors.[18–23]

It can be considered as a parameterization scheme that is
intended to capture the interaction of the metal d orbitals with
the ligands empirically. Ideally, these empirical parameters can
be interpreted chemically. Which kind of parameterization is
used depends on the complex considered. For example, the
ligand-field splitting parameter Δ is valid for homoleptic cubic
octahedral and tetrahedral complexes, but becomes ill-defined
for other geometries. Many parameterizations are global, which
means they apply to a whole complex and cannot be trans-
ferred to another. The utility of such a global scheme lies in the
fact that the respective parameters such as ligand field
stabilization energy, interelectronic repulsion, etc. can be mean-
ingfully compared between complexes. However, global
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schemes are not intended to capture the impact of single M� L
bonds, so they do not allow for an interpretation in terms of
functional groups.

The Angular Overlap Model (AOM) is a parameterization
scheme within LFT, which was developed by Schäffer and
Jørgensen.[24] An appealing characteristic of the AOM is the
description of metal-ligand interactions in terms of local
parameters. The complex is divided into spatial regions that are
centered around the metal-ligand bonds and are characterized
in terms of σ and π interactions between metal and ligand.[20,25]

The fundamental idea is to consider the field imposed by the
ligands on the metal d orbital energies as a perturbation and
thus fit parameters for the individual metal-ligand interaction to
the d orbital energy differences.[26] Besides the intuitive
chemical interpretation, the definition and quantification of
individual interactions may in principle permit a transfer of the
corresponding parameters to other complexes with the same
metal-ligand bond.[27] While the AOM parameterization is well
established for ionic metal-ligand interactions, an often quoted
limitation is its failure for systems with strong differential orbital
covalency, which has been defined as the difference in the
metal d character in different types of d orbital.[25,28] We note
here that in the puristic ligand field model, the d orbitals
remain pure and therefore the concept of differential orbital
covalency cannot be included in this model.[13,29,30] However,
other interpretations of covalency in the ligand field and AOM
context have been given.[31–33] As discussed in more detail
below, large non-spherical contributions to the ligand field
matrix are outside the remit of the AOM model.[13]

Historically and today, AOM parameter fitting procedures
make use of experimental data sensitive to the valence orbitals
of predominant d or f orbital character, e.g. UV-vis spectra or
magnetic data.[34–38] Although it has in principle always been
within the scope of the AOM to describe complexes with
arbitrary or no symmetry, this was almost impossible to achieve,
mainly because experimental data provides limited information.
For instance, data on optical transitions in transition metal
complexes are generally limited to at most four d orbital energy
differences. This limits the number of fittable parameters
dramatically, and very often resulted in assumptions about the
AOM parameters. These assumptions or constraints were
usually not generally applicable and hence not transferrable to
related complexes. In some cases, assumptions were made to
reduce complexity, e. g. neglecting π-interactions for ammine
ligands[20] or imposing constraints such as es � 4ep.[39,40] In other
cases, an additional parameter was introduced to account for
the otherwise inexplicable positioning of a d orbital energy
level. The most prominent example for this is the low energy of
the dz2 orbital in square planar [CuCl4]

2� . The attempts to
explain and parameterize this observation eventually divided
the AOM formalism into two models: the AOM and a branch
called Cellular Ligand Field (CLF) model.[41,42] The introduction of
coordination voids was criticised,[18] although recent work by
one of us (R.J.D.) has sought to rejustify the void cell
concept.[43,44] For the parameterization scheme utilized in this
work, the models are identical.

Even with the predictive power that single- and multi-
determinantal quantum chemistry methods have now reached,
LFT and the AOM have not become obsolete.[45–49] Quite in
contrast, the implementation of ab initio LFT (aiLFT)[31,50,51] has
been a significant success that illustrates the need for
straightforward chemical interpretations of complex quantum
chemical data.[32,52–55] The aiLFT approach can be understood as
a way of translating the multidimensional information of a
CASSCF or CASSCF/NEVPT2 wavefunction into concepts that are
readily understood by experimental and theoretical
chemists.[31,50,51,56] Naturally, such a compression of information
comes at a certain cost; in this instance it is the model
Hamiltonian that recovers only a specific part of the full
complexity of the much more general ab initio wavefunction
and energies. It cannot be used, for example, to treat charge
transfer transitions which would require explicit inclusion of the
ligand orbitals.[50] This simplification is desired, however, since
aiLFT’s focus on the metal-ligand interactions means that they
can be described in terms of chemically intuitive σ and π
interactions. The loss of generality is the price to pay for a
simple and understandable model.

The aiLFT analysis delivers the ligand field matrix. However,
a standardized and impartial way for obtaining AOM parame-
ters from a quantum chemical calculation of an arbitrary
coordination complex is not yet available. In this work, we
introduce such an automated fitting procedure for AOM
parameters derived from aiLFT. We employ systematic asym-
metric distortions of the ligand sphere to obtain a large number
of independent matrix elements and thereby overcome the
limitations imposed on fits to experimental data. Importantly,
the approach proposed in this work differs from AOM
parameter fitting procedures employed previously in that it
does not rely on symmetry considerations or experimental data.
The procedure introduced here can be applied to a variety of
complexes as long as the requirements for the underlying aiLFT
analysis are met, i. e. a reasonable representation of the
electronic structure with an active space containing only the
metal d or f orbitals. Naturally, this excludes complexes with
non-innocent ligands.[57,58] Our concept and its success are
illustrated with tetrahedral metal halides that form a two-
dimensional spectrochemical series. Additionally, a linear
relationship between Pearson’s chemical hardness[59,60] and the
AOM parameters is found. This previously unknown relationship
connects the AOM parameters with a measurable chemical
quantity and may provide further avenues for the classification
and interpretation of quantum chemical calculations of tran-
sition metal complexes and their ligand fields.

Methodology

The ligand field potential

Ab initio ligand field theory, developed and implemented in
ORCA,[61] makes a direct connection between ligand field theory
and the electronic energies computed with complete active
space self consistent field (CASSCF) theory, optionally with a
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subsequent perturbation theory treatment (NEVPT2). The details
of this procedure are presented elsewhere,[31,50,62] so that only a
brief summary is given below. The key feature is the
construction of an effective ligand field Hamiltonian that acts
on a d orbital basis.[50,62] In LFT, this Hamiltonian is derived from
experimentally observed d–d transitions, whereas in aiLFT, the
respective states are obtained from a CASSCF calculation. The
LFT model Hamiltonian consists of a one-electron part, V̂, and a
two-electron part, Ĝ:

ĤLF ¼
X

i

V̂LF ið Þ þ
X

i<j

Ĝ i; jð Þ (1)

Acting on a d orbital basis, the one-electron operator yields
a matrix which is called the one-electron ligand field matrix or
ligand field potential VLF , the elements of which are defined as:

vij ¼ di V̂LF

�
�
�
�dj

� �
(2)

In the equation above, the ligand field potential is ex-
pressed in terms of a d orbital basis, although one can construct
ĤLF (or V̂LF , respectively) for an f orbital basis in order to perform
a ligand field analysis.[33,38,45] When d orbitals are mentioned in
this work, we always refer to the valence d orbitals. VLF is
obtained by a CASSCF calculation with subsequent aiLFT
analysis as implemented in the ORCA quantum chemistry
package (see Computational Details).

AOM equations

The AOM can be used as a parameterized fitting scheme for the
VLF matrix.[20,41,50] The matrix elements are expressed in terms of
the angular overlap factors F q; �;yð Þ, which are determined by
the angular positions of the ligands L and the AOM parameters
el rð Þ:

vij ¼
X

L

X

l

FLliFLljeLl �
X

L

Fdsi
ffiffiffiffiffiffiffi
eLds
p

�
X

L

Fdsj
ffiffiffiffiffiffiffi
eLds
p

(3)

with l ¼ s;px;py and i; j ¼ 0; 1; 2; 3; 4 ¼ xy; yz; z2; xz; x2 � y2.
The equations for F can be found in the Supporting Information;
a visualization of the interaction including different interaction
types is shown schematically in Figure 1. Note that the d–s
mixing contribution cannot be included in the first sum, since it
is a second order effect and the summations are executed
before the multiplication. Deeth and Foulis provided a detailed
overview of the d–s mixing formalism.[63]

For ligands without cylindrical symmetry, πx and πy

interactions must be distinguished. All ligands treated in this
work have cylindrical symmetry, so the two interactions are
indistinguishable and therefore the labels x and y are dropped
in the discussions below. In F q; �;yð Þ, ψ is the rotational angle
along the bond axis and can be set to an arbitrary value; we
assume ψ to be 0.

Equation 4 shows the 5×5 one-electron ligand field matrix
in more detail:

HLF ¼ VLF þ E � 1

¼

v00 þ E v01 v02 v03 v04

v10 v11 þ E v12 v13 v14

v20 v21 v22 þ E v23 v24

v30 v31 v32 v33 þ E v34

v40 v41 v42 v43 v44 þ E

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

(4)

hij ¼ di Vij

�
�
�
�dj

� �
þ Edij (5)

Here, E is the d orbital energy affected by the spherical
contribution of the ligand field, 1 is the identity matrix. Since
vij ¼ vji and no complex numbers occur, the ligand field matrix
is always hermitian and therefore diagonalizable. When the
matrix in equation 4 is diagonalized, the resulting eigenvalues
are the perturbed d orbital energies. The eigenvalues represent
the increase in energy of the di orbital due to ligand field
effects. From the symmetric 5x5 matrix VLF , a maximum of 15
independent matrix elements can be fitted. Since one parame-
ter is always the d orbital energy affected by spherical field
contributions E, a maximum of 14 AOM parameters can result
from the fit. To meet this maximum, a totally asymmetric ligand
environment around the central metal is required.

Figure 1. Top: Visualization of the σ-interaction of an arbitrary d orbital with
a ligand orbital and its dependency on the polar angle. The square of the
angular overlap factor F2

s;i is zero for the left frame, increases in the center
and is at its maximum in the right frame. Bottom: Visualization of the
interaction between an arbitrary d orbital and ligand orbitals alongside the
respective AOM parametrization.
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On the parameter E

The parameter E in equation 4 is rarely mentioned in the AOM
literature, because it is irrelevant for the interpretation of the
el rð Þ AOM parameters. In the matrix HLF from aiLFT, the one-
electron energy of the d orbitals is included, and hence it also
contains the energy which is implicitly assumed to be the
ground level in the AOM picture. In previous schemes for
obtaining AOM parameters, E usually cancelled out and was
therefore not easily available for interpretation. Since E is
explicitly included in the procedure presented here, specifically
in the way the equation systems are set up, we want to
elaborate on the connection between the AOM equations with
and without E a little further.

When HLF as shown in equation 4 is diagonalized, the
respective eigenvalues contain þE. Since the AOM is only
interested in orbital energy differences rather than absolute
energies and experimental data can also only yield relative
energies, these eigenvalues are subtracted from each other,
leaving four equations in which E is cancelled out. So while
representing the energy of the degenerate dx2 � y2 and dz2

orbitals in octahedral symmetry as e x2 � y2ð Þ ¼ e z2ð Þ ¼ 3es is
not inherently wrong, it implies that E will be cancelled out by
taking the difference between this and other equations. From a
mathematical perspective, there is no justification to say that
we could not solve this equation. So the puristic way to write
the AOM equations for octahedral symmetry would be:

e x2 � y2ð Þ ¼ e z2ð Þ ¼ E þ 3es (6)

e xzð Þ ¼ e yzð Þ ¼ e xyð Þ ¼ E þ 4ep (7)

) D ¼ 3es � 4ep (8)

It is immediately clear from these equations that the system
is underdetermined and has no single solution. In Figure 2, the
classical d orbital energy change due to the ligand field is
shown, where the energy levels are labelled as in equation 6
and 7. At this point we want to emphasize that E is not the d
orbital energy of the free ion. In fact, E is a function of the M� L
bond length and resembles a spherical ligand field potential,
while the el parameters represent non-spherical contributions
only. As shown below, the response of E to variations in the
ligand field is easily accessible with the fitting procedure
presented here.

Obtaining aiLFT-AOM parameters

Since a generalised black-box procedure for obtaining AOM
parameters from the aiLFT analysis was missing, we introduce
here how the AOM parameters are calculated starting from an
optimized structure of the compound of interest. The next
sections refer to Figure 3. The program we developed for fitting
the AOM parameters is available upon request.

Asymmetric distortions

The more symmetric a complex is, the fewer independent
equations are available in the AOM fitting scheme. In order to
avoid underdetermination even in the many highly symmetric
complexes, small distortions have to be applied to the structure,
while still assuming that the parameters obtained for the
minimally distorted molecule are the same as for the initial
structure. A similar procedure was already employed by
Atanasov et al.[50] and Singh et al.,[31] although the distortions
they applied were of a certain symmetry. We set three require-
ments for the distortions that are applied automatically in our
black-box procedure:
1. It should be asymmetric, since high symmetry reduces the

number of independent equations.[64,65]

2. It should be small, so it can be safely assumed that the
parameters do not change significantly.

Figure 2. Schematic change of d orbital energies from a free ion to a
homoleptic octahedral complex, labelled with the puristic style of AOM
equations as in Equations 6 and 7.

Figure 3. Schematic representation of the AOM fitting procedure.
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3. It should not lead to a geometry in which the electronic
structure differs significantly from the equilibrium geometry.
To meet the requirements, we employ a sampling proce-

dure where the M� L bond lengths are varied and at each step a
small, arbitrary angular distortion is imposed, thereby satisfying
criterion 1. While the bond length variation can be chosen
freely, the angle is varied by about 1°, which is sufficient for
having more independent matrix elements and small enough
to meet requirement 2.

The last requirement is met for every case covered in this
work, but not generally. For chelating ligands, the sampling
process must ensure that the displacements of the ligating
atoms preserve the remainder of the ligand structure, and for
bulky ligands the independent displacements must avoid
structural clashes. For the small ligands explored in this proof-
of-concept work, requirement 3 is well met. The structure
sampling step is in the top right corner of Figure 3.

CASSCF calculations

A CASSCF calculation of the equilibrium structure is needed in
which the active space consists of the valence d orbitals. Only
one successful CASSCF calculation needs to be supplied by the
user since the orbital projection feature of ORCA is employed
for the subsequent CASSCF calculations on the structures
obtained from the sampling process via asymmetric distortions.
Compared to the equilibrium geometry, the sampled structures
are sufficiently similar to ensure that the projection is
successful. In this way, the aiLFT analysis and hence all quantum
chemical information for the fitting procedure can be obtained
very efficiently. These steps are placed in the center boxes of
Figure 3.

Fitting procedure

The actual parameter fit is the bottom part of Figure 3. For
every sampled structure, the one-electron ligand field matrix is
extracted. Each matrix element corresponds to one equation.
The resulting equation system is in general overdetermined and
inconsistent, so the solution is approximated via a least-squares
fit. The cost of the fit S is subject to minimization and defined
as the sum of the squared differences between the found
solution and the best solution of each equation. This difference
is also called the residue r.[66]

S ¼
P

i
ðsi;fit � si;idealÞ

2 ¼
P

i
r2
i (9)

In general, better results at lower fitting costs are obtained
when treating every ligand with its own set of parameters. This
may however lead to overparameterizing the problem on a
mathematical level. When fitting the parameters, different
ligands may therefore be set to share a set of AOM parameters;
this is referred to as grouping. Exemplifying this with the
compounds studied in this work, they have four ligands and d–

s mixing is not relevant for the (near) tetrahedral symmetry.
With grouped ligands, there are three parameters: E, es and ep,
where E is global and es and ep are shared by all ligands. When
assigning a unique parameter set to each ligand, there are nine
parameters: E and four sets of es and ep parameters. Since up to
15 unique equations are available from VLF, we can perform
such an ungrouped fit.

Limitations

Ungrouped fitting is not always feasible since VLF is limited to a
maximum of 15 equations. When considering complexes with
more ligands, distinguishable πx and πy interactions and/or a
relevant d–s mixing contribution, this limit is easily exceeded.
Ligands must then be treated with the same set of parameters,
which imposes constraints on the system. Trial calculations
show that assigning the same parameter set to several ligands
is only successful for perfectly equivalent ligands. Even the
small distortions employed in the presented sampling scheme
interfere with this requirement because of their totally asym-
metric nature.

An inherent problem comes with the underlying equation
system, that is the main diagonal elements are clearly defined
and have large values, and hence they dominate the fit. They
roughly lead to the relationship for Δ and the AOM parameters
in a tetrahedral complex. The off-diagonal elements should
then help to find the exact minimum on this line, but they have
very low numbers and the identified minima can scatter. The
behaviour is illustrated in Figure 4, for which ligand grouping
was used and the equation system was reformulated in order to
reduce the problem to three dimensions. The same concept
holds for larger parameter sets, but the ten-dimensional
equation system cannot be depicted in human-readable form
anymore. More details are given in the Supporting Information.

Computational details

The ORCA 4.2.1 quantum chemistry package[61,67] was used for
all calculations except the AOM parameter fitting. Geometries
were optimized using the unrestricted Kohn-Sham formalism
with the BP86 functional[68,69] and the def2-SVP basis set.[70] The
electronic states corresponding to the d orbitals were calculated
using the CASSCF procedure[71,72] with the def2-TZVP basis set.
The subsequent second-order N-electron valence state pertur-
bation theory (NEVPT2)[73-76] was employed for the calculations
in the section “AOM parameters for complexes of the type
[CoX4]

2� ”. The active space was chosen to contain the d orbitals
and d electrons, which makes up e.g. a CAS(7,5) space in the
cobalt complexes considered. The ab initio ligand field theory
module[50] was then employed to construct the effective ligand
field Hamiltonian from the calculated states. The AOM was used
to fit the one-electron part of the ligand field Hamiltonian
according to our fitting procedure described above.[24,41] For
testing purposes, calculations with solvation models and differ-
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ent basis sets were run as stated in the main text and
Supporting Information.

Results

For this study, (near-)tetrahedral metal halide complexes of the
type [MX4]

2� in a two-dimensional spectrochemical series with
M=Mn-Cu and X=F-Cl were selected. The series allows two
simplifications: the cylindrical symmetry of the halide ligands
with respect to the M� L bond implies that the πx and πy

interactions need not be distinguished, but can be subsumed
as a π interaction. Secondly, all complexes considered are of
(near) tetrahedral symmetry, therefore no or quite limited d–s
mixing is expected and the d–s mixing parameter can be
neglected in most cases.

The principles of our automated fitting procedure are
demonstrated with [CoX4]

2� complexes, for which ideal tetrahe-
dral coordination environments and no d–s mixing are
expected. Experimental data are available for most members of
the [CoX4]

2� series. [CoCl4]
2� is readily formed from CoCl2 in

hydrochloric acid,[77] can be synthesized in different organic
solvents,[78] and crystal structures are well known and spectro-
scopically investigated.[79,80] For [CoBr4]

2� , the ion in solution was
not reported, but crystals have been analysed
spectroscopically,[80] and the [CoBr4]

2� units were found to be

almost tetrahedral.[81,82] The data thin out a little for [CoI4]
2� :

crystals with almost tetrahedral [CoI4]
2� units are known,[81,83,84]

but no electronic spectroscopy data was collected. The only
homoleptic anion we must assume to be fictitious is [CoF4]

2� .
Fluoro complexes of cobalt have been reported with higher
cobalt oxidation states of + III and + IV.[85] Publications on the
synthesis and characterization of gaseous CoF3, CoF4, CoF�4 and
respective cations are known.[86,87]

AOM parameters for complexes of the type [CoX4]2�

In the literature, we can find AOM parameters fitted to
experimental data, but they always come with a catch: it is
basically impossible to distinguish the split components of the
tetrahedral 4A2 4Fð Þ, 4T2 4Fð Þ, 4T1 4Fð Þ and 4T1 4Pð Þ states.[88] The
slight distortions to the tetrahedral units in many crystals are
not large enough to affect the spectra significantly. That means
even in these distorted environments, there is only one
experimental value to fit two parameters on: D ¼

4
3 es �

16
9 ep.

Consequently, it has not been possible to reliably determine
experimental AOM parameters for tetrahedral [CoX4]

2� systems.
Published data depends either on an additional constraint for
the ratio of es and ep,[39] or is even chosen randomly.[88]

Therefore review articles and book chapters listing the parame-
ters have to be read with some caution.[27]

Figure 4. Fitting costs for [CoCl4]
2� , calculated with a reduced equation system. Matrix elements on the main diagonal are subtracted from each other in order

to cancel out E, all chloride ligands are grouped. The plot shows the dependence of the fitting cost S (see Equation 9) of a certain parameter set on the two
parameters eσ and eπ . Fitting costs are shown on a logarithmic scale as a colour gradient. Each green point represents the results of an individual fit. The four
plots correspond to different M� Cl distances as labelled in the insets.
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The fitting procedure outlined above was applied to the
series of cobalt halide complexes. The es and ep parameters in
Table 1 show the expected trend of F� >Cl� >Br� > I� according
to their donor capabilities and positioning in the spectrochem-
ical series. The parameters fitted to the matrices based on the
CASSCF and NEVPT2 data follow the same trend, but do show
some numerical differences that are discussed in some more
detail in the Supporting Information. A comparison with
experimental and computational ligand field splitting values is
also provided in the Supporting Information.

Having the es and ep parameters in hand, we calculated the
ratio es=ep. This is the first time that this ratio has been
calculated from individually obtained parameters, as opposed
to requiring the parameters to meet a predefined ratio.[39,40] The
values found, see Table 1, lie within the expected range for
halide ligands in various complexes, ranging roughly from 2 to
5.[27] Most notably, the often assumed ratio of 4 for cobalt halide
complexes is not reproduced here.

As a side note, the fitting procedure confirms the expect-
ation of d–s mixing not being relevant: when fitting the systems

with eds, the parameter restraints are hit and the parameter has
no influence on the cost of the fit.

Dependence on the bond length

The ligand field splitting is a function of the metal-ligand
distance r. Crystal field theory predicts that:[25,p. 38]

Dtet ¼
20ze2 a4h i

27r5 ; (10)

whereas taking the ligand as a dipole instead of a point charge
would result in a distance dependence of r� 6.[25,p. 39] Here, ze2

refers to the charge of a ligand and a d electron, and a to the
radius of the d shell. While the relation was derived for
octahedral symmetry, the only difference in tetrahedral symme-
try is a factor of 4/9. Since there is no such simple equation for
ligands with more complicated charge distributions, the
equation was generalised in the form[40,89–91]

D / r� n; (11)

with n as a fitting parameter and an undefined proportionality
constant.

The fitting procedure described herein allows us to
quantitatively evaluate the distance dependence of all AOM
parameters. The variation of the ligand field splitting Δ across
the series of homoleptic cobalt halide complexes and point
charges is shown in Figure 5. Rodríguez and Moreno state that
the parameters A and n in 10Dq ¼ Ar� n are not necessarily
constant over a wide range of r. They assume that the
description applies in an interval of �0.1 Å around a given r.[90]

Table 1. AOM parameters for [CoX4]
2� in tetrahedral geometry. Each data

point is the average of five calculations with the standard deviation given
in parentheses.

Method Complex E [cm� 1] eσ [cm� 1] eπ [cm� 1] eσ/eπ

CASSCF [CoF4]
2� � 1 211 563(52) 5432(26) 2298(20) 2.36(2)

[CoCl4]
2� � 1 224 735(19) 3146(10) 1101(9) 2.86(3)

[CoBr4]
2� � 1 229 806(54) 2662(27) 872(21) 3.05(8)

[CoI4]
2� � 1 237 432(44) 2090(22) 630(17) 3.32(10)

NEVPT2 [CoF4]
2� � 1 213 192(71) 5274(36) 2225(27) 2.37(3)

[CoCl4]
2� � 1 226 664(41) 3150(21) 1118(16) 2.82(4)

[CoBr4]
2� � 1 231 835(86) 2717(44) 917(33) 2.96(12)

[CoI4]
2� � 1 239 611(111) 2216(56) 719(43) 3.08(20)

Figure 5. ~ of homoleptic cobalt halides for different bond lengths, calculated with ~=ɛ(t2)� ɛ(e)=
4
3es �

16
9 ep . The respective equilibrium bond lengths are

highlighted with boxes around the data points. Q denotes a point charge.
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Our data shows that an excellent fit is obtained even with
variations of �0.2 Å around the equilibrium bond lengths. The
exponent n increases from 5.12 in the fluoride complex to 5.53
in the iodide complex, in full agreement with the range
determined experimentally. At first glance, this also fits to the
assumption of an r� 5 distance dependence for point charges
and a r� 6 relationship for dipoles: the hard fluoride ligand is
usually seen as barely polarizable and therefore expected to act
similar to a point charge. The softer and more polarizable the
halide is, the more it is expected to act as a dipole. However,
the aiLFT-AOM parameter fit for point charges at the positions
of the fluoride ions in [CoF4]

2� yields an even lower value of
n ¼ 3:83. By this measure, fluoride thus appears to be much
more polarizable than an actual point charge. Even though
there are no immediately obvious practical implications of this
knowledge, being able to quantitatively compare ligands in this
way may be useful in other settings.

The proportionality constant A shows a trend too, with
softer ligands yielding larger constants as show in Table 2. Since
the charge of the ligands is constant, we put forward the
interpretation that A corresponds to the d shell radius a in
equation 10. The harder the ligand, the smaller is A and
therefore the extent of the pure d orbitals in the ligand field
picture.

