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Abstract

This thesis is concerned with extending the underlying logical approach as well as the
breadth of applications of the proof mining program to various (mostly previously un-
treated) areas of nonlinear analysis and optimization, with a particular focus being

placed on topics which involve set-valued operators.

For this, we extend the current logical methodology of proof mining by new systems
and corresponding so-called logical metatheorems that cover these more involved areas
of nonlinear analysis. Most of these systems crucially rely on the use of intensional
methods, treating sets with potentially high quantifier complexity in the defining ma-
trix via characteristic functions and axioms that describe only their properties and do

not completely characterize the elements of the sets.

The applicability of all of these metatheorems is then substantiated by a range of
case studies for the respective areas which in particular also highlight the naturalness

of the use of intensional methods in the design of the corresponding systems.

The first new area covered thereby is the theory of nonlinear semigroups induced by
corresponding evolution equations for accretive operators. In that context, we present
(besides an initial foray into the area from 2015) essentially the first applications of
proof mining to the theory of partial differential equations. Concretely, we provide
quantitative versions of four central results on the asymptotic behavior of solutions to

such equations.

The second new area unlocked in this thesis is that of the continuous dual of a
Banach space and its norm (which are also approached via intensional methods). This
in particular relies on a proof-theoretically tame treatment of suprema over (certain)
bounded sets in this intensional context which is further exploited later on. These

systems, which give access to this until now untreated fundamental notion from func-

vil



tional analysis, are then used to provide further substantial extensions to treat various
notions from convex analysis like the Fréchet derivative of a convex function, Fenchel
conjugates, Bregman distances and monotone operators on Banach spaces in the sense

of Browder.

These systems are then utilized to provide applications in the context of Picard- and
Halpern-style iterations of so-called Bregman strongly nonexpansive mappings where

we provide both new quantitative and qualitative results.

Lastly, we discuss the key notion of extensionality of a set-valued operator and its
relation to set-theoretic maximality principles in more depth (which was already singled
out — to some degree — in previous work). We thereby exhibit an issue arising with
treating full extensionality in the context of these intensional approaches to set-valued
operators and present useful fragments of the full extensionality statement where these
issues are avoided.

Corresponding to these fragments, we discuss a range of uniform continuity state-
ments for set-valued operators beyond the usual notion involving the Hausdorff-metric.
In particular, in that context, we utilize the previous tame treatment of suprema over
bounded sets to also provide the first proof-theoretic treatment of that Hausdorff-metric

in the context of systems for proof mining.

The applicability of this treatment of the Hausdorff-metric is then in particular sub-
stantiated by a last case study where we provide quantitative information for a Mann-
type iteration of set-valued mappings which are nonexpansive w.r.t. the Hausdorff-

metric.
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Zusammenfassung

Die vorliegende Dissertation beschéftigt sich mit Erweiterungen des Proof Mining Pro-
gramms, sowohl in Bezug auf die zugrunde liegenden logischen Ansétze als auch in
Bezug auf die Breite der Anwendungen auf (meist vorher unbehandelte) Bereiche der
nichtlinearen Analysis und Optimierung, in beiden Féllen mit einem besonderen Fokus

auf Themen welche sich auf mengenwertige Operatoren beziehen.

Dafiir erweitern wir die aktuellen logischen Methoden des Proof Minings durch
neue Systeme und zugehorige sogenannten logische Metatheoreme, welche diese recht
involvierten Bereiche der nichtlinearen Analysis behandeln. Die meisten dieser hier
entwickelten Systeme beruhen dabei in essenzieller Weise auf dem Ausnutzen von soge-
nannten intensionalen Methoden, das heifst der Behandlung von Mengen mit méglicher-
weise hoher Quantoren-Komplexitat in der definierenden Matrix durch charakteristis-
che Funktionen und Axiome welche nur die essenziellen Eigenschaften dieser Mengen

beschreiben und nicht vollstdndig deren Elemente charakterisieren.

Die Anwendbarkeit all dieser neuen Metatheoreme wird dann durch eine Reihe von
Fallstudien fiir die entsprechenden Bereiche begriindet, welche insbesondere auch die
Natiirlichkeit der intensionalen Methoden als gewéhlten Ansatz fiir die entsprechenden

Systeme hervorheben.

Der erste neue Bereich, welcher damit erschlossen wird, ist die Theorie der nicht-
linearen Halbgruppen, induziert durch zugehérige Evolutionsgleichungen fiir akkretive
Operatoren, in dessen Kontext wir in gewissem Sinne (neben einem initialen Vorstofs
aus dem Jahr 2015) die ersten Anwendungen des Proof Minings allgemein auf die Theo-
rie der partiellen Differentialgleichungen liefern. Konkret présentieren wir quantitative
Versionen von vier zentralen Resultaten iiber das asymptotische Verhalten von Losun-

gen solcher Gleichungen.



Der zweite neue Anwendungsbereich, welcher durch die vorliegende Thesis erschlossen
wird, ist der des stetigen Dualraums eines Banachraums und der dazugehorigen Norm
(welche auch durch intensionale Methoden angegangen werden). Dies beruht ins-
besondere auf einer beweistheoretisch-milden Behandlung von Suprema tiber (gewis-
sen) beschrankten Mengen, welche auch noch spéter weiter angewandt wird. Jene
Systeme fiir diese bis jetzt nicht behandelten grundlegenden Begriffe der Funktional-
analysis werden dann weiter ausgebaut um verschiedene andere Begriffe aus der kon-
vexen Analysis wie Fréchet-Ableitungen einer konvexen Funktion, Fenchel-Konjugate,
Bregman-Distanzen und monotone Operatoren auf Banachrdumen im Sinne von Brow-

der zu behandeln.

