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Kurzzusammenfassung

Kurzzusammenfassung

Diese Dissertation befasst sich mit der entstehenden Herausforderung der Datenverarbeitung bei
der Entwicklung des automatisierten Fahrens.

Die zunehmenden Datenmengen, die bei der Entwicklung und dem Betrieb dieser Systeme
anfallen, erfordern effiziente Handhabungsstrategien. Ein umfassender Überblick über den
aktuellen Stand der Technik zeigt, dass die Datenreduktion eine praktikable Lösung für die
Bewältigung dieser großen Datenmengen darstellt. Darüber hinaus zeigen sich, durch eine
Analyse des Standes der Technik, verschiedeneHerausforderungen, bei denen etablierteMethoden
unzureichend sind, wie z.B. der Umgang mit dem offenen Kontext. Daraus ergibt sich die primäre
Forschungsfrage dieser Dissertation:
(1) Wie kann eine Datenreduktion umgesetzt werden, um diese Herausforderungen zu bewältigen?

Die in dieser Arbeit vorgeschlagene Lösung ist ein neuartiger Ansatz zur Datenreduktion, der das
Konzept der Relevanz integriert und darauf abzielt, den Informationsbedarf in den Daten genau
zu definieren und zu deklarieren. Dieser Ansatz ermöglicht eine bessere Kontrolle über den
Leistungsverlust in späteren Anwendungsfällen und führt zu zwei sekundären Forschungsfragen:

(2) Wie kann Relevanz formal definiert werden, um ihre Verwendung bei der Datenreduktion zu
ermöglichen?

(3) Wie wirkt sich die neuentwickelte Methode der Datenreduktion auf die Leistung der nachfol-
genden Anwendungsfälle aus?

Zur Beantwortung der zweiten Frage wird das Konzept der Relevanz in der Literatur intensiv
untersucht. Es wird ein allgemeines Relevanzmodell für das automatisierte Fahren, sowie eine
Methodik zur Ableitung und Validierung von anwendungsfallspezifischen Relevanzmodellen en-
twickelt. Die Anwendung dieser Methodik auf einen ausgewählten Anwendungsfall demonstriert
ihre Wirksamkeit.

Zur Beantwortung der dritten Frage wird eine Architektur für relevanzgesteuerte Datenreduktion
vorgeschlagen. Ein Prototyp, der diese Architektur implementiert, wird im Zusammenhang mit
der Wahrnehmung und dem Training neuronaler Netze evaluiert, wobei der Schwerpunkt auf
semantischen Segmentierungs- und Objekterkennungsaufgaben liegt. Die Ergebnisse zeigen,
dass eine relevanzgesteuerte Datenreduktion den Leistungsverlust bei Wahrnehmungsaufgaben
wirksam kontrollieren kann. Beim Training neuronaler Netze ist jedoch eine starke Aufgabenab-
hängigkeit zu beobachten, wodurch die Grenzen des Ansatzes und Möglichkeiten für zukünftige
Forschung aufgezeigt werden.
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Kurzzusammenfassung

Zusammenfassend stellt diese Arbeit einen Beitrag zu zwei Bereichen dar:
Erstens werden Methoden zur Bewältigung der Herausforderungen bei der Verarbeitung großer
Mengen von Fahrzeugdaten und der Reduktion dieser Daten auf die Anteile mit relevanten
Informationen entwickelt.
ZweitenswerdenAnsätze zur expliziten Berücksichtigung der großenVielfalt vonRelevanzkonzepten
bei der Entwicklung des automatisierten Fahrens aufgezeigt.
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Abstract

Abstract

This research addresses the emerging challenge of data handling in the development of automated
driving systems. The increasing volumes of data generated in the development and operation of
these systems necessitate efficient handling strategies. A comprehensive review of the current
state of the art reveals data reduction as a viable solution to manage these large data volumes.
Further, an analysis of the state of the art establishes various challenges where established
methodologies are insufficient, such as the open context. This leads to the primary research
question of this dissertation:

(1) how to effectively implement data reduction while addressing these challenges.

The proposed solution in this work is a novel data reduction approach that integrates the concept
of relevance, aiming to precisely define the informational needs within the data. This approach
hypothesizes an enhanced control over performance loss in subsequent use cases, leading to two
secondary research questions:

(2) How can relevance be formally defined to facilitate its use in data reduction?

(3) What is the impact of this data reduction method on the performance of subsequent use cases?

To answer the second question, the concept of relevance is extensively explored in the literature.
A general relevance model for automated driving is developed, along with a methodology for
deriving and validating use case-specific relevance models. Application of this methodology to a
selected use case demonstrates its effectiveness.

Addressing the third question, an architecture for relevance-guided data reduction is proposed. A
prototype implementing this architecture is evaluated in the contexts of perception and neural
network training, focusing on semantic segmentation and object detection tasks. The findings in-
dicate that relevance-guided data reduction can effectively control performance loss in perception
tasks. However, in neural network training, a strong task dependency is observed, highlighting
limitations of the approach and opportunities for future research.

In conclusion, this work represents a contribution in two areas. First, to overcoming the challenges
of handling large amounts of automotive data and reducing this data to only those parts with
relevant information. Second, to an explicit consideration of the wide variety of relevance
concepts in the development of automated driving.
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1 Introduction

1 Introduction

This chapter will establish the basis of this thesis. First, the initial motivation for the research
area is presented. From this, the need for the research topic, with its initial situation and research
question (RQ)s, is derived. As a guide for the following chapters, the methodology for answering
the RQs within the structure of the whole thesis is presented.

1.1 Motivation

Automated driving (AD) promises to bring about various societal benefits with its introduction.1,2

Increased safety within the traffic environment is often cited as the primary positive effect
associated with AD. The expectation of increased road safety is especially manifested in the
Vision Zero4 of the European Union and Vision for Safety5 of the National Highway Traffic Safety
Administration of the United States. Further, AD is believed to enable major shifts in how and
especially where we live, changing the range of available mobility options. The magnitude and
variety of benefits are expected to increase with the increasing level of AD of released vehicles.1

A taxonomy for levels of automation is defined by the Society of Automotive Engineers (SAE) in
the standard J30163. The standard gives a visual representation as shown by figure 1-1 ranging
from level 0 to level 5. Level 0 indicates no automation of the driving task. Levels 1 and 2,
called advanced driver assistance systems (ADAS), identify automation that assists the driver in
the driving task, while the driver remains responsible for the safe operation. Level 3 is the first
level of AD, where the automated driving system (ADS) can temporarily take both control and
responsibility for the driving task. The driver remains a fallback layer if the system reaches the
limits of its operational capabilities. This is also the distinguishing factor to level 4, as here the
ADS cannot rely on the driver to take over to reach a safe state. The operation of level 4 ADS is
limited to certain environments, if the operation is possible ”everywhere in all conditions”3, it is
denoted as level 5.

With higher levels of AD, it is not only the way we drive now that will be improved. More so,
new concepts for mobility are emerging and changing the way we drive in a fundamental way.2

1 Szimba, E.; Hartmann, M.: Assessing travel time savings and user benefits of automated driving (2020)
2 Lenz, B.; Fraedrich, E.: New Mobility Concepts and Autonomous Driving: The Potential for Change (2016)
3 Shi, E. et al.: The Principles of Operation Framework (2020)
4 Tingvall, C.; Haworth, N.: Vision Zero: An ethical approach to safety and mobility (1999).
5 U.S. Department of Transportation NHTSA: Automated Driving Systems: A Vision for Safety (2017).
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Figure 1-1: Overview of levels of automated driving according to SAE3

Current systems up to level 2 have increased the safety and comfort of operating a vehicle.6

Systems of level 3 and especially level 4 allow for completely new modes of operation2. ADS
equipped vehicles enable individual mobility for groups, that were previously reliant on other
people, such as children, the elderly, and people without driver’s licenses.7 Disruption through
car sharing enables a substantial change in the necessity to own and provision space for individual
cars.2 Accordingly, AD not only promises to improve our current traffic environment but also
opens the way to a new understanding of mobility that can fundamentally change the way we live.

1.2 Initial Situation and Research Questions

In order to leverage these benefits, ADS realizing high levels of AD are required. Currently,
ADS are only publicly available at lower levels of automation, therefore many benefits are not
yet available. The development and release of the corresponding levels remains a challenge to
this day. Not only the operation of ADS but also both development and release are inherently
dependent on data.

Considering the operation of ADS, Kraus, Ivanov, and Leitgeb8 state that the required bandwidth
inside the car for AD is going to increase by a factor of three to four when comparing SAE level
2 to SAE level 3 and higher systems. Further, current development of AD, especially through the

6 Horn Martin; Watzenig, D.: Automated Driving: Safer and More Efficient Future Driving (2017).
7 Cyganski, R.: Automated Vehicles and Automated Driving from a Demand Modeling Perspective (2016), p. 240.
8 Kraus, D. et al.: Approach for an Optical Network Design for Autonomous Vehicles (2019).
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use of neural networks, necessitates large amounts of data.9,10 It stands to reason that increasing
levels of AD will also necessitate increasing amounts of data. Feng et. al11 has shown an increase
in size of publicly available datasets between 2014 and 2019 of two orders of magnitude.

Considering the aspect of creating a safety argumentation for the release of AD, there is currently
no established standard method to provide such an argumentation. Wachenfeld and Winner12

present an example stochastic safety proof for a highway pilot ADS on German highways. They
assume that a reduction of fatal accidents to half the original number constitutes acceptable
safety and require a 95 % confidence threshold for the reduction. Under these assumptions,
using the Poisson distribution as the underlying model, Wachenfeld and Winner show that to
prove acceptable safety for a highway pilot 6.62 billion kilometers driven with no fatality are
necessary. To convert this distance requirement into a data requirement, a few assumptions
have to be made. Using the estimated range of data rates for level 4 and 5 ADS of 4.2 TB/h to
76 TB/h13 and assuming an average speed of 130 km/h, it yields the requirement to handle the 0̃.2
to 3.9 Zetabytes of data produced. The white paper14 of the International Data Corporation and
Seagate places the amount of data created in 2023 in the realm of 100 zetabytes, which means
that a singular safety proof equates to up to 4̃% of the yearly worldwide data creation. While this
example on the proof shows the necessity for more feasible safety assurance methods, and it also
exemplifies the need for data reduction methods to handle the inevitably large amounts of data
associated with a release of AD.

Further, it can be assumed, that with the increasing complexity of the operating environment
ADS are designed for a respective increase of the data requirement will be required. A key aspect
of the challenge of releasing AD is its open context. Rueß and Burton define an open context
as ”an environment that cannot be fully specified in a way that desirable system behavior can
be defined for each possible set of conditions ”15. While the open context is mostly known as a
hurdle for safety argumentation, it also poses a challenge for data reduction. Through the inherent
lack of specification in the open context, it is impossible to a-priori fully specify a data reduction
for an ADS. Since an a-priori specification is unavailable, the working specification has to be
created and adjusted while it is being used. Such a lack and imprecision of a specification hinders
the application of data reduction, due to the risk of removing potentially relevant information. A
data reduction method that can take into account the growing specification of the open context is
needed. As it will later be shown, an explicit consideration of relevance enables this capability
for data reduction.

9 Klitzke, L. et al.: Vehicle Data Management System for Validation of ADS (2019).
10 Houben, S. et al.: Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety (2022).
11 Di Feng et al.: Deep Multi-modal Object Detection and Semantic Segmentation (2021).
12 Wachenfeld, W. H. K.; Winner, H.: The Release of Autonomous Vehicles (2016).
13 Kraus, D. et al.: Approach for an Optical Network Design for Autonomous Vehicles (2019).
14 David Reinsel et al.: The Digitization of the World: From Edge to Core (2018).
15 Rueß, H.; Burton, S.: Whitepaper: Safe AI. How is this possible? (2022), p.8.
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Knowing the motivation behind, the initial situation and the challenges concerning the release of
AD, this work has the objective of outlining the means to address the challenges of data reduction
described above. This objective directly yields the first RQ:

Research Question 1
How can the open context present in automated driving be addressed in data reduction?

As mentioned above, the concept of relevance, which will be expaned on in the subsequent
chapters, is key to solving the open context for data reduction. Due to the lack of current
understanding about the concept of relevance, a second RQ emerges:

Research Question 2
How can the concept of relevance, in the context of a given use case, be formally described?

Given an answer to RQ1, an additional RQ presents itself. Since RQ1 only addresses if there is a
method to address the open context and how it might look like, the next question towards that
answer is how well does it perform? The answer for this question can only be given in relation to
a given use case, for which the data reduction is designed. As such, a third RQ is formulated as
follows:

Research Question 3
What is the impact on the use case of relevance-driven data reduction?

1.3 Methodology & Structure of the Dissertation

In order to answer the presented RQs, this thesis will be structured in the following way, as
displayed in figure 1-2.

Chapter 1 presents the starting point for this work. The general motivation of why AD is a
technology with societal benefit is introduced. Further, the current situation at the time of writing
is laid out and a knowledge gap between the current situation and target situation is identified.
To close the knowledge gap, RQs are derived.

Chapters 2 and 3 establish the connection to the current scientific corpus and lead to a starting
point for the following chapters. Chapter 2 introduces some basics from previous work that are
considered prerequisite knowledge for further understanding of the dissertation and which are
well established in the current state of the art. Chapter 3 explores related works and delineates the
current extend of understanding within the state of the art. The related work is divided into three
parts, the challenges of AD itself, data reduction as the topic of this dissertation, and relevance
which, as this work will show, has a crucial role in solving the challenges ahead.
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Figure 1-2: Structure of the Dissertation

Chapter 4 to 8 form the core of the dissertation, where the RQs are answered. In chapter 4 a
methodology for data reduction is developed to give a possible answer to RQ. 1. As previously
mentioned, the answer to RQ. 1 leads directly into the second RQ. Accordingly, chapter 5 opens
a new research thread, focusing on RQ. 2. Within this chapter, an answer to RQ. 2 in the form
of a relevance concept is presented, based on the findings in 3 on relevance. Subsequently, in
chapter 6 an experiment for the applicability of the relevance concept is performed.

Having answered RQ. 2, chapter 7 and 8 then present experiments to explore the applicability of
the overall data reduction concept. Chapter 7 implements a data reduction prototype suitable for
the evaluation of the experiments. The experiments are conducted in chapter 8 while considering
the development and usage for perception as the target use case. Specifically, the task of semantic
segmentation and object detection are considered. Lastly, chapter 8 quantifies the effects for the
aforementioned tasks and gives an answer to RQ. 3.

The final chapter, chapter 9 summarizes the progress of research performed by this dissertation
and discusses the results. Finally, an outlook for future development and research directions is
presented.
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2 Basics

Several concepts are considered essential to this dissertation. While each is considered well
established in the current scientific corpus, this chapter serves as a cursory introduction to these
concepts and their termninology.

2.1 Preliminaries and Terminology

As a starting point, some basic terminology and preliminaries are introduced, which will be used
throughout the dissertation.

Scene, Situation, and Scenario

In order to correctly and accurately describe the sequence of events of a driving mission, a
taxonomy of the respective entities is necessary. In the following, the definitions of Ulbrich
et al.16 of the concepts ”Scene”, ”Situation” and ”Scenario” will be used. In addition to the
more holistic definitions below, these can be summarized as follows: A scene is a view of any
measurable entities in one’s surrounding environment. A situation is a scene with the added
information of a task, represented by goals and values. Temporal aggregation of subsequent
scenes yields a scenario.

Scene: ”A scene describes a snapshot of the environment including the scenery and dynamic
elements, as well as all actors’ and observers’ self-representations and the relationships among
those entities. Only a scene representation in a simulated world can be all-encompassing
(objective scene, ground truth). In the real world, it is incomplete, incorrect, uncertain, and from
one or several observers’ points of view (subjective scene)”16a.

Situation: ”A situation is the entirety of circumstances, which are to be considered for the
selection of an appropriate behavior pattern at a particular point of time. It entails all relevant
conditions, options and determinants for behavior. A situation is derived from the scene by an
information selection and augmentation process based on transient (e.g. mission-specific) as
well as permanent goals and values. Hence, a situation is always subjective by representing an
element’s point of view.”16b

Scenario: ”A scenario describes the temporal development between several scenes in a sequence
of scenes. Every scenario starts with an initial scene. Actions & events as well as goals & values

16 Ulbrich, S. et al.: Defining and Substantiating the Terms Scene, Situation, and Scenario (2015)a:p.3, b:p.5, c:p.6
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may be specified to characterize this temporal development in a scenario. Other than a scene, a
scenario spans a certain amount of time.”16c

Indirection of Reference

Description is a central concept in this dissertation. In order to be able to talk about description
in general, several terms surrounding the concept need to be introduced.

As the most general term, this work will follow the definition of ”entity” as presented by Arp,
Smith, and Spear, who propose that an ”entity” is ”[a]nything that exits, including objects,
processes and qualities”.19

Based on thoughts from the philosopher Gottlob Frege, Ogden17 introduced the semiotic triangle
as depicted in figure 2-1. The semiotic triangle establishes three essential entities involved in
describing and communicating arbitrary ideas and concepts. The first concept is the ”thing”
or tangible entity being described, the second concept is the abstract concept of the tangible
entity, the final concept introduced is the entity, which evokes an abstract concept of the tangible
entity. Within the terminology introduced by Ogden, the tangible entity is denoted as ”referent”,
its abstract concept is called the ”reference”, finally, an entity evoking an abstract concept is
identified by the term ”symbol”.

Reference

ReferentSymbol

Refers to

Sy
m
bo

liz
es

Stands for

Figure 2-1: The Semiotic Triangle. (Figure recreated from Ogden 17 and Wright18)

The following applies these abstract terms to a concrete example to demonstrate its purpose
and meaning. Suppose the ”referent” is a specific car with its physical manifestation of several
material parts. The reader might use the last car they drove in or the one they own. In this
example, the ”reference” is the internal representation of said car in the mind of the reader. This
is an entirely intangible entity. To finish this example, the aspects of what constitutes a ”symbol”
will be considered. Here, the specific symbol used was the sentence prompting the reader to
imagine their car, or, more specifically, the string of characters ”car”. Ogden17 notes the fact
that symbol and referent do not share a direct connection, but only an indirect connection via the

17 Ogden, C. K.; Richards, I. A.: The meaning of meaning (1923)
18 Wrigth, S. E.: From the Semiotic Triangle to the Semantic Web (2023)
19 Arp, R. et al.: Building ontologies with basic formal ontology (2016), p.2.
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reference. Further, between no two entities in the triangle exists a one-to-one relationship. There
can be many symbols that evoke the reference and there can be multiple referents to a reference.
Considering the example, a photograph of the reader’s car also constitutes a ”symbol”.

Data, Information, Knowledge

To accurately identify the quantities being processed by a data reduction process, it is important
to delineate the terminology used. While there is no absolute consensus on exact definitions24, the
following will provide working definitions for the terms ”data”, ”information”, ”knowledge”.
The relation between these terms is generally modelled as the data-information-knowledge
hierarchy, or data-information-knowledge-wisdom (DIKW) if wisdom as top layer is included.21

Both models are displayed in figure 2-2. Ahsan and Shah26 explicitly describe this model as an
aggregation from one level of the hierarchy to the next. While the concept of ”wisdom” is at the
top of the DIKW hierarchy, it is also a not yet very well understood concept due to its high level
of abstraction.21 Since the concept of wisdom is often left out of scientific considerations and
because of a lack of scientific consensus, it will also not be considered in this work.

Data

Information

Knowledge

Data

Information

Knowledge

Wisdom

DIK DIKW

Figure 2-2: The DIK and DIKW hierarchy (figure recreated from Jifa25)

20 Choo, C. W.: The Knowing Organization (1996)
21 Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy (2007)a:p.11, b:p.12
22 Ackoff, R. L.: From Data to Wisdom (1989)
23 Sanders, J.: Defining terms: Data, information and knowledge (2016)a:p.4
24 Dervos, D. A.; Coleman, A.: A Common Sense Approach to Defining Data, Information, and Metadata (2006)
25 Jifa, G.: Data, Information, Knowledge, Wisdom and Meta-Synthesis of Wisdom (2013)a:p.714
26 Ahsan, S.; Shah, A.: Data, Information, Knowledge, Wisdom: A Doubly Linked Chain? (2006)
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Starting with a delineation for the term ”data”, Dervos and Coleman24 define data as a represen-
tation of real world facts. Sanders identifies these real world facts as a carrier of information
and specifies further: while ”data can be stored”, he offers a clear distinction to ”information [,
which] [...] cannot be stored but can be represented by data”23a.

Using a different interpretation, Dervos and Coleman24 state that information is a property of
data that has to be revealed by successful interpretation. Similarly, Ackoff22 determines that
information is a reduced product of a data analysis process. He further identifies information
as a type of functional attribution, instead of a static property of data. Sanders also comes to
the conclusion, that data is always an approximation of the original information.23 Concerning
where data originates from, Ackoff22 states that data is observed/sensed. As such, any storing of
information as data, which is the only option to make information persistent, can be understood as
a reduction process. This means persistent information is always reduced in one way or another.
Due to this inevitability of reduction, an understanding of reduction methods is imperative.

Within this dissertation the term ”data” is defined as a discrete, reduced representation of
information as symbols. Further, the term ”information” will be used to denote the abstract
intangible reference to an entity.

Considering the term ”knowledge” and summarizing relevant literature, Rowley notes that
”knowledge is an elusive concept which is difficult to define”21a. Exploring the state of the
art, different authors define ”knowledge” with the usage of varying entities, resulting in no
unified final definition of the term. Still, many authors include a relation to an action or task
in their definition of knowledge. Sanders gives the definition of knowledge as ”the persistent,
appropriate response to a given input”23a. Jifa25a defines knowledge in relation to information in
that knowledge adds ”how to use it”. Using this as a baseline, the term ”knowledge” will be
used to mean the correlated/causal relation between information.

These concepts are explained with an example using three pieces of information. They are the
abstract concepts of water, heat, and steam. These pieces of information can be stored as data,
as well as evoked from the same data. For this example, a UTF-8 encoding, to differentiate it
from the other written text, is chosen.
water −→ \x77 \x61 \x74 \x65 \x72
heat −→ \x68 \x65 \x61 \x74
steam −→ \x73 \x74 \x65 \x61 \x6D
An example of knowledge for these pieces of information would be the ternary relation (water
and heat leads to steam).
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Relevance

Within this dissertation, the concept of relevance plays a vital role. As such, ”relevance” and
related terms will not be used with their colloquial meaning, but with meanings later defined in
chapter 5.

Data is by definition an entity that can be stored. How to formalize information and knowledge is
a separate matter. For this purpose, ontologies have been proven to be the right tool to formalize
these entities.28 An ontology is an ”explicit specification of a conceptualization”29, where
conceptualization is ”a body of formally represented knowledge”30. The information represented
by ontologies is divided into two groups. The first, called the terminology box (T-Box) contains
”concepts, role definitions and axioms”27. The second group, called assertion box (A-Box)
contains ”instances of concepts and roles”27. The use of specialized algorithms and description
formats, called reasoners and description logic, allows the inference of additional information
and knowledge based on the specified concepts and axioms.

Within the automotive domain, ontologies have found wide application in describing the scenes
and scenarios of the traffic environment.27 Examples of applications include the description and
creation of scenes for simulation-based testing31,27, the recognition of criticality32 and hazardous
scenarios33, as well as decision-making34.

Figure 2-3: Ontological elements used for visualizing the relevance models

27 Hülsen, M. et al.: Traffic intersection situation description ontology for advanced driver assistance (2011)p. 995
28 Křemen, P.; Kouba, Z.: Ontology-Driven Information System Design (2012).
29 Gruber, T. R.: A translation approach to portable ontology specifications (1993), p. 199.
30 Guarino, N. et al.: What Is an Ontology? (2009), p. 3.
31 Bagschik, G. et al.: Ontology based Scene Creation for the Development of Automated Vehicles (2018).
32 Westhofen, L. et al.: Using Ontologies for the Formalization and Recognition of Criticality (2022).
33 Kramer, B. et al.: Identification and Quantification of Hazardous Scenarios for Automated Driving (2020).
34 Buechel, M. et al.: Ontology-based traffic scene modeling, and decision-making for automated vehicles (2017).
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For the purposes of this dissertation, the concepts and notation as depicted in figure 2-3 are
established. Four basic entities are used: class, instance, datum, and relation. Classes represent
abstract concepts of entities, which can be further refined into subclasses. Additionally, classes
can have multiple concrete instances, for example there can be multiple real cars associated
with the abstract class/concept of a car. These relations are denoted as an is_a relation. Further,
entities can be compositions or aggregations of other entities. The main difference between
composition and aggregation relations is, that with the latter both entities exist independently
of each other, while for the former the composed entity only exists through its composites. The
composition is possibly best described by the example of a room being a composite of four walls.
Without the existence of all the walls the room as a concept ceases to exist. These relations are
denoted by is_composed_of and is_possessed_by. A datum represents an individual piece of data
of arbitrary type.

Additionally, other arbitrary relations based on the use case are possible and are denoted by an
arrow. While relations are usually not denoted as separate entities, this notation includes an
optional dedicated symbol for relations. As relations take on a special role in relevance theory,
they are treated as separate entities. This enables explicitly linking another ontological entity to a
relation.

Reduction & Expansion

In a lot of literature the terms reduction, compression, and encoding are used interchangeably.
For a consistent nomenclature, this dissertation will use the term reduction to reference any
process that manipulates the size of data from an initial magnitude to a lesser magnitude. For
mathematical notation, both reduction and expansion are modeled as functions, as described in
equations 2-1 and 2-2. The input to these functions are either individual datums or a dataset. The
latter being represented as the mathematical concept of a set by using the double-struck notation
of the variable. Thus, datasets are denoted by D. The reduced result of the reduction function
is denoted by the check accent Ď, while the expanded result of the expansion function is using
the circumflex accent D̂. This notation was chosen to represent a downward and upward arrow,
symbolizing the change in data size.

Ď = freduction(D) (2-1)

D̂ = fexpansion(Ď) (2-2)
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2.2 Use Cases for Data in the Context of HAD

Software is a key part of an ADS. As such, it has many interfaces to various kinds of data and
use cases for data throughout its lifecycle. To understand the importance of data for AD it needs
to be understood which use cases data fulfills for AD.

In the following subsections, multiple data reliant use cases within the context of AD are identified.
For each use case, the extent of the reliance on data is described, and what importance data
reduction has to the respective use case.

Dynamic Driving Task

The most obvious task is the dynamic driving task (DDT) itself. The goal within this use case
can, in the simplest form, be described as moving a vehicle safely to a target position. This task
may be performed by a human operator, an ADS, or a shared operation between human and
ADS. The components executing the DDT are not limited to the vehicle-to-be-operated itself,
but may include components external to the vehicle. As such, a distinction between the intra-,
and extra-vehicular components and a mix thereof can be made.

