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Abstract

Aeroacoustics is the field of research dedicated to studying the generation and propagation of
sound resulting from the interaction of unsteady flows with solid structures, such as aircrafts
and automobiles. As the demand for quieter vehicles continues to rise and the negative impacts
of noise pollution on human well-being become more evident, it is crucial to develop accu-
rate and efficient methods for predicting and controlling aerodynamic noise. Computational
Aeroacoustics (CAA), which unites theoretical and computational techniques, has emerged as
a powerful approach to effectively address these challenges.
The success of CAA relies heavily on Computational Fluid Dynamics (CFD), a numerical

simulation method for studying fluid flow and its characteristics. Given the intricate interplay
between unsteady flows and solid structures, it is essential to employ reliable CFD methods that
capture the underlying flow dynamics and its acoustic consequences with precision. Turbulence,
a common occurrence in real-world flows, plays a vital role in sound generation by inducing
fluctuations and instabilities that contribute to aerodynamic noise. Among various CFD meth-
ods, Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) are widely
utilized for simulating turbulent flows. However, RANS models, while computationally efficient,
have limitations in accurately capturing unsteady flow phenomena critical for aeroacoustic
predictions. On the other hand, LES provides a more accurate representation of unsteady
flow features, but its practical application is constrained by substantial computational resource
requirements.
To address the limitations of RANS and LES, researchers have developed hybrid LES/RANS

methods that seek to balance computational cost and accuracy by utilizing the strengths
of both approaches. One prominent hybrid method is the Partially-Averaged Navier-Stokes
(PANS) method, which offers a compromise between computational efficiency and the ability
to capture unsteady flow phenomena. By incorporating dynamic resolution parameters and
suitable turbulence models, such as the k − ϵ− ζ − f model equation, the PANS method aims
to provide a more accurate representation of flow and its acoustic characteristics.
This research focuses on investigating the aeroacoustic performance of the SSV-PANS method,

a specific variant of the PANS method, by comparing it to a reference LES. The assessment
considers both computational accuracy and costs. The research employs a hybrid approach,
decomposing fluid variables into incompressible hydrodynamic and compressible perturbation
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Abstract

equations to enable the study of aerodynamic noise. The SSV-PANS method is used to compute
aeroacoustic sources from the incompressible flow field.
To validate the accuracy and computational efficiency of the SSV-PANS method, extensive

analyses are conducted on the flow around a circular cylinder and an Ahmed body—renowned
benchmark cases in Computational Fluid Dynamics (CFD). Results obtained using the SSV-PANS
method are compared against those obtained from LES as well as experimental measurements.
By advancing the understanding and capabilities of CAA methods through the evaluation of

the SSV-PANS method, this research contributes to the development of quieter vehicles with
reduced noise emissions. Improving the accuracy and efficiency of computational methods
facilitates the optimization of vehicle designs, enabling effective noise pollution mitigation and
the creation of sustainable and healthier communities.
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Zusammenfassung

Aeroakustik ist ein Gebiet, das sich mit der Erzeugung und Ausbreitung von Schall beschäf-
tigt, der durch die Wechselwirkung von instationären Strömungen mit festen Strukturen wie
Flugzeugen und Autos entsteht. Da die Nachfrage nach leiseren Fahrzeugen weiter steigt und
die negativen Auswirkungen von Lärmbelastung auf das menschliche Wohlbefinden zuneh-
men, ist es entscheidend, genaue und effiziente Methoden zur Vorhersage und Kontrolle von
aerodynamischem Lärm zu entwickeln. Die Numerische-Aeroakustik (CAA), die theoretische
und rechnerische Techniken vereint, hat sich als ein mächtiger Ansatz etabliert, um diese
Herausforderungen effektiv anzugehen.
Der Erfolg der CAA hängt stark von der Computational Fluid Dynamics (CFD) ab, einer nume-

rischen Simulationstechnik zur Untersuchung von Strömungsverhalten und ihren Eigenschaften.
Angesichts des komplexen Zusammenspiels von instationären Strömungen und festen Struk-
turen ist es wesentlich, zuverlässige CFD-Methoden einzusetzen, die die zugrunde liegende
Strömungsdynamik und ihre akustischen Auswirkungen präzise erfassen. Turbulenzen, die in
realen Strömungen häufig auftreten, spielen eine entscheidende Rolle bei der Schallerzeugung,
indem sie Schwankungen und Instabilitäten verursachen, die zum aerodynamischen Lärm
beitragen. Unter den verschiedenen CFD-Methoden werden Reynolds-Averaged Navier-Stokes
(RANS) Methoden und Large Eddy Simulation (LES) weit verbreitet zur Simulation turbulenter
Strömungen eingesetzt. Allerdings haben RANS-Modelle, obwohl sie rechnerisch effizient sind,
Einschränkungen bei der genauen Erfassung von instationären Strömungsphänomenen, die für
aeroakustische Vorhersagen entscheidend sind. Auf der anderen Seite bietet LES eine genauere
Darstellung instationärer Strömungsmerkmale, jedoch ist die praktische Anwendung durch
erhebliche Anforderungen an Rechenressourcen eingeschränkt.
Um die Einschränkungen von RANS und LES zu adressieren, haben Forscher hybride

LES/RANS-Methoden entwickelt, die versuchen, den Kompromiss zwischen Rechenkosten
und Genauigkeit durch die Nutzung der Stärken beider Ansätze zu finden. Eine prominente
hybride Methode ist die Partially-Averaged Navier-Stokes (PANS) Methode, die einen Kom-
promiss zwischen Recheneffizienz und der Fähigkeit, instationäre Strömungsphänomene zu
erfassen, bietet. Durch die Verwendung dynamischer Auflösungsparameter und geeigneter
Turbulenzmodelle wie der k − ϵ− ζ − f -Modellgleichungen zielt die PANS-Methode darauf ab,
eine genauere Darstellung der Strömung und ihrer akustischen Eigenschaften zu liefern.
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Die vorliegende Arbeit konzentriert sich darauf, die aeroakustische Leistung der SSV-PANS-
Methode, einer spezifischen Variante der PANS-Methode, zu untersuchen, indem sie sie mit
einer Referenz LES vergleicht. Die Bewertung berücksichtigt sowohl die Berechnungsge-
nauigkeit als auch die Kosten. Die Methodik verwendet einen hybriden Ansatz, in dem die
Fluidvariablen in inkompressible hydrodynamische und kompressible Störungsgleichungen
aufgeteilt werden, um die Untersuchung von aerodynamischem Lärm zu ermöglichen. Die
SSV-PANS-Methode wird verwendet, um aeroakustische Quellen aus dem inkompressiblen
Strömungsfeld zu berechnen.
Um die Genauigkeit und Recheneffizienz der SSV-PANS-Methode zu validieren, werden

umfangreiche Analysen zur Strömung um einen kreisförmigen Zylinder und einen Ahmed-
Körper durchgeführt - bekannte Benchmark-Fälle in der Computational Fluid Dynamics (CFD).
Die mit der SSV-PANS-Methode erzielten Ergebnisse werden mit denen aus der LES sowie
experimentellen Messungen verglichen.
Indem das Verständnis und die Fähigkeiten von CAA-Methoden durch die Bewertung der

SSV-PANS-Methode vorangetrieben werden, trägt diese Forschung zur Entwicklung leiserer
Fahrzeuge mit reduzierten Lärmemissionen bei. Die Verbesserung der Genauigkeit und Effizienz
von Berechnungsmethoden ermöglicht die Optimierung von Fahrzeugdesigns, um effektive
Lärmbekämpfung zu ermöglichen und nachhaltige und gesündere umstände zu schaffen.
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1 Introduction

1.1 Motivation

In recent years, the field of aeroacoustics has become increasingly crucial in the design of high-
speed vehicles as it addresses the pressing challenge of reducing noise emissions. The impact
of aerodynamic noise generated by vehicles not only affects the well-being of individuals living
near transportation corridors but also contributes significantly to overall noise pollution levels.
Consequently, there is an urgent need to develop advanced methods capable of accurately
predicting and controlling this noise phenomenon.
To tackle this challenge, Computational Aeroacoustics (CAA) has emerged as a promising

approach, offering cost-effectiveness and versatility through computational methods. Hybrid
methods, specifically employed for predicting aerodynamic noise at low Mach numbers, have
gained widespread acceptance. These methods involve decomposing fluid variables into an
incompressible flow field and compressible perturbation equations, connecting them through
acoustic sources.
However, additional research is required to investigate novel approaches that achieve an

improved equilibrium between computational efficiency and accuracy, specifically for intricate
flow structures and complex geometries. The effectiveness of Computational Aeroacoustics
(CAA) relies on the study of fluid flow through Computational Fluid Dynamics (CFD), where
turbulence plays a crucial role in sound generation. The limitations of Reynolds-Averaged
Navier-Stokes (RANS) models and the resource-intensive nature of Large-Eddy Simulation
(LES) have led to the development of hybrid LES/RANS methods. The Partially-Averaged
Navier Stokes (PANS) method, among these approaches, shows great promise with its ability
to combine the strengths of both methods.
The PANS method represents a continuous hybrid approach that seamlessly transitions from

Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), providing
improved accuracy while retaining computational efficiency. By decomposing the velocity field
based on kinetic energy rather than a wave number cutoff, the PANS method offers a more
faithful representation of underlying flow structures, particularly in regions characterized by
flow separation or turbulence.
Leveraging the capabilities of computational fluid dynamics solver FASTEST [1], a finite-
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volume solver for simulating complex flows, which is used for the implementation of the
SSV-PANS method demonstrates significant promise in the realm of aerodynamic field predic-
tion. Therefore, it is of great interest to study the applicability of this method in the field of
aeroacoustics.
Among the various PANS methods, the SSV-PANS method stands out as a notable extension,

incorporating an additional equation for the resolved kinetic energy. The observed promising
results of the SSV-PANS method in the field of aerodynamics led to its implementation in the
FASTEST [1] computational fluid dynamics solver, renowned for its ability to simulate complex
flows using a finite-volume approach, with the specific intention of evaluating its performance
in the realm of aeroacoustics. By bridging the gap between accurate representation and
computational efficiency, this research aims to establish the SSV-PANS method as a reliable
tool for predicting aeroacoustic phenomena, contributing significantly to the development
of noise-reduced vehicles. Through this advancement, the primary objective of this research
is to pave the way for quieter and more environmentally sustainable transportation systems,
enriching the quality of living environments for individuals and communities.

1.2 State of the Art

This section provides a comprehensive analysis of the current state of Computational Aeroa-
coustics (CAA) and Turbulence Modeling. These fields are essential for accurately predicting
aerodynamic noise from turbulent flows in various applications. The section discusses the
numerical methods used in CAA to study how sound is generated and propagates in fluid
motion. By reviewing the latest techniques and advancements, the aim is to provide a clear
understanding of the progress and challenges in CAA and Turbulence Modeling. Ongoing
research focuses on improving the accuracy and efficiency of aeroacoustic simulations, which
can help address complex noise-related issues effectively.

Turbulence Modeling

Turbulent flows play a critical role in various industrial and engineering applications, especially
in computational aeroacoustics. The accurate prediction and understanding of turbulence
are vital for designing efficient engineering systems. To address this need, different methods
have been developed to capture and characterize turbulence in distinct ways. DNS is a highly
accurate method that simulates turbulent flows by directly solving the Navier-Stokes equations
without employing additional modeling [2, 3]. However, the computational cost associated
with DNS restricts its usage primarily to academic research and problems within a limited range
of scales. As the Reynolds numbers increase, DNS becomes impractical for most engineering
applications due to the substantial increase in the number of grid points required [4].
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Large Eddy Simulation (LES) proposed by Smagorinsky [5], is an accurate computational
method that aims to resolve the larger-scale motions of turbulence while modeling the smaller-
scale motions using sub-grid scale (SGS) models. LES accurately captures the energy-containing
structures of turbulence while representing the unresolved turbulent eddies through SGSmodels.
The widely used Smagorinsky model employs a fixed value for the Smagorinsky constant to
approximate the SGS turbulence. However, this fixed constant may introduce errors when
dealing with flows exhibiting varying turbulence intensities. To address this limitation, Germano
et al. [6] introduced a dynamic Smagorinsky model that adapts the Smagorinsky constant
during the simulation based on the local flow properties, resulting in improved accuracy and
better representation of the turbulent flow dynamics.
Reynolds-Averaged Navier-Stokes (RANS) models are widely used in computational fluid

dynamics to simulate turbulent flows [7]. By solving the time-averaged RANS equations, RANS
models capture the mean behavior of the flow while incorporating turbulence models to account
for the effects of turbulent fluctuations. While computationally less demanding than other
methods like LES and DNS, RANS models may exhibit lower accuracy, especially in flows with
complex geometries and high turbulence intensity.
Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) models aim

to leverage the strengths of both RANS and LES methodologies. These models effectively
resolve the large-scale structures of turbulence while simultaneously modeling the smaller-scale
structures. Several approaches to hybrid RANS/LES modeling have been developed, including
Detached Eddy Simulation (DES) [8, 9], Very Large Eddy Simulation (VLES) [10], Limited
Numerical Scales (LNS) [11, 12], and Partially-Averaged Navier-Stokes (PANS) [13, 14].
The Partially-Averaged Navier-Stokes (PANS) method, proposed by Girimaji [13, 14], offers a

robust framework that facilitates a seamless transition from RANS to DNS by decomposing the
velocity field based on its kinetic energy. This decomposition ensures a balanced representation
of resolved and modeled kinetic energy, leading to improved accuracy in capturing flow
dynamics. Validation studies conducted on complex flows have demonstrated the effectiveness
of PANS in industrial scenarios [15–17].
The PANS closure model, derived from RANS equations, incorporates the ratios of unresolved-

to-total kinetic energy (fk) and dissipation (fϵ). This formulation allows PANS to simulate a
wide range of behaviors, covering both DNS-like and RANS-like behavior.
By combining the strengths of RANS and LES, PANS bridges the gap between accurately

representing turbulence dynamics and handling complex geometries. The method has gained
significant interest in the Computational Fluid Dynamics (CFD) research community, as evi-
denced by numerous studies conducted by researchers such as [18–23].
The PANS model, initially derived from the k − ϵ model, has been enhanced through two

additional variants: one based on the k − ω formulation [24] and another based on the
k − ϵ− ζ − f model proposed by Basara et al. [25]. Basara et al. [25] introduced a near-wall
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formulation for the PANS model, improving its performance in capturing near-wall turbulence
effects. Their findings demonstrate the effectiveness of this formulation in accurately predicting
complex flow phenomena near solid boundaries, advancing the reliability of PANS for analyzing
turbulent flows.
In turbulent flow simulation, the determination of the cut-off resolution parameter is crucial

in bridging methods. Basara et al. [26] presented a new approach to address this challenge by
introducing the Scale-Supplying Variable (SSV) equation. This equation corrects themodeling of
unresolved scales in turbulent flows and accurately determines the cut-off resolution parameter.
By incorporating the SSV equation, researchers and engineers can achieve enhanced accuracy
in capturing turbulent flow dynamics across various applications. The significance of the SSV
equation lies in its ability to refine the modeling of unresolved scales, leading to more reliable
predictions and deeper insights into the complex behavior of turbulent flows. Building upon
our understanding of turbulent flow simulation and turbulence modeling, the next section
explores Computational Aeroacoustics (CAA).

Computational Aeroacoustics

Aeroacoustics is a significant area of research with wide-ranging implications in various in-
dustries, particularly in the design of quieter vehicles. While experimental methods have
traditionally played a role in investigating aeroacoustic phenomena, computational approaches
have gained prominence due to their cost-effectiveness and ability to provide detailed insights
into complex flow dynamics. Computational Aeroacoustics (CAA) has witnessed substantial ad-
vancements in recent decades, benefiting from progress in computational fluid dynamics (CFD)
and computational acoustics, and finding widespread applications in industry and academia.
The foundations of CAA can be attributed to the seminal work of Lighthill, who introduced

the acoustic analogy by reformulating the compressible Navier-Stokes equations into an inhomo-
geneous wave equation [27, 28]. Building upon Lighthill’s breakthrough, other methodologies
such as Curle’s formulation [29] and the Ffowcs Williams-Hawkings (FW-H) formulation [30]
were developed to address the limitations of the acoustic analogy, particularly in relation to
stationary and moving solid bodies.
Computational Aeroacoustics encompasses a range of numerical techniques, broadly classi-

fied into two groups: direct methods and hybrid methods. Direct noise computation (DNC)
methods involve solving the complete compressible flow equations without additional model
approximations, making them particularly useful for analyzing highly nonlinear aeroacous-
tic phenomena [31, 32]. However, these methods require significant numerical resolution,
rendering them inefficient for aeroacoustic problems involving low Mach number flows [33].
on the other hand, hybrid methods address the multiscale nature of aeroacoustic problems by

decoupling fluid dynamics and acoustic simulations. These methods first compute the unsteady
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flow field using computational fluid dynamics (CFD) schemes capable of resolving essential
turbulent flow structures. Subsequently, they determine the acoustic field using acoustic sources
derived from the unsteady flow field. This class of methods includes hydrodynamic/acoustic
splitting methods [34, 35] and acoustic analogies.
Hydrodynamic/acoustic splitting methods are integral to Computational Aeroacoustics

(CAA) as they enable the separation of hydrodynamic and acoustic components, facilitating
efficient and accurate simulations of sound generation and propagation in fluid motion. By
decomposing the fluid variables into hydrodynamic and acoustic parts, these techniques
allow for the independent solution of the respective equations governing each component.
This enhances computational efficiency by accommodating specific resolution and domain
requirements.
Notably, Seo and Moon [36] proposed linearized perturbed compressible equations for

predicting aeroacoustic noise at low Mach numbers, while Hardin and Pope [34] introduced
an acoustic/viscous splitting technique widely used in aerospace applications to predict aero-
dynamic noise. Shen and Sørensen [37, 38] derived the Linearized Euler Equations (LEE) that
govern aeroacoustic quantities.
The hybrid approach, incorporating acoustic analogies like Lighthill’s, Curle’s, and FW-H

analogy, provides a cost-effective computational solution compared to direct noise computation,
making it suitable for industrial applications. On the other hand, it should be noted that
acoustic analogies, despite their widespread use, are not completely satisfactory for accurately
capturing aeroacoustic phenomena.
Overall, while direct methods are well-suited for analyzing highly nonlinear aeroacoustic

phenomena, hybrid methods are better suited for low Mach number flow problems. However,
the choice of method depends on the specific characteristics of the problem at hand, and a
universally applicable approach for obtaining acoustic information efficiently and accurately is
currently unavailable. Ongoing research in Computational Aeroacoustics (CAA) is dedicated to
improving the accuracy and efficiency of aeroacoustic simulations.
To reduce computational costs, unresolved turbulence scales are often represented using

turbulence models instead of performing DNS. Baily and Juvé [39] integrated the k − ϵ RANS
turbulence model with the LEE method, despite its limitations for aeroacoustic problems. The
LES model has also been employed to calculate aeroacoustic sources [40]. While LES serves
as a cost-effective alternative to DNS for turbulent noise evaluation [41], the significance of
hybrid LES/RANS methods persists in striking a balance between accuracy and computational
efficiency. In this regard, Langtry et al. [42] explored the use of the Detached Eddy Simula-
tion (DES) model for simulating flap edge noise, contributing to the development of hybrid
LES/RANS approaches.
The current research builds upon the work of Hardin and Pope [34] and adopts a splitting

approach based on the formulation presented by Kornhaas et al. [40]. However, Kornhaas et
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al. [40] calculated aeroacoustic sources based on LES, while the current research utilizes the
Partially-Averaged Navier-Stokes (PANS) method, specifically the SSV-PANS method, to find a
more efficient alternative to the extensive computational requirements of the LES model. This
poses a challenge for the widespread adoption of LES in Computational Aeroacoustics (CAA)
for engineering problems.
Additionally, several methods can be employed to further enhance computational efficiency.

In the current study, the hydrodynamic/acoustic splitting approach is utilized to effectively
handle acoustic waves in the nearby and intermediate regions. Simultaneously, the Kirchhoff
method enables the determination of acoustic pressure at any given position in the far field. The
combination of perturbation equations with wave extrapolation methods presents a promising
opportunity for efficient assessment of sound in the far field [36, 43–45].
The field of Computational Aeroacoustics (CAA) is continually advancing, fueled by the

need for precise and efficient noise prediction methods. Through the combination of direct
methods, hybrid approaches, and innovative techniques, researchers and engineers can gain
valuable insights into the generation and propagation of noise in fluid dynamics. Ongoing
research in CAA aims to enhance the accuracy and efficiency of aeroacoustic simulations,
providing valuable tools for understanding and addressing various aeroacoustic problems. One
interesting approach in this regard is to investigate the performance of SSV-PANS based on
the k − ϵ − ζ − f model in the context of aeroacoustics using the acoustic/viscous splitting
technique. This investigation holds promise for advancing our understanding and capabilities
in aeroacoustic analysis and design.

