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Abstract

Complex technical systems such as aircraft, power plants or manufacturing systems play a
vital role in our modern world as large portions of society rely on their correct functioning
every day. The achievement of high system availabilities is therefore an important goal
for system operators. Still, an accurate estimation of a system’s future capability is not
trivial as modern systems are often composed of many individual parts and subsystems
and are often operated in varying modes or changing environments. Traditional statistics-
based methods from Reliability Engineering reach their limits here as they struggle to
capture the true current system state. An alternative approach is given with the discipline
of Prognostics and Health Management (PHM) that uses onboard sensors to estimate
the current and future health status based on real measurements. A still open research
question in this context is how to aggregate PHM results of a multi-component system and
integrate them into the exiting reliability frameworks in order to obtain a practical and
useful decision support that provides accurate system state predictions.

With this thesis, the described problem is addressed and a Dynamic Hybrid Reliability Model
(DHRM) is developed. Therefore, the DHRM combines traditional methods from Reliability
Engineering with the novel PHM approach. Based on the V-Model methodology, it is
described how the DHRM is constructed, implemented, verified and evaluated. The overall
concept is described on three different aggregation levels, namely the part-, component-
and system-level. On the part-level the integration of PHM results in a reliability context is
highlighted, while on the component-level a fault-tree model is used for further aggregation.
For the system-level, a state-space model is then used to represent the individual states
of the considered system. The conception of the DHRM method concludes by showing
how uncertainties are considered throughout the model and by the implementation of a
software prototype for the calculation of the DHRM.

The DHRM is then applied to the Control Surface Actuation System (CSAS) of a hybrid
drone to examine its applicability. The degradation of the CSAS is simulated with gen-
erated failure data based on a stochastic differential equation framework and predicted
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with a PHM algorithm based on a Gaussian Process regression model. To assess the capa-
bilities of the novel method, the CSAS is calculated by the DHRM for different parameter
combinations and compared to a reference case without any dynamic PHM input data.
During an evaluation phase, the results of the DHRM are then quantified based on a set
of predefined metrics and compared to the reference case. It is shown that the DHRM
outperforms the reference method in accuracy and precision.

The thesis concludes with a discussion of the results. The main advantages of the novel
DHRM are seen in its capability of not only accurately predicting upcoming state transitions,
but also providing a precise estimation of the actual new state the system will enter. This
is seen as a major advantage of this method as it allows operators to plan ahead with a
precise knowledge about the future system capabilities. However, the approach also has
its merits and limits as the quality of the DHRM results largely depend on the accuracy
and availability of the required underlying PHM data.

viii



Table of Contents

Danksagung v

Nomenclature xiii

1. Introduction 1
1.1. Performability of complex systems . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1. Performance-based contracting . . . . . . . . . . . . . . . . . . . . 4
1.1.2. Predictive maintenance . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Aim of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. State of the art of availability assessments for complex systems 11
2.1. Degradation basics (Physics of Failure) . . . . . . . . . . . . . . . . . . . . 11
2.2. Reliability Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Basic reliability concepts (item description) . . . . . . . . . . . . . 14
2.2.2. Failure rate estimation . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Reliability models (system description) . . . . . . . . . . . . . . . 18
2.2.4. Uncertainty propagation . . . . . . . . . . . . . . . . . . . . . . . 22

2.3. Prognostics and Health Management (PHM) . . . . . . . . . . . . . . . . 24
2.3.1. Scope and benefits . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2. General methodology (OSA-CBM process) . . . . . . . . . . . . . . 26
2.3.3. Prognosis algorithms and modelling approaches . . . . . . . . . . 27
2.3.4. Diagnostics and prognostics fundamentals (notation) . . . . . . . . 28
2.3.5. Algorithm performance metrics . . . . . . . . . . . . . . . . . . . 29
2.3.6. PHM for systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4. Conclusions and identified research gap . . . . . . . . . . . . . . . . . . . 33

3. Conception of the proposed aggregation method 37
3.1. Definition of requirements and constraints . . . . . . . . . . . . . . . . . 38

ix



3.2. Development of the decision support method . . . . . . . . . . . . . . . . 39
3.2.1. Used taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2. Aggregation concept . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3. Part-level description . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4. Component-level description . . . . . . . . . . . . . . . . . . . . . 48
3.2.5. System-level description . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.6. Resulting Dynamic Hybrid Reliability Model (DHRM) . . . . . . . 55

3.3. Uncertainty propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1. Uncertainty propagation within the reliability engineering domain 57
3.3.2. Uncertainties associated with prognostics . . . . . . . . . . . . . . 58
3.3.3. Uncertainty handling concept for the DHRM . . . . . . . . . . . . 60

3.4. Method implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1. Custom fault tree library in Simulink . . . . . . . . . . . . . . . . 68
3.4.2. DHRM aggregation tool . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5. Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1. Verification of the fault tree implementation . . . . . . . . . . . . . 74
3.5.2. Verification of the aggregation function . . . . . . . . . . . . . . . 75
3.5.3. Verification of the uncertainty propagation . . . . . . . . . . . . . 80

3.6. Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4. Application of the method to an UAV actuation system 87
4.1. Use-case description and relevance . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1. Description of the Quad-Cruiser, a hybrid drone . . . . . . . . . . . 88
4.1.2. System under study – the Control Surface Actuation System (CSAS) 89

4.2. Application process for the Dynamic Hybrid Reliability Model . . . . . . . 91
4.2.1. Identification of relevant parts (pre-analysis) . . . . . . . . . . . . 92
4.2.2. Selection of failure models (part-analysis) . . . . . . . . . . . . . . 94
4.2.3. Identification of part dependencies (component-analysis) . . . . . 96
4.2.4. System failure modes and related states (system-analysis) . . . . . 98
4.2.5. DHRM and reference model definition . . . . . . . . . . . . . . . . 99

4.3. Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1. Selection of failure rates . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2. Simulated degradation data based on SDE . . . . . . . . . . . . . . 106
4.3.3. Weibull reference model (base-line approach) . . . . . . . . . . . . 112
4.3.4. Development of a GPR-based prognosis algorithm . . . . . . . . . 114

4.4. System state prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.1. Base-line reference calculation . . . . . . . . . . . . . . . . . . . . 123
4.4.2. DHRM calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

x



4.5. Conclusions from use-case . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5. Evaluation and discussion of the developed method 129
5.1. Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1. Prediction performance metrics . . . . . . . . . . . . . . . . . . . 130
5.1.2. Aggregated prediction performance metrics . . . . . . . . . . . . . 132
5.1.3. Scenario evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2. Calculation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3. Economic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4. Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6. Summary and outlook 151
6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2. Conclusions and key findings . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References 155

A. Appendix Chapter 2 (state of the art) 169
A.1. PHM algorithm performance metrics . . . . . . . . . . . . . . . . . . . . . 169

B. Appendix Chapter 3 (conception) 171
B.1. Fault tree calculation formulas . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2. Verification of the DHRM implementation . . . . . . . . . . . . . . . . . . 172

B.2.1. Verification of the fault tree implementation in Matlab Simulink . . 172
B.2.2. Verification of dynamic input (RUL-CDF) . . . . . . . . . . . . . . 175
B.2.3. Model parameter uncertainty (UDREL) . . . . . . . . . . . . . . . 178

C. Appendix Chapter 4 (application) 181
C.1. Used EMA model for the use-case . . . . . . . . . . . . . . . . . . . . . . 181
C.2. KNN validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

D. Appendix Chapter 5 (evaluation) 183
D.1. Definition of the used confusion matrix . . . . . . . . . . . . . . . . . . . 183

xi





Nomenclature

Symbols

Latin letters:

A - Availability
B - Accomplishment level (in comparison to Y )
B - Binary combination matrix
B - Negated binary combination matrix
C - Costs
CI - Confidence interval
D - Damage fraction (Wöhler curve)
Dt - Stochastic process (general)
dXt - Process variable / degradation rate (SDE damage model)
E - Expectation value
E - Mean expectation value
Ea J Activation energy (Erying Model)
f - Vector of latent function values (Gaussian Process)
f∗ - Gaussian Process posterior prediction (vector of latent function

values)
F - Unreliability
Fl - Failure probability of part l
Fm - Top node failure probability (Fault Tree Model)
∆G J (Gibbs) free energy (Free Energy Model)
∆G∗ J (Gibbs) activation energy (Free Energy Model)

xiii



h - Step-size (numerical simulation)
i - Index variable (generic)
I - Investment
j - Index variable (generic)
I - Identity matrix
k - Index variable for time instance (discrete)
l - Index variable (current unit/part)
L - Number of units
KB

J
K Boltzmann constant

K - Covariance matrix (Gaussian Process)
M - System state-space probability matrix
N,n - Number of elements (generic)
R - Reliability
Rl - Reliability of part l
r - Remaining useful lifetime
rl - Remaining useful lifetime of unit l
r∗l - True remaining useful lifetime of unit l
Si - System state i
S - State vector / matrix
T ◦C Temperature
t - Time (continuous)
t̂ - Accumulated time
tEoL - Time instance for the true end of life
tEoP - Time instance for the end of life as prognosed
tP - Time instance when the prognosis was started
w - Weighting factor
x % Degradation level
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1. Introduction

Technical systems become continually more sophisticated, as they are intended to solve
complex problems in our modern sociotechnical world. These systems often consist of
many different components and subsystems, which interact and interfere with each other
to accomplish a common goal. Used in varying usage-scenarios and environments, they
are often referred to as a system of systems or complex systems and can be found among
different high-tech industries such as the energy, defence or aerospace sector. For opera-
tors of these costly assets it is important to achieve high availabilities and meet desired
performance targets at all times. This is not only due to economic considerations, but also
includes safety and social factors, as these systems are often part of critical infrastructure
or required to maintain our daily safeness and wellbeing. [Jam08]

To highlight the relevance and associated effects of unavailability, the following examples
are given: The accumulated costs of unexpected downtimes for the Fortune Global 500
companies are estimated to be 1.5 billion USD in 2021. The costs of a one-hour loss of
production, e.g. due to a breakdown of machinery, reaches from 39 thousand USD for
the consumer goods industry up to 2 million USD for the automotive industry. [Sen22]
In the aviation branch the breakdown and delay costs have been studied and evaluated
in [And15]. The average costs of an at-gate breakdown are reported here to be 540 EUR
per each 15 min of delay for a Boeing 737 passenger aircraft. Further, reports from the
German ministry of defence (BMVg) state that systems at the beginning and near the end
of their intended lifetime are especially affected from low operational availabilities. For
example, it is reported that the recently introduced new transport aircraft A400M as well
as the helicopter NH 90 reached an unsatisfactory availability of below 40 % during the
year 2019. Old systems such as the Tornado or P-3C Orion, both of which are near the
end of their lifetime, were reported to have availabilities below 50% [Bun19]. As a result
of those numbers, the improvement on the operational availability, planning and logistics
have been defined as the main strategic goals for the BMVg [Bun21].

From an operator’s point of view, it is therefore crucial to accurately assess the current and
future availabilities and performance levels of such systems as this helps to quantify whether
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the system’s future capabilities will be sufficient to meet defined performance targets or
not. With sufficient time to prepare, the operator thus can incorporate this information into
his decision-making process and decide on mission (re-)planning, maintenance actions or
even strategic decisions such as leasing or outsourcing of performance and thus improve the
overall availability while constraining costs [Tia+12; TAC99]. However, this task becomes
more difficult as systems increase in complexity with multiple interacting components and
are being used in progressively more versatile scenarios [Zio09].

The de facto standard to address the stated issues is found in the discipline of Reliability
Engineering. The tools and concepts provided herein are mainly statistical based approa-
ches, where reliabilities and safety margins are estimated with the help of known failure
distributions from historical data. Standards such as the ARP4763 [SAE96] or the Military
Handbook of failure rates [Dep91] have evolved as first choice tools to estimate and predict
the reliability of components and systems. Although this concept has worked well during
previous decades, it becomes more questionable as the complexity of systems rises and
their individual usage increases in variance, which makes it difficult to find common failure
patterns or correlations between influencing factors [Zio09]. This is further stressed, when
systems are used over a long period of time and the initial usage scope changes, the system
is modified, or its performance expectations are increased over time. The initial stated
estimates will then have to be reassessed and adapted [SL06]. In addition to this, most
quantitative methods from Reliability Engineering were originally developed to capture
binary events (functioning or faulty). However, modern complex systems are often multi-
state systems that can settle on different performance levels (e.g. 100%, 90%, 50% of
nominal capacity) depending on the current operating conditions [Zio09].

To challenge the above stated difficulties, industries and researchers are keen to develop
novel concepts to improve the health assessment and decision-making process for complex
technical systems. A very promising development is the emerging of the Prognostics and
Health Management (PHM) discipline during the previous two decades. By monitoring
and evaluating on-board system data, PHM intends to estimate the current (diagnosis)
as well as the future (prognosis) health state of a considered system [Hes02]. This ap-
proach is considered as a game-changer for the industry as maintenance actions and other
operational decisions can be made based on the individual state of a given system and
the estimated remaining useful lifetime (RUL) of its components. The expected benefits
from this approach include increased system availability, reduced risk of a loss, reduction
of unplanned maintenance and downtimes, improved logistics as well as an increased
mission success rate [Voh+08]. Further, it is considered as a key-enabler for new business
models such as performance-based contracting (PBC) and maintenance strategies such as
predictive maintenance (PdM), where precise information about the current health state is
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required. [Sun+12] Still, PHM is an emerging discipline, with an active field of research.
During recent years, different approaches and concepts have been developed including
the utilization of data-driven and physical-based models, the consideration of economic
aspects as well as the definition of evaluation metrics and monitoring algorithms. However,
most of this research is still focused on the assessment of subcomponents and single items
such as motors, gears or pumps. The assessment of the full system state, considering the
dependencies of interconnected components forming a larger system, as it is relevant for
larger complex systems, is still an emerging development [Rod17].

In order to structure the above-described challenges and to derive the aim of this thesis,
the terms of performability, complex systems, performance-based contracting and predictive
maintenance are introduced and defined in the following section.

1.1. Performability of complex systems

Many modern technical systems are considered as being complex. These systems are often
found in high technology industries such as the aerospace, defense and energy sectors.
Although there exists no distinct definition in literature of what a complex system is, they
can still be characterized and described by a set of attributes, which are often held by
these systems [GSB08]. These attributes include:

• Complex system structure with inter-dependencies and interconnections

• Multiple system states (operating states, performance levels)

• Different domains (mechanical-, electrical-, hydraulic-subsystems, software, etc.)

• Embedded uncertainties (operational, failure and degradation)

• High level of automation with decision support

• Human interaction and organizational aspects

For operators, it is relevant to continuously monitor and track the performance and effec-
tiveness of such systems in order to meet desired system outputs. Therefore, historically
different metrics have been introduced, which are suited to describe a given system in
its performance and dependability. In this context, performance describes the general
ability to accomplish intended services with given hardware assuming no changes in its
structure. Dependability instead, is the ability of a system to provide its services in a
justifiable way and considers structural changes [BDN11]. As systems start to degrade or
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are allowed to have faults, which is the case with fault-tolerant designs, a clear differen-
tiation between performance and dependability becomes difficult. To overcome this and
describe the effectiveness of a system under varying conditions and performance levels
the term performability was introduced by Meyer [Mey80]. Performability thus connects
performance metrics such as capacity or accuracy with dependability metrics such as
availability and reliability and thus is suited to describe a system’s performance under
consideration of changes and uncertainties. The performability of a system is thus defined
as the probability P that a system delivers a performance Y , which is specified through a
set of measurable accomplishment levels B [Mey92]:

Perf(B) = P (Y ∈ B) (1.1)

An overview of performability and its associated properties is given in Figure 1.1. The
used taxonomy is based on [BDN11] and will be used throughout this thesis.

From these definitions it can be concluded that somebody who wants to optimize a complex
system e.g. in an economic and ecological way, needs to improve on the properties of its
performability. This can be achieved by improving the performance itself (metrics such as
capacity and throughput) as well as by improving the associated dependability metrics
(such as availability and reliability). Accordingly, the design-thinking of performability is
considered as one of the foremost needs of the 21st century for modern technical systems
[Mis08] as the ability to quantify the performance and effectiveness of systems builds the
foundation for new business models such as PBC.

1.1.1. Performance-based contracting

For many industries, after-sales product support has become a crucial role, as maintenance
and service actions can be cumbersome and expensive. This is especially the case for
products with long life cycles such as aircraft, power plants or complex systems in general,
where the consequences of any downtimes are severe. Traditionally, original equipment
manufacturers (OEM) have addressed this through the use of time and material contracts
(T&MC), where the customer is supposed to pay for the resources required to service
the product. With increasing system complexity and competition, operators are tending
towards a more service-based approach, where performance is procured according to
product usage time or defined system outputs instead of the system itself. This is considered
as performance-based contracting or sometimes also performance-based logistics or power
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Performability: 
Ability to accomplish a service in the presence of faults over a specified period

Dependability: Ability of a system to 
provide its intended services in a 
justifiable way

Performance: Ability of a system to 
accomplish its intended services with-
in given non-functional constrains

Timeliness: Ability of the system to 
provide a service according to given 
time requirements

Precision: Ability of the system to 
provide the same results under 
unchanged conditions

Accuracy: Ability of the system to 
provide exact results

Capacity: Ability of the system to 
hold a certain amount of data

Throughput: Ability to handle a 
certain amount of operations

Availability: Readiness for correct 
service

Reliability: Continuity of correct 
service

Safety: Absence of catastrophic 
consequences

Integrity: Absence of improper 
system state alterations

Maintainability: Ability to undergo 
modifications and repairs

Figure 1.1.: Taxonomy of performability properties, based on
[BDN11]

by the hour1 [Gua+12]. As given in [Bun18], PBC presents with new opportunities and
risks at the same time for OEMs. On the one hand manufacturers gain more control of
(service) processes and freedom regarding technical realization, on the other hand there is
much more responsibility for providing the performance agreed upon in the contract. Thus,
a central aspect of PBC is a high availability of the technical product. In this regard, the
term availability describes the readiness of a system for a correct service, which is generally
defined as A = uptime/(downtime + uptime). It is tightly coupled to the reliability of
the used components and its overall maintainability, as time-consuming maintenance
actions or frequent maintenance intervals directly affect the availability of a system. Thus,
predictive maintenance, a novel maintenance strategy, as well as PHM, a discipline for an
accurate prediction of failure times, are considered as technological cornerstones for the

1Commercial business model by Rolls-Royce
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facilitation of PBC [JS11].

1.1.2. Predictive maintenance

Maintenance is an important factor in the life-cycle of every system as it is intended to
retain its performability. As set out in [Swa01], maintenance can be broadly split into
a corrective (CM) and a preventive maintenance (PM) strategy. A corrective strategy is
the simplest and cheapest form of maintenance. Here, components are replaced after
they have failed, which can be done immediately or deferred. This strategy is applicable
for those systems, where failures and downtimes are tolerable as breakdowns can occur
unexpectedly. For safety critical systems and those where downtimes need to be kept to a
minimum, e.g. in production lines, a preventive strategy is chosen instead. PM includes
any mechanisms utilized to avoid unexpected downtimes and can be further divided into
predetermined and condition-based maintenance (CbM) schemes. Scheduled maintenance
is considered the state of the art in PM. Herein maintenance actions are based on a fixed
time schedule or number of operating cycles. This can include inspections, repairs and
general overhauls. In contrast to scheduled maintenance, CbM schedules actions according
to the true condition of components and is therefore considered improving on maintenance
costs and efficiency. A special case of CbM is predictive maintenance (PdM), where not only
the current condition is assessed, but also future states are forecasted in order to derive
an optimal replacement time. Being highly automated, CbM and PdM can be undertaken
on scheduled, continuous or on-request basis. In Figure 1.2, an overview of available
maintenance strategies, together with their timing concepts are given based on [NYP10].

Although PM is at present the standard maintenance strategy to achieve high reliability and
safety levels, it has two known drawbacks: 1) A (larger) portion of lifetime of a component
usually remains unutilized as most components are replaced long before they fail. 2) A
scheduled maintenance still cannot achieve a 100% failure free operation. Thus, there
always remains a minor percentage of failures occurring, which will result in unplanned
and expensive downtimes. Overall, the PM approach is a trade-off between an acceptable
risk level, described by a tolerable number of failures versus the failure prevention costs
resulting from any maintenance actions. The economic side behind this is illustrated in
Figure 1.3. Systems governed by a PM strategy will have overall less failure times as
components are replaced before they fail. This leads to less repair activities (and costs) but
comes at high prevention costs as frequent maintenance actions are required. Systems with
a more corrective strategy instead will result in more failure events, increasing the repair
costs. However, the costs for prevention are much lower. As CBM is used to identify the
best time for replacement before a breakdown occurs, it defines the optimum total costs,
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Maintenance Strategies

Corrective (CM) Preventive (PM)

Predetermined

Scheduled, 

continuous or on 

request

Immediate ScheduledDeferred

Condition-based

Predictive

Figure 1.2.: Comparison of different maintenance strategies, ba-
sed on [NYP10]

as repair and prevention costs are kept to a minimum. However, it has to be mentioned
that CBM usually requires an initial implementation effort, which is not considered in
this figure. Further, a too aggressive PM or too weak CM strategy can also lower the
overall availability as systems will not be available due to preventive respectively corrective
maintenance actions. [NP09]

1.2. Aim of this thesis

With the above stated insights and challenges, the need for novel decision support methods
is derived that overcome the limitation of traditional static assessment methods from
Reliability Engineering and help to accurately estimate the current and future system
capabilities. The need for such a method is justified by the increased complexity of modern
systems together with the demand for higher performability at reasonable costs.

Hence, the aim of this thesis is to develop a decision support method that uses PHM to
improve the performability of a complex system by estimating the availability of individual
future performance levels. Based on prognostic results from the system’s underlying
components, the output shall be dynamically (re-)calculated to capture the individual
degradation process of the monitored system. A main research question in this thesis is
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Figure 1.3.: Maintenance costs based on the chosen strategy,
based on [Tch+14]

how to aggregate different PHM results in a multi-component system up to system-level to
give a precise and meaningful assertion. The overall method is considered as a proof of
concept and therefore shall be generic and system independent.

From the foreseen method it is expected that a system’s overall availability will improve
as operators are supported in their mission and maintenance planning based on actual
feedback from the considered system(s). Further, such a method will also provide benefits
to contractors that have agreed to deliver predefined performance levels in a performance-
based contracting scheme. Finally, it is hoped that this work provides further application
areas to foster the practical use of PHM.

1.3. Structure of this thesis

This thesis is structured into six consecutive chapters: In the first chapter the introduction
and motivation to the topic is given. Chapter 2 is then dedicated to the fundamentals and
state of the art relevant for this thesis. It covers the general concepts, the terminology as
well as the required basics of the reliability engineering and PHM discipline and concludes
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with the indicated research gap, based on an extensive literature research. Afterwards, the
development of the proposed new method is described in Chapter 3. Based on the V-Model
the method is designed, implemented as a prototype and verified in a first step. In Chapter
4, the method is then applied to a practical use-case from the aerospace domain. Therefore,
all required input parameters and values are generated and an exemplary data-driven
prognosis algorithm is developed. Within Chapter 5, the created method is then evaluated
and tested against a predefined reference case. To quantify and interpret the results,
appropriate metrics are introduced. Chapter 6 finally concludes and summarizes all results
before additional recommendations for future research in this topic are given.
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2. State of the art of availability
assessments for complex systems

In the following chapter, the state of the art relevant for this thesis is outlined. At first, the
general physical mechanisms of degradation (physics of failure) are described in Section
2.1, before the conventional reliability engineering, the de facto standard discipline related
to problems such as availability and reliability forecasting, is presented in Section 2.2.
Afterwards, PHM as an evolving alternative is presented in Section 2.3 with a special
emphasis given to the aggregation on system level. Finally, the insights on this topic and
the identified research gap are summarized and outlined in Section 2.4.

2.1. Degradation basics (Physics of Failure)

Nothing lasts forever. This proverb also applies to technical systems. All systems from small
micro-electromechanical systems to large mechanical structures suffer from wearout and
degradation. If not replaced or repaired in time, the degradation will continue until a
representative system parameter will exceed a predefined threshold and the system is
considered to be failed. The period from the original intact state of a system until reaching
its specification limits, also known as system/device failure, is defined as time-to-failure
(TF). It is important to highlight that the TF for any given device not only depends on
the chosen material, but also on the affecting stressors. Although often associated with
mechanical stress, these stressors can have many origins. For electronics for example,
current density, electric-field or voltage stress are often the dominant root causes for
failures. For mechanical systems instead, cyclic, frictional or thermomechanical stress often
causes degradation. Nevertheless, in practical applications these stressors usually coexist.
Thus, the TF for any device is highly individual as it depends on the usage, experiencing
loads and the surrounding environment [McP10]. This makes life-time predictions and
reliability estimations difficult as the degradation process is always subject to variations.
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The physical description of materials degradation is the subject of Reliability Physics also
known as Physics of Failure (PoF). A fundamental way to argue the existence of material
degradation as a physical process can be found in the second law of Thermodynamics
and its definition of a system’s disorder based on Entropy. As it is argued in [BKL08]
and [Fei18] every system interacting with its environment (e.g. not ideally isolated)
will run a spontaneous and irreversible degradation process in order to get towards the
thermodynamic equilibrium. As the system ages, its disorder naturally increases. This
process only runs in one direction, as there is no system which repairs itself. Based on the
fundamental laws of thermodynamics, it can be explained why every system suffers from
degradation. The interesting question for an engineer at this point is to understand, how
this degradation evolves and how fast this process runs or in other words, when a given
system will fail. To understand and describe the kinetics of the degradation process the
Transition State Theory is used [McP10], in which any material or system is considered
to exist in metastable states. Metastable in this context means, that these materials are
only apparently stable and will change their state with time to reach a more stable state
at a lower free energy level. To leave the current state, some sort of activation energy
∆G∗ is required to move the system to a lower, more stable, degraded stated. During the
degradation the free energy ∆G is released. This coherence is illustrated in Figure 2.1:

𝐺1

𝐺2

Δ𝐺∗

ΔG

Degraded state

Initial state

Reverse reaction

Forward reaction

F
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e
 e
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e
rg

y

Reaction Coordinates

Figure 2.1.: Illustration of the degradation process based on the
free energy model, based on [McP10]

Although ∆G being the main driver for degradation, the overall degradation speed is thus
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governed by the available activation energy ∆G∗. In analogy to chemical reaction rates,
this speed of the overall process is described by the net degradation rate ẋnet resulting
from the forward and backward reaction as given in [McP10, p. 98]

ẋnet = ẋ0 exp

[︃
−∆G∗

KBT

]︃
⏞ ⏟⏟ ⏞

forward

− ẋ0 exp

[︃
−∆G +∆G∗

KBT

]︃
⏞ ⏟⏟ ⏞

reverse

. (2.2)

Here T is the temperature and KB is the Boltzmann constant. In the general case where,
∆G≫ KBT the above formula simplifies to

ẋnet = ẋ0 exp

[︃
−∆G∗

KBT

]︃
. (2.3)

The above formulation can be further extended to the Erying model, a popular equation
used in chemical kinetics to describe the rate of a process based on a given temperature.
However, under the assumption of a constant activation entropy and enthalpy the Erying
model becomes similar to the empirical Arrhenius equation, which is given as:

ẋ = ẋ1 exp

[︃
− Ea

KBT

]︃
. (2.4)

This formula is one of the fundamental equations within physics of failures as it directly
correlates the given activation energy Ea to the degradation rate ẋ of a material. Further,
this model explains, why the speed of degradation increases if more energy, e.g. through
high temperatures, is available. The above formulation is often used in the physics of
failure discipline to model the degradation process and estimate the time to failure.
Several degradation phenomenons for electronics as well as mechanical parts, such as the
hot carrier injection (HCI), corrosion, the time-dependent dielectric breakdown (TDDB)
or the estimation of the creep rate, exists in literature.

With the Transient State Theory and the metastable system states, the degradation process
itself can be explained. Further, this theory provides an argument, why the speed of a
degradation process varies from system to system and is influenced by its usage, the
experienced loads as well as the surrounding environment, or in general, the acting
(activation) energy.

The here described physics of failure discipline is often used for lifetime estimations,
especially during system design phase, when no failure data is available as well as for
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electronic parts, where a direct measurement of the degradation process is usually not pos-
sible. However, this method requires a solid understanding of the underlying degradation
process and thus becomes impractical and expensive for large and complex systems.

2.2. Reliability Engineering

In the following subsection, Reliability Engineering as the de facto standard discipline for
reliability analyses is introduced. Emerged in the early fifties1, Reliability Engineering is
nowadays the standard across many industries to assess the reliability of technical systems.
Reliability Engineering is mainly based on the statistical processing of historical failure
data, which makes it very practical as failure data is easy to obtain and does not require
any additional sensors or a profound knowledge of the underlying degradation processes.
The mathematical models and tools combined in this discipline are further complemented
by standards and guidelines from the corresponding industries, which allow a common
framework to define a system’s reliability and give failure time predictions. In this context
and for the remainder of this work, reliability and failure are defined as follows:

• Reliability is the probability that the required function will be provided under given
conditions for a given time interval. [Bir10, p. 375]

• Failure is defined as the termination of the ability to perform the required function.
[Bir10, p. 369]

Reliability Engineering combines different models and tools to assess, predict and maintain
the reliability of technical systems along the complete life-cycle. To provide the reader a
general guideline, for the remainder of this work it will be distinguished between those
methods and models which focus on the reliability assessment of single items and those
which are used to aggregate the overall system’s reliability. The following subsections are
thus structured in that way.

