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Zusammenfassung

Diese Thesis behandelt das Thema der Surrogatmodellierung von Vorwärts- und Inversen Problemen
im Rahmen von parameterabhängige Systemen, welche von Differentialgleichungen beschreiben sind.
Surrogatmodelle werden genutzt um eine genaue Approximation des parameterabhängigen Systemzustan-
des zu gewinnen und werden verwendet um sowohl Vorwärtsmodellauswertungen als auch Bayessche
Inversion zu beschleunigen. Im Folgenden werden zwei Anwendungen betrachtet, nämlich die parame-
terabhängige Chemische Mastergleichung als auch eine elliptische partielle Differentialgleichungen mit
parameterabhängigen Gebieten. In beiden Fällen wird eine Tensorproduktbasisdarstellung verwendet um
den Parameterzusammenhang darzustellen was dazu führt, dass sich die Dimension des Lösungstensors mit
der Anzahl der Parameter erhöht, was vorallem mit vielen Parametern im Bezug zur Zeitkomplexität sehr
teuer wird. Um diese Problematik anzugehen, werden Niedrig-Rang Tensor Zerlegungen, insbesonders das
“Tensor-Train” Format, angewendet um die Speicher- und Zeitkomplexität von hochdimensionale Tensoren
zu reduzieren. Um den Tensor der Freiheitsgrade im komprimierten Format zu gewinnen, wird ein speziell
für diesen Zweck bestimmter Löser verwendet. Darin liegt die grösste Herausforderung in der Konstruktion
der diskreten Systeme direkt in dem “Tensor-Train” Format für den gesamten Zustandsraum der Parameter.
Die Lösung der Chemischen Mastergleichung kann auf natürliche Art und Weise in einem Tensorformat

dargestellt werden, und die Niedrig-Rang Formate können direkt angewendet werden um eine Reduktion
der Rechenzeit zu erziehlen. Um eine effiziente Konstruktion der diskreten Operatoren zu bekommen, wird
ein Algorithmus für den gesamten Zustand-Parameter-Zeit Tensor vorgestellt und erfolgreich verwendet
um Bayessche Inferenz Aufgaben, wie zum Beispiel Zustandsrekonstruktion und Parameteridentifikation,
durchhzuführen.
Im Falle von partiellen Differentialgleichungen, ist die Tensorproduktstruktur der diskretisierten Lösung

nicht mehr vorhanden. Daher muss das Diskretisierungsverfahren so gewählt werden, dass eine Tensor-
produktstruktur vorliegt, was speziell im Kontext der Isogeometrischen Analyse der Fall ist, da die im
Referenzgebiet dargestellte Lösung entsprechendes Format hat. Das “Tensor-Train” Format kann somit
für die Darstellung der Lösung verwendet werden. Die aus der schwachen Formulierung resultierende
Integrale können mithilfe der Substitutionsregel über ein fixes Referenzgebiet mit einem modifizierten
Metrik durchgeführt werden, anstatt über das parameterabhängige Gebiet zu integrieren. Die Anzahl an
Dimensionen wird gleichzeitig erhöht um die Parameterzusammenhang einzufügen.
In beiden Anwendungen, führt das Niedrig-Rang “Tensor-Train” Format zu einer genauen Approximation

der Lösung, mit reduzierter Rechenkomplexität. Die vorgeschlagenen Methoden besitzen die Fähigkeit
hochdimensionale Probleme mit grossem Speicherbedarf zu lösen, was vorallem im Fall von Masterglei-
chungen mit vielen Reaktionsnetzerken der Fall ist. Die Speicherreduktion bringt auch eine Beschleunigung
der Laufzeit der Simulationen, was besonders im Fall der Konstruktion diskreter Operatoren für parameter-
abhängigen Probleme in Augenschein tritt. Hier ist die vorgeschlagene Methode asymptotisch effizienter
und um Größenordnungen schneller.
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Abstract

This thesis addresses the topic of surrogate modeling for forward and inverse problems, in the context of
parameter dependent systems described by differential equations. The surrogate model is an accurate
approximation of the parameter dependent quantity of interest and is used to accelerate both forward
model evaluations and Bayesian inversion. Two applications are considered: the parameter dependent
chemical master equation (CME) and elliptic partial differential equations (PDEs) with parameter depen-
dent computational domains. In both cases, a tensor product basis expansion is used to accommodate
the parameter dependence, thus increasing the number of dimensions of the tensor used to store the
approximation’s basis coefficients. Low-rank tensor decompositions, in particular the tensor-train (TT)
format, are used to reduce the computational costs of storing and handling large high-dimensional tensors.
A dedicated solver is then used to obtain the coefficient tensor of the basis expansion in the low-rank
format. The main challenge is the construction of the discrete systems directly in the low-rank format for
the combined state-parameter space.
The solution of the CME is naturally represented as a tensor and the low-rank format can be directly

applied to enhance the solver’s performance. An algorithm for assembling the discrete operators for the
joint state-parameter-time is presented. The computational complexity of this step is linear with respect to
the number of dimensions. The developed framework is used for efficiently solving Bayesian inference
tasks such as state reconstruction and parameter identification.
When dealing with PDEs, the tensor product structure of the discrete solution space is no longer a natural

assumption. The discretization method in this case is the isogeometric analysis (IGA), since it leads to
a tensor product structure of the solution in the reference domain. The TT format can then be used to
represent the solution. When writing the weak formulation, the integral over the parameter dependent
domain is transformed to an integral over a fixed reference domain with parameter dependent metric. The
dimensionality of the solution tensor is then increased to accommodate the parameters.
In both cases, the use of the low-rank TT decomposition leads to accurate results at significantly reduced

computational cost. The proposed tensor-train (TT) based frameworks are able to tackle high dimensional
problems that would require a prohibitive amount of memory. This can be especially noticed when dealing
with large reaction networks. The storage reduction brings a speedup of the runtime of the simulation. As
an example, the complexity of constructing the discrete IGA operators in the TT format is asymptotically
more efficient and orders of magnitude faster.
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1. Introduction

We begin the thesis with an introduction in the topic and a literature survey. The contribution of the thesis
is then stated, together with an overview of the content.

1.1. Motivation and related work

Over the past few decades, numerical simulations of physical systems have become a central topic in
engineering. The increasing complexity of the models leads to higher demand of computing power, which is
especially problematic when considering parameter dependent problems. Such problems often arise when
performing optimization of design parameters, uncertainty quantification (UQ) studies, optimal control, or
in general when exploring the behavior of the model for variable input data. Of particular interest in this
work is the field of Bayesian inverse problems. In a nutshell, the goal of Bayesian inverse problems is to
give a probabilistic description of the governing parameters of a system when certain output quantities of
the system are observed. Applications can be found in fields such as computer vision and image processing
[Bar18, GI15], electromagnetics [Che07, IWL`21], geosciences [Mal02, CFO11], computational chemistry
[NDM`09, IWL`21], biomedicine [RWGG21], and many more. One common issue of Bayesian inversion
and other UQ tasks is the high number of solver calls for different input parameter realizations. This
motivates the use of computationally inexpensive surrogate models in the context of inverse problems.
A surrogate model is a function that maps a set of parameters to the corresponding value for the quantity

of interest of the system. The approximation should be accurate and at the same time fast to evaluate.
Once such an approximation is available, it can be used as a function handle to replace the solver in the
computationally intensive tasks. A common problem when constructing surrogates is the increase of the
computational complexity with respect to the number of parameters. This is known in the literature under
the name of “curse of dimensionality” [BCC57]. One simple example is the interpolation of a multivariate
function using a tensor product basis representation. The dimension of the basis grows exponentially with the
number of variables. Moreover, in order to find the coefficients of the basis representation, an equal number
of function evaluations is needed [Xiu10]. Several classes of methods have been proposed to circumvent this
bottleneck: dimension adaptive basis expansions [GG03, LD20], sparse grids [BNR00, Bun04], low-rank
tensor decomposition methods [Ose11b, OT10] and neural networks [TB18, YZ19b, HRM`21]. While the
first two techniques rely on reducing the dimension of the basis expansion and therefore the number of
degrees of freedom (DoFs), low-rank tensor decomposition methods start from the full tensor product
basis ansatz and use compression methods to reduce the storage needed for the DoF tensor. Several
tensor compression formats have been proposed in the literature [GKT13, Liu21], each having different
advantages. Among them, the TT format [Ose11b, OT09] offers the best compromise between storage
efficiency and robustness [Hac12]. The TT format has proven to be free of the curse of dimensionality in
many surrogate modeling tasks [EMM20, KKNS14, DAIFS20, ZYO`14, SO11, DKO12, LRC`18, DKLM15,
IWL`21, ILDG22]. Moreover, the result of most multilinear algebra operations can be directly expressed
in the TT format if the operands are given in the TT format [Ose11b, SO11, OD12, DS14].
A further issue in the field of surrogate modeling is the computational complexity of computing the DoFs

required for approximating of the quantity of interest. Depending on the available information about the
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underlying model, we differentiate between black-box and white-box surrogate modeling. The black-box
approach implies the model is evaluated for different parameter realizations. The parameter realizations
together with the corresponding values of the quantity of interest form a label dataset. This falls under the
umbrella of supervised learning and several methods have been proposed, from regression [LGDG20] to
collocation [BNT07]. Moreover, adaptive input parameter sampling methods [GG03, LDG19] have also
been proposed to reduce the number of solver calls. The main advantage of black-box surrogate modeling
techniques is their versatility: constructing a surrogate model needs only a function handle of the parameter
dependent problem.
As a comparison, white-box modeling techniques take advantage of the full description of the system

and the solver is adapted to directly return the parameter dependent quantity of interest or solution. A
typical approach is to extend the space where the quantity of interest lives in order to account for the
parameter dependence. In the context of systems governed by differential equations, the Kronecker [VL00]
product is used to construct the joint space. The corresponding DoFs can be recovered by solving the
system that arises when performing Galerkin projection over the joint space [GS91, BTZ04]. Since the
focus of the thesis lies on low-rank tensor decomposition methods, a tensor product basis is used over the
parameter space. Moreover, it is beneficial for the discrete solution space to have a tensor product structure
as well. In order to truly avoid the curse of dimensionality, all operations, from assembling the system to
solving it and post-processing, have to be performed within the TT framework. The thesis addresses two
different classes of problems: large systems of ordinary differential equations (ODEs) arising from the field
of reaction kinetics [IWL`21] and parameter dependent partial differential equations (PDEs) [ILDG22].
For both cases, the TT format was used to perform all the necessary steps.
The first application considered in this thesis is solving the chemical master equation (CME). The CME

is a fundamental equation from the field of reaction kinetics that probabilistically describes the state
of chemical reaction networks [Gil92]. Despite being simple at its core, the CME is prone to the curse
of dimensionality since adding a new species results in a multiplication of the computational costs of
solving the equation. This is exacerbated when parameter dependent CMEs are considered. Truncating
the state space of the CME to a Cartesian box domain results in a tensor format of the solution. The
TT compression scheme can therefore be used for the representation [KKNS14, DK15, DS20, IWL`21].
Solving the parameter dependent CME in the TT format has been addressed in [DK15, IWL`21]. In our
contribution [IWL`21], the solver was extended to directly perform parameter inference tasks.
The second application concerns the solution of parameter dependent boundary value problems (BVPs).

The parameters range from material coefficients to variables in the geometry description. Conventional
discretization techniques such as the finite element method (FEM) typically represent the solution on
unstructured meshes [M`03] making it difficult to cast the DoFs into a tensor. Therefore, the method of
choice is IGA [HCB05, CHB09]. IGA is a very popular method that is applied in a variety of fields such
as structural analysis [WWS13, CRBH06, MAB`15, Rea06, SKBW10], electromagnetic field simulation
[BCdF`20, BSV10, DKSW19a, DKSW19b, SBdFS20], and fluid mechanics [ABKF11, BH08, GPC19, HAB11,
LBJ19, WWX`17]. The main idea behind it is to represent the geometry using B-spline or NURBS
parametrizations. The geometry parametrization maps points from a reference domain (usually chosen as
the unit cube) to points in the physical domain [HCB05]. The solution can also be defined on the reference
domain, where a tensor product B-spline basis is used for its discretization. When performing the Galerkin
projection, the integration over the parameter dependent geometry is transformed to integration over
the reference domain with a modified metric. Therefore, the geometry information is moved into the
coefficients of a modified PDE defined on the reference domain. Using a parameter dependent geometry
map has been analyzed by several authors in the literature [CCNT16, CCNT21, HSS08, HSSS18, EMM20].
TT compression can be used to store the DoFs of the basis expansion as well as to construct the discrete
Galerkin operators [ABC`15, Hof18, MJKL17, ILDG22]. The assembly of the discrete operators for the
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joint geometry-parameter domain in the TT format is more efficient than conventional assembly methods
for a single parameter realization [ILDG22]. This holds for the system solver as well.

1.2. Contribution

The first main contribution of this thesis work is the development of the TT-CME framework for parameter
dependent CMEs [IWL`21]. An explicit representation of the CME generator is given in the TT format
without assembling the full operator. The parameter dependence is tackled by considering a tensor product
basis expansion to obtain a joint state-parameter space. This increases the dimensionality of the underlying
tensors. However, the assembly in the TT format still remains efficient. Compared to [DK15] where a
collocation based method is used for the parameter dependence, in this work we employ the Galerkin
approach to derive an extended system for the joint state-parameter domain. The presented framework is
not restricted to handle only the reaction rates as parameters and can accommodate general propensity
functions with different types of parameters as well as parameter dependent initial conditions (ICs).
The alternating minimal energy (AMEn) solver is used to get the solution of the system for the joint
state-parameter-time domain obtained after the time-domain discretization. Moreover, we leveraged the
computationally efficient multilinear algebra operations in the TT format to address relevant inference
problems from the field of chemical kinetics. The forward-backward algorithm is implemented in the TT
format for state filtering and smoothing as well as for Bayesian parameter inference. Several examples are
presented to demonstrate the efficiency of the method.
The second main contribution is the development of the TT-IGA framework [ILDG22]. The novelty of this

work consists in deriving a TT representation for the tensor operators arising from the IGA discretization and
using the AMEn solver to get the solution in the low-rank format. Compared to [MJKL17], the main focus
is on tackling parametric geometry deformations, but the framework can also accommodate parameters
governing the material laws or the boundary considerations. A recipe for constructing all the necessary
discrete operators in the TT format is given. Collocation is used to handle the parameter dependency and,
similarly to the TT-CME solver, the dimensionality of the tensors is increased. Moreover, both NURBS
and B-spline geometry representations are taken into consideration in the framework. The method is
benchmarked in the numerical results section and the obtained surrogates are further used to solve inverse
problems.
All the developed methods are implemented in the Python programming language as two software

packages: tt-cme1 and tt-iga2. Supporting software was implemented in the torchTT library3.

1.3. Structure of the thesis

The remaining of this thesis is structured as it follows: In Chapter 2, an introduction to tensor algebra is
given. First, the general notion of tensor is defined and then, relevant topics from the field of multilinear
algebra are recalled. In Chapter 3, the TT format is presented in detail, together with all the relevant
algorithms needed in this work. Chapter 4 offers an overview of the field of Bayesian inverse problems.
A brief introduction in probability theory is offered before presenting the Bayesian inversion formalism.
In Chapter 5, the first application of the TT framework is presented in the context of reaction dynamics.
The TT-CME solver for parameter dependent problems is introduced and numerical tests are performed
for inference tasks. Chapter 6 concerns the use of the TT based surrogates for the parameter dependent
1https://github.com/ion-g-ion/tt-cme
2https://github.com/ion-g-ion/tt-iga
3https://github.com/ion-g-ion/torchTT
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systems governed by PDEs. Numerical examples are also shown to showcase the performance of the method.
Finally, the conclusion and the outlook are given in Chapter 7.
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2. Fundamentals of tensor algebra

2.1. Introduction to tensors

The concept of a tensor has different definitions in different fields: as a multidimensional array, as a
multilinear map over a cross product of vector spaces and their dual or by constructing the space using a
tensor product of bases. In this chapter, we first introduce the concept of a tensor product of vector spaces.
In the second part, the focus is put on tensors as multidimensional arrays. The notation is first introduced
and then the relevant multilinear algebra operations are presented.

2.1.1. Tensor product

Before proceeding to the definition of the tensor product, we recall the concept of a multilinear map.

Definition 2.1.1 (Multilinear map). Let V1, . . . , Vd be d vector spaces over a field K. A map ϕ :
d
Ś

k“1

Vk Ñ K

is called multilinear if

ϕpv1, . . . , αvk ` βv1
k, . . . , vdq “αϕpv1, . . . , vk, . . . , vdq ` βϕpv1, . . . , v1

k, . . . , vdq,
@α, β P K, vk P Vk, v1

k P Vk, k P t1, . . . , du. (2.1)

The first definition of the tensor product is given using the universal property. The goal is to define a
vector space S formed from 2 vector spaces U and V together with a map b : U ˆV Ñ S with the property
that it is “bilinear and nothing more” [Rom08].

Definition 2.1.2 (Universal property definition of tensor product). Let U and V be two vector spaces over
K. The vector space denoted by U b V together with a bilinear mapping b : U ˆ V Ñ K is called a tensor
product space if it fulfills the universal property: for every bilinear mapping ψ : U ˆ V Ñ K there exists a
unique linear map ψ1 : U b V Ñ K such that

ψ “ ψ1 ˝ b. (2.2)

In Figure 2.1, a graphical representation of the universal property is given. The definition based on
the universal property can be used to derive properties of the tensor product space, however it is not a
constructive one. In the following, a constructive and coordinate-free definition of the tensor product of
two vector spaces is given.

Construction of the tensor product

Let U , V be two vector spaces, VpU ˆ V q the space spanned by all elements from U ˆ V . Since a pair
pu, vq P U ˆV is a basis of the space VpU ˆV q, it cannot be represented as a linear combination of elements
from U ˆ V . This violates the universal property stated in Definition 2.1.2. In order to exemplify this,
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U ˆ V U b V

K

b

ψ ψ1

Figure 2.1.: Illustration of the universal property.

we consider 3 basis vectors pu, vq, p´u, vq and pu´ u, vq “ p0, vq from VpU ˆ V q. Since they are linearly
independent, it holds

p0, vq ‰ pu, vq ` p´u, vq. (2.3)

In order to fulfill the universal property, additional relations have to be imposed. To this end, the subspace
Z of VpU ˆ V q is defined as

Z “tαpu1, vq ` βpu2, vq ´ pαu1 ` βu2, vq : u1, u2 P U, v P V, α, β P KuY
tαpu, v1q ` βpu, v2q ´ pu, αv1 ` βv2q : u P U, v1, v2 P V, α, β P Ku. (2.4)

The tensor product of U and V is defined as the set quotient space

U b V “ VpU ˆ V q{Z. (2.5)

The idea behind this is to restrict the larger vector space VpU ˆV q by introducing the equivalence relations
from (2.4). The construction fulfills the universal property introduced in Definition 2.1.2 (see [Hac12,
Chapter 3] for the proof). For u P U and v P V , the equivalence class constructed from u and v is denoted
with ub v.

Properties of the tensor product

Without proof, we present the following properties of the tensor product [Rom08]:

• pαuq b v “ ub pαvq “ αpub vq,@α P K, u P U, v P V.
• pu` u1q b v “ ub v ` u1 b v,@u, u1 P U, v P V ,
• ub pv ` v1q “ ub v ` ub v1,@u P U, v, v1 P V ,
• 0V b v “ 0UbV ,@v P V and u b 0V “ 0UbV ,@u P U , where 0U , 0V and 0UbV are the 0 tensors in
the individual spaces.

Basis representation

For a vector space V with dimpV q “ n ă 8 and a particular choice of basis, an isomorphism between
V and the Kn exists. This result can be generalized to a tensor product space V1 b V2 b ¨ ¨ ¨ b Vd with
dimpVkq “ nk ă 8, k P t1, . . . , du [Hac12, Chapter 3]. Let tep1q

k unk
k“1, tep2q

k unk
k“1, . . . , tepdq

k unk
k“1 be the bases

of the individual spaces V1, V2, . . . , Vd. The following statements hold [Hac12, Chapter 3]:
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1. The set tep1q
i1

b ¨ ¨ ¨ b e
pdq
id

: i1 “ 1, . . . , n1, . . . , id “ 1, . . . , ndu is a basis of the tensor product space
d
Â

k“1

Vk and any element t P
d
Â

k“1

Vk can be represented as

t “
n1
ÿ

i1“1

¨ ¨ ¨
nd
ÿ

id“1

xi1...ide
p1q
i1

b ¨ ¨ ¨ b e
pdq
id
, x P Kn1ˆ¨¨¨ˆnd . (2.6)

2. dimp
d
Â

k“1

Vkq “
d
ś

k“1

nk.

3. For a fixed basis choice, the tensor product space
d
Â

k“1

Vk is isomorphic to Kn1ˆ¨¨¨ˆnd .

Let U1, . . . , Ud and V1, . . . , Vd be finite dimensional vector spaces with dimpVkq “ mk and dimpUkq “
nk. We consider the vector space LpU1 b ¨ ¨ ¨ b Ud, V1 b ¨ ¨ ¨ b Vdq, where LpA,Bq denotes the set of
all linear maps between the vector spaces A and B. Let ϕ P LpU1 b ¨ ¨ ¨ b Ud, V1 b ¨ ¨ ¨ b Vdq. Since
every element of the vector space V1 b ¨ ¨ ¨ b Vd can be expressed in terms of the basis teV1b¨¨¨bVd

i1...id
ui1...id ,

the result of the function ϕ applied on the basis element eU1b¨¨¨bUd
j1...jd

can be expressed using the map
β :

´

Śd
k“1t1, . . . ,mku

¯

ˆ
´

Śd
k“1t1, . . . , nku

¯

Ñ K

ϕpeU1b¨¨¨bUd
j1...jd

q “
ÿ

i1,...,id

βpi1, . . . , id, j1, . . . , jdqeV1b¨¨¨bVd
i1...id

, (2.7)

where teU1b¨¨¨bUd
j1...jd

uj1...jd is the basis of U1 b ¨ ¨ ¨ b Ud. For every element u P U1 b ¨ ¨ ¨ b Ud one can use its
basis representation and the linearity of ϕ to obtain a representation in terms of the basis from V1 b ¨ ¨ ¨ bVd

ϕpuq “ ϕp
ÿ

j1...jd

uj1...jde
U1b¨¨¨bUd
j1...jd

q “
ÿ

j1...jd

αpj1, . . . , jdqϕpeU1b¨¨¨bUd
i1...id

q “
ÿ

i1,...,id

ÿ

j1,...,jd

βpi1, . . . , id, j1, . . . , jdquj1...jdev1b¨¨¨bVd
i1...id

.
(2.8)

This shows that once the bases are fixed, any element of LpU1 b ¨ ¨ ¨ b Ud, V1 b ¨ ¨ ¨ b Vdq can be described
using a multidimensional array B P Km1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd . An element ϕ P LpU1 b ¨ ¨ ¨ b Ud, V1 b ¨ ¨ ¨ b Vdq
is called in the following a tensor operator. Moreover, the following equality holds [Hac12]

L
˜

d
â

k“1

Uk,
d
â

k“1

Vk

¸

“
d
â

k“1

LpUk, Vkq. (2.9)

2.2. Tensors as multidimensional arrays

As stated at the end of the previous section, tensor product spaces are isomorphic to the space of mul-
tidimensional arrays over the field of real numbers (K “ R). In the following, we will refer to tensors
as multidimensional arrays over the field of real numbers, such that x P Rn1ˆ¨¨¨ˆnd (or mapping from
Śd

k“1t1, . . . , nku Ñ R), unless otherwise stated. The dimensions of a tensor are also referred to as modes.
As a convention, 1-dimensional tensors (vectors) are denoted with bold lower case letters, e.g. a, b, 2-
dimensional tensors (matrices) are denoted by bold capital letters, e.g. P ,C and tensors with 3 or more
dimensions are represented using lower case bold serif letters x, y. For tensor operators, upper case bold
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serif letters are used (e.g. A,B). The multiindex notation is used to refer to an entry of a tensor, such that
xi1...id “ xi, i “ pi1, . . . idq P Śd

k“1t1, . . . , nku. In the case of tensor operators between 2 d-dimensional
tensor product spaces, a comma is used to separate the first d indices, e.g. Ai,j .
Subtensors can be obtained by fixing or restricting some of the indices of a tensor. The colon is used to

mark an index that is not restricted. For example, the j-th column of a matrix A is denoted by A:j . By
fixing all the indices but one, the resulting vector is called a fiber. If two of the indices are kept free and the
rest are fixed, the resulting matrix is called a slice of the tensor. If we consider the tensor given in Figure
2.2, we have the following fibers and slices as examples:

x1:3 “
ˆ

3
7

̇

, x:1: “
¨

˝

1 2 3 4
9 10 11 12
17 18 19 20

˛

‚ x1:: “
ˆ

1 2 3 4
5 6 7 8

̇

. (2.10)

21

17

22

18

23

19

24

20

13

9

14

10

15

11

16

12

5

1

6

2

7

3

8

4

i3

i2
i1

Figure 2.2.: 3-dimensional tensor x P R3ˆ2ˆ4.

2.2.1. Matricization

In the following, the matricization of a tensor is discussed. Before introducing the matricization operation,
we present the multiindex raveling operation ι : Śd

k“1t1, . . . , nku Ñ t1, 2, . . . , n1 ¨ ¨ ¨ndu. The mapping ι
counts the multiindices of a given tensor and, using the big-endian convention, ι is defined as

ιpi1, . . . , idq “ 1 `
d
ÿ

k“1

˜

pik ´ 1q
d
ź

l“k`1

nl

¸

. (2.11)

The mapping ι is bijective with the inverse (also called index unraveling) given as

ι´1
k piq “ ppi´ 1q % pn2 ¨ ¨ ¨ndq % pn3 ¨ ¨ ¨ndq % ¨ ¨ ¨ % pnk ¨ ¨ ¨ndqq ˜

˜

d
ź

l“k`1

nl

¸

` 1, (2.12)

where % denotes the modulo operation (remainder of integer division) and ˜ is the Euclidean division. In
order to simplify the notation, the index raveling operation will be denoted with an overline i1i2 . . . id :“
ιpi1, i2, . . . , idq. Moreover, it can also be used on subsets of indices of a tensor. Using the mapping ι, the
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vectorization of a tensor (also known as unfolding or flattening in the literature) [KB09] is introduced.
Given a tensor x P Rn1ˆ¨¨¨ˆnd , the vectorization Vx P Rn1n2¨¨¨nd has the following elementwise definition

pVxqi1...id “ xi1...id . (2.13)

The matrix unfoldingMďkx P Rpn1¨¨¨nkqˆpnk`1¨¨¨ndq of a tensor combines together the first k dimensions
into the row mode of a matrix and the remaining d´ k into the column mode

pMďkxqi1i2...ik,ik`1...id
“ xi1i2...id . (2.14)

The mode-k unfoldingM“kx reshapes a tensor to a matrix by keeping the k-th mode as a leading mode
and raveling the remaining dimensions into the second mode of a matrix

pM“kxqik,i1...ik´1ik`1...id
“ xi1i2...id . (2.15)

When dealing with a tensor operator A P Rpm1ˆ¨¨¨ˆmdqˆpn1ˆ¨¨¨ˆndq, we define the matricization operation
MA P Rpm1¨¨¨mdqˆpn1¨¨¨ndq elementwise as

MAi1i2...id,j1j2...jd
“ Ai1i2...id,j1j2...jd . (2.16)

Example

As an example, we consider again the 3 ˆ 2 ˆ 4 tensor illustrated in Figure 2.2. In this case, the unfolding
of the tensor is given by

Vx “ p1, 2, 3, . . . , 24qJ, (2.17)
the two matricizations are

Mď1x “
¨

˝

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24

˛

‚ (2.18)

Mď2x “

¨

˚

˚

˚

˚

˚

˚

˝

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

˛

‹

‹

‹

‹

‹

‹

‚

(2.19)

and the mode-2 unfolding is

M“2x “
ˆ

1 2 3 4 9 10 11 12 17 18 19 20
5 6 7 8 13 14 15 16 21 22 23 24

̇

. (2.20)

2.2.2. Tensor algebra

In the following, an overview of the basic (multi)linear algebra operations (such as Kronecker product,
elementwise addition, elementwise multiplication/Hadamard product, scalar product and norm and
products between tensor operators) is given.
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Kronecker product

Definition 2.2.1 (Kronecker product). Let x P Rn1ˆ¨¨¨ˆnd and y P Rm1ˆ¨¨¨ˆmd1 be two tensors. The Kronecker
product x b y P Rn1ˆ¨¨¨ˆndˆm1ˆ¨¨¨ˆmd1 is a pd` d1q-dimensional tensor whose entries are given by

px b yqij “ xiyj , (2.21)

where ik P t1, . . . , nku, k P 1, . . . , d and jl P t1, . . . ,mlu, l P 1, . . . , d1.

Elementwise addition

Definition 2.2.2 (Elementwise addition). Let x, y P Rn1ˆ¨¨¨ˆnd be two d-dimensional tensors. The sum
x ` y P Rn1ˆ¨¨¨ˆnd is defined elementwise as

px ` yqi “ xi ` yi, (2.22)

where ik P t1, . . . , nku, k P 1, . . . , d.

When dealing with two tensor operators, the addition is performed analogously: pA`Bqi,j “ Ai,j `Bi,j .
The set of tensors with fixed modes together with the elementwise addition form an Abelian group. The
neutral element is the zero (all entries are 0) tensor denoted in the following with 0.

Elementwise multiplication

Definition 2.2.3 (Elementwise multiplication). Let x, y P Rn1ˆ¨¨¨ˆnd be two d-dimensional tensors. The
multiplication x d y P Rn1ˆ¨¨¨ˆnd is elementwise defined as

px d yqi “ xiyi, (2.23)

where ik P t1, . . . , nku, k P 1, . . . , d.

In this work as well as in the specialized literature, the elementwise multiplication is also called Hadamard
product.

Scalar product and Frobenius norm

Definition 2.2.4 (Scalar product). Let x, y P Rn1ˆ¨¨¨ˆnd be two d-dimensional tensors. The scalar product
denoted by x ¨ y P R is defined as

x ¨ y “
n1
ÿ

i1“1

¨ ¨ ¨
nd
ÿ

id“1

xiyi “
n
ÿ

i“1

xiyi. (2.24)

The norm induced by the presented scalar product is called the Frobenius norm ||x||F :“ ?
x ¨ x. It can

also be defined for tensor operators as ||A||2F “ ř

i,j

A2
i,j .
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Product with a tensor operator

Similarly to the matrix-vector product, a generalization for tensors using multiindex notation can be given.
The two presented products are the analog of matrix-vector/matrix-matrix products and are equivalent
under the unfolding operation.