Intra-Vehicular components

Within the intra-vehicular components, the executing elements are located in close proximity of
each other within the vehicle itself. Here, the DDT ranges from an ADAS function assisting the
driver at SAE levels 1 and 2 to the ADS fulfilling driving missions with full autonomy at SAE
level 5. Data exchange between individual components takes place with varying bandwidths
and latencies depending on the need and technology used. Transferring data within a single
electronic control unit (ECU) can be done at high speeds of 256 GB/s (2048 Gb/s) via internal
bus systems, like PCI-e 6.0.35 Current development trends show a doubling of bandwidth every
three years, with 516 GB/s (4096 Gb/s) becoming available with PCI-e 7.0 in 2025.35

A more significant bottleneck exists when multiple ECUs need to transfer data between each
other. A sample of existing intra-vehicle communication technologies is listed in table 2-1. Many
existing technologies have bandwidths lower than 100 Mb/s stemming from their use in older
SAE level 2 systems. With the focus on SAE level 3 systems and higher, Ethernet has become

35 Group, P. C. I. S. I.: PCI-SIG® Announces PCI Express® 7.0 Specification to Reach 128 GT/s (2022)
36 Tuohy, S. et al.: Intra-Vehicle Networks: A Review (2015)
37 Wang, J. et al.: Networking and Communications in Autonomous Driving: A Survey (2019)a: p.1248, b:p.1249
38 IEEE: Std 802.3bt-2018 - 10 Mb/s Operation and Power Delivery over a Single Pair of Conductors (2020)
39 IEEE: Std 802.3bw-2015 - 100 Mb/s Operation over a Single Balanced Twisted Pair Cable (2016)
40 IEEE: Std 802.3bp-2016 - 1 Gb/s Operation over a Single Twisted-Pair Copper Cable (2016)
41 IEEE: P802.3bs - Physical Layers and Management Parameters for 200 Gb/s and 400 Gb/s Operation (2017)
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Table 2-1: Different intra-vehicle communication technologies and their bandwidths

Local Network Technology Bandwidth
LIN 19.2 Kb/s36,37b
CAN 1 Mb/s36,37b
D2B 11.2 Mb/s37b
FlexRay 20 Mb/s36,37b
MOST 150 Mb/s36,37b
IDB 400 Mb/s37b
LVDS 655 Mb/s36,37b
Automotive Ethernet 10 Mb/s - 1 Gb/s38,39,40
Ethernet up to 400 Gb/s41

an established communication technology in ADS.37b Automotive Ethernet provides a range of
bandwidths depending on the use case ranging from 10 Mb/s38, over 100 Mb/s39, to 1 Gb/s40.
Recent non-automotive standards enable the use of Ethernet with a bandwidth of up to 400
Gb/s41.

Focusing on cameras, an estimate of the raw bit rate of a current AD sensor setup can be made.
For this, a setup with ten cameras using a 4k resolution at a frame rate of 15 hz and a bit depth of
16 bit per pixel is assumed. The product of these parameters yields an estimated raw data rate of
2.654 GB/s (21.232 Gb/s). Comparing this value to the available network technologies above, it
becomes apparent, that even most current automotive Ethernet is not capable of handling such a
raw bit rate. In contrast, only the most current non-automotive Ethernet standard41 can support
similar bandwidths. Thus, the design of an ADS needs to account for this bottleneck.

This is either done by choosing an appropriate architecture to minimize the need to transfer
larger amounts of raw sensor data or by reducing the raw sensor data to a manageable size. This
estimate serves to approximate the order of magnitude of raw sensor data. While different ADS
have different sensor setups, current ADS show similar numbers of sensors42, with the 2022
Waymo ADS having 14 cameras43. Examining the list of used sensor setups by Marti et al.42 a
general trend of growing sensor numbers in ADS can be observed. As such, the challenge of
transferring sensor data is set to increase in the coming years.

Transferring data becomes even more of a challenge when data needs to be transferred out of the
vehicle, generally denoted as vehicle-to-everything (V2X). This transfer is identified in more detail
by the communication partners of the interaction: vehicle-to-vehicle in case of communication
between two traffic participants, vehicle-to-infrastracture if the communication is between a
traffic participant and traffic infrastructure. While traffic infrastructure can include traffic lights
and their current state, it can also include infrastructure with sensors, relaying additional dynamic
environment information to the respective traffic participant. A prominent application for this

42 Marti, E. et al.: A Review of Sensor Technologies for Perception in Automated Driving (2019)
43 Tangramvision: Sensing Breakdown: Waymo Jaguar I-Pace RoboTaxi (2022)
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type of communication is extending the field of view in intersection scenarios in order to mitigate
occlusions and collision potential.44,45

Currently, many different implementations and approaches to utilizing V2X communication are
proposed. With the focus on data, these proposals can be assigned to groups, with varying levels
of abstraction and need for bandwidth. Considering communications with lower bandwidth
requirements, an example is the sharing and coordinating decision and planning data.46 This kind
of communication has been researched and shown to work in real time field tests in the project
IMAGinE47.

Other approaches also include environment description data such as a mixed object list and
birds-eye-view (BEV) representation.48 The sharing of general environment representations for
further interpretation is described by the term cooperative perception. Cooperative perception is
subject to the specific challenge, where data reduction is used since cooperative perception has
to operate with both large data and limited bandwidth.49

In addition to the general environment representations that are understandable to humans, some
systems opt for sharing inferred latent feature data directly extracted from deep neural network
(DNN)s, as Yang et al.50 demonstrates. This form of data sharing is less abstracted for human
understanding but allows for the preservation of finer details. However, it is also more data-
intensive compared to sharing high-level information. Different layers of latent features, generated
by the deep learning models, can be strategically selected from one observer and fused with
layers from another observer to optimize the trade-off between detail and bandwidth usage.

The approach with the highest need for bandwidth is cooperation perception with no prior
extraction of information. Here, data is transferred in a raw state as it is gathered from the sensor.
This raw data is then used to create a fused representation with the ego vehicle’s sensor data. An
example of this approach is generating a joined view, which includes otherwise occluded regions,
enabling either the construction of a more complete map view or projections with the ability to
effectively see through obstructions.51

Contrary to data transfers concerning the DDT, larger amounts of data need to be transferred
when the DDT is performed from a remote, extra-vehicular situation.

44 Zhang, C. et al.: Occlusion-Aware Planning for Autonomous Driving (2023).
45 Buchholz, M. et al.: Handling occlusions in automated driving using a multiaccess edge computing (2021).
46 Maag, C. et al.: Supporting cooperative driving behaviour by technology (2022).
47 EICT GmbH: IMAGinE: Intelligent Maneuver Automation (2023).
48 Ngo, H. et al.: Cooperative Perception With V2V Communication for Autonomous Vehicles (2023).
49 Cui, G. et al.: Cooperative perception technology of autonomous driving (2022).
50 Yang, Q. et al.: Machine-learning-enabled cooperative perception for connected autonomous vehicles (2021).
51 Kim, S.-W. et al.: Multivehicle cooperative driving using cooperative perception (2014).
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Extra-Vehicular components

Performing the DDT from a remote, extra-vehicular situation, is referred to as teleoperation. The
primary use case for teleoperation is to provide a safe and efficient solution to the ADS reaching
the limits of its operating design domain (ODD).52

Teleoperation can be divided into three modes of operation, remote driving, remote assistance
and remote monitoring, based on the degree of involvement in the DDT:52 The first is remote
driving, where the whole DDT is being performed from a remote situation. In remote assistance,
the system has to perform the DDT, while in special circumstances a remote operator can render
assistance by interacting with the ADS on any layer of the planning or perception task.53 The
lowest degree of involvement presents remote monitoring, where only certain maneuvers, usually
minimum risk maneuvers, can be triggered, and no other mode of interaction is possible.

All modes of operation rely on sensor data being relayed to the remote operator. Especially for
the modes of remote assistance and remote monitoring, unabstracted environment representations
are important, as to give the operator the ability to recognize errors in the system’s perception.
Evaluations have shown that more frequent sensor updates, even with a lesser bitrate, yield a
better scene understanding for an operator.54 For video streams, a bitrate of 300 kbit/s to 800
kbit/s is sufficient.55 In addition to frame- and bitrate, latency plays a vital role. Here, a user study
has shown that a latency of 300 ms should not be exceeded for teleoperation.57 This constrains
which types of data reduction can be performed for teleoperation since each data reduction
algorithm further adds to the overall latency. As such, teleoperation uses a combination of well
established data reduction methods, like the standardized Advanced Video Coding (AVC) H.26458

and High Efficiency Video Coding (HEVC) H.26559 algorithms, and simple context-specific
approaches, such as region of interest (RoI) masking, where only the relevant areas of an image
are transmitted.56

Development

Data plays a vital role in developing automated driving functions. The development of AD is
currently experiencing the challenges of handling algorithmic complexity, a multitude of scenarios
to be considered, growing networking and dependencies in architectures, as well as complex and

52 Majstorović, D. et al.: Survey on Teleoperation Concepts for Automated Vehicles (2022)
53 Feiler, J.; Diermeyer, F.: The Perception Modification Concept to Free the Path (2021).
54 Hofbauer, M. et al.: TELECARLA (2020)
55 Hofbauer, M.; Sc, M.: Adaptive Live Video Streaming for Teleoperated Driving (2022)
56 Hofbauer, M. et al.: Traffic-Aware Multi-View Video Stream Adaptation for Teleoperated Driving (2022)
57 Neumeier, S. et al.: Teleoperation: The Holy Grail to Solve Problems of Automated Driving? (2019).
58 International Telecommunication Union: H.264: Advanced video coding for generic audiovisual services (2019).
59 International Telecommunication Union: ITU-T Rec. H.265 (08/2021) High efficiency video coding (2021).
60 Bach, J. et al.: Data-driven development, a complementing approach for automotive systems engineering (2017)
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fuzzy systems. Data driven development has the potential to mitigate these challenges and not to
replace but to complement existing development strategies60. Data driven development is a term
used to describe a closed-loop between the development of a function, its testing, and refinement
of the function based on test data61, during all stages and activities of product development.60

While data driven development is not exclusive to any specific type of function, it has a special
status and significance for the development of artificial intelligence functions or, more specifically,
the training of DNNs. Since the training of DNNs is a process to ”identify patterns and extract
features from [...] data”62 through optimization, it requires large amounts of data to achieve a
good performance for the function.63

This data dependence becomes especially evident when looking at the datasets, which form the
basis for training DNNs. Both, the rate of novel datasets publications64 and the upper range of
available dataset size65, are increasing.

Currently, the largest synthetic, as well as overall dataset is the SHIFT dataset with 10 TB of size66.
For real-world data, the Argoverse2 dataset, being composed of the sensor, motion forecasting,
LIDAR and map change sub datasets, has a combined size of 7̃ TB67. The SHIFT dataset was
released in 2022 and the Argoverse2 dataset in 2021. Considering well established datasets like
Waymo Open dataset68 and the NuScenes69 dataset, the former was released in 2019 with a size
of 2 TB and the latter in 2020 with a size of 0,3 TB.

The role of data for development of DNNs will be highlighted in more detail in section 3.2.4 of
the next chapter.

Due to the uncertain nature of the open context, ADS will operate in operating domain (OD)s
where a mismatch between required, specified, and implemented behavior70 has to be expected.
To account for this circumstance, it is proposed to extend the consideration of the open context
to the whole product life cylce71. This enables a continuous refinement and assessment of
assumptions made during development, based on evidence data collected from field operation.

61 DSpace: Data Driven Software Development (11.11.2023).
62 Jan, B. et al.: Deep learning in big data Analytics: A comparative study (2019), p. 281.
63 Hestness, J. et al.: Deep Learning Scaling is Predictable, Empirically (2017), p. 6.
64 Bogdoll, D. et al.: Ad-datasets: a meta-collection of data sets for autonomous driving (2022), p. 6.
65 ad Datasets: Autonomous Driving related Collection of Datasets (28.07.2023).
66 Sun, T. et al.: SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation (2022).
67 Wilson, B. et al.: Argoverse 2: Next Generation Datasets for Self-driving Perception and Forecasting (2021).
68 Sun, P. et al.: Scalability in Perception for Autonomous Driving: Waymo Open Dataset (2019).
69 Caesar, H. et al.: nuScenes (2020).
70 Stellet, J. E. et al.: Formalisation and algorithmic approach to the AD validation problem (2019), p. 47.
71 Bangarevva, P. et al.: In-Service Monitoring and Assessment of AD vehicles with AI based Algorithms (2023).
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Release / Safety Assurance

While safety assurance is a key part and final step of any development process, from a data/in-
formation/knowledge side it needs to be viewed separately. This due to the ”assurance trap”72,
where the processes and available data might be sufficient to develop a safe system, but the
processes and knowledge to prove the systems safety is insufficient. As such, additional novel
methods are necessary to create an argumentation for sufficient safety of an ADS.

While there is currently no single accepted method for providing a safety argumentation, a
much researched approach is scenario based testing.74 The essence of scenario based testing is
compiling all scenarios relevant to describing the ODD of an ADS into a catalog and verifying the
safety of the ADS within each scenario. This catalog is compiled from various sources including
crash data analysis, naturalistic driving data, and expert knowledge.75,76

Scenario descriptions are available at different levels of detail. Concrete scenarios are fully
specified and can be simulated. Compared to concrete scenarios, logical scenarios are less specific.
Logical scenarios are machine-readable descriptions that specify only ranges or distributions,
instead of concrete values, for the parameters of the scenario. Functional scenarios are the
most abstract. They provide only human-readable textual descriptions of the scenario. While
the level of description varies, each serves a specific purpose. Safety testing requires concrete
scenarios. However, concrete scenarios are not suitable for fully describing the ODD, since
the ODD contains an infinite number of concrete scenarios. Therefore, more abstract scenario
descriptions such as functional or logical scenarios are used for this task.

The scenario-based testing approach thus requires scenario data in two key steps. The first step is
to analyze and extract those functional and logical scenarios that are most suitable to describe the
ODD. The second step contains the deriving and execution of concrete scenarios as test cases. The
results of the test cases are then used as evidence in a safety argumentation. A prominent method
employing scenario based testing for generating a safety argumentation was established by the
PEGASUS project73. This method is showcased in figure 2-4. Starting from the lower left with
an initial set of data, knowledge, and use cases, it proceeds through the analysis and extraction
step to the top right. The second step of deriving, executing, and analyzing test cases can be seen
from the top right to the top left. Finally, the PEGASUS method displays a closed-loop, refining
the initial data, knowledge, and use case, in the case that the evidence produced is insufficient to
provide a safety argumentation.

72 Wachenfeld, W. H. K.; Winner, H.: The Release of Autonomous Vehicles (2016), p. 439.
73 PEGASUS Project: PEGASUS Method: An Overview (2019)
74 Neurohr, C. et al.: Fundamental Considerations around Scenario-Based Testing (2020), p. 121.
75 Fremont, D. J. et al.: Formal Scenario-Based Testing of Autonomous Vehicles (2020), p. 2.
76 Consortium, P.: PEGASUS METHOD (2019).
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Figure 2-4: The safety assurance method, with data flow as proposed by the PEGASUS project. (Image take from 73)

Besides just generating the knowledge to describe the ODD and performing tests in concrete
scenarios, maintaining traceability is important77. Traceability is key to any safety argument,
since it assures compliance, drives efficiency, enables handling complexity, and acts as a safeguard
for quality.78 Considering the importance of data within the use case of releasing and assuring
the safe of an ADS, it can be summarized that the role of data is an essential building block of
creating a safety argumentation. Large amounts of data are necessary to generate knowledge
about the ODD. Similarly, large amounts of data need to be generated as evidence for the safety
argumentation. Throughout the whole process, this data needs to be stored to ensure traceability.

Monitoring

The data use case of monitoring is concerned with observing and ensuring the proper operation
of an ADS within its specified bounds. Similar to the DDT this can be done from an in-vehicle
or a remote location. Contrary to remote operation monitoring does not include a closed-loop
design and cannot influence the actions of the ADS. The only purpose is to gather and report
information about the current state and performance of an ADS within the traffic environment.

77 Johanson, M. et al.: Big Automotive Data (2014), p. 738.
78 Steinkirchner, K.; Bühler, C.: Usage of Baselining and Traceability Demonstrator Developed in VVM (2022).
79 Bundesministeriums für Digitales und Verkehr: Autonome-Fahrzeuge-Genehmigungs- und-Betriebs-Verordnung

– AFGBV) (86/22)a: p. 47, b: p.53
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The level of detail in both data gathering and reporting can be varied and change with the goal
pursued. Full traces of DDT data can be recorded and evaluated for development to improve
on the current version of the ADS. As previously stated in the subsection above concerning the
DDT continuous recording and transfer of full sensor and system data is impossible with today’s
technology. To this end event-based recording strategies are employed, identifying relevant
events during the DDT, recording and transferring only small intervals of event related data. The
most prominent type of event-based recording is accident reporting.80 The German jurisdiction
mandates since 2022 that any ADS has to record data once an accident is detected or a risk
minimal maneuver is performed with subsequent remote operation.79a No full trace is mandated
but rather high level data about the vehicle, the ADS itself, and the environment are required.79b

Another goal besides the improvement is the statistical monitoring of the real and expected
performance of the ADS. Here, only the general event is of interest, which is then compiled into
reports. An example of this type of report is the safety report of Waymo81.

Johanson et al. estimate data amounts for a vehicle fleet of 1000 non-automated vehicles. State-
of-health is given as the least data intensive monitoring only requiring 36 GB/year. With medium
requirements, remote diagnostic read-outs necessitates 3.6 TB/year. A full monitoring of the
controller area network bus with a data rate of 250 kb/s (31.25 kB/s) is estimated to come to
1.6 PB/year.82

Using the same assumptions for the sensor data of an ADS the total data of a 1000 vehicle
fleet would yield several exabytes per year. While these numbers are significantly less than the
data rate produced by the sensors of an ADS, they signify the magnitudes of data that can be
accumulated over time when monitoring an entire fleet. The conclusion to be drawn is that it is
essential to identify the events and pieces of information most relevant to the targeted goal in
mind.

2.3 Metrics for Data Reduction Evaluation

In order to evaluate data reduction methods, two aspects need to be assessed. The first aspect
concerns how data reduction affects the effort needed to handle data. The second aspect is focused
on the effect that data reduction has on the performance on the data for a given use case.

The relationship between effort reduction and residual performance resembles a trade-off, where
optimizing one aspect may come at the expense of the other. This trade-off can be visualized as a

80 Parmar, P.; Sapkal, A. M.: Real time detection and reporting of vehicle collision (2017).
81 Victor, T. et al.: Safety performance of the Waymo rider-only automated driving system (2023).
82 Johanson, M. et al.: Big Automotive Data (2014), p. 738.
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Pareto front, representing the spectrum of possible variations in data reduction methods, thereby
delineating the boundaries of what can be achieved.

Performance p

Effort

Parento front
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0

III
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I

unreduced data
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Effortmax

Figure 2-5: Change of effort over performance for Data Reduction

Both of these aspects are governed by two constraining requirements: The minimum required
performance: This sets the threshold below which the data performance cannot fall without
rendering it unusable for the intended purpose. The maximum available effort: This defines the
upper limit of effort that can be put forth. By considering these constraints, the application of
data reduction can be classified into four distinct quadrants, as depicted in figure 2-5:

I. Possible application: In this quadrant, data reduction methods can be applied successfully,
meeting both the minimum required performance and the maximum available effort.

II. Performance requirement is violated: Here, data reduction techniques may lead to a
performance level that falls below the minimum required, rendering them unsuitable for
the given purpose.

III. Violation of both constraints: In this scenario, data reduction methods fail to meet both the
minimum required performance and the maximum available performance, making them
infeasible.

IV. Effort requirement is violated: Data reduction methods in this quadrant exceed the maxi-
mum available effort while still meeting the minimum required performance.
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It is important to note that the Pareto front may intersect with the constraints in a manner that
renders one or more quadrants unreachable. If quadrant I is not reachable, a variation that places
the data reduction effect in quadrant IV can still be considered, since the residual performance is
sufficient for the use case. If only quadrants II and III are possible, the available variations of
data reduction are insufficient to be applied, necessitating further development need.

2.3.1 Effect of the Data Reduction towards Data Handling Effort

Data handling requires effort to be put into the process. In the context of this thesis, handling
means applying any type of process, such as transforming, storing, analyzing, etc., to data.
Additionally, in this thesis, the term effort is defined as the allocation of resources, which
can include various factors such as financial expenditure, human or machine work performed,
provision of technical resources, and more. Applying data reduction to data affects the effort
required to handle the data. This effect can be divided into two parts, a positive and a negative
effect. The former reduces, and the latter increases the effort to handle data.

For the application of data reduction to be feasible, the positive effect on effort must outweigh
the negative effect, resulting in an overall effect of reduced effort. The nature of the positive and
negative effects on effort is briefly described below. Determining the exact magnitude of the
effects requires sufficient effort models for the use case of interest and accurate knowledge of the
values for the model parameters. Such models are considered out of scope for this thesis due to
their business centric focus.

Positive Effect

The positive effect on effort is caused by the decreased size of data after applying a data reduction
to it. The decrease in data size is expressed through a comparison of the reduced data against the
unreduced data. To account for different sizes of the unreduced data, the decrease is generally
given as a difference in information density. For this density, the ratio between semantic symbols,
necessary to extract information, and syntactic symbols, employed to describe the former, is
employed. A widely used example is bits per pixel given in equation 2-3 describing the potential
level of detail for image data. The positive effect irrespective of a specific use case can then be
expressed by the reduction factor. The positive effect for a given use case is then given by the
data reduction factor, as described in equation 2-4, in conjunction with the data amount and use
case specific parameters. Considering storing data as an example these parameters are storage
duration and storage cost per amount.

bppI =
bI

Npixel,I

(2-3)
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reductionfactor =
bppǏ
bppI

(2-4)

To fully describe the use case specific parameters, the path of the data flow being provisioned
for the use case has to be considered. The provisioning of the data to the use case may involve
multiple data sources as well as multiple transmission steps, where the data can be stored in
between. These steps can conceptualized as a graph, as the example in figure 2-6 shows.

Intra-vehicular

DT

Development

Monitoring

HIL

Operator

Road Side Unit

Traffic Participant

Ego

Cloud

Extra-vehicular

DT

Monitoring

SIL

Release

Figure 2-6: Example of a data flow graph for the use cases within the automated driving domain

Each of these steps has individual parameters associated, like transmission, storage costs or
transmission bandwidth. Considering the steps of provisioning the data for a use case thus
enables the application of data reduction, as shown in figure 2-7, in various instances of the data
flow. While this representation requires extensive knowledge and modeling of the infrastructure
involved in provisioning data, this view of data procurement enables a holistic estimate of the
positive effect of data reduction.

Negative Effect

The negative effects on effort associated with data handling when applying data reduction methods
are multifaceted. These negative effects can be divided into two categories: those that depend on
the size of the subject data and those that remain invariant.

One aspect of size-dependent negative effects is the computational costs incurred during the
reduction and subsequent expansion of data. The process of data reduction demands computa-
tional resources, and the subsequent expansion to its original form can also be resource-intensive.
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Figure 2-7: Realization of data reduction within a dataflow, either in a single transmission (top) or over multiple
transimission steps (bottom)

Additionally, as the size of the data increases, the time required for these operations may escalate,
potentially causing delays in data processing. Conversely, some negative effects are independent
of the size of the data being reduced. The financial cost associated with the development or
procurement of the data reduction method can be considered as an example.

Furthermore, an additional negative effect arises from maintaining and monitoring the data
reduction method. Ongoing development in the target use case can change the resulting relation-
ship between residual performance and reduced effort necessitating continued development and
adjustment of the data reduction method. This entails dedicating resources to ensure that the
data reduction method remains effective and aligned with the desired effort and performance
requirements. The effort invested in monitoring and maintenance is separate from the initial
implementation of data reduction and can persist over time.

2.3.2 Residual Performance on the Reduced Data

Concerning the second aspect of assessing a data reduction method, the performance p of the
target use case on the reduced data versus the unreduced data has to be considered. Similar to
the data reduction factor the residual performance can be described as a performance reduction
factor, as given by equation 2-5.

Regarding the second aspect of assessing a data reduction method, it is necessary to examine the
performance p in the target use case for both the reduced data and the unreduced data. Analogous
to the data reduction factor, the residual performance can be described as a performance reduction
factor, defined by the equation 2-5:

pres =
p̌

p
(2-5)
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While the possible use cases can cover a wide range of applications, this thesis focuses primarily on
perception-related tasks. Consequently, the following sections will delineate the current measures
used to quantify performance in perception-related tasks. Three main areas are considered to
represent perception in the automotive domain, human perception, and machine perception. The
latter category is further subdivided into semantic segmentation and object detection tasks.

Human Perception

Zhai et al.83 provides an overview of available means to assessing the quality of an image for
human perception. Zhai firstly established that image quality assessment (IQA) can in a first
step be split into two groups, objective and subjective. While the ”subjective assessment is the
most reliable way to evaluate the quality of images, because human eyes are usually the ultimate
receiver of the images”83a, the objective assessment, performed by mathematical metrics has the
advantage of repeatability and increased efficiency per assessment.86

Within the domain of IQA exist four categories of assessment with three being objective algo-
rithms and one being assessment via subjective study.

1. Reduced-reference IQA

2. No-reference IQA

3. Full-reference IQA

4. IQA through study

No-reference IQA

No-reference IQA is used when only the subject image is given and the respective original
image and its features are unknown. While No-reference IQA is quite challenging, due to the
lack of a direct comparison, the application No-reference IQA methods has the advantage, that
no prior knowledge of the original image is necessary. In place of an original image, prior
knowledge about the kind of the expected distortion can still be leveraged.83b A common example
for No-reference IQA is noise detection.

83 Zhai, G.; Min, X.: Perceptual image quality assessment: a survey (2020)a:p.3, b:p.14
84 Wang, Z.; Bovik, A. C.: Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures (2009)
85 Wang, Z. et al.: Image quality assessment: from error visibility to structural similarity (2004)
86 Wang, Z. et al.: Why is image quality assessment so difficult? (2002)
87 Z. Wang et al.: Multiscale structural similarity for image quality assessment (2003)
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Reduced-reference IQA

Reduced-reference IQA denotes IQA where the subject image and select features of the original
image are given. Reduced-reference IQA can be used to assess the image quality after a trans-
mission process, where the features of the original image are transmitted separately as a kind of
checksum.

Full-reference IQA

In Full-reference IQA, both subject and original image are given. Since the original image is
known the concept of quality can be equated to similarity in this context. The main use case of
Full-reference IQA is output assessment of processes that manipulate images. While the topic
of Full-reference IQA can be further disambiguated into spatial domain and transform domain
methods, the spatial domain methods appear to the most commonly used methods in the state of
the art.83

In this scope, the mean square error (MSE) metric (as defined by 2-6) and its extension the peak
signal-to-noise ratio (PSNR) metric (as defined by 2-7) were the prime choice for evaluating
image similarity for more than 50 years.84 Their dominance can be explained by their ease of
use and understanding, as well as their mathematical properties, since they define valid distance
metrics.84 MSE only quantifies the distance between the values of each individual datum pair of
subject and original. PSNR further contextualizes this values by referencing it to the maximum
possible value MAX for a datum. Considering an image with 8-bit per channel MAX equals
28 − 1 = 255.

MSE =
1

N

N∑︂
i=1

[xi − yi]
2 (2-6)

PSNR = 10 log10

(︃
MAX2

I

MSE

)︃
(2-7)

Despite the above-mentioned points Zhou and Bovik note that these positives do not translate
when MSE or PSNR are used to evaluate human perception of image quality.84 This significant
shortcoming led to the development of the structural similarity metric (SSIM)85 which compares
image quality on three components that influence human perception: luminance, contrast and
structure. multi-scale structural similarity metric (MS-SSIM)87 extends SSIM by further incor-
porating different influencing factors of human perception. Viewing distance to the image, as
well as perception capability of the viewer are approximated by evaluating the SSIM score of the
image at different scale and distortion levels.
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In conclusion, MS-SSIM can be viewed as ”one of the most precise FR-IQA measures”88 for
state of the art similarity analysis between a subject and a reference image.

IQA through study

As previously mentioned the most robust, but also most expensive method to assert image quality
is through subjective evaluation by potential users. The International Telecommunication Union
(ITU) outlines several study approaches that can be grouped into two categories, direct assessment
and indirect assessment via task.

For the first option, study participants are directly asked to rate the quality of an image on a
given scale. For a subjective assessment, the mean opinion score89 is a well established quality
measure. Study participants express their opinion of the presented image quality on a scale from
1 (Bad) to 5 (Excellent). This can be done by presenting both the original and subject image or
only the subject image to the participant.

For the second option, participants of the study are asked to solve a specific task given a sample
image.90 Based on the results, a statistic for the correctness of the given answers to the task
is constructed. Given the descriptive statistic on performance for the task, a check for validity
against an acceptance threshold of α = 0.05 is performed. Lastly, concerning timed tasks, the
ITU recommends to evaluate both time per task and correctness of task.

