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Introduction

Introduction

Quantum memories are an integral part of any large-scale quantum communi-
cation structure, e.g., as part of repeaters or processors. In simple terms, such a
quantum memory temporarily stores the information encoded in the quantum
state of a qubit. Hence, the most important characteristics of this memory are
its fidelity, storage efficiency, storage time, and multimode capacity [1]. Optical
implementations of quantum memories use photons as information carriers and
often ensemble-based media, e.g., cold atomic gases, warm vapors, or emitters in
solid-state systems such as rare-earth ion-doped crystals [2]. The latter solid-state
systems hold significant potential for realistic applications in quantum technologies
because they combine free-atom-like, spectrally narrow transitions [3] with the
advantages of solids, i.e., absence of atomic motion, robust handling, scalability,
and integratability [2].
There are already some impressive results on implementations of quantum

memories in rare-earth ion-doped crystals, reaching, e.g., storage efficiencies up
to 76 % [4], storage times up to 53 minutes [5] and fidelities of 99.9 % [6]. To
increase the capacity of the memory, i.e., its ability to store more than one qubit
simultaneously, most approaches so far rely on temporal [7, 8] or spectral [9]
multiplexing. While storage of up to 1060 modes was demonstrated [8], these
techniques are inherently limited by the bandwidth of the memory protocol and
medium. An alternative approach utilizes spatial multiplexing. Our team already
implemented such multiplexing by exploiting the phase matching condition of
the memory protocol to store information in overlapping interference patterns
in the crystal [9]. However, the available angular resolution strongly limits this
approach, and it may suffer from cross-talk between information channels. A
much simpler approach to spatial multiplexing relies on selective addressing of
individual storage volumes in an extended medium [10]. The larger the medium
and the smaller the optically addressable volume, the larger the spatial storage
capacity of the memory. In this case, the diffraction limit for focused laser beams
is expected to limit the storage capacity. Hence, we require methods to optically
address small sections of a memory, potentially with extensions of the excitation
area below the diameter of the driving laser beam, even if focused down to the
diffraction limit. In the following, we will deal with novel techniques to overcome
the diffraction limit in optical excitation.
We note that there are a multitude of other applications beyond the storage

capacity of an optical quantum memory that benefit from spatial confinement of
optical excitations below the diffraction limit. Examples from quantum technology
are selective addressing of single emitters from a large ensemble as isolated qubits
[11–13], the generation of narrow waveguide-like excitation structures in crystals
to enhance light-matter interaction for quantum information processing [14],
patterning of Bose-Einstein condensates [15, 16], or single-site addressing below
the diffraction limit in a Paul ion trap or optical lattice [17–22] to enable tighter
qubit spacing and, hence, stronger qubit interaction for quantum computations.
Examples from applied optics are the broad fields of high-resolution microscopy
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Introduction

[23–28] and nano-lithography [15, 29–32]. Finally, also investigations of funda-
mental quantum physics, e.g., the measurement of the wave function of individual
or ensembles of atoms, at resolutions below the diffraction limit, become possible
[33–36].

This large potential for applications prompted the initial proposals to apply
coherent or adiabatic light-matter interactions for what is now usually called
subwavelength (i.e., subdiffraction-limited) localization. While the first schemes
made use of spatially varying potentials [25, 37, 38], most of the following
proposals and experimental demonstrations were based on spatially selective
interaction with two or more laser fields of appropriate intensity profiles (see [39]
and references therein). In the first part of this thesis, we focus on techniques with
background in the latter category and in particular on adiabatic passage processes
[40, 41] to drive a dark state in a Λ-type system of three-level atoms. Adiabatic
passage processes permit efficient manipulation of population distributions in
a quantum system. They offer pronounced robustness regarding variations of
experimental parameters, which typically leads to threshold-like and, hence,
highly nonlinear behavior with regard to laser intensities.
In the second part of this thesis, we focus on the related proposal [20–22] to

utilize composite pulse (CP) sequences [42–44] for subwavelength localization
and in particular for high-resolution addressing. CP sequences use a series of
pulses with well-defined properties to shape the excitation probability in a two-
level system driven by a single laser beam. In particular, it is possible to devise
sequences that show a strong dependence on experimental parameters like the
laser intensity.
In both cases—adiabatic processes and CP sequences—the steep nonlinear

dependence of the coherent excitation probability upon the laser intensities allows
for spatially highly localized excitation. Thus, one can create a very tight spatial
confinement of population transfer, below the diameter of the driving radiation
fields and even below their diffraction limit. Hence, adiabatic passage and CP
sequences permit optical detection and manipulation of quantum systems at
subwavelength scales.
We note that conventional applied optics already offers powerful schemes for

high-resolution excitations, e.g., stimulated emission depletion (STED) [24] in
nonlinear microscopy. However, STED relies on purely incoherent interactions.
This is an obstacle for applications that require conservation of coherence, as, e.g.,
in quantum information technology. Moreover, incoherent population dynamics
on single-photon transitions (e.g., depletion of an excited state by STED) vary only
linearly with the driving laser intensity. Hence, the spatial confinement grows
rather slowly in STED. Finally, STED requires a fast-decaying target state and
therefore does not permit population transfer to a metastable state.

In this thesis, we implement and investigate two different adiabatic passage
processes as well as narrowband composite pulse (NCP) sequences to localize
atomic excitations in a rare-earth ion-doped crystal. In particular, we present
our results on localization by adiabatic processes in Chapter 1. We drive the
localization either by electromagnetically induced transparency (EIT) [26, 45] or by
stimulated Raman adiabatic passage (STIRAP) [15]. To the best of our knowledge,
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Introduction

these are the first experimental implementation of EIT-driven localization in a
solid and the first implementation of STIRAP for localization at all, no matter
in which medium. In Chapter 2, we present and discuss NCP-based localization
[20–22]. Again, this is the first experimental implementation of the technique for
localization in a solid.
All of these proof-of-principle experiments operate at dimensions above the

diffraction limit. Nevertheless, there is no fundamental limit to these techniques.
The experimental data fully confirm the theoretical predictions and pave the way
for further investigations toward subwavelength resolution.

Finally, in Chapter 3, we address a related application of CP sequences in a
rare-earth ion-doped crystal: The extension of a quantum memory’s storage time
by application of a large number of pulses that decouple the system from environ-
mental noise. This technique—called dynamical decoupling (DD) [46, 47]—suffers
strongly from pulse errors that are inevitably present in any experimental setup
[48, 49]. To reduce the effect of these errors, one typically uses broadband, i.e.,
compensating, CP sequences [42, 43, 48, 50]. We present here a simple showcase
experiment in which we intentionally introduce inhomogeneity, i.e., amplitude
errors, in the driving pulses and experimentally determine the performance of CP
sequences to compensate for such errors.
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Chapter 1 Confining Atomic Population in Space via STIRAP

Chapter 1

Confining Atomic Population in Space via
Stimulated Raman Adiabatic Passage

1.1 Introduction
In this first chapter, we present our results on localization, driven either by EIT or
STIRAP as examples for adiabatic passage processes. We published this data in
the special issue "Coherent Control: Photons, Atoms and Molecules" of the Journal
of Physics B [51].
The first of these techniques, EIT [52], was initially proposed for localizing

population by Agarwal and Kapale [45] and later in a modified version by Yavuz
and Proite [26]. Since then, it has been experimentally implemented for high-
resolution localization of population in cold atomic gases, reaching spatial confine-
ments down to 11 nm (λ/50) [27, 34, 53, 54]. However, localized excitations or
population distributions in gases are short-lived due to diffusion. Moreover, care
has to be taken to prevent recoil from limiting the achievable resolution [45]. In
solid media, the emitters are fixed in space. Neither recoil nor diffusion effects are
problems here. Nevertheless, there are no implementations of EIT for localizing
population in solids yet. We also note that all implementations so far applied a
standing wave geometry, which leads to an extended one-dimensional chain of
population centers. In our experiment, we use a STED-like geometry, which yields
a single localization spot in two dimensions [16, 19].

More recently, Mompart and coworkers proposed to apply STIRAP [41, 55] for
subwavelength localization [15]. As an important finding from the theoretical
treatment, the nonlinearity in STIRAP is much steeper compared to EIT. Thus,
the spatial resolution increases much faster with increasing laser intensities for
STIRAP than for EIT. In other words, at a given laser intensity, the population
localized by STIRAP is much tighter spatially confined compared to EIT-based
approaches [15, 16, 19]. So far, there are no experimental implementations of
STIRAP-driven localization at all, no matter in which medium.

In this chapter, we present a convincing experimental demonstration and thor-
ough systematic study of localizing population by STIRAP in a rare-earth ion-doped
crystal and compare the results to EIT as well as numerical simulations of both
approaches. The proof-of-principle experiment operates at dimensions above
the diffraction limit. Nevertheless, the experimental data fully confirm the theo-
retical predictions and permit extrapolation toward obtaining spatially confined
population in the subdiffraction regime.
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Chapter 1 Confining Atomic Population in Space via STIRAP

1.2 Basic Theory

Figure 1.1: Coupling
scheme for EIT and
STIRAP, driven by
pump (blue) and
Stokes (red) beams.
Yellow circles show
the initial population.

We review now the basic theory of localizing population,
driven by EIT [26, 45] or STIRAP [15, 19]. The adiabatic
passage processes rely on coherent interaction in a Λ-type
three-level system with two metastable ground states cou-
pled to a single excited state by two laser pulses (see Figure
1.1). The pump pulse drives transition |1〉↔ |2〉 with Rabi
frequency ΩP , the Stokes pulse drives transition |3〉↔ |2〉
with Rabi frequency ΩS.1 The dressed eigenstates of this
coupled light-matter system include a so-called dark state
given by [52]

|D(r)〉= ΩS(r) |1〉 −ΩP(r) |3〉
Æ

Ω2
P(r) +Ω

2
S(r)

. (1.1)

Since the dark state does not contain any contribution of
the excited state |2〉, an atom in this state is essentially trapped therein, i.e., it can
no longer be optically excited. This phenomenon is usually referred to as coherent
population trapping.

Localization by EIT Let us now first consider localization by EIT. We assume
that the system is in the dark state (and will later discuss how to transfer it into
this state). In this case, the population distribution of the bare states |1〉 and
|3〉 depends solely upon the ratio ΩP(r)/ΩS(r) and, hence, it varies across the
laser intensity profiles. As an instructive example, let us assume a beam geometry
similar to STED, i.e., a Laguerre-Gaussian "donut" mode for the pump beam profile

ΩP(r) = ΩP0
r

wP
e−r2/w2

P (1.2)

and a Gaussian mode for the Stokes beam profile

ΩS(r) = ΩS0e−r2/w2
S . (1.3)

Here, r is the radial coordinate, Ωi0 are the peak coupling strengths, and wi, with
i = P, S, are the beam waists. Close to the node of the pump beam, we have
ΩP ≪ ΩS. Thus, we get |D〉= |1〉 at the node, whereas further out (provided that
ΩP0 > ΩS0)2 we have |D〉 ≈ |3〉. Hence, due to the spatial variation in ΩP(r)/ΩS(r),
the system remains in state |1〉 only in a spatially tightly confined region around
the intensity node of the pump beam. Thus, the population P1 defined as the
density matrix element ρ11 has a sharp peak at the pump intensity node (see
Figure 1.2). The population in state |3〉 shows the opposite behavior, i.e., a sharp
1We note that for consistency, throughout this chapter we use the typical STIRAP nomenclature
"pump" and "Stokes" also for EIT, where the pulses are otherwise usually termed "probe" and
"control".

2We note that EIT typically requires ΩP0≪ ΩS0 instead [52].
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Figure 1.2: Localization via
the dark state: Remaining
population P1 in state |1〉
vs. spatial position for EIT
(green line) and STIRAP
(purple line). We assume
a Gaussian Stokes beam
profile, i.e., almost constant
Rabi frequency ΩS (see
gray, dotted line), and a
donut-shaped pump beam
profile, i.e., a node in ΩP (see
gray, dashed line).
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dip at the center of the donut pump profile (not depicted in Figure 1.2).
We note that this behavior is a disadvantage for applications that aim at con-

trolling a single quantum emitter, e.g., in high-resolution addressing for quantum
computers, since the emitter in the center of the pump profile remains in its initial
state while all other emitters are modified. Hence, in this case, one has to apply
inversion after the localization, which can induce an additional unwanted phase.
However, many other applications, like, e.g., the preparation of a spatially multi-
plexed quantum memory, the generation of waveguide-like structures, lithography,
or microscopy, require only a localized population distribution. Here, it would
easily be possible to exchange the occurrence of a peak or a dip in the spatial
population patterns of the two states |1〉 and |3〉, by preparing the system initially
in the other ground state (for reasons discussed below) and exchanging the beam
profiles of the pump and Stokes pulses.
In any case, the localization gets tighter when ΩP0 increases, as the condition

ΩP > ΩS is fulfilled closer to the center of the node (see Figure 1.3(c)). To calculate
the width (full width at half maximum (FWHM)) of the localized population,
we define it straightforwardly as twice the radius r0 at which P1(r0) = 0.5. From
Equation (1.1) and using the beam profiles (1.2) and (1.3), it is easy to see that
this requires

ΩP(r0) = ΩP0
r0

wP
e−r2

0/w
2
P

!
= ΩS0e−r2

0/w
2
S = ΩS(r0). (1.4)

We can now expand this equation to first order to obtain

ΩP0
r0

wP
= ΩS0 (1.5)

and finally solve for r0 to find the width

∆r ≡ 2r0 =
2wP⎷

R
(1.6)

where we define R= Ω2
P0/Ω

2
S0. This clearly shows, as expected, that the localiza-

tion improves with increasing R, i.e., increasing pump Rabi frequency—which is
proportional to the electric field of the driving radiation.
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Figure 1.3: Localization via the dark state using EIT (left) or STIRAP (right). The top
row shows the temporal profile of the Stokes (blue) and pump (red) Rabi frequency with
ΩP0 = ΩS0, as well as the population P3 in state |3〉 (black, dashed line). The bottom row
shows the population P1 remaining in state |1〉 vs. spatial position and (peak) pump Rabi
frequency. We assume a Gaussian-shaped Stokes profile and a donut-shaped pump pro-
file. The white, dashed lines show where ΩP(r) = ΩS(r). Note the different scales of the
horizontal axes.

There are several ways to transfer the system to the dark state. Let us assume
that initially the population is in state |1〉. The initial proposal suggested coinci-
dent pump and Stokes pulses with equal temporal intensity profiles to optically
pump the system to the dark state [45]. This requires, however, that the pulses are
much longer than the lifetime T e

1 of the excited state |2〉. Otherwise, the localized
population pattern in space broadens [56] and diabatic coupling causes compli-
cated, oscillatory behavior in the wings [54]. Furthermore, the transfer involving
decay is incoherent and not applicable for, e.g., quantum technology. Therefore,
following work on EIT-based localization [26, 34, 53, 54] used a counter-intuitive
sequence of shaped pulses that already resembles fractional STIRAP [55] as il-
lustrated in Figure 1.3(a). We still assume that the system is initially in state |1〉,
i.e., P3 = 0, but here, the Stokes pulse precedes the pump pulse such that initially
ΩP < ΩS. Hence, at first, the system is in the dark state |D〉 = |1〉. If the pump
beam then turns on sufficiently slow and temporally overlapping with the Stokes
pulse, the system adiabatically follows the dark state into the spatially varying
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superposition of |1〉 and |3〉. Finally, the pulses end simultaneously to maintain
a constant ratio ΩP(r)/ΩS(r), which ensures that the system remains in the dark
state. Compared to the initial proposal [45], this approach maintains coherence.
However, the achieved spatial confinement of the population remains the same.
Moreover, the protocol is very sensitive to variations of the shape of the falling
edges of the pulses.

Localization by STIRAP In more recent theory work, Mompart and coworkers
proposed to apply the full, standard STIRAP process for subwavelength localization
[15]. This approach requires appropriately delayed pump and Stokes pulses only,
without the need for specific pulse shapes, e.g., in the falling edges. For STIRAP,
the Stokes pulse precedes the pump pulse, as illustrated in Figure 1.3(b). We
assume that the system is initially in state |1〉, i.e., the population in state |3〉
is P3 = 0. Hence, at early times, when ΩP < ΩS, the system is in the dark state
|D〉= |1〉. At late times, when ΩP > ΩS, the dark state and thus the system have
evolved into the target state |D〉= |3〉, i.e., P3 = 1. This is the essence of complete,
adiabatic population transfer from state |1〉 to state |3〉 by STIRAP. The process
is robust, i.e., the population dynamics do not change when the experimental
parameters fluctuate—provided some limits are kept in view. If we apply the
geometry of a donut pump and a Gaussian Stokes beam for STIRAP, no population
is transferred in a tight region around the node of the pump field, whereas the
robustness of STIRAP ensures almost perfect transfer everywhere else. The larger
the peak intensity in the beam, the tighter the region where population remains
in state |1〉 (see Figure 1.3(d)).

Efficient STIRAP requires fulfillment of the local adiabaticity condition [40]
q

Ω2
S(t) +Ω

2
P(t)≫

|ΩS(t)Ω̇P(t)−ΩP(t)Ω̇S(t)|
Ω2

P(t) +Ω
2
S(t)

(1.7)

at all times t. Here, the left side describes the energy splitting of the dressed
states in the coupled system, and the right side is the rate of change of the dark
state composition. In other words, the dark state has to evolve slowly compared
to the energy splitting to prevent coupling between the dressed states. As long as
this condition is fulfilled, the system follows the dark state, i.e., STIRAP transfers
the population efficiently.
For smooth pulse shapes, we can also derive a simpler global adiabaticity

condition by integrating Equation (1.7). We obtain [40]
�

Ω2
S(r) +Ω

2
P(r)
�

T 2 ≥ A2
0 (1.8)

where T is the delay between the pulses, i.e., approximately the interaction time,
and A0 ≫ π/2 is a minimal pulse area (i.e., the product of Rabi frequency and
pulse duration) necessary for efficient transfer. In the terminology of incoherent
excitation, the large pulse area simply corresponds to the saturation of a transition.

