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Abstract
This paper presents an approach for the automatic parameter calibration (AC) of a hypoplastic constitutive soil model. The

calibration software developed in this work simplifies the parameter calibration, reduces the subjective ‘‘human’’ factor on

the calibration result and lowers the entry hurdle for the use of the hypoplastic constitutive model. The performance of the

software was demonstrated by comparing automatically calibrated parameter sets for two sands and their related simu-

lations of the underlying experimental data with simulations using two reference parameter sets. The first reference

parameter set was calibrated the classical way, ‘‘by hand’’, and the second was calibrated using the AC tool ExCalibre.

Two different optimization methods were used, namely the Differential Evolution (DE) and the Particle Swarm Opti-

mization (PSO). The simulations performed with the parameters obtained from the AC agree well with the experimental

data and show improvements over the reference parameter sets. With respect to the optimization method, the performance

of the DE proved superior to that of the PSO. Various measures of comparison were examined to quantify the discrepancy

between experiment and simulation. By repeating 500 calibration runs, the dispersion of parameters was determined and

correlations between different parameters of the hypoplastic model were found.

Keywords Automatic calibration � Constitutive model � Differential evolution � Hypoplasticity � Optimization �
Particle swarm optimization

1 Introduction

Numerous constitutive soil models were developed in the

past and are still being developed today. Many of the

constitutive models utilized today originate either from the

framework of hypoplasticity or elasto-plasticity. Prominent

and established representatives of such advanced models

for cohesionless soils are Sanisand [9, 51] for elasto-plas-

ticity as well as hypoplasticity according to Wu et al. [59]

or in the version of von Wolffersdorff [57] with the

extension by intergranular strain by Niemunis & Herle

[38]. For cohesive soils, the anisotropic visco-hypoplastic

model by Niemunis et al. [39] or the clay-hypoplasticity by

Mašı́n [34, 35] can be listed at this point.

Recently, Fuentes et al. extended the hypoplastic con-

stitutive model with the intergranular strain anisotropy

(ISA, an extension of the intergranular strain concept first

presented in [12]) to describe liquefaction phenomena of

sands [13, 40]. For the Sanisand model of 2004 [9], many

extensions have been proposed. For instance, Taiebat &

Dafalias [51] added a yield surface with closed cap, Liu
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et al. [30] and Liu and Pisano [29] introduced a memory

surface which improves the model’s performance under

cyclic loading and allows for the simulation of several

thousands of loading cycles and Barrero et al. [3] improved

the model for cyclic shearing of sands in semifluidized

states, among others. New and further developments in the

field of constitutive models for cohesive soils are for

example the anisotropic visco-ISA (AVISA) model by

Tafili & Triantafyllidis [50], the coupling of clay-hy-

poplasticity with ISA-plasticity by Fuentes et al. [14], the

barodesy with intergranular strain extension by Bode et al.

[5] or a novel hypoplastic model for overconsolidated clays

by Wang and Wu [55, 56].

Even if the above-mentioned works are only an excerpt

from the constitutive models published in the recent years,

they are testimony to the rapid and varied developments

that have taken place in this field of soil mechanics. Many

new models extend and improve the prediction quality of

the old ones. This is usually accompanied by an increase in

the number of material parameters which need to be cali-

brated. The quality of the forecast depends significantly on

a suitable choice of these parameters. However, their cal-

ibration is often time-consuming and requires a high degree

of experience in handling the model to be calibrated

because many of the parameters cannot be identified

straight forward by specific experiments or empirical

equations. This makes the application of such advanced

soil models a very challenging task not only for beginners

but also for experienced engineers and researchers and by

this often prevents the application in practical projects and

to boundary value problems. Automatic Calibration (AC)

aims to simplify and speed up the calibration process and,

in particular, to reduce the application hurdles when using

advanced constitutive soil models. In addition, AC helps to

reduce the ‘‘human factor’’ in the calibration of model

parameters (e.g., subconscious personal preferences, out-

come-based calibrations and experience of the person

performing the calibration). Another, not as obvious

advantage of AC is the possibility to identify previously

unknown relations between individual parameters. The

detection of such relations can be used for a possible

reduction in the number of required parameters of the

model. A well-established tool for AC of constitutive soil

models is ExCalibre by Kadlı́ček et al. [23–25] (https://

soilmodels.com/excalibre/). It allows to estimate parame-

ters of constitutive soil models such as clay and sand

hypoplasticity based on the results of oedometric com-

pression and monotonic triaxial tests. However, the soft-

ware only allows to calibrate a full set of parameters

(calibration of only individual parameters is not possible)

and, in case of the hypoplastic model for sands, produces

parameters that underestimate dilatancy [36]. In addition,

custom implementations of soil models cannot be linked to

the ExCalibre. Recently, an AC method for a hypoplastic

model based on genetic algorithms was presented by

Mendez et al. [36]. The therein developed AC uses a

Fréchet Distance-based similarity measure and was able to

determine parameters for the hypoplastic model that lead to

simulation results closer to the experiments than those

calibrated by hand. However, the influence of the opti-

mization method and of the similarity measure used for

determining the discrepancy between experiment and

simulation remains unclear. In addition, the previous work

was limited to a rather small number of laboratory tests

when calibrating the parameters (in [36] a maximum of two

oedometric compression tests and three drained monotonic

triaxial tests were used for calibration). It is unclear how

AC performs with a larger data set and what possible

limitations follow from a calibration based on a reduced

data set.

In this paper, a calibration software for constitutive soil

models is presented. The calibration is based on two

optimization methods: Differential Evolution (DE) [49]

and Particle Swarm Optimization (PSO). The influence of

the similarity measures used to quantify the differences

between laboratory tests and simulation is investigated.

The software is presented by means of the calibration of the

parameters for a hypoplastic constitutive model for two

different sands. The number of experiments taken into

account is varied in order to check the influence of the data

basis.

Both, DE and PSO fall in the category of so-called direct

or derivative-free algorithms. Such algorithms make few or

no assumptions about the underlying optimization problem

and can quickly explore very large design spaces (ranges of

parameters). In the field of geotechnics, they have been

applied to the calibration of the parameters of the Mohr-

Coulomb model by means of inverse analyses [41], to the

calibration of an elasto-plastic constitutive model [43], to

the automatic selection of constitutive models [21] or to the

continuous parameter identification in staged excavation

simulations [22]. In [36], a Genetic Algorithm (GA, also

belonging to the category of direct algorithms) was used to

calibrate the parameters of a hypoplastic model and in [45]

for the identification of maximum discontinuity frequency

in a complex rock structure. Recently, [16] used a combi-

nation of DEM simulations and Artificial Neural Networks

to determine the parameters of Duncan–Chang model,

namely the tangent elastic modulus and the ultimate

deviatoric stress.

The paper is structured as follows. The developed global

optimizer, including the constitutive equations, the defini-

tion of the cost function as well as the optimization

methods are introduced in Sect. 2. Section 3 presents the

experimental data set, and the corresponding reference

parameter sets, based on which the performance of the
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optimization is evaluated. The influence of the choice of

optimization method and the choice of similarity measure

to calculate the error function is investigated in Sects. 4 and

5, respectively. Section 6 focuses on the solution unique-

ness and Sect. 7 investigates the influence of the extent of

the available data for calibration. The conclusions of the

study are given in Sect. 8.