Machine Perception

Perception in AD is inherently reliant on machines and only in special use cases like teleoperation
performed by humans. It must be considered, that the working mechanism of machine perception
is inherently different from human perception. Thus, other metrics to evaluate the quality of
reduced images are needed. While it is possible to apply the generalized IQA metrics from
human perception for machine perception, it is not necessary nor advisable. As mentioned above,
evaluating human perception has the disadvantage, that evaluating the concrete task at hand is
quite expensive and time-consuming. For machine perception, this disadvantage disappears, due
to faster inference speeds and low computational costs. Therefore, the state of the art in this
case is to directly evaluate the results of the target task. Following, the state of the art for the
perception tasks of semantic segmentation and object detection will be presented.

88 Bakurov, I. et al.: Structural similarity index (SSIM) revisited: A data-driven approach (2022), p. 4.
89 ITU-T: ITU-T Rec. P.800.1 (07/2016) Mean opinion score (MOS) terminology (2016).
90 ITU-T: ITU-T Rec. P.912 (03/2016) Subjective video quality assessment methods for recognition tasks (2016).
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Semantic Segmentation

The task of semantic segmentation refers to assigning a spatial feature, such as an image’s pixel,
a semantic value, such as ”car”. Considering a single pixel Ii,j of an image and a set of possible
semantic classes C to assign, the whole task can be thought of as a classification task. When
C is of size two, it is called a binary classification. The result of a binary classification can be
described by the terms true positive (TP), true negative, false positive (FP) or false negative (FN)
as shown in figure 2-8.
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Figure 2-8: Basic classification results of a binary classificator

In order to ascertain the quality of a classification task, the above definitions are usually used
to express two describing values, precision and recall. Both describe important characteristics
of a binary classification. Precision as defined in equation 2-8 quantifies how likely a true
classification is going to be correct. Recall as defined in equation 2-9 on the other hand quantifies
how complete the set of true classifications is.

Precision =
TP

TP + FP
(2-8)

Recall =
TP

TP + FN
(2-9)

While these two values give a good picture of the quality of a classification, in some instances other
measures are needed. Considering the domain of machine learning, the necessity to quantify
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the quality of a classification with a singular number arises. To that end, measures like the
Jaccard index J , also called intersection over union (IoU) or the F-1 score are used. Both try to
combine precision and recall into one value, striking a compromise in considering both recall
and precision 91. The F-1 score is defined as given in equation 2-10.

F-1 =
2

Precision−1 +Recall−1 =
2TP

2TP + FP + FN
(2-10)

The definition for IoU measure is given in equation 2-11. Here, two types of notation are used.
First, the equation is expressed with the results depicted in figure 2-8. The second notation uses
the comparison of two classification matrices. A classification matrix are multiple assignment
of a class value c from a set of available classes C. With one classification matrix being the
actual classification Ic and the other, denoted by the tilde accent, the assigned classification˜︁Ic.
Considering that N samples are used to describe classification quality the mean IoU as given by
equation 2-12 is used. This measure is also sufficient for non-binary classifications, since they
can be re-expressed as multiple binary classifications.

IoU =
TP

TP + FP + FN
= J(I, ˜︁I) =

⃓⃓⃓
Ic ∩ ˜︁Ic ⃓⃓⃓⃓⃓⃓
Ic ∪ ˜︁Ic ⃓⃓⃓ ,with c ∈ C (2-11)

mIoU =

∑︁N
n=1 J(In,

˜︁In)
N

(2-12)

Object Detection

Besides the task of classification, the task of object detection is also to be considered. This task
is more complex than semantic segmentation, which is often used as one of multiple steps in
object detection. The aim of object detection is to identify the existence and location of objects
that are of a class within C. Here, the presented measure of IoU will not suffice itself, since the
individual pixels are not the main interest, but the higher concept of objects. Instead, the measure
of precision is used and calculated for each class c to be detected. Averaging the precision over a
set of data samples D yields the measure average precision. In order to reduce the |C| measures to
a single number, it is further averaged over all classes to what is known as mean average precision
(mAP). The definitions of both measures are given in equation 2-13 and 2-14 respectively.

91 Zhang, E.; Zhang, Y.: F-Measure (2018).
92 Padilla, R. et al.: A Survey on Performance Metrics for Object-Detection Algorithms (2020)
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APc =
1

|D|
∑︂
I∈D

TPc,n

TPc,n + FPc,n

,with c ∈ C (2-13)

mAP =
1

|C|
∑︂
c∈C

APc (2-14)

Commonly an arbitrary IoU threshold of 0.5 is used to count a detection as TP. In this case the
measure is denoted by mean average precision at IoU=0.5 (mAP.5). Since there is no consensus
on which non-arbitrary IoU threshold constitutes a TP, multiple thresholds are usually evaluated,
to account for these uncertainties. The mean average precision at IoU∈ [0.5:0.05:0.95] (mAP.5:.95)
is a generally used example, using IoU threshold between 0.5 and 0.95 in 0.05 increments.92
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3 Related Works

This chapter delineates the current state of the art with relation to the two core topics of this
thesis, data reduction and relevance.

3.1 The Release of Automated Driving

Within AD there are currently several challenges that need to be addressed. The most prominent is
the safety assurance for AD.While there are several promising developments toward implementing
self-driving cars, substantiated methods to argue their safety are still lacking. This mismatch of
capabilities results in the ”approval trap”94, which is considered one of the leading challenges
for AD. Complexity and general uncertainty have been named as the key contributors to the
challenge of developing and releasing AD.93

These challenges manifest themselves in three specific types of uncertainty: aleatory, epistemic,
and ontological. Aleatory uncertainty describes the uncertainty, which can be observed as
the result of probabilistic models. A common example of aleatory uncertainties in AD is the
unpredictability of human behavior. Epistemic uncertainty represents a lack of knowledge about
a model. The complexity of ADS and of the OD can be seen as a cause of epistemic uncertainty.
The key difference between these uncertainties is that epistemic uncertainty can be reduced,
by gathering more data, but aleatory uncertainty cannot be reduced.98 Finally, ontological
uncertainty ”can be defined as a condition of complete ignorance in the model of a relevant
aspect of the system”97a. Gansch and Adee97 assign the first two types of uncertainty to what is
known as the known-unknowns and the ontological to the unknown-unknowns. An ontological
uncertainty within the OD of AD is commonly referred to as ”open context”93,95. An open
context entails several conclusions. First, such an OD cannot be structured, due to the unknown
elements within it.96 Second, complex systems operating in an open context cannot be without
any risk.96

93 Rueß, H.; Burton, S.: Whitepaper: Safe AI. How is this possible? (2022)
94 Wachenfeld, W. H. K.; Winner, H.: The Release of Autonomous Vehicles (2016), p. 439.
95 Poddey, A. et al.: On the validation of complex systems operating in open contexts (2019)
96 Stellet, J. E. et al.: Formalisation and algorithmic approach to the AD validation problem (2019)
97 Gansch, R.; Adee, A.: System Theoretic View on Uncertainties (2020)a: p.4
98 Kiureghian, A. D.; Ditlevsen, O.: Aleatory or epistemic? Does it matter? (2009), p. 105.
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3.2 Data Reduction Methods

Methods to reduce the amount of data needed to be stored or transmitted are both quite ubiquitous
and old. In this section, the current state of the art of data reduction methods is briefly presented.
In general, two groups of data reduction methods can be distinguished: lossless and lossy methods.
While lossless methods retain all information in reduced form and are therefore reversible, lossy
methods only retain parts of the original information and cannot be reversed without adding
distortion to the original data.99

In addition to these two groups of data reduction, special attention will be given to data reduction
in the context of deep learning. In this case, data reduction is both the final goal and a means to
an end. The latter is manifested through the use of deep learning techniques being employed to
create more efficient data reduction methods and means to an end, where data reduction serves
as a method to enable better data provisioning for the training of DNNs.

3.2.1 Redundancy Reduction / Lossless Methods

Yang and Bourbakis100 present an overview of state of the art lossless reduction methods. These
methods can be grouped into two sequential stages. The first being decorrelation, where structural
redundancies are removed by prediction algorithms, the second being entropy coding, where
the information per bit is maximized. Yang and Bourbakis100 state that the reduction effect of
entropy coding is approaching its theoretical maximum. Therefore, the focus of research for
lossless data reduction is on the decorrelation stage. Current standard formats for lossless image
reduction have an average reduction factor of around 0.5 to 0.2.101

3.2.2 Information Reduction / Lossy Methods

Lossy data reduction methods, aim to reduce data by only shifting the usage of data towards
relevant information and using as little data as possible to represent irrelevant data. For further
differentiation, a distinction between the necessary abstraction of the reduction concept can
be made. Reduction on high-level entities requires a semantic understanding of the use case,

99 Li, Z.-N. et al.: Fundamentals of Multimedia (2021)
100Yang, M.; Bourbakis, N.: An overview of lossless digital image compression techniques (2005)
101Barina, D.: Comparison of Lossless Image Formats (2021).
102Wang, C.: Silent Testing for Safety Validation of Automated Driving in Field Operation (2021)a: p.69
103Shaham, T. R.; Michaeli, T.: Deformation Aware Image Compression (2018)a:p.4, b:p.3
104Fu, C. et al.: Texture Segmentation Based Video Compression Using Convolutional Neural Networks (2018)
105Di Chen et al.: Pixel-Level Texture Segmentation Based AV1 Video Compression (2018)
106Daniele Mari et al.: Content-Aware Compression and Transmission Using Semantics (2023)
107Furman, V. et al.: Image and Video Compresssion for Remote Vehicle Assistance (2016)
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like object classes and situations, while reduction on low-level entities, like colors and spatial
frequencies, only necessitates a semantic understanding of the data itself. To reflect the abstract
targeted aspect of reduction on high-level entities, the term selection is used. For the reduction
of low-level entities, the term compression is chosen.

Compression can generally be applied to all dimensions present in the data. A general example
of compression is subsampling, where every n-th sample is included in the data.

Many compression methods for image and video data are primarily designed with human per-
ception in mind. A widely used standard for lossy image compression is the JPEG format108.
The key working principle of JPEG is limiting the data used for sudden color value changes
between neighboring pixels, with differing thresholds for each color channel. State of the art
video compression methods like AVC H.264109 and HEVC H.265110 utilize a variety of different
techniques to achieve high data reduction factors like quantization, grouping similar structures
and self optimizing encodings.111

To further optimize existing reduction methods, Shaham and Michaeli103 propose a novel method
and similarity score which takes into account that ”human observers are indifferent to slight
local translations”103a. Based on this information they reduce the overall error in the recon-
structed image by introducing small deformations to the original image, thus making it ”more
compressible”103b.

The most simple approach to lossy data reduction can be described by selection or omission.
Relevant data is selected, and irrelevant data is omitted from further processing. In the domain
of AD, selection is a common technique to reduce large amounts of measurement data. Selection
methods can generally be differentiated between scene selection and intra-scene selection methods.
Scene selection is concerned with the question, which scenes should be selected and which scenes
should be omitted. Intra-scene selection on the other hand considers which components within a
single scene should be selected or omitted.

On scene selection, depending on the use case for the data, only a few scenes might be relevant,
such as close encounters with other traffic participants or those within a certain ODD. Conversely,
many samples might also be a priori irrelevant, such as active recordings while parked. These
samples are identified by use of metrics and then respectively selected or omitted. The application
of the metrics can either be online as an event data trigger or offline as post recording filtering.

A special case of the event data trigger is the concept of silent testing102. In silent testing, one or
more virtual automated vehicle instance (vAVI), which are open-loop instances of the system

108International Standardization Organization: Information technology: Digital compression and coding of
continuous-tone still images: JPEG File Interchange Format (JFIF) (2013)

109International Telecommunication Union: H.264: Advanced video coding for generic audiovisual services (2019).
110International Telecommunication Union: ITU-T Rec. H.265 (08/2021) High efficiency video coding (2021).
111Amer, Hossam: Image/Video Compression: Human and Computer Vision Perspectives (2020), p. 2.
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under test, are run virtually in parallel with the physical driving instance (pDI) on the same
perception input. This parallelism enables new triggering conditions. The vAVI are evaluated
based on criticality metrics and above a set threshold, data is being saved from a ring buffer for
further evaluation.102a

Additionally, behavioral differences between vAVI and pDI can be used as markers for deeper
investigation. Here, the behavior of the pDI is assumed to be safe if no explicit wrong behavior,
like an accident, is reported, and thus deviations from the pDI behavior are taken as an indicator
of unsafe behavior and as a trigger for recording data. In the event that criticality metrics report a
significantly poor performance of the pDI, such as an accident, it is considered an indicator of a
perception error and also a trigger for data recording.112,113

On intra-scene selection, a distinction is made within a single scene, which entities are relevant
and which are irrelevant127,106,107. The approaches to determine which entities are relevant and
irrelevant differ. Closely related to traditional data reduction approaches, DNNs can be employed
to detect similar repeating patterns like textures and resynthesize them after removal. 104,105

A 2016 patent107 by Google describes an approach to data reduction, by selecting spatial features
within a single scene. The patent performs notes that the selection is performed by matching
image regions to a map. Based on relevance criteria not specified in the patent, a RoI is created for
the image. The irrelevant pixels outside the RoI are then reduced, while the pixels inside the RoI
are left unaltered. The patent names options for handling the irrelevant pixels, by either replacing
them with a uniform color or reducing the data of these pixels by removing high discrete cosine
transform coefficients.

A similar approach is presented by Wang et al.114,115 where they propose a video compression
technique. Here, a RoI for a given video frame is selected. The selection is based on the relevance
assigned to the classes of a prior semantic segmentation of the frame. Following, two new frames
are created, one with the pixels inside the RoI on a black background and one with the pixels
outside the RoI. Both frames are then reduced using the H.264116 or H.265117 standard with
a higher reduction factor for the non-RoI frame. Wang et al. note an improvement for a later
semantic segmentation task for videos reduced using the proposed technique against the baseline
of using a single reduction factor for the whole frame.

112Wang, C. et al.: Online Safety Assessment of Automated Vehicles Using Silent Testing (2022), p. 13072.
113Wang, C. et al.: Reduction of Uncertainties for Safety Assessment Under Parallel Simulations (2021), p. 110.
114Wang, Y. et al.: Semantic-Aware Video Compression for Automotive Cameras (2023).
115Wang, Y. et al.: A Two-stage H.264 based Video Compression Method for Automotive Cameras (2022).
116International Telecommunication Union: H.264: Advanced video coding for generic audiovisual services (2019).
117International Telecommunication Union: ITU-T Rec. H.265 (08/2021) High efficiency video coding (2021).
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3.2.3 Data Reduction by Deep Learning

A novel approach to data reduction is the usage of DNNs like autoencoders. Here, a neural
network, called an encoder, is used to transform the input data into an intermittent representation.
The intermittent representation, termed the latent space, serves as an interface between the
encoder and a second neural network, the decoder. The decoder is used to approximate the input
data from the corresponding point in the latent space. Training of autoencoders utilizes the
supervised training technique, optimizing both encoder and decoder on pairs of corresponding
input and output data118. This working principle is shown in figure 3-1.

Encoder Decoder

Latent Space

Input Image Output Image

Figure 3-1: Example of the structure of an autoencoder using semantic segmentation of an input image.

If the dimensionality of the latent space is smaller than that of the input data, this approach can
be used as a form of reduction.119 The reduced data can either be stored in a latent space or in a
preset format as decided by the user. In the case of the latent space, the semantic meaning of the
storage format is defined by the neural network during the training process.

The semantic meaning of the latent space is in most cases not known to a human user. Extracting
the semantic meaning poses a non-trivial task. A contributing factor is entanglement, meaning
there is no one to one correspondence between a semantic property as understood by a human
and a machine.120

118Janiesch, C. et al.: Machine learning and deep learning (2021), p. 687.
119Luo, C.: Understanding Diffusion Models: A Unified Perspective (2022), p. 2.
120Pham, C.-H. et al.: Principal Component Analysis Autoencoder for Organising the Latent Space (2022).
121Chamain, L. D. et al.: End-to-End optimized image compression for machines, a study (2021)
122Toderici, G. et al.: Full Resolution Image Compression with Recurrent Neural Networks (2016)
123Schiopu, I.; Munteanu, A.: Deep-Learning based Lossless Image Coding (2020)
124Li, M. et al.: Learning Convolutional Networks for Content-weighted Image Compression (2017)
125Patwa, N. et al.: Semantic-Preserving Image Compression (2020)a: p.69
126Luo, S. et al.: DeepSIC: Deep Semantic Image Compression (2018)
127Sun, X. et al.: A Task-Driven Scene-Aware LiDAR Point Cloud Coding Framework (2023)
128Varischio, A. et al.: Hybrid Point Cloud Semantic Compression for Automotive Sensors (2021)
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For image compression, a key motivation to using neural networks over conventional methods
is specialization towards machine tasks, since conventional methods are designed with human
perception in mind121. Different autoencoder architectures have been proposed129,121,122,124 in
recent years. These approaches are already able to outperform the widely used JPEG standard.122

Chamain et al.121 present an approach, where they propose a strong coupling between encoder,
decoder, and task algorithm. They suggest not to train the autoencoder and the task algorithm
separately. Instead, a single loss function should be applied to update the parameters of the
encoder, decoder, and task algorithm in an end-to-end fashion to achieve an optimal result.
Considering the effect that data reduction can have on a subsequent task, like semantic analysis,
Luo et al.126 proposed a method, where semantic tags are included in the reduced image for later
use.

While the focus of the research is primarily on image compression, machine learning approaches
to reduce data from other sensor modalities such as LIDAR point clouds130,127,106,128,131,132 or
sound recordings133 are also emerging.

Due to the nature of the approximate reconstruction of encoder/decoder networks, the process is
inherently lossy. This loss can be mitigated by also encoding the reconstruction error123. Other
methods propose reconstruction error mitigation, by predicting and considering relevant pixels
in the encoding process124. It has also been proposed, to predict the reconstruction error using
DNN and perform a correction step using the predicted reconstruction error.123

3.2.4 Data Reduction for Deep Learning

Deep learning and the resulting models as analytic tasks are inherently reliant on the amount
and quality of data used. Any manipulation, such as data reduction, on data has the potential
to negatively influence the result.125 In particular, training DNNs is a complex task that has
three rather straightforward levers for yielding better results: improved model architectures, more
computational time, and larger datasets.134

Focusing on the third option, the limiting factor is not technological, as current of training
data set sizes are orders of magnitude smaller than any theoretical storage limit. Rather, it is a
technical and economical limit, where the burden of provisioning and processing the training
data outweighs the benefits of the trained network. For this reason, having effective reduction
strategies is key to being able to utilize all three options to create better DNNs. Currently, there

129Ballé, J. et al.: Variational image compression with a scale hyperprior (2018).
130Till Beemelmanns et al.: 3D Point Cloud Compression with Recurrent Neural Network (2022).
131International Standardization Organization: Visual volumetric coding and point cloud compression (2021).
132International Standardization Organization: Geometry-based point cloud compression (2023).
133Anastasia Natsiou, Sean O’Leary, and Luca Longo: An Exploration of the Latent Space of a CVAE (2023).
134Hestness, J. et al.: Deep Learning Scaling is Predictable, Empirically (2017)p. 6
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is no trend indicating that there is a technological saturation point in the near future for the return
rate of employing more data in training as long as the model size is scaled accordingly.134

Contrary to the above stated paradigm, that more data is better, the most natural approach to
data reduction of a training dataset is a reduction in training samples. As mentioned above, this
affects the quality of the results, depending on the information quality of the training samples.
While useful, a priori asserting the information quality of individual training samples is a difficult
task. Other approaches suggest using conventionally reduced data, such as by using the JPEG or
similar formats. The usage of such compression formats is prevalent in large-scale public datasets.
While having a high data reduction effect, introducing these types of compression artifacts leads
to performance loss.135

Another method of reducing the amount of stored data is the inclusion of synthetic data that
can be generated at the time of training, thus extending the training data. A simple example is
data augmentation, where the sample size is increased by creating deviations or augmentations
from an original sample.136 Common augmentations are any geometric transformations like
rotation, flipping, cropping, or introducing shifts in color space. Another type of augmentation is
generating a mixed deviation from two or multiple samples.137 Further approaches have been
proposed, where the effective sample size for generative adversarial network (GAN)s can be
further increased by also augmenting the output of the generator which then serves as input to a
discriminator.138

Intuition might suggest an approach to data reduction in deep learning, where samples can
be discarded once they have been learned during training. Due to the effect of ”catastrophic
forgetting” training samples have to be retained in order to also retain their learning effect.139

This effect is used to a positive end in fine-tuning generalist models to a specific task, but poses a
substantial problem in incremental learning, where training processes for the same task might be
separated by a longer period of time. Rios and Itti140 therefore suggest the training of a generator
alongside the task function, in order to later remove already learned samples from the training
set and to replace them with a reduced representation from which a substitute can be generated
for later training processes. This approach is most interesting when training is suspended for a
longer period of time.

135Ehrlich, M. et al.: Analyzing and Mitigating JPEG Compression Defects in Deep Learning (2021).
136Taylor, L.; Nitschke, G.: Improving Deep Learning with Generic Data Augmentation (2018).
137Zhang, Z. et al.: Bag of Freebies for Training Object Detection Neural Networks (2019).
138Tran, N.-T. et al.: On Data Augmentation for GAN Training (2021).
139French, R.: Catastrophic forgetting in connectionist networks (1999).
140Rios, A.; Itti, L.: Closed-Loop Memory GAN for Continual Learning (2018).
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3.3 Relevance

In this section, the concept of relevance will be elaborated and placed in the current state of
science. This includes definitions of the concept of relevance as well as derived and related terms,
relations to neighboring concepts, and current methods to transform this abstract concept into a
tangible form. The context in which this concept is discussed must be considered. First, there is
the context of Relevance Theory, which considers the above question its primary focus. Second
the context of application, in this case AD, needs to be included as well.

3.3.1 The Concept of Relevance in the Automotive Domain

In the context of automated driving, relevance is a concept that, in the scientific community is
most of the time implicitly considered. As this section will show, in most works the question
”What is relevant?” takes precedence over the question of what defines the concept behind this
term.

Ulbrich et al.141 delineates several terms in the automotive domain and defines their conceptional
composition by their ”function-relevant” components. While no exact criteria for function
relevance are given, they link it to an influencing interaction between an object and the planning
task.

The most common consideration of relevance in the automotive domain is through safety/crit-
icality metrics. While a distinction between relevance and the current criticality term might
seem negligible at first sight, Neurohr et al. define that ”[c]riticality (of a traffic situation) is the
combined risk of the involved actors when the traffic situation is continued”143. Westhofen et
al.142 present an analysis of the state of the art for criticality metrics in use for the automotive
domain.

In general criticality metrics share the following properties:

Criticality metrics consider individual scenes or whole scenarios. Contrary to the above definition
of criticality the majority of criticality metrics only consider pairwise relations between two
objects. Aggregation of the criticality for all objects is mostly done by extracting the extremes of
a set of pairwise relations. Similarly, for scene level metrics the extension from scene to scenario
is performed similarly by aggregating over the individual scenes in a scenario.142a

Criticality metrics present their results on an ordinal to ratio output scale. Most commonly
the unit of the result represents a physical relation such as time, acceleration, jerk, energy, or

141Ulbrich, S. et al.: Defining and Substantiating the Terms Scene, Situation, and Scenario (2015).
142Westhofen, L. et al.: Criticality Metrics for Automated Driving (2023)a: p. 13
143Neurohr, C. et al.: Criticality Analysis for the Verification and Validation of Automated Vehicles (2021).

37



3 Related Works

probability, with a few metrics giving their result in the form of a unit-less index.144

A linking to relevance is in many cases only implicitly present. A stronger linking is usually
achieved through set target values, which are highly dependent on the context they are defined in.
Transfer and application outside the defined context remain insufficiently substantiated. As a
result, many critical values for these metrics exist, as can be seen for the time-to-collision metric,
where Westhofen et al. cite critical values in the range of 1 s145,146 to 3 s147 have been presented.

There are also examples of explicit consideration of the concept of relevance in automated driving.
Lyssenko et al.149 argue for relevance metrics that consider the underlying task to bridge the gap
between perception and safety metrics. In the paper, the perception performance of pedestrians
is evaluated and linked to the distance as a connection to the driving task. In a subset of works,
relevance is also explicitly judged. Philion et al.150 describe a relevance estimation that is linked
to the influence of a concrete function implementation on a task. Shalev-Shwartz, Shammah, and
Shashua151 introduce Responsibility-Sensitive Safety (RSS) which aims to define rules for safe
behavior. Further, the criteria presented also delineate whether an actor has a duty of care. The
duty of care is defined as ”the obligation to avoid negligence, particularly to take reasonable
care not to cause physical, economic, or emotional loss or harm to others”148. An assertion of
duty of care can be equated to binary relevance judgment.

3.3.2 The Concept of Relevance in the Relevance Theory Domain

What do we mean when we talk about ’relevance’?

This question might initially appear to be trivial, but on further examination reveals itself to be a
complex subject matter in itself. While the intuitive meaning of relevance might appear quite clear
as ”pertaining to the matter at hand”153, its meaning depending on the use case differs. Within
information science ”[r]elevance is the measure of retrieval performance”154 and describes how
well presented information fits the user retrieving it. While in communication science relevance
of information is defined over its ”positive cognitive effect”152, meaning its ability to influence
the recipient of the information towards ”to the fulfillment of cognitive functions or goals.”152.

144Westhofen, L.: Time To Collision (TTC) - Criticality Metrics (2023).
145Hayward, J. C.: NEAR-MISS DETERMINATION THROUGH USE OF A SCALE OF DANGER (1972).
146Huber, B. et al.: Evaluation of Virtual Traffic Situations based on Multidimensional Criticality Analysis (2020).
147Autey, J. et al.: Safety evaluation of right-turn smart channels using automated traffic conflict analysis. (2012).
148Allaby, M.; Park, C.: A dictionary of environment and conservation (2013)
149Lyssenko, M. et al.: Towards Task-oriented Relevance Metrics for Pedestrian Detection (2021).
150Philion, J. et al.: Learning to Evaluate Perception Models Using Planner-Centric Metrics (2020).
151Shalev-Shwartz, S. et al.: On a Formal Model of Safe and Scalable Self-driving Cars (2017).
152Sperber, D.; Wilson, D.: Relevance: communication and cognition (2001)
153Saracevic, T.: RELEVANCE: A review of and a framework (1975).
154Schamber, L. et al.: A re-examination of relevance: toward a dynamic, situational definition∗ (1990).
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Due to this ambiguity, further application necessitates more elaboration of the detailed meaning
of relevance.

For this purpose, this section will explore the following questions: How is the concept relevance
modeled? What influences a given relevance? How can relevance be asserted? Due to the nature
of different disparate views on relevance over time, a complete overview of the state of the art
would exceed the scope of this thesis. As such, a focus on the most prevalent streams of thought
is presented.

Assessing the state of the art, modeling relevance appears to be an ongoing task, with multiple
models coexisting and competing. Relevance is generally modeled and understood as a relation
between a set number of entities.155,156 While the same entities are present in several of the
models they might serve a different purpose in the respective model.

In a meta-paper155 Mizzaro summarizes various approaches to model relevance. Building on the
findings in the meta-paper, Mizzaro proposes an ontological model for relevance as presented in
figure 3-2.157 Here, relevance is the relation between two generalized entities, the information
item and the problem of a user. Both sides of the relation are subject to different levels of
abstraction, where the real information need within a problem might differ from what the users
perceived information need. This is then further differentiated by how the user expresses his
information need, either in human language or machine language, which is called request and
query respectively.

Considering the information item, three subtypes are distinguished: physical entity or document158,
information, and surrogate157. The first type of information item is the physical entity, as it is the
initially existing entity, from which all other types are derived. The surrogate is a representation
of a physical entity.

From the physical entity information can be derived, which is the main type when considering
knowledge management and is usually the entity of interest when considering relevance.

Mizzaro states that each combination of information item and problem constitutes a different
relevance.155 The relevance also changes depending on which component of the information item
or problem is considered. These components are decomposed into topic, context, and task. He
further includes the concept that relevance is subject to change over time.

