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Abstract

Synchronization describes the onset of a common rhythm between
two linear or chaotic oscillators. Originally, the research was devel-
oped around the observation of regular oscillators. Later, similar
effects were described for coupled chaotic systems.

In early experiments, chaotic systems were limited to identical syn-
chronization. However, it was found that more complex types of
synchronization also develop for chaotic systems. Current research
also continues to focus on identical synchronization. We assume that
this is due to the easy accessibility of identical synchronization.

In this paper, we present an alternative, information-theoretical ap-
proach to synchronization detection. Mutual information has been
used as an indicator of synchronization in previous work. How-
ever, we can establish and prove an accessible, formal relationship
between synchronization and mutual information. With this insight,
we propose Synchronized Mutual Information (SMI) as a measure of
synchronization. This measure represents the coherence of two tra-
jectories in the range of 0 to 1. With complete knowledge of the
phase space, the upper bound of this measure then corresponds to a
synchronized system.

In addition to this basic measure, we propose an efficient implemen-
tation for estimating the SMI. We test this implementation on a cou-
pled Lorenz/Rössler system and compare it with the "Auxiliary Sys-
tem Method".

We also use the SMI in systems with many coupled chaotic oscil-
lators. To obtain an assessment of the overall system, we propose
different aggregations of the SMI and test them on examples from
the literature.

In recent years, the focus of research has shifted from fully synchro-
nized systems to partially synchronized systems. Effects such as
interrupted synchronization, cluster synchronization, and chimera
states are of particular importance. We can show that our measure-
ment can also contribute to a more accessible research of these sys-
tems.

Unlike other tools, the SMI works without knowledge of the sys-
tem dynamics and can also be used for analysis when the equations
of motion are unknown. We can show that the results of the SMI
are equivalent to the results of the Transversal Lyapunov Exponent,
while the SMI has a much wider range of applications.

Finally, by analyzing real-world applications, we demonstrate the
applicability of SMI to real-world data. We analyze historical stock
prices of companies listed in the Dow Jones and try to identify de-



pendencies between companies using cluster analysis. We also apply
the SMI to an in-vitro model of neurons. Observing neurons over a
longer period of time, we determine how the degree of interconnec-
tion of neurons is reflected in their synchronization.



Zusammenfassung

Synchronisation beschreibt das Einsetzen eines gemeinsamen Rhyth-
mus zwischen zwei linearen oder chaotischen Oszillatoren. Ursprüng-
lich entwickelte sich die Forschung rund um die Beobachtung regel-
mäßiger Oszillatoren. Wenig später wurden ähnliche Effekte auch
für gekoppelte chaotische Systeme beschrieben.

In frühen Experimenten beschränkte man sich bei chaotischen Sys-
temen auf identische Synchronisation. Es wurde jedoch festgestellt,
dass sich für chaotische Systeme auch komplexere Arten der Syn-
chronisation ausbilden. Auch die aktuelle Forschung konzentriert
sich weiterhin auf identische Synchronisation. Wir vermuten, dass
dies auch an der einfachen Zugänglichkeit der identischen Synchro-
nisation liegt.

In dieser Arbeit stellen wir einen alternativen, informationstheore-
tischen Ansatz zur Erkennung von Synchronisation vor. Transinfor-
mation wurde bereits in früheren Arbeiten als Indikator für Synchro-
nisation verwendet. Wir können jedoch eine zugängliche, formale
Beziehung zwischen Synchronisation und Transinformation herstel-
len und beweisen. Mit dieser Erkenntnis schlagen wir die Synchroni-
zed Mutual Information (SMI) als Maß für Synchronisation vor. Dieses
Maß repräsentiert die Kohärenz zweier Trajektorien in einem Bereich
von 0 bis 1. Bei vollständiger Kenntnis des Phasenraums entspricht
die obere Schranke dieses Maßes dann einem synchronisierten Sys-
tem.

Neben diesem grundlegenden Maß schlagen wir eine effiziente Im-
plementierung zur Schätzung des SMI vor. Wir testen diese Imple-
mentierung an einem gekoppelten Lorenz/Rössler-System und ver-
gleichen sie mit der Äuxiliary System Method".

Wir verwenden die SMI auch in Systemen mit vielen gekoppelten
chaotischen Oszillatoren. Um eine Beurteilung des Gesamtsystems
zu erhalten, schlagen wir verschiedene Aggregationen der SMI vor
und testen diese an Beispielen aus der Literatur.

In den letzten Jahren hat sich der Fokus der Forschung von vollstän-
dig synchronisierten Systemen hin zu teilweise synchronisierten Sys-
temen verschoben. Dabei sind Effekte wie unterbrochene Synchroni-
sation, Clustersynchronisation und Chimärenzustände von besonde-
rer Bedeutung. Wir können zeigen, dass unsere Messung auch hier
einen Beitrag zur einfachen Erforschung dieser Systeme leisten kann.

Im Gegensatz zu anderen Werkzeugen arbeitet die SMI ohne Kennt-
nis der Systemdynamik und kann auch zur Analyse verwendet wer-
den, wenn die Bewegungsgleichungen unbekannt sind. Wir können
zeigen, dass die Ergebnisse der SMI in den Ergebnissen des Trans-
versalen Lyapunov-Exponenten entsprechen, während die SMI einen



viel größeren Anwendungsbereich hat.

Schließlich demonstrieren wir die Anwendbarkeit des SMI auf reale
Daten, indem wir praktische Anwendungen analysieren. Wir analy-
sieren historische Aktienkurse von im Dow Jones gelisteten Unter-
nehmen und versuchen mittels einer Clusteranalyse Abhängigkeiten
zwischen den Unternehmen herauszuarbeiten. Außerdem wenden
wir den SMI auf ein in-vitro Modell von Neuronen an. Indem wir die
Neuronen über einen längeren Zeitraum beobachten, stellen wir fest,
wie sich der Vernetzungsgrad der Neuronen in der Synchronisation
zwischen ihnen niederschlägt.
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1Complex Systems
& Synchronization

„Everything is interaction“[HumJh] was stated by Humboldt on his
journey through South America where he observed that each living
species is dependent on another. His observations laid the founda-
tions for our modern studies of complex ecological networks [Frä01].
This thesis is embedded in the field of complex systems theory, a
field concerned with understanding interconnected systems.

Local—and seemingly minuscule—variations give rise to properties
being lost in the ’traditional’ methods of statistical mechanics. The
significance of even small perturbations makes these systems notori-
ously hard to access with established quantitative methods. Nev-
ertheless, many common phenomena emerge from these interac-
tions. Although reliable long-term predictions remain challenging,
advances in complexity theory help us to find meaningful models
and properties of these systems. The field explores new frameworks
to understand and describe systems where the dynamics emerging
from the interactions is not well explained by the dynamics of the
components themselves.

The insights gained within complexity theory find application in var-
ious disciplines, spanning from engineering to climate research to
biology. Some examples include:

1. Power grids show many properties of a complex system. Quick
localized changes in power production and consumption and line
failures combined with the sensitivity to load changes of power
plants result in a fragile setup that requires constant and rapid
balancing. The decentralized structure and feedback loops, e.g.
line failures, make central control of the structure a difficult prob-
lem. We might be able to build robust power grids at lower prices
with insights gained from complexity theory [Sal18].

2. Microclimates depend on various input variables. Small fluctua-
tions in some areas can lead to the breakdown of the mid-winter
polar vortex, drastically changing the weather for many areas of
the world. Local weather phenomena depend greatly on the state
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of global phenomena. For example, the breakdown of the polar
vortex in winter can quickly push otherwise stable weather in Eu-
rope and northern America on different attractors, allowing either
for an early spring or deep cold winters [Law18; Gra20].

3. Migrating birds often organize themselves in flocks, forming large
patterns in the sky (see Figure 1.1). These flocks appear as if the
birds were following a single leader. However, rather than being
guided by a central entity, their formations are the result of local-
ized decisions made by each individual bird, based only on their
immediate neighbors and nearby obstacles [Chr14].

Figure 1.1: Birds flying in a flock organize
themselves by keeping a certain distance
from each of their neighbors. With simple
rules, they can create complex and rich pat-
terns, implying a complex set of rules.

The most impressive system is our brain. It allows us to explore
and predict our environment, including discovering, exploring, and
documenting the systems mentioned above. The complexity and
plasticity of our brains arise from a network of many billion neu-
rons. Mean-field theories, which lose the detail of interaction be-
tween neurons, cannot explain the observed patterns of human ex-
pression. Measurement of aggregated quantities of neuron dynamics
can only offer superficial insight into the working mind. Our behav-
ioral patterns do not emerge from scaled-up dynamics of isolated
neurons, but from the coupling and interaction between neurons,
formed by evolution, experience, and current environmental input
[Gro13; Chi10, p. 321].

For complex systems, some scientists see the reductionist approach
as failing [Maz08; Reg04]. Studying isolated objects must fail when
the desired macroscopic properties emerge from interactions between
the components of a system, rather than the dynamics of isolated
components. While we might be able to overcome these limitations
by building larger models, computational power is limited. Even
now, the long-term prediction of a double pendulum (see Figure 1.2)
is under active research [Vau10; Ouy20]. Coupling 100s of double
pendulums and predicting their dynamics should exhaust even the
strongest computers. Except that sometimes it does not.

Figure 1.2: Trajectories of a double pendu-
lum. Although its mechanical setup is sim-
ple, long-term predictions of position and
speed are complicated. Small errors in
friction, speed, and position result in large
phase space variations.

When coupling two self-propelled systems, we can observe—under
certain circumstances—that both systems converge on a common
beat. At a critical coupling strength, the two systems will rapidly
transition from a decoherent state to a synchronized state. In this
synchronized state, the dynamics of the two systems often appear
as if driven by a common third system. It can be observed in the
pulsed flashing of fireflies, Mexican waves in the stadium or in firing
patterns of neurons [Lop91; Gue17; McB15; Ram19; Pro20].

As with other complex systems, a small perturbation is the key to a
new macroscopic phenomenon. A class of self-propelled oscillators
with high sensitivity for small perturbations are chaotic systems. For
a chaotic oscillator, points in phase space will diverge exponentially,
even for small perturbations. Intuition dictates that this should make
them bad candidates for synchronization. In practice, we find that
coupled chaotic oscillators are not only capable of synchronization
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but that these systems produce a rich zoo of synchronization types.

An introduction to complex system theory can be found in [Gro13].
See [Gon04; Boc18] for a general introduction to synchronization and
[Pec15a] for a short history of the synchronization of chaotic systems.

In this work, we will propose a measure to reliably identify syn-
chronization in simulated and real-world data. For the application
of the measure, we focus on the synchronization of chaotic systems.
We propose a novel 0-1 bound measure to detect synchronization
between coupled components. The measure is first applied to sys-
tems taken from previous work. We compare the performance of our
measure to two existing measures and discuss limitations and advan-
tages. We argue that our approach follows a natural interpretation
of synchronization and also give formal proof for this intuition.

Indeed, similar measures have been successfully applied in the past
[Pal01; Ame15]. However, we could not find any existing work show-
ing the equivalence between these methods and other definitions of
synchronization. We extend previous work by providing a formal
proof of the equivalence of these methods and synchronization.

Our method is designed as a plug-in method. Its implementation is
independent of the dynamics of the systems, the user’s only input
being adequately sampled data. With the measure being constructed
from common methods in information theory, it will benefit from
future advances in Shannon entropy or MI estimators.

To benchmark and compare the measure, we apply it to various
systems. We show that it can reliably detect synchronization in
driver/response systems composed of a Lorenz and Rössler system.
By applying it to a ring of logistic maps, we also show its perfor-
mance on chaotic maps and larger systems.

Since the early work in the 1990s, research has shifted from studying
fully synchronized systems to partial spatial and/or temporal syn-
chronization. The measure is not limited to two-component or fully
synchronized systems. We also explore the feasibility of partially
synchronized, noisy, and real-world systems. Here, we can see that
the measure can reliably distinguish between emerging synchroniza-
tion and spurious correlations. We reconstruct mutual dependencies
between Dow Jones listed companies by evaluating the correlations
in historical stock indexes. We use the measure to show the emer-
gence of synchronization between neurons, forming connections in
an in-vitro model of hippocampal neurons.

The remainder of this chapter is dedicated to the introduction of
basic concepts in chaotic systems and synchronization. In the second
chapter, we will also present a few concepts of information theory
as a starting point for further discussion of the properties of our
measure.
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1.1 Chaos

Chaotic systems produce observables with seemingly unordered or
random states and can experience irregular oscillations. Non-linear
behavior and feedback loops make these systems sensitive to their
initial conditions. This means that small perturbations induce diver-
gent trajectories. This sensitivity makes them hard to predict and
often prevents comprehensive analytical analysis [Boc18, p. 5]. In
contrast to systems with stochastic variables, however, chaotic sys-
tems have no random components. Being fully deterministic, identi-
cal initial conditions will return identical trajectories.

Early reports on chaotic systems date back to Poincarè [Oes07]. He
found that ODEs with more than two dimensions could experience
instability. However, since these systems must be studied numer-
ically, with little available computational power, analysis of such
models was impractical at that time. In the 1960s, Lorenz found
that predictions from his weather model would change drastically
with only a single small perturbation applied to intermediate results
[Oes07].

Lorenz further explored his findings and was able to come up with
an ODE consisting of three equations that could replicate the sensi-
tivity observed in his model, [Lor63]. This matched the spirit of the
time, as scientists from other disciplines reported similar behavior. In
Russia, Chirikov explored the non-linear resonance of trapped par-
ticles in magnetic fields [Chi60] and Ruelle and Takens investigated
turbulent flow [Rue71]. With the increased amount of computational
power, the previous infeasible analysis could be conducted.

A chaotic system can be identified by its positive maximum Lya-
punov exponent. Furthermore, we introduce three systems with
chaotic behavior. In Section 1.1.2, the logistic map is introduced as
an example for discrete systems, with the Lorenz and Rössler attrac-
tors, and two examples for continuous chaotic systems are presented
in Section 1.1.3 and Section 1.1.4. All three systems are applied later
in this thesis.

1.1.1 Lyapunov Exponent

To evaluate the sensitivity of a system to initial conditions, we can ob-
serve the distance between two trajectories z1(t), z2(t) in their phase
space Z. We place the starting points z1(0) and z2(0) close to each
other and then track their distance |δz(t)|.

A comparison of their initial distance allows us to evaluate the sta-
bility of the system. The time dependency of the distance can be
estimated by

|δz(t)| ∼ eλt|δz0| (1.1)

where we call λ Lyapunov exponent. Unstable or chaotic systems
are characterized by a positive Lyapunov exponent λ > 0. A van-
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|δz(t0)|

z3

z4
|δz′(t0)|

|δz′(t0 + ∆t)|

z1

z2

|δz(t0 + ∆t)|
a) b) Figure 1.3: In chaotic systems, two trajecto-

ries z3 and z4 with similar initial conditions
will diverge over time. In non-chaotic sys-
tems, in the same type of setup, the trajec-
tories z1 and z2 converge. The plots show
a non-chaotic system in a) and a chaotic
one in b). The distance at time t0 + ∆t
can be estimated by the Lyapunov exponent
|δz(t0 +∆t)| = eλ(t0+∆t)|δz(t0)|. For sys-
tem a) the exponent is λa < 0, in system b)
λb > 0.

ishing exponent indicates a non-chaotic system, where trajectories in
systems with negative λ converge [Hir13, p. 209]. In Figure 1.3 we
compare a stable with a chaotic system. As we see, the distances
between the trajectories increase.

For multidimensional systems, each dimension is characterized by its
own λ, thus in n dimensions, we obtain n Lyapunov exponents. For
our purposes, only the maximum Lyapunov exponent of the spec-
trum is of interest. It alone determines whether the system is in a
chaotic or linear regime. If any component of the Lyapunov spec-
trum is positive, its exponential growth will quickly dictate the over-
all distance, resulting in a chaotic system.

The maximum Lyapunov exponent can be defined as [Kan94]

λ = lim
t→∞

lim
|δz(0)|→0

1
t

log
|δz(t)|
|δz(0)| . (1.2)

As in practice, Lyapunov exponents can rarely be retrieved analyt-
ically. Various numerical techniques have been established to esti-
mate the exponents. In Appendix Section A.1 we show an approach
to calculate the maximum Lyapunov exponent for a discrete map.

The algorithm, first described in [Ben76], tracks the distance between
two maps. Similarly to Equation (1.2), it calculates the Lyapunov ex-
ponent by normalizing the later distance δz(t) with the initial δz(0).
Due to the finite precision of computers, the implementation avoids
the vanishing limit for the initial distance. For the same reason,
larger distance values are also avoided. A threshold resets the system
to the initial distance, preserving the direction between the systems.

1.1.2 Logistic Map

Originally constructed as a discrete-time model for population growth,
the logistic map is now a common tool for creating chaotic patterns.
The map is defined by

x[t + 1] = rx[t](1− x[t]) (1.3)

with its only parameter r in [0, 4]. The notation x[t] for time series
with discrete time steps will be used throughout this thesis. As a
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population model, it is bound between 0 and 1. Values outside this
range diverge.

In contrast to a continuous version, the discrete logistic map experi-
ences chaotic behavior for certain parameters. For most r > 3.57 the
logistic map is in the chaotic regime.

The logistic map also allows us to display the difference between
chaos and randomness. In Figure 1.4 we compare a logistic map
alongside a series of random values in [0, 1]. In Figure 1.4 a) and
b) we compare the values as a function of step or time t. In this
view, there is no noticeable difference between the two trajectories.
However, we can uncover the deterministic structure of the logistic
map with a Poincaré plot in Figure 1.4 c). By plotting consecutive
pairs (xt, xt+1) we catch the pattern that creates the logistic map. The
series of random values on the other hand show no or only spurious
structure 1.

1 The random values in this example are
not truly random but were generated with
a Mersenne-Twister algorithm. Inciden-
tally, the quality of generators for pseudo-
random numbers can be accessed by a high-
dimensional Poincaré plot. [Knu97, p.93]

Figure 1.4: The difference between a chaotic
and a random system is only obvious with
the right representation of the data. We have
generated a time series from a logistic map
in the chaotic regime (r = 4) in a) and
compare it with a time series of (pseudo-
)randomly chosen points in b). The values of
the random time series are normalized such
that their minimum value is 0 and their maxi-
mum is 1. Only in the Poincaré plot in c) can
we see a qualitative difference between the
two series. The points generated from the lo-
gistic map all lie on a quadratic curve, while
we find no order for the random point.
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1.1.3 Lorenz Attractor

The Lorenz attractor was first introduced in [Lor63]. Having been
created as a simple system to study the chaotic behavior found in
earlier weather models, the Lorenz attractor is still in use today to
study chaotic dynamics.

The model was derived from equations that describe the velocity of
an incompressible viscose fluid between two plates. The temperature
difference between the plates create a density gradient which then,
with the gravitational forces, leads to a movement of the fluid.

The dynamics of a Lorenz system are given by [Lor63]

d
dt

x1 = σ(x2 − x1)

d
dt

x2 = x1(r− x3)− x2

d
dt

x3 = x1x2 − bx3

(1.4)

with the parameters r, b and σ all positive. The system is not chaotic
for all parameters. Parameters for which chaos is observed can be
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Figure 1.5: Despite similar initial conditions,
trajectories in a Lorenz system quickly di-
verge after some time. An ensemble of tra-
jectories was created with the initial condi-
tions x1(0) = x3(0) = 0 and x2(t) ran-
domly chosen in [2.0, 2.2]. The system is
shown in a). The initial positions are marked
with ×, their positions at t ∼ 20 are marked
with a blue, and the positions at the end of
the simulation with a red dot. With the blue
dots, we can observe that while the trajec-
tories are still similar, the distance between
them has already grown. In the final posi-
tion of this calculation, their states are dis-
tributed throughout the phase space. This
divergence can also be observed in b) where
we have plotted only the x1 axis for the ini-
tial conditions x2(0) = 2. and x2(0) = 2.2.
The line near t = 20 marks the same time
as the blue dots in a). In b), we can see
how both trajectories are in close proximity
until they separate around t ∼ 20 and then
quickly diverge and show different oscillation
patterns.

found in the literature, e.g. in the original work [Lor63] or the values
taken in the example in Figure 1.5.

For a further analysis of the Lorenz system, we refer the reader to
a detailed analysis in, e.g. [Hir04]. It shows that the two attracting
points we see in Figure 1.5 exist only for r > 1. Smaller r will result
in a single origin that acts as a sink for the trajectory [Hir13].

In Figure 1.5, we show two trajectories for the Lorenz system with
the parameters σ = 10, b = 8/3, r = 28 taken from the original work
[Lor63]. For the initial values (x1, x2, x3) we have chosen values be-
tween (0, 2, 0) and (0, 2.2, 0). In Figure 1.5 a) we see that all trajecto-
ries start very close from each other. However, they quickly diverge,
and after a short amount of time, their positions are scattered all over
the attractors.

This becomes even more clear when we look at Figure 1.5 b) where
the x1 component is shown for two initial values x2(0) = 2.0, 2.2.
The dynamics of both trajectories starts out to be almost indistin-
guishable. However, at about t = 18 we see that the trajectories be-
gin to diverge, showing a very different behavior as the trajectories
begin to oscillate between and within the two attractors. In situa-
tions where we can only estimate the initial parameters with finite
precision, long-term predictions of the behavior will fail.