Definition 2.2.5 (Tensor operator product). Given two tensor operators A P Rm1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd ,B P
Rn1ˆ¨¨¨ˆndˆp1ˆ¨¨¨ˆpd and a tensor x P Rn1ˆ¨¨¨ˆnd . The product Ax P Rm1ˆ¨¨¨ˆmd is elementwise defined as

pAxqi “
ÿ

j

Ai,jxj , (2.25)

for ik P t1, . . . ,mku, k P 1, . . . , d. The product AB P Rm1ˆ¨¨¨ˆmdˆp1ˆ¨¨¨ˆpd between A and B is defined as

pABqi,j “
ÿ

l

Ai,lBl,j , (2.26)

where ik P t1, . . . , nku and jk P t1, . . . , pku, k P 1, . . . , d.

With the operations defined in (2.13) and (2.16), the following holds

VpAxq “ pMAqVx, MpABq “ pMAqpMBq. (2.27)

Using the defined products, multilinear systems Ax “ b as well as the inverse A´1 of a tensor operator A
can be introduced:

AA´1 “ A´1A “ I. (2.28)

n-mode product

In addition to the previously presented products, we also define the product between a tensor and a matrix,
called the n-mode product.

Definition 2.2.6 (n-mode product). Let x P Rn1ˆ¨¨¨ˆnd be a d-dimensional tensor, q P t1, . . . , du an index
and A P Rmqˆnq a matrix. The product along the n-th mode x ˆq A P Rn1ˆ¨¨¨ˆnq´1ˆmqˆnq`1ˆ¨¨¨ˆnd is
elementwise defined as

px ˆq Aqi1...iq´1jiq`1...id “
ÿ

iq

xi1...iq ...idAjiq , (2.29)

where ik P t1, . . . , nku, k P t1, . . . , du, k ‰ q, j P t1, . . . ,mqu.
If the tensor x is the basis representation of a multilinear operator ϕ, the n-mode product across dimension

q represents a basis change. When computing the n-mode product with a vector, the resulting tensor is
pd´ 1q-dimensional

px ˆq aqi1...iq´1iq`1...id “
ÿ

iq

xi1...iq´1iqiq`1...idaiq . (2.30)

If the vector is a “ 1, the operation performs the contraction of the q-th index (summing across the q-th
dimension).
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2.2.3. Tensor diagram notation

First introduced in [Pen71], the tensor diagram notation is used to graphically represent index contraction
applied to tensors. In the literature, it is also found under the name of tensor networks representation
[Pen71]. The main idea behind it is very simple: tensors are denoted by nodes in a graph (see Figure 2.3)
and a connection between nodes represents an index contraction. On every end of a link connected to
a tensor, a number is specified, representing the number of the mode. Additionally, indices that are not
contracted are represented using a line that is linked to only one tensor (see Figure 2.3). The number of
links that are connected to a tensor is equal to the number of dimensions of the respective tensor. On every
link, the contraction index or the mode size is specified.

v
i

1

(a) Representation of a vector v. The index denoted with
i is in this case the first and only index and is denoted
with 1.

M
i

1

j
2

(b) Representation of a matrix M . The order of the two
indices i and j is specified by the numbers on the
edges.

t
i1

1

i2
2

i3

3

(c) Representation of a 3-dimensional tensor t.

Figure 2.3.: Graphical representation of a vector, a matrix and a 3-dimensional tensor. The tensors are
represented by the blue squares and the indices are denoted by the one-way links.

In Figure 2.4a, the tensor that results fromř

i,j,k Aijbmikcnjk is illustrated. The resulting tensor has only
2 dimensions, denoted with the indices m and n (the edges that are connected to a node at only one end).
The sum is performed over the indices i, j, k as denoted by the graph edges. Using the tensor network
notation, the trace of a matrix can also be represented (see Figure 2.4b) by constructing an edge that starts
and ends in the same tensor. One more example, depicted in Figure 2.4c, is the well known matrix-vector
product.
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A

b c
m 1 n1

i

1

2

j

2

2

k
33

(a) Representation of index contraction
ř

i,j,k

Aijbmikcnjk.

A
1

i

2

(b) Representation of the trace
ř

i

Aii of a matrix A.

A v
j

2 1

i
1

(c) Graphical representation of the matrix vector product
ř

j

Aijvj .

Figure 2.4.: Example of tensor diagram notation for visualizing index contractions.
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3. Low-rank tensor decomposition

As already stated in the previous chapter, storing all the entries of a tensor in the memory can become
problematic even for a moderate number of dimensions due to the curse of dimensionality. Data compression
is therefore needed to reduce the computational costs. Compared to conventional source coding methods
from information theory, where the compression is done using the binary representation of the data, the
tensor compression methods used in this work rely on approximating a tensor using a series of algebraic
operations on several smaller tensors. As it will be shown in the following for the TT format, the advantage
is that the basic linear algebra operations defined on the full tensors can be performed on their the low-rank
representations. In this chapter, we first give an overview of two of the first and most popular low-rank
decomposition formats. The TT format is then presented in detail.

3.1. Overview of low-rank tensor decomposition formats

3.1.1. Canonical polyadic decomposition

Introduced in [Hit] under the name of polyadic decomposition, the canonical polyadic decomposition
(CPD) format can be found under different names in the literature: CANDECOMP or PARAFAC [KB09].
Before defining the canonical format, we introduce the concept of rank-1 tensors.

Definition 3.1.1 (Rank-1 tensor). A tensor x P Rn1ˆ¨¨¨ˆnd is called rank-one if it can be expressed as the
Kronecker product of d vectors vpkq P Rnk , k “ 1, . . . , d

x “ vp1q b ¨ ¨ ¨ b vpdq. (3.1)

Definition 3.1.2 (CPD). The CPD of a d-dimensional tensor x P Rn1ˆ¨¨¨ˆnd is defined as the superposition
of r rank-1 tensors

x “
r
ÿ

k“1

vpk,1q b ¨ ¨ ¨ b vpk,dq, (3.2)

where r P N and tvpk,lquk,l are the CPD factors. The minimum number of rank-1 tensors to represent x is
called the tensor rank and is denoted by rankpxq.

The storage complexity for storing a rank r CPD is Opdnrq, being linear w.r.t. the number of dimensions.
The main drawback of the CPD is finding the best rank r approximation of a given tensor. As shown
in [Hå90], the tensor rank cannot be found in a finite number of steps. This arises due to the fact that
there can exist a sequence of tensors with a CPD of rank r1 converging to a tensor of rank r ą r1 [KB09].
Moreover, for practical purposes, the CPD is not necessarily the most expressive way of compressing tensors
(i.e. a high rank might be needed in order to obtain a good approximation).
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3.1.2. Tucker decomposition

First introduced in [Tuc66] and also known in the literature under the name of higher-order SVD (HOSVD)
representation [DLDMV00a], the Tucker decomposition takes advantage of the n-mode product in order to
perform a basis transformation of a tensor.

Definition 3.1.3 (Tucker decomposition). A tensor x P Rn1ˆ¨¨¨ˆnd is in the Tucker format if it can be
represented as

x “ g ˆ1 U
p1q ˆ2 U

p2q ¨ ¨ ¨ ˆd U
pdq, (3.3)

where g P Rr1ˆ¨¨¨ˆrd is the Tucker core, U pkq P Rnkˆrk , k “ 1, . . . , d and r “ pr1, . . . , rdq is the Tucker rank
of the decomposition.

A representation of the Tucker decomposition in the tensor network language is given in Figure 3.1
for the case d “ 4. The Tucker rank of a given tensor x is a tuple pr1, . . . , rdq containing the ranks of the
matricizations along all the modes, i.e., rk “ rankpMkxq. Any tensor admits a decomposition in the form of
(3.3) with the rank equal to its Tucker rank [DLDMV00a]. The storage requirement for the Tucker format
is Oprd ` dnrq, r “ maxk rk, which is exponential w.r.t. the number of dimensions. The Tucker format
does not overcome the curse of dimensionality due to the need of storing the Tucker core. However, if the
Tucker rank is small enough, a significant reduction of the storage is obtained. The CPD is a special case of
the Tucker decomposition if the factor matrices U contain the CPD vectors as columns and the Tucker core
is the diagonal tensor.
Computing an exact Tucker decomposition can be performed using the HOSVD algorithm [DLDMV00a].

The factor matrices U pkq are obtained by iteratively performing the singular value decompositions (SVDs)
on the matricizationsMkx and taking the lead left singular vectors (with nonzero corresponding singular
values). The Tucker core is then obtained using the n-mode product g “ x ˆ1 U

p1qJ ¨ ¨ ¨ ˆd U
pdqJ. However,

the HOSVD is not suited to perform best Tucker approximation of a tensor within a prescribed accuracy. To
this end, De Lathauwer, De Moor, and Vandewalle developed the higher-order orthogonal iteration (HOOI)
method [DLDMV00b] to find the best Tucker approximation.

3.2. Tensor-train format

One popular format in terms of computational complexity and robustness is the tensor-train (TT) format
[Ose11b], which can also be found in the literature under the name of matrix-product states (MPS)
[VC06, Vid03]. It combines the excellent linear scaling w.r.t. number of dimensions of the CPD format
with the robustness of the Tucker format. At its core, the TT decomposition is the generalization of the
separation of variables applied on multiindices.

Definition 3.2.1 (Tensor-train format). A tensor x P Rn1ˆ¨¨¨ˆnd is said to be in the TT format if its elements
can be expressed as

xi “
r1
ÿ

s1“1

¨ ¨ ¨
rd´1
ÿ

sd´1“1

d
ź

k“1

g
pkq
sk´1iksk

“ pT T pgp1q, . . . , gpdqqqi, (3.4)

where gpkq P Rrk´1ˆnkˆrk are called the TT cores and the vector r “ pr0, r1, . . . , rdq with r0 “ rd “ 1 is the
TT rank.
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g U p1q

U p2q

U p3q

U p4q
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2
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32
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2
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n2
1

n3
1

n4

1

Figure 3.1.: Graphical representation of the Tucker decomposition of a 4-dimensional tensor. pr1, r2, r3, r4q
represents the Tucker rank.

gp1q gp2q gpdqr0
1

r1
3 1

n1

2

n2

2

r2
3

rd´1

1

rd
3

nd

2

(a) Tensor train

hp1q hp2q hpdqr0
1

r1
14

m1

2

m2

2

r2
4

rd´1

1

rd
4

md

2

n1
3

n2
3

nd
3

(b) Tensor operator in TT format.

Figure 3.2.: Graphical representation of the TT format.

In Figure 3.2a, the tensor network representation of the TT decomposition is shown. The series connection
of the TT cores (also called carriages) motivates the name tensor-train. Having to store only d TT cores,
the storage requirement reduces from Opndq to Opdnr2q where r “ maxk“1,...,d rk. However, in practice
most tensors do not possess an exact decomposition of type (3.4) with a low rank and an approximation
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has to be made, so a trade-off between the TT rank and the accuracy has to be made.
A similar decomposition format can be defined for a tensor operator A P Rm1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd defined in

Section 2.1.1:

Ai,j “
r1
ÿ

s1“1

¨ ¨ ¨
rd´1
ÿ

sd´1“1

d
ź

k“1

h
pkq
sk´1ikjksk

. (3.5)

In this case the TT cores hpkq P Rrk´1ˆmkˆnkˆrk , k P 1, . . . , d are 4d tensors, making the storage complexity
Opdr2mnq (a tensor network representation is given in Figure 3.2b). However, by permuting the dimensions
of the tensor operator A and reshaping, one can obtain a d-dimensional tensor a P Rm1n1ˆ¨¨¨ˆmdnd with

Ai1...id,j1...ij “ ai1j1 i2j2...idjd
. (3.6)

If a TT decomposition of a is computed with the TT cores g P Rrk´1ˆmknkˆrk , the cores of the TT decom-
position of the tensor operator A can be obtained by reshaping the 3d cores into rk´1 ˆ mk ˆ nk ˆ rk
tensors.
The TT decomposition is not unique. If a decomposition of a tensor x with the TT cores tgpkquk“1,...,d is

found, one obtains the same full tensor after modifying any 2 consecutive cores
g̃

pkq
sk´1ik:

“ RJgpkq
sk´1ik:

, g̃
pk`1q
:iksk`1

“ R´1g
pk`1q
:iksk`1

, (3.7)
whereR P Rrkˆrk is an invertible matrix. One further aspect of the TT format is the ordering of the indices.
Compared to other low-rank formats (such as CPD and Tucker for example), permuting the indices does
affect the TT rank of the decomposition. The intuition behind this is that the information has to flow
through the cores that separate two modes. As an example, we consider the tensor x “ I4 b 14 P R4ˆ4ˆ4,
where I4 P R4ˆ4 is the identity matrix and 14 P R4 is the one vector (alternatively one can write the tensor
as xijk). An exact decomposition of x has the rank r “ p1, 4, 1, 1q. However, if the second and the third
modes are permuted, the exact decomposition of the tensor now has the TT rank r “ p1, 4, 4, 1q.
In the following, the concept of orthonormal cores is introduced. Its importance will become clear in

Section 3.2.2 where the rank rounding operation is defined as well as in Section 3.2.4.
Definition 3.2.2. Let x P Rn1ˆ¨¨¨ˆnd be a tensor with the TT decomposition given by the cores tgpkquk.
• The k-th core is called left-orthonormal if the rows of the left unfolding Lgpkq “ Mď2gpkq P Rrk´1nkˆrk

are orthonormal, i.e.
´

Lgpkq
¯J

Lgpkq “ I P Rrkˆrk . (3.8)

• The k-th core is called right-orthonormal if the columns of the right unfolding Rgpkq “ Mď1gpkq P
Rrk´1ˆnkrk are orthonormal, i.e.

Rgpkq
´

Rgpkq
¯J “ I P Rrk´1ˆrk´1 . (3.9)

In practice, one can use the QR decomposition to orthonormalize the cores of a given TT representation.
Let k P t1, .., d´ 1u be an index and C “ Lgpkq the left unfolding of the k-th core. By performing the QR
decomposition, the matrices Q,R are obtained such that QR “ Lgpkq. The new left-orthonormal core
g̃pkq can be obtained by reshaping the Q matrix and the next core is updated as g̃pk`1q

:ik`1s
“ Rg

pk`1q
:ik`1s

. If this
operation is applied sequentially, starting from k “ 1 to k “ d´ 1, the resulting train has the first d´ 1 TT
cores left-orthogonal. The pseudocode is presented in Algorithm 1. Using slight modifications, one can
also compute a train where all the cores but the first one are right-orthonormal (see Algorithm 2). In both
cases, the complexity is Opdnr3q [Ose11b] and during the process the rank can be decreased.
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Algorithm 1 Left-to-right orthonormalization of the TT cores.
1: procedure OrthoLR(tgpkquk, r)
2: for k P t1, . . . , d´ 1u do
3: C Ð reshapepgpkq, rk´1nk ˆ rkq.
4: Q,R Ð QRpCq
5: rk Ð #columnspQq.
6: gpkq Ð reshapepQ, rk´1 ˆ nk ˆ rkq.
7: g

pk`1q
ijk Ð ř

l

Rilg
pk`1q
ljk .

8: return tgpkquk, r.

Algorithm 2 Right-to-left orthonormalization of the TT cores.
1: procedure OrthoRL(tgpkquk, r)
2: for k P td, . . . , 2u do
3: C Ð reshapepgpkq, rk´1 ˆ nkrkq.
4: Q,R Ð QRpCJq
5: rk´1 Ð minp#columnspQq,#rowspQqq.
6: gpkq Ð reshapepQJ, rk´1 ˆ nk ˆ rkq.
7: g

pk´1q
ijk Ð ř

l

g
pk´1q
ijl Ril.

8: return tgpkquk, r.

3.2.1. Conversion from full format

One important advantage of the TT format is the ability to compute a TT approximation of a given tensor
within a prescribed relative accuracy. The problem is semidiscrete since the TT ranks as well as the TT
cores have to be determined simultaneously.
Problem 3.2.1 (Conversion from full format to TT). Given a tensor x P Rn1ˆ¨¨¨ˆnd and an ϵ ě 0, determine
the TT cores tgpkquk such that

||x ´ x̃||F ď ϵ||x||F , for x̃i “
r1
ÿ

s1“1

¨ ¨ ¨
rd´1
ÿ

sd´1“1

d
ź

k“1

g
pkq
sk´1iksk

, (3.10)

where the TT rank of x̃ has to be minimal.
Computing the TT decomposition can be performed by recursively applying the SVD on matrix unfoldings

in order to individually separate the TT cores [Ose11b, OT09]. Let x P Rn1ˆ¨¨¨ˆnd be the tensor that we
want to decompose and ϵ ě 0 (the case ϵ “ 0 means an exact TT decomposition). If the matricization
Mď1x P Rn1ˆpn2¨¨¨ndq is considered, one can apply the SVD

Mď1x “ Udiagpσ2qV J, (3.11)

where U P Rn1ˆn1 ,V P Rn1ˆpn2¨¨¨ndq and σ P Rn1 is the vector of singular values (in descending order).
The factor matrices can be truncated by keeping only the first r1 ď n1 columns of U ,V and the first
singular values. The relative error in Frobenius norm is in this case determined as

||Udiagpσ2qV J ´ Ũdiagpσ̃2qṼ J||F ď σ2r1`1 ` ¨ ¨ ¨ ` σ2n1
, (3.12)
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where Ũ P Rn1ˆr1 , Ṽ P Rr1ˆpn2¨¨¨ndq, σ̃ are the truncated factors. The first factor matrix can be identified
with the first core of a TT decomposition if an additional mode of size 1 is added. The matrix diagpσ̃2qṼ J

can be reshaped to an r1n2 ˆn3 ¨ ¨ ¨nd matrix and an SVD can be further applied. A truncation to r2 ď r1n2
can be performed, resulting to the factor matrices U 1˜ P Rr1n2ˆr2 ,V 1˜ P Rr2ˆpn3¨¨¨ndq and the vector of
singular values σ̃ P Rr2 . The matrix Ũ 1 represents the second core of a TT decomposition after reshaping it
to r1 ˆ n2 ˆ r2. The process of performing truncated SVDs can be further applied in order to obtain the
remaining cores. An example for the case d “ 3 is presented in Figure 3.3, where the individual steps are
illustrated using tensor network diagrams.
One important topic is how to truncate the rank such that the global relative error is smaller than the

desired value. At the same time, the TT rank should not be overestimated. In [Ose11b], it has been proven
that the optimal rank can be chosen according to

rk “ argmax
l

b

σ2k,l ` σ2k,l`1 ` ¨ ¨ ¨ ă ϵ?
d´ 1

c

ÿ

s

σ2s , (3.13)

where tσk,lul are the singular values computed in the k-th step. The complete pseudocode is given in
Algorithm 3. If the main loop is performed from right to left, i.e. starting with the last index, the TT cores
are right orthogonal.

Algorithm 3 Conversion from full tensor to TT format.
1: procedure Full2TT(x P Rn1ˆ¨¨¨ˆnd , ϵ)
2: r0 Ð 1.
3: Xp1q Ð reshapepx, r0n1 ˆ n2 ¨ ¨ ¨ndq.
4: for k P t1, . . . , d´ 1u do
5: U ,σ,V Ð SVDpXpkqq.
6: rk Ð max

l
pσ2l ` σ2l`1 ` ¨ ¨ ¨ q ă ϵ2

d´1

ˆ

ř

s
σ2s

̇

.
7: Ũ , σ̃, Ṽ Ð U:1:rk ,σ1:rk ,V:1:rk .
8: gpkq Ð reshapepŨ , rk´1 ˆ nk ˆ rkq.
9: Xpk`1q Ð reshapepdiagpσ̃2qṼ J

, rknk`1 ˆ nk`2 ¨ ¨ ¨ndq.
10: rd Ð 1.
11: gpdq Ð reshapepXpdq, rd´1 ˆ ndrdq.
12: return tgpkquk.

3.2.2. Rank rounding

One further operation in the TT format is the rank rounding, i.e., finding a more efficient TT representation
of a tensor that is already given in the TT format. The formal problem statement is the following:
Problem 3.2.2 (TT rank rounding). Given a tensor x P Rn1ˆ¨¨¨ˆnd with a TT representation of rank r and
ϵ ą 0, find a tensor x̃ P Rn1ˆ¨¨¨ˆnd with a TT representation of rank r̃ with

||x ´ x̃||F ď ϵ||x||F , rk ď r̃k, @k. (3.14)

The naive approach would be to convert an existing TT decomposition to full format and then apply
Algorithm 3 to obtain the new TT cores. However, this is not computationally feasible for large tensors. In
[OT10], a more efficient way is proposed to apply Algorithm 3 for a tensor already represented in the TT
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x
n1

1

n3
3

n2

2

(a) The original 3-dimensional tensor.

Xp1qn1
1

n2n3
2

(b) The tensor is reshaped to an n1 ˆ pn2n3q matrix.

ΣU V J
2 1 2 1

r0n1
1

n2n3
2

(c) SVD is applied on the matrix Xp1q from the previous
step. The additional dimension corresponding to the
first rank r0 “ 1 is added for completeness.

gp1q Xp2qr1
3 1

r0
1

n1

2

n2n3
2

(d) The truncation of the singular values is performed,
the truncated factor matrix U is reshaped into the
first core while the rest is grouped in a matrix Xp2q.

gp1q U Σ V Jr1n2
1

r1
3

r0
1

n1

2

2 1 2 1

n3
2

(e) The matrix Xp2q is reshaped to pr1n2q ˆ n3 and the SVD is applied on it to reveal the second TT rank.

gp2qgp1q gp3qr1
3 1

r2
3 1

n1

2

n2

2

n3

2

r0
1

r3
3

(f) The truncated factor matrix is reshaped into the second core gp2q and the remaining product is truncated and
reshaped into the last core gp3q.

Figure 3.3.: Graphical illustration of the steps needed to decompose an n1 ˆ n2 ˆ n3 tensor in the TT
format. The steps are presented in the corresponding figures, in alphabetical order.

format. Let tgpkquk be the TT cores of the tensor x P Rn1ˆ¨¨¨ˆnd with suboptimal rank r. During the first
step of Algorithm 3, the ϵ-truncated SVD is applied on the matricizationXp1q to extract the first core g̃p1q
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of the rounded TT representation. Using the TT representation of x, the matricization can be written as

Xp1q “ Gp1qGě2, G
p1q
i1s1

“ g
p1q
1i1s1

, Gě2
s1i1...id

“
ÿ

s2,...,sd´1

g
p2q
s1i1s2

¨ ¨ ¨ gpdq
sd´1id1

. (3.15)

If the train tgpkquk is right-to-left orthonormalized, the matrixGě2 also satisfies
`

Gě2Gě2
˘J “ I [OT10]. A

truncated SVD ofXp1q can therefore be computed by just applying the routine on the first core matricization
Gp1q. The first factor matrix Ũ P Rn1ˆr̃1 of the truncated SVD is reshaped to the new core gp1q and the rank
is updated. The singular values together with the right factor matrix Ṽ are multiplied to the second core
(the cores indexed by k ě 3 remain right orthonormal). This process repeats itself for the following cores
(see Algorithm 4 for the detailed pseudocode). The procedure presented here can also be performed from
right to left. In this case, the orthonormalization has to be done from left to right. A further improvement
of the method is presented in [DBB22] where the tall-skinny QR decomposition [BDG`15] is used to
parallelize the rounding procedure.

Algorithm 4 TT rank rounding.
1: function RoundRank(tgpkquk, r, ϵ)
2: tgpkquk, r Ð OrthoLRptgpkquk, rq.
3: for k P td, . . . , 2u do
4: C Ð reshapepgpkq, rk´1 ˆ nkrkq.
5: B Ð reshapepgpk´1q, rk´2 ˆ nk´1rk´1q.
6: U ,σ,V Ð SVDpCq.
7: rk Ð max

l
pσ2l ` σ2l`1 ` ¨ ¨ ¨ q ă ϵ2

d´1

ˆ

ř

s
σ2s

̇

.
8: Ũ , σ̃, Ṽ Ð U:1:rk ,σ1:rk ,V:1:rk .
9: gpkq Ð reshapepṼ J

, rk´1 ˆ nk ˆ rkq.
10: gpk´1q Ð reshapepBŨdiagpσ̃2q, rk´2 ˆ nk´1 ˆ rk´1q.
11: return tgpkquk.

3.2.3. Linear algebra in the Tensor-Train format

An advantage of the TT format is that it can be used for most multilinear algebraic operations in a
straightforward manner, the results of which are also expressed in the TT format. The construction of the
cores for the basic linear algebra operations is presented in the following. For the case of tensor operators
represented in the TT format, the algorithms can be easily applied to TT operators by reshaping the TT
cores.

Addition

Given 2 tensors x, y P Rn1ˆ¨¨¨ˆnd , with the TT decomposition given by the cores gpx,kq and gpy,kq respectively,
the TT cores of the pointwise addition z “ x ` y are

g
pz,1q
1i1:

“
´

g
px,1q
1i1:

g
py,1q
1i1:

¯

, @i1 P t1, . . . , n1u, g
pz,dq
:id1

“
˜

g
px,dq
:id1

g
py,1q
:id1

¸

, @id P t1, . . . , ndu

g
pz,kq
:ik:

“
˜

g
px,kq
:ik:

0

0 g
py,kq
:ik:

¸

, @k P t2, . . . , d´ 1u, ik P t1, . . . , nku.
(3.16)
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The TT rank of the resulting is the sum of the ranks of the involved operands rzk “ rxk ` ryk, k “ 1, . . . , d´ 1.
Since for some cases the actual TT rank of the result is smaller than the sum, the rank rounding procedure
from Algorithm 4 should be applied in order to avoid the overestimation of the rank after successive
operations. The asymptotic computational complexity of the addition step as described in (3.16) is
Opdnr2q.

Elementwise multiplication

In the case of the elementwise multiplication (also known as the Hadamard product) of two tensors
x, y P Rn1ˆ¨¨¨ˆnd , the cores of the product z “ x d y are given by

g
pz,kq
sk´1iksk

“ g
px,kq
pk´1ikpk

g
py,kq
qk´1ikqk

, sk´1 “ pk´1qk´1, sk “ pkqk, (3.17)

where tgpx,kquk“1,...,d and tgpy,kquk“1,...,d are the TT cores of the tensors x and y, respectively. The cores
gpz,kq are rxk´1r

y
k´1 ˆ nk ˆ rxkr

y
k tensors (the rank of the result is the product of the ranks of the operands),

thus making the computational complexity Opdnr4q.

Tensor operator product

The product between a tensor operator and a tensor (or between 2 tensor operators) can also be computed
directly in the TT format by core operations. Let A P Rm1ˆ¨¨¨ˆmdˆn1ˆ¨¨¨ˆnd be a tensor operator and
x P Rn1ˆ¨¨¨ˆnd be a tensor with the TT decompositions given by the cores tgpA,kquk and tgpx,kquk respectively.
The TT representation of the tensor z “ Ax is

g
pz,kq
sk´1iksk

“
ÿ

jk

g
pA,kq
pk´1ikjkpk

g
px,kq
qk´1jkqk

, sk´1 “ pk´1qk´1, sk “ pkqk. (3.18)

Similar to the elementwise product, the rank of the result is the product of the ranks of the inputs. A
more efficient method to approximate the product has been proposed in [Ose11a] which reduces the
computational complexity to Opdnr4q, under the assumption that the result has a comparable rank with
the rank of the input tensor. This method is based on the density matrix renormalization group (DMRG)
method (first proposed in [Whi93] and is also used to solve multilinear systems in TT format in [OD12]).
Contrary to elementwise addition, where the subtraction is also straightforward to perform by manipulating
the TT cores, there is no known algorithm involving direct core manipulation in order to compute the
elementwise division in the TT format. In order to accomplish this task, a minimization of the residual w.r.t.
the TT cores has to be performed. The task is similar to solving a multilinear system with a diagonal tensor
operator and right-hand side equal to 1 (more details about multilinear solvers are given in Section 3.2.4).

Scalar product and Frobenius norm

One further linear algebra operation that can be performed using basic core manipulation is the scalar
product defined in (2.24). Given two tensors x, y P Rn1ˆ¨¨¨ˆnd with the TT cores tgpx,kquk and tgpy,kquk
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respectively. The scalar product can be obtained using successive contraction of the TT cores:

x ¨ y “
ÿ

i1,...,id

˜

ÿ

q1,...,qd´1

g
px,1q
1i1q1

¨ ¨ ¨ gpx,dq
qd´1id1

¸˜

ÿ

s1,...,sd´1

g
py,1q
1i1s1

¨ ¨ ¨ gpy,dq
sd´1id1

¸

“

ÿ

i2,...,id

ÿ

q1,...,qd´1
s1,...,sd´1

˜

ÿ

i1

g
px,1q
1i1q1

g
py,1q
1i1s1

¸

loooooooooomoooooooooon

“:Rp1q

g
px,2q
q1i2q2

¨ ¨ ¨ gpx,dq
qd´1id1

g
py,2q
s1i2s2

¨ ¨ ¨ gpy,dq
sd´1id1

“

ÿ

i3,...,id

ÿ

q2,...,qd´1
s2,...,sd´1

˜

ÿ

i2,s1,q1

Rp1q
q1s1g

px,2q
q1i2q2

g
py,2q
s1i2s2

¸

looooooooooooooooomooooooooooooooooon

“:Rp2q

g
px,3q
q2i3q3

¨ ¨ ¨ gpx,dq
qd´1id1

g
py,3q
s2i3s3

¨ ¨ ¨ gpy,dq
sd´1id1

“ ¨ ¨ ¨ “ Rpdq .

(3.19)

The last remaining matrix Rpdq contains the resulting scalar product. In Figure 3.4, the scalar product
of 2 tensors in the TT format as well as the first step of the algorithm are presented using the tensor
network notation. Algorithm 5 presents the procedure in detail. Using the dot product, one can compute
the Frobenius norm ||x||2F “ x ¨ x. An alternative way to compute the Frobenius norm is to make use of the
core orthonormality property [Ose11b]. If the train is left-orthonormalized, the first d´ 1 contractions of
the cores yield the identity matrix. In this case the Frobenius norm is the Frobenius norm of the last core
from the orthonormal train.

gpx,1q gpx,2q gpx,dq

gpy,1q gpy,2q gpy,dq

rx0
1

rx1
3 1

rx2
3

rxd´1

1

rxd
3

ry0
1

ry1
3 1

ry2
3

ryd´1

1

ryd
3

n1
2

2

n2
2

2

nd
2

2

(a) Graphical representation of x ¨ y if both tensors are in the TT format.