155Mizzaro, S.: Relevance: The whole history (1997)
156Saracevic, T.: RELEVANCE: Part II: nature and manifestations of relevance (2007).
157Mizzaro, S.: How many relevances in information retrieval? (1998)
158As the focus of Mizzaro’s work is mostly retrieval of text documents, he refers to the physical entity mostly as

document. For clarity, the term physical entity will be used, in favor of document.
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Figure 3-2: Illustration of relevance based on description from Mizzaro 157
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Figure 3-3: Illustration of relevance judgments based on description from Mizzaro 157
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In addition to providing a model for relevance, Mizzaro also summarizes a model for judging
relevance, as depicted in figure 3-3. He distinguishes several attributes that influence a relevance
judgment. First, the type of relevance being judged. Second, whether the judge is a user or a
non-user. Third, what the judge can use to evaluate relevance, both for the problem and the
information item. This accounts for the possibility that the relevance of a physical entity to a
user’s problem is to be judged, while only the query and a surrogate are available. Finally, the
time of judgment as opposed to the time of relevance. This accounts for the fact that a judgment
may consider past, present, or predicted relevance.

Saracevic’s seminal paper159, which has been widely cited and recognized throughout the broader
scientific discourse, presents five key attributes for relevance: Relation, Intention, Context,
Inference, and Interaction. Like Mizzaro’s connection between the information item and problem,
Saracevic’s Relation denotes the same concept. The other attributes, while not identical to those
outlined by Mizzaro, correspond to similar concepts. For instance, intention aligns with the task
component associated with both the information item and the problem. While Saracevic identifies
context as a key attribute of relevance, Mizzaro’s summary places the concept of context together
with task and the topic as a component of information item and problem. Similarly, Inference,
as conceptualized by Saracevic, refers to the assessment of relevance, often visualized on a
spectrum rather than a mere binary evaluation. Lastly, Interaction parallels the time component,
emphasizing the dynamic relationship between the evolving information item and the user-defined
problem.

In general language usage, reference is often made to the concept of relevance. However, a closer
look at the current state of the art reveals that relevance is an umbrella term that encompasses
a variety of differentiated concepts. The following will highlight several of these concepts to
understand the complexity of the term and its implications in different meanings.

A key distinction can be made whether a relevance reflects the user view of the information item.
A relevance not considering the user, is denoted in literature by the terms objective relevance,
topicality or topical relevance, logical relevance, subject relevance and system relevance or
algorithmic relevance.160,161,162,163,164 For brevity, the term objective relevance will be used to
describe this group. As the name topical relevance suggests, this objective relevance considers
the topic component. In more detailed definitions it is identified as the relevance of an information
item to a request or query for what concerns the topical component or subject.165 Descriptions

159Saracevic, T.: RELEVANCE reconsidered (1996).
160Spink, A. et al.: From Highly Relevant to Not Relevant (1998)
161Eisenberg, M. B.: Measuring relevance judgments (1988)
162Cooper, W. S.: On selecting a measure of retrieval effectiveness (1973)
163Cooper, W. S.: On selecting a measure of retrieval effectiveness part II. Implementation of the philosophy (1973)
164O’Brien, A.: Relevance as an aid to evaluation in OPACs (1990)
165Saracevic, T.: RELEVANCE: Part II: nature and manifestations of relevance (2007)
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of system or algorithmic relevance, indicate an understanding that this relevance is rather an
implementation, via a system or algorithm, of other relevances.166

Similarly, the state of the art presents several terms for relevances, that take aspects involving the
user into consideration. While the group is termed subjective relevance multiple subgroups of
terms, having the same meaning, emerge:168,160,162,163,164,167.

1. pertinence and cognitive relevance

2. usefulness, situational relevance, and utility

3. motivational relevance, affective relevance

Sperber and Wilson identified two key properties for ”subjective relevance”. First, an effect on
the subject’s view of the world, and second, how much processing is necessary to obtain the
effect based on the information.152

The term pertinence is the most directly related subjective relevance terms to an objective
relevance. It can be understood as the subjective extension of topical relevance, additionally
taking into account the second of Sperber and Wilson’s properties. While an information item
might be topical relevant, as concerning the topic of interest, it has to be interpretable or usable
for the user in order to be considered pertinent169. The relevance term usefulness further adds to
the concept of pertinence a consideration of Sperber and Wilson’s first property. ”An entity has
utility if it is pertinent and makes a useful contribution beyond what the user knew already”169.
As such, information has utility if it has a relation to the performance of a task and contributes to
the way the task is performed. Examples are ”[u]sefulness in decision making, appropriateness of
information in resolution of a problem, reduction of uncertainty” 165. While ”affective relevance”
is similar to utility, the key difference lies in that it does not concern the result of a task, but the
motivation of whether a task should be executed 165.

Carbonell and Goldstein introduce the concept ofmarginal relevance170. This relevance is defined
as a combination of the relevance of an information item and its novelty to the user in a given
context. The degree of novelty is defined via the dissimilarity to other information items present
in the users’ context.

While the nomenclature in use for relevance is more extensive as presented here, this overview is

166Saracevic, T.: RELEVANCE reconsidered (1996).
167Regazzi, J. J.: Performance measures for information retrieval systems—an experimental approach (1988)
168Cosijn, E.; Ingwersen, P.: Dimensions of relevance (2000).
169Soergel, D.: Indexing and retrieval performance: The logical evidence (1994) p.590
170Carbonell, J.; Goldstein, J.: The Use of MMR, Diversity-Based Reranking for Reordering Documents (1998).
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considered sufficient, since it covers the most widely spread terms for relevance.

In addition to general terminology and definitions, literature further identifies several attributes,
which influence the magnitude of the assigned relevance. First, considering the judge of the
relevance, a judge may be subject to a bias, or be restricted to his own knowledge and experience.
The intelligence of the judge is further noted as an attribute.171 When considering an algorithm
as the judge, this can be understood as the sophistication of the algorithm.172

In addition, the circumstances under which the assessment is made can also influence the degree
of relevance attributed. Factors such as the amount of information available for assessment, the
order of presentation of the information, the specification of the task at hand, and the time of the
judgment attribute to determining relevance.171

Regarding the information item, the quality of the information contents like its accuracy, clarity,
recency, and absence of ambiguity are noted. Further, the information’s completeness to the
information need is named. From a utility perspective, the usefulness of the information, espe-
cially in task resolution, stands out. For instance, in a document search, the suggestiveness of the
document to other documents also influences relevance. In addition to the content and effect of
the information, the process of extracting information from a physical entity is also considered.
Here, ease of use, difficulty, time, cost, efficiency as well as accessibility are given as possible
attributes.167,171,172,173,174

Considering the information item the following influence to relevance attributed to it. First, the
accuracy or lack of ambiguity of the presented information has to be considered. Additionally,
whether the information has completeness and recency for the information need, is identified as an
influencing factor. Evaluating the utility side of the information object, the usefulness in solving
a task, is a key factor. Considering a document search, the suggestiveness of the document to
other documents also influences relevance.171,152,172,173

As previously noted, the relevance of individual information items can also be assessed in con-
junction with other present information items. Here, the concept of novelty of the information in
contrast to already known information is considered. Regarding the above-mentioned circum-
stance that information can be inaccurate or ambiguous, the ability to alleviate these situations is
also conceptualized as noise reduction.172,173,174

171Schamber, L.: Relevance and Information Behavior. (1994)
172Taylor, A. et al.: Relationships between categories of relevance criteria and stage in task completion (2007)
173Vakkari, P.; Hakala, N.: Changes in Relevance Criteria and Problem Stages in Task Performance (2000)
174Taylor, R. S.: Value-added processes in information systems (1986)
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3.3.3 Validation of Relevance Models

The contents of this subsection have been previously published as part of a conference paper175.
The state of the art shows various methods on how to conceptualize and assert object relevance.
The validation of these relevance concepts however has not been the focus of research and is
therefore underexplored.

Most datasets do not consider the validity of inclusion or exclusion of objects, with respect to safety
in planning or for evaluation of perception metrics.176,177,178 In other datasets, considerations
can be found that the validity of inclusion may be less for some objects than other. As an
example, the ONCE dataset179 considers objects at different distances separately. A common
approach is to show plausibility through application and visualization of examples.180,181,182

Other works propose the usage of planners for evaluation in closed-loop simulations 183 and
also apply it to safety aware prediction metrics184. For the planning Kullback-Leibler divergence
(PKL) metric 183, validity is argued in two steps. First, an argument for plausibility on the basis
of showing sensitivity to distance and velocity as commonly accepted features of relevance for
the automotive domain. Second, the results are subjected to human comparative evaluation via
Amazon Mechanical Turk. This evaluation showed a human preference towards the PKL metric
over the NuScenes Detection Score by 80%. However, the use of a planner introduces a tight
coupling to the specific implementation and also to the errors within the implementation. As
such, the results generated by this type of method are questionable in their validity.185

3.4 Interim Conclusion

Having reviewed the works related to this dissertation an intermediate conclusion on the current
state of the art can be made. Here, two key points emerge. First, the amount of data is an essential
factor in increasing the performance of DNNs and larger amounts of data are needed. Second,
one of the main challenges for the release of automated driving is controlling the open context.

175Storms, K. et al.: SURE-Val: Safe Urban Relevance Extension and Validation (2023).
176Geiger, A. et al.: Are we ready for Autonomous Driving? (2012).
177Sun, P. et al.: Scalability in Perception (2019).
178Wilson, B. et al.: Argoverse 2 (2021).
179Mao, J. et al.: One Million Scenes for Autonomous Driving: ONCE Dataset (2021).
180Topan, S. et al.: Interaction-Dynamics-Aware Perception Zones for Obstacle Detection Safety Evaluation (2022).
181Volk, G. et al.: A Comprehensive Safety Metric (2020).
182Philipp, R. et al.: Systematization of Relevant Road Users (2022).
183Topan, S. et al.: Interaction-Dynamics-Aware Perception Zones for Obstacle Detection Safety Evaluation (2022)
184Jha, S. et al.: Watch Out for the Safety-Threatening Actors: Proactively Mitigating Safety Hazards (2022).
185Mao, J. et al.: 3D Object Detection for Autonomous Driving (2023).
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As such, there is a need for additional options in data reduction, to further reduce the burden of
provisioning large amounts of data. The state of the art showed many diverse methodologies
for data reduction, while a lack of methods for partial, intra-scene data reduction methods is
apparent. Furthermore, based on current data centric methods, it is necessary to not only consider
the open context in safety argumentation, but also at the provisioning stage and hence also in
data reduction.

It can be concluded, that a novel intra-scene data reduction methodology, that explicitly considers
the open context is needed for an efficient development and release of automated driving.

As stated before, a relevance centric approach has the potential to mitigate the challenges posed
by the open context. Reviewing the state of the art for relevance, many concepts emerge. Despite
the abundance of theoretical frameworks, a unified model to conceptualize, assess, or assign
relevance within the domain has not yet been presented. It can be assumed that a relevance centric
way of thinking must not just be transferred to the automotive domain, but rather rebuilt based
on the building blocks provided by that state of the art from relevance theory and information
retrieval.

Summarizing the state of the art of relevance validation a distinct lack in methods and substantia-
tion thereof must be noted. Proposed methods argue their validity by comparing chosen examples
and performance relative to baselines. As such, no method exists which provides acceptance
criteria and for which validity can be assured.
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4 Methodology

The previous chapter concluded a need for a novel data reduction methodology for an efficient
development and release of AD. Two aspects of this methodology were deduced from the state of
the art. First, the need for novel intra-scene data reduction methodology, and second, an explicit
consideration of the challenge posed by the open context for AD. On the one hand, while the
intra-scene aspect is a novelty in the state of the art, it is only another data reduction possibility
among others. The consideration of the open context on the other hand is something that has no
corresponding state of the art. As such, the chapter will focus on the second aspect, which is
solidified with the following research question.

Research Question 1
How can the open context present in automated driving be addressed in data reduction?

To provide an answer to this research question, a concept for such a data reduction methodology
will be derived. Since the consideration of the open context is the key aspect of the data
reduction, the name of Context Aware Data Reduction (CADR) is assigned to it. In the initial
step, functional requirements will be expanded from the above-mentioned aspects on a functional
level. Subsequently, based on these functional requirements a system design for CADR will be
defined.

4.1 Functional Specification for Context-Aware Data
Reduction

Data reduction methods rely fundamentally on relevance models. Such a model serves as
the backbone for decision-making within a data reduction method, delineating which pieces of
information are relevant and must be retained versus those that are irrelevant and can be discarded.
Additionally, the relevance model dictates the distribution of data, determining how much data
storage should be allocated to each piece of information based on its relevance. Therefore,
the CADR approach requires the usage of a relevance model to address the specific needs and
considerations intrinsic to automated vehicles.

Traceability is defined by ISO/IEC/IEEE 24765 as the ”discernible association among two or
more logical entities, such as requirements, system elements, verifications, or tasks”186a. ISO/DIS

186ISO: Systems and software engineering - Vocabulary (2017)a: p.378, b: p.236
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21448, ISO 26262, and ISO/TR 4804 rely on the concept of traceability.187,188,189 ISO 26262
places traceability as a key component of a safety case. Specifically ISO 26262-2 states that work
products referenced in the safety case must be traceable from one to another.190 Data especially
from field operation provides ”objective evidence”186b for a given safety case. As such, data and
manipulation thereof also need to be traceable. This is formalized in the following requirement
(REQ):

REQ: CADR shall enable traceability.

Many data reduction approaches only use implicit relevance models. An implicit relevance
model is specified only by the algorithmic implementation of the approach, but is not otherwise
documented. This means that the relevance model can only be derived by analyzing the imple-
mentation and evaluating the results of the data reduction. Such relevance models, due to their
implicit and unstated nature, cannot be traced and linked to previous or subsequent processes.
Thus, they prevent a holistic view of the system development process and complicate the creation
of a safety case. It is then argued that any use of relevance in processing or reasoning must make
the usage of the applied relevance model available for use by other processes. These features are
only possible with an explicit description of a relevance concept. Thus, the following functional
requirement applies:

REQ: CADR shall use an explicit relevance model.

A principal component of the system is its capacity to handle an open context, an ODD that
cannot be entirely structured or exhaustively defined by existing ontologies. An open context is
characterized by uncertainties and incomplete structures that defy full ontological categorization.
These uncertainties and incomplete structures have the potential to cause a false assertion of
relevance and subsequent data reduction. To account for the open context, this potential needs to
be handled by the CADR approach, giving the functional requirement that:

REQ: CADR shall include an assurance concept.

The system’s ability to function within an open context is supported by its adaptability to the
evolving nature of the ODD. The structure of the ODD, at any given moment, is recognized as
being incomplete, with the possibility of expansion as new facets are described and uncertainties
are clarified. This inherent flexibility is essential, as the act of data reduction, predicated on the
relevance model, could inadvertently lead to the loss of information that might later prove to be
significant.

To mitigate the risks associated with information degradation through successive applications
of data reduction, the system shall incorporate a feature termed continuous extendability. This

187International Standardization Organization: Road vehicles - Functional safety (2018).
188ISO/DIS: Road vehicles - Safety of the intended functionality (2021).
189ISO: Road vehicles — Safety and cybersecurity for automated driving systems (2020).
190International Standardization Organization: Road vehicles - Functional safety - Part 2 (2018), p. 39.
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property ensures that information, which has not yet been deemed irrelevant, is not permanently
discarded. Rather, the original, unreduced datasets are always accessible for re-evaluation. Con-
tinuous extendability allows for the ongoing refinement of the ODD, the reduction of uncertainty,
and the iterative enhancement of the relevance model, as shown in figure 4-1.
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Figure 4-1: The property of continuous extendability of a data reduction upon updating the relevance model.

REQ: CADR shall provide continuous extendability.

In conclusion, the functional specification for CADR sets forth a structured methodology for
developing a data reduction system that is not only aware of the complexities of automated
driving, but is also robust and flexible enough to evolve with the expanding knowledge and
understanding of the ODD. This approach is conceptualized to ensure that ADS remain both
efficient and effective in the face of the dynamic and uncertain nature of real-world driving
environments.
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4.2 System Design for Context-Aware Data Reduction

Based on the previously defined functional requirements a framework system is designed for
further implementations of the CADR approach. The proposed system is depicted in figure 4-2.
Following, the individual modules comprised in the system will be described in more detail.
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Figure 4-2: Flowchart for the CADR architecture

Data Abstraction

The data abstraction module, as depicted in figure 4-3, transfers the input data to the abstraction
level of the used relevance model. While the representation of a relevance model is an ontology
in nature, the representation is not confined to ontological representation formats. Contrary
the abstracted form can be any arbitrary representation, with the only constraint being, that the
represented entities and properties are semantically equivalent to those used in the relevancemodel.
This semantic equivalence then allows relevance judgments to be made. In ADS, perception
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modules provide a parametric description of the environment that concisely represents what
has been deemed important. These modules can be seen as the first part of the data abstraction
process.

Data
Abstraction

Input Data

car_1

truck_1

lane_1

Abstracted Data

is_on

is_on

in_front_of

Figure 4-3: Data Abstraction

Relevance Attribution

The relevance attribution module, shown in figure 4-4 encompasses one or multiple relevance
metrics. Based on the relevance metrics each ontological element represented by the relevance
model is attributed a value on the used relevance scale.
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Figure 4-4: Relevance Metric

Relevance Binning

The task of the relevance binning component is to divide the relevance measure of the used metric
into N intervals of relevance. These are then assigned to the corresponding N Reduction/Expan-
sion pipelines.
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Figure 4-5: Relevance Binning
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Relevance Projection

Within the relevance projection module, the relevance judgments of each bin are projected to
the representation space of the input data. In the case of image data, this results in a pixel mask
Imask, denoting which pixel corresponds to the respective relevance bin.

Pipeline 1

car_1lane_1

Abstracted Data

Input Data

Relevance
Projection

Figure 4-6: Relevance Projection

Reduction/Expansion Pipeline

The framework comprises N reduction/expansion pipelines, with each pipeline integrating a
reduction module and an expansion module. These modules are responsible for implementing
an arbitrary data reduction algorithm. The variation among pipelines can be subtle, such as a
change in parameters, or more pronounced with different reduction/expansion algorithms being
employed.

The design of each pipeline shows a fundamental coupling between the reduction and expansion
functions. This is primarily because the expansion module is tasked with performing the inverse
operation of the reduction algorithm. For instances of lossless reduction, the expansion function
fexpansion,n is the mathematical inverse of the reduction function freduction,n, as defined by:

fexpansion,n = f−1
reduction,n (4-1)

In scenarios involving lossy reduction, the expansion function seeks to approximate the inverse
of the reduction function, introducing an error ϵ, described as:

fexpansion,n + ϵ = f−1
reduction,n (4-2)

Previously, relevance was solely associated with an arbitrary external task. However, the approach
is extended to incorporate relevance as an integral aspect of the data reduction and expansion task
itself. The magnitude of the expansion error ϵ resulting from lossy reductions is contingent upon
the expansion algorithm’s implementation, its parameters, and the input data characteristics.
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It is observed that the magnitude of the expansion error can differ based on the input. To address
this sensitivity, the concept of relevance to the data expansion task is introduced. This concept
enables the methodology to identify which input data elements disproportionately affect the
expansion error. With this knowledge, the reduction process can be refined to preemptively
preserve data that would otherwise contribute excessively to the error upon expansion, thus
enhancing the accuracy and reliability of the data processing pipeline.

Fusion

The fusion module’s task is to take in the expanded outputs from each relevance pipeline and
combine them into the final expanded data. This can be as easy as a simple merge operation, as
shown in figure 4-7. If multiple lossy data reduction pipelines are applied, other considerations
might apply making this step more complex.

Pipeline 1

Expanded Data
Input Data

Fusion

Expanded Data

Pipeline 2

Figure 4-7: Fusion

4.3 Assurance Concept

As stated in section 4.1 the CADR approach has to incorporate an assurance concept to ensure that
important information is not lost. This concept is especially vital when a relevance concept may
be incorrectly applied, which can lead to a break in the traceability for the safety argumentation
through data loss. To address and mitigate this risk, the relevance concept used should be
conservative. This means that in situations of uncertainty, where data could be seen as both
relevant and irrelevant, the conservative approach would default to considering the entity as
relevant. Such a stance ensures that any data that might be pertinent is not discarded.
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Moreover, a relevance concept might fail to consider all relevant aspects of the subject system. To
prevent this, instead of creating a single, holistic relevance concept, a more fine grained approach
can be used. For this case, a functional decomposition191 can be applied. The subject system is
broken down into its individual sub functions, and a conservative relevance concept is applied to
each. These individual concepts are then united using a logical disjunction. Figure 4-8 visualizes
this concept.
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Figure 4-8: Functional Decomposition

In practice, this approach dictates that if any one sub function determines a piece of information
to be relevant, then it is then deemed relevant to the entire system. This layered approach to
relevance helps to maintain the integrity of the system’s functionality by ensuring comprehensive
data consideration. The utilization of functional decomposition in conjunction with a conservative
approach is expected to yield sufficient assurance for the application of the CADR approach.

191Amersbach, C.: Functional Decomposition Approach (2019).
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5 Relevance Concept

Chapter 4 defined the need for an explicit relevance model, as to be able to link it to other
engineering processes. Thus, RQ. 2 is posed to answer how this need can be satisfied.

Research Question 2
How can the concept of relevance, in the context of a given use case, be formally described?

In chapter 2, ontologies were already identified as a suitable tool to structure and formalize
information and knowledge. Ontologies are widely used to describe information in the automotive
domain to describe and reason about information from the traffic environment. Since relevance
is primarily thought of as a relation, describing relevance information involves entities that
describe and link to these environment information. In order to reflect this characteristic, a nested
ontological architecture as depicted in figure 5-1 is proposed. As described in section 2.1, an
ontology contains two types of information. The first is the terminology box (T-Box), which
states the concepts and axioms that serve as ground truth for how the described world is structured.
The second, called assertion box (A-Box), states or asserts the observations made in that world.
Here, the entire environment ontology is treated as an assertion described within the relevance
ontology. Thus, the relevance ontology contains the used abstract concepts about the environment
as well as concrete instances of a current situation. This allows the relevance ontology to reason
about the implications and correctness of the environment ontologies A-Box as well as T-Box.

Assertion box

(Relevance-) Ontology

Terminological 
box

(Environment-) Ontology

Terminological 
box

Assertion
box

Figure 5-1: Nested ontological architecture of relevance and environment ontology

In the following, two types of models will be introduced. First, an abstract description of classes
and relations within the relevance ontologies T-Box is modeled. This model is designated as
general relevance model (GRM). The GRM is intended to serve as a system agnostic template
which can then be applied and further specified for different target systems. These specifications
are designated as specific relevance model (SRM). For a given system, the SRM defines concrete
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instances for the classes defined in the GRM. While the SRM can be as detailed as possible a
full specification is not necessarily beneficial or necessary. Looking at scenario description as a
potential application for an environment ontology, multiple levels of abstraction/concretization
have been established over time, ranging from concrete scenarios to functional scenarios.192,193

While the former gives a machine-readable specification of a single scenario with fixed parameters,
the latter only gives a human-readable behavior based description for a range of scenarios. As to
not be limited to a single set of fixed parameters, or a single implementation of a system, allowing
for partial specifications allows for a more generalized applicability of a SRM.

5.1 Definition of a GRM

This section will consider which types of relevance are useful for the current challenges of AD
development. The identified relevances will be represented in a model. This model may not
reflect further uses for relevance not considered or not yet known. Thus, the presented model
may require extension or adaptation to be applicable to these novel uses. Using the notation
given in section 2.1 the proposed GRM is visualized in figure 5-2.

Figure 5-2: Ontology of the concepts that make up the GRM

192Neurohr, C. et al.: Criticality Analysis for the Verification and Validation of Automated Vehicles (2021).
193Menzel, T. et al.: Scenarios for Development, Test and Validation of Automated Vehicles (2018).
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To ensure the ability to reason about the relevance aspect of relations in ontological structures,
the GRM needs to reflect the above nested ontological architecture. The environment ontologies
A-Box only contains instances of the environment ontologies T-Box. Thus, it is necessary to
first define the entities of the environment ontologies T-Box. Subsequently, the entities within
the environments A-Box can be instantiated by concrete observations from the environment
scene. Two classes within the environment T-Box are predefined as the interface between the
environment ontology and the relevance ontology, these are entity and relation.

The rest of the environment T-Box can only be defined once the subject use case is known. The
use case entails two aspects: what needs to be done and in which environment does it need to
be done? To cover the first aspect, a description of the subject task is required. In addition,
the GRM must represent a system that implements a solution to the task. The second aspect
requires a description of the ODD. Describing the ODD and creating a system to solve a task
usually requires models as simplifications of reality. The claims and assumptions of the models
are represented in the GRM as a type of information item. Since these information items are
not sensed or derived from the external world during operation, they are denoted as intrinsic
information items. Conversely, information items observed within the environment are denoted as
extrinsic information items. Extrinsic information items are conceptualized as a relation between
two entities within the environment ontology. From the point of view of relevance ontologies,
this relation is described as a composition of subject, predicate, and object. This allows the
representation of both information elements from the environments T-Box, as in table 5-1, and
A-Box, as in table 5-2.

Table 5-1: Examples of extrinsic information items from the environments T-Box. Here, the terminology is
introduced, that both road and car are subclasses of thing is stated, as well as that car can have an is_on relation to

road.

Information Item Entity Relation Entity
T1 car is_on road
T2 road is_a thing
T3 car is_a thing

Table 5-2: Examples of extrinsic information items from the environments A-Box. In this example, it is asserted
that there is an entity ”car_1” that is of type car and another ”road_1” that is of type road. Further, the relation that

car_1 is_on road_1 is asserted.

Information Item Entity Relation Entity
A1 car_1 is_instance_of car
A2 road_1 is_instance_of road
A3 car_1 is_on road_1

To further visualize this example with figure 5-3, information items T3 and A3 from tables 5-1
and 5-2 are depicted in the context of the nested ontological architecture established in figure 5-1.
As can be seen, the purpose of the environment ontology is to describe the observed environment
through assertions, as well as the concepts used to describe the environment. In contrast, the
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relevance ontology is not directly concerned with the environment. Its purpose is to describe
the informational workings of the environment ontology. Using this example, a result of the
relevance ontology might be to reason about, the is_on relation. Assuming that the environment
ontology requires every car to be on a road, observing cars that are not on any road can be used
to refine the environment ontology.
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Figure 5-3: Example for the application and use of the nested ontological architecture of relevance and environment
ontology

Regarding the task, it can be considered as the requirement to perform an action within the
environment as defined in the ODD. In the scope of AD, the task is considered to require a
closed-loop interaction, such that it can also react to changes within the environment. As such,
the task requires a sense step before a reaction can be rendered. In terms of relevance theory, this
sense step represents an information need for a problem.

As established in the review of the state of the art, relevance within the GRM is also conceptualized
as the relation between a problem and an information item. Similar to criticality metrics the
concept that relevance can be expressed on different scales is also included.

However, it is crucial to include the role of a judge in determining relevance, since relevance can
also be judged for an object that is not the ego object. This aspect is not adequately captured in
traditional criticality metrics. Furthermore, two additional concepts are integrated to enhance
the application of relevance in automated driving. The significance of an information item
may be diminished or even nullified if it is redundant to another information item, a concept
termed marginal relevance. To address this, the GRM incorporates the notion of redundancy by
compiling all current information items into what is termed as the (information) context. Within
the scope of the GRM, the context remains an abstract concept to be later filled by concrete
information items.

Section 3.1 highlights that the open context is a significant challenge for AD, as identified in
the state of the art. An open context is marked by uncertainty and an incomplete description
of the ODD. Therefore, these challenges must be reflected in a relevance concept tailored for
AD. This is achieved by introducing an evidence relation into the relevance ontology. Evidence
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can manifest as either a contradiction or support between two information items. This approach
allows for the representation of uncertainty in the ODD by identifying contradictions in the
observed environment’s A-Box. For instance, a potential class mismatch in late sensor fusion,
where different sensors may classify the same object differently, exemplifies this. Additionally, a
discrepancy between reality and the specified ODD can be detected by observing contradictions
between the environment’s T-Box and A-Box. For example, if the T-Box assumes that every car
is on a lane, but in the hypothetical A-Box, a car is observed without an associated lane, this
contradiction indicates that the model assumption in the T-Box is flawed and needs refinement.
These thus state a relevance to the development use case and, by extension, to the use case of
safety assurance.