1.3 Objectives and Outline

This thesis endeavors to enhance Computational Aeroacoustics (CAA) methods by evaluating
the capabilities of the SSV-PANS method for aerodynamic noise prediction in comparison to a
reference Large Eddy Simulation (LES) model. The primary objective is to improve the accuracy
and efficiency of CAA techniques to facilitate quieter vehicles and effective noise pollution
mitigation.
In Chapter 2, the computational fluid dynamics (CFD) and computational aeroacoustics (CAA)

tools utilized to simulate the flow and acoustics around bluff bodies are thoroughly explained.
Furthermore, the SSV-PANS approach is introduced. This chapter serves as a fundamental
basis for comprehending the numerical methods employed throughout the present study.
Chapter 3 comprehensively explores turbulent flow simulation methods, including Direct

Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier-
Stokes (RANS), while delving into key concepts like the energy cascade and the law of the wall.
It establishes the framework for subsequent chapters and provides an in-depth explanation of
the SSV-PANS method, which serves as a fundamental component of the following discussions.
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Chapter 4 delves into the details of the finite volume method used to discretize the governing
equations, providing insights into its implementation. Additionally, the finite volume method
employed in CAA simulations, is discussed in detail within this chapter.
Chapter 5 focuses on the validation and verification of the SSV-PANS method through bench-

mark comparisons with LESmodels and experimental measurements. The results obtained from
the fully-developed flow in a plane channel and the periodic 2D hill test cases are presented
and used to validate the numerical methods applied in this study.
Chapter 6 examines the aeroacoustic results derived from the implementation of the SSV-

PANS method. Two specific scenarios are investigated: flow past a circular cylinder and flow
over an Ahmed Body. The acoustic characteristics and noise generation mechanisms in these
scenarios are analyzed and evaluated.
Finally, Chapter 7 concludes the thesis by summarizing the research outcomes and their

implications. It highlights the contributions of the study in advancing CAA methods, improving
noise prediction accuracy, and enhancing computational efficiency. Additionally, potential
avenues for future research are discussed, emphasizing the opportunities for further advance-
ments in noise reduction and sustainable vehicle design through the optimization of CAA
techniques.
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In this chapter, the foundational aspects of Computational Fluid Dynamics (CFD) and its
applications in simulating fluid dynamics are explored. First, the fundamental equations
governing fluid mechanics, including the continuity and momentum equations, are introduced.
Afterwards, the distinction between compressible and incompressible flows is marked by the
Mach number. Afterwards, the fundamental equations for the computational aeroacoustics,
direct noise computation and hybrid methods for efficient simulations are covered. Specifically,
the Hydrodynamic/Acoustic Splitting Method is highlighted for accurate predictions of noise
in turbulent flows. This chapter facilitates the acquisition of essential knowledge in fluid
mechanics and aeroacoustics, fostering a comprehensive understanding.

2.1 Fundamentals of Fluids Mechanics

CFD is an established and influential discipline dedicated to the simulation and analysis of
fluid flows through the utilization of numerical techniques. In this section, the fundamental
concepts and equations governing fluid mechanics will be discussed. A detailed description of
the topics in this chapter are available in [46, 47].

2.1.1 Conservation Equations for Incompressible Fluids

The behavior of a fluid can be fully described by the conservation equations of mass, momentum,
and energy. The mass equation, also known as the continuity equation, is a fundamental
equation in fluid mechanics that governs the conservation of mass within a fluid. The mass
equation can be written as:

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0, (2.1)

where t is time, xi is the spatial coordinates and vi is the component of the velocity vector
of the fluid in the i direction. The continuity equation ensures that mass is conserved within
a fluid. The momentum equation is another fundamental equation in fluid mechanics that
governs the conservation of momentum in a fluid. It can be expressed as:
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∂(ρvi)

∂t
+

∂(ρvivj)

∂xj
=

∂Tij

∂xj
+ ρfi. (2.2)

Here, Tij is the Cauchy stress tensor, and fi are external forces acting on the fluid. The
equation states that the rate of change of the momentum of the fluid in a given volume is equal
to the net rate at which momentum is flowing into or out of that volume, plus the net force
acting on that volume.
For Newtonian fluids, which is the scope of current study, the relationship between the

Cauchy stress tensor and the strain rate can be expressed as:

Tij = µ

(︃
∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vk
∂xk

δij

)︃
− pδij . (2.3)

Here, p is pressure, and δij is the Kronecker delta (where δij = 1 if i = j and δij = 0 if
i ̸= j).
The conservation equations of mass Equation 2.1 and momentum Equation 2.2 are valid for

both incompressible and compressible fluids. More information on the field can be found in
[46].

Mach Number

The Mach number is a vital parameter in the field of fluid dynamics. It is a dimensionless
parameter that characterizes the speed of an object or fluid relative to the speed of sound. The
Mach number is defined as:

Ma =
v∞
c∞

, (2.4)

where v∞ denotes the velocity of the fluid or object, while c∞ represents the local speed of
sound. The Mach number is a crucial factor in identifying the flow regime and associated
phenomena. When dealing with many engineering applications, the density of the fluid remains
almost constant, and compressibility effects are insignificant. If the Mach number is below 0.3,
the fluid flow can be approximated as incompressible.
The continuity equation and the momentum equations for incompressible fluid flows can be

expressed as follows:

∂vici
∂xi

= 0, (2.5)

ρic∂(vic)

∂t
+

ρic∂(vici v
ic
j )

∂xj
=

∂Tij

∂xj
+ ρicfi, (2.6)

where ic indicates incompressible flow quantities. The stress tensor for incompressible flows
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can be simplified as:

Tij = µf

(︄
∂vici
∂xj

+
∂vicj
∂xi

)︄
− picδij . (2.7)

The conservation equations for fluids, including mass and momentum, describe fluid behavior
comprehensively. These equations, along with the Cauchy stress tensor and external forces,
govern mass and momentum conservation. For cases involving incompressible, isothermal,
Newtonian flows where viscosity is constant, the energy conservation equation is not neces-
sary for problem-solving [46]. By understanding and applying these fundamental principles,
computational fluid dynamics (CFD) fluid flows using numerical techniques could be analyzed.

2.2 Fundamentals of Computational Aeroacoustics (CAA)

Aeroacoustics involves the study of sound generation and propagation in unsteady flow envi-
ronments. It is a multidisciplinary field that combines principles of fluid dynamics, acoustics,
and mathematics. Various approaches have been developed to acquire acoustic quantities,
including direct noise computation and hybrid methods. Details on the methods can be found
in [41, 48, 49].

2.2.1 Direct Noise Computation

Direct noise computation is a method used in aeroacoustics to acquire acoustic quantities by
solving directly the governing equations This method provides accurate predictions of sound
fields in turbulent flow fields but requires significant computational resources. Direct noise
computation is useful for understanding the physical mechanisms of sound generation and
propagation in unsteady flow fields.

2.2.2 Hybrid Methods

Hybrid methods exhibit a dual-step approach for computing acoustic variables, effectively
tackling the challenge of multi-scale dynamics by separating fluid dynamics and acoustic
simulations. This two-phase process involves initially employing appropriate computational
fluid dynamics (CFD) methods to calculate the unsteady flow patterns within the aerodynamic
source area. This step enables the precise resolution of vital turbulent flow characteristics. Sub-
sequently, the acoustic field is determined using the acoustic sources derived from the previously
computed unsteady flow field [48]. Unlike the DNC method, hybrid methods exhibit enhanced
computational efficiency. This category of methods, includes various hydrodynamic/acoustic
splitting techniques in addition to acoustic analogies.
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Hydrodynamic/Acoustic Splitting Method

The Hydrodynamic/Acoustic Splitting Method is a commonly used technique in aeroacoustics
that involves splitting the governing equations into two parts [37]. The first set of equations
governs the flow field, while the second set of equations governs the propagation of sound waves
in the fluid. By solving these two sets of equations separately, the computation is simplified,
resulting in more efficient predictions of noise generated by turbulent flows. The approach
described has proven to be effective in addressing various challenges, such as aircraft noise,
wind turbine noise, and automotive noise, as documented in previous studies [48, 49].

The simulation of aeroacoustic phenomena in low subsonic flows poses significant challenges
due to the large difference in scale between the flow and acoustic fluctuations [37]. The acoustic
wavelength is much greater than the characteristic length scales of the flow, which leads to
a large difference in magnitude between the pressure and velocity fluctuations. Capturing
both the incompressible flow and small acoustic fluctuations in a single simulation is difficult,
and traditional computational fluid dynamics (CFD) methods based on the Navier-Stokes
equations are not well-suited for simulating aeroacoustics. As a result, specialized techniques
like the Hydrodynamic/Acoustic Splitting Method have been developed to simulate both the
incompressible flow and small acoustic fluctuations in a coupled manner [34, 48].

In the Hydrodynamic/Acoustic Splitting Method, the flow field is split into two components:
an incompressible flow field and an acoustic field. The incompressible flow field is characterized
by a constant density ρic and a velocity field vici . The acoustic field, on the other hand, is
characterized by small density fluctuations ρa and pressure fluctuations pa that propagate
at the speed of sound C∞

(︁
=
√︁
(∂p/∂ρ)S

)︁
. The formulation used in this study to separate

hydrodynamics and acoustics was formulated by Kornhaas [48]. This method which is based
on the one developed by Shen and Sørensen [37], and involves breaking down the fluid field
properties into an incompressible fluid dynamic part and a perturbed acoustic part:

ρ = ρic + ρa, (2.8)

vi = vici + vai , (2.9)

p = pic + pa. (2.10)

The acoustic field equations describe the conservation of mass and momentum in small
density and velocity fluctuations, respectively, and the propagation of pressure fluctuations
through an incompressible flow field, which are given by:

Continuity equation:
∂ρa

∂t
+ ρic

∂vai
∂xi

+ vici
∂ρa

∂xi
= 0. (2.11)
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Momentum equation:
ρic

∂vai
∂t

+ ρicvicj
∂vai
∂xj

+
∂pa

∂xi
= 0. (2.12)

Acoustic wave equation:

∂pa

∂t
+ c2∞ρic

∂vai
∂xi

+ vici
∂pa

∂xi
= −∂pic

∂t
. (2.13)

These equations constitute a type of linearized Euler equations (LEE) for acoustic wave
propagation through a medium. The only source term for acoustics is the time derivative of
the incompressible pressure field −∂pic/∂t. More information on the method, can be found in
[34, 37, 40, 48].
The human sensation of sound is perceived on a logarithmic scale relative to acoustic pressure.

To quantify sound intensity, the sound pressure level (SPL) is used, measured in decibels
(dB), and it can be calculated using the following equation:

SPL = 10 log

(︄
(P a

eff )
2

(P a
ref )

2

)︄
= 20 log

(︄
P a
eff

P a
ref

)︄
. (2.14)

In this equation, P a
ref is the reference acoustic pressure, which has a value of 2× 10−5 Pa. The

effective acoustic pressure, denoted as P a
eff , is defined as follows:

P a
eff =

√︄
1

T

∫︂ T
t=0

(P a(t))2dt. (2.15)

Here, T represents the total time duration of the sound signal, and P a(t) is the time-varying
acoustic pressure at any given moment t. The effective acoustic pressure provides a measure of
the overall intensity of the sound signal over the specified time period.
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The main aim of this thesis is to explore the aerodynamic noise generated by turbulent flows.
In order to accomplish this objective, it is crucial to possess a thorough comprehension of
turbulence, which serves as a fundamental requirement for any future studies. The following
section commences with an extensive overview of turbulence, followed by a discussion on the
current methodologies employed for turbulence modeling.

3.1 Turbulent Flow

Turbulent flow is a highly intricate and chaotic fluid phenomenon characterized by irregular
fluctuations in velocity and pressure. It commonly occurs in high-speed flows or flows with
complex geometries such as pipes, jets, and boundary layers. The concept of turbulent flow was
originally explained by Osborne Reynolds, and it is commonly characterized by a dimensionless
parameter called the Reynolds number (Re). The Reynolds number relates the inertial forces
of a fluid to its viscous forces and can be calculated using the Reynolds number equation [50]:

Re =
ρv∞L

µ
. (3.1)

In this equation, ρ represents the density of the fluid, v∞ denotes the characteristic velocity of
the flow, L signifies the characteristic length of the flow, and µ stands for the dynamic viscosity
of the fluid. When the Reynolds number exceeds a certain threshold, the flow transitions from
a laminar state to a turbulent state, and the irregular fluctuations in the flow become more
pronounced.
Turbulence is characterized by its complex and chaotic nature, where the fluid particles

move in a random and disordered manner, influenced by interactions between eddies and
vortices of various sizes.
Understanding and predicting the behavior of turbulent flow is crucial in numerous engineer-

ing applications, including aerodynamics, fluid transport, and heat transfer. The subsequent
content will introduce the fundamental principles of turbulence theory. For a more compre-
hensive understanding of this topic, readers are encouraged to consult Pope’s work, which
provides an in-depth overview of turbulent flow theory [51]. Additionally, references [52, 53]
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offer more comprehensive theories on turbulence.

3.1.1 Energy Cascade

Once the Reynolds number surpasses a particular limit, the viscous forces in the vicinity can
no longer effectively suppress arbitrary velocity fluctuations. As a result, the fluctuations in the
fluid flow start to intensify, causing a previously smooth laminar flow to turn turbulent. In a
turbulent flow, there are eddies of various sizes. The bigger eddies are where the majority of
the kinetic energy is found, whereas the smaller ones are accountable for the dissipation of
energy [51].
The energy cascade is a fundamental concept in the study of turbulent flows, and it refers to

the process by which kinetic energy is transferred from large-scale eddies to smaller-scale ones,
until it is eventually dissipated into heat by the viscous dissipation. The energy cascade can be
visualized as a series of eddies of decreasing size, each one containing a smaller fraction of the
total kinetic energy of the flow, but having a higher level of velocity fluctuations.
The transfer of energy from larger to smaller eddies occurs through via a phenomenon

called vortex stretching, where the velocity gradients within an eddy cause it to deform and
stretch, leading to the generation of smaller eddies. This process continues until the energy
is transferred to eddies that are small enough to be affected by the action of viscosity, which
dissipates the kinetic energy into heat. In Figure 3.1, the function of the energy spectrum is
depicted as a function of the wave number of the eddies, illustrating the effect.

Energy-containing
range

Inertial
subrange

Dissipative
range
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g
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(κ
))

log(κ)

-5/3

Figure 3.1 Depiction of energy cascade in the turbulence energy spectrum [54].

The Kolmogorov length scale η is the smallest length scale in a turbulent flow where viscosity
dominates, representing the size of the smallest eddies given by the formula [55]:
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η =

(︃
ν3

ϵ

)︃1/4

, (3.2)

where ν represent the kinematic viscosity and, ϵ represent the rate of energy dissipation per
unit mass. The Kolmogorov time scale is defined as:

τη =
(︂ν
ε

)︂1/2
, (3.3)

and the Kolmogorov velocity scale is defined as:

uη = (νε)1/4. (3.4)

These scales play an important role in the statistical description of turbulence and the formula-
tion of turbulence models.

The Kolmogorov scales are related to the Reynolds number. Specifically, the Kolmogorov
length scale is related to the size of the largest eddies in the flow, characterized by a length
scale l0, by the scaling law:

η/l0 ∼ Re−3/4. (3.5)

Similarly, the Kolmogorov velocity scale is related to the characteristic velocity of the flow,
denoted by u0, by the scaling law:

uη/u0 ∼ Re−1/4, (3.6)

and the Kolmogorov time scale is related to the characteristic time scale of the flow, denoted
by τ0, by the scaling law:

τη/τ0 ∼ Re−1/2. (3.7)

The mathematical expression relating the energy spectrum to the wave number in the inertial
subrange of a turbulent flow is expressed as:

κ−5/3 ∼ E(κ), (3.8)

where E(κ) is the kinetic energy at the wave number κ, and it is commonly referred to as
Kolmogorov’s 5/3 law.
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3.1.2 Law of the Wall

In engineering applications involving solid structures, turbulent flows are common. Analyzing
the flow near the wall is crucial for understanding turbulence, as the energy cascade theory
does not account for the interaction with solid surfaces. The Law of the Wall predicts the
logarithmic relationship between dimensionless velocity and distance from a solid wall in the
turbulent boundary layer, and is essential for understanding turbulence near solid surfaces.
Non-dimensionalization is the basis for the Law of the Wall, where physical variables are made
dimensionless using scaling parameters.
The non-dimensional parameters can be expressed as follows [56]:

y+ =
yuτ
ν

, (3.9)

u+ =
u

uτ
, (3.10)

where u represents the velocity in the tangential direction, while y corresponds to the direction
normal to the wall. The friction velocity, represented as uτ , can be calculated as

√︁
τw/ρ, where

the subscript w denotes the value at the wall. The wall shear stress τw is defined as:

τw = µ

(︃
∂u

∂y

)︃
w

. (3.11)

The Law of the Wall anticipates a logarithmic correlation between the dimensionless velocity
and the dimensionless distance from the wall in the logarithmic region of the turbulent boundary
layer. The average velocity profile of the turbulent boundary layer can be characterized by two
equations based on the dimensionless distance from the wall, y+.
The initial equation specifies the velocity profile in the viscous sublayer, which is positioned

close to the wall (0 < y+ < 5):
u+ = y+. (3.12)

The logarithmic sublayer, which is located at a greater distance from the wall (y+ > 30),
conforms to the logarithmic Law of the Wall for the average velocity, which is defined by the
equation:

u+ =
1

κ
ln(y+) +B. (3.13)

The values of the constants κ and B depend on the flow conditions, with κ being the von
Kármán constant that describes the shape of the velocity profile near the wall and is usually
around 0.41.
The buffer sublayer, located between the viscous and logarithmic sublayers (5 < y+ < 30),

shows a transition between the linear relationship and the logarithmic Law. The Law of the
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Wall is demonstrated in Figure 3.2 using direct numerical simulation data from a channel flow
at Re = 395 [54].
The figure displays the average velocity profile in the boundary layer and exhibits the viscous

sublayer, buffer sublayer, and logarithmic sublayer.
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Figure 3.2 The law of the wall with data from direct numerical simulations of a channel flow with
Reynolds number Re = 395 [54].

3.2 Direct Numerical Simulation (DNS)

Direct Numerical Simulation (DNS) is a powerful computational technique used to model fluid
dynamics problems at an extremely fine scale. DNS resolves all physical parameters, including
the smallest turbulent eddies, without any assumptions. To achieve this level of accuracy,
DNS solves the Navier-Stokes equations directly for all scales, from the largest to the smallest,
using a high-resolution numerical grid and time step [2, 3]. Therefor it is necessary to use
high-performance computing methods, which require substantial computational resources.
DNS necessitates a fine grid resolution to ensure accurate results, which can be computa-

tionally expensive and limited to low Reynolds number flows. Moreover, the computational
cost of DNS scales with the cube of the Reynolds number, making it presently unsuitable for
many engineering applications .
Despite its high cost, DNS is an invaluable tool for comprehending the fundamental physics
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3 Turbulent Flow Simulation

of turbulence, and for developing and validating turbulence models for other computational
methods.

3.3 Large Eddy Simulation (LES)

The Large eddy simulation (LES) method involves decomposing the flow into resolved and
unresolved scales, where the resolved scales are computed directly and the unresolved scales
are modeled using turbulence models. The idea of LES method is illustrated in Figure 3.3. The
LES method is based on solving the filtered Navier-Stokes equations, which are obtained by
filtering the governing equations over a length scale larger than the characteristic length of the
turbulence. According to Wagner et al. [41], the large eddies drive the dominant portion of
turbulent kinetic energy and flow dynamics, making this method advantageous.
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(κ
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log(κ)
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Resolved

Modeled
RANS

LES

DNS

Figure 3.3 Treatment of turbulent structures: Comparing DNS, LES, and RANS through turbulent energy
cascade.

The filtered variable is defined as:

ϕ(x, t) = ϕ̄(x, t) + ϕ′(x, t), (3.14)

where ϕ̄(x, t) is the filtered variable, ϕ′(x, t) is the residual or subgrid-scale (SGS) variable,
and ϕ(x, t) is the original variable. The filtered variable can be computed using a convolution
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operation:

ϕ̄(x, t) =

∫︂
G(x,y)ϕ(x− y, t)dy = G ∗ ϕ, (3.15)

where G(x,y) is the filter kernel. Applying a filtering process to the Navier-Stokes equations
results in the filtered continuity and momentum equations:

∂vici
∂xi

= 0, (3.16)

∂(ρicvici )

∂t
+

∂(ρicvici v
ic
j )

∂xj
=

∂

∂xj

[︄
µf

(︄
∂vici
∂xj

+
∂vicj
∂xi

)︄]︄
−

∂τ sgsij

∂xj
− ∂pic

∂xi
. (3.17)

In LES, the filtered Navier-Stokes equations are solved numerically using appropriate dis-
cretization schemes. To close the equations, a turbulence model is required to model the SGS
stresses. The SGS stress tensor τ sgsij is defined as:

τ sgsij = ρic
(︂
vici v

ic
j − v̄ici v̄

ic
j

)︂
, (3.18)

where ρic and v̄ici are the filtered density and velocity, respectively.
The SGS stress tensor can be decomposed into an isotropic part and a deviatoric part:

τ sgsij = τdij +
1

3
τ sgskk δij , (3.19)

where τdij is the deviatoric part, τ
sgs
kk is the trace of the SGS stress tensor, and δij is the Kronecker

delta. The deviatoric part of the SGS stress tensor can be modeled using the eddy viscosity
concept. For incompressible flow problems τ sgsij , can be expressed in terms of the strain rate
tensor of the resolved velocity field S̄ij:

τ sgsij − 1

3
τ sgskk δij = −2µtSij , (3.20)

where S̄ij is defined as:

Sij =
1

2

(︄
∂v̄ici
∂xj

+
∂v̄icj
∂xi

)︄
. (3.21)

The eddy viscosity µt, is modeled using the Smagorinsky model:

µt = C2
sρ

ic∆2
⃓⃓
Sij

⃓⃓
, (3.22)

where Cs is the Smagorinsky constant, ∆ is the filter width, and
⃓⃓
S̄ij

⃓⃓
is the magnitude of the

strain rate tensor. The filter width is defined as:
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∆ = (∆x∆y∆z)
1
3 , (3.23)

where ∆x, ∆y, and ∆z are the filter widths in the corresponding spatial direction.