One has to choose the value of A0 such that fulfillment of the global adiabaticity
condition (1.8) implies fulfillment of the stricter local condition (1.7). Thus,
typically, STIRAP demands A0 ≈ 10 [40]. However, this value assumes equal

8



Chapter 1 Confining Atomic Population in Space via STIRAP

peak Rabi frequencies, i.e., equal pulse areas, of pump and Stokes, as is often
the case in STIRAP experiments. Yet in our experiment, in particular close to the
center of the pump node, the pulse areas are not identical. Let us illustrate this
difference with a simple example where we consider a large Stokes pulse area
ΩS T > A0 = 10. Then, even for ΩP ≈ 0, Inequality (1.8) would be fulfilled, even
though there would obviously be no population transfer. This is because the local
adiabaticity condition would not be fulfilled at all times, as one can confirm easily
by inserting Gaussian profiles with ΩP0T ≳ 0 and ΩS0T ≫ π/2 into Inequality
(1.7). Indeed, from numerical simulation studies, we find that efficient STIRAP
with ΩS T ≫ π/2 still requires a minimum pump pulse area ΩP T > 0 to guarantee
adiabaticity. However, we find that ΩP T ≪ ΩS T is sufficient and, hence, in this
case, A0 ≳ ΩS T is a good choice for the global adiabaticity condition.
From this, we already see that STIRAP reaches much stronger spatial confine-

ment of population patterns compared to EIT (see Figure 1.2). Let us review the
requirements for efficient population transfer from state |1〉 to state |3〉: When
using EIT, we need ΩP ≫ ΩS to ensure |D〉 ≈ |3〉, whereas in STIRAP, fulfillment
of the adiabaticity condition suffices. As we just discussed, the latter is already
guaranteed for ΩP ≪ ΩS, i.e., much closer to the node of the pump profile. Hence,
STIRAP gives us a much stronger confinement of the population in state |1〉.
To find the diameter (FWHM) of the region around the pump node, where

the atoms are left in state |1〉 when using STIRAP, we follow the approach by
Viscor and coworkers [19]: We insert the beam profiles (1.2) and (1.3) into the
adiabaticity condition (1.8) to obtain

�

Ω2
P0

r2

w2
P

e−2r2/w2
P +Ω2

S0e−2r2/w2
S

�

T 2 ≥ A2
0. (1.9)

We expand this inequality to second order and use the equality to define a spatial
threshold rth for successful STIRAP:

�

Ω2
P0

r2
th

w2
P

+Ω2
S0

�

1− 2
r2

th

w2
S

��

T 2 !
= A2

0. (1.10)

Finally, we solve for rth and assume that the diameter of the localized population
is equal to this threshold to obtain

∆r ≡ rth = wP

⌜

⃓

⃓

⃓

⎷

�

A0
TΩS0

�2 − 1

R− 2
w2

P

w2
S

. (1.11)

Since A0 ≳ ΩS0T , comparing Equations (1.6) and (1.11) reveals that STIRAP
reaches much stronger spatial confinement of population patterns and converges
much faster with increasing laser intensity toward tight localization compared
to EIT (see Figures 1.2, 1.3(c), and 1.3(d)) [15, 16, 19]. Moreover, the pulse
sequence of STIRAP is easy to implement and robust with regard also to fluctua-
tions in the pulse shape or other experimental parameters. The process maintains
coherence and produces no recoil.
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1.3 Experimental Setup

1.3.1 Orbital Angular Momentum Modes

Let us consider the required pump profile with a central intensity node again. So
far, we simply assumed a "donut"-shaped pump beam with a cusp in the intensity
node. We note that this cusp is not required for subwavelength localization; a
smooth Rabi frequency distribution with a dark center would be sufficient. The
latter could be generated by simply imaging a mask or with diffractive optical ele-
ments. However, a cusp improves the confinement, since here the Rabi frequency
increases faster with the radial coordinate.
Hence, let us consider Laguerre-Gaussian modes—the generalization of the

"donut" profile—in more detail. At the focus z = 0 they are given by [57]

LG l
p(r)∝
� r

w

�|l|
L l

p

�

2r2

w2

�

e−r2/w2
eilΦ (1.12)

where Φ is the azimuth angle and the associate Laguerre polynomial L l
p is defined

by the two integer quantum numbers l and p. Note that for l = 1, p = 0 and by
taking the absolute value, i.e., neglecting the phase, Equation (1.12) reduces to
the previously considered pump profile (1.2).
In general, the wavefronts of Laguerre-Gaussian beams with l ̸= 0 are l inter-

twined helical surfaces around the propagation axis z with a step length of |l|λ
(see Figure 1.4(a)). For fixed z, on the other hand, the phase of the beam increases
by 2π× l when going around the origin (see Figure 1.4(b)). This behavior results
in a phase singularity at r = 0, i.e., a point where the phase of the beam is multiply
defined and hence the amplitude necessarily drops to zero, causing the desired
intensity node—an optical vortex (see Figure 1.4(c)). The quantum number l is
also called the topological charge of the vortex and is further connected to the
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Figure 1.4: Schematic depiction of a Laguerre-Gaussian mode (1.12) with l = 1, p = 0. (a)
A wavefront of the beam along the propagation axis z. (b) Phase φ vs. coordinates x and
y at z = 0. (c) Measured Rabi frequency vs. coordinates x and y .
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orbital angular momentum of the beam [57–59] (not to be confused with its
polarization) which has a value of lħh per photon. The second quantum number p
gives the number of π phase steps in the radial direction. This causes an intensity
profile consisting of p+ 1 rings whose radius scales with ⎷l [60]. Since we are
interested in a single ring with a small radius (such that the confinement is as
strong as possible), we only consider the case of l = 1, p = 0 in the following.
We further note, that other singularities, e.g., in polarization, cause intensity
nodes as well [59]. However, the transition moment in Pr3+:Y2SiO5 is polarization
dependent [61] which makes this approach incompatible with our medium.

Figure 1.5: Schematic depic-
tion of a spiral phase plate
with charge l = 1 and 12 steps.

Laguerre-Gaussian modes can be generated by
various methods including fork-gratings, mode con-
version, q-plates and spiral phase plates [57, 59].
The latter are useful in particular due to their sim-
plicity. Hence, we also apply them in our exper-
iments. As illustrated in Figure 1.5, spiral phase
plates are optical elements with spirally (and radi-
ally for p > 0) increasing (effective) thickness. They
imprint the Laguerre-Gaussian phase distribution
onto a Gaussian beam due to the spatially varying
retardation associated with the changing optical path length. Note that due to
manufacturing limitations, the thickness typically does not increase continuously
around the central axis but in steps. It was shown, however, that about 10 steps
are sufficient to generate Laguerre-Gaussian modes with high purity [62].

1.3.2 The Rare-Earth Ion-Doped Medium Pr:YSO

Figure 1.6: Coupling scheme
for the experiments on adia-
batic localization in Pr:YSO
with the pump (blue) and
Stokes (red) lasers. Yellow
circles show the initial popu-
lation.

We implement our experiments on localizing popu-
lation by adiabatic passage in a Pr3+:Y2SiO5 (from
now on simply termed Pr:YSO) crystal, which
we describe here only briefly to introduce its rel-
evant parameters. For more details, see [63].
We employ the hyperfine states of the optical
transition 3H4(0) ↔ 1D2(0),3 at a center wave-
length of 605.98 nm. We specifically choose the
hyperfine states |1〉 = 3H4(0) |mI = ±3/2〉, |3〉 =
3H4(0) |mI = ±1/2〉, and |2〉 = 1D2(0) |mI = ±1/2〉
for our experiments (see Figure 1.6) due to their
corresponding favorable transition moments [64]
but note that in principle we could utilize any of
the hyperfine states for localization. The excited
state population lifetime in Pr:YSO is T e

1 = 164µs,
whereas the ground state lifetime is T g

1 = 100 s.
The latter is an attractive feature, as the population
patterns in space driven by STIRAP or EIT live very
long. The decoherence time T g

2 = 500µs among the
3Russel-Saunders notation 2S+1 LJ . (0) indicates the lowest crystal field state.
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ground states sets an upper limit for the interaction time with the driving light
fields, i.e., the maximal pulse duration and pulse delay.

The optical transition in Pr:YSO is inhomogeneously broadened to several GHz,
while the hyperfine state separation is only on the order of 10 MHz. Hence, a single
frequency laser couples all possible transitions in ions from different frequency
ensembles within the inhomogeneous linewidth. Thus, we use an optical pumping
sequence to prepare the required level scheme and population distribution. This
preparation sequence starts by burning a spectral pit that contains both the
pump and Stokes transition, followed by a repump pulse to create an antihole on
the pump transition with a residual inhomogeneous broadening below 100 kHz.
Finally, a cleaning pulse removes unwanted population from state |3〉 to create
the desired Λ-system with the population initially in state |1〉 (see Figure 1.6).
For more details on the preparation sequence, see [64, 65].

1.3.3 Optical Setup

Figure 1.7 depicts our experimental setup around the Pr:YSO crystal (length
1 mm, dopant concentration 0.05 %) which we cool to temperatures below 4 K in
a continuous flow cryostat4. We derive all laser beams in the experiment from a
fiber laser5 pumped optical parametric oscillator6 with internal sum frequency
generation. The system yields up to 400 mW of optical power at the experiment
and its stabilized7 laser linewidth is well below 100 kHz (FWHM). For details on
the laser system, see [66, 67]. We can control each beamline in the experiment in
intensity and frequency using acousto-optic modulators8 driven by direct digital
synthesis drivers9, to generate preparation, pump, Stokes, and probe pulses with
appropriate temporal pulse shapes, durations, and timings. An I/O card10 and
home-made LabVIEW software control the entire experimental sequence.

The pump beam first passes a spatial filter consisting of a pinhole in the focus of
a telescope (not shown in Figure 1.7) to ensure a high-quality Gaussian intensity
distribution in space. Afterward, a spiral phase plate11 with charge l = 1 converts
the pump beam mode to a Laguerre-Gaussian "donut"-like intensity profile, as
discussed above. We mildly focus the pump beam into the crystal with lens L1
(focal length 200 mm), yielding a beam waist of wP = 100µm.

The Stokes beam (which we also use for the optical preparation of the medium)
counterpropagates to the pump beam with a small angle of about 2◦ in between.
We collimate this beam into the crystal with lenses L2 (focal length 150 mm) and
L3 (focal length 60 mm), yielding a beam waist of wS = 250µm at the position
of the crystal. This large size compared to the pump beam ensures a smaller
4ST-100, Janis Research Co.
5YAR-15K-1064-LP-SF, IPG Photonics pumping Koheras AdjustiK Y10 PM FM, NKT Photonics
6based on Argos Model 2400 SF-15, Lockheed Martin Aculight [66, 67]
7using DigiLock 110, Toptica Photonics and a home-made high finesse cavity [67]
8pump: AOMO 380-125, Gooch & Housego; Stokes & probe: BRI-TEF-80-50-.606, Brimrose
9pump & probe: AODS 20160-1, Crystal Technology; Stokes: DDSPA-B8b23b-0, AA Opto-
Electronic

10PCIe-6363, National Instruments
11V-593-20-1, Vortex Photonics
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pump

probe Stokes

SPP L1 BS Pr:YSO L3 L4 shutter
CCD

L2

Figure 1.7: Experimental setup with pump (blue), Stokes (red), and probe (orange) beam-
lines, Pr:YSO crystal (green), spiral phase plate (SPP), beam splitter (BS), lenses (L), and
CCD camera.

modulation of the Stokes Rabi frequency and a homogeneous optical preparation
of the medium across the interaction region.

Imaging System To determine the spatially varying population distribution after
adiabatic passage, we measure the transmission across a probe laser beam profile
when we tune the probe laser frequency in the range of the pump and Stokes
transitions. The probe beam copropagates with the pump beam, but is temporally
well separated from the STIRAP pulses by roughly 7 ms. The delay is much longer
than the lifetime of the excited state T e

1 = 164µs. Hence, there is no residual
population in state |2〉 when the probe pulse interacts with the medium, i.e., all
population is in the ground states |1〉 and |3〉. The probe beam has a beam waist
of 290µm in the crystal, i.e., much larger than the pump profile, to cover the full
interaction region. We image the probe beam profile onto a CCD camera12 using
a simple imaging system consisting of lenses L3 and L4 (focal length 300 mm). A
mechanical shutter13 prevents saturation of the camera caused by the pump beam
or back reflections of the Stokes beam.
From the probe beam intensity profile at the CCD camera, we determine the

probe transmissions T1 at the pump transition |1〉 ↔ |2〉 and T3 at the Stokes
transition |3〉↔ |2〉 for each pixel. We compare these values to the maximal trans-
mission T0 through the optical setup, measured during the preparation sequence
when the crystal should be fully transparent. After subtracting a background
measurement, this allows us to determine the spatial distribution of the optical
depths ODi = −ln(Ti/T0) at the pump and Stokes transitions. From there, we
calculate the populations

P1 = 1− P3 = 1− 1
1+ X

with X =
OD1

OD3

µ32

µ12
(1.13)

where µi j is the transition moment of the transition |i〉 ↔ | j〉. We note that, in
principle, a single transition would also be sufficient to determine the population
distribution in the initial and target states. However, measuring at both the pump
and Stokes transition yields a larger signal-to-noise ratio [69].
We determine the magnification and resolution of the imaging system with a

12Prosilica GC1290, Allied Vision
13home-made, based on [68]
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group numbers

element
numbers 100µm

(a)

200µm

(b)

Figure 1.8: Images of a USAF-1951 target mask using the imaging setup described in the
main text. (a) Groups 6 and 7 with the mask in the focus of the imaging system. (b)
Groups 4 to 7 with the mask 0.5 mm closer to the CCD camera than in (a). The white,
dashed square indicates the section shown in (a).

USAF-1951 target mask placed in the beamlines instead of the crystal. This mask
consists of seven groups of six elements each. Every such element contains three
horizontal and three vertical lines. The higher the group and element number, the
thinner are these lines. In Figure 1.8(a) we show the transmission through the
mask imaged onto the CCD camera. We can clearly see the structure of the mask,
and in particular groups 6 (lower left) and 7 (upper right). The smallest resolvable
element is 7-3 with a line thickness of 3.1µm which gives us a resolution only
slightly larger than the diffraction limit of 2.7µm given by the numerical aperture
NA≈ 0.23 of the system. From the same data, we also calculate the magnification
of 4.68 which fits with the ratio of the focal lengths of lenses L2 and L3.
However, the mask has a negligible thickness, while our crystal is 1 mm thick.

This reduces the resolution in the experiment. We can see this in Figure 1.8(b),
where we move the mask by 0.5 mm, i.e., half the crystal thickness, toward the
CCD camera. Due to its limited depth of field, the imaging system can no longer
resolve groups 6 and 7 (indicated by the white dashed square). At most, we can
still surmise the structure of element 6-1. The smallest, clearly visible element is
5-4 (on the right), which has a nominal line thickness of 11.05µm. Hence, for the
entire crystal thickness, we estimate a resolution of about 10µm.

Time Sequence Figure 1.9 shows the time sequence of our experiment: (i)
Preparation pulse sequence using optical pumping to provide full transparency for
both Stokes and pump transition. (ii) Transmission measurement of a probe pulse
as reference. (iii) Preparation pulse sequence to provide a Λ-system. (iv) STIRAP
or EIT pulse sequence to drive localization. (v) Transmission measurement of a
probe pulse to determine population patterns generated by STIRAP or EIT. We
repeat the sequence (i–v) and average the resulting images to reduce noise.
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STIRAP

EIT
time (arb. units)

(i) (ii) (iii) (iv) (v) Figure 1.9: Time sequences
of optical pulses (see main
text). Colors correspond to
beamlines from Figure 1.7.

Determination of Rabi Frequencies To compare the results of our measurements
to a numerical simulation, we require exact values of pump and Stokes Rabi
frequencies, as they vary across the laser beam profiles at the position of the
crystal. It would not be very accurate to calculate the Rabi frequencies from
the laser intensity beam profiles, as uncertainties in the intensity and transition
moments would add up. Hence, we decided to measure the Rabi frequencies
directly through spatially resolved observation of Rabi oscillations across the laser
beam profiles. For this purpose, we employ the same time sequence as discussed
above (see Figure 1.9) but replace the STIRAP/EIT pulses (iv) with a single pump
or Stokes pulse of rectangular pulse shape in time. In the case of the Stokes
pulse, we also change the optical pumping sequence such that the population is
initially prepared in state |3〉. For each pixel of the CCD camera, we determine by a
transmission measurement the amount of population left in the ground state of the
transition when we vary the pump/Stokes pulse duration. Since this population
oscillates with the Rabi frequency, we get spatially resolved information on the
latter across the laser profiles. As an example for the application of this method,
Figure 1.4(c) shows the spatial variation of the pump Rabi frequency across the
donut-shaped pump beam.

1.4 Experimental Results

1.4.1 Localizing Population by STIRAP

We now discuss our experiments on localization driven by STIRAP. We apply the
time sequence discussed above and presented in Figure 1.9. In particular, we
choose pulses with a Gaussian intensity profile in time with a duration (FWHM)
of τ ≡ τP = τS = 25µs, i.e., well below the ground state decoherence time
T g

2 = 500µs. The pump pulse follows the Stokes pulse with a time delay of
T = 25µs. We found that the exact value of the time delay is not relevant (as
expected for STIRAP) as long as it matches the pulse duration to about 50 %, i.e.,
0.5τ < T < 1.5τ, and hence choose T = τ. For systematic measurements, we keep
the peak Stokes Rabi frequency at ΩS0 = 2π× 225 kHz and vary the peak pump
Rabi frequency ΩP0 from 0 to 2π×2710 kHz (limited by the available laser power).
For each value of ΩP0 (i.e., ratio R of the peak Rabi frequencies), we measure
the population P1 with a probe pulse of Gaussian intensity profile in time with
a duration (FWHM) of 10µs and a peak Rabi frequency of roughly 2π× 8 kHz,
which leads to only negligible change of the population distribution. We expose
the CCD camera to radiation for 40µs, which ensures detection of the entire probe
pulse.
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Figure 1.10: STIRAP-driven localization in Pr:YSO. Variation of the population P1(x , y) vs.
coordinates x and y across the laser beam profiles. (upper row) Experimental data for
different values of R. The white, dashed line indicates the diameter of the pump beam
defined by the position of the ring at maximal pump intensity. (middle row) Numerical
simulations with the experimentally determined parameters. (lower row) Cuts through
the experimental data (blue line), simulation (orange line), and spatially filtered simula-
tion (black, dashed line).

The top row of Figure 1.10 shows the experimentally measured population
distributions after the STIRAP process for selected values of R. The bottom row
shows cuts (indicated by blue lines) through the central peaks. Obviously, the
remaining population in state |1〉, described by P1, is localized in the center of
the donut pump beam. Already at R = 0.75, the population is well confined
below the pump beam diameter. This is already clear evidence for adiabatically
driven localization. The extension of the population region shrinks with increasing
pump laser intensity (i.e., larger values of R), as expected. We also see that for
ratios R≥ 4, the background population essentially reduces to zero, confirming
the almost perfect transfer by STIRAP as soon as the pump Rabi frequency is
sufficiently large to fulfill the adiabaticity condition (1.8).
However, it is also apparent that for R ≥ 25, the extension of the population

confinement seems to remain approximately constant at ∆r ≈ 15µm, while only
its amplitude decreases further. This is due to the extension of the crystal in the
propagation direction and the limited depth of field in our imaging system. As
discussed before, our imaging system has a diffraction-limited resolution of about
3µm at its focus, but the resolution for an object 0.5 mm (i.e., half the crystal
thickness) outside the focus is only about 10µm. Thus, even larger structures out-
side the focus are not well imaged and smear out. When we image the population
distribution in the crystal, our imaging system averages this distribution in the
propagation direction and thus washes out the population distribution due to the
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lower resolution at the edges of the crystal.
We also note that the peak population in the center of the pump profile most

likely slightly deviates from the maximal value of one, as there is some residual
intensity > 0 in the pump node. We confirmed experimentally that this intensity
is at most 0.1 % of the peak intensity, and as such, it does not cause more than
40 % loss of population even for the highest ΩP0. Furthermore, since the resolution
of our imaging system also limited this measurement, we can safely assume that
the real intensity in the profile center and thus the population loss are actually
much lower than that.

We compare the results of our measurement with a straightforward numerical
simulation based on a density matrix calculation of the Λ-system in Pr:YSO,
interacting with pump and Stokes pulses [52]. The calculation also takes the decay
of the excited state |2〉, the limited decoherence time among the ground states |1〉
and |3〉, and inhomogeneous broadenings of the optical and hyperfine transitions
into account. In the calculation, we use fits to the spatial variations of pump and
Stokes Rabi frequencies, as experimentally determined from measurements of
Rabi oscillations (see above), and set all other pulse parameters to be the same as
in the experiment. To reduce the required calculation time, we assume rotational
symmetry in the beam profiles. The middle row of Figure 1.10 shows the results
of the simulation. The orange lines in the bottom row indicate cuts through the
central peaks in the two-dimensional plots of the simulations. For low values of
R we see good agreement between the simulations and the experimental data,
with some small offset in the wings. We suspect that this is caused by a small
mismatch between the simulation parameters and the experiment. The sensitivity
of STIRAP at low pump Rabi frequencies, e.g., as is here the case in the wings of
the beam profile, then causes the small visible deviation. At larger values of R the
simulation deviates from the experiment—as expected, when our imaging system
washes the narrow population distributions out. We mimic the latter imaging
effect in our simulation by applying a simple two-dimensional Gaussian filter
with a width (FWHM) of 12µm and show the resulting profiles as black, dashed
lines in the bottom row of Figure 1.10. Now we see a good agreement with the
experimental data (blue lines), especially for large values of R.

We analyze the experimental data now in more detail to obtain some more
information on the localization process also for large values of R, even if the
imaging system washes out the effect of stronger spatial confinements. In Figure
1.11 we plot the width ∆r (FWHM) of the region with population confined by
STIRAP vs. R (blue circles). The plot also shows results from our simulation (orange
triangles) and the analytic treatment (1.11), for which we use the experimentally
determined parameters and A0 = 38 (black line).14 As discussed before, we see
that the width of the localized population is limited to 15µm and does not match
the expectation. This is due to the limitations of the imaging system.

Let us draw our attention again to the two-dimensional plots in the top row of
Figure 1.10: We see that for large values of R the region with localized population
does not shrink any further (as we already discussed), but it becomes fainter, i.e.,
the maximal signal decreases. We also see this in the cuts in the bottom row of
14For comparison, ΩS0T ≈ 35.
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Figure 1.11: Width∆r (FWHM) of the population distribution P1(x , y) after localization by
STIRAP vs. R. Comparison of the width calculated from Equation (1.11) (black line), nu-
merical simulation (orange triangles), experimental data (blue circles), and recalibrated
experimental data taking limited imaging resolution into account (green squares). Note
the logarithmically spaced ticks of the vertical axis.

Figure 1.10, where the amplitude decreases for larger values of R. This can be
explained by the fact that the stronger STIRAP spatially confines the population,
the fewer quantum emitters are selected by the process and contribute to the
signal. In other words, the integral of the signal is proportional to the number
of quantum emitters spatially selected by STIRAP. This holds true irrespective of
the spatial resolution of the imaging system, i.e., if the imaging system limits the
measured width, the amplitude has to decrease.
This gives us a handle to infer the true width of the localized population from

resolution-limited experimental data. To do so, we rescale the fits to the exper-
imental data (e.g., the blue lines in the bottom row of Figure 1.10), such that
they reach a peak height of 1, while reducing their width such that the integral
remains the same. We show the resulting, recalibrated widths of the localized
population as green squares in Figure 1.11. They are in much better agreement
now with the numerical simulation and analytic treatment. We assume that the
remaining discrepancy is due to the reduced peak population caused by residual
intensity in the center of the pump profile. We do not account for this behavior in
our simple recalibration procedure, which leads to an overcorrection of the data.