5.2 Definition of a Method to Derive a SRM

The contents of this section have previously been published in separate papers194,195 co-authored
by the author of this work together with Ken Mori, and are presented here with modifications
towards the application within this dissertation. An analogous approach can be found in the
dissertation of Ken Mori196.

Having defined the GRM which encapsulates the abstract notion of what influences relevance,
a next step is necessary. The GRM only considers abstract entities without any concretization,
as such it does not provide a relevance concept for a given system that can then be used in a
data-driven process. Therefore, a method is needed to perform this transfer from abstract to
concrete, which this section will present. Figure 5-4 shows the proposed method.

Partial System Specification

Architecture

Requirements Capabilities Use Case

Decomposed Functional Scenarios

Relevance Criteria

Relevance Model

Use Case Specification

Task

Figure 5-4: Method for deriving a SRM

194Mori, K. et al.: Conservative Estimation of Perception Relevance of Dynamic Objects (2023).
195Storms, K. et al.: SURE-Val: Safe Urban Relevance Extension and Validation (2023).
196Mori, K.: Defining Object Detection Requirements for Safe Automated Driving (2023).
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The method consists of the following three major steps. Definition of the problem through the
use case definition. Specification of the partial system, defining the action space for solving the
problem. The final step is relevance modeling, where the use case is decomposed, behavioral
requirements are derived and described through criteria.

5.2.1 Use Case Specification

The first step is the specification of the use case. Here, the task to be performed is defined as
well as the ODD. These definitions are on a functional level, as only a human-readable textual
definition is required at this point. Additionally, claims and assumptions are specified as intrinsic
information items. The claims and assumptions include normative statements and axioms. These
can be legal texts or representations of the laws of physics. Together with the description of the
ODD, these statements form the T-Box of the environment ontology. The task and the ODD are
sufficient to infer the topicality of an information item.

5.2.2 Partial System Specification

As the second step, a partial system specification is performed, yielding a system architecture
that fulfills the aforementioned. The partial aspect of the system specification refers to the
circumstance that only the interfaces are required to be specified, as they are the elements linking
the system to the ODD, as well as the claims and assumptions. The system architecture includes
functional requirements as well as a description of the capabilities of the system with respect to
the task. While the input interface of the system must match the information contained within
the ODD, the output interface is defined by the capabilities. The capabilities enable the system to
perform actions that interact with the environment. Similar to a logical scenario that defines the
ranges of possible parameters, the capabilities define the ranges of possible actions. Combining
all capabilities yields the action space of the system. The action space is the key component for
inferring the utility of an information item.

5.2.3 Relevance Model

For a given use case, multiple different contexts within the use case can exist. In each of these
contexts, different behavioral requirements apply to the use case. To derive these behavioral re-
quirements, first, the use case needs to be decomposed into functional scenarios with respect to the
subject task. This approach has previously been used in various different methods198,199,200,201,197.

197Schönemann, V. et al.: Maneuver-based Adaptive Safety Zone for Valet Parking (2019)
198Shalev-Shwartz, S. et al.: On a Formal Model of Safe and Scalable Self-driving Cars (2017).
199PEGASUS Project: PEGASUS Method: An Overview (2019).
200Philipp, R. et al.: Systematization of Relevant Road Users (2022).
201Vater, L. et al.: Test Case Selection Method for the Verification of Automated Driving Systems (2021).
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For each identified functional scenario, specific behavioral requirements can then be derived
from the high level requirements. This enables further specification of relevance criteria which
are formalized as analytic equations. These criteria are solely dependent on a set of parameters
describing the current situation.

Uncertainty of the exact value of a parameter causes ambiguity of the context. Therefore, possible
high uncertainty of parameters needs to be explicitly considered. To this end, three principles are
proposed:

1. Consideration of the worst-case.

2. Superposition of potential values/scenarios, when no single worst-case cannot be a priori
established.

3. Argumentation for a minimum acceptable value, if a worst-case exists but yields not feasible
solutions.

The first principle of only evaluating the worst-case is quite straightforward and thus does not
need further elaboration. The second principle excludes the explicit parameter from the relevance
criteria, if not single, but only multiple local worst-cases are known. Instead, the parameter is
implicitly considered by superposition of multiple functional scenarios which cover all potential
local worst-case values of the parameter. This approach was previously used by Schönemann et.
al197. A common example in the domain of AD is the road. Considering only a small arbitrary
subset consisting of only two elements, a roundabout, and an intersection, a complex interaction
within these road environments has to be considered. Thus, depending on the task, it is not
obvious whether a roundabout or an intersection is the worst-case. Both the roundabout and the
intersection are considered separately and the results are then merged into a single result.

Application of the first and second principles is not feasible if a global or local worst-case
assumption leads to a collapse of the relevance criteria. A collapse of the relevance criteria
describes the state where the relevance judgment always defaults to either relevant or irrelevant,
irrespective of all other influencing factors. In the automotive context, a road friction coefficient
of zero or an infinite reaction time are examples of this phenomenon. Assuming these values is
equivalent to reducing the action space of the object to zero. In such a case, the third principle
leaves the parameter as a variable to be set not by measurement or estimation, but to be defined
as the result of an argumentation. Here, the parameter is assumed to have the lowest acceptable
value within a confidence threshold. This confidence threshold must then be considered in all
subsequent applications of the resulting relevance judgments. The parameter is thus considered
to be guaranteed to the relevance model by outside considerations. Such an outside consideration
might be limiting the ODD to where no more extreme values can occur or constraining the system
in order to always keep a sufficient reserve to guarantee the compliance of the value.
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Given the previously defined functional scenarios, behavioral requirements need to be derived.
These behavioral requirements, add further detail to the high level requirements from the use
case. To derive behavioral requirements normative intrinsic information items are evaluated for
normative statements. If applicable to the functional scenario, the normative statement of the
intrinsic information item is translated into a behavioral requirement within the scope of the
functional scenario. Criteria are then defined which determine the adherence to these behavioral
requirements within the functional scenario.

5.3 Definition of a Validation Concept

The last section presented a method to define a SRM. This section will consider how the validity
of a given SRM can be substantiated. Two main approaches for ensuring the validity of relevance
models exist. The first and most basic approach is empirical validation post usage in the use case.
This sets a baseline for future reference. The second approach is to demonstrate validity from a
previously established baseline.

In this thesis, the validation of the relevance model is conceptualized as a comparison against
a known valid baseline. As previously established, validation of relevance models is currently
underexplored in literature. Thus, the only baseline for the validity of relevance judgments is
considered to be human perception. While no human relevance judgment models exist that
are applicable to the used environment representation, human behavior models exist. Since the
behavior is directly influenced by what is perceived, it can be used to examine, which objects a
human perception judges as relevant. In order to extract this human relevance judgment for an
OOI, the human behavior needs to be examined once with the OOI being perceived for behavior
planning and once with the OOI absent.

Under ideal conditions the influence of the absence of the OOI is studied in driving simulators with
human test subjects. To avoid the large costs associated with establishing a human baseline via
driving simulator studies, an approximation of the human baseline is proposed. The approximation
of the human behavior can be done by using a motion prediction algorithm trained on human
behavior. A similar approach has been previously used by Philion et. al202, where a planning
algorithm was used instead of a motion prediction algorithm. The usage of a motion prediction
of a planning algorithm has several advantages. While the objective of a planning algorithm does
not have an unambiguous single target, the motion prediction task has only one target state. That
is, there are multiple trajectories that can be planned to fulfill a use case, but only one trajectory
that can be predicted that matches the ground truth trajectory. Further, a prediction task can be
performed open-loop on real world data without the need for a simulation environment.

202Philion, J. et al.: Learning to Evaluate Perception Models Using Planner-Centric Metrics (2020).
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The following validation method is proposed. Using an evaluation dataset, the prediction network
is run on different inputs. One input is the original data without any object manipulation. The
other input is the data that has only those objects present that were previously judged as relevant.
Both predictions are then compared to the actual ground truth and the discrepancy between
prediction and ground truth is quantified. This resultant discrepancy is displayed in figure 5-5
for a relevant OOI. In order to validate a whole relevance model instead of individual relevance
judgments, a further step is necessary. For the whole relevance model to be considered valid, the
overall introduced change in the discrepancy between prediction and ground truth needs to be
summarized and not exceed a predetermined acceptance threshold.

Ego Ego

OOI OOI

(a) Prediction with OOI (b) Prediction without OOI

Figure 5-5: Relevance confirmation for ideal prediction

Ego Ego

OOI OOI

(a) Prediction with OOI (b) Prediction without OOI

Figure 5-6: Relevance confirmation for discrete prediction

To account for the circumstance of not having an ideal continuous probability distribution pre-
dicted, the prediction algorithm is run multiple times with a different random seed to approximate
the ideal prediction algorithm. This approximation is shown in figure 5-6 and stands in contrast
to figure 5-5. For the discrete prediction used, the individual discrepancy is described as average
displacement error (ADE). To describe the discrepancy for the whole model, the empirical
cumulative distribution function (eCDF) of the ADE of both the prediction with the OOI present
and the prediction with the OOI omitted is considered. This is to avoid local performance issues
and the effects of non-deterministic predictions. As an acceptance threshold for a given relevance
criterion, the hypothesis that the sampled error distributions remain unchanged between both
inputs is used. Whether the error distribution has remained unchanged is evaluated using a
statistical test. For this purpose, the two sample Cramer-von Mises test is used to test if both
sampled error distributions are from the same underlying continuous distribution.203 The test
yields, based on distribution similarity and sample size, a confidence value to which a confidence
threshold as an acceptance criterion can be applied.
203Anderson, T. W.: On the Distribution of the Two-Sample Cramer-von Mises Criterion (1962).
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6 Evaluation of the Relevance Concept

The contents of this chapter have previously been published in separate papers204,205 co-authored
by the author of this work together with Ken Mori, and are presented here with modification
towards the application within this dissertation. An analogous approach can be found in the
dissertation of Ken Mori206.

A proof of concept for the presented abstract methodology is applied to a chosen use case. Before
the methodology is applied, the use case and the system need to be specified.

6.1 Use Case Specification

For evaluation purposes, of the proposed methodology, the collision free traversal of an urban
environment is considered as a use case. As part of the DDT, the task of collision avoidance is
considered as the subject task. To showcase the end to end applicability of the methodology, the
perception component is chosen as a subject, since it is the initial step in any solution finding.
The extent of the use case is limited to a minimal scope so as not to distract from the methodology
being evaluated. Consequently, any fulfillment of the use case is considered a success without
regard for any performance indicators, such as speed, comfort, or similar quantities.

Since the overarching aspect of this work is data reduction, special considerations apply to the
error types in relevance judgment. The impact of a FP, that is falsely judging an object as relevant
when it is irrelevant, is only a worsened data reduction factor. Conversely, a FN that judges an
object as irrelevant when it is relevant, can have a significant impact on the downstream task. To
meet these considerations, the relevance of each object must be judged conservatively, where a
FP is acceptable, while a FN is not.

The question to be answered by the application of the abstract methodology in this experiment
can be summarized as:

Which objects are guaranteed to be irrelevant to a perception module at a single
point in time, in the meaning that they do not influence a collision-free performance
of the DDT in an urban environment?

204Mori, K. et al.: Conservative Estimation of Perception Relevance of Dynamic Objects (2023).
205Storms, K. et al.: SURE-Val: Safe Urban Relevance Extension and Validation (2023).
206Mori, K.: Defining Object Detection Requirements for Safe Automated Driving (2023).
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6.2 Partial System Specification

As previously mentioned, a definition of relevance is inherently tied to a subject and a task that
needs to be performed. Since the task is realized within a system, a partial system specification
is required. To this end, a high-level architecture is defined. This architecture yields, in addition
to the task requirements, requirements internal to the system, as well as capabilities that enable
the system to fulfill the requirements.

In the following, first, the system architecture will be described to the extent that is sufficient for
the experiment at hand. Second, a basic set of requirements is derived from the use case. For a
further detailed relevance concept that yields criteria for a SRM, concrete requirements for the
downstream task are necessary. In order to define more detailed requirements, a similarly more
detailed description of the subject system has to be provided. Thus, within section 6.2.3, a set of
minimal system capabilities for the use case is defined.

6.2.1 System Architecture

A modular Sense-Plan-Act architecture is assumed as minimal architecture, as it is a common
example for architectures in AD and used as a basis for more complex architectures. The subject
task of perception is included within the sense module.207 Within this architecture, only the
external interfaces for the perception module and its downstream tasks are specified. The specific
internal mechanisms of each module are limited to a black box model.

As the interface between the sense and plan modules, a general object-centric representation is
chosen. The choice for an object list was made since it is the common representation between
perception and planning.208

The downstream task of the plan module is considered to yield a series of momentary actions
describing a trajectory. The trajectories given by the plan module are then processed and executed
downstream by the act module.

6.2.2 System Requirements

In order to specify the task component, system requirements (SYS-REQs) are needed. These
system requirements determine constraints for the set of actions possible. As the first requirement,
the downstream act module must be able to execute a planned trajectory to be valid:

SYS-REQ 1: The actions must adhere to physical limitations.

207Amersbach, C.: Functional Decomposition Approach (2019).
208Hoss, M. et al.: A Review of Testing Object-Based Environment Perception for Safe Automated Driving (2022).
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As a second requirement, the actions needed to execute the planned trajectory must adhere to
applicable traffic rules:

SYS-REQ 2: The actions must adhere to applicable legal restrictions.

6.2.3 System Capabilities

Complementary to the defined system requirements, the partial system specification needs
to include a set of capabilities for the system, which enable it to fulfill the aforementioned
requirements. The used system architecture is considered to be subject to latency, as depicted in
figure 6-1. Assuming an event, like an action or initial perception, of another object, this point in
time is defined as t0. The system requires a specific time to sense the event, plan a corresponding
trajectory, and utilize its actuators to realize the trajectory. The latency τr of the system is defined
as the time elapsed from the first sensing of the event to the first externally measurable state
change of the system, i.e. the first acceleration change in response to the event.

Figure 6-1: Following the occurrence of an event, an actor can only react after a certain amount of time tr. During
that time a behavior in response to that event cannot be assumed. After the latency has elapsed it is assumed that the

actor has to behave in adherence to the behavioral requirements derived from the event.

The previously mentioned capabilities might be limited before their theoretical maximum. This
may be due to external circumstances narrowing the physical limits, or system specifications
restricting the acceptable uncertainties or risks associated with the capability. Considering the
limited informational scope of the relevance concept, the system is simplified to have only two
key capabilities providing acceleration and braking deceleration. Acceleration can be provided
in either a longitudinal or lateral direction. The latter is provided by steering. The action space
of the subject system is therefore described by three capability parameters.

■ minimum guaranteed braking deceleration ab

■ minimum guaranteed acceleration ag

■ maximum guaranteed latency τr
209

209It should be noted, that while the system latency is denoted as the duration τr, the time when the system latency
has elapsed is denoted as tr
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6.3 Application of Method

Using the previously established use case and partial system specification, this section concerns
the application of the method to derive the concrete relevance criteria.

6.3.1 Use Case Decomposition

As stated in section 6.2.1, the environment is assumed to be represented by a generic object list.

An object is defined at a given point in time by a set of parameters defining the object’s state and
its relation to other objects. While certain parameters can be determined with high accuracy,
other parameters are subject to uncertainty. In order to limit the influence of parameters with
higher uncertainty on the relevance criteria, only a minimal set of parameters is used. The states
and relation of an object pair in this experiment are completely described by their position vector
r⃗ and velocity vector v⃗ on a two-dimensional plane.

Since prediction of future object behavior and interpretation of road geometry is a difficult task
that is subject to uncertainty, it is excluded from further explicit consideration as described in
section 5.2.2. Instead, future behavior is implicitly considered by choosing the worst-case OOI
behavior for the best-case ego behavior. Meaning, that while the ego object is trying to avoid a
collision, the assumption for the OOI’s behavior is such, that it is trying to force a collision. In
a head-on scenario, this assumption equates to the ego object braking and steering away from
the OOI, while the OOI accelerates and steers to intercept the ego object. While uncertainty in
the road geometry is considered implicitly as well, it is done by superposition and evaluation of
multiple applicable hypothetical scenarios. Each hypothetical scenario can be understood, that a
road geometry exists, which enables the assumed behaviors.

For a given point in time, any object list can contain many objects. As previously used by
Topan et al.210, this experiment only considers pairwise interactions between the ego object
and an OOI. Including additional objects in the interaction only introduces restrictions on their
behavior. For ego, these restrictions are already covered, since all behavioral requirements of the
functional scenarios are considered superposed, where any positive relevance judgment leads
to the OOI being considered as relevant. For the OOI, any behavioral restriction can lead to a
worst-case being excluded. As such, not including any additional object beyond the pairwise
interaction overestimates the behaviors and leads to a conservative estimate while also limiting
the complexity of relevance criteria.

Scenarios in literature are commonly described by lane based coordinates.211,212,213 Since the

210Topan, S. et al.: Interaction-Dynamics-Aware Perception Zones for Obstacle Detection Safety Evaluation (2022).
211Shalev-Shwartz, S. et al.: On a Formal Model of Safe and Scalable Self-driving Cars (2017).
212Philipp, R. et al.: Systematization of Relevant Road Users (2022).
213Schönemann, V. et al.: Maneuver-based Adaptive Safety Zone for Valet Parking (2019).
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worst-case road geometry is only considered after disambiguation of the applicable scenario,
road centric coordinates cannot be used to describe the considered functional scenarios. Thus, a
different coordinate system is necessary for the representation of the functional scenarios.

Since cartesian vehicle centric coordinates inherently imply a straight road in traveling direction,
they are considered unsuitable. In contrast, a polar coordinate system is considered more suitable,
as the radial distance to decrease to zero for a collision to occur. The following will decompose the
use case into functional scenarios based on the relative positioning of the objects and their radial
and tangential velocities with respect to each other. The resulting decomposition is structured by
the primary direction of the interaction in the coordinate system. As such, a distinction is made
between radial and tangential scenarios.

As a shorthand, each of the functional scenarios is abbreviated by a three letter combination. The
first letter represents the primary axis of interaction, either radial (R) or tangential (T). After a
separating period (.), two letters denote the relative movement direction of the ego and the OOI.
The first letter refers to the ego vehicle and the second to the OOI. Possible relative movement
directions are towards (T), and away (A); if the relative movement direction is inconsequential to
the considerations, (X) is used to signify that (T) and (A) are possible.

Radial Scenarios

This section considers all functional scenarios in which the primary interaction is in the radial
direction. The basic constellation and transfer from the perceived situation (A) to the evaluated
hypothetical scenario is depicted in figure 6-2. Here, the hypothetical road does not correspond
with the direction of movement of the objects. (A) shows the extent of the observed world,
consisting only of the position, bounding box, and velocity of the objects. Part (B) of the figure
describes the simplification process of projecting velocities, the assumption of a circular shape
for the objects as well as a 1-D simplification of the world. Finally, (C) yields the hypothetical
world that is evaluated, depicting the simplifications as well as the assumed action spaces for the
objects, as denoted by the acceleration vectors.

The following notation is used for the equations distinguishing the functional scenarios. Location
and velocity vectors are denoted with the numerical index of 1 or 2, where 1 is used to refer to
the ego object and 2 to refer to the OOI. For equations that are applicable to either the ego object
or the OOI, the variable i is used instead. When multiple indices are used, the index in the first
position denotes the object being referred to. The Euclidean distance vector between both objects
is given by:

d⃗ = r⃗2 − r⃗1 (6-1)
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(A)

(B)

(C)

v1
v2

v1,r
a1,r

v2,r

|d|

α

a1,r,b a2,max

s1 s2

|d|

Figure 6-2: Development of a simplified environment model for a radial scenario. Shown for scenario R.TA. (A)
Perceived real world (B) simplifications through hypothetical road model (C) simplified model

Overall, considering the full factorial combination of relative radial movement directions, four
functional scenarios are possible. In the following equations, the second index of 0 indicates the
initial state to distinguish whether a functional scenario is applicable.

■ ego moving towards OOI, OOI moving away from ego (R.TA):

d⃗0 · v⃗1,0 > 0 ∧ d⃗0 · v⃗2,0 > 0 (6-2)

■ ego moving away from OOI, OOI moving towards ego (R.AT):

d⃗0 · v⃗1,0 < 0 ∧ d⃗0 · v⃗2,0 < 0 (6-3)

■ both vehicles moving away from each other (R.AA):

d⃗0 · v⃗1,0 < 0 ∧ d⃗0 · v⃗2,0 > 0 (6-4)

■ both vehicles moving towards each other (R.TT):

d⃗0 · v⃗1,0 > 0 ∧ d⃗0 · v⃗2,0 < 0 (6-5)

To fully operate in an urban domain, one special functional scenario must be considered. During
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the performance of the DDT in an urban domain, it is possible to encounter a permanent bottleneck
that can only be passed by traversing an area where the ego has lower priority than other OOIs.
Since the bottleneck is permanent, a non-traversal of the lower priority would lead to a deadlock
and non-fulfillment of the use case for the ego object. In many cases, this bottleneck is caused by
a third stationary object, denoted by the index 3. The following functional scenario describes the
applicability of an overtaking behavior. While the scenario is modeled with a static object in
mind, it is also applicable to other bottlenecks, for which the traversal of the low priority area
can be described by a virtual stationary object.

This functional scenario is considered as a subclass of R.TT and thus denoted as R.TT’. The
conditions for the applicability of the scenario are given by:

■ both vehicles moving towards each other, with a static object in between (R.TT’):

■ The static object is relevant for ego according to R.TA

■ Ego moving towards static object: (r⃗3,0 − r⃗1,0) · v⃗1,0 > 0

■ OOI moving towards static object: (r⃗3,0 − r⃗2,0) · v⃗2,0 > 0

■ OOI located behind static object: (r⃗3,0 − r⃗1,0) · (r⃗3,0 − r⃗2,0) < 0

Additional conditions, like a known ego intention for passing, can be appended to the shown
list of conditions. In this application, such conditions are omitted, since data on ego intention is
generally not available in open datasets.

For the radial scenarios, a simplified one dimensional model is used. All quantities are projected
on a new coordinate system defined by the connecting vector between ego object and OOI. For
every projection, the conservativeness of the operation is considered.

The radial distance between ego object and OOI is given by:

d = |d⃗| (6-6)

The Euclidean distance is the shortest path between two points, while the actual traversable path
between both objects might be longer. This is considered a conservative simplification. Any
tangential component of distance and velocity is ignored, resulting in:

vi,r = |v⃗i,r|=

⃓⃓⃓⃓
⃓vi⃗ · d⃗

|d⃗|

⃓⃓⃓⃓
⃓ (6-7)

Here, the index r in the second position is introduced to denote the radial axis. The reduction
of the scenario to a one dimensional coordinate system is considered conservative, since any
tangential motion may remove the potential for a collision by evasion. The available acceleration
is conservatively assumed to be equal to the maximum possible acceleration when considering

70



6 Evaluation of the Relevance Concept

worst-case behavior. The available braking acceleration is close to or equal to zero if considering
the worst-case, like a low friction surface or cornering at high speeds. As such, it is left as a
variable to be filled by later argumentation with respect to a concrete system implementation.
Further, the guaranteed braking acceleration is reduced with respect to the direction of ego
movement, since part of the available acceleration potential may be used by the friction of
tangential motion, for example by following a winding road. Therefore, the available potential
for braking acceleration in radial direction ai,r,b is limited to:

ai,r,b = cos(α) · ai,b =
vi,r
vi
· ai,b (6-8)

Here, the index in the third position b refers to the braking procedure.

While acceleration and steering are limited due to the friction coefficient of the road and the
vehicle contact force on the road surface, additional limits for each are given separately by the
vehicle214 and preference of human passengers215. Additionally, the worst-case for acceleration
and steering is that no residual potential is available. Thus, the available radial acceleration
is treated as a quantity that needs to be guaranteed. As a consequence, it is not subject to an
additional reduction like the braking acceleration, and ai,r,g = ai,g applies.

Tangential Scenarios

For interactions along the tangential axis, two functional scenarios are applicable:

■ OOI moving towards ego (T.XT):

d⃗0 · v⃗2,0 < 0 (6-9)

■ OOI moving away from ego (T.XA):

d⃗0 · v⃗2,0 ≥ 0 (6-10)

For both functional scenarios, the ego motion is irrelevant to the applicability. If the motion of
the OOI is towards the ego object, a potential merging scenario is assumed, where the ego moves
in front of the OOI and continues to travel in the same direction as the OOI. This is depicted in
figure 6-3, alongside with the initial states of the objects, as well as the state at the of merging onto
the lane of the OOI. Similar to the R.TT’ functional scenario, additional conditions like the ego
intention to merge in front of another vehicle can be considered for a more precise applicability.

214Bokare, P. S.; Maurya, A. K.: Acceleration-Deceleration Behaviour of Various Vehicle Types (2017).
215Bertolazzi, E. et al.: Supporting Drivers in Keeping Safe Speed and Safe Distance (2010).
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In the case where the motion of OOI is away from the ego object, the tangential dynamics are
irrelevant. The ego object can momentarily only merge behind the OOI, that is already considered
in the radial R.TA scenario. For the ego object to merge in front of the OOI requires multiple
intermediary actions, meaning the OOI will potentially become relevant once those actions have
been performed.

(A)

(B)

v2 v1

v2

r2,∥

(C) v2,∥,0

v1,∥,0

v1,⊥,0

Start con�iguration

R.AT- 

v1,r,d

r1,⊥,0

v1,⊥,0

v1,∥,0

|d|

Figure 6-3: Development of a simplified environment model for a tangential scenario. Scenario T.XT is shown. (A)
Perceived real world (B) simplifications through hypothetical road model (C) simplified model, with start

configuration for R.AT- scenario once merging is complete.
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6.3.2 Relevance Criteria for Functional Scenarios

In this subsection, the relevance criteria for the previously established functional scenarios are
defined. Each criterion is expressed in the form of an analytic equation. As previously mentioned,
each functional scenario is considered superposed to the others. As given by equation 6-11, an
object is considered relevant if any criterion results in a relevance judgment. Conversely, a single
criterion not yielding a relevant judgment, does not imply that the object is irrelevant. Irrelevance
can only be established if all criteria yield an irrelevant judgment. For simplicity, irrelevance is
simply noted as the negation of relevance as given by equation 6-12.

R.TA ∨R.AT ∨R.TT ∨R.AA ∨ T.XT ⇒ relevant (6-11)

¬relevant⇒ irrelevant (6-12)

Initially, behavioral requirements are extracted from legal requirements defined by German traffic
law216. Within the following relevance criteria, the ego object’s adherence to the individual legal
requirements is assumed after the system’s latency. Before the system’s latency has elapsed, the
ego object’s behavior is assumed to be according to the worst-case.

The trajectories representing the corresponding behaviors are presented in the form of parameter-
ized equations. To define these equations, multiple simplifying assumptions are made, similarly
to the worst-time-to-collision metric217. All objects are assumed to be spheres with the radius
being equal to the half diagonal of the object. Further, Kamm’s circle is utilized as an over
approximation of the worst-case action space for both objects. Within Kamm’s circle, the max-
imum acceleration amax is assumed to be isotropic, meaning it is independent of the direction
of acceleration218. While kinematic constraints can impose additional limitations on worst-case
actions, the usage of the assumptions above is preestablished in literature217,219 and is considered
conservative.

These assumptions enable a specification of the behavior of the OOI and the action space for the
ego object. Thus, the resulting relevance judgment can be formulated as:

All objects whose perception can change the set of viable momentary actions that
allow for a successful compliance with the acceptable behavior.

