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ABSTRACT
In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approx-
imation has been proven to be very efficient in representing high-dimensional data arising from the explicit representation of the
chemical master equation solution. An additional advantage of representing the probability mass function in the tensor-train format
is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space.
Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in
time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the
tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all
linear algebra operations are performed in the tensor-train format, a significant reduction in the computational time is observed as well.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045521

I. INTRODUCTION

Traditional chemical kinetic models use ordinary differential
equations (ODEs) to predict the concentrations of the involved
molecule types. The evolution of the corresponding probability dis-
tribution is given by the chemical master equation (CME),1 which,
in principle, can be solved by numerical integration. In practice,
the state space even of simple models is too large for a naive inte-
gration of the CME. Therefore, a number of approximation tech-
niques have been developed over the years, e.g., stochastic simula-
tion methods2–4 and suitable time and space discretizations.5,6 Many
CME approximations are based on the observation that the prob-
ability mass is often concentrated on a small fraction of the state
space. For example, the finite state projection method solves the
CME on a rectangular subspace with appropriate boundary con-
ditions.7,8 A problem here is that the region where the significant
part of the probability mass function (PMF) is located may change

over time. This is tackled in the sliding window method, where the
region of interest is adapted based on the solution at the previous
time step.9 Unfortunately, the computational cost of these methods
grows exponentially with the number of species due to the fact that
the system states must be labeled explicitly to cast the CME into
an ODE.

A different line of research has explored approximations of
the CME based on low-rank tensor formats.10–14 The idea is to
project the probability distribution onto a subspace of the ten-
sor product space induced by the reaction system. The solu-
tion is then propagated by a small time step and projected
back onto the chosen space. Alternatively, considering time as an
additional dimension, a joint approximation of the space–time
system in a low-rank tensor format can be obtained.10,11 The
low-rank tensor representation not only preserves the structure of
the CME but is also much more memory-efficient compared to the
matrix representation approach.15 In addition, the low-rank tensor
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representation allows for accurate, dynamic approximations via
rank rounding.

Low-rank tensor decompositions have also been considered
in the context of parameter-dependent CMEs, however, with lim-
ited applications so far.10 For example, considering systems and
synthetic biology, stochastic chemical kinetics are used to con-
struct quantitatively predictive models of biomolecular circuits. This
requires the solution of an inverse problem, where it is often neces-
sary to estimate the rate parameters of a structurally known candi-
date system from time course data. For population snapshot data,
e.g., obtained from flow cytometry measurements, calibration via
moment-based inference is a well-established method.16–18 In the
last decade, advances in fluorescence microscopy have led to an
increasing availability of single-cell time course data. When the
number of observed cells is small, standard moment-based meth-
ods break down because they rely on the central limit theorem to
compute a likelihood function for sample moments.19–21 In such a
scenario, the inference based on the path likelihood of individual
trajectories provides a principled way to extract more information
from the data. Unfortunately, these approaches are computationally
challenging since they require integrating the CME multiple times
for different parameter configurations. More effective approaches
can be obtained by approximating the likelihood, e.g., by Gaus-
sian moment closure22 or the linear noise approximation.23,24 The
underlying approximations are not applicable to systems with a
low copy number of species, such as single genes, while reducing
the computational demand significantly. Alternatively, approximate
likelihoods can be computed via particle filtering.25 For Bayesian
parameter inference, the approximate likelihood expression is typ-
ically used within a Markov chain Monte Carlo (MCMC) scheme.
Alternatively, the parameters can be included into an augmented
state space allowing for direct estimation via sequential Monte
Carlo.26

In this work, we suggest a framework for performing Bayesian
inference tasks for the parameter-dependent CME by exploiting
the so-called tensor-train (TT) decomposition27 to approximate
the joint distribution over the CME states and parameters. For
that purpose, we construct an explicit representation of the evo-
lution operator in the TT format and show that it can be con-
structed without ever assembling the corresponding matrix. The
TT format has the advantage that the storage requirement scales
linearly with respect to the number of dimensions while being a
numerically robust tensor decomposition.27,28 We also develop a
time-domain solver based on the time-dependent alternating min-
imal energy (tAMEn) algorithm,29 which additionally incorporates
parameter dependence. To that end, we combine the state space
and the parameter space into a higher-dimensional tensor prod-
uct space. The parameter dependence is expressed by means of a
B-spline basis expansion, and a Galerkin formulation is employed
to derive the multilinear system with respect to the full tensor.
Since typically every reaction is governed by an individual rate
constant, the parameters can be seamlessly included in the ten-
sor representation, thus allowing for efficiently solving the joint
system. In practice, however, the system parameters are often
unknown. Therefore, we develop a framework for filtering, smooth-
ing, and parameter inference based on the efficient TT represen-
tation of the joint system. The proposed framework allows us
to perform Bayesian inference for the model parameters with a

single forward–backward pass, as demonstrated on several synthetic
examples.

The remaining of this paper is organized as follows: In Sec. II,
we recall the CME and explain how it can be expressed in the tensor
format. Next, in Sec. III, we present the TT decomposition, apply
it to the tensor-formatted CME, and present a TT-based solution
method. In Sec. IV, we consider the setting of a CME with param-
eter dependencies, which we include in the TT-based CME format.
Subsequently, we exploit the TT format of the parameter-dependent
CME for inference tasks, such as filtering, smoothing, and parame-
ter identification. Numerical results are presented in Sec. V, where
we validate the TT-based CME solver and showcase the benefits of
performing inference in the TT format. This paper closes with our
conclusions, presented in Sec. VI.

II. CHEMICAL MASTER EQUATION IN TENSOR
FORMAT

We consider a well-mixed reaction system with d chemical
species denoted with {S1, . . . , Sd} involved in M reactions. We
consider reactions of type

qm,1S1 + ⋅ ⋅ ⋅ + qm,dSd → sm,1S1 + ⋅ ⋅ ⋅ + sm,dSd, (1)

with m = 1, . . . , M and qm,k, sm,k ∈ N0, k = 1, . . . , d. The state of the
system at time t is described by the vector x ∈ Nd

0 , which contains
the number of elements per species at that time instant. To describe
the change in the state vector after reaction m occurs, we introduce
the stoichiometric change vector ν(m) ∈ Zd, the kth element of which
is given as ν(m)k = sm,k − qm,k. The change in the state vector due to
the mth reaction is then given as x → x + ν(m).