2.2.1. Basic reliability concepts (item description)

In this section, the basics of reliability calculations are outlined, with a special emphasis
on the modelling of single items. As presented above, the reliability R(t) in this context is
1The AGREE (Advisory Group on Reliability of Electronic Equipment, Secretary of Defense of the United
States) Report from 1954 is often used to mark the birth of Reliability Engineering [SM06].
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understood as the probability that a given item (or system) is still functional at a given
time instance t, which refers to the cumulative distribution function (CDF). In contrast, the
failure probability F (t) describes the probability that an item (or system) has failed until
time instance t. Both functions are correlated with R (t) = 1− F (t) as depicted in Figure
2.2.
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Figure 2.2.: Correlation between R(t) and F (t) [KP14]

An often used measure to describe the failure characteristic of a given item is the failure
rate. The failure rate describes the number of failures for a given time interval. It is a very
practical measure as it is easy to determine from historic failure data. The failure rate is
defined as

λ (t) =
f (t)

R (t)
= −dR (t)

dt

1

R (t)

[︃
1

h∗

]︃
(2.5)

and usually given in failures per hours or a million hours. In formula 2.5, f (t) is the
probability density function (PDF) of F with f (t) = dF (t) /dt. For many systems it can be
shown, that the failure rate varies over time due to infant failures and late wear out effects.
This characteristic is described with the bathtub curve, shown in Figure 2.3. The curve
begins with a high decreasing failure rate at the beginning of an item’s lifetime, which is
referred to as infant mortality and describes early failures, e.g. due to manufacturing or
installation problems. After this, usually short period, a longer period of nearly constant low
failure rates is reached. That period is considered to capture and describe the appearance
of random failures. Processing further in time, the failure rate often increases again as
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items begin to suffer from degradation and mechanical wear out as described in [KP14, p.
26].
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Figure 2.3.: Phases of different failure rates among an item’s life-
time, known as bathtub curve, based on [KP14]

As Reliability Engineering depends on the statistical evaluation of failure data, probability
distributions play an important role as they are used to model the failure distribution of
items. Common used distributions include the exponential, theWeibull, the normal and the
lognormal distribution [KP14, p. 55-75]. The Weibull as well as the exponential distribution
are briefly outlined in the following, as they will be of further interest for this thesis.

Exponential Distribution
The Exponential failure distribution considers a negative exponential, which leads to
an increasing failure probability over time. The cumulative distribution function of the
exponential failure distribution is defined as

F (t) = 1− e−λt. (2.6)

In this equation, F denotes the failure probability over time t and λ is known as the
failure rate, which is assumed to be constant. The exponential failure distribution is often
described as being memoryless, as it is only a function of the current mission time t and does
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not consider any previously accumulated operation hours t̂. This can be mathematically
shown by evaluating the conditional exponential probability given as:

R
(︁
t|t̂
)︁
=
R
(︁
t̂ + t

)︁
R
(︁
t̂
)︁ =

e−λ(t̂+t−γ)

e−λ(t̂−γ)
= e−λt (2.7)

Due to its memoryless property and constant failure rate, the exponential failure distri-
bution is generally used to model random failures. It is often found as failure model for
electronic items. [Bir10, p. 40]

Weibull Distribution
The Weibull distribution is another popular lifetime distribution. Its CDF is defined as
follows:

F (t) = 1− e−(
t
η )

β

. (2.8)

The above formula is known as two parameter Weibull distribution in which η is the
scale and β the shape parameter. The Weibull distribution is thus of high importance in
Reliability Engineering as the shape parameter can be used to define different failure rate
types: For β = 1 the failure rate becomes constant, and the Weibull distribution becomes
equal to the exponential distribution. For β < 1 the failure rate decreases over time (infant
mortality) and for β > 1 it increases respectively. Thus, the Weibull distribution is often
chosen as it can be used to model all parts of the bath tub failure curve, which makes it a
powerful tool in reliability modelling. [KP14, p. 55]

2.2.2. Failure rate estimation

A crucial part in the reliability assessment based on a statistical approach is the thorough
identification of suitable failure rates and models. A general approach to accomplish this
task is the statistical evaluation of historical failure data, which includes a model selection,
e.g. Weibull or exponential model, followed by a parameter fitting. However, this process
can become cumbersome and expensive for complex systems or new designs, when no
historic data is available or the system is foreseen to operate in a different environment.
As given in [SV02, p. 85] failure rate data should be ideally obtained from actual mission
data on the considered component or one of similar kind. If no mission data is available,
accelerated life tests (ALT) can be used, which simulate the usage of an item. If no mission
or ALT failure data is available often existing databases or so-called failure rate handbooks
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are considered. Although being heavily criticized in literature for being inaccurate and
outdated [MR93; FFP17; PK88], failure rate handbooks are nowadays still a common
approach to conduct a first reliability assessment. Based on the evaluation of failure data for
various items, these standards list empirical formulas to derive and estimate failure rates.
By including additional parameters describing the considered installation environment,
the quality of the item or its expected usage, failure rates can be fine-tuned and adapted
to the foreseen application. Important handbooks as well as their application area are
summarized in Table 2.1. Especially in the aerospace industry the Military Handbook
217 [Dep91] is often consulted to obtain failure rate estimations with a strong focus on
electronic equipment.

Table 2.1.: Overview of popular failure rate handbooks, their app-
lication and release date, based on [FFP17]

Name Application Last Issue
Mil-HDBK-217 Mil/Commercial 1995
Bellcore / Telcordia Telecom 2006
RDF 2000 Telecom 2000
Siemens SN29500 Siemens Prop. 1999
PRISM Mil/Commercial 2000

2.2.3. Reliability models (system description)

In the previous section the basics of the statistical assessment of single items was outlined.
However, for most operators the analysis of the complete system, consisting of multiple,
interconnected items, is relevant for a comprehensive safety and reliability analyses. Thus,
it is necessary to model the dependencies and interactions among all contained items in a
quantitative way to estimate the system’s overall availability and reliability. This is the
aim of so-called dependability models [JM88].
Over the past decades many of these models have been developed and used for safety and
reliability analyses. Popular dependability models include the Parts Count Method, Fault
Trees (FT), Reliability Block Diagrams (RBD) and Markov Processes (MP), which are widely
used in many industries such as the aerospace or nuclear power industry. Broadly, these
models can be categorized into three types, namely the parts-count, combinatorial, and
state-space models [RV91]. Choosing the right model is not trivial, as they differ in their
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modeling power and analysis complexity [Rv02]. To define the relative modeling power,
the authors of [MT94] proposed a concept that transforms a given dependability model
into another based on a given algorithm. As this transformation is not always possible in
both directions, e.g. every parts-count model can be transformed into an equal fault tree
but not vice-versa, a hierarchy among these models is derived. The resulting classification
of dependency models together with the obtained power hierarchy described by Malhotra
[MT94] and Everdij [EB03] is show in Figure 2.4.
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Figure 2.4.: Modelling power hierarchy of dependability models,
based on [MT94] and [EB03]

However, it has to kept in mind that not only the modelling power has to be considered
when selecting a suitable dependability model, as also other characteristics such as the
visualization, their complexity or required computational effort play a role. To give further
insights, in the following the three different model classes are briefly introduced, and their
main characteristics outlined.

Parts count method
As given in Figure 2.4, the parts count method is among the simplest models with the least
modelling power among the dependency models. The system failure rate of these models is
calculated as the sum of all containing item failure rates [RV91]. Thus, the model neglects
any redundancies and assumes a system to fail as soon as any of the contained items fails.
This is a strong simplification and does not hold for most systems. However, this method
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still is used to approximate a system’s failure probability, especially during early design
phases, as it is easy to apply [Bir10, p. 51].

Combinatorial models
In contrast to the parts count method, combinatorial models are able to model serial
and parallel item configurations and thus are able to consider system redundancies. The
mathematical basis of the combinatorial models is found in Boolean algebra, as those
models can be represented with logical AND and OR connections. Important combinato-
rial models are the Reliability Block Diagram and the Fault Tree model. Although both
models have the same modelling power (see Figure 2.4) and can be transformed into each
other, both follow a different modelling approach, which also emphasizes their intended
usage. While the Fault Tree analysis is a top-down approach, in which the causes of system
failure are recursively searched, the RBD is a bottom up method, investigating how each
item of a system contributes to the system’s overall reliability. However, they can be used
interchangeably depending on the analyst favor. [MT94]
Combinatorial models are often chosen, as they are intuitive, provide a visual representa-
tion and can be used in a quantitative and qualitative way. However, these models also
suffer a few drawbacks. Being limited to a combinatorial decomposition of a system, they
cannot be natively used to model recurring events or complex interactions between parts.
Further, these models can only be used to represent two distinguishable states, failed and
not failed, which limits their application to two-state problems. [JK95]
State-space models
State-space models can be broadly split in Markov-based and Petri-Net-based models. These
dependability models are constructed on a finite set of states, in which each state represents
an individual status of the system under study. Based on certain events, such as repairs or
failures, the system’s internal state is changed. This is also referred to as state transition.
By assigning a transition probability, these models can be used to model the dynamics of a
given system. Thus, these models are naturally well suited to model complex and dynamic
systems with multiple inherent states. These can describe certain degradation levels for
fault-tolerant systems, individual system configurations e.g. during defined mission phases
or model available resources such as the availability of maintenance personal or spare parts.
As state transitions can run in both directions, repair processes can also be modelled. This
makes these models more sophisticated compared to the simpler combinatorial models
as not only failure probabilities but also availability estimates can be generated [SAE96;
MT94]. Representatives of state-space models include Markov chains, stochastic Petri-Nets,
Markov reward models and stochastic reward nets.
Although this model class has the highest modeling power among the dependability models,
this class also has its disadvantage, as it is computational intense, which can be easily
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shown: For a system composed of n components, which can be either operational or failed,
there exists 2n states in total. As this model complexity raises exponentially with the
number of components, these models become computational heavy for large systems. This
is also referred to as state-space explosion, a common problem of these models. Therefore,
over the past many tools have been developed such as HARP, SHARPE or CARE-III, which
accelerate the calculation speed of these models by either compressing and truncating
states or by decomposing the model into multiple simpler subsets [JM88]. In addition
to this and compared to combinatorial models such as Fault Trees or Reliability Block
Diagrams, these models are difficult to visualize, which makes their development difficult
and error-prone. Thus, state-space models are often chosen, when combinatorial models
reach their modelling limits or additional considerations such as availability estimates are
of interest to the analyst.

Fault Tree Analysis
Being relevant for this thesis, the fault tree model is introduced in more detail at this point.
A Fault Tree Analysis (FTA) can be used as quantitative or qualitative analysis tool and has
been well established over the last decades for safety and reliability analysis of complex
systems. Used industries include nuclear power systems, chemical process plants as well as
the aerospace industry. The fault tree analysis is a top-down approach: Starting from the
unwanted top event, e.g. the system failure, all connected events (component failures),
which lead to this top event, are analyzed in a recursive manner. Depending on the system
structure the contributing events are modelled as logical AND or logical OR connections.
Events, which cannot be further subdivided are known as basic events and are typically
modelled with known probability distributions. This leads to a tree structure ranging from
the top event to several basic events. The tree itself is visualized with defined symbols,
making the fault tree model very intuitive and easy to read. In Figure 2.5, the basic fault
tree symbols and their usage are presented. It shall be noted that there exist much more
fault tree symbols, such as additional gates (e.g. inhibit, priority or exclusive OR gate) as
well as specific event types (e.g. conditioning event or external events). However, these are
not further outlined in this thesis and the interested reader is referred to [SAE96, p50]
and [SV02].

For a quantitative analysis, the tree must be finally evaluated. This can be done by means
of analytical equations. However, this approach can become very inefficient for larger
trees with many gates. Alternatives suggest calculating the solution by an approximation
of the result. Among this approach Monte Carlo simulations (MCS) are used frequently
to solve larger trees. Finally, also decomposition methods can be used, which simplify a
given tree by finding the minimal cut-set [SV02]. A common drawback of fault trees is
that they are only able to distinguish between two states, usually describing the failed
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Figure 2.5.: Basic symbols of the fault tree analysis as given in
[SAE96, p50]

or functional mode of a system or component. Modelling multiple states, e.g. describing
different degradation levels, requires multiple trees, making the overall model complex
and error-prone. Further, fault trees are at their basis very static models, which cannot
model any dynamic system aspects such as repairs or system changes by their nature.
However, in the past there has been a lot of effort to overcome these limitations. Examples
consider the use of dynamically updated failure rates [ST07] or the use of dynamic gates
to model system changes as shown in [ČM02] and [Dur+09].

2.2.4. Uncertainty propagation

As reliability assessment is an inherent uncertain task, a thorough uncertainty propagation
within these models becomes necessary. For conventional reliability models such as Fault
Trees or Markov models, uncertainties emerge from used parameters, such as failure rates.
As failure rates are obtained from field data and reliability handbooks they suffer from an
epistemic lack of knowledge due to limited samples, as well as from a tolerance uncertainty
as the considered items might be operated under different circumstances [JHY82; AL77].
To account for these uncertainties, different methods such as fuzzy setmethods or boundary
approaches have been developed over the years to propagate uncertainties throughout the
model and determine lower and upper bounds for each failure event [SBR96]. A common
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approach is to use an MCS for this task, in which each model parameter is assigned with
an additional parameter, describing the assumed distribution of the model parameter.
Common distributions to describe the uncertainty of such parameters are the beta, the
gamma and the log normal distribution. Finally, the overall variation and upper and lower
bounds of the uncertainty analysis can be determined in that way [SV02, p. 91-94]. In
contrast to this, tolerance uncertainties only can be treated within a sensitivity analysis. In
this form of analysis parameters are changed to investigate their influence on the overall
model solution. This method can be used during design phase of a system to investigate
the behavior on operational changes.
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2.3. Prognostics and Health Management (PHM)

Prognostics and Health Management is a novel engineering discipline dedicated to an
automated health assessment of technical systems. In contrast to conventional methods,
such as PoF or classical Reliability Engineering, PHM estimates the current health state
of an individual system from onboard sensor data. Based on that concept the current as
well as the future system’s health state is predicted. In close analogy to medicine, this is
also referred to as diagnosis and prognosis. While diagnosis is carried out to identify the
current level of degradation, it is followed by the prognosis, in which the further evolution
of the degradation is predicted until a predefined failure threshold is exceeded. In this
way, the remaining useful lifetime (RUL) of the monitored component is predicted. PHM
itself is a multifaceted approach including elements from various domains such as machine
learning, failure modelling as well as statistics and has been fostered by new developments
in sensor technology, computational models and increasing processing power over the last
years [KAC17, p. 1]. PHM is considered as one of the key-enablers for condition based
maintenance as well as performance-based contracting and can be used as a decision
support for operators and maintainers [JS11; Hes02]. It is challenged in various industries,
especially in those working with costly assets and those where high availability and safety
requirements exist. Further, this technique plays a crucial role for autonomous systems,
such as drones, which operate over long periods in the absence of any personnel and thus
need to self-asses their current health state and remaining capabilities in order to provide
reliable services [Glo+10]. Accordingly, PHM is an emerging discipline and industry driver
which targets at many aspects of performability. However, it shall be noted that PHM is
still at an early stage and in the focus of active research among various fields.

2.3.1. Scope and benefits

The scope and benefits of PHM are based on the accurate prediction of the remaining useful
lifetime of monitored systems and components. Via processing of sensor data acquired from
the monitored system, PHM is sensitive to account for any life-time affecting factors such as
individual loads, usage patterns or material and production variances. This makes the PHM
approach superior to conventional ones, which are not capable to account for individual
usage and degradation as being sensorless. This advantage is illustrated in Figure 2.6,
where a traditional failure distribution, given as PDF, is compared to the predicted failure
distribution by a PHM system. Conventional failure distributions are derived from historic
failure data and tend to cover a broader timespan, especially if different usage patterns
are present and failure events are of great variance. Statistical measures such as the mean
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(in case of a normal distribution) or quantiles are then used to specify a threshold of
operation time after which the component needs to be replaced. Depending on the severity
and risk acceptance this threshold is selected more conservatively or not, leading to early
or late replacement times. While an early replacement prevents unexpected failure and
thus improves the safety and overall reliability of a system, it also is more expensive as
components needs to be replaced more often, leading to increased downtimes and material
effort. By estimating RULs based on the current and past health states, PHM in contrast
is able to generate more accurate failure distributions as the historical usage and loads
are considered indirectly. Further, these predictions gain in accuracy as more and more
data becomes available for later predictions. While the conventional reliability measures
remain static. PHM is thus able to adjust its estimations and therefore has the ability to
cover large variability in the usage of the monitored system [Eng+00].
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Figure 2.6.: Expected PHM potential compared to conventional
reliability methods, based on [Eng+00]

PHM offers a lot of optimization potential by aligning a required maintenance action
closer to the true failure event, which allows a better planning and can thus be used to
increase the safety and availability of the system. Compared to the traditional statistics
based reliability approach, this potential is therefore especially interesting for systems
where historical failure distributions are wide-spread or where high safety and reliability
requirements exists.
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From the above it can be concluded that the central aspect of PHM lies in the accurate
prediction of failure times. With this information at hand, operators are supported in their
decision-making. Thus, PHM is also a decision support tool at a larger scope, which also
explains its importance to the maintenance process and the business models such as PBC.

2.3.2. General methodology (OSA-CBM process)

The general methodology of PHM is often described with the Open System Architecture
for Condition-Based Maintenance (OSA-CBM) process, as given in [NP09]. This stan-
dard was developed by industry experts to align and harmonize the implementation of
condition-based maintenance systems across various industries. The process describes
six2 consecutive steps, which are run through in order to transform initial sensor data
into valuable information and describes all activities, which are carried out by a PHM
application. The process reaches from the raw data acquisition to the advisory generation
and is shown in Figure 2.7. However, it shall be noted that the process itself does not
specify any hardware bindings and thus might be implemented in various forms and
distributed over different soft- and hardware solutions.

Data Acquisition 
(DA)

Data Mani-
pulation

(DM)

State 
Detection 

(SD)

Health 
Assessment 

(HA)

Prognostics 
Assessment 

(PA)

Advisory 
Generation 

(AG)

Cut 2cm bottom
Figure 2.7.: The six steps of the Open System Architecture for

Condition-Based Maintenance (OSA-CBM) process

The OSA-CBM process starts with the Data Acquisition (DA) step, in which raw sensor
data from the monitored system is captured. This can include general sensor data such as
vibrations or electrical current signals as well as environmental parameters e.g. ambient
temperatures or the humidity. For existing systems usually already installed sensors
are used for this, while for new developments an initial failure modes and effects and
criticality analysis (FMECA) can be utilized to identify degradation mechanisms and select
appropriate sensors for an additional installation. Once data is available, this data is
processed during the Data Manipulation (DM) step. The aim of this step is to largely
reduce the amount of available data and to extract meaningful features, which can be
used an indicator of the current health state. Examples of such features include (vibration)
2Sometimes the OSA-CBM process is given with seven steps, as the last step, the advisory generation, can
be further split into a decision support and presentation step. However, in this thesis the six-step process
is used.
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frequency signatures, statistical moments of the time-signal or quantifiable measures such
a size and amount of debris. In the following State Detection (SD) step these features are
then evaluated to detect if the system is in a normal operating state or has already started
to degrade. In case of a present degradation, the Health Assessment (HA) step is carried
out, in which the degradation is quantified, and the problem is identified. Based on the
current and past health states, a RUL will be estimated during the Prognostics Assessment
(PA) step, before the final Advisory Generation (AG) will be generated in the last step.

2.3.3. Prognosis algorithms and modelling approaches

The following subsection is intended to give a brief overview of commonly used algorithms
and modelling approaches, with a special focus on the prognosis step as this is especially
relevant for the remainder of this thesis.

Over the past two decades PHM has been in the focus of research, with a special interest
dedicated to the development and evaluation of methods and algorithms for the health
and prognostics assessment. Examples of this development can be found in [Lee+14],
where a detailed overview of health monitoring methods for rotary machinery is given, or
in [SHM11], where the current state of algorithm development is presented for different
industries. In addition to this, lot of research has been conducted for predicting the lifetimes
of specific components. This includes the prediction of bearing failures [Ang18], motors and
fans [OSP12; Bro+09], batteries [DK13] or pneumatic components [DG11]. To accomplish
a precise degradation and RUL prediction, different approaches have been developed so
far, which can be categorized into three different groups, namely physics-based, data-driven
and hybrid models [KAC17, p. 10].

Physics-based prediction models are based on the physical description of the given system.
This usually involves differential and physical equations describing the system’s behavior
and is often implemented in a state-space representation. By adjusting and propagating
model parameters such as friction or efficiency coefficients the further degradation path
and system state can be described. Model-based prognostics have been successfully applied
to well-understood systems such as batteries or hydraulics. These approaches are, if well
implemented, very accurate and come with the benefit of describing the future behavior of
the system, which can be used to extract additional information about future performance
or weakness of the system. However, these models are usually very system specific and less
generalizable. They must be developed by system experts and require a profound a-priory
understanding of the system’s degradation mechanisms and ways to model them. This
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often makes it more difficult to apply physics based models to larger or less understood
new systems [DG11].

In contrast to this, data-driven algorithms are developed using available historic degradation
data from the system of interest. Algorithms from the machine learning domain such
as support vector machines (SVMs), Gaussian Processes (GP) or artificial neural networks
(ANN), are used to learn degradation patterns and identify correlations between different
features, which are trained into prediction models. In this way, a mathematical degradation
model of the system is learned from the given training data. This makes the approach
very generic and adaptable as no deep system understanding is required. It is also suited
for large and complex systems, where no detailed information about the degradation
mechanisms are known and can be continuously improved by retraining the model. On
the other hand, this approach also has its drawback. As it largely depends on available
degradation data, this approach is only suited for systems, where a large amount of data
is available. Thus, for new designs or systems where only few quantities are build, the
data-driven approach is often impractical [Sch05].

Finally, there exist hybrid models, which combine a physics-based model with data-driven
approaches. This strategy is often found for systems where physical models are only
partially known, and few data is available. Here the disadvantages of both approaches are
compensated by combining them [LK14].

2.3.4. Diagnostics and prognostics fundamentals (notation)

A crucial step for every PHM application is the diagnosis and prognosis step, which
are briefly described here. The aim of the diagnosis is a quantification of the current
degradation level of the monitored system. The degradation level, denoted as x, is defined
based on one or more features constructed from the available sensor data. Thus, x remains
an estimation to the true, unknown, health state x of the system. Due to the sampling and
processing of x, it becomes as a discrete time series, where xk is the estimated degradation
level for time instance k. As xk is not given as general physical unit it is usually given
in percentage of a predefined failure threshold xth. As soon as multiple observations
xk,obs become available, a prognosis can be performed. The beginning of the prognosis is
denoted with time instance tP . From this point on, the observed degradation trajectory is
extrapolated until a predefined failure threshold is reached. This task is accomplished with
trained or expert models of various kinds as presented in the previous section. The time
instance when the prediction xk,pred hits the failure threshold is then defined as the end of
prediction tEoP . The remaining useful lifetime can then be estimated as r (k) = tEoP − tP .
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Analogue to this estimation, also the true remaining useful lifetime can be stated, based on
the true degradation trajectory x∗k and the true failure time, denoted as end of life (EoL),
tEoL. The true RUL is then defined as r∗ (k) = tEoL − tP . Although the true health state
and remaining useful lifetime are obviously unknown during the prognosis itself, it makes
sense to define them, as they build the basis for a later performance evaluation of a given
prognosis algorithm. More details on such performance metrics will be given in Section
2.3.5.

As with any predictions, also RUL estimations are subject to uncertainties, which need to
be considered thoroughly. These uncertainties result from various sources such as sensor
and process noise and need to be propagated during the prediction of the degradation
trajectory to allow a reliable interpretation of the prognosis results. A well-defined prognosis
algorithm is expected to provide some information about the trust given into the result.
This is usually done by providing confidence intervals CI for each xk,pred, stating the
probability that the true degradation falls into this range. As these intervals are also
propagated till the failure threshold, an overall estimated failure distribution F can be
derived. Based on this distribution and the allowable risk tolerance, suitable end of use
times can be defined by the operator (see Figure 2.6). The remainder of this work will
use the above presented notation and termini, which is largely based on [KAC17; SCS09].
To provide an example of the introduced definitions, an exemplary prognosis based on
artificial degradation data is shown in Figure 2.8.

2.3.5. Algorithm performance metrics

For a proper evaluation and to further allow a comparison between algorithms, performan-
ce metrics play a crucial role during the development and design phase of any prognosis
algorithm as these metrics build the foundation to specify requirements and run bench-
marks. Over the years a common set of standardized metrics have evolved. As given in
[Sax+08], these metrics are categorized into the three following groups:

Cost-benefit
Although often neglected in research, the economical consideration of any PHM algorithms
is of high importance for the industry. Thus, metrics of this group are dedicated to assess the
overall cost-benefits associated with the installation of a prognostic algorithm. Metrics of
this group include a specification of the return of investment (ROI), theMTBF/MTBUR3

ratio or the overall life-cycle costs (acquisition plus operating costs).
3MTBUR – Mean time between unit replacement; MTBF Mean time between failure
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Figure 2.8.: Exemplary prognosis output

Computational performance
As PHM algorithms have to work with data, their technical implementation can become
resource intense especially when the number of sensors or the sampling rate is increased.
Algorithms such as the Fast Fourier Transformation (FFT), used for the extraction of features
from the frequency domain, particle filters, used for filtering, or common machine learning
algorithms such as neural networks or genetic programming, used to learn degradation
trajectories, become computational intense when the problem size (amount of data) is
increased. Methods to quantify on the computational performance and demands are
usually found within the discipline of computer science. A common approach to state
the computational complexity of algorithms is the Big-O notation [RRH00], in which the
number of calculation steps is correlated to the input size of the problem. Other methods
include the assessment of the overall used CPU time or required memory occupied by
the algorithm. These metrics play especially a crucial role when the algorithm is to be
deployed to a target hardware.

Algorithm performance
These metrics are dedicated to state and evaluate the performance of a given algorithm.
This includes an assessment of prediction accuracy and precision as well as statements
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about the overall robustness of a given algorithm as well as a measure of the overall
trajectory performance. Being relevant for the remainder of this work, these metrics will
be further outlined in the following with a focus on accuracy and precision metrics. The
performance evaluation of PHM algorithms is based on the RUL error for a given prediction
at time instance tP = k. In case that the true RUL r∗l (k) is given, the RUL error ∆l (k) of a
given prediction of component l is given as∆l (k) = r∗l (k)−rl (k). Based on this definition,
several metrics are derived. To allow a better comparison independent of time, the time
instance k can be normalized to the true end of life by using the following substitution
Λ = k

EoL . Common accuracy performance metrics include the false positive (FP) and
false negative (FN) metric, the mean absolute percentage error (MAPE) as well as the
mean squared error (MSE) and the mean absolute error (MAE). The FP and FN metric
are both logical performance metrics, which state whether a prediction was unacceptably
early (FP) or late (FN). As a reference two acceptance thresholds tFP and tFN are used
which must not be surpassed by the prediction error. While the FP measure is more related
to a cost-effective maintenance (prevention of unnecessary early replacements), the FN
measure aims at avoiding unexpected failures. The MAPE, MSE and MAE instead are used
to quantify the prediction error and build mean values of the relative, squared and absolute
error. It is important to highlight, that the mean values can consider multiple components
of same type (l = 1 . . . n) at the same Λ = const or can be used unit-wise (l = const) over
all available prediction times Λ ∈ [0, 1]. Common precision related performance metrics
include the sample standard deviation (S) and the mean absolute deviation from the
sample median (MAD) metric. Both measures are used to quantify the overall deviation of
the error with respect to the mean of the error. While the S metric is limited to a normal
distribution of RUL errors, the MAD can be applied to an arbitrary error distribution. A
comprehensive overview of the algorithm performance metrics is given in the appendix of
this work in A.1 together with the value ranges.

2.3.6. PHM for systems

The insights given in sections 2.3.1 to 2.3.5 give a general overview of the PHM methodo-
logy, the used approaches and models. Being still at an early phase, PHM is in focus of
active research. Over the last two decades many papers and results have been published
by the research community, fostering the evolution of PHM. However, most of this research
is dedicated to the monitoring of distinct components, such as motors, batteries, pumps or
bearings. On the other hand as stated in [Rod17], the application of PHM methods on a
system-wide scale is of much more relevance for the industry, especially when it comes to
costly complex systems, where the interaction of multiple subsystems leads to differing
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performance states. As this is one of the main goals of this thesis, this section is dedicated
to the current state of research on this special sub-topic.

Considering PHM for multi-component systems, one has to distinguish between two
fundamental but different problems: A common challenge for operators of complex systems
is to find a suitable maintenance policy, which allows an efficient execution of maintenance
actions at an optimum instance of time. Thus, authors such as [RPS15] or [vP13], have
investigated methods that consider the current health state of monitored components
to generate a dynamic maintenance planning support. While this obviously addresses
safety and economic goals, it does not aggregate the health and performance capabilities
of an individual system. Thus, the second problem one could be interested to solve is
the assessment of the overall system’s capabilities under consideration of the current
component’s health states. This is especially interesting for those systems with built-in
redundancies. In this regard multiple papers have been published in the last years, which
are discussed further in the following.

In [ST07] for example a condition-based fault tree analysis is proposed. The authors suggest
utilizing condition-monitoring data to update the failure rates of a fault tree according
to the detected deterioration stage. As soon as a new deterioration stage is detected the
fault tree is recalculated leading to a dynamic update of the model. In the following
work [Sha+16] this concept was further extended to support reliability, availability,
maintainability and safety (RAMS) predictions. By using a Monte Carlo Simulation this
extension is also able to account for various failure distributions. Another approach is
presented by [DBR12], who utilize a model-based system state-space representation in
which the authors use a structural model decomposition technique to decompose a larger
system model into a set of smaller independent sub-models. After the decomposition,
each subsystem can be predicted on its own. However, this concept assumes that the
component’s degradation is not interfered by other components. In the papers [LZ16]
and [LLZ15], a Piece-wise Deterministic Markov Process (PDMP) is utilized to model
and predict the degradation of a monitored system. Therefore, it is assumed that the
system consists of components, which can be modelled by physical models (deterministic
part) as well as components modeled as multistate models with an underlying stochastic
process (random state transitions). Both model types together form the PDMP. As the
transition rate of the multistate models depend on the physical degradation level and
the parameters of the latter depend on the current states of the multistate models, the
different component’s degradation becomes strongly coupled. Thus, the model is capable
of considered degradation interactions between components. To make the model dynamic
it is continuously updated with monitored data, which is included via Bayesian filtering.
In the end, existing uncertainties are propagated via a Monte Carlo Simulation or a Fuzzy
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Set scheme to derive the distribution of a system RUL (S-RUL). Another state-space model
based method is presented in [KBS16], where the authors use a regular state-space system
model with included degradation models. These degradation models are a function of
the internal system states as well as of other existing degradation parameters in the
system. Thus, the internal degradation progress is strongly coupled over the system’s
components. A structural decomposition of the system model is not foreseen. The RUL
assessment process is two-fold: First the current system state as well as the degradation
model’s parameters are estimated via Bayesian filtering. Afterwards the degradation is
estimated by the propagation of the system’s state equations until a predefined performance
threshold is reached. For this propagation two algorithms are proposed: a) a particle
filter with sampling importance resampling (SIR) and b) an inverse first order reliability
model (FORM) algorithm, which is more efficient than a) and therefore recommended.
In this way the S-RUL is derived and uncertainties about the used parameters can be
considered. Another form of S-RUL generation is described in [Rod17], where the author
proposes a system architecture function, which aggregates the individual component’s
failure probabilities into one system-wide S-RUL. Finally, in [TNM18] another model is
presented, where the prediction of an S-RUL is based on an inoperability input-output
model (IIM). This model assumes that degradation models are given for each component
and that the linear degradation interactions are a-priori known. Based on a recursive
formula the inoperability4 of the system is thus propagated. Further, by introducing an
influence factor also external factors such as environmental changes can be accounted for.
However, both factors (influence factors and degradation interaction parameters) remain
constant during the simulation.