216Bundesministerium für Justiz und Verbraucherschutz: Straßenverkehrs-Ordnung (2013).
217Wachenfeld, W. H. K.; Winner, H.: The Release of Autonomous Vehicles (2016)
218Schmidt, C.: Unfallvermeidung im Straßenverkehr für Einzel- und Mehrobjektszenarien (2013).
219Althoff, M.; Magdici, S.: Set-Based Prediction of Traffic Participants on Arbitrary Road Networks (2016).
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R.TA: Ego moving towards OOI, OOI moving away from ego

The R.TA functional scenario is considered to be equal to the ego object following the OOI. The
German traffic regulation (StVO) applies the following behavioral requirement in such cases220:

SYS-REQ2.1: The ego vehicle shall be able to brake to halt behind a vehicle in front
to avoid a collision in the event that the front car suddenly brakes.

A similar requirement, as to not cause a rear end collision, has been leveraged by the RSS
model221. This requirement for collision avoidance can be stated by use of the minimum distance
dmin between ego object and OOI over the time of the scenario:

dmin > 0 (6-13)

Within the one dimensional environment model, the action space of the objects is limited to
accelerating or braking in radial direction. During the system latency, the worst-case behavior
for the ego object is considered accelerating towards OOI with maximum potential amax. The
worst-case behavior for the OOI does not change throughout the scenario and is constantly braking
at maximum potential amax. After the system latency has elapsed and the behavior of the OOI
has been perceived by the ego, the ego is assumed to perform the best-case valid reaction, that is
braking itself. This braking acceleration is restricted to the guaranteed potential a1,b. Given a
constant acceleration the resulting object position ri and velocity vi are calculated by equation
(6-14) and equation (6-15).

ri,r = ri,r,0 + vi,r,0 τ +
1

2
ai,r,0τ

2 (6-14)

vi,r = vi,r,0 + ai,r,0 τ (6-15)

For both vehicles, the required braking distance to come to a standstill ri,r,b is:

ri,r,b =
v2i,r

2ai,r,b
(6-16)

The ego vehicle is assumed to initially accelerate during the system latency and then brake to a
standstill. Thus, its position once coming to a full stop is calculated by adding the distances for
both accelerating and braking, while also considering the gained speed:

220Bundesministerium für Justiz und Verbraucherschutz: Straßenverkehrs-Ordnung (2013), p.3.
221Shalev-Shwartz, S. et al.: On a Formal Model of Safe and Scalable Self-driving Cars (2017), p.6-7.
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r1,r,s = r1,r,0 + v1,r,0 τ1,r +
1

2
a1,r,0τ

2
1,r

+
(v1,r,0 + τ1,ra1,r,0)

2

2a1,r,b

(6-17)

Considering that a one dimensional coordinate system is used, the minimal distance dmin can
be approximated by using the object positions once both have come to full stop. Additionally,
the initial distance between both objects d0 and their respective sizes si are considered. If a
collision has occurred, the difference between equation (6-16) for the ego object and equation
(6-14) for the OOI will be larger than the sum of initial distance and object sizes. Thus, dmin will
be negative. Composing all requirements, considerations, and equations into a single form, the
result is:

0 < dmin = d0 − s1 − s2 +
v22,r,0
2amax

− v1,r,0 τ1,r

− 1

2
amaxτ

2
1,r −

(v1,r,0 + τ1,ramax)
2

2a1,r,b

(6-18)

If the condition is evaluated to be true, no collision occurs even given the worst-case momentary
behavior available from the action space. If the condition is evaluated to be false, at least one
possible behavior from the available action space can set the ego on a trajectory where a collision
can be unavoidable. Adherence to SYS-REQ2.1 is then not guaranteed and the OOI is considered
relevant to restricting the action space of the ego object.

R.AT: Ego moving away from OOI, OOI moving towards ego

In this scenario, the ego object is considered to be followed by another object. The behavioral
requirement from German law222 is, that

SYS-REQ2.2: other vehicles should not be unnecessarily impeded.

In this relevance model, the meaning of ”impeded” is interpreted as not imposing restrictions
to the action space regarding collision avoidance on the OOI. This functional scenario can
be understood as the R.TA scenario with switched roles between ego and OOI. Hence, the
requirement of not causing a rear end collision from R.TA applies to the OOI. This functional
scenario can further be distinguished into two sub scenarios. In the first sub scenario, denoted
as R.AT+, the ego vehicle is moving at a speed that is considered adequate. For the second
sub scenario (R.AT-), the speed of the ego vehicle is considered below adequate. The meaning
of adequate is here taken as a speed that is generally acceptable for constant traveling, both by

222Bundesministerium für Justiz und Verbraucherschutz: Straßenverkehrs-Ordnung (2013).
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societal and legal standards. The exact value of an adequate speed is left to be determined within
the individual sub scenarios.

R.AT+: Ego with desired speed moving away from OOI, OOI moving towards ego

Within the scope of the R.AT+ scenario, the initial speed driven by the OOI is considered
adequate. In this context, SYS-REQ2.2 can be refined to the following requirement:

SYS-REQ2.3: The ego vehicle may not restrict the actions of the following vehicle
by unnecessarily braking.

By swapping the roles in the R.TA scenario, the results of the previous section can be applied
again:

0 < dmin = d0 − s1 − s2 +
v21,r,0
2amax

− v2,r,0 τ2,r

− 1

2
amaxτ

2
2,r −

(v2,r,0 + τ2,ramax)
2

2a2,r,b

(6-19)

It needs to be noted that τ2,r refers to the reaction of the OOI, which is conceptional equal to
the ego vehicle’s system latency. Since the worst-case for reaction time is infinite, it is again
necessary to argue for a guaranteed value. Similarly, the guaranteed braking acceleration a2,r,b

refers to the OOI and must be conservatively overestimated for a guaranteed value. Equation 6-19
describes all situations where the ego vehicle braking at full potential does not cause a restriction
of the OOIs action space. If the equation yields a false statement, the ego object restricts the
action space and thus impedes the OOI. Violation of the equation thus leads to the OOI being
relevant.

R.AT-: Ego with less than desired speed moving away from OOI, OOI moving

towards ego

Contrary to the R.AT+ scenario, within the R.AT- scenario, the ego vehicle’s speed is initially
below an adequate speed. Here, adequate speed is considered to be tied to the ego vehicle’s desired
target speed v1,r,d. This value can change depending on location and appropriate subdomain.
To have a conservative overestimation, the upper legal limit can be assumed. This functional
scenario can be thought of as the ego vehicle changing lanes in front of a faster vehicle.

In this case, the ego vehicle has to initially accelerate to the desired target speed. Once the target
speed has been reached, further considerations and equations of the R.AT+ scenario apply. While
the ego vehicle’s speed is not adequate, SYS-REQ2.2 can be refined as:
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SYS-REQ2.4: The ego vehicle may not restrict the actions of the following vehicle
by having insufficient speed.

Here, the system latency is initially not considered, since acceleration to the desired target speed
is not in reaction to the OOI. The acceleration towards the adequate speed is considered to
be constant throughout the scenario. Equally, the OOI constantly accelerates towards the ego
vehicle.

Applying these considerations, the distance between both objects can be calculated by using
equation (6-14) as:

d = d0 − s1 − s2 + (v1,r,0 − v2,r,0)τ +
1

2
(a1,r,g − amax)τ

2 (6-20)

Given the assumption that the acceleration potential for OOI amax is greater than the guaranteed
acceleration potential for the ego object a1,g, the distance is minimal once the ego object has
accelerated to the adequate speed. The state once the adequate speed has been reached is denoted
by the index d.

τd =
v1,r,d − v1,r,0

a1,r,g
(6-21)

Substituting the time needed to reach an adequate speed, as given by equation (6-21), into equation
(6-20) and (6-15) results in equation (6-22) defining the distance between ego object and OOI at
the time of reaching adequate speed. At this point in time, the speed of the OOI is:

v2,r,d = v2,r,0 + amaxτd (6-22)

For further considerations, the equation (6-19) from the R.AT+ scenario is reused with additional
modifications. First, the initial distance in R.AT+ given as d0 − s1 − s2 is replaced with the
residual distance given by substituting equation (6-21) into equation (6-20). Similarly, v1,r,0 and
v2,r,0 are replaced with v1,r,d and v2,r,d respectively. This yields the final criterion for relevance in
the R.AT- scenario:
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0 < dmin = d(t = td) +
v21,r,d
2amax

− v2,r,d τ2,r

− 1

2
amaxτ

2
2,r −

(v2,r,d + τ2,ramax)
2

2a2,r,b

(6-23)

R.TT: Both vehicles moving towards each other

This functional scenario corresponds to two objects either driving on opposite lanes towards each
other or having a lateral movement towards each other on neighboring lanes. In the case of two
vehicles moving towards each other, the RSS model makes the assumption of correct response
for both vehicles.223 This assumption is also found in the StVo. Here, the legal requirement to be
able to stop within half of the visible distance is made.224 This legal requirement does not derive
from worst-case assumptions, which are only constrained by the dynamic limits of the objects.225

The worst-case assumptions in this scenario are as follows. During the system’s latency, both
the ego vehicle and the OOI accelerate toward each other. After the latency has elapsed, the ego
vehicle starts to brake, while the OOI continues to accelerate.

In this scenario, only the general legal requirement, that ”A person using the road shall act in
such a way as not to harm or endanger or, more than is unavoidable in the circumstances, to
hinder or harass any other person”226 can be applied. As this is a very broad requirement, it
needs further interpretation to yield concrete behavioral requirements.

If an accident cannot be avoided, mitigating the consequences of the accident is reasonable. Since
the ego object’s action space is limited to the ego object itself, the only mitigation option consid-
ered in this scenario is the minimization of the ego object’s speed. Thus, the legal requirement
above is refined to the following behavioral requirement:

SYS-REQ2.5: the ego vehicle shall brake to a standstill before the other vehicle
collides with it.

This results in the requirement that dmin has to be larger than zero at the time of the ego vehicle
reaching a speed of zero, which is equal to the previously used condition in equation (6-13).
This requirement needs to be fulfilled given a worst-case braking reaction by the ego vehicle
as described in equation (6-16). The speed during the system latency and after are defined by
equations (6-24) and (6-25).

223Shalev-Shwartz, S. et al.: On a Formal Model of Safe and Scalable Self-driving Cars (2017).
224Bundesministerium für Justiz und Verbraucherschutz: Straßenverkehrs-Ordnung (2013).
225Wachenfeld, W. H. K.; Winner, H.: The Release of Autonomous Vehicles (2016).
226Bundesministerium für Justiz und Verbraucherschutz: Straßenverkehrs-Ordnung (2013), I. Section 1 (2).
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v1,r = v1,0 + amaxτ for τ ≤ τr (6-24)

v1,r = v1,r,b − a1,r,b(τ − τr) for τ ≥ τr (6-25)

v1,r,b is the ego object’s speed after the system latency has elapsed and given by inserting τr into
equations (6-24). The time the ego vehicle needs to come to a standstill τ1,b is determined by
substituting v1,r,b with equation (6-24) and v1,r with 0. Solving for τ1,b yields:

τ1,b = τ1,r +
(v1,r,0 + τ1,r amax)

a1,r,b
(6-26)

The position of the OOI can be described by equation (6-14), where the speed and acceleration of
the OOI are negative. For the final distance measure, the position of the ego object after stopping,
described in equation (6-17) and the sizes of the objects are subtracted. With the worst-case
assumption and the condition (6-13) the final criterion is:

0 < dmin = d0 − s1 − s2 − v1,r,0 τ1,r

− 1

2
amaxτ

2
1,r −

(v1,r,0 + τ1,ramax)
2

2a1,r,b

− v2,r,0τ1,b −
1

2
amaxτ1,b

(6-27)

As before, any OOI violating this criterion is considered relevant, since a head-on collision cannot
be excluded from worst-case considerations.

R.TT’: Both vehicles moving towards each other, with a static object in between

The R.TT’ functional scenario is considered a special case of the previous R.TT functional
scenario. As such, the behavioral requirement SYS-REQ2.5 from the R.TT scenario equally
applies. A prerequisite for the R.TT’ scenario is, that the simpler R.TT scenario has not led to
any relevant judgment for the OOI. Given this prerequisite and the preconditions in section 6.3.1,
that a static object in between the ego object and OOI exists, the R.TT’ scenario is evaluated. The
R.TT’ scenario depicted in figure 6-4 considers that an assumed permanently static object blocks
further fulfillment of the use case if the static object is not passed. Since this scenario introduces
a third object, it is accordingly denoted by the usage of index 3 for object identification.
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Figure 6-4: Sequence and variables for the R.TT’ scenario.

The initial step in evaluating the R.TT’ scenario only considers the static object as OOI. Due
to the static object not having any speed, the R.TA and R.TT are equivalent. Both functional
scenarios evaluate whether the static object is yet relevant for a future passing maneuver. In
terms of the R.TA and R.TT scenarios, it is required that the initial distance between the ego and
static object is less than the combined reaction and braking distance:

0 < d1,r,min = d1,r,0 − s1 − s3,r

−v1,r,0 τ1,r −
1

2
amaxτ

2
1,r

−(v1,r,0 + τ1,ramax)
2

2a1,r,b

(6-28)

For further consideration, the following worst-case assumptions apply. During the system’s la-
tency, a braking action with maximum acceleration of the ego vehicle is assumed. Equation (6-29)
describes the distance covered by the ego during the braking action, while equation (6-30) de-
scribes the speed of the ego object at the end of the system’s latency. The duration of the braking
maneuver τ1,b is defined as the minimal value of either the system latency or the time to standstill
as defined in equation (6-31).

d1,b = v1,r,0τ1,b −
1

2
amaxτ

2
1,b (6-29)

v1,r,b = v1,r,0 − amaxτ1,b (6-30)

τ1,b = min

{︃
τ1,r ,

v1,r,0
amax

}︃
(6-31)

Once the system latency has elapsed, the ego object is assumed to react to the situation, requiring
a passing maneuver. Thus, a lateral movement towards the opposite lane is initiated to start the

80



6 Evaluation of the Relevance Concept

passing procedure. The duration of the lateral movement τ1,l is defined in equation (6-32). When
the opposite lane is reached, the ego object performs an acceleration within the limits of the
guaranteed acceleration. For the acceleration phase, the duration τ1,a is given in equation (6-34)
and the final velocity v1,r,a is defined by equation (6-33). After traversing the passing distance of
2(s3,r + s1), the ego object is assumed to return to its original position with a lateral movement.
After the ego object has concluded the lateral movement and has returned to its original lane, the
passing maneuver is considered to be completed.

τ1,l = 2

√︄
s3,t + s1
a1,g

(6-32)

v1,r,a = v1,r,b + a1,gτ1,a (6-33)

τ1,a =
−v1,r,b +

√︂
2a1,g(2s1 + 2s3,r) + v21,r,b

a1,g
(6-34)

For the ego vehicle, the final distance, defined as the sum of distances covered by the maneuvers,
is given by equation (6-35). The duration of the whole scenario is calculated as described in
equation (6-38). During this time, the OOI is assumed to perform a worst-case acceleration
at maximum potential towards the ego object. The distance covered by the OOI is defined by
equation (6-36), resulting in an OOI speed given in equation (6-37).

d1,e = d1,b + v1,r,bτ1,l + d1,a + v1,r,aτ1,l (6-35)

d2,e = v2,r,0te +
1

2
amaxt

2
e (6-36)

v2,r,e = v2,r,0 + amaxte (6-37)

te = τ1,r + 2τ1,l + τ1,a (6-38)

Using these components, the final criterion can be assembled by using them as initial conditions
for the R.TT criterion:
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0 < dmin = (d0 − d1,e − d2,e)− s1 − s2 − v1,r,a τ1,r

− 1

2
amaxτ

2
1,r −

(v1,r,a + τ1,ramax)
2

2a1,r,b
− v2,r,eτ1,b −

1

2
amaxτ1,b

(6-39)

R.AA: Both vehicles moving away from each other

Similar to the R.TT functional scenario, the R.AA can be considered to correspond to two
vehicles traveling longitudinal on opposing lanes or laterally on neighboring lanes. In the latter
case, also depicted in figure 6-5, it is reasonable to assume that a reaction by the ego object is
required if the OOI reverses the direction of motion. In this scenario, the same requirement
from R.TT SYS-REQ2.5 applies. Similarly, the same fundamental equation (6-27) applies, while
negative speeds are inserted in this functional scenario. If equation (6-27) is evaluated to be false,
avoidance of a collision requires an appropriate reaction within the system’s latency time, thus
making the OOI considered relevant.

d0

v1,r

v2,r

d0

v1

v2

(A) (B)
Figure 6-5: Example for the R.AA scenario (A) Possible applicable state for the R.AA scenario. (B) Simplified

model with virtual road

T.XT: OOI moving towards ego

The T.XT functional scenario applies when the ego object is considered to be in front of the OOI
due to its tangential motion. Based on this constellation, the relevance of the OOI is examined,
given the assumption, that the ego object is merging in front of the OOI. In this context, merging
is considered to mean changing one’s position and direction so that the trajectories of both objects
align. This is understood to correspond to either two vehicles on neighboring lanes or two
vehicles on separate roads meeting at an intersection. In either case, the behavioral requirement
to not impede others from SYS-REQ2.2 is considered, since not having the right of way or any
other form of priority is a conservative assumption for this model.
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In the context of an intersection, two basic interactions are possible as shown in figure 6-6,
crossing trajectories (A) and aligning trajectories (B). Since the ego object needs to merely
exit the intersection in interaction (A), while in interaction (B) it also needs to accelerate to an
adequate speed so as to not impede the OOI, interaction is considered to be conservative. Objects
identified as relevant in interaction (A) would also be identified as relevant when examining
interaction (B). As such, only interaction (B) will be further used.

1

2

v1,⊥

v2,0

r1,⊥,0

A

B

r2,⊥,0

e⊥

e∥

Figure 6-6: Simplified depiction of the worst-case intersection and variables for consideration if the intersection in
the T.XT scenario is considered.227

Having excluded interaction (A) from the intersection scenario, assuming neighboring lanes
or intersecting roads will lead to the same equations. For simplicity, the functional scenario is
described in terms of an intersection.

Since the road layout is not known, a worst-case for the location of the merging point, i.e. the
intersection, needs to be determined. The coordinate system for the assumed worst-case lane
is defined by the unit vectors parallel e⃗∥ and orthogonal e⃗⊥ to the OOIs direction of movement.
The velocity components of the ego object within this coordinate system are given as:

v1,⊥ = v⃗1 · e⃗⊥ and v1,∥ = v⃗1 · e⃗∥ (6-40)

Given sufficient distance, the ego object has the option not to enter the intersection by braking
and thus to avoid merging in front of the OOI. The critical distance to standstill is given by
equation (6-41).

227This image was created together with Ken Mori and also appears in the dissertation228 created concurrently.
228Mori, K.: Defining Object Detection Requirements for Safe Automated Driving (2023)
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d1,⊥,b = v1,⊥,0τ1,r +
v21,⊥,0

2a1,⊥,b

(6-41)

Since the intersection might not be located in the initial direction of travel for the OOI, it is
possible for the intersection to be co-linear with the OOIs heading and closer to the ego object.
The OOI is assumed to accelerate towards the intersection at maximum potential. The lateral
distance traveled by the OOI to reach the intersection is defined by equation (6-42), using the
ego vehicle’s system latency and the ego vehilces’s time to standstill from equation (6-43).

d2,⊥ =
1

2
amax(τ1,r + τ1,b)

2 (6-42)

τ1,b =
v1,⊥,0 + τ1,ramax

a1,b
(6-43)

For the OOI to be considered relevant, a merging interaction has to be non-excludable for the
ego object under worst-case consideration. This condition is true if the projected location of the
intersection is reachable by the OOI and within the braking distance of the ego object :

r1,⊥,0 + r2,⊥,0 < v1,⊥,0τ1,r +
v21,⊥,0

2a1,⊥,b

+
1

2
amax

[︃
τ1,r +

v1,⊥,0 + τ1,ramax

a1,b

]︃2
(6-44)

Given this precondition, the actual relevance of the OOI with regard to the merging interaction
can be evaluated. While the previously assumed acceleration of the OOI towards the ego object
constituted the worst-case to whether an intersection interaction has to be considered, for the
actual interaction a different assumption applies. Here, a lane in the direction of movement of the
OOI as depicted in figure 6-7 is assumed. Any curvature in the OOI trajectory would yield lower
speed for the OOI at the time when the ego object enters the intersection. It is further assumed
that an adequate speed for driving on this lane exists. After merging onto the lane, the ego object
has the requirement to not impede the OOI, as previously specified in the R.AT- and R.AT+
scenario. Applicability of the R.AT- and R.AT+ scenario is dependent on whether the ego object
initial velocity component parallel to the lane v1,⊥,0 is above or below the adequate speed.

In this functional scenario, the following worst-case assumptions are used. First, the ego object
accelerates towards the intersection during the system latency. Second, the OOI accelerates
continuously throughout the scenario towards the intersection. Given the latter assumption, the
ego velocity component orthogonal to the lane v1,⊥ has to be zero, when the ego object is at
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Figure 6-7: Simplified depiction of the worst-case intersection and temporal positions for relevance evaluation in the
T.XT scenario.229

the intersection point. The ego object’s speed and position towards the lane during the system
latency is given by equation (6-45) and (6-46).

v1,⊥ = v1,⊥,0 + amax · τ1,r∗ (6-45)

r1,⊥ = r1,⊥,0 + v1,⊥,0 · τ1,r∗ +
1

2
amaxτ

2 (6-46)

Due to the orientation of the coordinate system, v1,⊥ is negative before reaching the intersection.
For the ego object not to reach the intersection point during the latency of the system, the
following assumption has to be made, signifying the possibility that the ego object can come to a
full stop before the reaction time has elapsed.:

τ1,r∗ = min

{︃
τ1,r , −

v1,⊥,0

amax

}︃
(6-47)

After the system latency has elapsed, the ego object is assumed to perform deliberate actions
in order to merge in front of the OOI. The start of these deliberate actions is denoted by the
index s. The deliberate actions are constrained to the limits of guaranteed acceleration a1,g.
Depending on residual distance to the intersection and ego speed, the actions can contain an
initial orthogonal acceleration phase and a concluding orthogonal deceleration phase. The change
from the acceleration phase and the beginning of the orthogonal deceleration phase is denoted by

229This image was created together with Ken Mori and also appears in the dissertation237 created concurrently.
230Mori, K.: Defining Object Detection Requirements for Safe Automated Driving (2023)
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the index c. While the acceleration might not be necessary, deceleration is always required to
achieve an orthogonal speed of zero at the intersection point. The point in time when the ego
object merges at the intersection point is denoted by the index m. For the following equations,
the substitution t′ = t− τ1,r∗ will be used for readability. The ego object’s orthogonal velocities
up to the intersection point are given by:

v1,⊥ = v1,⊥,s − a1,g · t′ for t′ ≤ t′c (6-48)

v1,⊥ = v1,⊥,c + a1,g · (t′ − t′c) for t′ > t′c (6-49)

Conversely, the ego vehicle’s orthogonal position to the lane is:

r1,⊥ = r1,⊥,s + v1,⊥,s · t′ −
1

2
a1,gt

′2 for t′ ≤ t′c (6-50)

r1,⊥ = r1,⊥,c + v1,⊥,c · (t′ − t′c) +
1

2
a1,g(t

′ − t′c)
2 for t′ > t′c (6-51)

Once the ego vehicle reaches the target lane, no further orthogonal movement is assumed. These
conditions at the merging time t′m are:

v1,⊥,m = v1,⊥(t = t′m) = 0 (6-52)

r1,⊥,m = r1,⊥(t = t′m) = 0 (6-53)

For the time required to reach the target lane, the system of previous equations needs to be solved.
This is done by initially substituting (6-48) and (6-49) into (6-52), yielding:

0 = v1,⊥,m = v1,⊥,s + a1,g · (t′m − 2t′c) (6-54)
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Further, (6-45), (6-46) and (6-51) are inserted into (6-53), resulting in the following equation:

0 = r1,⊥,s + v1,⊥,s · t′c −
1

2
a1,gt

′
c
2

+ (v1,⊥,s − a1,g · tc) · (t′m − t′c)

+
1

2
a1,g(t

′
m − t′c)

2

(6-55)

Solving for tm yields the temporal components tm and tc of the movement to the target lane:

t′c =
v1,⊥,s

amax

+

√︃
r1,⊥,s

a1,⊥,g

(6-56)

t′m = t′c −
v1,⊥,s

a1,⊥,g

(6-57)

During the orthogonal movement to the target lane, it is assumed that the ego object maintains a
constant velocity parallel to the target lane. Once the target lane has been reached, the resulting
constellation between ego object and OOI is considered as the initial condition for the R.AT-
functional scenario. As such, the ego object accelerates towards a desired speed that is considered
adequate. The radial coordinate in the R.AT- scenario is equivalent to the coordinate parallel to
the lane in this scenario. Reusing equation (6-21) from R.AT- for time to adequate speed, and
considering the time for system latency and reaching the target lane, yields the time to adequate
speed for the T.XT scenario:

t′d = τ1,r + t′m +
v1,∥,d − v1,∥,0

a1,∥,g
(6-58)

Like in the R.AT- scenario, the threshold for an adequate speed is not known. As a conservative
approximation, the speed of OOI can be used, defining v1,∥,d = v2,0. Inserting this assumption
into (6-22) and (6-20) results in:

v′2,d = v2,0 + amaxt
′
d (6-59)
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d(t = t′d) = r1,∥,0 − s1 − s2 + (v1,∥,0 − v2,0)t
′
d

+
1

2
(a1,∥,g − amax)t

′
d
2

(6-60)

Finally, substituting in (6-23) for td and v2,r,d yields the following criterion:

0 < dmin = d(t = t′d) +
v21,∥,d
2amax

− v′2,d τr

− 1

2
amaxτ

2
r −

(v′2,d + τramax)
2

2a1,∥,g

(6-61)

Any OOI violating the criterion is considered relevant to the ego object, as the actions during
system latency have a direct influence on whether the OOI is being impeded.

6.4 Results

To study the usage of the proposed relevance concept, the equations above are implemented
and applied to the NuScenes dataset231. For the application of the criteria, concrete parameter
values are needed. Since no concrete ADS or later argumentation for safety is present in the
context of this experiment, the values cannot be derived from them. Instead, plausible values are
chosen that are plausible under typical conditions encountered in the urban domain. Thus, the
transferability of the implementation for use in a concrete ADS and safety argumentation is not
given. For such a transfer, the values must be redetermined.

Since the maximum acceleration is limited by friction, it is assumed that amax = 10 m
s2
. While

this ignores existing techniques to increase acceleration potential, like increasing the down
force by using aerodynamic enhancements, the existence of these features is very limited in the
usual urban domain. For braking accelerations when an emergency stop is required, the lower
bound of viable values is chosen. Here, ab = 7 m

s2
is chosen, while also considering wet road

surfaces.233 The guaranteed acceleration potential is influenced by the current speed driven and
which type of object, especially which type of vehicle is considered. While the possible lateral
acceleration does not decrease with increasing speed, drivers are less likely to utilize the lateral
acceleration potential with increasing speed232. Thus, the value of ag = 0.5 m

s2
is chosen based on

literature234,232. Considering the reaction time τ1,r to an unforeseen event, human performance is

231Caesar, H. et al.: nuScenes (2020).
232Ali, G. et al.: Quantifying the effect on the frequency of longitudinal and lateral accelerations (2021)
233Poul Greibe: Braking distance, friction and behaviour: Findings, analyses and recommendations (2007).
234Bokare, P. S.; Maurya, A. K.: Acceleration-Deceleration Behaviour of Various Vehicle Types (2017).
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indicated to be around 1.5 s.235 In the implementation, these values are applied to both objects
for simplicity.
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Ego Trajectory

Object Trajectory

Figure 6-8: Applicable relevance criteria in an example scene of the NuScenes dataset. The displayed scene is
located in Singapore with left hand traffic.236

235Green, M.: How Long Does It Take to Stop? Methodological Analysis of Driver Perception-Brake Times (2000).
236This image was created together with Ken Mori and also appears in the dissertation237 created concurrently.
237Mori, K.: Defining Object Detection Requirements for Safe Automated Driving (2023)
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Figure 6-9: Resulting relevance judgments of the applied relevance criteria shown in figure 6-8. The displayed scene
is located in Singapore with left hand traffic.236

Following, the results of the application are visualized. In figure 6-8 and figure 6-9 an intersection
scene from the NuScenes dataset is shown. Figure 6-8 shows which criteria were applicable to
which object. Figure 6-9 then displays which objects were judged relevant. Relative distance
to the ego object can be observed as a distinguishing attribute for relevance, with the nearest
irrelevant object being the stationary bus on the northern road. All relevant objects in this scene
are in closer proximity to the ego object. Figure 6-10 visualizes the distribution of relative
distances to the ego object at which objects were judged relevant or irrelevant as an eCDF.
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Figure 6-10: eCDF of distances for relevant judgments of individual relevance criteria on NuScenes.236

The observed irrelevant objects range from close to zero meters, to roughly 100 meters in distance.
A rather sharp increase can be observed at around 40 meters, with less than 10 % of irrelevant
objects being closer than that to the ego object. Considering the urban domain of the used dataset,
the irrelevant objects are close to the edge of the observable area. Comparing the irrelevant
objects to all the observed objects, it must be noted that 50 % of irrelevant objects are further
away than more than 90 % of the overall observed objects.