The Smagorinsky model supposes that the eddy viscosity is proportional to the square of
the filter width, the magnitude of the strain rate tensor, and the density. The value of the
Smagorinsky constant Cs is usually set to 0.1, although it may vary depending on the specific
application [57, 58].

Meyers and Sagaut provided a theoretical evaluation of the Smagorinsky constant [59].
However, Germano developed a novel approach for calculating the Smagorinsky constant based
on LES outcomes [6]. This method introduces a time- and space-dependent function for Cs,
denoted as Cs(x, t), which is considered more accurate than a constant value. To evaluate Cs

dynamically, a test filter with a width ∆̂ greater than the grid filter width ∆ is defined, where
∆̂ = 2∆ is commonly used.

By implementing the test filter on the filtered momentum equation, the subgrid-scale stresses
τ testij can be expressed as follows:

τ testij =

(︃
ˆ︂
vici v

ic
j − vici v

ic
j

)︃
. (3.24)

The Smagorinsky model is utilized to approximate the subgrid-scale and subtest-scale stresses
[46]:

τ
sgs
ij − 1

3
δijτ

sgs
kk = −2Cg∆

2|S|Sij =: −2Cgα
sgs
ij , (3.25)

τ testij − 1

3
δijτ

test
kk = −2Cg∆̂

2|Ŝ|Ŝij =: −2Cgα
sgs
ij , (3.26)

where the model parameter, Cg, is defined as the square of Cs. The resolved turbulent stresses
can be defined by:

Lij =
(︂
ˆ︂vici vicj − v̂

ic
i v̂

ic
j

)︂
. (3.27)

These scales represent the length between the grid-filter length and the test-filter length.

By inserting the approximations (3.25) and (3.24) into the Germano identity, the following
result is obtained as per [3]:

Lij = τ testij −ˆ︃τ sgsij . (3.28)

Substituting these approximations into the equation yields:

Lij = −2Cgα
test
ij + 2ˆ︂Cgα

sgs
ij . (3.29)

Employing the approximation
ˆ︂Cgα

sgs
ij ≈ Cg

ˆ︃αsgsij , (3.30)
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where Cg is assumed to be constant over the test filter width. Simplifing the expression further
gives:

Lij = 2Cg

(︂ˆ︃αsgsij − αtestij =: 2CgMij

)︂
. (3.31)

In order to solve for the unknown parameter Cg, which has one unknown and five indepen-
dent equations, Lilly (1992) proposed using the least-squares method to minimize the square
of the error [60]. The equation to minimize the square of the error is given by:

E = Lij − 2CgMij . (3.32)

In the context where both sides of the equation are symmetric with zero traces, the derivative
of E2 with respect to Cg is taken and set equal to zero, resulting in:

∂E2

∂Cg
= 4(Lij − 2CgMij)Mij = 0, (3.33)

which gives us the value of the unknown parameter Cg as:

Cg(x, t) =
LijMij

2MijMij
. (3.34)

The eddy viscosity can be evaluated using the following equation:

µt = ρicCg∆
2|Sij |. (3.35)

To prevent numerical instabilities caused by negative values of Cg, several proposals have
been made. One approach involves applying time and spatial averaging or simply clipping
negative values as follows:

Cg(x, t) = max

(︃
LijMij

2MijMij
, 0

)︃
. (3.36)

It should be noted that the dynamic procedure can be applied to other models besides the
Smagorinsky model.

3.4 Reynolds-Averaged Navier-Stokes (RANS)

Reynolds-Averaged Navier-Stokes (RANS) modeling is a widely used approach to model tur-
bulent fluid flows. The basic idea behind RANS is to separate the fluid motion into two
components: a time-averaged component and a fluctuating component [7]. The time-averaged
component is assumed to be smooth and predictable, while the fluctuating component is
assumed to be random and chaotic.
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3 Turbulent Flow Simulation

The RANS equations are derived by applying the Reynolds decomposition, which separates a
quantity ϕ(x, t) into its time-averaged component ϕ(x) and its fluctuating component ϕ′(x, t):

ϕ(x, t) = ϕ(x) + ϕ′(x, t). (3.37)

The time-averaged component is defined as:

ϕ(x) = lim
T→∞

1

T

∫︂ t0+T

t0

ϕ(x, t), dt. (3.38)

The RANS equations are then obtained by time-averaging the Navier-Stokes equations.
The continuity equation, which expresses the conservation of mass, is unchanged by the
time averaging process. However, the momentum equation is modified to account for the
time-averaged and fluctuating components of velocity, pressure, and viscosity. The continuity
equation is:

∂vici
∂xi

= 0, (3.39)

where vici is the time-averaged velocity component in the i direction.

The momentum equation is:

∂(ρvici )

∂t
+

∂

∂xj

[︄
ρvici vicj + ρvic

′
i vic

′
j − µ

(︃
∂vici
∂xj

+
∂vicj
∂xi

)︃]︄
+

∂p

∂xi
= ρfi. (3.40)

where p is the time-averaged pressure.

The Reynolds stress tensor is needed to solve the RANS equations but is underdetermined.
Two common methods to obtain it are the Reynolds stress equation model (RSM) and eddy
viscosity models using the Boussinesq approximation [61].

The Reynolds stresses, which are the products of the fluctuating velocity components, are
modeled using the Boussinesq approximation. The Boussinesq approximation assumes that the
Reynolds stresses are proportional to the local strain rate and can be modeled using an eddy
viscosity µt. The Reynolds stresses can be expressed as:

ρvic
′

i vic
′

j = −µt

(︄
∂vici
∂xj

+
∂vicj
∂xi

)︄
+

2

3
ρδijk, (3.41)

where k is the turbulent kinetic energy. The eddy viscosity µt is modeled using various
turbulence closure models, such as the popular k − ϵ and k − ω models.

The turbulent kinetic energy k is defined as the time-averaged kinetic energy associated with
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the fluctuating velocity components:

k =
1

2
vic

′
i vic

′
j . (3.42)

The strain rate tensor Sij is defined as the symmetric part of the velocity gradient tensor
and represents the rate of deformation of the fluid:

Sij =
1

2

(︄
∂vici
∂xj

+
∂vicj
∂xi

)︄
. (3.43)

In the RANS equations to achieve accurate results, the choice of turbulence model and
numerical discretization scheme are crucial. While RANS simulations are less computationally
expensive compared to more accurate but computationally expensive large eddy simulations
(LES) and direct numerical simulations (DNS), the accuracy of RANS simulations depends
heavily on the chosen turbulence model. The widely used eddy viscosity models are popular
due to their lower computational cost and acceptable accuracy, but they may produce inaccurate
results in anisotropic turbulent flows.
Several turbulence models have been developed to determine the dynamic turbulent viscosity,

including the Spalart-Allmaras model [62], the k − ϵ model [63, 64], the k − ω model, and
the SST k − ω model [65, 66]. While the k-epsilon model provides satisfactory results, the
SST k − ω model combines the k − ϵ model and the k − ω model for improved accuracy. A
more advanced four-equation model is the k− ϵ− ζ − f RANS model, which includes transport
equations for k, ϵ, the velocity scale ratio (ζ), and the elliptic relaxation function (f) [67, 68].

3.5 Hybrid RANS/LES Methods

Hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large Eddy Simulation) methods are a
type of computational fluid dynamics (CFD) technique that combines the advantages of RANS
and LES models [69, 70]. These methods aim to capture the unsteady features of turbulent
flows that are not well resolved by RANS models while still being computationally efficient.
In most of the hybrid RANS/LES methods, the flow is divided into two regions based on a

filtering process. The first region, known as the RANS region, is usually where the grid filter
size is larger than the characteristic size of the turbulence structures, and the RANS equations
are used to model the turbulence. The second region, called the LES region, is where the
grid filter size is smaller than the characteristic size of the turbulence structures, and the LES
equations are used to resolve the turbulence.
The transition between the RANS and LES regions is governed by a blending function that

smoothly varies between the RANS and LES models. This blending function can be based on
the distance from the wall or the local turbulence intensity, among other parameters.
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The hybrid RANS/LES methods have several advantages over traditional RANS or LES
models. Firstly, they are more accurate than RANS models in capturing the unsteady behavior
of turbulent flows. By resolving a portion of the small-scale turbulence, hybrid methods can
provide improved predictions of flow features such as vortex shedding, flow separation, and
turbulent mixing. Secondly, these methods are computationally less expensive than LES models
since the RANS model is employed in regions where the turbulence is not as well resolved.
This computational efficiency makes hybrid RANS/LES methods more accessible for practical
engineering applications.
Some popular hybrid LES/RANS models include detached-eddy simulation (DES) [8, 71],

very large eddy simulation (VLES) [10], limited numerical scales (LNS) model [11, 12], scale-
adaptive simulation (SAS) model [72], delayed detached eddy simulation (DDES) [73] and
the partially averaged Navier-Stokes equation (PANS) model [13, 14]. A detailed review about
hybrid LES/RANS method is given by Fröhlich [74]. In the following, the Partially Averaged
Navier-Stokes method (PANS), is explained.

3.6 Partially Averaged Navier-Stokes method (PANS)

The Partially-Averaged Navier-Stokes model (PANS) is a hybrid approach that seamlessly tran-
sitions between Reynolds-Averaged Navier-Stokes (RANS) modeling and the Direct Numerical
Solution (DNS) approach for solving the Navier-Stokes equations. This approach aims to im-
prove the accuracy of results within the limitations of available computational resources. In the
RANS method, the flow is time-averaged, and statistical quantities, such as the mean flow and
turbulent stresses, are solved for. Unsteady fluctuations are modeled using turbulence closure
models. On the other hand, LES accurately resolves large-scale motions or energy-carrying
eddies while approximating smaller-scale motions.
To illustrate the working domains of PANS, a typical energy spectrum for turbulent flow is

employed, depicting the cut-off point for unresolved flow scales in RANS, PANS, and LES, as
shown in Figure 3.4.
PANS establishes a relationship between the resolved and unresolved components by em-

ploying a cut-off resolution parameter that governs the transition from RANS to LES.
PANS is based on the premise that the physical phenomena necessary for accurate predictive

calculations exist within flow scales that are not fully resolved in RANS but are significantly
larger than the smallest LES scales. Consequently, PANS aims to resolve only those scales
that significantly contribute to the desired objective function while bypassing computationally
intensive small scales. Instead of attempting to merge distinct RANS and LES models in separate
regions, PANS provides a closure model that can be applied at any intermediate scale resolution
level.
The PANS method, as described by Girimaji [14], distinguishes itself from LES through

26



3.6 Partially Averaged Navier-Stokes method (PANS)

lo
g

(E
(κ

))

log(κ)

-5/3

ModeledResolved

R
A

N
S

LE
S

PANS

Hybrid Modeling Area

Figure 3.4 Schematic representation of PANS energy cascade.

three main characteristics. Firstly, unlike relying on a cutoff wave number, the velocity field
decomposition in PANS is determined based on the kinetic energy content. Secondly, PANS
incorporates a filtering operation that separates the resolvedmotion from the unresolvedmotion,
eliminating the need for an additional filtering step during computation. Lastly, the constitutive
relationship for the subfilter scale (SFS) in PANS remains independent of grid spacing, allowing
the physical resolution or filter width to be decoupled from the numerical resolution. However,
it is essential to ensure that the numerical resolution aligns with the desired filter width to
achieve accurate results. These aspects offer greater flexibility in capturing the desired level of
detail in the simulation while maintaining computational efficiency.

The PANS method separates the instantaneous velocity Vi into partially filtered and sub-filter
components, as shown below:

Vi = vici + uici . (3.44)

The PANS equations, expressed in terms of filtered velocity and pressure fields, are given by
[75]:

∂vici
∂t

+ vicj
∂vici
∂xj

+
∂τ(Vi, Vj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2vici
∂xj∂xj

, (3.45)

where p is the filtered pressure field. Using the Boussinesq approximation, the sub-filter stress
is obtained as:

τ(Vi, Vj) = −2νuSij + 2/3kuδij , (3.46)

where ku is the unresolved kinetic energy. The unresolved eddy viscosity νu is given by:
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νu = cµ
k2u
ϵu

, (3.47)

where ϵu is the unresolved dissipation, and the resolved stress tensor Sij is defined as:

Sij =
1

2

(︄
∂vici
∂xj

+
∂vicj
∂xi

)︄
, (3.48)

Girimaji [14], presents model equations for the unresolved kinetic energy. The equations
include terms for convection of unresolved energy by resolved fluctuations and are modeled
using the zero-transport model. The resolved fluctuations are defined by:

uj = vicj − vicj . (3.49)

The final equations that determine the values of ku and ϵu are as follows:

∂ku
∂t

+ vicj
∂ku
∂xj

= Pu − ϵu +
∂

∂xj

(︃
νu
σku

∂ku
∂xj

)︃
, (3.50)

∂ϵu
∂t

+ vicj
∂ϵu
∂xj

= Cϵ1Pu
ϵu
ku

− C∗
ϵ2

ϵ2u
ku

+
∂

∂xj

(︃
νu
σϵu

∂ϵu
∂xj

)︃
, (3.51)

with the model coefficients as following:

C∗
ϵ2 = Cϵ1 +

fk
fϵ

(Cϵ2 − Cϵ1), (3.52)

σku = σk
f2
k

fϵ
, σϵu = σϵ

f2
k

fϵ
. (3.53)

The resolution parameter for the unresolved-to-total ratios of kinetic energy is:

fk =
ku
k
, (3.54)

and for the unresolved-to-total ratios of dissipation is:

fϵ =
ϵu
ϵ
. (3.55)

The resolution parameters take values between zero and one, representing the two ex-
tremes of DNS and RANS, as well as all intermediate resolutions. Girimaji and Abdul-Hamid
[13] suggested calculating fk using Equation (3.56) which must have larger values than
Equation (3.54):

fk ≥ 1√︁
Cµ

(︃
∆

Λ

)︃2/3

, (3.56)
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where ∆
(︁
= (∆x∆y∆z)

1/3
)︁
is the grid cells dimension and Λ

(︁
= k3/2/ϵ) is the integral length

scale of turbulence. The parameter fϵ is assumed as 1, which is valid when the flow has a high
Reynolds number [26].

As discussed before, accurately describing near-wall turbulence behavior is challenging at
high Reynolds numbers, as the parameter fk is high near the wall. Most PANS models are
derived from two-equation RANS models, which do not capture advanced aspects of boundary
layers. To improve this, Basara et al. [25] proposed a four-equation PANS model based on the
RANS k − ϵ − ζ − f model, which exhibits excellent near-wall characteristics. This variant
of the ν2 − f model includes a transport equation for the wall-normal velocity scale ratio ζu(︁
= ν2u/ku) instead of velocity scale ,ν2, and solves an elliptic relaxation equation for f . Thus:

νu = cµζu
k2u
ϵu

. (3.57)

The transport equation for the wall-normal velocity scale ratio is [25]:

∂ζu
∂t

+ vicj
∂ζu
∂xj

= fu − ζu
ku

Pu +
ζu
ku

ϵu(1− fk) +
∂

∂xj

[︃(︃
νu
σζu

)︃
∂ζu
∂xj

]︃
, (3.58)

where the resolution parameter fζ is equal to:

fζ =
ζu
ζ
, (3.59)

which is integrated into the elliptic relaxation equation:

L2
u▽2fu − fu =

1

Tu

(︃
c1 + c2

Pu

ϵu

)︃
(ζu − 2

3
), (3.60)

where Cµ = 0.22, c1 = 0.4, c2 = 0.65, and Cϵ2 = 1.9.

The length scale Lu and the time scale Tu are as following:

Tu = max

[︃
ku
ϵ
, Cτ

(︂ν
ϵ

)︂1/2]︃
, (3.61)

Lu = CLmax

[︄
k
3/2
u

ϵ
, Cη

(︃
ν3

ϵ

)︃1/4
]︄
. (3.62)

This method makes the turbulence intensity near the wall more sensitive to the wall effect and
is well-suited for enhancing near-wall PANS performance.
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Scale supplying variable (SSV) equation

In previous studies involving the two- and four-equation PANS models, the determination of
the integral scale of turbulence relied on calculating the differences between the instantaneous
filtered velocity and the averaged velocity field, as outlined in Equation 3.49. However, this
approach becomes impractical in scenarios characterized by moving geometries or transient
boundaries.
To overcome this challenge, Basara and Girimaji [76] proposed an alternative method of

solving an additional equation for the integral scale as a supplementary variable. Their prelimi-
nary investigations demonstrated the feasibility of this approach in channel flow simulations
[76] and square cylinder simulations [26]. By introducing this supplementary equation for
the resolved kinetic energy, referred to as instantaneous modelled resolved turbulent kinetic
energy (kssv), the accuracy and applicability of PANS models in turbulent flow simulations
is enhanced, particularly in scenarios involving complex geometries and dynamic boundary
conditions. This incorporation of the kssv equation holds promising prospects for advancing
our understanding and modeling capabilities in turbulence simulations.
A summary of the derivation of the method is presented in the following.

To start, the total kinetic energy, k, is expressed as:

k = kssv + ku. (3.63)

The evolution of k is governed by the Reynolds-Averaged Navier-Stokes (RANS) equation,
which can be expressed as:

Dk

Dt
=

∂k

∂t
+ vicj

∂k

∂xj
= P − ϵ+

∂

∂xj

[︃(︃
ν +

νt
σk

)︃
∂k

∂xj

]︃
. (3.64)

To derive the kssv equation, the average velocity in the RANS equation is replaced with
Equation 3.49 , and then inserting Equation 3.63 leads to:

∂(kssv + ku)

∂t
+ vicj

∂(kssv + ku)

∂xj
− uicj

∂(kssv + ku)

∂xj
=

P − ϵ+
∂

∂xj

[︃(︃
ν +

νt
σk

)︃
∂(kssv + ku)

∂xj

]︃
.

(3.65)

After further simplifications and using the zero-transport model, Equation (3.65) can be
expressed as:

∂kssv
∂t

+ vicj
∂kssv
∂xj

= −(Pu − ϵu) + uj
∂kssv
∂xj

+

P − ϵ+
∂

∂xj

[︃(︃
ν +

νt
σk

)︃
∂kssv
∂xj

]︃
,

(3.66)
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using the following expression:

Pu − ϵu = fk(P − ϵ). (3.67)

The final form of the kssv equation can be expressed as:

∂kssv
∂t

+ vicj
∂kssv
∂xj

= (1− fk)(P − ϵ) +
∂

∂xj

[︃(︃
ν +

ν

σku

)︃
∂kssv
∂xj

]︃
. (3.68)

In order to make fk responsive to the local grid, it is computed using the following relation:

fk =
1√︁
Cµ

(︃
∆

Λ

)︃2/3

. (3.69)

However, in this case, the integral length scale of turbulence, Λ, is modified to incorporate
the total kinetic energy as k = ku + kssv. It’s important to note that the values obtained for
fk through Equation (3.69) must always be larger than ku/k at the end of the time step. The
complete derivation of the method as well as the preliminary results for a turbulent channel
flow is presented in [76] and the results for the turbulent flow around a square cylinder is
presented in the work of Basara et al. [26].
The final set of equations of the SSV-PANS method based on the k − ϵ− ζ − f are:

∂ku
∂t

+ vicj
∂ku
∂xj

= Pu − ϵu +
∂

∂xj

[︃(︃
ν +

νu
σku

)︃
∂ku
∂xj

]︃
, (3.70)

∂ϵu
∂t

+ vicj
∂ϵu
∂xj

= Cϵ1Pu
ϵu
ku

− C∗
ϵ2

ϵ2u
ku

+
∂

∂xj

[︃(︃
ν +

νu
σϵu

)︃
∂ϵu
∂xj

]︃
, (3.71)

∂ζu
∂t

+ vicj
∂ζu
∂xj

= fu − ζu
ku

Pu − ζu
ku

ϵu(1− fk) +
∂

∂xj

[︃(︃
ν +

νu
σζu

)︃
∂ζu
∂xj

]︃
, (3.72)

L2
u▽2fu − fu =

1

Tu

(︃
c1 + c2

Pu

ϵu

)︃
(ζu − 2

3
), (3.73)

∂kssv
∂t

+ vicj
∂kssv
∂xj

= (1− fk)(P − ϵ) +
∂

∂xj

[︃(︃
ν +

ν

σku

)︃
∂kssv
∂xj

]︃
. (3.74)

The new variable kssv represents a modeled resolved kinetic energy, enabling simultaneous
computation of both unresolved and resolved kinetic energy. This advancement facilitates
the continuous updating of the resolution parameter, denoted as fk. Consequently, the need
for laborious calculations of the averaged velocity field, which was previously the standard in
PANS calculations, is eliminated.
In particular, when dealing with scenarios involving moving geometries, transient bound-

aries, and time-dependent calculations, the SSV-PANS method provides efficient and accurate
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solutions [26, 76]. Encouraging preliminary results obtained from the SSV-PANS method
demonstrate the practicality and accuracy of this proposed approach, making it highly promis-
ing for current research purposes.