Diese Systeme werden dann eingesetzt, um Proof Mining Anwendungen im Kon-
text von Picard- und Halpern-artigen Iterationen von sogenannten Bregman-stark-
nichtexpansiven Abbildungen abzuleiten. In diesem Zuge liefern diese Anwendungen

sowohl neue quantitative als auch neue qualitative Resultate.

Zuletzt diskutieren wir in dieser Arbeit den Schliisselbegriff der Extensionalitét
eines mengenwertige Operators und dessen Verhéltnis zu mengentheoretischen Max-
imalitatsprinzipien in weiterer Tiefe (welches schon in vorherigen Arbeiten in einem
gewissen Rahmen herausgestellt wurde) . Dabei stellen wir ein Problem heraus, welches
mit der Behandlung der vollen Extensionalitit im Kontext von diesem intensionalen
Ansatz zur Behandlung von mengenwertigen Operatoren generell auftritt, und prasen-
tieren Fragmente des Extensionalitatsprinzips welche diese Probleme vermeiden.

Korrespondierend zu diesen Fragmenten diskutieren wir neue Stetigkeitsbegriffe
fiir mengenwertige Operatoren, welche neben dem klassichen Begriff der gleichméfi-
gen Stetigkeit im Sinne der Hausdorff-Metrik liegen. Insbesondere benutzen wir hier
wieder den vorherigen Ansatz zur beweistheoretisch-milden Behandlung von Suprema
iiber beschrankten Mengen, um den ersten beweistheoretischen Ansatz fiir die Behand-

lung der Hausdorff-Metrik im Kontext von Systemen des Proof Minings zu entwickeln.

Die Anwendbarkeit dieser Behandlung der Hausdorff-Metrik wird dann insbeson-
dere durch die letzte Fallstudie herausgestellt, in welcher wir quantitative Informa-
tionen flir Mann-artige Iterationen von mengenwertigen Abbildungen liefern, welche

nichtexpansiv im Sinne der Hausdorff-Metrik sind.
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1 Introduction

1.1 A brief history of Proof Mining

In a way, proof theory started in the school of David Hilbert in Gottingen in the 1920s.
In particular, a driving force behind these early developments was what is today known
as Hilbert’s program, a project in early mathematical logic which aimed to show that
so-called ideal principles [T8] (which may be of non-constructive, set-theoretic or of
infinitary nature) used in proofs of concrete so-called real statements could be (at least
in principle) eliminated. In a modern view, this program is often subsumed by stating
that the goal was to prove the consistency of powerful theories containing such ideal

principles in certain finitistic theoriesE]

As is well-known, Gédel’s second incompleteness theorem [72] already rules out the
provability of the consistency of the theory in itself, let alone some finitistic fragment.
While Hilbert’s program in this general sense is therefore impossible, research into
the relation between mathematical logic and “ordinary” core mathematics in the years
since then nevertheless yielded that this reductive perspective is still largely correct.
Concretely, evidence for this comes from the field of Proof Mining, in which this thesis

is situated.

The origins of proof mining start with Georg Kreisel in the 1950’s (see in particular
the early works [125, [126] and see [107] for a detailed discussion on the influence of
Kreisel’s work on modern proof mining). Before Kreisel’s work, the focus of most
strands of research in proof theory was on establishing methods that allowed for a

relativized version of Hilbert’s program to be carried out where one aims at providing

'If real statements are to be understood as universal statements, then establishing the consistency
of a suitable formal theory in some suitable finitistic fragment would actually suffice to establish
conservativity for real statements as formal consistency is provably equivalent to a reflection principle

for universal sentences (see [199]).
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relative consistency proofs between different theories, i.e. at reducing the consistency
of one theory T to another theory T5, where it may be considered less philosophically
problematic to accept the latter as being consistent than the former.

In many cases such relative consistency proofs proceed by employing a general
proof-theoretic device called a proof interpretation which transforms sentences of T}
into sentences of 715 and is sound w.r.t. the provability structure, i.e. if a sentence is
provable in 77, its translation is provable in 7T5. In most situations, these transfor-
mations preserve the falsum of a theory so that if 77 — L, then the soundness of the

interpretation yields 75 - L. In other words, if 77 is inconsistent, so is T5.

Kreisel realized that these subtly constructed methods perform a much deeper task
than just preserving the provability of falsum, often eliminating existential quantifiers
in a formula for concrete terms whose complexities relate to the principle used in the
proof, and called for a “shift of emphasis™ instead of applying the interpretations to
sentences of which anyhow no proof is expected to exist (i.e. 1), one should apply them
to concrete mathematical statements with actual proofs with the projected gain being
that it is to be expected that such a treatment would reveal further information on the

statement thus proven, along the lines of the now famous leitmotif of Kreisel [129]:

[...] formulate what more we know about a formally derived theorem F than

if we merely know that F is true.

Or, in other words: taking into account the principles used in the proof, can we

infer further information on the statement thus proven?

Before we delve into what methods may be or are employed in such an endeavor, we
shortly discuss some of the various kinds of “further information” that can be considered
in relation to the quantifier complexity of a statement. E.g. for statements of the form
Vo F,s(x) where F,y is quantifier-free (which we previously called a real statement), no
additional information can sensibly be given: the statement F¢(x) is just true for all
x.