Rp1q gpx,2q gpx,dq

gpy,2q gpy,dq

rx2
3

rxd´1

1

rxd
3

ry2
3

ryd´1

1

ryd
3

rx1
1 1

ry1

2

1

n2
2

2

nd
2

2

(b) In the first step, the first 2 cores gpx,1q and gpy,1q are contracted along i1.

Figure 3.4.: Graphical representation of performing the dot product in the TT format.
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Algorithm 5 Scalar product in the TT format.
1: function ScalarProduct(tgpx,kquk, tgpy,kquk TT cores of x and y)
2: R

p0q
11 Ð 1, Rp1q is 1 ˆ 1 matrix.

3: for k P t1, . . . , du do
4: R

pkq
pq Ð ř

i,j,k

R
pk´1q
ij g

px,kq
ikp g

px,kq
jkq , @i P t1, . . . , rxku, j P t1, . . . , ryku.

5: x ¨ y Ð R
pdq
11 .

6: return x ¨ y.

n-mode product and index contraction

Of interest when performing inference tasks is the ability to sum over certain modes. If a tensor x P
Rn1ˆ¨¨¨ˆnd has the TT representation given by the cores tgpkqug, performing the n-mode product z “ xˆq A
affects the q-th core only

g
pz,qq
sq´1jsq

“
ÿ

iq

g
pqq
sq´1iqsq

Ajiq , gpz,kq “ gpkq, k ‰ q, (3.20)

where gpz,qq is the q-th core of the product. The rank remains in this case unchanged. If the n-mode product
is performed with a vector a, the resulting TT core becomes 2-dimensional and it has to be merged with
one of its neighbors. If rq´1 ă rq and q ă d, the core is merged with its right neighbor q ` 1

g
pz,q`1q
sq´1iq`1sq`1

“
ÿ

iq ,sq

g
pqq
sq´1iqsq

aiqg
pq`1q
sqiq`1sq`1

, (3.21)

and if rq´1 ą rq and q ą 1, the core is merged with the left neighbor q ´ 1

g
pz,q´1q
sq´2iq´1sq

“
ÿ

iq ,sq´1

g
pq´1q
sq´2iq´1sq´1

aiqg
pqq
sq´1iqsq

, (3.22)

allowing to keep the smallest ranks in the resulting train.

Reshaping and quantization

Of interest in this work is the reshaping of tensors represented in the TT format. In the case of working
with full tensors, the reshaping of a tensor x with the mode sizes n “ pn1, . . . , ndq to a tensor x1 with
mode sizes n1 “ pn1

1, . . . , n
1
d1q, n1n2 ¨ ¨ ¨nd “ n1

1n
1
2 ¨ ¨ ¨n1

d implies creating a different view of the entries in
the memory or it creates a copy with permuted entries, depending on the implementation. If the tensor
is already represented in the TT format, the naive approach for reshaping would be computing the full
tensor, reshaping it and converting it back to the TT format. This is however not efficient and therefore
a different approach is presented (the pseudocode is given in Algorithm 6). The main idea is to iterate
over the target mode sizes n1

k, k “ 1, . . . , d1 and to group consecutive cores of the original tensor until the
product of their modes (stored in the variablem) is divisible by the target n1

k. In the pseudocode, the index
i iterates through the cores of the original tensor and the grouped cores are expanded into a tensor c. The
truncated SVD is then used to extract the TT core g1pkq of the reshaped train from the tensor c. The tensor
c is updated using the truncated factor matrix diagpσ̃qṼ J. The cores of the original tensor are further
accumulated in the newly obtained tensor c until the next TT core of the reshaped tensor can be split.

25



The quantized tensor-train (QTT) is one particular case of reshaping a tensor in the TT format. Quanti-
zation refers to increasing the number of dimensions by reshaping tensors with mode sizes that are powers
of 2 (log2 nk P N) into přk log2 nkq-dimensional ones with mode sizes 2. This procedure has been proven
to be effective for reducing the storage requirements and the computation time for solving the CME in the
TT format in different fields, such as computational chemistry [KO10, KO11, KKNS14, DS20, IWL`21],
partial differential equations [DKO12, ILDG22] and machine learning [LWY`21, SCS`22]. If the ranks of
the quantized tensor-train (QTT) decomposition remain bounded, the storage complexity is Opd log2 nq
[Kho11]. The QTT format will be later used in Chapters 5 and 6 in order to accelerate the AMEn solver
and the construction of the tensor operators.

Algorithm 6 Reshaping a tensor in the TT format.
1: function reshapeTT(tgpkquk TT cores of x P Rn1ˆ¨¨¨ˆnd , n1 “ pn1

1, . . . , n
1
d1q, ϵ)

2: Ensureśk nk “ ś

k n
1
k.

3: r1
0 Ð 1.

4: k Ð 1.
5: c Ð gp1q.
6: i Ð 2.
7: while k ď d1 do
8: if m{n1

k P N then
9: C Ð reshapepc, r1

k´1n
1
k ˆ pm{n1

kqriq.
10: U ,σ,V Ð SVDpCq.
11: r1

k Ð max
l

pσ2l ` σ2l`1 ` ¨ ¨ ¨ q ă ϵ2

d1´1

ˆ

ř

s
σ2s

̇

.
12: Ũ , σ̃, Ṽ Ð U:p1:r1

kq,σp1:r1
kq,V:p1:r1

kq.
13: g1pkq Ð reshapepŨ , r1

k´1 ˆ n1
k ˆ r1

kq.
14: c Ð reshapepdiagpσ̃qṼ J

, r1
k ˆ pm{n1

kq ˆ riq.
15: m Ð m{n1

k.
16: else
17: cuvwz Ð ř

s
cuvsg

piq
swz.

18: m Ð mni.
19: c Ð reshapepc, r1

k´1 ˆmˆ riq.
20: i Ð i` 1.
21: return tg1pkqu.

3.2.4. Multilinear systems in the TT format

One very important step when dealing with high dimensional differential equations is solving multilinear
systems. One approach is to adapt the classical iterative methods for solving linear systems to work
with tensors in the TT format [HKT08]. In [Dol13], the generalized minimal residual method (GMRES)
algorithm has been extended to the TT format. A significant drawback of adapting Krylov space methods
to the TT format is that large tensors have to be handled during the iterations. Improvements compared to
the TT-GMRES method introduced in [Dol13] have been presented in [ADL21].
An alternative is to perform optimization of quadratic functions (residual, energy) in the TT format. For
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Figure 3.5.: Graphical representation of the bilinear form x ¨ pAxq for both A and x represented in the TT
format with the cores hpkq and gpkq respectively.

solving multilinear systems, the squared norm of the residual is minimized

min
xPX ||Ax ´ b||2F , (3.23)

where X is the set of tensors with low TT rank. However, if the tensor operator is symmetric and positive
definite, solving the system is equivalent to finding the minimizer of the following optimization problem

min
xPX x ¨ pAxq ´ 2x ¨ b, (3.24)

where the loss function is denoted as JA,b in the following. The optimization problem is nonlinear and
nonconvex w.r.t. all TT cores of the decomposition and the rank of the solution is not known in most of
the cases, leading to a mixed-integer optimization problem. In the case of CPD, several attempts have
been made to solve the minimization problem by applying Newton’s method [KT10]. In the case of the TT
format, Riemannian optimization has also been proposed to solve general minimization problems using
automatic differentiation [HRS10a, NRO22]. This however only works on manifolds of tensors with fixed
TT ranks.

Alternating least squares (ALS)

One method to reduce the complexity of the optimization problem is to take advantage of the fact that the
map T T is linear with respect to an individual core, provided that the remaining TT cores are fixed. Fixing
all cores but one transforms the highly nonlinear problem (3.23) into a quadratic optimization problem. In
the literature, this method is found under the name of ALS [HRS12]. The idea is to iteratively optimize
w.r.t. only one core at the time in order to obtain a new core that decreases the loss function JA,b. If only
the k-th TT core is considered as variable and the rest are fixed, the following linear operator is defined

Qpkqpwq “ T T pgp1q, . . . , gpk´1q,w, gpk`1q, . . . , gpdqq P Rn1ˆ¨¨¨ˆnd , w P Rr
pxq

k´1ˆnkˆr
pxq

k , (3.25)

which fixes all the cores but the k-th. The composition with the loss function JA,b is in this case

pJA,b ˝ Qpkqqpwq “ Qpkqpwq ¨
´

AQpkqpwq
¯

´ 2b ¨ Qpkqpwq. (3.26)
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(a) The tensor operator Lpkqwpkq of the local subsystem.
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(b) Graphical representation of fpkq.

Figure 3.6.: Tensor network representation of the local system Lpkqwpkq “ fpkq.

As represented Figure 3.5, the fixed TT cores as well as the cores of A can be contracted together to
obtain a single tensor operator Lpkq P Rprk´1ˆnkˆrkqˆprk´1ˆnkˆrkq. The same can be performed for the
second dot product from (3.26). The function from (3.26) takes the following form

Qpkqpwq “ w ¨ pLpkqwq ´ 2fpkq ¨ w, (3.27)

where L and f P Rr
pxq

k´1ˆnkˆr
pxq

k are computed by contracting the edges in Figure 3.6a and 3.6b, respectively.
Since a symmetric positive definite A is considered, the operator Lpkq is also symmetric positive definite
and the minimizer of the functional w.r.t. k-th core can be computed as the solution of the system

∇pJA,b ˝ Qpkqqpwq “ Lpkqw ´ f “ 0. (3.28)

The solution of the system is the new core of the ALS iteration and the process is repeated for the next core.
An efficient way of computing Lpkq and fpkq at every iteration is to recursively contract the cores 1, . . . , k ´ 1
into a left interface tensor and the cores tk ` 1, . . . , du into a right interface tensor. As a result, the system
can be assembled as (see the tensor diagrams from Figures 3.7a and 3.7b).

L
pkq
pk´1ikpk,sk´1jksk

“
ÿ

qk´1,qk

ΦpA,kq
pk´1qk´1sk´1

ΨpA,kq
pkqksk

g
pA,kq
qk´1ikjkqk

, (3.29)

f
pkq
qk´1ikqk

“
ÿ

pk´1,pk

Φpb,k´1q
pk´1qk´1

Ψpb,k`1q
pkqk

g
pb,kq
pk´1ikpk

, (3.30)
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where the following recursive relations can be used to update the left and right interfaces Φ and Ψ

Φ
pA,kq
s1p1q1 “

ÿ

s,p,q,m,n

ΦpA,k´1q
spq g

pA,kq
pmnp1g

px,kq
sms1g

px,kq
qnq1 , ΦpA,kq P Rr

pxq

k ˆnkˆr
pxq

k , ΦpA,0q “ 1, (3.31)

ΨpA,kq
spq “

ÿ

s1,p1,q1,m,n

ΨpA,k`1q
spq g

pA,kq
pmnp1g

px,kq
sms1g

px,kq
qnq1 , ΨpA,kq P Rr

pxq

k ˆnkˆr
pxq

k , ΨpA,dq “ 1, (3.32)

Φ
pb,kq
p1q1 “

ÿ

m,p,q

Φpb,k´1q
pq g

pb,kq
pmp1g

px,kq
qmq1 , Φpb,kq P Rr

pbq

k ˆr
pxq

k , Φpb,0q “ 1, (3.33)

Ψpb,kq
pq “

ÿ

m,p1,q1

Φ
pb,k`1q
p1q1 g

pb,kq
pmp1g

px,kq
qmq1 , Ψpb,kq P Rr

pbq

k ˆr
pxq

k , Φpb,dq “ 1. (3.34)

The pseudocode of the ALS method is presented in Algorithm 7. The local system Lpkqwpkq “ fpkq can be
solved either using a direct solver, if the size of the tensor is smaller than a predefined threshold, or using
iterative solvers. The latter avoids building the operator L by directly computing the product Lw. Despite
being simple to implement, the ALS method has two main drawbacks: the slow convergence [RU13] and
the fact that the TT-ranks have to be known in advance.
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Figure 3.7.: Assembly of the local system. This is obtained by contracting the left part of the tensor
networks in Figure 3.6

DMRG

The lack of the rank adaptation of the ALS method can be overcome using the DMRG method. First used
to minimize the Rayleigh quotient [Whi93], the DMRG was first used in [Jec02] in the context of linear
systems. Instead of minimizing w.r.t. individual cores, the DMRG joins together 2 consecutive cores gpkq

and gpk`1q in order to obtain a so called supercore wpk,k`1q P Rr
pxq

k´1ˆnkˆnk`1ˆr
pxq

k`1 by contracting across
the common rank. The minimization problem at the step k is in this case

min
wpk,k`1q

JA,bpT T pgp1q, . . . , gpk´1q,wpk,k`1q, gpk`2q, . . . , gpdqqq. (3.35)

Similarly to the ALS, the optimal supercore fulfills the local system Lpk,k`1qw “ fpkq. The tensor operator
Lpk,k`1q P Rprxk´1ˆnkˆnk`1ˆrxk`1qˆprpxq

k´1ˆnkˆnk`1ˆrxk`1q and the right-hand side f P Rr
pxq

k´1ˆnkˆnk`1ˆr
pxq

k`1 can

29



Algorithm 7 ALS for solving linear systems in the TT format.
1: function ALS(tgpA,kquk, tgpb,kquk TT cores of A and b)
2: Choose random initial TT cores tgpx,kquk.
3: for i P t1, 2, . . . u do
4: ΨpA,dq Ð 1.
5: Ψpf,dq Ð 1.
6: for k P td, . . . , 1u do
7: Update ΨpA,k´1q and Ψpf,k´1q using (3.32) and (3.34).
8: Orthogonalize the core gpx,kq (right to left).
9: for k P t1, . . . , du do
10: Solve the system Lpkqgpx,kq “ fpkq (direct solver of iterative solver).
11: Update ΦpA,kq and Φpf,kq using (3.31) and (3.33).

return tgpx,kquk.

be obtained using the tensors from (3.31), (3.32), (3.33) and (3.34) as shown in Figure 3.8. The newly
obtained supercore wpk,k`1q can be split into two TT cores using the SVD. One possible way to truncate the
SVD and reveal the rank rk is to use the residual of the system [OD12]. The supercore wpk,k`1q is reshaped
to an prk´1nkq ˆ pnk`1rk`1q matrixW pk,k`1q and the SVD is used to obtainW pk,k`1q “ UdiagpσqV J.
Several strategies for truncating the decomposition have been proposed [OD12]. One of the most efficient
truncation strategies is based on the residual of the local systems. This means finding the best residual
||Lw ´ f || ď ϵ||Lw̃ ´ f ||. An additional trick to overcome local minima is to extend the cores using a
random component [OD12]. Let wpkq and wpk`1q be the TT cores obtained after splitting the supercore
wpk,k`1q. The TT cores after the enrichment with a random component are

g
px,kq
:ik:

“
´

w
pkq
:ik:

s
pkq
:ik:

¯

, g
px,k`1q
:ik`1:

“
˜

w
pkq
:ik:

0

¸

, (3.36)

where spkq P Rrxk´1ˆnkˆr1 is a random tensor orthogonalized to wpkq and r1 P N is the "kick rank" [OD12].
Despite the basis enrichment, the DMRGmethod remains stuck in local minima in some practical applications
[DS14]. One further disadvantage of the DMRG scheme is the size of the local systems. Compared to
the classical ALS, where the local system is solved for Opnr2q entries, in the case of DMRG the unknown
supercore has the storage complexity Opn2r2q.

AMEn

The AMEn method aims to combine the ALS scheme with the classical Krylov-subspace based methods.
The main idea of the AMEn method is to use the TT representation of the residual of the system b ´ Ax for
the basis enrichment (the residual coincides with ´∇JA,bpxq in this case). The following modifications to
the ALS iteration [DS14] are made for the AMEn method:
1. The local system Lpkqwpkq “ fpkq is solved.
2. A truncated SVD is performed on the matricizationMď2wpkq.
3. If k ă d, the TT core zpkq of the residual b ´ Aw̃pkq is computed (w̃pkq is the core reconstructed after
the SVD truncation)

4. w̃pkq is enriched using zpkq and the orthogonality is enforced on the newly obtained core gpx,kq.
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Figure 3.8.: Local system computation for the DMRG method.

An in depth analysis of the AMEn algorithm is presented in [DS14]. Due to the reduced computational
complexity when compared to the DMRG and the ability to escape local minima, AMEn is the method of
choice in this work when dealing with multilinear systems.

3.2.5. Interpolation in the TT format

In Section 3.2.1, the decomposition method from full format has been introduced. However, this assumes
that all the entries of the tensor are known. This requirement quickly becomes computationally unattractive
even for small tensors. One question that immediately comes into mind is whether one can decompose
a tensor with a low rank structure without explicitly storing all its entries in the memory. For n P Nd

and Ik “ t1, . . . , nku, k “ 1, . . . , d and a given a function f :
Śd

k“1 Ik Ñ R, the goal is to find a TT
representation of the tensor yi “ fpi1, . . . , idq without explicitly computing the image of f . In the case of
matrices, this problem has been addressed in [Tyr00, Beb00, GT01], where a low rank approximation of a
matrix is computed by taking into account only selected rows and columns (crosses). The generalization
to the TT format has been introduced in [Ose10] and later extended in [SO11]. The latter introduces an
adaptive method based on DMRG minimization and the idea will be briefly presented in the following.
The problem of finding the TT approximation can be formally written as a minimization problem

min
TT cores tgpkquk

||y ´ T T pgp1q, . . . , gpdqq||2F . (3.37)

If all the cores but the k-th are fixed, the following holds:

Măk
i1...ik´1 :

g
pkq
:ik:
Mąk

: ik`1...id
« fpi1, . . . , ik´1, ik, ik`1, . . . , idq, (3.38)
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whereMăk P Rn1ˆ¨¨¨ˆnk´1ˆrk´1 andMąk P Rrk`1ˆnk`1ˆ¨¨¨ˆnd are obtained by contracting together the
cores tgp1q, . . . , gpk´1qu and the core tgpk`1q, . . . , gpdqu, respectively. To obtain the core gpkq, the pseudoin-
verse of the interface matrices Măk and Mąk have to be computed. If the first k ´ 1 cores are kept
left-orthonormal and the cores tgpk`1q, . . . , gpdqu are kept right-orthonormal, then the matricesMăk and
Mąk have orthonormal columns and rows, respectively. The core gpkq can be therefore recovered by
multiplying the right-hand side with pMăkqJ to the left and pMąkqJ to the right. In [SO11], the cross
approximation for matrices is used for evaluating the matrices Y:ik:, Yi1,...,ik´1ikik`1,...,id

, ik “ 1, . . . , nk. As a
result, the system in (3.38) takes the form

ÿ

sk´1,sk

Măk
Ipsk´1qsk´1

g
pkq
sk´1iksk

Mąk
skJ pskq “ fpI1,sk´1

, . . . , Ik´1,sk´1
, ik, Jk`1,sk , . . . , Jd,skq, @ik “ 1, . . . , nk,

(3.39)

where I and J are the sets of rk´1 and rk indices where the function is evaluated (crosses of the matrices
Y:ik:) and Ipsk´1q “ I1,sk´1

, . . . , Ik´1,sk´1
, J pskq “ Jk`1,sk , . . . , Jd,sk . The submatrices ofMăk andMąk

should be chosen such that they are well-conditioned. One way of constructing index sets is to use the
maxvol method presented in [GOS`10, CMI09]. After the system (3.39) is solved, the index sets are
updated and the system for the next cores is assembled. The procedure presented above can be used in
ALS schemes (or AMEn) or can be extended to DMRG schemes [SO11, OT10]. In [QLG`22], it is shown
that the cross approximation provides a stable TT decomposition within a given error.
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4. Bayesian Inverse Problems

Solving an inverse problem concerns the determination of the underlying state or parameters of a system
by taking into account possibly noisy observations of an output state. A model that connects the output
quantity to the underlying state is assumed to be known. Determining the output state of the system given
the hidden state (or parameters) is a well-posed problem, if it fulfills the following three conditions:
• existence — there exists a solution of the problem,
• uniqueness— the solution is unique,
• stability — the solution depends continuously on the data.

Predicting the observation from a known state is also known as the forward problem. Even if the forward
problem is assumed to be well-posed, its inverse is not necessary well-posed. In most of the cases the
forward map is not injective, and therefore the underlying state cannot be uniquely determined from a
set of observations. An additional problem might occur when the observations are affected by noise. A
graphical representation is shown in Figure 4.1, where the unknown state u is used to predict z “ L puq.
The observed quantity y is obtained as a noisy version of the prediction z and does not necessarily belong
of the image of L anymore.

u z

y

Forward problem L

Noise

Inverse problem

Figure 4.1.: Inverse problem.

One way of solving an inverse problem is to cast it as an optimization task. An error metric between the
observation and the prediction is minimized with respect to the underlying state in order to find a solution
of the inverse problem. However, this approach is affected by the lack of uniqueness of the minimizer. To
this end, additional regularization of the underlying state is introduced in order to enforce uniqueness
[EHN00, Bar18]. One disadvantage of classical optimization approaches is that the stochastic information
offered by the noise model is lost. This work focuses on using Bayesian methods for solving inverse
problems. In the Bayesian framework, the state and often also parameters as well as the observations
are modeled as random variables (RVs) and the goal is to infer the distribution of the state. The noise
model can therefore be incorporated in the framework. One common issue of both approaches is that the
forward problem needs to be solved for several parameter combinations in order to obtain the solution.
To this end, surrogate models, i.e., models that approximate the solution of the forward problem and are
computationally inexpensive to evaluate, represent an important topic in the field of inverse problems
[FMWW10].
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For the rest of the chapter, we concentrate on parameter identification, i.e., the state as well as the
observations belong to a finite dimensional space. The infinite dimensional case, where the state is
represented as a function, can be discretized using the Karhunen-Loève expansion [OL79].

4.1. Introduction to probability theory

Before formalizing the inverse problems, we recall some important concepts from probability theory. The
first concept for describing an experiment that depends on randomness is the probability space, which is a
triplet pΩ,Σ,Pq, where
• Ω is a set of outcomes,

• Σ is a σ-algebra over Ω containing all the events that are of interest for the experiment,

• P : Σ Ñ r0, 1s is the probability function and has the property that it is σ-additive with PpΩq “ 1.

Let pΩ,Σ,Pq be a probability space, X , dimpX q ă 8 a measurable space with the Borel algebra pX ,BX q.
A random variable (RV) is a measurable function X : Ω Ñ X , i.e., for every set B P BX , the preimage
X´1pBq “ tω P Ω : Xpωq P Bu belongs to the event space Σ. Common choices for the space X in this
work are Rd and Nd. The RVs are denoted with capital letters and, for d ą 1, bold capital letters are used.
A realization x “ Xpωq, ω P Ω, of a RV is denoted as a bold lowercase letter.
If the space X is countable, any RVX : Ω Ñ X is called a discrete RV. In this case, the probability mass

function (PMF) is defined as the function

pXpxq “ Pptω P Ω : x “ Xpωquq. (4.1)

For a continuous RV, X ,Ω are uncountable and the probability mass function (PMF) is no longer the proper
way of describing the RV, since the probability of unitary events is 0. Therefore, the probability density
function (PDF) is used. Let pΩ,Σ,Pq be a probability space and X : Ω Ñ X be a multivariate random
variable. The function pX : X Ñ r0,8q is called the probability density function (PDF) of the RVX if it
holds:

Pptω P Ω : Xpωq P Suq “
ż

S

pXpxqdµpxq, @S P BX , (4.2)

for pX ,BX q a Borel algebra equippedwith ameasure µ : BX Ñ r0,8q. The concept of PDF is a generalization
of the PMF and for every discrete RV, that is, a PDF can be written as a superposition of Dirac-delta
distributions.
Since using the PDF to describe RVs is not always computationally attractive, the expected value is an

often used tool for characterizing RVs, defined as

EpXq “
ż

Ω

XpωqdPpωq “
ż

X

xpXpxqdµpxq P X , (4.3)

where the second part of the equation is valid if a PDF exists. In the discrete case, the expected value has
the form

EpXq “
ÿ

xPX
xpXpxq. (4.4)
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Two main properties are the linearity and the composition law EpfpXqq “ ş

X fpxqpXpxqdµpxq. One
further instrument to characterize the distribution is the covariance, explained in the following.
Given two probability spaces, pΩ,ΣΩ,PΩq and pΠ,ΣΠ,PΠq, and two RVs,X : Ω Ñ X and Y : Π Ñ Y,

the joint RV is defined using the probability space pΩ ˆ Π,ΣΩ ˆ ΣΠ,PΣˆΠq as pX,Y q : Ω ˆ Π Ñ X b Y.
The joint PDF is defined as the function pX,Y : X b Y Ñ r0,8q such that

PΩˆΠptpω, πq P Ω ˆ Π : pXpωq,Y pπqq P Suq “
ż

S

pX,Y px,yqdµpx,yq, @S P BXˆY , (4.5)

where µ is an appropriate measure defined on X ˆ Y. If the PDF of the joint RV is known, the PDFs of the
individual variables can be obtained by marginalization:

pXpxq “
ż

Y

pX,Y px,yqdνpyq, (4.6)

where the expression for pY is similarly obtained and ν is a measure defined on Y . For a RV that takes values
in a tensor product space X “ X1 b ¨ ¨ ¨ b Xd, the objects pX : X Ñ R and pX1,...,Xd

: X1 ˆ ¨ ¨ ¨ ˆ Xd Ñ R
are equivalent. In the case of two jointly distributed RVs, their covariance is defined as

CovpX,Y q “
ż

XbY

px ´ EpXqq b py ´ EpY qqpX,Y px,yqdµpx,yq P X b Y, (4.7)

where the case CovpX,Xq is called the variance and is denoted as VarpXq. The covariance CovpX,Xq P
X b X is isomorphic to a tensor operator from LpX ,X q.

Examples of distributions:

Some well-known and relevant distributions used in this work are:
• A RV X is uniform distributed over the interval ra, bs (also written as X „ Upa, bq) if its PDF is

pXpxq “ 1

b´ a
, x P ra, bs, (4.8)

with EpXq “ a`b
2 and VarpXq “ pb´aq2

12 .
• A RV is said to be Gaussian (normal) distributed with mean µ P Rd and covariance matrix Λ P Rdˆd

if its PDF is

pXpxq “ 1
ap2πqddetΛ exp

ˆ

´1

2
px ´ µqJΛ´1px ´ µq

̇

, (4.9)

where the covariance matrix is symmetric positive definite. A Gaussian distributed RV is written as
X „ N pµ,Λq and has the expected value EpXq “ µ and covariance CovpX,Xq “ Λ.

• A univariate RV X defined on p0,8q is Gamma distributed (X „ Γpα, βq) with the shape parameter
α ą 0 and the inverse scale parameter β ą 0 if its PDF is

pXpxq “ xα´1e´βxβα
ş8
0 xα´1e´βxβαdx, x ą 0, (4.10)

with EpXq “ α
β and VarpXq “ α

β2 .
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• The RV X P r0, 1s is said to be Beta distributed with the shape parameters α, β ą 0 if it has the PDF

pXpxq “ xα´1p1 ´ xqβ´1

ş1
0 x

α´1p1 ´ xqβ´1dx
, (4.11)

with EpXq “ α
α`β and VarpXq “ αβ

pα`βq2p1`α`βq .

4.1.1. Conditioning and Bayes theorem

One important concept in the field of Bayesian inverse problems is the conditional probability. If two events
A and B are dependent, one can ask how does the probability of observing A changes if the event B is
observed. Intuitively, this is obtained as the probability of both events A, B to occur normalized to the
probability of B to occur and is formalized in the following definition:
Definition 4.1.1 (Conditional probability). Let pΩ,Σ,Pq be a probability space. The conditional probability
of A given that B is also observed is defined as

PpA|Bq “ PpAYBq
PpBq , PpBq ‰ 0. (4.12)

By writing the definition for both PpA|Bq and PpB|Aq and eliminating the term PpAYBq, the following
relation is obtained:

PpA|Bq “ PpB|AqPpAq
PpBq , PpBq ‰ 0. (4.13)

This simple but very powerful formula is called the Bayes theorem (also known as Bayes rule) and it is the
core of many machine learning methods [Jay03, Bar12, The15]. It relates the probability of a hypothesis
A given some data B is observed to the product between the likelihood PpB|Aq of the data to be observed,
given that the hypothesisA is true, multiplied by the probability of the hypothesis PpAqwithout knowing the
observation. The term PpBq is the probability that the data is observed and has the role of a normalization
constant.
Using the Bayes rule for probabilities is not feasible in the context of inverse problems with continuous

RVs, since conditioning on pointwise observations yields a zero normalization constant. To this end, the
concept of conditioning has to be extended to PDFs. According to the definition from (4.2), the PDF of a
RVX conditioned on an observation of a dependent RV has to fulfill the following equation:

PpX P S|Y “ yq “
ż

S

pX|Y px|yqdµpxq, @S outcome set. (4.14)

This requirement is fulfilled by the following definition:
Definition 4.1.2 (Conditional PDF). Let X and Y be two RVs with the joint PDF pX,Y . The PDF of X
conditioned on the observation Y “ y is

pX|Y px|yq “ pX,Y px,yq
ş

X pX,Y px,yqdµpxq “ pX,Y px,yq
pY pyq , pY pyq ‰ 0, (4.15)

where X is the image ofX and µ is a measure.
With the definition of the conditional PDF, the Bayes rule in terms of density functions can be expressed as

pX|Y px|yq “ pY |Xpy|xqpXpxq
pY pyq , pY pyq ‰ 0. (4.16)

Note that if two RVs are independent, i.e., pX,Y px,yq “ pXpxqpY pyq, conditioning gives pY |Xpy|xq “
pY pyq.
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4.2. Inverse problems in the Bayesian setup

As previously mentioned, in the Bayesian setup, the parameter vector is considered to be a RV, denoted in
the following as U : Ω Ñ U , where pΩ,Σ,Pq is the probability space used to describe the entire experiment
[Stu10, MZR`16]. The prediction is also a RV and is obtained by the composition Z “ L ˝ U . The
observation noise is modeled using the RV Y defined in the general case as

Y pω, πq “ Y pL pUpωqq, πq, Y : Ω ˆ Π Ñ Y, (4.17)

where pΠ,ΣΠ,PΠq is a probability space and Y is a suitable space where the observations take values.
Since the observation is just a noisy version of the prediction, it is reasonable to assume that the RV also
takes values in Y, ImpZq Ď Y. It relates the distribution of the parameter U to the observation Y using
the forward problem. If a realization of the parameter is available, the forward problem is used to obtain a
prediction and the prediction is modified according to the noise model. This is graphically illustrated in
Figure 4.2. Solving the inverse problem means in this framework conditioning the RV U on realizations of
Y [MZRL16, VM18, Stu10]. One particular model also used in this work is the additive noise. In this case,
the RV Y has the form

Y pω, πq “ L pUpωqq ` Υ pπq, (4.18)

where Υ is a random variable representing the discrepancy between the output and the observation
(measurement error).

pΩ ˆ Π,ΣΩ ˆ ΣΠ,PΩˆΠq

pU ,BU q pY,BYq

U Y

L

Figure 4.2.: Diagram illustrating the relation between the RVs. The image of the map L is assumed to be
a subset of the set Y .