The dynamical systems in Figure 1.5 a) and b) were created with julia
(Version 1.5) [Bez17] using a Runge-Kutta solver, more specifically
the Tsit5 solver provided with [Rac17].
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Figure 1.6: The Rössler system provides
more minimal dynamics while preserving the
chaotic behavior of the Lorenz system. Tra-
jectories are simulated with initial conditions
x1(0) = x2(0) = 4 and x3 randomly cho-
sen in [0, 0.4]. In a) we show their behavior
in 3D. Similar to the plot of the Lorenz attrac-
tor in Figure 1.5, the trajectories diverge over
time. While all trajectories have their origin at
the position marked ×, they spread out over
the phase space. Blue shows that the trajec-
tories are relatively tightly packed, while the
red dots at the end of the simulation are scat-
tered throughout the attractor. In b) we com-
pare the x1 axis of two trajectories with ini-
tial conditions x3(0) = 0 and x3(0) = 0.4.
We also show the position of the blue points
with the vertical line near t = 50. We see
how the trajectories are very close in the be-
ginning but diverge around t ∼ 50. Their
phases seem to be stable, but as we see
with the red dots in a), the phase correlation
also decays.
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1.1.4 Rössler Attractor

Another common system for the creation of chaos is the Rössler at-
tractor [Rös76], inspired by the visuals of the Lorenz system, Rössler
created an attractor with only a single fix point [Let10]. The equa-
tions of motion for the system are given by

d
dt

x1 = −x2 − x3

d
dt

x2 = x1 + ax2

d
dt

x3 = p + x3(x1 − µ) .

(1.5)

with its parameters a, p, µ. The parameters often used to achieve
chaos are a = 0.1, p = 0.1, and µ = 28. In Figure 1.6 we see an en-
semble of trajectories for the above parameters with different initial
values. Figure 1.6 a) shows the evolution of the trajectories over time,
where the initial tight ensemble quickly diverges.

Figure 1.6 b) shows the x1 component. In contrast to the Lorenz
system, the Rössler system settles on a single attractor. Its defining
visual feature is the strong slope for trajectories farther away from the
attractor. As with the Lorenz attractor, we see that with increasing
time t the trajectories from both initial values start to diverge.

The dynamical systems in Figure 1.6 a) and b) were created with julia
(Version 1.5) [Bez17] using a Runge-Kutta solver, more specifically
the Tsit5 solver provided with [Rac17].
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Figure 1.7: A variation of Huygens’ experi-
ment to synchronize pendulum clocks. Two
mechanical metronomes are placed on a
board that pivots on two free wheels. The
wheels allow the board to move freely and
thus transmit the momentum of the swinging
pendulum. This ultimately results in the syn-
chronization of the metronomes.

1.2 Synchronization between Chaotic Systems

In this section, we give a brief introduction to the notion of synchro-
nization and an overview of the various interpretations of synchro-
nization used in this work. For a more exhaustive introduction to
the synchronization of chaotic systems, we refer to [Pik01; Gon04;
Boc18].

The first report on the synchronization of oscillators dates back to
Huygens in the 1700s [Oli15]. He found that his pendulum clocks
would synchronize when installed on a wooden beam. In his time,
the clocks would quickly run out of phase with each other. However,
the small momentum transferred in the beam was enough to estab-
lish a fixed phase shift between the clocks. A variation of Huygens’
experiment is depicted in Figure 1.7.

In 1975 Kuramoto started modern research on synchronization when
he was able to derive a mathematical model of phase oscillators that
settled on a common frequency under weak coupling [Kur75].

While unlikely candidates, it was soon found that synchronization
could also be observed between chaotic systems. Early work in this
field dates back to [Fuj83] and gained some momentum with the
application of chaotic systems to transmit secret messages [Pec90]. A
brief history of chaotic synchronization by one of its pioneers can be
found in [Pec15b]. Various types of (chaotic) synchronization have
been found and unified in a framework [Boc01].

Results from the synchronization of chaotic systems have been used
in control theory. By applying small perturbations in the non-syn-
chronous system, a desired state can be maintained [Boc00; Fra05].
The methods developed here were also used to analyze mental states
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in the brain [Nat04].

Since Lorenz’s research on weather prediction, chaos theory plays a
major role in the analysis of weather models. The most immediate
impact was the realization that the predictions must be calculated in
ensembles [Sli11]. Other approaches showed how seasonal predic-
tions could be made [Pal93], avoiding precise daily predictions and
favoring trends. The infrequent breakdowns of the polar vortex bi-
furcation points are typical to chaotic systems where the weather for
the next period can settle on different attractors [Cám19].

Synchronized chaotic systems were proposed to transmit secret mes-
sages. Early work on the topic boosted research in the synchroniza-
tion of chaotic systems. While the field is still under active research,
the focus has shifted from electrical to optical transmission [Pec15a;
Yao17; Uch05].

The most general (continuous) equation for synchronized two-component
systems can be written as

d
dt

x1 = F1(x1)− K1(x1, x2)

d
dt

x2 = F2(x2)− K2(x2, x1)

(1.6)

with Fi describing the dynamics of each system and Ki some cou-
pling function.

In this work, we will focus on diffusive coupling, which corresponds
to one-dimensional coupling function

Ki (x1, x2) = ci (x1 − x2) . (1.7)

In Section 3.1, we apply a unidirectional coupling scheme, also called
master-slave coupling. Here, only one of the systems receives feed-
back from its partner, we can write this as

d
dt

x1 = F1(x1)

d
dt

x2 = F2(x2)− c(x2 − x1) .
(1.8)

Although the previous section has different attractors for each com-
ponent, in Section 3.2 we investigate a larger system with identical
oscillators. It is a multi-component system and we extend Equa-
tion (1.6) as

d
dt

xi = F(xi)−∑
j

Lijc
(
xi − xj

)
. (1.9)

The coupling between the components is in the elements of the weighted
adjacency matrix Lij with Lii = 0.

In Chapter 4 we will go beyond these simple coupling schemes of
Chapter 2 and look at complex networks. While the underlying me-
chanics of synchronization are generally well understood, the stabil-
ity of noisy systems and identification of synchronized states is still
under active research [Kat20; Tim18].
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This section will introduce some of the known types of synchroniza-
tion and give a short overview of the unifying framework. From
this we will later be able to construct a novel measure and show its
features on typical coupled chaotic systems.

1.2.1 Identical Synchronization

In systems with identical attractors and mutual coupling, we can
observe Identical Synchronization (IS). We can rewrite the equations
of motion of Equation (1.6) and obtain

d
dt

x = F(x)− c(x− y)

d
dt

y = F(y)− c(y− x) .
(1.10)

Systems experience IS when there exists at least one trajectory such
that x(t) = y(t). In [Fuj83] the authors find that the Lyapunov expo-
nent can be used to determine whether a system experiences IS.

Similarly to the Lyapunov exponent for chaotic systems in Section 1.1.1,
it is used here to predict the divergence of both states. If the max-
imum Lyapunov exponent for x(t) = y(t) is positive, the two tra-
jectories diverge and we cannot have identical synchronization. If it
is negative, the identical state is attracting, and the system is syn-
chronous.

Although IS can be analyzed analytically for some cases (e.g. [Fuj83;
Ant17]), in most cases, we have to study IS numerically.

1.2.2 Generalized synchronization

Synchronization in regular oscillators is identified via their phase
relation. This allows the synchronization to be identified with offsets
or different amplitudes. Chaotic systems generally do not have a
well-defined phase, so in early work synchronization could only be
identified between identical trajectories (IS). This made it impossible
to identify synchronization between non-identical oscillators.

In [Rul95] an approach was proposed to evaluate synchronization
between a driver-response system

d
dt

x = F1(x)

d
dt

y = F2(y)− c(y− x)
(1.11)

where y can act as a proxy of x.

Since the dynamics of both systems are different, the trajectories will
not converge for typical coupling values.

According to [Rul95] two systems are synchronized when there ex-
ists a function for all t

φ(x(t)) = y(t) . (1.12)
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We will call φ the synchronization function. This aptly named Gener-
alized Synchronization (GS) would apply in all cases where a unique
relation from the driver to the response system could be found. IS
remains as a special case of GS where the synchronization function
φ is the identity.

Typical approaches for stability analysis as the conditional Lyapunov
exponent do not work for GS. Other methods such as the auxiliary
system method were proposed in [Aba96]. In Chapter 2 we will use
this method to derive a method to easily identify systems with GS.

1.2.3 Attempts on Unifying Theories

Next to IS and GS, various additional types of synchronization were
discussed. This includes phase [Pik97], anticipated synchroniza-
tion [Mas01] and lag synchronization [Ros97].

To define some common ground for synchronization, some attempts
to unify the definitions were initiated. In this work, we focus on the
framework proposed in [Boc01], extending the idea in [Bro00].

From the work in [Boc01] we can derive the previously mentioned
types of synchronization as special cases of their definition. We will
develop these ideas further and show that the so-called mutual infor-
mation is related to this abstract notion of synchronization and the
definitions of [Aba96].

Similar to GS, the unified framework considers that two trajectories
must be synchronized, if there exists a synchronization function φ.
In contrast to GS, the requirement for a synchronization function is
relaxed. It must only exist in an invertible projected phase space of
both trajectories. Transformation of the phase space allows for other
types of synchronization beyond GS.

We assume a phase space Z ∈ Rm1+m2 with its (mutually exclu-
sive) subsets X ∈ Rm1 and Y ∈ Rm2 . Two trajectories x ∈ X and
y ∈ Y form a joint trajectory z within the phase space. We as-
sume that if we can find a unique projection from x to y, the sys-
tems are synchronous. This is complicated when our trajectory is
curved and we have no homeomorphism between x and y. An illus-
tration of the problem is shown in Figure 1.8. With a diffeomorphism
F : Z ∈ Rm1+m2 7→W ∈ Rd1+d2 we can straighten out the manifold.

In the new space W we can find a function φ between the points.
Any point x̃ can then be transformed into W , and with the function
φ we can find the corresponding ỹ. As the projection F between
the spaces is invertible, we can find the parameters of the projection
in the original phase space. Although the synchronization function
exists only in W , the corresponding pairs can still be found due to
the diffeomorphism F .
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Z W
Figure 1.8: A curved manifold is straightened
out (Adapted from [Boc01]). A diffeomor-
phism F is used to "flatten" the points in Z
so that for each value u in W we can find
a v via φ(u) = v. The diffeomorphism be-
tween Z and W allows us to project the pair
of (u, v) back to (x, y).

Boccaletti [Boc01] requires the components of the W space dimension
d1 and d2 to be smaller or equal to their counterparts m1 and m2. We
construct two additional projections P1 : Rd1+d2 7→ Rd1 and P2 :
Rd1+d2 7→ Rd2 . These give us the subsets U ∈ Rd1 and V ∈ Rd2 . A
system is then defined as synchronous if the previous transformation
and an additional function φ : U 7→ V exist.

Next, we will look at the exact definition of the synchronization func-
tion φ. In Section 1.2.2 we introduced a synchronization function for
the definition of GS. Due to the conceptual and practical similarities,
we will keep the symbol and the name here. We call φ a synchro-
nization function when for any point on the trajectory (ũ, ṽ)

1. φ(ũ) = ṽ

2. φ is continues at ũ

3. from having a pair ε and δ that satisfies a relation where |u− ũ| <
δ implies |φ(u)− ṽ| < ε, then for this pair (ε, δ) it follows that if
|u(t)− ũ| < δ, then |v(t)− ṽ| < ε locally.

For a complete derivation of the definition, the reader is referred
to the original work [Boc01] or to some later coverage of the topic
[Boc18].





2
Novel Synchronization Measure

In this chapter, we introduce a measure of synchronization based
on information theory. Unlike similar approaches, it is bounded be-
tween 0 (no synchronization) and 1 (full synchronization). We will
prove that the measure approaches 1 only for synchronous systems.

We build on the idea of [Rul95; Bro00; Boc01], who worked towards a
fundamental definition of synchronization in chaotic systems. While
[Bro00] first explicitly tried to unify the growing zoo of synchroniza-
tion types, Boccaletti in [Boc01] showed a framework from which he
was able to derive all existing synchronization types. We will define
a measure, the synchronized mutual information, which detects the
existence of a synchronization function and thus determines whether
a system is synchronous. Primarily, the measure is well suited to de-
tect GS. However, the results of [Boc01] allow us to construct some
strategies that allow the detection of other types of synchronization.

Our measure is based on Shannon entropy and mutual informa-
tion. A coarse-grained variant of mutual information was proposed
in [Pal01] to assess potential synchronization averaged over sliding
time windows, eventually requiring large quantities of data. We are
not aware of any previous work that has been able to show a direct
relationship between the existence of a synchronization function and
mutual information. In order to show that our proposed measure ac-
tually identifies the existence of a synchronization function, we need
to recall some fundamental properties of information theory.

In [Pik01] the authors distinguish between active and passive exper-
iments. In active experiments, we can freely manipulate all param-
eters of the system and always observe the explored phase space.
In passive experiments, the system is a black box with only a few
knobs to tune. We are left with fewer analytical methods and have
to rely on the recorded values (which are often only a slice of the
phase space). Like other MI-based methods, our proposal is partic-
ularly well suited to passive experiments. We are not aware of any
MI-based method that has been able to demonstrate a direct corre-
spondence between its values and synchronization in the system.
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2.1 Introduction to Information Theory

This section serves as a quick reminder of the basic measures of in-
formation theory. Its central concept is entropy, a measure of the
amount of information contained in a signal.

The foundations of information theory are closely related to the de-
scription of entropy in [Sha48] as a measure of the amount of infor-
mation a noisy transmission can carry. A rigorous introduction to
the topic can be found in [Mac03; Yeu02].

A few words about notation: The observed random variable is written
as X with its possible observations Xi. We will also refer to Xi as the
symbol. Each observation is assigned a probability p(X = Xi) =

p(Xi). Later we will also use the joint probability p(Xi, Yj). We
restrict ourselves to discrete probability distributions.

2.1.1 Shannon Entropy

Shannon’s entropy originated in the study of signal transmission.
The transmission would be the random variable X (since the receiver
would not know its content) with Xi the received symbol. Its central
unit is the bit, calculated by

h(Xi) = −p(Xi) log2 p(Xi), (2.1)

is the information content of an observation. The unit is given by the
base of the logarithm and is called nat for the natural logarithm. As
the unit plays no further role in our discussion, we will omit the base
in any further notation.

Next, we want to estimate the information that we expect from a
signal. To do so, we study the slice of a random process with two
symbols 0 and 1:

... 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 ...

So how much information does this signal give us? Since we sam-
pled the signal ourselves, we know that p(0) = 0.2 and p(1) = 0.8
(which is also correctly reflected in the observed symbols). The infor-
mation content of the symbols with lower probability is higher, but
the other symbol is observed more often. We calculate the expected
information per symbol by

H(X) = − 〈log p(Xi)〉 = −∑
i

p(Xi) log p(Xi) (2.2)

for a symbol in our signal X [Gro13]. We call this expectation H(X)

the entropy [Sha48].

We wonder whether high- or low-probability events have a greater
impact on the overall entropy. The answer is found in Figure 2.1,
which shows how each probability affects the information contri-
bution of a single symbol. It shows that both certain events and
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Figure 2.1: In a binary distribution, the con-
tribution of each outcome Xi to the total en-
tropy peaks at values smaller than 0.5, how-
ever, the entropy is at its maximum when
both outcomes are equally likely. In a) we
see the information h of a single outcome on
the probability of observing that symbol. Al-
though the information gain for a single out-
come is at a maximum for symbols observed
less than 50 % of the time, b) shows that the
entropy of the binary distribution peaks when
both outcomes are equally likely.

non-events contain no information. Comparing the information of a
single symbol and the entropy of a random process with two possi-
ble outcomes, the entropy peaks for equal distribution of information
for an equal distribution of information, while the peak for a single
event is slightly skewed towards the lower probability events. This
concept can be generalized and it can be shown that the entropy for
a random variable with N possible observations attains its maximum
value when all probabilities are equal, thus

p(xi) =
1
N

. (2.3)

Finally, a note on the properties of Shannon entropy: Shannon en-
tropy is only well defined for discrete random variables. Extending
the measure to the continuous regime is not as simple as replac-
ing the sum by an integral without losing some of the properties of
the discrete case. Shannon himself made this mistake and proposed
[Sha48, p. 653] a continuous measure by replacing the sum with an
integral. This type of entropy is now known as differential or contin-
uous entropy. In particular, it is not guaranteed that the differential
entropy is ≥ 0 [Cov05, p. 243].

The correct extension to the continuous regime was later shown by
[Jay63, p. 201] and is known as the limiting density of discrete points.
However, this work restricts itself to Shannon entropy. In practice, we
will find that many estimators are derived for differential entropy.
Users should be aware that our results do not provide a basis for
the use of differential entropy estimators; further discussion of this
extension to the estimation of the measure proposed in Section 2.4
can be found in Section 2.6.5.

The total amount of information we have can always only increase
our knowledge of the system. The same is true for the entropy and

H(X) ≥ 0 (2.4)

means, we can never unlearn. This becomes clear when we look
at Equation (2.2). Due to the logarithm and upper bound of any
probability value, all terms in the sum must be negative (and the
sign inverts this).

We can deduce the upper limit from Figure 2.1 and see that the upper
bound of the entropy must be given for a system with equal proba-
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bilities. For a random variable with N possible observations, we can
therefore conclude

H(X) ≤ − log
1
N

. (2.5)

2.1.2 Mutual Information

So far we have introduced entropy as a measure of the expected in-
formation of an independent random variable. In many cases, we
can observe correlations between two signals X and Y. Information
theory provides us with tools to study the content of information and
the correlation between these variables. Together, the random vari-
ables have a joint probability distribution p(Xi, Yj) with its marginals
p(Xi) = ∑j p(Xi, Yj) and p(Yi) = ∑i p(Xi, Yj). The joint entropy is a
direct extension of the entropy for marginal distributions

H(X, Y) = − ∑
Xi ,Yj

p(Xi, Yj) log p(Xi, Yj) . (2.6)

Its upper and lower bounds are given by the entropy of its marginal
H(X) and H(Y) via [Mac03]

max[H(Y), H(X)] ≤ H(X, Y) ≤ H(X) + H(Y) . (2.7)

Correlations in the marginals of bivariate distributions allow a pre-
diction of one variable whenever the other variable is known. We
can measure the information of X remaining when Y is known with
the conditional entropy

H(X|Y) = −∑
i,j

p(Xi, Yj) log
p(Xi, Yj)

p(Yj)
. (2.8)

If X and Y are independent of each other, p(Xi, Yj) = p(Xi)p(Yj)

(Equation (2.8)) simplifies to

H(X|Y) = −∑
j

p(Yj)∑
i

p(Xi) log p(Xi) = H(X) (2.9)

and as expected, the conditional entropy becomes the entropy for
marginal distributions if X is fully independent of Y. This can be
shown by replacing p(Xi,Yj) with p(Yj) in Equation (2.9) [Mac03].
These cases give the upper and lower limit of the conditional entropy

0 ≤ H(X|Y) ≤ H(X) . (2.10)

With joint and conditional entropy, we can measure how much in-
formation is contained in the joint distribution or how much infor-
mation one provides to the other. Another measure is the shared
information between X and Y. This is calculated using the mutual
information (MI)

I(X; Y) =
N

∑
i

K

∑
j

p(Xi, Yj) log
p(Xi, Yj)

p(Xi)p(Yj)
. (2.11)
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The MI can be expressed in terms of joint, conditional, and Shannon
entropy. We will use the following expressions later. We find that the
MI can be expressed by

I(X; Y) = H(X) + H(Y)−H(X, Y)

= H(X)−H(X|Y)
= H(Y)−H(Y|X) .

(2.12)

These terms allow us to derive an upper and lower bound on the MI
by the entropy of its marginal distributions. By Equation (2.10) and
Equation (2.7) we can show that

0 ≤ I(X; Y) ≤ min[H(X), H(Y)] (2.13)

which can also be found in [Mac03].

2.2 Information Theory and Deterministic Systems

The previous section introduced Shannon entropy H(X) and mutual
information I(X, Y) as measures of the variability and (generalized)
correlation of the random variables X and Y to compute both the
entropy and the Mutual Information (MI) for a time series. We need
to find a reasonable way to estimate a probability distribution within
a time series. In other words: we need to find a representation of
the time series as a random variable and identify the states of the
trajectories with symbols of the random variable.

Since we are mainly operating on recorded time series, we will only
deal with those trajectories that are a countable set of vectors or
scalars x[t]. To identify these trajectories with a probability distri-
bution, we define a symbolization function S : R 7→ Ω (with the
sample space Ω), which assigns a symbol to each value in x[t]

S(x[t]) = Xi . (2.14)

Several points in time can be assigned with the same symbol Xi.
Therefore, we do not identify a symbol by the time t but with i.

By assigning a symbol to each point in time, we can calculate a dis-
crete probability distribution. The symbols Xi are then the outcomes
of a random variable (which we also call Xi). We then find that if we
pick an arbitrary point in time t, p(Xi) will be the probability that
the symbol assigned to x[t] is Xi.

The symbolization function S must balance two requirements: First,
it must be a “good” representation of the structure of the phase space
(The meaning of this is further discussed in Section 2.6.4) and at the
same time provide enough samples (within the restrictions of the
measurement) for each symbol to allow a proper estimation of its
probability.

To derive the symbols of the bivariate probability distribution we
assign a unique symbol to each unique pair of symbols from both
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trajectories at the same time t:

(Xi, Yj) = S(x[t])⊗ S(y[t]). (2.15)

With this approach, we lose the information about the temporal or-
der. Since the relationship between the two trajectories should be
fully encoded in the state of the common phase space, all informa-
tion is carried over into the joint distribution.