Experimentally, different methods have been used to study
the bond length dependence of Δ. It is calculated by measuring
electronic transitions through UV-vis or photoluminescence
spectroscopy. The bond length changes are achieved by
compression experiments of crystals,[92–94] observations in differ-
ent crystal lattices,[90,95] and comparisons of different ligands
with the same donor atom.[96,97] Compression and lattice
variation experiments have shown Δ dependencies of r� 5 to r� 6.
The third method depending on the donor atom is inherently
flawed, because it mixes the effect of the bond length and of
the different electronic properties of the ligands into the same
interpretation; Bertini et al. call it “extremely simplified and
rough”.[96]

The fitting procedure introduced here allows us to separate
electronic and structural effects and compute the distance
dependence individually for the different AOM parameters. We
studied the bond length dependence of AOM parameters for
homoleptic and heteroleptic complexes. Because the situation
is much more complicated for heteroleptic complexes, we focus
on homoleptic ones below; additional data sets are shown in
the Supporting Information.

Starting with the behaviour of E for different bond lengths r,
see Figure 6, a first surprising observation is made: E decays as

the bond length increases, but vastly different values for E are
found at the same bond length for different halides. This
finding might reflect variations in the spherical potential the
central metal is subjected to and may be an effect of differences
in the charge screening or charge distribution in the different
halides.

The parameter es decreases with increasing r with very little
variation across the series of halide ligands, see Figure 6. This
suggests that es is only a function of r and independent of the

Table 2. Fitting parameters of ~(r)=Ar� n shown in Figure 5. Q denotes a
point charge.

Complex n A

[CoQ4]
2� 3.88 13402

[CoF4]
2� 5.12 94482

[CoCl4]
2� 5.39 221487

[CoBr4]
2� 5.48 293771

[CoI4]
2� 5.53 398624

Figure 6. E, eσ and eπ of homoleptic cobalt halides for different bond lengths.
The respective equilibrium bond lengths are highlighted with boxes around
the data points. Note that analogous plots are shown in the Supporting
Information for Mn� Cu.
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halide element. The variation in ep depends on the nature of
the halide: for the heavier elements Cl, Br� and I� , ep is almost
constant. A plausible explanation might be that the increased
σ-donation at shorter distances is compensated with reduced
π-donation, thus ensuring electroneutrality. Therefore the π-
interaction does not increase as may have been expected, but
stays the same. For the lightest halide, F� , ep decays monotoni-
cally with increasing bond length. Fluoride is known to be
much harder than the other halides and very often shows a
unique chemical behaviour. Congruent with the above inter-
pretation, fluoride appears less capable of ensuring electro-
neutrality, which we can trace back to its π-interaction with the
central metal.

Transferability

Transferability of AOM parameters for the same ligand or ligand
type between different complexes is an often assumed or
expected feature, although it was also shown that it is not
generally applicable.[42,64,96,98,99] It is usually applied to systems
where the chemical environment of a certain M� L bond is seen
as very similar.[20,42] For many heteroleptic complexes, the
equation system will be underdetermined, precluding an
individual fit for every AOM parameter. With the procedure
presented herein, we are able to obtain VLF with a high or
complete degree of independent matrix elements. Our method
can thus investigate heteroleptic complexes with highly sym-
metric equilibrium structures, which allows us to quantitatively
evaluate the transferability of AOM parameters.

We investigated complexes of the type [CoXnY4� n]
2� , where

X and Y are different halides. All XY combinations with the
exception of [CoF3I1]

2� are considered. Geometries are opti-
mized without restraints and a bond length scan is performed.
The results of the bond length scan are shown exemplarily for
es of the Co� Cl bond in Figure 7.

Despite the outliers occasionally found, there is a clear
correlation between bond length and AOM parameter: shorter
bond lengths lead to larger es values. With regard to the
stoichiometry, no clear trend can be observed. For F� , es

decreases with an increasing portion of fluoride heteroligands.
In the cases of bromide or iodide heteroligands, no such trend
can be determined. Still, the heteroligand has an impact on the
bond length of the subject ligand: soft halides tend to have
longer bond lengths when another hard halide is present in the
complex and vice versa.

To distinguish the effects of the M� X bond length and
influence of the heteroligand, additional calculations were
performed where each metal-ligand bond length in the
complexes [CoXnY4� n]

2� is fixed at the equilibrium bond length
of the respective homoleptic complex. Accordingly, the M� X
bonds are as long as the bonds in [MX4]

2� and the M� Y bonds
have the same length as in [MY4]

2� . The obtained AOM
parameters refer to the Co� X bond. The results are shown in
Table 3 and can be summarized for both es and ep as follows:
the harder the ligand X, the less noticeable are possible trends;
the harder the heteroligand Y, the smaller are the AOM

parameters. Parameters for neighbouring Y are of similar size
and almost never differ by more than 200 cm� 1.

Compared to the data of the optimized structures (see the
Supporting Information) it seems that the influence of the
heteroligand is mainly caused by the change in bond length.
The obvious exception is fluoride, which has a significant
impact at any bond length and every complex. This has two
implications: many qualitative effects are already captured by
the simple crystal field approach, in which only the charge or
dipole moment at the ligands is relevant. On the other hand,

Figure 7. eσ parameter of the Co� Cl bond in various complexes. Three
outliers were removed, see Supporting Information for details.

Chemistry—A European Journal 
Research Article
doi.org/10.1002/chem.202103775

Chem. Eur. J. 2022, 28, e202103775 (9 of 14) © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Wiley VCH Montag, 07.02.2022

2209 / 233209 [S. 58/63] 159



the bond lengths change in real complexes, so while it would
be valid to assume roughly the same el rð Þ for a certain M� L
bond in different complexes, r will not be identical.

Summed up, transferability in the given systems is at least
questionable. Because ligands have a significant influence on
each others bond lengths and they mutually influence their
interaction with the metal, their AOM parameters are likely to
differ in different chemical settings. Having shown that the
black-box fitting procedure presented herein facilitates not only
the identification of an ideal AOM parameter set for a given
system, but also the distance dependence of one or more
ligands, it is now possible to evaluate the error made when
transferring the AOM parameters of a particular ligand type
between complexes. In any case, the parameters in a specific
complex can be used to assess the electronic properties of a
ligand in a certain environment in a qualitative and chemically
understandable way.

Two-Dimensional Spectrochemical Series and Chemical
Hardness

Having shown with a thorough investigation of [CoX4]
2�

complexes and their heteroleptic variants that our fitting
procedure provides reliable results that agree with experiment
and offer various opportunities for chemical interpretation, we
now discuss the two-dimensional spectrochemical series
[MIIX4]

2� with M=Mn, Fe, Co, Ni, Cu, and X=F, Cl, Br, I. The
metals form the Irving–Williams series, for which the observed
‘double-bump’ trend in the hydration enthalpies is explained
with differences in their ligand field stabilisation energies.[100–102]

While the d7 configuration of Co2+ leads to perfectly tetrahedral
structures that are straightforward to analyse and interpret,
there are a few caveats for other members of the series. The Fe,

Ni and Cu complexes are subject to Jahn–Teller distortion, the
exact shape of which depends on the metals. For Fe, there is a
slight change in bond angles, the Ni complexes have two
shorter and two longer bond lengths, whereas the Cu
complexes are “flattened” and have D2d symmetry. Experimental
references for these complexes are listed in the Supporting
Information.

As shown in Table 4, the general trends for E, es and ep are
the same even for the more asymmetric structures. Of note is
the sensitivity of the method, which for instance discerns the
different ep parameters in the nickel halides as the metal-halide
bond is varied, see graphs in the Supporting Information
analogous to Figure 6. Overall, Table 4 shows that the AOM

Table 3. AOM parameters for the Co–X bond in different complexes of the type CoXn Y4� n with r(M� L) being the equilibrium bond length of the homoleptic
complexes. The subject ligand X is printed in bold letters on the far left of the Table, nX is its count in the respective complex. Y denotes the type of the
hetero ligand, given in the second column. Parameters of homoleptic complexes with nX =4 are shown in italics for easier comparison. All numbers are the
average of five data points with the standard deviation given in parentheses. Rows show the parameter change with the stoichiometry, with the homoleptic
complex on the right. Columns show the parameter change in the same stoichiometry but with changing heteroligands; the entry for the homoleptic
complex is the one where the heteroligand is the same as the subject ligand.

X Y
eσ/cm� 1

nX

eπ/cm� 1

nX

1 2 3 4 1 2 3 4

F F 5432(26) 5432(26) 5432(26) 5432(26) 2298(20) 2298(20) 2298(20) 2298(20)
Cl 5330(65) 5325(101) 5385(82) 5432(26) 2387(53) 2322(82) 2309(75) 2298(20)
Br 5322(42) 5365(64) 5474(423) 5432(26) 2436(41) 2384(54) 2399(326) 2298(20)
I 5372(150) 5352(162) 5178(151) 5432(26) 2538(112) 2418(123) 2208(115) 2298(20)

Cl F 2997(92) 3045(101) 3116(67) 3146(10) 879(47) 946(83) 1027(56) 1101(9)
Cl 3146(10) 3146(10) 3146(10) 3146(10) 1101(9) 1101(9) 1101(9) 1101(9)
Br 3204(28) 3179(65) 3042(304) 3146(10) 1184(22) 1142(52) 1030(224) 1101(9)
I 3227(55) 3089(117) 3216(52) 3146(10) 1281(55) 1131(92) 1186(53) 1101(9)

Br F 2463(421) 2504(69) 2594(61) 2662(27) 565(306) 643(70) 763(58) 872(21)
Cl 2469(288) 2610(63) 2635(27) 2662(27) 667(227) 793(49) 834(28) 872(21)
Br 2662(27) 2662(27) 2662(27) 2662(27) 872(21) 872(21) 872(21) 872(21)
I 2764(174) 2711(93) 2669(94) 2662(27) 1021(139) 953(81) 895(77) 872(21)

I F 1427(151) 1869(186) 2086(193) 2090(22) � 45(91) 341(159) 558(155) 630(17)
Cl 1956(64) 1848(110) 2047(32) 2090(22) 415(58) 361(77) 553(32) 630(17)
Br 2015(99) 2075(103) 2107(160) 2090(22) 501(71) 561(83) 614(120) 630(17)
I 2090(22) 2090(22) 2090(22) 2090(22) 630(17) 630(17) 630(17) 630(17)

Table 4. AOM parameters E, eσ and eπ for homoleptic metal halides with
the metals Mn, Fe, Co, Ni, Cu.

Complex E/cm� 1 eσ/cm� 1 eπ/cm� 1 eσ/eπ

[MnF4]
2� � 715 961(98) 5988(52) 2560(42) 2.34(4)

[MnCl4]
2� � 734 463(64) 3422(33) 1258(27) 2.72(6)

[MnBr4]
2� � 741 496(48) 2825(26) 982(27) 2.88(8)

[MnI4]
2� � 749 106(25) 2265(16) 750(20) 3.02(8)

[FeF4]
2� � 945 787(68) 6900(91) 2920(106) 2.36(9)

[FeCl4]
2� � 966 124(81) 3427(35) 1252(28) 2.74(7)

[FeBr4]
2� � 971 604(144) 2796(51) 943(44) 2.97(15)

[FeI4]
2� � 979 423(273) 2151(27) 656(25) 3.28(13)

[CoF4]
2� � 1 211 563(52) 5359(168) 2252(111) 2.38(14)

[CoCl4]
2� � 1 224 735(19) 3146(10) 1101(9) 2.86(3)

[CoBr4]
2� � 1 229 806(54) 2662(27) 872(21) 3.05(8)

[CoI4]
2� � 1 237 432(44) 2043(135) 594(103) 3.44(64)

[NiF4]
2� � 1 492 974(30) 5213(162) 2248(140) 2.32(16)

[NiCl4]
2� � 1 503 065(45) 3128(98) 1144(95) 2.73(24)

[NiBr4]
2� � 1 507 380(69) 2671(92) 920(101) 2.90(33)

[NiI4]
2� � 1 513 307(61) 2121(84) 672(84) 3.16(41)

[CuF4]
2� � 1 823 377(19) 5331(179) 2353(162) 2.27(17)

[CuCl4]
2� � 1 835 433(26) 3035(51) 1124(48) 2.70(12)

[CuBr4]
2� � 1 841 224(38) 2507(41) 876(31) 2.86(11)

[CuI4]
2� � 1 847 959(14) 1930(36) 623(26) 3.10(14)
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parameters are mainly influenced by the ligand, while the metal
series show rather subtle differences. The only exception is
[FeF4]

2� with notably larger es and slightly larger ep values than
seen in the rest of the series. Compared with an earlier study
based on Average-of-Configuration-KS-DFT, we find smaller es

values and es=ep ratios (e.g. for [FeCl4]
2� : es ¼ 0:471 4ð Þ mm� 1,

es=ep ¼ 3:00).[103] It will be interesting to study such a 2D-
spectrochemical series for octahedral coordination environ-
ments, where the influence of the metal is expected to be
much more pronounced for differential occupation of the σ–eg

and π–t2g sets since the σ and π bonding modes are more
cleanly separated than in tetrahedral systems.

Two-dimensional spectrochemical series separate and com-
pare the σ and π contribution in a metal-ligand
interaction.[104,105] The es and ep parameters obtained from our
procedure are plotted against each other, see Figure 8, as is
commonly done for such series.[22] The points show a linear
relationship and can be fitted almost perfectly with a common
regression line, pointing out again the above finding that the
spectrochemical series for the metals is much less pronounced
in the present cases than for the halides. Our data show that
there is one equation that relates es and ep for all complexes
investigated here. This finding can be used as a constraint that
complements the relationship between Δ and the e-parameters
(D ¼ e t2ð Þ � e eð Þ), and thus enables AOM parameter fits for
perfectly tetrahedral [MX4]

2� complexes without information on
the off-diagonal elements. In contrast to the approach using
empirical ratios mentioned in the introduction (e.g. ep ¼ 4es for
Cl� [40]), this observation includes all halides. Studies on [VIIIX4]

�

and [CrIVX4],
[106] [MIIICl6]

2� with M=Cr, Mo, W, [CrX6]
3� with X=

CN� , NH3, F� , Cl� , Br� , I� ,[31] and NiII complexes[107] had found
similar relationships for other ligand types and metal charges.
Even though a direct comparison is not possible due to the

different protocols used here and in the previous examples, the
correlation lines for different ligand types but the same metal
appear to lie parallel to each other.

In the previous sections, we often referred to chemical
hardness in a qualitative way to rationalize and compare the
effect of different ligands. In order to probe whether the
concept can be applied quantitatively, the Pearson hardness of
the halides is plotted against their AOM parameters in the
homoleptic complexes at their equilibrium geometries in
Figure 9.[60] The plots are essentially perfectly linear for the σ
and π parameters, showing that the concept of chemical
hardness is suitable to explain the observed effects. Since the
AOM parameters are very similar for the different metals, the
resulting regression lines lie close to each other; as mentioned
above, [FeF4]

2� is an exception here. While for each metal series,
a linear relationship between the hardness of the halide ligands
and the AOM parameters is obtained, it will have to be
evaluated whether this holds for other types of ligand. It cannot
be expected that all ligands will fall on the same line, but series
of ligands with similar donor capabilities may show a
correlation within the series.

Conclusions

Ligand Field Theory and the Angular Overlap Model are
powerful ideas that allow chemists to intuitively interpret the
electronic structures of coordination complexes based on their
building blocks. With the aiLFT analysis now readily available to
translate complex quantum chemical wavefunctions into a
ligand field picture,[50] chemists can study arbitrary coordination
complexes in great detail from a ligand field
perspective.[32,35,52–55] The AOM provides ligand-specific parame-

Figure 8. eσ vs. eπ for different metal halides, all metals shown in the same color and fitted with a common regression line. Error bars indicate the standard
deviation. The regression line is the function eπ=0.4929eσ� 394 cm� 1. Regression lines for the individual metal series are given in the Supporting Information.
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ters, es and ep, that describe the individual ligand–metal
interactions in terms of the widely used σ- and π-terminology.
However, obtaining AOM parameters for such complexes
previously required detailed knowledge of the underlying
equation systems and significant experience in applying and
solving them. Therefore, we have developed an automated
fitting procedure for AOM parameters based on a scheme for
generating asymmetric coordination environments with subse-
quent aiLFT analyses.

The protocol established here provides AOM parameters for
any complex the model is applicable to, and is not limited by
the availability or resolution of experimental data, that is, AOM
parameters can even be generated for complexes where fits
were not possible before. In addition, the procedure used
herein naturally includes the spherical ligand field potential E,
which was not considered in any of the fitting schemes
previously reported in the literature. We are confident that
having easy access to the AOM parameters es , ep and eds for any
complex that falls under the remits of the AOM and aiLFT
analyses, including any structural distortions or modifications
that may be useful to answer a given chemical question, will
help in better understanding their electronic structures and
coordination chemistry.

With a series of tetrahedral cobalt halide complexes as a
case study, we have shown that the numerical values found
with our procedure are in agreement with experimental data
and have standard deviations much below the uncertainties
that were previously commonly accepted. We quantitatively
evaluated how the bond length r affects the ligand field
splitting Δ, the spherical ligand field potential E and the AOM
parameters es and ep. The behaviour of fluoride differs from
that of the heavier halides, which led us to conclude that it is

much less capable of ensuring electroneutrality in these
complexes. Given the often unusual behaviour of fluoride
ligands, it will be interesting to verify this effect in other series
of halide complexes, ideally in conjunction with spectroscopy
methods that are sensitive to the charge distribution around
the central metal.

Due to the limited number of independent matrix elements
available for fitting, a commonly used practice is to transfer the
AOM parameters found for a particular ligand type from one
complex to another. We evaluated how sensitive the AOM
parameters of the halide ligands are to the overall composition
of the complex and showed that this practice is at least
inaccurate. As a common rule, we deduced that in cases where
the other ligands have high donor or acceptor capabilities
compared to the ligand for which the parameters are to be
transferred, AOM parameter transfer is prone to failure. The
fitting procedure presented herein allows a detailed quantifica-
tion of the errors made when AOM parameter transfer cannot
be avoided, e.g. in cases where too few matrix elements are
available for fitting.

Pearson’s principle of hard and soft acids and bases relies
on the chemical hardness, a quantity that is calculated as the
average of a species’ ionisation potential and electron
affinity.[59,60] As such, it can in principle be measured with high
accuracy, even though the HSAB concept is used rather
intuitively in everyday chemistry arguments. We found a
previously unknown linear relationship between the chemical
hardness of the ligands and their AOM parameters for all series
of metal complexes in the two-dimensional spectrochemical
series from Mn� Cu. It will be interesting to explore whether this
relationship holds for other types of ligand, which may provide
an additional aspect to the comparison and quantification of

Figure 9. Calculated AOM parameters of various halido metalates versus the chemical hardness η of X with their respective linear regression lines. The
hardness values are taken from [60].
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ligand character in coordination complexes. Within the two-
dimensional spectrochemical series involving all halides of
Mn� Cu, we found a common relationship between es and ep.
This finding can act as an additional constraint in future fitting
procedures. Comparison with similar series in the literature
showed that other types of ligand fall on approximately parallel
lines. The es–ep relationship can thus serve as a tool for
characterising the metal-ligand interaction in a two-dimensional
map, which might be particularly useful in the context of
developing structure–property relationships.

The above examples illustrate a few avenues in which the
AOM parameter fitting scheme can be used to better under-
stand the ligand–metal interactions and cooperative effects in
coordination complexes. Future work will involve more complex
ligands, e.g. ligands in which epx

and epy
will be differentiated

and multidentate ligands. With the capability of fitting AOM
parameters in an unbiased and automated fashion, several
other ideas can be studied quantitatively in future, e.g. d–s
mixing (or coordination voids) and misdirected bonding effects,
which have previously been accounted for by introducing new
parameters. Since the procedure introduced here will allow us
to avoid overparameterisation and quantify the uncertainty
associated with each parameter, we will be able to carefully
evaluate their physical and chemical meaning.

Going beyond the specific interpretations of individual AOM
parameters, we are convinced that having access to an
automated AOM parameter fitting scheme will make it much
easier for chemists to interpret electronic structures or design
desirable electronic structures by evaluating the effects of
ligand substitution patterns and changes in coordination
geometry through the AOM lens, whether these are specific
design criteria for catalysis, molecular magnetism or other
desirable ground state properties.
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Angular Overlap Factors

Table 1: Angular overlap factors Fσi(θ, ϕ) as in [1].

i Fσi(θ, ϕ)

xy
√
3
4 sin(2ϕ)(1− cos(2θ))

yz
√
3
2 sin(ϕ) sin(2θ)

z2 1
4 (1 + 3 cos(2θ))

xz
√
3
2 cos(ϕ) sin(2θ)

x2 − y2
√
3
4 cos(2ϕ)(1− cos(2θ))

Table 2: Angular overlap factors Fπxi(θ, ϕ, ψ) as in [1].

i Fπxi(θ, ϕ, ψ)

xy cos(2ϕ) sin(θ) sin(ψ) + 1
2 sin(2ϕ) sin(2θ) cos(ψ)

yz cos(ϕ) cos(θ) sin(ψ) + sin(ϕ) cos(2θ) cos(ψ)

z2 −
√
3
2 sin(2θ) cos(ψ)

xz − sin(ϕ) cos(θ) sin(ψ) + cos(ϕ) cos(2θ) cos(ψ)
x2 − y2 − sin(2ϕ) sin(θ) sin(ψ) + 1

2 cos(2ϕ) sin(2θ) cos(ψ)

Table 3: Angular overlap factors Fπyi(θ, ϕ, ψ) as in [1].

i Fπyi(θ, ϕ, ψ)

xy cos(2ϕ) sin(θ) cos(ψ)− 1
2 sin(2ϕ) sin(2θ) sin(ψ)

yz cos(ϕ) cos(θ) cos(ψ)− sin(ϕ) cos(2θ) sin(ψ)

z2
√
3
2 sin(2θ) sin(ψ)

xz − sin(ϕ) cos(θ) cos(ψ)− cos(ϕ) cos(2θ) sin(ψ)
x2 − y2 − sin(2ϕ) sin(θ) cos(ψ)− 1

2 cos(2ϕ) sin(2θ) sin(ψ)

1

66



Table 4: Simplified angular overlap factors Fπi(θ, ϕ) = Fπxi(θ, ϕ, ψ = 0) +
Fπyi(θ, ϕ, ψ = 0).

i Fπi(θ, ϕ)

xy cos(2ϕ) sin(θ) + 1
2 sin(2ϕ) sin(2θ)

yz cos(ϕ) cos(θ) + sin(ϕ) cos(2θ)

z2 −
√
3
2 sin(2θ)

xz − sin(ϕ) cos(θ) + cos(ϕ) cos(2θ)
x2 − y2 − sin(2ϕ) sin(θ) + 1

2 cos(2ϕ) sin(2θ)

Discussion of ∆–values

A limited comparison with experimental data is possible for the values of ∆ cal-
culated from the AOM parameters. In the AOM, the d-orbital energy difference
∆ in a tetrahedral complex is given as:

∆ = ϵ(t2g)− ϵ(eg) =
4

3
eσ − 16

9
eπ (1)

Since orbitals and their energies are not observables, there is no direct con-
nection with experiment. The approximation used most often is to resort to the
first electronic transition: [1]

∆ = E(4T2)− E(4A2) (2)

In the special case of a tetrahedral d7-system, the Tanabe-Sugano diagram for
B = 918 cm−1 and C/B = 4.5, the line of the 4T2(F ) state is linear with a
slope of 1.[2] In this case, the definitions of ∆ are coincidentally equal. Ta-
ble 5 shows calculated and experimental values for the ligand field splitting.
While the ligand field splitting according to the AOM parametrization shows
the correct trend, smaller splittings for heavier halides, the absolute values
are consistently underestimated. The same observation can already be made
in the ligand field splitting values calculated directly from the CASSCF and
NEVPT2 states, although the NEVPT2 correction approaches the experimen-
tal value to within 200 cm−1. An apparent mismatch arises from the fact that
the CASSCF and NEVPT2 transition energies differ, although the fit of VLF

yields almost the same AOM parameters (see main text). The methods predict
different Racah parameters (CASSCF: B = 1200 cm−1, C/B = 3.7, NEVPT2:
B = 1000 cm−1, C/B = 4.0), so while the one-electron part of the ligand field
Hamiltionian remains almost unaltered, the two-electron part changes signifi-
cantly. Arguing with the Tanabe-Sugano diagrams this would mean different
diagrams are necessary for both cases and ∆ in Equation 2 is different to ∆ in
Equation 1. Consequently, the values cannot be compared directly. The trend
in ∆, regardless of its definition, is reproduced by all of the calculations.

2
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Table 5: Calculated and experimental values for ∆ in cm−1. Note that the
theoretical and experimental definitions of ∆ differ.

4A2g ⇒4 T2g/cm
−1

Complex ∆AOM/cm
−1 (CASSCF) (NEVPT2) ∆exp./cm

−1 Source

[CoCl4]
2– 2237 2100 3000 2825 - 3330 [3], [4], [5]

[CoBr4]
2– 1999 1850 2700 2800 [4]

[CoI4]
2– 1667 1500 2500 2700 [6]

Additional metal halides

For the extended series of metal halide complexes, we researched which coor-
dination compounds exist and have been reported. The list in Table 6 makes
no claim to be complete, but shows that most of the investigated complexes
exist, either as solvated ion or as a subunit in a crystal lattice. Only MnIII com-
pounds were found.[7] We were unable to find (near-)tetrahedral FeII compounds
for halides other than fluoride. All CuII fluorides we found are octahedrally co-
ordinated,[8, 9] and for [CuI4]

2– we found no reported synthesis or analysis.
The AOM parameters for the series of metal halides resulting from our fit-

ting procedure are shown in the main text. The results of bond length scans
analogous to that shown for the cobalt complex are shown in Figure 1 to 5, with
an overview of all data presented in Figure 6.

The AOM parameters and their ratios are similar for the same halides, as
was pointed out in the main text. Here, we will discuss the deviations from the
model system [CoX4]

2– . For manganese, the optimized geometry is tetrahedral,
as expected for a d5 high-spin system. All other metal complexes show Jahn-
Teller distortions that lead to different symmetries. [FeX4]

2– shows slightly
bent bond angles, nevertheless the fit yields AOM parameters that are roughly
identical.