Nevertheless, our experiment confirms the theoretical proposal of STIRAP-based
localization and its analytic treatment (1.11). Under our experimental conditions
with still very large beam diameters and small Rabi frequencies, STIRAP reaches a
localization of at least ∆r ≈ 3µm, i.e., very much below the pump beam diameter.
Extrapolating from these results, already for still moderate focusing to a donut
size of wP = 15µm, yielding (at the same pump pulse energy as in our present
experiment) a pump Rabi frequency of ΩP0 = 2π× 18 MHz, we would confine the
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population to ∆r ≤ 100 nm, i.e., well below the diffraction limit. Alternatively, we
could reach the same confinement by keeping the Rabi frequency the same as in
the present experiments (i.e., ΩP0 ≈ 2π× 3MHz) and focusing the pump beam to
a still readily achievable waist of wP = 3µm.

1.4.2 Comparison with Localizing Population by EIT

We proceed now to localization by EIT in order to compare the results with
STIRAP-driven localization. We keep all experimental parameters as in the STIRAP
measurements, except for the temporal shape of the Stokes pulse. The latter now
consists of a Gaussian rising and falling edge with a rise/fall time of 25µs (FWHM),
and a plateau of constant intensity with a duration of 30µs in between. We choose
the pulse delay such that the falling edges of Stokes and pump coincide, as required
for EIT-driven localization [26].
The top row of Figure 1.12 shows the experimentally measured population

distributions after the EIT process for selected values of R. The bottom row shows
cuts (indicated by blue lines) through the central peaks. Clearly, population is
localized in the center of the pump beam, with an extension well below the
beam diameter. However, comparison to STIRAP (see Figure 1.10) very obviously
shows the superior performance of STIRAP. For all values of R, STIRAP yields
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Figure 1.12: EIT-driven localization in Pr:YSO. Variation of the population P1(x , y) vs. co-
ordinates x and y across the laser beam profiles. (upper row) Experimental data for differ-
ent values of R. The white, dashed line indicates the diameter of the pump beam defined
by the position of the ring at maximal pump intensity. (middle row) Numerical simu-
lations with the experimentally determined parameters. (lower row) Cuts through the
experimental data (blue line), simulation (orange line), and spatially filtered simulation
(black, dashed line).
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Figure 1.13: Width∆r (FWHM) of the population distribution P1(x , y) after localization by
EIT vs. R. Comparison of the width calculated from Equation (1.6) (black line), numerical
simulation (orange triangles), experimental data (blue circles), and recalibrated exper-
imental data taking limited imaging resolution into account (green squares). Note the
different scale of the vertical axis compared to Figure 1.11.

a much tighter localization than EIT. Furthermore, we see that STIRAP reaches
full transfer efficiency in the outer parts of the pump profile already at R = 4,
while for EIT even at the largest value R = 145, roughly 10 % of the population
remains in state |1〉. This strongly reduces the fidelity of EIT-driven localization.
Hence, STIRAP clearly outperforms EIT, as predicted by theory [15, 16, 19]. The
numerical simulation (see middle row of Figure 1.12 and the corresponding cuts
in the graphs of the bottom row) fully confirms our findings and conclusion.

Let us finally consider the convergence of EIT to stronger confinement of popu-
lation with increasing values of R. In Figure 1.13 we plot the width ∆r (FWHM)
of the region with localized population, determined from fits to the experimental
data (blue circles), numerical simulation (orange triangles), and analytic treat-
ment (1.6) (black line) vs. the ratio R. We also apply the recalibration method,
as presented for STIRAP, to the experimental EIT data to get information on
the true width of the spatially confined population (see green squares). Note
that due to the larger population regions in EIT-based localization, the limited
resolution of the imaging setup and thus the recalibration have a much smaller
effect compared to the STIRAP data. We find excellent agreement, in particular
for the recalibrated data points compared to the simulation. The slight, systematic
deviation compared to the analytic treatment is due to inhomogeneous broaden-
ing, which we neglected in the analytic solution. For EIT we find the strongest
localization at ∆r ≈ 20µm, i.e., a factor of 6.5 larger compared to STIRAP, at
equal experimental parameters. From theory, we calculate that EIT would require
more than 25 times larger pulse energy to match with STIRAP. Again, this reveals
the superior performance of STIRAP-driven localization compared to EIT.
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1.5 Conclusion and Outlook

We experimentally demonstrated localization of atomic population by STIRAP and
EIT in Pr:YSO. To the best of our knowledge, this represents the first implemen-
tation of EIT-driven localization in a solid medium and the first implementation
of the STIRAP-based approach at all. We applied a STED-like geometry with a
Gaussian-shaped Stokes and a donut-shaped pump beam to confine population
by STIRAP or EIT in the zero-intensity center of the pump beam profile. We
determined the obtained population distribution across the laser beam profiles
by spatially resolved absorption spectroscopy with a probe laser. In particular,
our experiments confirmed that adiabatic passage confines atomic population to
spatial extensions well below the diameter of the driving laser beams. If we apply
a pump beam with a beam waist of wP = 100µm and peak Rabi frequencies of
ΩP0 = 2π×2710kHz, we get a spatial confinement of population to ∆r ≈ 3µm for
STIRAP and∆r ≈ 20µm for EIT. We confirmed that the localization improves with
increasing laser intensity. Moreover, our data demonstrated that STIRAP converges
to smaller population regions much faster compared to EIT when increasing the
laser intensity. The latter would require more than an order of magnitude larger
laser pulse energy to match the performance of STIRAP. Hence, STIRAP-driven
localization clearly outperforms EIT, as predicted by theory [15, 16, 19]. The
experimental data agree with numerical simulations and the analytic treatment
[19]. Residual deviations are due to slight parameter mismatches but mostly due
to the limited resolution of our imaging setup.
We note that under our experimental conditions and due to the resolution

limit of our imaging system, we still operated well above the diffraction limit.
Nevertheless, the experiment permits extrapolation toward obtaining localized
population in the subdiffraction regime. With still moderate beam diameters and
Rabi frequencies, spatial confinement of population toward extensions ≤ 100 nm
in Pr:YSO is easily within reach. The results serve as a first step toward new
applications of STIRAP, to prepare population patterns or confine population in a
medium at large spatial resolution. This will be relevant to quantum information
technology and well beyond.
The results of this chapter on STIRAP-based localization are the subject of a

publication in the Journal of Physics B [51].

Prospects for Future Work The obvious next step is to decrease the beam
diameters and implement adiabatic confinement below the diffraction limit. In
this case, any standard imaging system will, of course, no longer be able to resolve
and detect the subwavelength localization. While one could in principle still use
the recalibration method introduced in this work, we suspect that the washed-out
signal would become too faint for it to work properly.

Instead, we suggest utilizing an autocorrelation measurement similar to the one
employed by Miles and coworkers for EIT-based localization in cold gases [54].
The general idea is to repeat the localization pulses but slightly shift the pump
beam profile in between such that population only remains in state |1〉 as long as
the pump displacement is smaller than the width of the localization region. We
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Figure 1.14: Principle of the STIRAP autocor-
relation measurement: (a) Rabi frequency of
Stokes (red) and pump (blue) pulses vs. spa-
tial position. We shift the pump profile be-
tween the two sets of STIRAP pulses (com-
pare blue, dashed and blue, dotted line). (b)
Population P1 remaining in state |1〉 after
localization. The gray, dashed line depicts
population localized by the first STIRAP pro-
cess. The gray, dotted line shows where the
second STIRAP process is spatially focused.
Overall, population remains only in the over-
lap of both regions (orange line).

illustrate this concept in Figure 1.14.
The first STIRAP process confines pop-
ulation to the gray, dashed region in Fig-
ure 1.14(b). Shifting the pump beam
profile (compare the blue lines in Figure
1.14(a)) shifts the spatial focus of the
second STIRAP process as well. Overall,
population remains only in the overlap
region of both processes, as indicated
by the orange line in Figure 1.14(b).
Thus, the total remaining population
as a function of the pump displacement
is essentially the convolution of the lo-
calization profile with itself and hence
contains all the necessary information
to calculate the latter’s width. One can
measure this population independent
of the imaging system resolution, either
by absorption spectroscopy as before
or with a fluorescence-based measure-
ment if necessary.
As an alternative approach to mea-

suring the width of the localized popu-
lation at subwavelength scale, we sug-
gest applying a magnetic (or electric)
field gradient that induces position-
dependent level shifts. This translates
the information about the spatial popu-
lation distribution into a spectrum that
is easy to measure. However, estima-
tions show that the required gradient
is on the order of 0.2 T/mm, i.e., very

large and challenging to implement experimentally.

Finally, in the long run, one should actually combine the subwavelength local-
ization with a quantum memory protocol to increase the latter’s storage capacity.
This requires the preparation of a pattern of localized population peaks in space,
which is laborious to implement with the donut-shaped pump profile we used
in the present experiments. Instead, a standing wave geometry, as is often used
in subwavelength localization [34, 53, 54] would be better suited to create the
required population pattern.
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Chapter 2

Confining Atomic Excitations in Space via
Narrowband Composite Pulse Sequences

2.1 Introduction

In this chapter, we present our results on localization by NCP sequences. We are
currently preparing a manuscript to publish these results.

CP sequences [42–44] in general have been a versatile tool for decades, but are
best known in nuclear magnetic resonance (NMR) spectroscopy [42, 43]. More
recently, they have, e.g., also been applied to quantum information processing
(see also Chapter 3) [44, 48, 70].

NCP sequences in particular have long been proposed and implemented to, e.g.,
increase the resolution of NMR spectroscopy [71–73]. For the specific application
of high-resolution qubit addressing, i.e., subwavelength localization, they were
first suggested more recently by Ivanov and Vitanov [20]. Later, Merrill and
coworkers implemented them to reduce the ion spacing of a surface trap by
about 40 % [22]. However, since then, newer classes of NCP sequences that
promise better confinement have been developed [74]. These have yet to be
implemented experimentally. Furthermore, there are no implementations for
localizing excitation by NCP sequences in a solid yet. In particular, there are no
implementations in inhomogeneously broadened media. These impose additional
requirements on the NCP sequences and render many of the previously known
sequences inapplicable.

In comparison to the STIRAP-driven localization presented in the previous chap-
ter, NCP sequences provide several advantages, especially regarding applications
in quantum computing: Unlike STIRAP, they do not necessarily require the qubit
to be in a specific initial state [42, 75, 76], and they need only a two-level system
and a single laser beam. The latter makes them easier to implement experimen-
tally than STIRAP, but also inapplicable for metastable target states. However,
they can be extended to multi-level systems as well [77–79]. Moreover, they can
be used not only to localize excitation but to implement arbitrary narrowband
qubit rotations, i.e., localized single- [22, 76, 80] and multi-qubit gates [81].

In this chapter, we present a thorough, systematic study of localizing excitation
by NCP sequences in a rare-earth ion-doped crystal. We implement a new class of
sequences developed by our cooperation partner Nikolay V. Vitanov (University of
Sofia) specifically for inhomogeneously broadened media and compare it to other
previously published sequences [20, 21, 74] as well as a numerical simulation.
This proof-of-principle experiment operates above the diffraction limit but still fully
confirms the theoretical predictions, thus paving the way for further investigations
toward high-resolution addressing.
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2.2 Basic Theory

Figure 2.1: Bloch sphere rep-
resentation of a two-level sys-
tem. A laser pulse with phase
φ (red arrow) rotates the Bloch
vector (green arrows) by θ .

We now briefly review the basic theory of localized
excitations driven by NCP sequences in a two-level
system coupled to a single laser beam. We consider
this system in the Bloch sphere picture (see Figure
2.1) where we represent interaction with a laser
pulse as a rotation of the Bloch vector (green ar-
rows) around a torque vector (red arrow). In the
resonant case, the latter lies in the x-y plane, and
its angle φ to the x-axis is simply the phase of the
laser pulse. The rotation angle θ is equal to the
pulse area A defined by

A=

∫︂

Ω(t)dt (2.1)

with the Rabi frequency Ω(t). For pulsed excitation
with the peak Rabi frequency Ω0 and the duration τ, we have A∝ Ω0 ·τ. Assuming
population initially in the ground state |1〉, i.e., the Bloch vector pointing to the
south pole, we get the excitation probability to state |2〉

P2 = sin2(A/2). (2.2)

Let us now assume a typical Gaussian laser profile with a peak pulse area of π,
i.e., perfect population inversion in the center of the beam. Using Equation (2.2)
we can calculate the spatial population distribution after the excitation as

P2(r) = sin2
�

π/2 · e−r2/w2
�

(2.3)

with the radial coordinate r and the beam waist w. We find that the widths
(FWHM) of the laser beam and population distribution are equal (see also Figure
2.3).

We can change this behavior, i.e., the dependence of the excitation probability
on experimental parameters, by replacing the single pulse with a series of pulses
with different phases. The latter act as control parameters that allow us to
shape the excitation profile.1 This is the general concept of CP sequences [42–44].
Depending on the application, we can derive CP sequences with any target rotation
on the Bloch sphere. We can further make these sequences either more robust
or more susceptible to changes in pulse parameters compared to a single pulse,
resulting in broadband or narrowband sequences, respectively.
In this chapter, we focus our attention on sequences that show narrowband

behavior regarding the pulse area when it changes from its target value π. We
utilize only the phases φk of the pulses as control parameters and keep their peak
1We note that, in general, one can also use other pulse parameters like the detuning or pulse
area as control parameters.
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(a) (b)

(c) (d)

Figure 2.2: Bloch sphere representation of a two-level system excited by a single pulse
(left) or the 3-pulse NCP sequence (0π, 2

3π, 4
3π) [21] (right). Each Bloch sphere shows

the evolution (green circles) of the Bloch vector from its initial state (transparent green
arrow) to its final state (solid green arrow) during the interaction with a single pulse. The
red arrows show the pulses’ torque vectors; their phases are given in red at the top. The
pulse area A of each individual pulse is π in (a) and (b) and π/2 in (c) and (d).

pulse area A = π and detuning ∆ = 0 equal. We denote such a NCP sequence
consisting of N pulses as (φ1,φ2, . . . ,φN ).

In Figure 2.2, we illustrate the effect of a NCP sequence with a simple example.
Its intended behavior is to create full population inversion, i.e., P2 = 1, for A= π
(in the center of the beam) while suppressing excitation for any other pulse area.
For comparison, we depict in Figures 2.2(a) and 2.2(c) the interaction of a two-
level system with a single pulse with the arbitrarily chosen phase φ1 = 0. Figure
2.2(a) shows excitation with the pulse area A = π as in the center of a beam
profile. We see full population inversion, i.e., P2 = 1 in the final state where the
Bloch vector points to the north pole. In Figure 2.2(c) we consider the pulse area
A= π/2 and see that the Bloch vector is rotated into the equatorial plane, i.e.,
P2 = 0.5. This is the behavior of a single pulse, which we discussed before.
Let us now consider the effect of the N = 3 pulse NCP sequence (0π, 2

3π, 4
3π)

[21] as depicted in Figures 2.2(b) and 2.2(d). The first pulse has a phase of φ1 = 0,
and its effect is exactly the same as the single pulse that we discussed previously.
In the case of A= π (see Figure 2.2(b)), the second pulse simply rotates the Bloch
vector back to the south pole, just around a different axis of rotation, and the third
pulse rotates the Bloch vector back to the north pole, again with a different axis
of rotation. The result is—as intended—the same as in the case of a single pulse:
P2 = 1. The interaction looks vastly different, however, for A= π/2 (see Figure
2.2(d)). Here, due to their phases, the second and third pulses rotate the Bloch
vector to a final state below the equatorial plane, i.e., P2 < 0.5. This is precisely
the desired effect, i.e., the excitation for a pulse area A ̸= π is suppressed.
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Figure 2.3: Simulated exci-
tation by NCP sequences
from [21] across a Gaussian
laser profile. Variation of
the population P2 vs. spatial
position for different num-
bers of pulses N (color code).
The gray, dashed line shows
the Gaussian Rabi frequency
profile of the driving laser
pulses. The pulse area in the
center of the beam is A= π. 0.0
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We can also see this in Figure 2.3, where we plot the simulated population
transfer of NCP sequences with different numbers of pulses N across a Gaussian
laser profile. For a single pulse, the excitation profile has the same width as
the exciting beam, just as we have seen in Equation (2.3) (compare turquoise
and gray, dashed lines). However, when we increase the number of pulses to
N = 3, excitation in the wings of the beam profile (where A< π) is significantly
suppressed while the transfer probability in the center remains at unity, as we have
seen in the example above. Further increasing the number of pulses in the NCP
sequence (and choosing appropriate phases) further improves the localization.
This is due to the increasing number of control parameters (the phases of N pulses)
that are available to optimize the sequence.

2.3 Experimental Setup

NCP probe

Figure 2.4: Coupling scheme
for the NCP experiments in
Pr:YSO. Straight lines depict
transitions coupled by a laser;
wavy lines show spontaneous
decay. Yellow circles show the
initial population.

As in the previous chapter (see Section 1.3.2), we
also implement our experiments on localized excita-
tions by NCP sequences in a Pr:YSO crystal among
the hyperfine states of the 3H4(0)↔ 1D2(0) tran-
sition. Here, we choose the hyperfine states |1〉 =
3H4(0) |mI = ±3/2〉 and |2〉= 1D2(0) |mI = ±3/2〉 to
drive NCP sequences (see Figure 2.4) since the large
transition moment enables high Rabi frequencies,
i.e., short pulses. This is important because the
coherence time of the optical transition T e

2 = 111µs
sets an upper limit for the duration of the NCP se-
quences.

After the NCP sequence, the localized population
in state |2〉 decays with the lifetime T e

1 = 164µs
mostly into states |1〉 and |3〉= 3H4(0) |mI = ±1/2〉.
Assuming that decay during the NCP sequence is
negligible, the population distribution in state |3〉
after the decay is proportional to the population
initially localized in |2〉. Hence, we can use ab-
sorption spectroscopy with a probe pulse on the
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pump

probe preparation

L1 BS L3 L4 shutter
CCD

L2

repump

CL

Figure 2.5: Experimental setup with pump (blue), preparation (red), repump (green), and
probe (orange) beamlines, Pr:YSO crystal (green), beam splitter (BS), lenses (L), cylindri-
cal lens (CL), and CCD camera.

|3〉 ↔ |4〉 = 1D2(0) |mI = ±1/2〉 transition to measure this distribution (see Sec-
tion 1.3.3 for details).

We note that even though the localized excitation lives only for a comparatively
short time, we could still exploit the very long ground state lifetime T g

1 = 100s in
Pr:YSO to create long-lived population patterns also with NCP sequences. To do
so, one would simply have to coherently map the excited state population to state
|3〉 with a single resonant π pulse (or a broadband CP sequence). However, for
this first demonstration of localization by NCP sequences, we skip this additional
step.

Figure 2.5 shows our experimental setup, which is in large parts identical to the
STIRAP experiment depicted in Figure 1.7. We discuss here mainly the differences,
and refer to Section 1.3.3 for further details. In this experiment, we derive all
laser beams from an amplified and frequency doubled diode laser.2 This system
yields 800 mW of optical power at the experiment and is stabilized in frequency3
to well below 100 kHz (FWHM). We can control each beamline in the experiment
in intensity, frequency, and phase using acousto-optic modulators.4 We employ
direct digital synthesis drivers5 to generate preparation, repump, and probe pulses
and an arbitrary waveform generator6 (AWG) to generate the NCP sequences. This
setup gives us a phase accuracy better than π/200, while NCP sequences with a
few 10 pulses require only about π/100 (as determined by numerical simulations).
As before, the pump beam (which drives the NCP sequences) passes a spatial

filter to ensure a clean Gaussian beam profile before we mildly focus it into the
crystal with lens L1 (focal length 200 mm), yielding a beam diameter (FWHM)
of 210µm. To determine the spatially varying population distribution after the
NCP sequence, we measure the transmission across a probe laser beam profile,
as described above. The probe beam copropagates with the pump beam, but is
temporally well separated from the NCP sequences by roughly 7 ms. This delay
is much longer than the lifetime of the excited state T e

1 = 164µs, such that the
2DLC PR STORAGE, Toptica Photonics
3using FALC PRO, Toptica Photonics and a home-made high finesse cavity [67]
4pump: AOMO 380-125, Gooch & Housego; probe, preparation, and repump:
BRI-TEF-80-50-.606, Brimrose

5probe: AODS 20160-1, Crystal Technology; Stokes: DDSPA-B8b23b-0, AA Opto-Electronic;
repump: Model 409b, Novatech Instruments

6AWG5014, Tektronix
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population localized in state |2〉 has fully decayed when we probe. The probe
beam has a diameter (FWHM) of 550µm in the crystal, i.e., much larger than
the pump profile, to cover the full interaction region. We image the probe beam
profile onto the CCD camera using the same simple imaging system consisting of
lenses L3 and L4 as before.