This leaves us with the question of how we can assign symbols to
each potentially multi-dimensional vector of the trajectory and cal-
culate the respective probabilities. Here we will mainly discuss an
approach that symbolizes the vector for each time point. This restric-
tion is not necessary, and other approaches to symbolization might
also work.

For a finite series, we could simply assign a different symbol to each
unique vector. For an accurately precise estimation, we need to have
several samples per symbol. For coarse-grained symbols, we will
lose details of the correlation between the trajectories. Fine-grained
approaches will result in undersampled distributions and will lead
to a possible overestimation of the correlation.

Probably the most common method is equidistant binning. We di-
vide the phase space into equal-sized bins and assign each point to
the bin it falls into. The number of bins NBins and their size and
position are chosen according to the data set. Although this method
gives good results, especially for low-dimensional data in higher-
dimensional phase spaces, the method can yield to undersampling.
For equal bins n in each dimension d, the total number of bins in-
creases with nd.

2.3 Mutual Information in the Presence of Synchroniza-
tion

Following Equation (2.13), we know that the MI I(Y; X) is bound by
the entropy of H(X) and H(Y). In this section, we will show that
approaching this upper bound indicates a synchronized system.

In this section, we will show that the MI can indicate the existence of
a synchronization function. More specifically, we will show that

I(X; Y) = min[H(X), H(Y)] ⇐⇒
∃ f : Rm1 → Rm2∀x ∈ Rm1 , y ∈ Rm2 with f (x) = y ( f (y) = x)

(2.16)

where f is the synchronization function. We build our proof on the
framework of synchronization proposed in [Boc01] (a short introduc-
tion is given in Section 1.2.3).
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2.3.1 An Existing Function Implies Maximum Mutual Infor-
mation

This section proves the implication ∃ f : Rm1 → Rm2∀x ∈ Rm1 , ∀y ∈
Rm2 with f (x) = y then I(X; Y) = min [H(X), H(Y)] (see Equa-
tion (2.16)). We need to show that if there is a synchronization func-
tion f , then the I is equal to its bound given by its marginal entropies.

As we want to avoid a special case where either of the marginal
entropies approaches zero, we will restrict ourselves to non-constant
trajectories.

A short note on the notation: Sometimes we will write f (Xi) = Yj by
which we mean that we calculate

S ( f (x[t])) = Yj for S(x[t]) = Xi . (2.17)

Theorem 1: If there exists a function f (x[t]) = y[t] for all t and
two non-constant trajectories x[t] and y[t] then H(Y) ≤ H(X).

Proof. If there exists a function f (x[t]) = y[t] we can rewrite the joint
probability function p(Xi, Yj) of the trajectories x[t] and y[t] as

p(Xi, Yj) = p(Xi, f (Xi)) = p(Xi). (2.18)

The same relation allows us to rewrite the marginal probability p(Yi)

as a sum of p(Xi)

p(Yj) = ∑
Xi

p(Xi, Yj) = ∑
Xi : f (Xi)=Yj

p(Xi). (2.19)

This means we can rewrite the entropy H(Y) in terms of the random
variable X

H(Y) = −∑
Yj

p(Yj) log p(Yj)

= −∑
Yj

∑
Xi : f (Xi)=Yj

p(Xi) log

 ∑
Xk : f (Xk)=Yj

p(Xk)

 .
(2.20)

We want to estimate the upper bound of H(Y). Since the logarithm
is strictly monotonically increasing, we can write

− log(p(Xi) + p(Xk)) ≤ − log(p(Xi)) (2.21)

and consequently

− log

 ∑
Xk : f (Xk)=Yj

p(Xk)

 ≤ − log p(Xi) . (2.22)

Every p(Xi) in Equation (2.20) is estimated with the previous rela-
tion. This gives

H(Y) ≤ −∑
Yj

∑
Xi : f (Xi)=Yj

p(Xi) log p(Xi) (2.23)
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by only using those Xk in the sum of Equation (2.20) where Xk = Xi.

Due to the synchronization function f we know that for each x[t]
there exists exactly one y[t]. Values Xi in the double sum above
equation will consequently only be visited in one outer sum. One
Xi can only map to one Yi. We then rewrite the equation we have
derived with

H(Y) ≤ −∑
Xi

p(Xi) log p(Xi) = H(X) (2.24)

and complete the proof.

We now proceed to show that the upper bound for the MI is given
by H(X) if there exists a synchronization function f .

Theorem 2: If there exists a function f for two non-constant tra-
jectories x[t] and y[t] such that f (x[t]) = y[t] for all t, then I(X; Y) =
min[H(X), H(Y)].

Proof. If there exists a function f (x[t]) = y[t] we can rewrite the joint
probability function of the trajectories x[t] and y[t] as

p(Xi, Yj) = p(Xi, f (Xj)) = p(Xi). (2.25)

We use this relation to rewrite the MI

I(X; Y) = ∑
Xi ,Yj

p(Xi, Yj) log
p(Xi, Yj)

p(Xi)p(Yj)
(2.26)

= ∑
Xi ,Yj

p(Xi, Yj) log
p(Xi)

p(Xi)p(Yj)
(2.27)

= − ∑
Xi ,Yj

p(Xi, Yj) log p(Yj) (2.28)

where we preserved the joint distribution outside the logarithm for
the next step. Since the remaining distribution in the logarithm is in-
dependent of Xi we insert the joint probability of p(Yj) = ∑Xi

p(Xi, Yj)

−∑
Yj

[
log p(Yi)∑

Xi

p(Xi, Yj)

]
= −∑

Yj

p(Yj) log p(Yj) (2.29)

= H(Y) = I(X, Y). (2.30)

Thus, we have established a direct connection between the existence
of the synchronization function f and the MI. If f exists, the MI will
be equal to the lower of the marginal entropies.

Theorem 3: If there exists a function f for two non-constant trajectoriesx[t]
and y[t] such that f (x[t]) = y[t] for all t, then the I(X; Y) =

min[H(X), H(Y)].



novel synchronization measure 23

Proof. If there exists a f (X) = Y then from Theorem 1 we know that
H(Y) will be smaller than H(X). Thus

min[H(X), H(Y)] = H(Y) (2.31)

Theorem 2 allows us to replace I(X; Y) by H(Y). We can then write

I(X; Y) = H(Y) = min[H(X), H(Y)] = H(Y) (2.32)

which is true.

2.3.2 Mutual Information and the Existence of a Function

In this part, we will prove the other implication in the equivalence
of Equation (2.16). We will show that if the MI is equal to the bound
given by the lower of its two marginal entropies, there exists a func-
tion f that maps a point in X to Y.

Theorem 4: If the I(X; Y) = min[H(X), H(Y)] there exists a function f
such that f (x[t]) = y[t] and/or f (y[t]) = x[t].

Proof. With Equation (2.12) we write the I as

I(X; Y) = H(Y)− H(Y|X) (2.33)

where we assume w.l.o.g. that H(Y) ≤ H(X). For the right term to
be equal to I(X, Y), the conditional entropy H(Y|X) has to be zero
(without the entropy also being zero). The conditional entropy can
be written as

H(Y|X) = −∑
i,j

p(Xi, Yj) log
p(Xi, Yj)

p(Xj)
(2.34)

where the single terms only evaluate to zero where either p(Xi, Xj) =

0 or p(Xi) = p(Xi, Yj). This is only the case if y[t] is perfectly pre-
dicted by x[t], essential if there exists a function f (x[t]) = y[t].

Theorem 5: If there exists no synchronization function f such that
there are two trajectories x[t] and y[t] such that f (x[t]) = y[t] (or
vice versa) for all t, then the I(X; Y) < H(Y) (or < H(X)) strictly.

Proof. This lemma can be shown by contradiction to Theorem 4. If
the I(X; Y) = H(Y) then, due to Theorem 4, there exists a synchro-
nization function.

We know now that for non-constant trajectories x[t] and y[t] if the
I(X; Y) = min[H(X), H(Y)] there exists a synchronization function
f. Furthermore, if no such function exists, then it must be that the
I(X; Y) < min[H(X), H(Y)].
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2.4 Synchronous Mutual Information

So far we have shown that the MI is sensitive to the presence of
synchronization. In this section, we will use the previous findings
to propose the Sychronized Mutual Information (SMI). The SMI is a
measure of synchronization based on information theory. While MI
has been used in previous methods to find synchronization, we have
proved a link between the existence of a synchronization function
and MI.

Later in this section, we will also consider the special case of van-
ishing marginals. The SMI diverges when one of the entropies of
the MI’s marginals approaches zero. We have studied all cases of
vanishing marginals in Section 2.4.2.

2.4.1 Definition

For now, we define a mutual information theory-based measure.

Definition 1: Let there be two trajectories x[t] and y[t] and with
their assigned random variables X and Y. We then call

SMI(X; Y) =


I(X;Y)

min[H(X),H(Y)] if H(X) 6= 0 6= H(Y)

1 if H(X) = 0 = H(Y)

0 if H(X) = 0 or H(Y) = 0

(2.35)

the synchronous mutual information (SMI).

We can immediately see that the SMI must be bounded between 0
and 1. Since neither the entropy nor the MI can be negative Equa-
tion (2.4), the MI must be less than the entropy of one of its ar-
guments (see Equation (2.13)). Furthermore, in the following para-
graphs, we will show that this measure is indeed a good measure for
synchronization. We achieve this by first showing that the normal-
ization for the SMI corresponds to the definition of synchronization
as given by [Boc01] and in [Rul95].

2.4.2 Limit of a Vanishing Mutual Information

As a simple normalization of the MI

I(X; Y)
min [H(X), H(Y)]

(2.36)

is not well defined if the entropy of one or both of x[t] and and y[t]
approach zero, we have defined special values for these cases. Here,
we give a short justification for each of these choices and show that
they do not contradict the central case.

In order to find reasonable values for each of the cases, we explore
the limit of trajectories approaching a constant value. We describe
these using a general contingency table
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Xε, Yε Y1,ε Y2,ε

X1,ε 1− k− αε gε 1− k + (g− α)ε

X2,ε k + (α− 1)ε (1− g)ε k + (α− g)ε
1− ε ε 1

To keep the probabilities well defined, we apply some restrictions on
the parameter so that α ≥ 1, 0 ≤ g, k < 1. We see that with this
contingency table, the limit entropy for ỹ is

lim
ε→0

H(Yε) = lim
ε

[−(1− ε) log(1− ε)− ε log ε] = 0 (2.37)

where the limit for H(Xε) is not zero for k 6= 0. This allows us to
control the different cases with k and check how the results depend
on the “speed” with which the joint probabilities approach zero.

First, we will look at the case where k > 0. We can write the MI

I(Xε, Yε) =− (g− 1) ε log
(
− g− 1
(α− g) ε + k

)
+ gε log

(
− g
(α− g) ε + k− 1

)
+ ((α− 1) ε + k) log

(
− (α− 1) ε + k
(α− g) ε2 − (α− g) ε + (ε− 1) k

)
− (αε + k− 1) log

(
− αε + k− 1
(α− g) ε2 − (α− g + 1) ε + (ε− 1) k + 1

) (2.38)

and see that indeed, the limits are

lim
ε→0

I(Xε, Yε) = 0 (2.39)

and

lim
ε→0

I(Xε, Yε)

H(Yε)
→ 0

0
(2.40)

To find a non-diverging limit, we apply the rule of l’Hopital and find
the derivative

I′(Xε, Yε) = (α− 1) log
(
− (α− 1) ε + k
(α− g) ε2 − (α− g) ε + (ε− 1) k

)
− α log

(
− αε + k− 1
(α− g) ε2 − (α− g + 1) ε + (ε− 1) k + 1

)
− (g− 1) log

(
− g− 1
(α− g) ε + k

)
+ g log

(
− g
(α− g) ε + k− 1

)
(2.41)

and

H′(Y) = log(1− ε)− log ε. (2.42)

By removing terms that do not contribute to the limit of ε → 0, we
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derive with

lim
ε→0

I′(Xε, Yε) = lim
ε→0

[
− (g− 1) log

(
1− g

k

)
+ g log

(
g

1− k

)
+ 2 α− 2

]
[− log ε]−1 = 0

(2.43)

which is dominated by the log approaching infinity. A second glance
at the terms shows us that the result is independent of α and g. Only
where k = 0 do we have to look at the system again. The same
analysis can be applied for k = 0 and, again with l’Hopital, we find
that

lim
ε→0

I(Xε, Yε)

H(Yε)

∣∣∣∣
k=0

= lim
ε→

I′(Xε, Yε)

H′(Yε)

∣∣∣∣ = 1− g. (2.44)

We should consider here that in the case where both H(Xε) and
H(Yε) vanish, H(Yε) is not necessarily smaller than H(Yε). However,
since we cannot determine g for a constant trajectory, we cannot find
a unique limit for the SMI where H(Yε) = H(Xε) = 0.

While we can show that in the case of strictly one entropy being zero
is a good continuation in Equation (2.35), for the case of both en-
tropies evaluating to zero, we can only show that our definition does
not contradict the limit of vanishing entropies (see Equation (2.43)).
It is chosen such that the results of the SMI replicate those of the
identical synchronization.

2.5 Types of Synchronization

In previous parts, we have shown that the MI can indicate the pres-
ence of a synchronization function. According to the work of [Boc01],
synchronization is defined by the presence of such a function. In
Boccaletti’s work, the synchronization function does not necessarily
have to exist between the trajectories in their phase space. If we can
find a diffeomorphism F in another phase space with a function be-
tween the trajectories in the new phase space, we can also speak of
synchronization.

In the simplest case, the diffeomorphism is the identity operator and
projects the phase space of the trajectories onto itself. If we find a
synchronization here, the system is in GS. Furthermore, a synchro-
nization function f = 1 means that the system is in IS.

When we use an unaltered phase space and calculate the SMI there,
we test the system for GS.

While in its general form, the I is restricted to detect only GS, for
certain classes of synchronization, reasonable candidates for the dif-
feomorphism F can be easily tested. The transformation into the
W-space allows us to identify any relations there. Below are two
examples of such transformations.



novel synchronization measure 27

For lagged synchronization, we expected two systems to follow an
identical trajectory but shifted by a fixed amount in time. We can
set u(t) = x(t) and v(t) = y(t − τ) and again end up with a sys-
tem where the I can predict the existence of a synchronous function.
In a practical application, we would need to test some candidates
τ to see if we could identify synchronous behavior in any of them.
Although delayed synchronization implies identical but shifted tra-
jectories |x(t)− y(t− τ)| = 0, with our method we can also identify
structures where there is a K such that |K(x(t))− y(t)| = 0, essen-
tially a time-delayed GS.

Finally, phase synchronization (PS) can also be detected. An entropy-
based method is proposed in [Tas98], detecting phase synchroniza-
tion between two trajectories by extracting the phase with a Hilbert
transformation

g(y) =
1
π

∫ ∞

−∞

x(t)
y− t

dt . (2.45)

To find phase information, other methods can be used, too. Accord-
ing to [Boc01] any proper phase function Ψ : x(t) → [0, 2π[ can be
used to construct F with its components Ψ(x(t)), Ψ(y(t)). While
systems that fulfill

|Ψ (x(t))−Ψ (y(t))| < R (2.46)

are understood to be phase synchronous, [Ros96] we again are able to
find richer patterns. In [Kra04a] a further discussion of the extraction
of phases in chaotic systems can be found.

2.6 Estimating Mutual Information and Entropy

To compute the entropy of a given trajectory x[t], we need to assign a
probability distribution to this function. In the previous chapter, we
discussed one possible approach to find the probability of getting
a particular value by choosing any value in the trajectory. In most
cases, we will not even be able to get an analytical form of the trajec-
tories. To be able to assign a probability distribution to the trajectory,
we have to estimate the property from the sampled set.

2.6.1 Entropy

Naturally, the quality of our estimate will depend on the available
data and the resolution and distribution of our symbolization. How-
ever, the estimation method itself also has a big impact on the quality
of the results. The most obvious method is to count all occurrences
of values in X and assign the relative frequency of each value as the
probability in p(Xi). Similarly, we compute the joint distribution of
p(Xi,Yj) by counting the frequencies of all tuples (Xi, Yj). We plug
these probabilities into Equation (2.11) and obtain

〈H(X)〉naive = ∑
Xi

N(Xi)

N
log

N(Xi)

N
, (2.47)
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the naive estimator where N = ∑i N(Xi). While it will also con-
verge to the true entropy in the limit of infinite samples, it has been
shown to underestimate the entropy for any finite number of samples
[Gra88; Kra04b].

The Bayesian estimator of the entropy of a random variable X can be
written as

〈H(Θ)|X〉 =
∫

Θ
dΘp(Θ|X)H(Θ) (2.48)

where Θ are the parameters of a probability distribution and p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
is the probability of those parameters given the observed

random values X. H(Θ) is the entropy of the distribution. Shannon
entropy is defined by

H(Θ) = ∑
i

pi(Θ) log pi(Θ) = ∑
i

hi(Θ) (2.49)

which allows us to write Equation (2.48) as

〈H(Θ)|X〉 =
∫

Θ
dΘp(Θ|X)∑

i
hi(Θ)

= ∑
i

∫
Θ

dΘp(Θ|X)hi(Θ).
(2.50)

The naive estimator is based on the Poisson distribution, which we
characterize with a parameter λi for each symbol Xi. This assump-
tion implies that the probability of observing each Xi is independent
of observing all other symbols. We insert Θ = (...λi...) into the above
equation and since

∫
λj

dλj p(λj|X)h(λi) = 1h(λi) we can write

〈H(Θ)|X〉 ≈∑
i

...
∫

λj

dλi p(λj|X)h(λi)... (2.51)

= ∑
i

∫
λi

dλi p(λi|X)h(λi). (2.52)

In a final assumption, we expect the estimation of an entropy term
to be equal to the estimator of the probability of the symbol, e.g.
〈h(λ)|X〉=h (〈λ|X〉) and we obtain

〈H(Θ)|X〉 ≈∑
i

(∫
λi

dλi p(λi|X)λi

)
(2.53)

where
∫

λ dλp(λ|X)λ) is just the estimator for λ for which we know∫
λ

dλp(λ|X)λ) = λ̂ =
N(Xi)

N
. (2.54)

Putting everything together, we derive the aforementioned naive es-
timator in Equation (2.47).

Let us see if we can do better. By removing the assumption that
〈h(λ)|X〉=h (〈λ|X〉) it was previously shown by Grassberger that the
bias is, while not completely removed, reduced [Gra88]. The author
found that we can write Equation (2.52) as

〈H(Θ)|X〉 ≈ ĤG(X) = log N − 1
N ∑

i
N(Xi)GN(Xi)

, (2.55)
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where

Gn = Ψ(n) + (−1)n
∫ 1

0
dx

xn−1

x + 1
(2.56)

with the digamma function Ψ(n). The full derivation of the Grass-
berger entropy is found in [Gra88] with a revised version published
later in [Gra08].

Furthermore, we can remove the assumption that the probabilities of
the symbols being independent of each other (which allowed us to
write Equation (2.52)). This can be done using a Dirichlet distribu-
tion. One such example is the NSB estimator from [Nem04]. There
are also estimators for continuous systems where the sum in the en-
tropy is replaced by an integral. These continuous entropies do not
guarantee some of the properties of the Shannon entropy that we
will need later. Although the NSB estimator can be used, we used
the Grassberger estimator during the work on this thesis because it
is easier to use.

2.6.2 Mutual Information

The MI between two trajectories x[t] and y[t] is estimated by

〈I(Θ)|X, Y〉 =
∫

Θ
dΘp(Θ|X,Y)I(Θ) (2.57)

where Θ are the parameters for the joint distribution. Due to Equa-
tion (2.12) the above equation can be rewritten to

〈I(Θ)|X, Y〉 =
∫

Θ
dΘp(Θ|X, Y)(HX(Θ) + HY(Θ)−H(Θ)) (2.58)

where HX(Θ) is the entropy over the marginal X marginal and H(Θ)

the joint entropy. We can resolve the sum in the last term and derive
with an estimator

〈I(Θ)|X, Y〉 = 〈HX(Θ)|X, Y〉+ 〈HY(Θ|X, Y)〉 − 〈H(Θ)|X, Y〉 .
(2.59)

We insert the Grassberger estimator from Equation (2.55) and get

IG(X, Y) = HG(X) + HG(Y)− HG(X, Y). (2.60)

This approach, while naive, serves its purpose. It should be noted
that while the MI has its lower bound at zero, this estimator can
have negative values, especially in cases where there is little or no
correlation between X and Y.

2.6.3 Reference Implementation

In the previous section, we introduced the SMI as a classifier for
synchronization between two trajectories. So far we assumed that
a probability distribution is available. In practice, the distribution
will not be readily available and we have to derive it from the sam-
ples ourselves. In Section 2.6.1 and Section 2.6.2 we discussed vari-
ous methods to estimate entropy and MI for a given set of samples.
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We motivated the Grassberger estimator HG(X) which we will use
within this thesis.