32



4 Numerical Methods

This chapter is dedicated to exploring numerical methods used for solving the governing
equations related to flow and acoustic problems, which were discussed in the previous chapter.
Since analytical solutions are often not feasible for the partial differential equations (PDEs) that
govern flow motion and acoustic propagation, it becomes necessary to establish mathematical
models and discretize the problem domain in order to make progress.
Numerous numerical approaches have been developed to obtain approximate solutions, and

these methods typically involve dividing the problem domain into finite cells or elements, which
results in the creation of a numerical grid. Discretization techniques such as finite-volume
methods (FVM), finite-element methods (FEM), and finite-difference methods (FDM) are
commonly employed to discretize the conservation equations. The choice of a specific method
and algorithm depends on the particular requirements of the equation being addressed.
This chapter introduces numerical methods used in the thesis, specifically for incompress-

ible flow equations and acoustic equations. The computational fluid dynamics methods are
presented first, followed by a subsequent section dedicated to computational aeroacoustics.

4.1 Computational Fluid Dynamics

In this section, the numerical framework employed to tackle incompressible flow problems
is introduced. The finite-volume method is used to obtain the numerical solution, which is
computed using the computational fluid dynamics solver FASTEST [1]. For further details on
the topics covered in this section, readers are referred to the following references: [46, 47, 77].

4.1.1 Finite Volume Method

The Finite Volume Method (FVM) is a popular numerical technique for solving the governing
equations of fluid flow. The FVM divides the computational domain into a set of control
volumes, each containing a discrete set of computational nodes. The governing equations are
then integrated over each control volume to obtain a set of algebraic equations that can be
solved numerically.
The formulation for the transport equation of a conserved scalar variable ϕ is given by [47]:
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∂(ρicϕ)

∂t
+

∂(ρicvicj ϕ)

∂xj
=

∂

∂xj

(︃
Γϕ

∂ϕ

∂xj

)︃
+ qϕ, (4.1)

where ρici is the density, vicj is the velocity component in the j direction, Γϕ is the diffusion
coefficient, and qϕ is the source term.

The first term on the left-hand side represents the unsteady term, which accounts for the
change in ϕ with time. The second term represents the convection term, which accounts for
the transport of ϕ by the fluid motion. The third term represents the diffusion term, which
accounts for the diffusive flux of ϕ due to concentration gradients. The last term represents the
source term, which accounts for any external sources of ϕ.

The process of using the Finite Volume Method (FVM) to solve equations involves discretizing
both space and time. First, the computational domain is divided into control volumes, and the
integral form of the equation is derived using the divergence theorem. The resulting discrete
equations are then advanced in time using a time-marching scheme, and the algebraic equations
are solved iteratively until convergence usingmethods such as the pressure correction or SIMPLE
algorithm. For improved legibility, the section excludes the index denoting incompressible
variables (ic).

4.1.2 Spatial Discretization

The current research uses block-structured grids for spatial discretization in numerical methods
for solving partial differential equations. To obtain an integral equation that accounts for the
conservation of mass and momentum, including convective and diffusive fluxes and the source
term, the transport equation Equation 4.1 is integrated over a control volume. This integral
equation is then written for each control volume by integrating over the volume and applying
the Gauss integral theorem:∫︂

V
ρ
∂(ρϕ)

∂t
dV +

∑︂
c

∫︂
Sc

ρviϕnidSc =
∑︂
c

∫︂
Sc

Γϕ
∂ϕ

∂xi
nidSc +

∫︂
V
qϕdV, (4.2)

where the subscript c can take values from e, w, n, s, t, or b, the statement describes the
convective and diffusive fluxes through the faces of a control volume (CV). In Figure 4.1, a
hexahedral control volume is shown that contains the center of the cell denoted by P. The
faces of the control volume are named after their directional positions with respect to the
neighboring control volumes containing the center points E, W, N, S, T, B, and are labeled as e,
w, n, s, t, b, which stand for east, west, north, south, top, and bottom, respectively. While the
later explanations specifically refers to the flux through the east face of a control volume (CV),
the fluxes through the remaining faces of the CV can be obtained in a similar manner.
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Figure 4.1 Positions and notations used for the neighboring CVs surrounding the central CV.

4.1.3 Approximation of Convective Fluxes

The convective fluxes are approximated by applying the midpoint rule through the east face,
as obtained in [46]: ∫︂

Se

ρviϕnidSe ≈ (ρvini)eδSeϕe = ṁeϕe. (4.3)

Here, ṁe represents the mass flux through the east face of the control volume (CV), which
has an area of δSe. To obtain the scalar value at the surface center ϕe, mostly the Upwind
differencing scheme (UDS), Central differencing scheme (CDS), or flux blending methods,
which are explained in the following section are used.

Upwind differencing scheme

The Upwind Differencing Scheme (UDS) is a widely used numerical method for solving transport
equations with advection-dominated flows. The UDS conserves mass fluxes and approximates
the convective flux at the east face of a control volume by interpolating the values of the
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variable at neighboring cell centers. The convective flux ṁeϕe is calculated using values in the
neighboring nodes P and E (shown in Figure 4.1) and the following formula[46]:

ϕe =

⎧⎨⎩ϕP , if ṁe > 0

ϕE , if ṁe < 0
, (4.4)

where ϕP and ϕE are the values of the variable at the center face and east face of the control
volume, respectively.
The UDS is a simple and affordable method, but it has limitations. It provides only first-order

accuracy and can generate numerical oscillations in the solution when the flow is highly skewed
or discontinuous. Therefore, it is important to be aware of these limitations when applying the
UDS method to numerical simulations.

Central differencing scheme

The Central Difference Scheme (CDS) approximates the convective flux at the east face of a
control volume using a second-order central difference scheme that interpolates the values
of the variable at neighboring cell centers. The equation 4.5 approximates ϕe using linear
interpolation with the values in the neighboring nodes P and E (shown in Figure 4.1) using
the central differencing scheme (CDS):

ϕe ≈ γeϕE + (1− γe)ϕP . (4.5)

Here, the interpolation factor γe is determined by the following equation:

γe =
xe − xP
xE − xP

, (4.6)

where ϕP and ϕE are the values of the variable at the center face and east face of the control
volume, respectively.
In numerical simulations, the CDS scheme offers greater accuracy than the UDS scheme,

achieving second-order accuracy in space. However, the CDS scheme can produce numerical
oscillations in the solution, particularly in cases of highly skewed or discontinuous flow. To
mitigate this issue, flux blending or high-resolution schemes are often employed alongside the
CDS scheme. These methods provide better resolution of sharp gradients and aid in reducing
numerical errors in the solution.

Flux-blending

Flux blending is a technique used to combine the advantages of different numerical schemes.
It is achieved by blending the numerical fluxes obtained from different schemes in a weighted
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manner. The blending can be expressed as follows:

ϕe ≈ (1− βϕ)ϕ
UDS
e + βϕϕ

CDS
e , (4.7)

where ϕe is the face value approximation, ϕUDS
e is the upwind scheme approximation, ϕCDS

e is
the central differencing scheme approximation, and βϕ is the blending coefficient, which is
a constant value between 0 and 1. By using the flux-blending technique, greater stability in
calculations are achieved, which is especially useful when dealing with complex fluid dynamics
problems. However, it is important to note that the blended numerical flux may still exhibit
oscillations and numerical artifacts in certain flow conditions. In such cases, high-resolution
schemes may be required to obtain accurate and smooth solutions.

High-resolution schemes

High-resolution (HR) schemes are a class of numerical methods used in fluid dynamics simula-
tions to accurately capture the complex and nonlinear behavior of fluid flows. These schemes
are designed to handle sharp gradients and discontinuities in the fluid flow, which are often
encountered in practical applications.
One approach for developing HR schemes is the use of higher-order schemes, such as the

quadratic upstream interpolation for convective kinematics (QUICK) [78]. However, these
schemes can suffer from numerical instabilities, such as oscillations or overshoots, which can
lead to inaccurate and unphysical results.
To overcome these issues, two numerical tools have been developed that transform the linear

unbounded high-order scheme into a bounded non-linear high-resolution scheme: the total
variation diminishing (TVD) approach and the normalized variable formulation (NVF).
The TVD approach, introduced by Harten [79], uses the concept of total variation to ensure

that the total variation of the solution is reduced or at least conserved at each time step. The
total variation is defined on the node i as:

TV =
∑︂
i

|ϕi+1 − ϕi|. (4.8)

To implement the TVD approach, a flux limiter function must be proposed. One popular
flux limiter function is Sweby’s flux limiter function [80], which is defined as:

ϕf = ϕC +
1

2
(ϕ(r))(ϕD − ϕC), (4.9)

where C, D, U, and F denote center, downwind, upwind, and face, respectively, and r is
defined as:
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r =
ϕC − ϕU

ϕC − ϕD
. (4.10)

The flux limiter function satisfies the TVD condition if the following criterion is met:

ϕ(r) =

⎧⎨⎩min(2r, 2), r > 0

0, r ≤ 0
. (4.11)

The TVD approach can be expressed mathematically as:

TV (ϕn+1) ≤ TV (ϕn). (4.12)

The NVF approach, introduced by Leonard [81], ensures boundedness if the convection
boundedness criterion (CBC) [82] is met. The normalized variable is defined as:

ϕ̃ =
ϕ− ϕU

ϕD − ϕU
, (4.13)

where ϕŨ = 0 and ϕD̃ = 1. The CBC is formulated as:⎧⎨⎩ϕC̃ < ϕf̃ < 1, if 0 < ϕC̃ < 1

ϕf̃ = ϕC̃ , otherwise
. (4.14)

In the NVF approach, the normalized variable is mapped onto a bounded function using a
nonlinear mapping function, which satisfies the CBC. The mapped variable is given by:

ϕf̃ = f(ϕC̃). (4.15)

MUSCL Scheme

Another HR scheme technique, proposed by Xue, is based on the Monotonic Upstream-Centered
Schemes for Conservation Laws (MUSCL) scheme , which is a popular higher-order numerical
method for solving fluid dynamics problems [83]. The Xue-MUSCL scheme aims to improve
the accuracy and stability of the MUSCL scheme by incorporating the TVD approach.
The flux limiter function used in the Xue-MUSCL scheme is similar to Sweby’s flux limiter

function, but with an additional parameter, κ:

ϕf = ϕU +
1

2
ϕ(r)HO(ϕD − ϕC), (4.16)

ϕ(r)HO =
1 + κ

2
+

1− κ

2
r, (4.17)
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where −1 ≤ κ ≤ 1. The parameter κ controls the degree of nonlinearity of the scheme, with
κ = 0 corresponding to the linear upwind scheme and κ = 1 corresponding to the third-order
MUSCL scheme.

The TVD condition is satisfied by the flux limiter function if it satisfies the following criterion:

ϕHO(r) = max

[︄
0,min

(︃
2r,

1 + κ

2
+

1− κ

2
r, 2

)︃]︄
. (4.18)

The normalized variable formulation (NVF) is also used in the Xue-MUSCL scheme to ensure
boundedness. The mapped variable is given by:

ϕ̃
X
f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ϕC̃ , 0 < ϕC̃ <
1 + κ

4 + 2κ

1− κ

2
ϕC̃ +

1 + κ

4
,

1 + κ

4 + 2κ
< ϕC̃ <

3− κ

4− 2κ

1,
3− κ

4− 2κ
< ϕC̃ < 1

ϕC̃ , otherwise

. (4.19)

The Xue-MUSCL scheme has been shown to provide accurate and stable solutions for a
wide range of fluid dynamics problems. The use of the TVD approach and NVF ensures that
the scheme is capable of handling sharp gradients and discontinuities in the fluid flow while
maintaining the stability and accuracy of the numerical solution. This method has been
implemented in the in-house code FASTEST by Reimann [83], which contains more details on
the method.

4.1.4 Approximation of Diffusive Fluxes

To approximate diffusive fluxes at cell interfaces using neighboring function values, the central
differencing formula is utilized. It operates under the assumption that the function is linearly
approximated between two adjacent points on the x-axis, which are represented as xE and xP
(Figure 4.1). This leads to the following equation:

(︁∂ϕ
∂x

)︁
e
≈ ϕE − ϕP

xE − xP
. (4.20)

Here, ϕE and ϕP represent the function values at the neighboring points on the x-axis. This
formula provides an accurate estimation of diffusive fluxes and is a simple and efficient
technique. It presents a second-order error for uniformly spaced grids, but for non-uniformly
spaced grids, the error increases to first order [46].
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4.1.5 Approximation of Integrals

To approximate the volume integral of the source term Q the midpoint rule can be used. The
approximation involves evaluating the function qϕ at the midpoint of a control volume (CV)
and multiplying it by the volume of the CV, δV . Thus, the approximation is given as:

Q =

∫︂
V
qϕdV ≈ (qϕ)P δV. (4.21)

4.1.6 Time Discretization

Numerical approximation is required for the time derivative term in Equation 4.1 when dealing
with unsteady problems. The discretization involves subdividing the entire time interval [t0, tf ]
into equally separated intervals of length ∆t

tn+1 = tn +∆t. (4.22)

Two major types of time discretization methods are: implicit and explicit methods. Explicit
methods rely on the forward difference scheme to estimate the time derivative of the unknown
variable, utilizing values from the current and preceding time steps. The forward Euler method
is an explicit method that utilizes the following equation:

ϕn+1 − ϕn

∆tn
= F (ϕn), (4.23)

where ϕn represents the value of the unknown quantity at time tn, and F represents the spatial
discretization of the PDE. Explicit methods are computationally efficient, but they may suffer
from stability issues and may require very small time steps to avoid numerical instability. On
the other hand, implicit methods use the backward difference scheme to approximate the time
derivative, which involves using values at the current and future time steps. For example, the
backward Euler method is an implicit method that uses the following equation:

ϕn+1 − ϕn

∆tn
= F (ϕn+1). (4.24)

The implicit method is more stable and can handle larger time steps, but it requires solving
a system of equations at every time step, which can result in potential computational costs.

4.1.7 Assembly and Solution of the Discrete System

The momentum and continuity equations for incompressible fluids are discretized by FVM into
algebraic equations. These equations are then solved by matrix algebra techniques after being
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integrated over each control volume to obtain algebraic equations. The momentum equation
has the form:

aviP vi,P +
∑︂
c

avic vi,c = −δV

(︃
∂p

∂xi

)︃
P

+ Svi = bvi . (4.25)

The continuity equation is given by:

∑︂
c

ṁc = 0. (4.26)

In the momentum Equation (4.25), the pressure derivative is not approximated to main-
tain the independence of the solution procedure from the specific numerical scheme used.
This equation, along with all the control volumes (CVs) considered, forms a linear equation
system that needs to be solved appropriately. However, a challenge arises in the continuity
Equation (4.26) where the pressure does not appear, making it difficult to solve the equation
system efficiently.

To overcome this challenge, pressure correction methods can be employed, such as the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE). This widely recognized method
is the standard approach in the flow solver FASTEST, which is used to solve the incompressible
Navier-Stokes equations [46]. The system is typically solved iteratively until the pressure and
velocity fields converge. Pressure-correction methods are based on the principle of iteratively
correcting the velocities and pressure to satisfy both the continuity equation and the momentum
equations.

The general procedure involves first solving the momentum equations to calculate the
velocities. Subsequently, an iterative process is initiated to refine the velocities and pressure
until both equations are satisfied simultaneously up to a certain threshold. This iterative
approach ensures consistency between the velocities and pressure, resulting in a more accurate
and reliable solution.

4.2 Computational Aeroacoustics

This section focuses on the computational approaches used in this thesis to address acoustic
problems. It introduces the Finite Volume Method for Linearized Euler Equations (LEE) to
provide a deeper understanding of the computational techniques utilized. Additionally, the
section explores the Kirchhoff wave extrapolation method, which efficiently evaluates far-field
sound. Similarly to the previous section, the computational fluid dynamics solver FASTEST is
employed to compute the numerical solution.
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4.2.1 Finite Volume Method for Linearized Euler Equations (LEE)

In this section, a brief description of the Finite Volume Method (FVM) used for solving the
Linearized Euler Equations (LEE) is provided. The additional information on this topic can be
found in [48], while [84], [85], [86] give a general overview of the FVM method for hyperbolic
equations. The set of acoustic equations (2.11 - 2.13) can be expressed in matrix notation as
follows:

∂q

∂t
+Ax

∂q

∂x
+Ay

∂q

∂y
+Az

∂q

∂z
= s, (4.27)

where the vector of unknown functions, denoted as q, is defined as:

q =

⎡⎢⎢⎢⎢⎢⎢⎣
ρa

vax
vay
vaz
pa

⎤⎥⎥⎥⎥⎥⎥⎦

T

, (4.28)

The real matrices, Ax, Ay, and Az, take the following form:

Ax =

⎡⎢⎢⎢⎢⎢⎢⎣
vicx ρic 0 0 0

0 vicx 0 0 1/ρic

0 0 vicx 0 0

0 0 0 vicx 0

0 ρicc2∞ 0 0 vicx

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.29)

Ay =

⎡⎢⎢⎢⎢⎢⎢⎣
vicy 0 ρic 0 0

0 vicy 0 0 0

0 0 vicy 0 1/ρic

0 0 0 vicy 0

0 0 ρicc2∞ 0 vicy

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.30)

Az =

⎡⎢⎢⎢⎢⎢⎢⎣
vicz 0 0 ρic 0

0 vicz 0 0 0

0 0 vicz 0 0

0 0 0 vicz 1/ρic

0 0 0 ρicc2∞ vicz

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.31)

Furthermore, the acoustic source vector s can be expressed as:
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s =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−∂pic

∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.32)

By using splitting techniques, The LEE can be decomposed into 1D problems in each coordi-
nate direction, which can be utilized in the construction of numerical methods, explained in
the following section.

Homogeneous 1D LEE Solution

To solve the Linearized Euler equations for multidimensional problems, one can determine
the normal and tangential acoustic velocity components using splitting techniques as detailed
in [48, 84–86]. To develop FVM for hyperbolic problems, this method involves solving the
one-dimensional Riemann problem normal to each cell interface. Hence, the fundamental
concept of solving Riemann problems is initially addressed. The Riemann problem is an initial-
boundary value problem that defines a hyperbolic differential equation with a single jump
discontinuity. For instance, at the east side of a control volume at x̂ = 0:

∂q̂

∂t
+A

∂q̂

∂x̂
= 0, (4.33)

q̂(x̂, t0) =

⎧⎨⎩q̂L, if x̂ < 0

q̂R, if x̂ > 0
. (4.34)

The above equation is an illustration of such a Riemann problem, as shown in Figure 4.2.
The matrix A in Equation 4.33 can be diagonalized as:

A = RΛR−1, (4.35)

where Λ = diag(λ1, ..., λm) is the diagonal matrix of right eigenvalues, and R = [r1, ..., rm] is
the matrix of eigenvectors. The characteristic variables w are given by:

w = R−1q̂, (4.36)

where R−1 is the inverse of the matrix R. This allows us to reduce the system to a set of
decoupled advection equations:

∂w

∂t
+ Λ

∂w

∂x̂
= 0, (4.37)
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x̂ = 0

q̂L

q̂R

x̂

q̂

Figure 4.2 Visualizing the Riemann problem through initial data illustration.

which can be solved independently of each other. Therefore, the solution for the m-th scalar
Riemann problem’s characteristic variable wm is given by:

wm(x̂, t) =

⎧⎨⎩wm,L, if x̂− λmt < 0

wm,R, if x̂− λmt > 0
. (4.38)

Finally, by transforming Equation (4.38) back to physical space, the solution for the original
Riemann problem Equation (4.34) is obtained as:

q̂(x̂, t) =
∑︂

m:λm<x̂/t

wm,Rrm +
∑︂

m:λm>x̂/t

wm,Lrm. (4.39)

The solution of Equation (4.39) consists of m waves, each traveling at a characteristic speed
λm. The jump in q̂ across the m-th wave can be expressed as:

Wm = αmrm, α = R−1(q̂R − q̂L), (4.40)

αm represents the components of the vector α. The Equation (4.39), expressed in terms of
waves, is given by:

q̂(x̂, t) = q̂L +
∑︂

m:λm<x̂/t

Wm = q̂R −
∑︂

m:λm>x̂/t

Wm. (4.41)

Once the solution of the Riemann problem at the cell interface is known, numerical fluxes
can be approximated using different methods.
In the context of a three-dimensional numerical grid, the quantity qnp represents an ap-
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proximation of the average value over a control volume (CV) at time tn. It can be expressed
as:

qnp ≈ 1

δV

∫︂
V
q(x, y, z, tn)dV. (4.42)

The value qnp is stored at the midpoint of each CV, resulting in a piecewise constant distribution
that represents the numerical solution at time tn. To extend this approach to non-Cartesian,
but logically rectangular grids, the capacity-form differencing [84] technique is employed. In
addition to the physical grid, a computational grid with uniform grid spacing ∆ξ, ∆η, and ∆ζ

is defined. The capacity κP of a CV is given by:

κP =
δV

∆ξ∆η∆ζ
. (4.43)

Here, δV represents the volume of the CV under consideration. Since the coefficient matrix
A of the augmented one-dimensional problem (referred to as Equation (4.33)) varies with
spatial location, it is solved using the wave-propagation algorithm developed by Leveque [87]
and also explained in [86].
The next section describes the computation of fluxes through an east side, using both an exact

Riemann solver and the Lax-Wendroff method. However, the latter has a tendency to generate
unphysical oscillations, hence requiring the implementation of flux limiters. Consequently, the
high-resolution (HR) method is presented, which combines both techniques with appropriate
flux limiters.