Moving to the case of one existential quantifier 3z F¢(z), multiple kinds of further
information immediately come to mind: one could hope for actual witnesses t, i.e.
F,f(t), a list of potential witnesses ¢1,. .., (kin to the conclusion of Herbrand’s the-
orem), i.e. Fyr(t1) v -+ v Fy(t), or bounds ¢ on actual witnesses, i.e. 3z <t F(z),

among some others.
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Further moving up in the quantifier ranks, for statements of the form Va3yF,s(x,y)
one could hope again for precise witnesses, i.e. functions f with Vo F,¢(x, fx), or for
bounding functions f, i.e. Vady < fzF,¢(x,y), among others.

The last example that we want to consider is the case of a statement of the form
Va3yVzFy¢(z,y, z). The immediate kind of further information that could be considered
is a witness/bounding function on y in terms of z. The immediate issue that arises here
is that of the complexity of such a function. While in the previous case of Va3yF,¢(x, y),
already the truth of the statement, in the natural numbers say, guarantees the existence
of a computable function providing a witness for y in terms of = just by unbounded
searchﬂ through all y, it can be rather immediately seen that there are instances of
F,(x,y, z) where even a function f bounding witnesses for y in terms of z, i.e. Vady <
faVzFy;(z,y, 2), can never be computableﬁ

However, if one is interested in computable information, one can in this case move
to the Herbrand normal form of the statement (where we for simplicity assume that we
can quantify also over functions operating on the ground variables, i.e. g is a function

variable):

VaVgIyFor(z,y, gy).

Then, another type of further information would be a function ®(x, g) that witnesses
dy in terms of £ and ¢, which we can recognize as being equivalent to finding a solution
to the so-called no-counterexample interpretation of Vax3yVzF,s(x,y, z) as formulated
by Kreisel in [125, 126]. In the case where Vz3yVzF,;(z,y, ) represents a convergence
statement, upper bounds on such witnesses (for a slightly modified statement) are now
commonly called rates of metastability or quasi-rates for the convergence, where the
former name was coined by Terence Tao (see [203| 204]) who rediscovered this corre-

sponding (non-effectively equivalent) reformulation of a convergence statement in the

2While this is a computable solution, there is of course no complexity information available for this
function. In that way, it can still be considered unsatisfactory in regard to the previously discussed
leitmotif as an analysis of an actual proof of the statement VYa3yF,;(x,y) might provide a much more
tailored witness function whose complexity will be in proportion to the complexity of the principles
used in the proof.

3Consider e.g. Fyp(z,y,2) = T(z,z,y) v —=T(x,x,z) where T(a,b,c) is the so-called Kleene T-
predicate expressing that the Turing machine with code a run on b halts with runtime code ¢. Thus
F, 7 expresses that the Truing machine with code z run on x either halts with runtime code y or does
not halt with runtime code z. The statement Va3yVzFys(z,y,2) = Ve (IyT(z, z,y) v V2—T(z, z, 2)),
expressing that every Turing machine with code z either does or does not halt on input z, is true just
by classical logic but any computable function f with Vz3y < faVzF,s(x,y,z) would allow one to

decide the special halting problem which is of course not possible.
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course of his interest in “finitary analysis”.

In any way, the program thus created to apply proof-theoretic methods to concrete
mathematical theorems with the aim of extracting new results was dubbed “unwinding
of proofs”. In the era of unwinding of proofs, the main emphasis was placed on methods
from structural proof theory like epsilon-substitution, cut-elimination and the extrac-
tion and analysis of Herbrand-terms from Herbrand’s theorem (see the discussions in
e.g. [60, 125, (126, (137, (138, [150] ).

Besides a few highlights during this era, in particular with the notable work of
Luckhardt [137] on effective bounds for Roth’s theorem on exceptionally good ratio-
nal approximations of algebraic-irrational numbers, the era of unwinding of proofs was
rather sparsely populated regarding applications until it was essentially revived by the
work of Ulrich Kohlenbach starting with his doctoral thesis [86]. At that time, the
unwinding program saw a shift of focus both in methods and in areas of applications
and was soon to be “rebranded” under the name of “proof mining” (at the suggestion

of Dana Scott) which has since then been steadily expanded with new applications.

Concretely, Godel’s functional interpretation [74] (also called Dialectica interpreta-
tion after the journal it was published in) became the methodological focus based on its
well-behavedness w.r.t. to negative translations to treat classical proofs (by interpreting
Markov’s principle) and because of its compositionality when treating the modus po-
nens (compared in particular to the no-counterexample interpretation). With the use
of the Dialectica interpretation, one in particular conveniently also moves to systems of
arithmetic and analysis in all finite types instead of first- or second-order systems which
also brings with it the benefit that they allow one to avoid some coding issues that exist
in low-type systems. Other methods that are used are similarly proof interpretations in
the sense discussed above and in particular include negative translations, to deal with
classical logic via a reduction to intuitionistic logic as mentioned before, and Kreisel’s
modified realizability [127), [128] for semi-intuitionistic proofs. However, the main tool
employed in modern proof mining arises as an ingenious combination of the Dialectica
interpretation and Howard’s notion of majorizability [79] as introduced in Kohlenbach’s
work beginning in [86, 87| and later given the name of monotone functional interpreta-
tion (see also in particular [91]). This interpretation only asks for the construction of

computable majorants for the Dialectica interpretation and allows for potentially non-
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computable witnesses[| The immediate benefits are that the plethora of statements
with computable interpretations increases dramatically, with e.g. statements like weak
Konig’s lemma WKL having a (trivial) computable monotone functional interpretation
(as every — potentially uncomputable — path of a binary tree, coded as a 0-1-sequence,
can be majorized by the constant-1 function). The immediate drawback is of course
that via this interpretation, no precise witnesses but only computable majorants are
constructed for the interpretation of the respective theorem (which in the case of the
natural numbers amounts to upper bounds).