[NiX4]
2– is distorted in an interesting way: there are two short, one inter-

mediate and one long bond in the molecule. The difference between the bond
lengths is about 0.02 Å. In every calculation, the AOM parameters of the short
bonds are larger than the average at the respective length. Vice versa, the AOM
parameters of the longer bonds are smaller than the average at the respective

Table 6: Experimental references for the metal halides [MX4]
2– where available.

X Mn Fe Ni Cu

F none [10] [11, 12] none
Cl [13–16] none [13, 17] [13, 18]
Br [13, 15, 16, 19] none [13, 20] [13, 21, 22]
I [13, 15, 16] none [13] none

3
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Table 7: Angular overlap parameters E, eσ, eπ and eds for homoleptic copper
halides [CuX4]

2– . To avoid overparameterization, a grouped fit was performed
where the additional restraint eλ,L = eλ,L′ is imposed.

X E/cm−1 eσ/cm
−1 eπ/cm

−1 eds/cm
−1

F −1 822 578(32) 5012(26) 2107(29) 402(31)
Cl −1 835 247(26) 2949(37) 1069(29) 141(24)
Br −1 841 118(51) 2457(35) 845(27) 85(32)
I −1 847 925(25) 1919(34) 612(26) 20(27)

length. This illustrates the mutual influence of ligands on each other, and that
not only their chemical nature, but also their relative bond length is important.

The copper complexes have D2d symmetry, which would require the con-
sideration of d-s mixing[23] or the introduction of coordination voids.[24] The
least-squares fit is able to find a set of E, eσ and eπ parameters which represent
the d-orbital energies with the smallest deviation to the original VLF . However,
the overall fitting costs are very high and the d-orbital energies are reproduced
less well than in the other examples. Inclusion of d-s mixing significantly im-
proves the fit and lowers the cost. Preliminary results with an additional d-s
mixing parameter eds for the copper halides are shown in Table 7. The equations
used for the fit are derived and presented in [25].

4

69



Figure 1: E, eσ and eπ of homoleptic manganese halides for different bond
lengths. The respective equilibrium bond lengths are highlighted with boxes
around the data points.
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Figure 2: E, eσ and eπ of homoleptic iron halides for different bond lengths.
The respective equilibrium bond lengths are highlighted with boxes around the
data points.
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Figure 3: E, eσ and eπ of homoleptic cobalt halides for different bond lengths.
The respective equilibrium bond lengths are highlighted with boxes around the
data points.
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Figure 4: E, eσ and eπ of homoleptic nickel halides for different bond lengths.
The respective equilibrium bond lengths are highlighted with boxes around the
data points.
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Figure 5: E, eσ and eπ of homoleptic copper halides for different bond lengths.
The respective equilibrium bond lengths are highlighted with boxes around the
data points.
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Figure 7: 2D-spectrochemical series for different metal halides, each metal with
a different color. Error bars indicate the standard deviation. Regression line
functions are:
Mn: eπ = 0.4915eσ − 394cm−1

Fe: eπ = 0.4786eσ − 385cm−1

Co: eπ = 0.5043eσ − 461cm−1

Ni: eπ = 0.5145eσ − 443cm−1

Cu: eπ = 0.5144eσ − 403cm−1
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Discussion of technical details

Differences between CASSCF and NEVPT2

As the underlying wavefunction method, CASSCF or CASSCF/NEVPT2 can
be chosen. Our results show that this choice does not alter the eλ parameters
significantly. It was observed already that CASSCF results are fitted more
easily than NEVPT2 results.[26] We can confirm that observation, since the
standard deviation is strictly smaller when fitting CASSCF results with the
AOM compared to the NEVPT2 fit. There appears to be a problem with the
NEVPT2 correction: according to Jung et al., the energies of the states are
changed in the order of energy, not in the order of states.[27] If the energetic
ordering of the states were changed by the NEVPT2 correction, the aiLFT
matrix elements would not be replaced accordingly. We found this to be a
problem in some mixed halide calculations, leading to odd AOM parameter
sets. For this reason, all shown results are fits of the CASSCF matrix without
the NEVPT2 correction.

Choice of basis set

With CASSCF or CASSCF/NEVPT2 as the underlying wavefunction method,
a basis set dependence is expected for the absolute energies. Table 8 shows the
fitting results for [CoCl4]

2– with the Karlsruhe def2-SVP, def2-TZVP and def2-
QZVP basis sets. E decreases with increasing basis set size, the other AOM
parameters do not show a trend.

Influence of implicit solvation models

To assess the influence of environmental corrections on the AOM parameters,
three different fits based on CASSCF calculations in vacuum and with the
CPCM and SMD solvation models for water were made, see Figure 8. E is
strongly affected, which is in good agreement with the concept of E being a
spherical contribution assuming that the solvation shell is highly symmetric in
the given geometry. In contrast, the AOM parameters show a very limited
dependence on the solvation model.

The fact that the non-spherical contribution of the ligands is nearly inde-
pendent of this (neglecting some outliers with the cpcm model) is also fitting.
All calculations in the main text are performed without any solvation model,

Table 8: AOM parameters and E of [CoCl4]
2– for different basis sets.

basis set E/cm−1 Erel/cm
−1 eσ/cm

−1 eπ/cm
−1

def2-SVP -1221831 4049 3235(15) 1183(14)
def2-TZVP -1224735 1145 3146(10) 1101(9)
def2-QZVP -1225880 0 3164(17) 1106(13)
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but we note explicitly that a solvent model can be included without any loss in
accuracy or notable increase in computational cost.

Origin of deviations in the fitted AOM parameters

At each bond length, five structures are generated by changing their bond angle,
fulfilling the requirements stated in the main text. A separate set of parameters
is assigned to each bond, so four AOM parameter sets are obtained per tetra-
hedral complex. For a homoleptic complex, 20 parameter sets are obtained.
With the heteroleptic complexes, this number decreases, since the parameter
sets then belong to different M-L bonds.

As already pointed out, an ideal tetrahedral system is underdetermined in
terms of an AOM parameterization. The procedure employed here can solve
this problem to some extent, but especially for the heteroleptic complexes, large
deviations are found. Within a single calculation, parameters associated with
the same ligand are always very close to each other, but in a set (same bond
lengths, slightly different bond angles), the differences between the obtained
parameters can be large. Most often, there is one strong outlier, while the
other four calculations yield similar parameter sets. These outliers can be easily
identified by looking at the data. In the plots in the main text, some of these
outliers were removed. In the plots in the SI, all obtained data points are shown.

It is not entirely clear what the cause of the observed scattering of AOM
parameters is, but some observations were made that indicate the origin of this
problem to be rooted in the electronic structure of these complexes rather than
the fitting procedure itself. The structures are extremely similar, no distinctive
features can be found for structures with stark outliers. The d orbital energies
(which are the eigenvalues of VLF ) are unremarkable. The equation systems
resulting from the structures do not show unexpected values, the least squares
fit converges without errors and reliably finds the only minimum. Numerical
precision does not seem to be an issue, since VLF rounded to fewer digits yields
roughly the same AOM parameters.

We noted that the scattering becomes stronger at shorter bond lengths,
where the molecule is in a chemically unrealistic situation. At short bond
lengths, there is most often not only one strong outlier, but all the sets sig-
nificantly differ from each other. We observed that the d orbitals at shorter
bond lengths are not pure anymore, so it could be possible that aiLFT and the
AOM cannot properly describe these molecules anymore. While the data sets
presented in this contribution are obtained with equal bond length variations
about the equilibrium distance, it is obviously equally possible to perform a
bond length scan that contains more data points at longer bond lengths; this
procedure would be expected to produce fewer outliers.
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Figure 8: AOM parameters for [CoCl4]
2– with and without implicit solvation.

14

79



AOM parameters of mixed complexes

Figure 9: eσ parameters with of Co–X for different, fully relaxed [CoXnY4–n ]
2–

complexes. The data shown are averaged over five data points each, and the
error bars indicate the resulting standard deviation. The number at each data
point indicates the X atom count, and the legend shows which other halide is
present in the complex.
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Figure 11: eπ of the M-F bond length in various heteroleptic complexes.
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Figure 12: eσ of the M-Cl bond length in various heteroleptic complexes.
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Figure 13: eπ of the M-Cl bond length in various heteroleptic complexes.
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Figure 14: eσ of the M-Br bond length in various heteroleptic complexes.
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Figure 15: eπ of the M-Br bond length in various heteroleptic complexes.
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Figure 16: eσ of the M-I bond length in various heteroleptic complexes.
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5.2 The π-interactions of ammonia ligands evaluated by ab initio
ligand field theory

M. Buchhorn, V. Krewald, Dalton Transactions 2023, 52, 6685–6692, 10.1039/D3DT00511A
The incentive to investigate the π interactions of ammine ligands was given by the fitting

routine we developed for the first publication. While looking for good model systems, all
encountered ammine complexes showed pronounced π parameters. At first, we thought
this observation might be an artefact of the employed procedure, since it is common in
the literature to assume ammine eπ to be close to zero. The parameters found made us
worry that other parameters like the ones for halides might be unreliable, too. Due to the
plausible results obtained for halides and a few other (unpublished) complexes, we started
to question the assumption of zero-π ammines. Hypothetical complexes with ammines
showed such significant π parameters that we decided to search for experimental evidence
for our findings.
In square-planar complexes, any π interaction is evident by the splitting of the dxy and

dxz/dyz orbital energies. Cu2+ complexes tend to form such square-planar complexes
and come with the convenient feature that due to their d9 electron configuration, the
d orbital energies and the state energies are identical. An experimental difficulty that
prevents a clear assignment of spectroscopic bands to specific electronic states is the low
energy of the dz2 orbital, which lies in the same region as the dxy and dxz/dyz orbitals. No
clear orbital assignment could be made in the original publications of the experimental
data. We were able to assign the spectroscopic bands without ambiguity, backed by other
computational studies that yield the same results. This assignment shows that there is
indeed a significant π interaction for ammine ligands and that there is actual spectroscopic
evidence. This interaction is not small: we found eπ > 1000 cm−1 from the investigated
experimental data.
With the experimental evidence that the unexpectedly large π parameters are no artefact

of the computational method, we investigated a series of hexammine complexes, without
further comparison to experimental data. The found parameters are consistently large
and usually around 1000 cm−1. A similar series employing chelating amines was not
as successful; the misdirected valency of the ligands due to the chelation introduces
complications for the fit that are not easily accounted for.
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The π-interactions of ammonia ligands evaluated
by ab initio ligand field theory†

Moritz Buchhorn and Vera Krewald *

Ammonia and amine ligands are commonly assumed to be σ-only ligands in coordination chemistry, i.e.

they are not expected to interact significantly with a metal via a π path. Ligand field analyses employing

the Angular Overlap Model resulted in good fits to experimental data without a π parameter for ammonia

ligands, thereby supporting this assumption. In this work, we challenge this assumption and suggest that

it is an oversimplification. We use complete active space calculations for electronic structure analyses of

copper ammine complexes that are in good agreement with the transitions observed in experimental UV-

vis spectra. These findings lead to a reinterpretation of the experimental spectra that necessitates a signifi-

cant π interaction of the ammonia ligands. The strength of the ammonia π interaction is evaluated by

parameterizing the ligand field splittings of a series of metal hexammine complexes ([M(NH3)6]
n+ with M =

Cr, Mn, Fe, Co, Ni, Ru, Os and n = 2, 3) and selected tetrammine complexes ([M(NH3)4]
n+ with M = Cr, Mn,

Fe, Co, Ni and n = 2 or 3) with the Angular Overlap Model. The resulting π parameters show that ammonia

is a π donor of similar strength as chloride.

Introduction

In coordination chemistry, it is frequently assumed that the
interaction between a metal centre and an ammonia ligand is
characterised exclusively by σ character and thus that any π
character is negligible.1–12 This can be rationalized in an
orbital picture: ammonia does not have any molecular orbitals
of π character; only the σ/σ* molecular orbitals of the N–H
bonds are partly oriented such that the metal-ammonia
binding axis can lie in the nodal plane of a metal d orbital.
Ammonia is therefore commonly classified as a σ-only ligand.

Metal–ligand interactions can be evaluated with ligand
field theory. Besides global ligand field descriptors like the
ligand field splitting Δ or Racah parameters, the Angular
Overlap Model (AOM) provides a ligand-specific parameterisa-
tion that conforms to the familiar interpretation of chemistry
in terms of functional groups. The AOM quantifies the metal–
ligand interaction via σ and π overlaps, with an additional
parameter for d–s mixing.2,13,14 The destabilisation of each
pure metal d orbital with respect to the situation in the free
ion is associated with a spherical component E and a direc-
tional component that is expressed with a specific number
and magnitude of eσ and eπ parameters depending on the
coordination environment, see Fig. 1. The orbital splitting of

tetrahedral and octahedral coordination spheres does not
allow for a distinction between eσ and eπ.

15 This means that
neglecting eπ comes with the convenience of having an unam-
biguous relationship between eσ and Δ. Lower symmetry
coordination environments result in fewer orbital degeneracies
which should provide a sufficient number of states to fit eσ
and eπ parameters simultaneously.

We recently developed an AOM parameter fitting pro-
cedure16 based on ab initio ligand field theory17–19 as a tool
that provides insights into metal–ligand bonding situations.
Notably, it is able to obtain AOM parameters for complexes for
which previously the ligand field equation system would have
been underdetermined. We showed that the method yields
qualitatively correct parameters and reproduces expected
chemical trends like the eλ values of halide ligands being
associated with their donor capacity and position in the spec-
trochemical series.16

In this paper, we present some incentives to rethink the
assumption of amines being σ-only ligands. Firstly, we revisit
the experimental UV-vis spectra of a square planar copper tet-
rammine and a pyramidal copper pentammine complex. They
had been interpreted to not contain d–d transitions that would
be expected if π interactions were present.5 Their analysis with
ab initio ligand field theory calculations demonstrates the
need for an ammine π interaction. Building on this, we
present and discuss AOM parameters for a series of octahedral
and tetrahedral ammine complexes obtained with our recently
presented AOM parameter fitting procedure.16 We find that
ammonia should be viewed as capable of significant π inter-

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3dt00511a

TU Darmstadt, Department of Chemistry, Theoretical Chemistry, Alarich-Weiss-

Straße 4, 64287 Darmstadt, Germany. E-mail: vera.krewald@tu-darmstadt.de

This journal is © The Royal Society of Chemistry 2023 Dalton Trans.
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actions (ranging from about 400 cm−1 to more than
1000 cm−1), which raises the question of whether a true σ-only
ligand can exist.

Methodology and computational
details

The ORCA 4.2.1 quantum chemistry package20,21 was used for
all quantum chemical calculations. Geometries were opti-
mized using the unrestricted Kohn–Sham formalism with the
BP86 functional,22,23 the def2-SVP basis set,24 and the def2/J
auxiliary basis.25 The resolution of identity approximation for
the Coulomb term was used.26,27 Convergence criteria were
NormalSCF for all self-consistent field calculations and
TightOpt for geometry optimizations. The geometry optimi-
zations employed the default integration grid (Accuracy 2:
Lebedev 110 points) for optimization steps and the final SCF
at the optimized geometry (Accuracy 4: Lebedev 302 points).
Geometry optimizations of halide complexes of the type
[MX6]

3−/4− with large negative charges additionally employed
the CPCM/SMD solvation model with the parameters of water
and an increased solvent radius of 3.0 Å to aid
convergence.28,29

For square planar [Cu(NH3)4]
2+ and square pyramidal [Cu

(NH3)5]
2+, the heavy atom positions were taken from the crystal

structures (ICSD entries 14372 and 201229) and only the
hydrogen atom positions were optimised with the settings
stated above, but without employing a solvent model. The elec-
tronic states corresponding to the d orbitals were calculated
using CASSCF30,31 in the ab initio ligand field theory

variant17–19 with the def2-TZVP basis set. The calculations on
[Cu(NH3)4]

2+ and [Cu(NH3)5]
2+ also employed a subsequent

perturbation theory treatment (NEVPT2).32–35 The active space
was chosen to contain the five valence d orbitals and n d elec-
trons, or in shorthand notation a CAS(n,5) space. The ab initio
ligand field theory module17 was employed to construct the
effective ligand field Hamiltonian from the calculated states.
For selected examples, spin–orbit coupling was considered
using the spin–orbit mean field approach as implemented in
ORCA.36

The AOM was used to fit the one-electron part of the ligand
field Hamiltonian13,37 according to our fitting procedure.16

The ligand field matrix contains up to 15 unique equations,
which quickly results in underdetermined problems. For
instance for six-coordinate complexes, one needs to fit 13 para-
meters of the ligand field potential: E, six eσ and six eπ. Such a
fit is in theory possible but in practice, linear dependencies
can occur in the equation system so that the actual number of
equations can be lower than 13, resulting in an underdeter-
mined problem.

We address this restriction by grouping chemically equi-
valent ligands at similar bond lengths (e.g. in Jahn–Teller dis-
torted [Mn(NH3)6]

3+, ligands are grouped into axial and equa-
torial parameter sets). In practice, grouping is achieved by
adding additional equations to the system that require 0 = eσ,L
− eσ,L′. From a formal perspective, one could use these
equations to require parameters to be strictly equal and
thereby reduce their number. For solving the least squares
problem of the overdetermined system, the addition of more
equations has different consequences than the reduction of
the number of parameters. Additional equations allow the

Fig. 1 Comparison of d orbital energy splittings for a free ion, a spherical potential and different coordination environments with the respective
AOM parameters eλ. The orbital levels are coloured as follows, dz2 teal, dx2−y2 dark blue, dxy black, dxz and dyz light green. For an elongated octa-
hedron and a square pyramid, the ligands on the z-axis have parameters labelled ax, while the others in the xy-plane are labelled eq. For symmetries
with at least one d orbital in the totally symmetric representation, d–s mixing must be considered which affects the orbital energy by an additional
parameter eds. More details regarding d–s mixing are provided in the ESI.†

Paper Dalton Transactions

Dalton Trans. This journal is © The Royal Society of Chemistry 2023
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parameters eσ,L and eσ,L′ to deviate, even if they are expected to
be equal. This flexibility is important, since the asymmetric
distortions generated during the fitting procedure render the
ligands not perfectly equivalent so that small deviations are
expected. If not stated otherwise, all ligands in the complexes
studied are put into a single group. Complexes with significant
differences in bond lengths due to Jahn–Teller distortions
have two or more ligand groups as indicated by labels.

Results
Pyramidal copper pentammine

An explicit assessment of π interactions is only possible for
symmetries lower than Oh or Td, see Fig. 1. The [CuII(NH3)5]

2+

subunit in K[Cu(NH3)5][PF6]3
38 and NH4[Cu(NH3)5][PF6]3

39 is
approximately square pyramidal (point group: C2v) and thus
represents a suitable test case. Another convenient feature is
its d9 electronic configuration that results in four d–d tran-
sitions. The interelectronic repulsion within each electronic
state is equal, and therefore the energy differences of these
states can be equated with the energy differences of the d
orbitals.

The electronic spectrum of [Cu(NH3)5]
2+ (see Fig. 2a) shows

a band at 15 300 cm−1 with a weak shoulder at 14 000 cm−1

and a second band at 11 000 cm−1, see Table 1. The shoulder
is assigned to a dxy → dx2−y2 transition by Duggan et al.,38

implying a state splitting of 1300 cm−1. Within the AOM, this
splitting results in an eπ value of 1300 cm−1 in a perfect square
pyramid or even a slightly larger value in a C2v distorted
square pyramid (see ESI† for details). Since the shoulder is not
a very pronounced feature, the signal was interpreted later as
“essentially unsplit”, ruling out a π interaction.5 With this
interpretation, ammonia is viewed as a σ-only ligand. This
assumption was also made for other complexes.6–12,40

CASSCF/NEVPT2 calculations on the [Cu(NH3)5]
2+ subunit

from the crystal structure yield an orbital ordering and d–d
transitions in very good agreement with the measured ones,
see Table 1. We note that while spin–orbit coupling (SOC) may
be of importance for copper complexes (single-electron SOC
parameter of ca. 830 cm−1 for free Cu2+),15 inclusion of SOC
does not qualitatively alter the picture, see ESI.† The calcu-
lations thus fully support the spectral assignments of Duggan
et al., and hence the need for an ammonia π interaction of
about 1300 cm−1.

Square planar copper tetrammine

As a second example, we selected the [CuII(NH3)4]
2+ subunit in

the crystal structure of Na4[Cu
II(NH3)4][Cu

I(S2O3)2]2.
42 While

initially, the crystal structure was thought to contain copper
ions in a square-planar environment,42 later studies suggested
that one or two axial ammonia ligands may weakly coordi-
nate.43 Although the precise structure is therefore not clear,
there are two independently reported UV-vis spectra.41,44

Tomlinson et al. assigned the d–d transitions for the presumed
square-planer complex using polarised electronic spectra, see
Fig. 2b, leading to a one-electron orbital sequence of dx2−y2 >
dz2 > dxy ≥ dxz,dyz.

41

To evaluate the electronic structure with CASSCF/NEVPT2
calculations as for the square-pyramidal system, hydrogen
atoms were added to complete the ammonia ligands of the
[Cu(NH3)4]

2+ subunit and their positions were optimized (see
computational details). The influence of one or two axial
ammonia ligands was evaluated explicitly, see below. Using
CASSCF calculations that facilitate a direct assignment of con-
figurations to states, we arrive at a different energetic ordering
for the square planar complex, namely dx2−y2 > dxy > dxz, dyz ≈
dz2 in agreement with other computational studies.45–47 Giner
et al. found this orbital ordering, notably including the pro-
nounced energy difference between the dxy and dxz, dyz levels,
at different levels of theory that capture electron correlation

Fig. 2 Electronic spectrum of (a) NH4[Cu(NH3)5][PF6]3, reprint from ref.
38 with permission from the Royal Society of Chemistry. Polarized elec-
tronic spectrum of (b) Na4[Cu

II(NH3)4·L][Cu
I(S2O3)2]2, reprint from ref. 41

with permission from the Royal Society of Chemistry. Please note the
structural uncertainty of (b) discussed in the main text.

Table 1 Energies of the experimental and calculated d–d transitions
for [Cu(NH3)5]

2+

dxz,dyz → dx2−y2/
cm−1

dxy → dx2−y2/
cm−1

dz2 → dx2−y2/
cm−1

CASSCF 11 549–11 673 10 523 8 635
NEVPT2 16 145–16 308 15 341 11 687
Exp. 15 300 ca. 14 000 11 000

Dalton Transactions Paper

This journal is © The Royal Society of Chemistry 2023 Dalton Trans.
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adequately, e.g. CCSD(T).47 Atanasov et al. assigned an eπ of
roughly 1200 cm−1 to NH3 from an ab initio ligand field theory
analysis.48

There is some uncertainty surrounding the exact compo-
sition of the ligand field experienced by the copper ion in the
crystal structure,42,43 where the gaps between the square
planar [Cu(NH3)4]

2+ subunits are large enough to host
ammonia molecules. These additional molecules would result
in axial Cu–N distances of 2.88 Å. We investigated these
different possibilities with one or two ammonia ligands
approaching the copper ion along the z-axis, see Fig. 3. In
these scans, the position of the dxy orbital is taken as the refer-
ence value for the d orbital energies. As expected, the energy
difference dxy → dx2−y2 remains constant to a good approxi-
mation, and the position of the dz2 orbital is influenced signifi-
cantly by the additional ligands on the z-axis. The energies of
the dxz and dyz orbitals are lower in energy than the dxy orbital.
In the extreme case of a square planar [Cu(NH3)4]

2+ (Fig. 3,
middle panel), the dz2 orbital is found coincidentally at about
the same energy as the dxz and dyz orbitals. Here, too, SOC
does not qualitatively alter the picture, see ESI.† Tomlinson
et al. probably investigated a mixture of structures, leading to
the large line broadening of the lower intensity peak.41 It is
not possible to determine a dominant composition with the
present data.

With regard to a possible ammonia π interaction, the
ligand field splitting of the square planar complex can be dis-
cussed as follows. If there was no π interaction at all, the
dxy(b2g) and dxz/yz(eg) orbital energies ε would be degenerate
(see also ESI, Fig. 3†):

εdxz ¼ εdyz ¼ 2eπ ¼ 0

εdxy ¼ 4eπ ¼ 0

The dz2 orbital energy depends on the extent of d–s mixing,
and thus could be lower or roughly equal to the energy of the
aforementioned orbitals. If there is a donating π interaction,
the dxz and dyz orbitals are shifted up by 2eπ and the dxy orbital
is shifted up by 4eπ. Indeed, the CASSCF calculation shows
that the energy of the dxy orbital is significantly higher than
that of the dyz and dxz orbitals, while the energy of the dz2
orbital is accidentally equal to the ones of the dyz and dxz orbi-
tals. A similar orbital energy sequence (dx2−y2 ≫ dxy > dz2 > dxz,
dyz) was assigned to the D4h [Cu(H2O)4]

2+ subunits in meta-zeu-
nerite (Cu(UO2)2(AsO4)2·8H2O) by Billing et al.49 For this
system, a significant π interaction from the equatorial water
ligands was expected.49 Ten years later, this sequence was still
considered to be plausible only for strong π donors.50

The energy difference between dxy and dyz,dxz from the
CASSCF calculation is independent of any specific AOM fitting
routine and too large to be a computational artefact.
Increasing the basis set size does not lead to a qualitatively
different result, see ESI.† Additionally, the computational
studies mentioned above45–48 find the same pronounced
difference between the dxy and dxz, dyz orbital energies using
different levels of theory. In the AOM, the higher energy of the
dxy orbital can only be explained if eπ > 0. Therefore, we inter-
pret this ligand field splitting as strong support for the exist-
ence of a π interaction for ammonia ligands.