Godunov’s method

Godunov’s method is a numerical scheme used to solve hyperbolic partial differential equations
(PDEs) in wave-propagation form. This first-order upwind scheme divides the computational
domain into a finite number of control volumes, and computes the flux at each interface
between control volumes.
The method approximates the solution using characteristic information of the PDE and

calculates the flux across each interface by considering the wave propagation of the solution.
To determine the numerical flux at each interface, the method uses an approximate Riemann
solver, which solves the Riemann problem.
In wave-propagation form, Godunov’s method can be expressed as:

qn+1
P = qnP − ∆t

κp∆ξ
(A+∆qw +A−∆qe). (4.44)

Here, A+ and A− are the positive and negative parts of the flux Jacobian, respectively. The
solution gradient across the interface is approximated using the differences in the solution at
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neighboring grid points, ∆qw and ∆qe. The positive and negative parts of the flux Jacobian are
given by:

A+∆qw =
∑︂

m:λm>0

(λ̃mT−1Wm)w, (4.45)

A−∆qe =
∑︂

m : λm < 0(λ̃mT−1Wm)e. (4.46)

Although Godunov’s method is known for its ability to accurately capture shocks, it may
generate oscillations near discontinuities due to its first-order accuracy. Therefore, it is often
used in combination with higher-order methods to reduce numerical errors and improve the
accuracy of the solution.

Lax-Wendroff method

The Lax-Wendroff method, a second-order approach for the linear system qt+Aqx = 0, employs
the Taylor series expansion as follows:

q(x, tn+1) = q(x, tn) + ∆tqt(x, tn) +
1

2
(∆t)2qtt(x, tn) + . . . . (4.47)

Using the relationship qt = −Aqx and qtt = A2qxx, the following expression can be obtained:

q(x, tn+1) = q(x, tn)−∆tAqx(x, tn) +
1

2
(∆t)2A2qxx(x, tn) + . . . . (4.48)

While the derivation presented in [84] is based on a finite difference approximation, it can
alternatively be interpreted as a finite-volume method. Specifically, the method is given by
[86]:

qPn+1 = qPn − ∆t

κp∆ξ

(︁
A+∆qw +A−∆qe

)︁
+

∆t

κp∆ξ

(︂
F̃ e − F̃w

)︂
, (4.49)

with
F̃w =

1

2

∑︂
m

(︂
|λ̃m|T−1Wm

)︂
w

(︃
κW
κw

− ∆t

κw∆ξ
|λ̃m̃|w

)︃
, (4.50)

where
κw =

1

2
(κW + κP ). (4.51)

According to [84], the correction flux F̃ counteracts the diffusive nature of the upwind
approximation, but it exhibits an antidiffusive behavior. However, the Lax-Wendroff method
can produce unphysical oscillations in the numerical solution around discontinuities, even if
the solution is smooth, owing to the dispersive characteristics of the method.
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High-resolution methods

To minimize oscillations near discontinuities and reduce phase errors, the high-resolution
method combines the upwind method and the Lax-Wendroff method, utilizing a flux limiter
function Φ to constrain the size of the second-order correction term. The value of Φ determines
whether the Lax-Wendroff or upwind method is used, with Φ = 1 for Lax-Wendroff and Φ = 0

for upwind. To measure the degree of smoothness in the upwind direction, θm is assessed, and
various flux limiter functions are available in the literature. The Osher and van Leer limiters
have shown effective numerical performance, with the Osher limiter being symmetric only
when βΦ = 1.0.
The high-resolution method blends the upwind and Lax-Wendroff methods using the flux

limiter function Φ, expressed as:

F̃w =
1

2

∑︂
m

(︂
|λ̃m|T−1W̃m

)︂
w

(︃
κW
κw

− ∆t

κw∆ξ

(︂
|λ̃m|

)︂
w

)︃
, (4.52)

where W̃m is defined as:

(W̃m)w = (αmrmΦ(θm,w))w. (4.53)

The degree of smoothness in the upwind direction is measured by θm,w, which is given by:

θm,w =

⎧⎪⎨⎪⎩
αm,ww

αm,w
, if λ̃m,w > 0

αm, e

αm,w
, if λ̃m,w < 0

. (4.54)

The van Leer limiter is expressed as:

Φ(θ) =
θ + |θ|
1 + |θ|

. (4.55)

And the Osher limiter is expressed as:

Φ(θ) = max [0,min(θ, βΦ)] with βΦ ∈ [1, 2]. (4.56)

4.2.2 Finite Volume Method for Source Term

In order to accurately model the process of acoustic generation, the source term, denoted as Q̃,
in the general equation expressed as:

∂U

∂t
= Q̃, (4.57)
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must be appropriately solved. One popular way to do this is by utilizing a forward Euler
scheme.
Acoustic simulations requiremuch smaller time step sizes (∆tCAA) compared to fluid dynamic

simulations (∆tCFD), posing a challenge in computing efficiently due to the difference in time
and length scales between acoustic waves and small-scale turbulence structures. The frozen
fluid approach [48] is used to address this issue by updating aeroacoustic source terms every
N -th acoustic time step, where N = ∆tCFD/∆tCAA.
To update the acoustic variable at time tn+1, the following equation can be used:

qn+1
p = qnp +∆tCAAQ̃. (4.58)

4.2.3 Long-Span Bodies

Turbulent flow simulations over long bodies with a span length of L present a challenge in
accurately capturing the spanwise-correlated flow structure. To reduce computational costs,
periodic boundary conditions are often applied in the spanwise direction of the computational
domain, with the simulated span length Ls typically being of the order of the turbulent length
scales. However, when it comes to acoustic calculations, applying periodic boundary conditions
to the same spanwise width results in unphysically correlated acoustic results due to the much
larger acoustic wavelength compared to the turbulence length scales [88].
To address this issue, one approach is to use a very long span that fully covers the acoustic

correlation length, which is often not feasible. Alternatively, an absorbing boundary condition
can be applied at the spanwise boundaries. However, this is impossible or computationally ex-
pensive. To overcome these challenges, approximated but computationally efficient approaches
has been developed [89, 90]. One approach involves calculating a two-dimensional acoustic
field at zero spanwise wavenumber, in the mid-span plane [89]. The acoustic sources and hy-
drodynamic variables are integrated in the spanwise direction, allowing for different treatment
of spanwise boundary conditions for flow and acoustics. This is achieved by integrating the
pressure distribution over the spanwise direction using the following equation:

s̃(x, y, t) =

∫︂ Ls/2

−Ls/2
s(x, y, z, t)dz. (4.59)

The two-dimensional pressure distribution can be transformed into the three dimensional
spectral domain using the following equation:

pa(x, y, 0, ω) ≈ ˜︁pa(x, y, ω)1 + i

2

√︃
ω

c∞πr
, (4.60)

where r =
√︁

x2 + y2. The full derivation of the method is available in Oberai et al. [89]. A
Schematic presentation of the long span body method and span lengths is shown in Figure 4.3.
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Ls

L

free-stream velocity

Figure 4.3 Schematic of aerodynamic noise prediction method for a Long-Span circular cylinder.

Next, the simulated spanwise pressure is used to calculate the sound pressure level (SPL) at
a given receiver location using the following equation:

SPLs = 20 log

(︃
pa

pref

)︃
, (4.61)

where pa is the simulated pressure amplitude, and pref is the reference pressure amplitude,
typically taken to be 20µPa. However, the SPLs calculated using Equation (4.61) only
represents the noise generated for the simulated span Ls. To obtain the SPL for the full span
L , the following equation is proposed by Seo and Moon [36]:

SPL = SPLs +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10 log (L/Ls) if Lc/Ls ≤ 1/

√
π,

10 log (Lc/Ls) + 10 log (
√
πL/Ls) if 1/

√
π < Lc/Ls < L/

√
πLs,

20 log (L/Ls) if Lc/Ls ≥ L/
√
πLs,

(4.62)

where Lc is acoustic spanwise coherence length, and can be replaced by spanwise coherence
length of the surface pressure at a point of interest, which is usually a known value from
experimental measurements. The complete derivation of the method is available in [36].
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4.2.4 The Kirchhoff Method

To accurately compute far-field noise in low Mach number turbulent flows, a method combining
the hydrodynamic/acoustic splitting approach with the Kirchhoff wave extrapolation technique
is employed. This method allows for precise solutions in the near and mid-field, as well as
the determination of sound pressure at any point in the far-field with a computational time
independent of the observer’s distance.
The process involves several steps. First, an unsteady turbulent flow field is computed using

methods like LES or Hybrid LES/RANS. From this solution, the acoustic sources are identified,
and the resulting flow-induced acoustic field is calculated. Surface data, including the acoustic
pressure and its spatial derivatives on the Kirchhoff surface (Sk), are recorded, matching the
fluid dynamic time step to minimize data storage requirements. The recorded data is then
transformed into the frequency domain, and the Kirchhoff formula is applied to each point on
the Kirchhoff surface. This process is repeated until the simulation reaches its designated end
time, and finally, the data is post-processed using the Fast Fourier Transform (FFT) algorithm
in MATLAB [91].
The Kirchhoff method solves the Helmholtz equation for the sound pressure on a closed

surface that encloses the the flow domain. The Kirchhoff surface, Sk, is chosen to encompass
the entire domain, and the sound pressure on this surface is integrated to determine the
far-field sound radiation.
One of the notable advantages of the Kirchhoff method is its efficiency in predicting far-field

sound radiation from complex flow configurations. The 2-D frequency domain form of the
Kirchhoff formulation, accounting for the impact of a mean flow in the observation region, is
derived in [92], and its implementation in FASTEST is validated in [86]. The equation for the
Kirchhoff method in the frequency domain can be expressed as:

H(f)pa(x, ω) =
iβ

4

∫︂
Sk

{︄
∂pa(x

′, ω)

∂x′i
H

(2)
0

(︃
kβ

rβ

)︃
+

kpa(x
′, ω)

β2

[︄
∂rβ
∂x′i

H
(2)
1

(︃
kβ

rβ

)︃

− iMa
∂x′1
∂x′i

H
(2)
0

(︃
kβ

rβ

)︃]︄}︄
e
i
(︂

Mak1r1
β2

)︂
(ni −Ma2n1)dSk,

(4.63)

with

rβ =
√︂
(x1 − x′1)

2 + β2(x2 − x′2)
2, (4.64)

where β =
√
1−Ma2 is the Prandtl-Glauert factor and k = ω/c∞ is the wave number, and

i =
√
−1. The Heaviside step function is represented byH(f), where it equals 0 if f is less than

0, and equals 1 if f is greater than or equal to 0. The unit normal vector on the Kirchhoff surface
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is represented by ni and points outward. The Hankel function of order j and second kind is
denoted by H(2)

j . The expression provides the acoustic pressure at any position outside the
source region as a function of the acoustic pressure and its spatial derivatives on the Kirchhoff
surface.
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5 Validation and Verification

This chapter evaluates the performance of the FASTEST-Implemented SSV-PANS method in
simulating the Fully Developed Turbulent Channel Flow and the periodic 2D hill test cases as
benchmark test cases. The accuracy of the model is assessed by comparing its predictions with
reference data through an extensive study, and the results demonstrate excellent agreement,
validating the reliability and effectiveness of the implemented SSV-PANS method for simulating
complex fluid flows in the context of aeroacoustics.

5.1 Test Case 1: Fully Developed Turbulent Channel Flow

The second case for validating the SSV-PANSmodel involves studying a fully developed turbulent
channel flow (Figure 5.1). The Reynolds number based on the wall friction velocity uτ , the
channel half width δ, and the kinematic viscosity ν is Reτ = 650.
To ensure consistency with reference models [76, 93], the computational domain’s size, as

depicted in Figure 5.1, has been carefully chosen. The domain has a length of 2πδ in the x
direction, a height of 2δ in the y direction, and a width of πδ in the z direction, denoted as
Lx, Ly, and Lz, respectively. This specific domain size enables direct comparison with existing
results and facilitates accurate evaluation of the simulation’s performance.
In the simulation, the stream-wise and span-wise directions are assumed to be periodic,

while the top and bottom walls have no-slip boundary conditions. This means that the fluid’s
velocity is set to zero at these walls, representing the adherence of the fluid to the wall.
The simulation employs a computational grid composed of 64× 100× 64 cells, as illustrated

in Figure 5.2. The size and distribution of the grid cells have been carefully designed to ensure
accurate representation of the flow. In particular, the dimensionless distance of the first cell to
the wall, is y+ ≈ 1, which is important for resolving near-wall turbulent structures.
A stream-wise pressure gradient drives the flow in the channel, enabling its sustenance. The

simulation is run for a duration exceeding 30 flow-through times to achieve statistically stable
results. This extended duration allows for capturing the fully developed turbulent behavior of
the flow.
The central differencing scheme is employed for the convection term and the Second-Order

Fully Implicit scheme is utilized for time discretization.
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wall

2πδ

2δ

πδ

wall

Figure 5.1 Schematic view of the channel flow.

Figure 5.2 The channel flow’s computational domain discretization (every 2 lines are shown).

The results of the current test case have been compared with the findings of Girimaji et al.
[76], who also employed the SSV-PANS method, as well as the direct numerical simulation
(DNS) data of Iwamoto et al. [93]. This comparative analysis allows for a comprehensive
evaluation of the SSV-PANS method’s accuracy and reliability in capturing the behavior of fully
developed turbulent channel flow. By comparing the SSV-PANS results with both the study
by Girimaji et al. [76] and the DNS data of Iwamoto et al. [93], it becomes possible to assess
the consistency, agreement, and performance of the SSV-PANS method in reproducing key
flow features, providing valuable insights for further research in the field of aeroacoustics and
related areas.

To visualize the velocity distribution in the stream-wise direction of the channel flow, obtained
through the SSV-PANS method, Figure 5.3 is presented. This figure displays the instantaneous
velocity field, offering insights into the unsteady flow features within the channel. It is
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evident that the SSV-PANS simulation accurately captures these unsteady flow characteristics,
highlighting its effectiveness in reproducing the complex dynamics of turbulent channel flow.

Figure 5.3 Transient velocity field obtained by SSV-PANS method.

The fk parameter, as shown in Figure 5.4, exhibits values and behavior that are in line with
the findings reported by Girimaji et al. [76]. In this analysis, it is observed that the near-wall
values of fk are equal to 1, indicating a RANS-like behavior near the wall where the flow
features are modeled. As the flow moves away from the wall and progresses into the bulk
region, the fk parameter gradually decreases, reaching a minimum value of approximately
0.3. This decrease in fk signifies an enhancement in the resolution of flow features and a
more accurate representation of the turbulence characteristics, which is consistent with the
observations made by Girimaji et al. [76].

Figure 5.4 Kinetic energy resolution parameter (fk) for the fully-developed flow in a plane channel
obtained using the SSV-PANS method.

It is crucial to emphasize again that the values calculated for fk using Equation (3.69) should
consistently exceed ku/k at the conclusion of the time step. This is demonstrated for the
channel flow in Figure 5.5, and when comparing it with Figure 5.4, it becomes evident that
the values of fk are larger than the final valeus of ku/k.
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Figure 5.5 Unresolved to total kinetic energy (ku/k) for the fully-developed flow in a plane channel
obtained using the SSV-PANS method.

The log-law behavior of the mean velocity, as illustrated in Figure 5.6, provides strong
evidence for the accuracy of the simulation conducted using the SSV-PANS method. This log-law
behavior is a characteristic feature of turbulent flows near a wall, where the mean velocity profile
follows a logarithmic trend as a function of the distance from the wall. The agreement between
the simulated mean velocity profile and experimental data further strengthens the notion
that the simulation captures essential flow characteristics with high fidelity. The consistency
observed between the simulation results, the SSV-PANS study by Girimaji et al. [76], and the
DNS data of Iwamoto et al. [93] suggests that the SSV-PANS method successfully reproduces
the log-law behavior and provides an accurate representation of the flow physics.

Furthermore, the normalized root-mean-squared (r.m.s) velocity fluctuations are presented
in Figure 5.7, compared with the references by Girimaji et al. [76] and Iwamoto et al. [93]. This
figure provides valuable insights into the spatial distribution of the various r.m.s. components
and enables an assessment of their expected behavior. The observed patterns of the r.m.s.
velocity fluctuations align with anticipated trends, demonstrating consistency with previous
studies. The comparison with the SSV-PANS results by Girimaji et al. [76] and the DNS
data by Iwamoto et al. [93] further confirms the accuracy and reliability of the SSV-PANS
method in capturing and representing the turbulent characteristics of the channel flow. These
results highlight the capability of the SSV-PANS method to accurately reproduce the spatial
distribution of velocity fluctuations, thus providing valuable insights for understanding the
turbulent behavior within the channel flow.

Figure 5.8 displays semi-log profiles of normalized r.m.s velocity fluctuations as a function of
the dimensionless wall distance for fully developed turbulent channel flow. This plot offers
valuable insights into the behavior of turbulence near the wall in comparison with the data
obtained from DNS results of Iwamoto et al. [93] and the SSV-PANS simulations conducted by
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Figure 5.6 Normalized mean velocity in channel flow in comparison with SSV-PANS [76] and DNS[93].
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Figure 5.7 Normalized r.m.s velocity fluctuation in comparison with SSV-PANS[76] and DNS [93].

Girimaji et al. [76]. The SSV-PANS results closely match both the DNS data and the SSV-PANS
data in terms of the log-law trend and overall accuracy. This agreement is a clear indication of
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the accuracy of the SSV-PANS method in capturing the turbulence characteristics near the wall.
Nevertheless, the slight deviation from the DNS data is expected, as near-wall turbulence is
challenging to model accurately due to the complex interactions between the flow and the wall.
Nonetheless, the overall agreement between the SSV-PANS results and the DNS data indicates
that the SSV-PANS method is a reliable tool for simulating turbulence in fully developed channel
flow.
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Figure 5.8 Semi-log profiles of normalized r.m.s velocity fluctuation in comparison with SSV-PANS[76]
and DNS [93].

Figure 5.9 and Figure 5.10 showcases the behavior of normalized Reynolds stress profiles in
relation to the dimensionless wall distance. This illustration allows for a direct comparison
with DNS data from Iwamoto et al. [93]. The agreement between the SSV-PANS simulations
and the DNS data underscores the proficiency of the SSV-PANS method in faithfully capturing
the subtleties of near-wall turbulence characteristics.
In conclusion, the implemented SSV-PANS method has demonstrated its capability to ac-

curately replicate flow details with a high level of precision in the context of fully developed
turbulent channel flow. The observed agreement between the simulation results and the refer-
ence data of previous studies by Girimaji et al. [76] and Iwamoto et al. [93], highlights the
effectiveness of the SSV-PANS method in capturing key flow features and turbulence phenom-
ena. These findings not only validate the accuracy and reliability of the SSV-PANS method but
also establish its suitability for further research in the field of aeroacoustics and related areas.
Accurate characterization of flow behavior is crucial for in-depth analysis and understanding,
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Figure 5.9 Normalized Reynolds stress profiles of u′u′/u2
τ in comparison with DNS [93].