2 Numerical tool set

The Automatic Calibration (AC) software has been

developed with the aim to provide easy access to the cal-

ibration of different (advanced) constitutive soil models.

Several of such advanced constitutive models are imple-

mented in the finite element program numgeo (Machaček

& Staubach, [31, 32, 47, 48]). The parameter calibration

should preferably be performed by using the identical

implementation of the constitutive model as for the later

simulation of the boundary value problem. In particular for

advanced constitutive soil models the implementation can

have an important influence on the response of the model.

Therefore, the calibration software was built on top of

numgeo. This allows easy access to all constitutive soil

models implemented in numgeo and thus to utilize the

same implementation for calibration and the subsequent

calculation of boundary value problems. Although this

work is restricted to the calibration of parameters for a

hypoplastic constitutive model (see Sect. 2.1), the imple-

mentation can easily be extended to other constitutive

models implemented in numgeo.

The AC software is implemented in Python, leveraged

by numerical libraries such as numpy [17] and scipy [53].

An overview of the software is given in Fig. 1. A database

has been designed to access and store several (and different

in kind) standard laboratory tests such as oedometric

compression tests or (drained monotonic) triaxial tests.

Functions are available for pre-processing (if desired/re-

quired) of the raw data, such as filtering, data reduction or

interpolation. Besides the global optimizer, which is the

focus of this article, the software also offers the possibility

to automatically estimate the parameters based on simpli-

fied calibration methods, such as the one according to

Herle [18]. Two heuristic optimization algorithms are

available for global parameter optimization, namely PSO

and DE [49]. The global optimizer operates on the set of

model parameters, comparing the numerical prediction of

the constitutive model to the experimental results stored in

the database until a best set (the parameters that charac-

terize better the material behavior) is identified, see Sects.

2.3.2 and 2.3.1. Interfaces to various comparison measures

are implemented as explained in more detail in Sect. 2.2.

2.1 Hypoplastic model for sand

The finite element program numgeo implements a

hypoplastic constitutive model for granular materials [59]

with a predefined limit state surface [57] and intergranular

strain extension [38]. The basic hypoplastic model of von

Wolffersdorff [57] interrelates the stress rate _r with the

strain rate _e:

_r ¼ L : _eþ Nk _ek: ð1Þ

Therein, L is a fourth order tensor being linear in _e, whereas

N is a second order tensor being nonlinear in _e. Both

stiffness tensors L and N are functions of stress and void

ratio and given by the following equations [57]:

L ¼ fbfe
1

tr ðr̂ � r̂Þ ðF
2Iþ a2r̂r̂Þ; ð2Þ

N ¼ fbfefd
Fa

tr ðr̂ � r̂Þ ðr̂þ r̂�Þ: ð3Þ

Therein r̂ ¼ r

trr
and r̂� ¼ r̂� 1

3
I are used. The scalar

factors are defined by

a ¼
ffiffiffi

3
p

ð3� sinucÞ
2
ffiffiffi

2
p

sinuc

; fd ¼ e � ed

ec � ed

� �a

; fe ¼
ec

e

� �b

ð4Þ

and

fb ¼ hs

n

ei0

ec0

� �b
1þ ei

ei

3p

hs

� �1�n

3þ a2 � a
ffiffiffi

3
p ei0 � ed0

ec0 � ed0

� �a� ��1

:

ð5Þ

uc, hs, n, ei0, ed0, ec0, a and b are parameters and e is the

actual void ratio. The pressure-dependent void ratios ei, ec

and ed in Eq. (4), describing the loosest, the critical and the

densest state, are calculated using the following relation

[4, 59]

ei

ei0
¼ ec

ec0
¼ ed

ed0
¼ exp � 3p

hs

� �n� �

: ð6Þ

p ¼ rii=3 is the mean effective stress. The scalar factor F

in Eq. (2) and Eq. (3) is given by

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8
tanðwÞ2 þ 2� tanðwÞ2

2þ
ffiffiffi

2
p

tanðwÞ cosð3hÞ

s

� 1

2
ffiffiffi

2
p tanðwÞ;

ð7Þ

with tanðwÞ ¼
ffiffiffi

3
p

kr̂�k and

cosð3hÞ ¼ �
ffiffiffi

6
p tr ðr̂� � r̂� � r̂�Þ

tr ðr̂� � r̂�Þ½ �3=2
: ð8Þ
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To improve the performance of the hypoplastic model in

the range of small strains Niemunis & Herle, [38] intro-

duced a new tensorial state variable, the intergranular strain

h, which memorizes the recent deformation history.

However, since the present work focuses on monotonic

loading, the introduction of the intergranular strain exten-

sion is omitted for the sake of brevity. The present

implementation uses an adaptive Newton scheme for the

integration of Eq. (1) considering the rate of convergence

within a substepping scheme. For void ratios e exceeding

the loosest possible void ratio eiðpÞ at a given mean

effective stress p, a special treatment originally developed

by A. Niemunis and described in [33] is applied.

2.2 Objective/cost function

The basis of any optimization is the existence of a (scalar)

objective function (‘‘cost function’’) which has to be min-

imized by changing the parameters in the course of the

optimization. The cost function in this work is defined as

follows:

� ¼
X

nT

iT

WiT�iT ¼
X

nT

iT

WiT

X

nt

it

wit
iT�

it
iT

 !

; ð9Þ

where �iT is the resulting error for laboratory test type iT and

nT is the total number of different types of laboratory tests

which form the basis for the optimization. In the present

work, oedometric compression tests (iT ¼ oc) and drained

monotonic triaxial tests (iT ¼ dmt) are used. WiT are the

weighting functions, which control the calibration procedure

with regard to whether the simulated material behavior

should represent all test types equally well or whether the

behavior in individual laboratory test types (e.g., the

behavior under oedometric conditions) is more important

than the others. The resulting error �iT is again a weighted

sum (thus an averaged value) of all errors �it
iT of all individual

tests it of one test type iT. wit
iT are the associated weightings

and nt the total number of all individual tests of test type iT.