In Table 2.2, the relevant papers for this thesis are summarized and the main characteristics
of the proposed methods are outlined. Empty cells in this table state that this feature is
not explicit stated in the papers.

2.4. Conclusions and identified research gap

Within the previous sections, the general state of the art of availability assessments for
complex systems has been outlined. It has been shown, how the performability of a
complex system can be described and why every technical system suffers from degradation
and wearout. Further, the relevance of an accurate health and availability estimation for

4The inoperability is defined as the ratio between the performance loss compared to the initial flawless
performance state.
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Table 2.2.: Reviewed literature dedicated to the aggregation of
PHM data on system level for assessing the overall
system’s capabilities
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Condition-based Fault Tree Analysis
(CBFTA) [ST07]

MTBF ✕ 2007

Condition-based RAMS [Sha+16] MTBF ✕ 2016
Structural model decomposition
[DBR12]

S-RUL ✕ ✕ 2012

Piecewise-deterministic Markov
Process (PDMP) [LZ16] and
[LLZ15]

S-RUL (PDF) ✓ ✓ ✓ 2015/16

State-space model + inverse-
FORM/stochastic simulation
[KBS16]

S-RUL (CDF) ✓ 2016

Aggregation via system architec-
ture function [Rod17]

S-RUL ✕ 2017

Inoperability input-output model
(IIM) [TNM18]

S-RUL ✓ ✓ ✕ 2018

new business models such as performance based contracting as well as its importance in
maintenance and the decision-making process for operators was presented.

As the state of the art to conduct reliability and availability estimations Reliability Engi-
neering was identified and presented. As a main disadvantage of this well established
discipline, its approach based on the statistical evaluation of failure events was examined,
which easily becomes inaccurate especially for complex systems, as these systems are often
used in very versatile usage scenarios with varying lifespan-impacting external influences.
Although the models being applied have become more sophisticated over time to cope with
these challenges, they still lack direct feedback from the system itself. Accordingly, PHM as
a novel alternative has been introduced. By making predictions based on sensor feedback,
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PHM is intended to overcome the limitations of the rather static Reliability Engineering ap-
proach. PHM as well as its models and methodology have matured during recent decades,
while still being an active field of research. However, it was also shown, that most research
and solutions are still focussing on the monitoring and prediction of single items, rather
than systems combined of multiple components. Thus, as a remaining research gap in the
field of prognostics, the lack of an aggregation methodology that can be used to assess the
overall capabilities of multi-component system was identified. The reviewed literature on
this topic mainly expands the concept of an RUL prediction to that of a system RUL, where
multiple component’s prognoses are aggregated by a user-defined system function, which
states the overall health status of the entire system. This concept however is considered
as unpractical as it cannot distinguish between multiple system states, which allow the
operator to gain a detailed preview on the future expected capabilities of the monitored
system. Further, it is often not clear how to include external factors such as environmental
stressors or how to consider parts that are not monitored.

With this said, the overall problem to be solved within this thesis is defined as follows:
The objective of this work is to develop a decision support method to increase the
system availability based on prognostics. The idea behind this is to aggregate multiple
prognostics results obtained from different monitored components to estimate the current
and future performance level of a given system. The resulting method is intended as a
decision support for operators of complex systems. In contrast to the existing aggregation
methods from Table 2.2, an emphasis is given in this work to the capability of differentiating
various performance levels and in this way supporting the concept of performability. Overall,
the scope of this work can be subdivided into the following three research objectives.

O1 – Feasibility: Show and proof the technical feasibility to aggregate multiple PHM
results on system level to allow a system-wide performance assessment with distinguishable
performance levels.

O2 – Integration: Present a general methodology which is aligned to existing reliability
methods.

O3 – Performance: Identify the advantages that can be achieved with the proposed
method. What are the merits and limitations, and what are the future challenges in this
regard?
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3. Conception of the proposed
aggregation method

Based on the previously outlined insights and identified research gap, this chapter is
dedicated to the conception and development of a method, which allows the aggregation
of dynamic PHM results from multiple monitored components up to system-level. The
envisaged method is aligned at the very end of the OSA-CBM process as introduced in
Section 2.3.2 and intended as a decision support tool for operators of complex systems
with the overall objective of generating an accurate and precise system state estimation
under the consideration of prognostic results. The development process of the method is
based on the V-model methodology [VDI21] and includes the following steps:
Problem statement: Definition of the problem to solve.

Requirements definition: Based on the identified problem in Section 2.4, general requi-
rements as well as constraints of the envisaged method are defined. These requirements
build the foundation for the later validation of the method.

Method development: This step describes the conceptual phase in this work, in which the
method itself is developed. In this part, a general solution is defined, which is independent
of any implementation (software) and free from any specific use-case.

Implementation: During the implementation phase, a general framework in form of a
(prototyped) software is created. This solution implements the method as defined before
and is used to conduct the required experiments to test and evaluate the proposed method.

Verification: The verification step describes a formal check, that the software solution is
correctly implemented and works as intended.

Validation: In this step, a cross-check against the initially specified requirements is carried
out. The goal of this phase is to ensure that the defined requirements are met and that the
overall solution solves the addressed problem.
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Evaluation: The evolution is the final phase of the development process. This part will
be described in Chapter 5 based on the defined use-case from Chapter 4. The goal of the
evaluation is to measure the performance of the developed solution and identify its merits
and possible limitations.

The overall development process of the foreseen method is illustrated in Figure 3.1.

Problem statement

(Chp. 2.4)

Requirements definition

(Chp. 3.1) 

Method development

(Chp. 3.2 & 3.3) 

Implementation of the 

method

(Chp. 3.4) 

Verification

(Chp. 3.5)

Method validation

(Chp. 3.6) 

Use Case & Evaluation

(Chp. 4 & 5) 

Correct 

implementation?

Requirements 

met?

Benefits of the 

new method?

Figure 3.1.: Development process of the proposed method based
on the V-model, based on [VDI21]

3.1. Definition of requirements and constraints

The overall objective of this method is to aggregate prognostics information from different
monitored components on system-level. The method is intended to support operators of
complex systems in their decision-making, based on an accurate and up-to-date estimation
of the current and future system health state. The method itself shall be generic and not
system specific. In contrast to existing methods, as introduced in Section 2.3.6, the method
shall be able to distinguish between different performance levels, which can arise due to
the complexity and redundancy of a given system. As outlined in Section 2.2.4, the proper
treatment of uncertainties is important when making assumptions about future events.
Thus, such a decision support is only viable when associated risks as well as uncertainties
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of the derived estimations can be stated. Therefore, the proposed method shall be able to
handle uncertainties derived from the used algorithms and sensors thoroughly. As given in
Section 2.2, the discipline of Reliability Engineering has been around for many decades
now. Many industry standards as well as safety and reliability processes are established
and based on this existing framework. In this context, it is reasonable to require that the
developed method shall rather extend the existing methods than replace them. Therefore,
a further requirement is that the considered method shall align and connect with this
exiting framework and the established reliability tools.

Besides the above stated requirements, also some assumptions and simplifications are
made at this point. As the method is intended for the application with complex degrading
systems, it is assumed that the monitored system consists of at least one component
which suffers from a continuous and predictable degradation. It is further assumed that a
PHM-system is installed, which implements the first four steps of the OSA-CBM process
as described in Section 2.3.2 and is capable of producing RUL predictions on a frequent
basis. Ideally the installed prognostic algorithms provide their estimations together with
uncertainty bounds. For those components not monitored by the PHM-system, it is assumed
that the correlating failure rates are known or can be estimated by means of conventional
reliability measures. As a further constraint, it is presumed that the degradation of a
component does not affect the degradation rate of another component. This is of course a
hard constraint as there exists many systems where exactly this is the case. However, as
the focus of this work is on the aggregation method this is neglected at this point.

Finally, the developed method shall be limited to a decision support functionality only. It
is intended to visually inform an operator about the current and future system state of the
considered system. Thus, it does not implement an automatization logic, which acts on
the given information. This is argued as a fully autonomous system would require specific
and additional information about the system and its mission goals, which stands in direct
contrast to the requirement for a generic solution. The derived requirements, constraints
and limitations are summarized in Table 3.1.

3.2. Development of the decision support method

In the following section, a prognostics-based decision support method is developed, which
is tailored down to the specified requirements given in Table 3.1. The key concept of
the proposed method is to extend existing reliability methods to integrate recurring and
up-to-date PHM data. As outlined in Chapter 2, Reliability Engineering is well established
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Table 3.1.: Derived requirements, constraints and limitations for
the proposed method

Category ID Definition

General
Requirements

R1 The method must be able to aggregate prognostic data on
system-level

R2 The method shall provide a decision support for operators with
a focus on the future performance availability of a given system

R3 The method shall be generic and not system specific
R4 The method shall be able to consider different performance

levels (due to redundancy)
R5 The method shall be able to consider any uncertainties which

arise from the used PHM algorithms
R6 The method shall align to existing reliability assessment me-

thods and should (ideally) extend them rather than to formulate
a complete different approach

Constrains &
Assumptions

C1 The considered system (or parts of it) degrades in a continuous
manner and thus is monitorable by PHM

C2 The monitored system is considered being complex having mul-
tiple components and distinguishable performances levels

C3 The RULs of selected components are estimated by means of
a PHM algorithm (see OSA-CBM steps 1 to 4) and (ideally)
provided with a measure of uncertainty

C4 The degradation rate of a component is not interfered by the
degradation of other components of the same system

Limitations /
non-
requirements

L1 The method does not implement an automation logic as it is
intended as a decision support only

across many industries and covers methods for the reliability assessment of single com-
ponents (failure rates and failure models) as well as methods to conduct analyses based on
dependency models (fault trees, Markov models) on system-level. However, these models
are largely based on static parameters, which are defined with data from historic failure
events or derived from experiences with similar systems. They provide good estimates
for systems used in similar environments and under constant loads, but easily become
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inaccurate if systems are used in versatile scenarios, experiencing different loads and
stresses, as these statistic based methods become inaccurate as the individual degradation
cannot be captured. PHM on the other hand is capable of assessing and predicting the
health state of an individual system based on sensor signals. This makes any life-time
predictions much more accurate as variations in the degradation process are captured.
On the other hand, the PHM discipline is still in an early development stage with only
few commercialized solutions. Most monitoring solutions and algorithms focus on the
assessment of single parts and do not consider complex systems. Based on this and the
identified research gap (see Section 2.4), the proposed method is intended to combine
both approaches into an integrated solution, which is capable to overcome the limitations
of both disciplines. This key concept is illustrated in Figure 3.2.

New method for a prognostics based 
system availability assessment

Reliability Engineering

• No sensor feedback
• Predefined parameters
• Single parts and system models
• Standard method

PHM

• Considers system feedback
• Real-time health status
• Focus on single parts
• Emerging discipline

Figure 3.2.: Development of a new method based on the combi-
nation of Reliability Engineering and PHM

3.2.1. Used taxonomy

Throughout this work different levels of hardware integration are described and modelled.
In order to define a common definition, the following taxonomy is used, which is in
close analogy to industry standards SAE ARP4761 and MIL-HDBK-217F and distinguishes
between three levels of integration, namely parts, components and systems [Dep91; SAE96].
Parts, in literature sometimes also denoted as items, are defined as the smallest physical
entities for which a reliability can be stated. For many parts, empirical failure rates
have been identified over the years, which are summarized in handbooks and databases
such as the MIL-HDBK-217F (see Table 2.1). Examples are small motors, gearboxes or
electronic parts such as capacitors, ICs or MOSFETs. Depending on their complexity, size
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and degradation mechanism, parts might be qualified to be monitored by PHM or not.
Components define the next higher level of integration and form a physical assembly of one
or more parts. Components perform a distinct function and are usually self-contained in a
way that they can be replaced in the advent of a failure. This is sometimes also referred
to as Line Replaceable Unit (LRU). Further, it is assumed in this work that components
can be described by two states, either working or failed. Examples of components include
actuators, pumps or motor-assemblies. The highest level of integration is found in a (sub-
) system, where multiple components are interconnected to accomplish a greater task.
Depending on the arrangement of components, e.g. parallel or in line, a system can have
multiple states. These states depend on the failure combinations and will result in different
system performance levels. An example for a system could be a hydraulic actuation system,
which is composed of components such as a pump, a tank and multiple valves and actuators
used to deliver hydraulic energy.

The resulting taxonomy is summarized in Table 3.2 and will be used throughout this thesis.
For the sake of completeness, it should be noted at this point that the term system is often
further subdivided within systems engineering. Usually, a distinction is made between
sub-systems (e.g. a flight control system), system (e.g. an aircraft) and system-of-systems (e.g.
an entire aircraft fleet including required infrastructure). However, for better readability
the general term system is used throughout this paper, even if most examples discussed in
the following are strictly speaking sub-systems.

Table 3.2.: Used taxonomy in this thesis

Term Definition
Part Smallest physical entity for which a reliability can be stated.
Component Any self-contained part or combination of parts, which performs

a distinct function necessary to operate the system. A component
has two states, either working or failed.

(Sub-)System A combination of n inter-related components arranged to per-
form a specific function. A system can have up to 2n failure
states, depending on the combination of component failures.

3.2.2. Aggregation concept

A central aspect of the proposed decision support method is the aggregation of progno-
stics data from various monitored parts up to system-level in order to obtain the future
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performance and availability levels. Therefore, it is assumed that recurring and up-to-
date PHM data are available from an installed PHM-system. Further, it is assumed that
additional environmental data are available from on-board sensors, which can be used
to specify the current usage scenario and assess external factors such as temperatures
or the humidity. Besides these time-dependent values it is presumed that there is some
additional information about the system itself and possible failure relevant parameters,
such as failure distributions and rates for distinct parts. This information is related to as
expert knowledge as it reflects a sufficient deep system understanding. The overall aggre-
gation concept and its in- and outputs are illustrated in Figure 3.3. The different inputs
are highlighted and divided into dynamic and static (expert knowledge) data. The output
of the proposed method is a precise system state prediction, which forms the basis for
the later decision support. The aggregation of the information of all the three levels part,
component and system is described in the following subsections in more detail, before the
overall aggregation method is outlined at the end of this section.

Aggregation method

Part-level

Component-level

System-level

Predicted future 
system state

PHM Data (RUL) Env. Data

Parameters
(e.g. failure rates)

Information about 
system structure

(constant)

Expert knowledge

Dyn. input data

Figure 3.3.: Overall aggregation concept

3.2.3. Part-level description

As given in Section 3.2.1 parts are considered as the smallest entities in a system that
can fail. Thus, parts form the first level to be considered when aggregating failure and
prognostics data. The failure behavior of parts can be broadly split into two different
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groups. The first group includes parts, which fail in an abrupt and spontaneous manner
(constant part of the bathtub curve, see Figure 2.3). This failure behavior is often found
with electronic parts, which suddenly fail without any measurable precursors. As it is
difficult to assess any feature-rich sensor data from these parts, a statistical evaluation
of failure events is usually used to give life-time predictions. The other group of parts
includes those, which degrade in a rather slow and continuous way with measurable
failure indicators (increasing part of the bathtub curve, see Figure 2.3). Examples of this
group include motors or gearboxes, which start to heat up, lose their efficiency or start to
vibrate with an increased degradation. For those parts, the PHM approach is interesting
as indicators can be measured to develop precise lifetime prediction models based on
sensor data. It is proposed in this work to use conventional reliability methods for those
components, where monitoring is technically or economically not feasible. However, to be
still able to consider dynamic effects like changing temperatures or humidity it is proposed
to integrate environmental factors that can be measured into this calculation and update
them periodically. All other components, which are qualified to be monitored by means
of a PHM-system, shall be considered by incorporating lifetime predictions based on the
available sensor data. The mathematical representation within the proposed aggregation
method is outlined in the following for the spontaneous failure type and the PHM approach.
It shall be noted that both representation forms lead to a defined failure distribution in
form of a CDF.

Spontaneous failure type
Parts characterized by a spontaneous failure behavior, or where no prognostics data are
available, are modelled with conventional reliability methods. The general approach here is
to use failure distributions such as the exponential or Weibull distribution as introduced in
Section 2.2. For a given part l, for which failure events are considered to be exponentially
distributed, the cumulative distribution function is thus defined as:

Fl (t) = 1− e−λlt (3.9)

To account for changing environments and usage conditions it is proposed to further
adjust the failure rate λl. As given in [Dep91] failure rates, especially those for electronic
equipment, are predicted with part failure rate models. These models usually use a part
specific base failure rate λb, which is then adjusted with factors π to meet the expected
usage conditions, also referred to as part stresses [FFP17]. The base failure rate is adjusted
with various factors, which will affect the reliability of the given part. These factors include
the stress factor πS , the construction factor πC , the quality factor πQ, a temperature factor
πT as well as an environment factor πE , which will differentiate between different usage
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environments such as on ground fixed (GF ), airborne inhabited cargo (AIC) or airborne
with rotary wings (ARW ). The part failure rate models therefore account for various
different usage conditions, which must be precisely stated during the design phase of a
system. Some enumerated factors like the quality or construction factor can be stated
precisely in the design phase of a system and remain constant as long as parts are not
redesigned and replaced. Other factors like the stress or temperature level however might
vary along individual parts and are largely affected by the true usage scenario of the part.
To illustrate this, in Figure 3.4 the failure rate model for a CMOS digital gate array is
estimated based on an exemplary calculation given in [Dep91]. The predicted failure rate
λl for this part is calculated for different case temperatures as well as for three different
environments (ground fixed, airborne and airborne rotary wing). It can be seen that these
two factors have a significant influence on the estimated part reliability.
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Figure 3.4.: Failure rate variations for different temperature set-
tings and environments, based on [Dep91]

Based on the above insights, it is proposed to consider additional information such as
external temperatures or the environment to adjust the failure rates according to the
expected mission profile. The part failure rate λl as used in Equation 3.9 is thus modified
by additional factors as given below:

λl = λbπTπSπCπQπE (3.10)
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Degrading failure type (RUL-CDF)
For those parts that will degrade over time and can be monitored by means of a PHM-
system, it is instead proposed to use a dynamically generated failure time CDFs, which are
adjusted as soon as new prognostic data are available. This will be referred to as remaining
useful lifetime CDF (RUL-CDF) in the remainder of this work.
The RUL-CDF is obtained from the prognosis step of the OSA-CBM process as introduced
in Section 2.3.2. As a fundamental concept of prognostics, the estimation of the RUL
(prognosis) is based on the observed degradation trajectory and the assessment of the
current health level (diagnosis). No matter if a physical model or a data-driven approach
is used to model the degradation behavior, the underlying model is then propagated
forward in time to predict the future evolution of the degradation trajectory. To consider
any uncertainties within the prognosis, it is widely accepted to work with distributions
and perturbated parameters as initial input values. As a result, the distribution of the
estimated degradation level x is given for each time step k as p(x|k), instead of a single
estimate. This is often achieved by filtering approaches such as Kalman or particle filtering
as described in [OV09], by using statistical approaches such as the Gaussian Process or
the Relevance Vector Machine [PAK14] or by simply using the training error, which can be
used for neural networks [WTC13]. During the prognosis, the degradation model is then
recursively calculated until all trajectories exceed a predefined failure threshold xth.

Based on the above considerations, the RUL-CDF describes the probability that the true
degradation level x is above the defined failure threshold xth for time instance k considering
the predicted failure level distribution px (x|t) from the algorithm. The RUL-CDF is thus
defined as:

Fl (t) =

∫︂ ∞

xth

px (x|t) dx. (3.11)

The probability density function for the end of life is then obtained by deriving Equation
3.11

pEoP (t|xth) =
dFl (t)

dt
(3.12)

or by applying the law of total probabilities as given in [OV09] for discrete time steps

pEoP (k|xth) =
N∑︂
i=1

Fl (k) · wi, (3.13)

46



where wi is a weighting factor chosen to normalize the PDF. The above formulation of the
RUL-CDF can also be used if the end of life distribution p (t|xth) is given directly by the
algorithm (in cases where the trajectory is not propagated). In this case the RUL-CDF is
formed as

Fl (t) =

∫︂ t

tP

pEoP (t|x) dt. (3.14)

In cases where the failure threshold is not distinct but specified as a distribution pxth (x)
itself, the definitions 3.11 and 3.14 can be extended to

Fl (t) =

∫︂ ∞

xth

px (x|t) · pxth (x) dx (3.15)

and

Fl (t) = pxth (x) ·
∫︂ t

tP

pEoP (t|x) dt. (3.16)

The calculation of the RUL-CDF is illustrated in Figure 3.5 for an exemplary prognosis
starting at tP = 40 h.

With the above definitions the RUL-CDF can be constructed from various prognosis algo-
rithms as long as the output includes the degradation distributions (for all predictions
steps) or the expected EoP distribution. Either way it is important to highlight that the
RUL-CDF Fl (t) is not constant and will change for updated prognoses at later tP . This
is due to the effect that most prognoses become more accurate for later predictions, as
more data are available to process and the prediction horizon (time till failure) is shorter.
It is therefore necessary to periodically recalculate and aggregate the RUL-CDFs for the
monitored parts. In Figure 3.6, the evolution for different prognoses times, expressed with
Λ = tP /(tEoL), of an RUL-CDF for exemplary data are shown. It can be seen how the
distribution becomes more accurate for later predictions and converges to the true failure
time.
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Figure 3.5.: Illustration of the RUL-CDF generation based on a
prognosis

3.2.4. Component-level description

The next level of aggregation takes place on the component-level, where the failure
probabilities of multiple parts are aggregated to derive the overall failure probability of the
component of interest. In the PHM domain this has been tackled by introducing a system-
wide RUL function, short S-RUL, in which the component performances are aggregated
by a system architecture function H, which models the interactions among containing
parts, as shown in Section 2.3.6. In traditional Reliability Engineering in contrast, this has
been achieved by utilizing dependability models, which propagate the failure probabilities
of distinct parts F1:L (t) through the system to derive the overall component’s failure
probability Fm (t). Typical dependability models include Reliability Block Diagrams, Fault
Trees as well as Markov Models, which were briefly outlined in Section 2.2.3.

Selection of a dependability model
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Figure 3.6.: Exemplary evolution of the RUL-CDF for increasing Λ,
based on [Eng+00]

In this work it is proposed to aggregate the individual part’s failure probabilities on
component-level by means of a dependability model rather than an H-function. This is
argued as the required input of these models will be failure probabilities of the containing
parts, as defined in the previous section. In that way, the conventional failure distributions
as well as the PHM provided RUL-CDFs can be considered by the model at the same
time. As a further side effect the underlying dependability model can be chosen from a
variety of well known and established models from the traditional Reliability Engineering
domain, which directly addresses requirement R6, demanding a solution compatible to
existing tools and frameworks from that discipline. In addition to this, commercial tools
and software are available and for most safety critical systems the corresponding models
do already exists. Nevertheless, it shall be noted at this point that speaking mathematically,
dependability models can also be considered as a single aggregation function as required
by the S-RUL approach introduced in Section 2.3.6 for PHM monitored systems. However,
by using a dependability model, instead of an arbitraryH-function, a structured and formal
way to develop the required aggregation function is given. Thus, the herein proposed
method can be seen as a special case of H, which is developed by means of conventional
reliability methods.
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To choose an appropriate dependability model, the differences of combinatorial and state-
space models are considered: Most combinatorial models only consider two states, e.g.
failed or non-failed states. There are some exceptions such as dynamic fault trees (DFT),
which allow an adaptive change of the single tree branches on certain events to model
effects such as spare parts or cascading failures, but in the end these models quickly
become very complex especially when being solved [Chi+11]. Thus, often multiple models
are required to model different failure combinations. State-space models on the other
hand are not limited to two states. As the name suggests, they are capable to represent
many system configurations and failure combinations. However, this capability comes at a
cost, as their computation easily becomes intense for an increasing number of states. As
an example, for a system with n parts, in which each can fail individually, there exists 2n
failure combinations and thus states that have to be calculated. This phenomenon is often
referred to as state-space explosion, as the number of states rapidly increases for larger
systems. Although there exist many approaches to reduce the number of required states,
this problem is inherent for this kind of aggregation models and cannot be neglected
[JM88]. Further merits and drawbacks of both dependency model types are summarized
and compared in Table 3.3.

Table 3.3.: Comparison of combinatorial and state-space models

Combinatorial models State-space models

Pros

• Easy implementation / develop-
ment + intuitive

• Graphical representation
• Fast solving

• Higher modelling power (compared
to combinatorial models)

• Dynamic and recurring events pos-
sible (e.g. repairs)

• Multiple system states (failure mo-
des) can be modelled

Cons

• Only two states per node
• No dynamics
• Limited modelling power (with re-
spect to model hierarchy)

• Computational intense (2n for a sys-
tem with n components)

• Can become complex and diffi-
cult to interpret for large sys-
tems/models

Fault tree construction
Based on the above insights, the Fault Tree model is chosen to model the dependencies
among the parts of a component. This dependencymodel is chosen as it is widely established
in the industry, is simple to interpret and is less computational expensive compared to
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the more complex State-space models. As introduced in Section 2.2.3 a fault tree is
constructed by a set of logical AND and OR connections, which are used to model the
failure dependencies among the considered parts of the component. In this way, failure
probabilities are propagated throughout the model and the top-level failure probability Fm

is calculated. Given as a tree structure, the fault tree can be solved in a recursive manner,
by applying the following rule set starting at the top node [Bit+86]:

Fm (t) = Fn
l (t) (3.17)

where Fn
l (t) represents the failure probability at time t of the n-th subtree calculated as

Fn
l (t) =

∏︂
Fn−1
l (t) , for series sub-branches (3.18)

Fn
l (t) = 1−

∏︂
Rn−1

l (t) , for parallel sub-branches (3.19)

Fn
l (t) = Fl (t) , for basic events without further branches. (3.20)

In this regard Rn−1
l (t) is the complement of Fn−1

l (t) and thus defined as:

Rn−1
l (t) = 1− Fn−1

l (t) . (3.21)

With the above formulation the individual parts’ failure probabilities are aggregated for
a given component m. The required input probabilities of the containing parts Fl (t) are
selected according to the definitions from Section 3.2.3, so that RUL-CDFs as well as
common statistics based CDFs can be used. The output of the model thus is the aggregated
failure probability Fm (t) of the component.
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3.2.5. System-level description

Based on the previous definitions of the part and component-level, the remaining system-
level is modelled in this subsection. Therefore, the system and its belonging performance
levels are considered with respect to the general performability of a system (see Section
1.1).

The degradation of a complex system can be considered as a stochastic process. These
processes play a vital role in conventional reliability engineering where they are used to
model and analyze failure free and repair times [Bir10, p. 452]. However, these processes
can also be used to model the degradation itself [PP06]. A stochastic process is defined
by a set of states S, also known as state-space, a random variable ζ (t) that evolves over
time, and a probability measure P , which denotes the probability of a state change. With
this definition the degradation of a complex system can be described as a state change
from a higher performance level to one of equal or less performance (compare Section
2.1). State changes occur to a certain degree randomly as the system’s components fail
at individual times. This relation is illustrated in Figure 3.7, where multiple degradation
trajectories of a given system are shown1 and compared to the required performance
demand. In this context, it is assumed that the performance demand also varies over
time, which is often the case for complex systems e.g. due to different mission profiles etc.
as it was shown in Chapter 1. With these considerations in mind, the resulting method
from this work is supposed to provide predictions about the expected future system state
changes, in which the exact new state, in terms of an associated performance level, as well
as the expected time of transition is predicted. Thus, the stochastic process becomes in a
way predictable, which allows operators more flexibility to act and optimize missions or
maintenance actions as the performance mismatch between required system output and
demand becomes quantifiable.

Based on these considerations, the theoretical concept for the component’s failure probabi-
lity aggregation on system-level is defined as follows: The performance level of each system
is described with a set of finite states S = {S1, S2, . . . , Sm}, where each state represents
an individual combination of failed components and thus describes a distinct performance
level. Assumed that each component has exactly two states (failed or functional), a system
with n components can have up to m = 2n system states. To model the existing failure
combinations a binary combination matrix B is used, in which B = {0, 1}. In B, each
row represents an individual system state, respectively failure combination, while the
columns mark the considered components. The size of B therefore is always determined
by the number of components in the system with size(B) = 2n × n. Finally, a failed
1In the illustration possible repairs of the system are neglected.
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Figure 3.7.: Performance degradation of complex system descri-
bed as stochastic process without repairs (states are
sorted according to their performance)

component is characterized by a 1, while a functional component is modelled by a 0. Thus,
the combination matrix for an exemplary system comprised of two components would
have the following form

B =

⎡⎢⎢⎢⎣
0 0

0 1

1 0

1 1

⎤⎥⎥⎥⎦ . (3.22)

The associated state table for this example is shown in Table 3.4.

In order to derive the probability measure P that describes the likelihood to be in a certain
state at a specified point in time t, the aggregated probability of the combinations has to
be calculated. Therefore, the component reliabilities respectively unreliabilities, as defined
in Section 3.2.5, are considered again. Provided that the failure probabilities for each
component are given for equidistant points in a time, a vector F can be defined as follows:
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Table 3.4.: Exemplary state table for a system composed of two
components A and B

State Comp A Comp B
S1 0 0

S2 0 1

S3 1 0

S4 1 1

F (t) = [F1(t), F2(t), . . . , Fn(t)] (3.23)

In Equation 3.23 each element represents the failure probability of individual components
at time instance t. Based on F , also the complementary R vector can be defined, which
denotes the reliability of each component for the same time instance:

R(t) = [R1(t), R2(t), . . . , Rn(t)] = 1− F (3.24)

Based on Equations 3.22, 3.23 and 3.24 the system’s state-space probability matrixM is
derived for time instance t as follows:

M (t) = B ∗ F (t) +B ∗R (t) . (3.25)

InM , the binary matrix B is multiplied with the unreliabilities F of the system, while
its negation B is multiplied with the R vector. In this way, each cell ofM represents the
probability that the component is in the according state as required by B.