0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y +

u
v
/u

2 τ

DNS [93]
SSV − PANS

Figure 5.10 Normalized Reynolds stress profiles of u′v′/u2
τ in comparison with DNS [93].

and the SSV-PANS method provides a valuable tool for achieving these goals.
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5.2 Test Case 2: Periodic 2D Hill

To evaluate the accuracy of the SSV-PANS model implementation in the FASTEST flow solver,
the periodic 2D hill test case is employed as a benchmark. This widely used test case serves as
a rigorous validation scenario due to its complex flow pattern, making it an ideal choice for
assessing the model’s capability to accurately predict flow separation and reattachment points.
The comparison of the SSV-PANS model’s results with the reference LES data by Fröhlich et
al. [1] provides a robust validation metric, ensuring the reliability and effectiveness of the
implemented SSV-PANS method in simulating complex fluid flows.
The computational domain for this test case is defined as a channel with specific dimensions:

a length of Lx = 9h, a height of Ly = 3.035h, and a span-wise length of Lz = 4.5h, where h
represents the height of the hill. The top and bottom edges of the channel are considered as
no-slip wall boundary conditions, while the stream-wise and span-wise directions are treated
as periodic boundaries. The entire computational domain is discretized into 0.7× 106 control
volumes (CVs), as illustrated in Figure 5.11.
It is important to note that the first cell near the wall lies within the viscous sublayer, with a

non-dimensional wall distance y+ ≈ 1.

Figure 5.11 Computational grid for the 2D periodic hill test case (every 2 lines are shown).

To ensure accurate results, the simulation is carried out for 50 flow-through cycles, allowing
sufficient time averaging to obtain the mean flow quantities. These mean flow quantities are
then compared with the reference LES results provided by Fröhlich et al. in their study [1]. The
reference LES simulation employs 4.6× 106 CVs and serves as a reliable metric for comparing
the accuracy of the SSV-PANS model. The Reynolds number, which is defined based on the
bulk velocity, can be calculated as:

Reb =
ubh

ν
= 10595. (5.1)

Here, ub represents the bulk velocity, h is the hill height, and ν denotes the kinematic
viscosity. To achieve the desired bulk velocity, a pressure gradient is applied to the flow.
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The averaged stream-wise velocity contour obtained using the SSV-PANS method is shown
in Figure 5.12.

Figure 5.12 Average velocity field of the flow past the periodic 2D hills obtained using the SSV-PANS
method.

In addition to the stream-wise velocity contour, the streamlines in Figure 5.13 reveal perfectly
the flow pattern. At the inflow, there is a re-circulation region separated from the mainstream,
followed by reattachment in the middle of the bottom wall. This intricate flow behavior poses
a significant challenge for accurate prediction and serves as an ideal benchmark for testing the
performance of computational fluid dynamics (CFD) models.

Figure 5.13 Streamlines of the flow past the periodic 2D hills obtained using the SSV-PANS method.

Furthermore, the calculated values of the kinetic energy resolution parameter, fk, are depicted
in Figure 5.14, ranging from 0.3 to 1. Notably, the values near the wall are equal to 1.
It’s important to note that the comparison of fk values has been carried out once again for

the 2D Hill. When comparing it with Figure Figure 5.14, it becomes evident that the values of
fk are greater than the final values shown in Figure 5.15.
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Figure 5.14 Kinetic energy resolution parameter (fk) for the flow past the periodic 2D hills obtained
using the SSV-PANS method.

Figure 5.15 Unresolved to total kinetic energy (ku/k) for the flow past the periodic 2D hills obtained
using the SSV-PANS method.

To assess the accuracy of the SSV-PANS results, a comparison was made with the LES results
obtained by Fröhlich et al. [94]. The skin friction coefficient, Cf = τw/

1
2ρU

2
0 , which is a crucial

parameter indicating flow separation and reattachment from the bottom wall, was analyzed.
The results are presented in Figure 5.16. The point where the skin friction coefficient first
becomes zero represents the location of flow separation from the bottom wall. Conversely, the
second time it becomes zero indicates the point of flow reattachment to the wall. Accurately
predicting these separation and reattachment points is crucial for evaluating the model’s
capability. Table 5.1 provides the locations of these points.
Based on the comparison of the SSV-PANS model’s results with the reference data, it can be

confidently concluded that the model is capable of accurately predicting the flow separation and
reattachment points, as well as the distribution of the skin friction coefficient along the bottom
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Figure 5.16 2D hill’s skin friction coefficient obtained by SSV-PANS in comparison with LES [94].

Table 5.1 Separation and reattachment points obtained by SSV-PANS in comparison with LES [94].

LES[94] SSV-PANS

Separation point (xs/h) 0.22 0.24
Reattachment point (xr/h) 4.72 4.70

wall. These findings strongly indicate that the SSV-PANS model is a reliable and effective tool
for simulating complex fluid flows, such as the periodic 2D hill test case.
To further verify the accuracy of the SSV-PANS model, the time-averaged streamwise and

wall-normal velocities were thoroughly investigated and compared with the LES results at six
different positions in the x-direction. The streamwise velocity profiles were compared with
reference LES data [94], and it was observed that the SSV-PANS simulation results exhibited
excellent agreement with the reference LES data. Additionally, the wall-normal velocity profiles,
as depicted in Figure 5.18, also demonstrated good agreement with the reference LES data
[94]. Only, for the position x/h = 0.5, negligible variances can be observed.
Furthermore, the SSV-PANS simulations were utilized to obtain Reynolds stress profiles u′u′

and u′v′, which exhibited very good agreement with the reference LES data [94], as shown in
Figures 5.19 and 5.20. These results further support the conclusion that the SSV-PANS model
is a reliable and effective tool for simulating complex fluid flows.

63



5 Validation and Verification

In conclusion, the newly implemented SSV-PANS model provides satisfactory simulation
outcomes and has been successfully validated for further investigations. It demonstrates strong
agreement with reference LES data and can be relied upon for accurate predictions in similar
flow scenarios.
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Figure 5.17 Mean velocity profiles along the streamwise direction in comparison with LES [94].
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Figure 5.18 Mean velocity profiles along the wall normal in comparison with LES [94].
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Figure 5.19 Normalized Reynolds stress profiles of u′u′/u2
b in comparison with LES [94].
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Figure 5.20 Normalized Reynolds stress profiles of u′v′/u2
b in comparison with LES [94].
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6 Aeroacoustic Results of PANS Method

This chapter presents a comprehensive examination of the aeroacoustic performance of the
SSV-PANS method and LES, with a primary focus on their applications in two distinct test cases.
The first test case involves an in-depth analysis of acoustic phenomena arising from turbulent
flow around a circular cylinder, with particular attention to the sound radiation resulting from
vortex shedding. The second test case explores the applicability of the SSV-PANS method in
aeroacoustics, especially in the context of the Ahmed body, a renowned benchmark in fluid
dynamics. Together, these analyses contribute to a deeper understanding of the capabilities
and performance of the SSV-PANS method in the field of aeroacoustics.

6.1 Flow Past a Circular Cylinder

This study aims to compare the aeroacoustic performance of two turbulence models, the
Partially-Averaged Navier-Stokes (SSV-PANS) method and Large Eddy Simulation (LES). The
investigation focuses on analyzing the generation of acoustic quantities caused by turbulent
flow around a circular cylinder. The specific aspect of interest is the sound radiation resulting
from vortex shedding behind the cylinder. The simulations consider a Reynolds number of
Re = 48, 000 and a Mach number of Ma = 0.21 (C∞ = 343m/s) based on the cylinder diameter
(D = 0.01 m).
To accurately capture the intricate flow dynamics, a circular computational domain is

employed with a radius of 60 times the cylinder diameter (60D) and a span-wise length of πD.
The grid is carefully designed to have a high resolution near the cylinder’s surface and in the
wake region to ensure a y+ ≈ 1, which promotes accurate turbulence modeling. Three O-type
grids are utilized for the simulations, containing approximately 2.21, 4.42, and 9.55 million
control volumes (CVs), respectively. The reference LES results are obtained using 17.7 million
CVs with the same test setup as the one employed in the work by Kolb et al. [45]. For visual
reference, the computational domain and the grid configuration are illustrated in Figure 6.1.
The simulations are conducted with specific boundary conditions. At the inlet, a constant

inflow velocity of U0 = 72 m/s is specified. The outlet is set with a constant pressure condition.
On the surface of the cylinder, a no-slip condition is applied, ensuring that the fluid velocity
is zero at the cylinder’s boundary. In the spanwise direction, a periodic boundary condition
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6 Aeroacoustic Results of PANS Method

Figure 6.1 The cylinder’s computational domain discretization (every 2 lines are shown).

is employed, assuming that the flow pattern repeats itself. A summary of these boundary
conditions can be found in Table 6.1.

Table 6.1 Boundary conditions for the cylinder simulation.

Boundary Inlet Outlet Sides Body

Condition Inlet Velocity Pressure Periodic No-slip

To ensure numerical stability and accuracy, the fluid dynamic CFL (Courant-Friedrichs-Lewy)
number is maintained at approximately 1.0. A Second-Order Fully Implicit time discretization
scheme is utilized. The convective fluxes are approximated using the flux-blending scheme
with β being 0.8.
To reduce computational costs, the acoustic field is computed in the mid-span plane of

the grid as a two-dimensional problem, known as Long-Span Bodies method explained in
subsection 4.2.3 . This approach assumes a frozen fluid, where flow variables are assumed
to remain constant in time during acoustic computations explained in subsection 4.2.2. This
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6.1 Flow Past a Circular Cylinder

simplification significantly reduces computational effort while accurately capturing essential
acoustic characteristics.
The aeroacoustic setup utilizes the combined splitting/Kirchhoff method to investigate the

flow characteristics across the cylinder, considering a single observer in the far-field. This
configuration is aligned with the acoustic measurements conducted by Jacob et al. [95], which
serve as a recognized benchmark for evaluating noise prediction techniques. To enable a
comprehensive comparison between the SSV-PANS method and LES, the same test setup as
the one employed in the LES results by Kolb et al. [45] is adopted.
The sound generated by the flow across a cylinder is an important aeroacoustic phenomenon

that arises due to the complex fluid dynamics involved. The behavior of the flow can be
classified into distinct regimes characterized by different Reynolds numbers, offering valuable
insights into the evolving flow patterns.
At low Reynolds numbers, the flow remains stable, and there is steady flow separation. As the

Reynolds number increases, disturbances propagate, leading to the formation of well-defined
vortices with laminar cores trailing behind the cylinder. This transitional regime exhibits
intriguing flow dynamics. With further increases in Reynolds number, the flow enters the
subcritical regime, where turbulent vortex cores become prominent, causing a transformation
in the separated shear layer. The interaction between turbulent boundary layers and the
cylinder’s surface gives rise to an irregular vortex structure. This captivating phenomenon
highlights the complex interplay between the flow and the cylinder, resulting also in distinctive
acoustic characteristics.
An essential parameter for characterizing the flow oscillations is the Strouhal number (St). It

quantifies the relationship between the shedding frequency (fs), which represents the periodic
detachment of vortices from the cylinder surface, and the inflow velocity (v∞), normalized
by the cylinder diameter (D). The Strouhal number serves as a dimensionless frequency that
captures the dynamic behavior of the flow and its acoustic characteristics and is defined as:

St =
C∞
fsD

. (6.1)

The shedding of vortices behind the cylinder induces oscillating forces on its surface, which
in turn contribute to the generation of sound. At the shedding frequency (fs), an oscillating
lift force is produced, while a drag force oscillates at twice the shedding frequency (2fs).
These alternating forces, combined with the turbulence in the wake region, result in the
emission of broadband sound. The sound produced exhibits a rich soundscape, characterized
by distinct frequencies and unique acoustic characteristics, providing valuable insights into the
aeroacoustic nature of flow-cylinder interactions [96].
To ensure the accuracy of the data and minimize potential inaccuracies caused by boundary

conditions beyond a certain radius, the computation of the acoustic source is limited to a radius
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6 Aeroacoustic Results of PANS Method

of 39D. This approach helps reduce the influence of boundary conditions, leading to more
reliable and accurate results. After an initial quasi-periodic stage, the flow field and acoustic
field are evaluated over a duration of 30 vortex shedding cycles. This extended evaluation
period allows for capturing the unsteady behavior of the flow, ensuring a comprehensive
analysis of the aerodynamic and acoustic characteristics.
Table 6.2 provides a comprehensive comparison of various aerodynamic quantities obtained

for the flow around a cylinder, aiming to validate the accuracy of the obtained results. The
validation process involves comparing the results obtained using the SSV-PANS approach with
reference data from previous studies. To ensure the credibility of the SSV-PANS results, they
are compared with reference data obtained from different sources. The comparison includes
data from Seo and Moon’s LES study [36] conducted at a Reynolds number of Re = 46, 000.
Furthermore, data from Kolb’s work [86] and experimental measurements conducted by Jacob
et al. [95] at a Reynolds number of Re = 48, 000 are used for validation. Additionally, data
from Szepessy and Bearman [97] at a Reynolds number of Re = 43, 000 is employed for further
verification.

Table 6.2 Hydrodynamic quantities of flow past a cylinder compared to reference data.

PANS PANS PANS LES[45] LES[36] DNS[97] Experiment[95]

CVs (million) 2.21 4.42 9.55 17.69 - - -

Strouhal number St 0.18 0.19 0.19 0.19 0.19 0.19 0.19

Mean drag coefficient cd 1.31 1.40 1.39 1.33 1.24 - -

r.m.s drag coefficient c′l 0.11 0.12 0.14 0.06 0.10 0.11-0.18 0.08-0.09

r.m.s lift coefficient c′d 0.65 0.78 0.74 0.88 0.54 0.44-0.79 0.75-0.85

Table 6.2 summarizes the comparison, presenting various hydrodynamic quantities. These
quantities include the number of control volumes (CVs), the Strouhal number (St), the mean
drag coefficient (cd), the root-mean-square (r.m.s) drag coefficient (c′l), and the r.m.s lift
coefficient (c′d). The comparison between the SSV-PANS results and the reference data reveals
a good agreement in terms of mean quantities, such as the Strouhal number and mean drag
coefficient. The Strouhal number consistently falls within the range of 0.18-0.19 for all
simulation cases, which is also consistent with the reference data. Similarly, the mean drag
coefficient shows a close agreement between the SSV-PANS results and the reference data.
It is important to consider that the fluctuating drag and lift coefficients exhibit significant

variations depending on the experimental setup. The SSV-PANS results fall within the range of
experimental uncertainties, indicating that the fluctuations observed in the simulations are
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6.1 Flow Past a Circular Cylinder

consistent with the nature of the flow-cylinder interactions. This suggests that the SSV-PANS
approach captures the inherent fluctuations in the flow and accurately represents the turbulent
characteristics.
Figure 6.2 provides a dynamic representation of the lift and drag coefficients over time,

offering valuable insights into the aerodynamic behavior of flow around a circular cylinder.
These coefficients oscillate with distinct Strouhal numbers, reflecting the periodic detachment
of vortices from the cylinder’s surface, a characteristic of flow-cylinder interactions. The
consistency of the Strouhal numbers across different simulations underscores the reliability
and robustness of the numerical approach. The significant impact of grid resolution is evident,
with finer grids yielding more detailed and refined oscillations, emphasizing the importance
of accurate numerical grids in capturing the nuances of aerodynamic forces. Moreover, these
time variations are crucial for understanding the generation of aerodynamic noise, as lift and
drag fluctuations lead to the emission of broadband sound in the wake of the cylinder.
The pressure coefficient (Cp) is a crucial parameter used to assess the aerodynamic char-

acteristics of flow around a cylinder. In this study, an analysis was conducted using different
grid configurations, including a coarse grid, a medium grid, and a fine grid, to evaluate the
Cp values. These values were then compared with reference data from Seo et al.’s LES results
[36] and experimental data from Szepessy and Bearman [97]. The results, depicted in Figure
6.3, demonstrate a good agreement between our obtained Cp values and the reference data.
Interestingly, it was observed that the coarse grid outperformed the medium and fine grids,

particularly at an angle of 180 degrees. The inconsistency in the accuracy of the pressure
coefficient between the grids can be attributed to the specific flow features and physical
phenomena present in the high Reynolds number flow around a cylinder, with the coarse grid’s
larger cell size acting as a natural filter, effectively smoothing out fine-scale noise and capturing
large-scale features like shock waves and vortices. However, for the study of aerodynamic noise,
which relies on precise representation of small pressure fluctuations, finer grids are generally
preferred. Therefore, while the coarse grid showed better performance at the angle of 180
degrees, the use of a fine grid is recommended for detailed aerodynamic noise analysis, with
further accuracy analyses being vital to balance resolution and computational cost effectively.
The velocity contours shown in Figure 6.4 provide valuable insights into the flow character-

istics around the cylinder, specifically when considering different numbers of control volumes
(CVs). Increasing the number of CVs from 2.21million to 4.42million and further to 9.55million
leads to a progressive refinement and a more accurate representation of the flow behavior.
In Figure 6.4a, corresponding to the lowest number of CVs, the contours display a relatively

coarse representation of the flow. The smoother profiles and less pronounced gradients indicate
limited resolution. However, despite these limitations, it is still possible to discern the primary
flow pattern and the formation of the wake region behind the cylinder. This suggests that even
with a lower number of CVs, the major flow features can still be captured to some extent.

73



6 Aeroacoustic Results of PANS Method

100.0 130.0 160.0 190.0 220.0
−2.0

−1.0

0.0

1.0

2.0

tU/D

CD CL

(a) 2.21 million CVs

100.0 130.0 160.0 190.0 220.0
−2.0

−1.0

0.0

1.0

2.0

tU/D

CD CL

(b) 4.42 million CVs

100.0 130.0 160.0 190.0 220.0
−2.0

−1.0

0.0

1.0

2.0

tU/D

CD CL

(c) 9.55 million CVs

Figure 6.2 Cylinder’s time variation of lift and drag coefficients obtained by SSV-PANS different Cvs.

Moving on to Figure 6.4b, where 4.42 million CVs are employed, a significant improvement
in visualizing the flow structure becomes apparent. The contours exhibit sharper gradients,
providing a more detailed representation of the flow behavior. The wake region is better defined,
showcasing distinct vortical structures formed by the shedding process. This enhancement in
resolution enables a more accurate depiction of the flow physics near the cylinder, facilitating
a deeper understanding of the flow phenomena.
Finally, in Figure 6.4c, the highest number of CVs at 9.55 million is utilized, resulting in the

most refined and detailed representation of the flow behavior. The contours exhibit even sharper
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Figure 6.3 Cylinder’s pressure coefficient obtained by SSV-PANS in comparison with LES [36] and
experiment [97].

and more localized gradients, capturing fine-scale flow features with increased precision. The
well-defined vortical structures in the wake region indicate the shedding process with greater
clarity. This level of resolution provides a comprehensive understanding of the flow dynamics
around the cylinder, allowing for more accurate analysis and predictions.

The progression from lower to higher numbers of CVs highlights the significance of grid
refinement in accurately capturing the flow behavior. The improved visualization of the velocity
contours with increasing CVs enables a more precise characterization of the flow patterns and
emphasizes the importance of grid resolution in computational simulations.

The distribution of fk depicted in Figure 6.5, which was originally published by Moosavifard
[98] and presented here, provides valuable insights into the relationship between grid resolution
and the corresponding values of fk. The figure effectively demonstrates this relationship and
highlights a discernible trend. Specifically, it is evident that as the grid becomes finer, fk values
tend to decrease. The figure visually captures the impact of grid density on the behavior and
characteristics of fk, with smaller values observed for finer grids. This correlation highlights
the crucial role of grid density in shaping the behavior of fk and emphasizes the need for
careful grid selection in accurate analysis and simulations.

Figure 6.6 provides a visualization of vortical structures in the wake of the cylinder using
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(a) 2.21 million CV s

(b) 4.42 million CV s

(c) 9.55 million CV s

Figure 6.4 Average velocity contours for different numbers of Control Volumes (CVs) obtained by
SSV-PANS.