In this setup, we use a 10 mm long Pr:YSO crystal (0.05 % dopant concentration)
and two perpendicular beamlines (preparation and repump) for the preparation
by optical pumping instead of a single beamline as before (see Figure 2.5). The
preparation beam counterpropagates to the probe (and pump) beam with a small
angle of about 2◦ in between. We collimate this beam with lenses L2 (focal length
75 mm) and L3 to a diameter (FWHM) of 600µm, ensuring good overlap along the
entire crystal. The repump beam, on the other hand, propagates perpendicular
to the other beams, and we mildly focus it with a cylindrical lens (focal length
150 mm) to a size of 440µm× 2700µm (FWHM, width × height) in the crystal.

In the optical pumping sequence, we apply the preparation beam to create
the spectral pit that contains the NCP and probe transitions but use the repump
beam to prepare the antihole on the NCP transition. Hence, along the propagation
axis of the probe and pump beams, the crystal becomes entirely transparent on
the relevant transitions, except in the region where the preparation and repump
beams overlap. Only in this region, population is prepared in state |1〉 and thus we
effectively get a shorter crystal. Due to saturation during the optical pumping, the
thickness of this region and hence the effective crystal length are about 1 mm. We
could vary this value by changing the width of the repump beam, i.e., choosing a
cylindrical lens with a different focal length.

Figure 2.6 summarizes the time sequence of our experiments: (i) Preparation
pulse sequence using optical pumping with the preparation beam to provide full
transparency at the NCP and probe transitions. (ii) Transmission measurement of
a probe pulse as reference. (iii) Preparation of the antihole on the NCP transition
only in the overlap region between preparation and repump beam by optical
pumping with the latter. (iv) Removal of population from state |3〉. (v) NCP
sequence to drive localized excitations. (vi) Transmission measurement of a probe
pulse to determine population patterns generated by the NCP sequence. We repeat
the sequence (i–vi) and average the resulting images to reduce noise.

Figure 2.6: Time sequences
(see main text) of optical
pulses of the entire experi-
mental sequence (top) and of
an exemplary NCP sequence
with N = 3 (bottom). Col-
ors correspond to beamlines
from Figure 2.5.

time (arb. units)

(i) (ii) (iii) (iv) (vi)(v)
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2.4 Experimental Results
We discuss now our experiments on localization driven by NCP sequences. We
apply the time sequence discussed above and presented in Figure 2.6. In particular,
we choose pump pulses with a peak Rabi frequency in space and time of Ω0 =
2π× 1 MHz. With a Gaussian intensity profile in time with a duration (FWHM) of
τ = 332ns, this corresponds to a pulse area of A= π in the center of the beam
profile. We truncate the pulses to a total pulse duration of tP = 1.2µs such that
the Rabi frequency in the temporal wings of the pulses reaches 0 and we get no
adverse effects from a sharp cut-off. The pulses have a separation of ∆t = 40 ns.
We found that shorter separations ∆t cause phase errors, presumably due to the
limited rise time in the AWG or, more likely, the acousto-optic modulators.

The total duration of a sequence of N pulses is

tC = N · tP + (N − 1) ·∆t ≈ N · tP = N · 1.2µs, (2.4)

which is sufficiently shorter than the coherence time T e
2 = 111µs of the optical

transition even for N = 31, i.e., the longest sequences we investigate. At the same
time, the Rabi frequency is much smaller than the hyperfine splitting of the excited
states (≈ 4.5 MHz) so we can neglect coupling to additional states, which would
result in unwanted population transfer.
For systematic measurements, we keep the previously described parameters

fixed and change only the number of pulses and their phases. For each NCP
sequence, we measure the population P3 with a probe pulse of Gaussian intensity
profile in time with a duration (FWHM) of 10µs and a peak Rabi frequency of
roughly 2π × 15 kHz, which leads to only negligible change of the population
distribution. We expose the CCD camera to radiation for 40µs, which ensures
detection of the entire probe pulse.

2.4.1 Localizing Excitation by Optimized NCP Sequences
Over the course of this work, we found that most of the previously published NCP
sequences are not well suited to an inhomogeneously broadened medium such as
Pr:YSO, as we will discuss in detail in Section 2.4.3. Hence, we collaborated with
the team of Nikolay V. Vitanov to develop new NCP sequences that are optimized
for our medium (albeit at some less efficient localization, as we will see in Section
2.4.2). In the following, we call this class of sequences "optimized", and we list its
parameters in Table A.5 of Appendix A.

We now present our results on localization with these sequences. The top row
of Figure 2.7 shows the experimentally measured population distribution after
localization by optimized NCP sequences with different numbers of pulses N ≤ 11.
The bottom row shows cuts (indicated by blue lines) through the central peaks.
Note that we plot here the population P3 in state |3〉. However, since the NCP
sequences are much shorter than the lifetime of the excited state (tC ≪ T e

1 ), decay
during the NCP sequence is negligible. Hence, as discussed before, the population
P3 at the time of measurement is proportional to the population P2 localized in
state |2〉.
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Figure 2.7: NCP-driven localization in Pr:YSO using optimized sequences. Variation of
the population P3(x , y) vs. coordinates x and y across the pump beam profile. (upper row)
Experimental data for different numbers of pulses of N . The white, dashed line indicates
the diameter (FWHM) of the pump beam. (middle row) Numerical simulations with the
experimentally determined parameters. (lower row) Cuts through the experimental data
(blue line) and simulation (orange line).

We clearly see that already when switching from a single pulse to N = 3, the
extension of the localized population shrinks significantly. Any population transfer
that would be expected in the wings of what is essentially a 3π pulse is fully
suppressed. The central population peak narrows even further when we increase
the number of pulses beyond N = 3. For N = 11 pulses, the population is confined
to a width of about 40 % of the single pulse excitation profile. This is already clear
evidence for localization driven by NCP sequences. However, in particular for
N = 11 pulses, the population transfer in the wings is no longer fully suppressed.
Nevertheless, this background population remains well below 20 %.
We compare the results of our measurement to a straightforward numerical

simulation based on a density matrix calculation of the three-level system |1〉, |2〉,
and |3〉 in Pr:YSO, interacting with NCP pulses. The calculation takes decay of the
excited state |2〉 as well as the decoherence and the inhomogeneous broadening
of the optical transition |1〉 ↔ |2〉 into account. In the calculation, we employ
a Gaussian Rabi frequency distribution in space with its width matched to the
experimental data, and set all other pulse parameters to be the same as in the
experiment. The middle row of Figure 2.7 shows the results of the simulation.
The orange lines in the bottom row indicate cuts through the central peak in the
two-dimensional plots of the simulations. We see excellent agreement between
experiment and simulation, with only some small differences in the peak shape
and the wings of the profile. Compared to the simulation, the experimental data
shows a sharper peak that decreases slightly in height with the number of pulses N .
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This indicates that the central pulse area in the experiment is slightly smaller than
π. We found that it is nearly impossible to set the pulse parameters more precisely
than in the presented experiments, and will discuss some possible solutions at the
end of this chapter. However, from further simulations, we can estimate that this
pulse area error is at most 1 %.
Furthermore, we see some faint rings in the wings of the simulated data,

especially for N = 11, that are also barely visible in the two-dimensional plots of
the experimental data. These rings are caused by the inhomogeneous broadening
of the optical transition, as we will discuss in Section 2.4.3. However, in the
experimental data, the rings are mostly hidden below a broad background that
the simulation does not reproduce. We suspect that this background is caused by
additional, incoherent population transfer from state |1〉 to state |3〉. This could be
either due to off-resonant excitation to state |4〉 or due to Raman scattering. We
present additional studies of this background in Appendix B but have so far been
unable to conclusively determine the underlying mechanism. We note, however,
that neither this background nor the rings caused by inhomogeneous broadening
are intrinsic to the NCP sequences but rather limitations of our specific medium.

We analyze the data now in more detail. To do so, we extract the width (FWHM)
of the localized peak. For the simulated data, we can calculate the width directly,
while we use a fit of the form

P3(r) =A · sin2
�

π

2
· exp
�

−4 ln2
r2

∆r2

��

+B, (2.5)

i.e., the expected shape of the transition probability with a Gaussian laser profile
(compare to Equation (2.3)), to find the width ∆r (FWHM) of the experimental
data. Figure 2.8 shows the (normalized) width of the experimental data (blue
circles) and the simulation (orange triangles) vs. the number of pulses N for
up to N = 31. Clearly, the peak width decreases with the number of pulses, as
expected. We find excellent agreement up to about N = 11 pulses. For larger
numbers of pulses, the experimentally determined profiles are slightly wider than
the simulated profiles. This is most likely caused by a small deviation of the
experimental beam profile from the ideal Gaussian assumed in the simulation.
The narrowest measured population peak with N = 29 pulses has a width of
only about 28 % of the population distribution after a single π pulse. This fully
confirms the proposal of localization by NCP sequences with a confinement that
is far below what was reported in previous experiments [22] due to the newer
and optimized sequences.7

We further quantify the data by fitting it to the power function

∆r(N) = N−α (2.6)

and obtain the exponents α= 0.38 for the experimental data and α= 0.42 for the
7Note that Merrill and coworkers characterize the localization from the ion separation at which
the infidelity of a neighboring qubit reaches ≤ 10−4, while we use the spatial width (FWHM)
of the excitation profile. When we apply the latter, we find a width of ≈ 72% for their data
[22].
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Figure 2.8: Width∆r (FWHM) of the population distribution P3(x , y) after localization by
optimized NCP sequences vs. the number of pulses N . Comparison of the experimental
data (blue circles) and numerical simulation (orange triangles). The dashed lines show
fits to the power function (2.6).

numerical simulation. The fits (see dashed lines in Figure 2.8) match the data
very well. As expected, we get slightly a larger exponent α for the simulation, i.e.,
a stronger confinement at the same number of pulses.

2.4.2 Comparison with Other NCP Sequences
We now continue to compare the previous results with four other classes of NCP
sequences. All of these sequences were developed by the group of Nikolay V.
Vitanov [20, 21, 74] and we list their parameters in Appendix A. Except for the
phases of the pulses, all experimental parameters are the same as in the previous
section.

We compare four of these classes in Figure 2.9 (the fifth class is almost identical
to the "antisymmetric" class, and we skip it here for clarity).8 The top row shows
the experimentally determined population distribution for different sequences
with N = 13 pulses each. The bottom row shows cuts (indicated by blue lines)
through the central peak. Clearly, the excitation is localized in a central peak for
all sequences, but the profiles look very different. Even though all NCP sequences
consist of the same number of pulses, the width of the population peak differs
strongly from sequence to sequence. We find the narrowest peak for the "anti-
symmetric" sequence, but the peak of the "optimized" sequence presented in the
previous section is only slightly wider.
Furthermore, all but the "symmetric" and "optimized" sequences show pro-

nounced rings around the localized center. The numerical simulation shown in
the middle row and as cuts through the central peak in the bottom row (orange
lines) of Figure 2.9 reproduces these very well. As we will discuss in more detail
8We discuss our naming scheme below.
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Figure 2.9: NCP-driven localization in Pr:YSO using different sequences with N = 13
pulses. Variation of the population P3(x , y) vs. coordinates x and y across the pump
beam profile. (upper row) Experimental data. The white, dashed line indicates the diam-
eter (FWHM) of the pump beam. (middle row) Numerical simulations with the experi-
mentally determined parameters. (lower row) Cuts through the experimental data (blue
line) and simulation (orange line).

in Section 2.4.3, these rings are caused by the inhomogeneous broadening of the
optical transition. The mismatch in the ring amplitude between experimental
data and simulation is most likely caused by an overestimated inhomogeneous
broadening in the simulation. The slight difference in the ring diameter suggests
that the tails of the beam profile are slightly longer than we assumed in the
simulation, most likely due to an imperfect Gaussian profile in the experiment.
We perform systematic measurements and numerical simulations of all five

classes of sequences that are summarized in Figure 2.10 where we plot the
width of the localized excitation vs. the number of pulses N . Symbols represent
experimental data, while lines of the same colors show the matching numerical
simulations. The blue data is the same as shown in Figure 2.8, but we now show
the simulation as a blue line instead of as orange triangles. In general, we see
localization behavior for all classes of sequences, i.e., the width decreases with
the number of pulses. For all classes, the experimental data and simulation agree
very well for up to N = 11 pulses but deviate slightly for large pulse numbers. We
attribute this difference to a deviation of the experimental beam profile from an
exact Gaussian, as discussed before.

We quantify the localization performance by fitting the experimental data and
the numerical simulations to the power function (2.6) and summarize the results
in Table 2.1. For all sequences, the simulation shows slightly better performance,
i.e., larger exponent α than the experimental data, as expected from the raw data
(see Figure 2.10).
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Figure 2.10: Width∆r (FWHM) of the population distribution P3(x , y) after localization by
NCP sequences vs. the number of pulses N for various classes of sequences. Comparison
of both experimental data (symbols) and corresponding numerical simulations (lines of
the same colors). The analytic sequence with N = 3 is the same as the TASK1 sequence
from [22]. The blue circles and line show the same data as Figure 2.8.

At the same time, there are also obvious differences between the different
classes of sequences. Let us discuss these in more detail by going through the
classes from top to bottom.

Analytic Sequences The first class of NCP sequences, named "analytic", was
derived by calculating analytic expressions for the phases that optimize the propa-
gator of the N pulse sequence [21]. We find that these sequences perform rather
poorly compared to most other sequences. Not only do they show pronounced
rings for more than N = 5 pulses (see Figure 2.9), but the width of the central peak
also decreases slowly with the number of pulses compared to other sequences,
as confirmed by the small exponent α = 0.25. This is to be expected since the
analytic sequences suppress excitation in the wings of the profile to less than 10−N

while the sequences with better confinement tolerate more excitation, i.e., they
trade fidelity for a stronger confinement, as we will discuss below. Furthermore,
we also see pronounced oscillations in the width of the experimental data vs. the
number of pulses that the simulation does not reproduce. These are caused by
fit errors due to the rings in the profiles. The advantage of these sequences is,
however, that the analytic formula (see Equation (A.1) in Appendix A) allows the
simple calculation of sequences with any arbitrary (odd) number of pulses.
We further note that the analytic sequence with N = 3 is (up to an irrelevant

global phase of π/3) equivalent to the TASK1 sequence derived by Merrill and
coworkers [22]. We find, with the same sequence, a slightly wider peak compared
to their experiments (75 % of the beam profile diameter instead of 72 %) and
attribute this small difference to the inhomogeneous broadening of our medium.
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Table 2.1: Comparison of the power law exponent α from Equation (2.6) fitted to experi-
mental data and numerical simulations of all investigated classes of NCP sequences.

excitation exponent α
sequence threshold ε exp. sim.
symmetric 0.20 0.24
analytic 0.25 0.28
numerical 0.01% 0.31 0.34

0.1 % 0.33 0.37
1 % 0.38 0.41

optimized 0.38 0.42
antisymmetric 1 % 0.41 0.43

3 % 0.42 0.45
10 % 0.44 0.48

Symmetric Sequences The derivation of the second class uses the same ansatz
but numerical methods to find the phases, with the additional constraint that the
sequences are symmetric with respect to reversal of the pulses [20]. Hence, we
name this class "symmetric". With the smallest measured exponent α= 0.2, these
sequences perform similar but slightly worse than the analytic sequences. We
assume that this is due to the numerical derivation, which performs worse than
an exact analytic solution. However, they show no rings (see Figure 2.9) and are
thus applicable in inhomogeneously broadened media.

Numerical and Antisymmetric Sequences The derivation of the third class,
which we call "numerical", uses numerical optimization to reduce the transfer
probability in the wings of the beam profile below a certain excitation threshold
ε (here ε = 1%) [74]. While these sequences show rings (not shown in Figure
2.9), their localization performance with α= 0.38 is clearly much better than the
previous classes. As discussed above, this is due to the higher excitation tolerance
of in the wings of the profile. However, the authors of [74] only provided sequences
with up to N = 11 pulses.

Hence, we collaboratedwith Nikolay V. Vitanov to calculate additional sequences
with more pulses. We term this class "antisymmetric" due to their additional
constraint of being antisymmetric, i.e., invariant under simultaneous reversal of
the pulses and change of the sign of their phases. As we can see in Figure 2.10,
they match the performance of the numerical sequences and continue this trend
up to N = 31 pulses. The exponent α= 0.41 even shows that they perform slightly
better. At N = 31 and with a confinement to 25 % of the width of the beam profile,
they show the smallest localization we measured with any of the investigated
sequences. However, they are affected by the inhomogeneous broadening and
show pronounced rings (see Figure 2.9).

Furthermore, one can vary the performance of these two classes by changing the
excitation threshold ε during the derivation. A higher threshold should improve
the localization even further at the cost of more excitation in the wings.
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Figure 2.11: NCP-driven localization in Pr:YSO using sequences with different excitation
thresholds ε but N = 11 pulses each. Variation of the population P3(x , y) vs. coordinates
x and y across the pump beam profile. The left column shows a numerical sequence;
the other columns show antisymmetric sequences. (upper row) Experimental data. The
white, dashed line indicates the diameter (FWHM) of the pump beam. (middle row) Nu-
merical simulations with the experimentally determined parameters. (lower row) Cuts
through the experimental data (blue line) and simulation (orange line).

We investigate this behavior in Figure 2.11 where we compare the localization
by four different NCP sequences with the same number of pulses (N = 11), but
different excitation thresholds ε. We clearly see (in particular in the bottom row
of Figure 2.11) that the excitation in the wings increases with ε, as expected.
We note that the excitation should increase at most to the fraction ε of the peak
excitation, but increases to about twice that value in the experimental data. This
is partially due to the inhomogeneously broadened line, which causes rings in the
excitation profile, and partially due to additional, incoherent population transfer
(see Appendix B). Nevertheless, we also see that the width of the central peak in
the profile narrows with the excitation threshold. The experimental data and the
numerical simulation are in good agreement.
We perform systematic measurements and numerical simulations with both

classes of sequences and three different thresholds ε each. We show the results in
Figure 2.12 where we plot the width ∆r (FWHM) of the confined population over
the number of pulses N . As before, we find good agreement between experimental
data and simulation up to about N = 11 pulses and a small deviation thereafter.
Moreover, we clearly see that for higher excitation thresholds, the localization
improves as expected. We also find larger exponents α for larger excitation
thresholds (see Table 2.1). This fully confirms the expectation.
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Figure 2.12: Width ∆r (FWHM) of the population distribution P3(x , y) after localization
by NCP sequences vs. the number of pulses N for antisymmetric (a) and numerical (b)
sequences with different excitation thresholds ε. Comparison of both experimental data
(symbols) and corresponding numerical simulations (lines of the same colors). Note the
different ranges on the horizontal axes. The data with ε = 1% is the same as the data
shown in Figure 2.10.

Optimized Sequences For the final class of sequences, our theory partners
derived sequences that show strong localization like the antisymmetric sequences
but are at the same time not affected by inhomogeneous broadening, i.e., show no
rings in the excitation profiles. To do so, they extended the methods employed for
the derivation of the antisymmetric sequences such that the excitation probability
also remains below the threshold ε= 1 % for detunings within the inhomogeneous
line. We presented detailed results on these sequences in the previous section.
They show almost no rings, even for N = 31 pulses. When comparing them to the
antisymmetric sequences, we see that they perform slightly worse regarding the
localization (compare blue circles and purple triangles in Figure 2.10). This is to
be expected due to the additional constraints in their derivation. Nevertheless,
unlike the antisymmetric sequences, they work in inhomogeneously broadened
media and still reach a confinement to 28 % of the width of the beam profile.

2.4.3 NCP Sequences in an Inhomogeneously Broadened
Medium

Let us now discuss the rings caused by inhomogeneous broadening and observed
in the localization patterns of Figure 2.9 in more detail.