Note that the closure conditions
PnT

iT WiT ¼ 1 and
Pnt

it wit
iT ¼ 1 hold. In this work equal weight is put on the

models’ performance in the simulation of the oedometric

compression test and drained monotonic triaxial test, i.e.,

Woc ¼ 1=2 and Wdmt ¼ 1=2. The calculation of �it
iT depends

on the laboratory test type. It is a natural choice to judge the

quality of the optimization on the basis of the comparison of

the experimental data with the simulation results. For this

purpose, a comparison of the experimentally measured and

simulated relationships in the stress and strain spaces is

useful. For the present work, the cost function for oedometric

compression tests is evaluated in the axial stress–axial strain

(~r1 � ~e1) plane, whereas for the drained monotonic triaxial

tests, both the axial strain– deviatoric stress (~e1 � ~q) and the

axial strain–volumetric strain (~e1 � ~eV ) planes are used:

�it
ocð~e1; ~r1Þ ; �it

dmtð~q; ~e1; ~eVÞ
¼ weq

dmt�
it;eq
dmt ð~e1; ~qÞ þ wee

dmt�
it;ee
dmt ð~e1; ~eVÞ:

ð10Þ

Therein, weq
dmt and wee

dmt are weights controlling whether the

Fig. 1 Overview of the AC tool set for the optimization of parameters of constitutive models for soils
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focus during calibration should be on achieving the best

possible reproducibility of the response in the e1 � q plane,

e1 � eV plane, or a combination of both. Note that in

Equation (10) scaled stress and strain measures are used

instead of the actual values. This is necessary to ensure that

the variables used for the error calculation—despite their

different value ranges and units (e 2 ½0� 0:3� and q 2
½0� 500� kPa)—have a comparable influence on the opti-

mization. Therefore, both the experimental (exp) and

numerical (sim) data are made dimensionless using the

following relations:

~et1 ¼ et1
maxðmaxðeexp

1 Þ;maxðesim
1 ÞÞ with: t ¼ fexp; simg

ð11Þ

~etV ¼ etV
maxðmaxðjeexp

V jÞ;maxðjesim
V jÞÞ ð12Þ

~qt ¼ qt

maxðmaxðqexpÞ;maxðqsimÞÞ ð13Þ

This normalization transfers the experimental and numer-

ical results into representations which have their origin in

(0, 0) and range to (1, 1) in the case of the ~r1 � ~e1 and the

~e1 � ~q plane and up to ð�1; 1Þ in the case of the ~e1 � ~eV

plane.

The cost functions �it
iT driving the optimization of the

parameters are thus built by accounting for the discrepancy

between the numerical predictions and the measured (ex-

perimental) data. Traditionally, this discrepancy is often

quantified using a sum-of-square-based cost function.

However, in the present case this is not always possible.

One problem is a potentially different number of data

points on the experimental curve compared to the numer-

ical curve. Admittedly, this circumstance could be reme-

died by linear interpolation—provided there are enough

data points to keep the introduced error low. However, in

many cases there is no unique relationship between stress

and strain—the material behavior is path dependent. An

example is the oedometric compression test with loading,

unloading and reloading. Thus, the use of alternative

objective functions is advised to measure the similarity

between the experimental data and the simulation results.

In a recently published study [36], the Fréchet Distance

was used for this purpose. [20] compared the performance

of different similarity measures for the automatic param-

eter calibration of a kinematic hardening material model

for steel. Up to now, the influence of the similarity measure

applied to evaluate the cost function on the calibration

result of constitutive soil models was not reported to the

authors’ best knowledge. For the present work, the same

similarity measurements (and implementations) as in [20]

were used:

• Dynamic time warping (DTW)

DTW [42, 52] is a well-established method to

account for temporal variations in the comparison of

related time series. First applied to speech processing,

the application of DTW ranges from data mining over

signal processing to issues of different engineering

disciplines, see e.g., [1] and the therein included

references.

• Fréchet Distance (FD)

The Fréchet Distance [10, 11] is a measure of the

similarity between the curves taking into account the

location and ordering of the points along the curves.

• Area Between Two Curves (ABTC)

The Area Between Two Curves is the integral of the

absolute value of their difference (evaluated as the sum

of piece-wise integrals). The resulting integral corre-

sponds to the amount of mismatch between the two

curves. The approach proposed and implemented in

[20] is used in this work.

• Curve Length Measure (CLM)

The Curve Length Measure [2, 6] compares a point

pA on curve cA (experimental data) to its corresponding

curve length point pB on curve cB (simulation result). pB

is evaluated on cB at the equivalent curve length

distance of pA on cA. The error is then calculated based

on the distance between pA and pB.

An illustrative graphical description of the above similarity

measurements is given in [20], to which reference is hereby

made. In addition, a similarity measure based on the sum-

of-square method proposed by [28] and also used in

[25, 60] was tested which takes the general form:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i

Usim
i � Uexp

i

Uexp
i

v

u

u

t : ð14Þ

Therein, N is the number of values, Uexp
i is the value of

measurement point i and Usim
i is the value of the simulation

at point i. Contrary to the other similarity measures, no

scaling according to Eqs. (11-13) is required for this

method. However, it has to be ensured that the arrays Uexp

and Usim have an identical number of data points. In the

following, this method will be referred to as the Modified

Least Square method (MLS).

In general, it is nearly impossible for numerical models

to match experimental data exactly. It is not likely that a

constitutive material model matches the real (measured)

material behavior perfectly. This applies in particular to the

very complex behavior of soils, which is highly nonlinear,

anelastic and path dependent. Even if a ‘‘perfect’’ consti-

tutive model existed, measurement errors and scattering of

experimental results (e.g., resulting from the preparation of

soil samples by different technicians) would prevent a

Acta Geotechnica (2022) 17:5253–5273 5257

123



perfect fit. Note that it is therefore very unlikely that the

cost function will take values smaller than �\10�2, espe-

cially if the parameter calibration is carried out on more

than a single test. A good fit must therefore be judged by

both a stagnant decrease in the error function and a visual

inspection of the simulation results with the experimental

data.

At this point it becomes obvious that due to the required

specification of weighting factors and the formulation of

error measures an absolute objectivity of the AC cannot be

achieved and is subject to human influences. In the case of

the AC, this corresponds to the influence of the engineer

who developed the AC but also to that of the user of the

AC. This is shown in Sect. 5 for the choice of similarity

measure as well as the choice of weighting factors weq
dmt and

wee
dmt. The different combinations of weighting factors

considered in this work are summarized in Table 1.

2.3 Optimization algorithm

When choosing an optimization algorithm, it should be

noted that the objective function of constitutive soil models

as represented by the hypoplastic model is a nonlinear,

complex multi-peak and non-differentiable function. The

reason for this is the high sensitivity of the hypoplastic

material model to changes in the parameters. In addition,

some parameters of the hypoplastic model are interdepen-

dent (see also Sect. 6). For the application of traditional

direct search algorithms and optimization algorithms,

depending on the gradient information, this will lead to

local optimization and premature convergence [41]. In such

cases, the use of so-called direct or derivative-free algo-

rithms is recommended, since they do not use derivatives

or finite differences. Popular representatives of these

methods are the Nelder–Mead method [37], Differential

Evolution algorithms [49, 58], Genetic Algorithms or

Particle Swarm Optimization algorithms [26, 44], among

others. Such algorithms make few or no assumptions about

the underlying optimization problem and can quickly

explore very large design spaces (ranges of parameters).

Compared to algorithms depending on gradient informa-

tion, stochastic optimization algorithms require generally a

large amount of evaluations of the objective function.

2.3.1 Differential evolution

Differential evolution (DE), proposed by Storn and Price

[49], is a population-based metaheuristic1 search algorithm

that optimizes a problem by iteratively improving a

candidate solution xj (where j is the candidate number)

based on an evolutionary process. In this work, the DE

implementation of [53] is used. That implementation is

based on the method proposed in [49] and later extended by

[58]. In the DE, the solution of the problem is described by

a vector x ¼ ½x1; x2; :::; xnD� with the dimension of the

search space nD. In the present work, nD is equal to the

number of parameters of the constitutive model to be cal-

ibrated. The solution space is investigated by multiple

candidate solutions xj simultaneously. The set of solutions

is called population p ¼ ½x1; x2; :::; xnC�, with nC individ-

uals (candidate solutions). For the present work, the overall

population size is nC ¼ maxf15 � nD; 2pg ¼ 124 (the next

power of 2 after 15 � nD, with nD ¼ 7). For the initializa-

tion of p0, each parameter varies within a user provided

range. These ranges remain fixed for all candidates during

the whole optimization process. Details on the ranges are

provided in Sect. 2.3.3. The initialization of the candidate

solution p0 is based on Sobol sequences, which is known to

cover the solution space evenly [27]. The quality of the

solution is determined based on the cost function as

described in Sect. 2.2.