76



6.1 Flow Past a Circular Cylinder

(a) 2.21 million CV s (b) 4.42 million CV s

(c) 9.55 million CV s

Figure 6.5 Turbulent kinetic energy resolution parameter for different numbers of Control Volumes
(CVs) obtained by SSV-PANS.

the Q-criterion, which is based on the second invariant of the velocity gradient tensor. This
visualization technique offers valuable insights into the complex flow dynamics, revealing the
formation of large coherent vortex structures resulting from the roll-up of the shear layer. These
structures contribute to momentum mixing and transport within the flow. The Q-criterion also
highlights the presence of small-scale turbulent structures within the separated boundary layer,
indicating the three-dimensional nature of the flow.
The subfigures in Figure 6.6, corresponding to different numbers of control volumes (CVs),

allow for a comparative analysis. Increasing the number of CVs from 2.21million to 9.55million
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results in improved resolution and detail. The vortical structures appear relatively coarse and
less detailed in Figure 6.6a, while Figure 6.6b exhibits more intricate patterns with clearer
boundaries. Figure 6.6c showcases the highest level of detail, revealing smaller turbulent
structures within the separated boundary layer. These findings emphasize the importance of
grid resolution for accurately capturing and analyzing the flow features in the wake of the
cylinder.
The hydrodynamic/acoustic splitting approach is utilized in this study, as discussed in

section 4.2, to accurately capture and analyze acoustic waves. This approach effectively
resolves acoustic waves in the near- and mid-field regions. At the Strouhal frequency St,
periodic lift fluctuations on the cylinder’s surface generate dipole-like patterns in the acoustic
pressure field, resulting in the emission of acoustic waves perpendicular to the flow direction
of the cylinder. To visually demonstrate this phenomenon, Figure 6.7 presents a compelling
visualization of the dipole characteristics exhibited by the radiated sound. These characteristics
arise from the shedding of vortices at the rear of the cylinder. As the fluid flows around
the cylinder, vortices form and periodically detach, creating alternating regions of high and
low pressure in the surrounding medium. These pressure variations give rise to a distinct
dipole pattern in the radiated sound field, characterized by discernible areas of compression
and rarefaction. The presence of this dipole pattern signifies the fundamental mechanisms
governing sound generation in the wake of the cylinder.
Furthermore, Figure 6.7 (consisting of Figure 6.7a, Figure 6.7b, and Figure 6.7c) showcases

the influence of the number of control volumes (CVs) on the resolution and level of detail in
capturing the acoustic pressure field. The sequence of images demonstrates the improvement in
resolution as the number of CVs increases. In Figure 6.7a, relatively coarse dipole structures are
observed, while Figure 6.7b exhibits more intricate patterns with clearer boundaries. Finally,
the highest level of detail is revealed in Figure 6.7c, providing insights into smaller-scale
variations within the dipole pattern.
The investigation of acoustic sources obtained from various turbulence models provides

valuable insights into the process of sound generation. In this regard, Figure 6.8 depicts the
acoustic source of the cylinder using the SSV-PANS model.
Figure 6.8a, utilizing 2.21 million control volumes (CVs), presents an overview of the sound

generation characteristics, highlighting regions with significant acoustic activity. In this figure
there are some oscillations in the sources. Moving to Figure 6.8b, with an increased number
of 4.42 million CVs, a more detailed representation of the acoustic source is observed. There
osciclations available in the 2.21 million CVs are not visible in this case . This allows for
capturing finer details and variations in its distribution. Finally, Figure 6.8c utilizes the highest
number of CVs, 9.55 million, offering a comprehensive view of the intricate features of the
acoustic source with the highest level of detail.
The Kirchhoff method is utilized to determine the acoustic pressure in the far-field region.
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(a) 2.21 million CV s

(b) 4.42 million CV s

(c) 9.55 million CV s

Figure 6.6 Iso-surface of the Q-criterion showing three-dimensional flow structures for different num-
bers of Control Volumes (CVs) obtained by SSV-PANS.
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(a) 2.21 million CV s (b) 4.42 million CV s

(c) 9.55 million CV s

Figure 6.7 Acoustic pressure field of the cylinder. Non-dimensionalised by ρicc2∞.

This method has been explained in subsection 4.2.4. In the study conducted by Kolb et al. [45,
86], as well as in the experimental investigations carried out by Jacob et al. [95], an observer
point located at a distance of 185D from the center of the cylinder, perpendicular to the flow
direction, was used. At this specific position, Sound Pressure Level (SPL) data were collected
and depicted in Figure 6.9 after appropriate corrections.
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(a) 2.21 million CV s

(b) 4.42 million CV s

(c) 9.55 million CV s

Figure 6.8 Acoustic source of the SSV-PANS model for the cylinder Non-dimensionalised by ρicc3∞/D.
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To record the acoustic pressure and its spatial derivatives over a period of 30 vortex shedding
cycles, the Kirchhoff surface was employed. The Kirchhoff surface had a radial extension
of 40D. Subsequently, the acquired far-field acoustic pressure was transformed from a 2D
representation to a 3D representation using Equation 4.60. Furthermore, a correction was
applied to account for the finite span length of L = 30D using Equation 4.62. Experimental
measurements by Jacob et al. indicated an acoustic coherence length of Lc = 2.7D at the vortex
shedding frequency [95]. For the remaining frequency range, the ratio Lc/Ls did not exceed
1/

√
π. To ensure a fair comparison, the simulation closely replicated the setup described by

Kolb et al. [45, 86]. For additional simulation details, it is recommended to refer to their work.
In order to validate the obtained results, the SPL of the final acoustic signal is compared with

experimental reference data from Jacob et al. [95], as shown in Figure 6.9. The frequencies in
the comparison are normalized with respect to the shedding frequency St. This comparison
provides a means to assess the accuracy of the simulated acoustic signal in comparison to the
experimental measurements. Additionally, Figure 6.9 reveals the presence of two additional
harmonics that correspond to the oscillations in lift and drag. Initially, these harmonics were
less noticeable, but as the grid resolution was increased, their prominence time became more
evident. This finding suggests that refining the grids improves the visibility and accuracy in
capturing these oscillations.
The results obtained from both the LES and experimental studies were summarized and

compared in Table 6.3. Notably, there was a strong agreement between the computed results
and the experimental data reported by Jacob et al. [95]. In particular, the broad peak observed
at the vortex shedding frequency, as indicated in Table 6.3, was specifically compared with the
LES study by Kolb et al. [45] and the experiments conducted by Jacob et al. [95].
The aeroacoustic method based on the SSV-PANS approach demonstrated a reasonable

level of accuracy in predicting broadband noise, as evident from the results. These findings
emphasize the effectiveness of the SSV-PANS method in aeroacoustic analysis and its potential
for practical applications.

Table 6.3 Comparison of Strouhal frequency.

Model St Error (%)
SSV-PANS 0.182 8.5
SSV-PANS 0.184 7.5
SSV-PANS 0.189 5.0
LES[45] 0.195 2.0

Experiment[95] 0.199 -

In addition, the computational efficiency of the SSV-PANS method was evaluated by con-
ducting a comparative analysis with the Large Eddy Simulation (LES) employing 17.7 million
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Figure 6.9 Comparison of acoustic Sound Pressure Level (SPL) at R = 185D with Jacob et al. [55].

control volumes (CVs). The primary objective of this analysis was to assess the computational
time required to simulate the same physical duration for all the cases. The resulting total
computational time, measured in terms of "core× hours", is presented in Table 6.4 for each
respective test case. These comparisons have provided valuable insights into the computational
advantages offered by the SSV-PANS method compared to traditional LES simulations.
The table presented provides clear evidence of the significant computational time reduction

achieved through the utilization of the SSV-PANS method in simulations, while maintaining a
satisfactory level of accuracy in predicting acoustic behavior. This computational advantage
positions the SSV-PANS method as a highly promising approach for the analysis of complex
flow-induced noise problems, enabling more efficient and practical investigations.
Figure 6.10 illustrates a distinct and non-linear increase in computational time as the number

of control volumes (CVs) grows. This observation highlights an imbalanced relationship
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Table 6.4 Comparison of computational time.

Model CVs (million) Time (core× hour) CVs ratio Time ratio
SSV-PANS 2.21 110.8 0.13 0.07
SSV-PANS 4.42 377.5 0.25 0.25
SSV-PANS 9.55 1099.1 0.54 0.73
LES[45] 17.69 1508.8 1.00 1.00

SSV-PANS (2.21) SSV-PANS (4.42) SSV-PANS (9.55) LES (17.7)
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Figure 6.10 Comparison of computational ratios.

between the number of CVs and the associated computational time. Several factors contribute
to this outcome.
Foremost, the incorporation of the k − ϵ − ζ − f equation within the SSV-PANS model

necessitates the solution of two additional equations, resulting in increased computational
time. However, it is important to mention that the SSV-PANS model takes advantage of the SSV
equation, which reduces the computational load to some extent. By utilizing the SSV equation,
the model achieves better computational efficiency without compromising the accuracy of the
simulations.
Additionally, the parameter fk in the SSV-PANS model is influenced by the grid size and

tends to exhibit higher values for coarser grids. This implies that coarser grids capture a greater
portion of the underlying physics through modeling, rather than relying on fine-scale resolution,
thereby reducing the computational time required. The use of coarser grids, with their higher
fk values, facilitates a trade-off between accuracy and computational efficiency.
The results and analysis obtained indicate that the aeroacoustic method employing the
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SSV-PANS model possesses highly favorable characteristics. It effectively strikes a desirable
equilibrium between computational efficiency and accuracy, establishing it as an advantageous
approach for conducting aeroacoustic simulations. Consequently, the SSV-PANS method holds
significant potential to enhance the computational performance of aeroacoustic simulations
substantially, without compromising the reliability of the obtained results.

6.2 Flow Over an Ahmed Body

This chapter presents a comprehensive investigation into the performance of the SSV-PANS
method in the field of aeroacoustics, specifically focusing on the Ahmed body—a simplified car-
shaped structure. The Ahmed body, originally introduced by Ahmed [99], features a rectangular
box with rounded edges at the front and a sloping face at the back, as depicted in Figure 6.11.
Due to its simple yet representative design, the flow around the Ahmed body serves as an ideal
test case for validating turbulence modeling methods. However, accurately modeling the airflow
around this body remains challenging due to its complex flow characteristics, such as the wake
region and separated flow region. As a result, the Ahmed body has been widely adopted as a
benchmark case in various workshops and research programs aimed at refining flow modeling
techniques. Notably, the "ERCOFTAC/IAHR Workshops on Refined Flow Modelling" held in
2001 and 2002 have extensively utilized the Ahmed body as a central focus [100–102].
To ensure the fidelity of the computational setup, the geometry of the car model was carefully

examined, referring to the experiments conducted by Lienhart et al. [103]. The dimensions
of the car model were designed to match those of the Ahmed body, which features a length
(L) of 1044 mm, a height (H) of 288 mm, and a width (W ) of 389 mm. In this study, the
Ahmed Body was positioned 50 mm above the ground, as depicted in Figure 6.11. The slant
angle of the car model was set to 25 degrees (ϕ = 25), a critical parameter for the analysis.
The computational domain used for the simulations consists of a fine region extending up
to 8L× 7W × 6H. Beyond this region, the grids are gradually coarsened. The total domain
size is 57L in length and 29L in width, which is suitable for conducting aeroacoustic studies.
To capture the complex flow characteristics near the surface of the Ahmed body, the grid is
intricately designed with high resolution. The objective is to achieve a wall distance (y+) of
approximately 1. This low y+ value ensures accurate modeling of turbulence, which is crucial
for reliable simulation results.
Ahmed [99] emphasized that the primary source of drag on the body is pressure drag,

primarily originating from the rear end. The wake structure exhibits a high level of complexity,
characterized by a separation zone and counter-rotating vortices that emerge from the slanted
edges. The extent of flow separation is influenced by the slant angle in a relatively intricate
manner. At a critical slant angle of ϕ = 30, the maximum drag occurs. Beyond this angle,
the pressure gradient between the slant and the roof becomes so pronounced that the flow
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Figure 6.11 Ahmed body with slant angle ϕ = 25, in three views with coordinate system (mm), slant
angle ϕ = 25 in current analysis.

completely detaches over the slant surface. In contrast, when the slant angle is below ϕ = 30,
the flow still undergoes separation, but the pressure differential between the slant and the side
walls generates robust streamwise vortices along the lateral slant edges. These vortices induce
a downward motion over the slant, primarily in the downstream region. Consequently, the
wake region exhibits a complex flow pattern that varies with the slant angle, posing challenges
for accurate modeling using computational fluid dynamics (CFD) simulations.
The experimental measurements were conducted with a free stream velocity of U0 = 40 m/s,

resulting in a Reynolds number of Re = 768, 000 and a Mach number of Ma = 0.12 (C∞ = 343

m/s) based on the body height H. Although this Reynolds number is of the same order of
magnitude as the value of 1.2 × 106 used in Ahmed’s initial experiment [99], it is slightly
lower. Therefore, for comparison, the current simulations are referenced against the work
of Lienhart et al. [103]. Lienhart et al. performed experiments on the Ahmed body at slant
angles of ϕ = 25 and ϕ = 35, obtaining precise LDA measurements of mean velocity fields and
turbulence statistics , which serve as a benchmark for this study.
Additionally, the results of this study are compared with the research conducted by Serre et

al. [104]. Serre et al. involved four research teams using three different Large Eddy Simulation
(LES) methods (LES-NWM, LES-NWR, and LES-SVV) and one Detached Eddy Simulation (DES)
method (DES-SST).
The boundary conditions for the simulations are defined as follows: at the inlet, a uniform

laminar velocity of U0 is enforced, while at the outlet, a pressure boundary condition is specified.
Slip surfaces are applied on both sides of the simulation domain in the spanwise direction,
where the top surface is considered as slip and the Ahmed body itself is treated as a wall. A
summary of the boundary conditions is presented in Table 6.5.
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Table 6.5 Boundary conditions.

Boundary Inlet Outlet Sides Ground Top body

Condition U0 Pressure Slip No-slip Slip No-slip

The simulations were performed using the FASTEST software [1]. To approximate convective
fluxes the Xue-MUSCL scheme is employed. For time discretization, the Second-Order Fully
Implicit scheme was utilized. The coupling of pressure and velocity was achieved using the
SIMPLE algorithm.
For the LES, a grid consisting of 48× 106 control volumes (CVs) was employed. On the other

hand, for the SSV-PANS method, medium and coarse grids were utilized, with CV values of
25× 106 and 14.5× 106, respectively. The grid structure can be visualized in Figure 6.12, and
the grid surface is illustrated in Figure 6.13.

Figure 6.12 Grid structure for the Ahmed body in the simulation (every second grid line shown).

The simulations were carefully conducted to ensure that the Courant number remained below
one. The computations were efficiently distributed across 240 CPUs, resulting in well-balanced
workloads for all three cases.
The drag coefficient, denoted as CD, is given by the formula:

CD =
2FD

ρU2
0Ax

, (6.2)

where Ax represents the cross-sectional area of the Ahmed body aligned with the flow direction,
and FD represents the associated drag force which is time-averaged by integrating surface
pressure and shear stress over the body. Table 6.6 presents a comparative analysis of the drag
coefficient for the Ahmed body obtained through various simulation methods and experimental
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Figure 6.13 Surface mesh for the Ahmed body in the simulation (every second grid line shown).

data by Ahmed et al. [99]. The simulations include SSV-PANS with two different grid resolu-
tions, LES, and DES utilizing the SST turbulence model. Additionally, for analysis purposes,
LES-NWR, LES-NWM, and LES-SVV are included [104]. The Reynolds number used for all
simulations, except for the Ahmed experiment, is Re = 768, 000. The experiments conducted
by Ahmed et al. [99] had a Reynolds number of Re = 1.2 × 106, which were employed for
comparison as corresponding data for Lienhart’s experiments were unavailable [103]. It is
worth noting that comparing drag results at slightly different Reynolds numbers is valid due to
the insignificant variation of the drag coefficient with Reynolds number in this type of flow
[104].

The computational simulations with grid resolutions of 14.5× 106 and 25× 106 cells exhibit
similar drag coefficients. In the context of industrial applications, these simulations exhibited
a tendency to slightly overestimate the drag coefficient. However, when employing LES with
a more refined grid of 48× 106 cells, the results showed better accuracy when compared to
experimental data. The utilization of LES coupled with the Near-Wall Model (LES-NWM)
yielded outcomes that closely aligned with the experimental measurements, displaying only
a minor deviation in the calculated drag coefficient arising from flow interactions with the
body under study [104]. Conversely, the LES-NWR and DES-SST approaches demonstrated
the propensity to produce higher drag coefficients than those observed in the experiments.
Notably, the LES-SVV method stood out as having the most significant divergence from the
experimental data, as documented by Serre et al. research [104].

The ability to make accurate predictions about airflow separation and reattachment is crucial
for comprehending intricate aerodynamics. Employing simulations of the Ahmed body helps
to elucidate methods for modeling turbulence. according to Figure 6.14, through SSV-PANS
simulations at varying grid resolutions (14.5 × 106 CVs, 25 × 106 CVs) and LES (48 × 106
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Table 6.6 Drag coefficient of the Ahmed body compared to reference data.

Simulation Method Reynolds Number (Re) ×106 Drag Coefficient (Cd)

SSV-PANS (14.5M) 0.768 0.370

SSV-PANS (25M) 0.768 0.366

LES (48M) 0.768 0.301

DES SST [104] 0.768 0.343

LES-NWR [104] 0.768 0.346

LES-NWM [104] 0.768 0.317

LES-SVV [104] 0.768 0.431

Experiment [99] 1.2 0.298

CVs), a consistent depiction of airflow characteristics emerges, thereby enhancing our insights.
Both SSV-PANS simulations accurately capture the flow structures around the Ahmed body,
including coherent separation and reattachment near the rear end, matching experimental
observations [103]. This indicates the successful representation of essential flow features
by both SSV-PANS simulations. Additionally, the LES (48 × 106) results exhibit similar flow
behavior, further supporting the agreement between SSV-PANS and LES simulations. Despite
using a significantly lower grid resolution, the SSV-PANS (25 × 106) simulation achieves a
comparable level of accuracy as seen in the velocity contours of the LES (48× 106) simulation.
Figure 6.15 provides a comprehensive view of velocity profiles and vectors in the wake of

the Ahmed body at varying streamwise positions (x/h) of 0, 1.12, and 1.24, illustrating the
downstream evolution in the wake of the Ahmed body. The top row displays outcomes from
the SSV-PANS model with 14.5 million CVs. The middle row, utilizing 25 million CVs, provides
a more detailed view of velocity profile distribution. The bottom row showcases results from
LES with 48 million CVs. This allows for a detailed comparison of flow dynamics and highlights
the influence of grid resolution on simulation results. The figure serves as a valuable reference
for assessing the accuracy of the simulations and their ability to capture intricate features in
the wake region. It underscores the importance of computational grid density in achieving
more faithful results and provides insights into the strengths and limitations of each approach.
The streamline visualization in Figure 6.16 provides insights into the flow behavior around

the Ahmed body, particularly regarding the vortex structures at its rear. Both SSV-PANS
simulations show reasonable accuracy compared to the LES simulation and the experimental
data by Lienhart et al. [103]. The vortex structures observed in the SSV-PANS simulation
with 25× 106 CVs closely resemble those in the experimental data [103], indicating a good
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(a) SSV-PANS (14.5× 106 CVs)

(b) SSV-PANS (25× 106 CVs)

(c) LES (48× 106 CVs)

Figure 6.14 Mean velocity field around the Ahmed body for different numbers of CVs obtained by
SSV-PANS and LES.
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(a) x/h = 0 (b) x/h = 1.12 (c) x/h = 1.24

(d) x/h = 0 (e) x/h = 1.12 (f) x/h = 1.24

(g) x/h = 0 (h) x/h = 1.12 (i) x/h = 1.24

Figure 6.15 Velocity profiles and vectors in the wake of the Ahmed body. From top to bottom: results
of SSV-PANS (14.5 ×106 CVs), SSV-PANS (25 ×106 CVs) and LES (48 ×106 CVs).

representation of the flow behavior.

In the SSV-PANS simulation with 14.5× 106 CVs, the upper vortex appears larger, suggesting
that the coarser grid resolution affects the flow behavior. This discrepancy implies that the
SSV-PANS simulation with 14.5 × 106 CVs may be less accurate in capturing the intricate
flow details. The SSV-PANS simulations can be effectively compared to other simulation
methods, such as DES-SST [104], LES-NWM [104], LES-NWR [104], and LES-SVV [104],
in terms of their ability to reproduce vortex structures in comparison to the LES simulation
and experimental observations. While the simulation outcomes generally correspond with
experimental discoveries, challenges remain in achieving a precise forecast of the partial
detachment of the average flow over the slant. SSV-PANS reproduces the airflow over the
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Ahmed body similarly to experiments [103], whereas LES (48×106 CVs) encounters difficulties,
same as the LES-NWR. Both simulations predict attached flow along the entire slant, without
any separation or reattachment [104]. LES-SVV successfully captures the reattachment of
the flow over the slant, exhibiting partial recirculation that aligns with the experimental
results [104]. This suggests even with less refined grids, the SSV-PANS simulations provide a
reasonable representation of the flow behavior, especially when compared to the LES simulation,
and achieve comparable performance to LES-SVV in capturing the reattachment phenomenon.
In Figure 6.17, profiles of kinetic energy in the wake of the Ahmed body are presented,

utilizing various turbulence modeling approaches and mesh resolutions. The top row displays
results obtained with the SSV-PANS model employing 14.5 million CVs. Kinetic energy is
visualized at positions (x/h) of 0, 1.24, and 1.54. The middle row features SSV-PANS with 25
million CVs, providing a more detailed view of the kinetic energy distribution. The bottom row
presents results from LES using 48 million CVs. This plot illustrates the downstream evolution
of kinetic energy in the wake of the Ahmed body.
The highest kinetic energy values are observed in the central section formed by the under-

body flow of the vehicle and within the recirculation region behind the model. The comparison
between different turbulence modeling approaches and mesh resolutions emphasizes the
trade-off between computational cost and accuracy. While LES provides the most detailed
representation of wake turbulence, some inaccuracies are still noticeable over the slant of the
Ahmed body, underscoring the challenge of accurately predicting separation in this region.
Notably, the results obtained with the SSV-PANS model using a medium grid demonstrate
good agreement with experiments conducted by Lienhart [103]. The coarse grid simulation
with SSV-PANS exhibits the least agreement with experiments. Therefore, this analysis reveals
that accurately simulating the airflow around the Ahmed body demands a careful balance
between computational resources and the intricacies of the model. Achieving a high level of
precision often requires more refined grid resolutions, particularly in regions where complex
flow separation occurs.
Figure 6.18 presents a comparative analysis between the SSV-PANS model and LES in terms

of their effectiveness in capturing flow structures in the near-wake region. This analysis is
conducted by visualizing iso-surfaces of the second invariant of the velocity gradient, denoted
as Q, and color-coding them based on the streamwise average velocity. In LES, the near-wake
flow structures are accurately resolved by using a fine grid resolution in the vicinity of the
object being studied. Conversely, the SSV-PANS model employs a coarser grid and represents
the partially-averaged velocity field. As a result, the SSV-PANS model relies more on modeling
the flow scales near the near-wake region while resolving fewer of these scales compared to LES.
By improving the grid resolution, additional instantaneous flow structures emerge within the
wake region. Both the 14.5×106 and 25×106 SSV-PANS simulations successfully reproduce the
C-pillar trailing vortices along the lateral edges. However, the 25× 106 SSV-PANS simulation,
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(a) SSV-PANS (14.5× 106 CVs)

(b) SSV-PANS (25× 106 CVs)

(c) LES (48× 106 CVs)

Figure 6.16 Time-averaged streamlines around the Ahmed body for different numbers of CVs obtained
by SSV-PANS and LES.
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(a) x/h = 0 (b) x/h = 1.24 (c) x/h = 1.54

(d) x/h = 0 (e) x/h = 1.24 (f) x/h = 1.54

(g) x/h = 0 (h) x/h = 1.24 (i) x/h = 1.54

Figure 6.17 Kinetic energy in the wake of the Ahmed body. From top to bottom: results of SSV-PANS
(14.5 ×106 CVs), SSV-PANS (25 ×106 CVs), LES (48 ×106 CVs).

benefiting from a higher grid resolution in the wake region, captures a more comprehensive
range of flow structures and demonstrates results that exhibit greater agreement with LES.