To understand the origin of these rings, we numerically simulate the population
transfer of an N = 11 pulse analytic NCP sequence depending on the pulse area
A∝ Ω ·τ and the product of detuning and pulse duration ∆ ·τ for a peak Rabi
frequency of Ω0 = 2π×1 MHz. All other parameters are as in the previous sections,
but we neglect decay, decoherence, and inhomogeneous broadening. We plot
this variation of the excitation probability with detuning and pulse area in Figure
2.13(a). If we consider the case of resonance ∆ · τ = 0, indicated by the white,
vertical line, we see the expected result of a NCP sequence: For A= π, the transfer
is complete, i.e., P2 = 1, but for any pulse area smaller than about 0.65π population
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Figure 2.13: Investigation of the ring-like excitation patterns generated by NCP se-
quences in Pr:YSO. (a) Numerical simulation of the excitation probability vs. the product
of detuning and pulse duration ∆ · τ and the pulse area A∝ Ω · τ for the analytic se-
quence with N = 11 pulses. The peak Rabi frequency isΩ0 = 2π×1MHz and we neglect
decay, decoherence, and inhomogeneous broadening. The white, dashed lines show the
100kHz spectral linewidth (FWHM) of the inhomogeneous broadening in our system; the
dotted lines show twice that width. The color scale at the top shows the width (FWHM)
of the inhomogeneous broadening for different peak Rabi frequencies Ω0, i.e., pulse du-
rations τ. The color scale matches the data from (b). (b) Variation of the experimentally
determined population P3(x) after localization with the N = 11 pulse analytic sequence
vs. coordinate x for different peak Rabi frequencies Ω0 (color scale).

transfer is fully suppressed. However, for ∆ · τ ̸= 0 the shape of the population
transfer is much more complex, with several regions of high population transfer
even at small pulse areas. This is due to an additional phase accumulated by the
detuned ions that disturbs the phase relation within the NCP sequence.

When we now consider inhomogeneous broadening, we have ions with detun-
ings spread around resonance and thus average horizontally over this complex
distribution. The dashed lines in Figure 2.13(a) indicate the inhomogeneous
linewidth of 100 kHz (FWHM) in our experiment, while the dotted lines show
twice the linewidth. This is approximately the area we average over, and it clearly
contains regions of large population transfer. Hence, averaging leads to a pro-
nounced ring far in the wings of the beam profile where the pulse area is roughly
0.15π and another faint ring at about 0.5π. This is what we see in Figure 2.9 (left
column).
We can also see this in Figure 2.13(b) where we plot cuts through the ex-

perimentally determined population distribution after an N = 11 pulse analytic
NCP sequence for different peak Rabi frequencies Ω0 from 2π × 0.75MHz to
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2π× 2.5MHz. Furthermore, the ring decreases in amplitude when the Rabi fre-
quency increases. Again, we can explain this behavior using the distribution of
the excitation probability in Figure 2.13(a). When we increase the Rabi frequency
Ω of the pulses, we need to decrease their duration τ to keep the pulse area
A∝ Ω · τ constant. Hence, the horizontal axis of the excitation plot essentially
stretches outward, moving the regions of large population transfer further from
resonance. Or, in a different picture, the width of the inhomogeneous broadening
shrinks, as indicated by the color scale at the top of Figure 2.13(a) which displays
the inhomogeneous linewidth (FWHM) for different peak Rabi frequencies. The
larger the Rabi frequency, the narrower the inhomogeneous broadening, and thus
a smaller fraction of the regions with large population transfer is included in the
averaging. Consequently, the rings decrease in amplitude.

Hence, in inhomogeneously broadenedmedia, it is beneficial to increase the Rabi
frequency as much as possible. However, there is a trade-off since a higher Rabi
frequency can increase incoherent population transfer, as discussed in Appendix
B. Furthermore, since we have access to the optimized sequences that do not
show regions of large population transfer within the inhomogeneous linewidth,
we chose a rather small peak Rabi frequency of Ω0 = 2π× 1MHz for the previous
experiments.
We also note that it is actually the total duration of the sequence that matters

and not the duration of an individual pulse, since the detuned ensembles accumu-
late the additional phase over that entire duration. Hence, increasing the Rabi
frequency is only beneficial as long as the pulse separation remains constant such
that the entire sequence duration decreases. This is usually the case.

2.4.4 Ring-Shaped Localized Excitation Patterns
In the previous sections, we presented convincing experimental data that show
the capability of NCP sequences to spatially confine excitation. However, we also
saw that even for the best class of sequences, this confinement improves rather
slowly with the number of pulses, i.e., the best confinement we reached was 25 %
of the beam diameter with N = 31 pulses. From the power function (2.6) we
can extract that reaching a confinement to 2 % of the beam diameter as we have
with STIRAP-based localization would require about 10000 pulses. This is not
only very difficult to implement in real experimental conditions with inevitable
pulse errors and limited coherence time, but also a huge and maybe impossible
effort in the numerical derivation of the NCP sequences. However, as we will see
in the following, the localization is partially limited by the flat shape in the center
of the Gaussian beam profile, where the pulse area varies slowly with the radial
coordinate. Hence, an improved suppression at pulse areas close to π has only a
small benefit regarding the localization.

In this section, we investigate how to omit the issue by localizing the population
on a ring in the wings of the beam profile, where the Rabi frequency decreases
(approximately) linear with the radial coordinate and not quadratically as in the
center. We apply pulses with a pulse area of 2π in the center of the beam. Since
the NCP sequences suppress excitation for any pulse area besides π, we expect
a ring-shaped excitation pattern in space. The width of this ring should shrink
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Figure 2.14: Spatial confinement using two time-separated NCP sequences on different
transitions in a three-level system. (a) Λ-type coupling scheme. Yellow circles indicate
the initial population. (b) Spatial distribution of the two shifted Gaussian Rabi frequency
profiles with a central pulse area of A = 2π. (c) Spatial variation of the excitation prob-
ability of the two individual NCP sequences. We assume analytic NCP sequences with
N = 31. (d) Spatial distribution of the population P3 in state |3〉 after both NCP sequences.

quadratically faster with the number of pulses compared to the peak width, i.e.,
the exponent α in Equation (2.6) should be doubled.
We note that confining excitation to a ring is obviously of limited use for real

applications. However, one can still generate a spot of tightly confined excitation
using this method. Here, one would apply NCP sequences (with a central pulse
area of 2π) on both transitions of a Λ-type system but with spatially shifted laser
profiles as illustrated in Figures 2.14(a) and 2.14(b). The first NCP sequence
excites population only on a ring, and hence the second NCP sequence transfers
population to the final metastable ground state only where the two rings overlap
(see Figures 2.14(c) and 2.14(d)). While not perfectly symmetric, the size of this
region would not be limited by the flat shape of the Gaussian beam profiles.
To confirm this general behavior, we apply the ring-type localization in a two-

level system. We use the class of optimized NCP sequences with a peak Rabi
frequency of Ω0 = 2π× 2.5MHz. With a temporal pulse width (FWHM) of τ =
266ns and a total pulse duration tP = 1µs this corresponds to a pulse area of 2π
in the center of the beam profile.

We show the results of these measurements for different numbers of pulses
N ≤ 11 in the top row of Figure 2.15. The bottom row shows cuts through the
experimental data (blue lines). We clearly see the expected ring shape in the
population distribution. The width of the ring decreases with increasing pulse
number. However, as before, we also see a substantial background, especially
for N = 11 pulses, that is most likely caused by incoherent transfer directly from
state |1〉 to state |3〉 (see Appendix B). Furthermore, the amplitude of the ring
decreases to about 60 % at N = 11 pulses. As with the data on localization driven
by STIRAP, this is caused by the limited resolution of our imaging system when
the ring width approaches 10µm.
As before, we compare the experimental data with a numerical simulation

shown in the middle row of Figure 2.15. The bottom row shows cuts through
the simulation (orange lines). We find good qualitative agreement between
experiment and simulation. However, the simulated ring is wider in particular
for small numbers of pulses. This indicates a mismatch in the beam profile of
experiment and simulation, i.e., that the Rabi frequency slope in the experiment
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Figure 2.15: NCP-driven ring localization in Pr:YSO using the optimized sequences. Vari-
ation of the population P3(x , y) vs. coordinates x and y across the pump beam profile.
(upper row) Experimental data for different numbers of pulses of N . (middle row) Nu-
merical simulations with the experimentally determined parameters. (lower row) Cuts
through the experimental data (blue line) and simulation (orange line).

is steeper than expected. This matches the deviation between experiment and
simulation observed in the previous sections.

We further analyze the data by determining the width of the ring for both
experimental data and numerical simulation (employing a fit to Equation (B.1)
for the former) and plotting it vs. the number of pulses for up to N = 31 in Figure
2.16. The blue circles represent the experimental data, the orange triangles show
the numerical simulation. As expected, we see a big discrepancy: At about N = 9
pulses, the measured width of the ring approaches 10µm and remains at that level
up to N = 31 pulses. In this region, the resolution of the imaging setup, which
we determined to be 10µm in an independent measurement (see Section 1.3.3),
limits the experimentally determined width. The real population distribution is
more narrow, it simply washes out due to the resolution limit and as such, the
measured height of the ring also decreases as discussed above. However, we can
still gain insight into the real width of the population distribution by applying the
recalibration method introduced in Section 1.4.1. We show the recalibrated data
as green squares in Figure 2.16. They match the numerical simulation very well.
We assume that the remaining discrepancy is due to background population that
we neglected in the recalibration. Hence, depending on the relative background
levels, we may have over- or under-corrected some data.

From fits to the power law in Equation (2.6) we extract the exponents α= 0.72
for the recalibrated experimental data and α= 0.75 for the simulation. These are
in good agreement.
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Figure 2.16: Width (FWHM) of the population ring P3(x , y) after localization by the opti-
mized NCP sequences vs. the number of pulses N . Comparison of the numerical simula-
tion (orange triangles), experimental data (blue circles), and recalibrated experimental
data taking limited imaging resolution into account (green squares). The blue crosses
show the normalized width (FWHM) of the population after peak-type localization by
the same sequences. This is the same data as in Figure 2.8. The right vertical axis is
only valid for the ring data.

Finally, we compare the data to the peak-type localization we discussed in
Section 2.4.1. We expect a significantly better performance for the ring localization
due to the steep Rabi frequency slope compared to the flat peak in the center of
the beam profile. We plot the experimentally determined (normalized) width of
the localization peak created with the optimized sequences in Figure 2.16 as blue
crosses. As expected, the width of the ring decreases faster with the number of
pulses than the peak width (compare green squares and blue crosses in Figure
2.16). The exponent α = 0.72 of the ring data, which—as predicted above—is
about twice the value of the exponent α = 0.38 of the peak localization data,
validates this conclusion. This confirms our assumption that the shape of the beam
profile significantly limited the peak-type localization in the previous sections.

2.5 Conclusion and Outlook

We experimentally demonstrated localization of excitation by NCP sequences.
To the best of our knowledge, this represents the first implementation of NCP
sequences for localization in a solid. We applied sequences consisting of up to 31
pulses and confined the excitation to spatial extensions well below the diameter of
the driving Gaussian laser profile. In particular, with a sequence consisting of 31
pulses, we got an excitation width of 25 % compared to the diameter of the driving
laser beam, which is almost a factor of 3 smaller than in previous experiments
[22]. We confirmed that the localization improves with the number of pulses.
Moreover, our data demonstrated that some classes of sequences converge to
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smaller localization much faster than others, as expected from theory [74]. The
experimental data agree very well with numerical simulations. Residual deviations
are due to a slight mismatch in the laser profile.
We found that the flat Gaussian shape in the center of the laser beam is one

of the main limitations for localization by NCP sequences. Tighter localization is
possible by localizing in, e.g., a ring on the slope of the laser profile instead.

Furthermore, we analyzed numerically and experimentally the influence of an
inhomogeneously broadened transition on the localization by NCP sequences. We
found that for most sequences, it leads to additional, unwanted population transfer
in the wings of the laser profile. Hence, we collaborated with the team of Nikolay
V. Vitanov to develop NCP sequences that are robust against inhomogeneous
broadening and confirmed their behavior experimentally.

We note that under our experimental conditions, we still operated well above the
diffraction limit. Nevertheless, the experimental data showed that NCP sequences
can significantly relax the beam size requirements in high-resolution applications.
The results serve as a step toward a new application of CP sequences to prepare
excitation patterns or perform quantum gates with large spatial resolution. This
will be relevant to quantum information technology and well beyond.

We are currently preparing a manuscript to publish the results of this chapter.

Prospects for Future Work We found in our experiments that the strong de-
pendence of the transfer probability on the pulse parameters, which enables
localization, is also an experimental challenge. Any pulse area deviation from the
target value A= π in the center of the beam profile results in a large loss of transfer
fidelity due to the narrowband nature of the driving pulse sequences. Hence, a
next step should be to also investigate passband sequences, as was suggested in
the past [20, 74, 80]. These sequences are robust over a small range of parameters,
but still suppress excitation for large deviations. Hence, they localize population
(albeit not as strongly as NCP sequences), but at the same time they are robust to
(small) pulse errors that are inevitably present in any experiment.

Furthermore, one could consider localization by NCP sequences in a Λ-type
three-level system coupled by two laser beams, similar to the STIRAP setup. One
could implement this by applying either independent and time separated NCP
sequences on the two transitions, or directly with a NCP sequence on the Raman
transition [77–79]. In either case, the localized population would benefit from
the long ground state lifetime in Pr:YSO. One could further extend the first option
by shifting the laser profiles with respect to each other and localizing in a ring
each (see Figure 2.14). Then, the population in the final state would be localized
only in the intersection of the two rings, which by the arguments in the previous
section would be more narrow than the peak-type localization considered for most
of this chapter. Localization on the Raman transition, on the other hand, would
allow a direct application of localized interaction to Raman qubits.

Finally, we considered only localized population inversion in this work, but it is
easily possible to derive similar NCP sequences for any arbitrary rotation on the
Bloch sphere [22, 76, 80]. These would enable localized single-qubit gates, which
are, of course, of great interest in quantum information technology.
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Chapter 3

Dynamical Decoupling with Inhomogeneous
Radio Frequency Fields

3.1 Introduction

In this final chapter, we consider a more typical application of CP sequences: To
compensate for errors in the driving pulses. We present a showcase experiment
where we intentionally introduce these errors in the form of inhomogeneous pulses
and characterize the robustness of various state-of-the-art CP sequences.

In particular, we consider the context of quantummemories, where CP sequences
are routinely applied—by our group [82, 83] and others [5, 84–86]—to increase
the memory’s storage time. Since the decoherence that limits the latter is often
induced by environmental noise [47], decoupling the system from the environment
is an effective approach to increase the coherence time. This technique, called DD
[46–48], involves applying a sequence of control pulses for the decoupling and
has been applied to many systems (see [48] and references therein). However, in
standard DD sequences, inevitable pulse errors cause additional decoherence that
often surpasses the environmental perturbation [48, 49]. Apart from reducing
these pulse errors as much as possible in the first place, broadband CP sequences
that compensate for the errors are a typical solution to this issue [42, 43, 48, 50].
There exists a wide variety of these robust sequences [48, 49, 83, 87, 88] that
have been studied and compared extensively, both in theory and in experiments
[48, 49, 83, 89–92].

However, regarding pulse errors, these studies are typically rather artificial in
that they assume perfect pulses and then vary one or more pulse parameters. Yet,
in a real experiment, it is usually inhomogeneity that introduces the pulse errors
and not a fixed deviation that could be compensated by proper experimental
calibration. For example, in rare-earth-based quantum memories, one typically
drives DD with radio frequency (RF) fields [5, 82–85], where the presence of metal
in close proximity to the RF coils causes eddy currents and thus often introduces
field inhomogeneities, i.e., amplitude errors [93].
Hence, in this chapter, we present a simple showcase experiment where we

intentionally introduce inhomogeneity in the RF fields. We generate a coherence
in a rare-earth ion-doped solid using the light storage protocol based on EIT [52]
and employ DD to increase the coherence time. The latter is our benchmark to
compare typical state-of-the-art (robust) DD sequences [48, 49, 83, 87, 88] when
we increase the field inhomogeneity, i.e., the pulse errors. Our experimental
data confirm the prediction and show the relevance of robust CP sequences for
quantum memories.

44



Chapter 3 DD with Inhomogeneous RF Fields

3.2 Characterization of the Magnetic Field Distribution
in Three Dimensions

Before we can systematically measure the influence of the driving RF fields’ inho-
mogeneity on DD, we need to accurately characterize the latter. However, in our
experiments, copper mounts surround the RF coils. Hence, eddy currents distort
the RF fields, and a calculation of the field distribution is essentially not possible
with sufficient accuracy. Thus, we developed an experimental setup that allows us
to directly measure the three-dimensional Rabi frequency distribution in space.

3.2.1 Experimental Setup

Figure 3.1: Coupling scheme
for the light storage and
DD experiments in Pr:YSO
driven by probe (blue) and
control (red) beams as well
as RF fields (purple). Yellow
circles show the initial
population.

We will later implement light storage to create
the coherence on the spin transition between
the hyperfine states |1〉 = 3H4(0) |mI = ±3/2〉 and
|3〉= 3H4(0) |mI = ±1/2〉 of Pr:YSO (see Figure 3.1).
Hence, for the measurement of the magnetic field,
we drive Rabi oscillations on the same spin transition
with the population initially in state |1〉 and probe
the remaining population using the optical transi-
tion |1〉 ↔ |2〉 at 605.98 nm. Note that we apply a
different type of preparation compared to the previ-
ous chapters. In this preparation, we optically pump
the crystal such that the probe pulse resonantly cou-
ples the populated state |1〉 to one excited state each
in three different frequency ensembles within the
inhomogeneous line. We use this so-called three en-
semble preparation to increase the optical depth of
the medium and thus the light storage efficiency. See
[94, 95] for more details.

Figure 3.2 shows our setup inside the cryostat. We use a 10 mm long Pr:YSO
crystal (0.05 % dopant concentration) and create the RF fields to drive the spin
transition using two coils wired in series. These coils have a radius of about
5.3 mm such that they can partially enclose the crystal, and a mean separation
of 6.3 mm limited by spatial constraints, i.e., they are slightly further apart than
in a Helmholtz configuration. Each coil is 2.5 mm long, which provides enough
space for up to 14 windings each. To change the inhomogeneity of the magnetic
field, we simply change the number of windings N1 and N2 of the two coils. We
generate the RF pulses resonant to the spin transition at 10.2 MHz with an AWG,1
amplify2 them, and use a simple impedance matching circuit [67, 96] to couple
them into the coils.

1AWG5014, Tektronix
2LZY-22+, Mini-Circuits
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(b)

(c)

(a)

Figure 3.2: (a) Exploded view of the crystal and coil setup. The Pr:YSO crystal 1 is
pressed on to the copper baseplate 2 by the crystal mount sides 3 and top 4 . The
baseplate connects to the cold finger of the cryostat (not shown). The RF coils 5 fit par-
tially around the crystal and are held in place by the coil mounts 6 . The white parts
are manufactured from PEEK; everything else is oxygen-free copper. (b) and (c) Photos
of the RF coils, coil mounts, and crystal mount for setups with N1 = 10; N2 = 10 and
N1 = 14; N2 = 0 windings, respectively. We clad the exterior surfaces with aluminum
tape to reduce the absorption of thermal radiation. Lines represent beamlines with col-
ors matching Figure 3.3.

Figure 3.3 shows the entire experimental setup, with the crystal and coils inside
the cryostat in the bottom left. This setup is in large parts identical to the one we
used for the NCP experiments (see Figure 2.5 and Section 2.3).

To measure the Rabi oscillations (driven by the RF coils), we employ the same
technique as in Chapter 1. We image a probe beam with a diameter of 570µm
(FWHM) in the crystal onto the CCD camera using the same imaging system
(lenses L3 and L4) as before. For each pixel of the CCD camera, we determine
by a transmission measurement the population left in state |1〉 when we vary the
duration τ of a preceding rectangular RF pulse. Since this population oscillates
with the Rabi frequency, we get spatially resolved information on the latter.