The treatment of the inverse problem simplifies when expressed in terms of PDFs [Stu10]. Due to the
connection between the observation and the parameter by means of the forward problem, the observation
and the parameter are jointly distributed. Under the assumption that the joint PDF exists, the conditional
PDF of U given the observation ŷ is well-defined and the Bayes law can be applied to obtain the following
expression for the posterior PDF pU |Y :

pU |Y pu|ŷq “ pY |U pŷ|uqpU puq
pY pŷq . (4.19)

The PDF pU , also called prior, incorporates an initial knowledge about the underlying parameter, the
conditional PDF pY |U is called likelihood and the normalization constant pY pŷq is called evidence. The
underlying physical model given by the forward problem is included in the likelihood. Therefore, for every
evaluation of the posterior, a forward problem has to be solved. One concrete example is the likelihood for
the additive noise case from (4.18), where the likelihood is expressed as

pY |U pŷ|uq “ pΥ pLpuq ´ ŷq, (4.20)

for pΥ the PDF of the error.
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4.2.1. Hidden Markov models and recursive state estimation

Evaluating and numerically approximating the posterior becomes computationally unattractive even for a
small number of dimensions. When dealing with time dependent inverse problems, where the state evolves
with time, the dimensionality of the joint density scales linearly with the number of timesteps. Moreover,
since in practical cases not all measurements are available at once, some factorization of the joint has to be
assumed [Che03].
Consider a sequence of RVs tUunk“1, each of them corresponding to the state of the system at discrete

timesteps indexed by k. At every timestep, the indirect observation of the state is modeled by the RV
sequence tUunk“1. The unobserved underlying state is also called hidden or latent state. One first assumption
is that the k-th observation Y pkq depends only on the current state U pkq. A second assumption is that the
current state depends only on the previous state. These two assumptions are formalized in the following
definition, with the notation U păkq “ U pk´1q,U pk´2q, . . . and U pďkq “ U pkq,U pk´1q, . . . .
A graphical representation of the hidden Markov model (HMM) is shown in Figure 4.3.

Definition 4.2.1 (Hidden Markov model). Let tU pkqunk“1 and tY pkqunk“1 be sequences of jointly distributed
state and observation RVs. The family of RVs build a hidden Markov model (HMM) if the following
factorization holds:

pY pkq|U pďkq,Y păkqpypkq|upkq, ...,up0q,ypkq, ...,yp1qq “ pY pkq|U pkqpypkq,upkqq,
@upkq, ...,up0q,ypkq, ...,xp1q, k P t1, ..., nu. (4.21)

A HMM is called a hidden Markov chain if it fulfills the additional property

pU pkq|U păkqpupkq|upk´1q, ...,up0qq “ pU pkq|U pk´1qpupkq|upk´1qq, @xpkq, ...,xp0q, k P t1, ..., nu. (4.22)

U pkq U pk`1q U pk`2qU pk´1qU pk´2q¨ ¨ ¨ ¨ ¨ ¨

Y pkq Y pk`1q Y pk`2qY pk´1qY pk´2q

Figure 4.3.: Diagram illustrating the relation between the RVs in a HMM. The arrows represent the condi-
tional dependencies of the RVs.

Inference tasks on HMMs

One relevant inference task on a HMM is the state prediction. If the PDF of the state at the step k ´ 1 is
known, the distribution of U pkq is obtained using marginalization and the definition of the conditional PDF

pU pkqpupkqq “
ż

U

pU pkq,U pk´1qpupkq,upk´1qqdupk´1q

“
ż

U

pU pkq|U pk´1qpupkq|upk´1qqpU pk´1qpupk´1qqdupk´1q, (4.23)

where pU pkq|U pk´1q is the transition PDF which incorporates the time evolution equations and captures the
process noise. A similar expression can be derived for the conditional pU pkq|Y păkq in terms of pU pk´1q|Y păkq .
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When a new measurement is taken into account, the Bayes rule can be used to relate the so-called filter
PDF to the prediction using the noise model pY pkq|Xpkq

pU pkq|Y pďkqpupkq|ypkq, ...q 9 pY pkq|U pkqpY pkq|U pkqqpU pk´1q|Y păkqpupkq|ypk´1q, ...q. (4.24)

Equations (4.23) and (4.24) can be recurrently used to incorporate new measurements into the state
estimation starting from the prior pU p0q . Smoothing is the third task and consists in describing the state RV
given that all measurements have been accounted for, i.e., the PDFs pU pkq|Y ďn , k P t1, ..., nu. In Sections
5.4.1 and 5.4.2, the algorithm to compute the smoothing will be presented in detail.

4.2.2. Posterior approximation

In the case the system state is described by a vector of real numbers U “ Rd, the prior and posterior PDFs
are multivariate real-valued functions and therefore can be approximated using classical interpolation
techniques. In this work, we concentrate on interpolation using tensor product grids. The reason for this
is the ability to compress the DoFs tensor using the TT format presented in the previous chapter. An
approximation from a tensor product spaceÂd

k“1 spanpbpkq
i : i “ 1, ..., nkq is obtained from univariate

bases bpkq
i . Regarding the choice of the basis, B-splines (presented in Appendix A) are used in this work

due to their numerical stability and their locality [IWL`21]. The discretized posterior is expressed as a
linear combination

pU |Y pu|ŷq «
ÿ

k

pkbkpuq “
ÿ

k

pkb
p1q
k1

pu1q ¨ ¨ ¨ bpdq
kd

pudq, (4.25)

where p P Rn1ˆ¨¨¨ˆnd are the DoFs and can be obtained by interpolation. To this end, a collocation grid is
defined as a Cartesian product of univariate gridsŚd

k“1tuC,k
ik

unk
ik“1. Recovering the DoF tensor in the TT

format can be achieved by solving the following linear system
ÿ

k

pkbkpuC
i q “ pU |Y puC

i |ŷq, @i, (4.26)

where the choice of the univariate grids has to ensure that the matrices with the entries Bk
ij “ b

pkq
j puC,k

j q
are invertible. Representing the right-hand in the TT format can be achieved using the interpolation
method presented in Section 3.2.5 in order to avoid constructing the full tensor. In the case where a
surrogate model of the forward problem is available, this task becomes computationally inexpensive.
After having an accurate approximation of the posterior, UQ tasks such as computing moments, modes,
calculating marginals and sampling [DAIFS20] can be efficiently accomplished. The two error sources are
the truncation of the space U and the discretization error introduced by the finite dimensional basis. The
latter can be controlled by refinement strategies.
Alternatively, one can directly compute moments of the posterior using the TT cross approximation using

tensor product numerical quadrature schemes [Xiu10], such that

EpgpUqq “
ż

U

gpuqpU |Y pu|ŷqdu “
ÿ

i

wigpuQ
i qpU |Y puQ

i |ŷq, (4.27)

where uQ
i “ puQ,1

i1
, ..., uQ,d

id
q is the grid obtained from the individual univariate quadrature points with the

corresponding weights forming the rank-1 tensor w “ wQ,1 b ¨ ¨ ¨ bwQ,d. The evaluation of the integrand is
obtained again using the cross interpolation method. In [Xiu10], several choices of quadrature points and
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weights are proposed for the case when the density function has some canonical format: Gauss-Hermite
quadrature points are used for Gaussian distributions, Gauss-Legendre quadrature for uniform distributions,
etc. Since the posterior does not necessarily belong to the family of known PDFs, it is usual to use the
quadrature scheme corresponding to the prior with a sufficiently high order [VM18].

4.2.3. Overview of Bayesian inversion methods

One common issue of all the Bayesian inversion methods is the need for a high number of evaluations of the
posterior and thus the forward problem solver. Especially for systems described by differential equations,
where a simulation for a single parameter can even take days to complete, the Bayesian inversion methods
become inefficient. This motivates the need of using surrogate models in order to avoid a high number of
expensive simulations. In the following, we recall three classes of methods:

Sampling based methods

As the name suggests, they rely on drawing a sample from the posterior distribution using Markov chain
Monte Carlo (MCMC) [Tie94, BGJM11]. Having a sample from the posterior, one can compute moments
or even histograms of marginals. Their advantage is that they do not require a smooth forward map
and they are suited for high dimensional parameter spaces [Tar05, Bar18]. As a main disadvantage, the
high number of posterior PDF evaluations makes the method unusable for systems with computationally
expensive forward problems. To address this problem, some authors proposed the use of surrogate models
[LM14, MX09, FLU`20, YZ19b, YZ21, YZ19a].

Pointwise estimators

One very popular technique is the maximum a posteriori estimation (MAP), which searches for the
maximizer of the posterior [Bar18, DG08]. The optimization problem can be difficult to solve especially
for multimodal distributions or high number of dimensions. Moments of the posterior can as well be
computed by numerical integration [VM18, MZRL16]. In the context of recursive state estimation for time
dependent processes, the most known method is the Kalman filter introduced in [Kal60]. The initial variant
was developed for linear inverse problems. For a Gaussian noise model, extensions have been made for
nonlinear systems [Che03]. The result is the posterior mean and covariance at every time step. While
the pointwise estimations are sufficient for a large class of applications, they are not good at capturing
multimodal PDFs.

Variational inference

In variational inference, the posterior is approximated from a family of known distributions [BKM16].
The basic idea is to search for an approximation of the intractable posterior within a tractable family of
distributions. As a discrepancy metric, some distance is chosen, typically the Kullback-Leibler divergence.
Since the computation of the Kullback-Leibler divergence requires numerical integration, this method is
affected by the curse of dimensionality. Some applications of the variational inference for inverse problems
are found in [TRT`20, AIJZ17, MTRP09, GWE`15, aSYK`04].
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5. Tensor-Train for the Chemical Master Equation

When dealing with biological processes involving a low number of molecule instances, stochastic kinetics
models have to be used [SYSY02]. The CME is a fundamental equation that probabilistically describes
such systems under certain assumptions [Gil92]. Despite being just a linear initial value problem, the CME
suffers from the curse of dimensionality, making the naive integration computationally expensive even
for simple models. Since the solution of the CME is represented as a tensor, it is natural to directly apply
tensor decomposition methods. Compressing the solution alone is not sufficient if the solver works with
full high dimensional tensors. To this end, the so called CME generator has to be constructed in the TT
format and the time integration has to be performed in the low-rank format as well. For the latter, the so
called time dependent AMEn solver is used [Dol18]. Adding parameter dependence to the CME is resolved
by combining the state space and the parameter space into a higher-dimensional tensor product space.
Galerkin projection is then used derive a multilinear system in TT for the combined state-parameter DoF
tensor.
The process of parameter identification can be modeled as an HMM where the hidden state is the joint

state-parameter distribution at different time steps. In this case, the transition between two consecutive
hidden states k and k ` 1 is performed by solving the CME for the corresponding time interval. The
observation operator can also be computed in the TT format. After performing filtering for all observations,
the resulting state-parameter joint is marginalized to obtain the posterior distribution over the parameter
space given all observations. The fast and efficient algebra in the TT format makes it possible to perform
all operations with linear complexity w.r.t. the number of dimensions.
The content presented in this chapter is based on our work [IWL`21] and is structured as follows: In

Section 5.1, the CME is introduced together with an overview of its derivation. Next, in Section 5.2, we
show how the TT format is employed to construct the CME generator, to solve the equation, and to tackle
the parameter dependence. In Section 5.4, we apply the CME solver to perform Bayesian inference tasks
such as filtering, smoothing, and parameter inference. Numerical results are shown in Section 5.5 to
validate the proposed method.

5.1. Chemical Master Equation

We consider a system consisting of molecules of d species denoted by tS1, ..., Sdu. The molecule copies are
involved in nR reactions of type:

Rm : qm,1S1 ` ¨ ¨ ¨ ` qm,dSd ÝÑ sm,1S1 ` ¨ ¨ ¨ ` sm,dSd, m “ 1, . . . , nR (5.1)

where qm,k P N0, k “ 1, . . . , d, represent the number of molecules from each species that react and
sm,k P N0, k “ 1, . . . , d, is the number of produced molecules after a reaction Rm takes place. Furthermore,
we assume that all instances of the mentioned species are contained inside a constant volume. The state
of the system is described at a macroscopic level as the number of the individuals per species at every
time point t ě 0 and is denoted by the vector xptq P Nd

0. In case the m-th reaction occurs, the state vector
change is given by x Ñ x`νpmq, where the stoichiometric change vector νpmq P Zd is elementwise defined

41



as νpmq
k “ sm,k ´ qm,k. Since the position and the velocity of the individual molecules are considered to

be RVs, an exact tracking of the evolution and the collisions that lead to the occurrence of the chemical
reactions is not feasible. Such a system is therefore modeled as a continuous-time jump process tX ptqutě0

and the goal is to describe the time evolution of the PMF describing the process

ppx, tq “ ptpxq “ P pX ptq “ xq “ P pX1 ptq “ x1, . . . , Xd ptq “ xdq . (5.2)

Under further assumptions regarding the positions and the velocities of the individual species instances,
an ODE can be derived for the PMF in (5.2). The first assumption is that the molecules are well-stirred,
meaning that the position of all molecule copies are considered to be uniformly distributed RVs. The second
assumption is that the system is at thermal equilibrium, implying that the components of the velocities
are normally distributed with mean 0 and constant variance. In [Gil92], using rigorous microscopical
considerations, it is shown that the probability of the m-th reaction to occur in the infinitesimal interval
rt, t`dtq, given that the current state of the system x, can be expressed in terms of the propensity function

αmpxqdt “ cmh
pmqpxqdt. (5.3)

The constant cm is called the reaction rate constant, summarizes the chemical properties of the reactants
as well as the temperature and the volume of the domain [Gil92] and has the meaning that cmdt is the
probability that a random combination of reactants will collide and react in the interval rt, t` dtq. The
term hmpxq counts the possible combinations of molecules that are eligible for a reaction

hpmqpxq “
d
ź

k“1

xk!

qm,k!pxk ´ qm,kq! , (5.4)

Using the defined propensity function, in an infinitesimal interval rt, t`dtq, the following events can occur:
• The probability of one reaction Rm occurring in the interval rt, t` dtq is

Ppone Rm occurs in rt, t` dtqq “ αmpxptqqdt` Opdt2q. (5.5)

• The probability that no reaction takes place in the interval rt, t` dtq is

Ppno reaction in rt, t` dtqq “ 1 ´
nR
ÿ

m“1

αmpxptqqdt` Opdt2q. (5.6)

• The probability that more than one reaction occur in the time interval rt, t` dtq is
Ppmore than oneq “ Opdt2q. (5.7)

Since the events mentioned above are mutually exclusive in the interval rt, t` dtq [Gil92], the evolution of
the PMF is

ppx, t` dtq “ppx, tq
˜

1 ´
nR
ÿ

m“1

αmpxptqqdt` Opdt2q
¸

`
nR
ÿ

m“1

ppx ´ νpmq, tq
´

αmpxptq ´ νpmqqdt` Opdt2q
¯

` Opdt2q. (5.8)
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Rearranging the terms, dividing by dt, and taking the limit dt Ñ 0 yields the CME

dptpxq
dt “

nR
ÿ

m“1

!

αmpx ´ νpmqqptpx ´ νpmqq ´ αm pxq pt pxq
)

, (5.9a)

p0pxq “ P p0qpxq, (5.9b)

where the PMF at the time t “ 0 is assumed to be known. As an alternative to solving the CME to obtain the
PMF, the stochastic simulation algorithm (SSA) algorithm has been developed to compute realizations of the
stochastic process tXptqutě0 [Gil76]. A sufficient number of realizations provides an accurate description
of the system. However, events occurring with a low probability (rare events) need numerous realizations.

5.2. Chemical Master Equation in Tensor Notation

In the previous section, the solution of the CME was defined as the PMF pt : Nd
0 Ñ R. Since an infinite

state-space is computationally intractable, an approximation has to be performed. To that end, a restriction
of the definition domain of the continuous-time jump process tXptqutě0 is needed, such that xk ă nk,
k “ 1, . . . , d. We denote the truncated state space as

X “
!

x P Nd
0 |xk ă nk, k “ 1, . . . , d

)

. (5.10)

The box domain structure of X is necessary in order to use the TT format for approximating the solution.
Some methods such as the sliding window approach [WGMH10] adapt the bounds of the tensor product
grid in (5.10) to capture only the relevant parts of the PMF. Before introducing the tensor notation, we
note that all states in X are labeled using the bijection xpiq, xkpikq “ ik ´ 1, ik “ 1, . . . , nk, where
i “ pi1, . . . , idq P Nd is a multiindex.
The solution of the CME can therefore be represented by the time dependent tensor p ptq P Rn1ˆ¨¨¨ˆnd ,

with the elements
piptq “ ppxpiq, tq. (5.11)

The differential equation from (5.9a) is also expressed as a linear ODE

dpptq
dt “ Apptq, (5.12)

where A P Rpn1ˆ¨¨¨ˆndqˆpn1ˆ¨¨¨ˆndq is a tensor operator with the elementwise definition

Ai,j “
nR
ÿ

m“1

´

αmpxpiq ´ νpmqqδxpjq
xpiq´νpmq ´ αm pxpiqq δxpjq

xpiq
¯

Inpxpjq ` νpmqq, (5.13)

where δji “ δj1i1 ¨ ¨ ¨ δjdid is the multiindex Kronecker delta and the indicator function Inpxq takes the value
one if xk ď nk, k “ 1, ..., d, and zero otherwise. The addition of the indicator function allows for a boundary
condition of the new state space X such that the mass is preserved [MK06]. The storage complexity for
the solution pptq at any given time point is exponential with respect to the number of species, i.e., Opndq,
where n “ maxk tnku. This makes solving the CME prohibitive even for a small number of species. One
way to deal with the curse of dimensionality is to employ the already presented low rank tensor format
presented in Section 3.2.
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5.3. Solving the Chemical Master Equation in the Tensor-Train Format

5.3.1. Low-rank TT representation of the CME operator

The first step needed for solving the CME in the TT format is to obtain a low rank representation of the
CME generator. In Section 5.1, the general form of a mass-action propensity function has been given.
The structure of the mass-action propensity function can be leveraged to directly obtain a low-rank TT
representation of the CME operator without having the need to work with full tensors [DK15, HG11].
We first compute the generator for one reaction since the final operator can be obtained as the sum

of the tensor-operators corresponding to the individual reactions. For the m-th reaction, the mass action
propensity from (5.4) can be decomposed as

αmpxq “ cmh
pmq
1 px1q ¨ ¨ ¨hpmq

d pxdq, (5.14a)

h
pmq
k pxkq “ xk!

qm,k! pxk ´ qm,kq! . (5.14b)

In order to use the rank-1 structure of the decomposed propensity, the CME operator corresponding to the
m-th reaction in (5.13) is expressed as the difference between two tensor operators

Ai,j “ Bi,j ´ Ci,j , (5.15)

where

Bi,j “αmpxpiq ´ νpmqqδxpjq
xpiq´νpmqInpxpjq ` νpmqq, (5.16a)

Ci,j “αm pxpiqq δxpjq
xpiq Inpxpjq ` νpmqq. (5.16b)

Using the factorization (5.14b), the TT-cores of the two rank-1 tensor-operatorsB,C P Rpn1ˆ¨¨¨ˆndqˆpn1ˆ¨¨¨ˆndq
are given as

g
pC,kq
1ikjk1

“ h
pmq
k pxkpikqqδjkik Ink

pxkpjkq ` ν
pmq
k q, (5.17a)

g
pB,kq
1ikjk1

“ h
pmq
k pxkpjkqqδjkik´νk

Ink
pxkpjkq ` ν

pmq
k q, (5.17b)

where the indicator functions Ink
return 1 if x ď nk and 0 otherwise. Since both of the tensors are rank-1,

the result of their addition has the TT-rank p1, 2, ..., 2, 1q. If we consider the CME generator for a network
with Nr reactions, the maximum rank of its TT representation is at most 2Nr. Performing TT-rank rounding
(Algorithm 4) has been shown to return an approximation Ar « A with a lower rank for a very high accuracy
(for example ϵ “ 10´12).

5.3.2. Solving the CME in the TT format

The usual finite-difference schemes can be used to solve the CME in the TT format [Gel17]. The general
form of a finite-difference scheme applied to the CME in the TT format is

¨ ¨ ¨ ` α´1p:j´1 ` α0p:j ` α1p:j`1 ` ¨ ¨ ¨ “ A
`¨ ¨ ¨ ` β´1p:j´1 ` β0p:j ` β1p:j`1 ` ¨ ¨ ¨ ˘ , (5.18)

where p:j represents the slice of the tensor corresponding to the j-th timestep and the DoFs are defined as
pij “ ppxpiq, tpjqq for an equidistant time grid ␣tpjq(nT

j“1
containing nT timesteps. In the case of the explicit

Euler method, the only nonzero coefficients are α0 “ 1, α´1 “ ´1, β1 “ ∆t, and for the Crank-Nicolson
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method we have α1 “ 1, α0 “ ´1, β0 “ β1 “ ∆t{2. An alternative method [Dol18] is to reformulate the
finite-difference scheme into a larger system, such that the pd` 1q-dimensional tensor p P Rn1ˆ¨¨¨ˆndˆnT is
formed. Writing (5.18) for j “ 1, ..., nt and using Kronecker product, one can derive a multilinear system
for the extended tensor p P Rn1ˆ¨¨¨ˆndˆnT

Mp “ f, (5.19)
for

M “ In b S ´ pIn b P qpA b IT q, (5.20a)
f “ pp0q b pS1q, (5.20b)

where 1 P RnT is the one vector and S,P P RnT ˆnT . The matrices S and P are band diagonal and are
constructed from the coefficients αi and βi, respectively. After solving the system, the time-continuous
solution is recovered by interpolation. As an example, we consider the explicit Euler method on an
equidistant grid with ∆t “ tend´tstart

T´1 and tj “ j∆t, where the only nonzero coefficients are α0 “ 1,
α´1 “ ´1 and β0 “ ∆t [But16]. In this case, the finite-difference matrices read

S “

¨

˚

˚

˚

˚

˚

˝

1
´1 1

´1 1
. . .

´1 1

˛

‹

‹

‹

‹

‹

‚

, P “ ∆tInT . (5.21)

An advantage of the described procedure is that the probability mass is conserved if AJ1n “ 0 regardless
of the step size [Dol18].
An alternative method [DK15, Dol18] is to employ a basis representation of the time dependent solution

over an interval r0,∆T s, such that

ppxpiq, tq “
nT
ÿ

j“1

pijbjptq, (5.22)

where bjptq are basis functions with the inputs scaled to the interval r0,∆T s, spanning a space S “
spantbjunT

j“1. Some examples are the Chebyshev polynomials [MH02], Lagrange polynomials, or hat
functions. Using the scalar product x¨, ¨y on Rn b S, defined as

xpp¨q,qp¨qy “
∆T
ż

0

ÿ

i

piptqqiptqdt, (5.23)

the Galerkin formulation searches for the solution pp¨q P Rn1ˆ¨¨¨ˆnd b S that satisfies

xdpdt ,qy “ xAp,qy ` ppp0q ´ pp0qq ¨ qp0q, @q P Rn1ˆ¨¨¨ˆnd b S, (5.24)

where the term ppp0q ´ pp0qq ¨ qp0q enforces the initial condition. Choosing as the test function qpimqptql “
δlibmptq, the following discrete problem is obtained:

∆T
ż

0

ÿ

l,k

plkb
1
kptqbmptqδildt “

∆T
ż

0

ÿ

l,k

ÿ

j

Al,jpjkbkptqbmptqδildt`

ÿ

l

˜

p
p0q
l δilbmp0q ´

ÿ

k

plkbkp0qδilbmp0q
¸

, @i,m. (5.25)
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Using the linearity of the integral and introducing the stiffness matrix S P RnT ˆnT and the mass matrices
P P RnT ˆnT as well as V P RnT ˆnT , v P RnT , such that

Sij “
∆T
ż

0

biptqb1
jptqdt, Pij “

∆T
ż

0

biptqbjptqdt, (5.26a)

Vij “ bip0qbjp0q, vi “ bip0q, (5.26b)
the relation from (5.25) is written as

ÿ

l,k

δilSmkplk `
ÿ

l,k

δilVmkplk ´
ÿ

j,k

¨

˝

ÿ

l,s

δilPmsAl,jδ
k
s

˛

‚pjk “ p
p0q
i vm, @i,m. (5.27)

With the Kronecker product, we can write the equation as a systemMp “ f with the tensor operator and
right-hand side

M “ In b pS ` V q ´ pIn b P qpA b InT q, (5.28a)
f “ pp0q b v. (5.28b)

Similar to the previous case, the system can then be solved as described in Section 5.3. In order to avoid
a rank increase when simulating over long periods of time, the time interval can be divided into smaller
subintervals and the presented method can be applied on smaller subdomains. The initial condition of one
subinterval is the end state of the previous one. In the literature, this is also known as the Discontinuous
Galerkin method [DHT81]. For a constant subinterval length and if the solution is smooth, the convergence
is exponential in nT [Tre00], that is

sup
tPr0,∆T s

||pptq ´ p̄ptq||F ď C expp´nT q, (5.29)

where p̄ is the exact solution and C ą 0 a constant.
One further issue is controlling the error during the timesteps. One error indicator consists in evaluating

the norm of the residual of the system (5.20b) for an enriched basis [Dol18]:
εpnT ,∆T q “ ||MenrQp ´ fenr||F , (5.30)

whereMenr and fenr are constructed using (5.28a) and (5.28b) for an enriched basis with nenrT “ 2nT . The
tensor operator Q P Rpn1ˆ¨¨¨ˆndˆ2nT qˆpn1ˆ¨¨¨ˆndˆnT q interpolates the coarse grid solution on a finer basis
with nenrT “ 2nT . This error estimate can be used to modify the subdomain length if εpnT ,∆T q is larger
than a prescribed value εtol [Dol18], such that

∆T 1 “
ˆ

εtol
εpnT ,∆T q

̇
1

nT

∆T, (5.31)

where ∆T 1 is the length of the modified subdomain. Since the AMEn method is used to obtain the solution,
the relative tolerance of the solver acts like a lower bound for the error. This fact will be shown in the
numerical results section.
A significant speedup of the presented CME solver is obtained when using the QTT format. The CME

generator as well as the initial condition tensor and the observation operator can be reshaped as described
in Section 3.2.3. The resulting quantized tensors are passes to the AMEn solver and the solution of the
system is obtained in the QTT format as well. Reducing the mode sizes while increasing the number of
dimensions has proven to be an effective way of further decreasing the computational complexity of the
CME solver [KKNS14, DK15, IWL`21]. In [DKO12], it has been shown that the storage requirement scales
with Opd log2Nq under the assumption that the TT rank remains bounded.
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5.3.3. Parameter dependent CME

In the following we consider a parameter dependent reaction network. The np parameters are concatenated
into a vector θ P Rnp and they are assumed to belong to the tensor-product space Ξ “ rθmin

1 , θmax
1 s ˆ ¨ ¨ ¨ ˆ

rθmin
np

, θmax
np

s. Parameters can be the reaction rates, or they can be part of the propensity functions in some
cases. The topology of the network (number of reaction and stoichiometric vectors) is considered to be
fixed. The parameter dependent CME can be solved in order to obtain the time dependent PMF as function
of θ

dppθq
dt “ A pθqppθq. (5.32)

In this framework, a parameter dependence of the initial condition can also be easily handled.
Starting from a fixed initial condition pipt0,θq “ pt0pxpiqq and solving the CME for every parameter

θ P Ξ yields the conditional pipt,θq “ ptpxpiq|θq. This holds as well for the case when the initial condition
is conditioned on the parameter pipt0,θq “ p0px|θq. If the parameter is treated as a RV and the CME is
solved starting from p0p¨,θq for every θ P Ξ, then the result is the joint PDF ptpx,θq over the combined
state-parameter space.
In order to discretize the dependence on the continuous parameter vectors, a basis expansion is used to

construct an approximation of the joint PDF, such that
pt pxpiq,θq «

ÿ

l

pilptqLlpθq, (5.33)

where p P Rn1ˆ¨¨¨ˆndˆℓ1ˆ¨¨¨ˆℓnp is the tensor of DoFs and tLluℓl“1 is a tensor-product basis Llpθq “
Lp1qpθ1q ¨ ¨ ¨Lpnpqpθnpq. The solution at a given time point t belongs therefore in the discrete space
Rn1ˆ¨¨¨ˆnd b P, where P “ spantLl : lk “ 1, ..., ℓk, k “ 1, ..., npu. There exist several options for
the basis, however, B-spline basis functions are used in this work regarding the parameter dependence
[dB78]. Reason for that is the compact support and the locality of B-splines.
Different ways to retrieve the DoFs can be found in the literature. The first is collocation based and implies

solving the problem over a finite parameter grid and computing the approximation using interpolation
[BNT07]. The second approach is to use the Galerkin formulation in order to obtain a linear system for
the DoFs. In this work, the Galerkin approach is chosen. We choose the test functions qpθq from the same
space, which yields the formulation

xdpdt ,qy “ xAp,qy, @q P Rn1ˆ¨¨¨ˆnd b P, (5.34)

where x¨, ¨y is the inner product of the space Rn1ˆ¨¨¨ˆnd b P, defined as

xpp¨q,qp¨qy “
ż

Ξ

ÿ

i

pipθqqipθqdθ. (5.35)

Testing with the basis elements qpi,mq
j pθq “ δijLmpθq, one obtains

ż

Ξ

ÿ

j,l

dpjl
dt LlpθqδijLmpθqdθ “

ż

Ξ

ÿ

j,l

ÿ

s

Aj,spθqpslLlpθqδijLmpθqdθ, @i,m. (5.36)

The multilinear system

M
dppθq
dt “ Kp, (5.37)
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is then derived, with the mass and stiffness operators

Mim,jl “ δij

ż

Ξ

LlpθqLmpθqdθ, (5.38)

Kim,sl “
ż

Ξ

Ai,spθqLlpθqLmpθqdθ. (5.39)

The mass tensor-operator has TT rank r “ 1 and can be compactly written using the Kronecker product as
M “ In b M p1q b ¨ ¨ ¨ b M pnpq, (5.40)

whereM pkq P Rℓkˆℓk , k “ 1, ..., np, are the mass matrices of the univariate bases and In is the identity
tensor-operator. Its inverse is also a rank-1 TT-operator given by

M´1 “ In b
´

M p1q
¯´1 b ¨ ¨ ¨ b

´

M pnpq
¯´1

. (5.41)

In the case of the stiffness matrix, the rank-1 structure is lost due to the dependence of the CME generator on
the parameters. Therefore, a tensor product quadrature gridΘ “ ␣

θQ,1i1

(q1
i1“1

ˆ␣

θQ,2i2

(q2
i2“1

ˆ¨ ¨ ¨ˆ␣

θ
Q,np

inp

(qnp

inp“1

is constructed to perform the integration
Kim,sl «

ÿ

o

woĀio,soLmpθQo qLlpθQo q, (5.42)

where wo “ w
p1q
o1 ¨ ¨ ¨wpnpq

onp
is the rank-1 weight tensor and Āik,jl “ Ai,j pθkq δkl . If the CME generator can

be evaluated in the TT format for the constructed quadrature grid, then the TT cores of K are given as

g
pK,kq
sk´1ikjksk

“

$

’

&

’

%

g
pĀ,kq
sk´1ikjksk

, k ď d,

ř

α g
pĀ,kq
sk´1ααskw

pk´dq
α LikpθQ,k´d

α qLjkpθQ,k´d
α q, otherwise,

(5.43)

where tgpK,kquk and tgpĀ,kquk are the TT cores of K and Ā, respectively.
In the case where the parameters are the reaction rates, i.e., θ “ pc1, c2, . . . q, the construction of the

tensor Ā can be easily done using the Kronecker product, such that

Ā “ Ap1q b
´

diag
´

θQ,11 , ..., θQ,1q1

¯

b Iℓ2 b Iℓ3 b ¨ ¨ ¨
¯

`
Ap2q b

´

Iℓ1 b diag
´

θQ,21 , ..., θQ,2q2

¯

b Iℓ3 b ¨ ¨ ¨
¯

` ..., (5.44)

where Apmq P Rpn1ˆ¨¨¨ˆndqˆpn1ˆ¨¨¨ˆndq is the CME generator for the m-th reaction if the reaction rate is
assumed to be one.
In some special cases, the propensity does no longer have a decomposable format and the parameter

dependence can affect the propensity function and not only the reaction rate. In this case, equation
(5.44) can no longer be used to construct the extended operator, and the process of obtaining a parameter
dependent generator is similar to the one presented in Section 5.3.1. We consider an individual reaction m
with its corresponding parameter dependent propensity function αmpx,θq and stoichiometric vector νpmq.
Using the cross-interpolation in the TT format, one can obtain a low-rank representation of the tensor as

aij “ αmpxpiq, θQ,1j1
, ..., θ

Q,np

jnp
q. (5.45)
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Performing a split as in (5.15), the low-rank representation in terms of TT cores of the two operators is

g
pC,kq
sk´1ikjksk

“
$

&

%

g
pa,kq
sk´1iksk

δjkik Ink
pxkpjkq ` ν

pmq
k q, k ď d,

gpa,kqδjkik , otherwise,
(5.46a)

g
pB,kq
sk´1ikjksk

“
$

&

%

g
pa,kq
sk´1iksk

δjkik´νk
Ink

pxkpjkq ` ν
pmq
k q, k ď d,

gpa,kqδjkik , otherwise,
(5.46b)

where gpa,kq are the TT cores of the low-rank decomposition from (5.45). This way, propensities that are
no longer rank-1 decomposable can also be used to build the generator in the TT format directly.