At each iteration I (also often referred to as evolutionary

step or generation), DE uses a mutation operator for pro-

ducing a so-called donor vector vj ¼ ½vj
1; vj

2; :::; vj
nD� for

each individual xj in the current population p. For each

target vector xj at iteration I, the associated mutant vector

vj can be produced using a specific mutation scheme.

Various mutation strategies exist in the literature for this,

see for example [15] for a comparison of the most widely

used strategies. In this work, the ‘‘best/1/bin’’ strategy is

used:

vj ¼ xbest þ F
�

xrandð1Þ � xrandð2Þ

�

; ð15Þ

where xbest is the currently best vector in the population p,

xrandð1Þ and xrandð2Þ (with xrandð1Þ 6¼ xrandð2Þ) are randomly

chosen members of p. Their difference is used to mutate

xbest. F is the differential weight, a positive control

parameter for scaling the difference vector. In this work the

differential weight randomly varies after each generation in

the range of 0:5�F � 1.

2.3.2 Particle swarm optimization

The Particle Swarm Optimization (PSO), first introduced

by Kennedy, Eberhart & Shi [26, 44], is a nature inspired

heuristic optimization method. In this work, the PSO

implementation of [26, 44] is used. In the PSO a candidate

solution x ¼ ½x1; x2; :::; xnD�T (with the dimension of the

search space nD, cf. Section 2.3.1) is iteratively adjusted

using a velocity update method. Similar to the DE, the PSO

1 In this context, heuristic means that it cannot be proved that the

solution obtained by the optimizer is actually the real global optimal

solution.
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considers a set (a swarm) of solution candidates named

particles s ¼ ½x1; x2; :::; xnC�T , with nC individuals (candi-

date solutions). The position update at time t þ 1 of each

particle in the swarm is defined as follows:

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ; ð16Þ

where xiðtÞ is the position of the considered particle at time

t (the last iteration) and viðt þ 1Þ is the velocity of the

particle at time t þ 1. To calculate the velocity, the fol-

lowing rule is applied:

viðt þ 1Þ ¼wviðtÞ þ c1r1

�

xp�best � xiðtÞ
�

þ c2r2

�

xg�best � xiðtÞ
� ð17Þ

Therein, xg�best is the best candidate solution ever explored

by the swarm s and xp�best is the personal best position of

the considered particle so far. c1 and c2 are often referred to

as ‘‘cognitive weights.’’ They control if the particle follows

the overall swarm’s best solution or its personal one. w is

the ‘‘inertia weight’’ and controls how much the particles

velocity influences the update. r1 and r2 are random

numbers between 0 and 1. In the present work, c1 ¼ 0:5,

c2 ¼ 0:3 and w ¼ 0:9 were used.

2.3.3 Bounds and constraints

Whenever parameter optimization is performed for

advanced material models, it is necessary to limit the

search space of possible parameters. If this is omitted, it

may result in nonphysical values for some parameters (e.g.,

negative limiting void ratios in hypoplasticity) or in an

unstable numerical solution. On the other hand, the opti-

mization algorithm can only identify the best fit parameters

if they are within the search space. Assigning an appro-

priate search space is a non-trivial task and might require

some iterations. However, identifying a too narrow search

space is straight forward, since a too narrow search space

leads to clustering of the population at the boundaries.

For the selection of the parameter limits, the parameters

are divided into two groups. The first group includes the

parameters uc, ec0 and ed0. For these three parameters a

suitable starting point for the optimization can be estimated

with comparatively high confidence from simple laboratory

tests (uc as the angle of repose from loosely pluviated

cones of dry sand, ec0 and ed0 from index tests on maxi-

mum and minimum void ratio). For these parameters the

bounds are set at þ=� 10 % of the corresponding values

determined in the laboratory (ulab
c , elab

c0 and elab
d0 ). The

remaining parameters (ei0, hs, n, a and b) belong to the

second group. Their determination from laboratory tests or

correlations is associated with greater uncertainties. Their

limits are chosen freely, but in such a way that clustering

does not occur. It is imperative to check this. Of course—if

desired—the parameters of group 1 can also be treated like

parameters of group 2. The bounds of the search space used

in the present work are summarized in Table 2.

3 Experimental data and reference
parameter sets

The performance of the calibration software is investigated

by calibrating the parameters of the hypoplastic material

model for two different sands. The first sand is the so-

called Karlsruhe Sand (KSa): a medium coarse sand which

has already been the basis for numerous model tests [54]

and simulations [8, 33, 46]. The laboratory tests of this

sand comprise oedometric compression tests and drained

monotonic triaxial tests and were carried out at the Karl-

sruhe Institute of Technology. The second sand is the so-

called UWA Silica Sand (SSa): a fine-to-medium-grained

sub-angular sand used for centrifuge tests at the University

of Western Australia. The drained monotonic triaxial tests

were carried out at the Technical University of Hamburg

and are documented in [7]. The oedometric compression

Table 1 Combinations of weighting factors for judging the constitu-

tive models performance in drained monotonic triaxial tests

Combination weq
dmt wee

dmt

‘‘1/2, 1/2’’ 1/2 1/2

‘‘2=3; 1=3’’ 2/3 1/3

‘‘max(q; e)’’ max(�it;eq
dmt ; �

it;ee
dmt )

1

‘‘q’’ 1 0

For cases where �it;eq
dmt [ �it;ee

dmt , the weights take the values of weq
dmt ¼ 1

and wee
dmt ¼ 0. Vice versa for �it;ee

dmt [ �it;eq
dmt , the weights are weq

dmt ¼ 0

and wee
dmt ¼ 1

Table 2 Bounds of the search space for the optimization. ulab
c , elab

c0 and elab
d0 are evaluated from standard laboratory tests as explained in the text

uc hs n ed0 ec0 ei0 a b

Min. 0:9 � ulab
c 10�4 GPa 0.1 0:9 � elab

d0 0:9 � elab
c0

1:05 � ec0 0.0 0.0

Max. 1:1 � ulab
c

60 GPa 1.0 1:1 � elab
d0 1:1 � elab

c0
1:25 � ec0 1.0 5.0
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tests were carried out at the Ruhr-University Bochum. The

index parameters of both sands are given in Table 3.

A summary of the drained monotonic triaxial tests is

given in Tables 4 and 5 for KSa and SSa, respectively.

For both sands, hypoplastic parameters were determined

by hand by the authors in previous projects as outlined in

the following:

• In a first step, the parameters were calibrated by hand

following the procedure proposed by [18]. The eight

parameters of the hypoplastic model have been cali-

brated based on loosely pluviated cones of dry sand

(uc), index tests on maximum and minimum void ratio

(ed0, ec0), oedometric compression tests (hs, n, b) and
drained monotonic triaxial tests (a).