However, this gives us only the two-dimensional distribution of the Rabi fre-
quency along the x and y directions but averaged along z (the beam direction).
To resolve the Rabi oscillations also in the third dimension, we apply a specific
optical preparation which is similar to the one we used for the NCP experiments
as described in Section 2.3. We utilize two perpendicular beamlines (preparation
and repump) for the optical pumping (see Figure 3.3).
We collimate the preparation beam using lenses L2 and L3 to a diameter of

600µm (FWHM) such that it counterpropagates to the probe beam with a small
angle of about 2◦ in between. We apply this beam to create spectral pits at the
probe and control (|1〉↔ |3〉) transitions, as well as at frequencies 10.2 MHz larger
than the probe frequency and 10.2 MHz smaller than the control frequency. The
latter two pits ensure that in additional ensembles, in which the probe (control)
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probe

preparation

L3 L4 shutter
CCD

L2

repump
CL

window

Figure 3.3: Experimental
setup with probe (blue),
preparation (red), and re-
pump (green) beamlines,
Pr:YSO crystal (green), RF
coils (purple), lenses (L),
cylindrical lens (CL), and
CCD camera.

pulses resonantly couple the 3H4(0) |mI = ±1/2〉 (3H4(0) |mI = ±3/2〉) state, the
population is also in the lowest ground state 3H4(0) |mI = ±5/2〉. Otherwise, the
RF pulses would drive Rabi oscillations in these ensembles and thus disturb the
measurements. See [94] for more details on this preparation.
The repump beam, on the other hand, enters the crystal perpendicular to the

other beams through a window in the crystal mounts (see Figure 3.2), and we
focus it with a cylindrical lens (focal length 150 mm) to a size of 55µm× 750µm
(FWHM, width × height). We use this beamline to create the antihole on the
probe transition. Hence, the crystal remains entirely transparent to the probe
pulse except in a thin slice where the preparation and repump beams overlap. We
estimate this slice to be about 100µm thick due to saturation during the optical
pumping, but could change the thickness by changing the width of the repump
beam. Next, we employ the preparation beam again to pump unwanted population
from state |3〉 to state |1〉 to create the Λ-system, as depicted in Figure 3.1.
Using this preparation method, we thus get the Rabi frequency distribution in

x and y averaged over a thin slice centered around a fixed position in z. Finally,
we use a rotatable window3 (N-BK7, 5 mm thick) in the repump beam path to
translate the repump beam along the z direction. The translation range of about
3.5 mm matches the window in the crystal mounts. Thus, we can simply repeat
the Rabi frequency measurement with the repump beam in different z positions
and get the Rabi frequency distribution spatially resolved in all three dimensions.

Figure 3.4 summarizes the time sequence of these experiments: (i) Preparation
of the spectral pits by optical pumping. (ii) Transmission measurement of a probe
pulse as reference. (iii) Creation of the antihole on the probe transition only where
preparation and repump beam overlap. (iv) Removal of unwanted population
from state |3〉. (v) Driving of Rabi oscillations by an RF pulse with duration τ.
(vi) Transmission measurement of a probe pulse to determine the population left
in state |1〉. We repeat the sequence (i–vi) for each repump beam position z and
pulse duration τ and average the resulting images at each to reduce noise.

time (arb. units)

(i) (ii) (iii) (iv) (vi)(v) Figure 3.4: Time sequence of optical and
RF pulses (see main text). Purple repre-
sents RF pulses, the other colors corre-
spond to beamlines from Figure 3.3.

3WG11050-A, Thorlabs
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3.2.2 Experimental Results

We discuss now the experimental results of our Rabi frequency measurements.
In total, we investigate six different coil pairs starting with the same number of
windings on both coils (N1 = N2 = 10) to create an almost homogeneous field
and going up to N1 = 14 and N2 = −3 for the largest inhomogeneity.4 For each
coil pair, we determine the Rabi frequency distribution as described above. We
measure the population using a probe pulse with a Gaussian intensity profile
in time with a duration (FWHM) of 10µs and a peak Rabi frequency of roughly
2π× 7 kHz, which leads to only negligible change of the population distribution.
We expose the camera to radiation for 40µs, which ensures detection of the entire
probe pulse.

Figure 3.5 shows the Rabi frequency distribution generated by the coil pair
with N1 = 14 and N2 = 0, i.e., just a single coil (we show a photo of this setup
in Figure 3.2(c)). As we can see, there is a strong gradient along the z direction
(beam direction), whereas the Rabi frequency is almost constant in the x-y plane.
This is expected for two reasons: When we neglect eddy currents and the slight
mismatch between coil radius and separation, we can describe our coil pairs as
the sum of a Helmholtz and an Anti-Helmholtz coil. The latter generates a linear
gradient in the magnetic quadrupole field, and this gradient is stronger along the
coil axis (z direction) than perpendicular to it. More important, however, is that
the volume in which we investigate the Rabi frequency is much narrower along
the x and y directions compared to the z direction (≈ 250µm vs. ≈ 2.5mm).

We perform this same measurement for all six coil pairs and compare the results
in Figure 3.6. Since the field inhomogeneity is almost exclusively along the z axis,
we average the Rabi frequency along x and y and plot it only vs. z. For further
comparability, we normalize each measurement to its mean value.

Figure 3.5: Experimentally determined Rabi frequency distribution ΩRF (x , y, z) normal-
ized to its mean value in three dimensions for the coil setup with N1 = 14; N2 = 0. Note
the different scale of the z axis.

4Here, the negative number of windings means an inverted winding direction.
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As we can see, for the coil pair with N1 = N2 = 10, i.e., close to a Helmholtz
pair, there is almost no variation of the Rabi frequency. When we increase the
difference in windings, the expected linear gradient starts to form and gets steeper
the larger the difference in windings becomes. In the most inhomogeneous case
(N1 = 14; N2 = −3), the Rabi frequency varies by ±30 % along the z axis.

In the following, we quantify the inhomogeneity IH by the standard deviation
of the data normalized to its mean value. This allows a comparison independent of
the shape of the Rabi frequency distribution. We find the smallest value IH = 0.3%
and the largest IH = 18.9 %.

3.3 Basic Theory of DD and EIT Light Storage
Let us now briefly review the basic principle of rephasing and DD [46, 47] (see
Figure 3.7). We consider an inhomogeneously broadened ensemble of two-level
systems in which we generate a collective coherence at time t = 0. Even in
an ideal, noiseless environment, the distribution of transition frequencies in the
inhomogeneous line leads to a different time evolution of the individual coherences
such that they dephase as illustrated in the middle row of Figure 3.7(a). Already
shortly after the creation of the coherence, this causes destructive interference and
a loss of the net coherence. We can counteract this behavior and recover the net
coherence by applying a π pulse at t = tS/4 which inverts the phases and leads
to a rephasing at t = tS/2. However, the π pulse inverts not only the phase but
also the population, so we need a second π pulse at t = 3/4tS such that the entire
system returns to its initial state at t = tS and we can read out the coherence [97,
98].

In a real experiment, however, noise causes random changes in the transition
frequency of the individual systems, which leads to imperfect rephasing, i.e., a
reduction of the coherence amplitude at t = tS (see bottom row of Figure 3.7(a)).
In Pr:YSO this noise is mainly caused by spin flips of yttrium ions [99] which lead
to changes in the local magnetic field around the individual praseodymium ions.

DD is a typical way to reduce the effect of this perturbation [46, 47]. Here, we
apply many rephasing cycles (consisting in the simplest case of two π pulses each)
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Figure 3.7: Rephasing and DD of an atomic coherence generated by EIT light storage. (a)
Rephasing: The top row shows the time sequence of the applied RF (purple) and optical
(control (red) and probe (blue)) pulses. The middle and lower rows show the evolution
of the amplitude (filled turquoise curves) of the total coherence ρ31 summed over the
inhomogeneous line and the phase of two constituent coherences (turquoise lines) with
different transition frequencies. The middle row depicts the ideal case of a constant
environment, and the lower row shows the real environment with random changes in
the transition frequencies (indicated by the red, dashed lines). (b) Pulse sequence (top)
and coherence evolution (bottom) for DD. Figure modified from [63].

with the duration tC—also called cycle time—instead of just one. This rephases
the coherence after every cycle and, if the cycle time is shorter than the noise
correlation time, suppresses the perturbing effect of the frequency fluctuations
(see Figure 3.7(b)). Hence, we can recover the net coherence even in the presence
of noise.

However, due to the potentially large number of pulses, DD is very susceptible
to pulse imperfections, as even minor errors add up and cause a loss of coherence.
A typical method to circumvent this problem are CP sequences, as introduced in
Section 2.2. However, unlike in Chapter 2, we now use broadband CP sequences,
i.e., sequences that are robust with regard to changes in the pulse parameters like
pulse area or detuning. This way, pulse imperfections are compensated for, and
DD can rephase a coherence even for large numbers of pulses.
In particular, we consider here sequences consisting of pulses with identical

pulse area A= π and detuning but (potentially) different phases. These sequences
replace an entire rephasing cycle, i.e., they consist of an even number of pulses
and perform a robust identity operation. In general, we expect that the error
compensation improves with the order of the sequence, i.e., the number of pulses
per cycle N , due to the increased number of control parameters. However, similar
to the discussion in Section 2.4.2, we expect further variations between different
classes of sequences.

Light Storage Based On EIT In principle, we could generate the coherence for
the following experiments in several ways, the easiest of which is to simply apply a
π/2 pulse to the system. However, since we employ intentionally inhomogeneous
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RF fields to test the robustness of DD sequences, using the same RF coils would
lead to an inhomogeneous coherence. Adding a second coil pair, on the other
hand, would significantly complicate the setup. Furthermore, this coherence
would have a single phase across the entire ensemble of ions, and we would thus
only test the coherence-preserving capabilities for that specific phase. However, in
any quantum information application, it is important that any arbitrary phase is
preserved.
Thus, we chose to create the coherence using the light storage protocol based

on EIT. This creates a distribution of all phases across the individual coherences
and thus allows for a comparison of the various DD sequences in a more realistic
scenario. We now briefly review the process of EIT light storage and refer to [52,
63] for more details.

The typical coupling scheme for EIT is a Λ-system with two metastable ground
states and a single excited state, as depicted in Figure 3.1. A strong control pulse
couples the unpopulated |3〉↔ |2〉 transition and renders the medium transparent
on the probe transition |1〉↔ |2〉. At the same time, it induces a strong dispersion
that reduces the group velocity for a temporally overlapping, weak probe pulse.
This dispersion depends on the control Rabi frequency ΩC , such that reducing
the latter to zero transfers the probe pulse into a coherence between the ground
states |1〉 and |3〉. We illustrate this in the top row of Figure 3.7(a): The control
"write" pulse stores the probe pulse as a coherence. When we increase the control
Rabi frequency again after an arbitrary storage time tS, the control "read" pulse
beats with the atomic coherences to retrieve the signal pulse.

We define the storage efficiency ηLS as the ratio between the signal pulse energy
and the probe pulse energy. Under ideal conditions, the signal pulse is a copy of
the probe pulse, i.e., ηLS = 1. Otherwise, its energy is a measure of the loss of
coherence, both from the memory process itself and from decoherence during the
storage time. Hence, we can use the storage efficiency to quantify the rephasing
capability of DD sequences.

3.4 DD with Inhomogeneous Driving Fields

3.4.1 Experimental Setup
To characterize the performance of different DD sequences in compensating for the
previously measured field inhomogeneities, we monitor the rephasing efficiency for
EIT light storage. We implement the latter in Pr:YSO using the Λ-system depicted
in Figure 3.1. We employ the optical preparation sequence already described in
Section 3.2.1 with only a slight modification discussed in [94]. The optical setup as
shown in Figure 3.8 is very similar to the one shown in Figure 3.3, and we describe
here only the differences. We use lens L1 (focal length 250 mm) to focus the probe
beam to a diameter (FWHM) of 170µm in the crystal. Thus, it is much smaller
than the control beam (which utilizes the preparation beamline from Figure
3.3) such that the relevant control Rabi frequency distribution is approximately
homogeneous. We further replace the CCD camera with a photodiode5 since we
52051-FS, New Focus
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require temporal instead of spatial resolution and decrease the focal length of L4
to 50 mm. Finally, we now use a diverging cylindrical lens (focal length −50 mm)
to increase the size of the repump beam to 5400µm× 780µm (FWHM, width ×
height) at the crystal position. Since the beam is much wider than the window in
the crystal mounts, it prepares the Λ-system homogeneously in the entire volume
in which we previously measured the Rabi frequency distribution. Hence, we
create the coherence in this entire volume as well, and the individual coherences
experience different Rabi frequencies due to the inhomogeneous field.

Figure 3.8: Experimental
setup with probe (blue),
control (red), and repump
(green) beamlines, Pr:YSO
crystal (green), RF coils (pur-
ple), lenses (L), cylindrical
lens (CL), and photodiode
(PD).

probe

control

L3 L4 PD

L2

repump
CL

L1

Figure 3.9 summarizes the time sequence of our light storage and DD experi-
ments: (i) Preparation of the spectral pits by optical pumping. (ii) Transmission
measurement of a probe pulse as reference. (iii) Creation of the antihole on the
probe transition. (iv) Removal of unwanted population in state |3〉 to create the
Λ-system. (v) Storage of a probe pulse as a coherence using EIT. (vi) Optional
rephasing or DD by application of M cycles of a DD sequence. (vii) Readout of the
coherence as a signal pulse. We repeat the sequence (i–vii) and average the result
to reduce noise.
Figure 3.9: Time sequence of
optical and RF pulses (see
main text). Purple repre-
sents RF pulses; the other
colors correspond to beam-
lines from Figure 3.8. time (arb. units)

(i) (ii) (iii) (iv) (vi)(v) (vii)

3.4.2 Experimental Results
We discuss now our experimental results on DD with different pulse sequences
driven by inhomogeneous RF fields. We apply the time sequence discussed above
and presented in Figure 3.9. In particular, we choose rectangular probe pulses
with a duration of 10µs and a Rabi frequency of roughly 2π×50kHz. We optimize
the light storage efficiency without rephasing by varying the control Rabi frequency
and get typical efficiencies of ηLS(tS = 2µs) ≈ 20% at ΩC ≈ 2π× 250kHz. The
exact values depend on the optical alignment on each measurement day.
Next, we apply RF rephasing pulses. We choose these to be rectangular in

time with a duration of τ = 4µs, i.e., a mean Rabi frequency of ΩRF = 2π ×
125kHz limited by the available RF power. In this case, even the minimum Rabi
frequency 2π × 87.5kHz of the most inhomogeneous field is much larger than
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the independently measured inhomogeneous linewidth of the spin transition Γ =
2π×25 kHz, such that detuning errors are negligible. In systematic measurements,
we vary only the DD sequence and the number of cycles M but keep the time per
pulse fixed at tP = 12.5µs. This short time per pulse ensures a large number of
pulses, such that amplitude errors become a significant source of decoherence.
The cycle time is tC = N · tP with the number of pulses per cycle N that depends
on the specific DD sequence. Hence, the storage time is

tS = M · tC = M · N · tP =N · tP (3.1)

with the total number of pulses N ≡ M · N .
Furthermore, we are not interested in the light storage efficiency ηLS which

includes losses due to the memory process, but only in the efficiency of the rephas-
ing pulses. Hence, we normalize the data to the initial light storage efficiency
without DD to obtain the rephasing efficiency η(tS) = ηLS(tS)/ηLS(2µs).

We compare a total of ten different sequences and list their parameters in
Appendix C. Since that many of these sequences perform similarly, we sort them
into three groups: The non-robust "Carr, Purcell, Meiboom, Gill" (CPMG) sequence
[100, 101]; the low-order robust sequences XY4 [87] and UR4 [83] (with four
pulses each); and the high-order sequences XY8 and XY16 [88], KDD and KDD in
XY4 [49], and URN with N ≥ 8 [83]. Hence, to help the clarity of the following
analysis, we focus our discussion on CPMG, XY4, KDD in XY4, and UR16 (the
latter two being the best of the high-order sequences), i.e., on selected individuals
from each group.
In Figure 3.10(a) we compare the rephasing efficiency of these four DD se-

quences when increasing the number of cycles M—i.e., the storage time tS—in
the case of an almost homogeneous RF field with IH = 0.3 % (N1 = N2 = 10). For
short storage times, i.e., few pulses, we see a high rephasing efficiency close to
100 % that confirms the homogeneity of the driving RF fields since no pulse errors
reduce the coherence. For longer storage times, we see a decreasing efficiency
for all sequences that is predominantly caused by environmental noise but also
shows some unexpected oscillations.

From typical noise models based on phase memory [102–104] or an Ornstein-
Uhlenbeck process [105–107] we would expect a single stretched exponential
decay where the stretching exponent depends on the environmental noise. Follow-
ing these models, the decay should be exponential if the noise correlation time is
much shorter than the pulse separation, and stretched otherwise. From previous
experiments [63] and our data, we estimate a short noise correlation time in
Pr:YSO on the order of a few microseconds, i.e., smaller than the pulse separation
tP = 12.5µs and would thus expect a single exponential decay. However, this does
not match the shape we observe in our experiments.
We suspect that a residual, not fully shielded magnetic field in the laboratory

causes this discrepancy through a so-called dark state beating [107–110]. This
magnetic field lifts the degeneracy of the hyperfine states in Pr:YSO, leading to
the creation of coherences with eight unique transition frequencies that evolve
differently during the storage time. Hence, during readout, the coherences beat
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Figure 3.10: DD of coherences created by EIT
light storage in Pr:YSO for different coil se-
tups. Variation of the rephasing efficiency
η vs. storage time tS or total number of RF
pulses N . The RF field inhomogeneity in-
creases from top to bottom: (a) IH = 0.3%
(N1 = 10; N2 = 10), (b) IH = 9% (N1 = 13;
N2 = 3), (c) IH = 19% (N1 = 14; N2 = −3).
Comparison of four selected DD sequences.
We show additional sequences (XY8, XY16,
KDD, UR4, UR8, and UR32) in gray.

and the efficiency oscillates with the
storage time. We have seen clear ev-
idence of this dark state beating that
matches the theory [110] in rephas-
ing experiments with just two π pulses.
However, it is not fully clear how the
dark state beating affects DD with CP
sequences in the presence of pulse er-
rors. Hence, we require a more exten-
sive theoretical treatment to fully con-
firm dark state beating as the cause for
the oscillating shape of our experimen-
tal data.
Furthermore, we also see differ-

ences between the sequences in Figure
3.10(a), which indicate that there are
still residual pulse errors that are bet-
ter compensated for by some sequences.
These might be frequency errors, i.e.,
a detuning of the RF pulses from res-
onance, but we assume that they are
mostly pulse area errors since it is dif-
ficult to perfectly set the correct pulse
amplitude.

For CPMG, the simplest DD sequence
consisting of two identical pulses per
cycle, we see a fast initial drop with in-
creasing number of pulses, i.e., poor
error compensation, but a long tail
and the highest storage efficiency of
all sequences for storage times exceed-
ing 1.5 ms. The latter is presumably
caused by the CPMG sequence’s abil-
ity to preserve coherences with a sin-
gle phase very well, while it is very
sensitive to pulse errors for all other
phases [48, 87]. We note that this
imbalance also makes CPMG unsuit-
able for any quantum information ap-
plication where an arbitrary phase has
to be preserved. On the other hand,
XY4—probably the best-known robust
DD sequence—is phase-insensitive. As

we can see in Figure 3.10(a), XY4 (and UR4) also compensate for the remaining
pulse errors very well up to about 100 pulses. High-order sequences like the
state-of-the-art KDD in XY4 sequence and the universal robust UR16 sequence
can even compensate for them up to much higher numbers of pulses. The latter
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shows the best performance of all sequences tested over the course of this work.
These results already show that it is always beneficial to use robust DD sequences,

even if the pulse errors present in the system are very small and not necessarily
caused by field inhomogeneity.

Let us now consider the effect of inhomogeneity in the driving RF fields. In
Figures 3.10(b) and 3.10(c) we show the same measurement as before but with
a field inhomogeneity of IH = 9 % and IH = 19%, respectively. We can clearly
see that for a higher field inhomogeneity, i.e., larger pulse errors, the rephasing
efficiency at short storage times decreases, and the efficiency decays faster when
increasing the number of pulses. This effect is most pronounced for the CPMG
sequence, whereas the robust DD sequences can compensate for the pulse errors in
particular for few pulses. Again, as expected, high-order sequences perform better
than low-order sequences, and the difference between the sequences increases
(compare UR16 and KDD in XY4 to the other sequences shown as gray lines in
Figure 3.10). This confirms the varying error compensation of different sequences.

To further quantify this behavior, we fit the data to a function of the form

η(tS) =A · exp

�

−
�

tS

T2 f

�a�

+B · exp

�

−
�

tS

T2s

�b
�

, (3.2)

i.e., the sum of two (stretched) exponential decays. Here, T2 f and T2s are the
coherence times of a fast and a slow decay, while A, B, a, and b are fit constants.
We note that so far, this is a fully empirical model, but it still allows us to quantify
the data in the presence of dark state beating. We found that we can fix the
exponent of the fast decay to a = 2, while the exponent of the slow decay varies
between b ≈ 0.5 and 1.

We plot the time constants of both decays vs. the inhomogeneity of the driving
RF fields in Figure 3.11. For the fast decay time T2 f (Figure 3.11(a)) we see
qualitatively the expected behavior: CPMG shows a faster decay, i.e., a shorter
decay time, than the robust sequences independent of the field inhomogeneity
while all robust sequences perform similarly for homogeneous fields. When
increasing the field inhomogeneity, the decay time stays constant for all robust
sequences until a threshold is reached (about IH = 9 % for XY4 and UR4). At
this point, the errors become too large and are no longer fully compensated, i.e.,
the coherence time decreases. We assume that this threshold increases with the
sequence order, but cannot confirm this, since the decay time of all sequences with
more than four pulses does not decrease in the range of field inhomogeneities
we investigated. We further note that the measured decay is significantly faster
than the coherence time of the spin transition T g

2 = 500µs. We assume that this
short timescale is just the oscillation period of the dark state beating, but note
that a reduced coherence time could also be due to the noise correlation time in
our system being shorter than the pulse separation tP . In this case, DD would not
be able to decouple the system from the environment and might—in the presence
of pulse errors—even decrease the coherence time.