Assuming a stochastic model of the system, the state vector x
is a realization of a continuous-time jump process {X(t)}t≥0. Then,
the evolution of the time-dependent PMF

p(t, x) = pt(x) = Pr(X(t) = x)
= Pr(X1(t) = x1, . . . , Xd(t) = xd) (2)

is described by the so-called chemical master equation (CME)1 such
that

dpt(x)
dt

=
M

∑
m=1
{αm(x − ν(m))pt(x − ν(m)) − αm(x)pt(x)}, (3a)

p0(x) = P(0)(x), (3b)

where P(0) is the initial probability and αm is called propensity func-
tion. For a well-mixed system at thermal equilibrium, the mass-
action propensity reads

αm(x) = cm

d

∏
k=1

xk!
qm,k!(xk − qm,k)!

, (4)

where cm is the so-called specific probability rate, which is a measure
for the probability that reaction m occurs.

Until now, the CME has been defined for an infinite state space
Nd

0 , which is computationally intractable, thus inappropriate for a
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numerical solution. To that end, a truncation of the state space is
necessary such that xk < nk, k = 1, . . . , d. We denote the truncated
state space as X = {x ∈ Nd

0 ∣ xk < nk, k = 1, . . . , d}. The choice of a
box domain truncation is not strictly necessary; however, it is ben-
eficial for the TT format used in the following. All states in X can
be uniquely indexed as x(i), where i = (i1, . . . , id) ∈ Nd and xk(ik)
= ik − 1. Accordingly, ik = 1, . . . , nk.

Using the truncated state space defined above and for a given
time instance t, the PMF p(t, x) can be represented as a mul-
tidimensional array p(t) ∈ Rn1×⋅⋅⋅×nd , the elements of which are
given as

pi(t) = p(t, x(i)). (5)

In the following, we shall refer to such multidimensional arrays as
tensors.28 The evolution equation (3a) can then be written in the
tensor format such that

dp(t)
dt
= Ap(t), (6)

where A ∈ R(n1×⋅⋅⋅×nd)×(n1×⋅⋅⋅×nd) is a tensor-operator, also called a
tensor-matrix, that acts on the tensor p(t). Tensor-operators can
be seen as generalizations of the commonly employed matrix-based
operators to more than two dimensions. The elements of the CME
tensor-operator are given as

Ai,j =
M

∑
m=1

αm(x(i) − ν(m))δx( j)
x(i)−ν(m) − αm(x(i))δx( j)

x(i) , (7)

where δj
i = δj1

i1
⋅ ⋅ ⋅ δjd

id
, with δjk

ik
denoting the Kronecker delta. Accord-

ingly, the product between a tensor-operator and a tensor, the result
of which is elementwise given as

(Ap(t))i =∑
j

Ai,jpj(t), (8)

can be seen as a generalization of the standard matrix-vector
product.

The complexity for storing for storing the tensor p(t), which
contains all state probabilities at time instance t, is O(nd), where
n = maxk{nk}. Therefore, even if a truncated state space is
employed, the storage needs can become intractable even for a
relatively small number of species. The exponential dependence
of storage needs to the number of species is one manifestation
of the so-called curse of dimensionality.30 As a remedy to this
problem, low-rank tensor formats28 can be employed, such as the
TT decomposition27 discussed next.

In the following, a commonly employed operation between
tensors, tensor-operators, or matrices is the Kronecker product.
The Kronecker product between two tensors x ∈ Rn1×⋅⋅⋅×np and
y ∈ Rm1×⋅⋅⋅×mq is defined elementwise as

(x⊗ y)ij = xiyj. (9)

The definition holds also for matrices and vectors, as they can
be interpreted as two-dimensional and one-dimensional tensors,
respectively.

III. SOLVING THE CHEMICAL MASTER EQUATION
IN THE TENSOR-TRAIN FORMAT
A. Tensor-train decomposition

As discussed in Sec. II, the size of a tensor scales exponentially
with the number of dimensions, equivalently, number of species in
this work. To mitigate the curse of dimensionality, we employ ten-
sor decompositions, resulting in tensor formats whose sizes scale
linearly with the number of dimensions, instead of exponentially.
Several tensor decompositions have been developed over the last
decades, resulting in better-scaling tensor formats.28 In this work,
we focus on the so-called tensor-train (TT) decomposition, which
combines linear complexity scaling with respect to the dimensions
and computational stability.27

A tensor x ∈ Rn1×⋅⋅⋅×nd is said to be in the TT format if it can be
elementwise written as

xi =
R1

∑
r1=1

R2

∑
r2=1
⋅ ⋅ ⋅

Rd−1

∑
rd−1=1

g(1)1i1r1
g(2)r1i2r2

⋅ ⋅ ⋅g(d)rd−1id1, (10)

where the three-dimensional tensors g(k) ∈ RRk−1×nk×Rk are called
the TT-cores and R = (1, R1, . . . , Rd−1, 1) are called the TT-ranks.
The storage complexity of a tensor in the TT format is reduced
to O(NR2d), i.e., it is linear with respect to the number of
dimensions d. Moreover, all basic multilinear algebraic operations
scale also linearly with the dimensions and polynomially with the
TT-ranks.27 It should be noted that the TT-ranks grow after a
multilinear algebraic operation is performed in the TT format.
Therefore, a rank-reduction procedure is performed after the oper-
ation, called rounding.27 Rounding decreases the TT-rank of the
tensor while maintaining a prescribed accuracy ϵ, and its complexity
is O(R3Nd).

An exact TT decomposition of a full tensor typically leads to
high ranks R, hence, to high storage needs and computational costs
as well. However, in many cases, using a low-rank TT approxima-
tion Ã ≈ A is sufficient. If the full tensor is available, a low-rank
TT approximation can be efficiently computed with d sequen-
tial singular value decompositions (SVDs) of auxiliary matrices
A(k) ∈ Rnk×(n1n2 ⋅ ⋅ ⋅nk−1nk+1 ⋅ ⋅ ⋅nd).27 For tensors defined implicitly
by multidimensional functions, e.g., similar to (5), efficient
interpolation-based TT approximation methods are available,31,32

in which case the assembly of the full tensor is not necessary.
A tensor-operator A ∈ R(n1×⋅⋅⋅×nd)×(m1×⋅⋅⋅×md) can be similarly

decomposed using the TT format, in which case it is elementwise
written as

Ai,j =
R1

∑
r1=1

R2

∑
r2=1
⋅ ⋅ ⋅

Rd−1

∑
rd−1=1

g(1)1i1j1r1
g(2)r1i2j2r2

⋅ ⋅ ⋅g(d)rd−1id jd1, (11)

where the TT-cores g(k) ∈ RRk−1×nk×mk×Rk are now four-dimensional.
The product between a tensor-operator and a tensor, e.g., the
Kronecker product defined in (8), can be efficiently computed
directly in the TT format.27