However, there are areas of mathematics where this drawback is often superficial
and where thus this combination of the Dialectica interpretation and majorizability
proves to be particularly rewarding. One area where this in particular is the case is
analysis where many statements are naturally monotone and so a bound is as good as
a witness. Further, analysis also seems to be particularly rewarding as many modern
proofs seem to be mainly of a geometrical nature which seem to avoid the Godelian
phenomena that in principle could arise in these circumstances. Even further, in this
context, the availability of WKL is very convenient for formalizing a range of common
compactness arguments, being equivalent to many such central results from functional
analysis as known from the reverse mathematics program. So it is not surprising that
the main focus of proof mining since the 1990s has been centered on and around anal-
ysis. In particular, early examples of applications in this modern age of proof mining
include the applications presented by Ulrich Kohlenbach (also together with Paulo
Oliva) on best approximation theory [89, 00, 117] (note also the very recent work on

best approximations [193]).

Nevertheless, in the first period of proof mining in it its modern form, the sys-
tems employed in the pursuit of applications essentially centered around systems of
arithmetic in all finite types (which will be more precisely defined later on) like WE-
PA® + WKL + QF-AC for extracting primitive recursive majorants (in the sense of
Godel [74] and Hilbert [78]) or WE-PA® + DC + QF-AC (adding the strong principle
of dependent choice DC) in which case one can only guarantee the extractability of

majorants which are bar-recursive in the sense of the seminal work of Spector [19§].

4This monotone functional interpretation and the use of majorizability has subsequently lead to
other interpretations where this boundedness character is further infused into the interpretation, most
notably the bounded functional interpretation by Ferreira and Oliva [65] which has subsequently been
further developed in various ways (see e.g. [59, 62, [63]) and recently has found use in logical aspects

of the proof mining program [64].
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In that way, applications were naturally restricted to the context of Polish metric
spaces which are representable in Baire space, i.e. NN equipped with the metric d
defined by

g-minnlf(m#9m] if In e N(f(n) # g(n)),
d(f,g) =

0 otherwise,

for f,g e NN,

This restriction was lifted in the second main paradigm shift in the modern age
of proof mining, starting with Ulrich Kohlenbach’s seminal work [95]. Namely, in
the years leading up to this work, the crucial observation for some notable applica-
tions was made that bounds and proofs which were obtained from arguments in some
representable class of spaces also naturally hold in larger classes of spaces where the
separability assumption is dropped and, moreover, the bounds were also very uniform
in the parameters of these spaces, only depending on some simple upper bounds on
metric distances despite the absence of any (relative) compactness assumptions. The
question of whether this phenomenon was purely coincidental or was an instance of a

deeper logical reason immediately arose.

The techniques that lead to a logical explanation of this phenomenon at the same
time broadened the proof mining framework in many crucial ways that are today char-
acteristic for its success. Concretely, these applications and their uniformities can be
logically explained by systems in all finite types which additionally include new ab-
stract base types by which one gains the ability to talk abstractly about certain classes
of spaces which do not have to be separable. After extending the notion of majoriz-
ability to such classes of spaces (which we for simplicity assume to only contain metric
spaces) by majorizing objects of type X by a natural number n bounding d(a, z) for
some reference point a, the application of the respective extension of the monotone
functional interpretation extracts computable majorants in this extended sense from
corresponding proofs which therefore are uniform exactly in the way described be-
fore, depending e.g. on elements from X only via upper bounds on metric distances.
The macros obtained by an application of functional interpretation (together with a
negative translation) combined with majorization are commonly dubbed “general log-
ical metatheorems (on bound extraction)” or “bound extraction theorems” and these

metatheorems thus guarantee the existence of uniform and computable majorants for
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statements provable in the associated theories which in particular may still use full
classical logic and a wide range of other “non-constructive” principles. Further, besides
merely guaranteeing the existence of such additional information, the metatheorems
allow for an a priori estimation of their complexity (which can be as elementary as
polynomials) and they provide an algorithmic approach towards actually extracting
the quantitative information. In particular, these metatheorems also further elucidate
the extent of the phenomenon of so-called proof-theoretic tameness of modern (non-
linear) analysis as already shortly discussed before, i.e. the empirical fact that most
proofs in e.g. analysis, although in principle being subject to well-known Godelian phe-
nomena, nevertheless “seem to be tame in the sense of allowing for the extraction of
bounds of rather low complexity” [103] (see also [139, 140] for further discussions of

these types of phenomenas and their implications for logic and mathematics).

The range of classes of spaces and of objects on them that can be treated with
this approach is rather broad: In general, if we are given a class of spaces and objects
with corresponding defining axioms, potentially using constants from an extended lan-
guage, such that all of them have a monotone functional interpretation in this extended
sense (which e.g. trivially holds if the axioms are universal) and if all corresponding
additional constants can be majorized, then the methodology immediately applies in
that context as well and allows one to also derive bound extraction theorems for such
spaces and objects. Examples of metatheorems derived in this spirit may be found
in |71}, [76], ©95], [115] 132] [133] [165], [192], as well as [96], for metatheorems obtained via
(modifications of) Gddel’s Dialectica interpretation, and in [63], [64] for metatheorems
obtained via the related bounded functional interpretation [65]. The spaces treated
so far in particular include general metric and normed spaces, so-called W-hyperbolic
spaces, CAT(0)-spaces, uniformly convex as well as uniformly smooth Banach spaces

and Hilbert spaces, among many others.