The slow decay (see Figure 3.11(b)) behaves as expected only for CPMG, which
shows a sharp drop in the decay time at about IH = 2.5 %. XY4 behaves much
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Figure 3.11: DD driven by inhomogeneous RF fields in Pr:YSO. Fast (a) and slow (b) decay
times of coherences rephased by DD vs. the driving field’s inhomogeneity IH . Compari-
son of four selected DD sequences. We show additional sequences (XY8, XY16, KDD, UR4,
UR8, and UR32 ((b) only)) in gray. Decay times were extracted using fits to Equation (3.2).

worse even for homogeneous fields and drops quickly toward zero. This is also
still somewhat expected since XY4 is known to have poor error compensation for
large numbers of pulses, i.e., long storage times, as investigated here [48, 83].
However, the high-order sequences perform very differently and do not show the
expected threshold behavior described above. Instead, they show a continuously
decreasing decay time that remains larger than for CPMG and XY4/UR4. So
far, we cannot explain this behavior. We see, however, that the decay time is
consistently longer for some sequences. In particular, UR16 shows the slowest
decay and even beats the state-of-the-art KDD in XY4 sequence. One could expect
that high-order sequences like UR32 would perform even better. However, the
cycle time tC = 400µs of UR32 is already comparable to the spin coherence lifetime
T g

2 = 500µs, and hence decoherence over a single cycle of the sequence outweighs
the additional error compensation. In other words, the optimal sequence strongly
depends on the medium and pulse parameters. Nevertheless, we see the general
trend that the universal robust class of sequences performs better than other
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robust sequences of the same or comparable order.
These results confirm the expectation and show that CP sequences are essential

for DD, in particular, in the presence of inevitable pulse errors.

Finally, we note that it is not clear that the simple models mentioned above
accurately describe the noise in Pr:YSO in the first place, nor that dark state
beating causes the oscillation in our data. In fact, there have been reports of multi-
exponential decays similar to what we observe in our experiments in rare-earth
ion-doped solids [107, 111] and other media [91, 112, 113]. The authors of both
[91] and [107], for example, attribute a fast decay to pulse errors and a slower
decay to environmental noise. However, contrary to our results, in this case one
would expect no dependence of the slow decay time T2s on the field inhomogeneity.
The authors of [112] and [111], on the other hand, explain shoulders in their
data with noise at specific frequencies. Again, this cannot explain the dependence
of the slower timescale on the field inhomogeneity we observe. Moreover, except
for [107], the published experiments utilized a fixed number of pulses where
the authors varied the pulse separation, whereas we varied the number of pulses.
Hence, it is difficult to compare their results to our measurements.

From the shape we observe in our experiments, i.e., the sum of two exponentials
(3.2), one could also assume that there may be two classes of ions in which the
coherence decays on different timescales. There have been reports of similar
effects in rare-earth ion-doped solids due to the random nature of the doping
which can lead, e.g., to some dopants being closer together than others [114].
However, in this case, we would expect a fast decay due to fast noise, i.e., it should
be exponential with a = 1, while the slow decay would show the opposite behavior,
i.e., a stretched exponential with b > 1. Neither is the case in our experiments.
We even find that b ≤ 1 which the typical noise model [105] cannot describe at
all.

However, independent of the unexplained shape, the main result of this chapter
remains unchanged: We clearly see that robust DD sequences and in particular
the universal robust class of sequences outperform conventional DD sequences in
the presence of typically unavoidable inhomogeneities in the driving RF fields.

3.5 Conclusion and Outlook
We presented a showcase experiment for DD with inhomogeneous driving fields. In
particular, we used RF pulses to preserve the coherence created by EIT light storage
in a Pr:YSO crystal. We varied the inhomogeneity of the RF fields by changing the
number of windings on the driving coils and compared the rephasing efficiency of
different DD sequences.
As a precondition to quantify the field inhomogeneities, we implemented a

setup to directly measure the spatial variation of the Rabi frequency in three
dimensions.
We performed systematic measurements where we increased the number of

rephasing pulses (and the storage time) for different DD sequences and RF field
configurations. We found that even with homogeneous driving fields, CP sequences
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increase the rephasing efficiency and coherence time significantly. Moreover, when
the field inhomogeneity increases, in particular the non-robust CPMG sequence
but also low-order CP sequences show a fast decrease in efficiency. High-order CP
sequences, on the other hand, clearly outperform the standard sequences and can
compensate for pulse errors to a high degree. In particular, the universal robust
class of sequences [83] shows the best error compensation and outperforms other
state-of-the-art sequences like KDD in XY4. With our experimental conditions,
UR16 was the best sequence, but we note that this can vary depending on the
specific experiment.

However, there are still some unresolved issues with the experimental data. We
saw oscillations in the efficiency as a function of the storage time, and the error
compensation of all DD sequences did not work as well as expected on longer
timescales. We suspect that both come from dark state beating [107–110] caused
by a residual static magnetic field.

Prospects for Future Work Hence, we suggest that the next step should be to
eliminate the dark state beating and to repeat these measurements. One could
do so by reducing the magnetic field to 0 but we already utilize passive shielding
and while an active compensation is possible, it also causes a large experimental
overhead [63, 110]. Instead, one should intentionally apply a magnetic field in a
single direction such that the level splitting becomes large enough that one can
optically address a single non-degenerate Λ-system. Since the Zeeman splitting in
Pr:YSO is on the order of 10 kHz/G [115], a weak field with about 10 G should
be sufficient. This provides the additional advantage, that even weak magnetic
fields suppress yttrium spin flips, i.e., the main noise source in Pr:YSO, so that the
coherence time increases [63, 116, 117]. One could then more easily apply DD
with more pulses to better probe the error compensation of CP sequences.
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Summary

This research project dealt with the experimental implementation of theory pro-
posals to spatially confine atomic excitations by different techniques of coherent
and adiabatic interactions—potentially also below the diffraction limit imposed
by the driving light fields. This tight confinement requires a strong nonlinear
dependence of the coherent excitation probability on the laser intensities, which
we achieved using adiabatic passage processes or NCP sequences.

In the first chapter, we investigated the adiabatic passage processes STIRAP
[15] and EIT [26, 45]. They show pronounced robustness against variations of
experimental parameters, which leads to a threshold-like behavior of the trans-
fer efficiency vs. laser intensity and, hence, enables spatially tightly confined
population dynamics. We applied a STED-like beam geometry with a Gaussian
Stokes and a "donut"-shaped pump beam to localize population in the node of
the latter. We presented a convincing experimental demonstration and a thor-
ough investigation of both techniques. Our data confirmed that adiabatic passage
confines population to spatial extensions far below the beam diameter. With a
pump beam waist of wP = 100µm, we confined the population to ∆r ≈ 20µm
for EIT and ∆r ≈ 3µm for STIRAP. This is the first implementation of EIT-driven
localization in a solid, and the first implementation of the STIRAP-based approach
at all. Furthermore, we confirmed that the localization improves with increasing
pump intensity and that STIRAP converges to smaller population regions much
faster than EIT, as predicted by theory [15, 16, 19]. The data agree very well
with numerical simulations and the analytic treatment [19]. We published these
results in the special issue "Coherent Control: Photons, Atoms and Molecules" of
the Journal of Physics B [51].
Moreover, in the second chapter, we implemented NCP sequences for high-

resolution addressing [20–22]. They show a strong dependence of the excitation
probability on the laser intensity. Our data confirmed that this confines excita-
tion below the diameter of the driving Gaussian laser profile. This is the first
implementation of NCP-driven localization in a solid. With N = 31 pulses, we
reached a localization to 25 % of the beam diameter, which is far below the previ-
ously reported value of ≈ 72 % [22]. Furthermore, we found that most previously
proposed NCP sequences cannot be applied on an inhomogeneously broadened
transition. Hence, we collaborated with our theory partners in the team of Nikolay
V. Vitanov (University of Sofia) to develop specific sequences matched to our
medium. We compared them to several previously published classes of sequences
and confirmed that the confinement improves with the number of pulses but
also strongly depends on the class of sequence, as predicted by theory [74]. The
results, in particular regarding the inhomogeneously broadened line, agree very
well with the numerical simulation. We are currently preparing a manuscript to
publish these results.
These proof-of-principle experiments on localization by STIRAP or NCP se-

quences still operated well above the diffraction limit. Nevertheless, they permit
extrapolation toward obtaining spatially confined population in the subdiffraction

59



Summary

regime. This will be relevant to quantum information technology and well beyond.
Finally, in the last chapter, we investigated CP sequences in the context of error

compensation. We provided a simple showcase experiment where we increased
the coherence time of a quantum memory using DD, but intentionally introduced
pulse errors in the form of inhomogeneous driving fields. We fully characterized
these inhomogeneities and performed systematic measurements to compare the
ability of various robust DD sequences to compensate for the errors. Our data
showed that even in the case of homogeneous driving fields, robust DD sequences
improve the coherence time. This difference becomes even more pronounced
when the inhomogeneity increases. In particular, we found that the universal
robust sequences [83] outperform other sequences of the same or similar order.

As the next step, we will perform additional measurements without dark state
beating and then publish the results of this showcase experiment.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der experimentellen Umsetzung von theo-
retischen Vorschlägen zur räumlichen Begrenzung von atomarer Anregung durch
verschiedene Techniken kohärenter und adiabatischer Wechselwirkungen. Die-
se erlauben es prinzipiell auch unterhalb des Beugungslimits der treibenden
Lichtfelder zu lokalisieren. Eine solche enge Lokalisierung erfordert eine star-
ke nichtlineare Abhängigkeit der kohärenten Anregungswahrscheinlichkeit von
den Laserintensitäten, die wir mit adiabatischen Transferprozessen oder schmal-
bandigen Kompositpulssequenzen (kurz NCP-Sequenzen von engl. narrowband
composite pulse) erreicht haben.
Im ersten Kapitel haben wir die beiden adiabatischen Transferprozesse der

stimulierten Raman-adiabatischen Passage (STIRAP) und der elektromagnetisch in-
duzierten Transparenz (EIT) untersucht. Diese zeigen eine ausgeprägte Robustheit
gegenüber Variationen der experimentellen Parameter, was zu einem schwel-
lenartigen Verhalten der Transfereffizienz gegenüber der Laserintensität führt.
Letzteres ermöglicht eine räumlich eng begrenzte Besetzungsdynamik. Wir haben
eine Strahlgeometrie ähnlich der STED-Mikroskopie (engl. stimulated emission
depletion) mit einem Gaußschen Stokes- und einem „Donut“-förmigen Pumpstrahl
verwendet, um die Besetzung im Zentrum des Pumpstrahls zu lokalisieren. Wir
haben eine überzeugende experimentelle Demonstration und eine gründliche Un-
tersuchung beider Techniken präsentiert. Unsere Daten haben bestätigt, dass der
adiabatische Transfer die Besetzung auf räumliche Ausdehnungen weit unterhalb
des Strahldurchmessers lokalisiert. Bei einer Pumpstrahltaille von wP = 100µm
haben wir die Besetzung auf einen Durchmesser von ∆r ≈ 20µm für EIT und
∆r ≈ 3µm für STIRAP begrenzt. Dies stellt die erste Implementierung der EIT-
basierten Lokalisierung in einem Festkörper und die erste Implementierung des
STIRAP-basierten Ansatzes überhaupt dar. Weiterhin haben wir bestätigt, dass sich
die Lokalisierung mit zunehmender Pumpintensität verbessert und dass STIRAP,
wie von der Theorie vorhergesagt, viel schneller zu kleineren Besetzungsregionen
konvergiert als EIT. Die Daten stimmen sehr gut mit numerischen Simulationen
und der analytischen Rechnung [19] überein. Wir haben diese Ergebnisse in der
Sonderausgabe „Coherent Control: Photons, Atoms and Molecules“ des Journal of
Physics B veröffentlicht [51].

Weiterhin haben wir im zweiten Kapitel NCP-Sequenzen für die hochauflösende
Adressierung implementiert. Diese zeigen eine starke Abhängigkeit der Anregungs-
wahrscheinlichkeit von der Laserintensität. Unsere Daten haben bestätigt, dass sie
dadurch die Anregung unter den Durchmesser des Gauß-förmigen Strahlprofils
begrenzen. Dies ist die erste Implementierung von NCP-basierter Lokalisierung
in einem Festkörper. Mit N = 31 Pulsen haben wir eine Lokalisierung auf 25 %
des Strahldurchmessers erreicht, was weit unter dem zuvor veröffentlichten Wert
von ca. 72 % [22] liegt. Ferner haben wir festgestellt, dass die meisten zuvor ver-
öffentlichten NCP-Sequenzen nicht auf einem inhomogen verbreiterten Übergang
angewendet werden können. Daher haben wir mit unseren Theoriepartnern in
der Gruppe von Nikolay V. Vitanov (Universität Sofia) zusammengearbeitet, um
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Sequenzen zu entwickeln, die auf unser Medium angepasst sind. Wir haben sie mit
mehreren bereits veröffentlichten Klassen von Sequenzen verglichen und bestätigt,
dass sich die Lokalisierung mit der Anzahl der Pulse verbessert, aber auch, wie
von der Theorie vorhergesagt [74], stark von der Klasse der Sequenz abhängt. Die
Ergebnisse – insbesondere auch in Bezug auf die inhomogen verbreiterte Linie –
stimmen sehr gut mit einer numerischen Simulation überein. Wir bereiten derzeit
ein Manuskript zur Veröffentlichung dieser Ergebnisse vor.

Diese grundsätzlichen Experimente zur Lokalisierung durch STIRAP bzw. NCP-
Sequenzen haben wir noch weit oberhalb des Beugungslimits durchgeführt. Den-
noch erlauben sie eine Extrapolation auf die räumliche Begrenzung von Besetzung
im Bereich unterhalb des Beugungslimits. Dies wird für die Quanteninformations-
technologie und weit darüber hinaus von Bedeutung sein.
Im letzten Kapitel haben wir Kompositpulssequenzen in Bezug auf Fehler-

kompensation untersucht. Wir haben ein einfaches Demonstrationsexperiment
durchgeführt, bei dem wir die Kohärenzzeit eines Quantenspeichers mithilfe
von dynamischer Dekohärenzkontrolle (DD) erhöht haben, gleichzeitig aber ab-
sichtlich Pulsfehler in Form von inhomogenen Entkopplungspulsen eingeführt
haben. Wir haben diese Inhomogenitäten vollständig charakterisiert und systema-
tische Messungen durchgeführt, um zu vergleichen, wie gut verschiedene robuste
DD-Sequenzen die Fehler kompensieren. Unsere Daten haben gezeigt, dass robus-
te DD-Sequenzen selbst im Falle homogener Pulse die Kohärenzzeit verbessern.
Dieser Unterschied wird noch deutlicher, wenn die Inhomogenität zunimmt. Insbe-
sondere haben wir bestätigt, dass die universell-robusten Sequenzen [83] andere
Sequenzen gleicher oder ähnlicher Ordnung, d. h. Pulszahl, übertreffen.

In einem nächsten Schritt werden wir weitere Messungen, die nicht durch eine
Dunkelzustandsschwebung limitiert sind, durchführen, um dann die Ergebnisse
dieses Demonstrationsexperiments zu veröffentlichen.
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Appendix A

Parameters of NCP Sequences for
Localization

We give now the relevant parameters, i.e., the phases, of all NCP sequences
we used for localization in Chapter 2. All of them were derived by our theory
cooperation partners in the group of Nikolay V. Vitanov. In particular, he developed
the antisymmetric and optimized sequences specifically for this work and they
have not yet been published elsewhere.

We can calculate the phasesφk of an analytic NCP sequence with an odd number
of pulses N from [21]

φk =

¨

kπ
N (k = 2, 4,6, . . . , N − 1),
− (k−1)π

N (k = 1, 3,5, . . . , N).
(A.1)

In all other cases, the sequences were derived numerically, and we list their
phases in the following tables. We give all phases φk in units of π.

Table A.1: The phases (in units of π) of the symmetric sequences [20]. The sequences are
symmetric, i.e., of the form (φ1 = 0,φ2, . . . ,φl , . . . ,φ2,φ1 = 0) with N = 2l − 1. We list
only the first l phases.

Pulse count N Phases (φ1,φ2, . . . ,φl)

5 (0, 0.839, 1.42)
9 (0, 0.426, 1.49, 0.858, 1.3)

13 (0, 1.103, 0.876, 0.154, 1.708, 1.02, 0.229)
21 (0, 1.073, 0.919, 0.131, 1.831, 1.156, 0.721, 0.096,

1.521, 0.812, 1.954)
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Table A.2: The phases (in units ofπ) of the numeric sequences with the excitation thresh-
old ε= 0.01% [74].

Pulse count N Phases (φ1,φ2, . . . ,φN )

3 (0, 0.65, 1.301)
5 (0, 0.332, 1.58, 0.828, 1.16)
7 (0, 0.663, 0.506, 1.842, 1.178, 1.021, 1.684)
9 (0, 0.478, 0.959, 1.61, 1.132, 0.654, 1.306, 1.786,

0.265)
11 (0, 0.804, 0.889, 1.387, 1.568, 1.875, 0.183, 0.364,

0.863, 0.948, 1.753)

Table A.3: The phases (in units ofπ) of the numeric sequences with the excitation thresh-
old ε= 0.1% [74].

Pulse count N Phases (φ1,φ2, . . . ,φN )

3 (0, 0.631, 1.262)
5 (0, 0.295, 1.575, 0.856, 1.151)
7 (0, 0.612, 0.409, 1.796, 1.182, 0.98, 1.591)
9 (0, 0.417, 0.837, 1.471, 1.055, 0.639, 1.273, 1.693,

0.11)
11 (0, 0.776, 0.859, 1.313, 1.472, 1.744, 0, 0.153,

0.576, 0.643, 1.399)

Table A.4: The phases (in units ofπ) of the numeric sequences with the excitation thresh-
old ε= 1% [74].

Pulse count N Phases (φ1,φ2, . . . ,φN )

3 (0, 0.587, 1.174)
5 (0, 0.238, 1.58, 0.923, 1.161)
7 (0, 0.124, 1.82, 0.502, 1.183, 0.879, 1.003)
9 (0, 0.335, 0.677, 1.27, 0.938, 0.605, 1.199, 1.54,

1.875)
11 (0, 0.281, 0.313, 1.784, 0.1, 0.597, 1.094, 1.411,

0.883, 0.917, 1.2)
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Table A.5: The phases (in units of π) of the optimized sequences. The sequences are antisymmetric, i.e., of the form (φ1,φ2, . . . ,φl =
0, . . . ,−φ2,−φ1) with N = 2l − 1. We list only the first l phases.

Pulse count N Phases (φ1,φ2, . . . ,φl)

3 (0.5961, 0)
5 (0.9107, 0.2493, 0)
7 (0.8947, 0.5874, 1.8962, 0)
9 (0.8439, 1.3539, 1.8271, 1.5887, 0)

11 (1.4433, 0.7439, 0.6835, 0.3272, 0.2091, 0)
13 (1.576, 0.8705, 0.8232, 0.456, 0.3701, 0.1432, 0)
15 (1.8023, 1.0941, 1.0447, 0.6594, 0.5732, 0.3151, 0.1843, 0)
17 (0.2352, 0.8624, 1.0553, 1.2164, 1.4625, 1.6732, 1.5441, 0.0311, 0)
19 (1.8479, 1.2751, 0.981, 0.9493, 0.6312, 0.4917, 0.3592, 0.4262, 1.887, 0)
21 (1.7514, 1.3271, 1.0313, 0.8945, 0.5592, 0.5767, 0.6626, 0.4913, 1.8487, 0.0381, 0)
23 (1.6864, 1.4253, 1.1396, 0.767, 0.4155, 0.7338, 0.8962, 0.5376, 0.1081, 0.2852, 1.9109, 0)
25 (1.6293, 1.6013, 1.2881, 0.7557, 0.7333, 0.6666, 0.6003, 0.991, 0.4791, 0.1233, 0.0644, 0.1627, 0)
27 (0.2779, 1.7844, 1.3326, 1.4903, 1.1737, 0.941, 0.8286, 0.9406, 0.4875, 0.4249, 0.5421, 0.1645, 0.1325,

0)
29 (0.9509, 0.678, 0.1595, 1.9907, 0.0682, 0.031, 1.4253, 1.5511, 1.4331, 1.239, 1.1535, 0.738, 0.5688,

0.433, 0)
31 (1.0001, 1.4601, 1.756, 0.0908, 0.0722, 0.1049, 0.4856, 0.7993, 0.7721, 0.5517, 1.137, 1.2393, 1.4059,

1.6235, 1.698, 0)
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Table A.6: The phases (in units of π) of the antisymmetric sequences with the excitation threshold ε= 1 %. The sequences are antisymmetric,
i.e., of the form (φ1,φ2, . . . ,φl = 0, . . . ,−φ2,−φ1) with N = 2l − 1. We list only the first l phases.