A key property that can be noted is that objects are judged as relevant at distances of 175 meters
and more. Considering that those distances correspond to the furthest annotation distances
in the dataset, many objects were judged as relevant either in the first or last time step they
were annotated. Thus, it cannot be ruled out that, given a hypothetical additional annotation,
beyond the capabilities of the ego vehicle’s sensors, the object would still have been judged as
relevant. Therefore, it has to be concluded that the extent of the NuScenes dataset is insufficient
to encompass all relevant objects.

Concluding, figure 6-11 represents the proposed SRM as a concretization of the GRM defined in
the previous chapter. While this depiction does not visualize all components within the SRM,
especially the information items concerning claim & assumptions, it serves as an example for the
explicit statement of a relevance model.

6.5 Validation

Within this section, the validation procedure described in section 5.3 is applied to the criteria
defined in section 6.3. In addition to the actual validation, the validation procedure is applied
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Figure 6-11: Ontological depiction of the proposed SRM

three more times. Twice with known invalid relevance criteria and once with no relevance criteria
applied to test and verify the procedure itself. The following inputs to the prediction network in
the validation method are used:

■ A: All objects are used as input without omission. This is the original input and equal to
no relevance criteria being applied

■ R: Only relevant objects as identified by the criteria from section 6.3 used as input.

■ RV1: No objects are used as input, as the known invalid relevance criterion ”All objects
are irrelevant” is applied.

■ RV2: Only objects with a lateral distance of greater than 2 m with respect to the ego
vehicle used as input.

Since a probabilistic predictor is used, the noise introduced by stochastic effects must also be
considered, as the prediction noise also influences the prediction error. While the prediction error
is defined as the average Euclidean distance between the predicted trajectory and the ground
truth trajectory, the prediction noise is established by comparing multiple runs for the original
input. As such the prediction noise is defined as the average euclidean distance between two
predicted trajectories, based on the same input. For more than two predicted trajectories, each
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Figure 6-12: Error and noise eCDF distributions for the used relevance models

combination of pairs of predicted trajectories is considered. The prediction error for each input
and the prediction noise are summarized by an eCDF in figure 6-12. While the error distribution
averages at around 0.96 m, a significant average prediction noise at 0.33 m can be observed. The
eCDFs of the error distributions are visually very similar, with the averages varying only in the
range of single-digit centimeters. Observing the zoomed in section of the plot, it can be noted
that the eCDF curve for A-A and A-R are close together and constantly crossing, while both
errors for the verification inputs are continually larger. At the same time, all error distributions
are significantly larger than the prediction noise eCDF which marks the theoretical optimum.

Since the procedure takes and compares two inputs, each validation run is identified by the
notation of Input1-Input2. As such, A-R denotes the validation run for the proposed relevance
concept. A-A is the validation run to verify the influence of no relevance concept applied. The
application of no relevance concept is considered as an always valid baseline. The evaluation of
A-A further quantifies the influence of prediction noise, due to the stochastic nature of the used
prediction, on the validation method. A-RV1, A-RV2 denotes the two validation runs to verify
the detectability of known invalid criteria. While in A-RV1 all objects are removed, in A-RV2
only 5% of the original objects are omitted. Thus, the rate of omission in A-RV2 is less than in
A-R.

Performing the proposed Cramer-vonMises test on each combination of resulting predictions from
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both inputs results in several p-values for each validation run. These p-values are summarized
in the box plot within figure 6-13. As an acceptance criterion, the generally used threshold of
5% or 0.05 is used and marked by a red horizontal line. It can be observed, that even with the
influence of noise, the p-values of A-A are high, setting a plausible benchmark for a known valid
procedure. Considering the validation run A-R of the proposed relevance model, some outliers
have lower values than A-A, while overall equally high p-values are exhibited with no single
p-value failing the test. Contrary, the verification runs of known invalid criteria A-RV1 and
A-RV2 both resulted in significantly lower p-values. While all p-values for the A-RV1 run are
below the acceptance threshold, the p-values for the A-RV2 run are scattered both above and
below the threshold. Since individual p-values for A-RV2 fail the test, the whole validation run
is considered failed and the A-RV2 is thus detected as invalid as expected.
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Figure 6-13: Results of the performed validation runs, with A-A being the reference, A-R being the model under
test, and A-RV1 and A-RV2 being invalid verification models
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6.6 Interim Conclusion

The previous chapter 5 established the research question of how relevance can formally be
described. To contribute to the resolution of this question, a methodology was presented that
describes relevance in a two-staged fashion. First, the previous review of literature was compiled
into a GRM reflecting the information requirements of AD and the present solutions from the
state of the art. Further, both a method to derive relevance criteria and a method to validate the
previously defined criteria were presented.

In this chapter, both methods were applied and evaluated in an experiment on the NuScenes
dataset. For this purpose, a hypothetical subject system was defined, consisting of a high level
ODD and a partial specification of the system. The experiment demonstrated how behavioral
requirements are derived from normative documents using the example of the German StVo and
how the relevance criteria are created.

Following the application to the Nuscenes dataset and discussion thereof, the validation method
was evaluated. The execution of the validation method both validated the previously defined
relevance model and verified the proposed validation method itself.

Concluding, an answer to the initially posed research question was presented, applied, and
verified.
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7 Prototypical Application of Data Reduction
Concept

Having established possible answers to RQ. 1 and RQ. 2, two key portions have been considered.
A data reduction methodology has been proposed to consider the challenges that emerge with the
development of AD, and a relevance concept has been proposed to control the loss of information
to target functions. As such, a final research question remains, concerning the applicability of
the data reduction methodology:

Research Question 3
What is the impact on the use case of relevance-driven data reduction?

For the application of CADR, a prototypical implementation is presented. The prototype is then
evaluated with respect to the risk of information loss and the potential benefit of data reduction.
The effects of information loss are evaluated for two separate use cases. The first being the usage
of reduced data in the inference of DNNs and the second being the usage of reduced data in the
training of DNNs.

7.1 Use Case Definition & Partial System
Specification

For the subsequent experiments, a use case and target task for the prototypical CADR imple-
mentation has to be defined. Here, the use case of the development and usage of perception
functions for AD will be considered. A focus is placed on the development of the perception
tasks of semantic segmentation and object detection. The resulting perception functions are
thus considered the subject system, as specified later by the external task specification. While
the relevance concept in chapter 6 was evaluated on the NuScenes dataset, it is insufficient due
to its lack of ground truth semantic segmentation. As such, the following experiment must be
performed on a different dataset. For this purpose, the Cityscapes238 dataset is selected.

238Cordts, M. et al.: The Cityscapes Dataset for Semantic Urban Scene Understanding (2016).
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7.2 Application of the proposed SRM

In order to provide an answer to RQ. 3, both the CADR approach in conjunction with a relevance
model must be evaluated. This inherent coupling between the data reduction approach and the
relevance model means that the impact can only be evaluated for both components, but not
isolated for the data reduction approach. The impact resulting from the data reduction approach
can only be approximated by comparing it to the potential impact of the relevance model. Using
a highly conservative relevance model will inevitably lead to a low impact on the target task,
while an aggressive relevance model has the potential to yield a higher impact.

Observing the relevance projection of the proposed relevance model on the cityscapes dataset,
it can be seen that the conservative relevance judgments translate to a conservative influence
within the data representation. Figures 7-1 and 7-2 show a representative scene from the dataset,
both from a BEV perspective and from the camera sensor.

Within the cityscapes dataset, a minority of relevance judgments yield an irrelevant judgment as
can be seen in figure 7-3. Only 45 % of scenes include any objects that are judged as irrelevant.
Figure 7-4 shows the eCDF of the distances for each type of relevance judgment. Since the
relevance model is strongly influenced by the distance of the respective object, irrelevant objects
are on average further from the ego object and therefore the camera sensor, than relevant objects.
This leads to only 0.1 % of the overall pixels of the training split being deemed as irrelevant.
Excluding the scenes with no irrelevant pixels the mean irrelevant pixel ratio increases to 0.2 %
with a maximum of 2 %. Therefore, the proposed relevance model is considered to be conservative
for the evaluation of the data reduction approach.
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Figure 7-1: Birdseye-view of relevance judgments for the ”aachen_000062_000019” scene. Here, the parked
vehicles at a distance of more than 100 meters were judged as irrelevant, as none of the relevance criteria applied to

them. The oncoming vehicle exhibits a positive evaluation for both the R.TT and the T.XT criteria
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Figure 7-2: Ego view of relevance judgments in Cityscapes for the ”aachen_000062_000019” scene.
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Figure 7-3: Absolute of number of occurrences for relevance judgments in the Cityscapes dataset.
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Figure 7-4: Distribution of distances of objects categorized by their assigned relevance judgment in the Cityscapes
dataset.
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7.3 Definition of a SRM for the Prototypical
Application

As stated in the previous section, for the purpose of evaluating the proposed data reduction
approach, a new SRM must be defined. Since the SRM is not the focus of this evaluation, only
two requirements apply. First, it needs to be sufficiently aggressive to enable a strong impact
on the target task. Second, the judgments must be feasible so that they do not cause an impact
predominantly on the grounds of false judgments.

Using these two requirements a simple SRM was adopted from literature239,240. Here, using a
topical relevance definition, certain classes are deemed relevant, based on their assumed utility
in performing a DDT. Relevant are all traffic participants, as well as all entities which convey
normative behavioral information for the traffic environment, such as traffic lights and signs, and
lane markings. In addition to the classes already annotated by the ground truth provided by the
Cityscapes benchmark for the pixel-level semantic labeling task241, lane markings are added to
include all plausible traffic infrastructure. The resultant relevance concept is thus described by
the set of relevant split of the whole class taxonomy as given by equations 7-1 to 7-3.

C = Crelevant ∪ Cirrelevant (7-1)

Crelevant =

{︄
bicycle, bus, car,motorcycle, person, rider,

traffic light, traffic sign, train, truck, lane marking

}︄
(7-2)

Cirrelevant = {building, fence, pole, sidewalk, sky, terrain, vegetation,wall, road surface}
(7-3)

7.4 Implementation

For the whole experiment, the process as shown in figure 7-5 will be implemented, consisting of
the three sub processes. The data reduction process is the implemented CADR data reduction,
as depicted in figure 7-6. The implementation includes both the reduction and expansion steps.
Thus, the original dataset D containing the images I is transformed to the reduced form denoted
by the check accent Ď and Ǐ and finally to the expanded form D̂ and Î , denoted by a circumflex.

239Wang, Y. et al.: A Two-stage H.264 based Video Compression Method for Automotive Cameras (2022).
240Wang, Y. et al.: Semantic-Aware Video Compression for Automotive Cameras (2023), p.2.
241Cityscapes Dataset: Benchmark Suite (2023).
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Figure 7-5: Data flowchart for the application and evaluation of CADR. The process is divided into a training, data
reduction, and evaluation subprocess.
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Figure 7-6: Data flowchart for the CADR data reduction subprocess.

Two data reduction pipelines are utilized, one for irrelevant judgments and one for relevant
judgments. For the data reduction pipeline of the irrelevant data, a GAN fG was selected to
utilize the class information and relevant image data as a reduced storage format. The model
parametersΦG are the result of the training process shown in figure 7-7. While the dataset already
includes class labels C for the ground truth evaluation, only inferred class labels C̃ are utilized in
the data reduction pipelines. In comparison, usage of inferred class labels C̃ is considered more
plausible in a real application setting as provisioning the manually annotated class labels C is a
resource intensive and expensive task. As such, C is only used in the training process, while C̃ is
used in the data reduction process. The class labels are inferred by using a pretrained semantic
segmentation function fC with the model parameters ΦPIDNet.
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Figure 7-7: Data flowchart for the CADR training subprocess.

7.4.1 Data Reduction Module

The following describes the implementation of the data reduction module, by following the
architecture defined in section 4.2.

Data Abstraction

The data abstraction module is realized by the semantic segmentation function fC , yielding
the inferred semantic map ˜︁C. As such, the semantic map is the representation space for the
application of the relevance metric.

Relevance Metric & Relevance Concept

Due to choosing the semantic map as the representation space for the abstracted data, the relevance
judgments can be expressed as a binary mask. Considering the mask relevant to the subject
system, it is composed of those pixels that include semantic information defined as relevant in
section 7.3. In this implementation, these are effectively given by selecting the relevant classes
Crelevant from the semantic map ˜︁C.

Mclass,i,j =

{︄
1, if ˜︁Ci,j ∈ Crelevant

0, otherwise
(7-4)

242Stockman, George and Shapiro, Linda G.: Computer Vision (2000). a: p. 97; b: pp. 119; c: p. 81.
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Since lane markings are also defined as relevant, but are not part of the predetermined set
of classes of the cityscapes dataset, their detection must be handled separately. Algorithm
1 DetectLaneMarking details how an additional mask for lane markings Mlanemarking is
determined. The algorithm detects lane markings based on the assumption, that the pixels of
a lane marking have a higher brightness value than the pixels of the surrounding road. As
such, a threshold determination242a is used to distinguish lane markings. Since due to changing
brightness and road conditions the optimal threshold value vthresh does not remain constant,
the k-means algorithm242b is employed. Further, an opening operation242c is employed by the
usage of algorithm 2 ResizeMask. Here, the mask is first eroded and then dilated by a given
minimum size in order to enforce this minimum size for each detected lane marking.

Algorithm 1 : DetectLaneMarking(I,C)

Set minimum acceptable size of of pixel cluster in final mask.

smin ← 2

foreach i,j do
Create a mask for pixels of class road or ground

Mroad,i,j ←

{︄
1, when Ci,j ∈ {croad, cground}

0, otherwise

end
Create image only containing road by applying road mask.

Iroad ← I ⊙Mroad

Conversion of RGB image to greyscale image by averaging all the k=3 color

channels.

Iroad,grey,i,j ←
∑︁3

k=1 Iroadi,j,k
3

Determines two centroids of the brightness distribution

µ1, µ2 ← KMeans(Iroad,grey, 2)

Set threshold half way between both distribution means.

vthresh ← µ1,+µ2

2

Conversion of RGB image to greyscale image by averaging all the k=3 color

channels.

Mlanemarking ← Iroad,grey > vthresh

Filter detections below minimum size

Mlanemarking ← ResizeMask(ResizeMask(Mlanemarking,−(smin − 1)), (smin − 1))

returnMlanemarking
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Algorithm 2 : ResizeMask(M , n)

Kresize ←

⎡⎣0 1 0
1 1 1
0 1 0

⎤⎦ ; Convolution Kernel

if n < 0 then
Perform erosion operation as an opening operation on the inverse mask.
M ← ¬Resize(¬M ,−n)

else
Perform dilation operation n times.
i← 0
repeat

The dilation operation is performed through a convolution operation
with the kernel. Through normalization the matrix is again
transformed to a mask, where 0 indicates irrelevant entries and 1
indicates relevant entries.
M ← |M ∗Kresize|⊘(M ∗Kresize)
i← i+ 1

until i = n;
end
returnM

Considering the imperfect accuracy of the inferred semantic classes C̃, an assurance concept is
needed to account for this inaccuracy. While the semantic segmentation function fC is trained to
neither over- nor underestimate the semantic classes within an image, in terms of relevance an
overestimation of relevant classes is acceptable. As such an overestimation of relevant classes
can be assured by dilating the class mask, yielding Massurance as defined by equation 7-5.

Massurance = ResizeMask(Mclass, 1) (7-5)

Considering the mask relevant to the expansion process, it is composed of pixels that include
information which helps improve the performance of the expansion as described in section 7.4.3.
In this implementation, two kinds of information of the original data are extracted and persisted
through the reduction for this purpose. The first being the border areas between two semantic
classes, the second being single pixels scattered throughout the irrelevant data.

Expanding the reduced data to accurately represent the area where two semantic classes border
each other is important for later usage of the expanded data, so that the extent of each class
instance is preserved. As such, the borders between irrelevant classes are selected as relevant to
the expansion process, represented by the mask Mborder,irrelevant,+:
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Mborder,irrelevant,+ = ResizeMask(Mborder,irrelevant, 1) (7-6)

Mborder,irrelevant,+ is dilated in a similar fashion likeMassurance. The undilatedmaskMborder,irrelevant

is derived by detecting the borders using the negated class mask for irrelevant semantic classes.
This is done by an edge detection convolution given by equations 7-6 and 7-8.

Mborder,irrelevant = |¬Mclass ∗Kborder|⊘(¬Mclass ∗Kborder) (7-7)

with

Kborder =

[︄
−1 1

1 −1

]︄
= Kborder,vert ∗Kborder,horz =

[︄
−1
1

]︄
∗
[︂
−1 1

]︂
(7-8)

With the current information being preserved, the data exhibits the symptom that strongly
influences the resulting quality of the expanded data. Relevant and irrelevant data points are not
distributed in such a way that there is always a preserved relevant data point close to an irrelevant
data point that is to be expanded. As such, when expanding such a distant data point, it has to be
inferred solely based on the semantic data still present. Based on the architecture used, this leads
to strong artifacts or missing structural information in the synthetic data.

To counter this effect single data points can be added to the selection mask in order to act as
seed points for later generative expansion. For this purpose, Mnoise is defined based on the
threshold determination of a white noise matrixWi,j . In this implementation, the threshold vnoise
is arbitrarily set as 0.7.

Mnoise,i,j = Wi,j > vnoise (7-9)

Relevance Binning

Due to the fact that a binary relevance concept has been chosen, the relevance judgments have
already yielded a binning effect, assigning each piece of data to either the data reduction pipeline
for relevant or irrelevant data.

104



7 Prototypical Application of Data Reduction Concept

Relevance Projection

Since the relevance judgments are already performed within the representation of the input data,
no sophisticated projection step has to be applied. Instead, merely the relevance mask Mselection

is composed of the several sub-masks, that can be grouped by their relevance either to the subject
system or to the expansion process. This composition is performed by a union operation 243 as
given by equations 7-10 to 7-12. In this implementation the explicit declaration of an assurance
concept, which would be represented by an additional sub-mask Massurance is omitted.

Mselection = Mrelevant,system ∪Massurance ∪Mrelevant,expansion (7-10)

Mrelevant,system = Mclass ∪Mlanemarking (7-11)

Mrelevant,expansion = Mborder,irrelevant,+ ∪Mnoise (7-12)

Finally, Mselection is to be applied to the input data I , yielding the image data of only the pixels
to be preserved Imasked.

Imasked = I ⊙Mselection (7-13)

7.4.2 Data Storage Format

In order to fully instantiate a prototypical data reduction pipeline, a storage format for the data
needs to be defined. As the input, storage, and output data are image data, a wide array of
commonly established formats is available. In the evaluated pipeline, both the input and output
data are stored in the portable network graphics (PNG)244 format, which has established itself as
a de-facto standard for lossless image data storage. In order to make use of the state of the art
encoding algorithms for further data reduction and to limit the evaluation to the context aware
aspect of CADR, the PNG format is also chosen as the storage format.

Contrary to the input and output data, the storage data includes additional data to the red, green,
and blue color channel data of the camera. This additional data, concerning the semantic class
and its masking status, needs to be stored as well. The PNG format allows for up to four separate
channels of data to be stored. These channels include the red, green, and blue data, which are
also used in the input and output data, as well as the alpha channel A, which is used to convey
opacity for each image pixel. Thus, when combined semantic class and masking status can be
stored in the alpha channel. Figure 7-8 show the bit structure for a single pixel of the reduced
data. As shown the alpha channel stores the bits of the semantic class with the masking status bit
appended. This effectively results in duplicating the class hierarchy as seen in figure 7-9, with

243Luce, R. D.: A Note on Boolean Matrix Theory (1952), p. 382.
244International Standardization Organization: PNG: Functional specification (2023).
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each class being split into a relevant and irrelevant counterpart. Further, since one bit is used up
by the masking status data, the maximum size of the class hierarchy is halved. For a standard
8-bit PNG format, this approach is limited to a maximum of 128 classes. When using the 16-bit
support of the standard, up to 32768 classes can be supported.

A = ˜︁C +Mselection · 2bclass (7-14)

Ǐ = concat(Imasked,A) =

[︄
Imasked

A

]︄
(7-15)
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Figure 7-8: Structure of the compressed and encoded data, for a single pixel of Ǐ . Each box represents a single bit
and each column represents an 8-bit channel.
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7.4.3 Data Decompression Module

From the unified storage format, the data for both expansion pipelines is extracted. This is done by
first regenerating the relevance maskMrelevance from the PNGs alpha layer as defined in equation
7-16, which will be used to extract the unmodified relevant data in the fusion step. Equation 7-17
describes the data synthesis for the irrelevant data, here the whole stored information is used.
The fusion is performed as described by equation 7-18, yielding the final expanded image ÎˆI .

Mrelevance,i,j = Ai,j ≥ 2bclass (7-16)

˜︁I = fG(ΦG, Ǐ) (7-17)

Î = ˜︁I ⊙ ¬Mrelevance + Imasked ⊙Mrelevance (7-18)

In order to obtain the generative model ΦDtrain
, the selected GAN was trained on the original

and reduced training dataset, DFull,train and Dsynth,train for 130 epochs. Contrary to other DNNs,
GANs do not converge towards zero in their loss function, but instead approach an unstable
equilibrium.245 Knowing this, the training was stopped once the generator output was subjectively
deemed sufficient for the task at hand.

245Google LLC: Machine Learning Common Problems (2023).
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8 Evaluation of the Data Reduction Concept

In chapter 4, a novel concept for relevance-driven data reduction was presented. To fully un-
derstand this concept, its impact on the quality of a given data oriented process needs to be
determined. As stated in section 2.3, the quality of a data oriented process is defined through
its effectiveness and its efficiency. With these characteristics, the aim of this chapter is twofold,
centered around the research question 3.

The first aim is to provide the means to answer the research question. Which methods are
necessary to achieve a fully qualified evaluation of relevance-driven data reduction? The second
aim is to provide an answer to the research question for the prototypical implementation for
CADR as a relevance-driven data reduction, as outlined in chapter 7. The presented prototype
will be evaluated with respect to the impact on the effectiveness and efficiency of the data. For
this evaluation, the impact on effectiveness will be quantified through the risk of information
loss. The impact on the efficiency of the data is defined as the data reduction factor.

Since the specifics of the use case are chosen and therefore the tasks and SRM are artificially
derived specifically for this dissertation, no acceptance criteria exist. For any substantiated
acceptance criteria, a more complex application environment, like in an actual industrial context
would be required. As such, the answer to the research question will be in the form of a qualitative
discussion at the end of this chapter.

8.1 Information Loss / Applicability for Use Case

Loss of information and a worsened usability for a given use case can generally be described by
the loss of performance of a task within the considered use case. So, in order to evaluate the loss
of information introduced by the data reduction, the kind of task considered must first be defined.
Since the prototypical implementation is concerned with image data, the task of perception is
usually the first task in any kind of data processing. Further, a perception task can either be
performed by a machine or by a human.

Therefore, in the next sections, first the information loss in machine perception will be evaluated.
Second, the information loss for machine perception training will be evaluated. Finally, a method
to evaluate the information loss for human perception is presented. For the purpose of these
evaluations, the following datasets are created, as shown in figure 8-1:
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𝔻Full 𝔻Synth

𝔻Synth_Mixed

𝔻Blackened

𝔻Truncated

...

Figure 8-1: Data flowchart delineating the creation process for the used datasets

■ DFull: The unaltered Cityscapes dataset. This dataset serves as a benchmark, since using
the whole unaltered dataset is the default option of no data reduction being applied.

■ DSynth: The processed dataset as proposed in chapter 7

■ DMixed_Synth: This dataset is composed to equal parts of images from DFull and DSynth. This
dataset provides a basic understanding of how the approach proposed in chapter 7 behaves
when applied to only parts of the data.

■ DBlackened: The distinction between relevant and irrelevant parts of the data is a key aspect
of CADR. While some data is irrelevant, a core principle of CADR is also that everything
irrelevant must still be present as a ”plausible lie”. This dataset is created to also consider
the distinction of relevance, while at the same time completely omitting the irrelevant data.
As such, it serves as a baseline alternative to DSynth.

■ DTruncated: A fraction of the Full dataset. This dataset is roughly equal in data size to the
Synth dataset. To mimic the process of truncation in reality, whole recordings of cities
were removed from the dataset until it was only slightly larger in data size when compared
DSynth. This mirrors a recording campaign being shorter and performing certain recording
drives to provision extra data. This dataset provides an additional baseline, since reducing
the overall samples is the most simplistic alternative to DSynth.

In order to place these datasets into a data reduction context, their respective data sizes are listed
in table 8-1. Each dataset can be further distinguished into training D−,train, validation D−,val

and testing D−,test sub datasets. Since the public data does not include semantic labels for the
testing sub dataset it will not be further considered in this evaluation. In figure 8-2 samples are
presented from selected datasets.

Table 8-1: Dataset sizes in GB for experiment setup

DFull DSynth DTruncated DMixedSynth DBlackened

RGB 6.46 2.84 3.01 4.65 1.42
Label 0.62 0.27 0.36 0.45 -
Sum 7.08 3.11 3.37 5.10 1.42
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𝔻Full 𝔻Synth 𝔻Blackened

Figure 8-2: Sample images of the considered datasets for evaluation

8.1.1 Information Loss for Machine Perception

𝔻val

~
Y

I

𝔻val
^

p(Y,Y)

f(Φ,Î) f(Φ,I)
~
Y𝔻val

^

~

Î

𝔻val

ΦfΦf

Y

p(Y,Y)
~

p �̂� 𝔻p
f, f,

Figure 8-3: Data flowchart for the CADR inference evaluation subprocess. In this evaluation f is realized by either
fC or fO, depending on which task is being evaluated.

In order to evaluate the loss of information introduced by the data reduction, the process as
depicted in figure 8-3 is proposed. For the evaluation, two subject tasks will be considered,
semantic segmentation and object detection. Functions implementing solutions to the respective
tasks will be denoted as fC and fO. For both functions publicly available pretrained models Φ are
used. The loss of information can be estimated by measuring the change in performance for each
subject task. DFull,val will be used as a baseline reference from which the change is measured. The
loss of performance will be determined for both the proposed DSynth,val dataset and the DBlack,val

dataset as an alternative.
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Using the two subject tasks, the experiments have two focuses. First, determining if the proposed
approach has the property of loss separability, and if so, to what degree. Second, is the usage of
the proposed approach feasible against baseline methods such as those represented by DBlack.

Semantic Segmentation

First, the separability of performance loss between relevant and irrelevant entities will be evaluated.
For this purpose, the task of semantic segmentation will be considered. Semantic segmentation
is suitable for this evaluation since it requires a class assignment to all pixels, including those
deemed irrelevant.

The changes in performance are determined by calculating the mean intersection over union
(mIoU) score. As a subject function for the semantic segmentation task PIDNet246 is selected
as one of the top performing247 semantic segmentation DNN for the used Cityscapes dataset.
Evaluating the quality of semantic segmentation the resulting mIoU performance measures as
listed in table 8-2 can be observed.