B. Linear system solutions in the TT format
Of particular interest in the context of this work is

to solve efficiently a multilinear system Ax = b, where
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A ∈ R(n1×⋅⋅⋅×nd)×(n1×⋅⋅⋅×nd) and x, b ∈ Rn1×⋅⋅⋅×nd are given in the
TT format. Iterative Krylov subspace solvers, e.g., based on the
conjugate gradient (CG) or generalized minimal residual (GMRES)
methods, can be generalized to multilinear systems given in the
TT format.33 However, without preconditioning, the number
of iterations is large and leads to a large number of rounding
operations in order to keep the TT-rank small, thus resulting in an
undesirable computational cost.33,34

An alternative approach is to minimize the norm of the system’s
residual with respect to the cores of the solution’s TT decomposition.
The corresponding minimization problem reads

min
x∈Rn1×⋅⋅ ⋅×nd

∥Ax − b∥2
F, (12)

where ∥⋅∥F denotes the Frobenius norm. The feasible set Rn1×⋅⋅⋅×nd is
restricted to a subset of Rn1×⋅⋅⋅×nd , which contains all d-dimensional
tensors that can be represented in the TT format with TT-ranks
Rk ≤ Rmax, k = 1, . . . , d − 1. In this case, the minimization prob-
lem is nonlinear with respect to the core tensors g(k) of the TT
representation of x given in (10).

The nonlinear minimization problem (12) can be solved
using the alternating least squares (ALS) method.35,36 The method
fixes all cores but one, thus resulting in a quadratic optimization
problem for the minimizing core. The process is then repeated
iteratively, minimizing one core at a time until the objective
function decreases to a sufficiently small value.34 The main
drawback of the ALS method is that the TT-ranks must be given
a priori. This can be avoided by minimizing over two consecu-
tive cores instead of just one, an idea that was first introduced
by the Density Matrix Renormalization Group (DMRG) algo-
rithm,37 which was later used in the Alternating Minimal Energy
(AMEn) method for solving high-dimensional multilinear sys-
tems.29,38 In order to bring the minimization problem to a quadratic
form, a so-called supercore g̃(k,k+1) ∈ RRk−1×nk×nk+1×Rk+1 is first
defined as

g̃(k,k+1) = g(k)g(k+1), (13)

thus removing all information regarding the rank Rk. Then, the TT
representation of x takes the following form (in an elementwise
notation):

xi = ∑
ri ,i≠k

g(1)1i1r1
⋅ ⋅ ⋅ g̃(k,k+1)

rk−1ikik+1rk+1
⋅ ⋅ ⋅g(d)rd−1id1. (14)

The minimization then proceeds similar to the ALS method, where
now one supercore is minimized in each iteration. After the opti-
mization procedure is completed, the supercore is divided into two
separate TT-cores, e.g., by means of SVDs of auxiliary matrices.31

Then, the rank Rk is not a priori given, but identified as part of the
supercore’s separation.

C. Low-rank TT representation of the CME operator
The CME operator in (7) can be represented in the TT for-

mat using a sum of rank-1 tensors, without ever assembling the full

tensor-operator.10,39 For a reaction of type (1) with the propensity
function (4), one can use the separation

αm(x) = cm f (m)1 (x1) ⋅ ⋅ ⋅ f (m)d (xd), (15a)

f (m)k (xk) =
xk!

qm,k!(xk − qm,k)!
. (15b)

Then, the CME tensor-operator defined in (7) can be
written as the difference between two tensor-matrices
B, C ∈ R(n1×⋅⋅⋅×nd)×(n1×⋅⋅⋅×nd), i.e.,

Ai,j = Bi,j − Ci,j, (16)

both of which admit exact rank-1 TT decompositions, with the
corresponding four-dimensional TT-cores g(k) (for B) and h(k) (for
C) given by

g(k)1ikjk1 = f (m)k (x(ik)

k )δ
jk
ik
Ink(xk( jk) + ν(m)k ), (17a)

h(k)1ikjk1 = f (m)k (x(jk)

k )δ
jk
ik−νk

Ink(xk(jk) + ν(m)k ), (17b)

where the indicator functions Ink are defined as Ink(x) = 1 if x ≤ nk
and 0 otherwise. Then, for the mth reaction, the maximum
TT-rank of the tensor-operator A is at most equal to 2. If the oper-
ators coming from M different reactions are added, the maximum
TT-rank is at most 2M. However, in practical examples, rank round-
ing with a very high accuracy, e.g., ∥Ã − A∥F ≈ 10−12∥A∥F, yields a TT
approximation Ã ≈ A with much lower TT-ranks.

D. Solving the CME in the TT format
The CME can be solved numerically in the TT format using

finite differences.40 This limits the choice of the time discretiza-
tion to classical implicit and explicit schemes.29 An alternative
method10,29 is to employ a basis representation of the time-
dependent solution over an interval [0, ΔT] such that

p(t, x(i)) =
T

∑
j=1

pijbj(t), (18)

where bj(t) are basis functions for the interpolation in time. In this
work, we employ a Chebyshev basis; however, other options are also
possible, e.g., hat functions or Lagrange polynomials.

By including time as an additional dimension next to the
states, a (d + 1)-dimensional tensor is obtained. We then perform a
Galerkin projection to recover the degrees of freedom for the entire
subinterval by solving the system

Mp = f, (19a)
M = In ⊗ (S +V) − (In ⊗ P)(A⊗ IT), (19b)

f = p(0) ⊗ v, (19c)

where S is the stiffness matrix, P is the mass matrix,29,41 IN ∈ RN×N

denotes an identity matrix, and In = In1 ⊗ ⋅ ⋅ ⋅ ⊗ Ind . System (19a) can
then be solved, as described in Sec. III B.

Due to the increased complexity of the solution over long simu-
lation times, one can divide the time domain and apply the presented
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method to the individual subdomains by taking the end state as the
initial condition for the next subinterval. For a constant subinterval
length and if the solution is smooth, the convergence is exponential
in T.29,41 An error indicator is represented by computing the norm
of the residual of (19a) for an enriched basis,29

ε(T, Δt) = ∥M′Qp − f′∥F , (20)

where M′ and f′ are the tensors from (19b) and (19c) constructed for
T′ = 2T. The operator Q interpolates the solution on the finer time-
domain basis with T′ = 2T. This can be used to adapt the subinterval
length if the indicator ϵ(T, Δt) is larger than a prescribed tolerance
(tol),29

Δt′ = ( tol
ε(T, Δt))

1
T

Δt, (21)

where Δt′ is the modified subinterval length. One bottleneck is
the prescribed accuracy of the TT-solver, which, as shown in the
numerical results, acts like a lower limit for the error.

In the same framework, one can also include classical implicit
time-stepping schemes, such as the Crank–Nicolson and the implicit
Euler, by appropriately choosing the stiffness and mass matrices.29

The motivation behind this is that the time dynamics is captured in
the low rank structure of the tensor, reducing the storage complexity.
Moreover, as observed from numerical experiments, the runtime is
also reduced.