It shall be noted, thatM (t) is time depended, whereasB remains constant for the system
under study, as long as it’s structure is not changed, which is usually the case for most
systems. Based onM (t), the probability that the system will be in state Si at time instance
t is then defined via the row product

P (Si, t) =

n∏︂
1

Mi,j (t) . (3.26)
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For the previously introduced example with two components, the following state-space
probabilities are derived:

State Comp A Comp B State Probability
S1 R1(t) R2(t) P (S1) = R1(t)R2(t)

S2 R1(t) F2(t) P (S2) = R1(t)F2(t)

S3 F1(t) R2(t) P (S3) = F1(t)R2(t)

S4 F1(t) F2(t) P (S4) = F1(t)F2(t)

The above introduced state-space model has the characteristic that the sum of all state
probabilities is equal to one so that

∑︁
PSi = 1. Further, the probability of similar states

can be grouped by calculating the row-wise sum. This is often the case for systems with
built-in hardware redundancies. E.g. if the system from the above example would represent
two identical pumps (A and B) that run in parallel, it would not make a difference from
a reliability point of view, whether pump A or B fails. Thus, state probabilities of P (S2)

and P (S3) could be combined to an artificial state P (S2,3) = P (S2) + P (S3) stating the
probability that one of the two pumps has failed. As it will be revealed in Chapter 5 this
has a significant impact on the overall calculation time of the model.

3.2.6. Resulting Dynamic Hybrid Reliability Model (DHRM)

With the formulations given throughout Subsections 3.1 to 3.2.5, a generalized aggregation
method is defined, which can be used to integrate prognostics data frommultiple monitored
parts up to system-level. Further, the method is capable to consider conventional statistically
based failure probabilities for those parts, which cannot be monitored via PHM. The
resulting final Dynamic Hybrid Reliability Model (DHRM) is illustrated in Figure 3.8. The
inputs of the DHRM are the periodically updated prognoses of the monitored parts as
well as environmental data such as temperatures. Each part in turn is either modelled
with statistics based functions such as the exponential or Weibull distribution or based
on prognostics data in form of a derived RUL-CDF as defined in Subsection 3.2.3. On
component-level, each component is modelled with an individual fault tree, which considers
the dependency of the containing parts. Once the failure probability of each component
is assessed, they are passed to the state-space model as defined in Subsection 3.2.5 to
calculate the resulting state probabilities. Working with time-variant data, the DHRM must
be periodically recalculated as soon as updated data becomes available. Thus, the model
will generate updated state predictions for each assessment.
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Figure 3.8.: Overall composition of the aggregation method

3.3. Uncertainty propagation

Uncertainty propagation plays a crucial role in every model, as the propagation and
interpretation can have a significant impact on the model’s results. Therefore, the following
section is dedicated to the extension of the previously introduced DHRM concept by
describing how to manage the uncertainties associated with the used models and inputs.
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Uncertainties especially arise when estimating future events or states as predicting the
future is an inherent uncertain task. They result from a variety of sources such as used
input data, estimated parameters or assumptions made about future events. A common
way to classify uncertainties is to distinguish between aleatory, epistemic and ontological
uncertainties as given in [DDH19; ELB18]:

• Aleatory uncertainty, as the “known knowns”, describe those uncertainties, which
are known and can be quantified. A popular example is sensor noise, which is known
to exist and can be specified to lie in a certain band or follow a given distribution for
a given sensor.

• Epistemic uncertainty, also the “known unknowns”, describes uncertainties re-
sulting from a lack of knowledge. Nobody can precisely predict the future and
some model parameters might simply not be known. Thus, still being aware of their
existence, those uncertainties remain and are difficult to specify.

• Ontological uncertainties are finally the “unknown unknowns”. This term refers to
those uncertainties, which are not considered at all as neither their existence, nor
their extent are initially known.

Depending on the type of uncertainty, different counter measures can be taken to contain
and reduce their impact on the model’s results. These approaches range from theoretical
methods such as an uncertainty propagation (aleatory), consideration of different scenarios
with parameter bounds (epistemic) to technical solutions in form of robust and adaptive
design rules (ontological uncertainties).

3.3.1. Uncertainty propagation within the reliability engineering domain

Within the traditional reliability domain uncertainties often arise from a reliability model’s
parameters, e.g. the used failure rates, which are often not exactly known. To address this
and to account for uncertainty, distributions describing possible parameter values are used
in practice. Distributions to name in this context are the beta, gamma and log-normal
distribution. The amount of uncertainty is thereby specified by the spread of the chosen
distribution, also known as dispersion. Common measures for the dispersion include the
standard deviation (gamma and beta distribution) as well as the error factor (EF) for
the log-normal distribution, which is defined as the ratio between the 5th and the 50th
(median) percentile: EF = (50thpercentile)/(5thpercentile). Together with a mean value,
all three distributions can be defined. Accordingly, to account for uncertainty in a reliability
model, all parameters are described by one of the distributions mentioned. Subsequently,
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the entire model is then calculated with the help of a Monte Carlo simulation, whereby
the model parameters used are drawn from the distributions specified. In this way, the
uncertainties are propagated through the model and considered in the final reliability
estimates. However, it shall be highlighted, that this approach considers only (aleatory)
uncertainties resulting from the sampling process and does not reflect any application
variations [SV02].

In order to avoid confusion, the distributions and their parameters described here which
are used to model the uncertainty of traditional reliability models, will be denoted as
uncertainty distributions (UDRel) in the remainder of the work.

3.3.2. Uncertainties associated with prognostics

Making estimations about the future is an inherently uncertain task, which makes it
important to consider and treat uncertainties properly in any PHM application. According
to [SG13] uncertainties with prognoses arise from the following sources:

• Present uncertainty: Describes any uncertainties associated with data used prior to
the prognosis, e.g. to assess the current health state of the system.

• Future uncertainty: Describes any uncertainties that result from a lack of knowledge
about the future usage of a system, such as expected loads or operating conditions.

• Modelling uncertainty: Modelling uncertainties arise from model simplifications,
estimated parameters, the chosen model form or inherent process noise and are
independent of the selected modelling approach (physics-based or data-driven).

All together, the above sources of uncertainty are referred to as prediction method uncer-
tainty, as they will have a combined effect on the RUL estimation. Despite the different
sources of uncertainty also the interpretation can be distinguished. In the context of PHM,
it can be differentiated between a prognosis-specific and an algorithm-specific uncertainty
in a broader sense [SG13]. To further illustrate this, Figure 3.9 is presented, in which
two schematic RUL prognoses P1 and P2 of the same unit under test, at the same time
of prediction tP , resulting from two different algorithms are shown. Both algorithms
provide an RUL-CDF (CDF I and CDF II), which reveals the likelihood of a failure over time
according to the algorithm. However, both algorithms vary in their overall accuracy and
precision. While algorithm P2 has a very narrow uncertainty band with a very close tEoP

compared to the true tEoL, the bounds of P1 are much broader and also the deviation
from the true end of life tEoL is wider. This example shows that there is no information
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about the (algorithm-specific) trustworthiness or performance of the used algorithm in
the RUL-CDF itself.
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Figure 3.9.: Exemplary prognoses with different algorithm-
specific uncertainty

Comparisons as the one in Figure 3.9 are often conducted to analyze and state the per-
formance of a given prognosis algorithm. The general framework for the performance
assessment is based on defined performance metrics, as introduced in Section 2.3.5. These
metrics are used to specify and quantify quality measures such as the accuracy or precision
of used or new prognoses algorithms. It is important to note, that these metrics are usually
specified from a training or validation dataset, where the true failure times and thus the
true RULs are known. Most of these metrics are then defined based on the error∆ between
a given RUL prediction r and the true RUL r∗ for a given time index k and a specific unit
under test (UUT) l:

∆l (k) = r∗l (k)− rl (k) (3.27)
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3.3.3. Uncertainty handling concept for the DHRM

With these insights given, it becomes clear that every prognosis is subject to uncertainty
and that the performance of a prognosis algorithm varies as well. To account for these
uncertainties, it is proposed in this work to handle uncertainties in a two-tiered way, in
analogy to the framework presented in [ELB18]. This concept foresees to distinguish
between prognoses-specific and algorithm-specific uncertainties and to propagate both
individually.

In this context, prognoses-specific uncertainties are considered to be mainly of aleatory
nature as they result from (known) sensor noise and parameter variations. Typical measures
to handle these uncertainties include filtering approaches like Bayesian updating e.g.
Kalman or particle filtering, which is applied during the prediction. In this way, uncertainties
are propagated throughout the model and the estimated failure probability is derived.

The algorithm-specific uncertainties instead are considered to be mainly of epistemic
nature. By definition these uncertainties result from a lack of knowledge and include
modelling uncertainties as well as simplifications. These uncertainties are difficult to
quantify in advance, but can be assessed retrospectively during algorithm validation. To
account for these uncertainties it is therefore proposed to feedback performance metrics,
which have been derived during the development phase of the algorithm, as a quality
measure into the DHRM. In this way, the aggregation method is not only supplied with
the likelihood of failure (RUL-CDF), but also has an information about the trustworthiness
of the used prediction algorithms. The foreseen workflow is illustrated in Figure 3.10,
where it is differentiated between the development (offline) and usage (online) phase of
an algorithm.

The proposed method is based on the following assumptions:

• Multiple algorithms are used in collaborative fashion as it is proposed in the DHRM to
predict the reliability of a system composed of multiple PHM-monitored components.

• Each PHM algorithm/solution has an individual performance, which can be expressed
by predefined performance metrics.

• Algorithm’s performance metrics are available before deployment of the algorithm
(e.g. the performance metric is provided by the supplier of the component) and thus
can be fed into the aggregation model as additional parameter.

Degradation-based performance metrics
As outlined in Section 2.3.5, most PHM metrics are defined for distinct prediction times
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tP , denoted with time index k. To be able to further compare different algorithms, the
time index k is further normalized by the overall end of life, which leads to Λ = k/tEoL.
Obviously this definition is not suited as a real-time measure during the prognosis itself, as
the end of life (tEoL) is not known yet. To overcome this limitation it is proposed in this
work to convert the defined time-based metrics from Section 2.3.5 into degradation-based
performance metrics, in which the performance metric of a prognosis is normalized by the
current degradation level instead of time instance. Formula 3.27 is thus rewritten as

∆l (x) = r∗l (x)− rl (x) (3.28)

with x being the current level of degradation. Based on this, also the B, S and MAD
metric can be rewritten to depend on x and the following metrics are derived as presented
in Table 3.5.

In the following, it is proposed to use these degradation-based metrics as a measure of
dispersion, analogue to the described uncertainty distributions as presented in Section
3.3.1. In this way, the metrics from Table 3.5 can be used to quantify the uncertainty
and to define an uncertainty distribution, which will be referred to as UDPHM (x) in the
following.
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Table 3.5.: Degradation-based performance metrics

Metric Degradation-based notation

RUL Error ∆l = r∗l (x)− rl (x)

Average Bias (B) B (x) = 1
L

∑︁L
l=1 ∆l (x)

Sample standard deviation
(S)

S (x) =

√︂∑︁L
l=1(∆l(x)−M)2

L−1

M is the sample mean of the error

Mean absolute deviation
from the sample median
(MAD)

MAD (x) = 1
L

∑︁L
l=1 |∆l (x)−M |

M is the samplemedian of the error

Based on the definition from Section 3.2.3 the probability that a part l, monitored by a
PHM-system, has failed at time instance t is given as

Fl,PHM (t) = P (tEoP ≤ t) . (3.29)

To account for the uncertainty given through the used prognosis algorithm, the correction
offset ψ(x) is added to F , so that Equation 3.29 can be rewritten to

F ∗
PHM (t, x) = P (tEoP + ψ(x) ≤ t) (3.30)

The correction offset itself is drawn from the uncertainty distribution as previously defined

ψ(x) ∼ UDPHM (x). (3.31)

In this way, the uncertainty induced by the used PHM algorithm can be accounted for.
In this context it is important to point out that the UDPHM (x) is used to draw an offset
ψ(x) by which the actual function is shifted, while the UDREL is used to vary individual
parameters of the function. Also, UDPHM (x) depends on the current level of degradation
x, while UDREL is assumed to be constant.
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For a very modest problem, where the error metric ∆l is Gaussian distributed, UDPHM (x)
becomes the normal distribution with a sample standard deviation of S(x) and the average
bias of B(x) as defined in Table 3.5. The correction offset ψ(x) is then obtained via:

ψ(x) ∼ UDPHM (x) = N (B(x), S(x)) (3.32)

For more complex RUL deviations the error distribution can have an arbitrary shape and
can be described by a best-fit approximation (Minimum-likelyhood-estimation).

Uncertainty propagation on component-level (MCS-I)
Based on the previously stated definition a common framework is developed, which is
suited to account for different types of uncertainty during the aggregation of failure
predictions. This two-tiered concept therefore separates the inherent variability (aleatory
effects, tier 1) from the modeling uncertainty (epistemic effects, tier 2).

In case of the non-monitored parts, which are modelled by means of traditional reliability
methods, inherent time of failure variability is covered by the used distributions itself
e.g. the exp. or Weibull distribution. The modeling uncertainty is then specified by the
UDRel, which is used to sample parameters from. In this way the epistemic uncertainty is
addressed.

For those parts being monitored by a prognostic algorithm it is assumed that the general
variability such as sensor noise or variations in the degradation process are governed by
the prognosis algorithm itself and the uncertainties will be propagated resulting in the
RUL-CDF, as argued in Section 3.3.2. The remaining modeling uncertainty (epistemic)
resulting from simplifications and a lack of knowledge is then derived from specified
performance metrics of the used algorithms in form of the UDPHM as defined in Section
3.3.3. The two-tiered concept is summarized in Table 3.6.

During the calculation of each component, each part’s failure probability is accounted for
using the fault tree model as described in Section 3.2.4. The required failure probabilities
are obtained in form of conventional reliability distributions as well as in form of the RUL-
CDFs for those parts being monitored by a PHM system. To further allow the propagation
of the uncertainties (second tier), a Monte Carlo simulation (MCS) is then used in which
the fault tree model of each component is calculated multiple times. For each individual
calculation (sample), parameters are drawn based on the specified uncertainty distributions
to modify the CDFs as well as the RUL-CDFs. The resulting failure probability of each
component is then described by a family of probabilities, which reflects the associated
uncertainty with the overall failure prediction.
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Table 3.6.: Two-tiered concept for uncertainty handling within the
DHRM

Domain Tier 1: Known variations (alea-
tory effects)

Tier 2: Unknown variations
(epistemic effects)

Reliability En-
gineering

Common failure distributions
(CDFs) e.g. Weibull or exp. dis-
tribution

Uncertainty distributions des-
cribing parameter variations
(UDREL)

PHM RUL-CDF obtained from progno-
sis algorithm

Algorithm-specific uncertain-
ty distributions based on
degradation-based metrics
(UDPHM )

Implemen-
tation

CDF aggregation (Fault Tree for-
mulas)

MCS propagation

Uncertainty aggregation on system-level (MCS-II)
In contrast to the normal data aggregation on system-level as described in Section 3.2.5,
the extended DHRM with uncertainty propagation has to deal with a family of CDFs per
each component. To aggregate those CDF families two options are considered:

1) The first option is to select one representative CDF for each CDF family. This CDF is
selected based on a statistical measure such as mean or a predefined confidence bound.
Afterwards, for each component the selected representative CDF is used to calculate the
state probabilities. The final output of this approach is a single state probability given as a
CDF again.

2) The second option is sample based. Therefore, a CDF is randomly chosen for each
component from the corresponding CDF family, describing one sample. By defining n-
samples, the state model is then calculated n-times with an MCS, leading to a family of
CDFs for each state probability.

For this work, it is chosen to use the sample based option. Although being computationally
more expensive, it is expected to generate more accurate predictions as uncertainties are
thoroughly propagated until the very end of the aggregation. It is then still possible to
reduce the result space by selecting a representative CDF for each state based on statistical
measures. The overall uncertainty propagation concept is illustrated in Figure 3.11.

MCS performance considerations
One noteworthy drawback of the chosen concept is required high computational effort,
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Figure 3.11.: Extension of the DHRM to consider uncertainties
from the PHM (UDPHM ) and the traditional reliabili-
ty domain (UDREL)

due to the sampling and calculation of multiple MCS trials. In general, the accuracy and
resolution of the MCS is defined by the number of samples used. Thus, there is always a
trade-off between efficiency and accuracy when applying an MCS. To optimize the runtime
of an MCS different approaches have been discussed in literature. Despite increasing
hardware resources or parallelizing the required calculations, e.g. with graphic cards or
Field Programmable Gate Arrays (FPGA), the MCS can also be tuned by optimizing the
sample size and space. Examples of these techniques include the Latin hypercube sampling
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(LHS) as well as the bootstrapping method, a method for resampling [IH88; JHY82]. Being
a simple and generic approach, for this work the bootstrapping method is chosen to assess
the quality of the MCS and thus be able to optimize (reduce) the number of required
samples to an acceptable level.

The bootstrapping method is based on the idea to artificially resample data based on a
given sample x = (x1. . . xn) from an unknown underlying distribution F . Being the only
information of F , the data can be resampled, by drawing new samples from the empirical
CDF Femp. In this way, the original experiment can be artificially rerun, generating multiple
independent and ideally distributed replications X, without having to rerun the complete
MCS.

The performance of the MCS can then be assessed by building n replicas of the results based
on the bootstrap method, leading to n expectation values E1, ..., En for each solution. As
these samples are independent and ideally distributed they will vary due to the stochastic
nature of the MCS. According to the Central-Limit-Theorem (CLT), statistic measures such
as the mean will follow a normal distribution, as long as the variance of Ei is finite and
N is sufficiently large. Thus, the quality of the MCS can be derived by evaluating the
distribution of Ei with mean and variance defined as

Ē = 1/N
N∑︂
i=1

Ei (3.33)

and

S2
=

1

N

N∑︂
i=1

(Ei − Ē)
2 (3.34)

Finally, the confidence interval of the solutions is described as:

(Ē − z(1−α
2 )

A√
N
, Ē + z(1−α

2 )
A√
N

) (3.35)

In this formula 1−α represents the confidence level, while z(1−α/2) is the corresponding
standard’s deviation quantile [KTB11]. As shown in [Yan11] the confidence interval as
well as the variance of the MCS-results can be used as a direct performance indicator of
the MCS as both indicators will converge as the number of samples is increased.
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It shall be noted, that the explanations given about uncertainty handling in this chapter
are of theoretical nature and will not be pursued further in the following course of this
thesis as no concrete algorithms are given that could be evaluated. The interested reader
is referred to [Hei19].
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3.4. Method implementation

In the following section and subsections the implementation of the proposed method as
introduced in Sections 3.1 to 3.3 is outlined. As programming environment Mathwork’s
MATLAB is chosen. Matlab is a rapid prototyping tool, which allows a quick algorithm
and software development. It is originally intended to solve mathematical problems and
is extendable by various add-on products and toolboxes, such as Simulink, a graphical
modeling tool, which will be also used in this work. Being very flexible due to extensive
scripting possibilities, the Matlab environment is well suited to realize the proposed DHRM
method.

The overall implementation is split into two distinct software modules: The first module is
a custom fault tree library implemented in Simulink that is used to create and calculate the
required component fault tree models. The second module is the DHRM aggregation tool,
which is used to define the system model and its states, to ingest any data from various
sources and to calculate the system model for a given time instance to derive the estimated
state probabilities. An overview of both modules, their functions and the output is given in
Figure 3.12. They are also further outlined in the following. The implementation of the
(later) required simulation environment and application to a specific system is not shown
in this figure and will be discussed in detail in Chapter 4.

3.4.1. Custom fault tree library in Simulink

The custom fault tree library is intended to provide any means to create a custom fault
tree model and calculate it. As it is required to ingest time-varying input data to the model
and frequently changing parameters, the resulting models must provide the necessary
interfaces to easily modify input data and perturbate parameters. Further, the calculation
performance of the found solution must be sufficiently fast in order to run the required
MCS of the model.

For this work, Simulink is chosen as an implementation framework for a generic custom
fault tree software library. Although there are different commercially and free to use fault
tree software tools, such as Reliability Workbench2 from Isograph, Blocksim3 from ReliaSoft
or ITEM ToolKit4 by item Software, Simulink was chosen as it is tightly coupled with
2https://www.isograph.com/software/reliability-workbench/
3https://www.reliasoft.com/products/blocksim-system-reliability-availability-maintainability-ram-
analysis-software

4https://www.itemsoft.com/item_toolkit.html
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Figure 3.12.: Overview of the implemented software modules,
their function and the used environment for imple-
mentation

MATLAB (which is also used for the DHRM aggregation tool) and offers many ways to
ingest and export data via custom interfaces as required, which is difficult to achieve with
closed source proprietary software. Further, Simulink offers a graphical user interface and
allows graphical programming by placing reusable code snippets, called blocks. As the
fault tree model itself is also given as a graphical representation the Simulink environment
is an ideal candidate for a prototype implementation.

Within Simulink, the fault tree implementation is realized in form of a library, which
contains reusable software modules, denoted as blocks. Each block has an arbitrary number
of in- and output ports, a set of parameters and encapsulates a custom mathematical
function f(xk), which transforms the inputs xk to the output values yk for a given time
step k. In this way, the basic elements of a fault tree (AND, OR, XOR, NOT ) are
implemented based on the functions given in Section 3.2.4 so that at each simulation time
step k, the corresponding Boolean operation is performed on the inputs of each block.
Further, the library contains a set of additional input elements, which extends the standard
basic events of a fault tree and allow the ingestion of external dynamic input. These inputs

69



can include changing probabilities such as the RUL-CDF or time-varying parameters like
environmental parameters. A screenshot of the custom library is shown in Figure 3.13, a
complete definition of the implemented blocks is given in the Appendix B.1.

Figure 3.13.: Custom fault tree library basic blocks implemented
in Simulink (excerpt shown)

With the developed custom fault tree library it is possible to create general fault tree models
based on the implemented blocks. Therefore, the required blocks are copied to a new
Simulink model, where they are interconnected according to the component’s structure.
By running the simulation, Simulink’s internal simulation time variable k is used to derive
the current probabilities in the basic events or to select an input value from connected
RUL-CDF data respectively. The simulation start and end time t0 and tend can be arbitrary
chosen by the user. However, it shall be noted that the complete calculation is discrete
and returns the fault tree’s top-node probability for each time step k. By changing the
step-size of the simulation, the fault tree’s output resolution can be adjusted.

In Figure 3.14, an exemplary fault tree created with the custom Simulink fault tree library
is shown. The modelled system describes an electromechanical actuator (EMA) as given in
[Yuy+15] and will be used later for the verification of the implementation.

Mex-Export
As initially stated, it is crucial for the final fault tree model to be calculated fast. Therefore,
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Figure 3.14.: Exemplary fault tree model of a generic EMA based
on [Yuy+15] created in Simulinkwith the custom fault
tree library

the fault tree library was extended with a custom mex-export script. Mex is a built-in
Simulink function that allows the conversion from a Simulink model to executable c-code.
The compiled c-code can then be used again by any Matlab application, which makes it
much faster to run. The custom mex-export script provides all means to automatically
export and compile a given fault tree model.

The output of the mex-export is a fully functional fault tree model that can be calculated for
different time intervals and fed with dynamic input data, depending on the existing input
nodes of the model. The output of the model is always the top-node’s failure probability
for the current time-step.
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3.4.2. DHRM aggregation tool

While the fault tree library is used the implement the part- and component-level calculati-
ons, the DHRM aggregation tool is used to implement the system-level logic as defined in
Section 3.2.5. The tool itself is implemented in Matlab in an object-oriented programming
(OOP) style. Accordingly, each logical entity within the aggregation tool is considered
as an object. Each object is then derived from a class, which is used as a blue-print and
defines the data structure, the parameters of the object, as well as the methods used to
interact, change or visualize this data. The OOP approach is used in this work, as the
problem itself, the aggregation of the failure probabilities of a complex system, can be
divided in a hierarchical way into several sub-problems, which makes it ideally suited for
an object-oriented representation.

In Figure 3.15, the structure of the program is shown as a Unified Modeling Language
(UML) class diagram to lay out the defined classes and their connections. The diagram
is read as follows: Each system is composed of one or more components, while each
component contains exactly one fault tree model and one Monte Carlo simulation object.
The general functionality of each class is briefly outlined in the following.

Component

-CDF : double[]
-E : double[]
-name : String
-MCS : MCS
-model : Model
-t_P: double

+ Constructor
    (name, model_path, opts)

- getDataByTp(t_p)
- setModel(mpath)
+ addData(t_P, data)

- visualize()

- visualizeParams()
- visualizeMCS()

System

-Comp_List : List
-F_Matrix : double[][]
-name : String
-n_comp : Int
-States : List
-t_P: double

+ Constructor(name)

+ addData(comp_name, t_P, data)
+ calculateSystem()

+ addComponent
    (name, comp_obj, desc, t_fail)

- getCompByName(name)
- updateStateMatrix()
- visualizeStateProb
   (states, plotTrueFailure)

1…*1

MCS

-E : double[]
-CI_idx : double[2]
-Param : Struct[]
-Perf : Struct
-Prob : double[]

+ Constructor(opts)

+ run(model)
+ getConfidenceBounds()
+ drawParameters(param)

1 1

Model

-in : Struct
-param : Struct
-path: String
-out : Struct

1

1 + run()

Figure 3.15.: UML class diagram of the DHRM aggregation tool

System class
The system class is used to define the system itself. Therefore, it implements all methods
required to add component objects to the system and to define the relevant system states
and their severities. Once the system model is defined, data can be added as input streams
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for each component and the system model can be calculated. Finally, this class provides
all necessary means to visualize the calculated state probabilities.

Component class
The component class is used to store and bundle all information associated with a specific
component of the system. It contains an underlying model object, which embeds the fault
tree model and further contains an MCS object, which is used to run the MCS on the fault
tree model. It shall be noted that the underlying fault tree model (as mex-function) can
be reused for multiple components, although each component object always marks an
independent and individual instance. Therefore, the component class is equipped with
all means to calculate the failure probability of the considered component. Finally, it also
implements the required function to visualize the calculation results as well as the MCS
samples.

Model class
The model class is used to store all relevant information of the underlying fault tree model.
This includes the number of in- and outputs, the definition of the model’s parameters,
including their distributions, as well as the location of the model’s mex-executable5. From
the run method the executable mex-file is run and results are returned.
MCS class
The MCS class is the implementation of the Monte Carlo simulation. This class holds a set
of samples, which are initialized at the beginning. According to the definition in Section
3.3.1, each sample contains a set of parameters e.g. failure rates, which are sampled
according to the specified distributions in order to account for any parameter uncertainty.
All samples are then propagated using the underlying model for increasing points in time.
The result contains a set of CDFs, according to the sampling size of the MCS, from which
the final CDF is chosen based on a predefined confidence interval.

3.5. Model verification

The following subsection of this chapter is dedicated to the verification of the proposed
method. To verify the correct implementation, the individual parts of the solution are
tested against reference values from literature or proprietary software. Those parts im-
plementing novel concepts are tested for plausible results based on simplified input data.
In the following section, the overall solution is then checked against the initially stated
requirements to validate that it complies to the defined objectives.
5All models are stored in a dedicated folder from which they can be added to the DHRM method on the fly.
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3.5.1. Verification of the fault tree implementation

The correct implementation of the custom fault tree library in Matlab/Simulink is verified
against a reference fault tree model presented in the literature [Yuy+15]. This reference
model describes a generic electromechanical actuator (EMA) as it is often found in the
aerospace industry, where such motors are used to actuate the control surfaces of smaller
aircraft (e.g. drones). The considered EMA consists of an electrical motor, an electronic
control unit as well as a transmission gear. The model is characterized by multiple logical
AND and OR connections and has ten different basic events, representing failures on the
lowest level. Event E6, representing a rotor eccentricity failure, will be used either with a
constant failure rate, which represents the default case or with dynamic PHM data, which
is considered as the innovation of the DHRM approach. The overall model together with
the failure probabilities of the basic events is shown in Figure 3.16.

For the verification of the custom fault tree library, the reference model from [Yuy+15] is
recreated and calculated in Reliability Workbench, a professional software for reliability
analyses from Isograph. The resulting failure probabilities of the model’s cutsets are
then compared to results obtained from the same model calculated in the custom fault
tree implementation used in this thesis. The results of the EMA model are presented in
Figure 3.17, with the failure probability over time as calculated by the custom fault tree
solution. Selected reference values from the commercial software are overlaid as reference.
In addition, the resulting failure rates of each cutset are presented in Table 3.7 for the
reference and custom fault tree implementation.

Table 3.7.: Resulting failure rates as calculated by the reference
software and the custom implementation with a step-
size of h = 1 given in failures/hour.

cutset λRef λcust.FT cutset λRef λcust.FT

EMA 5.4E-06 5.4E-06 Sensor 4.3E-18 4.3E-18
Motor 2.1E-06 2.1E-06 ECU 3.3E-06 3.3E-06
Wind. 1.7E-05 1.7E-05 Mech. 5.6E-13 5.6E-13

The overall calculated failure rate for the EMA top event is λ = 5.4E − 6 failures/hour
which is exactly as specified in the paper from [Yuy+15]. The individual cutsets of the
model are also calculated with same results as given by Reliability Workbench, at least for
a small step-size (h = 1). For larger step-sizes the results between the proprietary and
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Figure 3.16.: Used Fault Tree model to verify the FT implementa-
tion with E6 modified to optionally ingest dynamic
PHM data. Inputs given in failures/hour.

the custom software start to drift away. The detailed comparison of all input and output
values of both models can be found in the Appendix B.2.1 of this thesis.

From the above test it is concluded that the custom fault tree solution is implemented
correctly and gives accurate results.

3.5.2. Verification of the aggregation function

In a next step, the implementation of the aggregation function is tested and verified.
Therefore, a simplified multi-component system is considered, which consists of two
identical EMAs, where each EMA has the same model structure as the one from Figure
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Figure 3.17.: Graphical comparison of cutset unreliabilities calcu-
lated from the commercial (Ref) and custom fault
tree implementation

3.16. However, to allow the investigation of dynamic failure data provided by a PHM
algorithm, one of the model basic events, event E6, is replaced by a PHM input node
allowing time-varying input data. The overall system setup is shown in Figure 3.18. The
outputs at this stage are the predicted state probabilities of that system.