Equilibrium AOM parameters

Having seen that a π interaction is relevant for ammonia
ligands with experimental evidence and examples that do not
rely on our previously introduced sampling procedure, we now

Fig. 3 Energy levels of the d orbitals in approximately square-pyramidal and octahedral ligand environments where the axial ligand positions rax are
varied (left), the square planar case (middle), and the interpretation by Tomlinson, Hathaway et al. based on the observed UV-vis transitions (right).41

The gaps in the crystal structure41 might be filled with ammonia molecules, yielding a square pyramidal, elongated octahedral or square-planar case.
The orbital energies are referenced to the dxy orbital energy.

Paper Dalton Transactions
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turn to a broader scope of complexes. Using our ab initio AOM
sampling procedure, we evaluated a series of octahedral and
tetrahedral complexes where all orbital energies affected by π
interactions are degenerate so that the ammonia π interactions
cannot be isolated. To this end, we chose complexes of the
type [M(NH3)6]

n+, with M = Cr, Mn, Fe, Co, Ni, Ru, Os and n =
2, 3. We note that some of the structures are Jahn–Teller dis-
torted and therefore have different axial and equatorial AOM
parameters. For strongly distorted structures, the ligands were
grouped such that those at similar bond lengths are set to
have equal parameters.

The average ab initio AOM parameters based on CASSCF cal-
culations are listed in Table 2 for selected equilibrium struc-
tures. Note that the standard deviations result from the data
points of five distinct calculations at similar structures. While
the CASSCF calculation itself may carry a systematic error that
could not be avoided even with a larger number of samples,
the order of magnitude was shown to be reliable.16,18,51,52

The ab initio AOM parameters identified with this pro-
cedure show a substantial π interaction for all complexes
studied here. The data set is consistent with expectations and
follows common trends, such as larger parameter values for
higher oxidation states. Our findings for this more generalised
data set thus contradict the widespread assumption of
ammonia having only σ interactions.

Comparison to tetrahedral complexes

To rule out any conceivable sources of error for the chemically
relevant magnitude of the ammonia π interactions we have
identified above, we expanded the data set to tetrahedral com-
plexes. This tests the possibility that artefacts arise due to the
overlap of two adjacent σ potentials in an octahedral, square-
planar or other setting with closely spaced ligands. This
overlap would occur at a position which would be covered by a
π parameter. In such cases, both σ and π would be artificially
increased, while the spherical contribution E would be
decreased correspondingly. Therefore, it should be tested
whether ammonia π parameters also appear in complexes
where the ligands are spaced further apart and thus overlap-
ping σ potentials can be ruled out.

We chose complexes of the type [M(NH3)4]
2+/3+ with M = Cr,

Mn, Fe, Co, Ni. These complexes are hypothetical; their only
purpose is to provide more room for the ligands. The fits yield
ab initio AOM parameters that are even larger than the ones
obtained for the octahedral complexes, even though some scat-
tering is observed. We note that d–s mixing needed to be
included for some of the complexes where structural devi-
ations from ideal tetrahedral symmetry were apparent (see
ESI†). In conclusion, overlapping σ potentials can be ruled out
as the origin for the observed ammonia π interaction in both
the octahedral and tetrahedral complexes.

Scan and comparison to halido complexes

In order to verify that the order of magnitude obtained for the
ammonia π parameters is reasonable, we replaced the
ammonia ligands in [Cr(NH3)6]

3+ with chloride ligands in
exactly the same positions. Since it is widely accepted that
halides and metals interact via a considerable π path, this data
set allows a meaningful comparison with the metal–ammine
parameters.

Indeed, the chloride ligands show eπ values that are even
smaller than those of the ammonia ligands (eπ chloride: 313
(524) cm−1, eπ ammonia: 1027(255) cm−1). However, the M–

NH3 bonds in these complexes are much shorter than M–Cl
bonds would be in fully relaxed complexes. For instance, the
Co–NH3 bond length in [Co(NH3)6]Cl2 is 2.11 Å,53 whereas the
Co–Cl bond length in CoCl2 is 2.51 Å.54 The metal–chloride
distance when placing the chloride ions at the nitrogen atom
positions of the relaxed [Cr(NH3)6]

3+ complexes is thus unnatu-
rally short, which presumably leads to the broad scattering of
the parameters and the unexpectedly small eπ parameters. We
observed this behaviour already in our previous study on tetra-
hedral halido metalates, where eπ decreases at shorter bond
lengths.16 Calculations on relaxed [MCl6]

3−/4− complexes yield
bond lengths in the range of 2.43 Å to 2.53 Å and eπ para-
meters around 500 cm−1 with significantly less scatter (see
ESI†). Scanning the metal–ligand distances in these examples
from the equilibrium bond length of Cr–NH3 to that of Cr–Cl,
see Fig. 4, shows the similar order of magnitude for the eπ
parameters in these two scenarios. The comparison thus con-
firms that the π interaction of ammonia is unlikely to be an

Table 2 Ligand field parameters eσ and eπ for complexes [M(NH3)6]
2+/3+

with optimized bond lengths r in Å. The multiplicity 2S + 1 refers to the
multiplicity of the optimized ground state, ΔE (kJ mol−1) is the relative
energy to the spin ground state structure. The ligand field parameters
are calculated as averages from five asymmetric structures each; the
resulting standard deviations are given in parentheses

M 2S + 1 ΔE/kJ mol−1 r/Å eσ/cm
−1 eπ/cm

−1

M(II)
Mn 6 0 2.34 3613(213) 894(159)
Fe 1 5 2.05 5491(324) 710(243)
Fe 3 43 2.03ax 6011(352) 1051(263)
Fe 3 43 2.25eq 3772(385) 826(265)
Fe 5 0 2.28 3598(229) 851(171)
Co 4 0 2.23 3471(62) 770(19)
Co 2 7 2.39ax 1818(379) 591(284)
Co 2 7 2.02eq 5857(379) 1024(285)
Ni 3 0 2.18 3024(355) 412(266)
Ru 1 0 2.16 9755(203) 799(152)
Os 1 0 2.18 11 271(156) 594(120)

M(III)
Cr 4 0 2.14 6743(341) 1027(255)
Mn 5 0 2.36ax 3285(360) 576(270)
Mn 5 0 2.12eq 6707(359) 1046(270)
Fe 6 56 2.23 6532(915) 2052(683)
Fe 4 47 2.32ax 3909(907) 972(679)
Fe 4 47 2.08eq 7452(909) 1433(682)
Fe 2 0 2.06 7042(92) 1087(74)
Co 1 0 2.02 6788(408) 698(307)
Ni 4 0 2.15a 7515(1628) 1971(1238)
Ni 4 0 2.18b 7500(1420) 2349(1060)
Ni 4 0 2.22c 6804(1058) 2665(792)
Ru 2 0 2.16 10 749(417) 649(311)
Os 2 0 2.18 11 686(170) 194(149)
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artefact, since the chloride interactions predicted at the same
bond lengths match expectations and are qualitatively correct.

Monodentate amine ligands

To better understand the origin of the π interaction of
ammonia, we studied the influence of the substituent R in
–NR3 on the π interaction, specifically comparing –NH3 and
–NMe3. Complexes with different amine ligands can be com-
pared in terms of their ligand field splitting or via AOM para-
meterization. A problem arising for such comparisons is that
the bond lengths vary and hence the observed splitting is

influenced by the bond length and the ligand field strength of
the amine itself. While these effects cannot be disentangled
fully in experimental data, it appears that the bond length is
the more dominant factor in a study by Lever et al.4

Due to the bulkiness of the methylamine ligand, it is not
possible to obtain reasonable structures for [M(NMe3)6]

n+ com-
plexes. Therefore, we chose to study heteroleptic complexes of
the type [M(NH3)4(NMe3)2]

n+, with the methylamine ligands
positioned trans to each other, see Table 3. For all complexes,
the eσ parameters of the ammonia ligands are larger than
those of the amine ligands, whereas the magnitudes of the eπ
parameters are comparable or larger.

To evaluate the influence of the M–N bond length on the
AOM parameters, we set the M–N bond lengths with ammonia
ligands to the value of the M–NMe3 distances. As expected, the
eσ and eπ parameters of the ammonia ligands decrease so that
the AOM parameters of –NMe3 are consistently larger than
those of –NH3. In the hexammine reference complex with all
ammonia ligands at the same distance as the amine ligands in
the relaxed structure, the ammonia ligands have very similar
AOM parameters as in the mixed complex with fixed ammonia
bond lengths. We can therefore conclude that amine ligands
have intrinsically higher eπ parameters than ammonia ligands.
This comparison furthermore points towards hyperconjuga-
tion of the N–R bonds as a possible origin of the π interaction
for both amines and ammonia.

From a molecular orbital perspective, the chemical origin
and a possible explanation for the considerable π interaction
of ammonia ligands may lie in the hyperconjugation of the N–
H bonds with the respective d orbitals. Hyperconjugation was
already observed and interpreted by Mulliken55–57 and became
an important tool for rationalizing formation and stabilization
energies58 and chemical shifts in NMR experiments.59

Fig. 4 Bond length scans of [Cr(NH3)6]
3+ and [CrCl6]

3− from the opti-
mized metal–ligand bond length of the ammine complex to that of the
chloride complex. The upper data points (>3000 cm−1) are eσ para-
meters and the lower set of data points are eπ parameters.

Table 3 AOM parameters (cm−1) of complexes of the type [MA4B2]
n+ and [MA6]

n+ with A = NH3 and B = NMe3. The methylamine ligands are placed
trans to each other. The bond lengths r(M–L) (Å) are shown for each ligand type. For each metal ion, three sets of parameters are given: one for the
fully optimized structure at the multiplicity indicated with a superscript, one for a structure where the equatorial M–NH3 bonds are set to the opti-
mized M–NMe3 bond length,a and one for a reference hexammine complex where all M–NH3 bonds are fixed at this valueb

Complex A = NH3 B = NMe3

Composition Bond lengths r(M–L)/Å eσ/cm
−1 eπ/cm

−1 r(M–L)/Å eσ/cm
−1 eπ/cm

−1

4[CrA4B2]
3+ Optimized 2.13 8115(842) 1944(632) 2.34 6291(847) 1917(634)

[CrA4B2]
3+ Fixed 2.34 5228(222) 1378(167) 2.34 6425(223) 1746(167)

[CrA6]
3+ Fixed 2.34 5143(93) 1193(71)

6[MnA4B2]
2+ Optimized 2.33 3946(247) 1023(185) 2.53 2793(247) 905(185)

[MnA4B2]
2+ Fixed 2.53 2667(63) 866(47) 2.53 2992(63) 975(47)

[MnA6]
2+ Fixed 2.53 2667(21) 849(17)

5[FeA4B2]
2+ Optimized 2.25 4740(185) 1548(137) 2.48 3360(185) 1410(138)

[FeA4B2]
2+ Fixed 2.48 2981(104) 1152(77) 2.48 3320(106) 1268(79)

[FeA6]
2+ Fixed 2.48 2864(64) 1044(47)

1[CoA4B2]
3+ Optimized 2.00 8353(623) 1518(469) 2.29 5018(636) 1290(471)

[CoA4B2]
3+ Fixed 2.29 4439(38) 992(28) 2.29 6032(39) 1365(29)

[CoA6]
3+ Fixed 2.29 4531(84) 853(63)

a The NH3 ligands were moved with no subsequent geometry optimization. b The NMe3 ligands were replaced with NH3 with subsequent optimiz-
ation of the positions of the new hydrogen atoms.
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Experimental NMR studies of Ru(NH3)x complexes show that
there is an interaction between N–H bonds and the metal d
orbitals, leading to measurable hyperfine interactions. This
interaction is explained by hyperconjugation of the N–H
bonding orbital with the ruthenium d orbital.60–62

An alternative view is offered by the interpretation of ligand
field splittings in terms of electrostatic potentials as developed
by Gerloch and Woolley.63–65 This picture is completely inde-
pendent of molecular orbital theory and treats the influence of
the ligands on the d orbital energies purely electrostatically.
With this approach, the π interaction could be explained by
the electron density of the N–H bond and the negative partial
charge on the nitrogen atom exerting an influence on the
metal d orbital energies.

Both interpretations are supported by the results for the
methylamine complexes. The larger N–C bonding orbital of
–NMe3 compared to the N–H bonding orbitals of –NH3 suggest
a stronger hyperconjugation with the metal d orbitals.
Likewise, the methyl groups are electron donating, leaving a
higher electron density at the nitrogen and thus supporting
the picture of an electrostatic ligand field interaction.

Chelating amine ligands

When applying the aiLFT procedure on ethylenediamine (en)
and diethylenetriamine (dien), it is apparent that it is not poss-
ible to obtain a good fit to the d orbital energies with just eσ
and eπ. We attribute this to an effect called “misdirected
valency” by Deeth et al.48,66–69 Misdirected valency is caused by
bent bonding and non-bonding lone pairs where the centroid
of the bond is not aligned with the metal–ligand axis, as
depicted in ref. 66. For the chelating en and dien ligands, the
M–N bond is bent because of the orientation of the carbon
backbone. We note that methylamine, although not chelating,
also shows slight off-axis bonding since the bulky –CH3 groups
prevent full alignment. The parameters found for chelating
amines (shown in the ESI†) should therefore be interpreted
with some caution.

If the metal–ligand interaction is asymmetric with respect
to the bonding axis, it cannot be fully described by the set of
parameters employed. It is in principle possible to include off-
diagonal eσπ parameters in the AOM parameterisation.48

Naturally, this would aggravate the underdetermination
problem and hinder a clear interpretation of the results.

Conclusions

To summarise, we presented indications that the widespread
assumption of ammonia being a σ-only ligand might be incor-
rect. Our findings question the reliability of published AOM
parameters for ammonia complexes from previous fitting pro-
cedures applied to experimental and computational data
where eπ was neglected, noting of course that this was often
done to reduce the number of AOM parameters. Without this
assumption, many cases would not have been solvable. Our

work furthermore raises the question whether any ligand can
be considered a σ-only ligand.
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1 A few comments on d-s mixing

In the Introduction, Fig. 1, we labelled the dz2 orbital energy with a d-s mixing
contribution. d-s mixing generally needs to be considered if at least one d orbital
transforms in the totally symmetric irreducible representation of the molecular
point group. It is best known in square planar complexes, but also the elongated
octahedron and the square pyramid have d-s mixing contributions to the dz2

orbital energy:

elong.oct. ∆dsεz2 = −(2eds,ax − 2eds,eq)
2

sq.pyr. ∆dsεz2 = −(eds,ax − 2eds,eq)
2

Deeth, Gerloch and Woolley showed that in the square planar case, the in-
troduction of d-s mixing is equivalent to placing σ-only pseudo ligands on the
z-axis, termed coordination voids. These voids then have negative eσ parame-
ters and account for the lower dz2 orbital energy. Consequently, an elongated
octahedron automatically covers the effect of d-s mixing by having a reduced
eσ for the axial ligands and one may drop the d-s mixing term.

2 Influence of implicit solvation models

As stated in the methodology section, we do not employ solvation models for our
CASSCF calculations. Tests with and without solvation yield roughly the same
AOM parameters at higher computational costs. The difference between the
parameters is less than 100 cm−1 and all trends are the same. Another effect of
implicit solvation is a change in some orbital energies for complexes with empty

2
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coordination sites. For square planar complexes, the dz2 orbital energy increases
significantly when implicit solvation is included. The empty sites are covered
by the polarizable solvent surface and act similar to an additional ligand. This
is an undesired effect when comparing with the experimental crystal structure
data.

For geometry optimizations of complexes of the type [MCl6]
3/4– , the inclu-

sion of an implicit solvation model is necessary because of the large negative
charge. Without a solvation model, the charge leads the ligands to repel each
other, leading to asymmetric structures, if convergence is achieved at all. The
CASSCF calculations are still conducted without a solvation model.

3 Square pyramidal copper pentammine

The experimental structure of the Cu(NH3)5 unit is roughly square pyramidal,
with the structural parameters given in Table 1. Assuming a perfect square
pyramid (C4v), we obtain the following AOM parameterization for VLF :

VLF =




4.0eπ 0 0 0 0
0 3.0eπ 0 0 0
0 0 2.0eσ − 1.0eds 0 0
0 0 0 3.0eπ 0
0 0 0 0 3.0eσ




which directly yields the following eigenvalues on the diagonal:

Edxy = 4.0eπ

Edyz = 3.0eπ

Edz2
= 2.0eσ − 1.0eds

Edxz
= 3.0eπ

Edx2−y2 = 3.0eσ

It is apparent that the energy difference between the dyz/dxz orbitals and the
dxy orbital is eπ. Plugging in the measured energy difference of 1300 cm−1, we
obtain the same value for the π parameter.

The above calculation relies on a square pyramidal structure with right an-
gles and equal bond lengths. When using the actual structure data in Table 1,
we arrive at a different ligand field potential and the diagonalized matrix is
much more complicated:

3
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VLF =



3.93eπ 0 0 0 0
0 2.88eπ + 0.113eσ 0 0 0
0 0 −0.8eds + 0.207eπ + 1.897eσ 0 0.005eds + 0.011eπ − 0.011eσ
0 0 0 2.914eπ + 0.094eσ 0
0 0 0.005eds + 0.011eπ − 0.011eσ 0 0.069eπ + 2.895eσ




Edxy = 3.93eπ

Edyz = 2.88eπ + 0.113eσ

Edz2
= −0.4eds + 0.138eπ + 2.4eσ

− 0.632
(
0.401e2ds − 0.138edseπ + edseσ + 0.0122e2π − 0.173eπeσ + 0.624e2σ

)0.5

Edxz
= 2.91eπ + 0.0938eσ

Edx2−y2 = −0.4eds + 0.138eπ + 2.4eσ

+ 0.632
(
0.401e2ds − 0.138edseπ + edseσ + 0.0122e2π − 0.173eπeσ + 0.624e2σ

)0.5

Even this is still a simplification, since we subsume the parameters of the
first nitrogen atom with the ones of the other four nitrogen atoms. Without
going into further detail, the orbital energy difference between dyz/dxz and dxy
is roughly eπ − 0.1eσ, leading to a π parameter that is slightly larger than the
measured energy gap of 1300 cm−1.

Table 1: Experimental bond lengths (Å) and angles (◦) for Cu(NH3)5.

Bond lengths /Å

Cu–N1 2.19
Cu–N2 2.01
Cu–N3 2.01
Cu–N4 2.05
Cu–N5 2.05

Angles /◦

N1 –Cu–N2 98
N1 –Cu–N3 98
N1 –Cu–N4 97
N1 –Cu–N5 97
N2 –Cu–N3 164
N4 –Cu–N5 166

3.1 Influence of spin–orbit coupling

In [Cu(NH3)5]
2+, SOC only couples the states with singly occupied dxy, dxz

and dyz orbitals, and the spin–orbit coupled states have an energetic ordering
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very similar to that of the uncoupled case.
Although the assignment is not as clear-cut as without SOC, we note that

the energy difference between the second excited state (dxy orbital contribution
68%) and the fourth excited state (dxz and dyz orbital contribution 37% and
59%) can only be explained by an ammonia π interaction.

Figure 1: Energy levels of [Cu(NH3)5]
2+ with NEVPT2 correction (left) and

upon consideration of spin–orbit coupling (right). Due to the coupling, the
assignment of orbital occupations to electronic states is not as clear anymore.

5
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Table 2: Electronic states of [Cu(NH3)5]
2+ and their orbital compositions with

spin–orbit coupling. The configuration contribution is written in terms of the
singly occupied orbital in the uncoupled contribution. Since the uncoupled
states consist of (almost) a single configuration each, we use the orbital-based
assignments also in the coupled states.

Energy / cm−1 configuration contributions
dxy dyz dz2 dxz dx2−y2

CASSCF

0 0.00 0.00 0.00 0.00 0.99
8456 0.00 0.03 0.93 0.03 0.00
10305 0.73 0.13 0.00 0.13 0.00
11684 0.26 0.30 0.00 0.43 0.00
12374 0.00 0.54 0.07 0.39 0.00

CASSCF + NEVPT2

0 0.00 0.00 0.00 0.00 1.00
11560 0.00 0.00 0.96 0.00 0.00
15032 0.68 0.15 0.00 0.17 0.00
16308 0.32 0.24 0.00 0.43 0.00
16892 0.00 0.59 0.03 0.37 0.00

4 Square planar copper tetrammine

Table 3: Experimental and calculated d-d transitions for [Cu(NH3)4]
2+.

E(B1g → A1g) E(B1g → B2g) E(B1g → Eg)
/ cm−1 / cm−1 / cm−1

CASSCF 14992 - 14995 12262 14990
NEVPT2 20617 - 20631 18055 20376

Experimental 13600 - 13700 17400 - 17800

6
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Table 4: Calculated d-d transitions for square planar [Cu(NH3)4]
2+ with and

without NEVPT2 correction and with different basis sets. The acceptor orbital
in each transition is dx2−y2 , so only the donor orbital is given.

method basis set dxz → dyz → dz2 → dxy →
/cm−1 /cm−1 /cm−1 /cm−1

def2-SVP 14964 14966 14890 12452
CASSCF def2-TZVP 14992 14995 14990 12262

def2-QZVP 14959 14960 14981 12227

def2-SVP 19832 19831 19543 17495
NEVPT2 def2-TZVP 20617 20631 20376 18055

def2-QZVP 20463 20464 20177 17980

4.1 Influence of spin–orbit coupling

In [Cu(NH3)4]
2+, SOC only couples the states with singly occupied dz2 , dxz and

dyz orbitals, leading to four excited states with relatively small energy differ-
ences. It is apparent that the first excited state is still clearly dominated by a
singly occupied dxy orbital. Again, the energy difference between this and the
higher excited states can only be explained with an ammonia π interaction.

Figure 2: Energy levels of [Cu(NH3)4]
2+ with NEVPT2 correction (left) and

upon consideration of spin–orbit coupling (right). Due to the coupling, the
assignment of orbital occupations to electronic states is not as clear anymore.
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Table 5: Electronic states of [Cu(NH3)4]
2+ and their orbital compositions with

spin–orbit coupling. Configuration contribution is written in terms of the singly
occupied orbital in the uncoupled contribution. Since the uncoupled states
consist of (almost) a single configuration each, we convey the orbital assignments
to the coupled states.

Energy / cm−1 configuration contributions
dxy dyz dz2 dxz dx2−y2

CASSCF

0 0.00 0.00 0.00 0.00 0.99
12234 0.94 0.02 0.00 0.02 0.00
14203 0.00 0.19 0.61 0.19 0.00
14826 0.06 0.47 0.00 0.47 0.00
16232 0.00 0.31 0.38 0.31 0.00

CASSCF + NEVPT2

0 0.00 0.00 0.00 0.00 1.00
17855 0.94 0.02 0.00 0.02 0.00
19514 0.00 0.15 0.69 0.15 0.00
20331 0.06 0.46 0.00 0.46 0.00
21636 0.00 0.34 0.31 0.34 0.00
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Figure 3: Expected d orbital energies for square planar complexes without
π interaction (left), with π interaction (centre) and the energy levels for
[Cu(NH3)4]

2+ from CASSCF calculations (right). The position of the z2 or-
bital in the schemes on the left and centre is incompletely defined and depends
on the parameter eds. It is noteworthy that the degeneracy in the left and right
panel is no symmetry feature, as the dxz and dyz orbitals transform in the Eg

representation of D4h, while the dxy and dz2 orbital transform in the B2g and
A1g representation, respectively.

5 Table data and plots for octahedral hexam-
mines

It is apparent that some of the parameters (Cr2+, intermediate spin Mn3+, Ni3+,
i.e. chemically unrealistic or very challenging to obtain complexes) have uncom-
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fortably large standard deviations, up to a level where the data point must be
considered unreliable. The reason for the large scattering of parameters prob-
ably reflects the improbability of finding the compound in reality which poses
a challenge for our procedure that may not be applicable to every hypothetical
coordination compound. Nonetheless, most of the parameters have reasonable
standard deviations that justify an interpretation, and ligand field splittings
generally match expectations.

Table 6: AOM parameters for [M(NH3)6]
n+. Multiplicity refers to the multi-

plicity of the optimized ground state, ∆E is the energy difference to the ground
state.