E. Quantized TT CME solver
One way to optimize the aforementioned TT-based CME

solver is to employ the so-called quantized tensor-train (QTT)
decomposition.42 The QTT format has proven to further increase
the storage and computational efficiency of the TT representa-
tion by reshaping the tensors into higher-dimensional ones while
reducing the mode sizes. Let x ∈ Rn1×n2×⋅⋅⋅×nd be a tensor with
log2 nk ∈ N, k = 1, . . . , d, i.e., with mode sizes that are powers of 2.
If the tensor x is represented in the TT format, then reshaping
it into a (∑k log2 nk)-dimensional tensor can be easily achieved
by performing the TT decomposition on the individually reshaped
cores.

Let x ∈ Rn1×⋅⋅⋅×nd be a tensor with log2 nk ∈ N. The tensor
admits a rank R TT decomposition with the cores g(k). The quan-
tization process implies reshaping the individual cores to tensors
of shape rk−1 × 2 × ⋅ ⋅ ⋅ × 2 × rk and then the TT decomposition of
the reshaped cores is computed. The resulting cores correspond
to the QTT decomposition of the tensor.32 In the case of the
tensor-matrices, the procedure is similar. Compared to the com-
putational complexity of the solver, the complexity of the trans-
formation between TT and QTT can be neglected. This proce-
dure has been proven to be effective for reducing the storage
requirements and the computation time for solving the CME in
the TT format.10,11 If the ranks of the QTT decomposition remain
bounded, the storage complexity is O(d log2 N).43 Moreover, the
solver benefits from the linearity with respect to the number of
dimensions.

IV. BAYESIAN INFERENCE FOR THE CHEMICAL
MASTER EQUATION WITH PARAMETER
DEPENDENCIES
A. Parameter-dependent CME

We now consider a parameter-dependent CME,10 described by

dp(θ)
dt

= A(θ)p(θ), (22)

where θ ∈ Rnp denotes the parameter vector. The parameter vec-
tor θ is assumed to take values in the tensor product space
P = [θmin

1 , θmax
1 ] × ⋅ ⋅ ⋅ × [θmin

np , θmax
np ].

Solving the CME for one parameter realization θ(l) ∈ Θ,
l = (l1, . . . , lnp), yields the conditional PMF pt(x∣θ(l)). If instead of a
fixed initial PMF, one starts with the joint PMF pt0(x, θ), the solution
will be the joint PMF over the discretized time interval. Since our
goal is to compute the conditional/joint PMF over the entire param-
eter space, we use a basis expansion44 to describe the parameter
dependence such that

pt(x(i), θ) ≈∑
j
∑

l
pilj(t)Ll(θ), (23)

where p ∈ Rn1×⋅⋅⋅×nd×ℓ1×⋅⋅⋅×ℓnp and {Ll}ℓl=1 is a tensor product basis
Ll(θ) = L(1)(θ1) ⋅ ⋅ ⋅L(np)(θnp).

In this work, B-spline basis functions are chosen for the
parameter dependence.45

In order to retrieve the degrees of freedom, a Galerkin for-
mulation is used to derive a multilinear system with respect to the
full tensor. We choose the test functions q(θ) from the same space,
which yield the formulation

⟨dp(θ)
dt

, q⟩ = ⟨Ap, q⟩, (24)

where ⟨⋅, ⋅⟩ is an inner product with respect to θ. One can then derive
the multilinear system

M
dp(θ)

dt
= Kp, (25)

with the mass tensor-matrix

Mmn,il = δi
m∫

P

Ln(θ)Ll(θ)dθ (26)

and the stiffness tensor-matrix

Kmn,il = ∫
P

Am,i(θ)Ln(θ)Ll(θ)dθ. (27)

The mass matrix can be easily constructed as a rank-1 TT-
operator using the individual mass matrices of the univariate bases.
On the contrary, the stiffness matrix requires the evaluation of
the parameter-dependent CME operator over a tensor product

quadrature grid Θ = {θ(r1)

1 }
ℓ1

r1=1
× {θ(r2)

2 }
ℓ2

r2=1
× ⋅ ⋅ ⋅ × {θ

(rnp )

np }
ℓnp

rnp=1

such that
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Kmn,il ≈∑
r

wrĀmr,irLn(θ(r))Ll(θ(r)), (28)

where w is the weight tensor and Āik,jr = A(θ(r))δk
r . The tensor-

matrix K admits a TT representation or approximation, assuming
that the evaluation of the CME operator can also be represented or
approximated in the TT format.

A direct construction of the extended operator Ā can be easily
accomplished if each parameter affects only one reaction. For exam-
ple, this situation occurs if the parameters are the reaction rates, i.e.,
θ = (c1, c2, . . .). Then, the operator is extended using the Kronecker
product such that

Ā = A(1) ⊗ (diag(θ(1)1 , . . . , θ(ℓ1)

1 )⊗ Iℓ2 ⊗ Iℓ3 ⊗ ⋅ ⋅ ⋅ )

+ A(2) ⊗ (Iℓ1 ⊗ diag(θ(1)2 , . . . , θ(ℓ2)

2 )⊗ Iℓ3 ⊗ ⋅ ⋅ ⋅ ) + ⋅ ⋅ ⋅ , (29)

where A(m) is the CME operator corresponding to reaction m for a
unity reaction rate.

We note that the parameter dependence is not necessarily
restricted to the reaction rates. Equation (29) can be extended to
accommodate other types of parameter dependencies. If the propen-
sity functions have a representation as in (15b) and every αm depends
on at most one parameter, then the individual CME operator for
every reaction evaluated on the grid Θ can be expressed as a sum
of rank-1 TT tensors and then rounded to eliminate overshooting
ranks. Moreover, even the structure of the reaction network can be
incorporated as a parameter; however, this is out of scope for the
present work.

B. Filtering and smoothing in the TT format
One relevant inference task in computational biology applica-

tions is the filtering and smoothing of observations, for example, in
order to estimate the dynamics of genes that are measured indirectly
via a fluorescent reporter protein. We consider No state observa-

tions {y( j)}
No

j=1
, which are sampled at discrete time steps {tj}No

j=1. The

observations are considered to be realizations of the random vari-
ables {Y( j)}

No

j=1
, which are assumed to be conditionally independent,

given the latent states {X(tj)}No
j=1. Thus, the observation model is

assumed to be dependent only on the current state. Its probabil-
ity density function (PDF) is denoted with pY∣X(y∣x). In practice,
pY∣X often corresponds to additive Gaussian or multiplicative log-
normal noise. However, the presented framework is not limited to
these particular cases.