5.4. Bayesian Inference for the Chemical Master Equation with Parameter
Dependencies

With the TT-CME solver presented, we now proceed to performing Bayesian inference tasks on systems
governed by the CME. Due to the fast linear algebra operations in the TT format, computing marginals
as well as performing multiplications of high dimensional objects becomes computationally affordable.
Two cases are presented in the following: state filtering/smoothing and parameter inference. As will be
mentioned, both are instances of performing inference on HMMs. In both cases, the TT-CME solver is used
to compute the state transition on the HMM.

5.4.1. Filtering and smoothing in the TT format

One inference task that falls under the category of inverse problems is the estimation of the system state
given observations. An example would be the reconstruction of the gene population dynamics given indirect
measurements via a fluorescent reporter protein. We consider No indirect observations tŷpjquNoj“1 of the
trajectory xptq, t P r0, tNos, at discrete time points t1 ă t2 ă ¨ ¨ ¨ ă tNo . It is assumed that xptq, t P r0, tNos,
is a realization of a jump process tXptqutě0 whose time dependent PMF fulfills the CME. The observed
quantities are assumed to be realizations of the RVs tY pjquNoj“1, which are connected to the underlying state.
The RVs

␣

Y pjq(No
j“1
are assumed to be mutually independent and for every j “ 1, ..., No, the RV Y pjq is

dependent only on the state RVXptjq, with a known conditional PDF pY |X py|xq. Additional dependence
on the time point can be added in the observation model and the presented framework, however, to simplify
the notation, the time dependence of pY |X will be omitted. Some popular examples are additive Gaussian
or multiplicative lognormal noise, but the presented method is not restricted to them.
The following derivation of the time evolution of the smoothed PDF is based on [HPZ`16]. The conditional

PMF PpXptq “ x|Y p1q “ ŷp1q, ...,Y pjq “ ŷpjqq for j “ maxtk P N|tk ă tu can be obtained by solving the
CME while incorporating the observations using the Bayes rule [HPZ`16], i.e., it satisfies the unconditional
CME

dptpxq
dt “

M
ÿ

m“1

!

αmpx ´ νpmqqptpx ´ νpmqq ´ αm pxq pt pxq
)

, (5.47a)

together with the reset conditions

ptj pxq “ 1

Zj
pt´

j
pxqpY |Xpypjq|xq, Zj “

ÿ

x

pt´
j

pxqpY |Xpypjq|xq, (5.47b)
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where pt´
j

pxq “ lim
tÑtj ,tătj

ptpxq is the PMF before the observation is taken into account. As shown in
[HPZ`16], the PMF p̃tpxq “ PpXptq “ x|Y p1q “ ŷp1q, ...,Y pNoq “ ŷpNoqq of the smoothed distribution, for
which all the measurements are taken into account, has the form

p̃tpxq “ ptpxqβtpxq, (5.48)

where βtpxq satisfies the equation

dβtpxq
dt “

M
ÿ

m“1

!

αmpxqβtpxq ´ αmpxqβtpx ` νpmqq
)

, (5.49a)

with the terminal value βpxqtNo “ 1 and reset conditions

βt´
j

pxq “ 1

Zj
ptj pxqpY |Xpypjq|xq. (5.50)

Equation (5.49a), also called the backward master equation, is just a CME with the generator ´AJ. Its
solution can be interpreted as the density of the joint observation RVs following after the time point t

βtpxq 9 pY pějq|Xptqpŷpjq, ..., ŷpNoq|Xptq “ xq, (5.51)

where j “ mintk P N|tk ą tu. The main result of [HPZ`16] is the derivation of an equation for the PMF
p̃tpxq which shall satisfy

dp̃tpxq
dt “

M
ÿ

m“1

!

α̃mpx ´ νpmq, tqp̃tpx ´ νpmqq ´ α̃ px, tq p̃t pxq
)

, (5.52)

where the propensities are time dependent and have the form

α̃mpx, tq “ αmpxqβpx ` νpmq, tq
βpx, tq . (5.53)

On a discrete-time level, we deal with a HMM where the hidden states are the RVs tXptjquNoj“1. One well-
known method to compute the posterior marginal distributions of all hidden states of a HMM is the forward-
backward algorithm, also referred to as belief propagation in a HMM [LJ09]. Having a TT solver for the CME
and fast multilinear algebra routines, all operations can be performed in the low-rank format (see Algorithm
8). The forward message, representing the solution ptj “ PpXptjq “ x|Y p1q “ ŷp1q, . . . ,Y pjq “ ŷpjqq
of the CME (5.47a), is denoted by the tensor apjq P Rn1ˆ¨¨¨ˆnd . The CME is solved on the interval
rtj , tj`1q to obtain a prediction apjÑj`1q. Using the observation model, the tensor pobs P Rn1ˆ¨¨¨ˆnd ,
pobsi “ pY |Xpŷpjq|xpiqq is assembled by using the TT cross-approximation or, in some cases, by directly
constructing a TT representation. The latter, for example, is applicable when the observation model can be
factorized into univariate PDFs. In this case, pobs is a rank-1 tensor. The IC (reset condition) is calculated
as the elementwise multiplication apj`1q “ pobs d apjÑj`1q. In case of the backward pass, the message
represented by the tensor bpjq corresponds to βpxqtj , and is propagated by solving the CME with the
transposed operator AJ, starting from the IC bpj`1q d pobs to obtain bpj`1Ñjq. Having all forward and
backward messages, the smoothing posterior is obtained by multiplying the messages together, such that
pXptjq|Y pďNoqpxpiq|ŷp1q, ...,ypNoqq “ Z´1a

pjq
i b

pjq
i , Z “ a ¨ b. The advantage of using the basis expansion over

the time domain is that the smoothing PMF can be calculated at any time point between the observations.
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Algorithm 8 Forward-backward algorithm for trajectory estimation.
1: Input: Sample tŷpjquNoj“0, initial PMF pp0q

2: ap0q Ð pp0q
3: for j “ 1, ..., No do
4: Solve the CME with the IC apj´1q to obtain apj´1Ñjq.
5: Compute pobs for ŷpjq in the TT format.
6: apjq Ð pobsi d apj´1Ñjq

7: bpNobsq Ð 1
8: for j “ Nobs ´ 1, . . . , 0 do
9: Compute pobs for ŷpj`1q in the TT format.
10: Solve the CME with the generator AJ and IC Z´1bpj`1q d pobs to obtain bpj`1Ñjq.
11: bpjq Ð pobs d bpj`1Ñjq

12: for j “ 0, ..., Nobs do
13: ppjq Ð Z´1apjq d bpjq

14: Output: ppjq for j “ 0, ..., Nobs

5.4.2. Bayesian parameter inference in the TT format

The second Bayesian inference task considered in this chapter, is parameter identification from a trajectory
observation. Compared to Section 5.4.1, where a realization of a fully known system is considered, in
this section, the observation sample

␣

ypjq(No
j“1
is considered to be a realization of a parameter dependent

jump processXpt, θ̂q, where θ̂ contains the parameters governing the system. The evolution of the PMF
corresponding to the parameter dependent jump process is given by the parameter dependent CME. The
parameter is considered as a RV ϑ and finding θ̂ is transformed to an inference task: approximate the
conditional PDF pϑ|Y pďNoq given a prior distribution over the parameter space pϑ and the observations.
The assumptions on the observation model pY |X are identical to the ones from the previous section. The
parameter inference task can be cast into the previously defined filtering framework by considering the
joint tpXpjq,ϑpjqquNoj“1 as latent RVs in the HMM [IWL`21]. In the time-continuous case, this corresponds
to the filtering of an augmented process tXptq,ϑptqutě0, where the posterior pϑ|Y pďNoq is obtained by
marginalizing the state at t “ tNo . No backward pass is needed in this case.
The method is presented in Algorithm 9. The prediction step is obtained by marginalization and using

the Markov property

pXpjq,ϑpjq|Y păjq

´

xpjq,θpjq|yp0q, ...,ypj´1q
¯

“
ÿ

xpj´1q

ż

Ξ

´

pj|j´1

´

xpjq,θpjq|xpj´1q,θpj´1q
¯

pXpjq,ϑpjq|Y pďjq

´

xpj´1q,θpj´1q|yp1q, ...,ypj´1q
¯¯

dθpj´1q, (5.54)

where the conditional PDF pj|j´1 is given as the solution of the parameter dependent CME in the interval
rtj´1, tjq. Marginalization implies summation and integration over the state j´1, which is computationally
inefficient. Alternatively, the prediction step can be performed by solving the parameter dependent CME
with the IC pXpjq,ϑpjq|Y pďjqpxpj´1q,θpj´1q|ŷp1q, ..., ŷpj´1qq. On the discrete level, the posterior at step j is
represented by the tensor ppjq P Rn1ˆ¨¨¨ˆndˆℓ1ˆ¨¨¨ˆℓnp , such that

pXpjq,ϑpjq|Y pďjq

´

xpjqpiq,θpjq|ŷp1q, ..., ŷpjq
¯

“
ÿ

l

p
pjq
il Ll

´

θpjq
¯

, j “ 1, ..., No, (5.55)
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where ppjq is stored in the TT format. The TT-CME solver with the IC ppjq is applied in order the get the
DoF tensor ppjÑj`1q of the PDF pXpjq,ϑpjq|Y păjq . The update step

pXpjq,ϑpjq|Y pďjq

´

xpjq,θpjq|ŷp1q, ..., ŷpjq
¯

“ 1

Z
pY |X

´

ypjq|xpjq
¯

pXpjq,ϑpjq|Y păjq

´

xpjq,θpjq|ŷp1q, ..., ŷpj´1q
¯

, (5.56)

is accomplished in the tensor format as

ppj`1q “ Z´1ppobs b 1ℓq d ppjÑj`1q, Z “ ppj`1q ¨ p1n b wlq, (5.57)

where 1ℓ P Rℓ1ˆ¨¨¨ˆℓnp and 1n P Rn1ˆ¨¨¨ˆnd are 1-tensors of appropriate sizes and w P Rℓ1ˆ¨¨¨ˆℓnp is a rank-1
tensor containing the weights that result from integrating the parameter-space basis. Since the process is
iterative, the tensor pp0q has to be specified. Given the DoFs of the prior pϑ and the initial PMF pp0q, the
initial tensor is pp0q Ð pp0q d pprior.
After the last observation is used, the marginalization of the state

pϑ|Y pďNoq

´

θ|ŷp1q..., ŷpjq
¯

“
ÿ

x

pXpnoq,ϑpnoq|Y pďNoq

´

x,θ|ŷp1q..., ŷpjq
¯

, (5.58)

is computed on the multilinear algebra level as ppost “ ř

i

p
pNoq
i: .

Algorithm 9 Parameter identification in the TT-CME framework.

1: Input: Sample
!

ŷpjq
)No

j“0
, initial PMF pp0q, prior over the parameter space pprior

2: pp0q Ð pp0q d pprior

3: for j “ 1, ..., No do
4: Solve the CME with ppj´1q as initial condition to obtain the solution ppj´1Ñjq.
5: Compute pobs for ŷpjq in TT.
6: ppj`1q “ Z´1ppobs b 1ℓq d ppjÑj`1q for Z “ ppj`1q ¨ p1n b wlq.
7: ppost Ð ř

i

p
pNoq
i:

8: Output: ppost

5.5. Numerical Experiments

In the rest of the chapter, numerical investigations are performed to showcase the performance of the
presented TT-CME framework. First, a convergence study is performed to assess the correctness of the
solver for a simple gene expression model. A more complicated model is also investigated, namely, the
so-called SEIR model [Het00]. Second, the state filtering is exemplified on the SEIR model. The remaining
three examples address the parameter identification task in the TT format. All presented results have been
obtained with a standard workstation. The memory requirements are low enough to fit on every modern
laptop or workstation. The framework has been implemented in the tt-cme1 Python package. For the
multilinear algebraic operations in the TT format, the torchtt2 package is used.
1https://github.com/ion-g-ion/tt-cme
2https://github.com/ion-g-ion/torchTT
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Reaction αmpxq Rates ci Description
mRNAÑ H c1x1 0.002 mRNA degradation

mRNAÑ mRNA` Protein c2x1 0.015 Translation
H Ñ mRNA c3 0.1 Transcription
ProteinÑ H c4x2 0.01 Protein degradation

Table 5.1.: Reactions of the simple gene expression model.

5.5.1. Validation of the TT-based CME solver

Two-dimensional simple gene expression model

We first perform a convergence study to validate the TT-CME solver. The simple gene expression model
is used [AJL`02]. Since the model is only 2d, an accurate reference solution can be easily obtained by
conventional ODE solvers. In Table 5.1, the four reactions involving the two species are given, i.e., messenger
ribonucleic acid (mRNA) and protein. The IC is p0pxq “ δ2x1

δ4x2
, i.e., xp0q “ p2, 4qJ with probability 1. The

relevant simulation interval is r0, 1024s time units, which is split into 8 subintervals of length 128 time
units. In the following, several solver settings are varied as part of the convergence study. As a metric, the
maximum relative error between TT-CME solution and the reference is computed:

ϵmax “
max
x

ˇ

ˇ

ˇ
p

prefq
tend pxq ´ ptendpxq

ˇ

ˇ

ˇ

max
x

ˇ

ˇptendpxqˇˇ , (5.59)

where tend “ 1024 and pprefq
tend

pxq is the reference solution computed by integrating the ODE in the full
format over a very fine grid.
The first numerical experiment addressed the dependency of the maximum relative error on the dimension

nT of the basis expansion (5.22), which is used for the time dependency. The relative residual of the AMEn
solver was fixed to 10´13 during this test and no rank truncation was done. In Figure 5.1, the results
are shown for three different choices of time integration schemes: Chebyshev polynomial basis and the
classical finite-difference schemes such as implicit Euler and Crank-Nicolson. As expected from the theory,
the convergence of the classical schemes is Opn´1

T q for the implicit Euler and Opn´2
T q for Crank-Nicolson

[But16]. The convergence of the Chebyshev method is also the one expected from the theory, namely
exponential [Tre00]. However, the Chebyshev polynomial method reaches stagnation after nT “ 8. This
bottleneck is caused by the choice of the relative residual of the iterative TT solver.
A further investigation is performed to address the effect of the basis dimension and the relative residual

of the AMEn solver ϵ. To this end, the simulation is run for pϵ, nT q P t10´1, 10´2, . . . , 10´12u ˆ t2, 3, . . . , 8u
and the results are displayed in Figure 5.2. The stagnation of ϵmax due to the relative residual ϵ can be
clearly observed in the plot. Therefore, a balance between the nT and the relative residual has to be found
and the computational cost has to be taken into consideration as well.

Four-dimensional SEIR model

In this section, a more complicated model is studied. For the simple gene expression model previously
introduced, the reference solution was easily computed using a conventional ODE solver. A more complicated
model is investigated in this section, namely the so-called SEIR model. The SEIR model is a 4-dimensional
virus spreading model [Het00] for which the standard ODE solvers applied on full tensors result in a high
computational cost. The individuals of the virus spreading model are separated into four distinct categories
(species):
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Figure 5.1.: Convergence of the TT-solver with respect to the dimension of the time basis.

10´12 10´10 10´8 10´6 10´4 10´2

10´12

10´9

10´6

10´3

ϵ

m
ax
re
lat
ive
er
ro
r

nT “2
nT “3
nT “4
nT “5
nT “6
nT “7
nT “8

Figure 5.2.: Error versus solver accuracy for different sizes of the basis.

1. Susceptible (S), i.e., healthy individuals who are prone to getting infected.
2. Exposed (E), i.e., individuals exposed to the virus, but cannot yet spread the virus.
3. Infected (I), i.e., individuals who carry the virus and are contagious.
4. Recovered (R), i.e., healthy individuals that are immune to the virus.

In Table 5.2, the 7 reactions between the 4 categories of individuals are presented. For the numerical solution,
the state space truncation is n “ pn1, n2, n3, n4q “ p128, 128, 64, 64q and the IC is xp0q “ p50, 4, 0, 0qJ with
probability 1. A fixed subinterval length of 0.5 and a basis dimension of nT “ 8 are chosen in order to solve
the CME in the time interval r0, 8s. The reference solution is computed by numerically solving the CME
without the TT-decomposition for a very fine time grid.
Building the CME generator in the TT format for the given state truncation results in a TT rank of

r “ p1, 5, 6, 3, 1q, which accounts for « 2.3 MB of storage. As a comparison, the same tensor operator in
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Reaction αmpxq Rate ci Description
S ` I Ñ E ` I c1x1x3 0.1 Susceptible meets infected and becomes exposed

E Ñ I c2x2 0.5 Exposed is infected and contagious
I Ñ S c3x3 1.0 Infected recovers without immunity
S Ñ H c4x1 0.01 Susceptible dies
E Ñ H c5x2 0.01 Exposed dies
I Ñ R c6x3 0.01 Infected recovers with immunity
H Ñ S c7 0.4 New susceptible is born

Table 5.2.: Reactions, propensities, and reaction rates of the SEIR model.

full format would require « 2.1 GB, even if a sparse format is used. The TT representation needs in this
case only 0.11% of the storage required to store all the nonzero elements of the full generator. Using the
QTT format cuts the storage requirements to around 38 KB, thus resulting in a further decrease compared
to the TT format. The QTT also speeds up the time domain solver, with the solution being obtained in
approximately 3 min, while the solution in the TT format requires 4.4 min. The reference solution obtained
with a conventional ODE integrator is computed in approximately 4 hours.
In order to illustrate the evolution of the PMF, several solution snapshots of the marginal EI distribution

are shown in Figure 5.3. The pointwise error between the TT based solution and the reference is displayed
in Figure 5.3f. The maximum and mean errors at the end of the simulation time tend “ 8 are

ϵmax “ maxx |pprefq
tend

pxq ´ ptendpxq|
maxx |pprefq

tend
pxq|

“ 2.9 ¨ 10´5,

ϵmean “
1
N4

ř

x
|pprefq

tend
pxq ´ ptendpxq|

max
x

|pprefq
tend

pxq|
“ 2.539 ¨ 10´9.

The rank for representing the solution in the TT format at t “ tend is r “ p1, 46, 106, 14, 1q, which accounts
for 3.32 MB of storage (1.89 MB for QTT), that is, only 1.23% (0.70% for QTT) of the storage needed for
storing the full PMF. During the TT-CME time stepping, the largest tensor stored for the basis expansion
over the time domain took only 4.4 MB (2.5 MB for QTT). For this example, the TT-CME solver proves to
be a considerably more efficient alternative compared to standard solvers.
The ordering S,E, I,R has been chosen based on the interactions between the species. Reordering the

species has been shown to have an effect on the TT ranks of the CME operator and the solution. This issue
has been addressed in [GKMS17]. The species that are highly correlated have to be close to each other in
the train, otherwise the rank of the cores in between must carry the information. This is problematic since
it increases the rank and thus the computational expense.

5.5.2. Filtering and smoothing

We now apply the state filtering and smoothing algorithm (Algorithm 8) presented in Section 5.4.1 on
the SEIR model from Section 5.5.1. Using the SSA [Gil76], a realization of the system is computed for
the time interval r0, 10s. From the reference trajectory, we choose No “ 33 equidistant observations with
∆t “ 0.3125 (see the blue solid line in Figure 5.4). Lognormal noise is then added to the observations with
variance 0.1 for S, E, and I, and 0.05 for R. In Figure 5.4, the trajectory for S, E and I is plotted (blue
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Figure 5.3.: The time dependent Exposed-Infected (EI) marginal PMF for t P t0, 2, 4, 6, 8u. In 5.3f, we
compute the pointwise absolute error between the TT solution and the reference obtained by
integrating the CME over a fine time grid. Figures adapted from [IWL`21].
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solid line) together with the noisy observations (marked with the black ˆ symbol). The noise model in this
case represented as a tensor is

pobsi pyq “
d
ź

k“1

1

ykσk
?
2π

exp

ˆ

´1

2

plog yk ´ logpxkpikq ` 1qq2
σ2k

̇

, (5.60)

where y is the observation and σk, k “ 1, 2, 3, 4 are the corresponding variances. As it can be seen the pobs
is a rank-1 tensor. If reshaped to QTT, the TT rank still remains low (maximum rank 8 and mean rank
less than 2 for a truncation of ϵ “ 10´12). The state truncation is n “ p128, 128, 64, 32q and the Chebyshev
differentiation scheme is used for the timestepping.
The runtime of the experiment is 10 minutes for the forward pass and 13 minutes for the backward

pass (the relative residual of the AMEn solver is set to 10´6). Both TT and QTT are investigated and
it has been again shown that the QTT outperforms the TT in terms of computational cost (both space
and time). With respect to the storage requirements, storing the PMFs in the QTT format reduces the
memory usage to approximately « 105 MB for the forward propagating messages and 130 MB for the
backward propagating messages, which is an advantage since both type of messages have to be saved
for the smoothing. Having the time dependent PMF PpXptq “ x|Y p1q “ ŷp1q, ...,Y pNoq “ ŷpNoqq of the
smooth distribution, we compute the first two moments in order to quantify the obtained reconstruction
of the state. In Figure 5.4, the red discontinuous line is the expected value and the standard deviation is
represented by the gray envelope. The moments are efficiently computed in the TT format since they are
obtained using scalar product with rank-1 tensors.
For this example, applying the reset conditions in order to incorporate the observations leads to an

improvement of the overall error. Moreover, the TT ranks also decreases after the reset condition is imposed.
This behavior is illustrated in Figure 5.5, where the maximum TT rank of the train is represented over the
simulation time. A decrease of up to 3 times is observed.

5.5.3. Bayesian parameter inference

Simple gene expression model

Algorithm 9 is now applied in order to identify the four reaction rates θ “ pθ1, θ2, θ3, θ4q “ pc1, c4, c3, c4q of
the simple gene expression model described by the reactions in Table 5.4. Using the SSA, a realization
is drawn for the time interval r0, 1024s. From the reference trajectory, No “ 64 equidistant observations
are chosen, with δt “ 4 time units. Gaussian noise with the standard deviation σ “ 0.5 is added, with the
noise model represented as the rank-1 tensor

pobsi pyq “
2
ź

k“1

1

σ
?
2π

exp

ˆ

´1

2

pyk ´ xkpikqq2
σ2

̇

, (5.61)

where y is the observation. Regarding the prior, the parameters are considered to be independent Gamma
distributed. Since the model is computationally affordable even for the classical solvers, the Metropo-
lis–Hastings (MH) algorithm [BGJM11] is used to draw a sample of size 5 ¨ 105 from the posterior. To this
end, the CME was solved for different parameter realizations using the built-in Python ODE solver. The
runtime of the MH is « 1.5 days, which is orders of magnitude slower than the TT based solver, as will be
shown later.
To discretize the parameter space, we use tensor product quadratic B-splines with uniform knots of equal

size, i.e., ℓ “ p64, 64, 6, 4, 64q. The parameters are truncated to θi P r0, 6cis, i “ 1, . . . , 4. Regarding the
time discretization, the Chebyshev scheme is used with nT “ 8 and a maximum subinterval size of 0.5 time
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Figure 5.4.: Forward-backward algorithm applied on the SEIR model with No time-discrete observations.
The ground truth is the solid blue line, while the noisy observations are marked with the “ˆ”
symbol. The expected value of the posterior is represented by the red dashed line and the
corresponding standard deviation by the gray envelope. Figure adapted from [IWL`21].
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Figure 5.5.: TT ranks of the forward propagating messages (represented by the triangle markers).

units. For a state truncation of n “ p64, 64q, the QTT format is used to run the parameter inference. The
total runtime is « 21 min and the 6d tensor of mode size 64 representing the joint over the state-parameter
space requires « 9.2 MB of storage. If the same tensor is stored in the full format, it would require more
than 500 GB. An even better compression is attained for the CME generator, requiring only « 128 KB of
storage. The 4d posterior cannot be directly visualized and therefore marginals pΘj ,Θi , i, j “ 1, . . . , 4, are
computed and graphically represented in Figure 5.6. As a comparison, 1d and 2d histograms are also
represented for a visual verification, where the exact parameters are marked by the red dashed lines. A
visual match can be observed between the two methods. Posterior moments such as the expected value
and the covariance are also computed:

Epϑq “ p0.001925, 0.01512, 0.09988, 0.01058q,

Covpϑ,ϑq “

¨

˚

˚

˝

1.0351 ¨ 10´6 ´1.4000 ¨ 10´8 1.0560 ¨ 10´5 2.2160 ¨ 10´10

´1.4000 ¨ 10´8 8.6669 ¨ 10´6 ´2.5506 ¨ 10´7 4.9247 ¨ 10´6

1.0560 ¨ 10´5 ´2.5506 ¨ 10´7 5.4189 ¨ 10´4 1.7087 ¨ 10´8

2.2160 ¨ 10´10 4.9247 ¨ 10´6 1.7087 ¨ 10´8 7.6244 ¨ 10´6

˛

‹

‹

‚

.

The mean and covariance of the MH sample are:

µθ “ p0.001922, 0.01507, 0.09992, 0.01052q,

Cθ “

¨

˚

˚

˝

9.9755 ¨ 10´7 ´1.6217 ¨ 10´8 9.7124 ¨ 10´6 3.7631 ¨ 10´9

´1.6217 ¨ 10´8 8.4986 ¨ 10´6 ´8.3867 ¨ 10´8 4.8476 ¨ 10´6

9.7124 ¨ 10´6 ´8.3867 ¨ 10´8 5.2334 ¨ 10´4 1.0908 ¨ 10´7

3.7631 ¨ 10´9 4.8476 ¨ 10´6 1.0908 ¨ 10´7 7.5183 ¨ 10´6

˛

‹

‹

‚

.

