Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for:

Controlling the Dispersion of Ceria Using Nanoconfinement: Application to CeO₂/SBA-15 Catalysts for NH₃-SCR

Jun Shen and Christian Hess*

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany. Email: <u>jun.shen@tu-darmstadt.de</u>; <u>christian.hess@tu-darmstadt.de</u>

License: CC BY-NC 3.0 Unported - Creative Commons, Attribution, NonCommercial https://creativecommons.org/licenses/by-nc/3.0/

Figure S1 Schematic diagrams of pore shapes of the three tested samples.

(a)

(i) Water-acid azeotrope formation:

 $\operatorname{Ce(NO_3)_3} \cdot 6\operatorname{H_2O} \to \operatorname{Ce(OH)_b(NO_3)_{3-b}(H_2O)_{6-b-c}} + b \operatorname{HNO_3} + c \operatorname{H_2O}$

(ii) NO_3^{-} thermal decomposition:

 $4 \text{ Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O} \rightarrow 4 \text{ Ce}(\text{OH})_3 + 12 \text{ NO}_x + (15\text{-}6x) \text{ O}_2 + 18 \text{ H}_2\text{O}$

(iii) Cerium hydroxide condensation:

$$Ce(OH)_4 \rightarrow CeO_2 + 2H_2O$$

(b)

(i) Dehydration:

$$Ce(NO_3)_3 \cdot 6H_2O \rightarrow Ce(NO_3)_3 + 6H_2O$$

(ii) Decomposition to CeO₂:

$$\begin{aligned} \mathsf{Ce}(\mathsf{NO}_3)_3 &\to \mathsf{Ce}(\mathsf{NO}_3)_2 + \mathsf{NO}_2 + \frac{1}{2} \mathsf{O}_2 \\ \\ \mathsf{Ce}(\mathsf{NO}_3)_2 &\to \mathsf{Ce}\mathsf{NO}_3 + \mathsf{NO}_2 + \frac{1}{2} \mathsf{O}_2 \\ \\ \\ \mathsf{Ce}\mathsf{NO}_3 &\to \mathsf{Ce}\mathsf{O}_2 + \mathsf{NO} \end{aligned}$$

Figure S2 According to Cochran et al.((a)),¹ the weight loss can be subdivided into three stages: (i) prior to decomposition, the salt melts and releases loosely bound water (<100 °C), or evaporates as aqueous acid azeotrope at a boiling point of about 120 °C; (ii) at higher temperature (>266 °C), residual nitrate thermally decomposes into NO_x gas and forms a solid metal hydroxide product; (iii) the resulting cerium hydroxide condenses to form ceria. Kang et al. have proposed a more detailed mechanism for the decomposition of Ce(NO₃)₃ ((b)) according to which Ce(NO₃)₃ transforms first to Ce(NO₃)₂ at about 245 °C, then to Ce(NO₃) at about 270 °C, and finally to CeO₂ at about 295 °C.²

Figure S3 DTG profiles of pure cerium nitrate, asSBA-15, and mixtures of SBA-15 and cerium nitrate during heating to 500 °C in air or inert N₂ (heating rate: 1.5 °C/min).

Figure S4 *In situ* detection of exhaust during calcination of samples (a) asSBA15-air, (b) asSBA15-N₂.

Figure S5 *In situ* Raman spectra (514.5 nm) during the calcination of (a) tfSBA-L-CeO₂-air, (b) asSBA-L-CeO₂-air, and (c) asSBA-L-CeO₂-N₂, following the protocol given in Fig. 1a. Spectra are offset for clarity. The feature at about 250 cm⁻¹ has been shown to originate from the longitudinal stretching mode of surface oxygen against cerium ions (Ce-O) as well as a contribution of the 2TA phonon,^{3,4} whereas the additional feature at about 279 cm⁻¹ is tentatively assigned to a nitro species formed during the transformation from cerium nitrate to crystalline ceria.⁵

Figure S6 DR UV-vis spectra of the samples tfSBA-L-CeO₂-air, asSBA-L-CeO₂-air, and asSBA-L-CeO₂-N₂, recorded at room temperature after cooling from high temperature calcination in synthetic air.

Figure S7 Calculation of band gap energies according to the *in situ* DR UV-vis spectra by applying Tauc's method. (a) tfSBA-L-CeO₂-air, (b) asSBA-L-CeO₂-air, and (c) asSBA-L-CeO₂- N_2 . In (c) the black curve represents the sample calcined in N₂, followed by calcination in air at 500 °C for 2 hours.