EMA 1

(FT model)

State Definition

Component 

Level

EMA 2

(FT model)

State Model

System 

Level

State 

Probabilities

PHM 

Data

PHM 

Data

Figure 3.18.: Schematic system configuration used to verify the
aggregation function of the DHRM

Generated PHM input data
To test the setup, initially a set of predefined RUL-CDFs is artificially generated, intended
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Table 3.8.: Parameters used for the generation of the generic
RUL-CDFs

α0 β0 α β tEoL[h]

Dataset A 500 2.4 1.02 1.2 600
Dataset B 500 4 1.02 1.2 900
Dataset C 500 3 1 1 n.a.

to mimic the behavior of a prognosis algorithm. Therefore, a Weibull distribution is chosen,
in which the shape and scale parameters evolve over time in a way that the distribution
gets narrower and converges to a true assumed failure time. The recursive scheme used to
generate this artificial PHM data is defined as follows:

FRUL,k (t) = 1− e
−
(︂

t−t0
ak

)︂bk

. (3.36)

In Equation 3.36, the scale and shape parameter, defining the distribution for the current
time step k, are constructed based on the values from the preceding time instance k − 1:

ak = ak−1 · α
bk = bk−1 · β.

(3.37)

With the above definitions, three different datasets A, B and C are generated. The chosen
parameter combination is given in Table 3.8.

While dataset A and B are used to mimic the behavior of a prognosis output, dataset
C defines a static failure distribution, which will be used in the following as a general
distribution as long as no predictions are available. The true end of life times are defined
to be tEoL = 600 h for component A and tEoL = 900 h for component B. The RUL-CDF
evolution of datasetsA andB is shown in Figure 3.19 with respect to the point of prediction
normalized to the true failure time with Λ = tp/tEoL. Also, the generated default CDF is
shown and highlighted in each plot. From both figures, it can be seen that both RUL-CDFs
converge to the true failure times for later predictions as it would be assumed for a well
working PHM algorithm, while the default CDF is a more rough estimate at the very
beginning. This can be seen by the increased steepness of RUL-CDFs for later predictions,
which align more and more with the vertical true EoL pane.
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Figure 3.19.: RUL-CDFs of datasetA andB at different prediction
times

Component-level verification
The scope of the component-level verification has two objectives: At first it shall be verified
that the dynamic ingestion of PHM-like data is working correctly. Secondly, it shall be
assured that the model generates reasonable outputs for dynamic input data. Therefore,
the EMA model from Figure 3.16 is considered again, with node E6 being replaced to
include dynamic PHM data. With this setup, the model is calculated at distinct prognosis
times between tP = 100 h and tP = 500 h, with the corresponding input data from dataset
A for each tP . All other model parameters are kept constant as presented in Section 3.5.1.
To further verify the calculation, the setup is duplicated within Reliability Workbench and
calculated for tP = 100 h and tP = 500 h to generate reference results. As input node
for basic event E6 a Weibull node with constant parameter setting is used, for which the
parameters are manually changed for both calculation times. The model’s output is given in
3.20. The two solid lines represent the calculated failure probability of the EMA estimated
at tP = 100 h respectively tP = 500 h. The reference outputs from Reliability Workbench
for the same parameters are overlaid. In between, the dashed lines visualize the calculated
probabilities for intermediate prognosis times, while the vertical line indicate the true
point of failure, as defined for the considered component.

With the generated results, it is shown that the created aggregation function allows the
integration of time-varying RUL-CDFs from a PHM algorithm. The calculation, at least
for two RUL-CDFs, could be recreated with the reference software Reliability Workbench.
Further, the model shows the expected behavior in a way, that the overall EMA’s failure
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probability will get more precise for later predictions, as the input data evolves as well.

0 100 200 300 400 500 600 700 800
Time t [h]

0

0.5

1

P
(f

a
il

u
re

)

tr
u
e
 f

a
il

u
re

t P
=

1
0
0

t P
=

5
0
0

F
DHRM

F
Ref True EoL

Figure 3.20.: Output of the EMA model’s top node for different
calculation times based on dynamic input data

System-level verification (State-space model)
In a next step, the overall aggregation function on system-level is verified. Therefore, the
simplified system from Figure 3.18 consisting of two identical EMAs is considered and fed
with the generated input data from Table 3.8. According to the definitions from Section
3.2.5 this system has in total four distinguishable states S = {S1, S2, S3, S4}, where S1

and S4 represent the failure free, respectively the failed state, while S2 and S3 indicate
that one of the two EMAs has failed. From a practical point of view, the described actuation
system could represent a subset of a larger system. An example could be the control surface
actuation system of an aircraft, where one steering-axis is controlled by two identical
actuators acting in parallel with the assumption that both actuators are independent of
each other (e.g. no force fighting).

In this configuration, EMA 1 is fed with dataset A, while EMA 2 is fed with dataset B
as dynamic input data for the input node E6. Each component is then calculated for
different prediction times tP and the resulting state probabilities are derived. With the
described setup, the given states and the defined failure times at tEoL,EMA1 = 600 h and
tEoL,EMA2 = 900 h, it is expected that the resulting state probabilities converge towards
the true state transitions for later predictions, which is the scope of this verification test.

The output of the state model is presented in Figure 3.21 for selected prediction times at
tP = {1 h, 250 h, 450 h, 700 h}. For tP = 1 h, where no predictions are available, the default
failure curve from dataset C is considered again. The probability of state S1 remains high
for a while until it starts to be reduced as the probability for a first fault, states S2 and S3,
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rises. For the following period, the probability of S2 and S3 reduces again as it becomes
more likely that both EMAs have failed and thus state S4 is reached. At this point it is
not clear, which EMA will fail first as the probabilities of S2 and S3 are the same. Nor
it is precisely known when exactly the state transition will occur. From tP = 100 h on,
first PHM results (RUL-CDFs) are available and considered for the calculation of the state
probabilities. In the subfigures for tP = {250 h, 450 h, 700 h}, it can be seen how the state
probabilities start to change for later prediction times and move towards the true state
transitions, indicated by the vertical lines. The gradient of the state probability curves
becomes steeper for later prediction points, providing a more accurate indication when the
state transition will occur. At tP = 450 h for example, it can be seen that the probability
of S3 already has risen (meaning that only EMA 2 is available). Thus, the model expects
EMA 1 to fail first, which is correct with the according true EoL-times. It also can be seen
that state S4 becomes more probable from t = 800 h on. With a true EoL of t = 900 h for
the second EMA this is plausible, as the system will enter the failed state S4 on the failure
event of EMA 2. The state S3 in turn is never reached, as this would mean that EMA 2 has
failed while EMA 1 is still working, which is not the case.

The given example complies with the expected output from the aggregation function. The
state probabilities converge towards the true values and the overall model gives reasonable
results. The sum of all states remains one at all times

∑︁
P (Si) = 1 and is therefore also

mathematically correct. The implementation of the system-level aggregation is therefore
considered verified.

3.5.3. Verification of the uncertainty propagation

Based on the previous insights, the uncertainty propagation concept of the DHRM is
verified in the following. Therefore, it is distinguished between component and system-
level and the introduced EMA model as well as the simplified actuation system from the
previous sections are considered again.

Component uncertainties
On the component-level, the induced uncertainties result from the UDREL as well as the
UDPHM as outlined previously. The verification at this point thus is therefore two-fold
and will first focus on the effects of parameter uncertainty (UDREL) as introduced in
Section 3.3.1 before considering any PHM related uncertainties. At first, the EMA model
from the previous subsections is considered again (without PHM input). However, this
time each failure rate is described by a lognormal distribution instead of using constant
failure rates. Thus, the failure rate itself is randomly drawn for each calculation. The
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Figure 3.21.: DHRM output (probability of future system states)
for different prediction times tP

associated uncertainty of the failure rate is then expressed by the standard deviation of the
lognormal distribution σ. To make this effect visible, two experiments are conducted with
standard deviations chosen to be σ = 0.1 and σ = 0.3. In each experiment the EMA model
is calculated by means of an MCS with a sampling size of n = 500. From the variation of
the model’s parameters it is expected that the overall failure probability for the EMA as
well as the probability over time is affected and will vary for the individual samples.

In Figure 3.22, the outputs of both experiments of this verification test are given. It can
be seen that by providing an uncertainty measure for each parameter, the output of the
model results in a family of CDFs with a distribution of the expectancy value E. Further,
the effect of uncertainty factor, here the standard deviation of the lognormal distribution,
can be seen. While the results for the first experiment with σ = 0.1 are much closer to
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each other, those with σ = 0.3 are spread more widely. The detailed configuration of this
experiment together with an overview of the drawn parameters is given in the Appendix
B.2.3 of this work.

Figure 3.22.: Distribution of expectancy value E and associated
median value M (left) together with the resulting
failure distributions for both experiments with consi-
dered uncertainties of σ = 0.1, respectively σ = 0.3
(right)

The second part of the component-level uncertainty verification is dedicated to the correct
consideration of the UDPHM as introduced in Section 3.3.2. Therefore, the EMA model is
considered again, but with enabled PHM data input node. As input data, the generic RUL-
CDF dataset A, as specified in Table 3.8, is used. To account for any PHM algorithm specific
uncertainties, the dataset is enriched with an uncertainty distribution. The artificially
created correction offset psi is based on a normal distribution that evolves over time in a
way, that the overall error becomes smaller for later predictions, as it would be expected
from a well-working PHM algorithm.

The resulting failure probability calculated by the method with dynamic PHM input data
and an associated correction offset is given in Figure 3.23. For each prediction time, a
family of CDFs is created based on the MCS samples. It can be seen that the shape of the
sample distribution gets narrower for later prediction times as expected. As a reference,
the true failure time as well as the default CDF FDefault, used if no PHM data are available,
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are plotted as well.

Figure 3.23.: Estimated failure distribution for the EMA model
with dynamic PHM input data and evolvingUDPHM

Both tests meet the expectations put into the aggregation function with respect to the
uncertainty handling on component-level. The implementation is therefore considered as
verified at this point.

System-level uncertainties
The system-level uncertainty test is similar to the one conducted in Section 3.5.2, but
with additional UDPHM being considered during the prediction times. Therefore, the
UDPHM is again artificially set to decrease with later prognoses times tP similar to the
experiment shown in Figure 3.23. From the DHRM it is expected that the uncertainties
from component-level are propagated through to system-level, as specified in Section
3.3.3.

In Figure 3.24, the results of this experiment are shown. It can be seen, that in contrast
to the results shown in Figure 3.21, each state prediction is represented by a family of
CDFs, according to the MCS sampling size. Similar to the results from the component-
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level verification test, the uncertainty bounds become narrower for later predictions. The
described characteristic is reasonable and complies to the expectations.

Figure 3.24.: Predicted system states for different prediction ti-
mes tP with uncertainties (linear and log scale vi-
sualization)

3.6. Results and conclusions

Within this section the implementation of the proposed method was verified against generic
and reference data.

With respect to the initially stated requirements from Table 3.1 it can be said that the
proposed method is able to include dynamic changing prognostics data. This is realized
by incorporating the RUL-CDF for distinct prediction times into the fault tree model and
recalculating it. The outcomes of this procedure are adapted component failure probabilities

84



as presented in Figure 3.20. This directly addresses requirement R1. Further, the method
is able to account for distinguishable system states in terms of performance or safety based
on the individual failure combinations of the system’s components. Realized by a state-
space model, the probabilities of all (possible) system states are predicted for different
prediction times. From Figure 3.21, it can already be concluded that this has a significant
effect as future system states as well as their transition times become predictable. This
feature addresses R4 and builds the basis for a decision support as required by R2. Further,
the method implements a scheme that allows to define uncertainties that are associated
with model parameters (UDREL) as well as with prognosis algorithms UDPHM ), which
complies to R5. Finally, the overall method is constructed in a generic way, allowing
different systems to be modelled. By using the fault tree model on component-level and a
state-space model on system-level, it aligns to existing reliability modelling frameworks.
Further, conventional reliability measures such as failure rates can be integrated into the
model to account for those components, where a monitoring by means of a PHM system is
not available. This corresponds to the requirements R3 and R6.

With the end of this chapter, the DHRM approach has been conceptually defined, all requi-
red software modules have been implemented and the resulting DHRM has been tested
and verified with simplified input data. The initially stated requirements are considered to
be fulfilled, and the approach is ready to be applied to a real system for further evaluation.
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4. Application of the method to an UAV
actuation system

Within this chapter, the developed aggregation method from Chapter 3 is applied to a
current use-case from the aerospace discipline to outline and prove its applicability. The
use-case and system under study will also build the basis for the further evaluation of the
method in the remainder of this work.

The structure of this chapter and the application of the aggregation method is as follows:
At first the chosen use-case and the considered technical system are introduced in Section
4.1. Afterwards, the system is further analyzed based on a predefined process regarding
its failure modes and behavior. Based on this, two system models are derived in Section
4.2. The first is functioning as a reference model without considering any PHM data at all,
while the second is defined to allow time-variant input data, as suggested for the DHRM
approach. In Section 4.3 the required data for both models is created, before first results
are obtained and discussed in Section 4.4.

4.1. Use-case description and relevance

According to two current outlook studies from the European Union Aviation Safety Agency
(EASA) and the American Federal Aviation Administration (FAA), drone usage and ope-
ration is expected to rapidly increase within the next decades. As an example, the EASA
predicts a cumulated fleet of over 400 thousand unmanned aerial vehicles (UAVs), used
commercially and by the government1 by the year 2050. The envisaged drones reach from
small surveillance drones to mid-sized and large cargo drones, which conduct missions
in visual line of sight (VLOS) as well as beyond visual line of sight (BVLOS). Further, the
EASA estimates the European drone market to become a multi-billion euro market, with
1Not considered in this number are military drones and those for leisure (private / hobbyist drones)
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an annual growth between 10 and 15 billion Euro by 2035, respectively 2050, creating
over hundred thousand new jobs. A great demand for drones is seen in the agriculture,
energy, delivery as well as public safety and security sector, where drones could be used
already in near future to enable new business models, increase efficiency or replace more
expensive solutions such as helicopters [Fed16; SES16]. Accordingly, UAVs are expected
to bring a major impact to our society and economics in the upcoming years. However,
to unlock the full potential their safety and effectiveness has to be thoroughly assured in
order to have this technology accepted by society and to be also economically beneficial.

4.1.1. Description of the Quad-Cruiser, a hybrid drone

A special kind of drones are so-called remotely-piloted aircraft systems (RPAS), which are
controlled by a remote pilot. An exemplary UAV of this group is Airbus’ Quadcruiser
(QC). With a maximum take-off weight of approximately 500kg, the QC is realized in a
hybrid configuration with eight electric redundant lift motors for vertical take-off and
landing combined with a fixed wing system with a pusher motor at the rear to allow
an aerodynamic flight [MMT18]. The QC is especially designed for search and rescue,
surveillance and inspection (e.g. pipelines) missions, where the aircraft needs to fly long
distances, while also having the capability for hoovering and a vertical take-off and landing
(VTOL). A schematic illustration of the QC is given in Figure 4.1.

Aileron 

(right)
Elevators

(left/right)

Aileron (left)

Rudder

(left)

Rudder

(right)

Figure 4.1.: Illustration of Airbus’ Quadcruiser with the control
surfaces being highlighted [MMT18]2
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The QC RPAS is considered being a complex system as it fulfills many of the stated
characteristics as given in Section 1.1. In that way, the QC

• is composed of different systems and subsystems, which are even geographically
distributed as the pilot remains on ground,

• has two different operating modes, the aerodynamic flight as well as vertical lift
(hovering) mode,

• combines different subsystems from different technical domains,

• has embedded uncertainties due to high variability of possible flight missions

• and includes a high level of automation with a remote operator.

Especially the different operating modes as well as the remote pilot of the QC, make
this system an interesting candidate for the application of the proposed dynamic hybrid
reliability model, which is due to the following reasons:

1. Realized in a hybrid configuration, the QC has an inherent redundant setup in which,
at least to some degree, the operating mode can be changed in the occurrence of a
subsystem failure.

2. Being remotely piloted, the pilot in command relies on an automated and accurate
system feedback about the QC’s current capabilities to incorporate that information
into his decision-making during the current mission.

3. Considered as a multirole drone, the QC is expected to be operated in varying system
scenarios, leading to different degradation patterns. From an operators point of view
it is therefore interesting to precisely estimate the remaining performance of an
individual aircraft in order to plan upcoming missions and schedule maintenance
tasks.

4.1.2. System under study – the Control Surface Actuation System
(CSAS)

With the above considerations the Control Surface Actuation System (CSAS) of the QC, as
the main control system during the aerodynamic flight phase, is chosen as the system under
study in this work. This actuation system itself is part of a larger closed-loop control system
of the aircraft as depicted in Figure 4.2. Key elements of this control-loop include the flight
2With kind permission of the authors of [MMT18].
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control computer, the actuation system, the sensors as well as external disturbances and
the resulting aircraft dynamics. The flight control computer receives a reference input
from either the pilot in command or a flight path controller (not shown in the figure)
and compares this to the system feedback obtained from sensors. The calculated output
is then sent to the actuation system, which translates the information into acting forces.
These forces together with external disturbances lead to the overall aircraft dynamics.
For this work, it is chosen to focus on the actuation system, neglecting the sensors and
flight control computer. The rationale for this decision is that these components do not
cause a step-wise change in system performance. Both the FCS and the sensors provide
digital outputs. Therefore, omission of these systems results in a complete loss of control of
the aircraft. This is different for the actuation system, which is characterized by different
degradation and performance states. Depending on the combination of failures, the aircraft
can still be controlled, but is limited in its maneuverability and actuation forces. Thus, the
application of the previously introduced DHRM makes much more sense for the actuation
system itself.

System boundaries

Flight Control 

Computer

Aircraft 

Dynamics

Control Surface 

Actuation System

Sensors

Disturbance

Ref. input Output

Figure 4.2.: Block diagram of the closed flight control-loop with
the systemunder study, theControl SurfaceActuation
System, being highlighted

The CSAS is composed of six identical electromechanical actuators, which are used to
actuate six independent control surfaces to generate the pitch, roll and yaw moments
required to control the aircraft. As there are always two EMAs used to act on the same
axis, e.g. pitch, roll and yaw, the CSAS itself is inherently redundant and failure tolerant.

The used EMAs within the CSAS are rotary actuators completely embedded in a housing
similar to a servo drive. For safety reasons, each motor has two brushless direct current
(BLDC) motors, which are configured in a redundant setup and are connected by a single

90



gearbox. Thus, each EMA is still operable after one BLDC motor failure (electrically fail/op,
mechanically fail/safe).

To allow a precision positioning each EMA is further equipped with three position sensors,
which are governed by a voter monitor scheme to detect any failures. Finally, each EMA
has two distinct electronic control units (ECU), which run on different power lines and
bus systems two allow a redundant control of the actuator. In case of a failure event the
active controller is automatically changed (hot standby). In Figure 4.3, a prototype EMA
of the QC is shown, installed on a test-rig at the TU Darmstadt. On the left-hand side,
the two connector cables for the redundant controllers can be seen, on the right-hand
side the output shaft of the EMA is connected to an active load simulator. The break-out
connectors in the center of the EMA have been additionally added to allow the monitoring
of the motor currents and are not part of the commercial of the shelf product.

Figure 4.3.: A QC’s EMA installed on a test-rig at TU Darmstadt

4.2. Application process for the Dynamic Hybrid Reliability
Model

In the following section the developed DHRM is applied to the use-case with the Control
Surface Actuation System (CSAS) of the Quadcruiser as the system under study. For the
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application of the method, the following generic process is proposed, which is system
independent:

The first step in this process is the identification of relevant parts and their dependencies
as it is usually performed in most reliability assessments. This pre-analysis can be based
on a part list or an FMEA from which the part’s functions as well as their relevance can be
concluded. Afterwards a part-analysis is conducted. The aim of this step is to identify the
general degradation mechanism associated with each part and to define an appropriate
modelling strategy. In relation to the DHRM approach this means to identify, if dynamic
PHM data are available for a monitored part or not. Once this is defined, the component-
analysis is conducted, in which the part dependencies of each component are identified.
In this work, the DHRM approach and a Fault Tree model is used for that. In the fourth
step, the system-analysis, the individual failure combinations of all system components are
elaborated in order to derive the resulting failure modes and their severities. Once this is
known, the DHRM can be defined and is prepared for the later calculation with input data.

The overall process is shown in Figure 4.4 and will be conducted in the following. At this
point it shall already be noted that the further evaluation of the model will be based on
simulated data. The decision to use simulated data rather than real system failure data in
this work was made due to the following circumstances:

1. The QC as well as its CSAS are both prototypes themselves, which makes it difficult
to obtain a large representative dataset of real failure and degradation data.

2. Due to the complexity of the system composed of six actuators, accelerated life-tests
would have been time-consuming and expensive.

3. Based on simulated data a broad range of parameter combinations can be easily
evaluated, including extreme value scenarios which are rare to find in real data.

As simulated data is used, the process steps in Figure 4.4 are also used to investigate
the underlying degradation mechanisms and to motivate the considerations for the used
degradation models and the generation of run-to-failure data in the upcoming sections.

4.2.1. Identification of relevant parts (pre-analysis)

As required for the DHRM approach, at first all relevant parts of the CSAS are identified. As
previously described, the system consists of six identical EMAs. Each of them is composed
of two controllers, two BLDC motors, one connected gearbox as well as three identical
rotary position sensors. All of these parts are functional relevant for each EMA and thus
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Figure 4.4.: Defined process and associated tools and methods
to develop the required DHRM for a given use-case /
technical system

for the CSAS to work correctly. Still there also a few parts that are neglected in this work.
This includes the housing of each EMA, as it is assumed to be over dimensioned with
comparably much lower failure rates compared to all other items, as well as any wiring
within and between the EMAs. The latter is argued as a wiring failure will lead to a lost
controller, motor or sensor and thus can be attributed to those part’s failure models.
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4.2.2. Selection of failure models (part-analysis)

In this step, the identified component parts are further analyzed with respect to their
degradation mechanisms and suitable monitoring schemes. This builds the basis to choose
representative failure models for the later simulation of the system.

Electronics (controllers and sensors)
A portion of parts used in each EMA are electronics. This includes both controllers and
the three identical position sensors. The controllers and sensors play a crucial role for the
EMA as they are used to actively control the position of the servo. As stated in Chapter 2,
monitoring of electronic parts can be cumbersome because of their tiny size and high level
of integration. Finally, most sensors used for health monitoring require electronic-rich parts
themselves, which makes it further impractical to apply PHM to electronics. Nevertheless,
a few options have been investigated in literature and research. An overview of applicable
methods is given in [PK18] and [Pri+17]. Many of the described methods are based on
the Physics of Failure (PoF) approach as outlined in Section 2.1, which can be used to
describe the general mechanisms which cause an electrical item to fail. They are suited
to support a design for reliability but do not cover an active feedback loop assessing the
current health level as it is required for an individual part’s prognosis. Other methods,
being discussed in research, include so-called canary devices [MOP12; Das+10]. These
additionally integrated circuit parts are predetermined breaking points in an electrical
form and usually consist of small conducting paths, which are intended to break for high
stress.

Although these concepts exist, it is still impractical for most applications to implement an
active monitoring scheme for electronic parts as it is technically or economically not feasible.
Therefore, and in compliance with the proposed aggregation method, it is considered in
this work that these parts are not monitored by a PHM system and must be modeled by
means of conventional reliability methods based on failure rates. Nevertheless, as failure
rates can significantly vary for changing environmental factors, it is proposed to allow for
a dynamic adaption of failure rates.

Gearbox
A common cause for gear failure is bending and contact fatigue, which results from large
amount of cycles and, especially for servo actuators, the alternating direction of rotation
[ZZX16; Err02]. This continuous wearout leads to (micro-) pitting, spalling and cracks,
which causes an increased acoustic noise and vibrations. Fatigue life prediction has been
studied in literature over a long time and can be broadly split into models with a constant
load as well as those assuming a varying amplitude. Representatives of the first group
include the Wöhler-curve, which is based on a stress-life S − N curve, as well as the
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Paris-Erdogan-law, a model used to describe the growth-rate of a crack. Regarding the
varying load models, theMiner-Palmgrem model is widely accepted [HL97]. The hypothesis
behind this linear damage model is, that each material can absorb a certain amount of
accumulated energy, which is directly connected to the stress it takes. In this model, the
ratio between observed cycles n and the total number of cycles N are accumulated over
all (distinct) stress levels i to describe the current damage fraction D:

∑︂ ni

Ni
= D (4.38)

For D = 1 the material is considered to have failed. In this way, the correlations from
the S −N curve for static amplitudes can be extended for varying loads, which is more
realistic in most usage scenarios.

Monitoring schemes for gears have been widely studied in the literature and can be mainly
realized by vibration monitoring or load measuring [Lee+14; Lan01]. For the EMA in this
use-case it is therefore assumed that a gearbox monitoring is available. Further, a linear
degradation characteristic is considered as main degradation mechanism as given by the
Miner’s rule for this part.

Motors
BLDCmotors are very efficient and powerful electrical motors, which is the reason why they
gain more and more importance in the aerospace domain. As given in [DSK11; SSG14]
most relevant motor failures are bearing (41%), stator (37%) and rotor (10%) related
failures.

The most often found failures for BLDCs are bearing failures. Bearings are used to hold
the rotating rotor bar in position. Due to excessive cycling, mechanical overload as well as
environmental aspects such as high humidity (corrosion), bearings will deteriorate over
time [OSP12]. Typical failure modes include seizure, spalling or brinell marks, which
will cause increased vibrations and noise and can propagate till a complete collapse or
blockage of the bearing.

Next to the bearings are stator faults, rated as second most occurring failures. Stator faults
are mainly winding shorts, which can be further split into coil-to-coil, phase-to-phase,
coil-to-ground and turn-to-turn faults. These faults occur due to high temperatures or
vibrations, which cause the thin insulation film of the coils to deteriorate [SSG14]. As a
result the overall performance of the motor will be reduced as the magnetic field strength
is decreased.
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The third most often failure includes rotor faults. These include static eccentricity, dynamic
eccentricity and flux disturbances due to defects of the used permanent magnets [LHH03].
While the first two failure modes originate from external loads, a misalignment or bent
rotor shaft, the latter occurs due to high temperatures, physical damage and aging effects
[UH18]. All together those failures will result in vibration and acoustic noise due to the
imbalanced rotation and magnetic field. A (partial) demagnetization of the used magnets
will further reduce the overall efficiency of the motor.

Being an often used item, the monitoring of electrical motors, including BLDCs, have been
widely studied in the literature. Common diagnosis methods to assess the current level of
degradation of these parts are summarized in [DSK11], [Ise11] and [Cho+19]. Besides
approaches based on an observer model (physical model) as described in [Ise11], in recent
years more and more data driven methods have evolved, which use machine learning
and pattern recognition techniques to assess the current level of degradation from online
data. These methods are based on a signal analysis, which includes vibration, acoustic and
torque monitoring as well as the motor current signal analysis (MCSA) [Cho+19]. In Table
4.1, an overview of the most important failure modes and possible detection schemes for
BLDC motors is given.

From the above insights it is concluded that a BLDC monitoring in terms of prognostics is
technical feasible. Further research papers such as [SJ20] and [Xua+17] describe non-
linear degradation schemes for BLDC motors. Therefore, in this work both BLDC motors
are considered to be monitored by means of a PHM system. The underlying degradation
mechanism is assumed to follow an exponential failure model as suggested in literature.

4.2.3. Identification of part dependencies (component-analysis)

With the parts and their corresponding failure models identified, the CSAS components
are analyzed next. With the system being composed of six identical EMAs, this analysis is
carried out only once.

As stated before, each EMA has two controllers in a hot standby configuration. The complete
EMA thus will be fully functional unless both controllers have failed. Further, there are
two identical BLDC motors installed in each EMA. Being connected to the same axis, the
EMA is still functional after the first BLDC motor failure and will continue to work until
both motors have failed. The connected gearbox is the link between both motors and
the output lever of the EMA. Being singular, the EMA will fail as soon as the gearbox
becomes non-functional e.g. blocked or torn off. The remaining three position sensors are
configured in a voter-monitor scheme in which the sensor signals are compared to each
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Table 4.1.: Failuremodes, effects and detectionmethods for com-
mon BLDC failures

Failure mode Failure causes Fail. mechanism Detection methods

Be
ar
in
g

Seizure Thermal over-
load

Lubricant dete-
rioration MCSA, vibration

analysisSpalling Cyclic loading Fatigue
Small furrows Moisture Corrosion
Brinell mark Mechanical over-

load
Yielding

St
at
or

Winding shorts Thermal or
mechanical
overload

Aging of insula-
ting material

MCSA, Direct Flux
Monitoring, Tempe-
rature Monitoring,
Current Voltage Mo-
del

Ro
to
r Eccentricity (sta-

tic)
Static load Fatigue MCSA, vibration

analysis, Direct
Flux MonitoringEccentricity (dy-

namic)
Misalignment,
bend rotor

Fatigue

Partial demagne-
tization

Thermal stress Aging of ma-
gnets

MCSA, Direct Flux
Monitoring, Cur-
rent Voltage Model

other being able to detect and discriminate any faulty sensor. This concept works with at
least two sensors being intact.

Accordingly, the EMA’s part dependencies are modelled by a combination of AND blocks
(motors and controllers), one 2-out-of-3 block for the sensors, as well as one large OR
connection considering all grouped parts together. The resulting dependency model in
form of a Fault Tree model is shown in Figure 4.5. Those parts considered to be monitored
by PHM as outlined before are highlighted.

For the sake of completeness, it should be noted at this point that in this work it is assumed
for simplicity that the failure of sensors or controllers are always detected correctly and in
time by the system.
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Figure 4.5.: Resulting Fault Tree model used to model the depen-
dencies of all considered parts within the EMA

4.2.4. System failure modes and related states (system-analysis)

Excluding the power supply as well as the flight controller from the considered system, the
CSAS consist of six EMAs. As each EMA is self-contained and independent of the others,
they are considered as the components of the CSAS. With always two EMAs acting on the
same steering axis, the system consists of a left/right aileron EMA, a left/right rudder EMA
as well as a left/right elevator EMA as shown in Figure 4.1.