• The hypoplastic parameters have been further opti-

mized by recalculating the laboratory tests using

numgeo. The parameters have been iteratively adjusted

in order to receive a better fit of the material behavior

under monotonic loading conditions.

In addition, a second parameter set was determined for

each sand using the AC tool ExCalibre [23, 24]. ExCalibre

uses a combination of empirical relations and automatic

calibration to determine the hypoplastic parameters. The

parameters hs and n are calculated from oedometric com-

pression tests as described in [23]. The void ratio ec0 is

assigned to the initial value of the void ratio of the oedo-

metric compression test performed on the loosest available

sample [23]. In doing so, it is assumed that the sample of

the oedometric compression test is in its loosest possible

state. The void ratios ed0 and ei0 are calculated using the

empirical relations ed0 ¼ 0:5 � ec0 and ei0 ¼ 1:2 � ec0 [23].

The parameters a and b are calibrated by using back-cal-

culations of drained monotonic triaxial tests. a and b are

iteratively adjusted until a good fit with the experimental

results is obtained. To the best of the authors’ knowledge, it

is not publicly documented how the discrepancy between

experiment and simulation is determined or how the

iterative adjustment is performed. A comparison of the

simulation results with the parameters determined by hand

and by means of ExCalibre with the experimental data is

given for the Karlsruhe Sand in Fig. 2 and for the UWA

Silica Sand in Fig. 3. The corresponding hypoplastic

parameters are summarized in Table 6. The comparison of

the parameters shows two peculiarities: first, the void ratios

ed0 determined by ExCalibre are significantly lower than

those determined in the laboratory and used for calibration

by hand. Secondly, an unusually high value for hs is

determined by ExCalibre for the Karlsruhe Sand.

For both sands, an acceptable agreement between the

experimental data and the results of the numerical simu-

lations can be observed for the parameters calibrated by

hand. The parameters hs, n and b of the hypoplastic model

have been calibrated to reproduce the first loading curves

of the oedometric compression tests on loose samples, thus

the good prediction at this phase of the test. For the UWA

Silica Sand, noticeable differences for the oedometric

compression tests on dense samples are observed. In

comparison, the simulations with the parameters obtained

from ExCalibre show a worse agreement with the experi-

mental data. This applies in particular to the test on the

loose sample of Karlsruhe Sand. For the UWA Silica Sand

the parameters calibrated with the help of ExCalibre

Table 3 Index parameters of the Karlsruhe Sand and UWA Silica

Sand used in the experiments

Parameter Unit KSa SSa

Median grain size d50 [mm] 0.55 0.19

Coefficient of uniformity CU [–] 1.53 1.9

Grain density qs [g/cm3] 2.65 2.65

Maximum void ratio emax [–] 0.851 0.787

Minimum void ratio emin [–] 0.549 0.525

Critical friction angle2 uc [�� 33.1 33.0

The critical friction angle was determined as the inclination of a

loosely pluviated cone of sand, i.e., as the angle of repose

Table 4 Drained monotonic triaxial tests on Karlsruhe Sand (KSa)

Test Dr0 p0

KSa-26-100 0.26 100 kPa

KSa-62-100 0.62 100 kPa

KSa-82-100 0.82 100 kPa

KSa-97-100 0.97 100 kPa

KSa-54-200 0.54 200 kPa

KSa-65-400 0.65 400 kPa

KSa-61-20 0.61 20 kPa

Table 5 Drained monotonic triaxial tests on UWA Silica Sand (SSa)

Test Dr0 p0

SSa-29-50 0.29 50 kPa

SSa-33-100 0.33 100 kPa

SSa-35-200 0.35 200 kPa

SSa-85-50 0.85 50 kPa

SSa-89-200 0.89 200 kPa

SSa-91-100 0.91 100 kPa
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rendered better results compared to the ones calibrated by

hand.

From the simulations of the drained monotonic triaxial

tests, one may note that the peak strength is slightly

overestimated for both sands. This is more pronounced in

case of the UWA Silica Sand, especially for initially loose

samples at low initial stress (p0 ¼ f50 kPa ; 100 kPa g).
Except from the test at high initial stress (p0 ¼ 400 kPa),

the residual shear strength is reproduced reasonably well in

the simulations of the Karlsruhe Sand. The simulated

volumetric strain behavior for initially loose samples can

be judged as satisfactory. However, significant differences

are noted in the ev � e1 plots for the medium-dense and

dense samples. The inability of the hypoplastic model in

reproducing the volumetric strain behavior of dense sam-

ples is clearly visibly. This is because the parameter a
controlling these curves was previously calibrated to

reproduce the peak stress of the test (a common approach

to calibrate the hypoplastic constitutive model). For Karl-

sruhe Sand, the parameters calibrated using ExCalibre

overestimate the initial stiffness and show slightly worse
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Fig. 2 Comparison of experiments (black) and simulation results

(colored) for oedometric compression tests and drained monotonic

triaxial tests on samples of Karlsruhe Sand with different initial

densities and different initial mean effective stresses. The hypoplastic

parameters were calibrated by hand in previous work [33] and by

ExCalibre [23, 24]
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Fig. 3 Comparison of experiments (black) and simulation results

(colored) for oedometric compression tests and drained monotonic

triaxial tests on samples of UWA Silica Sand with different initial

densities and different initial mean effective stresses. The hypoplastic

parameters were calibrated by hand and by ExCalibre [23, 24]
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agreement with the experimental results compared to the

parameters calibrated by hand. For the UWA Silica Sand,

the simulations using the parameters determined with the

help of ExCalibre show a worse match with the experi-

mental data than the ones using the parameters calibrated

by hand. In this case, the initial stiffness in the q � e1 plot
is underestimated and the ev � e1 behavior noticeably

underestimates dilatancy.

In summary, the simulation results obtained with the

help of the software ExCalibre are of similar quality to

those using parameters calibrated by hand. The parameters

determined in this way provide a reference for assessing

the quality of the parameters obtained by AC. In addition,

they also reveal some weaknesses, and it will be interesting

to see whether the AC can reduce or even avoid them.

4 Influence of the optimization method

So far, there is little experience regarding the choice of

optimization algorithm for determining the parameters of

advanced constitutive soil models. In the following, the

results of the parameter calibration of the hypoplastic

material model using both, DE and PSO are compared with

each other. For this purpose, 200 optimization runs were

performed with each optimization method. A ‘‘run’’

denotes a complete calibration using AC, which again

includes several iterations. The parameters were deter-

mined for Karlsruhe Sand on the basis of all available

laboratory test data (2 oedometric compression tests and 7

drained monotonic triaxial tests). The discrepancy between

the experimental data and the simulation results are

quantified using the Fréchet Distance (see Sect. 2.2). The

cost function considers both the discrepancies for the

oedometric compression tests as well as for the drained

monotonic triaxial tests. Thus, the calibration considers

both types of experiments simultaneously. In general, the

quality of the parameters determined in a calibration run by

optimization is measured by the final value of the cost

function � (see Sect. 2.2). The smaller this value, the better

the agreement between experimental data and simulation

results. The final values of the cost function of all runs of

the optimization using DE and PSO are compared in Fig. 4.