We want to estimate the SMI from Section 2.6.2 and first have to
check if all or one entropy is zero. Where only one entropy is zero,
we will also return 0 as the result, when both are zero, we will return
1. W.l.o.g we assume that 0 < H(Y) < H(X) and the SMI can be
calculated by

〈SMI(X; Y)〉 =
〈

I(X; Y)
H(Y)

〉
=
∫

Θ
dΘp(Θ|X, Y)

(
1 +

HX(Θ)

HY(Θ)
− H(Θ)

HY(Θ)

) (2.61)

for which we assume that the parameters of Θ for each variable X
and Y do not mix. With a second assumption, that

〈
1

h(Θ)

〉
= 1
〈h(Θ)〉

we derive with

〈SMI(Θ)|X, Y〉 = 1 +
〈HX(Θ)〉
〈HY(Θ)〉 −

〈H(Θ)〉
〈HY(Θ)〉

= 1 +
HG(X)

HG(Y)
− HG(X, Y)

HG(Y)
.

(2.62)

The results of the last equation are then used to calculate those
branches of the SMI where the entropies of both values are greater
than zero. In Section 2.6.2 we gave the algorithm that calculates HG.
The algorithm was first introduced in [Gra88]. For the implemen-
tation, we use an approximation of the Grassberger function G(n)
given in [Sta16] for the count of events n >= 50. In this implemen-
tation, we write Grassberger’s estimator from Equation (2.55) as

ĤG(X) = G(N)− 1
N ∑

i
N(Xi)GN(Xi)

. (2.63)

The algorithm to calculate ĤG(X) is given in Algorithm 2.1.

2.6.4 On Good Binning

We have established the Grassberger estimator to calculate the SMI.
Throughout this work, we use a linear binning approach. Although
it works well for the chosen systems, especially in higher dimensions,
individual bins quickly become undersampled. To better understand
the limitations of the linear binning approach (Figure 2.2), we will
examine a sample set.

We create two fully correlated trajectories that share a phase space
x, y with

x(t) = t

y(t) =
t
2
+ sin(t) .

(2.64)

Figure 2.2 shows the resulting phase space with two binning ap-
proaches. In Figure 2.2 a) we see how with a generous amount of
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Listing 2.1: Implementation for the Grass-
berger entropy estimator . The user pro-
vides the frequencies of all observed sym-
bols. The algorithm is described in Equa-
tion (2.63).

using SpecialFunctions # SpecialFunctions.jl package required

function grassberger_function(ni)

n = ni - (ni % 2)

if n == 0

return 0

end

if n >= 50

a = 1. / (24*n^2)

b = 7. / (960*n^4)

c = 31. / (8064*n^6)

return log(2*n) + a - b + c

end

return -log(2) + 2 * digamma(2 * n) - digamma(n)

end

# frequencies: List of Integers

function grassberger_entropy(frequencies)

gb_weighted_events = 0

for f in frequencies

gb_weighted_events += f*grassberger_function(f)

end

events = sum(frequencies)

entropy = grassberger_function(events) -

(1. / events) * gb_weighted_events

return entropy

end
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Figure 2.2: A good binning strategy is nec-
essary to preserve the structure of the sam-
pled function while not undersampling indi-
vidual bins. The symbols for a sinus curve
superimposed with a line are derived with an
equally spaced binning strategy (see Equa-
tion (2.64)). We see that for strategy a),
while the form of the function is better pre-
served by the bins, individual bins are un-
dersampled. The second binning strategy b)
has larger bins and thus more samples per
bin; however, it does not preserve the struc-
tural features of the function as well. For bet-
ter results, adaptive binning strategies can
be applied, but are neither shown here nor
applied within this work.

bins, many are unused (which is not a problem), and some under-
sampled. In contrast, in Figure 2.2 b) the bins are well populated,
however, the structure of the phase space is lost.

In Figure 2.3 we study the measured SMI for a random distribution
and the system defined in Equation (2.64). The SMI is calculated
for each random and regular system with n samples and either 10
or 100 different numbers of bins. For the regular system, we expect
the SMI to be evaluated to 1. The random system should not show
any correlation and we expect the SMI to vanish. We see that the
variation of the SMI quickly stabilizes where the number of samples
exceeds the number of different symbols. With an undersampled
set, we were unable to reliably distinguish between spurious and
real correlations.

Interestingly, we can see some “oscillation” for higher numbers of
sampling points. The curve sampling is performed with equal in-
tervals between the points. We assume that the oscillation reflects
aliasing effects from the finite resolution of the binning process and
that certain distances between the points are better suited for each
chosen binning approach.

2.6.5 Alternative Estimators

As we have seen in the previous section, linear binning algorithms
can show problems with a representative sampling of the phase space.
The good news is that the SMI can be used with other estimators.
While linear binning is sufficient for many use cases, it is especially
limited in higher dimension and phase spaces with a complex struc-
ture.

The obvious solution seems to be to avoid a naive dissection of the
phase space into equally sized volumes. By adapting the size of
the bins to approach equal sampling, information losses should be
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Figure 2.3: Uncorrelated systems can only
be distinguished from synchronized systems
if enough samples are available. The func-
tion show in Figure 2.2 (and generated from
Equation (2.64)) is sampled with n points
and then the SMI is calculated with either
10, 100, or 1000 bins in each dimension.
The SMI we expect for a correlated system,
such as Equation (2.64), is one. However,
the results obtained with finite sampling and
finite bin size show that this value is not
reached. Nevertheless, when the correlated
data points are compared with uncorrelated
points from a two-dimensional random dis-
tribution, it shows that with enough samples
the correlated system can be distinguished
from the uncorrelated, the contrast depend-
ing on the number of bins and the number of
samples.

minimized.

This is exactly what happens in adaptive sampling approaches. There
are methods for adaptive binning, for example [Wor15; San01]. Other
methods use different approaches to estimate the histogram. In
[Gen14] the histogram is replaced by a Bayesian approach with a
constant-value probability density function and a Dirichlet prior. For
estimators of discrete sets of data, we finally find the NSB estimator
proposed in [Nem04]. It lifts the assumption that the frequencies of
single symbols can be calculated independently and is thus able to
compensate for some bias. For datasets with an unknown or (count-
ably) infinite number of symbols, the estimator in [Arc14] is a good
option, although for synchronous systems the assumption of infinite
support is not compatible with the dissipative nature of these sys-
tems.

An entirely different approach to estimation can be taken for differ-
ential entropy. The KSG estimator [Kra04b] calculates the density of
points in an area around each point. The density is then used as a
proxy for the probability of a point. While the original method esti-
mates the entropy, in [Kra04b] the method is extended to mutual in-
formation by choosing a similar approach to that in Equation (2.55).
The paper proposes two methods. In later work, one of these meth-
ods received an additional bias correction [Gao16].

The Kraskov entropy estimates a proxy density for each point by
calculating the next N neighbors. This allows for better adaption to
the dynamics of the systems than using a static binning method. As
mentioned above, this method is based on differential entropy. Dif-
ferential entropy replaces the discrete/categorical distribution of the
Shannon entropy with a continuous probability distribution. Shan-
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non himself proposed to simply replace the sum with an integral and
derived with

HD(X) = −
∫

Rn
dxp(x) log p(x) (2.65)

for a continuous random variable X in Euclidean space. It was shown
in [Jay63] that the correct extension of Shannon entropy to continu-
ous probability distributions is given by

HL(X) = −
∫

Rn
dxp(x) log

p(x)
m(x)

. (2.66)

Otherwise similar to differential entropy, it normalizes p(x) with
m(X). It gives the densities of the sampling. While the differential
entropy depends on the particular choice of dimension, this effect
is canceled by the limited entropy of discrete points. This is an ap-
proach to the problem that is not very widespread and thus will not
be treated in this work. Since differential entropy does not guarantee
any of the properties used to show the effectiveness of the SMI, it
does not provide a suitable alternative.



3Chaos & Synchronization

In this chapter, we will apply the Sychronized Mutual Information
derived in the previous chapter (see Equation (2.35)) to some typical
toy systems.

As a test system for continuous systems, we will use a driver/re-
sponse system by coupling a Rössler to a Lorenz system. To test the
performance on mutually coupled systems, we apply the SMI to a
linear chain of logistic maps, exploring different coupling parame-
ters, including a single-step delay coupling.

3.1 Driver/Respone System

The first model to which we will apply the SMI is a driver/response.
Each system will have different dynamics. We follow the type of
system introduced in Equation (1.8).

As a benchmark, we use a coupled Lorenz-Rössler system. A short
overview of each system is given in Section 1.1.3 and Section 1.1.4.

The equations of motion for the coupled system are given as

d
dt

x1 = −x2 − x3

d
dt

x2 = x1 + ax2

d
dt

x3 = p + x3(x1 − µ)

(3.1)

d
dt

y1 = σ(y2 − y1)− κ(x1 − y1)

d
dt

y2 = y1(r− y3)− y2

d
dt

y3 = y1y2 − by3

(3.2)

where the driver x is a Rössler attractor and the response y is a
Lorenz system. The diffusive coupling function c from Equation (1.8)
is here given as

c(x− y) = κ(x1 − y1) , (3.3)

where κ is a scalar coupling the Lorenz with the Rössler system.
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The system was introduced in [Aba96] as an example system to show
the performance of the auxiliary system method.

3.1.1 Methods

For the auxiliary system method, we introduce a second response
system. It has the same parameters as the reference system

d
dt

y′1 = σ(y′2 − y′1)− κ(x1 − y′1)

d
dt

y′2 = y′1(r− y′3)− y′2
d
dt

y′3 = y′1y′2 − by′3

(3.4)

however, its initial parameters are slightly perturbed between differ-
ent simulations.

In their paper [Aba96], the authors proved that if the reference sys-
tem y and the auxiliary system y′ converge, then y and x are syn-
chronous. They used this method to show that their coupled system
experiences GS

To track the distance between the auxiliary and reference systems, we
allow the trajectories to settle on their attractors and then calculate
the average Euclidean distance d

d =

√
1

3N ∑ |y(t)− y′(t)|2 (3.5)

for the times t.

A disadvantage of the method is its sensitivity to initial parameters.
Although convergence between the auxiliary and reference systems
implies synchronization, its absence is not a sign of decoherence.
Depending on the displacement, the auxiliary system may end up in
an attractor different from the reference system. In these cases, the
reference and auxiliary systems will diverge, even when the driver
and the driven system are synchronized. This drawback was already
noted in the original paper [Aba96].

The simulations were carried out using julia with the differential
equation package [Bez17; Rac17]. We used a Runge-Kutta solver
with a fixed step size of 0.0002 s, more specifically the provided Tsit5
solver [Tsi09]. Parameters and initial conditions are taken from [Aba96]
and are given in Table 3.1.

We allow an equilibration time of 50 s. For another 150 s, the system
was recorded for its analysis.

We calculate the SMI by two different methods. To use the SMI as
defined in Equation (2.35), we have to use the full phase space. This
is our first approach, and we call it SMI3. We want to see if the SMI
can also yield helpful results if the full phase space is not available.
To test this, we restrict the SMI to use only data from x1 and y1 and
call this approach SMI1.
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Parameter Value
a, p 0.2
b 8/3

r 28
σ 10

µ 5.7
κ 0− 20

Variable Value
x1, x2 1
x3 0
y1 1
y2 5
y3 10
y′1 1± 0.5 · 10−3

y′2 5± 0.5 · 10−3

y′3 10± 0.5 · 10−3

Table 3.1: Parameters for the Lorenz driven
Rössler system, see Equation (3.1), Equa-
tion (3.2) and Equation (3.4).

Strictly speaking, the equivalence between the existence of a func-
tion connecting x and y and the SMI1 attaining the maximum value
of one is not guaranteed anymore. However, in many practical ap-
plications, we cannot access the full phase space and have to derive
our conclusions with the available data. Evaluating the system, we
compare the performance of the reduced phase space SMI1 with the
full phase space SMI3.

3.1.2 Results

For each coupling strength κ, we calculated the distance d between
the auxiliary and reference systems (see Equation (3.5)) and the SMI.
To calculate the SMI, each point in time has to be converted into
a symbol representing an individual bin. Bin boundaries were de-
termined by dividing the phase space into equal bins so that each
dimension has 10 equally sized bands between the minimum and
maximum values.

With the resulting label frequency, we calculate the SMI following
the algorithm provided in Section 2.6.3. The results obtained for the
coupling values κ between 0 and 20 are shown in Figure 3.1. As men-
tioned earlier, the auxiliary system method can show non-converging
auxiliary and reference systems even in cases where the driver and
response system are synchronized. To mitigate this problem, we cal-
culated d for 100 different initial parameters for each κ, uniformly
distributed within the bounds given in Table 3.1. In Figure 3.1 a) we
show the minimum and maximum values of d as a blue ribbon. The
minimum values are highlighted by the darker blue line. Since the
existence of a converged auxiliary/reference pair indicates synchro-
nization, this line can also be used as a can also be used as a positive
proof of synchronization.

For the minimum values of d we see a clear separation between the
incoherent regime κ ≤ 2.2 and the synchronous regime for κ > 2.2.
This separation is also obtained by the SMI.

For the auxiliary system method, the results would have been am-
biguous if we had not repeated the simulation with different initial
parameters. In Figure 3.1 b) we show the distribution d for the same
κ = 2.2 with different initial parameters. Here, we can clearly see
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Figure 3.1: When distinguishing between
the synchronized and the unsynchronized
regime, the results of the SMI match that of
the auxiliary system method. Since the SMI
does not use an auxiliary system, its results
do not depend on the right choice of dis-
placement. The results of both methods for
coupling κ between 0 and 20 are presented
in a). Two approaches were used to com-
pute the MI: For SMI3 the full phase space of
the driver/response system was used, SMI1

relies on the use of x1 and y1. For the aux-
iliary system method, d was calculated with
several different displacements of the auxil-
iary system from the response system. The
minimum and maximum average differences
d for each κ are shown as a blue ribbon. Min-
imum values are highlighted with the darker
blue value, since the vanishing d for a given
κ shows synchronization. We can be sure
that the systems were synchronized, how-
ever, with the auxiliary system method sev-
eral attempts might have been necessary.
In b) we show a cut through the ribbon for
κ = 2.2. It shows that the distance between
reference and auxiliary systems usually falls
into two categories: Converged or far apart.
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where the auxiliary and reference systems have gone into different
basins of attraction and where they have converged.

From the point of view of the auxiliary system method, the actual
transition between the synchronized and incoherent regimes is un-
clear. It is possible that with the right choice of perturbation, syn-
chronized systems could have been found for even smaller κ. This
uncertainty is eliminated by the SMI.

The results in Figure 3.1 also show that the maximum values of d(κ)
are not outliers. There is a real risk that the auxiliary system will
settle on a different attractor from the reference system. In the early
work on the comparison, d was calculated for only a single displace-
ment at each κ. In the transition from incoherent to synchronous
regime, d would make several jumps, indicating a change from syn-
chronous to incoherent and back for several consecutive κ.

In Section 2.4 it was shown that the SMI is exactly 1 for synchro-
nized systems and synchronized systems only. This is true if the
distribution underlying the time series is known perfectly. However,
in reality, this is not the case. We have to estimate the probability
distribution from the available data. This means that even in fully
synchronized systems, our SMI will not be 1. As we can see in our
example, the contrast between synchronized and incoherent systems
is nevertheless strong enough to be a useful measure for both, SMI1

and SMI3.
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Figure 3.2: The results of the SMI in Fig-
ure 3.1 are confirmed by visual inspection of
some trajectories. Sample trajectories of the
first component of the driver and response
systems for a) κ = 1, b) κ = 2 and c) κ = 3.
In a) x and y are decoherent, for b) and
c) they are synchronized. In c) we observe
amplitude "bursts" in the response system.
While still synchronized, these bursts might
be the reason for the decreased SMI3 at
κ ≈ 19. In b) and c) we show y2 in addi-
tion to y1 and x1. It shows a blow-up of the
difference between the minimum and maxi-
mum values for κ = 19.

Already in Section 2.6.4 we saw that the performance of the SMI is
limited by the quality of the estimation of our probability distribu-
tion. With finite sampling and phase space resolution, a SMI of 1 is
only expected in rare cases, especially in multidimensional systems.
However, imperfect knowledge is part of any numerical method. We
will concentrate on the sharp contrast between the synchronous and
asynchronous regimes.

In Figure 3.1, we observe a decrease in SMI3 for κ ≈ 19. So far, the
reason for this decrease is unclear, as the systems are synchronized.
The SMI1 does not show this decrease. In Figure 3.2 we compare
the trajectories for x1 and y1 for different κ = 1, 10, 19. Additionally,
in Figure 3.2 b) and c) we also plot y2. Comparing y2 with κ = 10
and κ = 19 we see sporadic increases in amplitude. Due to the
binning process, this can decrease the efficiency of the binning and
the decreased contrast in SMI3.

Since SMI1 operates on the x1 and y1 components, we do not see
such a decrease. By comparing x1 and y1 for κ = 10 and κ = 19, we
find that the difference between the minimum and maximum values
does not increase as strongly, leading to a more efficient use of the
bins.

As for each time series, there are a high number of possible bins
(106) for SMI3, and undersampling can occur. For undersampled
systems, the SMI cannot distinguish between synchronous and inco-
herent systems. Since we have only 750,000 data points per system,
a homogenous distribution of the points in the phase space would
lead to undersampling.
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Figure 3.3: While naive calculations of the
average number of samples per bin for the
SMI3 suggest undersampling with our bin-
ning approach, we can show that in practice
most of the bins are empty, while the rest are
well sampled. With a resolution of 10 bins in
each dimension, the phase space for each
of our models is divided into 106 bins. For
a homogenously sampled phase space and
the 750000 samples recorded for the Loren-
z/Rössler system, this would result in an un-
dersampling of the phase space. The num-
ber of populated bins N is shown in a his-
togram in a) for all Lorenz/Rössler systems.
A bin is populated if it contains at least one
sample. Our results show that most of the
bins have no samples, decreasing the num-
ber of relevant bins several orders of magni-
tude below the theoretical maximum, result-
ing in a potentially well-sampled SMI. In b),
we show the maximum number of samples
for each system, along with the respective
number of populated bins N and their SMI.
The models are sorted by N.
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In Figure 3.3 a) and b) we can see the population of the bins. First, we
recognize that in Figure 3.3 b) the number of populated bins is well
below 104. This leaves more than 75 samples per bin on average—
enough for a good estimate. We can also see from Figure 3.3 a) that
most of the bins have more than 50 samples.

In Figure 3.3 a) we can also see the distribution of the population of
the bins. We observe that most of the bins have a sufficient number
of samples. Figure 3.3 b) also shows the maximum and minimum
amount of samples per bin. We used two methods to evaluate the
bin population. As a first approach, we count how many bins have a
non-zero population. Second, we artificially decreased the amount of
available data and checked whether we still would derive meaningful
results. In Figure 3.4 we show the convergence of the SMI3.

The sampling is further tested by checking the stability of the SMI as
the sample length varies. If the SMI converges as the sample length
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Figure 3.4: We can show that the SMI3 con-
verges to a stable value with the chosen
number of samples for both the synchro-
nized and the unsynchronized regime. To
see if the results for the SMI3 can be at-
tributed to undersampling, we checked its
convergence behavior by reducing the num-
ber of available samples. The number of
samples to which the SMI3 was applied is
given by k. Plotted are two systems for
κ = 1.8, 2.3 (one value before and one af-
ter the synchronization threshold of κ). Both
systems show that they have converged to
a stable value when more than 105 samples
are used. In our findings, we calculated the
SMI3 (and SMI1) with even more samples
and consequently don’t expect any increase
or decrease in the results.

increases, this is a sign that the best estimate has been obtained with
the current setup. We have plotted the convergence of the SMI3 for
κ = 1.8, 2.3 in Figure 3.4. By skipping every n-th value vector in a
time series, we reduced the available samples without changing the
dynamics of the system. The length of the longest time series is the
data we used in our evaluation above. From the plot, we can see that
the SMI3 has converged well.

As the result for the SMI3 convergences with the available 106 sam-
ples, we did not perform similar tests for the SMI1. The number of
dimensions is reduced in SMI1, while the number of samples per tra-
jectory remains the same, so undersampling becomes much less of
a problem. A time series with a length of 106 samples has enough
samples for the 20 different bins for each of the systems.

The results show that even with a simple binning scheme, the SMI is
a reliable estimator for synchronization. Even with a reduced phase
space, the SMI1 was still able to contrast between the synchronous
and decoherent regimes.

3.2 Linear Chain of Logistic Maps

Having shown the performance of the SMI for a driver/response
system, we now turn to the study of the synchronization of mutually
coupled logistic maps. We have discussed the logistic map previ-
ously in Section 1.1.2.

The setup of our work was proposed in [Ant17; Con18]. The authors
construct a coupling scheme that allows for continuous transition
from next-neighbor to homogeneous coupling with a single param-
eter. Additionally, a delay of one step can be introduced. In their
work, the authors tested for identical synchronization.
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Figure 3.5: Snapshots of a system of cou-
pled logistic maps with different coupling pa-
rameters show a variety of types of syn-
chronization as well as an unsychronized
model. Snapshots of the linear chain of lo-
gistic maps from Equation (3.9) were cre-
ated with different coupling values ε and β
were created. The columns show different
oscillators i in the system, and their respec-
tive values at a time step t are color-coded.
The snapshots show the systems in differ-
ent regimes of synchronization. a) shows
the uncoupled regime and no synchroniza-
tion, b) shows IS, c) and d) are in the regime
of GS.

Strength0 0.2 0.4 0.6 0.8 1

a)

t

0

5

10

15

20

25
b)

t
0

5

10

15

20

25
c)

t

0

5

10

15

20

25
d)

t

0

5

10

15

20

25

i
0 10 20 30 40 50

This restriction allows them to derive analytical limits for regimes
of synchronous parameters. In Figure 3.5 we see snapshots of four
different systems with different coupling parameters.