With the assumption that each actuator can fail individually, this leads to exactly 26 failure
combinations respectively system states. The overall number of these inherent system states
can be greatly reduced by grouping states with same severity together. This procedure shall
be illustrated with an example: We consider a failure affecting the x-axis maneuverability
of the aircraft. This will be the case if either the left or the right aileron EMA of the aircraft
has failed. Although being distinct failure combinations from a technical point of view, the
effect as well as the severity of each failure mode will be the same, leading to a reduced
control moment around the x-axis. Thus, it is reasonable to represent both system states
as one:
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P (Sxaxis) = P
(︁
Saileron,left

)︁
+ P

(︁
Saileron,right

)︁
(4.39)

This concept can be further extended as from an operator’s point of view it might not be
relevant, which exact axis is degraded as the aircraft’s overall maneuverability is already
affected.

In Table 4.2, the initial system states have been broken down to a manageable amount. In
total there remain five distinguishable meaningful system states, which are differentiated
by the amount of axis affected by degradation and the associated effect. The most severe
state therefore is S5, which refers to a loss of control, which will happen as soon as two
EMAs acting on the same axis fail. The ideal and desired state is S1, where no failure is
present and the CSAS has its full specified operating power. States S2 to S4 describe those
states, where one or more axes are affected by exactly one failed EMA. Thus, the overall
steering power on the affected axes are reduced as only one EMA is working. Still the
aircraft remains maneuverable. Finally, there is state S4, which describes a single failed
EMA on each axis. As it will be shown later, this state is very unlikely.

Table 4.2.: Derived (grouped) system states for the SCAS

State Failure mode Effect Criticality
S1 no failure none none
S2 1-axis degraded reduced performance low
S3 2-axis degraded reduced performance medium
S4 3-axis degraded reduced performance medium (unlikely)
S5 n-axis failed loss of control high

4.2.5. DHRM and reference model definition

Based on the previous system analysis the DHRM as well as a reference model are construc-
ted. Both will be used throughout the remainder of this work to compare and evaluate the
proposed DHRM.

Each model is composed of six EMA Fault Trees, as described in Section 4.2.3. Each of
them is modelled with the custom Simulink Fault Tree library from Section 3.4.1. Both
controllers and all three sensors are modelled as basic events with fixed failure rates.
The two motors as well as the gearbox are modelled with a dynamic input gate to allow
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time-variant input data. The resulting Simulink Fault Tree model is given in the Appendix
C.1.

All six EMA Fault Tree models are then connected to the state-space model, which incorpo-
rates the different distinguishable system states as elaborated in the previous Section 4.2.4.
The EMA Fault Trees as well as the state-space model are embedded in the Aggregation
Tool as described in Section 3.4.2 and thus provides all necessary in- and output ports to
run the simulation. For each simulation, the input data as well as the static parameters
can be configured and modified.

In Figure 4.6 the structure of both models is illustrated. It shall be noted, that they rely
on the same structure, but are connected to different input streams. While the reference
model will be feed by a constant failure distribution, the DHRM will receive frequently
updated failure probabilities for the motors as well as the gearbox in form of dynamic
changing RUL-CDFs.

State 

Space 

Model

EMA Model

Left Aileron EMA Model

Left Aileron EMA Model

Left Aileron EMA Model

Left Aileron EMA Model

Left Aileron EMA Model

Left Aileron 

Dynamic 

input data

(DHRM)

State 

prob.

Static parameters

(e.g. failure rates)

Component level (Fault Tree models) System level

Const. data 

(reference)

Failure states 

and severities

Figure 4.6.: Illustration of the used reference and DHRM

4.3. Simulation environment

To test and evaluate the proposed DHRM, one would require one (or ideally more) existing
systems equipped with a functional PHM system that creates RUL-CDFs for the degrading
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parts. For those parts subject to random failures (e.g. electronics), failure times would
have to be logged and statistically evaluated to derive the corresponding failure rates. As
outlined at the beginning of this chapter, this is an expensive and cumbersome task if no
existing data is available. Therefore, it is chosen to simulate the required input data for
the DHRM within a simulation environment for this thesis and to compare the defined
DHRM against a reference model based on that data.

In Figure 4.7, all elements of the simulation environment are shown in comparison to a real
world application. The used models, the DHRM respectively the Weibull reference model,
are highlighted in the figure. The simulation environment thus is used to substitute the
degradation process of a real-world application with empirical data respectively generated
degradation data depending on the part’s failure behavior.
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Figure 4.7.: Used simulation environment to generate and descri-
be required input data for the later evaluation of the
DHRM and comparison against a reference model

The overall data generation is based on the following approach: The electronic parts of the
EMA, the controllers and sensors, are expected to fail on a rather random basis and thus are
modelled with failure models as given in the MIL-HDBK-217F. To allow the consideration
of different usage scenarios, environmental factors are further varied to create a broad
parameter data basis. This will be further outlined in Section 4.3.1. For the motors and
the gearbox, which are expected to degrade in a continuous manner with measurable
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health indicators, a common framework based on stochastic differential equations (SDE
Framework) is introduced in Section 4.3.2 that will be used to create realistic run-to-failure
data. This data will then be evaluated in a statistical manner for the reference case using
a Weibull distribution in Section 4.3.3. Further, a prognosis algorithm is developed and
applied to the data in Section 4.3.4 to create the required dynamic RUL-CDFs for the
DHRM approach.

4.3.1. Selection of failure rates

In order to define realistic failure rates for the electrical parts of the CSAS, the military
handbook MIL-HDBK-217F is consulted. The two servo controllers as well as the position
sensors are represented by exponential failure models in analogy to the servo model
given in [Yuy+15]. The failure rates used to model these parts are derived from the
MIL-HDBK-217F as presented in Section 2.2.2. Both controllers and the three positions
sensors are considered to be identical.

Position sensors The sensors of the servo are modelled as rotary encoder as given in
MIL-HDBK-271F Section 12.2. The part failure rate is given as:

λp = λbπSπNπE
Failures

106Hours
(4.40)

The factors πS = 2.25 and πN = 1.4 are taken from the military handbook and product
specific. They remain constant during operation. The environmental factor πE however is
subject to changes during the mission-phase. The base failure rate λb finally accounts for
the current temperature T and is defined as:

λb = 0.00535 exp

(︃
T + 273

334

)︃8.5

(4.41)

In Figure 4.8, the general parameter-space for the sensor’s failure rate is shown for varying
temperatures and different environmental classes based on Equation 4.40.

Servo controllers
In analogy to the position sensors, the failure rates for both controllers are derived based
on the MIL-HDBK-217F. Both controllers are considered to have a CMOS design in form of
a digital gate array, a common design for microcontrollers and chips. The data used in the
model is taken from the given example in MIL-HDBK-217F in Section 5.13. As given in
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Figure 4.8.: Failure rate of the position sensor for different envi-
ronments and temperatures

the handbook, the failure rate for such microcircuits is predicted based on the following
function:

λb = (C1πT + C2πE)πQπL (4.42)

In this function, the parameters C1 = 0.02 and C2 = 0.011 account for the complexity
of the part. The parameters πQ = 3.1 and πL = 1 are the quality and learning factor
and considered to be constant throughout the flight mission. The parameters πT and
πE account for the case temperature and the current environment the part is used in.
These parameters are foreseen to be adjusted to the current mission. With the above
formulation the failure rate space can be drawn, which is shown in Figure 4.9 for different
environments and temperature ranges.

Scenarios and parameter definition
For the further application and the conducted simulations, a set of failure rates are selected
according to different scenarios, which directly affect these parameters.

The first parameter to vary is the temperature, which greatly affects the derived failure
rates. In this work, the following different scenarios are assumed: Scenario I considers
a cold environment around T = 0◦C, scenario II a mild environment around T = 20◦C,
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Figure 4.9.: Parameter space of the ECU’s failure rate in depen-
dence of the temperature and environment

scenario III a hot environment with T = 40◦C and scenario IV an extreme one with
temperatures of T = 60◦C. The specified temperatures further correspond to the case
temperature of the considered parts.

Besides the temperature, also the overall flight mode shall be considered. According
to the MIL-HDBK-217F it is distinguished between installations on a fixed wing aircraft
(AIC , πE = 4.0) and installations on rotary wing aircraft (ARW , πE = 8.0). The considered
hybrid UAV in this work can be operated in two modes, aerodynamic flight and vertical
take-off and landing, thus these two modes shall be distinguished further in the following
to account for the additional vibrations induced by the lift-rotors during hovering. The
missions are therefore classified according to the ratio between aerodynamic flight time
and hovering. The environmental factor thus is chosen accordingly to vary between
4 and 8. Based on these considerations, the following parameter sets are drawn from
the above equations for the different operation modes and environments, summarized
in Table 4.3 and 4.4. It shall be noted, that the generated failure rates vary between
λSen = 0.08×10−6/h and λSen = 0.35×10−6/h for the sensors and λECU = 0.13×10−6/h
and λECU = 0.3× 10−6/h for the ECU.
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Table 4.3.: Sensor failure rate selection for different scenarios in
failures / 10E6 hours

Environment cold T =

0◦C
mild T =

20◦C
hot
T = 40◦C

extreme
T = 60◦C

Aerodynamic flight
πE = 4

λSen = 0.08 λSen = 0.09 λSen = 0.12 λSen = 0.18

Mixed flight mode
πE = 6

λSen = 0.12 λSen = 0.14 λSen = 0.18 λSen = 0.27

Hovering only πE =

8

λSen = 0.16 λSen = 0.18 λSen = 0.24 λSen = 0.35

Table 4.4.: ECU failure rate selection for different scenarios in
failures / 10E6 hours

Environment cold T =

0◦C
mild T =

20◦C
hot
T = 40◦C

extreme
T = 60◦C

Aerodynamic flight
πE = 4

λECU =

0.13
λECU =

0.14
λECU =

0.15
λECU =

0.16

Mixed flight mode
πE = 6

λECU = 0.2 λECU =

0.21
λECU =

0.22
λECU =

0.23

Hovering only πE =

8

λECU =

0.27
λECU =

0.28
λECU =

0.28
λECU =

0.30
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4.3.2. Simulated degradation data based on SDE

For the electromechanical parts of the CSAS, the BLDC motor as well as the gearbox, it is
chosen to generate artificial run-to-failure data. Therefore, after deriving the theoretical
background, a stochastic differential equation (SDE) framework is used to build a common
database with a large set of failure curves.

In literature there exists different approaches on how to create artificial and realistic failure
data based on mathematical models. A common approach is to use models that generate
point estimates, respectively distributions of point estimates, which describe the event of
failure and is similar to the conventional reliability concepts, working with distributions
and statistics. However, another approach is the artificial generation of a degradation
trajectory, which describes the degradation process over time (or a number of cycles). This
is much closer to the concept of PHM, as it is capable of describing a health state of a part
at any time between its first use and the time of failure. Thus, the latter, trajectory-based
approach, is chosen in this work for the artificial generation of run-to-failure data.

As given in [MHE04], trajectory-based models can be further split into parametric and
stochastic models. The parametric models are often referred to as general path (degradation)
models, as defined in [LM93]. This model type uses a combination of fixed and random
parameters. While the first are used to form the general shape of the degradation curve
and thus the overall degradation behavior of the considered part, the latter are used to
introduce some variance accounting for the part-specific factors, such as individual usage,
fabrication tolerances or deviations in the material. Being a parameterized model, failure
times are predicted by transposing the model function. For some special simple cases the
failure time distribution can then even be derived in a closed form. The general path model
is defined as

xij = η(tk,Φ,Θi) + ϵij , i = 1, 2, . . . , n (4.43)

In Equation 4.43, the degradation of the i-th part at time step tk is described by the
general path function η(tk,Φ,Θi), which is superposed by a standard measurement error
ϵik = N(0, σ2). The general path function is composed of the fixed parameters Φ, and
those subject to variances Θi.

An alternative to this deterministic modeling approach is to model the degradation as a
stochastic process, in which the evolution of degradation is iteratively described. Commonly
used time continuous processes include the Wiener process, also known as Gaussian or
Brownian motion, the Gamma Process as well as the Geometric Brownian Motion (GBM)
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Table 4.5.: Configuration of defined stochastic processes

Process a(·) b(·) Dt

Wiener µ · dt σ2 Dt ∼ N (µ, σ2)

Gamma 0 β Dt ∼ Γ(α, β)

GBM µ ·Xt · dt σ2 ·Xt Dt ∼ N (µ, σ2)

GGP α ·Xt · dt β ·Xt Dt ∼ Γ(α, β)

and Geometric Gamma Process (GGP). The use of these processes to model degradation has
been studied in [LC04; PP05] and [Whi95]. The idea behind this approach is to model the
degradation with small damage increments at discrete time points. These increments are
drawn from defined distributions such as the normal distribution for the Wiener process or
the Gamma Distribution for the Gamma Process. An important property of these processes
is that the drawn increments are independent of any previous samples.

A general definition of such processes used for degradation modelling is described in
[PP05] and can be formulated as stochastic differential equation (SDE) as given below

dXt = a(Xt, t)dt + b(Xt, t)dDt. (4.44)

In Equation 4.44, Dt describes the underlying stochastic process, while a(·) and b(·)
describe the general shape of the found solution. Here a(·) is the damage accumulation
function, which accounts for any previous degradation. Mathematically this is also known
as drift, as SDEs with a(·) > 0 will tend to increase, while SDEs for a(·) < 0 tend to
decrease over time. Further, b(·) describes the general form of the used damage model.
Depending on the initial condition and parameter selection, Equation 4.44 can be used to
model various stochastic processes such as the Wiener, Gamma or Geometric Brownian
Motion process. In Table 4.5, a general overview of parameter settings is given, on which
the described processes can be modelled.

Generation of run to failure data
Based on the given overview, it is chosen to use the more generic SDE framework to
generate run to failure data in this work. This is chosen as no exact model, as required for
the general path model, can be stated at this point. The SDEs instead is implemented in a
very generic way and used to sample different forms of failure curves. The implementation
of Equation 4.44 is realized in recursive way as follows:
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dX = a(Xk)dt + b(Xk)dDt (4.45)

Xk+1 = Xk + dX + ε (4.46)

Herein Xk describes the degradation of a component at time instance k. In addition to
4.44, the parameter ε was added to 4.46, which is used to account for any observation
and measurement errors on the true degradation X. It is modelled as white noise with
ε = N (0, σ2

ϵ ), where σ2
ϵ can be used to artificially deteriorate the measurement’s accuracy.

Based on the above formulations, different generic failure trajectories are generated and
stored in a database, which is used as data input for the evaluation and analysis of the
proposed method. The resulting run-to-failure Degradation DB is organized into four
different failure groups DW , DG, DGBM , DGGP according to the underlying stochastic
process. Further, each group contains multiple failure familiesDi,j with varying parameters
to account for the overall degradation rate (drift parameters α and µ) and the general
shape of the process (parameters β and σ2). The observation noise variance σ2

ϵ is set
equally for all families and groups. Finally, each family contains a set of 100 individual
failure trajectories which represent the individual parts. In Figure 4.10, the generation of
the Degradation DB is illustrated.
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In Figure 4.11, different failure families of the four groups are shown. It shall be noted
that the degradation trajectories are normalized in a way that the failure event occurs for
a degradation level of x = 100 with a median time to failure of 100 time steps k. Thus, this
general data can be easily adjusted to various time and degradation scales.

Figure 4.11.: Exemplary failure families of different groups (row-
wise) and different noise levels (column-wise)
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Selection of degradation data
With the artificially generated degradation data in the database, the ground truth failure
trajectories for the further application are chosen. To avoid any predictions with training
data, each dataset is split into a training, validation and evaluation subset with shares of
20%, 20% and 60%. While training data are only used for the training of any prognosis
algorithms, the validation data are used for the performance assessment of the resulting
algorithms. The remaining evaluation data are then available for the later application in
the use-case.

In Table 4.6, the general selection of data is shown. The data for the gearbox is selected
from the Wiener Process model as it is expected to follow a rather linear degradation
scheme as outlined in Section 4.2.2, while the data for the motors is selected from the
Geometric Gamma Process, representing an exponential degradation behavior (compare
Section 4.2.2). For the Gearbox, all degradation data are chosen from Wiener Process data
with a degradation rate of 2 and a degradation noise of 4. The data for the motors are
chosen from the Geometric Gamma Process data, from failure families with a degradation
of 1, 2 and 3 having a degradation noise of level 2. As all datasets are normalized by default
to fail with a median of 100h, the time vector is further rescaled with a scaling factor υ, to
better reflect a realistic failure time. For the motor data a scaling factor of υ = 20 is used,
while for the gearbox a factor of υ = 30 is used.

Table 4.6.: Selected degradation data for the evaluation of the
DHRM approach

Family Data Split (in %)
Component Failure Group

Rate Noise Training Validation Evaluation
Gearbox Wiener Pro-

cess
2 4 1-20 21-40 41-100

BLDC Motor Geometric
Gamma Pro-
cess

1, 2, 3 2 1-20 21-40 41-100

Based on this concept samples are drawn for all components, which are used as ground
truth data during the evaluation phase. For the Gearbox, six independent trajectories are
randomly chosen from the Wiener Process data from the evaluation set, while for the
motors, twelve trajectories are taken from the GGP as each EMA has two BLDC motors. In
Figure 4.12, the selected complete failure dataset for both, the motor and the gearbox,
are shown. Also, the selected ground truth data are highlighted.
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With the ground truth data chosen, each failure trajectory is assigned to one component
of the CSAS, which is done again on a random basis. In Table 4.7, the resulting EoL times
for each component and part are given. Also, the overall failure time of each EMA is stated
and the contributing EoL failure is highlighted.
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Figure 4.12.: Select failure trajectories set as true failure curves
during the evaluation phase

Table 4.7.: Selected failure times for each EMA in [h]

Component BLDC 1 BLDC 2 Gearbox tEoL F Ord.
EMA Aileron left 1542 1584 1950 1584 1.
EMA Aileron right 2116 2240 2520 2240 3.
EMA Elevator left 1498 1776 3000 1776 2.
EMA Elevator right 2276 1944 2430 2276 4.
EMA Rudder left 2300 2368 3150 2368 5.
EMA Rudder right 2054 2420 2670 2420 6.
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4.3.3. Weibull reference model (base-line approach)

With the input data being defined and in accordance with Figure 4.7, a reference model
is defined in the following, which will be used to compare and benchmark the proposed
DHRM against in the remainder of this thesis. The reference model is based on the
assumption, that failure rates are known (as defined in Sections 4.3.1) and that samples
from the run-to-failure data are available for a statistical evaluation. In that way, the
reference model uses only statistical models as inputs without any time-varying data as it
would be the case with any PHM system in place.

The reference model is defined as follows: Based on the rescaled failure data a statistical
evaluation of the failure times is carried out. This evaluation is considered as base-line
approach and is used to feed input data to the reference model. In comparison to a real
world application, only a small portion of observations is considered to be available for
the statistical evaluation. Therefore, the available data from the training subset (20%) is
taken, while the complete dataset of EoL values is considered as the overall ground truth.

In a next step, a maximum likelihood estimator is used to fit the data against a predefined
distribution. Because of its universality the Weibull distribution is chosen in this case. The
estimated values are the scale and shape parameters η and β of the Weibull distribution as
well as the expectancy value E (tEoL) and the 95% confidence intervals CIlow and CIhigh.
In Table 4.8, the estimated distribution parameters are shown together with the deviations
from the ground truth distribution. It can be seen that even for a small subsampling size,
the estimated parameters are close to those of the ground truth distribution. However, it
can be also seen that the overall failure times are widely spread as shown in Figure 4.13.
In a conservative scenario, where a high reliability of the components is required, it would
be reasonable to choose the lower CI bound CIlow as the MTTF. In that case a mean value
of roughly 730h of unused lifetime would be lost for the motor, respectively 860h for the
gearbox, while having a 97.5% chance to avoid an unforeseen failure event. With respect
to Figure 2.6, this is considered to be the available PHM potential for these parts.

With the above evaluation, the reference failure models for the BLDC as well as the gearbox
are derived. The resulting failure probabilities are

F ∗
BLDC (t) = 1− exp

(︃
−t
2180

)︃8.5

(4.47)

and
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Table 4.8.: EoL characteristics of the used data for the BLDC
motors and the gearbox

BLDC Gearbox
g. truth [h] obs. [h] dev. [%] g. truth [h] obs. [h] dev. [%]

E(tEoL) 2108 2059 2.34 2586 2550 1.37
CIlow 1379 1415 -2.55 1727 1705 1.30
CIhigh 2669 2541 4.78 3239 3193 1.42
η 2245 2180 2.90 2747 2709 1.39
β 7.55 8.50 -12.63 7.92 7.94 -0.23

(a) BLDC EoL (b) Gearbox EoL

Figure 4.13.: End of life distribution for the BLDC and the gearbox
- observations vs. ground truth

F ∗
gear (t) = 1− exp

(︃
−t

2708.8

)︃7.94

. (4.48)
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4.3.4. Development of a GPR-based prognosis algorithm

As initially described and shown in Figure 4.7, a PHM algorithm is required that transforms
the run-to-failure data into the RUL-CDFs, which are required by the DHRM. Therefore,
this section is dedicated to the definition of a very basic prognosis algorithm that is used in
the remainder of this work to create the required dynamic input data for the DHRM. The
developed prognosis algorithm is based on a Gaussian Process Regression (GPR) model,
which is used to learn the degradation-rate at distinct degradation levels from the observed
data. This is a purely data-driven approach, similar to the concept shown in [PAK14].

The general concept of the GPR-based prognosis algorithm is shown in Figure 4.14. Based
on historical degradation data, as described in Section 4.3.2, the underlying GPR model is
initially trained. During the prognosis resp. validation of the algorithm, new degradation
data is then fed into the model. Based on an MCS, n samples are then drawn to represent
the current degradation xk at the time of the prognosis tP . These samples are then
populated by the GPR model until all samples have reached a predefined degradation
threshold xth.
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Figure 4.14.: Concept of the prognosis algorithm

After describing the basics of the GPR and how it can be used for predictions, a simplified
and improved version of the above described concept are developed in the following and
evaluated in terms of their performance.
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Basics of the Gaussian-Process regression model

The GPR is a supervised learning algorithm based on the Gaussian Process (GP) that is
used for regression and classification problems [RW06]. The GP itself is fully defined by
its mean function m(x) and its covariance function k(x,x

′
). The process f(x) thus can

be written as

f(x) ∼ GP (m(x), k(x,x
′
)), (4.49)

in which

m(x) = E [f(x)] (4.50)

k(x,x
′
) = E

[︂
(f(x)−m(x))(f(x

′
)−m(x

′
))
]︂
. (4.51)

The aim of the regression problem is to find an arbitrary function f(x), which maps a given
input x = [x1, x2, . . . xn] of size n to an observed output vector y = [y1, y2, . . . yn]. As in
reality the true value of f(x), e.g. the current degradation level, can often not be assessed
directly or is subject to noise, observations y are considered to contain an additional noise
term ϵ, which is assumed to be normally distributed with a zero mean N (0, σ2). Any
observations are thus written as

y = f(x) + ϵ, (4.52)

with f(x) = xβ for a linear model. The general distribution of possible solutions f∗ that
apply for an arbitrary input x∗, can then be drawn from the GP as

f∗ ∼ N (0,K(X∗,X∗) + σ2
nI). (4.53)

Equation 4.53 is also known as the prior of the GP. Herein, σ2
nI describes the noise variance

as initially induced by ϵ andK(X∗,X∗) is the kernel matrix, which is defined as
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K(X∗,X∗) =

⎛⎜⎜⎝
k(x1∗ , x1∗) · · · k(x1∗ , xn∗)

...
. . .

...
k(xn∗ , x1∗) · · · k(xn∗ , xn∗)

⎞⎟⎟⎠ . (4.54)

The kernel matrix is an important property of the GP as it defines the general shape of
possible solutions. As it can be assumed that output values yi will be similar for predictor
values xi in proximity, the covariance is a measure of similarity among data points and
governed by the used covariance function. Common covariance functions include the
exponential, the squared exponential and the Matérn covariance function. In this work, a
squared exponential kernel will be used, which is defined as

k(x,x
′
|Θ) = σ2

f exp

[︄
−1

2

(x− x
′
)T (x− x

′
)

σ2
l

]︄
. (4.55)

The kernel’s parameter Θ includes the standard deviation σf as well as the characteristic
length scale σl and are optimized together with the function’s coefficients β and the
noise variance σ2 during the training of the model. In order to account for any previous
observationsX and y, the GP prior distribution (eq. 4.53) is conditioned to this training
data, which leads to the GP posterior distribution given as

f∗|X∗,X,y ∼ N (f∗, cov(f∗)). (4.56)

In Equation 4.56, the mean and covariance are

f∗ = K(X∗,X)
[︂
K(X,X) + σ2

nI
]︂−1

y (4.57)

cov(f∗) = K(X∗,X∗)−K(X∗,X)
[︂
K(X,X) + σ2

nI
]︂−1

K(X,X∗). (4.58)

Based on the above definitions the GPR is suited to fit an arbitrary function f(x) in the
presence of noise. During training, the GP prior is conditioned with the given observations
and the kernel’s parameter Θ are optimized. The advantages of the GPR over other
regression tools is its non-parametric form and its inherent ability to provide an uncertainty
measure for each prediction.
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Description of the simplified prognosis algorithm

Based on the GPR, a data-driven RUL prediction algorithm is constructed. The general
idea of the algorithm is to use the GPR to model the degradation rate ẋ in dependence of
the current degradation level x based on historic data. This can be written as

ẋ = f(x) + ϵ. (4.59)

After training, the GP posterior mean f(x∗) and posterior covariance function cov(f(x∗))
of the GP posterior are known. Thus, for a given x∗ the corresponding ẋ∗ can be drawn
with

ẋ∗ ∼ N (f(x∗), cov(f(x∗))). (4.60)

Assumed that the degradation level xk at time instance k is accurately known, the future
degradation path from this point on can be estimated by means of an MCS, in which a set
of n individual trajectories is iteratively sampled with help of the GPR model, given as

xn,k+1 = xn,k + ẋ∗. (4.61)

This prediction step is carried out for all samples until the smallest solution in the current
set exceeds the defined failure threshold xth:

min(xn,k+1) ≥ xth. (4.62)

Once reached, the individual samples are reshaped to find the RUL-CDF. For a sufficient
large sampling size N , Equation 3.11 can be approximated by its discrete function

Fl(t) =

∫︂ ∞

xlim

px(x|t)dx ≈ Fl(k) =
1

N

∑︂
xi,k, (xi,k ≥ xth) (4.63)

for t = k.

Training and Prediction results
With the definitions above, the developed GPR algorithm is now trained on the selected
datasets. As given in Table 4.6, the Wiener Process data are used to train the gearbox
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model, while the Geometric Gamma Process data are used for the motor model. As the
size and computation time of the GPR-model increases exponentially with the training
data, a moderate training dataset with five failure curves for both models is chosen, which
are taken from the training subset. Both models use a linear basis function for the GPR
and a squared exponential kernel function. The training configurations of both models are
given in Table 4.9.

Table 4.9.: Trained GPR models

Parameter Motor Model Gearbox Model

Input vector x
Linear deg. model
(Wiener Process)

Exp. deg. model
(Geometrics Gamma Process)

Training Size n 5
Basis function linear
Kernel function Squared exp.

Exemplary training results for the motor and gearbox model are shown in Figure 4.15. In
both plots, the original training data in form of measurement points and the output of the
GPR model in form of the GP mean (model estimation) and GP covariance (bounds) are
shown. Therefore, the model’s output, the degradation rate is plotted against the input,
the degradation level. It can be seen that model mean of the linear GPR data are rather
constant, while the mean of the exp. GPR follows a positive gradient, which was expected
as the degradation rate is modelled. Further, it can be seen that the uncertainty bounds of
the exp. GPR model vary much more than those of the linear one, which is an indicator of
bigger jumps in the trained degradation data.

Based on the trained models, multiple predictions are carried out for different prediction
times tP . The purpose of these predictions is two-fold: On one side they are used to assess
the performance of the prognosis algorithm itself, on the other side they are used as online
data for the later application of the DHRM method in the considered use-case. Therefore,
it is chosen to use ten individual datasets for each model to assess its performance, which
are drawn from the validation subset as stated in Table 4.6. For the evaluation phase,
additional twelve, respectively six, trajectories are chosen to represent the motor and
gearbox failure during the use-case. These trajectories correspond to those shown in Figure
4.12.

For each prediction, the degradation data up to tP is used as observation data, being the
input data of the prognosis model. From the last observation point on, the GPR model is
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Figure 4.15.: Training results of the GPR models

then used in an iterative way as shown in Figure 4.14 to predict the further evolution of
the trajectory. This is done for all samples.

In Figure 4.16, the outputs of the GPR are shown for two exemplary datasets from the
Wiener and the Geometric Gamma Process. Both predictions were calculated with an MCS
sampling size of n = 30. Next to the resulting RUL-CDF also the true as the predicted
(mean) of the degradation tEoP are shown, giving a first impression of the accuracy of
the algorithm. Besides a small increasing deviation between the predicted and the true
degradation curve, it can be seen, that the true curve is fully covered by the bounds of the
model.

Description of the improved prognosis algorithm with pre-classification

To further investigate the effects of varying algorithm performances in the remainder
of this work, an improved prognosis algorithm is additionally developed that extends
the concepts of the standard GPR as shown before. The improved algorithm is based
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Figure 4.16.: Exemplary prediction results of both models

on a multiple-model-approach (MMA), in which multiple prediction models are used at
the same time to accurately predict the future degradation curve based on the observed
degradation data.

The historic failure data of the motor are therefore separated into three different groups A,
B and C based on their true failure times (early, normal, late) and three individual GPR
models are trained for each of these groups. In this way, different degradation rates can
be considered by the algorithm. During the prediction process, the GPR model with the
highest agreement to the observed data is then chosen to estimate the further evolution of
the degradation curve and the resulting RUL.