The comparison clearly shows that the results of the

optimization obtained by DE, by means of final cost

function value, have a significantly lower scatter than the

optimization using PSO. It is particularly noteworthy that

the worst optimization result obtained in the 200 runs with

the DE (�worst
DE ¼ 0:0884) is only slightly worse than the best

result obtained with PSO (�best
PSO ¼ 0:0864). The worst run

with PSO (�worst
PSO ¼ 0:1349), on the other hand, leads to an

almost 50 % larger value for � than the worst run with DE.

In terms of the achievable quality of the optimization and

the reproducibility of the solution (both measured by

means of �), the DE is preferable to the PSO. The extent to

which the scattering of the optimization results influences

the actual forecast quality is illustrated in Figs. 5 and 6.

Therein, the simulation results obtained with the ‘‘best fit’’

and the ‘‘worst fit’’ parameter set from 200 calibration runs

are compared. The corresponding parameters are summa-

rized in Table 7. The reference sets correspond to the one

Table 6 Parameters of the hypoplastic model for Karlsruhe Sand (KSa) and UWA Silica Sand (SSa)

Sand uc hs n ed0 ec0 ei0 a b

KSa, by hand 33.1� 19 GPa 0.285 0.549 0.851 0.979 0.1 0.32

KSa, ExCalibre 32.7� 715004 GPa 0.153 0.407 0.815 0.978 0.18 0.1

SSa, by hand 31.6� 0.757 GPa 0.516 0.525 0.787 0.905 0.0514 0.599

SSa, ExCalibre 32.4� 0.316 GPa 0.544 0.362 0.724 0.869 0.22 0.1
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Fig. 4 Final values of the cost function � for 200 repeated runs of the

automatic parameter calibration for Karlsruhe Sand using DE and

PSO
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calibrated ‘‘by hand’’ and by means of ExCalibre, see Sect.

3.

The comparison given in Figs. 5 and 6 shows that the

simulation results obtained by AC are in satisfactory

agreement with the experimental data. Furthermore, there

are only small deviations in the simulation results based on

the ‘‘best fit’’ parameter sets of the DE and the PSO. The

largest deviations are found for the recalculation of the

triaxial test on the very dense sample

(Dr0 ¼ 0:97; p0 ¼ 100 kPa). Here, the simulations strongly

overestimate the maximum deviatoric stress q, but show a

good agreement in terms of volumetric strain ev. Compared

to the manually determined parameters, which serve here

as a reference parameter set, the automatically calibrated

parameters can be attested a similarly good agreement for

the oedometric compression tests. In contrast, the auto-

matically calibrated parameters render better simulation

results for the oedometric compression tests than the

parameters calibrated by means of ExCalibre. The largest

deviations between both reference parameter sets and the

parameters obtained by AC can be seen in the simulation
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Fig. 5 Comparison of the simulation results for the parameter sets for

Karlsruhe Sand with the ‘‘best fit’’ (solid) and the ‘‘worst fit’’ (dashed)

from 200 repeated runs of the AC using DE
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Fig. 6 Comparison of the simulation results for the parameter sets for

Karlsruhe Sand with the ‘‘best fit’’ (solid) and the ‘‘worst fit’’ (dashed)

from 200 repeated runs of the AC using PSO
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results of the drained monotonic triaxial tests. While the

reference parameter sets show a good prediction of the

peak deviatoric stress for all relative densities, in the case

of the AC there is the above-mentioned overestimation of

the peak deviatoric stress for the very dense sample. For all

other samples, the maximum deviatoric stress is well pre-

dicted. With respect to the residual shear strength, there is a

slightly better agreement for the parameters obtained by

AC. The largest difference is observed for the predicted

volumetric strain ev. Here, the simulations with the auto-

matically calibrated parameters achieve a significantly

better agreement with the values measured in laboratory

tests. Overall, the parameter sets obtained by AC can be

attested a better agreement with the laboratory tests than

both reference parameter sets.

For the parameters calibrated by DE, a very small

deviation for the ‘‘worst fit’’ (� ¼ 0:0884) and the ‘‘best fit’’

(� ¼ 0:0854) can be observed. This indicates good repro-

ducibility and is in good agreement with the low scatter of

the cost function in Fig. 4. From a user perspective, both

parameter sets would be equally suitable, as measured by

the comparisons shown in Fig. 5. A different picture

emerges for the parameter sets optimized by means of PSO.

Already in Fig. 4 it became clear that results obtained using

PSO show a significantly larger scatter than the ones

obtained using DE. This comparatively large deviation in

the error function is also reflected in the reproducibility of

the simulation results, as can be seen in Fig. 6. In general,

both DE and PSO are capable of determining parameters of

comparable quality. Also to be emphasized at this point is

that only for hs, n, ec0 and a (for the ‘‘best fit’’) clearly

different parameters of PSO and DE are determined. The

other parameters are comparable. However, this good

agreement in terms of simulation results only refers to the

best of 200 calibration runs. The fact that not every cali-

bration run achieves the same final value of the error

function � has already been shown in Fig. 4. Compared to

the DE, the optimization by means of PSO gets stuck in

local minima more often. This could possibly be improved

by an adjustment of the optimization constants (see Sect.

2.3.2). However, there are no general rules according to

which these constants have to be chosen. The only possi-

bility would be to search for better optimization constants

by trial and error. However, this is very time-consuming

and contradicts the actual goal of AC: simplification of the

calibration process. Due to the significantly lower scatter,

optimization by means of DE is preferred for further

comparisons.

5 Influence of the objective function

The objective function, which is to be minimized in the

course of the optimization, consists of two components: the

similarity measure used to evaluate the discrepancy

between the experimental data and the simulation results as

well as the weighting of the influence of different labora-

tory experiments. To the authors’ best knowledge, neither

the influence of the similarity measure nor the influence of

the applied weighting factors were yet investigated in the

light of AC of soil models.

In what follows, the performance of five widely used

approaches to quantify the discrepancy between experi-

mental data and simulation results for their use in auto-

matic parameter calibration will be shown. These

approaches are namely the Area Between Two Curves

(ABTC), the Dynamic time warping (DTW), Fréchet

Distance (FD), Curve Length Measure (CLM) and the

Modified Least Square (MLS), see Sect. 2.2. Since the

similarity measures are defined differently, a comparison of

their results in terms of a comparison of a numerical value

is not possible. Instead, their applicability must be based on

a personal comparison of experiment and simulation. This

seems like a step backwards, since it is this subjective

comparison carried out by an engineer that is supposed to

become superfluous by the development of a calibration

software. However, this path is inevitable. Taking into

account the study of the influence of the optimization

algorithm presented in Sect. 4, the calibrations required for

this purpose were performed using DE. The parameters

were calibrated for Karlsruhe Sand and the results of this

study are shown in Fig. 7 for the variation of weighting

Table 7 ‘‘Best fit’’ and ‘‘worst fit’’ parameter sets of the hypoplastic model for Karlsruhe Sand obtained by optimization with DE and PSO

Method uc in � hs in GPa n ed0 ec0 ei0 a b

by hand 33.1 19 0.285 0.549 0.851 0.979 0.1 0.32

ExCalibre 32.7 715004 0.153 0.407 0.815 0.978 0.18 0.1

DE ’’best fit’’ 30.8 50.32 0.253 0.493 0.852 0.979 0.235 0.924

DE ’’worst fit’’ 30.7 11.90 0.299 0.499 0.845 0.972 0.243 0.826

PSO ’’best fit’’ 30.8 55.11 0.250 0.495 0.853 0.981 0.230 0.95

PSO ’’worst fit’’ 32.1 31.19 0.219 0.527 0.904 1.04 0.175 1.838
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factors and in Fig. 8 for the variation of similarity

measures.