Beyond this small introduction, and the further formal details that will be discussed
throughout this thesis, we in general refer to the monograph [96] where the whole de-
velopment of proof mining up to 2008 is detailed comprehensively. Further discussions
on early developments can be found in the survey [I16] and more recent progress, with

a focus on nonlinear analysis and optimization, is surveyed in [100, 102].



8 CHAPTER 1. INTRODUCTION

1.2 The contents of this thesis

This thesis is now concerned with extending the underlying logical approach as well as
the breadth of applications of proof mining to various (mostly previously untreated)
areas of nonlinear analysis and optimization, with a particular focus being placed on
topics which involve set-valued operators. Such set-valued operators are one of the
main objects of concern of many of the recent proof mining applications like in [T0T]
in the context of Bauschke’s solution [6] to the zero displacement conjecture, in [108]
for abstract Cauchy problems, in [120] for iteration schemes using set-valued operators
or in particular like in the case of the proximal point algorithm (see [145] 183]) and its
adaptations and extensions as treated in [55], 56, 104} 105], 106, 112, 134, T61].

For this, we always first extend the current logical methodology of proof mining by
new systems and corresponding metatheorems that cover these more involved areas of
nonlinear analysis. Most of the methods developed in the course of this crucially rely
on the use of intensional methods, treating sets with potentially high quantifier com-
plexity in the defining sentences via characteristic functions and axioms that describe
only their properties and do not characterize their elements completely. The applica-
bility of all of these metatheorems is then substantiated by a range of case studies for
the respective areas which in particular also highlight the naturalness of the intensional

methods in the design of the systems.

Concretely, in Chapter [2| we first sketch the definition of one of the main modern
systems employed in proof mining in general and in this thesis in particular which
provides a treatment of normed linear spaces using abstract types as discussed before.
Further, we in that context in particular give the essential logical preliminaries to sys-
tems for arithmetic in all finite types together with a primer on representations of real
numbers in these systems. Besides that, we sketch the main result for this system
treating abstract normed spaces, the general logical metatheorem, which underlies es-

sentially all of the logical contributions made in this thesis.

Then, in Chapter [3| we provide a recap of the main results from the author’s Master
Thesis [168] and the resulting logical contributions published in [165] on set-valued ac-
cretive and monotone operators in Banach and Hilbert spaces and their treatment via

intensional methods that (together with some new material) form the “spiritual” base
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for many parts of the thesis.ﬂ In particular, we provide a more detailed sketch of the
proof of the corresponding logical metatheorems of the resulting systems, augmenting

the rather brief discussion from Chapter [2]

In Chapter ] we extend the logical systems presented in Chapter [3] so that they
become applicable to nonlinear semigroups induced by corresponding evolutions equa-

tions for accretive operators. These logical results are contained in the pre-print [163].

In Chapters [B] [6] and [7, we provide four applications of these metatheorems to a
range of results on the asymptotic behavior of these semigroups. These applications
are contained in the pre-print [163] as well as the articles [162 [167], respectively, with
the joint work with Pedro Pinto [162] worded by myself.

In Chapter [8] we change the setting and provide proof mining metatheorems via
intensional methods for the continuous dual of a Banach space as well as various no-
tions from convex analysis like the Fréchet derivative of a convex function, Fenchel
conjugates and Bregman distances. This in particular relies on a proof-theoretically

tame treatment of suprema over (certain) bounded sets which is also exploited later on.

In Chapter [9) we give applications of the preceding metatheorems to Picard- and
Halpern-style iterations of Bregman strongly nonexpansive mappings where we in par-
ticular provide both new quantitative and qualitative results. This in particular also
yields the corresponding results for proximal point type variants of these methods for
monotone operators over Banach spaces in the sense of Browder. Parts of this chapter
(concerning Theorems [9.3.14] and [9.4.1| as well as Proposition and Lemma [9.5.7))

utilized sketches communicated to me by Ulrich Kohlenbach.

In Chapter [10, we transfer the results from Chapter (3| to the setting of mono-
tone operators over Banach spaces in the sense of Browder, as mentioned before, and
their relativized resolvents in the sense of Eckstein as well as Bauschke, Borwein and
Combettes. This in particular also provides a firm logical basis for the applications to

the proximal point type methods for these operators studied in the previous Chapter [9]

In Chapter [11], we initially exhibit an issue arising with treating full extensional-

®As such, the presentation and formulation of Chapter |3|is largely taken from the works [165] [168].
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ity in the context of these intensional approaches to set-valued operators and, in that
vein, present useful fragments of the full extensionality statement where these issues
are avoided. Further, we extend the logical considerations from Chapter [3] on the
extensionality principle for set-valued operators and its relation to the set-theoretic
maximality principles of such operators by showing that this characteristic equivalence
also extends to these fragments, pointing to a rather robust phenomenon. Further, we
study the continuity principles associated with these fragments of extensionality and
show how they can be introduced in the logical systems from the preceding chapters.
In the course of this, we also employ the tame treatment of suprema over bounded sets

developed in Chapter [§ to provide a logical treatment of the Hausdorff-metric.

In Chapter we provide an application of proof mining to the Mann-iteration of
set-valued mappings which are nonexpansive w.r.t. the Hausdorff-metric, illustrating

the applicability of the previous logical considerations.



2 Preliminaries

In the following, we will now sketch the definitions of the main systems employed in
this thesis and the statement of the corresponding general logical metatheorem which
underlies essentially all of the logical contributions made in this thesis. In this presen-

tation, we mostly follow the notation and presentation given in [96].