The conditional probability Pr(X(t) = x∣y(1), . . . , y(j)) for
j = max{k ∈ N∣tk < t} satisfies the unconditional master equation46

dpt(x)
dt

=
M

∑
m=1
{αm(x − ν(m))pt(x − ν(m)) − αm(x)pt(x)}, (30a)

with the reset conditions

ptj(x) =
1
Zj

pt−j (x)pY∣X(y( j)∣x), (30b)

where pt−j (x) represents the left approaching limit t → tj, t < tj,

and Zi = ∑xpt−j (x)pY∣X(y( j)∣x). If all observations are taken into
consideration, we deal with the smoothing case. The PMF p̃t(x) of
Pr(X(t) = x∣y(1), . . . , y(No)) can be factorized as

p̃t(x) = pt(x)βt(x), (31)

where the PMF satisfies the backward master equation

dβt(x)
dt

=
M

∑
m=1
{αm(x)βt(x) − αm(x)βt(x + ν(m))}, (32a)

βt−j (x) =
1
Zj

ptj(x)pY∣X(y( j)∣x), (32b)

where β(x, tNo) = 1 is the terminal condition and

βt(x)∝ p(y( j), . . . , y(No)∣X(t) = x), (33)

where j = min{k ∈ N∣tk > t}. The PMF p̃t(x) satisfies the evolution
equation

dp̃t(x)
dt

=
M

∑
m=1
{α̃m(x − ν(m), t)p̃t(x − ν(m)) − α̃(x, t)p̃t(x)}, (34)

with the time-varying smoothing propensity functions

α̃m(x, t) = αm(x)
β(x + ν(m), t)

β(x, t) . (35)

The method is also known in the literature as the
forward–backward algorithm47 and can be interpreted as a
message-passing algorithm in a Hidden Markov Model (HMM).
Moreover, it can be efficiently performed in the TT format, as
shown in Algorithm 1. The PMF p(x(j)∣y(0), . . . , y(j−1)) is the
forward message and is denoted by the tensor a( j) ∈ Rn1×⋅⋅⋅×nd . The
prediction step is performed by solving the CME over the interval
[tj−1, tj] with the initial condition a( j−1). The observation is used
to construct a tensor pobs ∈ Rn1×⋅⋅⋅×nd with pobs

i = pY∣X(y( j)∣x(i)). If
every species is observed independently, i.e., the observation model
can be factorized, the tensor pobs is rank-1 and can be expressed
as a Kronecker product. For the backward pass, the message is
p(y( j+1), . . . , y(No)∣x( j)) and is represented with the tensor b( j).
The CME is now solved using the transposed operator A⊺ and with
the initial condition b( j+1)∗ pobs, where ∗ denotes the elementwise
multiplication operation. The last step is to multiply and normalize
the forward and the backward messages in order to get the con-
ditional p(x( j)∣y(0), . . . , y(No)). In the presented framework, we a
get smoother distribution only at the observation points. In order
to have information in between the observations, prediction steps
must be added.
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ALGORITHM 1. Forward–backward algorithm in the TT format.

Input: Sample {y( j)}
No

j=0
, initial PMF p(0)

a(0) ← p(0)

for j = 1, . . . , No do
Solve the CME with a( j−1) as initial condition.
Compute pobs for y(j) in the TT format.
a( j) ← pobs

i ∗a( j−1)

end for
b(No) ← 1
for j = No − 1, . . . , 0 do

Compute pobs for y(j+1) in the TT format.
Solve the CME with operator A⊺ and initial condition Z−1b( j+1)∗pobs.
b( j) ← pobs∗b( j+1)

end for
for j = 0, . . . , No do

p( j) ← Z−1a( j)∗b( j)

end for
Output: p( j) for j = 0, . . . , No

C. Bayesian parameter inference in the TT format

Consider an observation sample {y( j)}
No

j=1
satisfying the

assumptions detailed in Sec. IV B, but now connected to a real-
ization of the random process X(t, θ̂), where θ̂ is the parame-
ter vector governing the system. Given a prior distribution p(θ),
we are interested in computing the Bayesian parameter posterior
p(θ∣y(0), . . . , y(No)). By viewing the parameters as part of an aug-
mented process {X(t), θ(t)}t≥0, the distribution of the parameters
over the parameter space P can be obtained by performing filtering
over the joint space of states and parameters. The prediction step is
given by

p(x( j), θ( j)∣y(0), . . . , y( j−1))

= ∑
x( j−1)
∫ {pj∣j−1(x(k), θ( j)∣x( j−1), θ( j−1))

× p(x( j−1), θ( j−1)∣y(0), . . . , y( j−1))}dθ( j−1), (36)

where pj∣j−1 is the transition PDF and implies solving the parameter-
dependent CME from tj−1 to tj. Next, the update step reads

p(x( j), θ( j)∣y(0), . . . , y( j))

= 1
Z

pY∣X(y( j)∣x)p(x( j), θ( j)∣y(0), . . . , y( j−1)). (37)

In the TT format, this parameter inference procedure can be
implemented as follows: The posterior p(x( j), θ( j)∣y(0), . . . , y( j)) is

represented by the tensor p ∈ Rn1×⋅⋅⋅×nd×ℓ1×⋅⋅⋅×ℓnp such that

p(x( j), θ( j)∣y(0), . . . , y( j)) =∑
l

p( j)
xl Ll(θ). (38)

The prediction step involves solving the parameter-dependent CME
with p(x( j), θ( j)∣y(0), . . . , y( j)) as the initial condition, returning

ALGORITHM 2. Parameter identification for the parameter-dependent CME in the TT format.

Input: Sample {y( j)}
No

j=0
, initial PMF p(0), prior over the parameter space pprior

p(0) ← p(0)∗pprior

for j = 1, . . . , No do
Solve the CME with p( j−1) as initial condition to obtain the solution p( j→j+1).
Compute pobs for y(j) in TT.
p( j+1)

il ← pobs
i p( j→j+1)

il
p( j+1) ← Z−1p( j+1) for Z = ∑

il
p( j+1)

il wl

end for
ppost

l ← Z−1∑
i

p(No)

il

Output: ppost
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the predicted PMF p(pred) as a result. The resulting tensor is mul-
tiplied with the observation tensor at step j + 1, and normalization is
performed to get the new joint distribution

p( j+1)
xl = Z−1pobs

x p( j→j+1)
xl , (39)

where Z = ∑
il

p( j+1)
il wl is the normalization constant and comes

from numerically integrating over the parameter space with the
integration weight tensor w. A prior distribution p(θ(0)) and an
exact knowledge of the state for j = 0 is used for the first step,
where p(x(0), θ(0)∣y(0)) = p(x(0))p(θ(0)). Once all observations
have been used, the state is marginalized to obtain the posterior over
the parameter space as

p(θ( j)∣y(0), . . . , y( j)) =∑
x( j)

p(x( j), θ( j)∣y(0), . . . , y( j)), (40)

which is computationally efficient if performed in the TT format.
The procedure is summarized in Algorithm 2.