As can be seen from Fig. 7 the overestimation of the

maximum deviatoric stress, especially visible for the very

dense sample, can be reduced by modifying the weights in

favor of a better fit in the q � e1 plane

(weq
dmt ¼ 2=3; wee

dmt ¼ 1=3 and max(weq
dmt;wee

dmt)). However,

this leads to an underestimation of residual deviatoric stress

and a slightly worse fit in terms of the behavior in the

ev � e1 plane, especially in case of the max(weq
dmt;wee

dmt)-

weighting. Not surprisingly, the best overall agreement in

terms of the behavior in the q � e1 plane is observed for the

calibration that considers only the discrepancy in the q � e1
plane to evaluate the fitness in the triaxial tests

(weq
dmt ¼ 1; wee

dmt ¼ 0). However, this comes at the price of

a noticeable discrepancy between simulation and experi-

mental results in the ev � e1 plane. It should be noted that

this is due to the inability of the hypoplastic constitutive

model to capture both the behavior in the q � e1 and in the

ev � e1 plane equally well with one set of parameters, and

is not related to the algorithm. In the authors’ experience,

the default equal weight settings (weq
dmt ¼ 1=2; wee

dmt ¼ 1=2)

work very well for other constitutive models, such as

Sanisand [9] for instance. For the forthcoming simulations,

setting weq
dmt ¼ 2=3; wee

dmt ¼ 1=3 is considered to be a good

compromise between reducing the overestimation of the

peak deviatoric stress and still providing good agreement in

the ev � e1 plane.
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under-
estimation
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estimation
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under-
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Fig. 7 Influence of the weighting factors on the results of the AC. Simulation results (blue) vs. experimental data (black) for seven monotonic

drained triaxial tests (left and middle) and two oedometric compression tests (right) on Karlsruhe Sand using DE with the Fréchet Distance
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It should first be noted that most similarity measures are

capable of producing acceptable parameter sets, see Fig. 8.

Probably the worst results, measured by the comparison of

the simulation results with the experimental data, are noted

for the determination of the error by means of ABTC and

CL. In both cases, a very significant overestimation of the

peak deviatoric stress is observed for initially dense soil

samples. In terms of the ev � e1 plane on the other hand,

both simulations show the best agreement with the exper-

imental data. However, the deviations in the q � e1 plane in

Experimental data

overestimation

overestimation

under-
estimation

overestimation

overestimation

under-
estimation

under-
estimation

under-
estimation

Fig. 8 Influence of the similarity measurement on the results of the AC with ‘‘2/3, 1/3’’-weighting. Simulation results (blue) vs. experimental

data (black) for seven monotonic drained triaxial tests (left and middle) and two oedometric compression tests (right) on Karlsruhe Sand
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the triaxial tests outweigh this. Thus, further use of the

ABTC and DTW is omitted. The best agreement in the

q � e1 plane is observed for the calibration using the MLS

similarity measure. Both peak and residual shear strength

are well-matched in the simulations. However, these sim-

ulations show a significant underestimation of the dilatancy

in the ev � e1 plot. A compromise between good agreement

with the experiments in the q � e1 and ev � e1 plots is

shown by the calibrations with the CLM and FD similarity

measures, with a slight preference for FD. In terms of

agreement with the oedometric compression tests, on the

other hand, the worst agreement is obtained with the MLS

approach since the simulation results show a too soft

material response at higher effective stress (rv [ 100 kPa).

The simulation results obtained with the other similarity

measures show no noticeable differences in the oedometric

compression tests and reveal very good agreement with the

experiments.

From the authors’ perspective, the use of the similarity

measure Fréchet Distance (FD) with

weq
dmt ¼ 2=3; wee

dmt ¼ 1=3-weighting (from now on referred

to as ‘‘2/3, 1/3’’-weighting) for the calibration of the

hypoplastic constitutive model leads to the overall best

agreement between simulation and experiment on average.

Regarding the performance of the hypoplastic model in the

oedometric compression tests, the AC was—regardless of

the chosen similarity measure—able to either improve or

maintain the simulation quality compared to the reference

parameter sets calibrated ‘‘by hand’’ and using ExCalibre

(compare Figs. 2, 7 and 8). To check whether these settings

also give good results for another sand, the parameters of

the UWA Silica Sand are calibrated (using FD and ‘‘2/3, 1/

3’’-weighting). The simulation results obtained with this

calibration are compared with the experimental data in

Fig. 9. By calibrating the parameters by means of AC,

significant improvement of the agreement between simu-

lations and laboratory tests can be achieved for the UWA

Silica Sand compared to the results obtained with the ref-

erence parameters. This is especially true for the triaxial

tests and applies to both the behavior in the q � e1 plane

but also (and especially) in the ev � e1 plane. The overes-

timation of the peak deviatoric stress for dense samples can

also be observed in these simulations, although not as

pronounced as for the Karlsruhe Sand. As already stated,

this is due to the inability of the hypoplastic constitutive

model in representing both the behavior in the q � e1 and

the ev � e1 planes equally well. For the oedometric
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Fig. 9 Comparison of experiments (black) and simulation results

(blue) for oedometric compression tests and drained monotonic

triaxial tests on samples of UWA Silica Sand with different initial

densities and different initial mean effective stresses. The hypoplastic

parameters were calibrated using DE with FD and ‘‘2/3, 1/3’’-

weighting

Table 8 Parameters of the Hypoplastic model for Karlsruhe Sand and UWA Silica Sand obtained from DE with Fréchet Distance and ‘‘2/3, 1/

3’’-weighting

Sand uc hs n ed0 ec0 ei0 a b

KSa 30.7� 45.02

GPa

0.253 0.493 0.855 1.01 0.227 0.948

SSa 30.8� 1.11

GPa

0.36 0.496 0.859 0.919 0.134 1.56
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Fig. 10 Collection of scatter plots showing the mutual distribution of different parameter sets considering the results from 500 runs using DE

with the Fréchet Distance and ‘‘2/3, 1/3’’-weighting for Karlsruhe Sand
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compression tests, a slight or a significant improvement is

observed compared to the simulations using parameters

calibrated by means of ExCalibre and ‘‘by hand,’’ respec-

tively. The resulting parameters for the optimization using

the Fréchet Distance are summarized in Table 8.