Before that, we however fix some general notation: We write N for the set of all
natural numbers including 0 and write N* for the set of natural numbers excluding 0.
Further, we write R for the set of real numbers and sometimes we write R.q for the
interval (0, c0).

We define ~ on N by n—m = max{0,n —m}. Further, we use the interval notation

[r;s] :=[r,s] nN.

Lastly, in a metric space (X, d) and given r > 0 and x € X, we write B, (z) for the

closed ball of radius r around on = and B, (z) for the open ball, respectively.

2.1 Finite type arithmetic

We begin with the basic systems for arithmetic in all finite types WE-HA® and WE-
PA“: Over the collection of all so-called finite types T' defined by{]

0eT, preT —71(p)eT,

we consider a many-sorted language containing variables and quantifiers for every type
7 € T as well as some suitable functionally complete set of propositional connectives,

which we for simplicity assume to be A,v and —. The language of WE-HA“ now

Following [96], we denote the function type of two types p, T by 7(p), representing the type of all
functions mapping objects of type p to objects of type 7. Other common notations of this type in the

literature include e.g. p — 7.

11
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additionally contains the constants 0 for zero (of type 0) and S for successor (of type
0(0)) as well as constants II, . (of type p(7)(p)) and X5 ,, (of type 7d(pd)(Tpd)) for
the combinators of Schonfinkel [I88|] (which were later used extensively by Curry and
Howard, see [80] for the latter) and lastly the constants R, = (Ri),,..., (1), for
simultaneous primitive recursion in the sense of Hilbert [78§] and Godel [74] where R;
has the type
pi(p0p") .. (p10p")p"0

for p = (p1) ... (px) and where we write p* = (pi) ... (p1). In the above and also in the
following, we mostly use the conventions for saving parentheses in types used in [96].

Further, we stratify the types in T by their degree deg(7), defined recursively via
deg(0) = 0, deg((p)) = max{deg(r), deg(p) + 1},
and we denote pure types by natural numbers via
0(n) :=n+1.

The only way to form new terms is by application: if ¢ is a term of type 7(p) and s
is a term of type p, then ¢(s) is a term of type 7. The only primitive predicate in the
language is =q for equality at type 0 and equality at higher types is introduced as an

abbreviation by recursion on the type via
t=r(p) § = Vaf (tx =; sx).

The theory WE-HA® now arises by extending intuitionistic logic, formulated for
the many-sorted language (see e.g. [96, 205]), by the usual equality axioms for =g, the
usual axioms for the successor constant S, the axioms specifying the combinators and

recursors (see [96] for details on all of this) and the induction axiom
F(0) A V2" (F(z) — F(Sz)) — V2 F () (IA)

where F(2°) is any formula from the language. The last thing added to WE-HA" is

the quantifier-free extensionality rule of Spector [198]

FO — S =) t
Fy — r[s/zr] =, r[t/xr]

(QF-ER)

where Fj is a quantifier-free formula and t,s are terms of type p and r is a term of

type 7. Note that using this rule, we can actually derive the seemingly stronger

T Fo(y) — s =¢t

o Foly) — rls/at] =, r[t/2] (¥1-ER)
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with Fy, s, t and &, 7 as before and o an additional finite type but where we assume

that y is not free in r, s, t. To see this, note that
JyTFo(y) — s =¢ t =Yy (Fo(y) — s =¢ 1)

and the latter implies Fy(y) — s =¢ t. Now, using QF-ER applied to this (where
it is important that Fp in the formulation may have free variables), we get Fy(y) —

r[s/z%] =, r[t/z*] and universal generalization yields
VY7 (Foly) — rls/at] = r[t/a]) = 3y Foly) — rls/2*] =, r[t/2"],

which is as required.

We denote the system which is obtained by instead adding the full axioms of ex-
tensionality

VZT(’)), 2’ yf (v =,y — 20 =, 2y) (E,r)
for all types p, 7 by E-HA®.

The classical systems WE-PA®” and E-PA® are now just defined as WE-HA® or E-
HA®/ respectively, augmented with the law of excluded middle F' v —F for all formulas

F'in the language.

Note also that through the combinators II and ¥, the theory WE-HA® has \-
abstraction (see e.g. [96]): for every term ¢ of type 7, one can construct a term A\z”.t
of type 7(p) such that free(Az”.t) = free(t)\{z} and

WE-HA® = (\z”.t)(s) =, t[s/x]

for any term s of type p where we write t[s/x] for the term arising from ¢ by simulta-

neously substituting s for all occurrences of x.

The main finite type system considered here, denoted by A, now arises from WE-

PA® by, for one, adding the quantifier-free axiom of choice
VzdyFo(z,y) — Y VaFy(z, Yr) (QF-AC)

where Fp is quantifier-free but the types of the variable tuples z, y are arbitrary and
where we use the notation Yz to abbreviate Yiz,..., Yz if Y = Y;,...,Y}, and, for
another, adding the schema of dependent choice DC = {DC? | p < T’} with

on,gﬁﬂgﬁF(x,g, z) — Hiﬁ(O)VmOF(x,i(:z:),i(S(x))) (DC?2)
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where iﬁ(o) stands for flpl(o)7 e ,f'“(o) and F' may now be arbitrary.

In the language of WE-PA® and its extensions, we will later rely on a chosen
representation of the real numbers and in that context, we follow the definitions and
conventions given in [96]. The following paragraphs only discuss the details which are
crucial for the proofs carried out later.