To select the best fitting model, the MMA is coupled with a k-nearest-neighbor (KNN)
algorithm, a supervised learning algorithm used for classification problems. The KNN is
trained on the same data basis as the GPR models. Therefore, each known failure trajectory
is labelled according to its group A, B or C and trained at different prognoses times tP .
During the prediction process the KNN is then used to classify the observed data. Once
the group is classified, the corresponding GPR model is chosen and used to predict the
further evolution of the degradation curve. This is done at every prediction point tP . This
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extended concept is shown in Figure 4.17. Further details on the KNN’s accuracy can be
found in the Appendix C.2.
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Figure 4.17.: Concept of the improved prognosis algorithm with
extensions being highlighted

Algorithm performance

After generating first predictions, all algorithms are evaluated based on the performance
metrics introduced in Section 3.3.3. Therefore, only the predictions based on the validation
subset data are considered. In Figure 4.18, the results of theMAE,MAPE,MAD and
S metric are given for all derived prediction models at different degradation levels. It can
be seen, that all models improve their absolute metrics for predictions started at a higher
degradation level and thus being closer to the true EoL. Only the relativeMAPE metric
worsens for predictions at a higher degradation (ideal value isMAPE = 0). Further, it
can be seen that the improved MMA-GPR outperforms the standard GPR on all metrics.
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This is crucial, as the influence of the prognosis algorithm’s performance will be discussed
later during the evaluation of the proposed DHRM method.
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Figure 4.18.: Degradation based performance metrics MAE, MA-
PE, MAD and S for both motor prediction models
(standard and improved) as well as for the gearbox
prediction algorithm

To fully quantify and compare all prognosis algorithms, the aggregated values for each
metric are calculated. Therefore, the area under the curve is calculated for each metric
and divided by the number of evaluation points, giving an average value. The overall
aggregated metrics for all algorithms are shown in Table 4.10. Based on the relative data
it can be concluded that the improved MMA-GPR is roughly 25% better than the standard
algorithm in accuracy as well as precision.
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Table 4.10.: Algorithm performance metrics for the BLDC progno-
sis models simple and improved

Metric Simple Alg. Improved Alg. diff. rel. [%]
MAE 2.52 1.84 -0.68 26.87
MAPE 0.17 0.14 -0.04 22.66
MAD 2.48 1.78 -0.70 28.30
S 3.07 2.33 -0.75 24.23

4.4. System state prediction

In the previous sections of this chapter, a representative use-case for the application of the
DHRM in form of the control surface actuation system of a hybrid drone was introduced.
After a thorough system analysis, a reference as well as the novel DHRM were defined. For
both models the required input data was then created based on artificially run-to-failure
data for degrading parts (motors and gearbox) and predefined static failure models for
those parts suffering a spontaneous failure (controllers and sensors). In this section, both
models are calculated to obtain first results. Therefore, for the reference mode the failure
probability for the degrading parts are taken from the static Weibull distribution as given in
Section 4.3.3. For the DHRM, the dynamic CDF-RULs from the introduced PHM algorithm
from Section 4.3.4 are used. All other parts are modelled with the rather static failure
rates obtained from the Military Handbook 217F (see Section 4.3.1). The results are then
compared in a first evaluation. In Figure 4.19, the overall approach is shown.

4.4.1. Base-line reference calculation

At first, the reference model based on the static Weibull data is calculated. For this simula-
tion, a standard scenario at 20◦C is considered, with the corresponding failure rates for
the controllers and sensors as stated in Table 4.3 and 4.4. Further, for this first calculation,
any uncertainties and parameter variations are neglected. Also, the state predictions do
not consider any replacements and all components are considered to be as new for t = 0 h.

Based on the given input data as presented in Table 4.8, the EMA’s individual failure times
and thus the overall system states and transitions are derived. An overview of the first
three failures up to the loss of control state is given in Table 4.11:
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Figure 4.19.: Application concept for the further evaluation of the
DHRM and comparison to a reference case

Table 4.11.: Ground truth failure transitions and result states ba-
sed on the selected run-to-failure data

Event time [h] Failed Component Resulting new state
t=0 none S1 - Initial state
t=1584 EMA Aileron left D1 - Degraded state
t=1776 EMA Elevator left D2 - Degraded state
t=2240 EMA Aileron right LOC – Loss of control

With the above configuration the reference model is calculated for the static input data.
In Figure 4.20, the output of the aggregation method for this scenario with constant
distributions is shown. While on the left, the visualization is given in a linear scale, on the
right side a double logarithmic scale is used. Both plots show the probability for each state
(S1,D1,D2,D3, LOC) after a given total mission time t. The true state transitions, based
on the real failure of components are indicated by the vertical lines. Relevant reliability
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thresholds are indicated by the horizontal lines at F = 10E − 6 and F = 10E − 3.
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Figure 4.20.: State estimations for theQCAS based on theWeibull
approach with model outputs in linear (left) and log
scale (right)

The above state probabilities remain constant for all times as in the conventional reliability
approach no new information is considered at any times. From the results, the following
key characteristics for the base-line approach are observed:

1. Because of the constant parameter values and fixed distributions, the state predictions
remain constant in time. Thus, probabilities do only depend on the time vector t.

2. Although the predicted states are visually distinguishable, there is no clear manifesta-
tion of them except for states S1 and LOC. It is expected that for systems with even
more states, transitions become even more imprecise as the discriminatory power is
reduced as each state will at least have a very small likelihood to be entered.

4.4.2. DHRM calculation

In the following, the DHRM is calculated. Therefore, the same simulation settings are
chosen as for the reference case to maintain comparability. Still, instead of using constant
failure distributions for the non-electronic parts motor and gearbox, this time PHM results
based on the introduced prognosis algorithm from Section 4.3.4 are used, as proposed
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by the novel aggregation method. The results are based on the improved prognosis algo-
rithm with pre-classification. To capture the expected dynamic of the model, it is further
calculated at different prognosis times tP until the complete failure of the system (loss of
control) is reached.

In Figure 4.21, the results of the DHRM are shown for two prognosis times tP = 1000 h

and tP = 1400 h. For better comparability, all predictions are again shown in a linear and a
log-scale. From the plot in linear scale on the left it can be seen, how the algorithm adapts
the state probabilities for later predictions. While the first prediction at tP = 1000 h still is a
rough estimate, the later prediction at tP = 1400 h already gives a more accurate prediction
regarding upcoming state transitions as the predicted state probabilities converge to the
true transitions. Also, it can already be seen that state D3 is very unlikely to be entered
at all and that the system will directly go to the LOC state. On the right side, the state
probabilities in log scale are given. In this visualization, the steep change within the
state probability for D1 shall be highlighted. After a nearly constant increase, this state
probability significantly increases around t = 1450 h.

4.5. Conclusions from use-case

Within this chapter a representative use-case from the aerospace domain was introduced
to further show and investigate the applicability of the proposed aggregation method. As
system to analyze the control surface actuation system of Airbus’ Quadcruiser, a hybrid
drone, was chosen. Based on simulated degradation data the novel aggregation method
was compared to a baseline scenario, following a rather traditional reliability estimation
process with constant failure distributions.

From the results above it can be concluded that the proposed method is suited to be
also applied to rather complex systems, consisting of multiple components from different
technical domains and having a large set of internal system states. It was further shown,
that RUL-predictions can be included into the aggregation to generated adaptive state
predictions. In contrast to the reference scenario with fixed lifetime distributions the DHRM
method results in optimized accuracy regarding state changes and, even more important,
is able to indicate which state the system is likely to enter next.

With respect to the described use-case, it can be said that the operator of the UAV receives
a decision support that continuously estimates the current as well as future system state
of the aircraft’s control surface actuation system. Although the UAV is controlled remotely,
the operator receives a detailed state estimation and can decide early on whether to abort
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Figure 4.21.: State estimations for the QCAS based on the DHRM
approach at different prognoses times in linear and
log scale

or continue the mission in the event of an impending system state change. In this way,
upcoming missions as well as maintenance activities can be better planned, leading to an
increased safety and availability of the aircraft.

In order to further investigate the general advantages of the developed method, it will be
further evaluated in the next chapter.
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5. Evaluation and discussion of the
developed method

This chapter is dedicated to the further evaluation of the proposed DHRM approach in a
quantitative and qualitative way. Therefore, the capabilities as well as limits are identified
and compared to the baseline approach in order to derive the method’s overall advantages
and disadvantages. This evaluation is mainly based on the developed use-case from the
previous chapter and uses a set of selected metrics and different parameter constellations.
Key aspects of this evaluation are:

• Prediction performance: The scope of this evaluation is to quantify the quality of the
derived state predictions in comparison to a (static) reference case. This assessment
will answer, whether the new approach is beneficial from a functional point of view.

• Calculation efficiency: The scope of this analysis is to derive the method’s com-
putational demand and to derive first expectations regarding its scalability. The
consideration of the calculation efficiency will investigate, whether the approach is
also technical feasible for larger systems or constrained calculation power.

• Economic evaluation: The economic considerations will investigate the key drivers
for monetary advantages and limits of the proposed method.

All three aspects are further outlined in the following, before a comprehensive discussion
and summary of the results is presented in Section 5.4 of this chapter.

5.1. Performance evaluation

The following section is dedicated to the evaluation of the prediction performance of the
proposed method. The scope is to quantify the accuracy and precision of the DHRM’s
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state predictions compared to a reference case. The evaluation is based on predefined
performance metrics that are applied to the model’s output for different scenarios and
parameter variations.

5.1.1. Prediction performance metrics

An important measure for every prediction model is a statement about the accuracy of the
delivered result. A common approach to assess the quality of prediction and classification
algorithms is the confusion matrix [GBV20]. This matrix maps each prediction output to
the true problem class. In an ideal world, this matrix would become the identity matrix I,
stating that every prediction outcome is mapped correctly to the according class. Within
this work, the confusion matrix is used to quantify the accuracy of the state predictions
for each prediction for a given tP . This is done by calculating the area under the curve
(AUC) of each state probability estimation and comparing its value against the AUC of the
true system state transition. Based on this concept an n× n matrix C is created, where
n reflects the number of system states. Each element ci,j in this matrix represents the
ratio between the true (index j) and the prediction (index i) of that state. In Table 5.1,
an exemplary confusion matrix of a system with three different states is given. Within
the confusion matrix, the diagonal elements correspond to a correct assignment, whilst
the lower triangular matrix represents too early predicted state transitions and the upper
right for too late predicted state transitions. More details on the confusion matrix and its
calculation are also given in the Appendix D.1.

Table 5.1.: Exemplary confusion matrix of a system with three
distinguishable states

Reference Dist. (ground truth)
S1 S2 S3

S1,est c1,1(tP ) c1,2(tP ) c1,3(tP )

S2,est c2,1(tP ) c2,2(tP ) c2,3(tP )
AUC of predicted
state probabilities

S3,est c3,1(tP ) c3,2(tP ) c3,3(tP )

It shall be noted that the confusion matrix always corresponds to a given prediction at a
certain prognosis time tP . Thus, metrics based on this concept will be time-dependent.
The following metrics are defined based on the confusion matrix:
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Accuracy (ACC)
The accuracy metric measures the overall accuracy of the output, considering all predicted
state probabilities. It is therefore defined as the sum of the correct assigned AUCs, divided
by the total sum of all ratios:

ACC(tP ) =

∑︁n
i=1 ci,i(tP )∑︁n

i=1

∑︁n
j=1 ci,j(tP )

The ideal value of the ACC metric is 1, the overall metric falls into the range of [0, 1].

Early/Late-Ratio (ELR)
The ELR metric is the ratio between the lower triangular sum divided by the upper
triangular sum of C. Thus, the ELR is the quotient between falsely too early and too late
predictions and can be used as an indicator, if the algorithm’s output is too conservative or
too optimistic. The ERL is defined as:

ELR(tP ) =

∑︁n
i=1

∑︁n
j=1 li,j(tP )∑︁n

i=1

∑︁n
j=1 ui,j(tP )

(5.64)

where: ∆ui,j(tP ) =

{︄
ci,j (tP ) , if j ≥ i

0, otherwise

∆li,j(tP ) =

{︄
ci,j (tP ) , if i ≥ j

0, otherwise

This metric has an ideal value ofELR = 1 and falls into the range [0,∞]. While anELR <
1 indicates a trend towards being too optimistic an ELR > 1 states too conservative
predictions. However, it shall be highlighted that this metric gives no indication of the
overall accuracy of the method, as equally distributed false predictions will compensate
each other in this metric. Thus, the ELR should be always used together with the ACC
metric.

True Positive Rate (TPR)
The TPR metric describes to which degree a given state was estimated correctly. Therefore,
the ratio of correctly assigned AUC and falsely estimated values is considered for each
prediction. The TPR for a state i is defined as:
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TPRi(tP ) =
ci,i(tP )∑︁n
j=1 ci,j(tP )

Again the ideal value of this metric is 1, with a value range of [0, 1].

5.1.2. Aggregated prediction performance metrics

As the above presented metrics consider results only for one distinct tP , they are further
aggregated to allow a prognosis-time independent evaluation. Therefore, aggregated
performance metrics are introduced, which are based on the ACC, ELR and TPR metric
and extend them to represent all considered prediction times tP . In this way, each metric
is aggregated into one key performance indicator allowing a better comparison. These
metrics are defined as follows:

Aggregated Accuracy (AACC)
The AACC is defined as the area under the ACC curve, normalized by the time between
the first prediction t0 and the last tend.

AACC =

∫︂ tend

t0

ACC (tP ) dt/(tend − t0)

The range of this score is given as AACC ∈ [0, 1] with 1 being the best score. The AACC
indicates to which degree the states and their transitions have been predicted correctly
over all times for a system.

Aggregated Early/Late-Ratio (AELR)
Similar to the AACC also the ELR can be aggregated over all prediction times leading to
the aggregated ELR. This metric is defined as:

AELR =

∫︂ tend

t0

|ELR (tP )− 1| dt/(tend − t0)

In this metric |ELR (tP )− 1| describes the absolute deviation of the result from the ideal
curve. The AELR falls then into the range of AELR ∈ [0,∞], with 0 being the best score.
It shall be noted that the AELR, in contrast to the ELR, gives no indication of to early or
too late predictions as the absolute ELR value in Equation 5.1.2 is used to avoid error
compensation.
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Aggregated True Positive Rate (ATPR):
ATPR metric is similar to the AACC and shows the overall prediction accuracy per state.
The ATPR for a state i is thus defined as:

ATPRi =

∫︂ tend

t0

TPRi (tP ) dt/(tend − t0)

Again the range of this metric is given as ATPR ∈ [0, 1] with 1 being the best score,
indicating that a state has been predicted correctly at all times.

5.1.3. Scenario evaluation

With the evaluation metrics defined, different experiments with varying configurations
are conducted. Below, the considered scenarios and the corresponding research questions
are listed, before results are presented in the following.

• Standard Scenario:
The DHRM is calculated with the improved prognosis algorithm from Section 4.3.4
and then compared to the reference case. Scope: The overall performance of the
novel method is quantified.

• Scenario with simplified PHM algorithm:
This experiment is similar to the first, but uses the simplified PHM algorithm that
was introduced in Section 4.3.4 instead. The scope of this experiment is to quantify
the effect of varying PHM algorithm performance.

• Failure rate variation:
The scope of this experiment is to evaluate the impact of varying failure rates and to
investigate the uncertainty propagation within the model.

Standard Scenario
The standard scenario experiment uses the results from Subsection 4.4.2, where the
DHRM is calculated with the improved PHM-algorithm, and those from Subsection 4.4.1,
where the static reference case is shown. For both experiments, the previously defined
performance metrics are then applied to compare and quantify the performance of the
DHRM and the reference case. Therefore, all metrics are evaluated at discrete prediction
points, ranging from tP = 100 h to tP = 2400 h.
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In Figure 5.1 on the left, the evolution of the accuracy metric ACC is shown for both
cases over different prediction times. For the reference case, this metric starts with an
accuracy of 57%, which remains nearly constant until the first state transition is reached.
The maximum accuracy for the reference case is reached shortly after the first transition
with 68% and the minimum just before the transition to the final state with 51%. The jump
to 100% when reaching the LOC state is reasonable as the prediction of the other states
immediately stops, when they fail.

In contrast to the reference approach, where only few abrupt changes in the metric are
visible, it can be seen that the ACC metric for the DHRM approach is constantly increasing
for later prediction times. The absolute minimum is 57% for this metric, reached in the
very first prediction. This is exactly the same value as for the reference, which is plausible
as for the first state prediction no PHM data is available, forcing the algorithm to fall back
to the standard approach with static failure distributions, which is equal to the reference
given here. In the first state (nothing failed), the DHRM has a maximum accuracy of 90%,
which is shortly reached before the first state transition. During the second state (first
component has failed), an accuracy between 85% and 95% is obtained, while the accuracy
for the third state (two components have failed) is over 95% at all times.

On the right-hand side of Figure 5.1 the ELR metric is given for both approaches. For
the reference case, this metric starts with a value of 0.7, which remains nearly constant
until the first state transition. Thus, the prediction for the reference case is too optimistic
during the first state (a later state transition is expected). After the first state transition,
the ELR metric becomes greater than one and continues to increase until a maximum of
1.9 is reached shortly before the last state transition, meaning that the state predictions
were too conservative for later predictions.

In Figure 5.2, the TPR for all states is shown for the reference case on the left, as well as for
the DHRM on the right. For the reference case, it can be seen that this metric remains again
nearly constant for all states until the first transition. The highest TPR is reached for the
D2 and LOC state with 88% and 80%, respectively. The state predictions for state S1 and
D1 are much lower with around 48% and 36%. After the first transition, the predictions
for states D1, D2 and LOC remain all in a range between 60% and 70%. After the second
transition, the predictions for states D2 and LOC are left with a TPR of 99% and 67%

to 53%. Regarding the results of the DHRM shown on the right of Figure 5.2, it can be
said that all TPR values start with the same values as for the reference case, but improve
immediately afterwards. Towards the end of state S1, all TPR values for each state are
already above 85%. DuringD1 the TPRs for statesD1 and LOC are above 95%, while only
the prediction for state D2 falls back to 70%. After the second transition the remaining
state predictions for D2 and LOC are above 90% at all times.
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Figure 5.1.: Comparison of the accuracy (ACC) metric and Early-
Late-Ratio (ELR) metrics for different prognoses ti-
mes for the DHRM and the reference case (Ref)

0 1000 2000 3000
Time t [h]

0

0.5

1

T
P

R

S1 D1 D2
D3 LOC

(a) Reference

0 1000 2000 3000
Time t [h]

0

0.5

1

T
P

R

S1 D1 D2
D3 LOC

(b) DHRM

Figure 5.2.: Comparison of the True Positive Rate (TPR) metric
for the reference case and the DHRM

From all four metrics, it can be seen that the DHRM approach delivers better results
compared to the reference case as soon as PHM data becomes available and is considered
for the state predictions. Further, all metrics converge towards the ideal value with the
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DHRM for later predictions. This finding is plausible as the underlying PHM data is also
expected to gain in accuracy for later RUL predictions, leading to improved results. Finally,
from the TPR metric it is concluded that the DHRM method not only gives an overall
better result in terms of accuracy, but is also more accurate on a per-state comparison.
This could be crucial for the application of this method, as decision makers are expected
to be interested in an accurate prediction of a specific state rather than the overall state
evolution.

To provide a final assertion, the aggregated performance metrics as introduced in Sub-
section 5.1.2 are calculated and compared to each other in Table 5.2. Therefore, the
absolute and relative values are calculated for each metric. Based on this, the overall
improvement with the DHRM approach is quantified. The results show that for all metrics
except APTR_D2 1 an improvement is achieved using the DHRM method. The improved
metrics range from 17% for the ATPR_LOC up to 86% for the ATRP_D1 metric. It shall
be noted that the ATPR_D3 metric cannot be calculated for this scenario, as the state D3
(=one EMA failed on each axis) is never reached.

Table 5.2.: Evaluation and comparison of the aggregated perfor-
mance metrics between the DHRM and the reference
case.

Metric DHRM Ref. ∆ Abs. ∆ Rel. %
AACC 0.80 0.59 0.21 36
AELR 0.06 0.33 - 0.27 -82
ATPR_S1 0.70 0.44 0.26 58
ATPR_D1 0.69 0.37 0.32 86
ATPR_D2 0.78 0.84 - 0.06 -7
ATPR_D3 - - - NaN
ATPR_LOC 0.85 0.73 0.12 17

Scenario with the simplified PHM algorithm
In analogy to the previous experiment based on the improved PHM-algorithm, the same
experiment is conducted with the simplified PHM-algorithm. This experiment is intended to
investigate the influence of the algorithm performance on the overall aggregation method.

In Figure 5.3, the results of all metrics are shown for the reference case (Ref.), the DHRM
1The optimal score for AELR is zero, thus a negative relative score indicates an improvement.
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with the simplified PHM algorithm (DHRM (s)) and the DHRM with the improved PHM
algorithm (DHRM (i)). The comparison of all three metrics ACC, ELR and TPR show that
the results based on the improved PHM-algorithm outperforms the simplified as well as the
reference case for early tP . However, for later state predictions, the results of the simplified
version converges to those obtained by the improved PHM-algorithm. Either way, both
DHRM scenarios start with the same performance as the reference case for tP = 0 h and
deliver better results for later state predictions.

To be able to further quantify, in Table 5.3 the aggregated performance metrics of the
simplified case are given together with the those for the improved PHM algorithm. The
results reveal that the DHRM with the improved PHM algorithm (i) outperforms the one
with the simplified algorithm (s) for all metrics except ATPR_D2.

Table 5.3.: Evaluation and comparison of the aggregated perfor-
mancemetrics between the DHRMusing the improved
(i) and the simplified (s) PHM algorithm.

Metric DHRM (s) DHRM (i) ∆ Abs. ∆ Rel. %
AACC 0.71 0.80 -0.09 -11
AELR 0.15 0.06 0.09 150
ATPR_S1 0.51 0.70 -0.19 -27
ATPR_D1 0.45 0.69 -0.24 -35
ATPR_D2 0.91 0.78 0.13 17
ATPR_D3 - - - NaN
ATPR_LOC 0.80 0.85 -0.05 -6

From the given experiment it can be concluded that an improvement of the underlying
PHM-algorithm(s) mainly affects the accuracy of earlier predictions. Accordingly, the
proposed DHRM’s prediction accuracy can be improved by using more accurate PHM-
algorithms, which in turn increases the reaction time for an operator as precise information
on a system state transition can be detected earlier.

Scenario with varying failure rates
As argued in Section 3.2.3, conventional failure rates are often parameterized according to
the environment the parts are foreseen to be used in. Also, the real usage of a system may
change over time. Thus, it was suggested in Section 3.2.3 of this work to allow changes of
these parameters to be able to adjust them to the real usage.
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Figure 5.3.: Comparison off all metrics for the DHRM with impro-
ved PHM-algorithm (i), with simplified PHM-algorithm
(s) and the reference case

In the following experiment, the configuration of the standard scenario is taken and
calculated for two extreme environments with adjusted failure rates (compare tables
3.2.3 and 4.4). While the first parameter set represents an aerodynamic flight mode at
cold temperatures, the second parameter set represents a hot environment with high
vibrations (e.g. hovering mode). The aim of this experiment is to identify the influence of
the parameter changes of the non-degrading parts on the state predictions in the DHRM.
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In Table 5.4, the chosen parameter sets for the extreme environments cold aerodynamic
and hot hovering are given and compared to the normal parameter set.

Table 5.4.: Failure rates in failure/10E6 hours for the two extreme
value scenarios

Part cold aerodynamic
(extreme low)

normal hot hovering
(extreme high)

ECU λECU = 0.13 λECU = 0.21 λECU = 0.30

Sensor λSen = 0.08 λSen = 0.14 λSen = 0.35

In Figure 5.4, the results of all three simulations are shown and overlaid for prediction
times tP = 250 h and tP = 1000 h. The influence of the different failure rates is especially
visible during the first hours of operation before the dominant parts suppress the less
dominant ones when coming closer to the state transition. The seen behavior is reasonable
as the individual contribution of each part to the overall system’s state probability changes
over time. While the contribution of the non-monitored parts are much higher during the
first hours of operation, the failing components (here motor and gearbox) become more
dominant later. Thus, the induced PHM data suppresses the conventional failure rates at
a certain point, becoming the main contributor to the system’s state probabilities. This
effect already reveals an important characteristic of the proposed aggregation method:
The advantage of the DHRM is not only based on the accuracy of the underlying PHM
algorithms, but also depends on the ratio between PHM-monitored and non-monitored
parts in the considered system and their individual contribution to the failure states.

5.2. Calculation efficiency

Besides the accuracy and precision of the method’s results, also the computational effort
required to obtain these results is an important measure. Only if the method can be
calculated in an appropriate time frame and with reasonable hardware resources, the
method becomes practicable.

A general methodology of assessing the time-complexity of an algorithm is the use of
the Big-O notation [RRH00]. The Big-O notation foresees to compare a given function
f(x) with a comparison function g(x). Assumed that both functions are defined on an
unbounded set with strictly positive values, one writes
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Figure 5.4.: State prediction for two different prognosis times
with varying failure rates

f (x) = O (g (x)) , for x→ ∞ (5.65)

if there is exists a real numberM such that |f (x)| ≤Mg (x) for all x ≥ x0. This basically
means that f(x) stays below the selected comparison function g(x) multiplied withM for
all times. In terms of algorithm efficiency usually the runtime tAlg(n) of an algorithm in
dependence of the input (problem) size n is considered. Typical comparison functions
include the logarithmic, linear, polynomial or exponential function. In Table 5.5 an overview
of common Big-O metrics and there meaning is given:

In order to assess the calculation efficiency of the proposed method, the time-complexity
of the individual modules of the DHRM are considered.

In correspondence with Figure 3.8, the DHRM consists of the part-level, the component-
level and the system-level. The part-level’s time complexity is neglected at this point, as the
part’s failure rates and results from any PHM-algorithms are considered as inputs of the
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Table 5.5.: Big-O notation and their interpretation, based on
[Kne20]

Notation Order Technical feasibility
tAlg ∈ O(logn) logarithmic Easily scalable
tAlg ∈ O(n) linear Scalable for large and very large n
tAlg ∈ O (nc) polynomial Technical cumbersome for large n
tAlg ∈ O (cn) exponential To avoid, cannot be solved for large n

DHRM. The time-complexity on this level will mainly depend on the used PHM-algorithms
and their calculation efficiency, which cannot be known in advance.

On component-level, there are n fault trees to solve, where n is the number of components
in the system. As given in [DWG15] the fault tree analysis is a non-deterministic polynomial-
time hard problem, in which the problem size depends on the number of nodes and basic
events. Accordingly, the calculation of the DHRM is expected to become slow for larger
fault tree models. However, as given in Table 5.5 these models can still be solved for larger
problem sizes as they are of a complexity of O (nc). Also, as the fault tree method is well
explored, there exists alternative solving approaches such as approximation techniques
that can be used to reduce the computational effort [Yev10].

On the highest aggregation level, the system-level, the resulting probabilities of all com-
ponents, respectively fault trees, are used to derive the overall probability of all states.
This is achieved based on a state-space model as presented in Section 3.2.5. The difficulty
with state-space models is that their complexity scales exponential to the problem size,
which is referred to as state-space explosion [Mey12, p. 10]. Even for problems with two
states (e.g. failed and non-failed), which is the case for most reliability problems including
the one described in this thesis, the growth rate is of order O (2n). According to this, the
run-time of the DHRM is expected to increase exponentially for numerous components,
which shall be avoided at all costs.

Despite the component and system-level calculations, the time complexity of the DHRM
has two additional dimensions, namely the uncertainty handling (the fault trees as well as
the state model are solved by means of an MCS) and the evaluation on a discrete time
space.

The DHRM evaluates all estimates on a discrete time space reaching from the first point
of prediction tP till a predefined simulation end time tend (e.g. until a state have been
reached where all components have failed). Thus, the required calculations have to be
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performedK times, whereK is the number of discrete time points, which results in a time
complexity of O(n). An important aspect here is that the calculation time will decrease for
later predictions times tP as the model has to be solved on fewer time points, which is
handy as also the available time for decision-making is less for later tP .

Regarding the uncertainty handling, all calculations on component and system-level have
to be performed n-times where n is the sampling size of each MCS. Thus, these additional
calculations are also covered by a complexity of O(n).

Thus, the overall time-complexity of the DHRM not only results from the complexity of
the modelled system (and its number of components and parts), but also depends on the
sampling size within the MCS and the number of discrete points in time, for which the
model is calculated.

The overall contributing factors for defining the time complexity of the DHRM approach are
summarized in Figure 5.5. In this figure it is important to note that a part of the complexity
is given inherently by the analyzed system and the number of parts and components and
thus cannot be changed. Other elements of the time complexity instead result from the
sample sizes as well as time discretization and can be further optimized.
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Figure 5.5.: Overview the elements contributing to the calculation
time

To verify the above considerations, different experiments are conducted in which the DHRM
from the standard scenario is simulated in different configurations. For comparability
reasons all experiments are run on the same computer, a standard notebook with a
quad-core Intel processor having 2.7 Ghz.

At first, the sample size of the embedded MCS is varied to run with n = 50 and n = 500

samples to further analyze the calculation efficiency on component-level. In a second
experiment, additional EMAs are added to the system. Although the CSAS of the Quad

142



Cruiser is composed of exactly six EMAs, this test is used to theoretically assess the effect
of upscaling the system to contain more components. Accordingly, the model is simulated
with n = 6 (default), n = 9 and n = 12 identical EMA models. In Figure 5.6, the average
calculation time on component-level with varying samples sizes as well as the calculation
time on system-level for a different number of components is shown in a log-scale plot for
prognoses times reaching from tP = 100 h to tP = 2400 h.

From Figure 5.6a (a), showing the average component calculation time, it can be concluded
that the calculation time scales linear with the sampling size of the MCS. While the first
component simulation at tP = 100 h took in average 0.56 s for a sampling size of n = 50,
it took 6.14 s for a sampling size of n = 500. According to this, the model can be easily
calculated as long as the underlying fault tree can be solved in reasonable time. In Figure
5.6b (b), the calculation time of the internal state-space model is shown. Here, it can be
seen that the overall calculation time increases significantly with each component added.
While the calculation takes 0.054 s for a system with n = 6 components, it already takes
2.95 s for a system with n = 12 components, which is roughly two magnitudes longer.
Thus, the state model scales with an exponential time function.

Finally, all experiments show a linear decreasing calculation time for later tP as expected,
with only few outliers.

Both experiments support the initially stated considerations for the time-complexity. Ho-
wever, they also proof that the DHRM is applicable and technical feasible with a reasonable
calculation time for systems with a reasonable amount of failure states.

5.3. Economic considerations

In the following section, the economic considerations of the method are presented. However,
it should be noted at this point that the considerations in the following are generic, as an
exact calculation is only feasible for a specific system with known cost factors.