6 Range of parameter values

The final parameters for Karlsruhe Sand obtained from 500

AC runs using DE in combination with the Fréchet Dis-

tance and ‘‘2/3, 1/3’’-weighting are shown as a scatter plot

in Fig. 10. Looking at Fig. 10, the large scatter of the

values determined for hs is striking. If the standard devia-

tion is determined for all parameters, these take the fol-

lowing values in relation to the mean value: the largest

standard deviation of approximately 19 % is determined for

the parameter hs, followed by approx. 4.2 for ei0, 2.8 % for

n as well as 2.2 % and 1.8 % for a and b, respectively. The
standard deviation for the parameters uc, ec0 and ed0 is less

than 0.5 %. This non-negligible variance can be associated

with the parameter uncertainty and the very wide limits

chosen for the parameters hs, n, a and b. In particular for hs

and n lower standard deviations could be achieved by

choosing narrower bounds, see for example [36]. However,

this would have the consequence that the bounds for dif-

ferent sands would have to be examined anew each time.

Considering the results presented in the previous sections,

this is not necessary, since the parameters determined by

means of DE show a good agreement with the experimental

results (see Fig. 5) as well as an extremely low scatter with

respect to the simulation results (despite strongly differing

parameters). This is due to the lack of physical significance

of the parameters. At this point, the name granular hard-

ness for the parameter hs is certainly misleading. hs is a

fitting parameter which (together with n) describes (among

other relations) the development of the critical void ratio

with respect to mean effective stress.

Another striking feature in Fig. 10 is the apparently

strong correlation of various parameters. These are par-

ticularly noticeable for the parameter pairs n � hs, b� hs,

ec0 � n, and ec0 � b. The correlation hs � n is certainly

known to exist [19] and is in good agreement with the

linear correlation presented in [36]. However, the com-

parison with the results shown in [36] should be treated

with caution, since therein much tighter bounds were

chosen for the parameters hs and n, and the parameters

were determined for synthetic laboratory tests. However,

the general statement of [36] that potential correlations

exist between some parameters of the hypoplastic consti-

tutive model can be confirmed.

7 Required test data

The calibrations presented in the previous sections were

done based on the entire data set, i.e., taking into account

all available experiments. Accordingly, the parameters

determined in this way represent the soil behavior under

these test conditions very well, see Figs. 8 or 9. However,

such comprehensive laboratory data is not always avail-

able, especially when dealing with practical problems or at

the beginning of new project phases. In these cases, the

question of the (minimum) number of tests required for a

(first) calibration of the parameters of a constitutive model

often arises.

The AC offers a solution for this. This is exemplarily

shown for the determination of the parameters for Karl-

sruhe Sand. For this purpose, four additional calibration

runs were performed using DE with the Fréchet Distance

and ‘‘2/3, 1/3’’-weighting. Each run considered only a part

of the experimental data. Which experiments were used for

the calibration varied from run to run. The different com-

binations are shown in Table 9. The parameters determined

on the basis of all experiments serve as the reference

parameter set, see Sect. 4.

The results of the different runs are given in the form of

a comparison with the experimental data in Fig. 11. Blue

are the simulation results which belong to a laboratory test

considered in the calibration. Red, on the other hand, are

those whose experimental counterpart was not used in the

calibration. These correspond to ‘‘blind predictions.’’

The results shown in Fig. 11 show that considering only

an oedometric compression test on an initially loose sample

in the AC results in a parameter set that underestimates the

Table 9 Overview of the laboratory tests considered in the different

calibration runs

Test Oedometric

compression

Drained monotonic triaxial

Dr0 0.13 0.95 0.26 0.54 0.61 0.62 0.65 0.82 0.97

p0 in

kPa

100 200 20 100 400 100 100

All

Data

x x x x x x x x x

Data

Set 1

x x x x x

Data

Set 2

x x x x x

Data

Set 3

x x x

Data

Set 4

x x x
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stiffness of dense samples (see Data Set 3). Obviously, as

can be seen from Data Set 4, it is not possible to completely

dispense with oedometric compression tests for calibration.

Furthermore, the result of the calibration with Data Set 3

seems to allow the conclusion that the influence of the

mean effective stress can be reproduced by the hypoplastic

model even if no triaxial tests on samples with different

mean effective stresses are available. Of course, these

observations are not universal. For different sands other

conclusions could be drawn, which has to be investigated

further. However, they serve as an illustration of the pos-

sibilities offered by AC. Aspects of calibration and the

influence of individual parameters can be investigated in a

comparatively simple way.

8 Conclusions

An automatic calibration software has been developed,

which performs the calibration of constitutive model

parameters by solving a regression problem. It is based on

the minimization of a cost function that quantifies the

discrepancy between experiment and simulation. For the

hypoplastic model, this is a nonlinear and non-differen-

tiable multi-peak function. Five different methods were

used to quantify the discrepancy: Area Between Two

Curves, Dynamic time warping, Partial Curve Mapping,

Fréchet Distance and Curve Length Measure. Two

heuristic optimization algorithms were used to solve this

minimization problem: Differential Evolution (DE) and

Fig. 11 Comparison of experiments (black) and simulation results (colored) for the parameter sets based on different sets of laboratory tests as

basis for the calibration. Blue: tests used for calibration (training data), Red: tests not used for calibration (test data)
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Particle Swarm Optimization (PSO). Parameter calibration

was based on oedometric compression tests and drained

monotonic triaxial tests. However, the consideration of

other test types is also possible. The findings can be sum-

marized as follows:

• In principle, parameter sets obtained with both PSO and

DE showed good agreement with the experimental data.

However, the DE showed a much lower scatter and is

therefore the recommended optimization algorithm.

• The choice of the similarity measure to quantify the

discrepancy between laboratory test and simulation was

found to be anything but trivial. The same applies to an

appropriate choice of factors for weighting different

aspects of soil behavior (q � e1 plane vs. ev � e1 plane).
In the authors’ opinion, the combination of the Fréchet

Distance with a ‘‘2/3, 1/3’’-weighting showed the best

results and was thus chosen for the remaining compar-

isons. However, as already stated, this is influenced by

the disadvantages of the hypoplastic constitutive model

in representing both the behavior in the q � e1 plane

and the ev � e1 plane equally well. Thus, the question of
the most appropriate method to quantify the discrep-

ancy between simulation and experiment cannot be

answered conclusively. In particular with regard to the

calibration of the ‘‘cyclic parameters’’ individual sim-

ilarity measures could turn out to be unusable. The

study of these issues is the subject of future work.

• The scatter of the determined parameters was examined

using 200 repeated calibration runs. It was shown that

especially for the parameter hs with a standard devia-

tion of up to 19 % a large variance exists. However, this

has only little influence on the quality of the simulations

which are carried out with these parameters. Using DE,

the difference between the simulations using different

parameter sets obtained by AC is negligible. This shows

that the actual value of individual parameters does not

have a large influence on the prediction of the

constitutive model for the element tests considered, as

long as the totality of the parameters is taken into

account in the calibration.

The automatic calibration is able to successfully calibrate

parameters for advanced constitutive soil models. This was

demonstrated for the hypoplastic model for sands. Auto-

matic calibration reduces the entry barriers for the appli-

cation of advanced constitutive models and the associated

effort (of calibration) and is able to find a better parameter

set compared to hand calibration.
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31. Machaček J (2020) Contributions to the numerical modelling of

saturated and unsaturated soils. PhD thesis, iSSN: 0453-3267
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