However, their work is limited to IS. Figure 3.5 shows a slice of the
system proposed in [Ant17]. While Figure 3.5 a) shows an uncou-
pled system, the other snapshots show synchronous behavior. Only
Figure 3.5 b) experiences IS, Figure 3.5 c) and d) can be identified
with GS. As we shall see, the SMI allows us to extend the sensitivity
in a typical toy model.

The SMI is calculated between two systems. In a multi-component
system, the two-component SMI must be aggregated to estimate the
state of all components. We will discuss two schemes for such aggre-
gation. The results in this section are taken from [Wis23].
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3.2.1 System Dynamics

The coupling scheme proposed in [Ant17] is based on a linear chain
of logistic maps. It allows a continuous transition between the next-
neighbor and global coupling configuration via a single parameter α.
The nodes also feature delayed self-feedback.

The coupling to neighboring maps is given by

D(r) = r−α/
N′

∑
l=1

l−α (3.6)

with the distance r = |i − j| of maps i and j. Since we go in each
direction of the chain, we only sum over half of the components,

N′ = (N−1)/2 (3.7)

and thus N must be a multiple of 2. Normalization ensures that the
contributions from all the maps do not exceed 1. This is necessary
since the logistic map diverges for values outside the range between
0 and 1.

The neighborhood parameter D(r) can be continuously adjusted be-
tween global coupling (α = 0) and local coupling. For α → ∞ each
component is coupled only to its nearest neighbor.

A one-step delay feedback is realized with the coupling parameter
β, the general coupling can be tuned with ε. The delay is realized as
a diffusive coupling

x̂i[t] = βxi[t− 1] + (1− β)xi[t] (3.8)

which can account for delayed and non-delayed dynamics.

Combining the delay from Equation (3.8) together with the weights
of the Equation (3.6), the system is defined as:

xi[t + 1] = (1− ε)F(xi[t]) + ε
N

∑
j 6=i

D(|i− j|)F(x̂j[t]) . (3.9)

The parameters ε, β and α ensure that the values of xi[t] are always
bound by [0, 1]. The local dynamic is given by the logistic map

F(x[t]) = 4x[t](1− x[t]). (3.10)

Figure 3.6 shows an exemplified coupling for a network of 8 oscilla-
tors.

3.2.2 Extension from Pairwise SMI

Two options present themselves when extending the pairwise SMI as
a measure of synchronization in a cluster. IS can be identified with
the synchronization error, a deviation from the mean-field for each
component.
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Figure 3.6: Coupling scheme of the ring net-
work given in Equation (3.9). All possible
couplings are given for an example oscillator
(red node). The coupling strength to neigh-
boring oscillators can be changed depend-
ing on their distance (bold lines). The cou-
pling into the past can be tuned into all nodes
at the same strength (dashed lines) so that
the oscillators effectively see the mean-field
of the past system.

In [Ant17]) this is achieved by measuring the mean synchronization
error over all trajectories

σ2 =
1
T ∑

t

√√√√ 1
N

N

∑
j

(
xj[t]− 〈xk[t]〉k

)2 (3.11)

where 〈xk[t]〉k is the average overall trajectories for a point in time t.

Our first proposed extension of the SMI is based on the mean-field
approach of the synchronization error. A mean-field trajectory Z is
the set of the sum of all values for each timestep t

Z =

{
1
N ∑j xj[0], . . .

1
N ∑j xj[T]

}
. (3.12)

The synchronization will be calculated relative to the mean-field of
the system. This gives us the Mean Field Sychronized Mutual Infor-
mation (MFSMI)

MFSMI(Xi . . . ; Z) =
1
N ∑

i
SMI(Xi; Z) (3.13)

with N being the total number of elements.

However, in this approach, we lose much of the information between
individual components to the mean-field. Therefore, the second pro-
posal preserves these relationships by calculating the pairwise SMI.
The average of these pairwise synchronizations then gives the Aver-
age Sychronized Mutual Information (ASMI)

ASMI(Xi . . .) =
2

N(N − 1) ∑
i,j<i

SMI(Xi; Xj) . (3.14)

In the case of IS, the mean-field of the system is equal to each of
its components. Therefore, we expect that both previously proposed
aggregation schemes to identify IS. However, for regions where the
system is in IS, we expect different results. The MFSMI expects all
systems to synchronize to their common mean-field, while the ASMI
expects all systems to synchronize with each other.

In order to illustrate the difference between the two measures, let
us look at a simple example before applying them to the system of
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logistic maps. Three trajectories X1, X2 and X3 are going to consist
of repeating patterns given by

X1 = [. . . , 2, 7, 8, 4, . . .]

X2 = [. . . , 6, 4, 7, 4, . . .]

X3 = [. . . , 4, 4, 0, 4, . . .]

(3.15)

resulting in a mean-field trajectory

Z = [. . . , 4, 5, 5, 4, . . .] . (3.16)

While the SMI between each system yields one, the average of the
mean is not able to preserve the structure of all trajectories. As ex-
pected, this results in the ASMI = 1 while MFSMI is smaller than
1.

We compare both measures to see if these differences are observed
in practice. The main advantage of the MFSMI is its scaling with
the number of components in the system. While for the ASMI, the
number of calculations grows with N2

2 − N, the MFSMI grows only
linearly with N.

There is also an approach to the problem of multiple systems of syn-
chronization. The MI can be extended from a comparison between
two random variables to a multivariate mutual information. Its prop-
erties are, however, vastly different from the univariate MI so it is not
clear if a synchronization measure can be constructed. This is a topic
of further research and will not be explored in this work.

3.2.3 Results

We want to compare the results of [Ant17] for identical synchroniza-
tion with the mutual information. Therefore, we replicate the cou-
pling scheme and search for synchronization in the parameter range.
Simulations of Equation (3.9) are carried out using python 3.7 [Oli07]
with the numpy 1.18 [Har20] library and with snakemake 5.19 [Kös12].

Simulations are carried out for the parameters given in Table 3.2. We
use N = 51 maps for the simulation and a total of 1100 steps.

Parameter Value/Range
r 4
ε [0, 1]
β, βL1 , βL2 [0, 1], 0.3, 0.8
α, αL [0, 3], ∞, 0.5
N 51
TE 1000
TM 100
Θσ < 10−6

Θtotal,Θlocal > 0.95

Table 3.2: Parameter and parameter range
for the simulation of the coupled logistic map
Equation (3.9).
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Initial values are randomly generated using the Mersenne-Twister
algorithm [Mat98]. Since we need an additional delayed state, two
initial states xi[t] ∈ [0, 1] are created. The first TE = 1000 time steps
are omitted, allowing the system to converge to its attractor. This
leaves TM = 100 steps to apply the SMI to.

A system is in IS if σ from Equation (3.11) approaches zero. To ac-
count for the finite precision and time of our simulation, we choose
a cut-off value σ < Θσ = 10−6 where we classify two systems to be
synchronized.

For the application of MFSMI and ASMI we discretize each trajec-
tory by sorting the values into 10 bins evenly distributed within the
minimum and maximum of each trajectory. We then calculate the
mutual information-based synchronization measure SMI using the
Grassberger algorithm with the implementation proposed in Sec-
tion 2.6.3.

As discussed in Section 3.1.2, the SMI is not expected to approach
one. Finite sampling and the finite number of bins allow for an im-
perfect sampling of the distribution.

As a threshold for synchronization, we choose ΘMFSMI = ΘASMI =

0.95. The thresholds Θσ, Θtotal and Θlocal were chosen empirically,
the results are stable for small perturbations of the threshold.

In Figure 3.7, the effect of the chosen threshold on the classification is
shown. Figure 3.7 a) shows the number of systems identified as syn-
chronous by ASMI and MFSMI as a function of the chosen threshold.
In Figure 3.7 b) we see the same for IS.

As can be seen from these comparisons, the chosen threshold can be
changed significantly without changing the result of the experiment.
For σ in Figure 3.7 a), we see that we can change the threshold by
several orders of magnitude without producing a relevant change in
the output.

In Figure 3.7 a) we can see a small artifact from the estimation of
the SMI: The ASMI can give negative values. The MI estimator pro-
posed in Equation (2.60) is a combination of Grassberger entropy
estimators. Although the bias of the naive entropy estimator is elim-
inated with the estimator proposed by Grassberger, it does not retain
the properties of MI.

As in the original work of [Ant17], we compare the ASMI, MFSMI
and σ with the Lyapunov exponent of the system (see Section 1.1.1).
The maximum Lyapunov exponent is given by βL1,2 = 0.3, 0.8 and
α = 0.5 with the algorithm given in the Appendix Section A.1. The
results are plotted in Figure 3.8 for ε ∈ [0, 1].

The Lyapunov exponent indicates that the chaotic regime of the lin-
ear chain falls within the same region where MFSMI and ASMI
show no synchronization. For βL1 chaotic behavior vanishes for
ε ∼ 0.3 where the systems (as indicated by MFSMI and ASMI) shift
to the synchronous state. In contrast, identical synchronization is
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Figure 3.7: Changing the threshold of the
SMI and σ within reasonable limits doesn’t
change the outcome of our results. To show
that our thresholds for σ, MFSMI, and ASMI
are well-founded, we compare them with
variations of said thresholds. The number of
synchronized systems is plotted as a func-
tion of the threshold. Additionally, the thresh-
old used within this work is marked as a red
line. In a) the function is given for MFSMI
and ASMI, and b) shows the values for σ.
We can see that, within reasonable limits,
changes in the threshold don’t affect our re-
sults, as few systems would switch from the
synchronized to the unsynchronised regime
and vice versa.

registered for ε ∼ 0.4. We observe similar results for βL2 with a
synchronous/non-chaotic island at ε ∼ 0.2.

However, identical synchronization is lost until ε ∼ 0.6, ASMI and
MFSMI only indicate a short asynchronous regime. An interesting
observation is the increase in the MFSMI and the ASMI in ε ∼ 0.55
where σ tends to 0.

Interesting is also the behavior for ε > 0.9 where the system shifts
into a chaotic regime while σ, MFSMI and ASMI indicate synchro-
nization.

We also see that the ASMI identifies the synchronous regimes of the
MFSMI plus extra regimes. This is consistent with what we expected
from the derivation of the measures in Section 3.2.2 and shows that
there are practical differences between ASMI and MFSMI.

To further explore the difference between ASMI and MFSMI further
and compare them to IS we increase the parameter space in our sim-
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Figure 3.8: The MFSMI doesn’t work as ex-
pected in all cases, the ASMI is more gen-
erally applicable when synchronization be-
tween all oscillators in a system is of interest.
The largest Lyapunov exponent (see Sec-
tion 1.1.1) from the linear chain described in
Section 3.2. Results are shown for β = 0.3
a) and β = 0.8 b). Together with the Lya-
punov exponent, we have plotted the SMI as
a function of σ. For better readability, the
SMI is plotted as 1− SMI and is now syn-
chronous for 0. As we can see, synchroniza-
tion can still appear while the system is in
a chaotic state, though this seems only to
be the case for generalized and not identi-
cal synchronization. Also here, it is obvious
that the SMI covers a larger area of synchro-
nization. It also shows that the mean-field
MFSMI is less general and shows artifacts
for ε ≈ 0.5 and β = 0.8.
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ulations.

We run simulations for β ∈ [0, 1], ε ∈ [0, 1]. For α ∈ [0, 3] we ex-
ecute dense simulations and additionally next-neighbour coupling
with α→ ∞.

The results are shown in Figure 3.9 as a color-coded map where σ,
MFSMI and ASMI are the detected synchronizations. Color-coding
shows the intersections of the regimes of the three synchronization
measures.

Important are the gray regions where all regions found synchroniza-
tion. We see that the regimes of IS are completely covered by MFSMI
and ASMI, as well. For β = 0.4 and β = 0.3, we find a few cases
where there is a regime of MFSMI but not ASMI. The opposite, where
we have regimes of ASMI but not of MFSMI, are visible for differ-
ent ranges and show that ASMI is also more extensive in practice.
We also see larger regimes of both ASMI and MFSMI without iden-
tical synchronization. This is particularly interesting for β ∈ [0, 0.3],
where there is an additional island of synchronization for ε = 0.3,
which is not seen with with IS.
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Figure 3.9: Using the SMI we can unveil new
regimes of synchronization in a system of
coupled logistic maps (Equation (3.9)). We
compare three different measures of syn-
chronization σ, MFSMI and ASMI for the lin-
ear chain of logistic maps. We have used
logical operators to distinguish between the
different cases. The ∧ represents an and
operation and ¬ represents an inversion. All
parameters β, ε, α are varied, and the re-
sulting synchronization regimes are color-
coded. A system is regarded to be synchro-
nized where its relevant measure exceeds
some threshold. Gray marks the regimes
where all measures show synchronization.
This implies that these are also the regimes
of IS. MFSMI ∧ ASMI shows areas with
both ASMI and MFSMI, MFSMI ∧ ¬ASMI
is without ASMI and ¬MFSMI ∧ ASMI
without MFSMI. Figures a) to c) show that
a new island of synchronization forms for
ε ≈ 0.3. The main regime of synchroniza-
tion expands considerably compared to the
IS only case.
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3.3 General Remarks

As already discussed in Section 2.6.4 due to the finite samples and
bin sizes, the SMI does not approach 1, even in synchronous phases.
However, for both the driver/response and the linear chain, we ob-
served a strong contrast between synchronous and asynchronous ar-
eas.

For the driver/response system in Section 3.1 we found that the SMI
performs well in identifying synchronization, even avoiding the pit-
falls of the auxiliary system method. We tested the applicability of
the method for incomplete phase spaces by calculating the SMI for a
single dimension only.

As we have seen from the results of Section 3.2, clear results can be
achieved with only a few available samples. We can see a strong
contrast between synchronized and decoherent regimes with only
100 samples per trajectory.

Furthermore, we were able to see that GS often "pre-empts" IS in
a transitory regime: Some parameters first show GS that later mani-
fests itself in IS for continuous tuning. Previously, logistic maps were
prepared for IS. We are unaware of any studies on coupled maps that
are sensitive for GS.



4Partial Synchronization
& Complex Networks

In the previous chapter, we studied systems more complex than two-
component synchronization with linear logistic chains. We observed
synchronization between multiple oscillators after a long equilibra-
tion time. In the previous study, the system would either converge
on a synchronous trajectory from random initial values, or it was
considered to be asynchronous. Analyzing the state of the system,
we disregarded other dynamics such as the transition from the ini-
tial state to the synchronized state. Furthermore, the extended SMI
based uses are only sensitive to dynamics where each component of
the system is synchronized with each other.

However, these limitations raise the question of whether other inter-
esting phenomena can be detected in the transients, in a subset of the
components, or whether a non-equilibrium state exists. Research on
this partially synchronized system came into focus after the notion
of synchronization was well established, around 2004. It was started
by finding so-called chimera states.

The chimera is a creature of Greek mythology with the body of a
lion, the head of a goat, and the tail of a snake. For our purposes,
it describes a system in which the symmetry of synchronization is
broken, with one cluster in a synchronized state and the other in an
incoherent state. The first description of the phenomenon is gener-
ally attributed to [Kur02]1, the notion of the chimera state was coined 1 Although some sources disagree with this

assessment (e.g. [Hau21]), noting that with
the modern understanding of chimera states,
similar phenomena are described much ear-
lier in [Kan90].

in [Abr04].

Chimera states can be found as long-lived transients between the
initial, incoherent, and synchronized states. In these cases, it was
shown that the chimera’s lifetime scales with the size of the system
[Tum17]. In [Ome18; Sie14] feedback techniques have been proposed
to stabilize transient chimeras in small systems. More recently, net-
work topologies have been proposed in which stable chimera states
are found in networks consisting of only six (chaotic) components.
[Zha21].

Further progress has been made in increasing the stability of the
chimera states for larger ranges of initial conditions. Due to a smaller
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basin of attraction (compared to the synchronized state), chimera
states are harder to find [Sch21]. Since then, the situation has changed,
and in more recent configurations (e.g. [Zha21]), chimera states can
be observed for most initial conditions.

It should be noted that due to its recent development and the notion
of a chimera, the state has some ambiguity [Hau21]. While it was ini-
tially coined for clusters with matched and unmatched frequency of
regular (phase) oscillators, the term is also used for amplitude mis-
matches (with matching phases) of in systems consisting of coupled
chaotic oscillators.

Chimera states are of special interest in the research on biological
neuron networks where they are connected with the sleeping pat-
terns and learning in the brain [Wan20; Kan19; Ban19; Rod19], found
application in chemical oscillators [Nko13; Rod19] or social studies
[Gon14].

Similar to chimera states, the decomposition of a system into clus-
ters of internal synchronization with no inter-cluster synchroniza-
tion. This cluster synchronization was first described within [Zho06].
In other configurations, components can experience remote synchro-
nization where two components do not share a common synchro-
nized coupling path while still being in sync [Ber20; Wan20].

We conclude this list with the mention of intermittent synchroniza-
tion. Here, the system fades into and out of a synchronous state.
Early research mentions intermittent loss of synchronization and cri-
teria for selecting coupling parameters to stabilize synchronization
[Gau96]. Contemporary discourse often focuses on synchronization
loss in the context of a neural model [Par11; Ahn17; Rub17]. Inter-
mittent synchronization is often motivated in the context of noise,
where external signals can push a system from the synchronized
state.

These phenomena can also be observed in combination. In [Zha20]
a mixture of intermittent synchronization and chimera states was
described. The authors found that even small amounts of noise in-
duced switching of the synchronous cluster. Although none of the
clusters is in a permanent synchronous state, each falls in and out of
synchronization.

As we have previously discussed (compare Chapter 2), analytical
tools are restricted to active experiments, while other methods such
as the SMI can be used in passive experiments as well. This as-
sumption continues to hold when seeking to understand partial syn-
chronization. Analytical tools were applied when studying abstract
systems (see [Abr04; Par11; Tum17]), alongside numerical tools (e.g.
[Kur02; Ahn17; Ibr21]). When working with real-world systems, nu-
merical tools are even more important (see [Wic13; Tot18; Woj16]).

The methods developed in the previous chapters to identify synchro-
nization can also be used to detect other kinds of synchronization.
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In this chapter, we explore various extensions suitable to detect the
above-mentioned types of partial synchronization.

We begin the chapter by constructing different aggregations of the
SMI for these multi-component systems. These are similar to the
aggregations used in Section 3.2. By changing the pattern of aggre-
gation, we seek to be sensitive to a certain type of partial synchro-
nization. Here we also test the extended versions of the SMI for the
detection of intermittent and partial synchronization Section 4.2 and
Section 4.3.

Section 4.4 shows the detection of chimera states in a network pro-
vided by [Zha21] and continues to show a possible reason for the
stability of the chimera states.

And finally Section 4.5 tests the performance of the SMI on systems
with noise coupling and testing the resilience of different types of
networks to noise.

4.1 SMI and Partial Synchronization

The SMI as defined in Equation (2.35) is a pairwise measure. To
be usable as a synchronization identifier for large clusters of oscilla-
tors, we proposed an extension in Section 3.2.2. The construction of
the previously proposed ASMI is insufficient for only partially syn-
chronized systems, since systems without (local) synchronization are
indistinguishable from a somewhat coherent system.

We propose two extensions to the SMI that increase the contrast be-
tween the Partial Synchronization (PAS) and the sporadically coher-
ent system. First, we present a windowed SMI that allows the calcu-
lation of the measures of the running window and also a maximum
value approach for the pairwise SMI.

We test the application of both methods on intermittent cluster syn-
chronization. The application to chimera states is discussed in Sec-
tion 4.4.

4.1.1 Measures

Within this section, we explore various patterns of aggregation over
time. We will refer to a single time series with Xi. A moment in a
time series is denoted with Xi[t], a slice of the same is denoted by
Xi[t : l], with t being the starting point of the slice and l the length
of the slice.

To be sensitive to temporal unstable synchronization, using the full
trajectory of a component is infeasible. By calculating the SMI on
windows of the trajectory, we can assess the synchronization local-
ized in the time dimension. We propose the Windowed Sychronized
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Mutual Information (WSMI)

WSMIl
t(X; Y) = SMI(Xi[t : l]; Xj[t : l]). (4.1)

The WSMI allows us to evaluate the temporal development of the
synchronization as it is done in intermittent synchronization [Rub17].
In neuronal research, this is often done by reconstructing a phase
relationship between neurons [Ahn17].

For larger systems, visually keeping track of all pairwise information
(e.g. by plotting the SMI in a matrix) gets out of hand quickly. In
section Section 3.2.2 we expected full synchronization and thus we
could look at the average of all pairwise SMIs with the ASMI. For
PAS this aggregation method is not sufficient. Since we do not ex-
pect synchronization of all components at all times, a simple average
will lose features of the underlying synchronization patterns. As an
alternative, we propose an alternative aggregation method based on
finding maximum pairwise synchronization. We define the Maxi-
mum Sychronized Mutual Information (MSMI) as

MSMI(X) = max
i 6=j

[
SMI(Xi, Xj)

]
(4.2)

which returns the largest synchronization between two components.

Of course, we can combine the method for the WSMI and the ASMI
and create a running maximum SMI

max
i 6=j

[
SMI

(
Xi[t : l], Xj[t : l]

)]
. (4.3)

With a repeated reduction to the maximum of the running window
maximum SMI we create a measure that is sensitive to a single in-
stance of intermittent synchronization

max
i 6=j;t:l

[
SMI

(
Xi[t : l], Xj[t : l]

)]
. (4.4)

However, especially the latter equation should only be applied with
care, as the chance of observing a high SMI from spurious correla-
tions increases with many windows, effectively lowering the contrast
between spurious and systematic synchronization.