As seen in the structure of the covariance and the 2d marginals, the second and fourth parameters are
positively correlated. When looking at Table 5.4, the second and the fourth reactions govern the creation
and the destruction of the proteins. An increase in the protein creation rate is therefore “cancelled” by an
increase in the degradation rate.
A hyperparameter study is done to investigate the impact of several solver settings on the quality of

the solution. The references in this case are the MH solution and a solution computed with a fine grid
TT-CME solver with ϵ “ 10´7, ℓ “ 64, nT “ 16. As a first study, we investigate how the relative residual ϵ
affects inference by performing a sweep ϵ P t10´3, 10´4, 10´5, 10´6u. In Table 5.3, the results are reported
in terms of relative error of the mean, runtime and storage requirement. When comparing to the MCMC
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Figure 5.6.: Simple gene expression model: marginalized posterior PDFs over the parameter space. The
black regions correspond to high density of the PDF and the green contour lines represent
the 2d histograms obtained from the MCMC. The exact parameters are marked with the red
dashed lines. In the case of the 1dmarginals on themain diagonal, the prior is also represented
(green dashed line). Figure adapted from [IWL`21].

based method, the stagnation of the error is achieved for ϵ “ 10´4 and smaller. This is not the case
when comparing to the fine grid solution. On the other side, a lower relative residual leads to higher
computational costs in terms of runtime and storage.
Additional tests regarding the dimension of the univariate bases were conducted. A sweep ℓ P t16, 32, 64u

is performed to assess how the refinement of the B-splines affects the accuracy. For the case ℓ “ 16, the
tensor product basis is unable to properly represent the joint due to oscillations. This is caused by the small
posterior variance compared to the knot spacing. However, for the prior, no approximation problems appear.
Refining the basis to ℓ “ 32 leads to a smoother approximation of the posterior, since the resolution of the
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ϵ Error w.r.t. MH Error w.r.t. fine grid Runtime [min] Storage [MB]
10´3 3.656 ˆ 10´3 2.678 ˆ 10´3 7 0.76
10´4 2.284 ˆ 10´3 1.429 ˆ 10´3 10 2.93
10´5 3.530 ˆ 10´3 1.338 ˆ 10´4 21 7.37
10´6 3.620 ˆ 10´3 4.301 ˆ 10´5 54 14.75

Table 5.3.: Simple gene expression model: TT-CME solver performance for different values of the relative
residual ϵ.

basis is sufficient to accommodate the narrow posterior. The conclusion of the study is that the accuracy of
the AMEn solver is the limiting factor when performing inference tasks. It has also been noticed that a
relative residual of ϵ “ 10´5 is a satisfactory trade off between accuracy and solver runtime.

Gene expression model with feedback

A more complicated model is the 3-stage gene expression model with feedback loop [SS08]. The 4 species
are: a gene in activated form (G), a gene in inactivated form (G˚), mRNA, and protein. The species
are involved in 6 reactions, presented in Table 5.4. Similarly to the previous sections, the SSA is used
to generate a reference trajectory for the nominal reaction rates given in Table 5.4. No “ 45 equidistant
observations are considered and Gaussian noise is added (see Figure 5.7).

Reaction αmpxq Rate ci
G Ñ G`M c1x1 4.0
M Ñ M ` P c2x2 10.0
M Ñ H c3x2 1.0

G` P Ñ G˚ c4x1x3 0.2
G˚ Ñ G` P c5x4 0.6
P Ñ H c6x3 1.0

Table 5.4.: Reactions of the 3 stage gene expression model.
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Figure 5.7.: 3 stage gene expression model: 45 noisy observations (marked with the “ˆ” symbol) used for
inferring the parameters and the reference trajectory. Figure adapted from [IWL`21].
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Figure 5.8.: 3 stage gene expression model: marginalized posterior PDFs over the parameter space. The
black regions correspond to high density of the PDF and the green contour lines represent
the 2d histograms obtained from the MCMC. The exact parameters are marked with the red
dashed lines. In the case of the 1dmarginals on themain diagonal, the prior is also represented
(green dashed line). Figure adapted from [IWL`21].

Only the first 5 parameters are identified, i.e., θ “ pc1, c2, c3, c4, c5q, and the parameter space is restricted
to Ξ “ Ś5

i“1r0, 5cis. The prior distributions over the parameter space are chosen to be independent Gamma
and are truncated within the parameter range. The parameter dependence is approximated using a tensor
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product basis of univariate quadratic B-splines with dimension 64. The tolerance of the TT-solver is set to
10´5 as a relative residual.
Using the parameter identification algorithm presented in Section 5.4.2, an approximation of the

posterior is computed. For the parameter dependence a tensor product of quadratic B-splines of dimensions
ℓ “ p64, 64, 64, 64, 64q is chosen and the relative residual of the AMEn solver is set to 10´5. The marginalized
PDFs are reported in Figure 5.8 together with the histograms obtained from the MCMC. On the main
diagonal, the one-dimensional marginals pϑk|Y pďNoq , k P t1, 5u are plotted (blue solid lines) together with
the histogram and the prior (green dashed line). The non-diagonal plots represent the two-dimensional
marginals pϑk,ϑl|Y pďNoq , k, l P t1, 5u, k ‰ l, together with the histogram (green contour lines). A visual
match between the 2 methods can be observed. The expected value and the variance of the obtained
posterior are

Epϑq “ p4.0237, 9.1566, 1.8336, 0.2369, 1.0655q,

Covpϑ,ϑq “

¨

˚

˚

˚

˚

˝

9.4956 ¨ 10´1 ´7.9391 ¨ 10´2 1.3203 ¨ 10´1 2.2193 ¨ 10´3 ´1.3762 ¨ 10´3

´7.9391 ¨ 10´2 1.5116 ´8.1799 ¨ 10´3 ´8.8107 ¨ 10´4 ´5.6806 ¨ 10´4

1.3203 ¨ 10´1 ´8.1799 ¨ 10´3 1.6569 ¨ 10´1 ´8.1715 ¨ 10´4 9.2572 ¨ 10´4

2.2193 ¨ 10´3 ´8.8107 ¨ 10´4 ´8.1715 ¨ 10´4 5.1425 ¨ 10´3 4.8380 ¨ 10´3

´1.3762 ¨ 10´3 ´5.6806 ¨ 10´4 9.2572 ¨ 10´4 4.8380 ¨ 10´3 1.1611 ¨ 10´1

˛

‹

‹

‹

‹

‚

.

The mean and variance of the MCMC parameter sample are

µθ “ p4.0503, 9.1995, 1.8443, 0.2379, 1.0680q,

Cθ “

¨

˚

˚

˚

˚

˝

9.7501 ¨ 10´1 ´7.5935 ¨ 10´2 1.4018 ¨ 10´1 3.2855 ¨ 10´3 ´6.5464 ¨ 10´5

´7.5935 ¨ 10´2 1.5294 4.2049 ¨ 10´3 ´1.7015 ¨ 10´3 ´7.1941 ¨ 10´3

1.4018 ¨ 10´1 4.2049 ¨ 10´3 1.7003 ¨ 10´1 ´3.8162 ¨ 10´4 1.4135 ¨ 10´3

3.2855 ¨ 10´3 ´1.7015 ¨ 10´3 ´3.8162 ¨ 10´4 5.1862 ¨ 10´3 5.1926 ¨ 10´3

´6.5464 ¨ 10´5 ´7.1941 ¨ 10´3 1.4135 ¨ 10´3 5.1926 ¨ 10´3 1.2025 ¨ 10´1

˛

‹

‹

‹

‹

‚

.

When compared, the relative error between the TT-CME solution and the MCMC is 10´3 for the mean and
10´2 for the variance, being limited by the small MCMC sample size. Regarding the runtime, the TT-CME
solver needs 50 min. As a comparison, the MCMC simulation took approximately 2.5 days to complete
for a sample size equal to 5 ¨ 105. Regarding storage needs, storing a TT representation of the parameter
dependent generator (inverse of the mass multiplied with the stiffness) requires approximately 11 MB.
When using the QTT format, only approximately 0.2 MB are needed. As in the previous cases, the memory
consumption for the TT format can be reduced if sparse tensors are used for storing the cores. During the
parameter identification, storing the joint over the states and the parameters required at most 10 MB for a
4 ˆ 32 ˆ 128 ˆ 4 ˆ 64 ˆ 64 ˆ 64 ˆ 64 ˆ 64 tensor.

SEIQR model

The final example considered in this chapter is the 5-dimensional SEIQR virus spreading model, containing
one additional species compared to the SEIR model: quarantined (Q). The quarantined individuals carry
the virus but are not able to spread it further. They also benefit from a maximum survival rate. The
9 reactions are described in Table 5.5. Only the first four parameters are considered as uncertain, i.e.,
θ “ pc1, c2, c3, c4q. The No “ 45 observations are represented in Figure 5.9 along with the reference
trajectory. A lognormal noise model is assumed for the species Susceptible, Exposed and Infected, while
Quarantined and Recovered are exactly observed.

63



Reaction αmpxq Rate ci Description
S ` I Ñ E ` I c1x1x3 0.04 Susceptible meets infected and becomes exposed

E Ñ I c2x2 0.4 Exposed becomes infected
I Ñ Q c3x3 0.4 Infected becomes quarantined
I Ñ H c4x3 0.004 Infected individual dies
I Ñ R c5x3 0.12 Infected recovers with immunity
Q Ñ R c6x4 0.8765 Quarantined recovers with immunity
I Ñ S c7x3 0.01 Infected recovers without immunity
Q Ñ S c8x4 0.01 Quarantined recovers without immunity
H Ñ S c9 0.01 New susceptible individual

Table 5.5.: Reactions of the SEIQR model.

The solution is obtained using the TT-CME solver in approximately 42 min for a relative accuracy of
ϵ “ 10´5 and tensor product quadratic B-splines for the parameter dependence. The posterior is stored
using« 30MB in the QTT format for a state truncation of n “ p128, 64, 64, 32, 32q, while the CME generator
uses a mere 200 KB. The solution in the full format on the other side needs « 4.2 GB for a single parameter.

The posterior marginals are shown in Figure 5.10. For this example, a MCMC reference is computationally
unfeasible due to the long simulation time for the single parameter case. The posterior variance is lower
than the prior, indicating a larger confidence in estimating the parameters. The expected value and the
covariance matrix are:

Epϑq “ `

0.03640125 0.37381211 0.47709099 0.00400664
˘

, (5.62)

Covpϑ,ϑq “

¨

˚

˚

˝

1.7127 ¨ 10´5 2.0241 ¨ 10´6 7.9286 ¨ 10´6 2.0921 ¨ 10´8

2.0241 ¨ 10´6 2.9069 ¨ 10´3 ´7.5025 ¨ 10´6 1.7820 ¨ 10´7

7.9286 ¨ 10´6 ´7.5025 ¨ 10´6 9.4759 ¨ 10´3 ´1.1212 ¨ 10´7

2.0921 ¨ 10´8 1.7820 ¨ 10´7 ´1.1212 ¨ 10´7 4.0046 ¨ 10´7

˛

‹

‹

‚

. (5.63)

If the posterior variance becomes lower, the uniformly distributed knots of the B-splines are no longer able
to properly capture the steep increase of the PDF. In order to avoid the oscillations, the size of the basis is
set to ℓ “ p64, 64, 64, 64q. Refining the basis, changing the position of the knots or adaptively truncating
the parameter space are some possible solutions to improve the solver. A variance based criterion can be
used to control the adaptivity.
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Figure 5.9.: SEIQR model: 45 noisy observations (marked with the “ˆ” symbol) used for inferring the
parameters and the reference trajectory. Figure adapted from [IWL`21].
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lines. In the case of the 1d marginals on the main diagonal, the prior is also represented
(green dashed line). Figure adapted from [IWL`21].
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6. Tensor-Train Isogeometric Analysis

The focus of this chapter is on the development of surrogate models for parameter dependent systems
governed by BVPs. The input parameters are assumed to be variable and to affect the geometry of the
model, the material relation or the force term. Once the surrogate model is constructed, tasks such as
optimization, control, uncertainty quantification or solving inverse problems can be easily performed by
considering the surrogate as a black box model and applying the methods to it. The presented method to
compute the surrogate is however white box.
The method of choice for discretizing the PDE is the IGA FEM. Introduced by Tom Hughes in 2005

[HCB05], the main idea of IGA is to represent the geometry using B-spline or NURBS parametrizations
and to approximate the solution in the reference domain (the definition domain of the parametrization).
The combination of the FEM with geometry description techniques based on computer-aided design (CAD)
allows for the exact representation of complex geometries [CHB09, NABR15]. Moreover, compared to
ordinary FEM, a reduced number of DoFs is needed for obtaining a similar accuracy [DVBSV14]. The main
advantage exploited in this work is the tensor product structure of the reference domain, which makes
storing the DoFs in tensor format a natural choice. Due to the mentioned advantages, the IGA has been
successfully used to solve BVPs in a variety of fields such as structural analysis [WWS13, CRBH06, MAB`15,
Rea06, SKBW10], electromagnetic field simulation [BCdF`20, BSV10, DKSW19a, DKSW19b, SBdFS20],
and fluid mechanics [ABKF11, BH08, GPC19, HAB11, LBJ19, WWX`17]. A main disadvantage of IGA
is the computationally expensive assembly of the discrete Galerkin operators for the 3-dimensional case
[HCB05]. This disadvantage is critical when IGA solvers are used for variable design parameters. This is
the case in the fields of shape optimization [FSV15, MGS21, WWXP18, PBC`15], UQ [GACS19, ZS19] or
shape morphing [ZGAS22].
To address this problem, we propose a white box IGA solver for parameter dependent BVPs. The

parameters can be either geometry design variables or they can affect the material coefficients. The
parameter dependence is resolved by interpolating the solution over a tensor-product collocation grid.
The space where the solution lives is therefore extended using the tensor product. On the linear algebra
level, the DoFs as well as the discrete operators are represented using the tensor formulation presented
in the previous chapters. The parameters introduce additional dimensions of the DoF tensor. Exploiting
the tensor product structure [ABC`15] of the bilinear forms arising from the IGA discretization allows
us to directly construct the operators as well as the right-hand side in the TT format [ILDG22]. The
multilinear solver presented in Section 3.2.4 is employed to obtain the solution DoFs in the TT-format as
well. The obtained surrogate can be treated as a black box function handle to solve inverse problems using
conventional techniques such as MCMC [BGJM11], computing the mode and moments of the posterior or
directly approximating the posterior [IWL`21, FLU`20].
The content presented in this chapter is based on our work [ILDG22] and is structured as follows: the

first section introduces the model problem as well as the assumptions made. The following section presents
the discretization of the geometry using B-splines and NURBS. In the third section, the discretization of
the solution space as well as the parameter dependence is explained. In Section 6.4, the construction of all
discrete operators in the TT format is described. Numerical experiments are performed and discussed in
Section 6.5 to validate and showcase the performance of the method. First a convergence test is performed
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on an example problem. The second test assesses the efficiency of the suggested TT-IGA solver for a case
where the number of parameters is increased. Two more examples are presented where an inverse problem
is solved using the surrogate constructed by the TT-IGA method.

6.1. Problem statement

Let Dpθq Ă Rd, d P t2, 3u be a domain (in following also referred to as the physical domain) depending on
the parameter vector θ “ pθ1, . . . , θNpq P Ξ for a bounded box-domain Ξ “ Ξ1 ˆ ¨ ¨ ¨ ˆ ΞNp Ă RNp (Ξk are
intervals). In order to use the IGA framework, some restrictions on the choice of the domain are made. It
is assumed that the physical domain is given as the image of an injective map (also called parametrization)
G : r0, 1sd ˆ Ξ Ñ Rd:

Dpθq “ ImtGpy,θq : y P p0, 1qdu, @θ P Ξ. (6.1)

An example is shown in Figure 6.1, where a Cartesian mesh in the reference domain is deformed using
a parameter dependent parametrization. In a more general setup, the domain can be represented using
several parametrizations such that their images construct a fully connected set and overlap only on the
boundary (multipatch approach). In this work, however, only a single patch is considered. Moreover, the
following assumptions on the map G are made:

1. For every parameter θ P Ξ, the restriction Gp¨,θq : r0, 1sd Ñ Rd is Lipschitz continuous.

2. For every point y P p0, 1qd, the function Gpy, ¨q is assumed to be sufficiently smooth for polynomial
interpolation.

On the parameter dependent domain, we consider the following Helmholtz BVP for the scalar field
u : Dpθq ˆ Ξ Ñ R:

´∇ ¨ pκp¨,θq∇up¨,θqq ` ρup¨,θq “ fp¨,θq, inDpθq, (6.2a)
up¨,θq “ gp¨,θq, on ΓDpθq, (6.2b)

κp¨,θqBνup¨,θq “ 0, on ΓNpθq, (6.2c)

where ρ P R and ΓDpθq, ΓNpθq are the Dirichlet and Neumann boundaries ofDpθq, respectively and Bν is the
normal derivative. Regarding the coefficient function κ P L8pDpθqq, it is assumed to be uniformly bounded
from below for every θ P Ξ. For the right-hand side, we have fp¨,θq P L2pDpθqq, @θ P Ξ. Under these
assumptions, the problem is well-posed for every parameter θ P Ξ with the solution up¨,θq P H1pDpθqq
[Ste07].
The main focus of the work consists in parameter dependent geometry deformations, however, the

BVP as presented in (6.2) allows for certain parameters from the vector to affect the coefficient function
(parameters that govern the material laws for example).

6.2. Geometry parametrizations using B-splines and NURBS

Spline based representations are the core of most CAD tools due to their numerical stability as well as the
ability to model a large variety of shapes [HCB05, CHB09]. Moreover, creating and manipulating shapes
represented by B-splines and NURBS is a very intuitive process for humans. This section introduces both
B-spline and NURBS representations for the computational domain Dpθq.
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Figure 6.1.: Image of the Cartesian mesh through the mapping Gpy, θq “ py1, py2 ´ 0.5qp1 ` θ sinπy1qqJ.
The deformations for Gp¨, 0.5q and Gp¨,´0.5q are plotted.

As already stated in the previous section, the computational domain is chosen as the image of a map
Gp¨,θq : r0, 1sd Ñ Rd, d P t2, 3u. Moreover, a parametric dependence of the maps and therefore of the
computational domain is assumed. Since the map is defined on a hypercube, also called reference domain
in the following, it is natural to represent the components of the map G “ pG1, ..., Gdq with functions
from the tensor product space of univariate B-splines bases Spζp1q, p1q b ¨ ¨ ¨ b Spζpdq, pdq with knot vectors
ζp1q, . . . , ζpdq and degrees p1, . . . , pd, such that

Gspy,θq “
ÿ

k

pskpθqbkpyq, s P t1, ..., du, (6.3)

where the entries of the parameter dependent tensor ppθq P Rdˆn1ˆ¨¨¨ˆnd , nk “ dimpSpζpkq, pkqq, are called
control points. Detailed information on how to obtain the control points from a given parametrization will
be presented in Section 6.4.1. If d1 ă d univariate B-splines bases are used to construct the tensor product
space Spζp1q, p1q b ¨ ¨ ¨ b Spζpd1q, p1

dq, the parametrization returns lower dimensional manifolds embedded
in Rd. For example, d1 “ 1 for parametrized curves and d1 “ 2 for surfaces in R3. As later shown in
Section 6.5.4, increasing the multiplicity of certain knots allows for the relaxation of the parametrization’s
continuity at certain points (edges can be handled).
The second representation used in this work, NURBS, represent a generalization of the B-splines.

Definition 6.2.1 (NURBS basis functions). Let tbk,punk“1 be a B-spline basis function of dimension n and
degree p and w P Rn a vector of positive values called the weights. The NURBS basis functions are
defined as

Nk,ppyq “ wkbk,ppyq
řn

i“1wibi,ppyq . (6.4)
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Using the defined NURBS basis functions, one can define NURBS curves as
Fspyq “

ÿ

k

pskNk,ppyq, (6.5)

where p are the control points. In Figure 6.2, an example is illustrated for different degrees of the B-spline
basis as well as for increased knot multiplicity.
In the case of B-splines, the extension to the multidimensional case has been done by means of tensor

product. In the case of NURBS, we first choose the multivariate basis bk,ppyq “ bk1,p1py1q ¨ ¨ ¨ bkd,pdpydq as
the tensor product of d univariate B-splines of dimensions n “ pn1, ..., ndq and degrees p “ pp1, ..., pdq.
Secondly, the weights are represented as a d-dimensional tensor w P Rn1ˆ¨¨¨ˆnd . The multivariate NURBS
functions are given by

Nk,ppyq “ wkbk,ppyq
ř

i wibi,ppyq . (6.6)

Using the multivariate NURBS, surfaces and volumes can be parametrized over a mesh of control points.
These points are not necessarily part of the domain. In case of a domain Dpθq Ă Rd, d P t2, 3u, the NURBS
representation is

Gspyq “
ř

k pskwkbk,ppyq
ř

i wibi,ppyq , (6.7)

where p P Rdˆn1ˆn2ˆn3 and the multiindex p representing the degree of the involved B-spline bases is
dropped to simplify the notation. The parameter dependence of the domain is captured in the control
points and in the weights. In case of NURBS, the differentiability of the parametrization can be relaxed by
also repeating the control points. This is illustrated in Figure 6.2c, where repeating the control point p1, 1q
returns a curve that is continuous but not differentiable for y “ 0.5.
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(a) Linear B-spline basis for
ζ “ p0, 0, 1{4, 1{2, 3{4, 1, 1q.
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(b) Quadratic B-splines with
ζ “ p0, 0, 0, 3{8, 5{8, 1, 1, 1q
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(c) Quadratic B-splines with
ζ “ p0, 0, 0, 3{8, 1{2, 5{8, 1, 1, 1q

Figure 6.2.: Controlling the smoothness of a curve parametrization by choosing the degree of the basis
as well as repeating control points (in the last figure the control point p1, 1q is repeated).

6.3. Discretization of the problem

In the following, the discretization of the parameter dependent solution of the BVP (6.2) is formalized. A
Galerkin projection is used to discretize the bilinear forms. For the parameter dependence, the semidiscrete
solution is collocated on a tensor product grid.
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6.3.1. Galerkin discretization via IGA

The weak formulation of the problem presented in Section 6.1 is used. Converting the bilinear form over
the infinite dimensional Sobolev spaces is done in the context of FEM using the Galerkin method [M`03].
For a fixed parameter, the solution lives in the appropriate Sobolev space, in our caseH1pDpθqq. In the IGA,
the discrete trial and test spaces are chosen as the span of the B-spline basis composed with the inverse of
the geometry mapping [HCB05]

Vh,θ “ spantbk ˝G´1p¨,θq : k1 “ 1, ..., n1 , k2 “ 1, ..., n2 , k3 “ 1, ..., n3u, (6.8)

where G´1p¨,θq : Dpθq Ñ r0, 1sd denotes the inverse map for a fixed parameter θ P Ξ and the index h is
used to mark the discrete spaces. The candidate solutions are therefore expressed using the basis expansion

upx,θq “
ÿ

k

ukpθqbk ˝G´1px,θq, x P Dpθq, (6.9)

where the parameter dependent tensor upθq P Rn1ˆn2ˆn3 represents the DoFs. Introducing the solution
ansatz and testing with the basis from (6.8) returns the following discrete counterparts of the continuous
operators:

fmpθq “ lθpϕmp¨,θqq “
ż

Dpθq
ϕmpx,θqfpx,θqdx, (6.10)

Mm,kpθq “ aMθ pϕmp¨,θq, ϕkp¨,θqq “
ż

Dpθq
ϕmpx,θqϕkpx,θqdx, (6.11)

Sm,kpθq “ aSθpump¨,θq, vkp¨,θqq “
ż

Dpθq
κpx,θq∇umpx,θq ¨ ∇vkpx,θqdx, (6.12)

where ϕi “ bi ˝ G´1p¨,θq. By applying the substitution theorem for integrals, the integration can be
performed over the reference cube and the information about the geometry parametrization is included in
the metric tensor. For the presented bilinear forms and the right-hand side this leads to

fmpθq “
ż

r0,1s3
bmpyqfpGpy,θqqDpy,θqdy, ωpy,θq “ |detDyGpy,θq|, (6.13)

Mm,kpθq “
ż

r0,1s3
bmpyqbkpyqωpy,θqdy, (6.14)

Sm,kpθq “
ż

r0,1s3
∇bmpyqJKpy,θq∇bkpyqκ̂py,θqdy, (6.15)

Kpy,θq “ DyGpy,θq´JDyGpy,θq´1ωpy,θq,

where DyGpy,θq P Rdˆd is the Jacobian of the geometry mapping G with respect to the reference
coordinates and κ̂py,θq “ κpGpy,θq,θq is the coefficient function represented in the reference domain.
Solving the BVP on the parameter dependent domain Dpθq is therefore equivalent to solving a BVP on
the reference cube r0, 1sd for a solution with modified coefficients. The solution on the reference domain,
denoted in the following as ûp¨,θq, belongs to the Sobolev space H1pr0, 1s3q and is approximated using a
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Figure 6.3.: Representation of a basis function in the reference domain as well as the physical domain.

function from Spζ, pq, given as

ûpy,θq «
ÿ

k

ukpθqbkpyq. (6.16)

In Figure 6.3, a quadratic bivariate B-spline basis function is represented in the reference domain and in
the physical domain as an example.

Basis refinement

In (6.8), the chosen basis coincides with the B-spline basis used for the geometry parametrization. However,
for practical cases, the basis used to represent the solution should be larger (in terms of the dimension
of the univariate bases) than the one used for the parametrization. This can be the case for NURBS
parametrizations, where the basis used for representing the geometry is usually coarse.
To this end, the basis used for approximating the solution must be extended. One strategy, called h

refinement [HCB05], implies enlarging the knot vectors of the univariate bases. Let Âd
k“1 Spζpkq, pkq,

k P t2, 3u be the discrete B-spline space used for the geometry. A finer space for approximating the solution
can be obtained by performing knot insertion. Uniform refinement implies adding the knots pζpkq

i`1 ` ζ
pkq
i q{2,

@k, i if ζpkq
i`1 ą ζ

pkq
i .

Increasing the multiplicity of a knot ζpkq
i results in relaxing the continuity of basis tbpkq

i u at ζpkq
i . This can

be especially useful when considering jumps in the coefficient function κ from (6.2). We restrict ourselves
to the case where the material coefficient represented in the reference domain κ̂ is smooth over Cartesian
partitions of the reference domain r0, 1sd, i.e., there exist d vectors ηpkq Ă r0, 1s with elements in ascending
order and containing 0, 1 as first and last element such that

κpGpy,θq,θq is smooth over y P pηp1q
i1
, η

p1q
i1`1q ˆ ¨ ¨ ¨ ˆ pηpdq

id
, η

pdq
id`1q,@i,θ, (6.17)
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Figure 6.4.: The function κ is not continuous at the interface between the yellow region and the remaining
physical domain. In the reference domain, this region is given by r0, 0.5s ˆ r0, 0.5s ˆ r0, 0.5s.
The corresponding B-spline basis must contain the value 0.5 d-times in the knot vector.

where the indices ik loop over all the intervals of consecutive points constructed using the vectors η. The
discontinuity of κ̂ along the boundaries of the Cartesian partitions implies a lack of smoothness for the
solution along those surfaces. In order to accommodate for the lack of the solution’s smoothness, the points
that define the Cartesian partition must be part of the knot vectors ηpkq Ă ζpkq,@k and their multiplicity
has to be equal to the degree of the basis.
A relevant example is provided in Figure 6.4. The Cartesian reference subdomain r0, 0.5sˆr0, 0.5sˆr0, 0.5s,

which is marked with yellow in Figure 6.4(a), is mapped through a B-spline-based parametrization to the
corresponding physical domain marked with yellow in Figure 6.4(b). In this particular case, the value 0.5
must be in the knot vector of the univariate B-spline bases with the appropriate multiplicity in order to
accommodate the solution.

6.3.2. Parameter space discretization

In the previous section, the semidiscrete problem was introduced. The goal of the work is to give a
surrogate model of the parameter dependent solution, i.e., an approximation of the solution over the joint
physical-parameter domain that can be efficiently evaluated. One common way is to perform a polynomial
approximation over the parameter space. In this work, a tensor product polynomial approximation is
used since we want to take advantage of applying low-rank tensor decomposition methods. Alternative
approaches include sparse polynomial spaces for approximation [ABW22, BCM17, BCDM17] or piecewise
polynomial approximations [CDFS13, HKT05, Ric85]. Furthermore, the discrete system is obtained using a
collocation based method [BNT07, CCNT16], as compared to stochastic Galerkin methods [GS91, EMM20,
KS11, BTZ04].
The first step is collocating the geometry parametrization on a tensor product grid of parameters. For a

B-spline geometry we have

Θ “
!

θC,1i1

)ℓ1

i1“1
ˆ
!

θC,2i2

)ℓ2

i2“1
ˆ ¨ ¨ ¨ ˆ

!

θ
C,Np
iNp

)ℓNp

iNp“1
Ă Ξ, (6.18)
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where the superscript “C” is used to denote the collocation points. In this work, the univariate grids consist
of Gauss-Legendre nodes, however, other collocation points can be chosen as well, e.g., Chebyshev nodes.
The geometry parametrization collocated on the grid Θ is modified to

Gspy,θiq «
ÿ

k

pskpθiqbkpyq “
ÿ

k

pskibkpyq, (6.19)

for θi “ pθC,1i1
, ..., θ

C,Np
iNp

q. The DoFs are now a p1 ` 3 `Npq-dimensional tensor p P R3ˆn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp ,
where the last Np modes correspond to the parameter space. That is, if we take a point θi P Θ, the
corresponding control points are the slice p:i. In case of a NURBS parametrization, the dimensionality of
the weights tensor must be accordingly increased, such that

Gspy,θiq «
ř

k pskwkpθiqbkpyq
ř

l wlpθiqblpyq “
ř

k pskiwkibkpyq
ř

l wliblpyq . (6.20)

The discretized geometry mapping can be evaluated between the points from Θ using interpolation. In
case of a B-spline parametrization, the interpolation is given as

Gspy,θq «
ÿ

k,i

pskibkpyqLp1q
i1

pθ1q ¨ ¨ ¨LpNpq
iNp

pθNpq “
ÿ

k,i

pskibkpyqLipθq, (6.21)

where
!

P
pkq
ik

)ℓk

ik“1
are Lagrange polynomials corresponding to the collocation points.