Pulse count N Phases (φ1,φ2, . . . ,φl)

3 (0.5867, 0)
5 (0.4167, 0.6531, 0)
7 (0.4962, 0.3741, 0.6722, 0)
9 (0.2638, 0.5868, 0.9098, 0.3231, 0)

11 (1.0521, 0.8626, 0.1783, 0.286, 0.3356, 0)
13 (0.3081, 0.3103, 0.7134, 1.0449, 0.4763, 0.3045, 0)
15 (0.808, 0.7523, 0.8893, 0.5425, 1.8546, 0.0639, 1.9734, 0)
17 (0.5511, 0.5869, 0.255, 0.1629, 0.542, 0.8862, 0.4558, 0.4502, 0)
19 (0.772, 0.8166, 1.384, 1.5422, 1.6391, 1.3322, 1.6465, 0.0531, 1.8781, 0)
21 (0.7721, 0.3532, 0.3977, 0.3727, 0.2405, 0.4101, 0.8202, 0.6987, 0.6325, 0.0469, 0)
23 (0.2855, 0.5246, 0.0672, 0.2785, 0.6819, 0.9743, 0.7609, 0.7125, 0.5803, 0.2815, 1.9764, 0)
25 (0.7752, 0.7436, 0.8543, 0.9156, 0.951, 0.3405, 0.3542, 0.1142, 1.7152, 1.8812, 0.1249, 0.2441,

0)
27 (0.9106, 0.7793, 0.8741, 0.919, 0.6748, 0.1305, 0.4263, 0.3121, 0.1732, 0.031, 1.5934, 1.601,

1.8221, 0)
29 (1.592, 1.6943, 1.8226, 1.6936, 1.7099, 1.148, 1.0171, 1.2158, 1.3742, 1.1667, 1.3745, 1.755,

1.7427, 0.0888, 0)
31 (0.1506, 0.1473, 0.4329, 0.6354, 0.4592, 0.6133, 0.5471, 0.909, 0.8177, 0.8211, 0.8799, 0.2678,

0.0471, 0.1753, 0.1386, 0)
33 (0.0605, 0.3173, 0.3687, 0.3214, 0.7288, 0.691, 0.4768, 0.5922, 0.755, 1.0539, 0.9969, 0.4875,

0.5086, 0.1605, 0.0942, 1.9699, 0)
35 (0.7764, 0.8959, 0.4011, 0.3161, 0.2605, 0.1795, 0.3489, 0.6039, 0.5421, 0.2292, 0.3143, 0.6859,

0.6385, 0.7293, 0.4954, 0.4996, 0.1466, 0)
37 (1.9595, 0.0756, 0.1623, 0.3757, 0.6084, 1.002, 0.7508, 0.4055, 0.5571, 0.5575, 0.6507, 0.592,

0.8204, 0.5076, 0.553, 0.49, 0.0528, 0.0186, 0)
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39 (0.1087, 0.2857, 0.1066, 0.5401, 0.5102, 0.5232, 0.6996, 0.7261, 0.3576, 0.5627, 0.9152, 1.0572,
0.921, 0.6668, 0.4357, 0.3466, 0.0842, 1.9795, 0.0811, 0)

41 (0.011, 1.9903, 0.1027, 0.1698, 0.7533, 0.6829, 0.554, 0.755, 0.6636, 0.5558, 0.3994, 0.5137,
0.7315, 0.8742, 0.634, 0.6768, 0.3095, 0.1907, 0.2657, 0.2342, 0)

43 (0.7016, 0.5836, 0.6095, 0.2795, 0.5116, 0.3351, 0.2791, 0.3566, 0.132, 0.0988, 0.6051, 0.6613,
0.5835, 0.5485, 0.7326, 0.85, 0.7427, 0.6024, 0.2946, 1.9385, 1.9916, 0)

45 (0.1309, 0.0921, 0.2904, 0.1137, 0.1668, 0.5634, 0.8871, 0.6043, 0.8313, 0.7831, 0.786, 0.7749,
0.4961, 0.4196, 0.2216, 0.3962, 0.7556, 0.6052, 0.5514, 0.4025, 0.2568, 0.0817, 0)
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Table A.7: The phases (in units of π) of the antisymmetric sequences with the excitation threshold ε = 3 %. The sequences are antisymmetric,
i.e., of the form (φ1,φ2, . . . ,φl = 0, . . . ,−φ2,−φ1) with N = 2l − 1. We list only the first l phases.

Pulse count N Phases (φ1,φ2, . . . ,φl)

3 (0.5478, 0)
5 (0.4014, 0.6036, 0)
7 (0.4679, 0.3661, 0.6192, 0)
9 (0.2743, 0.5479, 0.8215, 0.2737, 0)

11 (0.9405, 0.7834, 0.1544, 0.243, 0.2838, 0)
13 (0.3107, 0.3125, 0.6529, 0.9397, 0.41, 0.2559, 0)
15 (0.7374, 0.6918, 0.8046, 0.5114, 1.8791, 0.0525, 1.9782, 0)
17 (0.5133, 0.5426, 0.2648, 0.1967, 0.5245, 0.8278, 0.4145, 0.3883, 0)
19 (1.0857, 1.0493, 0.5481, 0.3897, 0.2779, 0.5719, 0.3104, 1.9541, 0.1001, 0)
21 (0.6942, 0.3357, 0.3807, 0.3709, 0.2512, 0.4053, 0.771, 0.6325, 0.5603, 0.0383, 0)
23 (0.2924, 0.4908, 0.0825, 0.316, 0.6696, 0.8921, 0.6873, 0.6276, 0.4963, 0.236, 1.9807, 0)
25 (0.7102, 0.6844, 0.7749, 0.8227, 0.8514, 0.3148, 0.3486, 0.1098, 1.7439, 1.8907, 0.1027, 0.2023,

0)
27 (0.8224, 0.7147, 0.7939, 0.8286, 0.6261, 0.1426, 0.42, 0.3223, 0.1844, 0.0327, 1.6501, 1.6654,

1.8534, 0)
29 (1.6074, 1.6911, 1.7964, 1.6895, 1.7042, 1.2068, 1.0931, 1.2621, 1.448, 1.2699, 1.4561, 1.7986,

1.7795, 0.0726, 0)
31 (0.1817, 0.1791, 0.4162, 0.5895, 0.4411, 0.5726, 0.5109, 0.8268, 0.7237, 0.7531, 0.7822, 0.2231,

0.0388, 0.144, 0.1134, 0)
33 (0.1076, 0.3212, 0.3644, 0.3211, 0.6773, 0.6392, 0.4342, 0.559, 0.712, 0.9352, 0.8841, 0.4095,

0.4257, 0.131, 0.0774, 1.9754, 0)
35 (0.6983, 0.796, 0.3625, 0.3012, 0.2514, 0.1598, 0.3449, 0.5826, 0.5269, 0.2746, 0.3443, 0.6698,

0.5971, 0.6582, 0.4339, 0.4226, 0.1203, 0)
37 (0.0242, 0.1193, 0.1903, 0.3682, 0.57, 0.9328, 0.7434, 0.4211, 0.5309, 0.5416, 0.6052, 0.5277,

0.7331, 0.4429, 0.4777, 0.4172, 0.043, 0.0152, 0)
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39 (0.1473, 0.2929, 0.1416, 0.5286, 0.4652, 0.4965, 0.6626, 0.6447, 0.3384, 0.5618, 0.8585, 0.9491,
0.803, 0.5649, 0.3634, 0.2886, 0.07, 1.9827, 0.0663, 0)

41 (0.0664, 0.0495, 0.1414, 0.1955, 0.7154, 0.6562, 0.5504, 0.7447, 0.6492, 0.5413, 0.383, 0.4808,
0.6518, 0.7745, 0.5615, 0.5837, 0.2593, 0.1611, 0.2231, 0.1936, 0)

43 (0.6363, 0.5398, 0.5615, 0.2827, 0.4953, 0.3144, 0.2971, 0.3573, 0.1462, 0.1637, 0.6029, 0.6108,
0.5325, 0.5156, 0.6891, 0.7832, 0.6697, 0.5245, 0.2502, 1.9499, 1.9932, 0)

45 (0.1645, 0.1328, 0.2964, 0.1451, 0.1981, 0.5419, 0.8303, 0.5633, 0.7738, 0.7455, 0.7538, 0.7288,
0.4698, 0.3898, 0.2241, 0.377, 0.6715, 0.5291, 0.4697, 0.3362, 0.2116, 0.0668, 0)
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Table A.8: The phases (in units ofπ) of the antisymmetric sequences with the excitation threshold ε= 10%. The sequences are antisymmetric,
i.e., of the form (φ1,φ2, . . . ,φl = 0, . . . ,−φ2,−φ1) with N = 2l − 1. We list only the first l phases.

Pulse count N Phases (φ1,φ2, . . . ,φl)

3 (0.4796, 0)
5 (0.3645, 0.5224, 0)
7 (0.2602, 0.637, 0.3768, 0)
9 (0.2679, 0.4796, 0.6912, 0.2117, 0)

11 (0.7827, 0.6637, 0.122, 0.1889, 0.2195, 0)
13 (0.2954, 0.2967, 0.5593, 0.7861, 0.3226, 0.1965, 0)
15 (0.628, 0.5938, 0.6786, 0.4522, 1.9083, 0.0394, 1.9837, 0)
17 (0.4499, 0.4718, 0.2591, 0.2138, 0.4729, 0.7195, 0.346, 0.3069, 0)
19 (0.1604, 0.4132, 0.3959, 0.5442, 0.5017, 0.7561, 0.5058, 0.0744, 0.0879, 0)
21 (0.5854, 0.3046, 0.3457, 0.3471, 0.2463, 0.3761, 0.6804, 0.5324, 0.4586, 0.0287, 0)
23 (0.2819, 0.4323, 0.0969, 0.3351, 0.6166, 0.7596, 0.5734, 0.5078, 0.3885, 0.1808, 1.9856, 0)
25 (0.6081, 0.5888, 0.6566, 0.6908, 0.7123, 0.2779, 0.3276, 0.101, 1.789, 1.9087, 0.0773, 0.1536,

0)
27 (0.692, 0.6112, 0.6716, 0.6961, 0.543, 0.1473, 0.3933, 0.311, 0.18, 0.0325, 1.7255, 1.744,

1.8897, 0)
29 (1.6432, 1.7059, 1.7847, 1.7039, 1.7158, 1.3101, 1.2191, 1.3519, 1.552, 1.411, 1.5643, 1.849,

1.8274, 0.0543, 0)
31 (0.1741, 0.2498, 0.3431, 0.493, 0.4895, 0.3612, 0.5769, 0.6362, 0.5895, 0.6998, 0.605, 0.1247,

0.1155, 0.0053, 0.1562, 0)
33 (0.1435, 0.3053, 0.3383, 0.3026, 0.5877, 0.5517, 0.3699, 0.4966, 0.6328, 0.769, 0.7248, 0.3135,

0.3248, 0.0975, 0.058, 1.9817, 0)
35 (0.5883, 0.6616, 0.3128, 0.2751, 0.2333, 0.1405, 0.3266, 0.5326, 0.4848, 0.3006, 0.3435, 0.605,

0.515, 0.5453, 0.3476, 0.327, 0.0902, 0)
37 (0.08, 0.1512, 0.2045, 0.34, 0.5001, 0.8097, 0.6884, 0.4069, 0.4672, 0.4862, 0.5233, 0.4322,

0.6044, 0.3549, 0.3785, 0.3252, 0.0322, 0.0114, 0)
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39 (0.1729, 0.2825, 0.1659, 0.4838, 0.3964, 0.4472, 0.586, 0.5307, 0.3071, 0.5287, 0.7521, 0.7887,
0.6426, 0.4375, 0.277, 0.2196, 0.0532, 1.9868, 0.0495, 0)

41 (0.1116, 0.099, 0.1677, 0.2077, 0.6355, 0.589, 0.5094, 0.688, 0.592, 0.4895, 0.3402, 0.4179,
0.5383, 0.6326, 0.4567, 0.4611, 0.1986, 0.1243, 0.1711, 0.1463, 0)

43 (0.5417, 0.4694, 0.486, 0.2708, 0.4489, 0.2784, 0.2983, 0.3323, 0.1512, 0.2125, 0.5571, 0.5221,
0.4528, 0.4592, 0.6113, 0.6728, 0.5575, 0.4188, 0.1941, 1.9626, 1.9949, 0)

45 (0.1852, 0.1616, 0.2847, 0.1668, 0.2139, 0.4869, 0.7253, 0.4896, 0.6735, 0.6646, 0.6744, 0.6353,
0.41, 0.3337, 0.2068, 0.3288, 0.5464, 0.4222, 0.365, 0.2562, 0.1592, 0.0499, 0)
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Appendix B

Incoherent Population Transfer in NCP
Experiments

During our experiments on localization by NCP sequences, we found some back-
ground population transfer. Here, we present systematic measurements and
numerical simulations to determine its origin.
We can extract information about this background from fits to the ring-type

localization we presented in Section 2.4.4, i.e., experiments where the pulse area
in the center of the beam is 2π. Here, population transfer should be suppressed
everywhere except in a ring on the wings of the beam profile, where A(r) = π.
However, as we can see in Figure B.1 (blue line), where we show a cut through the
experimentally determined population distribution after localization, this is not
the case. Instead, we see three distinguishable features: The expected narrow ring
of population localized by the NCP sequence (black, dashed line); a wider ring
from decay of the excited state during the NCP sequence (orange, dash-dotted
line); and a broad background caused by direct incoherent population transfer
(green line). We can quantify these features with a fit of the form

P3(r) = pl · exp
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(B.1)
where r is the radial coordinate and r0 is the radius of the ring. pi and wi with
i = c, d, l are the amplitude and width of the three features, and d > 2 is an
exponent to describe the saturated profile of the decay.

Figure B.1: NCP-driven ring
localization using the opti-
mized sequence with N =
11 pulses. Variation of the
population P3(x) vs. coor-
dinate x . The peak Rabi
frequency is Ω0 = 2π ×
2.5MHz and the total se-
quence duration is tC =
50µs. Experimental data
(blue line) and a fit to Equa-
tion (B.1) with the three fea-
tures shown separately as
black, dashed (localization),
orange, dash-dotted (decay),
and green (incoherent trans-
fer) lines.

−200 −100 0 100 200
coordinate x (µm)

po
pu

la
ti

on
P 3

(a
rb

.u
ni

ts
)

72



Appendix B Incoherent Population Transfer in NCP Experiments

0.5 1.0 1.5 2.0 2.5
peak Rabi frequency Ω0 (2π×MHz)

50

100

150

200

se
qu

en
ce

du
ra

ti
on

t C
(µ

s)

(a)

0.5 1.0 1.5 2.0 2.5
peak Rabi frequency Ω0 (2π×MHz)

(b)

0.5 1.0 1.5 2.0 2.5
peak Rabi frequency Ω0 (2π×MHz)

no
rm

.b
ac

kg
ro

un
d

am
p.

p c

(c)

0 50 100 150 200
sequence duration tC (µs)

no
rm

.d
ec

ay
am

pl
it

ud
e

p d(d)

0.36 0.48 0.60 0.72 0.84 0.96
normalized background amplitude pc

0.36 0.48 0.60 0.72 0.84 0.96
normalized background amplitude pc

0.0 0.2 0.4 0.6 0.8 1.0
normalized decay amplitude pd

0.0 0.2 0.4 0.6 0.8 1.0
normalized decay amplitude pd

peak Rabi frequency Ω0 (2π×MHz)

Figure B.2: Background analysis for NCP-driven ring localization using the optimized se-
quence with N = 11 pulses. Amplitude of the incoherent background peak (a) and broad
ring (b) extracted with fits to Equation (B.1) vs. peak Rabi frequency Ω0 and sequence du-
ration tC . (c) Data from (a) plotted only over the peak Rabi frequency (green circles) and
a fit to a 4th order power law (black, dashed line). (d) Data from (b) plotted only over the
sequence duration (orange circles) and a linear fit (black, dashed line).

We perform systematic measurements where we keep the pulse area fixed but
vary the peak Rabi frequency Ω0 and the total sequence duration tC . We extract
the amplitude of the broad, incoherent background pc and the amplitude of the
wide ring pd from fits to Equation (B.1) and plot them in Figure B.2. As we can
see, the background scales almost exclusively with the peak Rabi frequency Ω0

but is independent of the total sequence duration tC (see Figure B.2(a)), whereas
the ring amplitude shows the opposite behavior (see Figure B.2(b)).
We attribute the broad background to the incoherent transfer of population

from the initial state |1〉 directly to the final state |3〉, since it occurs in the pulse
center where the pulse area A(r = 0) = 2π and the NCP sequences suppress
coherent excitation. We suspect that this population transfer is caused by Raman
scattering. Alternatively, coupling to the excited state |4〉 could similarly lead
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to such a transfer. However, state |4〉 is detuned from the NCP transition by
4.6 MHz, so this coupling should be negligible for our peak Rabi frequencies
Ω0 ≤ 2π× 2.5 MHz. We plot the amplitude of this background over the peak Rabi
frequency of the driving NCP pulses in Figure B.2(c) (green circles). Except for the
data at Ω0 = 2π× 0.5 MHz, we find that the background increases with the Rabi
frequency, which supports our assumption. However, we find that the data scales
with Ω4

0 (see black, dashed line) and not Ω2
0 as we would expect for both Raman

scattering and off-resonant coupling. Hence, we require further investigations to
fully understand the underlying process. Nevertheless, we see that a small peak
Rabi frequency reduces the transfer and thus chose Ω0 = 2π × 1 MHz for most
experiments in Chapter 2.

The broad ring, on the other hand, is caused by the decay of population during
the NCP sequence. Since the pulse duration τ ≈ 1µs is much shorter than the
excited state lifetime T e

1 = 164µs, decay occurs only where a significant amount
of population remains excited after each individual pulse, i.e., in the ring where
A(r) ≈ π. As expected, the ring amplitude is independent of the peak Rabi
frequency but increases (linearly) with the sequence duration (see Figure B.2(d)).
This background is almost negligible for the sequence durations tC ≲ 30µs we
used in the main experiments.
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Appendix C

Parameters of Robust CP Sequences for DD

In this appendix, we list the relevant parameters, i.e., the phases, of all robust DD
sequences we investigated in Chapter 3.

We can calculate the phases φk of a universal robust sequence with an even
number of pulses N from [83]

φk =
(k− 1)(k− 2)

2
Φ(N) + (k− 1)φ2 (C.1)

with
Φ(N) =

¨

π
m N = 4m,

− 2mπ
2m+1 N = 4m+ 2.

(C.2)

φ2 is a free parameter and we choose

φ2 =
2− N

2
Φ(N) (C.3)

to create symmetric sequences.

We list the phases φk (in units of π) of all other sequences in the following
table.

Table C.1: The phases (in units of π) of all DD sequences.

Sequence Phases (φ1,φ2, . . . ,φN ) source
CPMG (0, 0) [100, 101]
XY4 (0, 1, 0, 1)/2 [87]
XY8 (0, 1, 0, 1, 1, 0, 1, 0)/2 [88]
XY16 (0, 1, 0, 1, 1, 0, 1, 0, 2, 3, 2, 3, 3, 2, 3, 2)/2 [88]
KDD1 (1, 0, 3, 0, 1, 1, 0, 3, 0, 1)/6 [49]
KDD in XY41 (1, 0, 3, 0, 1, 4, 3, 6, 3, 4, 1, 0, 3, 0, 1, 4, 3, 6, 3, 4)/6 [49]

1Note that we use a different nomenclature than the authors of [49]. In the latter work, the KDD
sequence is called "CPMG (with robust pulses)" and the KDD in XY4 sequence is called "KDD
sequence".
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List of Abbreviations

AWG Arbitrary waveform generator
BS Beam splitter
CCD Charge-coupled device
CP Composite pulse
CPMG "Carr, Purcell, Meiboom, Gill"
DD Dynamical decoupling
EIT Electromagnetically induced transparency
FWHM Full width at half maximum
KDD Knill dynamical decoupling
NCP Narrowband composite pulse
NMR Nuclear magnetic resonance
PD Photodiode
PEEK Polyether ether ketone
Pr:YSO Praseodymium doped yttrium-orthosilicate (Pr3+:Y2SiO5)
RF Radio frequency
SPP Spiral phase plate
STED Stimulated emission depletion
STIRAP Stimulated Raman adiabatic passage
UR Universal robust (pulse sequence)
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