4.1.2 Model

To test the proposed measures, we use a modification of the system
used in [Zha21]. Initially thought as an example of strong chimeras,
the coupling scheme also produces cluster and intermittent synchro-
nization.

Similarly to Section 3.2, Zhang uses a map to build the dynamics of
his system. The dynamics of the map are given by

xi[t + 1] =

(
rl(xi[t]) + κ ∑

j
Lijl

(
xj[t]

))
mod 1 (4.5)
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with the function l(x) = x(1 − x). The coupling strength to the
network is given by κ, r is the self-feedback and Lij gives the elements
of the connectivity matrix.

This is in contrast to the logistic function f (x) used in Chapter 2.
On the left-hand side of the sum, the logistic function is completed
with the parameter r. The right-hand side completes it with the
general coupling strength κ and the pair-specific coupling Lij. The
main difference taken here is the inversion of the coupling term by
changing the sign prior to κ.

A second important difference is the modulo operator x mod o 2. 2 The modulo operator x mod o introduces
periodic boundary conditions. Integer multi-
ples of its parameter o are subtracted/added
from or on x until the result is within [0, o[.
Negative arguments of the modulo operator
are also projected within these bounds.

The parameters in Equation (3.9) are carefully balanced so that the
results are bound to [0, 1]. In Equation (4.5) the boundaries are en-
forced by the modulo operator.

The specific coupling scheme used in Lij is described in Section 4.4
and the initial work in [Zha21] in more detail. The general idea found
in [Zha21] is that stable chimera states can easily be found in systems
that consist of two clusters with an internal ring-like structure and a
mean-field inter-cluster coupling.

4.2 Intermittent Synchronization

Intermittent synchronization describes systems in which its compo-
nents are synchronized and incoherent. While there exist some re-
ports of intermittent synchronization in nonlinear science [Bak98],
more attention is paid to neuroscience where state changes are ex-
pected to be vital for the function of the brain [Ahn11; Ahn17; Rub17].

On the basis of Equation (4.5) we found intermittent synchroniza-
tion with the parameters r = 3 and κ = 1.3. The results are shown
in Figure 4.1 with running Windowed Average Sychronized Mutual
Information (WASMI) for each cluster and a running MSMI. We see
that the running MSMI shows increased values compared to the clus-
terwise WSMI.

The last phenomenon is due to the fact that the MSMI shows the
highest pairwise SMI for each window. As we can see from the time
series in Figure 4.1 even within each cluster, the individual compo-
nents do not experience the same level of synchronization, reducing
the WASMI.

In Figure 4.1 we see the limited capabilities of the WSMI to detect
intermittent synchronization. As already discussed in Section 2.6.4,
estimating the SMI benefits from larger sampling sizes. Synchro-
nization over a limited time can yield insufficient samples for proper
distinction from the decoherent phases.

When identifying intermittent synchronization, the user must strike
a balance between sample size and the locality of the result. With
small sample sizes, the contrast of the SMI between synchronous
and decoherent regimes may be small. A larger sample size implies
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Figure 4.1: Example for intermittent synchro-
nization. The dynamics are produced with
Equation (4.5). The left plot shows the color-
coded values of the time evolution for each
component i. Along the time series, we plot
the running average WSMI for each cluster
i ∈ [1, 6], i ∈ [7, 12]. Additionally, the run-
ning ASMI is given. As we see, each clus-
ter shows intermittent synchronization within
itself, however, the system is unstable and
thus quickly decays into an incoherent state.
The clusters are constructed according to
the clustering scheme explained previously
in Section 4.4.
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a larger regime in the trajectory. This limits the locality of the result
and, in the case of short periods of synchronization, also the contrast
between the synchronized and incoherent regions.

4.3 Cluster Synchronization

Cluster Synchronization (CS) is found in systems with partitioned
symmetries in their network, e.g., similar coupling for specific cluster
[Ber20]. Within such a cluster, the components can then synchronize
while not being synchronized to components of other clusters.

Here, we study two (partially) synchronized systems for r = 3.9
with κ = 1.1 and κ = 1.12 for the system derived in Equation (4.5).
In contrast to the results obtained in Section 4.2 and Section 4.4 the
results obtained here were generated with a cluster size of 5.

The time series and the local synchronization values for both systems
are found in Section 4.3. Next to the time series of the evolution of the
components, we plotted the running ASMI calculated for the system
and each cluster separately, as well as the running synchronization
error

σ(t) =

 1
N

N

∑
(

xi[t]−
1
N

N

∑ xi[t]

)2
 1

2

(4.6)

with N = 10 the total number of oscillators.

Section 4.3 a) shows an example of a system in which both clusters
would be identified to be synchronous with itself but not with the
other cluster when the measure is only sensitive to IS. When using
the SMI, this changes and the system is identified to show global
synchronization.

In Section 4.3 b) each cluster still shows IS, however, application of
the SMI shows that there is no intercluster synchronization.
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Figure 4.2: An example for cluster synchronization from the dynamics in Equation (4.5). In a) we present a system that experiences cluster
synchronization only when considering IS. When calculating the ASMI, the clustering of the synchronization does not present itself. This is contrasted
in b), where the ASMI for the complete system shows no synchronization while each cluster in itself is synchronized. The left side of each plot shows
the values of each component over time t. On the right, we see the running average ASMI for the full system and each cluster i ∈ [1, 5], i ∈ [6, 10].
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These results are promising and show that the SMI can easily be
adapted to identify CS. Other than in intermittent synchronization,
limited sample sizes are of no concern.

4.3.1 Conclusion

As we have seen, the SMI is well suited for the analysis of cluster
synchronization and can be used for intermittent synchronization
in which the dynamics change slowly compared to the number of
samples. Compared to approaches such as the still widespread syn-
chronization error [Zha20; Ant17] the SMI can identify generalized
synchronization and thus allow one to identify more complex syn-
chronization patterns.

We will later study the application of the SMI as a measure for inter-
mittent synchronization in more detail in Section 5.2.

4.4 Chimera States

In [Kur02; Abr04] it was found that specific configurations allow
the observation of coherent and incoherent states in the same state.
Chimera states are a special case of partial synchronization, where
a system experiences a synchronized and incoherent cluster within
the same state. An example of such a state is given in Figure 4.3. We

Figure 4.3: Example for a system in a
Chimera state. The plot shows the color-
coded values for each oscillator i at time t.
Oscillators i ∈ [1, 6] are synchronized with
each other while the others (i ∈ [7, 12]) are
in an incoherent state. While all oscillators
are coupled with each other, the coupling is
done in a way where the system can tran-
sition into a state where synchronization is
only observed within a cluster of the sys-
tem. The coupling scheme is explained in
Section 4.4.1, the plot was derived from the
dynamics given in Equation (4.7) for param-
eters r = 2.45 and κ = 1.75.
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see that one half (Cluster 2) of the system experiences full synchro-
nization, while the other half remains incoherent. This was achieved
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by following coupling rules described in [Zha21] and which we will
explain in more detail in Section 4.4.1.

When scanning parameters, we often find chimera states between a
fully synchronized and incoherent regimes. This led to some earlier
work, assuming that chimera states are intermediate states of a not-
yet synchronized system (see [Wol11]) and it was later shown that it
is indeed possible to observe stable chimera states [Cho17; Zha21].

One crucial tool in showing the stability of the chimera state was the
Lyapunov exponent, showing that for certain configurations only one
of the clusters would show stable synchronization.

As with any other application of the Lyapunov exponent, it works
best when the dynamic equations are known, and even then its
derivation is not always as forward as the many papers on its deriva-
tion show [Wol11; Har19; Zha20].

4.4.1 Method

To construct the chimera states, we follow the proposed method
in [Zha21] giving general advice on the construction of coupling
schemes for the creation of stable chimera states with regular and
non-linear oscillators. We use the proposed method with the now
well-known logistic map. We choose a similar coupling as applied in
Equation (4.5) where we mostly flip the sign of σ

xi[t + 1] =

(
r f (xi[t])− κ ∑

j
Lij f

(
xj[t]

))
mod 1 . (4.7)

The authors in [Zha21] propose a setup with two clusters where
within each cluster the components can be coupled diffusely while
they all see the same field of the second cluster. The coupling scheme
encoded in Lij is visualized in Figure 4.4. The system consists of two
clusters with i ∈ [1, 6] and i ∈ [7, 12] with next neighbor coupling
within each cluster and Lij = 1 and Lij = c for coupling between the
components of a cluster.

As a result, within a cluster, each oscillator sees the same field from
the other cluster and we can write

xi[t + 1] =

r f (xi[t])− κ ∑
j∈G(i)

Lij f
(

xj[t]
)
− κ IG(i)(t)

 mod 1

(4.8)
with G(i) all elements of the cluster and G(i) all elements of the
remaining cluster and IG(i)(t) = ∑j∈G(i) Lij f (xj[t]) the mean-field of
the other cluster.

For our simulations, we allowed for an equalization time of 10000

steps prior to a recording of the next 120 steps, which we then use
for our analysis.
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Figure 4.4: Diffuse cluster connection as
proposed by [Zha21]. Within each cluster,
the oscillators are only coupled to their near-
est neighbors. At the same time, each oscil-
lator couples to the mean-field of the cluster
of which it is not a part. In a) we show a dia-
gram of this scheme for 6 oscillators in each
cluster. A slice of the corresponding coupling
matrix Lij is given in b). In this matrix, the
next-neighbor connections have a strength
of 1, while the coupling to the mean-field is
given by a parameter c.
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4.4.2 Identification of Chimera States

In [Har19; Zha20] the authors derived the Largest Transversal Lya-
punov Exponent (LTLE) for one dimensional maps coupled via a
matrix Lij that can be decomposed into its eigenvalues vk. The LTLE
is given by

LTLE(L) = max
2≤k

[
lim

T→∞

1
T

T

∑
t

∣∣ f ′(xi[t])− κvk f ′(xi[t])
∣∣] (4.9)

where vk are the sorted eigenvalues of L.

The LTLE is derived by inserting xi[t] obtained for a the simulation
of a parameter into the LTLE together with the coupling strength κ

and the decomposition of the eigenvalues of L.

By calculating the LTLE separately for each cluster, we can evaluate
the stability of synchronization for each. Chimera states occur when
only one LTLE of the two clusters is positive.

For comparison, we calculate the MSMI and ASMI for the same sim-
ulated xi[t]. The results for the LTLE, MSMI and ASMI are shown in
Section 4.4.2 for κ ∈ [0, 1] and r ∈ [3.7, 4], so that the self-feedback
coupling r ensures chaotic trajectories in the uncoupled case (κ =0).

In Section 4.4.2 a) we highlight all areas where the LTLE of only one
cluster is positive, Section 4.4.2 b) shows the MSMI, Section 4.4.2 c)
the ASMI and Section 4.4.2 d) areas where the ASMI < 0.8 and the
MSMI > 0.95, which we chose as a threshold for chimera states.

Comparing Section 4.4.2 a) and Section 4.4.2 d) we find that indeed
the ASMI in combination with the MSMI serves as a good indica-
tor for partial synchronization. Looking at the differences between
the LTLE and MSMI based method, some chimera states go unde-
tected when they are created by the finite precision of the simulation.
This view is supported in [Zho98] where the authors argue that the
LTLE can predict asynchronous systems which then, in the simula-
tion, show as stable synchronous areas when the perturbations are
so small that they are lost in the finite precision of the floating point
numbers.

A manual check showed that this was indeed the case for the right
stripe in Section 4.4.2 d). The differences between the LTLE and the
ASMI/MSMI method in the left stripe was in many cases an almost
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Figure 4.5: SMI based methods can provide good approximations when searching for chimera states compared to the LTLE, however, false positive
results are more likely. We compare the results of the LTLE (see Equation (4.9)) with the SMI as a tool for detecting chimera states by scanning
the parameter range for r and κ for Equation (4.7). Each plot a) to d) shows the result for a pair of parameters r and κ. The LTLE is shown in a)
as a reference for our SMI based method. Highlighted are the parameter pairs where the LTLE of only one cluster is positive. In b) we highlight
pairs where the ASMI < 0.8 and MSMI > 0.95. We argue that these are areas where chimera states are likely. A high MSMI indicates that there
are synchronized coupling partners, while a low ASMI indicates that there is no synchronization between all coupling partners. In c) and d) we
present ASMI and MSMI to see how the values in b) are created. The method in b) can be a good approximation to the results obtained with the
LTLE, but our method identifies more systems as being in a chimera state. We see two possible explanations for this. First, according to [Zho98],
synchronization can occur in simulations where the LTLE is greater than 0 due to the finite resolution of floating point numbers. These systems would
be identified as synchronous by our method since it is based on the computed system. Second, with the finite precision of SMI estimation, it may be
impossible to find thresholds that are sensitive enough to detect chimera states while avoiding false positives altogether.
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synchronous system where some spurious synchronization between
only two components was detected by the MSMI.

We want to emphasize the fact that the MSMI and ASMI chimera
detection methods did not require prior knowledge of the clusters,
but still produced good results. This is in contrast to the LTLE based
method, where for the analysis the clusters have to be known.

Assuming the same information as available for the LTLE, we show
a different plot in Figure 4.6 where we compare a cluster wise ASMI
and LTLE with the MSMI and ASMI as a function of κ for r = 3.9.

Figure 4.6: SMI based methods can be
a viable alternative to the LTLE to detect
chimera states. This plot compares the de-
tection capabilities for chimera states in a
slice of the values presented in Section 4.4.2
(r = 3.9). Chimera states are found for pa-
rameters where the LTLE of one cluster is
positive and the LTLE of the second clus-
ter remains negative (highlighted by a gray
background). In a) the ASMI is compared
with the MSMI, indicating that regions where
the MSMI ≈ 1 and the ASMI < 1 are
chimera states. In b) we compare the ASMI
of each cluster alone. It shows that the
MSMI in combination with the ASMI can de-
tect chimera states without prior knowledge
of the clusters.
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Figure 4.6 a) compare the LTLE directly with the ASMI and MSMI,
in Figure 4.6 the minimum and maximum ASMI from both clusters
is given for each κ.

Both measures reproduce the values expected from the LTLE with
the minimum ASMI dropping when the maximum LTLE becomes
positive and both minimum and maximum ASMI dropping with two
positive LTLE. Similarly, in Figure 4.6 a) only the ASMI drops with
a single positive LTLE. The MSMI continues its high readings until
both LTLE readings become positive and then start to show a loss of
coherence.

The results show that if the clusters are known from the analysis of
the network structure, the SMI can yield results on par with the LTLE
while the dynamic equations must not be known. Even without prior
knowledge of the coupling, the ASMI in combination with the MSMI
can yield meaning full insight into the state of the system. Here,
their main competition is IS methods where the SMI shows more
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generality.

4.4.3 Delayed Feedback

Much work is dedicated to finding the mechanisms behind the strong
chimeras [Zha21; Har19; Cho17; Set08; Yel14]. In past research, de-
layed feedback has been shown to stabilize synchronization. While
delayed feedback destabilizes synchronization for local coupling, as
we have seen already in Figure 3.9 and in [Ant17; Con18], in global
coupling, it can have a stabilizing effect. For regular oscillators, this
effect was already described in [Ata04; Set08], it was later shown
in [Set08] that coupling to a delayed mean-field supports the stable
chimera states.

Here we argue that the presence of stable chimera states [Zha21;
Cho17] is also a consequence of delayed feedback, hidden in the
mean-field of the non-diffusive coupling. As a support of this idea,
we show that weak delayed feedback coupling can strengthen the
stability of synchronization. In contrast to the work in [Set08] the
components of our system will work in their chaotic regime.

As before, we use the logistic map as a base for our investigation
and modify the coupling scheme of Equation (4.7) to observe only
one cluster and add a delayed global coupling

xi[t + 1] =
(

rl(xi[t])+

κ ∑
j

Lijl(xj[t]) + χ ∑
j

l(xj[t− 1])
)

mod 1
(4.10)

where χ is the coupling strength and Lij the entries of a coupling
matrix for a next neighbor coupling.

In Figure 4.7 we show the transition of the two clusters proposed in
[Zha21] to the mean-field, we assume. For all components of one
cluster the field they see from the other cluster is the same, they
effectively see a mean-field which we show in Figure 4.7 b). This was
already recognized by [Zha21] by introducing I in Equation (4.8).

We further argue that the volatility of single components is sup-
pressed in the mean-field and thus the effect of self feedback stronger
pronounced. In our simplification, this results in step Figure 4.7 c)
where we replace the coupling to the mean-field with a global de-
layed self-feedback.

As the incoherence in the opposing cluster is less pronounced for the
first cluster, this incoherence also has a decreased destabilizing effect
on the synchronous cluster. The asynchronous cluster, meanwhile,
does not profit from the increased coherence in the synchronous clus-
ter. Due to the strong coherence in the synchronous cluster, contri-
butions from his own delayed mean-field are indeed to be expected
to be small since other values do not cancel out.

In Section 4.4.3 we show the probability p of a synchronous system
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Figure 4.7: Modification of the coupling
scheme presented in Figure 4.4. The cou-
pling to the mean-field of the second clus-
ter is replaced by the mean-field of the same
cluster from a previous step. This approach
allows us to isolate the self-feedback of clus-
ters.
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resulting from 200 samples. For random initial values, the system
proposed in Equation (4.10) is simulated, and the SMI is calculated
for a length of 1000 values. Each system with an SMI > 0.95 is
considered synchronous. The system is sampled for parameters κ ∈
[0, 2.2] and χ ∈ [−0.2, 0.4].

As we can see from Section 4.4.3 the delayed feedback of the global
mean-field increases the stability of synchronization for subtractive
coupling. The effect is strongest in the area of very weak delayed
coupling. In the early example of Equation (4.7) c was chosen to be
0.2, assuming, as discussed earlier, that the contributions from the
single elements in the incoherent cluster cancel out, this results in an
effective coupling strength with the delayed feedback of c · c = 0.04
(coupling of the second cluster to the first and the coupling back in
the next step).

We have marked the 0.04 line in Section 4.4.3. It shows that in this
area the effect of the delay feedback on the size of the synchronous
regime is quite pronounced.

But why does it only work for one of the clusters? Well, as we have
mentioned before, we see chimera states in between synchronized
and incoherent regimes. While one cluster might find synchroniza-
tion, the other one might have the wrong starting parameters. Also,
as we argued earlier, the mean-field seen by a cluster averages out the
decoherence of a field, which results in dynamics dominated by the
feedback. In a synchronized cluster, especially with IS, the dynamics
are dominated by the cluster components (at least for non-flat tra-
jectories), and decoherent cluster has less strong coupling to its old
state.

4.5 Nondeterministic Synchronization

In all previous examples, we considered pure deterministic systems.
In practice, most systems will experience some kind of uncorrelated
external noise. The effect of noise on synchronization and partial
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Figure 4.8: Low levels of negative self-feedback can increase the size of the synchronized regime. Probability p of observing a synchronous state for
the parameters κ and χ. Each point is sampled for 200 different initial conditions. The plot shows that coupling to the delayed mean-field increases
the stability of coupling, especially for a negative coupling. We see that the introduction of some negative delayed feedback (e.g. χ = −0.04) yields
a larger stable parameter range for κ than for no (χ = 0) or positive values.
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Figure 4.9: By rewiring random connec-
tions between single components the Watts
& Strogatz algorithm creates a small world
network from a n-next-neighbor network
[Wat98].

Added Edge
Removed Edge

synchronization has been the focus of research in recent years.

In [Zha20] the authors find that the synchronous cluster in the chimera
state can switch for even comparatively small levels of noise. Here,
we examine the synchronization of logistic maps with added noise.
In [Kat20] a framework is introduced to describe the synchronization
of noisy coupled chaotic oscillators. Early work found that synchro-
nization can be induced with correlated noise terms [Pik84; Zho02;
Ter04], recent research even suggests that uncorrelated noise can en-
able synchronization [Men18].

4.5.1 Methods

We use a system similar to Section 4.1 and Section 4.4, adding a term
for uncorrelated noise. We derive an equation

xi[t + 1] =

(
r f (xi[t]) + κ ∑

j
Lij f (xj[t]) + uξi

)
mod 1 (4.11)

where Lij are elements of the connection matrix L. The noise ξi is
generated from a uniform distribution with ξi ∈ [0, 1[ and without
temporal or spatial correlation, its strength is regulated by u.

We want to study the effects of noise on different types of networks
and thus propose different types of networks. This includes a small
world network with 200 maps LS

200 and 800 components LS
800, a glob-

ally coupled (all-to-all) system with 50 maps LG
50, and an 8-next-

neighbors network with 200 components L8
200 .

The small-world network is created by the Watts & Strogatz algo-
rithm [Wat98] with a rewiring probability of 0.05. An example of
such a small-world network can be seen in Figure 4.9.

4.5.2 Results

We performed a fine-grained analysis for parameters κ ∈ [0, 1] and
coupling to noise u ∈ [0, 0.1]. For each set of parameters, we calculate
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the ASMI as defined in (Equation (3.14)). The results are shown as a
heatmap in Figure 4.10.

SMI
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Figure 4.10: We can not see any difference
in resilience to noise for different network
types in our work, however, we observe that
low levels of noise can introduce stable syn-
chronization. Stability of different types of
networks against the injection of noise u into
the coupling. For each network the coupling
strength κ is varied. The plots a) show a
next-neighbor network, b) the next 8 neigh-
bors, c) a Watts-Strogatz network with a
rewiring probability of 0.05, and d) the same,
but with a size of 800. The robustness of the
network to noise is measured with the ASMI.