The parameter dependent solution formally belongs to the space L2pΞ, G, 1q defined as
L2pΞ, G, αq “ tup¨, ¨q : up¨,θq P HαpDpθqq, @θ P Ξ and ||u||2L2pΞ,G,αq ă 8u, α P Z, (6.22)

with the corresponding norm

||u||2L2pΞ,G,αq “
ż

Ξ

||u||2HαpDpθqqdθ. (6.23)

Since in the IGA we search for the solution represented in the reference domain, the discretization of ûpy,θq
is chosen from a finite dimensional subspace of the tensor product spaceH1pr0, 1sdqbL2pΞq, d P t1, 2u. The
discrete subspace is chosen as the tensor product space Vζ,ℓ “ Spζ, pq b Pℓ, where Pℓ “ Pℓ1 b ¨ ¨ ¨ b PℓNp

.
The dimension of this space is n1n2n3ℓ1 ¨ ¨ ¨ ℓNp and the basis representation for the solution û is used, such
that

ûpy,θq « ûn,ℓpy,θq “
ÿ

k,i

ukibkpyqLipθq, (6.24)

where u P Rn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp are the DoFs. The following holds for every collocation point θi P Θ

upxpyq,θiq “ ûpy,θiq «
ÿ

k

ukibkpyq. (6.25)

Due to the interpolating property of the chosen representation, the fully-discretized solution can be
recovered by solving ℓ1ℓ2 ¨ ¨ ¨ ℓNp multilinear systems

Dpθiqu:i “ fpθiq, @i P
Np
ą

k“1

t1, ..., ℓku, (6.26)
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where f P Rn1ˆn2ˆn3 is the parameter dependent right-hand side and Dpθq P Rpn1ˆn2ˆn3qˆpn1ˆn2ˆn3q is
the discrete operator obtained from the Galerkin discretization and enforcing the boundary conditions. It
contains the previously defined mass and stiffness terms (depending on the problem to be solved). The
ś

k ℓk systems from (6.26) can be cast to an extended system Du “ f that can be solved to obtain the DoF
tensor u P Rpn1ˆn2ˆn3qˆpℓ1ˆ¨¨¨ˆℓNp q using one single solver call. The tensor operators are in this case

Dmi,kq “ δqiDm,kpθiq, D P Rpn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp qˆpn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp q, (6.27)
fmi “ fmpθiq, f P Rn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp . (6.28)

Under certain assumptions regarding the geometry map, the determinant of the Jacobian ωpy,θq and
the coefficient κpx,θq, an a priori error estimate for the elliptic case ρ “ 0 is shown in [CCNT16]. The
proof uses the existence of a map between the reference domain and the physical domain. In case of the
IGA, this map is the B-spline or the NURBS representation. The information of the domain deformation is
therefore included in a density term in the integrals arising from Galerkin FEM discretization. This way,
the problem is reduced to the one studied in [BNT07], where the dependence on random right-hand side
and coefficients is studied.
Estimating the error between the actual solution and the approximation can be split in the error arising

from the IGA-FEM discretization and the error introduced by the parameter space discretization. The
first error term concerning the IGA-FEM is denoted with ϵIGAph, pq and it decreases with Ophpp`1qq, where
p is the degree of the B-splines used (assumed to have the same degree) and h is the maximum grid
step [DVBSV14]. For the error due to the parameter space discretization, the following estimate holds:
ϵΞ ď C

ř

k e
´αkℓk for positive αk and C ą 0 [BNT07, CCNT16]. Combining the two together, we obtain

the error estimate in the norm defined in (6.23)
||û´ ûn,ℓ||L2pΞ,G,1q ď ϵIGAph, pq ` ϵΞpℓq. (6.29)

6.4. TT IGA

In the previous sections, the IGA discretization for the parameter dependent BVP has been presented. One
disadvantage of IGA FEM is the computational complexity of assembling the discrete operators. The number
of nonzero elements in the mass and stiffness matrices is Opndpdq, where d is the number of dimensions, n
is the maximum size of the univariate B-spline bases and p is the maximum degree of the B-splines. If we
also consider the additional dimensions due to the parameter dependence, the computational complexity
for storing the solution and the operator worsens even further. Several methods have been proposed to
make the assembly step efficient, ranging from optimal quadrature rules [HRS10b, ACH`12, RP12], to
using lookup tables [MJ15] and taking advantage of the tensor product structure of the solution space
[ABC`15, Hof18, MJKL17].
In this section, we present a framework to directly assemble all tensor-operators (stiffness S, massM), as

well as the right-hand side, in order to obtain a multilinear system in the TT format for the fully discretized
solution. Having all tensors in the TT format, the multilinear solver is used to obtain a TT approximation
of the parameter dependent solution u. For the entire section, the case d “ 3 is chosen. For the case d “ 2,
the derivations are analogous.

6.4.1. Geometry interpolation

As later required for constructing the discrete operators in the TT format, a low-rank representation of
the control points (and weights) from the representations (6.19) and (6.20) is needed. As a first step,
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the B-spline interpolation of the geometry map Gpy,θq is considered. A popular technique for B-spline
interpolation is to use the Greville abscissae [Joh05]. The Greville abscissae of a B-spline basis tbiui of
degree p and with the knot vector ζ are defined as the average of p consecutive knots

yGi “ ζi`1 ` ¨ ¨ ¨ ` ζi`p`1

p
, i “ 1, ..., n, (6.30)

where n is the dimension of the B-spline basis. One property of the Greville abscissae is that the matrix
BpGq with the entries BpGq

ij “ bipypGq
j q is invertible [Joh05]. This implies that evaluating a function over the

Greville grid is sufficient to build a B-spline interpolation of it. For the multidimensional case, a Cartesian
product between the individual Greville points of the B-spline bases and the parameter gridΘ is constructed
and the three components of the map G are evaluated, resulting in the tensor

gsmi “ Gs

´

yG,1m1
, yG,2m2

, yG,3m3
, θC,1i1

, ..., θ
C,Np
iNp

¯

, (6.31)

where tyG,1m1 um1 , tyG,2m2 um2 , tyG,3m3 um3 are the Greville abscissae for the univariate B-spline bases. In general,
a TT representation of g P R3ˆn1ˆn2ˆn3ˆℓ1ˆ¨¨¨ˆℓNp cannot be given in closed form and therefore the cross-
approximation method [OT10] must be used. By enforcing the B-spline representation to coincide with
the given geometry parametrization on the joint Greville-parameter grid, the following multilinear system
is obtained for the control points:

Bps:: “ gs::, B “ BpG,1q b BpG,2q b BpG,3q b Iℓ. (6.32)

The tensor operator B has the TT-rank r “ 1, thus allowing for a fast computation of the system’s solution
in the TT format, due to the fact that the inverse B´1 can be computed easily.
When using the NURBS representation of the geometry, the control points as well as the weights are

usually constructed by CAD tools. However, in certain cases, adding parameter dependency to control
points and to the weights is of interest for performing optimization tasks or in the field of uncertainty
quantification [GACS19]. The setup considered in this work starts from a known dependence of the control
points pkjpθq and the weights wjpθq w.r.t. the parameters. In this case, the user must provide the trajectory
of the individual control points within the parameter space Ξ as a function handle. The TT representation
of the collocated control points and weights can be computed using the cross approximation in the TT
format, such that

pkji “pkjpθCi q,
wji “wjpθCi q.

If a geometry is already given in NURBS format, a B-spline representation can be easily obtained by
evaluating the NURBS parametrization in the TT format to obtain the tensor g.
Independent of the geometry representation, a function fp¨,θq P H1pDpθqq can be interpolated to obtain

its representation f̂ in the reference domain r0, 1s3 ˆ Ξ by solving the system
ÿ

n,q

Bmi,nqfnq “ fpg1mi, g
2
mi, g

3
mi,θ

C
i q, (6.33)

where the TT representation of the right-hand side can be done using the cross approximation for nontrivial
examples.
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6.4.2. Discrete operators

One of the main results of this chapter is the construction of the IGA operators directly in the TT format. In
this section, the TT representation of the operators is given. For all discrete operators, the integration over
the reference domain r0, 1s3 is achieved by constructing a tensor-product grid of univariate quadrature
points

!

yQ,1i1

)

i1
ˆ
!

yQ,2i2

)

i2
ˆ
!

yQ,3i3

)

i3
, (6.34)

together with the corresponding quadrature weights wi “ w
p1q
i1
w

p2q
i2
w

p3q
i3
. Since the B-spline bases are

piecewise polynomials, the univariate quadrature grids are chosen as a concatenation of Gauss-Legendre
quadrature points for the intervals defined by consecutive knots. In this case, they allow for exact polynomial
integration in between the knots of the basis.
Let us first consider the integral in the mass tensor operator

Mmi,lq “ δiq

ż

U

ωpy,θCi qbmpyqblpyqdy « δiq
ÿ

j

wjojibm1pyQ,1j1
q ¨ ¨ ¨ bm3pyQ,3j3

qbl1pyQ,1j1
q ¨ ¨ ¨ bl3pyQ,3j3

q, (6.35)

where the tensor o contains the value of the function ω defined in formula (6.14), evaluated on the
Cartesian product between the quadrature grid and the collocation grid, that is

oji “ ω
´

yQ,1j1
, yQ,2j2

, yQ,3j3
,θCi

¯

. (6.36)

In the following, the tensor o is assumed to have a TT representation with TT cores tgpo,kqu3`Np
k“1 . It will be

later shown how to obtain this representation. The discrete mass operator can be written in this case as

Mmi,lq « δiq
ÿ

j

wj

ÿ

s

¨

˝

3
ź

k“1

g
po,kq
sk´1jksk

3`Np
ź

k“4

g
po,kq
sk´1ik´3sk

˛

‚bm1pyQ,1j1
q ¨ ¨ ¨ bm3pyQ,3j3

qbl1pyQ,1j1
q ¨ ¨ ¨ bl3pyQ,3j3

q, (6.37)

where s is used for summing along the ranks of o. Expressing the w and the Kroneker-delta as rank-1
tensors and rearranging the terms yields

Mmi,lq «
ÿ

s

3
ź

k“1

˜

ÿ

jk

g
po,kq
sk´1jksk

w
pkq
jk
bmk

pyQ,kjk
qblkpyQ,kjk

q
¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

gpM,kq,ď3

¨

˚

˚

˝

3`Np
ź

k“4

g
po,kq
sk´1ik´3sk

δ
qk´3

ik´3
loooooooomoooooooon

gpM,kq,ką3

˛

‹

‹

‚

, (6.38)

where tgpM,kqu3`Np
k“1 can be identified as the TT cores of the mass operator. The stiffness tensor-matrix can

be constructed in the TT format in a similar way, such that

Smi,lq “ δiq

ż

r0,1s3
∇bmpyqJKpy,θCi q∇blpyqκ̂py,θCi qdy

« δiq

3
ÿ

α,β“1

ÿ

j

wjByαbmpyQ,1j1
, yQ,2j2

, yQ,3j3
qByβblpyQ,1j1

, yQ,2j2
, yQ,3j3

qkpα,βq
ji k̂ji, (6.39)

where kpα,βq
ji “ KαβpyQ,1j1

, yQ,2j2
, yQ,3j3

, θC,1i1
., ..., θ

C,Np
iNp

q, k̂ji “ κ̂pyQ,1j1
, yQ,2j2

, yQ,3j3
, θC,1i1

., ..., θ
C,Np
iNp

q and Byα is the
partial derivative with respect to yα. For the first tensor k, we assume for now that it has a low rank TT
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representation which will be given in detail in the following section. The construction of the latter tensor
can be done directly in the TT format by either decomposing the full tensor (if computationally tractable)
or using the TT cross approximation method [DS19]. The stiffness can be expressed as the sum of 9 tensor
operators:

Smi,lq “
3
ÿ

α,β“1

S
pα,βq
mi,lq, (6.40)

where the TT representations can be obtained similarly to the mass operator for k P 1, 2, 3

g
pSpα,βq,kq
sk´1mklksk

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ř

jk

w
pkq
jk
b1
mk

pyQ,kjk
qb1

lk
pyQ,kjk

qgpkpα,βqk̂,kq
sk´1jksk

, k “ α, k “ β,

ř

jk

w
pkq
jk
b1
mk

pyQ,kjk
qblkpyQ,kjk

qgpkpα,βqk̂,kq
sk´1jksk

, k “ α, k ‰ β,

ř

jk

w
pkq
jk
bmk

pyQ,kjk
qb1

lk
pyQ,kjk

qgpkpα,βqk̂,kq
sk´1jksk

, k ‰ α, k “ β,

ř

jk

w
pkq
jk
bmk

pyQ,kjk
qblkpyQ,kjk

qgpkpα,βqk̂,kq
sk´1jksk

, k ‰ α, k ‰ β,

(6.41)

and for k ą 3

g
pSpα,βq,kq
sk´1mklksk

“ g
pkpα,βqk̂,kq
sk´1ik´3sk

δ
qk´3

ik´3
, (6.42)

where gpkpα,βqk̂,kq are the TT cores of the product kpα,βqk̂. Due to the summation over the indices α, β, the
assembly complexity of the stiffness is higher than for the mass tensor, due to the fact that additional round-
ing operations must be performed. Moreover, as will be shown in the following section, the construction of
the tensor k requires elementwise inversion and thus no analytical rank bound can be derived. During
the construction process, it can be seen that the 4d cores of the operators have band diagonal structure.
We therefore employ this property in order to decrease the complexity of the additions and rounding
operations.

6.4.3. Construction of the metric tensors

The computation of the TT representations from the previous section is independent of the choice of the
discretization (NURBS or B-splines). The parametrization information is included in the tensors o and k. If
the control points of the geometry discretization are given in the TT format as described in Section 6.4.1,
then the tensor o can also be represented in the TT format as well, such that

oji “ ω
´

yQ,1j1
, yQ,2j2

, yQ,3j3
,θCi

¯

“
ÿ

perm. σ
sgnpσq

3
ź

s“1

´

DyGpyQj ,θCi q
¯

sσpsq
“

ÿ

perm. σ
sgnpσq

3
ź

s“1

BGspyQj ,θCi q
Byσpsq

,

(6.43)
where σpsq are permutations of the tuple p1, 2, 3q and Dy is the Jacobian matrix. In this case, G is
represented as a linear combination of B-spline shape functions, the tensor o has the form

oji “
ÿ

perm. σ
sgnpσq

3
ź

s“1

`pBσpsqBqps:i
˘

j
, (6.44)
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where
`BσpsqB

˘

j,i
“ ByσpsqbipyQ,1j1

, yQ,2j2
, yQ,3j3

q are the components of a rank-1 TT-operator. The TT rank of
the tensor is in this case bounded by 6r3, where r is the maximum rank of the geometry parametrization.
In practice, however, a lower TT rank is observed for common domains.
In case of a NURBS parametrization defined by the control points p and the weights w, the geometry

mapping has the form

GspyQj ,θCi q “
ÿ

m

psmi

wmib
p1q
m1pyQ,1j1

qbp2q
m2pyQ,2j2

qbp3q
m3pyQ,3j3

q
ř

l

wljb
p1q
l1

pyQ,1j1
qbp2q

l2
pyQ,2j2

qbp3q
l3

pyQ,3j3
q

“ asji
dji

, (6.45)

with the tensors a and d defined as

a “pp d p1 b wqq ˆ2 B
p1q ˆ3 B

p3q ˆ4 B
p3q, (6.46)

d “w ˆ1 B
p1q ˆ2 B

p3q ˆ3 B
p3q, (6.47)

where Bpkq
αβ “ b

pkq
β pyQ,kα q, 1 P R3, is the one vector and ˆk is the n-mode product. By applying the chain

rule on Gs, the required derivatives for building the tensor o are given by

BGspyQj ,θiq
Byk “ pBykaqsjidji ´ asjipBykdqji

d2ji
, (6.48)

where Byka and Bykd denote the tensors obtained by applying the derivative to the k-th basis. In order to
obtain a TT representation for this case, the elementwise inversion of the tensor d has to be performed in
the TT format. If the weights are a rank-1 tensor, this process is trivial, since the elementwise inverse is
also a rank-1 tensor. Otherwise, the AMEn algorithm has to be used to perform this operation.
One further point is the construction of the tensor k from (6.39). The tensors are obtained by evaluating

the metric matrix over the joint quadrature-collocation grid

KpyQj ,θCi q “ DyGpyQj ,θiq´JDyGpyQj ,θCi q´1ωpyQj ,θCi q. (6.49)

Using Cramer’s rule [SSSS93] for 3 ˆ 3 matrices, the inverse can be written in terms of the cofactor matrix
and the determinant

DyGpyQj ,θCi q´J “

´

h
pα,βq
ji

¯3

α,β“1

oji
. (6.50)

Multiplying the transpose of the inverse with the inverse yields in this case the following expression for the
tensor

k
pα,βq
ji “ h

pα,1q
ji h

pβ,1q
ji ` h

pα,2q
ji h

pβ,2q
ji ` h

pα,3q
ji h

pβ,3q
ji

oji
. (6.51)

If the elements of the Jacobian are represented as tensors in the TT format, computing the low-rank
representation of kpα,βq requires multiplications and elementwise inversions, where again the AMEn
algorithm can be used. Having discussed the construction of the tensors o and k, the detailed procedure to
construct the stiffness in the TT format is presented in Algorithm 10.
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Algorithm 10 Construction of the stiffness operator in the TT format (for both d “ 2 and d “ 3).
1: Input: Univariate B-spline bases tbpkq

i ui, k “ 1, . . . , d, TT representation of the control points
tgpp,kqu4`Np

k“1 (and weights for the NURBS case), tensor product collocation grid for the parameter
space Θ “

!

θC,1i1

)ℓ1

i1“1
ˆ
!

θC,2i2

)ℓ2

i2“1
ˆ ¨ ¨ ¨ ˆ

!

θ
C,Np
iNp

)ℓNp

iNp“1
, coefficient function κ̂, rounding accuracy ϵ.

2: Construct the quadrature grid
!

θQ,1i1

)

i1
ˆ ¨ ¨ ¨ ˆ

!

θ
C,Np
iNp

)

id
tailored to the B-splines.

3: Compute hpα,βq, α, β “ 1, . . . , d in the TT format.
4: Use cross approximation to evaluate k̂.
5: Compute o in the TT format according to (6.43).
6: Initialize S Ð 0 in the TT format.
7: for α “ 1, . . . , d do
8: for β “ 1, . . . , d do
9: Perform the elementwise division from (6.51) in the TT format.
10: Multiply k and k̂ in the TT format.
11: for k “ 1, . . . , d do
12: Assemble gpSpα,βq,kq using (6.41).
13: for k “ d` 1, . . . , d`Np do
14: Assemble gpSpα,βq,kq using (6.42).
15: Perform S Ð S ` Spα,βq in the TT format.
16: Round S with relative accuracy ϵ.
17: Output: The TT representation of the stiffness tgpS,kqud`Np

k“1 .

6.4.4. Enforcing the boundary conditions

In the presented framework, we consider that the image of a face of the reference hypercube is either a
Dirichlet or a Neumann boundary for every θ P Ξ. The boundary conditions are applied by enforcing the
values of the DoFs that contribute to the approximation along the boundary. For a B-spline as presented in
Appendix A, the only basis elements that are nonzero at the interval boundaries are the first and the last.
For a univariate basis of size n, the discrete projection operatorM “ diagp0, 1, ..., 1, 0q is defined in order
to enforce the DoFs corresponding to the boundaries to be 0. If however only the coefficient of the first (or
the last) basis has to be set to 0, the diagonal matrix has the form diagp0, 1, ..., 1q (diagp1, ..., 1, 0q for the
last basis). If no restriction on the DoFs is required, the projection is the identity matrix.
When enforcing the boundary conditions on the BVP (6.2), the operator is constructed using the Kronecker

product as

Pin “ M p1q b ¨ ¨ ¨ b M pdq b Iℓ, (6.52)

where the matricesM pkq are defined as

M pkq “

$

’

’

’

’

&

’

’

’

’

%

diagp0, 1, ..., 1, 0q, Dirichlet BC for both facets yk “ 0 and yk “ 1

diagp0, 1, ..., 1q, Dirichlet BC for the facet yk “ 0, Neumann BC for the facet yk “ 1,

diagp1, ..., 1, 0q, Neumann BC for the facet yk “ 0, Dirichlet BC for the facet yk “ 1,

diagp1, ..., 1q, Neumann BC for both facets yk “ 0 and yk “ 1.

(6.53)
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Its complement Pbd only selects the DoFs that only affect the Dirichlet boundaries:

Pbd “ I ´ Pin. (6.54)

With the discrete projection operators, the BVP (6.2) can be written as the system
´

Pin pS ` ρMq ` αPbd
¯

u “ Pinf ` αPbdfD, (6.55)

where α ‰ 0 is a constant. The tensor fD approximates the prescribed Dirichlet conditions along the
boundaries ΓDpθq, such that

gpx,θq «
ÿ

k

fDkibkpG´1px,θqq, @θ P Ξ,x P ΓDpθq. (6.56)

The choice of the constant α is arbitrary, however, it affects the condition number of the final tensor-operator
and the convergence of the iterative solver. The choice of the constant in this work is α “ 1{n, where n is
the maximum size of the univariate B-spline bases. For a more detailed derivation of imposing the boundary
conditions as well as the interface conditions between several IGA patches we refer to [LMMT14].

6.4.5. Quantized tensor train decomposition

One way to speed up the computations in the TT format is to use the QTT format presented in Section 3.2.3.
In many cases, the prior reshaping of the tensors increase the efficiency of the linear algebra operations
(especially for the AMEn solver) [Kho11, KO10, IWL`21]. Therefore, the QTT format is used during the
construction of the stiffness tensor-operator (especially for the elementwise inversion of o). Since the choice
of the univariate bases is not always a power of 2, the reshaping is performed using the prime factorization
of the modes. Additionally, the QTT format is also used when solving the multilinear system (6.28).

6.5. Numerical experiments

In the rest of the chapter, numerical investigations are performed to showcase the performance of the
presented TT-IGA framework. The proposed method is also compared against other well established
methods (FEM). First, a convergence study is performed to assess the correctness of the solver. Next,
the efficiency of the TT solver as well as the operator construction is studied for an increasing number
of parameters. The remaining examples address solving inverse problems with the help of a surrogate
model obtained from the TT-IGA solver. One example is a section of a quadrupole model (2d magnetostatic
problem) and the second example is a waveguide structure (3d scalar Helmholtz equation). The third test
case concerns a parameter dependent material jump within the computational domain. All presented results
are run on a standard workstation. The presented framework is implemented in the Python programming
language in the form of the Python package tt-iga1. For the multilinear algebra operations in the TT
format, the Python package torchtt2 is used. Both packages have been developed by the author.

6.5.1. Convergence study

The first numerical test is a convergence study to assess the behavior of the error while refining the
discretization. Along with the error of the TT-IGA solution, the computational cost is also investigated in
1https://github.com/ion-g-ion/tt-iga
2https://github.com/ion-g-ion/torchTT
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(a) Initial geometry pθ “ 0q.
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(b) Fully deformed geometry pθ “ 1q.

Figure 6.5.: Deformed cylinder (parametrization is given in (6.57)). Figures adapted from [ILDG22].

terms of storage needs, solver runtime and assembly time for the system operators. For this study, the
computational domain is a cylinder which is deformed by varying a single parameter. In Figure 6.5, the
initial and the fully deformed geometry are shown. The geometry is given by the parametrization

Gpy, θq “

¨

˚

˚

˝

p2y1 ´ 1q
b

1 ´ p2y2´1q2
2

´

1´cospp2y3´1qπq
2 θ ` 1

¯

p2y2 ´ 1q
b

1 ´ p2y1´1q2
2

´

1´cospp2y3´1qπq
2 θ ` 1

¯

2y3 ´ 1

˛

‹

‹

‚

, y1, y2, y3, θ P r0, 1s. (6.57)

Using the method of manufactured solutions, the following Laplace BVP problem is solved over the
parameter dependent domain Dpθq:

∆upx, θq “ 0, x P Dpθq, (6.58a)
upx, θq “ cosp3x1q cosp4x2q expp´5x3q, x P BDpθq, (6.58b)

with the analytical solution represented in the physical domain upx, θq “ cosp3x1q cosp4x2q expp´5x3q. The
geometry approximation is done using B-splines which are chosen to be identical (same degree and same
knots) for all 3 dimensions with the degree p and the size n, such that n “ pn, n, nq.
The first part of the study concerns the convergence with respect to refining the B-spline bases while

keeping the size of the collocation grid fixed to ℓ “ 8. In this case, the expected convergence order for
the L2 error is Opn´pp`1qq. In Figure 6.6a, the convergence of the TT-IGA solver is shown for gradually
refined B-spline bases for p P t1, 2, 3u (linear, quadratic, cubic). For verification, the Opn´pp`1qq lines
are also plotted. In the Figures 6.6b and 6.6c, the QTT format is compared against the TT format and
the conventional GMRES solver. To this end, only quadratic B-splines are used, however, the results are
however similar for linear and cubic B-splines. As seen in Figure 6.6b, the runtime of the AMEn solver
scales better (similar to Opn2q) with the size of the basis, compared to using the GMRES for the linear
system. Even though the system matrix is stored in sparse format, the computational complexity of GMRES
solver equals the complexity of storing the solution in the full format (Opn3q). Despite scaling worse than
the AMEn, the GMRES is faster for small values of n. As a note, the GMRES solver is used for resolving one
single parameter, while the TT-IGA solver offers the solution for ℓ “ 8 parameters at once. Regarding the
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Figure 6.6.: Performance of the TT-IGA solver in terms of convergence, runtime (solver as well as stiffness
assembler) and memory consumption for a fixed parameter grid (ℓ “ 8). Figures adapted
from [ILDG22].

choice between the TT and the QTT format, it has been observed that both have a similar increase in the
complexity. However, the TT is slightly faster for this example. In both cases, it has been observed that the
TT-rank stagnates after a certain n. With respect to memory consumption, both TT and QTT achieve a
very good compression ratio, however, the QTT format uses less memory for storing the TT-cores after the
dimension of the univariate bases exceeds n “ 60. As already mentioned in this chapter, the assembly of

83



4 6 8 10

10´6

10´5

10´4

10´3

collocation grid size ℓ

re
lat
ive
er
ro
r

(a) Solution convergence as function of the size of the
collocation grid ℓ (cubic B-spline basis with fixed size
n “ 128).

101 102
10´7

10´6

10´5

10´4

10´3

10´2

B-spline basis size N
re
lat
ive
er
ro
r ℓ “ 3

ℓ “ 4
ℓ “ 5
ℓ “ 6
ℓ “ 7
ℓ “ 8
ℓ “ 9
ℓ “ 10

(b) Solution convergence with respect to n for different
values of ℓ.

Figure 6.7.: Convergence of the solution for increasing values of ℓ. Figures adapted from [ILDG22].

the mass and stiffness operators is a computationally expensive process in IGA-FEM. Even iterating through
all the DoF in order to populate the matrix has the complexity Opn3q. The TT-IGA assembly routine is
benchmarked against the naive integration as shown in Figure 6.6d. In this case, the proposed low-rank
method is orders of magnitude faster with a better asymptotic complexity (Opn2q compared to Opn3q for
the classical assembler). Note that the results for the TT based method are for the entire parameter grid
while the conventional assembler is used for only one parameter realization.
In the error estimate from (6.29), the error of the parameter space discretization is also accounted for.

In the rest of the section, the convergence of the parameter dependent solution with respect to the size ℓ of
the collocation grid is investigated. In Figure 6.7a, the exponential decrease of the error is observed for an
increasing ℓ for fixed cubic B-spline basis of n “ 128. Since the global error is bounded by both the IGA and
the parameter space discretization, it can be seen that the IGA discretization becomes the limiting factor
for ℓ ě 7. This behavior is also shown in Figure 6.7b, where the B-splines are refined for several values of ℓ.

6.5.2. Performance of the TT-IGA method for multiple parameter dependencies

In the previous test case, the geometry was controlled using only one parameter. One natural question that
comes into mind is, how does the solver perform for an increasing number of geometry parameters. We
use a quarter of a C-shape domain with the inner radius rin “ 1.5 and a parameter dependent outer radius

routpα,θq “ 2 `
Np
ÿ

k“1

θkb
poutq
k pαq, θk P r´0.0.5, 0.05s, (6.59)

where α P p0, 1q is a scaled angular span, Np is the number of parameters and
!

b
poutq
k

)Np

k“1
is a B-spline

basis. An illustration of the geometry for several parameter realizations is given in Figure 6.8a. The
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Figure 6.8.: Quarter of a C-shaped domain perturbed outer radius routpα,θq (both figures are adapted
from [ILDG22]).

parametrization of the C-shape quarter with perturbed outer radius is given by

Gpy,θq “
¨

˝

py1proutpy2,θq ´ rinq ` rinq cospy2π{4q
py1proutpy2,θq ´ rinq ` rinq sinpy2π{4q

y3

˛

‚, y P r0, 1s3. (6.60)

In the domain Dpθq, the following Laplace equation is solved
∆up¨,θq “ 0, in Dpθq, (6.61)

Bνu “ 0, on ΓNpθq, (6.62)
u “ 1, on ΓD` , (6.63)
u “ 0, on ΓD´ , (6.64)

where the Dirichlet conditions are imposed along the inner radius ΓD´ “ tGpy,θq : y1 “ 0u and the
perturbed outer radius ΓD` “ tGpy,θq : y1 “ 1u, while the normal derivative is along the remaining
part of the boundary ΓN “ BDpθq X tGpy,θq : 0 ă y1 ă 1u. In Figure 6.8b the solution in the plane
corresponding to y P p0, 1q ˆ p0, 1q ˆ t0.5u is plotted for a randomly chosen parameter and Np “ 8. The
geometry is represented using quadratic B-splines of fixed size n “ p40, 20, 80q. The discretization of the
parameter space is done using a tensor product of identically sized grids of size ℓk “ ℓ “ 8, k “ 1, ..., Np.
The BVP is solved for an increasing number of parameters Np P t2, 3..., 10u. In order to obtain the best

performance in terms of computational time and memory consumption, the QTT format is used for the
construction of the stiffness tensor-operator. The resulting stiffness is however stored in the TT format.
The results are shown in Table 6.1. The AMEn solver is applied to the system in the TT format and the
storage requirements are reported without the use of quantization. In addition to the runtime on the
central processing unit (CPU), the AMEn solver is also run on the graphics processing unit (GPU)1, with
an increase in speed of about 11 times. The error compared to a reference solution is checked as well, to
ensure that it does not explode with the growing number of parameters.
1Nvidia Tesla P100
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Np Assembly time [s] AMEn solver runtime [s] Operator storage [MB] Solution storage [MB]
CPU GPU

2 15.55 1.62 0.75 14.06 0.20
3 22.79 4.59 1.40 31.75 0.46
4 37.30 10.24 2.05 50.21 0.86
5 57.85 27.40 3.92 73.52 1.41
6 83.42 54.05 5.91 94.42 2.12
7 122.92 106.88 10.79 133.41 2.80
8 175.25 188.73 20.85 164.40 4.23
9 255.85 340.97 32.50 199.05 4.97
10 406.98 549.64 49.14 245.35 7.14

Table 6.1.: Computational complexity (runtime as well as storage) for an increasing number of the param-
eters Np. The stiffness assembly time and the solver runtime are reported separately. Table
data is adapted from [ILDG22].