Complex 2S + 1 ∆E/kJmol−1 bond length / Å eσ/cm
−1 eπ/cm

−1

[Cr(NH3)6]
2+ 3 0 1 2.173(0.005) 6594(2760) 1527(2070)

[Cr(NH3)6]
3+ 4 0 1 2.145(0.001) 6743(341) 1027(255)

[Mn(NH3)6]
2+ 6 0 1 2.349(0.002) 3613(213) 894(159)

[Mn(NH3)6]
3+ 3 5 1 2.099(0.003) 8917(4505) 2584(3378)

[Mn(NH3)6]
3+ 5 0 ax 2.369(0.002) 3285(360) 576(270)

[Mn(NH3)6]
3+ 5 0 eq 2.127(0.002) 6707(359) 1046(270)

[Fe(NH3)6]
2+ 1 5 1 2.059(0.000) 5491(324) 710(243)

[Fe(NH3)6]
2+ 3 43 ax 2.038(0.000) 6011(352) 1051(263)

[Fe(NH3)6]
2+ 3 43 eq 2.250(0.016) 3772(385) 826(265)

[Fe(NH3)6]
2+ 5 0 1 2.282(0.002) 3598(229) 851(171)

[Fe(NH3)6]
3+ 6 56 1 2.237(0.003) 6532(915) 2052(683)

[Fe(NH3)6]
3+ 4 47 ax 2.323(0.000) 3909(907) 972(679)

[Fe(NH3)6]
3+ 4 47 eq 2.081(0.002) 7452(909) 1433(682)

[Fe(NH3)6]
3+ 2 0 1 2.061(0.003) 7042(92) 1087(74)

[Co(NH3)6]
2+ 4 0 1 2.233(0.008) 3471(62) 770(19)

[Co(NH3)6]
2+ 2 7 ax 2.391(0.002) 1818(379) 591(284)

[Co(NH3)6]
2+ 2 7 eq 2.022(0.000) 5857(379) 1024(285)

[Co(NH3)6]
3+ 1 0 1 2.024(0.000) 6788(408) 698(307)

[Ni(NH3)6]
2+ 3 0 1 2.182(0.000) 3024(355) 412(266)

[Ni(NH3)6]
3+ 4 0 1 2.153(0.000) 7515(1628) 1971(1238)

[Ni(NH3)6]
3+ 4 0 2 2.222(0.000) 6804(1058) 2665(792)

[Ni(NH3)6]
3+ 4 0 3 2.181(0.000) 7500(1420) 2349(1060)

[Ru(NH3)6]
2+ 1 0 1 2.164(0.003) 9755(203) 799(152)

[Ru(NH3)6]
3+ 2 0 1 2.168(0.005) 10749(417) 649(311)

[Os(NH3)6]
2+ 1 0 1 2.182(0.005) 11271(156) 594(120)

[Os(NH3)6]
3+ 2 0 1 2.186(0.004) 11686(170) 194(149)
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6 Comparison of chloride and ammine ligands

For the parameters that do not have an overly large standard deviation, some
patterns can be seen: Both σ and π parameters are larger for ammine ligands
than for chloride ligands. Shorter bond lengths lead to higher σ parameters, but
not necessarily to higher π parameters. Plotting the parameters of Cl– ligands
against the ones of NH3 ligands shows absolutely no correlation. No rule in the
sense of a parameter ratio can be derived from the calculations.

Table 7: AOM parameters for [MCl6]
3–/4– , optimized with BP, def2-SVP,

Grid5, CPCM(Water).

Complex 2S + 1 ∆E/kJmol−1 bond length / Å eσ/cm
−1 eπ/cm

−1

[CrCl6]
3– 4 0 1 2.410(04) 3987(72) 537(39)

[MnCl6]
4– 6 0 1 2.639(05) 1930(31) 516(13)

[MnCl6]
3– 3 0 1 2.376(04) 3892(110) 435(74)

[FeCl6]
4– 5 0 ax 2.619(00) 1659(15) 410(11)

[FeCl6]
4– 5 0 eq 2.583(02) 1836(18) 448(12)

[FeCl6]
3– 6 0 1 2.454(08) 3363(86) 462(24)

[CoCl6]
4– 4 0 1 2.529(02) 1928(22) 501(16)

[CoCl6]
4– 4 0 2 2.635(00) 1416(21) 393(16)

[CoCl6]
3– 1 2 1 2.329(05) 3975(67) 312(17)

[CoCl6]
3– 5 0 1 2.437(04) 3425(52) 414(20)

[CoCl6]
3– 3 19 ax 2.302(00) 4711(118) 606(88)

[CoCl6]
3– 3 19 eq 2.436(16) 3087(211) 245(94)

[NiCl6]
4– 3 0 ax 2.491(00) 1813(49) 430(37)

[NiCl6]
4– 3 0 eq 2.553(04) 1517(52) 367(37)

[NiCl6]
3– 2 0 ax 2.563(00) 1391(465) -129(349)

[NiCl6]
3– 2 0 eq 2.295(02) 4720(466) 423(349)

[RuCl6]
4– 1 0 1 2.488(08) 4678(104) 378(19)

[RuCl6]
3– 2 0 ax 2.441(00) 6236(143) 306(107)

[RuCl6]
3– 2 0 eq 2.407(01) 6849(144) 404(107)

[RuCl6]
3– 4 68 ax 2.679(00) 3068(547) 103(409)

[RuCl6]
3– 4 68 eq 2.417(02) 7345(547) 742(410)

[OsCl6]
4– 1 0 1 2.518(07) 5224(120) 256(55)

[OsCl6]
3– 2 0 ax 2.468(00) 6903(216) 356(162)

[OsCl6]
3– 2 0 eq 2.428(01) 7674(218) 457(162)
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7 Table data for tetrammines

Table 8: AOM parameters for fictitious [M(NH3)4]
n+. Multiplicity refers to

the multiplicity of the optimized ground state, ∆E (kJmol−1) is the energy
difference of the given multiplicity to the ground state. If eds is not shown it
was set to 0 in the fit. For shown eds, the molecule was oriented in the global
axis frame for the CAS calculations.

Complex 2S + 1 ∆E/kJmol−1 bond length / Å eσ/cm
−1 eπ/cm

−1 eds/cm
−1

[Cr(NH3)4]
2+ 1 0 2.060(0.000) 6893(37) 1704(32)

[Mn(NH3)4]
2+ 6 0 2.191(0.000) 4723(113) 1343(85)

[Co(NH3)4]
3+ 5 43 2.073(0.001) 8800(111) 2620(106)

[Co(NH3)4]
3+ 3 0 2.000(0.000) 10166(29) 2449(18) 894(17)

[Fe(NH3)4]
3+ 4 32 2.036(0.000) 9775(40) 2374(27) 966(13)

[Fe(NH3)4]
3+ 6 0 2.103(0.001) 7101(474) 1614(361)

[Ni(NH3)4]
3+ 4 0 2.041(0.000) 8238(555) 1933(429)
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8 Table data for en and dien complexes

Table 9: AOM parameters for [M(en)3]
n+.

Complex 2S + 1 ∆E/kJmol−1 bond length / Å eσ/cm
−1 eπ/cm

−1

[Cr(en)3]
2+ 5 0 1 2.583(0.003) 1662(67) 270(45)

[Cr(en)3]
2+ 5 0 2 2.184(0.004) 5737(63) 822(48)

[Cr(en)3]
2+ 3 37 1 2.166(0.007) 4724(49) -120(37)

[Cr(en)3]
3+ 4 0 1 2.141(0.000) 6010(48) 227(37)

[Mn(en)3]
2+ 6 0 1 2.344(0.000) 2517(11) -106(8)

[Mn(en)3]
3+ 5 5 1 2.366(0.001) 2897(59) 71(43)

[Mn(en)3]
3+ 5 5 2 2.131(0.003) 6329(56) 588(43)

[Mn(en)3]
3+ 3 0 1 2.094(0.003) 5925(90) 106(66)

[Fe(en)3]
2+ 1 0 1 2.053(0.001) 3350(139) -1097(105)

[Fe(en)3]
2+ 5 23 1 2.273(0.006) 2513(73) -135(51)

[Fe(en)3]
2+ 3 53 1 2.253(0.000) 3430(58) 263(33)

[Fe(en)3]
2+ 3 53 2 2.225(0.001) 2099(62) -514(26)

[Fe(en)3]
2+ 3 53 3 2.040(0.000) 4975(29) 145(22)

[Fe(en)3]
3+ 2 0 1 2.057(0.001) 6498(29) 450(21)

[Fe(en)3]
3+ 4 62 1 2.312(0.001) 2910(59) -44(44)

[Fe(en)3]
3+ 4 62 2 2.087(0.010) 6331(58) 448(44)

[Co(en)3]
2+ 2 0 1 2.359(0.001) 1080(80) -203(61)

[Co(en)3]
2+ 2 0 2 2.023(0.001) 5003(80) 267(60)

[Co(en)3]
2+ 4 6 1 2.224(0.001) 2946(14) 219(10)

[Co(en)3]
3+ 1 0 1 2.020(0.001) 5959(83) -149(63)

[Ni(en)3]
2+ 3 0 1 2.177(0.000) 2556(52) -75(39)

[Ni(en)3]
3+ 2 0 1 2.255(0.000) 3023(72) -54(52)

[Ni(en)3]
3+ 2 0 2 2.018(0.002) 6968(71) 460(53)

[Ru(en)3]
2+ 1 0 1 2.161(0.001) 8489(83) -542(62)

[Ru(en)3]
3+ 2 0 1 2.166(0.001) 11266(34) 587(29)

[Os(en)3]
2+ 1 0 1 2.180(0.001) 10466(76) -487(57)

[Os(en)3]
3+ 2 0 1 2.184(0.002) 12880(48) 558(40)
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Table 10: AOM parameters for [M(dien)2]
n+.

Complex 2S + 1 ∆E/kJmol−1 bond length / Å eσ/cm
−1 eπ/cm

−1

[Cr(dien)2]
2+ 5 0 1 2.389(0.026) 5446(151) 2012(114)

[Cr(dien)2]
2+ 5 0 2 2.149(0.000) 7772(132) 1968(96)

[Cr(dien)2]
2+ 3 42 1 2.177(0.010) 8206(687) 2588(519)

[Cr(dien)2]
2+ 3 42 2 2.122(0.003) 9018(642) 2387(475)

[Cr(dien)2]
3+ 4 0 1 2.140(0.020) 15264(291) 7054(230)

[Mn(dien)2]
2+ 6 0 1 2.346(0.020) 5280(98) 1896(143)

[Mn(dien)2]
3+ 5 0 1 2.276(0.010) 4515(292) 577(219)

[Mn(dien)2]
3+ 5 0 2 2.096(0.000) 7759(264) 968(192)

[Mn(dien)2]
3+ 3 11 1 2.095(0.020) 17034(1648) 8328(1233)

[Fe(dien)2]
2+ 5 20 1 2.302(0.008) 4660(230) 1646(174)

[Fe(dien)2]
2+ 5 20 2 2.237(0.000) 5251(200) 1455(146)

[Fe(dien)2]
2+ 3 46 1 2.251(0.025) 4838(90) 1515(67)

[Fe(dien)2]
2+ 3 46 2 2.027(0.000) 7412(79) 1668(66)

[Fe(dien)2]
2+ 1 0 1 2.049(0.019) 11295(1523) 4753(1135)

[Fe(dien)2]
3+ 2 0 1 2.056(0.017) 13350(866) 5482(618)

[Fe(dien)2]
3+ 4 47 1 2.091(0.035) 15444(355) 7041(266)

[Fe(dien)2]
3+ 4 47 2 2.315(0.019) 11931(371) 7053(274)

[Fe(dien)2]
3+ 6 62 1 2.240(0.002) 8525(77) 3239(60)

[Fe(dien)2]
3+ 6 62 2 2.304(0.001) 8014(65) 2586(46)

[Co(dien)2]
2+ 2 0 1 2.019(0.024) 10387(712) 4115(536)

[Co(dien)2]
2+ 2 0 2 2.395(0.070) 5965(747) 3819(554)

[Co(dien)2]
2+ 4 17 1 2.253(0.005) 5314(403) 2150(303)

[Co(dien)2]
2+ 4 17 2 2.183(0.010) 5901(359) 1985(270)

[Co(dien)2]
3+ 1 0 1 2.018(0.014) 17493(3624) 8398(2713)

[Ni(dien)2]
2+ 3 0 1 2.204(0.013) 5676(693) 2436(519)

[Ni(dien)2]
2+ 3 0 2 2.124(0.000) 6414(641) 2319(482)

[Ni(dien)2]
3+ 2 0 1 2.157(0.008) 3314(416) -757(312)

[Ni(dien)2]
3+ 2 0 2 1.986(0.000) 6856(393) -274(296)

[Ru(dien)2]
2+ 1 0 1 2.165(0.004) 17850(675) 6640(505)

[Ru(dien)2]
2+ 1 0 2 2.123(0.001) 18865(631) 6100(478)

[Ru(dien)2]
3+ 2 0 1 2.159(0.019) 21304(1207) 7859(899)

[Os(dien)2]
2+ 1 0 1 2.179(0.002) 21548(2241) 7998(1684)

[Os(dien)2]
2+ 1 0 2 2.144(0.000) 22417(2097) 7197(1570)

[Os(dien)2]
3+ 2 0 1 2.175(0.017) 23996(603) 8631(489)
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5.3 AOMadillo: A program for fitting angular overlap model
parameters

M. Buchhorn, V. Krewald, Journal of Computational Chemistry 2024, 45, 122–134,
10.1002/jcc.27224
With the proof of concept and the application to ammines, we decided to unify the

developed software in a single package that is usable in conjunction with the ORCA
quantum chemistry package. The package is called AOMadillo and available online:
https://git.rwth-aachen.de/ak-krewald/aomadillo. In the publication, we present the
features of the software and also explain some details like the definitions that employed
for angles, parameters and the LFT matrix elements. AOMadillo supports common pa-
rameterizations in terms of σ, π and d–s mixing parameters, grouping options and the
distinction of πx and πy interactions with regard to the molecular geometry. Although the
parameterization itself is performed by the software by employing a least-squares fit, the
complex must be assessed by the user: Information about the desired parameterization
and the complex geometry must be given. It might seem inconvenient that these decisions
are not made based on an automated analysis, but it is in fact a design choice. There
are several use cases discussed in the publication that show that such an automated
assessment could very well hide important information from the user. Just as inorganic
chemists often needed to try parameter sets based on different assumptions, this is still
often necessary with AOMadillo. The obvious advantage of our software is that these
different parameterizations are applied much faster, produce machine-readable output
and the inclusion of the asymmetry approach presented in section 5.1.
Additional to the publication, we provide a manual with information on the installation

and usage of the software. All possible configurations are listed and explained and a
detailed walkthrough for a simple octahedral [VCl6]3– complex is provided. The manual
contains everything that is needed to use the software and therefore complements the
journal article that discusses the parameterizations on a more formal level.
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Abstract

The angular overlap model (AOM) is an established parameterization scheme within

ligand field theory (LFT). In principle, its application is fairly straightforward, but can

be tedious and involve a trial-and-error approach to identify and judge the best set of

parameters. With the availability of quantum chemical methods to predict d-d transi-

tions in transition metal complexes, a rich source of computational spectroscopic data

with unambiguous assignments to electronic states is available. Herein, we present

AOMadillo, a software package that is designed to interface the output of ab initio

LFT calculations from the ORCA suite of programs and performs a least-squares fit

for a chosen AOM parameterization. Many steps of the AOM parameterization are

automated, so that scans of geometric parameters and evaluations of sets of similar

complexes are convenient. The fitting routine is highly configurable, allowing the effi-

cient evaluation of different parameter sets.

K E YWORD S

angular overlap model, ligand field theory, quantum chemistry, transition metals

1 | INTRODUCTION

The angular overlap model (AOM) is a flavor of ligand field theory

(LFT), which means it is concerned with the parameterization of d-d

transitions in coordination complexes.1,2 In contrast to other ligand

field parameterizations, AOM parameters are local, that is, each

ligand has its own set of parameters that describe the properties of

this particular ligand in the complex. The promise of the AOM is

thus to transfer the concept of functional groups to coordination

chemistry.3 AOM parameters are interpreted in terms of their

sign and magnitude: positive parameters are considered to reflect a

ligand to metal electron donating interaction, negative parameters

an electron accepting interaction.2,4 One property that comes

with the concept of functional groups is the transferability of their

parameters into different coordination complexes, a feature of the

AOM that was sometimes assumed,5,6 but also opposed on

occasion.7–9

Every application of the AOM to a coordination compound requires

the parameterization of the one-electron ligand field Hamiltonian VLF ,

while the two-electron part is generally parameterized in terms of

Racah or Condon–Shortley parameters.2 A direct way for parameteriz-

ing VLF is to express the energy of the electronic d states in terms of

the chosen parameterization and to search for a best-fitting set of

parameters that reproduce these states. An alternative, indirect

approach is the treatment of each element in VLF as an independent

parameter, resulting in a maximum of 15 independent elements in a

symmetric 5�5 matrix.10 This corresponds to the Wybourne parame-

terization of a C1 complex.11 The two-electron part is again fitted with

Racah or Condon–Shortley parameters. The application of the AOM

takes place in a second step, where solely VLF is fitted with a chosen

set of AOM parameters. AOMadillo employs the second, indirect way

by fitting the ligand field Hamiltonian.

Each matrix element is expressed in terms of the general AOM

equation.1,11,12
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vij ¼ δijEþ
P
L

P
λ
FL,λ,iFL,λ,jeL,λþ

P
L
Fds,i

ffiffiffiffiffiffiffiffi
eL,ds

p �P
L
Fds,j

ffiffiffiffiffiffiffiffi
eL,ds

p
: ð1Þ

E is the spherical contribution to the field, FL,λ,i are the angular overlap

factors where L specifies the ligand, λ indicates the interaction type

which can be σ, πx or πy , and i, j are the matrix element indices. F is a

function of the angular coordinates of the ligands θ,ϕ,ψ and tabu-

lated.2 The parameters e capture the bond length dependent part and

are subject to the ligand field fitting procedure. eds is a parameter that

accounts for the d–s orbital mixing in complexes of certain symme-

tries.12,13 Considering eds, each ligand can thus be parameterized by

two to four parameters (see also Section 4.1), which leaves 13 parame-

ters for an average octahedral (Eþ6 �eσ þ6 �eπ ) or square planar com-

plex (Eþ4 �eσ þ4 �eπ þ4 �eds). Given that VLF has a maximum of 15

independent elements, it is apparent that the AOM equation system

is very likely to be underdetermined.

An interesting dilemma arises at this step: in order to solve the

equation system resulting from the AOM parameterization, it is advis-

able to reduce its complexity. If there are symmetry features in the

molecule, these can be used to lower the number of unique elements

in the ligand field matrix which makes it easier to calculate the overlap

factors and reduces the load of equations. The downside is that

almost inevitably an underdetermined equation system results, so

that dependencies arise and an infinite number of solutions can be

found. It is therefore necessary to reduce the number of AOM param-

eters and thereby make the equation system determined. Reducing

the parameters can be achieved for instance by fixing the ratios of

certain parameters or by setting some parameters to zero. However,

these choices are driven by the experience and biases of the

researcher. The resulting simplifications may underestimate or neglect

parameters or overlook the uniqueness of ligands.

The researcher is thus faced with a difficult choice between two

options: the introduction of perhaps biased experience into the AOM

parameterization, or a much more complicated but often enough ana-

lytically unsolvable equation system with a more impartial and com-

plete parameter fit. In the rest of this work, we present how the

AOMadillo package mitigates this dilemma by making the evaluation

of ligand field Hamiltonians for asymmetric molecules feasible. In

many cases, more insightful parameter sets are obtained than with

simplifications that may result in underdetermined equation systems.

Starting with version 4, the ORCA quantum chemistry package

offers an ab initio LFT (aiLFT) module.14,15 With the electronic states

from a CASSCF calculation, the aiLFT module fits the one-electron

ligand field matrix and the two-electron Racah and Slater–Condon

parameters. The corresponding CASSCF (CASSCF/NEVPT2) states

together with the aiLFT module were shown to reproduce experimen-

tal data very well on several occasions.16–20 The most important fea-

ture of this theoretical approach to AOM parameters is that, in

contrast to the experiment, the investigated structures are rigid. The

resulting states are sensitive to the exact input structure instead of an

average one. It is thus possible to intentionally make structures that

are asymmetric and because the AOM F-factors are angle-dependent,

they can account for the changes in the electronic state energies.

With this, it is possible to reliably increase the number of independent

elements in VLF , so that more parameters can be fitted. More details

on the asymmetric structures are provided in Section 3. All our results

are based on ORCA CASSCF calculations which AOMadillo interfaces

to perform the AOM parameter fit.

2 | FUNCTIONALITIES OF AOMADILLO

AOMadillo offers a fast and easy application of the AOM to a ligand

field Hamiltonian. The quality of the parameterization can be evalu-

ated via the cost of the fit, a semi-objective quantity further elabo-

rated below. This allows a straightforward comparison of different

parameterization choices. The input and output work in a stand-alone

way, and are designed such that they can be embedded in a shell pipe-

line. This allows the user to write simple shell scripts to test different

parameterizations, scan the parameter space, and process output

parameters for further analyses or visualizations. With ORCA as the

quantum chemistry software that generates the ligand field Hamilto-

nian, the user has access to many other means of scanning and auto-

mation. The scheme in Figure 1 shows the steps that are necessary to

generate an AOM parameterization with AOMadillo.

AOMadillo interfaces the output of the ORCA aiLFT module.

Both ORCA 4 and ORCA 5 are supported. It reads the one-electron

ligand field Hamiltonian VLF and applies a fitting procedure developed

by us to obtain the AOM parameters.21 In the rest of this section, we

provide a more detailed description of the procedure.

Each Hamiltonian matrix element is expressed as in Equation (1).

Each value vij is calculated by ORCA and thus a known quantity in our

problem. It is brought to the right side of the equation, which should

then equal 0.

F IGURE 1 Schematic representation of the steps necessary to
take full advantage of the AOMadillo package.

2 BUCHHORN and KREWALD
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0¼�vijþδijEþ
P
L

P
λ
FL,λ,iFL,λ,jeL,λþ

P
L
Fds,i

ffiffiffiffiffiffiffiffi
eL,ds

p �P
L
Fds,j

ffiffiffiffiffiffiffiffi
eL,ds

p
: ð2Þ

Since the total equation system is in general overdetermined (see

Section 3) and inconsistent, no set of parameters can be found that

satisfies all equations. Instead, an approximate solution is found by

employing a nonlinear least-squares solver and in the above equation

0 is replaced by the so-called residual sij.
22–24

sij ¼�vijþδijEþ
P
L

P
λ
FL,λ,iFL,λ,jeL,λþ

P
L
Fds,i

ffiffiffiffiffiffiffiffi
eL,ds

p �P
L
Fds,j

ffiffiffiffiffiffiffiffi
eL,ds

p
: ð3Þ

The least-squares solver minimizes the equation system with regard

to the sum of all equations squared residues s. We refer to this quan-

tity as the “cost” of a fit and omit its dimension or unit, respectively,

in the rest of this text.

cost¼P
j

P
i≤ j

s2ij : ð4Þ

VLF is symmetric, so the cost is calculated from the elements s with

i≤ j to prevent double counting. The cost can serve as a probe for the

quality of a chosen parameterization. When choosing a parameter set

that can reproduce the given ligand field Hamiltonian well, the cost is

small. Otherwise the cost increases if we chose a set that poorly

recovers the Hamiltonian. This assessment can only be applied in a

relative manner, that is, if the parameterization is changed and the

cost changes at the same time. The specific value of the cost of a sin-

gle fit does not tell anything about its quality, although a high remain-

ing cost in a detailed parameter set can be seen as a hint that the

AOM in the given parameterization might be unsuitable.

Summarized briefly, the AOMadillo software offers the direct

application of the AOM to aiLFT results. An obvious advantage over

manually or semi-manually solving the AOM equations is that the

computer delivers the result. Provided with only the molecular geom-

etry, the program outputs the corresponding equation system, includ-

ing the on-axis angle ψ which can be tedious to determine manually.

A second advantage of AOMadillo lies in the configuration options for

the parameterization and the ease with which restraints can be intro-

duced. This allows a fast application of different parameter sets for

comparison and batch processing of calculated transitions. In the next

sections, the features of AOMadillo are presented in a qualitative

overview. For detailed guidance on the actual utilization of the pack-

age, the reader is referred to the manual, which is provided with the

software package.

2.1 | Possible parameterizations

The AOMadillo package offers various options for parameterization of

the ligand field. The default is a parameterization with eσ ,eπ ,eds for

each ligand, where d–s mixing is considered and the two π-interac-

tions are subsumed.

The d–s mixing parameter can be removed with a flag. This is

advisable when the molecule is sufficiently close to a cubic symmetry

(Oh or Td), where d–s mixing plays no role.4,10,12

Similarly, the π-interaction can be removed, although we do not

recommend this at all. Even for ligands that had been considered

σ-only so far, we expect a significant π-interaction.25

The two π-interactions eπx and eπy can be discerned, which

increases the parameter space. The additional angle that needs to be

defined can be either provided by the user or calculated from the

structure of the molecule. In the latter case, a third atom number is

specified that defines a plane containing M–L–R which is perpendicu-

lar to the πy-interaction. Vice versa, the πx-interaction is then defined

to lie in the M–L–R plane. Some publications denote the eπx and eπy
parameters with eπk and eπ ⊥ to clarify their alignment relative to the

respective ligand.4,26

2.2 | Parameter restraints

In addition to global changes of the parameterization scheme,

restraints can be introduced. In AOMadillo, hard and soft restraints

are distinguished depending on how they are implemented. Hard

restraints are those that cannot be violated, no matter how it may

increase the cost of the fit. Examples of hard restraints are removing

parameters as mentioned above, or setting fixed values for individual

parameters. These values cannot be changed during the fitting rou-

tine, but are taken into account when calculating the cost.

Soft restraints are introduced as additional equations to the fit-

ting procedure. If the fit deviates from the value specified in the addi-

tional equations, the overall cost increases. This permits the

parameters to take values that differ from the given restraint. It is of

course possible to set soft requirements that cause high costs when

they are slightly violated, making them effectively hard.

Natively supported soft restraints are equal eλ parameters for dif-

ferent ligands and equal πx,πy interactions for selected ligands. Setting

AOM parameters to be equal via a soft restraint is termed “grouping”
in AOMadillo. Additional arbitrary restraints can be introduced by pro-

viding equations directly, for example to set a value, a ratio or a differ-

ence for selected parameters.

An important role of soft restraints is the introduction of indepen-

dent equations to the system. Given that common complexes with six

ligands and three parameters per ligand already exceed the maximum

possible number of independent elements in VLF , it is common to

group ligands. We intentionally chose the addition of equations over

the reduction of the number of parameters to account for small

inequalities in the ligands positions and chemical environments.

3 | LIFTING THE UNDERDETERMINATION
PROBLEM

Even when the number of AOM parameters is cleverly reduced,

the equation system for many complexes remains underdetermined.
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The higher the symmetry of the complex, the fewer unique elements

VLF has.11 In an experiment, the observed transitions always belong to

an ensemble of distorted structures, yielding broadened peaks. The

underlying transitions cannot be completely resolved and thus it is

necessary to assign the peaks to an assumed average geometry with

generally high symmetry. Furthermore, many d-d transitions are hard

to detect since they are generally weak and sometimes hidden under

other, overlapping transitions. While computational spectroscopy has

its own shortcomings, employing computational methods to calculate

electronic transitions allows to overcome a few of these problems.