As expected, we observe a general decline in synchronization with
induced noise. For all maps, we see that full synchronization is
strongest in the center of each synchronous regime, however, higher
coupling strength κ often proves to be more resilient to larger noise.

In some of the networks synchronization that initially decayed with
increasing noise recovers before it fades off. This can be seen in the
right flanks of Figure 4.10 a) and b). While this is similar to the
results in [Men18], where the authors see an increase in synchro-
nization stability with noise injection, our results are inconclusive in
this regard. Recovery from decoherence is limited to parameters κ,
where synchronization occurs already without noise and is preceded
by a complete loss of synchronization.

We will take a closer look at noise-stabilized synchronization for the
LS

200 system. The region for κ = 0.8 has been sampled as a function
of the noise coupling u. The results are shown in Figure 4.11. We see
that the synchronization is stable for small noise levels. For u ≈ 0.01,
we can see a small plateau before the system enters a decoherent
state.

To avoid spurious correlation, we have sampled the SMI for each
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Figure 4.11: Low levels of noise can stabilize
synchronization. The plot shows the ASMI
and MSMI for different noise levels u. For a
small noise regime, the systems synchronize
reliably. The plot is generated from Equa-
tion (4.11) for κ = 0.8 as a function of the
noise coupling u.
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point 1000 times and plotted the mean of these samples along with
the variance. For comparison, we also calculated the SMI for each
point with the shuffled time series. We see that this increase of the
SMI is well reproducible and also well above the SMI produced by
uncorrelated series.

4.5.3 Discussion

We have seen the effect of noise on different types of networks of
coupled logistic maps. We found that the simulated systems were
resilient to noise even for values much higher than the precision of
the floating point numbers used for the simulation. This is in con-
trast to effects such as switching chimera states in [Zha20] where the
authors found that noise in the limit of their resolution would induce
switching of the synchronous cluster.

We could also see that the resilience to noise was strongest for cou-
pling parameters well away from the borders of the synchronous
regime, however, partial synchronization (ASMI < 1) proved to be
persistent for higher coupling values, possibly due to its overall smaller
contribution.

The results on a stability-inducing effect of noise were inconclusive,
taken from [Men18]. We saw in Figure 4.11 that synchronization can
persist in the presence of noise. However, only weak evidence for the
synchronization-inducing effect was found in Figure 4.10.

Once again, SMI has shown its versatile applicability. While the LTLE
was used in [Zha20] to study the switching of chimera states with
noise, its application for non-deterministic systems is limited and
also based on Monte-Carlo sampling.



5
Synchronization in Real-World Sys-
tems

In previous chapters, we used the SMI in combination with compu-
tational experiments, testing its sensitivity and limitations in well-
known systems and comparing it with other results. We will now
apply the SMI on real-world data and to passive experiments.

This implies two major changes in our application. First, the system
is effectively a black box for us. We are only able to observe a subset
of the phase space that drives the system. This also means that we
control none or only a few of the parameters that govern the dynam-
ics of the system. Even where we control some parameters of the
experiment, these are expensive, and thus only a limited number of
different parameters can be tested.

The second change is the introduction of noise. While in our toy
systems noise (introduced by finite floating point errors, for example)
was of no concern, we will now expect it as a part of the dynamics
as well as in the recording of our data.

In contrast to the toy models in Chapter 3 we also have to drop
the expectation of full synchronization. As we have already seen
in Chapter 4 the systems will experience a decrease in correlation
when perturbed by uncorrelated noise. Certain network structures
will experience some intermediate states between fully synchronized
and incoherent systems (see, e.g., chimera states in Section 4.4).

In this chapter, we study the correlations of stock indices listed in
the Dow Jones. We will compare the results of the SMI with a sim-
ilar measure based on MI in creating a distance matrix between the
return of the respective stock quotes.

Furthermore, we apply the SMI on action potential recordings from
the development of neurons from mice hippocampus. We evaluate
recordings of single-neuron action potentials that align with each
other during growth over several days.
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5.1 Synchronization in Stock Markets

Economic networks are complex dynamical systems. A large number
of agents competing in the market are governed by feedback loops,
and delay with imperfect knowledge poses an interesting challenge
to our understanding. Therefore, and for the possible earnings, a
huge body of research is dedicated to the analysis and description of
market dynamics.

A central concept for the price of the stock market is the Efficient
Market Hypothesis (EMH). It claims that a stock price reflects all the
knowledge available to agents in a market. Any new information
will be immediately integrated into the price [Fam70; Mal03].

Based on methods from complexity theory, various studies used his-
torical stock prices to analyze correlations between companies in the
markets [Are08; Per11]. The idea behind these approaches is that
the market price reflects the underlying state in a phase space—the
information available to the market, in terms of the EMH. Another
approach tries to reconstruct this phase space [Zha13; Guo19] in or-
der to predict the markets.

We will leave the reflection on these approaches to their respective
peers and focus ourselves on the exploration of the historical data.
Although the EMH predicts that (without insider trading) no agent
can outperform long-term market growth, it does not prohibit corre-
lation between prices. When agents in a market obtain new informa-
tion, the price of stocks quickly reflect this. Where new information
concerns more than one stock, their historical data will show at least
local synchronization.

We will use the SMI to analyze the synchronization between the Dow
Jones listed stocks over the past 20 years. Due to its technical sim-
ilarity, we compare the results to a second MI-based measure and
show the Minimum Spanning Tree for both results. This approach
is similar to previous methods that exploited correlations between
stock indices to create networks and minimum spanning trees (MST)
[Man99].

The strength of synchronization is considered a candidate for cri-
sis prediction, as some studies found that economic crises are often
preceded by increases in the general synchronization between com-
panies [Per11].

A methodically similar work was published in [Wis23] where the
authors used MI with a different normalization to study the infor-
mation flow between companies. However, this work was not car-
ried out under the notion of synchronization. Due to its similarity in
implementation, we will compare the results with our own method.
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5.1.1 Normalized Mutual Information

Many common approaches to searching for correlations use methods
such as Pearson’s or Spearman rank correlation. Entropy and MI are
interesting alternatives since they are also able to identify non-linear
correlations. In a previous attempt at non-linear correlation analy-
sis on stock markets, the authors in [Guo18] also used the MI and a
maximum normalization with entropy. In [Guo18] an MI-based mea-
sure was proposed to measure statistical correlations between stock
indices. Similarly to the MI-based synchronization measure SMI, the
method is based upon a normalization of the MI. The proposed mea-
sure is defined as [Guo18]

NMI(X, Y) =
2I(X; Y)

H(X) + H(Y)
. (5.1)

We have seen in Equation (2.13) that I(X, Y) is smaller than H(x) and
H(Y) each, so that NMI can only be 1 if H(X) = H(Y).

The authors were able to show that 1−NMI meets all the require-
ments of a metric. The same is not true for SMI, where 1− SMI(X, Y)
may even vanish for H(X) 6= H(Y), violating one of the requirements
for a metric

m(X, Y) = 0⇒ p(X) = p(Y) . (5.2)

5.1.2 Method

To analyze the stock market, we construct a graph with each com-
pany as a node. Synchronization with other companies gives the
strength of the edges between the nodes. We generate the adjacency
matrix of this graph by calculating the distance matrix for all pairs
of shares. This distance matrix DSMI is given by the components

DSMI
i,j = SMI(Xi, Xj) . (5.3)

We immediately see that the adjacency matrix is symmetric (and
therefore the graph is undirected) and also positive.

To make the information contained in DSMI more accessible, we use
the minimum spanning tree (MST) [Kru56] to extract the vital rela-
tionships for each company. (Technically, we use the maximum span-
ning tree, since the synchronization is highest for SMI = 1.) With the
MST we build a hierarchy of relations between the companies by
removing edges with low synchronization. Removing uninteresting
edges allows us to identify clusters by eyesight. In conclusion, the
MST shows a graph where all nodes are connected without cycles
while minimizing the total edge weight.

5.1.3 Time Invariance of the Structure

The SMI for each pair of companies is estimated over a set of daily
stock prices. In doing so, we assume that the price of each day rep-
resents values of the same distribution. However, over 20 years, it is
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not clear that this assumption is valid. For example, while the two
companies MMM and Boeing generally show some correlation, the
2020 Corona crisis had a stronger impact on Boeing.

In [Per11], the authors have shown that the assumption of a time-
independent correlation does not hold before an economic crisis.
Since we operate on a more coarse resolution, we are not necessarily
sensible to these events.

However, we tested the temporal stability of the SMI by looking at
subsets of the historical data. Each time series is divided into four
windows of equal length and SMIW is calculated for each window.
We then derive a set of entries

k ∈ 1, 2, 3, 4 : DSMIW,k
ij (5.4)

for all companies with the window XW
i .

Inevitably, the SMIW will show some variance that can be attributed
to the finite sampling size. To distinguish between variance from
finite sampling and unstable correlations, we generate a set of surro-
gate data from the historical data. Although it must have the same
sample size as the windowed datasets, the correlations in all datasets
should be the same. We generated this surrogate set of data by taking
only every fourth value of the historical data. This creates a second
data set

l ∈ 1, 2, 3, 4 : DSMIS,l
ij (5.5)

with the SMIS with the skipped values XS
i .

We then calculate the variance of the SMIS and SMIW

σS/W =

[
∑

S/W
∑

i
∑
j 6=i

(
SMI(XS/W

i , XS/W
j )− SMIS/W

)2
] 1

2

. (5.6)

with the mean

SMIS/W =
1
N ∑

S/W
∑

i
∑
i 6=j

SMI
(

XS/W
i ; XS/W

j

)
(5.7)

and N is the number of all the terms summed over. In Figure 5.1 we
show the variance distribution for σ2

S and σ2
W. At first glance, these

plots show no visible differences and it seems the variance in the
SMI can be attributed to the finite sampling size. We can examine
this finding in further detail by comparing candidates for the mean
and variance of σS/W and SMIS/W. We compare the two distribu-
tions following the protocol in [Kru13]. We assume that σ follows a
Gamma distribution and with PyMC3, we sample the difference in
the parameters of this distribution [Sal16]. The results are shown in
Figure 5.2. The assumption, that both distributions originate from
the same parameters is well-supported by visual inspection alone. If
there is any difference between the parameters of XS

i and XW
i , they

are lost in the resolution of the available data.

While other work shows that the synchronization changes precede
major economic events (see [Per11]), we can only assume that these



synchronization in real-world systems 73

σS

σW

Fr
eq

.

0

20

40

60

80

100

120

σ
0 0.01 0.02 0.03 0.04

Figure 5.1: We find no evidence of a time-
dependent correlation between the stock in-
dices of Dow Jones listed companies. The
variance σ2 in the SMI between all pairs of
companies in different subsets was calcu-
lated. By comparing the distribution of σ
of the time-dependent and time-independent
subsets, we can test the time series for tem-
poral stability. The time-independent sub-
set is constructed by skipping values σS, the
time-dependent uses a different set of times
σW. Importantly, both systems use the same
number of samples to compute the SMI.
We can recognize a time-dependent system
when the distribution of σ in the subsets is
different. This plot shows a histogram for all
subsets of all time series.
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Figure 5.2: Further evidence that our as-
sumption of a time-independent correlation
between stock indices is justified. The distri-
bution of the differences between the vari-
ance and the mean for SMIW and SMIS.
The highest density interval (HDI) contains
0, which is also the center of the distribution.

correlations must quickly relax, affecting the coherence of both time-
lines only very little over the course of twenty years. Within a time
window of a few years, the correlations seem to be stable and our
assumption of temporal stability seems to be well-founded.

5.1.4 Results

We analyze historical stock values from companies listed continu-
ously in the DOW Jones index between January 2000 and June 9,
2020. Companies included in the analysis are listed in Table 5.1 to-
gether with their abbreviations and a short symbol. The dataset con-
tains a table with daily opening, closing, high and low prices as well
as the traded volume for each of the stocks was downloaded from
[Yah20].

To calculate the SMI we have to convert the values of the time series
of the stock values into symbols. In this analysis, we restrict our-
selves to a single symbolization strategy. For a stock Xi,open, xi,open

t
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Table 5.1: Companies continuously listed
in the Dow Jones Industrial Average (Dow
Jones) from January 2000 to 6th of June
2020. Each company is assigned with an
industry which is derived from the Global In-
dustry Classification Standard [Glo18]. For
each sector a unique symbol is used as an
identifier, shown next to the content. The
sectors are: Information Technology (IT), In-
dustrials (IND), Financials (FIN), Consumer
Discretionary (COD), Health Care (HLTH),
Consumer Staples (COS), Energy (ENG)
and Communication Services (COM).

Symbol Company Sector
Color
Index

IBM
International Business
Machines Corporation

IT

CSCO Cisco Systems, Inc.
AAPL Apple Inc.
INTC Intel Corporation
MS Microsoft Corporation
V Visa Inc.

BA The Boeing Company IND
MMM 3M
CAT Caterpillar Inc.
UTX United Technologies Corporation

GS The Goldman Sachs Group, Inc. FIN
AXP American Express Company
JPM JPMorgan Chase & Co.
TRV The Travelers Companies, Inc.

MRK Merck & Co., Inc HLTH
JNJ Johnson & Johnson
PFE Pfizer Inc.
UNH UnitedHealth Group Incorporated

PG The Procter & Gamble Company COS
KO The Coca Cola Company
WMT Wallmart Inc.
WBA Wallgreens Boots Alliance, Inc

MCD McDonald’s Corporation COD
HD The Home Depot, Inc.
NKE NIKE, Inc.

XOM Exxon Mobil Corporation ENG
CVX Chevron Corporation

VZ Verizon Communications Inc. COM
DIS The Walt Disney Company

are the daily opening values of the stock i. We will derive the sym-
bols from the relative change

δxi,open
t = log

xi,open
t

xi,open
t−1

. (5.8)

The symbols are then created by sorting the data into 10 equally
distributed bins between the minimum and maximum value of each
time series. This generates the symbolized time series X̃i,open. In
Section 5.1.5 we compare different methods of symbolization. Here,
we restrict ourselves to the above simple binning strategy. We calcu-
late the distance matrix DSMI for all stocks i. Figure 5.3 a) shows the
resulting synchronizations for all pairs, ordered by their strength.

To derive the graph of the inter-company synchronizations we cal-
culate the distance matrix Dopen with all pairwise values SMI. Thus,
each entry of the distance matrix is given by

Dopen
ij = SMI(X̃open

i , X̃open
j ) (5.9)
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Figure 5.3: There is a significant correlation
between the stock prices of many compa-
nies, although none of them are synchro-
nized in the way that the models in earlier
chapters were. In a), the SMI between all
companies is plotted as a function of their
rank. In b) we see the matrix of all pairs of
SMI between Dow Jones listed companies.
For each entry, we computed the SMI, but
only plotted those instances where the value
was significant. Pairs were considered sig-
nificant if their z-score (Equation (5.10)) was
greater than 100. Since the SMI is symmet-
ric, only one instance of each pair is shown.
A list of all companies and the abbreviations
used are given in Table 5.1.

To prevent the detection of false synchronization via spurious corre-
lation, we test each entry Dopen

ij for its statistical significance. The
significance is calculated from surrogate time series created from
shuffling the original data. For each pair, 1000 surrogate SMI val-
ues are calculated from multiple shuffles. [The92]

By design, these time series do not show any temporal correlation
which allows us to estimate the "ground noise" of spurious synchro-
nization. With the mean µ(·) and variance σ2(·) of the surrogate
data, the z-score is computed as

z(Xi, Xj) =
SMI(X; Y)− µ(AXi ,Xj)

σ(AXi ,Xj)
. (5.10)

Entries with z-scores lower than 100 are rejected.

The resulting matrix Dopen is shown in Figure 5.3. A first glance
at the matrix shows two pairs with increased synchronization. The
highest synchronization is achieved by Goldman Sachs with JP Mor-
gan and Chevron with Exxon. These findings are by itself of little
surprise but show that the method is capable of capturing dependen-
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cies between companies. Chevron and Exxon are widely expected to
be influenced by the current oil price and any projection of it on
future markets.

JP Morgan and Goldman Sachs both provide major funds and, thus,
are driven by the general health of the financial markets. The gen-
eral small values of the SMI might initially seem concerning. How-
ever, we have to remember that these values are derived for systems
that we expect to be driven by noise and possibly a projection from
a higher dimension. The conservative limit that we applied to the
z-score shows that these values are not generated by spurious corre-
lations but are features of the time series.

With increased confidence in the temporal stability of the SMI we
will apply some further analysis on the coarse structures in the graph
Dopen. The MST is computed for Dopen as described in Section 5.1.2.
The result is shown in Figure 5.4. Companies are color-coded by the
sector of businesses they are active in. The company classifications
together with the color coding are found in Table 5.1.

As we can see, the sections of commerce of each company are repro-
duced by the SMI. Companies for industrial products show strong
synchronization with each other and are, as a group, connected to
energy companies. Since IT companies are the backbone of any op-
eration, it seems surprising that this cluster is not directly connected
to the health and consumer-related companies.
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Figure 5.4: The minimum spanning tree is able to replicate the distinction between different industry types of Dow Jones listed companies. The
minimum spanning tree is constructed on the inverse of the SMI between a pair of companies and could be more accurately described as a
maximum spanning tree. The types of industries assigned to each industry are taken from [Glo18]. The colors represent companies in different types
of industry. A list of all companies, their abbreviations, and their industries can be found in Table 5.1.
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5.1.5 Discussion

Figure 5.4 shows the SMI based synchronization for Dow Jones listed
companies, estimated daily open values between January 2000 and
June 2020. In most cases, the synchronization between companies
reflects their sector as given in [Glo18].

To compare our results to existing methods, we have also calculated
the distance matrix D using the NMI (see Equation (5.1)). In Fig-
ure 5.5 we show the absolute differences between SMI and NMI as
well as a plot of the projection of the rank for each index calculated
by the SMI and NMI.

Figure 5.5: The SMI is not a monotonic pro-
jection of the NMI. Both measures are cal-
culated between the stock prices of each
company. In a) we see the difference be-
tween the two measures for the same pair of
companies, sorted from smallest to largest.
For b), we computed and assigned a rank
to each value. Then, for each company, the
rank of the SMI and NMI is plotted.

a)

SM
I−

N
M

I

0

0.02

0.08

0.1

rank (SMI−NMI)0 50 100 250 300 350

b)

ra
nk

N
M

I

0

50

100

150

200

250

300

350

rank SMI
0 50 100 250 300 350

As with all correlation measurements, we should not forget that in-
creased synchronization does not imply any causation between the
companies. Correlations can also arise from third-party drivers or
mutual effects. There exist methods for finding common causes in
correlation, for example [Koř20; Run19; Run12]. These methods use
multivariate MI and conditional MI to find common sources for sin-
gle events. For economical data, finding well-sampled distributions
that can be matched with historical data of stock values is much
harder.
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5.2 Synchronization of Neuronal Systems

Neuronal oscillation can be observed as a regular electric field, mea-
surable even outside the brain. They come in different bands and
are a consequence of the summed potential of simultaneously fir-
ing neurons [Baş13; Gue17]. Chimera states have been studied in
the context of brain patterns in [Wan20; Maj19; Ban19; Bro10], other
studies explore the stability of chimera state with in silico neuron
models [San19; Kan19].

Observations of synchronized states have also been reported outside
of fully developed brains in in vitro models, e.g. [Kot14]. In this sec-
tion, we will see that the SMI is a suitable measure for accessing
synchronization between neurons. Similar methods exist, such as
(general) correlation measures, e.g. cross-correlation [Gon15], trans-
fer entropy [Sch00; Qui00] and Hilbert transformation [Tas98; Lac99].

In contrast to the systems we discussed in previous chapters, syn-
chronization in neurons is event-driven. Instead of continuous cou-
pling, neurons “communicate” by rapid discharge. Peaks in voltage
can lead to discharge in other neurons, leading to an avalanche of
discharges. The avalanche is ended by a refractory period, in which
neurons are insensitive to an outside stimulus.

U
in

m
V

-75

-50

-25

0

25

50

t in ms

-1 0 1 2 3 4 5

Threshold

S
tim

ul
us

Resting State Refractory Period

Figure 5.6: Potential in a neuron when ex-
posed to an external stimulus. When the
stimulus is strong enough to "push" the po-
tential over the threshold, the cell’s ion chan-
nels open and the signal is amplified. The
spike of a stimulus is followed by cell depo-
larization and a refractory period in which the
neuron is not susceptible to a new stimulus.
Small stimuli that do not exceed the thresh-
old do not resolve into a spike and are "lost"
in the neuron.

Essentially, the synchronization is driven by the neurons reset into
their base state. An initial small current in a neuron is induced by
the firing of other neurons. If this initial current crosses a certain
threshold ion channels will open in the neuron and increase the dis-
charge, leading to the observed spike (compare with Figure 5.6).

Neurons build potential by separating positively and negatively charged
ions. It is discharged either by external stimulation or spontaneously.
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Spontaneous discharge in some neurons can trigger others. If enough
neurons spike, an avalanche runs through the system, showing as a
synchronized beat.

After every discharge, the potential within the neuron and outside is
in an equilibrium, and the potential difference has to be re-established
by the neuron. Synchronization between neurons is established by
the dead time after each spike, where neurons are incapable of act-
ing on new external information. As signals within the dead time
quickly die out, those that match the other neurons rythm get ampli-
fied.

In this section, we will evaluate the emerging synchronization in
an in vitro model of hippocampal neurons. Action potentials are
recorded over the course of 10 days (with recordings starting on day
4).