Two widely used metrics for economic analyses are the cost-effectiveness and the return on
investment (ROI). While the cost-effectiveness links the financial expenditure, e.g. for the
operation of a system, with the performance obtained [Bir10, p. 13], the ROI considers the
ratio between an investment and its expected return [FSJ08]. Since the method proposed
in this paper is a new one, an ROI analysis is performed with the aim to make the benefit
of an investment visible (business case).
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Figure 5.6.: Calculation times for different tP on the component-
level (a) and the system-level (b)

As given in [FSJ08], the ROI is defined as the ratio between the net return and the initial
investment. In the field of PdM this concept usually is reverted to represent the avoided
costs based on a given investment. This relation is given as:

ROI =
Return− Investment

Investment
=
Avoided Cost

Investment
− 1 (5.66)

For a ROI > 0 an investment is considered to be profitable otherwise it is a financial loss
(or equal for ROI = 0). In the context of PHM, e.q. 5.66 can be written as:

ROI =
CRef − (CPHM − I)

I
− 1 (5.67)

In this equation, CRef represents the reference cost to be expected if no PHM is used,
while CPHM represents costs that are achieved by using PHM. As reported in [FSJ08], the
investment I finally represents the initial amount needed to implement PHM monitoring
and can be further segregated into non-recurring costs CNRE , recurring costs CREC and
those costs associated with the continuous operation of required infrastructure CINF (e.g.
data warehouse etc.):
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I = CNRE + CREC + CINF (5.68)

In order to quantify and compare the economic benefits the reference costs CRef and
the PHM costs CPHM are further broken down and linked to the (state) classification
problem as introduced in Section 5.1 of this chapter. This approach is largely based on
[Lil18]. However, for this work the concept from [Lil18] is extended to fit a multi-class
classification problem. Accordingly, the confusion matrix from Table 5.1 is used again.
Being a classification problem, all state predictions are set into relation to the true state at
a given time, which represents whether the classification was correct or not. This leads
to the following general four combinations, which can be derived for every state i of the
model:

(a) The model predicts state i while the system is in state i (correct prediction)→ true
positive, TPi.

(b) The model predicts another state than i while the system’s true state is i (false
prediction)→ false negative, FNi.

(c) The system is not in state i, but state i was predicted→ false positive, FPi

(d) The system is not is state i and other states are predicted→ true negative, TNi

By putting (a) to (d) into relation to all possible outcomes, the probabilities (referred to as
rates) of each combination are obtained. They are defined as:

TPRi =
TPi

TPi + FNi

FNRi =
FNi

TPi + FNi
= 1− TPRi

FPRi =
FPi

TNi + FPi

TNRi =
TNi

TNi + FPi
= 1− FPRi

(5.69)

A formal definition of the TP , FN , FP and TN rates for a multi-class confusion matrix
is also given in the Appendix D.1 of this work.

As given in [Lil18], each possibility for an outcome is then assigned to a corresponding
cost factor. Consequently, the following cost factors are defined:
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(a) CTP : Costs that arise for a correct prediction of a state. Usually it is expected that
these costs are the normal operating costs that exist.

(b) CFN : Costs that arise through a wrong prediction of the current state. This can relate
to unplanned maintenance costs, costs due to a loss, financial penalties that have to
be paid as a service was not available (e.g. in a PBC scenario) or indirect costs e.g.
from reputational damage.

(c) CFP : Costs that arise through the wrong prediction of an upcoming state. This can
relate to costs as false decisions were made. E.g. the system was stopped, or an
expensive maintenance action was carried, although there was no need for this.

(d) CTN : Costs linked to true negatives: In accordance with [Lil18], it is assumed that
CTN = 0 for most cases as the true negative costs are also represented by the CTP ,
CFN and CFP of the other states.

With the above definitions, the total costs for the correct respectively wrong state prediction
for a given state i is defined as:

Ci = CTP,i · TPRi + CFN,i · FNRi + CFP,i · FPRi (5.70)

Assuming that the individual cost factors CTP , CFN and CFP are constant regardless of
whether PHM was used or not and only the prediction rates vary between a PHM approach
and the reference case, Equation 5.67 can be rewritten as:

ROI =

∑︁n
i=1 (CTP,i∆TPRi + CFN,i∆FNRi + CFP,i∆FPRi)− I

I
− 1 (5.71)

where: ∆TPRi = TPRRef,i − TPRPHM,i

∆FNRi = FNRRef,i − FNRPHM,i

∆FPRi = FPRRef,i − FPRPHM,i

With the aim of achieving a positive ROI it becomes clear from the above equations that
the DHRM approach becomes economical beneficial when the following conditions are
met:

• There is a large cost-saving possible through the correct prediction of system states
(large CTP , CTN or CFP ) while the prediction performance is slightly better than a
reference case (∆TPRi > 0, ∆FNRi > 0 and ∆FPRi > 0).
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• The cost-savings are moderate but the DHRM approach is much better than a con-
ventional approach (low to moderate CTP , CTN and CFP ) but high prediction
performances (∆TPRi > 0, ∆FNRi > 0 and ∆FPRi > 0) compared to reference.

• The investment I is small compared to possible savings.

5.4. Discussion of results

With the evaluation being completed, the results of this work are discussed in the following
section with respect to the initially identified research gap and need. The discussion of the
results are again structured into performance, efficiency and economic considerations.

Performance aspects
As initially stated in Chapter 1, an accurate assessment of the current and future system
capabilities is of important matter for operators. The relevant keyword in that regard
is the performability of a system. As it was shown in Figure 1.1, two key performance
indicators of performability are the performance of a system, defined as the ability of a
system to accomplish an intended service within given constraints, and the availability,
which measures the readiness for correct service when demanded. With the presented
DHRM a novel approach has been introduced that helps to assess and relate both metrics.
In that regard, the different performance levels of a system are considered as its states.
The availability is then expressed as the probability that the system will be in a certain
state at a given time. With this combination of performance level prediction, the operator
of a complex system obtains a decision support that helps to precisely estimate the future
capabilities of a given system. As it has been shown throughout Section 5.1 of this chapter,
the DHRM approach outperforms the considered reference case where only static input
data is used as shown with the ACC metric in Figure 5.1. By incorporating PHM data that
captures the real health state of the underlying system components and on top provides an
estimation of their end of life times, the overall assessment becomes much more accurate
as the state predictions are adjusted with every recalculation of the model. In addition to
this, it has been shown by the TPR metric in Figure 5.2 that not only the transition time is
predicted accurately but also the next state the system is foreseen to enter. This capability
is considered as one of the main advantages of the DHRM approach as it allows operators
to plan ahead and prepare for the upcoming new state or respectively to prevent the state
transition (e.g. through a maintenance action). Regarding the uncertainty handling it can
be said that the model is equipped with all means to propagate uncertainties resulting
from the underlying prognosis algorithms as well as failure rates. In general, the influence

147



of uncertainty is especially visible for the dominant factors. E.g. for parts that contribute
only very little to the overall reliability of a component, the uncertainty has a minor impact
on the overall calculation as shown in Figure 5.4.

However, the proposed method also comes with limitations. Regarding the prediction
performance it can be said that the model’s results mainly depend on the accuracy of
the underlying PHM algorithms as well as the overall contribution of the monitored parts
towards failure events of the belonging components. Accordingly, a system without any
PHM-monitoring will fall back to a conventional approach with static failure rates. Instead,
a system with many monitored parts or a system where the failure event contribution
of monitored parts is high, will benefit from the proposed approach as the individual
failure events and state transitions become predictable – at least provided that the PHM
algorithms are of sufficient accuracy. Also, it is worthy to note that the accuracy of the
state predictions will depend on the update-frequency of the DHRM calculation and PHM
data as well as the distance between consecutive state transitions. E.g. if the true state
transitions are close together, but the update frequency of the model is too far apart, a
clear distinction between the following states will not be possible.

A further constraint of the DHRM lies in the fact that it does not consider any inference
between the degradation of the individual components. Accordingly, it is assumed that the
degradation level of a given component has no effect of the degradation rate of another
component, which is not true for all systems. Despite this limitation, it is assumed that
the inference can be captured by the (PHM) monitoring of the affected other components
to a certain degree for compensation. Last but not least, it must be said that the DHRM
approach only is viable for systems with different distinguishable performance states. For
a rather simple system with a binary state-space (functional vs. failed) the shown concept
provides no real benefit.

Calculation aspects
As it was shown in Section 5.2, the overall calculation of the DHRM is not trivial as
probabilities and uncertainties have to be propagated at the same time. Also, the calculation
efficiency depends on several parameters such as the number of parts, components and
systems states. The key-strategy used in this work to reduce the calculation effort was to
avoid any exponential time complexity as long as possible. Therefore, it was chosen to use
the fault tree model with a polynomial time complexity to model the failure propagation
on component-level, where most parts – and thus calculations – are expected (compare
Section 3.2.4). This already helps to reduce the required calculation effort and is viable as
long as every component can be represented by a two-state model, being either functional
or non-functional (compare Table 3.3). Accordingly, only on system-level the much more
time-consuming state-space model was used. However, this model had to be used as it is
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required to represent multiple states. Nevertheless, the critical state-space explosion can
be further avoided by grouping similar states (in terms of their severity) together as it was
shown in Section 3.2.5.

Regarding the uncertainty propagation it can be said that the main contributing factor is
the number of used samples. Thus, it is important to choose a sampling size that is as small
as possible, but still high enough to capture the uncertainty effects. With the replica-based
approach as shown in Section 3.3.3 a measure is provided that can be used to quantify the
quality of the MSC. As it is expected that the required number of samples varies depending
on the component complexity, the sampling size can be individually chosen. Finally, it is
also important to highlight that the calculation time of the DHRM decreases linearly for
later prediction times. This is crucial as it helps to provide enough preparation time for
the decision maker. Also, the relation between operating time and calculation time has to
be kept in mind. For a system that is planned to be operated for several thousand hours, a
calculation time of a few hours might be still acceptable.

Economic aspects
The conducted economic consideration in Section 5.3 has shown that the DHRM method
has the potential to save on expanses during system operation as it is assumed that a
precise state prediction can lead to cost saving e.g. trough and optimized maintenance or
operating scheme. As key-drivers to increase the ROI of the method, the accuracy measures
(compared to a reference case), the potential cost-savings per outcome (TN , FN , TP ,
FP metrics) as well as the overall investment I were identified. As the costs are directly
linked to the correct assessment of the individual system states, the shown approach is
suited to be applied in a PBC scenario. Lastly, the shown ROI assessment can also be used
to identify for which states/components of a system a monitoring would be favorable or to
specify requirements for the underlying PHM-algorithms, similar to the approach shown
in [Käh17].

Despite the purely economic consideration as provided in Section 5.3, the presented DHRM
method can also contribute to improve on sustainability. A proper overview of the link
between (predictive) maintenance and sustainability is given in [Fra+18]. As shown in
[Pol+21], it is assumed that a PdM strategy also has the potential to improve a company’s
sustainability scores in the long term. This is justified by the assumption that not only spare
parts but also other resources can be saved through the use of predictive maintenance,
leading to a positive effect on the sustainability KPIs. With this in mind, even a small or
slightly negative ROI can be beneficial for a corporate in a greater context.

Further considerations
The proposed method obviously is only applicable for systems for which end-of-life predic-
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tions of individual parts are available and can be centrally processed. Accordingly, there
must be means in place to exchange that information and process it in a standardized
way. With this in mind, the aggregation might be easy in theory but can easily become
cumbersome in practice if the following circumstances apply:

• Components/parts are provided by different suppliers with different interfaces etc.

• Components of a complex system are geographically distributed

• Data transport and interfaces are not harmonized

• Data volumes are very large

• Update rates vary strongly between the monitored components

• Different security constraints among different components

With this said, from an implementation point of few the question arises, how to practically
bring the data together and evaluate it efficiently. To accomplish this, PHM frameworks
and IT architectures are required that support the handling of mass data. Research in
this regard have been conducted in [AGB18] and [LVC20], where such frameworks are
described. In addition to this, with the rise of the Internet of Things (IoT), a technology that
interconnects smart machinery and components via the internet, an important building
block for the further realization exists. An exhaustive overview of available platforms and
solutions is presented in [Kra+17].
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6. Summary and outlook

The following is the final and concluding chapter of this work. In this chapter, the results
of this thesis are summarized, and the main findings are outlined. Afterwards, an outlook
on a possible continuation of the research in this area is given.

6.1. Summary

As it was shown in Chapter 1, the proper future availability assessment of a complex system
plays a crucial role for system operators as it supports their decision-making regarding
upcoming missions, maintenance actions or business targets. However, this is not an easy
task especially for complex technical systems, which are composed of different components,
combine different technologies or are used in varying scenarios, as all this will lead to very
individual degradation patterns and system states. Statistics based reliability methods,
which are considered to be the state of the art, reach their limits here as they struggle to
capture the true (health) state of the system and thus become inaccurate. With the novel
discipline of PHM, there is an alternative to the traditional reliability engineering that
is based on a direct system feedback trough online measurements that allows to obtain
very accurate estimates on the remaining useful lifetime of monitored parts. Being an
emerging technology, there is still the question on how to aggregate and integrate PHM
results within multi-component systems.

A comprehensive literature search on this topic in Section 2.3.6 revealed that there are
already initial research approaches to extend the PHM approach on a system-level. However,
this also revealed that most of the presented approaches expand the concept of remaining
useful lifetime prediction to a system-wide S-RUL, without making a distinction according
to different performance levels. From a practical point of view, however, this is exactly
what is important for an operator in order to be able to better plan the use of the system.
Accordingly, it was defined as the goal of this work to develop an aggregation method that
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estimates the current and future states of a complex system based on prognostics and in
that way can be used as decision support for operators to increase the availability of the
system. In this context, the feasibility, integration and performance of such a method were
defined as accompanying questions to focus on throughout the work.

Within Chapter 3 of this work, a novel method to accomplish the defined goals was concep-
tualized. The so-called DHRMwas developed based on the V-model approach and combines
methods of classical Reliability Engineering with feedback-based PHM information. Ac-
cording to the technical composition of (complex) systems, the model was defined and
described for the three levels part, component and system. For the lowest level (part-level),
a RUL-CDF was defined, which can be used and interpreted analogously to classical failure
distributions. On the component-level, it was then shown how individual component failu-
res can be propagated with the aid of a fault tree. Finally, on the system-level, a state-space
model was used to represent the failures of individual system components and link them
to a predefined system state. To account for possible uncertainties, the respective sources
were first identified and then described for all three levels how they can be propagated. For
this a two-tiered MCS approach was chosen. Finally, the entire DHRM was implemented
in the form of a prototype in Matlab/Simulink and verified with the aid of sample data.

In Chapter 4, the created DHRM was then applied to a use-case from the aviation industry.
For this purpose, the CSAS of a hybrid drone was examined. The entire system, consisting
of six identical EMAs, was investigated for the underlying wear mechanisms. While the
electronic components (sensors and controller) were modeled using conventional failure
rates, the electromechanical components (BLDC and gearbox) were assumed to have a
continuous wear process and PHM monitoring. The damage progression of the respective
motors and gearboxes was finally simulated using an SDE framework. Subsequently, a
prediction algorithm was created based on this artificially created degradation database.
The GPR-based algorithm was afterwards used to generate RUL forecasts, which were
used as input to the DHRM. Finally, a reference model was created that did not use PHM
information to allow a later comparison and evaluation of the novel method.

In Chapter 5, the created DHRM was then evaluated to derive its overall performance
and allow a discussion of advantages and disadvantages of this method. For this purpose,
a set of comparison metrics was defined at first. Afterwards the model was simulated
with different parameter combinations and compared to the initial reference model. In
this context, the three aspects performance, computational efficiency as well as economic
efficiency of the new approach were evaluated. The results of this evaluation showed that
the novel DHRM outperforms the reference model in several areas. Not only does it provide
a more accurate estimate of the time of a state transition, but it also provides an accurate
estimate of the subsequent state that will occur. Consideration of the time complexity
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revealed that the model behaves in a maximal polynomial fashion except for the merge
at the last level, the system-level. However, the computation time can be shortened by
merging several states of the same severity. Based on an ROI analysis it was shown, that
the new method’s economic advantages depend on the associated cost-savings per correct
state prediction as well as on the accuracy of the state predictions.

6.2. Conclusions and key findings

With respect to the original stated research objectives, it can be said that this work has
demonstrated and proven that it is technically feasible to aggregate PHM information within
a multi-component system to assess and predict current and future system performance.
Therefore, it was shown how PHM results can be combined with existing models from
reliability engineering. The combination of both disciplines is considered to be an essential
advantage and innovation of the resulting method, since the strengths of both disciplines
come into play. These are namely the existence of established models for the aggregation
and updating of reliabilities based on Reliability Engineering and the generation of a highly
accurate condition assessment by PHM.

The results from Section 5.1 have further shown that with the presented approach not
only the time of a state change, but also the subsequent state can be estimated accurately.
This is seen as a major advantage over other methods where either no state differentiation
is made or a clear distinction of the next state is not possible due to the lack of active
system feedback. Thus, the operator of the system receives a decision support which helps
him to react to upcoming events.

The final conclusion of this work is that the proper aggregation of PHM information in a
multi-component context has the potential to be a great support in the decision-making
process for operators of complex systems as it provides an accurate assessment about the
current and future system capabilities. At the same time, however, it must be said that the
advantages of this method can only be realized if the following conditions are met:

• The system is composed of multiple components with independent degradation.

• The system has several distinguishable performance levels in relation to failed com-
ponents.

• PHM monitoring is available for failure dominant parts.

• The used PHM algorithms are sufficiently accurate.
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• All calculations can be performed in a sufficiently short interval, leaving enough time
for action.

From a practical point of view, it also has to be mentioned that there will be more efforts
to be undertaken in the future to further standardize and harmonize the interaction
and communication between multiple PHM-capable parts and components. Also, the
technical means in terms of IT platforms needs to be evaluated to foster the use of such an
aggregation method.

6.3. Outlook

In the context of this work, a first step was taken to aggregate prognostic data of a complex
system in order to provide a decision support to the operator. The scope of the work is
limited to the concept formulation and an experimental proof of concept (Technology
Readiness Level 1-3). For further development and validation of the approach, an expe-
rimental investigation in the form of a physical demonstrator is proposed. A particular
challenge and related research question is seen in the exchange of information between
the respective components. In particular, this rises the question of suitable technologies
for data transport and exchange, uniform interfaces and data protocols. The data must
also be consolidated and evaluated on a central platform. The corresponding architecture
and interfaces must be defined and existing technologies such as IoT must be investigated.

In relation to the PHM environment, the overall question is how data exchange and the
interaction of algorithms can be harmonized and standardized in the future. Particularly in
the case of applications within multi-component systems, it can be assumed that individual
components will be contributed by different suppliers. In order to enable communication
between individual devices, standards and conventions must be created that can be applied
throughout the industry to enable the smooth exchange of information.

As far as the aggregation method itself is concerned, it is limited to pure decision support.
Under the premise that the method is applied to a concrete system, it could be extended to
a decision automation, in which the system itself takes action. In this context, the system
operator would not take an active part and would only assume a monitoring function.
Such an automation would be especially interesting for highly autonomous systems, where
a direct intervention is only possible with difficulty or with a significant time delay, as is
the case for space applications, for example.
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A. Appendix Chapter 2 (state of the art)

A.1. PHM algorithm performance metrics

Table A.1.: Overview of common algorithm performance metrics,
based on [Sax+08]. It shall be noted that the perfect
score for all metrics is zero.

Metric Definition Range

Ac
cu
ra
cy

RUL error ∆l = r∗l (k)− rl (k) (−∞,∞)

Average bias B (k) = 1
L

∑︁L
l=1 ∆l (k) (−∞,∞)

False positive FP (r∗l (k)) =

{︄
1 if ∆l(k) > tFP

0 otherwise
[0, 1]

False negative FN (r∗l (k)) =

{︄
1 if ∆l(k) < tFN

0 otherwise
[0, 1]

Mean absolute per-
centage error

MAPE(k) = 1
L

∑︁L
l=1

⃓⃓⃓
100∆l(k)
r∗l (k)

⃓⃓⃓
[0,∞)

Mean squared error MSE(k) = 1
L

∑︁L
l=1 ∆l(k)

2 [0,∞)

Mean absolute error MAE(k) = 1
L

∑︁L
l=1 |∆l(k)| [0,∞)

Pr
ec
is
io
n Sample standard de-

viation
S (k) =

√︂∑︁L
l=1(∆l(k)−M)2

L−1

M is the sample mean of the error
[0,∞)

Mean absolute devia-
tion from the sample

MAD (k) = 1
L

∑︁L
l=1 |∆l (k)−M |

M is the sample median of the error
[0,∞)
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B. Appendix Chapter 3 (conception)

B.1. Fault tree calculation formulas

Table B.1.: Used fault tree calculation formulas in the custom
Simulink fault tree library, based on [Bit+86]

Event / node type formula

Failure probability (CDF) F (t)

Reliability probability (CDF) R(t) = 1− F (t)

Parallel connection (logical AND) F (t) =
∏︁
Fi(t)

Series connection (logical OR) F (t) = 1−
∏︁
Ri(t)

Exactly k out of n F (t) =
(︁
n
i

)︁
F0(t)

n−1R0(t)
i

At least k out of n F (t) =
n−k∑︂
i=0

(︄
n

i

)︄
F0(t)

n−1R0(t)
i

Exactly one out of n (Exclusive OR) F (t) =
n∑︂

i=1

⎛⎝ n∏︂
j=1

Fj

⎞⎠ Ri

Fi

Note: The formulas for exactly k out of n and at least k out of n can only be applied, if all
parts of the redundant configuration are identical and thus have the same failure rate.
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B.2. Verification of the DHRM implementation

In the following, the results from the verification of the DHRM implementation within the
Matlab environment are outlined. The verification is based on a simplified system model
composed of two identical EMA, where each EMA is based on the reference model from
[Yuy+15].

B.2.1. Verification of the fault tree implementation in Matlab Simulink

The custom fault tree implementation in Matlab Simulink is verified against the proprietary
software Reliability Workbench from Isograph. Figure B.1 shows the EMA reference fault
tree model in Reliability Workbench, Figure B.2 the equivalent model in Simulink.

Figure B.1.: Reference EMA model, modelled in the proprietary
software Reliability Workbench
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Figure B.2.: Reference EMA model created with the custom fault
tree library in Simulink

Note: Being a simulation tool, the fault tree model is calculated in Simulink at discrete
points in time. Thus, the user can define the start and end time of the simulation and
change the result’s resolution by altering the step-size. Via Simulink’s input/output blocks
all results can be im- and exported to the Matlab environment for further processing,
which is considered as the main advantage of this setup compared to proprietary software.
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Both models from Figure B.1 and B.2 are calculated with the parameters stated in Table
B.2. The results from the proprietary software (RL_WB) are then compared to those from
the custom fault tree setup for different step-sizes h in Table B.3.

Table B.2.: Used parameters for the calculation of the reference
EMA fault tree model for the proprietary software Re-
liability Workbench (RL_WB) and the custom fault tree
implementation. Inputs (λ) given in failures per hour.

Event Failure mode λ RL_WB λ cust. FT
E1 Winding open 8.0E-07 8.0E-07
E2 Winding short 9.0E-07 9.0E-07
E3 Sensor bias 1.6E-06 1.6E-06
E4 Sensor drift 1.9E-06 1.9E-06
E5 Sensor offset 1.4E-06 1.4E-06
E6 Rotor eccentricity 4.0E-07 4.0E-07
E7 Power transform. Open 1.8E-06 1.8E-06
E8 Power transform. Short 1.5E-06 1.5E-06
E9 Mechanical wear 1.4E-06 1.4E-06
E10 Mechanical jam 4.0E-07 4.0E-07

Table B.3.: Results from both software programs with deviation
∆F for different step-sizes h

unreliability F
(per cutset)

RL_WB cust. FT ∆F , h = 1 ∆F , h = 10 ∆F , h = 100

FEMA 5.4E-06 5.4E-06 0 -2.00E-10 1.50E-09
FMotor 2.1E-06 2.1E-06 0 0 -2.00E-10
FWindings 1.7E-05 1.7E-05 0 0 -1.00E-10
FSensors 4.3E-18 4.3E-18 0 -4.21E-16 -4.25E-14
FECU 3.3E-06 3.3E-06 0 -1.00E-10 -5.00E-10
FMech_Failure 5.6E-13 5.6E-13 0 -5.04E-12 -5.54E-11

174



B.2.2. Verification of dynamic input (RUL-CDF)

To test the behavior of the model with dynamic input data in form of the required RUL-
CDFs, event node E6 of the exemplary fault tree model is modified to ingest dynamic
data and to compare the model’s outputs versus the scenario with only constant failure
rates. In Figure B.3 and B.4 the reference EMA model from [Yuy+15] is shown with the
modified basic event E6 to account for the dynamic PHM data. While the Simulink solution
automatically chooses the correct input data based on the given tP , the comparison model
in Reliability Workbench was manually calculated at different prognoses times (with a
manually changed parameter). The used input data, in relation to the EoL is given in
Table B.4, the results of both models at different prognoses times are given in Table B.5.

Figure B.3.: Reference fault tree model in Reliability Workbench
with input parameter for basic event E6 chosen for
iteration k = 2.
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Figure B.4.: Reference fault tree model, modelled in the custom
fault tree library in Simulink with a dynamic input
event for eventE6 to ingest dynamic PHM date (RUL-
CDF).
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Table B.4.: Iterative generation of dynamic input for node E6 in
the fault tree model based on standard Weibull distri-
bution with changing scale (η) and shape (β) parame-
ter to be used at different prognosis times (represen-
ted with Λ = tP /EoL)

Input Data Generation (Weibull) RL_WB cust. FT
Iteration k λ η β η β η β

0 n.a. 500.00 2.40 500.00 2.40
1 0 510.00 2.88 510.00 2.88
2 0.1 520.20 3.46 520.20 3.46 520.20 3.46
3 0.2 530.60 4.15 530.60 4.15
4 0.3 541.22 4.98 541.22 4.98
5 0.4 552.04 5.97 552.04 5.97
6 0.5 563.08 7.17 563.08 7.17
7 0.6 574.34 8.60 574.34 8.60
8 0.7 585.83 10.32 585.83 10.32
9 0.8 597.55 12.38 597.55 12.38 597.55 12.38
10 0.9 609.50 14.86 609.50 14.86

Table B.5.: Calculation results of the top node failure probability
FEMA evaluated at different prognoses times tP with
the proprietary software Reliability Workbench and
the custom fault tree implementation in Simulink.

Node unreliability F Prediction time RL_WB cust. FT
FEMA tP = 100 h 0.003842 0.0038416
FEMA tP = 500 h 0.1064 0.10643
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B.2.3. Model parameter uncertainty (UDREL)

To test the uncertainty handling within the DHRM, the previously considered example
EMA model from [Yuy+15] is used and calculated by means of the embedded MCS. The
model’s input parameters (failure rates) are chosen from two lognormal distributions A
and B with varying variances σ2. The used configuration for this experiment is listed in
Table B.6. The drawn parameters are visualized in Figures B.5 and B.6.

Table B.6.: Used parameters to investigate the model’s outputs
under the presence of uncertainty

Failure mode Parameter Distribution log(µ) σ2
A σ2

B

Winding open wind_open_lam lognorm 8.0E-07 0.1 0.3
Winding short wind_short_lam lognorm 9.0E-07 0.1 0.3
Sensor bias sen_bias_lam lognorm 1.6E-06 0.1 0.3
Sensor drift sen_drift_lam lognorm 1.9E-06 0.1 0.3
Sensor offset sen_const_lam lognorm 1.4E-06 0.1 0.3
Power transform. Open pwr_trans_open_lam lognorm 1.8E-06 0.1 0.3
Power transform. Short pwr_trans_shorts_lam lognorm 1.5E-06 0.1 0.3
Mechanical wear mech_wear_lam lognorm 1.4E-06 0.1 0.3
Mechanical jam mech_jam_lam lognorm 4.0E-07 0.1 0.3
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Figure B.5.: Drawn parameters for dataset A, reference values
highlighted. Failure rate given in failures per hour.
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Figure B.6.: Drawn parameters for dataset B, reference values
highlighted. Failure rate given in failures per hour.
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C. Appendix Chapter 4 (application)

C.1. Used EMA model for the use-case

Figure C.1.: The EMA fault tree model implemented with the cu-
stom Simulink fault tree library, with dynamic inputs
(PHM data) for the gearbox and both BLDC motors.
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C.2. KNN validation

The KNN classifier is used for the improved prognosis algorithm. Therefore, all degradation
data is clustered into three distinguishable classes with different degradation rates (A,
B, C). The KNN classifier is trained on the available historic data. During the prognosis,
the KNN is placed before the GPR model(s) and helps to classify the observed data first.
Based on the results of the KNN classifier, the corresponding GPR model (A, B, C) is then
chosen. In Figure C.2, the KNN classification for different observed degradation curves up
to tP = 80 are shown. In the background the reference data is printed that was used for
the training of the KNN classifier.
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Figure C.2.: Output of the KNN classifier of the improved PHM
algorithm with assignments to classes A, B and C for
observed degradation data up to tP = 80
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D. Appendix Chapter 5 (evaluation)

D.1. Definition of the used confusion matrix

The performance and economic metrics introduced in Chapter 5 are largely based on a
confusion matrix, a general concept for the evaluation of classification problems. In the
following, the definition and used notation for this work is outlined, based on the example
of a classification problem with three classes, respectively states:

Table D.1.: Structure of the confusion matrix for a three class
problem

Ground Truth
S1 S2 S3

S1,est c1,1 c1,2 c1,3

S2,est c2,1 c2,2 c2,3Prediction
S3,est c3,1 c3,2 c3,3

With the above defined confusion matrix the basic metrics TP , FP , FN and TN can be
defined. However, it is important to notice that for a multi-class problem each metric has
to be defined for a specific class i of the problem. For class i = 1 the metrics are defined as
follows:

The resulting TP , FP , FN and TN metric can then be put into the overall ratio, repre-
senting the probability of a (mis-)classification. The following table shows the relevant
combinations, their definition and meaning in correspondence to the presented DHRM
state prediction.
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Table D.2.: Defintions of metrics TP , FP , FN and TN for state
i = 1

TPi TP1 = c1,1

FPi FP1 = c1,2 + c1,3

FNi FN1 = c2,1 + c3,1

TNi TN1 = c2,2 + c2,3 + c3,2 + c3,3

Table D.3.: Probability metrics of the confusion matrix

Metric Meaning

True Positive Rate
TPRi =

TPi

TPi+FNi

Probability that state i is predicted, when the true
state is i.

False Negative Rate
FNRi =

FNi

TPi+FNi
= 1− TPRi

Probability that state i is not predicted, when the
true state is i. (Inverse of TPRi)

False Positive Rate
FPRi =

FPi

TNi+FPi

Probability that state i is predicted, but the true
state is different.

True Negative Rate
TNRi =

TNi

TNi+FPi
= 1− FPRi

Probability that other states are predicted correct-
ly. (Inverse of FPRi)
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