Some of these advantages are that there is no ambiguity in the com-

puted spectrum regarding the resolution and the assignment of a

transition.

The key to lifting the underdetermination problem lies in inten-

tionally creating asymmetric structures. Here, we make use of the

transferability promise of the AOM that works in very limited cases,

that is, the same ligand will have comparable AOM parameters in simi-

lar bonding situations. If AOMadillo is used with a high-symmetry

structure, the ligands are moved slightly in random directions.*

Asymmetric structures that yield ligand field potentials with a suffi-

cient number of unique elements are obtained by starting from an

optimized geometry. The bond angles are slightly changed while keep-

ing the metal-ligand distance constant. In general, this leads to C1

symmetry, in which 15 unique matrix elements are available for fitting.

The result should be as asymmetric as possible while still being suffi-

ciently similar to the reference structure to justify the AOM parame-

ters to be equal. An example with distorted bond angles is shown in

Table 1. We have shown previously that this approach works and

allows to fit AOM parameters to formerly underdetermined problems

such as tetrahedral21 and octahedral25 complexes.

Since the structural distortion uses small random angles of

≤0:5 ∘ , two issues can arise. First, the distortion can be too small so

that the resulting equation system is still (partly) underdetermined.

Second, the resulting structure might be biased: bond angles differ

from the average, the ligands might be shifted to one side and so

forth. While this does not necessarily pose a problem for the CASSCF

calculation and the subsequent fit, we noticed that some structures

yield parameter sets that clearly differ from others. We cannot find a

common explanation for these observed outliers, and suspect from

our broad experience with different transition metals, coordination

environments and ligand types that this effect is highly dependent on

the chemistry of the system. Outliers should be identifiable among a

sufficiently large number of samples. We recommend performing the

structural distortion several times and separately fitting parameters

for each distorted structure. In this way, outliers can be identified

more easily and the danger of having a non-representative parameter

set is reduced.

4 | THE USER'S TASKS

4.1 | Choosing a parameter set

Choosing the parameter set is crucial and may require several

attempts in order to recognize bad fitting results, underdetermination

problems and specific ligand behaviors. This is an important task that

must be conducted carefully by the user. The following points may

serve as a guide to evaluate which parameters are sensible to use.

Check for equal ligands: The first step is to check the ligand sym-

metries and similarities. It is useful to group equal ligands together,

although differences in bond length are very important to consider

here. Since the AOM parameters are bond length dependent, group-

ing different bond lengths can lead to conflicting equations that pre-

vent a reasonable solution of the AOM equation system. Nonetheless,

grouping bonds of up to approximately 0.1 Å difference can work

occasionally. When deciding on the acceptable bond length difference

for grouping, the user needs to consider the slope of the distance

dependence; while for transition metals the distance dependence of Δ

is expected to be r�5,27,28 for lanthanides and actinides it is much

steeper, ca. r�7.27

Assess bond symmetry: The next step is to check whether the

individual metal-ligand bonds are cylindrical, that is, have C∞v symme-

try. This is not an automated process but rather a step where the

users can take important decisions on the parameterization them-

selves. For symmetric bonds, eπx and eπy can be subsumed. If the bond

is asymmetric, they must be distinguished. Examples for ligands with

cylindrical bonds are halides, NH3, CO, CN�, metallocenes and others.

Asymmetric bonds are found for example with water, pyridine and

other heterocyclic ligands.

Assess global symmetry: The global symmetry of the coordina-

tion site should be evaluated. This is not done automatically by

AOMadillo, but programs that can determine the closest global

TABLE 1 Exemplary bond angles in
degrees from a set of samples
of ½CrCl6�3�.Sample Cl1–Cr–Cl2 Cl3–Cr–Cl4 Cl5–Cr–Cl6 Cl1–Cr–Cl3 Cl1–Cr–Cl5

0 180.000 180.000 180.000 90.000 90.027

1 179.059 179.317 179.243 90.752 89.502

2 179.916 179.262 178.913 89.315 89.368

3 179.403 178.897 179.111 89.969 90.164

4 179.044 179.287 179.226 90.158 89.401

5 179.834 179.363 179.029 89.330 89.804

Note: The atoms 1, 2 and 3, 4 and 5, 6 are situated trans to each other. Sample 0 is the reference

structure.

4 BUCHHORN and KREWALD
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symmetry automatically are available if assistance is required. If at

least one d orbital transforms in the totally symmetric irreducible rep-

resentation of the point group of the coordination site, one must con-

sider d–s mixing.

Based on the parameterization chosen by the user, AOMadillo

can be configured to perform the fit accordingly. Note that a chemi-

cally plausible set of parameters does not necessarily lead to a good

fitting result. A good result is considered to be (over-)determined,

low-cost and with parameters of a reasonable magnitude.

4.2 | Assessing the result

The equation systems generally converge well. We never encountered

a system where convergence was not achievable, although conver-

gence of a mathematical solution to the equation system is not to be

confused with obtaining reasonable parameter values. It is still possi-

ble that the system is underdetermined, in which case convergence

will be signaled but the resulting fit is not unique. Note that the equa-

tion system can be partly underdetermined (see, for example,

Section 7.3). In these cases, some of the parameters are reliable to a

certain extent, while others depend on each other and are not unique.

Because of this, a cost larger than zero does not guarantee an overde-

termined system. We recommend to scan the parameter space around

the solution in order to recognize partial underdetermination

situations.

The cost of a fit is an important quantity to check. High cost

values (>1000 cm�2) are most often caused by an incomplete parame-

terization, inappropriate ligand grouping or other hard to meet soft

restraints. If tweaking groupings and parameter sets does not improve

the cost, a suitable parameterization might not be attainable, see

Section 5.1.

The resulting parameters should be of reasonable magnitude, that

is, within the expectations set by the literature or previous parameter-

izations of similar systems. An obvious case of an unreliable result is

for example a negative eσ parameter. Parameters with significant dif-

ferences for almost equal ligands or parameters that deviate strongly

from reported data are also signs of error.

5 | LIMITATIONS

LFT, ORCA aiLFT and AOMadillo have important limitations that the

user needs to be aware of. Some problems rooted in the general the-

ory are carried over to the AOM parameterization. In the following,

we will discuss how apparently nonsensical results can be interpreted,

what to check before the fit is done and when LFT as such may fail.

Ligand field theory and ORCA aiLFT

LFT assumes pure valence d orbitals, which is a good assumption if

there is essentially no mixing or covalency between metals and

ligands. This can be the case if the ligand orbitals are much lower in

energy than the metal orbitals. The observed “pure” d orbitals are

then in fact the antibonding metal-ligand molecular orbitals. In

electronic structure calculations, it is readily seen that the valence

molecular orbitals are composed of metal and ligand contributions

of different magnitude. LFT is essentially an effective Hamiltonian

theory,4,29 and as such it is more successful if the configurational

space described by the effective Hamiltonian (here the complete

ligand field Hamiltonian) is well separated from the rest of the

basis.10,30 With a decrease of the d orbital contribution to the

MOs, that is, more covalent bonds, LFT increasingly looses its jus-

tification and obtained parameterizations should be interpreted

with caution.

ORCA purifies the metal d orbitals when the aiLFT subroutine is

called in order to obtain an active space that fits to the assumptions

of LFT.31,32 Nonetheless, the resulting orbitals can still have significant

ligand character. Especially for more covalently bound ligands like

CN� or PMe3, d orbital contributions of about 80% and less to an

active orbital are common. For ligands like halides, we generally find

orbitals with more than 90% d character. Note that this can make it

difficult to describe some common ligands with π-backbonding capa-

bilities, since they arise from metal and ligand AOs that are close in

energy and thus strongly mix.

Lastly, if LFT can be applied to a complex and a reasonable

parameterization can be made, the calculation itself can have system-

atic errors. The states predicted by CASSCF or CASSCF/NEVPT2 cal-

culations are associated with errors arising, for example, from the

active space size, the basis set size, or the treatment of the environ-

ment. These errors translate into the ligand field Hamiltonian. In con-

sequence, the user needs to set up the ORCA calculation according to

the desired accuracy and inclusion of environment effects.

AOMadillo

AOMadillo applies the AOM equations to the aiLFT output of ORCA

and returns a fitted set of parameters; however it does not provide

any further comment on the set. Depending on the complex at hand,

the least-squares fitting procedure can have multiple results with the

same cost for different parameterizations. While it is possible to scan

the parameter space around the solution obtained to find out how

deep or well-defined the minimum is, this information does not tell

the user how chemically reasonable the solution is. Judging the

parameter set is thus a task obliged to the user.

It can be helpful to have a closer look at the AOM parameters of

different structure samples. With sample set sizes of five as commonly

employed in our initial studies, it has been observed that some sam-

ples yield unreasonable results. A unique reason for the outliers has

not been identified, but the user is encouraged to investigate the

structures further if fits with diverging results are obtained. Additional

aiLFT calculations with more samples, possibly including a slight varia-

tion of bond lengths in addition to different angles, can be useful to

deduce which results are actual outliers.

AOMADILLO: A PROGRAM FOR FITTING ANGULAR OVERLAP MODEL PARAMETERS 5
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5.1 | Advanced aspects of the AOM

There are extensions of the AOM that are not yet supported by

AOMadillo. One example is d–p mixing,33 where in principle the same

sequence of arguments as for d–s mixing applies. Very often, d–p mix-

ing is subsumed with other parameters and cannot be separated.

There are special cases where it becomes relevant and needs parame-

terization on its own, as for example encountered in Section 7.2. Since

the chemical significance of the AOM may suffer by introducing more

global parameters, we decided not to implement it.

Another extension is the Orgel effect or phase-coupled

ligation.34–38 Different treatments and discussions exist in the litera-

ture. At the moment no variant is implemented in AOMadillo, which

precludes fitting systems with chelating ligands that have conjugated

π-systems properly.

Similarly, misdirected valency or off-axis bonding is currently not

implemented. Misdirected valency occurs when no symmetry axis of

the ligand coincides with the metal-ligand bond. More pictorially

speaking, in cases where misdirected valency is important, the ligand

does not point exactly at the metal which leads to an orbital energy

splitting that cannot be accounted for in terms of distinct σ or π

parameters. It is possible to parameterize the resulting splitting with

additional AOM parameters which are placed in the off-diagonals of

the ligands' local ligand-field matrices.30,38–42 These additional param-

eters may have less obvious chemical significance and rather repre-

sent a means to describe a geometric peculiarity within the AOM

framework.

5.2 | Metals with f shells

The AOM is generally suitable to parameterize elements with partially

filled f orbitals.43,44 Urland and coworkers have worked on this topic

extensively, including the derivation of the corresponding overlap fac-

tors for these elements.11,45 The aiLFT module of ORCA provides an f

orbital analysis, yielding a 7�7 ligand field matrix VLF . In AOMadillo,

the analysis of these aiLFT calculations is not yet implemented.

5.3 | Inclusion of δ interactions

It is common practise in the application of the AOM to omit eδ

entirely.7 It is considered small and often leads to overparameteriza-

tion without additional chemical insight. We therefore decided not to

implement it into the fitting routine.

6 | DETAILS

This section provides background information on how certain func-

tions are derived and implemented. For more details on the practical

application of the AOMadillo program, we refer the reader to the

manual, where a detailed walkthrough is provided.

6.1 | Structure sampling

Structural sampling is crucial to lift the underdetermination problem of the

AOM parameterization. It is also important to calculate parameters for sev-

eral samples, since there might be outliers that can only be recognized in

comparison to other parameter sets. In the AOMadillo package, the struc-

tural distortions are performed by a dedicated script; the manual provides

details on its application. The sampling procedure takes Cartesian coordi-

nates and a definition of ligands as input. Each ligand is then independently

rotated by three randomEuler angles in a given interval. The interval we use

is ½0:2,0:5�, which has proven sufficient to yield completely asymmet-

ric structures with sufficiently large energy differences in the ORCA

aiLFT Hamiltonian. It is possible to apply the procedure to chelating

and ηð >1Þ ligands, too. Depending on the ligand structure, a dummy atom

in the center of the ligand may need to be defined which is then used as

an anchor. For example, cyclopentadienyl (Cp�) needs a dummy atom in

the center of the ring, and ethylenediamine (en) can be moved with a

dummy atom between the nitrogen or the carbon atoms.

When the samples are created, it is possible to read in orbitals

from another CASSCF calculation performed on the original structure.

ORCA has an orbital projection feature that can translate these

orbitals onto the sample structures, hence one converged CASSCF

calculation can be used as input for the subsequent samples, speeding

up the process significantly.

Another feature embedded in the sampling procedure is the

option to perform bond length scans. An interval with minimum and

maximum bond length as well as the number of steps can be defined.

The ligands are then moved accordingly. Note that although possible

with the help of dummy atoms, this is not useful for chelating ligands,

since their L–M–L bond angles are changed by this as well.

6.2 | AOM equation system

The one electron ligand field matrix is a 5�5 symmetric matrix, so it

has up to 15 unique elements. Each element is expressed in terms of

Equation (3), with vij being calculated by ORCA and the AOM overlap

factors calculated from the structure of the complex. In general, this

equation system is inconsistent and overdetermined. That means

there is no set of parameters that satisfies all equations and there are

more equations than parameters. Since there is no exact solution, an

approximate one is found with the least-squares approximation men-

tioned in Section 2.

The parameters have hard coded boundaries: all local AOM parame-

ters can have values in the interval eλ=cm�1 � ½�2�105,2�105�,
eds=cm�1 � ½0,104� and E=cm�1 � ½�107,0�.

Soft restraints add equations to the base system. Grouping

ligands adds equations of the following structure:

si ¼ðeλ,L1�eλ,L2Þ �w, ð5Þ

with L1 and L2 being arbitrary ligands and λ being the interaction type.

The weighting factor w can be adjusted to increase or decrease the

6 BUCHHORN and KREWALD
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effect of the restraint on the solution. s is the residue of the equation,

its index i is a running number. In the same manner the equality of πx

and πy-interactions can be set:

si ¼ðeπx ,L�eπy ,LÞ �w: ð6Þ

The least-squares solver will minimize the total cost and thus the

absolute residues, so the requirements are met if the parameters are

equal and their difference is zero.

With these additional equations, it is possible to have enough lin-

early independent equations to fit a large set of parameters. As stated,

it has proven to be more effective if equations are added compared to

the reduction of parameters. The possibility that a restraint can be

violated adds valuable flexibility to the fit.

It is possible to add arbitrary equations to the system by giving

expressions that should evaluate to zero. Only the right-hand side of

the following equations must be given. This can be used to set param-

eter values without actually enforcing them or introduce ratios and

differences. Here are some examples:

si ¼ eσ,L�6000, ð7Þ

si ¼4eπ,L�eσ,L, ð8Þ

si ¼ eπy �eπx �1000: ð9Þ

It is up to the user to employ supplemental equations. They are pro-

vided to AOMadillo in an optional file; the standard configuration is

not to expect such a file. We also note that introducing restraints

removes impartiality from the result and should be well justified.

6.3 | Definition of πx and πy

It is chemically intuitive that planar ligands like water or pyridine have

different π interactions in- and out-of-plane. To distinguish πx and πy ,

we have to resort to the definition of the parameters in the local parame-

ter frame, where the ligand atom resides on the z-axis. The ligand field

matrix expressed in the local d orbital basis for each ligand is:

VLF,local ¼

xy yz z2 xz x2�y2

xy

yz

z2

xz

x2�y2

eδ 0

eπy

eσ

eπx

0 eδ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

, ð10Þ

where eδ is generally assumed to be 0. The superposition principle of

the AOM requires to set up this matrix for each ligand, rotate it from

its local to the global axis frame and then add it to the total ligand field

matrix.4,45 This rotation of the local basis can be expressed in terms of

Wigner rotation matrices, which represent rotations of spherical har-

monics along the three Euler angles θ,ϕ,ψ .11,13 The Euler angles are

equivalent to the global angular coordinates of the respective ligand,

since it is the ligands' global position from which the d orbital basis

must be rotated. The sequence of the rotations is fixed such that the

ones along θ and ϕ have to be applied in that sequence, while the

rotation along ψ can be applied any time.11,46

Employing that rule, we determine ψ for each ligand by rotating it

back into its local frame. The ligand is thus rotated by �ϕ along the

global z-axis and �θ along the global y-axis. An illustration of this rota-

tion is shown in Figure 2. Additional to the metal position and the

ligating atom, an orientation atom is specified that defines the ligand

plane, for example, a hydrogen atom in water. The angle between the

xz plane and the ligand plane is then ψ , as shown in the bottom right

frame in Figure 2. If it is 0, the ligand plane coincides with the xz

plane. By this definition, the parameter eπx lies in the ligand plane,

while eπy is perpendicular, as stated in Section 2.1.

When applying the AOMadillo fitting routine with distinct πx and

πy interactions, it is possible to specify ψ manually for each ligand, or

to specify an orientation atom that, together with the metal and the

ligating atom, defines the ligand plane.

F IGURE 2 Illustration of the rotation of a ligand from an arbitrary

position (left, top and bottom) onto the z-axis (right, top and bottom).
The remaining angle between the ligand plane and the xz-plane is the
angle ψ . The left and right frames each show the same situation from
different perspectives in the top and bottom panels.
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7 | CASE STUDIES

7.1 | Methodology

All quantum chemical calculations were performed using the ORCA

4.2.1 software package.14,15 The geometries of the ½MnðNH3Þn�2þ
series were constructed from scratch. The structure of

CuðNH3Þ4ðSCNÞ2 was extracted from the crystal structure47 with a

subsequent optimization of the hydrogen atom positions. The struc-

tures of the platinum complexes and the ferric thiocyanates were fully

optimized. Optimizations employed the unrestricted Kohn–Sham for-

malism with the BP86 functional,48,49 the def2-SVP basis set50 with

the def2/J auxiliary basis.51 The resolution of identity approximation

for the Coulomb term was used.52,53 Convergence criteria were Nor-

malSCF for all self-consistent field calculations and TightOpt for

geometry optimizations. The geometry optimizations employed the

default integration grid (Accuracy 2: Lebedev 110 points) for optimiza-

tion steps and the final SCF at the optimized geometry (Accuracy 4:

Lebedev 302 points).

The electronic states corresponding to the d orbitals were calculated

using CASSCF54,55 with the def2-TZVP basis set.50 For the platinum

complexes, relativistic effects were captured with the zeroth order regu-

lar approximation (ZORA)56 with the SARC-ZORA-def2-TZVP basis set

for Pt and ZORA-def2-TZVP for other elements.57 A CASðn,5Þ active

space was chosen, containing n d electrons in the five valence d

orbitals. The subsequent ab initio LFT analysis was used to construct

the effective ligand field Hamiltonian.10,18,44 AOM parameters were

fitted with the software presented herein, AOMadillo. For each (opti-

mized) complex, five distorted samples were generated.

7.2 | Ligand addition

The AOM promises at least a limited transferability of ligand parame-

ters between different complexes. While it is well known that this is

rarely reliable, AOMadillo allows the user to systematically check in

which cases a transfer might be justified and in which not. In the next

section, we discuss the mixing of ligand types in a heteroleptic com-

plex. Here, a simpler case is investigated, where we focus on a series

of complexes of the type ½MnðNH3Þn�2þ, with n¼1�6. Each complex

has the highest possible symmetry, which should be reasonable for

manganese in the oxidation state +II due to its preferred high-spin d5

electronic structure. In the case of n¼5, we investigated the trigonal

bipyramidal case as well as the quadratic pyramidal one. All bond

lengths were arbitrarily set to 2.1 Å and do not differ between coordi-

nation numbers to preserve comparability.

Table 2 and Figure 3 show the AOM parameters of the com-

plexes. It is apparent that the magnitude of the parameters is

the same for all complexes except the trigonal bipyramidal n¼5 case.

The linear n¼2 complex also has a slightly deviating σ parameter,

although this is due to a d–s mixing effect. Introducing d–s mixing

here leads to a linear dependency of eσ and eds; this effect is discussed

in more detail in the next section on PtA2B2 complexes. Omitting a d–

s mixing parameter leads the eσ of the ligands to absorb its effect and

decrease accordingly. If a fixed d–s mixing parameter of 715 cm�1 is

introduced, we obtain eσ ¼5375 cm�1 which would fit perfectly to

the other parameters in the series.

The mutual dependence of eσ and eds was noted recently by

Deeth, who stated “[…] the extent of σ bonding is no longer directly

linked to the size of eσ but rather it is masked by the d–s mixing.”58

One might also say that without the d–s mixing parameter, the σ

parameter of the ligand is artificially lowered since it then absorbs the

effect of the admixture of the s orbital. In this case, the “true” σ inter-

action would be higher than reflected in the parameter value. Both

interpretations work within the framework of the AOM, so it is diffi-

cult to decide on that basis which one is more appropriate.

The trigonal bipyramidal structure is an example where the

parameterization with AOMadillo does not suffice to capture all

effects. Its parameters have very high magnitudes, which are essen-

tially unaffected by different grouping options and inclusion of d–s

mixing. This complex appears to be an example where d–p mixing

effects should not be omitted, as pointed out by Smith.12 In the given

TABLE 2 AOM parameters of ammonia in ½MnðNH3Þn�2þ.

n Symmetry eσ=cm�1 eπ=cm�1 eds=cm�1

1 lin. 5094 (0) 1557 (0)

2 lin. 3945 (0) 1401 (0) a

3 trig. 5780 (1) 1594 (151) 715 (101)

4 tet. 5726 (168) 1588 (125)

5 trig. bipy. 10700 (229) 4486 (179) b

5 quad. py. 7097 (39) 1713 (42) 2524 (92)

6 oct. 5813 (56) 781 (42)

Note: a not included, but relevant; see main text for details. b subject to

d–p mixing; see main text for details.
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F IGURE 3 AOM parameters of ammonia in ½MnðNH3Þn�2þ. The
two n¼5 geometries are labeled.
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D3h symmetry, the dxy and dx2�y2 orbitals are allowed to mix with the

px and py orbitals. Additionally, d–s mixing is expected for the dz2

orbital. The MO coefficients of the active space show that there is

almost no d–s mixing with the dz2 orbital (90.9% dz2 , 0.1% s), but

indeed a considerable p character in the dxy=dx2�y2 orbitals (94.4%

dxy=dx2�y2 , 1.7% py=px).
† We tested a parameterization with slight

changes: eds is set to 0, but we introduced a correction term Cdp that

decreases the energy of the dxy=dx2�y2 orbitals. The equations we

used are presented in Table 3. With this set of parameters in an ideal

D3h geometry, the equation system is underdetermined and at least

one parameter needs to be fixed. Setting eσ ¼5800 cm�1 as an exam-

ple, we obtain eπ ¼631 cm�1 and Cdp ¼2319 cm�1. We emphasize

that Cdp is a correction term which subsumes angular factors Fdp that

would be present in a systematic way of treating d–p mixing. Thus it

cannot be compared to other parameters.

Other structures show similar fractions of p orbital admixture, but

d–p mixing is absorbed in other parameters. In the trigonal bipyramid,

no other parameter can subsume the d–p mixing effect and it must be

accounted for explicitly to achieve a reasonable fit. A similar effect

explains the extraordinarily large d–s mixing parameter of the qua-

dratic pyramid. Here, a significant d–p mixing contribution is sub-

sumed in eds, rendering it surprisingly large.

We can conclude that the parameters of ammonia in the given

geometries are relatively consistent amongst each other. However,

the series shows that the overall symmetry of a complex must be kept

in mind (as for n¼2 and n¼5) and that it is always possible to

encounter geometries for which no reasonable fit can be obtained.

Lastly, it is important to emphasize that AOM parameters are bond

length dependent, a variable that substantially changes among differ-

ent heteroleptic complexes. We caution to transfer parameters; this is

conceivable only for similar bond lengths, or when using a scan of the

respective metal-ligand distance to evaluate the effect on the respec-

tive eλ parameters.

7.3 | ½PtA2B2�

Cisplatin cis-½PtCl2ðNH3Þ2� and its homoleptic analogues are well

known complexes with planar geometries.59,60 We investigated the

homoleptic complexes of Pt2þ with chloride, ammonia and water as

ligands as well as their heteroleptic ½PtA2B2�nþ counterparts. The

results are shown in Table 4. It is apparent that the homoleptic com-

plexes yield consistent and plausible parameters with d–s mixing

included. The values for the ammonia ligands fit well to experimental

values, while the chloride parameters seem to be underestimated.59

Excluding d–s mixing leads to a very high cost, since the position of

the dz2 orbital cannot be accounted for. The heteroleptic complexes

are much more complicated: While the π parameters of the trans com-

plexes are stable with a small standard deviation, the parameters for

the cis complexes appear random. The full results over all samples sug-

gest that there is a dependency between eσ and eds, whereas eπ is well

defined with the given orbital splitting.

To visualize the dependency between eσ and eds, we performed a

scan along eds of the water ligands for a single sample of

½PtCl2ðH2OÞ2�. The resulting parameters are shown in Figure 4. We

can see that there is a cost minimum around eds ¼2300 cm�1, but it is

very shallow. The second panel of Figure 4 illustrates the dependency

of eds and eσ , with an apparently linear relationship to eσ of the water

ligand. Not depicted but also part of the dependency is eds of the chlo-

ride ligands. In contrast, eds and eπ are essentially unrelated, as shown

in the third panel. Performing the same scan for different samples

yields slightly shifted, but qualitatively equal curves. The trans com-

plexes are a good example of a partial underdetermination, where

some of the orbital energies are well defined, while others are

overparameterized.