As usual, rational numbers are represented using pairs of natural numbers and for
that it will be convenient to fix a paring function ;7 where we follow the choice made
in [95]:

. minu <o (n 4+ m)? + 3n + m[2u =¢ (n + m)? + 3n + m| if existent,
j(n%,m°) =
0" otherwise.
The arithmetical operations +q, g, ()@1 can then be introduced through primitive
recursive terms operating on such codes and the relations =g, <g are quantifier-free
definable.

The chosen representation of real numbers now relies on fast converging Cauchy
sequences of rational numbers (i.e. reals are coded as objects of type 1) with a fixed
Cauchy modulus 27" (see [96] for details) and we consider N and Q as being embed-
ded in that representation via the constant sequences. Similarly as to Q, the usual
arithmetical operations like +, ‘g, | - |z are definable using closed terms and the rela-
tions =g /<pg on type 1 objects are represented by formulas in the underlying language.
Naturally, these relations are not decidable anymore but are given by I1¢/%9-formulas,
respectively. An arithmetical operation where some care is needed in the context of
this formal treatment of real numbers is the reciprocal (-)~!: In fact, there is no closed
term of type 1(1) in WE-PA® which represents y~! correctly for all v # 0. We deal
with this as in [93] by using a binary term (-)~! of type 1(1)(0) such that (v);" correctly
represents y~! for all |y| > 27!, An expression like y~! is then dealt with by working
with an additional parameter [ of type 0 and using (v); " together with the additional
implicative assumption |y|g >r 27'. In practice, this can be mostly ignored and we
thus mainly use 7! freely without highlighting the additional parameter.

In this thesis, we in general omit the index of R for arithmetical operations to make
everything more readable. In proofs, we will almost always omit all types as to not

distract from the general ideas and patterns.

In the context of representing reals, we will later rely on an operator ~ which allows

for an implicit quantification over all fast-converging Cauchy sequences of rationals.
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Following [96], we define this operator via

an  if Vk <o n (Jok —g z(k + 1)|g <@ 27771,

xk  for k <o n least with |2k —g z(k + 1)|g =0 27*7! otherwise,

for = of type 1 and we refer to [96] for any further discussions of its properties.

For establishing the metatheorems, we will need to canonically select a Cauchy se-
quence representation for a given real number. For non-negative real numbers, follow-
ing [95], this can be formally achieved by a function (), which selects a representative
(r)o € NN via

(r)o(n) := j(2ko, 27" = 1),

where

ko := max k lanH < r] )

Naturally, such an association will be non-effective. However, it will suffice that the
operation behaves well-enough w.r.t. the notion of majorization. For this, we will in

particular rely on the following properties of ()Oﬂ

Lemma 2.1.1 ([95]). Let r € [0,0). Then:
1. (r)s is a representation of r in the sense of the above (see also [90]).
2. For se[0,0), if r < s, then (1), <g ($)o and also (1), <1 ().
3. (r)o is nondecreasing (as a type 1 function).

However, later we will need an extension of this function (-), to all real numbers
such that we retain the nice properties mentioned above regarding majorizability. For
this, if r < 0, we define

(r)o(n) = j(2ko = 1,27 — 1)

where

- k
ko := max k [2n+1 < |r|] .

Then (r)o(n) = —g(|r])o(n) and we get the following lemma containing exactly the

properties that we later need for this notion to be useful in the context of majorizability.

Lemma 2.1.2. Let r € R. Then:

2Here, we write f <; g for two objects f!, ¢! if fn <q gn for all n°.
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1. (r)o is a representation of v in the sense of the above (see also [90]).
2. For se[0,0), if |r| < s, then (r), <1 (8)o-
3. (r)o is nondecreasing (as a type 1 function).

Proof. That (1), is a representation of r is immediate and clearly (r), is nondecreasing
as j is monotone. For item (2), let |r| < s. If r = 0, the result is contained in the
above Lemma [2.1.1] If r < 0, write ko for the value corresponding to |r| and kg for the

value corresponding to s. Then we have

ko = max k [2n+1 < |7’|] < max k {2%1 < 3] = ko
so that
(r)o(n) = j(2ko = 1,2""1 = 1) < j(2ko, 2" = 1) = (5)o(n)
using the monotonicity of j. m

Lastly, given a sequence a € NV, we write r, for the unique real represented by
a and we sometimes write [«](n) for the n-th element of that sequence for better

readability.

2.2 Abstract types and systems for normed spaces

As motivated in Chapter [I} the main extension of A“ is obtained by adding a new
abstract base type X as originally considered by Kohlenbach in [95]. The type allows
us to deal with abstract spaces that cannot necessarily be represented in A“/WE-PA®.
Define the extended set of types T as follows:

0,XeT™, ¢&r1eT™=r71)eT*.

The theory A“ can then be formulated over the resulting extended language by ex-
tending the constants (if appropriate) to take arguments and produce values in those
new types and by trivially extending the axiom schemes and rules to allow formulas

from the new language (see [71], 95, [96] for details on all of this).