As seen from the table, the time complexity of the TT-IGA has a slightly exponential behavior, however,
the base is smaller than 2 („ 1.6Np for the stiffness assembly and „ 1.7Np for the solver). The linear
complexity with respect to the number of dimensions is not observed because the ranks also depend on the
number of parameters. Despite this fact, the TT-IGA solver remains a very efficient approach for dealing
with a moderate number of parameters. The quadratic growth of the storage requirement with respect to
the mode size is observed for the tensor operators. They require two orders of magnitude more space than
the solution of the problem. One way to reduce this is to take advantage of the sparse structure of the TT
cores.

6.5.3. Quadrupole section

The model considered in this section is a quadrupole accelerator magnet [DGGI`20]. The model is 2d and
the geometry can be found in Figure 6.9. Due to geometry and excitation symmetry, only 1{8-th of the
cross-section is considered (red contour in Figure 6.9). A surrogate model of the BVP is computed in order
to be used to solve an inverse problem. The 4 geometry parameters are inferred from field observations in
the air gap. The section is divided into two parts: computing the surrogate model (forward problem) and
approximating the posterior PDF (inverse problem).

Forward problem

The detailed sketch of the geometry is presented is Figure 6.10a. The computational domain is divided
into three subdomains, each corresponding to one of the three different material regions: air, iron and
copper. Parametric deformations of the subdomains are also considered (represented in Figure 6.10b):

• Parameter θ1 corresponds to the radius of the iron yoke’s interior surface.

• Parameter θ2 corresponds to the position along the x1-axis of the left boundary of the copper region.

• Parameter θ3 corresponds to the position along the x1-axis of the right boundary of the copper region.

• Parameter θ4 corresponds to the height of the copper region.
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Figure 6.9.: Cross-section of the quadrupole accelerator magnet. Figure from [DGGI`20].

For each parameter, the following bounds are defined: θk P r´0.75, 0.75s mm, k P t1, 2, 3, 4u.
The geometry is represented using a single NURBS patch and the parameter dependence only affects the

interior control points, while the image of the parametrization is the same for every parameter realization.
The exact geometry description (control points, weights and B-spline basis) is presented in detail in
Appendix C. The NURBS parametrization is chosen such that the different material regions correspond
to Cartesian subpartitions in the reference domain for every parameter realization θ P Ξ. The copper
subdomain, for example, is given as the image of r0.4, 0.6s ˆ r0, 0.5s, while the air gap is the image of
r0, 0.4s ˆ r0, 0.3s. The B-spline basis is chosen to allow for C0 continuity across the interfaces between the
subdomains.
Dealing with a magnetostatic problem, the governing equations are the laws of Gauß and Ampère

∇ ¨ B “0, (6.65)
∇ ˆ H “J , (6.66)

where B is the magnetic flux density, H is the magnetic field strength, J is the current density, ∇ˆ is
the curl operator and ∇¨ is the divergence operator. The material relation is assumed to be linear, i.e.,
Hpxq “ νpxqBpxq, but dependent on the spatial position. In order to derive a single PDE, the magnetic
vector potential formulation B “ ∇ ˆ A is used to obtain the curl-curl equation

∇ ˆ pν∇ ˆ Aq “ J . (6.67)

A further simplification is obtained when considering that the problem is 2d. In order to fully describe the
solution in the x1x2-plane, only the third component of the magnetic vector potential is considered, such
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Figure 6.10.: Computational domain of the 2d quadrupole model: nominal geometry and the subdomain
boundaries for different parameter realizations (red contours).

that A “ p0, 0, A3q. The curl-curl equation is therefore reduced to the BVP
´∇ ¨ pµp¨,θq´1∇A3p¨,θqq “ J3p¨,θq, in D, (6.68)

A3 “ 0, on ΓD, (6.69)
µp¨,θq´1BνA3 “ 0, on ΓN , (6.70)

where ΓD and ΓN are the Dirichlet and Neumann boundaries of the domain, respectively (see Figure
6.10a). They are motivated by the symmetry of the model as well as by the fact that the permeability of
the iron is high enough such that the field exiting the outer boundary can be neglected. The total current
flowing through the copper region is set to be I “ 1080 A (24 turns and a current of 45 A per turn). Due to
the choice of the parametrization, the current density has the following expression in the reference domain:

Ĵpy,θq “
#

I
Spθq , 0.4 ă y1 ă 0.6 and 0 ă y2 ă 0.5,

0, otherwise,
(6.71)

where Spθq is the surface of the copper region. The permeability is similarly expressed in the reference
domain as

µ̂py,θq “
#

µ0, 0.4 ă y1 ă 0.6 and 0 ă y2 ă 0.5 or 0 ă y1 ă 0.4 and 0 ă y2 ă 0.3,

µ0µr, otherwise, (6.72)

where µ0 is the vacuum permeability and µr “ 1500 is the relative permeability.
The TT-IGA solver is applied on the parameter dependent BVP. Quadratic B-spline bases with the size

n “ p64, 64, 64q are chosen for the IGA discretization and ℓ “ 8 collocation points per dimension for the
parameter space discretization. Constructing the stiffness TT operator up to a relative accuracy of ϵ “ 10´10

in the Frobenius norm yields the TT rank r “ p1, 92, 86, 61, 26, 7, 1q which corresponds to « 268 MB of
storage. The assembly time for the extended stiffness tensor operator is approximately 50 s, compared to
1.5 s needed for a FEM mesh of comparable size for one parameter realization. The AMEn solver is run with
a relative residual accuracy of ϵ “ 10´6. The solution is plotted for θ “ 0 in Figure 6.11. The rank of the
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Figure 6.11.: Quadrupole section: solution for θ “ p0, 0, 0, 0q. The contour lines of A3 are plotted.

obtained solution is r “ p1, 63, 141, 123, 54, 8, 1q and corresponds to « 6.53MB of storage. As a comparison,
storing a solution as a full tensor for a fixed geometry only requires « 0.032 MB. The relatively increased
storage requirement for the 2d problem is caused by the bad choice of the geometry parametrization. The
naive choice of the control points leads to high distortions across the domain. Optimization techniques
similar to the ones presented in [PC19, JM17b] can be applied to obtain a better IGA parametrization of
the domain. The parameter dependent solution obtained from the TT-IGA is validated against a fine grid
FEM solution in terms of accuracy for multiple parameter combinations.

Inverse problem

For the inverse problem, we assume that the observed quantity is the A3 component of the magnetic
vector potential. The number of observations is No “ 9 and they are equidistantly spread along the line
x1 P r0, 16s mm, x2 “ 0 mm. The observations are generated from a high-fidelity FEM simulation for
θ̂ “ 0 and polluted with Gaussian additive noise. In the Bayesian setup, the vector z P RNo containing the
observations as well as the parameter vector θ are modeled as random variables Z and ϑ, respectively. The
additive Gaussian noise model is translated into the following likelihood function

pZ|ϑ“θpzq 9 exp

˜

´ 1

2σ2n

No
ÿ

k“1

pzk ´A3pxpkq,θqq2
¸

, (6.73)

where σn “ 5 ¨ 10´6 is the noise standard deviation and xpkq are the positions where the field is observed.
Due to the choice of the parametrization G, the positions of the points xpkq in the reference domain
depend on the parameter θ. The dependence is however linear and no inversion of the map G is necessary
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to evaluate the TT-IGA solution. Regarding the prior distribution, the parameters are considered to be
independent and identically distributed beta RVs with α “ β “ 4. Note that the definition domain of the
beta PDF has to be scaled to the parameter range.
The posterior

pϑ|Z“zpθq 9 pZ|ϑ“θpzqpϑpθq, (6.74)

is in this case interpolated using a tensor product quadratic B-spline basis defined over the domain Ξ
with the size p50, 25, 25, 25q. The result is shown in Figure 6.12, where the 2d and 1d marginals of the
joint posterior PDF is represented. Furthermore, the first and second order moments of the posterior are
computed using numerical integration, which are given as

Epϑq “p´5.2097 ¨ 10´6,´1.1709 ¨ 10´6,´5.2202 ¨ 10´9, 7.3047 ¨ 10´9q m, (6.75)

Covpϑ,ϑq “

¨

˚

˚

˝

1.6124 ¨ 10´9 5.7094 ¨ 10´10 ´8.6323 ¨ 10´11 ´1.1170 ¨ 10´10

5.7094 ¨ 10´10 5.1130 ¨ 10´8 6.8685 ¨ 10´13 6.8260 ¨ 10´13

´8.6323 ¨ 10´11 6.8685 ¨ 10´13 5.1138 ¨ 10´8 ´1.2719 ¨ 10´13

´1.1170 ¨ 10´10 6.8260 ¨ 10´13 ´1.2719 ¨ 10´13 5.1138 ¨ 10´8

˛

‹

‹

‚

m2. (6.76)

As it can be observed, the posterior only offers significant information about the parameter θ1, which
corresponds to the radius of the yoke. This parameter has a higher influence on the predicted measurements
since it directly affects the distribution of the field along the horizontal line. The remaining parameters
govern the surface of the current excitation and have a small contribution to the predicted measurements.
As seen from the diagonal dominant structure of the covariance matrix, the parameters are statistically
independent of each other.

6.5.4. Helmholtz equation within a waveguide structure

In this test case, a 3d model is studied. Similarly to the previous case, the surrogate model is built and
then used to solve an inverse problem.

Forward problem

The geometry in this case is a 3d waveguide structure (see Figure 6.13a). The section is rectangular
with the height h “ 0.5 and the width variable width w P r2, 3s. The volume is created by translating
the cross-section along a curve. In Figure 6.13a, the coordinates of some relevant points (blue dots)
are given. The three points correspond in the reference domain to the points y1 “ 0, y2 “ 1, y3 P
t0, 0.25, 0.5, 0.75, 1u. The computational domain depends on three parameters: θ1 P r´0.2, 0.2s which
affects the radius of the circular section and θ2, θ3 P r´0.3, 0.3s which determines the height of the inverted
truncated pyramid part. In Figure 6.13b, the geometry is represented for several parameter realizations
θ P t´0.2, 0.2u ˆ t´0.3, 0.3u ˆ t´0.3, 0.3u. The parameter dependent geometry map that describes the
domain is approximated using a B-spline representation similar to the one given in (6.3).
Within the presented computational domain Dpθq, the following scalar Helmholtz BVP is solved:

∆up¨,θq ` ρup¨,θq “ 0, in Dpθq, (6.77a)
up¨,θq “ gp¨q, on BDpθq X tpx1, x2, x3q : x3 “ ´3u, (6.77b)
up¨,θq “ 0, on BDpθqztpx1, x2, x3q : x3 “ ´3u, (6.77c)
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Figure 6.12.: Quadrupole section: posterior PDF for the inverse problem. Marginalization is performed
to obtain the graphical representation. On the main diagonal, the prior (green dashed line)
is plotted together with the posterior (blue solid line). The red vertical lines represent the
ground truth θ̂ “ 0.

where the boundary condition gpx1, x2q “ cospπx1q sinpπx2q is imposed at the plane x3 “ ´3, the zero
Dirichlet boundary condition is imposed on the remaining part of the boundary BDpθq X tpx1, x2, x3q :
x3 “ ´3u and ρ “ 49. The solution is plotted in Figure 6.14 for θ1 “ θ2 “ θ3 “ 0.
The BVP is discretized using tensor product of uniform quadratic B-splines of dimension n “ p64, 64, 128q

for the spatial dimensions and a tensor product of Chebyshev nodes of size ℓ “ p8, 8, 8q for the parameter
space. Due to the low rank structure of the parameter dependent geometry, the system operators (stiffness
and mass) are constructed in « 2 s for a relative accuracy of ϵ “ 10´12 and ϵ “ 10´10 for the mass and
stiffness, respectively. The TT rank of the stiffness tensor operator is rS “ p1, 5, 21, 12, 6, 8, 1q, which
corresponds to only approximately 35 MB of storage space. The solution is obtained using the AMEn solver

91



x1

1.5
0.0

1.5
x2

0.0
1.5

x3

3.0

1.5

0.0

1.5

( 1, 0.5, 3)

( 1, 0.5, 3 2)

( 1.5, 0.5, 2 1)

( 1.5, 0.5, 0)

( 1.5, 1.5, 1 + 1)

(a) The geometry of the waveguide. The cross-section
is rectangular with height h “ 0.5 and width ranging
from 2 to 3. The positions of the blue points is also
displayed aswell as their parameter dependence. Red
markers represent the position of the observations
for the inverse problem.

x1

1.5 0.0 1.5 x20.0
1.5

x3

3.0

1.5

0.0

1.5

(b) Waveguide geometry for different parameter combi-
nations θ P t´0.2, 0.2u ˆ t´0.3, 0.3u ˆ t´0.3, 0.3u.

Figure 6.13.: Geometry of the waveguide structure with rectangular section.

for a relative accuracy of the residual of ϵ “ 10´7. To verify the correctness of the TT-IGA solver, the
solution is compared against a FEM solver for some parameter realizations. The GMRES solver used by the
FEM solver suffers from the lack of preconditioning. The AMEn solver on the other hand benefits from
the preconditioning of the local subsystems. The TT-IGA solver is again faster than the conventional FEM
solver for a similar discretization level. Regarding the low rank approximation of the parameter dependent
solution, its TT rank is ru “ p1, 64, 81, 81, 66, 10, 1q, corresponding to around 9 MB. As a comparison,
storing the full tensor of shape p64, 64, 128q corresponding to a fixed parameter requires « 4 MB.

Inverse problem

Similar to the previous test case, an inverse problem is solved using the surrogate model of the solution
of (6.77). The observed quantity is the solution u at a discrete number of points. The observations are
generated using a FEM simulation and correspond to the parameter θ̂ “ 0. The zk “ upxpkq, θ̂q ` εk where
εk is a sequence of i.i.d. Gaussian RVs with mean 0 and variance σ2n. The likelihood in this case is

pZ|ϑ“θpzq 9 exp

˜

´ 1

2σ2n

No
ÿ

k“1

pzk ´ upxpkq,θqq2
¸

, (6.78)

where xpkq are the positions in the physical domain where the field is observed (represented with the red
markers in Figure 6.13a). Compared to the previous case, the points xpkq correspond to the same points in
the reference domain for every parameter combination.
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Using the surrogate model, the posterior

pϑ|Z“zpθq 9 pZ|ϑ“θpzqpϑpθq (6.79)

is interpolated using a tensor product quadratic B-spline basis of size n “ p64, 64, 64q. The prior of each
parameter is a Gamma distributed with α “ β “ 5 (scaled to the parameter space Ξ). The results for
σn “ 0.02 are showed in Figure 6.15, where the individual parameters are marginalized to obtain a
graphical representation of the posterior. Furthermore, the first and second order moments of the posterior
are computed using numerical integration:

Epϑq “p0.0067,´0.0337,´0.0031q, (6.80)

Covpϑ,ϑq “
¨

˝

4.4079 ¨ 10´5 7.6069 ¨ 10´5 ´4.8618 ¨ 10´5

7.6069 ¨ 10´5 5.5687 ¨ 10´3 5.8178 ¨ 10´4

´4.8618 ¨ 10´5 5.8178 ¨ 10´4 9.6319 ¨ 10´3

˛

‚. (6.81)

The parameter that is identified with the highest confidence is θ1, since the variance of its posterior
is orders of magnitude lower compared to the variance of the prior. The reason for this is that the first
parameter has the largest impact on the length of the waveguide structure and causes the highest variation
of the field at the given observation points. Between the second and third parameter, a correlation is
observed. This is motivated by the fact that the height of the truncated pyramid part of the waveguide
plays a more significant role than its position.
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7. Conclusion and Outlook

The final chapter of this thesis consists of an overview and some concluding remarks. Furthermore, several
possible continuations of the work are suggested.

7.1. Conclusion

In this work, we addressed the construction of surrogate models using the TT format. Two white-box
surrogate modeling methods were presented: TT-CME and TT-IGA. Despite the applications coming from
different fields, the idea remains the same: add additional dimensions to the DoF tensor to accommodate
the parameter dependence. An extended system is then built for recovering the DoF tensor. In both cases,
all relevant tensor operators and the right-hand side are directly computed in the TT format using TT
cores manipulation and multilinear algebra operations. The AMEn solver is then used to directly obtain
the solution DoFs in the TT format. Despite being prohibitive when dealing with full tensors, the idea
of increasing the dimensionality can be beneficial in the TT format since the dependence between the
parameters can be captured by interactions between the cores. This effect is the so-called “blessing of
dimensionality” [Kho12].
The TT-CME has been proven to be a viable alternative to the conventional methods. A general method

for constructing the CME generator directly in the TT format was presented. The time dependency is
resolved by basis expansion over the time interval. Thus, an additional dimension is added to the involved
tensors. When adding parameters, the dimensionality is increased even further in order to obtain an
approximation over the joint state-parameter-time domain. The extended system is then obtained using
Galerkin projection. The accuracy and efficiency of the solver is then assessed in the numerical results
section. Bayesian inference tasks such as filtering, smoothing and parameter identification are conducted
using the presented framework, thanks to the fast and efficient linear algebra operations in TT. By using
the TT-CME solver, a drastic improvement in the storage requirements as well as the computational time
is obtained. In some cases, storing the full solution would exceed the memory available on conventional
workstations, while the TT solver is able to run on a normal laptop computer.
For the TT-IGA solver, the main difficulty consists in constructing the TT representation of the discretized

weak formulation. The proposed construction method has a lower computational complexity compared to
conventional assemblers. As shown in the numerical findings, the standard IGA assembly techniques are
slower than the proposed TT based method for the combined physical and parameter space. The AMEn
solver is also faster and more memory efficient than the conventional GMRES solver. The first two numerical
experiments validate the solver and investigate its behavior for an increasing number of parameters, while
the remaining two examples address the usage of surrogates for solving synthetic inverse problems. Due to
the fast evaluations of the surrogate model, the TT cross approximation method can be used to interpolate
the posterior PDF.
Compared to black-box surrogate modeling techniques, the specialized TT based solvers offer a significant

improvement in the computational time. It is no longer bounded by the number of model calls needed for
constructing the training set. In some cases, building a TT surrogate is faster than using conventional solvers
for a single parameter realization. Moreover, the low-rank representations of the parameter dependent
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solution are also efficient during the post-processing step. Numerical integration, pointwise evaluation,
differentiation can be easily done on the surrogate model.

7.2. Outlook

The following extensions and improvements, which have not been addressed in this work, are considered
to be important for future research works:

• The TT-CME solver presented in Chapter 5 assumes a fixed basis to represent the parameter de-
pendency for all filtering steps. As already stated in the results section, the posterior PDF over the
parameter space shrinks and the relevant part becomes concentrated in a small region of the initial
truncated parameter space. As a result, a uniform distribution of the knots of the B-splines does not
offer a high enough resolution. Further research should be conducted for performing adaptive basis
refinement or to adaptively adjust the knots of the B-splines depending on where the information is
concentrated.

• In Chapter 6, the geometry was defined by either interpolating a given parametrization or by providing
the control points of the NURBS representation. Since the choice of the geometry parametrization
affects the TT rank of the control points and therefore the rank of the discrete tensor operators, we
are interested in finding the best parametrization in order to minimize the computational burden
of the TT solver. The image of the improved parametrization must still remain the same physical
domain. Several metrics have been proposed to quantify the goodness of a parametrization [PCT20].
The method introduced in [JM17a] should be extended to constructing efficient TT-representations
of domains starting from the (parameter dependent) boundary patches [PCT20]. This has been
addressed in [PC19] for fixed geometries and using the CPD format.

• One possible extension of the TT-IGA solver is to address nonlinear problems. This, for example, is
of great interest for the quadrupole magnet analyzed in Section 6.5.3. In classical FEM, the most
common approach when dealing with nonlinear PDEs is to apply the Newton solver on the nonlinear
system derived from the weak formulation [Wri08]. This requires a reconstruction of the discrete
operators at every step. This procedure can be also extended to the IGA [CHB09, DZW`20, WWS13].
In order to integrate this in the TT based solver, the construction of the discrete operators, especially
the stiffness operator, has to be adapted to account for nonlinearities.

• The emerging field of quantum computing has gained a lot of attention over the past few years.
Development of linear solvers for quantum computers [PPM`22] motivate the idea of developing
quantum algorithms for solving PDEs. A further continuation of the work is to investigate the
possibility of implementing the presented TT based solvers on quantum computing systems.

• The main application of the proposed surrogate modeling techniques is solving inverse problems.
However, the white-box solvers are not limited to this application. A further continuation is to
diversify the use cases to other fields such as forward UQ, design optimization, or control problems.
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A. B-spline bases

Of relevance for this work, especially for the IGA solver but also for representing the parameter dependence
of the CME solution are the B-spline bases. In this section, we define the B-spline basis, and we will give
some of their important properties relevant to this thesis.

Definition A.0.1 (B-spline shape functions). Let ζ “ rζ1, . . . , ζn`p`1s with ζk ď ζk`1, ζ1 “ ¨ ¨ ¨ “ ζp`1 “ 0,
and ζn`1 “ ¨ ¨ ¨ “ ζn`p`1 “ 1, be a knot vector, where n denotes the space dimension and p the polynomial
degree. Then, the B-spline functions tbk,punk“1 of degree p are defined via the Cox–de Boor recursion
formula [PT96]

bk,ppxq “ x´ ζk
ζk`1 ´ ζk

bk,p´1pxq ` ζk`p`1 ´ x

ζk`p`1 ´ ζk`1
bk`1,p´1pxq, p ą 0, (A.1)

bk,0pxq “
#

1, x P rζk, ζk`1q,
0, otherwise. (A.2)

where the convention 0{0 “ 0 is used. Furthermore, we introduce the space Spζ, pq “ spantbk,p : k “
1, ..., nu.
The main properties relevant in this work are [PT96] :

1. The B-spline functions are piecewise polynomials of degree p between the knots.

2. The space Spζ, pq has the dimension n.
3. If a knot ζk P p0, 1q has the multiplicity mk (its value appears mk times), then the B-splines are at
most p´mk continuously differentiable at the point ζk (p´mk “ 0 just continuity holds at ζk). See
Figure A.1c for one example.

4. The compact support of the k-th basis is pζk, ζk`p`1q.
5. The derivatives of the B-splines are again piecewise polynomials and can be expressed as

dbk,ppxq
dx “ p

ζk`1 ´ ζk
bk,p´1pxq ´ p

ζk`p`1 ´ ζk`1
bk`1,p´1pxq, p ą 0. (A.3)

with the same convention for the division by 0. In Figure A.2b, the B-spline basis functions for p “ 2
and ζ “ p0, 0, 0, 14 , 12 , 34 , 1, 1, 1q is plotted along with their derivatives.
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Figure A.2.: The quadratic B-spline basis for the knots ζ “ p0, 0, 0, 14 , 12 , 34 , 1, 1, 1q and the first order deriva-
tives (only the compact support is represented).

98



B. Metric coefficients

In Section 6.4.3, the tensors hpα,βq were used compute the metric coefficients for the stiffness integral. By
defining the tensors

g
pα,βq
ij “ BGαpyQ

j ,θiq
Byβ , α, β P t1, . . . , du, (B.1)

the tensors hpα,βq are calculated as it follows for the case d “ 3:
¨

˝

hp1,1q hp1,2q hp1,3q

hp2,1q hp2,2q hp2,3q

hp3,1q hp3,2q hp3,3q

˛

‚“
¨

˝

gp2,2q d gp3,3q ´ gp2,3q d gp3,2q gp1,3q d gp3,2q ´ gp1,2q d gp3,3q gp1,2q d gp2,3q ´ gp1,3q d gp2,2q
gp2,3q d gp3,1q ´ gp2,1q d gp3,3q gp1,1q d gp3,3q ´ gp1,3q d gp3,1q gp1,3q d gp2,1q ´ gp1,1q d gp2,3q
gp2,1q d gp3,2q ´ gp2,2q d gp3,1q gp1,2q d gp3,1q ´ gp1,1q d gp3,2q gp1,1q d gp2,2q ´ gp1,2q d gp2,1q

˛

‚. (B.2)

If d “ 2, the tensors are given as
ˆ

hp1,1q hp1,2q

hp2,1q hp2,2q

̇

“
ˆ

gp2,2q ´gp1,2q
´gp2,1q gp1,1q

̇

. (B.3)
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C. Quadrupole magnet model

In this part, the geometry of the quadrupole magnet is described in detail. First, the following geometry
constants are defined:

• Do “ 72 mm,

• Di “ 51 mm,

• hi “ 12 mm,

• bi “ 3 mm,

• Dc “ 35 mm,

• hc “ 6 mm,

• ri “ 20 mm,

• ra “ 18 mm,

• bc “ hi ´ hc.

In addition to the defined constants, the following functions are introduced:

• rOpDc, hc, riq “ DcDc`hchc´riri
Dc

?
p2q`hc

?
p2q´2ri

represents the radius of the circular section.

• The control point controlling the circle arch has the following coordinates Cx and Cy given explicitly
as

¨

˝

rOpDc,hc,riq´ri?
p2q

rOpDc,hc,riq´ri?
p2q

rOpDc,hc,riq?
2

´Dc
rOpDc,hc,riq?

2
´ hc

˛

‚

ˆ

CxpDc, hc, riq
CypDc, hc, riq

̇

“
¨

˝

rOpDc,hc,riq´ri?
p2q

2ri?
2

rOpDc,hc,riq´ri?
p2q pDc ´ hcq

˛

‚ (C.1)

The parameter dependent weights are:

wi1i2 “

$

’

’

&

’

’

%

sin
¨

˝

π´arcsin

ˆ

hc´rOpDc`θ2,hc,ri`θ1q{
?

p2q

rOpDc`θ2,hc,ri`θ1q´ri´θ1

̇

` 3π
4

2

˛

‚ , i1 “ 2, i2 “ 3

1 , otherwise.

Finally, the following B-spline space is used:

Spp0, 0, 0, 0.4, 0.4, 0.6, 0.6, 1, 1, 1qJ, 2q b Spp0, 0, 0.15, 0.3, 0.5, 1, 1qJ, 1q.
The parameter dependent control points (also illustrated in Figure C.1 for θ “ p0, 0, 0, 0q) are given by:
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p:11pθq “
ˆ

0
0

̇

p:12pθq “
˜

ri`θ1
2

?
2

ri`θ1
2

?
2

¸

p:13pθq “
˜

ri`θ1?
2

ri`θ1?
2

¸

p:21pθq “
ˆ

Dc`θ2
2
0

̇

p:22pθq “
˜

Cxpri,Dc,hcq`Dc
2

Cypri,Dc,hcq
2

¸

p:23pθq “
ˆ

Cxpri ` θ1, Dc ` θ2, hcq
Cxpri ` θ1, Dc ` θ2, hcq

̇

p:31pθq “
ˆ

Dc ` θ2
0

̇

p:32pθq “
ˆ

Dc ` θ2
hc
2

̇

p:33pθq “
ˆ

Dc ` θ2
hc

̇

p:41pθq “
ˆ

Dc`Di
2
0

̇

p:42pθq “
ˆ Dc`Di

2
hi´bi`hc

4

̇

p:43pθq “
ˆ Dc`Di

2
hi´bi`hc

2

̇

p:51pθq “
ˆ

Di ` θ3
0

̇

p:52pθq “
ˆ

Di ` θ3
hi´bi
2

̇

p:53pθq “
ˆ

Di ` θ3
hi ´ bi

̇

p:61pθq “
ˆ

Do`Di
2
0

̇

p:62pθq “
ˆDo`Di

2
hi´bi
2

̇

p:63pθq “
ˆ

Do`Di
2

hi ´ bi

̇

p:71pθq “
ˆ

Do
0

̇

p:72pθq “
ˆ

Do
hi´bi
2

̇

p:73pθq “
ˆ

Do
hi ´ bi

̇

p:14pθq “
˜

0.75ri`0.25Do?
2

0.75ri`0.25Do?
2

¸

p:15pθq “
¨

˝

Do?
p2q

Do?
p2q

˛

‚

p:24pθq “
¨

˝

1
2

´

0.75ri`0.25Do?
2

`Dc ` bc
¯

1
2

´

0.75ri`0.25Do?
2

` hi
¯

˛

‚ p:25pθq “
¨

˝

Do?
p2q

´

1 ´ Dc
2Do

¯

`Do Dc
2Do

Do?
p2q

´

1 ´ Dc
2Do

¯

`Do tanpπ{8q Dc
2Do

˛

‚

p:34pθq “
ˆ

Dc ` bc
hi ` θ4

̇

p:35pθq “
¨

˝

Do?
p2q

´

1 ´ Dc
Do

¯

`DoDcDo

Do?
p2q

´

1 ´ Dc
Do

¯

`Do tanpπ{8qDc
Do

˛

‚

p:44pθq “
ˆ

Dc`bc`Di´bi
2

hi ` θ4

̇

p:45pθq “
¨

˝

Do?
p2q

´

1 ´ Di`Do
2Do

¯

`DoDi`Dc
2Do

Do?
p2q

´

1 ´ Di`Do
2Do

¯

`Do tanπ{8Di`Do
2Dc

˛

‚

p:54pθq “
ˆ

Di ´ bi
hi ` θ4

̇

p:55pθq “
¨

˝

Do?
p2q

´

1 ´ Di
Do

¯

`Do DiDo

Do?
p2q

´

1 ´ Di
Do

¯

`Do tanpπ{8q Di
Do

˛

‚

p:64pθq “
ˆ

Di`Do
2
hi

̇

p:65pθq “
¨

˝

Do?
2

´

1 ´ Di`Do
2Do

¯

`DoDi`Do
2Do

Do?
p2q

´

1 ´ Di`Do
2Do

¯

`Do tanpπ{8q pDi`Doq
2Do

˛

‚

p:74pθq “
ˆ

Do
hi

̇

p:75pθq “
ˆ

Do
Do tanpπ{8q

̇
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Figure C.1.: The control points (blue dots) of the quadrupole magnet model for θ “ p0, 0, 0, 0q. The control
point mesh is represented with gray lines and the indices of the control points p:i1i2 aremarked
as pi1, i2q.
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