As apparent in Table 4, the cis complexes do not yield a stable or

plausible result. The reason is a splitting in the dxz and dyz orbitals that

should be degenerate in the AOM parameterization with ligands A

and B. Both orbital energies are expressed as

εdxz ¼ εdyz ¼ eπ,Aþeπ,B, ð11Þ

but are found with a difference εdxz � εdyz ¼512 cm�1 in the aiLFT

analysis.

Such an unexpected orbital energy splitting has been observed

for other planar cis complexes. Hitchman noticed this type of splitting

for Co(salen),61 which was later attributed to the phase-coupling in

the salen ligand.35 Since the Pt complexes studied here do not have

phase-coupled ligators, the cause of the d orbital splitting is unclear.

Deeth attributed it to an asymmetric π-interaction of coordination

voids on the z-axis.26

Without a specific parameter that accounts for the observed

energy splitting, the fit cannot work well, making eπ indeterminable.

Additionally, the dependency of eσ and eds remains a problem as for

the trans complexes, making it impossible to obtain a reasonable

AOM parameterization.

7.4 | ½CuðNH3Þ4ðSCNÞ2�

½CuðNH3Þ4ðSCNÞ2� is a good example of a complex where different

parameterizations work well. The geometry is taken from the crystal

structure; the coordination units are separate and no other ions are

TABLE 3 AOM expressions for d orbital energies in a trigonal
bipyramidal complex in different parameterizations.

Orbital
AOMadillo
parameter set

Manually adapted
parameter set

dz2 2:75eσ �0:25eds 2:75eσ

dxz 3:5eπ 3:5eπ

dyz 3:5eπ 3:5eπ

dxy 1:125eσ þ1:5eπ 1:125eσ þ1:5eπ �Cdp

dx2�y2 1:125eσ þ1:5eπ 1:125eσ þ1:5eπ �Cdp
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present in the crystal.47 Hydrogen atoms were added to complete the

ammine ligands and a H-only geometry optimization was performed,‡

see Figure 5 for the optimized structure. The sampling procedure was

applied and different parameterizations were tested, shown in

Table 5. It is interesting to note that the three parameterizations

shown yield reasonable parameters, although at different costs. The

remaining, relatively high costs in each fit can be explained by a signif-

icant misdirected valency because of the bent Cu–S=CN bond, which

we cannot capture.

With a D4h coordination sphere, one must in principle consider

d–s mixing. However, Gerloch, Woolley, and Deeth showed that plac-

ing imaginary ligands at the z-axis can account for the low energy of

TABLE 4 AOM parameters of different planar ½PtA4�nþ and ½PtA2B2�nþ complexes with the ligands chloride, ammonia and water.

Complex eσ=cm�1 eπ=cm�1 eds=cm�1 eσ=cm�1 eπ=cm�1 eds=cm�1

Cl NH3

½PtCl4�2� 8739 (1) 1710 (1) 2297 (1)

½PtðNH3Þ4�2þ 14109 (5) 1670 (4) 2842 (2)

trans-½PtCl2ðNH3Þ2� 8770 (1873) 3097 (1) 1298 (933) 23939 (5896) 497 (5) 8525 (2950)

cis-½PtCl2ðNH3Þ2� 14380 (6382) 4364 (451) 5842 (3748) 9498 (6488) �1244 (472) 2493 (3281)

Cl H2O

½PtCl4�2� 8739 (1) 1710 (1) 2297 (1)

½PtðH2OÞ4�2þ 13335 (71) 3946 (102) 1421 (15)

trans-½PtCl2ðH2OÞ2� 10496 (6684) 1811 (6) 3574 (3309) 13938 (6384) 652 (55) 3957 (3219)

cis-½PtCl2ðH2OÞ2� 10267 (1899) 1379 (1123) 160 (319) 9568 (1844) 1688 (1093) 9012 (1932)

NH3 H2O

½PtðNH3Þ4�2þ 14109 (5) 1670 (4) 2842 (2)

½PtðH2OÞ4�2þ 13335 (71) 3946 (102) 1421 (15)

trans-½PtðNH3Þ2ðH2OÞ2�2þ 20168 (9369) 2525 (20) 6173 (4686) 18607 (9373) 2683 (18) 4259 (4684)

cis-½PtðNH3Þ2ðH2OÞ2�2þ 34348 (16,547) 21746 (12246) 3891 (3518) �6821 (16588) �16587 (12246) 3242 (3540)
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F IGURE 4 AOM parameters and cost of the fits for a single
sample of trans-½PtCl2ðH2OÞ2� while scanning along eds of the water
ligands. Fits are obtained with each chloride and water in a group.
Steps in the cost plot are caused by the integer resolution of the fit
output.

F IGURE 5 Coordination unit of CuðNH3Þ4ðSCNÞ2. Notice the
bent Cu–S=CN bond that suggests a distinction between πx and πy
interactions and explains the pronounced misdirected valency.
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the dz2 orbital as well. These coordination voids then have a negative

eσ and an eπ of 0.
4,13,62,63 Indeed, the fits show that the SCN� ligands,

lying on the z-axis, subsume the effect of d–s mixing in their σ param-

eter. When fitting without d–s mixing parameter, SCN� seems to be a

σ acceptor. With d–s mixing considered, it changes from an acceptor

to a weak donor. Of course it is not the chemistry that changes, but

rather its projection onto the model. Assuming that SCN� being a σ

acceptor is unlikely, this example shows that the concept of the coor-

dination void (besides other disadvantages that have been noted in

the literature33) might not adequately reproduce the ligand field split-

ting of these MA4B2 quasi D4h complexes. Including a separation of πx

and πy interactions to account for the bent Cu–S=CN bond does not

generally alter the picture. The splitting of the π parameters is small

and does not justify an interpretation.

In this example, three different parameterizations yield plausible

results and one has to check carefully which one is the most useful,

that is, which one can be interpreted chemically. In this case, the first

parameterization without eds leads to a negative eσ , which seems

improbable. The second and third one yield similar results with a much

lower cost than the first fit. Since overparameterization is an omni-

present danger when dealing with the AOM, we would prefer the sec-

ond set with subsumed eπ parameters.

7.5 | Ferric thiocyanates

The heteroleptic ½FeðH2OÞ6�nðNCSÞn�ð3�nÞþ complexes are known for

their intense red color and serve as a qualitative tool for the detection

TABLE 5 Parameters for
CuðNH3Þ4ðSCNÞ2 with different
parameterizations.

Ligand Parameter/cm�1 no d–s, one eπ d–s, one eπ d–s, two eπ

NH3 eσ 3604 (141) 3686 (79) 3769 (76)

eπx 114 (108) 170 (59) 232 (59)

eπy 232 (58)

eds 567 (15) 564 (15)

SCN eσ �779 (133) 356 (61) 438 (62)

eπx �495 (97) �429 (54) �400 (51)

eπy �330 (57)

eds 1 (1) 0 (1)

Cost 71065 (7441) 6227 (1281) 4507 (1067)

Note: All AOM parameters in /cm�1.

TABLE 6 AOM parameters for a series of ½FeðH2OÞ6�nðNCSÞn�ð3�nÞþ complexes with different configurations.

Complex
H2O H2O' NCS�

eσ=cm�1 eπ=cm�1 eσ=cm�1 eπ=cm�1 eσ=cm�1 eπ=cm�1

m6 ½FeðH2OÞ6�3þ 4527 (205) 1055 (154)

m6 ½FeðH2OÞ5ðNCSÞ�2þ 3321 (150) 694 (81) 9997 (99) 4823 (63)

m4 ½FeðH2OÞ5ðNCSÞ�2þ 6500 (24) 974 (21) 1397 (11) 412 (7) 11236 (10) 6493 (11)

m6 trans-[Fe(H2O)4(NCS)2]+ a 2553 (284) 311 (215) 7715 (282) 2405 (212)

m4 trans-½FeðH2OÞ4ðNCSÞ2�þ b 6309 (14) 1255 (8) 1225 (14) 598 (5) 10,488 (8) 4130 (12)

m6 cis-½FeðH2OÞ4ðNCSÞ2�þ 1877 (150) �49 (77) 8172 (51) 2544 (34)

m4 cis-½FeðH2OÞ4ðNCSÞ2�þ b 4573 (929) 3511 (686) 15300 (1753) 7962 (1397) 6360 (642) 331 (531)

m2 cis-½FeðH2OÞ4ðNCSÞ2�þ b 2479 (225) �1342 (154) 1412 (244) �586 (176) 8316 (265) 415 (195)

m2 cis-½FeðH2OÞ4ðNCSÞ2�þ b 2274 (356) �1099 (384) 7770 (194) 762 (182)

m6 trig.-bipy. ½FeðH2OÞ2ðNCSÞ3� c 388 (106) �256 (127) 6269 (232) �1160 (81)

m4 mer-½FeðH2OÞ3ðNCSÞ3� b 8067 (1434) 5109 (958) 15583 (1366) 6855 (903)

m6 ½FeðH2OÞ2ðNCSÞ3� c 1386 (153) 90 (102) 6312 (663) 1179 (347)

m4 fac-½FeðH2OÞ3ðNCSÞ3� b 4505 (906) 1839 (352) 9778 (804) 3032 (265)

Note: For water sometimes two parameter sets are given in case of different M–O bond lengths.
aInterestingly, the inclusion of d–s mixing does not change the fit substantially.
bNot the ground state multiplicity.
cFive-coordinate.
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of Fe3þ ions.64 Although the characteristic color emerges from a

charge-transfer instead of a d-d transition, the stability and variety of

this family of complexes makes it a good example for the same ligand

having strongly varying parameters in different bonding situations.

The thiocyanate ion can coordinate via the sulfur or nitrogen atom.

Based on the HSAB principle,65 the hard Fe3þ ion is likely to prefer a

hard Lewis base, hence the Fe–NCS coordination is to be expected.

This is supported by experimental evidence66 as well as our calcula-

tions, which predict the nitrogen coordinating complexes to be ca.

60 kJ/mol�1 more stable than the sulfur coordinating ones in the

n¼1 case. We investigated and present complexes with n¼0�3,

which includes the cis and trans configurations for n¼2 and the fac

and mer configurations for n¼3. The high-spin n¼3 complexes are

not stable in our solvent-free calculations, they lose one water ligand

and form 5-coordinate complexes.

The obtained data is presented in Table 6. It is apparent that the

range of parameter values is very large. They differ among the com-

plexes and depend largely on bond distance, global symmetry and

other ligands. Here, these dependencies are intertwined in a way that

it is impossible to separate them. Transferability issues are well

known7 and especially the mutual influence of trans ligands was

discussed critically.8 This again shows that transferability of AOM

parameters between complexes is extremely limited, even between

stereoisomers.

8 | CONCLUSIONS

With the above examples and the ones in previous publications21,25 it

is shown that our procedure can be applied to a variety of transition

metal complexes. Nonetheless, the user must be careful and aware of

problems and ambiguities in the AOM parameterization choices that

might not be obvious.

In the example of ½CuðNH3Þ4ðSCNÞ2�, we saw that different

parameterizations for the same complex may work well and yield

equally reasonable parameter sets. It is not obvious at first glance

which parameterization is the one that corresponds best to the chem-

istry of the complex. We suggest to refer to the expected properties

of the ligands in order to rule out certain results.

The example of ligand addition from a metal-ligand pair up to an

octahedral complex brought up a similar problem and another way of

treating it: while knowing that the linear ½MnðNH3Þ2�2þ should have

a d–s mixing contribution, its magnitude cannot be determined from

the single complex itself. Comparing the obtained AOM parameters

with similar complexes gives us a hint of what the parameter is

likely to be.

The last example of the ferric thiocyanates brings us close to the

boundaries of both approaches. Due to the effects that different

ligands have on each other, especially regarding their varying bond

lengths in different complexes, the transfer of AOM parameters from

one complex to another is delicate.7–9 With the presented data set,

it is difficult to determine with high confidence which set is reliable.

Ideally, one would compare the obtained parameterization for such

cases with experimental data from electronic absorption measure-

ments or magnetic data.

In treating the platinum complexes, we showed that even for

seemingly simple complexes, one can face difficulties to fit a reason-

able set of AOM parameters. We showed an example of partial

dependencies in the AOM equation system and cases where the

parameterization does not fully work.

While the examples above were chosen to highlight challenges

and pitfalls in applying the AOM to transition metal complexes, the

utility of having an unbiased fitting tool was also demonstrated herein

and in earlier works. The easy applicability of AOMadillo combined

with the chemically intuitive AOM parameters make it a tool that

might be used in teaching as well. With aiLFT results from ORCA, the

transitions themselves can be discussed. When using AOMadillo to

obtain AOM parameters, the students would be tasked with impor-

tant choices regarding ligand grouping and parameter sets, while the

mathematics are hidden. It is thus a good tool to test different param-

eterizations and study LFT and the AOM in a hands-on fashion.

There are many examples for which the combination of LFT,

AOM and computational chemistry work in a clear and unambiguous

way. As we showed in previous publications,21,25 it is possible to per-

form bond length and angle scans that can be automatically parame-

terized by AOMadillo. Series over different transition metals or

different formal oxidation states are often instructive: they yield

results that can be parameterized well by the AOM and generally have

clear interpretations. Sometimes trickier, but nevertheless often suc-

cessful, are series with different ligands, where qualitative compari-

sons between ligands in similar environments can be made.
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ENDNOTES

* We note that distortions along normal modes are successfully employed

in other research areas such as theoretical photochemistry or concepts

for electron transfer; applying a Wigner-type sampling procedure here

did not result in useful sample sets.
† For comparison, we found 1.3% s character in the dz2 orbital of D4h

½CuðNH3Þ4�2þ , which can be considered an archetypal example of d–s
mixing.25

‡ If optimized freely, the SCN� ligands orient themselves to the hydrogen

atoms and a Cu–SCN–H–N–Cu pseudo-cycle forms.
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1 Installation

1.1 Prerequisites

The AOMadillo package is designed to be executed from a shell. It takes text
input and produces text output. AOMadillo interfaces ORCA output and relies
on the aiLFT routine provided by ORCA. We assume that you are familiar with
ORCA calculations and have a system with a running installation available.

To install AOMadillo, download the source code from the git repository. You
need a working Python environment of version ≥ 3.6 and the modules numpy and
scipy installed. The current AOMadillo version is tested with Python 3.10.10.
We recommend the use of pyenv for setting up the proper Python version. If
you do not use pyenv, it might be necessary to adjust the shebang line of the
.py files in the AOMadillo subfolder to point to the correct python installation.

Once Python is ready, you need to open the README file and confirm that
you agree to the GNU General Public License under which this software is pub-
lished. Set the boolean in LICENSE = FALSE to TRUE. After that, the software
ahould be ready to run. The files that are meant to be executed are the ones
in the AOMadillo folder, namely aomadillo solve.py, aomadillo sampler.py

and
aomadillo print d.py.

1.2 Package overview

When you extract the AOMadillo package, you will find a folder with the fol-
lowing structure and files:

AOMadillo

.gitignore...............................For repository management

.python-version...................Sets the python version for pyenv
test files

test1.out

...

test4.out................................Example files for testing
basis

aom fitting.py...........Provides functions for the main modules
sampler example input.txt.............Example input file for

aomadillo sampler.py

aomadillo print d.py..............Prints d orbitals from output files
aomadillo sampler.py..........Creates structurally distorted samples
aomadillo solve.py....................AOM parameter fitting script
manual.pdf..........................What you are reading right now
README........................Readme file with the license chackmark
LICENSE.................................GNU General Public License

2
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You can safely remove .gitignore. If you do not use pyenv, you can also re-
move .python-version. The subfolder test files contains truncated example
output files that can be used for testing and are discussed in more detail in the
next section. The file aom fitting.py provides functions that are needed by the
AOM parameter fitting script aomadillo solve.py and can generally be used
to write other useful AOM scripts. Supplementary to aomadillo sampler.py,
the file sampler example input.txt provides a basic template which can be
used to construct an appropriate input file.

For a quick overview over the options each script provides, you can call them
with the -h or --help flag. The flag descriptions provided there are shorter than
those in the manual, so we recommend to refer to the manual if you need more
details.
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3 Command reference

3.1 aomadillo solve.py

This script is used to fit a defined set of AOM parameters to the ligand field
Hamiltonian printed from an ORCA aiLFT CASSCF calculation. The transition
metal must be the very first atom defined in the structure.

aomadillo solve.py [options] [atom-spec] [files]

Attention! List-like arguments must be given without any whitespace!
Whitespaces are interpreted as the end of an argument.
They also must have the same length, i.e. number of ele-
ments as the list of ligand atoms (first positional argument).

positional arguments
atom-spec Numbers of the ligating atoms in the given structure, given

as a list in python format, e.g. [1,2,5,6]. Atom counting
starts at 0, no whitespaces are allowed. Only the directly
bound atoms need to be specified, not every atom of the
ligand.

files Arbitrary number of ORCA CASSCF output files. The
ligand field Hamiltonian must be present.

options
-h, --help Show a help message and exit, ignoring all other arguments.
-v, --verbose Prints more output. Gives insight into the least-squares

solver parameters at the solution and prints the complete
equation system that was used.

parameterization definitions
--nods Remove eds from the equation system. Recommended for

symmetries close to Oh or Td.
--noep Remove eπ parameters. Not recommended.
--psirad P Define on-axis angles ψ in radians for every ligand. Format:

[psi1,psi2,psi3,...], where psi1 is the angle for the first ligand,
psi2 for the second one and so on.

--psideg P Define on-axis angles ψ in degree for every ligand. Format:
[psi1,psi2,psi3,...], analogous to that of --psirad

--psirel P Define on-axis angles ψ by specifying another atom that
defines the molecular plane together with the metal and
ligand atom. Format: [rel1,rel2,rel3,...], with reln being
the in-plane additional atom to ligand atom n. ψ is defined
such that eπx lies in the given plane and eπy is perpendicular
to it.
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--monte Make semi-random start guesses for all parameters. Non-
fixed AOM parameters (see --fixmap) have a random value
in the interval [0, 104], the interval for E is [−106, 0]. For
each file, a new random start guess is made. This may help
detecting underdetermined systems.

-m, --mode M Switch for the ORCA output parser. “NEVPT2” and
“CASSCF” are supported. The default is CASSCF.

equation system fine tuning
-g, --group G Enables soft grouping, which means that an additional

equation is added to the system requiring the members to
be equal. Format: [t1,t2,t3,...] in the same sequence as the
atoms were specified. E.g. [1,1,2,2] requires the parameters
for ligand atoms 1 and 2 and ligand atoms 3 and 4 to be
the same. Note that this is a soft requirement, the solver
may still find lower costs with nonequal parameters.

--epigroup E Define whether eπx
and eπy

for a ligand atom should be the
same (1) or not (0). Format: [a1,a2,a3,...].

-w, --groupweight W Scales the grouping functions by W. Higher numbers mean
that grouping has a stronger effect, since the costs increase
if the equation is not satisfied. Default is 1.

--equations E Provide a file E with additional equations that are fed to
the solver. The equations are read by pythons eval(),
which can be unstable. They must be in the same format
as they are given when calling the program with -v, but
without the equality sign. Each equation is expected to
equal 0. Example: “e[2] - 1000” will require that the second
parameter in the list minus 1000 cm−1 should equal zero.
Note that these are soft requirements, for hard requirements
use --fixmap.

-x, --fixmap F Provide a list of fixed values. Format: [f1,f2,f3,...] with fn
being the value of the parameter n. This list must have as
many elements as there are AOM parameters, including E.
Write x for elements which should not be fixed. Example:
for a complex MX2, [x,3000,x,3000,x] would fix both eσ
parameters at 3000 but let E and eπ to optimize freely. This
is a hard requirement, the set parameters cannot deviate
from the given value, but still add to the total cost of the
fit.

output control options
--noheader Do not print the default table headline. May be useful for

automated data processing.

8

141



-p P, --plotfiles P Generate csv-files with the given name P as prefix. The
files are generated per ligand and per interaction type, for
all output files combined. They consist of two columns:
the first is the M–L bond length in Å, the second is the
corresponding AOM parameter in cm−1.

--plotgroup P Create groups for the --plotfiles flag, i.e. ligands in the
same group have their parameters printed in the same csv-
files. Requires -p/--plotfiles to be set. The specification
works similar to a mapping and requires a list with the same
length as the atom specification list. Format: [t1,t2,t3,...]
in the same sequence as the atoms were specified. E.g.
[1,1,2,2] prints the atoms 1,2 and 3,4 together. Any string
can be given (e.g. [joe,jim,joe,jeff]), whitespaces are not
allowed.

Tips and tricks:

1. In the input list formats, the brackets are not necessary, but subjectively
improve readability.

2. The AOM parameters are printed in the sequence of the ligand atom spec-
ification. So while giving [1,2,3,4] yields the same parameters as [4,3,2,1],
their output sequence is inverted.

3.2 aomadillo sampler.py

This script is used to create structure samples from a reference geometry. The
rules according to which the samples are created are defined in a separate input
file. Usage:

aomadillo sampler.py [options] [input] [reference]

positional arguments
input Text file with specifications about the sampling parameters.

See specifications below.
reference Cartesian coordinate file with the reference structure. Sam-

ples are modifications of this reference.

options
-h, --help Show a help message and exit, ignoring all other arguments.
-n N, --number N Create N samples per bond length step. Default is 5.
-p P, --prefix P Every output sample gets P as prefix.
-p S, --suffix S Every output sample gets S as suffix.
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3.3 aomadillo print d.py

This script is used to extract orbital information from the ORCA output file. It
evaluates whether an orbital has significant d character and prints each orbital
above a set threshold (default is 20%). The output table is useful to set up an
active space, or to assess whether a given CAS calculation has the correct active
space. Usage:

aomadillo print d.py [options] [orca output]

positional arguments
orca output ORCA output file(s) from a CASSCF, single point calcu-

lation or geometry optimization. SP calculations and opti-
mizations need to have the orbital information printed, e.g.
via largeprint.

options
-h, --help Show a help message and exit, ignoring all other arguments.
-t N, --threshold T Threshold of d orbital contribution (in percent) for the or-

bitals to be printed. Default is 20.

4 Guide through a full set of calculations

This section guides you through the complete procedure using the example of
VCl3. This substance is a solid with octahedral [VCl6]

3– subunits. We start
with the preliminary calculations that are done in ORCA, then employ the
structure sampling and the AOM parameter solver to obtain an example set of
AOM parameters.

4.1 Geometry optimization

Before starting the CASSCF calculation, the geometry should be optimized.
This is an important step, since the geometry has a large impact on the AOM
parameters. You can create your structure by different means, i.e. a bare
bones optimization in vacuum, increasing levels of complexity including solvent
models, dispersion corrections or solid-state optimizations with a subsequent
embedded cluster creation. We use a very simple calculation here, since it is
only for demonstration purposes.

# Kohn-Sham-DFT, Becke-Perdew 86 functional,

# def2-SVP Karlsruhe basis set, geometry optimization

! UKS BP86 def2-SVP Opt

* xyzfile -3 3 structure-guess.xyz

If you are not absolutely sure about the spin state of the system, it is ad-
visable to do a geometry optimization for all possible multiplicities. The level
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of theory will depend on the system of interest. Here, we can be relatively sure
that the high spin case is the energetically preferred multiplicity.

It is mandatory for the AOM fitting script that the metal is the first atom in
the structure! It can be valuable to align the molecule to the global axis frame,
ideally according to the closest point group. It makes identification of d orbitals
much easier and can also help with the interpretation of the results.

4.2 Finding the d orbitals

In order to define the active space, we need to define the set of orbitals we want
to use. While canonical Kohn-Sham orbitals from an unrestricted calculation
can be hard to assign, the orbitals from ROHF calculations can be a good
starting point in many cases. This often yields clearly defined d orbitals that
can be fed to the subsequent CASSCF calculation. Other options based on
different localisation schemes exist, and the best option will again depend on
the system of interest.

# Restricted open-shell Hartree Fock

# Largeprint needs to be set for subsequent evaluation

! ROHF def2-SVP Largeprint

* xyzfile -3 3 optimized-structure.xyz

One way of checking the resulting orbitals for their d-character is the script
aomadillo print d.py. Calling it with the output file as the argument yields
a table with all orbitals that have > 20% d-character and the number of the
HOMO.

HOMO: 64

No Energy Occ | dxy dyz dz2 dxz dx2y2 | total

-------------------------------------------------------------

63 -0.17595 1.00000 | 50.1 47.9 0.0 0.0 0.0 | 98.0

64 -0.17114 1.00000 | 0.1 0.0 1.9 89.8 5.6 | 97.4

-------------------------------------------------------------

66 0.51510 0.00000 | 46.6 48.8 0.0 0.1 0.0 | 95.5

67 0.54294 0.00000 | 0.0 0.0 21.4 8.0 54.4 | 83.8

68 0.55635 0.00000 | 0.0 0.0 60.0 0.0 23.4 | 83.4

73 1.15599 0.00000 | 33.9 32.5 0.0 0.0 0.0 | 66.4

74 1.16331 0.00000 | 0.0 0.1 0.5 57.9 1.4 | 59.9

80 1.22862 0.00000 | 31.7 33.0 0.0 0.1 0.0 | 64.8

81 1.31836 0.00000 | 0.0 0.0 9.4 0.8 25.1 | 35.3

82 1.32517 0.00000 | 0.0 0.0 25.5 0.0 9.5 | 35.0

123 1.77276 0.00000 | 15.9 15.5 0.0 0.1 0.0 | 31.5

124 1.77674 0.00000 | 0.2 0.0 0.1 31.4 0.2 | 31.9

125 1.79528 0.00000 | 17.0 17.7 0.0 0.0 0.0 | 34.7

130 2.23245 0.00000 | 0.0 0.0 9.8 0.0 26.5 | 36.3

131 2.23737 0.00000 | 0.0 0.0 26.9 0.0 9.9 | 36.8
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In this list, we find all orbitals that are needed: 63, 64 and 66–68.