Wavenumber, cm ⁻¹	tfSBA-CeO ₂ -air	asSBA-CeO ₂ -air	asSBA-CeO ₂ -N ₂	Ref.
1225-1237		Hydrogen carbonates	Hydrogen carbonates	6
1253	Chelate NO2 ⁻			7
1303	Monodentate nitrates			8
1345-1357	Free nitrate ions		Free nitrate ions	8
1458			C-H deformation	9
1539-1543	Bidentate nitrates	Bidentate nitrates		10
1613	Bridging nitrates			10
1625-1636	Adsorbed NO ₂	Adsorbed NO ₂	Adsorbed NO ₂	8
1663	Adsorbed N ₂ O ₄			8
1729-1732		C=O	C=O	7
1764-1767	Adsorbed NO	Adsorbed NO	Adsorbed NO	7
1849-1981	Silica framework	Silica framework	Silica framework	8
2290/2341		Adsorbed CO ₂		7
2356-2360	CO ₂	CO ₂	CO ₂	11
2484-2491	C-H	C-H	C-H	12
2809	C-H ₂			13
2867/2933/2976		C-H	C-H	11
2941	CH ₂			9
3176	-OH			14
3266	-OH			13
3200-3500	-OH			13
3700			Ce-OH	15
3740	Si-OH	Si-OH		13

Table S1 Assignment of the IR features observed by in situ DRIFT spectroscopy.

Figure S8 (a) NO conversion and (b) N_2 selectivity of the indicated samples in NH₃-SCR of NO, using a feed gas consisting of 500 ppm NH₃, 500 ppm NO, and 5% O₂ (balanced with N_2) and a total gas flow of 50 ml·min⁻¹ (GHSV=30000 h⁻¹).

Figure S9 Stability of the indicated samples in NH₃-SCR of NO at 300 °C, using a feed gas consisting of 500 ppm NH₃, 500 ppm NO, and 5% O₂ (balanced with N₂) and a total gas flow of 50 ml·min⁻¹ (GHSV=30000 h⁻¹).

Catalyst	Preparation method	Reaction conditions	NO _x conversion (temperature range)	GHSV or GWSV	Source
CeO ₂	precipitation method	NO = 600 ppm, NH ₃ = 600, ppm, O ₂ = 5%	45-60% (225-350 ℃)	108000 h ⁻¹	16
CeO ₂	hydrothermal method	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 3\%$	50% (300 °C)	120000 ml g ⁻¹ h ⁻¹	17
CeO ₂	thermal decomposition	NO = 736 mg/m ³ , NH ₃ = 417 mg/m ³ , O ₂ = 5%	60-65% (300-400 °C)	108000 h ⁻¹	18
CeO ₂	impregnation	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	15-20 % (350-450 °C)	120000 ml g ⁻¹ h ⁻¹	19
CeO ₂	thermal decomposition	$NH_3 = NO = 600 \text{ ppm},$ $O_2 = 5\%$	40-50% (250-325 °C)	108000 h ⁻¹	20
CeO ₂	one-pot	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 3\%$	50-60% (300-400 °C)	45000 h ⁻¹	21
CeO ₂	spread self- combustion	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	15 % (300-500 °C)	200000 ml g ⁻¹ h ⁻¹	22
CeO ₂ /SiO ₂	wet impregnation	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	70-80% (275-325 °C)	48000 ml g ⁻¹ h ⁻¹	23
CeO ₂ /SBA-15	wet impregnation	NH ₃ = 1100 ppm, NO = 1000 ppm, O ₂ = 5%	60-70% (200-300 °C)	10000 h ⁻¹	24
tfSBA-CeO ₂ -air	solid-state impregnation	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	30% (300-400 °C)	30000 h ⁻¹ (150000 ml g ⁻¹ h ⁻¹)	This work
asSBA-CeO ₂ -air	solid-state impregnation	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	50-60% (250-400 °C)	30000 h ⁻¹ (150000 ml g ⁻¹ h ⁻¹)	This work
asSBA-CeO ₂ -N ₂	solid-state impregnation	$NH_3 = NO = 500 \text{ ppm},$ $O_2 = 5\%$	55-65% (200-450 °C)	30000 h ⁻¹ (150000 ml g ⁻¹ h ⁻¹)	This work

Table S2 Catalytic performance of cerium-based deNO_x catalysts synthesized by different methods.