The action potential of the neurons can be recorded down to a single
neuron’s resolution. We will use the SMI to evaluate the strength
of synchronization between these neurons. While methods using MI
are already widely used [Bal17; Gri18], we can provide a mathemat-
ical sound base for normalization.

5.2.1 Methods

Recordings of action potentials can be analyzed in two ways. Spike
timing can be extracted and used for further analysis, so-called spike
train analysis. A different approach is the direct comparison of the
signals. The latter method is usually some form of linear or non-
linear correlation test. Some typical methods include Cross Corre-
lation, Granger Causality, MI [Bal17; Gri18] and Transfer Entropy
[Qui00] .

In the following, we will use the SMI as the fundamental measure for
synchronization between two signals. We use the methods developed
in Section 4.1 and Section 3.2.2, more specifically a modification of
the WSMI and the MSMI.

Previous work with methods based on information theory used un-
normalized MI or transfer entropy, which make the magnitude of the
results depend on the chosen symbolization and recording [Qui02].
We provide an absolute measure, where 1 is full synchronization.

5.2.2 Experiment

We use a Multi Electrode Arrays (MEA) to record the action poten-
tials. MEAs consist of a small chip with many electrodes installed
on them. They are implemented in the model and remain there from
day 1 until the experiment is finished. They allow easy activity obser-
vation in high-volume experiments, although single cells cannot be
targeted. MEAs can be used for in vivo and in vitro measurements.
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[Pin06] MEA experiments allow us to study the development and
function of neurons and neuronal systems [Bro16].

Neurons can be extracted in a very early, stem cell like stage or
mostly matured. Where in the second case the neurons have mostly
developed their firing capabilities and produce strong action poten-
tials, the stem cell neurons’ signals are mostly weak and undergo
severe changes during their growth. In this experiment, we focused
on a model of mature neurons. The experiments were carried out at
the Laube laboratory of TU Darmstadt within the work of [Kau21]
and were kindly provided for this analysis. Details of the experi-
ments were published in [Kau21].

In preparation for the recordings, the neurons were planted on MEA
Chips from Multi Channel Systems MCS GmbH, Reutlingen, Ger-
many. They grew on these plates for up to 10 days, with recordings
of the action potential on days 4, 5, 7, and 10. The experiments were
conducted "parasitically", which means that they were part of a dif-
ferent experiment further described in the original work in [Kau21].
Action potentials were recorded with a resolution of 0.1 ms / 10 kHz
for 60 channels and 2 minutes per sample. For later processing, the
raw values were exported to hdf5 [The97] for further processing in
python and julia.

Here, we will use SMI to identify the changing synchronization pat-
terns during synaptic growth in mature neuronal cultures.

5.2.3 Results

With the method described in Section 5.2.2, we take measures from
day 4, 5, 7 and 10 from the MEA recordings of hippocampal neu-
rons. The batch of models was observed within the last batch of
experiments run for the work in [Kau21].

Experiments are usually performed on day 14 when neurons are at
their most active. Later, their activity declines before the cells die. In
the models selected for later analysis in this work, neuronal activity
declined earlier than expected. The highest observed synchroniza-
tion was on day 10, after which we did not measure any further
signals. It is unclear if the conductivity of MEA’s electrodes de-
creased or if the neurons entered cell death earlier than in regular
experiments.

In Figure 5.7 we compare the peaks of the action potential in each
recording. Figure 5.7 a) shows the neuronal activity on day 4, Fig-
ure 5.7 b) on the same day for the same model. For comparison,
Figure 5.7 c) shows the activity on day 14 for a healthy experiment.

Since our experiment was conducted only parasitically, we were un-
able to produce further recordings of the maturing process of the
model. We still applied SMI on the existing data. However, we ex-
pect that the results will be more pronounced in a healthy model.



82 identification of emerging patterns in complex systems

a)

ti
n

s

20

40

80

100

120

i
0 10 20 40 50

b)

i
0 10 20 40 50

c)

i
0 10 20 40 50

Figure 5.7: Synchronization of neurons during growth of the in vitro model of hippocampal neurons. The model monitored for this experiment shows
decreased signal strength on day 10 where a lifetime beyond day 14 was expected. From all electrodes i the peaks are extracted from the recording
of the potentials. The peaks are presented for a period of t = 120 s. The sections show for a) on day 5 and b) on day 10. While a) and b) are
from the same model, c) are peaks from a different model at day 14. We can see that on day 5, the neurons show high activity. This is in contrast
to day 10 of the same model. Activity is depleted, possibly due to stress-induced neuron death. Usually, the highest rates and synchronization are
expected for day 14, as shown in a different model in c).
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Figure 5.8: Despite the premature cell death
of the neurons in our hippocampus in vitro
model, increased synchronization can be
detected. We calculated the MSMI between
all pairs of electrodes for days 4, 5, 7, and
10. Furthermore, we calculate the average
of the top 10 % MSMIs for each day.

The original signals showed some drifts, where the potential wan-
dered several orders of magnitude of the spike signal over the course
of several seconds. These artifacts affect all channels similarly; we re-
moved them by applying a high-pass filter. This was done using a
butter filter from scipy’s signal package [Vir20]. The lower frequency
cut is at 1 Hz, and for the high frequency it is at 5000 Hz.

Since neurons mainly synchronize via their spikes, we did not want
to destroy these signals and both the high and the low pass filters
had to be adjusted to leave the signals untouched.

The dynamics of spikes lasts for about 10 to 20 steps (1 ms - 2 ms).
This limited the use of a low-pass filter to remove high-frequency
noise to only affect a few steps.

On the filtered data, we then applied the SMI between all pairs of
channels. For each pair, we calculated the SMI on 10 non-intersecting
windows over the course of all 120 seconds. Values of each step in
time were sorted into 10 equal-sized bins between the lowest and
highest values in each window.

We calculated an average SMI for each pair based on the 10 windows.
The results for the pairwise SMI are shown in Figure 5.8.

In addition, we plotted the mean of the highest 10 % SMI read-
ings for each day. Together with the windowed calculation of the
SMI, we were able to create a reliable measure without manual pre-
processing. Unreliable/dead channels and runaway synchronization
measures are taken into account; however, the evaluation of only the
10 % highest values is stable against both types of error.

It shows that the synchronization indicated by the SMI grows while
the neurons in the experiment mature.
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To validate the findings of increased synchronization, we also stud-
ied the action potentials directly. In Figure 5.9 we show some ex-
emplary action potentials for day 5 in Figure 5.9 a ) and day 10 in
Figure 5.9 b).

The running SMI alongside the action potential is calculated with
time windows of 50 steps and values in 10 bins. Due to the small
sample size and noisy recordings, the SMI values are strongly ele-
vated compared to the previous calculation with samples consisting
of 120,000 values (1/10 of the total time series).

The decreased sample size makes SMI more susceptible to spurious
correlation, as also seen in Figure 5.9. However, larger sample sizes
delude the effect of spikes on the synchronization.

While the SMI of both Figure 5.9 a) and Figure 5.9 are elevated com-
pared to the results expected from Figure 5.8 the increased synchro-
nization on day 10 shows itself in higher SMI readings.

In Figure 5.9 b) we can see that the local SMI peaks where the action
potential shows spikes. This can be seen at t = 46.57 ms and t =

45.4 ms where strong coherent spikes show over all neurons plotted
together with a subsequent increase in the SMI.

5.2.4 Discussion

We showed that the synchronization of maturing neurons is acces-
sible via the SMI. An in vitro model of hippocampal neurons was
observed from day 4 to day 10. The action potential recordings were
taken with a MEA. Evaluation with the SMI showed that the syn-
chronization between neurons increases during this period.

As synchronization between neurons is achieved mainly via rapid
depolarization of their membrane and thus event-based rather than
continuous, the action potential between these events is dominated
by noise. These are unfavorable conditions for the SMI as fewer data
points are expected to correlate. This can decrease the contrast be-
tween decoherent and synchronized states. The problem increases
when the noise is correlated between the electrodes of the MEA.
In our experiment, we observed a difference in synchronization be-
tween the early and late stages of the model.

These results were found despite the model’s activity declining early
in its experiment life cycle. Usually, experiments with the models
are conducted on day 14, when the activity is highest. However, we
found that in our model no action potentials were measured after day
10. We expect that in a repeated measurement for healthy models,
the SMI can show even stronger contrast than within the current
work.
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Figure 5.9: An increase of the SMI can be observed close to peaks in the signal. This happens despite the noise that dominates the signal. Potentials
were recorded and filtered as described in Section 5.2.2. Additionally, for each channel, the local synchronization for the channel with the highest
mutual average synchronization is given. In a) we show recordings of the action potential after 7 and 14 days (a) and b), respectively, over a period
of ≈ 0.2 s.





6Discussion & Outlook

In this thesis, we investigated a Mutual Information (MI) based ap-
proach to identify synchronization in synthetic and real-world data.
MI is a method from information theory that measures the gen-
eral correlation between two variables of a bivariate distribution.
Previous work has used the MI as a synchronization measure (e.g.
[Pal01]). However, we could not find a formal proof for a relation to
previous definitions of synchronization.

Chapter 2 of this thesis rigorously proves that MI measures the de-
gree of synchronization in any complex dynamics. As a base for
synchronization, we use generalizations of the concept developed in
[Rul95] [Boc01]. As a result, we find that for generalized synchro-
nization, the MI can be used to identify synchronization. For syn-
chronous systems, only the I(X; Y) will approach the entropy given
by I(X) or I(Y).

By normalizing the MI with min[I(X), I(Y)], we derived the Sychro-
nized Mutual Information (SMI). We were able to show that for ana-
lytically known joint probability distributions, the SMI can discrimi-
nate between synchronous and non-synchronous regimes under the
notion of Generalized Synchronization (GS) (see Section 2.6.2). With
some minor modifications, it can also be used to detect Lagged Syn-
chronization (LS) and Phase Synchronization (PS). Unlike previous
methods based on information theory, the SMI is a 0-1 bound mea-
sure. This allows the classification without a "ground truth" in the
form of a non-synchronous time series to compare.

Since the true underlying probability distribution between two tra-
jectories is unknown, the performance of the SMI is limited by the
available samples. We expect that the SMI will not converge to 1 in
any practical application with limited real-world data.

The quality of the SMI estimation is limited by the sample size, dis-
cretization strategy, and the estimator of entropy and SMI. These fac-
tors are discussed in Section 2.6.4 and in Section 2.6.5. We explore the
practical application of the SMI by comparing it to previous work on
synchronization. Chapter 3 first checks for GS in a driver-response
system, where we can compare it with the auxiliary system method.
Second, we replicate previous work on synchronization in networks
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of logistic maps proposed by [Ant17].

The first system is presented in Chapter 3 and consists of a Rössler
driving a Lorenz oscillator. As a reference, we use the auxiliary sys-
tem method to detect GS. It introduces an auxiliary response system,
identical to the reference system, that replaces the initial parameters
by small amounts [Aba96]. In the original work, it is shown that the
convergence of the auxiliary and reference systems shows synchro-
nization between the driver and the response system.

Our results show that the SMI is able to distinguish between syn-
chronized and decoherent parameter regimes. These results are ob-
tained while solving a restriction when applying the auxiliary system
method: Already in the initial work [Aba96], it was mentioned that
in certain circumstances, the auxiliary and reference system may not
converge, despite the presence of synchronization. We mitigated the
problem by creating an ensemble of auxiliary systems with different
displacements. If any pair of auxiliary and reference systems con-
verge, we can be sure of the existence of synchronization. Since our
method does not rely on an auxiliary system, it avoids this pitfall.

Furthermore, we observed that our method can even provide reliable
results when applied to a reduced phase space. While the initial
proof in Section 2.4 requires the knowledge of the full phase space
to account for the formal relation between SMI and GS, we see that
in certain cases this knowledge might not be necessary. As a result,
the method can also be applied to data, where the full phase space
is not known like real-world time series. We further explore this
application in Chapter 5.

The linear chain of logistic maps allowed us to replicate the results
obtained in previous work by [Ant17] and at the same time show us
how our method could provide additional insight. In the original
work, the authors scanned the parameter space of a linear chain of
logistic maps. They found regimes of Identical Synchronization (IS)
in this space. We replicated their results for IS and found that an
even larger regime of synchronization can be found with the SMI.
Our results indicate that other types of synchronization might form
a frontier between parameter space areas of the synchronized and
decoherent state.

The SMI allows us to use the same approach to determine synchro-
nization between two systems, independently of the dynamics of
the system. In other approaches, it is often necessary to tailor the
method to the phase-space dynamics of the coupled system (e.g. the
Largest Transversal Lyapunov Exponent (LTLE), see [Har19; Zha20]).
To scale from two- to multi-component systems, we only need to find
a suitable aggregation method, matching our phenomenon of inter-
est.

In Section 3.2 we proposed an extension for the pair-based SMI, al-
lowing us to measure the synchronization state of a multi-component
system. While we concentrated on fully synchronized systems in our
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work on the linear chain, partially synchronized systems are well-
known and subject to recent research. In Chapter 4 we explore the
applicability of the methods developed and variants of their own
systems with partial synchronization.

We found that aggregation of SMI works best in situations with tem-
porally stable synchronization or at least long-lived synchronized
states. Systems where aggregation worked well include chimera
states (Section 4.4) and cluster synchronization (Section 4.3). Sit-
uations where synchronization between components is only short-
lived, such as intermittent synchronization (Section 4.2), were shown
to be less reliable. This limitation of the SMI stems from the limited
sample size of the synchronous state in our test system for intermit-
tent synchronization.

We continue our investigation in Chapter 4 by injecting uncorrelated
noise into the coupling and testing the stability of different types of
networks against the injection of noise in the coupling. As expected,
uncorrelated noise generally weakens synchronization. We find that
within our choice of networks, the resilience to noise was mainly
given by the number of coupling partners rather than by the coupling
scheme itself. With more connections, the transition between the syn-
chronized and incoherent states seems to smooth out—-contributing
to a decreased level of noise. Other research suggests that noise
can have a positive effect on synchronization in certain cases [Zha20;
Kat20]. While we found evidence for noise-assisted stabilization of
synchronization, our results on the stabilizing effect of noise were
inconclusive.

However, even in these cases, some coherence seems to remain be-
tween components—a fact that is captured by a decline of SMI be-
tween the frontiers of noisy systems and the synchronized state. This
is a problem that real-world systems also experience, where the cou-
pling is rarely without interference from other systems. As the SMI
also catches these shades of coherence, in the final chapter, we apply
it to measure the coherence between stock prices of Dow Jones listed
companies and in an in vitro model of hippocampal neurons. We
find for both examples that the SMI captures some expected dynam-
ics very well, despite high levels of noise.

In Section 5.1 we assess the general correlation of stock prices be-
tween Dow Jones listed companies for closing prices from 20 years.
We compare the SMI to a different MI-based method, the NMI. A
network of the strongest statistical correlations between companies
is created. In this network, we find clusters that reproduce industry
sectors. Comparing the properties of the NMI and SMI shows that
they assess different aspects of the correlation between companies’
stocks.

Closing Chapter 5 is a study of the change in (observed) synchro-
nization during the growth of an in vitro model of hippocampal neu-
rons in Section 5.2. In contrast to our previous models, neurons
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experience event-driven rather than continuous synchronization. In-
formation about their state is only updated on spikes. Values of the
recorded action potential are thus only correlated on these events,
while the other parts are dominated by noise. Methods oblivious
of spiking events are expected to be at a disadvantage compared to
other methods specialized in spiking events.

Nevertheless, we were able to show that the SMI recognized the ma-
turing interneural connections of an in vitro model. Over ten days,
neuron stem cells matured and established connections with each
other. During the observed time period, the spikes in the neuron’s
action potentials aligned. We were able to show that this process is
picked up by the SMI despite a large part of the signal being noise.

6.1 Advantages and Limitations of the SMI

As with any method, the SMI comes with its own set of advantages
and limitations.

Some methods to find synchronization, like the LTLE, require the
knowledge of the analytic dynamic equations to determine the syn-
chronization between two states. In the case of the LTLE a specific
formulation of phase space dynamics must be found to be able to
evaluate the LTLE. Other methods operate on the observed phase
space without the need to understand the underlying dynamics. The
SMI falls into the second category.

We were able to show in Section 4.4.2 that the SMI can be on par
with the LTLE in correctly identifying synchronized systems. We
also showed the performance of noise perturbed systems, something
that is not easily accessible to other methods like the LTLE [Zha20].

Unlike competing methods such as IS, SMI is sensitive to a broader
understanding of synchronization. We have seen in Section 3.2 that
this increased sensitivity can lead to new insights.

For higher-dimensional systems, such as the Lorenz and Rössler sys-
tems in Section 1.1.4, we found that our approach required high
sampling rates to produce reliable results. Particularly in these high-
dimensional cases, the SMI benefits from MI estimators with im-
proved bias correction. When these methods become available, they
can replace our choice of the Grassberger estimator. We expect that
with improved symbolization strategies, similar results can be ob-
tained with a decreased sampling frequency. Possible strategies were
discussed in Section 2.6.4 and Section 2.6.5.

When processing real-world data, the statistical nature of the method
means that the noise in the recorded data will have little effect on the
results of the SMI. This is in contrast to other methods, such as the
Equation (3.11) synchronization error used to detect IS, where the
noise adds up and distorts the result.
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6.2 Outlook

As mentioned in Section 2.6.5, users should be aware not to acci-
dentally use estimators for differential entropy instead of an estima-
tor for Shannon entropy. Although both concepts look conceptually
similar, differential entropy does not share all of the properties of
Shannon entropy. Differential entropy can produce negative results.
Additionally, it is not invariant to changes on its scale.

To show that the SMI can indicate the existence of GS we used several
properties of Shannon entropy. Differential entropy does not have all
of the properties of Shannon entropy. It is unclear if the relation
between MI and GS still holds when the Shannon entropy estimators
are replaced by differential entropy estimators.

It is at this point unclear that the upper bound of the SMI will still
indicate synchronization when replacing Shannon with differential
entropy. As many of the state-of-the-art estimators are constructed
for differential entropy, a compatible differential SMI is desirable.

In this thesis, we have discussed pair interactions of coupled dy-
namical systems. For multi-component systems, as discussed in
Section 3.2 and Chapter 4, we have also applied our pair-based ap-
proach. We can also foresee oscillators that synchronize with two
partners instead of a single one. These types of interaction are de-
tectable with Conditional Mutual Information (CMI). CMI is defined
as [Mac03]

I(X; Y|Z) = ∑
x,y,z

p(x, y, z)
p(z)p(x, y, z)
p(x, z)p(y, z)

. (6.1)

In the CMI, prior knowledge of a third system Z (or more) is used to
further investigate the relationship between X and Y. With the ad-
ditional knowledge of Z, a system where I(X; Y) = 0 can still show
I(X; Y|Z) > 0. Z provides a "link" between X and Y. Conditional MI
has been used in previous work to identify the direction of coupling
[Li10; Li13]. However, we assume that there are systems where not
only pairs of coupled oscillators are synchronized, but the synchro-
nization is with a third, collective state of the coupling partners.

Reviewing recent work on chimera states has shown that most work
with chimera states is focused on identifying IS. We are unaware of
any limitations that prevent GS in chimera states. One assumption
is that IS is computationally easier to implement than GS. We have
shown in Section 4.4 that the aggregated SMI is capable of identify-
ing chimera states (even though we are likely to observe IS since the
models are based on [Zha21]). With SMI, we have provided a solid
base for future work to find chimera states not based on IS but GS.
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While we were unable to find such states in this work, future stud-
ies may be able to show the existence of these states. One possible
candidate is a modification of the coupled Lorenz-Rössler system in
Section 3.1. By introducing two clusters of the above driver/response
system and coupling a component of each oscillator to the mean-field
of the other cluster, we introduce a setup similar to Section 4.4.



AAppendix



94 identification of emerging patterns in complex systems

A.1 Maximum Lyapunov Exponent
Program for calculating the maximum Lya-
punov exponent for a discrete map. The
user provides the initial states for the ref-
erence initial_state, the perturbed tra-
jectory initial_perturbed_state. The
maximum distance threshold between the
reference and the perturbed state, as well
as a function for the system dynamics map,
a starting distance for the perturbations d0

and N steps to evolve, also have to be pro-
vided. The average Lyapunov exponent per
step is evaluated by evolving both the per-
turbed and reference states while tracking
their distance. If the distance exceeds the
threshold, the perturbed state is reset to
distance d0. With the function aligned_-

vector the direction of the initial perturba-
tion is maintained during rescaling to d0.
The distance between the vectors is calcu-
lated with the Euclidean norm norm. The
algorithm was first proposed in[Ben76], sev-
eral implementations are available; this one
is based on the work for [Dat18].

# User provided variables:

# initial_state, initial_perturbed_state, # d0, threshold, N

# User provided functions:

# map (A function containing the system dynamics and

# generating the next state given the current)

function norm(vec)

return sqrt(sum(vec**2))

end

function aligned_vector(source,perturb)

vec = (perturb - source)

vec /= norm(vec)

return vec

end

system_state = initial_state

perturbed_state = initial_perturbed_state

lambda = 0

i = 0

while i < N

while dist < threshold && i < N

system_state = map(system_state)

perturbed_state = map(perturbed_state)

dist = norm(system_state - perturbed_state)

i += 1

end

a = dist/d0

lambda += log(a)

perturbed_state = system_state

+ aligned_vector(system_state, perturbed_state) * d0

dist = d0

end

lambda = lambda / i
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