V. NUMERICAL RESULTS
The following numerical experiments aim to showcase the

advantages of the proposed framework in terms of accuracy and
computational efficiency. With respect to the latter, storage require-
ments and computation times are reported for every individual
test case. All tests were run on a workstation with a 10-core Intel
Xeon processor with 64 GB of RAM. For the TT operations, the
ttpy Python package was used in combination with the Intel MKL
library.

A. Validation of the TT-based CME solver
1. Two-dimensional simple gene expression model

We first validate the developed TT ODE solver and perform
a convergence study based on the two-dimensional simple gene
expression model.48 The four reactions are presented in Table I. The
initial state is x(0) = (2, 4)⊺ with probability 1. The CME is solved
in the time interval [0, 1024] with a subinterval size of 128, where
arbitrary time units are used.

The first validation test concerns the maximum relative error
of the solution to the CME, computed with the method presented in
Sec. III D, in dependence to the time dimension t of the basis rep-
resentation from (18) inside one subinterval. The maximum relative
error is given as max∣p(ref)

tend
(x) − ptend(x)∣/max∣ptend(x)∣, where tend

= 1024 and the reference solution p(ref)
tend
(x) is computed by

TABLE I. Reactions of the simple gene expression model.

Reaction αm(x) Rates ci Description

mRNA→ ∅ c1x1 0.002 mRNA degradation
mRNA→ mRNA + protein c2x1 0.015 Translation
∅→ mRNA c3 0.1 Transcription
Protein→ ∅ c4x2 0.01 Protein degradation

numerically solving the CME without the TT decomposition
for a very fine time grid. We note that no truncation of the
TT-rank was performed during this validation test, and the rela-
tive residual that signifies the convergence of the TT-solver was
set to 10−13.

The results of this first validation set are presented in
Fig. 1, where the employed time-interpolation on the Chebyshev
polynomial basis, as shown in (18), is compared against classical
time-stepping methods such as implicit Euler and Crank–Nicolson
finite-difference schemes. As would be expected, irrespective of the
time-stepping method, the TT-based CME solver yields increasingly
more accurate results for finer discretizations of the time interval.
Moreover, as expected from theory, the convergence of the explicit
Euler scheme is O(Δt), accordingly O(Δt2) for Crank–Nicolson.49

In the case of the Chebyshev polynomials, an exponential conver-
gence is observed and the error stagnates for a basis of only T = 8
polynomials.

The combined impact of the time step and the maximum resid-
ual of the TT-solver is investigated next for the Chebyshev basis rep-
resentation, with the results presented in Fig. 2. As can be observed,
for a fixed T, the accuracy of the TT-solver’s solution stagnates after
a certain value of the maximum residual. The stagnation point is
actually dependent on the value of T, i.e., smaller T values allow
for smaller maximum residuals. Hence, the step size and maximum
residual must be chosen according to the desired accuracy of the
TT-solution, also taking into consideration the related computa-
tional cost.

2. Four-dimensional SEIR model
For the previously considered two-dimensional model, the ref-

erence solution could easily be obtained using an ODE solver. We
now consider a four-dimensional virus spreading model, namely,
the SEIR model,50 in which case standard ODE solution methods
result in high computational demands in terms of computation time
and storage needs.

FIG. 1. Convergence of the TT-solver with respect to the dimension of the time
basis.
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FIG. 2. Error vs solver accuracy for different sizes of the basis.

The individuals of the virus spreading model are separated
into four distinct categories: (1) susceptible (S), i.e., individuals
who may become infected; (2) exposed (E), i.e., infected individuals
who are not yet contagious; (3) infected (I), i.e., infected individuals
who are contagious; and (4) recovered (R), i.e., individuals with
immunity to the virus. The interactions between the individuals
are described by the reactions presented in Table II. The initial
condition is x(0) = (50, 4, 0, 0)⊺, and the state space is truncated
to n = (n1, n2, n3, n4) = (128, 128, 64, 64). The simulation was
performed over the interval [0, 8]. For the TT-solver, the subinterval
length is equal to 0.5 and the subinterval basis dimension is
T = 8. The reference solution is computed by numerically solving
the CME without the TT decomposition for a very fine time
grid.

Even if a sparse format is employed, ≈ 1.3 GB RAM is needed
to store the CME operator for the reference solution. In compari-
son, using the TT format, the CME TT-operator has the TT-ranks
R = (1, 5, 6, 3, 1), resulting in storage needs of only ≈ 2.32 MB RAM,
i.e., 0.17% of the storage space needed by the standard solver. If the
operator is reshaped in the QTT format, the storage requirements
decreases to ≈ 42 KB. Moreover, using the solver with the QTT
format, the solution is obtained in ≈ 180 s, which is a considerably

TABLE II. Reactions of the SEIR model.

Reaction αm(x) Rate ci Description

S + I → E + I c1x1x3 0.1 Susceptible becomes exposed
E → I c2x2 0.5 Exposed becomes infected
I → S c3x3 1.0 Infected recovers without immunity
S→ ∅ c4x1 0.01 Susceptible dies
E → ∅ c5x2 0.01 Exposed dies
I → R c6x3 0.01 Infected recovers with immunity
∅→ S c7 0.4 New susceptible individuals arrive

smaller computation time than the one needed for the reference
solution, i.e., ≈ 12 600 s. Without the use of the QTT format, the
number of solver iterations and the computation time increase by
one order of magnitude.

Figure 3 shows the time evolution of the marginal EI distri-
bution, as well as the pointwise error at the end of the simulation
compared to the reference marginals. Finally, at tend, we obtain the
relative errors

ϵmax =
maxx∣p(ref)

tend
(x) − ptend(x)∣

maxx∣p(ref)
tend
(x)∣

= 2.9 ⋅ 10−5,

ϵmean =
1

N4∑
x
∣p(ref)

tend
(x) − ptend(x)∣

max
x
∣p(ref)

tend
(x)∣

= 2.539 ⋅ 10−9.

Hence, the TT-solver yields accurate solutions at significantly
reduced execution times and with tremendous storage savings com-
pared to the standard solver. Indicatively, the solution at t = 8
requires only 2.5 MB storage, which is ∼0.4% the storage require-
ment of the reference solution.

One issue is the ordering of the species. If species that are
highly correlated are apart from each other in the train, the ranks in
between must carry the information and therefore the overall rank
structure increases. This can also be observed in the representation
of the CME operator. In this example, the S, E, I, R ordering is cho-
sen so that most of the reactions involve species that are neighbors
in the chain.