4.3 First CASSCF iteration

The active space is defined by a set of orbitals around the HOMO/LUMO gap.
In our example, the active space will have two unpaired electrons in five active
orbitals, i.e. (2,5) in the (electrons, orbitals) notation. With the HOMO being
orbital number 64, the active space has to encompass two orbitals in the occu-
pied space (63–64) and three in the unoccupied space (65–67). Consequently,
we have to rotate only two orbitals from the ROHF calculation: 65 would be
in the active space and needs to be removed, while 68 would be excluded so we
have to insert it. Exchanging the list positions of these two orbitals is achieved
in the %scf block in ORCA. We also need to define the active space as shown
in the input file below.

# read in the orbitals from the single point calculation

! def2-SVP MOread

%moinp "sp-orbitals.gbw"

# here the orbitals are exchanged (rotated)

%scf rotate

{65, 68}

end end

# definition of the active space

%casscf

nel 2 # number of electrons

norb 5 # number of orbitals

mult 3,1 # all possible multiplicities

nroots 10,15 # all possible configurations

actorbs dorbs # call ORCA aiLFT module

end

* xyzfile -3 3 optimized-structure.xyz

After the calculation is complete, the output has to be assessed. Calling
aomadillo print d.py on the output file yields:

HOMO: 67

No Energy Occ | dxy dyz dz2 dxz dx2y2 | total

-------------------------------------------------------------

63 0.42988 0.40000 | 97.2 0.0 0.0 0.0 0.0 | 97.2

64 0.42988 0.40000 | 0.0 97.2 0.0 0.0 0.0 | 97.2

65 0.45586 0.40000 | 0.0 0.0 87.6 0.0 0.0 | 87.6

66 0.42985 0.40000 | 0.0 0.0 0.0 97.2 0.0 | 97.2

67 0.45593 0.40000 | 0.0 0.0 0.0 0.0 87.6 | 87.6

-------------------------------------------------------------
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73 1.20011 0.00000 | 27.2 38.3 0.0 0.0 0.0 | 65.5

74 1.20017 0.00000 | 33.4 22.8 0.0 9.4 0.0 | 65.6

75 1.20031 0.00000 | 5.0 4.4 0.0 56.2 0.0 | 65.6

81 1.30083 0.00000 | 0.0 0.0 9.0 0.0 22.8 | 31.8

82 1.30094 0.00000 | 0.0 0.0 22.9 0.0 9.0 | 31.9

123 1.78932 0.00000 | 2.7 2.4 0.0 27.2 0.0 | 32.3

124 1.78983 0.00000 | 16.1 11.1 0.0 5.1 0.0 | 32.3

125 1.79007 0.00000 | 13.5 18.7 0.0 0.0 0.0 | 32.2

130 2.22836 0.00000 | 0.0 0.0 24.8 0.0 9.7 | 34.5

131 2.22947 0.00000 | 0.0 0.0 9.8 0.0 24.8 | 34.6

Average d contribution: 93.4

Standard deviation of d contribution: 4.7

We find the active orbitals with a non-integer occupation number, confirming
that we composed a good active space. You may have noticed that we used a
fairly small basis set for a transition metal complex. We can improve on that
with a subsequent CASSCF calculation, where we read in the orbitals from the
first. In the second calculation, we choose a larger basis set, say def2-TZVP and
ORCA will project the smaller basis onto the larger one.

Since finding the d orbitals for the very first CASSCF calculation is easier
when the basis is small, it can be helpful to start with a small basis set and
increase the size after the first CASSCF calculation is converged.

4.4 Creating structure samples

Since a single calculation can yield unrepresentative AOM parameters, it is
strongly advised to create structural samples and run additional CAS calcula-
tions on these. The additional workload is in general limited, since it is not
necessary to converge the active space from scratch for every sample.

To create the structure samples, aomadillo sampler.py is used. As input,
the optimized geometry and a separate input file are needed. This is an input
we can use to create a few samples:

bond 0,1

atoms 1

bondrel 0,0,1

angrel 0.2,0.5

groupend

bond 0,2

atoms 2

bondrel 0,0,1

angrel 0.2,0.5

groupend
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bond 0,3

atoms 3

bondrel 0,0,1

angrel 0.2,0.5

groupend

bond 0,4

atoms 4

bondrel 0,0,1

angrel 0.2,0.5

groupend

bond 0,5

atoms 5

bondrel 0,0,1

angrel 0.2,0.5

groupend

bond 0,6

atoms 6

bondrel 0,0,1

angrel 0.2,0.5

groupend

This specifies six metal-ligand bonds, defined via the atoms involved in the
bond, and the respective intervals for bond lengths and angles. Note that
bondrel 0,0,1 sets no bond length changes at all.

Calling aomadillo sampler.py ex-input.inp optimized-structure.xyz

will create five coordinate files called sample-00-00.xyz to sample-00-04.xyz.
The first running number counts the bond length step (0 here because we did
not set any), the second identifies a structure with a specific angle value from
the randomly generated set of coordinates.

4.5 Second CASSCF iteration

With the structure samples and the first successful CASSCF calculation ready,
the sample CASSCF calculations can be run. You will need a separate ORCA
input file for each sample. Remember to read in the orbital file from the first
CASSCF calculation on the reference structure to accelerate convergence.

! def2-SVP MOread

%moinp "casscf-orbitals.gbw"

%casscf

nel 2

norb 5
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mult 3,1

nroots 10,15

actorbs dorbs

end

* xyzfile -3 3 sample-00-00.xyz # one for each sample

The calculations should run significantly faster than the first one, since the
input orbitals are already converged at a very similar geometry. The composition
of the active space of the samples should not have changed significantly from
the reference geometry (less than 1% in each orbital).

4.6 Fitting AOM parameters

Before calling aomadillo solve.py to perform the fit, we should have a good
idea of what we expect. The given geometry is almost octahedral, so we can
safely omit d–s mixing. The M–L bonds are to a very good approximation
cylindrical, so it is justified to subsume eπx

and eπy
. We now need to check

how similar the different bonds are. While all ligands coordinate via the same
element, the bond lengths can be different, which would require different AOM
parameters. Checking the bond lengths for this example yields:

bond V0-Cl1 V0-Cl2 V0-Cl3 V0-Cl4 V0-Cl5 V0-Cl6

bond length / Å 2.509 2.509 2.506 2.506 2.509 2.509

It is safe to assume that these are sufficiently equal to be grouped into one
set, but we could also group the ligands 1,2,5,6 and 3,4 separately.
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Let us explain the input we gave. We decided to omit d–s mixing, hence
we added the flag --nods. The default parameterization already subsumes eπx

and eπy
, so no further action is required here. The -g flag is required to group

ligands, i.e. introduce restraints that set their parameters to be equal. This
works like a map: we provide a list of the same length as the list of ligand
atoms and assign a label to each one, in this case the labels we chose were 1 or
2. Ligand atoms with the same label will be grouped. The last two arguments
are mandatory: The list of ligating atoms, and a list of files where the fit is
performed. Each file is processed separately with a result that is not affected
by the other files.

The output is read as follows. The first column is the name of the respective
CASSCF output file. The column Cost shows the cost of the fit as defined in
the least-squares method. E is the spherical energy contribution to the ligand
field, and the following columns list the AOM parameters. Their order is the
same as given in the input list, in this example from 1 to 6.

5 Non-ORCA input

We emphasized that AOMadillo is written to interface ORCA output files. Since
the ORCA output files that are read in are in plain text format, it is also possible
to provide any file that contains the necessary information. The two blocks that
must appear in the text file fed to AOMadillo are the geometry information and
the ligand field matrix.

The geometry is read in Cartesian coordinates in Å, starting with the line
CARTESIAN COORDINATES (ANGSTROEM) and ending at CARTESIAN COORDINATES

(A.U.). It then removes the top and bottom two lines. The remainder is in-
terpreted as xyz data separated by whitespace with the first column being the
element. This is an example of the text from an ORCA output file that is
read in the geometry block; everything that is cut away during processing by
AOMadillo is coloured red.

CARTESIAN COORDINATES (ANGSTROEM)

---------------------------------

Cr -0.000000 -0.000000 -0.000000

N -2.144339 -0.057192 0.032625

N 2.146088 -0.031935 -0.028289

N -0.023993 -2.145026 0.022996

N -0.064076 2.145255 -0.025746

N 0.010953 0.016644 -2.144513

N 0.071850 0.067358 2.142185

H -2.612167 0.869343 0.038785

H -2.550904 -0.545161 0.854201

H -2.575132 -0.546367 -0.775666

H 2.608195 0.897358 -0.033383

H 2.558402 -0.513438 -0.850767
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H 2.578130 -0.514441 0.783371

H 0.908760 -2.599719 -0.003294

H -0.532841 -2.578058 -0.771842

H -0.479416 -2.563140 0.857235

H 0.858490 2.619709 -0.054389

H -0.531793 2.571377 0.797640

H -0.571609 2.550693 -0.836000

H 0.678603 0.697604 -2.555600

H -0.894719 0.260854 -2.589463

H 0.270505 -0.883518 -2.591955

H 0.753651 0.753805 2.519761

H 0.339068 -0.823802 2.602862

H -0.820626 0.326325 2.605025

----------------------------

CARTESIAN COORDINATES (A.U.)

The ligand field matrix is read by searching for the line AILFT MATRIX

ELEMENTS (CASSCF). It reads the following nine lines and truncates the head of
the list and the first column such that only the five lines with the ligand field
matrix remain. This is an example of the text from an ORCA output file that
is read from the aiLFT block; everything that is cut away during processing by
AOMadillo is coloured red.

AILFT MATRIX ELEMENTS (CASSCF)

------------------------------

Ligand field one-electron matrix VLFT (a.u.) :

0 1 2 3 4

0 -2.576764 0.000021 0.000221 -0.000005 0.001112

1 0.000021 -2.576725 0.001479 0.000052 0.000814

2 0.000221 0.001479 -2.503497 0.001837 0.000013

3 -0.000005 0.000052 0.001837 -2.576706 -0.001042

4 0.001112 0.000814 0.000013 -0.001042 -2.503660

You can use this parsing behaviour to alter output files that are read by AO-
Madillo. An example could be the addition of dummy ligands in the structure
section of an output file, in order to test arbitrary ligand positions (e.g. coor-
dination voids). It is also possible to compose a text file that has the necessary
information so it can be fed into aomadillo solve.py. See the example below:

CARTESIAN COORDINATES (ANGSTROEM)

lines

Cr -0.000000 -0.000000 -0.000000

N -2.144339 -0.057192 0.032625

N 2.146088 -0.031935 -0.028289
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N -0.023993 -2.145026 0.022996

N -0.064076 2.145255 -0.025746

N 0.010953 0.016644 -2.144513

N 0.071850 0.067358 2.142185

are

important

CARTESIAN COORDINATES (A.U.)

AILFT MATRIX ELEMENTS (CASSCF)

lines

must

be

here

just -2.576764 0.000021 0.000221 -0.000005 0.001112

a 0.000021 -2.576725 0.001479 0.000052 0.000814

column 0.000221 0.001479 -2.503497 0.001837 0.000013

to -0.000005 0.000052 0.001837 -2.576706 -0.001042

skip 0.001112 0.000814 0.000013 -0.001042 -2.503660

The above lines are read by AOMadillo without problems. The line count is
important and the file name should end with .out.

6 Tips and Tricks

• It is advisable to orient the molecule in the global axis frame to simplify the
orbital assignments, as also recommended in the ORCA manual. We had
good experience with setting the metal coordinates fixed in the geometry
optimization using

%geom constraints

{C 0 C}

end end

in the input file.

• A common recommendation when setting up active spaces is to use local-
ized orbitals. We have had good experiences with the ROHF approach
mentioned above and needed to localize orbitals only when other ways
of obtaining a good d orbital space failed. It can be worthwhile to try
different formalisms (HF/KS) and basis set sizes first.
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6 Conclusion and Perspective

6.1 Perspective

As it is always the case with scientific work: the more we learn, the more questions we
can ask. Some observations that were made in chapter 5 did not allow for drawing clear
conclusions, so more research is needed. In this section, I want to point out which topics
could be investigated further. Some preliminary results are shown here that can be taken
as incentives to investigate the topic in more detail.

6.1.1 Phase-coupling in non-coupled ligators

It was briefly mentioned in chapter 4 and section 5.3 that Deeth observed an orbital
splitting for cis-[NiF2(CO)2] and cis-[PtCl2(NH3)2] that resembles the orbital splitting of
phase-coupled ligators, although in this complex no coupling should exist.[84] While I
think that the attribution of this effect to coordination void π interactions is wrong, it is
certainly an observation that needs to be investigated. During the work on the AOMadillo
package, similar results have been obtained for other planar cis complexes, although we
were not able to explain them. We generally noticed difficulties in finding good parameter
sets for complexes with a strong dipole that does not coincide with one of the metal-ligand
bonds. Planar cis complexes usually have this feature, so there might be a connection
between the dipole and the apparent phase-coupling.
Experimental evidence of the observed orbital splitting is needed to confirm that it is

not an artefact of the CASSCF calculation. The data obtained must be compared with
complexes with truly phase-coupled ligators. This could be supported by the extension
of the AOMadillo package by allowing for a parameterization of the Orgel effect. Other
complexes with strong dipoles might be investigated to confirm or rule out a possible
connection to the phase-coupling.

6.1.2 The divide

In chapter 4, it was stated that neither the d–s mixing approach nor the coordination void
was disproven and a few indicators that are in favour of the d–s mixing interpretation
were presented. In Table 6.1, the orbital compositions of the active space in the series of
[Mn(NH3)n]2+ are shown, which was also discussed in section 5.3. In addition to this
discussion, I want to point out a few things that might help disprove the coordination void
concept at some time. In section 5.3, we pointed out that the admixture of s and p orbitals
coincides very well with the necessity and even magnitude of d–s mixing parameters. The
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connection of the s orbital coefficients and the magnitude of mixing could be investigated
further, although it is probably strongly basis set dependent.
In Table 6.1, the orbital composition of the active space of some complexes in the

series are shown. It is apparent that there are orbitals with considerable admixtures of
p orbitals that can be parameterized without any d–p mixing parameter. These cases
are very common, but their parameterization rather works by accident than because it is
complete. Other parameters subsume the d–p mixing contribution, as can be well seen for
example for the tetrahedral n = 4 and square pyramidal n = 5 cases in Table 6.1. In other
cases, e.g. the linear n = 2 one, the orbital composition shows a substantial s contribution,
but it cannot be captured due to overparameterization.
We showed that the n = 5 case in fact has a significant d–p mixing that cannot be covered

by other parameters. From the perspective of coordination void placement, there is no
suitable void space in the trigonal bipyramid. In consequence, it is apparently not possible
to account for the low dxy and dx2−y2 orbital energies in the Gerloch–Woolley version of the
AOM. Another interesting feature of d–s mixing is that in any symmetry, the complex can
be arranged such that the only affected orbital is the dz2 orbital.[35] The coordination void
does not have this feature, it affects orbitals according to its position like a ligand would.
That means that although d–s mixing and coordination voids were successfully used
especially for D4h complexes, there must be cases were the coordination void affects other
orbitals than the dz2 orbital and it might be possible to distinguish both effects. Linear
complexes come to mind, where voids would be placed in some shape in the xy-plane,
affecting especially the dxy and dx2−y2 orbitals. Deeth discussed such examples recently,
although his arguments are difficult to verify since linear complexes are underdetermined
for three or more parameters. His approach to make the parameter sets determined is the
negligence of ammonia π interactions, which might be an oversimplification as discussed
in section 5.2.[85]
These approaches could provide a handle to differentiate SJ and GW pictures of the AOM

to an extent were the parameterizations are so different, that they cannot be successfully
applied to the same problem anymore. A further investigation of linear and trigonal
bipyramidal complexes might therefore be worthwhile and could shed new light onto the
subject.

6.1.3 Differential covalency

When presenting the derivation of the Condon–Shortley or Racah parameters, respectively,
in chapter 3, I stated that I have objections against using LFT with ligands like CO or
CN– . This is because the two-electron parameterization is derived for spherical ions: it
assumes all the d orbitals to share the same radial part. This assumption still works well
for more covalently bound ligands, as long as the resulting size of the d orbitals is still
similar. Problems arise when a strong differential covalency is found. In this case, some d
orbitals are spatially more expanded than others, and in consequence the two-electron
integrals must differ depending on the integrated orbital. The standard Condon–Shortley
parameterization cannot reliably capture this, as the parameter Rk in Equation 3.17
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Table 6.1: Active space orbital compositions of complexes of the type [Mn(NH3)n]2+,
point groups are given regarding the ligating atoms only. Orbital compositions
are given in percent. If an orbital compositions’ sum is not 100%, the rest is
composed of ligand orbitals. Orbitals are ordered by their relative energy ε
given in cm−1, as obtained by the CASSCF calculation described in section 5.3.

ml ε/cm−1 d s p AOM representation

n
=

2,
C
∞

v xy 0 100.0 0
x2 − y2 0 100.0 0
xz 2806 98.9 2eπ
yz 2806 98.9 2eπ
z2 7895 89.9 6.6 0.8 2eσ − 4eds

n
=

4,
T
d

x2 − y2 0 98.4 (24/9)eπ
z2 4 98.4 (24/9)eπ
yz 4770 93.8 1.9 (4/3)eσ + (8/9)eπ
xz 4813 93.8 1.9 (4/3)eσ + (8/9)eπ
xy 4856 93.8 1.9 (4/3)eσ + (8/9)eπ

n
=

5,
D

3
h xz 0 98.0 3.5eπ

yz 0 98.0 3.5eπ
xy 2945 94.4 1.7 1.5eπ + 1.125eσ − Cdp

x2 − y2 2945 94.4 1.7 1.5eπ + 1.125eσ − Cdp

z2 13744 90.9 0.1 2.75eσ

n
=

5,
C
4
v yz 0 98.3 3eπ

xz 41 98.3 3eπ
xy 1674 97.8 4eπ
z2 6512 91.2 1.1 2.6 2eσ − eds

x2 − y2 16225 90.7 3eσ
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does not account for any asymmetry. It is possible that in a fit to electronic states, this
asymmetry of the two-electron integrals leaks into the one-electron operator, which is the
only one that can account for complex asymmetry.
Investigating this topic might be more complicated, and even more so is finding a better

two-electron approximation. The first step that is needed is a rewrite of AOMadillo such
that it performs a fit to the electronic states instead of the one-electron ligand field matrix.
This enables direct access to the two-electron integrals and their parameterization. While
it is a considerable amount of work, it is still straightforward. The second step is the
improvement of the Condon–Shortley parameterization which might be less complicated
to implement at this point, but there is no established recipe that can be used. An extensive
discussion of this problem can be found in ref. [36]. I want to present a rather simple, yet
promising idea that might be worth testing.
Hoggard proposed the use of relational parameters that depend on the orbitals in the

integrals for octahedral complexes.[132]

⟨didj |Ĝ|dkdl⟩ = ϵn⟨didj |Ĝ|dkdl⟩0 (6.1)

Here, n is the number of eg orbitals in the integral, automatically accounting for integrals
different from an assumed standard integral. The original integral is still parameterized
as usual, and thus the above equation does not change the overall structure of electronic
state energy expressions. The approach might be especially useful as the differential
covalency can be directly derived from MO coefficients in CASSCF calculations, so the
rather arbitrary factor ϵn could be replaced by one that is derived from ab initio results.

6.1.4 Solids and highly charged complexes

Ligand field theory originally emerged from the investigation of crystals, where the first
coordination shell of the investigated transition metal was viewed as isolated unit. While
it is common practice to extract such coordination subunits from crystal structures for
quantum chemical calculations, this approach can pose problems when this unit is highly
charged. Many very common solids like simple oxides would result in charges that are
so high that an isolated molecule would be unrealistic (e.g. subunits of Fe2O3 would be
octahedral [FeO6]9– ). In a crystal, the high charges are compensated by the surrounding
lattice, something that is not automatically accounted for in a molecular quantum chemical
calculation.
A common way to deal with this problem without resorting to solid state calculations

with periodical cells and wave functions is to surround the coordination subunit with a
simplified model of the crystal lattice. It is separated into three zones: a quantum region
that consists of the metal and the first ligand sphere, a frozen orbital or effective core
potential1 region where the electrons of the atoms are represented by orbitals or potentials
without optimization, and a point charge region that is designed such that the charges
decrease with the distance to the central metal, until they reach zero charge.[60,134–136]
While this embedded cluster approach is widespread, the setup of a calculation is more
1Effective core potentials are designed to substitute orbitals/electrons to reduce computational cost.[133]
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complicated and the structural distortion employed by AOMadillo might need restructuring.
At the moment, atoms are grouped and then moved by the same angle per group. In a
lattice with different regions, only moving the quantum region could lead to an asymmetric
charge compensation, since the next layer would not move accordingly, as schematically
depicted in Figure 6.1a. Moving atoms that are grouped to a ligand atom would lead to
clashes in the part further away from the metal centre, see Figure 6.1b and 6.1c. A good
distortion should be scaled with the distance to the metal, where the closest atoms are
moved as usual, the next layer follows that distortion but less pronounced, successively
until the end of the lattice, where the distortion should be zero. Such a situation is shown
in Figure 6.1d. From the schemes shown in Figure 6.1, it is apparent that the scaled
distortion probably yields the best results, as it does not produce steps and preserves local
geometries well. However, it also becomes apparent that disregarding the lattice distortion
might be a small error and therefore still permissible. The scheme shows a rotation by
5◦, much larger than the one usually employed 0.5◦ in the developed procedure. A static
lattice might pose no problem here, but as usual, thorough testing is needed before a
definitive statement can be made.
Expanding the scope of the distortion scheme to the embedded cluster approach would

enable the investigation of a larger selection of complexes, most notably oxides and sulfides.
Since the embedding method is an established scheme, it is very likely that the extension
works well.

6.1.5 AOM-enhanced force fields

In chapter 4, the application of the AOM for the generalization of force fields in molecular
mechanics calculations is pointed out. The AOM seemed suitable to include effects of
ligand field stabilization energies into transition metal force fields, able to account for
example for the complex bond angles that are often not explainable by simple repulsion
models. Despite the work of Deeth in that field, this approach was not generalized yet,
and a major problem was the availability of reliable data. The use of aiLFT is promising,
since it provides insight that is almost unobtainable by experiment, as shown in section 5.1
and 5.2. It seems that if the accuracy of the calculated data is reliable enough, Deeth’s
approach could be enhanced by the calculated data. The true issue with AOM enhanced
force fields is the limited transferability of the parameters, and their pseudo-local character.
Although they represent a single metal-ligand interaction, they inevitably also include
ligand-ligand effects and heavily depend on the rest of the complex. A force field built on
a set of AOM parameters thus suffers from the same problems that transition metal force
fields have in general: it is specifically designed for a given complex. The transfer of such
a force field to other complexes is then limited, at best.
Some features still seem favourable and there might be hope. Several results presented

in chapter 5 indicate that AOM parameters for metals in the same period mainly depend on
their charge, so some transferability between metals can be assumed. While it was mainly
observed for the first transition metal row in the +2 and +3 oxidation states, it seems
promising enough to extend the investigation to other transition metals. There is also a
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(a) Quantum region (ligand atoms) only.
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(b) Cone behind ligand atoms.
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(c) Region close to the ligand atoms.
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(d) Scaled by distance from the metal atom.

Figure 6.1: Different schemes of applying a 5◦ rotation to a ligand (web blue). The rest of
the lattice is coloured depending on its rotation angle (see colour bar). Pale
blue dots are not affected by the rotation at all, the steel-blue ones are rotated
by the same angle as the ligand. The metal atom (orange) is placed in the
origin. The scaled rotation (d) produces the smoothest lattice, although the
simplest rotation (a) might be small enough to be permissible, too.
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chance that the influence of ligands on each other can be predicted in some empirical
way. From section 5.1, we know for example that hard halide ligands will make softer
ligands have longer bond lengths compared to homoleptic complexes. This ligand-ligand
interaction might be put into empirical relationships to correct errors that arise from
parameter transfer. With the advent of machine-lerning techniques, such relationships
might be more easily obtained by screening a large set of complexes.

6.2 Conclusion

We saw how aiLFT can be used as a tool to obtain qualitatively correct results. Trends are
reproduced correctly, which in principle allows interpolation of unknown AOM parameters
for other systems. Although it is known for more than 50 years by now, we also saw
how the AOM can yield parameters that represent ligand characteristics in a chemically
intuitive way. The presented scheme of using asymmetric distortions was proven to be
reliable enough to correctly predict AOM parameters for otherwise underdetermined
systems. It is sensitive enough that the ammonia π interactions discussed in section 5.2
were first observed with reference complexes of high symmetry, and the presented proof
was found later for cases that do not depend on the asymmetric distortions at all.
On a personal note, I am afraid that the AOM and maybe LFT in general is reaching its

limits, as chemistry is becoming more complicated and many transition metal complexes
are not easy to describe with this simple model any more. Ligand non-innocence is a
popular example, were the formal oxidation state of the metals is not clear and simple
d–d transitions often do not exist.[137] Other cases involve ligands like bipyridine, where
metal d orbitals become part of a conjugated system. It is of course still worth trying to
parameterize apparently unsuitable complexes in terms of LFT, and there are enough
examples of effects that seemed to be impossible to cover but were managed to be
included eventually. Moreover, even parameter fits that do not yield reliable data could be
of qualitative use. The π backbonding ligands are a good example, since they are probably
out of scope for LFT, but still a parameterization can yield valuable insight. The essence of
these observations is that we must expect less of LFT in terms of being able to reproduce
electronic state energies for complicated molecules, but qualitative fits remain a valuable
tool to conceptualize metal-ligand interactions.
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