Table 8-2: Quality of a Semantic Segmentation based on synthetic images as compared to that of original images

pfC,DFull,val
pfC,DSynth,val

pfC,DBlackened,val

Class mIoU mIoU mIoU
Ø 0,809 0,777 (-3.96%) -

C
re
le
v
a
n
t

bicycle 0,789 0,788 (±0%) 0,599 (-24%)
bus 0,905 0,899 (-1%) 0,351 (-61%)
car 0,955 0,949 (-1%) 0,008 (-16%)
motorcycle 0,672 0,661 (-2%) 0,084 (-88%)
person 0,842 0,834 (-1%) 0,224 (-73%)
rider 0,687 0,682 (-1%) 0,177 (-74%)
road 0,983 0,977 (-1%) 0,687 (-30%)
traffic light 0,739 0,729 (-1%) 0,284 (-62%)
traffic sign 0,814 0,814 (±0%) 0,427 (-48%)
train 0,858 0,854 (±0%) 0,231 (-73%)
truck 0,811 0,819 (+1%) 0,159 (-80%)
Ø 0,823 0,819 (-0.49%) 0,366 (-56%)

C
ir
re
le
v
a
n
t

building 0,932 0,901 (-3%) -
fence 0,664 0,551 (-17%) -
pole 0,666 0,632 (-5%) -
sidewalk 0,865 0,822 (-5%) -
sky 0,944 0,927 (-2%) -
terrain 0,666 0,581 (-13%) -
vegetation 0,926 0,898 (-3%) -
wall 0,651 0,448 (-31%) -
Ø 0,789 0,720 (-8.75%) -

246Xu, J. et al.: PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers (2022).
247paperswithcode.com: Cityscapes test Benchmark (Real-Time Semantic Segmentation) (2023).
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The observed performance for DFull,val is consistent with the stated mIoU value of 0.809248. While
on the partially synthetic counterpart, the performance is 0.777. As the prototype implementation
is a lossy type of data reduction, the overall loss of information is in line with expectations.
Considering this relative difference in performance would result in a reranking of the approach
from first to a new sixth place, as depicted in figure 8-4. In order to further examine and interpret
the information loss, a distinction between the relevant and irrelevant data within the validation
must be made.

Figure 8-4: Ranking of the mIoU on the original data and the mIoU on the reduced data compared to the Papers
with Code top 10 leaderboard.

Within the context of this evaluation it is the goal to observe the influence of the used data on
the performance of a subject system. Hence only the data relevant to the subject function will
be considered as relevant. The data relevant to the reduction process will be considered equally
irrelevant as the rest of the data.

Having made this distinction, the performance values for only the relevant and irrelevant parts
of data can be evaluated. Using DFull,val exhibits a performance of 0.823 on the relevant and
0.789 for the irrelevant data. Substituting DFull,val with DSynth,val the performance observed is
now 0.819 on the relevant and 0.720 for the irrelevant data.

248github.com/XuJiacong/PIDNet: This is the official repository for our recent work: PIDNet (2023).
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This shows that the initially observed 3.98% degradation of performance does not equally impact
the relevant and irrelevant data. The resulting performance for the relevant data is only lessened
by 0.49% while for the irrelevant data the reduction in performance is 8.75%. As a result, the loss
of performance for the relevant data is 18 times less prevalent than it is within the irrelevant data.
Table 8-2 further shows the performance results for object classes, grouped by the class relevance.
While there is a difference in performance among the individual object classes, overall there are
no significant outliers that contradict the observed deviation between relevant and irrelevant data.
Further, within the performance values of the irrelevant classes only a small subset is responsible
for most of the performance loss. For the classes, fence, terrain, and wall, it has to be noted that
they exhibit a loss larger than ten percent, while all other classes experience a loss of less than or
equal to five percent.

Considering the second evaluation focus of feasibility compared to baseline methods. Using
DBlackened,val as input only the performance of segmenting the relevant classes Crelevant can be
considered, since the majority of data pertaining Cirrelevant is within blackened areas. On average
and throughout the relevant classes, a significant drop in performance can be noted. Themagnitude
of the performance drop allows for the assumption, that the input data DBlackened,val is out of
distribution for the used neural network. Compared to DSynth,val, DBlackened,val exhibits a 114 times
larger performance loss on the relevant classes. While this observation in itself is not surprising,
it shows that the ”plausible lie” provided by DSynth is suitable enough to not cause any out of
distribution events and is feasible when compared to a baseline method without a ”plausible lie”.

Object Detection

To fully evaluate the inference of the subject function, the task of object detection is considered
next. Here, an object detection task is derived from the Cityscapes benchmark for the Instance-
Level Semantic Labeling Task249. For all annotated instances of relevant classes, the extent of
each instance was rewritten as a bounding box with centroid (xcenter, ycenter), width w and height
h, as shown in figure 8-5, further including the respective class ID.

In order to evaluate the object detection task, a state of the art YOLOv8 nano neural network is
used. For the object detection task, the mAP metric is used to measure the performance. In table
8-3 both the mAP.5 and mAP.5:.95 metrics, as described in section 2.3.2, are observed.

Averaged over all classes the performance change from DFull,val to DSynth,val is minimal with -1 %
mAP.5 and ±0 % mAP.5:.95. Looking at the individual object classes a fluctuation from improved
and worsened performance can be seen. An outlier of note is the trailer class, which worsened
by 39 % and 48 % respectively. A plausible explanation for this can be found in the number of
instances to detect. While the whole validation dataset includes 16115 instances, only 13 or 0.1 %
of the instances are of the trailer class. In the training set the same percentage are of the trailer
class, resulting in only 61 samples for training. As such, it is plausible that this outlier is due to an

249Cityscapes Dataset: Benchmark Suite (2023).
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Figure 8-5: Generation from Panoptic Semantic Segmentation Task to an Object Detection Task.

Table 8-3: Performance values, produced by YOLOv8 and measured in mAP

pfO,DFull,val
pfO,DSynth,val

pfO,DBlackened,val

Class mAP50 mAP50-95 mAP50 mAP50-95 mAP50 mAP50-95
Ø 0,373 0,213 0,369 (-1%) 0,213 (±0%) 0,143 (-62%) 0,067 (-69%)
traffic light 0,303 0,127 0,287 (-5%) 0,119 (-6%) 0,039 (-87%) 0,008 (-94%)
traffic sign 0,342 0,186 0,348 (+2%) 0,187 (+1%) 0,092 (-73%) 0,028 (-85%)
person 0,241 0,114 0,220 (-9%) 0,103 (-10%) 0,171 (-29%) 0,057 (-50%)
rider 0,487 0,269 0,487 (±0%) 0,271 (+1%) 0,121 (-75%) 0,042 (-84%)
car 0,710 0,476 0,708 (±0%) 0,473 (-1%) 0,434 (-39%) 0,221 (-54%)
truck 0,365 0,244 0,368 (+1%) 0,255 (+5%) 0,250 (-32%) 0,135 (-45%)
bus 0,566 0,386 0,589 (+4%) 0,409 (+6%) 0,321 (-43%) 0,166 (-57%)
caravan 0,334 0,205 0,310 (-7%) 0,220 (+7%) 0,046 (-86%) 0,025 (-88%)
trailer 0,052 0,039 0,032 (-39%) 0,020 (-48%) 0,008 (-84%) 0,005 (-87%)
train 0,387 0,192 0,377 (-3%) 0,178 (-7%) 0,092 (-76%) 0,053 (-73%)
motorcycle 0,280 0,115 0,296 (+6%) 0,127 (+10%) 0,024 (-91%) 0,013 (-88%)
bicycle 0,405 0,201 0,405 (±0%) 0,199 (-1%) 0,120 (-70%) 0,046 (-77%)

insufficient sample size, both in the training phase as well as in the evaluation phase. While the
overall model yields results with low accuracy, the accuracy for the trailer class is especially low
with 0.052 mAP.5 and 0.039 mAP.5:.95 as compared to the average of 0.373 and 0.213, indicating
insufficient training samples. Additionally, for this class, the high relative change can also be
understood as a numerical effect due to the low accuracy. In absolute numbers, the observed
change is 0.02 and 0.19. This absolute magnitude is also observed for other classes.

In contrast to the evaluation of DSynth,val, using DBlackened,val instead of DFull,val causes a significant
loss of performance of over 50 % on all scores and most object classes. On average a performance
loss of -62 %mAP.5 and -69 %mAP.5:.95 is observed. Similarly to the performance in the semantic
segmentation task, DBlackened,val is not a feasible data reduction approach for perception.
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8.1.2 Information Loss for Training Data

In subsection 8.1.1, the possibility to perceive information from reduced and unreduced data was
evaluated. For the purpose of perceiving information from novel data, neural networks leverage
learned information from data to which they were previously exposed to in a training process. In
this subsection, the efficacy of reduced data compared to unreduced data for the usage as training
data will be evaluated as described by the process in figure 8-6.
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Figure 8-6: Data flowchart for the CADR training data evaluation subprocess.

To this point, the previously used neural networks PIDNet and YOLOv8 realizing the subject
functions of semantic segmentation and object detection respectively will be reused. Contrary to
subsection 8.1.1 not only the final performance of the trained neural net needs to be evaluated,
but the development of the performance over the training process. During the training the
performance development will be observed based on the metric used in subsection 8.1.1. Each
network will be trained by using DFull,train, DSynth,train and DTruncated,train.

DBlackened,train is also used in training for the object detection task. Using this dataset to train a
semantic segmentation function is omitted, since learning to segment labels of irrelevant classes
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from no available data does not result in a sensible task. While the segmentation task can be
modified to also use DBlackened,train as training data, this would yield a completely different task.

Semantic Segmentation

The training results for the semantic segmentation task are visualized in figure 8-7. As expected,
training with the unmodified dataset DFull,train clearly yields the best result, with the highest mIoU
values in both the initial start phase and the beginning saturation phase.
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Figure 8-7: Quality of Semantic Segmentation based on training on the datasets in table 8-1

DTruncated,train shows a similar training behavior as DFull,train but with a seemingly constant abso-
lute offset. On the other hand it DSynth,train is observed to result in a different behavior where the
performance remains constant with negligible progress during training. Here, DMixed,Synth,train is
introduced as a further dataset to evaluate the effect on information extraction from synthetic data.
The training progress of DMixed,Synth,train closely follows that of DTruncated,train. DTruncated,train is
composed of 50 % of the samples of DFull,train. DMixed,Synth,train includes the same amount of
samples from DFull,train, plus the missing 50 % in the form of samples from DSynth,train. This
information in conjunction with the near exact same training performance leads to the conclusion
that in this experiment DSynth,train does not contribute significant information to the training.

Object Detection

The cityscapes dataset was created for a semantic segmentation task. In order to train an object
detection on cityscapes, a ground truth for this task had to be derived. For this purpose, the
semantic segmentation label ground truth was used as a starting point. All classes with instance
level annotation were considered, thus removing the road class from the relevant classes, due to
its incompatibility with an object detection task. For each instance annotation, a 2-D bounding
box was defined around the semantic instance segmentation, preserving the class information.
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As a result, the subject neural network can be trained on this newly created ground truth data. Due
to its derived origin, multiple small, hard to detect, objects are included in the dataset, leading to
seemingly low performance scores. Since all trained neural networks are equally exposed to this
effect, it can be ignored in the following evaluation.
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Figure 8-8: Quality of Object Detection based on training on the datasets in table 8-1

Figure 8-8 depicts the training process for a YOLOv8 neural network given the considered
datasets. Contrary to the previous section 8.1.2 where the shortcomings of using synthetic data
as training data were apparent, these results show a different result. As to not rely on a single
stochastic process for a close evaluation, every training process was repeated five times. Displayed
are the upper and lower limits as well as the mean value for each set of training processes.

Upon initial observation, DFull,train, DSynth,train and DTruncated,train perform comparably, while
DBlackened,train is clearly visible as not yielding any improvements. This lack of training effect is
also visible in the triggering of the early stopping criterion of the YOLOv8 framework, where
the training process is stopped if no improvement has been registered in the last 100 epochs.

Having a more detailed look at DFull,train, DSynth,train and DTruncated,train, all appear to have a
similar, albeit offset, training performance. Again, as expected, DFull,train exhibits the best
performance, with DSynth,train and DTruncated,train performing worse by an offset of roughly 0.02
and 0.04 mAP respectively. A fact to highlight is the circumstance, that all datasets reached
saturation by triggering the early stopping criterion. Here, it is intuitive to try to offset the
worsened performance of DTruncated,train by extending the number of training epochs, since due
to the decreased number of samples in the dataset, each training epoch uses less computational
resources. However, this approach does not seem promising, since the early stopping is indicative
of a complete utilization of the available information.
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8.1.3 Information Loss for Human Perception

In order to evaluate information loss for human perception, similarity between the partially
synthetic image and the original image for a human viewer needs to be considered. To get a
quick overview of the general quality a metric built to approximate human perception can be
used. For this purpose, the MS-SSIM250 metric discussed in section 2.3.2 will be applied. Figure
8-9 shows the MS-SSIM value eCDF when comparing DSynth to DFull. The Values range from
0.75 to 0.95 with a median value of 0.89.
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Figure 8-9: eCDF of the MS-SSIM Scores on the validation set. The red markers denote the lowest (circle), median
(diamond) and highest MS-SSIM scores

While MS-SSIM values provide a relative reference for comparing two different image qualities,
they are difficult to relate to absolute image quality. Considering the sample images in figure
8-10 for the lowest, median, and highest MS-SSIM scores of the dataset, a few observations can
be made.

Examining the upper image pair with the lowest score, the effects of data reduction become
apparent in vegetation and shadows. While the shadows on the street preserve their general
structure and only appear to have been blurred, the vegetation exhibits stronger artifact patterns.
Looking at the image pairs with median and highest MS-SSIM scores, it is evident that the
partially synthetic image seems to be an appropriate substitute for the original image. At the
same time, even the partially synthetic image with the highest score displays a strong artifact in
the vegetation above the bus.

The subjective examination seems sufficient to conclude that the synthesis process is adequate
for most of the image regions and inadequate for large areas of vegetation but lacks any robust
criteria. In order to evaluate any substantiated acceptance criteria, the conduct of a study is
necessary.

250Z. Wang et al.: Multiscale structural similarity for image quality assessment (2003).
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Figure 8-10: Samples for the lowest, median and highest MS-SSIM scores, as marked in figure 8-9.

The following delineates the process of conducting and evaluating a suitable study, shown in
figure 8-11. The design of the study and evaluation is based on the ITU Recommendation
P.912 ”Subjective video quality assessment methods for recognition tasks” as briefly presented in
section 2.3.2. Initially, the study needs to be prepared. Here, the recognition task for the study is
defined and data is provisioned. For this task, a dataset is created comprised of scenes from both
the original dataset and the dataset after the subject data reduction has been applied. Each scene
is present in both datasets. For each study participant, the scenes are then randomly allocated
to equal parts to either the original dataset or the subject dataset. For experimental evaluation
purposes, a 2D object detection task for traffic signs was chosen, and 21 scenes from the DFull

and D̂Synth dataset were selected. For demonstrative purposes, the study was performed with 10
participants. In actual application the number of participants has to be chosen with respect to the
acceptance thresholds, to ensure sufficient statistical power for the hypothesis test.
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Figure 8-11: Flowchart, detailing the steps required to assert the effects of data reduction on human perception

To perform the study, each participant is given an explanation to give an understanding of the
task. Following, separate scenes for training are presented as to accustom the participants to
the usage. The explanation used in the experiment is shown in figure 8-12. Here, the target
annotations are explained and a 60 s time limit is introduced to force the participants to annotate
all signs in an equal time frame.

Because each participant may have a slightly different understanding of the task and a different
tendency to perform than other participants, the results cannot be aggregated across participants.
For this reason, each participants’ performance is aggregated individually on the difference in
performance between the scenes shown from the original dataset and the subject dataset. These
performance aggregates provide the final population of samples for testing whether the impact
on performance is acceptable. In the performed experiment, the participants are evaluated using
the mAP.5 measure. For each scene, a relative score is determined as the mAP.5 value for the
current scene in relation to the average mAP.5 score of all scenes.

Due to the removal of information in the subject dataset the impact on the performance on
the original data pD is expected to be negative. The distributions of the populations of both
performances are expected and assumed to be normal distributions. The performance on the
subject data pD̂ is modelled as the original performance worsened by both a systematic error
ϵsys and a random error ϵrand. The former shifting the mean and the latter changing the variance
of the normal distribution. Correcting for both errors yields the corrected distribution pD̂,corr
approximating the original distribution. This model is described by equations 8-1 to 8-3.
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Figure 8-12: Tutorial screen as used in the experiments demonstrative study on the effects of data reduction on
human perception

pD ≈ N (µD, σD) (8-1)

pD̂ ≈ N (µD̂, σD̂) (8-2)

pD̂,corr = N (µD̂ − ϵsys, σD̂/ϵrand) ≈ pD (8-3)

Following, the bounds of the possible error values are determined. To this purpose a plausible
range of error values is varied in a fully factorial manner. A statistical test is used to determine
whether the hypotheses in equation 8-4 and 8-6 have to be rejected based on a confidence threshold.
For the test of equal means, a one-sided T-test is applied. Welch’s T-test is chosen instead of
Student’s T-test, since Welch’s T-test does not require equal variances, which are assumed here to
be unequal251. Conversely, to test for equal variances Levene’s Test is applied252. In both cases,
the implementation of the Python package Scipy is used.253,254

251Ruxton, G. D.: The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney
U test (2006).

252Standarts, N. I. of; Technology: 1.3.5.10. Levene Test for Equality of Variances (2022).
253The SciPy community: scipy.stats.levene — SciPy v1.11.3 Manual (2023).
254The SciPy community: scipy.stats.ttest_ind — SciPy v1.11.3 Manual (2023).
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H0,sys : µD̂,corr = µD (8-4)

H1,sys : µD̂,corr ̸= µD (8-5)

H0,var : σ
2
D̂,corr

= σ2
D (8-6)

H1,var : σ
2
D̂,corr

̸= σ2
D (8-7)

Having performed the prior testing reveals the value sets for performance errors that cannot be
ruled out. Performing this procedure for the experiment population, with a probability of error of
5%, reveals the possible value sets for the error model of the mAP.5 score, as shown in figure 8-13.
For these possible value sets for the error model, the null hypotheses cannot be rejected. Given
acceptance thresholds for performance, the data reduction approach can now be accepted or
discarded for human perception, based on whether there exists any unrejected null hypotheses
for error value sets that violate the acceptance thresholds. If multiple independent performance
measures are used, such as time spent on the task, the evaluation process can equally be executed.
Multiple performance measures then yield multiple error models, for which individual acceptance
criteria have to be applied.
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Figure 8-13: Bounds of the possible pairs of system and random error as based on the statistical tests within the
human perception study. The red line marks the significance level α = 0.05. The blue contour plot signifies the

resultant p-value for the respective correction by ϵsys) and ϵrand).
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8.2 Data Reduction Potential

The following section will evaluate the efficiency of the data as quantified by the data reduction
factor. Reconsidering the observations from section 7.2 on the impact of the proposed SRM, it
is evident that the data reduction effect is currently minimal. With only 0.1 % of pixels being
deemed as irrelevant, the data reduction effect is equally or possibly even lower. As such, the
SRM proposed in chapter 6 shows most of its effect in information reduction for dynamic objects.

While the proposed SRM represents a first step towards relevance-driven data reduction, the
relevance model used in the CADR prototype is considered to be more akin to a mature relevance
model in terms of the affected data parts. Observing the data reduction effect as produced by the
SRM implemented in the CADR prototype, as described in chapter 7, enables an estimate for
the possible potential for data reduction. Figure 8-14 shows a significant reduction in file size,
when compared to the full dataset. Comparison with the file size of the blackened dataset gives
insight into the size requirements of the additionally encoded data, as it is the differentiating
factor between DSynth and DBlackened. The additionally encoded data takes about 0.5 MB or on
average roughly half of the storage amount. Overall the data reduction factor ranges between
0.2 and 0.8 with an average of just below 0.5. These numbers exemplify the sensitivity to the
conditions in the subject scene. Thus, the decision to employ the data reduction approach can
change based on the scene at hand.

Figure 8-14: eCDF of the file size (left) and reduction factors (right) for the used datasets. The data reduction factor
for DFull and DTruncated, were omitted since they are 1 by definition
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8.3 Interim Conclusion

In the previous sections, experiments were conducted and evaluated. The aim was to answer
RQ. 3 and estimate the impact of a data oriented process when a relevance-driven data reduction
is applied. The impact on quality is considered as loss of information and data reduction potential.

This impact is visualized in figure 8-15, showing the relations described in figure 2-5. Here, the
loss of information is described by the ratio between performance on the unreduced data and
performance on the reduced data. The data reduction potential is similarly expressed by the data
reduction factor of the reduced data.
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Figure 8-15: Data reduction factor compared to performance loss factor.
Symbols denote the different tasks of semantic segmentation (◦) and object detection (⋄). Inference symbolized by
an unfilled symbol, while training has a filled symbol. The used dataset are disambiguated by color. Note that some

datasets are only applicable to a subset of tasks.
Top right corner is the point of no change, while bottom right corner is the theoretical maximum.

Subsection 8.1.1 examined the impact when used for machine perception. The experiment
conducted shows the separability between relevant and irrelevant information with relevance-
driven data reduction. While overall some information is lost, most of the loss is isolated to the
irrelevant information, with only a marginal amount affecting the relevant information. Here, a
separability factor of 18 was observed. When compared to a baseline method for data reduction,
the experiments conducted showed that this baseline method is not feasible, yielding a worsened
performance loss by a factor of 100.

Subsection 8.1.2 explored the usability of reduced data for use as training data. The two experi-
ments conducted exhibited different results indicating a strong dependence on the concrete task.
While the training of an object detection showed feasibility compared to the baseline methods,
the training of a semantic segmentation does not lead to this conclusion. The direct application
of CADR yields worsened results, which can only be mitigated upon further modification. Since
the modified results only approach the performance of the baseline method, the added effort of
the CADR approach does not appear feasible in this case.
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In the subsection 8.1.3, the impact of the proposed CADR approach on human perception
was investigated. Literature and data evaluation revealed that established metrics such as MS-
SSIM, while providing a quantitative measure of similarity, do not fully capture the subjective
quality perceived by humans. The experimental data suggest that while some image regions
are satisfactorily synthesized, complex areas such as vegetation are prone to noticeable artifacts.
A methodological study is proposed for a nuanced analysis of the impact of data reduction on
human task performance. The proposed study is demonstrated through an example experiment
involving traffic sign detection annotation. By comparing participant performance on object
detection tasks between original and synthetically altered datasets, and by applying statistical
models to account for systematic and random errors, the study provides a scientifically sound
approach to determining acceptable thresholds of image quality for human perception.

Section 8.2 showed that in order to deploy a relevance driven data reduction, it is first necessary
to sufficiently mature the respective relevance model in order to yield an adequate data reduction
effect. Early conservative relevance models lack the needed data reduction factor to justify the
effort and accompanying negative effects of data reduction. More aggressive models on the other
hand exhibit sufficient potential.

Concluding the two aims set at the beginning of the chapter have been achieved. First, methods to
describe the impact of relevance driven data reductions have been presented. Second, the impact
of the proposed CADR method was qualified. A quantified answer was given for the subject
implementation. Depending on individual acceptance criteria the results for inference appear in
a plausible range. The results for training show a wide spread in applicability depending on the
subject task. In the experiment, usage of reduced data for training of an object detection task
showed good performance, while the performance for training a semantic segmentation task was
severely lacking. Following, it is concluded that it is necessary to evaluate the usability for a
concrete training task before a data reduction is deployed.
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9 Conclusion and Outlook

This chapter summarizes the conclusions of the present dissertation, highlighting key contribu-
tions and findings in relation to the research questions posed. It concludes with an outlook on
potential future research directions.

9.1 Conclusion

This research addresses the emerging challenge of data handling in the development of ADS. The
overarching goal is to advance the state of the art in data reduction by specifically considering
the unique challenges of automated driving. A significant challenge identified is the release of
ADS, which is hindered by the open context problem.

Research Question 1

”How can the open context present in automated driving be addressed in data reduction?”

Addressing the first research question, a novel approach to data reduction was presented, specif-
ically tailored for the challenges of automated driving, called Context Aware Data Reduction
(CADR). The findings indicate that an explicit consideration of relevance enables the identifica-
tion of information and information needs to control the open context. A relevance-driven data
reduction approach like CADR allows for effective management of performance loss within the
data’s information content.

These findings were facilitated by considering two further research questions, concerning the key
functions of the proposed CADR approach.

Research Question 2

”How can the concept of relevance, in the context of a given use case, be formally described?”

The second research question led to significant contributions. Based on the state of the art in
relevance theory and knowledge representation, an ontological representation of the concept
of relevance in the domain of automated driving was derived. This representation includes an
abstract template for relevance and a method for deriving and validating a concrete relevance
model. As a demonstration, this method was applied to the sample use case of a collision-free
dynamic driving task (DDT) in an urban setting. The findings show that ontologies are suitable
for representing knowledge about the operating design domain (ODD) and relevance. However,
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the current state of the art does not provide a standardized consensus on a unified relevance
concept. The proposed method successfully derives a valid relevance model within a given use
case, but it also highlights that current datasets might not be extensive enough in their field of
view to include all relevant objects.

Research Question 3

”What is the impact on the use case of relevance-driven data reduction?”

The third research question is focused on the contributions and findings related to the impact of
this approach. Methods to estimate the impact on the use case were presented, covering both,
machine and human perception. In the case of perception tasks like semantic segmentation and
object detection, a minimal impact on performance was observed when focusing on relevant
information. In contrast, other reference approaches to data reduction showed a significantly
larger impact on performance. The impact on training neural networks was more ambiguous.
Training for object detection exhibited a low impact, while training for semantic segmentation
showed a larger impact.

In conclusion, a novel approach to data reduction, specifically designed for the challenges of
automated driving, was presented and its applicability was demonstrated. The exact application
and effectiveness of this approach are highly dependent on the specific use case and context.

9.2 Outlook

Considering future research directions, several aspects emerge that can be grouped into three
main areas. The first aspect focuses on the abstract concept of relevance-driven data reduction.
The second aspect delves into the concrete application of an implemented data reduction strategy.
The third aspect addresses the general relevance modeling within the use cases of AD.

First Aspect: Relevance-Driven Data Reduction

Within this aspect, additional research and development efforts are required to enhance the
concept of relevance-driven data reduction. A key area of focus is the architecture designed to
be agnostic to sensor modalities, supporting multiple fused sensor representations. There is a
need for further research into the specific implementation details of how this can be realized.
Also, as identified in the context of research question three, a strong use case dependence was
observed when using reduced data as the basis for a training process. Here, further research
is needed to understand the root causes of this dependence. Additionally, the development of
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methods to determine the suitability of the use case, as to a priori determine whether the data
reduction approach can be applied to the use case without significant performance loss.

Second Aspect: Application

Due to the lack of matured infrastructure and actual realized use cases of automated driving, the
data reduction approach was only evaluated in a simplified academic environment for experiments.
As such, it is proposed that significant future research direction should involve the details of
applying data reduction in complex industrial processes. As broadly described in section 2.2, the
positive and negative effects of data reduction are more complex than can be addressed within
the scope of this dissertation. A characterization of possible data flows and data provisioning,
along with an applicability study for data reduction, are required before the proposed approach
can be utilized in any industrial environment.

Third Aspect: Relevance Modeling

This work represents only an initial exploration into the world of relevance theory from the
automotive domain. There is a further need to refine, modify, and expand the concepts presented
in this dissertation. As the nomenclature of relevances within the field of relevance theory is
not yet unified, this work refrained from proposing its own novel nomenclature for relevance in
the domain of automated driving. This omission is not a statement of the lack of importance of
such a standardized nomenclature. On the contrary, it underscores that an exact taxonomy of
defined relevance is too important to be encumbered with a premature definition. Future efforts
should aim to contribute to a unified and standardized nomenclature that can effectively support
the evolving needs of relevance theory in the context of automated driving.

Finally, the author hopes that this work will stimulate an explicit consideration of relevance and
enable further development to overcome data-centric challenges in the field of automated driving.
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