B. Filtering and smoothing
As discussed in Sec. IV B, state filtering and smoothing can be

performed in the TT-framework. We consider here the SEIR model
presented in Sec. V A 2. We assume No = 33 equidistant observa-
tions with Δt = 0.3125. The time interval is now chosen as [0, 10].
The realizations are obtained using the Stochastic Simulation Algo-
rithm (SSA)4 (blue continuous lines in Fig. 4). The noise is assumed
to be lognormal with variance 0.1 for S, E, and I and 0.05 for R (black
× symbol in Fig. 4).

The TT-based forward–backward Algorithm 1 presented in
Sec. IV B is used to perform state filtering and smoothing. The state
is truncated to (128, 128, 64, 32), and the Chebyshev basis is used
for the time dependency. The runtime of the SEIR experiment is
12 min for a solver accuracy of 10−6 in terms of relative TT-solver
residual. As the estimated state, we compute the expected value of
the distribution given by p(x(k)∣y(0), . . . , y(No)) (red discontinuous
line in Fig. 4) and the corresponding standard deviation (gray enve-
lope in Fig. 4). In this case, the incorporation of the observation
model in the TT-framework is beneficial to the reduction in the
error since it acts like a reset condition. This can be observed in the
decrease of the TT-rank after the multiplication with the tensor cor-
responding to the observation operator. The numerical experiment
shows a decrease in the rank of up to 3 times, as can be observed
in Fig. 5.

One more significant advantage of the TT representation is
that the storage of the messages decreases dramatically compared
to the full tensor representation, as the total storage needed is
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FIG. 3. Time evolution of exposed–infected (EI) marginal distribution at t ∈ {0, 2, 4, 6, 8} and pointwise absolute error at tend = 8. The solution is computed in the TT format,
and the reference is obtained by integrating the CME over a fine time grid.

≈ 150 MB for the forward propagating messages and ≈ 190 MB for
the backward propagating messages. In addition to that, comput-
ing the moments of the smooth distribution consists of multiplica-
tion with rank-1 TT tensors. Moreover, the lognormal observation
model is also translated to a rank-1 tensor. The presented results

are performed in the QTT format; however, the same test was per-
formed without quantization. For the given state truncation, using
the QTT format results in an acceleration by more than an order
of magnitude in computation time, compared to the standard TT
format.
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FIG. 4. Smoothing for the SEIR model with initial population
x = (50, 2, 1, 0)⊺. The sample path is given by the blue line, the obser-
vations are marked with “×,” and for the smoothed distribution, the
mean (red dashed line) and the standard deviation (gray envelope) are
plotted.

FIG. 5. Ranks for the forward pass over simulation time (triangle
markers).

C. Parameter inference
1. Simple gene expression

We now use Algorithm 2 to identify all four parameters
θ = (θ1, θ2, θ3, θ4) = (c1, c4, c3, c4) of the simple gene expression
model from a noisy sample with No = 64 observations. In this case,
the solver uses the QTT format, the observations are taken equidis-
tantly every four time units, and the parameter priors are indepen-
dent, truncated Gamma distributions, chosen such that they do not
match the actual parameter. The parameter domain R4

+ is restricted
to θi ∈ [0, 6ci]. As a reference, a sample of size 5 ⋅ 105 is drawn from
the posterior using the Metropolis–Hastings algorithm. The CME in
this case is solved in the full format with the built-in Python ODE
solver.

With respect to the parameter dependence approximation, the
basis of choice in this case is quadratic B-splines with equidistant
knots scaled to the parameter range. The dimension of the indi-
vidual univariate bases is 64. For the time integrator, a Cheby-
shev basis of dimension T = 8 is used with a subinterval size of
0.5 time units. The runtime is in this case ≈ 21 min with a maxi-
mum storage requirement of ≈ 9.2 MB for the joint over state and
parameters (represented by a 6D tensor with mode size 64). The
storage requirement for the extended CME operator in the QTT
format is only 128 KB. Storing the tensor in the full format is
intractable on standard machines even for this 2D example. For
the given sample size, the Metropolis–Hastings algorithm is run for
≈ 1.5 days.

Since the posterior over the parameter space is four-
dimensional, hence, not easy to visualize, the marginals for the indi-
vidual parameters are computed and compared to the 1D histograms
of the posterior sample for the purpose of validation. The results are
presented in Fig. 6, where it can be observed that the posterior modes
offer a reasonable approximation of the true values, the latter being
marked with red vertical dashed lines. As a further characterization
of the posterior, we compute its expected value, variance, and the
mode of the PDF,
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FIG. 6. Posterior marginal distributions for the four unknown reaction rates of the simple gene expression model. The black regions correspond to the high density of the
PDF. The exact parameters are marked with the red dashed lines. For the 1D marginals, a histogram of the posterior sample is represented as a reference, as well as the
prior (green dashed lines).

E[θ] = (0.001 924, 0.015 12, 0.099 85, 0.010 57),

V[θ] = (1.034 × 10−6, 8.685 × 10−6, 5.428 × 10−4, 7.624 × 10−6),

θ̂ = (0.001 373, 0.014 12, 0.090 65, 0.009 567).

For comparison, the mean and variance of the reference posterior
sample are

μθ = (0.001 922, 0.015 07, 0.099 92, 0.010 52),

σ2
θ = (9.975 × 10−7, 8.498 × 10−6, 5.233 × 10−4, 7.518 × 10−6).

Since there is no analytical estimate for the combined error
of the method, several runs with different hyperparameters are
performed for this model. First, the accuracy of the solver in terms
of relative residual, here denoted with ϵ, is varied and the relative
error of the TT-solver’s solution is analyzed, first with respect to the
MCMC solution and second with respect to the most accurate solu-
tion of the TT-solver, i.e., for ϵ = 10−6. The corresponding results
are presented in Table III, where the simulation time and memory
requirement for storing the joint in the TT format are also reported.
As can be seen from Table III, the accuracy of the MCMC solution is
reached already for a TT-solver accuracy of ϵ = 10−4. Looking at the
memory consumption and the execution time, they both increase

TABLE III. Simple gene expression model error analysis with respect to solver accuracy ϵ.

ϵ Error with respect to MCMC Error with respect to ϵ = 10−6 Time (min) Memory (MB)

10–3 7.35 × 10−3 4.376 × 10−3 2.4 1.8
10–4 2.35 × 10−3 1.309 × 10−3 7.4 4.57
10–5 3.59 × 10−3 6.399 × 10−5 21 9.29
10–6 3.64 × 10−3 ⋅ ⋅ ⋅ 60 17.74
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TABLE IV. Reactions of the three stage gene expression model.

Reaction αm(x) Rate ci

G→ G +M c1x1 4.0
M →M + P c2x2 10.0
M → ∅ c3x2 1.0
G + P → G∗ c4x1x3 0.2
G∗ → G + P c5x4 0.6
P → ∅ c6x3 1.0

for a higher TT-solver accuracy, which is expected since more solver
iterations are needed to reach the desired residual.