The average flow along vertical lines at different positions along the stream is compared to the
reference simulations shown in Figure 6.19. Initially, the SSV-PANS method with 25× 106 CVs
is examined. Along the upper roof, the boundary layer profile exhibits less rigidity compared
to the experimental observations. However, the central flow away from the object shows
good agreement when compared to other approaches. Importantly, it shows good agreement
with the Lienhart experiments [103] conducted under similar conditions, as well as LES-SVV
[104]. The SSV-PANS method with 14.5 × 106 CVs also shows good agreement with the
Lienhart experiments [103] however due the coarseness the accuracy is not as good as the
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(a) SSV-PANS (14.5× 106 CVs) (b) SSV-PANS (25× 106 CVs)

(c) LES (48× 106 CVs)

Figure 6.18 Iso-surfaces of instantaneous Q = 100000(1/S2)) colored by streamwise velocity for
different numbers of CVs obtained by SSV-PANS and LES.

finer resolution. Thus, the analysis reveals that the SSV-PANS method demonstrates reliable
and impressive performance, even with a coarser resolution in the context of hydrodynamic
results.
In the LES simulation with 48× 106 CVs, which predicts a fully attached flow, a deviation

from the reference data is observed. The fluctuations along the inclined surface are reduced,
resulting in diminished magnitudes and significantly lower intensity downstream compared to
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the reference data. This trend is also evident in the LES-NWR simulation [104], confirming
previous findings.
The consistent accuracy demonstrated across various cross-validation resolutions underscores

the robustness of the SSV-PANS method in predicting the mean streamwise velocity distribu-
tion for the intricate aerodynamics of the Ahmed body. This also highlights its performance
concerning results obtained from LES.
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Figure 6.19 Profiles of the mean streamwise velocity over the slant of the Ahmed body for different
numbers of CVs obtained by SSV-PANS in comparison with refrence data [103, 104].

The plot shown in Figure 6.20 depicts the Reynolds stresses in the flow over the Ahmed body.
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The Reynolds stresses are key components of the flow’s turbulence characteristics, reflecting
the anisotropic nature of turbulence in the flow field. In this plot, the Reynolds stresses are
presented at various locations along the body’s surface, allowing a detailed comparison between
experimental measurements [103] and results obtained from LES and SSV-PANS simulations.
This comparison serves as a critical step in assessing the accuracy and performance of the
turbulence models in predicting essential aspects of the flow behavior over the Ahmed body.
An interesting observation from the results is the behavior of turbulence over the slant

within the boundary layer. Turbulent kinetic energy plays a significant role in maintaining
flow attachment to the slant, aligning with what was observed in the velocity profiles of the
LES simulation with 48 million CVs. The reasons behind this behavior will be discussed in
the following. On the other hand, the SSV-PANS simulation with 14.5 million CVs exhibits
a notable deviation from the experimental data, highlighting the limitations of this specific
simulation setup. In contrast, the SSV-PANS simulation with 25 million CVs demonstrates
remarkable agreement with the experimental results, indicating that a finer grid resolution
significantly enhances the model’s predictive capabilities, enabling a more precise capture of
the flow phenomena.
Evaluating uncertainty in LES is a complex task, primarily due to the influence of grid-

dependent numerical discretization and subgrid-scale modeling. Various approaches can be
employed for LES assessment, and different quality indexes have been proposed, categorized
based on parameters such as subgrid viscosity, Kolmogorov scale, and turbulent kinetic energy.
The LES criteria, as depicted in Figure 6.21 and Figure 6.22, are indispensable tools for

evaluating the performance of LES. This is especially relevant in the context of simulating flow
over the Ahmed body, where discrepancies between LES results and experimental data became
evident, particularly over the slant region. These criteria provide valuable insights into the
effectiveness and fidelity of LES models when compared to experimental observations.
Figure 6.21 outlines the criteria for assessing mesh resolution suitability, as proposed by

Pope [51]. This method considers the ratio of the representative grid width (∆) to the smallest
vortex structures, the Kolmogorov length scales (η). Ideally, this ratio should fall within the
range of ∆/η ≈ 10− 12 or lower. In the current study, the volume grid cell is adopted as the
representative grid width (∆). This ratio serves as a critical indicator for evaluating mesh
resolution suitability. The velocity profile around the rear of the Ahmed body indicates that the
grid resolution used in LES modeling is situated near the upper limit of the acceptable range.
Given the significant turbulence production in this region, operating at the upper end of the
range may introduce potential inaccuracies. Therefore, it can be inferred that the LES results
may not fully meet this criterion over the slant, suggesting a grid refinement in the area to
align the simulation more closely with experimental data.
Another quality index, LES − IQη [105], assesses the comparison between grid size and

Kolmogorov scale, as defined in Equation (6.3):
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Figure 6.20 Profiles of Reynolds stress distribution ,uv (m2/s2), over an Ahmed body, comparing
experimental data [103] with LES and SSV-PANS simulations.

LES − IQη =
1

1 + αη

(︂
h
ηk

)︂m . (6.3)

In this equation, h represents the grid size, and ηk is the Kolmogorov scale. Using parameters
αη = 0.05 and n = 0.5, LES− IQη > 0.8 indicates a good LES. The profile illustrated in Figure
6.22 over the slant region is of particular interest. It indicates a value slightly lower than 0.8,
which may warrant again further consideration for aligning with this criterion. This observation
underscores the need for potential refinements to achieve a more robust congruence between
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the LES results and the criteria established for mesh resolution suitability.
These LES criteria plots present a comprehensive method for evaluating the robustness of

LES results. The discrepancies identified within the context of the slant flow configuration
highlight the need for enhanced grid refinement in regions characterized by substantial turbu-
lence production. This refinement aims to bring LES simulations into closer alignment with
experimental data. However, it is important to note that enhancing grid refinement comes at
the cost of increased computational resources, making it essential to strike a balance between
accuracy and computational efficiency in LES simulations.
Despite the observed limitations in LES accuracy, its capability to effectively capture small-

scale turbulence structures positions it as a valuable choice, particularly when compared to
SSV-PANS. This relevance is especially pronounced in aeroacoustic studies, where the intricacies
of turbulence play a pivotal role in influencing the acoustic characteristics of the flow.

Figure 6.21 LES quality criteria evaluated based on grid width to Kolmogorov length scale ratio.

For the aeracoustic analysis of acoustic sources generated around the Ahmed body the
SSV-PANS method is employed. By employing the hydrodynamic/acoustic splitting approach,
as discussed in section 4.2, the SSV-PANS method effectively captured and analyzed acoustic
waves, particularly in the near- and mid-field regions. This allowed for a comprehensive
examination of flow characteristics across the Ahmed body, focusing on the generated acoustic
sources in the near field. Additionally, observations were made by an observer positioned in
the mid-field at a distance of 14L, perpendicular to the flow direction.
To evaluate the performance of the SSV-PANS method, especially as the number of CVs
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Figure 6.22 LES quality criteria evaluated based on Kolmogorov scale LES − IQη.

increased, a comparison was made with the more computationally intensive LES method. By
utilizing a significantly larger number of CVs (48 × 106 CVs), the LES method served as a
benchmark for assessing the accuracy and reliability of the SSV-PANS results. The acoustic
sources obtained from the simulations, as depicted in Figure 6.23, played a crucial role in
analyzing the acoustic behavior and characteristics of the flow around the Ahmed body using
the SSV-PANS method.
Notably, Figure 6.23b illustrated the acoustic sources generated by the SSV-PANS method

with 25× 106 CVs. Impressively, these results exhibited a high level of similarity to the acoustic
sources obtained from the LES method with 48× 106 CVs (Figure 6.23c). This finding suggests
that the SSV-PANS method, when appropriately configured with a sufficient number of CVs,
can achieve comparable accuracy to the more computationally demanding LES method while
offering improved computational efficiency.
On the other hand, the acoustic sources obtained with a lower number of CVs, specifically

14.5× 106 CVs (Figure 6.23a), demonstrated slightly reduced accuracy compared to the LES
results. This discrepancy indicates that a lower number of CVs may not fully capture the
intricate flow and acoustic phenomena surrounding the Ahmed body, leading to some loss of
fidelity in the simulation results.
Consequently, these findings underscore the critical significance of selecting an appropriate

number of CVs in the SSV-PANS method to ensure the accurate representation of flow and
acoustic phenomena. Increasing the number of CVs, as demonstrated by the comparison
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between Figures 6.23a, 6.23b, and 6.23c, results in improved accuracy and reliability of the
simulation outcomes.

(a) SSV-PANS (14.5× 106 CVs)

(b) SSV-PANS (25× 106 CVs)

(c) LES (48× 106 CVs)

Figure 6.23 Acoustic sources generated around the Ahmed body for different numbers of CVs obtained
by SSV-PANS.
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The comparison of Sound Pressure Level (SPL) between the SSV-PANS method and the
LES method is depicted in Figure 6.24. This SPL comparison offers valuable insights into the
distribution of peaks and harmonics in the acoustic field surrounding the Ahmed body.
In Figure 6.24a, corresponding to the coarse grid SSV-PANS method with 14.5 million CVs,

some discrepancies in the results are observed. The peak locations exhibit a slight deviation,
indicating limited accuracy in peak prediction. Additionally, the SPL value differs from the
results obtained from the LES method. These discrepancies further suggest that the 14.5
million grid resolution may not capture the acoustic features with high precision.
However, Figure 6.24b, which corresponds to the medium grid SSV-PANS method with 25

million CVs, shows significant improvements. The peak locations are accurately predicted,
and the SPL value demonstrates good agreement with the LES results. This indicates that
increasing the number of CVs to 25 million provides better resolution and captures the acoustic
features more accurately.
Table 6.7 presents a comparison of the Strouhal frequency among the different models. The

results highlight that the SSV-PANS method with 25 million CVs provides a more accurate
prediction of the Strouhal frequency compared to the case with 14.5 million CVs. The lower
error for the 25 million CVs case, in comparison to the 14.5 million CVs case, demonstrates
enhanced accuracy and closer agreement with the LES reference. These findings emphasize the
importance of grid resolution in capturing the Strouhal frequency and validate the effectiveness
of the SSV-PANS method in simulating complex aerodynamic phenomena.
These results suggest that increasing the grid resolution to 25 million CVs leads to a more

accurate prediction of the Strouhal frequency. It is noteworthy that the sensitivity of the
aeroacoustic behavior to grid refinement is higher than that of the hydrodynamic behavior.
While the hydrodynamic results were satisfactory with the 14.5 million CVs , the aeroacoustic
analysis highlights the importance of finer grid resolution. The improved accuracy and peak
prediction achieved with the 25 million CVs demonstrate the significance of grid refinement in
accurately capturing the intricate acoustic characteristics of the flow.

Table 6.7 Comparison of Strouhal frequency.
Model CVs (million) St Error (%)
SSV-PANS 14 0.223 4.7
SSV-PANS 25 0.218 2.3
LES 48 0.213 -

Table 6.8 provides a comparison of the computational time among the different models. The
results demonstrate that the computational time increases with the number of CVs, as expected.
Specifically, the SSV-PANS method with 25 million CVs requires a longer computational time
compared to the case with 14.5 million CVs. However, both SSV-PANS cases exhibit reduced
computational times compared to the LES method. This highlights the advantage of the SSV-
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6.2 Flow Over an Ahmed Body
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Figure 6.24 Sound Pressure Level (SPL) comparison of the SSV-PANS method with LES for different
numbers of CVs obtained by SSV-PANS.
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6 Aeroacoustic Results of PANS Method

PANS method in achieving computational efficiency while maintaining reasonable accuracy in
simulating the flow around the Ahmed body.

Table 6.8 Comparison of CV ratio and time ratio of SSV-PANS and LES.

Model CVs (million) Time (core× hour) CVs ratio Time ratio
SSV-PANS 14.5 1079 0.29 0.43
SSV-PANS 25 1822 0.52 0.73
LES 48 2490.8 1.00 1.00

Furthermore, Figure 6.25 visually represents the computational ratios between the different
models. The CV ratio and time ratio are depicted for each model. These findings underscore the
computational efficiency of the SSV-PANS method while still maintaining acceptable accuracy,
making it a viable option for aerodynamic simulations with limited computational resources.
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Figure 6.25 Comparison of CV ratio and time ratio of SSV-PANS and LES.

In summary, the application of the SSV-PANS method in aerodynamic and aeroacoustic
analyses has been shown to be highly effective in capturing flow structures, accurately predicting
aerodynamic forces, and reproducing acoustic sources for Ahmed body. The comparison of
the SSV-PANS method with LES has validated its reliability, even when using coarser grid
resolutions. However, the study has highlighted the significant impact of grid resolution on
improving results.
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7 Conclusions and Future Work

7.1 Summary

The study of aeroacoustics is crucial for understanding sound generation, propagation, and
control in aerodynamic systems. This research focuses on analyzing the aerodynamic and
aeroacoustic performance of the Partially-Averaged Navier-Stokes method utilizing the scale-
supplying variable equation (SSV-SSV-PANS) , specifically for flow around circular cylinders and
the Ahmed body. The SSV-PANS method, implemented in the FASTEST software, accurately
captures complex flow phenomena and acoustic characteristics.
Benchmark cases of channel flow and 2D hill flow were chosen to assess the reliability and

effectiveness of the SSV-PANS method. These cases provided well-documented experimental
data, serving as reliable references for evaluating the accuracy and reliability of the simulations.
By comparing the numerical results from the SSV-PANS method with experimental data and
LES simulations, the performance of the SSV-PANS method in reproducing the hydrodynamic
characteristics of these benchmark cases was evaluated.
The implemented SSV-PANS method in this research incorporates a hydrodynamic/acoustic

splitting approach, allowing for the efficient and accurate simulation of hydrodynamic and
acoustic phenomena separately. This approach aims to assess the effectiveness of the SSV-PANS
method in capturing the characteristics of flow structures and acoustic behavior.
The first study analyzed the aeroacoustic performance of turbulent flow around a circular

cylinder using the SSV-PANS and LES methods. The simulations used carefully designed grid
configurations to ensure high resolution near the cylinder surface and in the wake region.
The obtained results were compared with reference data, demonstrating the accuracy and
effectiveness of the computational approach. The study also explored other methods to
investigate flow characteristics, such as the combined splitting/Kirchhoff method and the
long-span bodies method. By treating the acoustic field as a two-dimensional problem in
the mid-span plane, computational costs were minimized without compromising accuracy.
The study validated the results through comparisons of hydrodynamic quantities, confirming
the accurate representation of flow dynamics. Increasing the number of control volumes
improved flow visualization and enhanced the understanding of flow features. Sound pressure
level (SPL) analysis showed strong agreement between the simulated and experimental data.
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7 Conclusions and Future Work

Furthermore, the study evaluated the computational efficiency of the SSV-PANS method, which
demonstrated significant time reductions while maintaining accuracy. This study provided
valuable insights into the aerodynamic and acoustic characteristics of flow around a circular
cylinder, emphasizing the importance of grid refinement for accurate predictions.
The performance of the SSV-PANS method in capturing the aerodynamic and aeroacoustic

behavior of the Ahmed body was also evaluated using two different grid resolutions: 14.5
million and 25 million control volumes (CVs). Remarkably, the SSV-PANS method demonstrated
promising results at both resolutions, exhibiting good agreement in predicting the hydrody-
namic field compared to experimental data and LES data. The SSV-PANS method demonstrated
exceptional predictive capabilities in capturing flow separation over the slant of the Ahmed
body. This aspect of its performance adds a crucial dimension to its effectiveness in reproducing
complex aerodynamic phenomena. Considering the coarser resolution of 14.5 million CVs,
the SSV-PANS method remained reasonably reliable in predicting the acoustic sources around
the Ahmed body. It captured the generation and propagation of sound waves, providing fair
acoustic predictions that aligned with LES data. However, some inaccuracies were observed
in the aeroacoustic results with the coarser resolution, due to the limited spatial resolution
of the grid. These limitations affected the representation of small-scale turbulence structures
and their influence on noise generation. However, the medium grid SSV-PANS method with 25
million CVs demonstrated significant improvements. It accurately predicted the peak locations
and exhibited good agreement in the SPL values with the LES results. Therefore, despite
these observed limitations, the SSV-PANS method demonstrated its capability to accurately
predict the aeroacoustic characteristics of the Ahmed body. The findings suggest that further
refinement of the grid resolution could potentially enhance the accuracy of the results and
provide even more reliable predictions for aeroacoustic analysis.
The results obtained from the benchmark cases emphasize the crucial role of grid resolution

in accurately simulating complex aerodynamic phenomena. Higher grid refinement leads
to improved prediction of the Strouhal frequency, which is essential for understanding flow
dynamics. This finding emphasizes the significance of grid resolution in capturing intricate flow
physics and underscores the importance of careful grid selection in aeroacoustic simulations.
One notable advantage of the SSV-PANS method is its computational efficiency compared to

LES simulations. The reduced computational time required by the SSV-PANS method makes
it particularly appealing for practical engineering applications with limited computational
resources. Furthermore, the SSV-PANS method demonstrates reasonable accuracy in predicting
flow structures and acoustic sources, positioning it as a promising tool for aerodynamic and
aerodynamic-acoustic simulations.
In conclusion, this thesis has provided significant insights into the aerodynamic and aeroa-

coustic characteristics of flow around circular cylinders and the Ahmed body using the SSV-PANS
method implemented in the FASTEST software. Through comprehensive comparisons with
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experimental data and LES simulations, the accuracy and efficiency of the SSV-PANS method
have been effectively demonstrated. The investigation of aeroacoustics, enabled by the SSV-
PANS method implemented in the FASTEST software, contributes to the advancement of
noise-reduction technologies with wide-ranging applications in industries such as transporta-
tion, energy, and aerospace. By improving our understanding of flow behavior and acoustic
sources, this research paves the way for the development of more efficient and quieter systems
in various engineering disciplines.

7.2 Outlook

The findings of this study open up opportunities for future advancements in aerodynamics
and aeroacoustics based on insights gained from the implementation of the SSV-PANS method
in the FASTEST software. Several key areas warrant further exploration and improvement,
including:
Aeroacoustic Noise Reduction Strategies: Future research can explore novel strategies for

mitigating noise based on the SSV-PANS method. This may involve optimizing geometries,
implementing control techniques, or exploring new materials to reduce noise generation.
Multi-Objective Optimization: The computational efficiency and reasonable accuracy of the

SSV-PANS method make it suitable for multi-objective optimization. Integrating optimization
algorithms with SSV-PANS can lead to designs that optimize both aerodynamic performance
and aeroacoustic noise reduction.
Practical Engineering Applications: The efficiency of the SSV-PANS method makes it valuable

for real-world engineering applications, particularly in resource-limited contexts. Applying
SSV-PANS to practical problems, such as vehicle design or wind turbines, and validating its
performance in these scenarios will contribute to its wider adoption.
Experimental Validation and Validation Databases: Further experimental validation in bench-

mark cases and real-world scenarios can enhance the validation of the SSV-PANS method.
Establishing comprehensive validation databases specific to aeroacoustic simulations will pro-
vide reliable references for assessing SSV-PANS accuracy and reliability.
Addressing these areas of future research will advance the accuracy, efficiency, and applica-

bility of aerodynamics and aeroacoustics. The insights gained from this study, coupled with
ongoing advancements in computational methods and experimental techniques, contribute
to the development of noise-reducing technologies in various industries, ensuring a more
sustainable and quieter future.
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