References

- 1 E. A. Cochran, K. N. Woods, D. W. Johnson, C. J. Page and S. W. Boettcher, J. Mater. Chem. A, 2019, 7, 24124-24149.
- 2 W. Kang, D. O. Ozgur and A. Varma, ACS Appl. Nano Mater., 2018, 1, 675-685.
- 3 C. Schilling, A. Hofmann, C. Hess and M. V. Ganduglia-Pirovano, J. Phys. Chem. C, 2017, 121, 20834-20849.
- 4 A. Filtschew, D. Stranz and C. Hess, Phys. Chem. Chem. Phys., 2013, 15, 9066-9069.
- 5 C. Hess and J. H. Lunsford, J. Phys. Chem. B, 2002, 106, 6358-6360.
- S. M. Lee, Y. H. Lee, D. H. Moon, J. Y. Ahn, D. D. Nguyen, S. W. Chang and S. S. Kim, *Ind. Eng. Chem. Res.*, 2019, 58, 8656-8662.
- 7 L. Y. Wang, Z. Q. Wang, X. X. Cheng, M. Z. Zhang, Y. K. Qin and C. Y. Ma, RSC Adv., 2017, 7, 7695-7710.
- 8 R. Wu, N. Q. Zhang, L. C. Li, H. He, L. Y. Song and W. G. Qiu, *Catalysts*, 2018, 8.
- D. Parimi, V. Sundararajan, O. Sadak, S. Gunasekaran, S. S. Mohideen and A. Sundaramurthy, ACS Omega, 2019, 4, 104-113.
- 10 C. X. Wang, D. Z. Ren, J. C. Du, Q. G. Qin, A. M. Zhang, L. Chen, H. Cui, J. L. Chen and Y. K. Zhao, Catalysts, 2020, 10.
- 11 H. Song, B. Mirkelamoglu and U. S. Ozkan, Appl. Catal. A, 2010, 382, 58-64.
- N. Bourenane, Y. Hamlaoui, C. Remazeilles and F. Pedraza, *Materials and Corrosion-Werkstoffe Und Korrosion*, 2019, 70, 110-119.
- 13 C. Vittoni, G. Gatti, G. Paul, E. Mangano, S. Brandani, C. Bisio and L. Marchese, *ChemistryOpen*, 2019, **8**, 719-727.
- 14 B. Xu, Y. W. Liu, Y. Li, L. L. Wang, N. N. Li, M. Fu, P. Wang and Q. Wang, New. J. Chem., 2018, 42, 11796-11803.
- 15 Z. L. Wu, Y. Q. Cheng, F. Tao, L. Daemen, G. S. Foo, L. Nguyen, X. Y. Zhang, A. Beste and A. J. Ramirez-Cuesta, J. Am. Chem. Soc., 2017, 139, 9721-9727.
- 16 F. D. Liu, W. P. Shan, X. Y. Shi, C. B. Zhang and H. He, Chin. J. Catal., 2011, **32**, 1113-1128.
- X. L. Hu, J. X. Chen, W. Y. Qu, R. Liu, D. R. Xu, Z. Ma and X. F. Tang, *Environ. Sci. Technol.*, 2021, 55, 5435-5441.
 2018, 353, 930-939.
- 18 H. Lv, X. Hua, W. Xie, Q. Hu, J. Wu and R. Guo, J. Rare Earths, 2018, 36, 708-714.
- H. L. Zhang, L. Ding, H. M. Long, J. X. Li, W. Tan, J. W. Ji, J. F. Sun, C. J. Tang and L. Dong, *J. Rare Earths*, 2020, 38, 883-890.
- X. Sun, R.-T. Guo, S.-W. Liu, J. Liu, W.-G. Pan, X. Shi, H. Qin, Z.-Y. Wang, Z.-Z. Qiu and X.-Y. Liu, *Appl. Surf. Sci.*, 2018, 462,

187-193.

- 21 Y. Q. Zeng, Y. N. Wang, S. L. Zhang, Q. Zhong, W. L. Rong and X. H. Li, J. Colloid Interface Sci., 2018, 524, 8-15.
- 22 Z.-B. Xiong, Z.-Z. Li, C.-X. Li, W. Wang, W. Lu, Y.-P. Du and S.-I. Tian, Appl. Surf. Sci., 2021, 536, 147719.
- W. Tan, A. N. Liu, S. H. Xie, Y. Yan, T. E. Shaw, Y. Pu, K. Guo, L. L. Li, S. H. Yu, F. Gao, F. D. Liu and L. Dong, *Environ. Sci. Technol.*, 2021, 55, 4017-4026.
- 24 X. Q. Ran, M. H. Li, K. Wang, X. Y. Qian, J. W. Fan, Y. Sun, W. Luo, W. Teng, W. X. Zhang and J. P. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 19242-19251.