Additionally, the dimension of the parameter basis has been
investigated. If the tensor product basis is constructed using univari-
ate B-spline bases of dimension 16, the prior can be well approxi-
mated. However during the inference, the decrease in the variance
of the joint leads to an incapability to resolve the posterior since a
finer basis is needed. If the discretization is increased to 32 for every
parameter, the oscillations become negligible.

FIG. 7. Noisy observation sample for the three stage gene expression model (the
number of observations is 45).

FIG. 8. Posterior marginal distributions for the five unknown reaction rates of the three stage gene expression model. The black regions correspond to the high density of
the PDF. The exact parameters are marked with the red dashed lines. For the 1D marginals, a histogram of the posterior sample is represented as a reference, as well as
the prior (green dashed lines).
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As a conclusion, the limiting factor in the inference framework
seems to be the accuracy of the TT-solver. For the purpose of infer-
ence, however, a relative residual value of ϵ = 10−5 seems to be suf-
ficient for obtaining an accurate approximation and an acceptable
computational time.

2. Gene expression model with feedback
The second model where the parameter identification is

employed is the three stage gene expression model with a feed-
back loop.51 The reactions as well as the reaction rates are pre-
sented in Table IV. A realization is drawn using the SSA, and
equidistant sampling is performed with additive Gaussian noise
(see Fig. 7).

The parameters to be identified are in this case θ = (c1, . . . , c5),
and the parameter space is bounded to [0, 5ci]. For the priors, we
choose again independent Gamma distributions, which are trun-
cated within the parameter space. The parameter dependence is
approximated using a tensor product basis of univariate quadratic
B-splines with dimension 64. The tolerance of the TT-solver is set to
10−5 in terms of relative residual.

The results are reported in Fig. 8 where we can see the visual
match between the histograms and the 1D marginals on the diago-
nal. The expected value and variance of the posterior are

E[θ] = (4.0358, 9.1720, 1.8398, 0.2378, 1.0686),
V[θ] = (0.9649, 1.5117, 0.1669, 0.005187, 0.1172).

As a comparison, the mean and variance of the reference posterior
sample are computed using MCMC,

μθ = (4.0503, 9.1995, 1.8443, 0.2379, 1.0680),
σ2

θ = (0.9874, 1.2367, 0.4123, 0.0720, 0.3467).

The relative error between the reference and the TT-solver-based
modes is in the range of 10−3 for the expectation and 10−2 for the
variance. The limiting factor is in this case the small MCMC sam-
ple size. Using the TT-solver, the execution time for this test case is
50 min. Regarding storage needs, only ≈ 12 MB of RAM is used. As
a comparison, the MCMC simulation took ∼2.5 days to complete for
a sample size equal to 5 ⋅ 105.

FIG. 9. Noisy observation sample for the SEIQR model (the number of observa-
tions is 45).

3. SEIQR model
The model considered now is an extension of the SEIR model

presented in the filtering section and has one additional species:
quarantined (Q). The modified reactions are found in Table V. We
infer in this case the parameters θ = (c1, c2, c3, c4) from 45 observa-
tions affected by lognormal noise (see Fig. 9). The species susceptible
and exposed are observed with a higher degree of uncertainty, while
quarantined and recovered are observed exactly. The execution time
for a TT-solver accuracy of ϵ = 10−5 is ≈ 55 min with a maximum
posterior size in the QTT format of ≈ 30 MB. As a comparison,
the chosen state truncation of (128, 64, 64, 32, 32) would require
≈ 4.2 GB only for storing the state for one parameter realization. The
storage complexity for the parameter-dependent CME operator in
the QTT format is ≈ 200 KB.

For this setup, the variance of the approximated posterior (see
Fig. 10) is two orders lower than the prior for the first parameter and
one order lower for the second and third parameters. This implies
a higher confidence in the reconstruction of the parameters, which
also indicates the need for a denser basis. In this case, choosing less

TABLE V. Reactions of the SEIQR model.

Reaction αm(x) Rate ci Description

S + I → E + I c1x1x3 0.04 Susceptible becomes exposed
E → I c2x2 0.4 Exposed becomes infected
I → Q c3x3 0.4 Infected is quarantined
I → ∅ c4x3 0.004 Infected individual dies
I → R c5x3 0.12 Infected recovers with immunity
Q→ R c6x4 0.8765 Quarantined recovers with immunity
I → S c7x3 0.01 Infected recovers without immunity
Q→ S c8x4 0.01 Quarantined recovers without immunity
∅→ S c9 0.01 New susceptible individual
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FIG. 10. Posterior marginal distributions for the four unknown reaction rates of the SEIQR model. The black regions correspond to the high density of the PDF. The exact
parameters are marked with the red dashed lines, and the prior parameters are marked with green dashed lines.

than 64 points per parameter would lead to oscillations and inability
to infer the posterior. This can be overcome by adaptively reduc-
ing the bounds of the parameter domain and re-interpolating the
posterior on the new basis.

VI. CONCLUSION
We presented a method based on the TT decomposition to

solve the CME, either in its standard form or including param-
eter dependencies, and approximate the joint distribution over
the state–parameter space, including the time dependency as
well. Using the considered TT-framework, inference tasks such
as state smoothing and parameter identification can be per-
formed accurately and efficiently. The proposed TT-framework
is also applied to solve the inverse problem of identifying the
values of the parameters governing the system under investi-
gation from noisy state observations. The resulting numerical
approximation of the posterior PDF over the truncated param-
eter space can be efficiently stored and manipulated in the TT
format.

A series of numerical experiments with a simple gene expres-
sion model and with the SEIR virus model show clearly that the
state-time TT approximation reduces the storage needs of the CME
to a mere fraction of what a standard CME solution method requires.

Moreover, by performing multilinear algebraic operations in the TT
format, the execution time is significantly reduced as well. Simi-
lar benefits are observable in the context of inference tasks, where
the proposed TT-based filtering, smoothing, and parameter identi-
fication approaches yield accurate results for a significantly reduced
computational cost.

While standard inference procedures for the single trajec-
tory setting such as MCMC require repeated solutions of the
CME for different parameter configurations, the joint approach
presented here requires only one forward pass on the aug-
mented state space. One drawback of the parameter space dis-
cretization is that it can cause problems when the posterior is
much more concentrated than the prior. As demonstrated on the
SEIQR model, this can be overcome by dynamically adapting the
basis.

In this work, we have focused on inferring the rate con-
stants of structurally known models from a single trajectory.
An important direction for future research is to extend the
approach to multiple trajectories with shared parameters. Another
interesting direction is to consider different types of uncertain-
ties, e.g., the involved species or the types of reactions. Since
the presented method is fully Bayesian, this could be realized
by scoring different candidate structures via Bayesian model
comparison.
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