The main extension used here will be the theory A“[X, ||-||] for real normed vector
spaces, obtained by first extending the language of A (formulated over TX) by new
constants Ox,1x of type X, +x of type X(X)(X), —x of type X(X), -x of type
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X(X)(1) and |||y of type 1(X). It should be noted that = is still the only primitive

relation and in particular, identity on X is treated as a defined predicate ViaE|

v =xy" = llr —xyly =r 0

which is, by the previous discussion on the representation of the reals, a II{-formula
and not decidable. To form A“[X,|-||], we then add the relevant defining axioms
stating that X with these operations is a real normed vector space with 1x such that

I1x|x =r 1 and —xx being the additive inverse of = (see [95])E|

1. The usual vector space axioms formulated for +y, —x, -x, Ox and =x,
2. VaX (||lx —x z||x =r 0),

3. VX, y¥ (|| —xYllx =r [y —x 7lx),
4. VX N 2N (o —x 2l <e lz —x vllx + [y —x 2llx),
5. Yo, 2%, yX (lax —x aylly =r |o - |z —x yllx),
6. Vo', 8' 2% ([laz —x Brlly =r la = 5] [lz] ),
7.V N ut vt ([ +x y) —x (w+x )|y <e llz —x ulx + ly —x vllx),
8. Vot y* ([(—x2) —x (=x¥)llx =r [z —x ¥l x),
9. Vo y* (Il x — lyllx | <m Iz —x yllx),
10. [1x[[x =r 1.

Further, extensionality of all those operations is provable in A“[ X, ||-||]F]

Derived from A“[X, ||-]|] is the theory A“[X,{:,-)] for real inner product spaces,

extending the former by the parallelogram law

v,y (llz +x yllx + e —x yllx == 2 (1% + lvl%)) -

3Here, and in the following, we write  —x ¥ as an abbreviation for x +x (—xz).
4Here, and in the following, we will omit the types X,R from the operations -x,-g or omit -x, g

altogether to improve the readability of the formulas.
>The easy provability of extensionality for the new constants stands behind the choice of the above

norm axioms, see Chapter [8| for a further discussion.
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As is well-known, any inner product space satisfies this law and conversely, any normed
space satisfying it actually admits an inner product which can then be defined via the

norm with

1 2 2
@ yx = g (e +xyllx = e —x wllx) -

Also here, extensionality of the defined operation is provable in the system.

2.3 A general logical metatheorem

We now state the main result for the system A“[X, ||-||], the general logical metathe-
orem on the extraction of computable bounds from proofs established in [7T], O5]. We
do not dive into the precise details of the proof just yet and rather postpone these
to Chapter 3| (and, beyond this discussion in Chapter [3| and the rest of this thesis,
we refer to [71], O5] as well as [96]). Also, we postpone any precise discussions of the
involved notions to Chapter [3| where we will be concerned with the main extensions of
A“[ X |]-]]] that underly many of the central parts of this thesis. In that vein, we now
only state the theorem for A“[ X ||-||]] so that the central aspects of the enterprise of
the metatheorems (which are one of the main concerns of this thesis) can be appreci-
ated. Namely, the metatheorem guarantees, as discussed in Chapter [I} the existence
of further information in the sense of the previous chapter on provable sentences in
the theory A“[X,||-]|]] which are essentially of a V3-form. The main features of the
bounds guaranteed by the metatheorem are that they are computable as well as very
uniform, depending not on the space or any concrete objects but only on majorants
thereof. As discussed before, this notion of majorizability goes back to Howard [79] but
in the form used here is an extension developed in [71], 05] of the strong majorizability
notion of Bezem [I16]. This notion of strongly majorizable functionals over an abstract
normed space is defined in tandem with an associated model M« for the language of
A“[X,[]-]]]. On a high level, the structure of the proof of the metatheorem is now as
follows: For theorems of a V3-form, witnesses for the existential quantifiers (in terms
of the universal quantifiers) are extracted using Godel’s Dialectica interpretation as
mentioned before (see also the precise definitions in Chapter . These witnesses have
types from 7% and using majorization, corresponding bounds with types from T are
constructed for the witnesses which are initially validated in the corresponding model
M@X_If the types are low enough, which we call admissible (see Chapter , one
can recover to the ordinary truth in a model based on the usual full set-theoretic type

structure S**% defined through a given normed space X by interpreting the additional
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constants of A“[ X ||]|]] accordingly (using the operator (-), to choose representations
of real numbers). Lastly, besides the existence of bounds, the metatheorems also guar-
antee an estimation of their computational complexity which, in the presence of the
axiom of dependent choice DC, can be as complex as bar-recursive in the sense of
Spector [198] but if this principle is not needed, bounds that are primitive recursive
in the sense of Godel can be guaranteed (and this extends to further stratiﬁcation@.
Lastly, notice that full classical logic is permitted in the systems. If classical logic does
not (or only minimally) feature in the proof, then the results of the theorem can be

strengthened as we will also discuss in Chapter [3|

Theorem 2.3.1 ([71]). Let p be admissible and let By(x,u)/C5(x,v) be purely univer-
sal/existential, respectively, where the types of the quantifiers are admissible and such

that they only contain x,u/x,v freely. Assume that
AC[X ] = Va? (Yu° By(z,u) — F0°Cs(z, v)) .

Then there exists a partial functional ® : S5 — N which is defined on all strongly
magjorizable elements of S, where the corresponding restriction to these elements is
bar-recursively computable and where the following holds in all non-trivial real normed

vector spaces (X, ||-||): for allx € S, and x* € S;, if x* 2 x, then
SN = Yu <o ®(2%)By(z,u) — Jv <o ®(2*)C5(z,v).

Here, 2z is the extension due to [71), [95] of the strong majorizability relation of Bezem
and p € T is the type of the majorants of objects of type p € T~ and S,, S, are the sets
of all set-theoretic functionals of type p, p, respectively.

6Tn particular, note [92] where a sequence of theories G,, A is defined whose provably total function
correspond to the n-th level of the Grzegorczyk hierarchy [75] and correspondingly (if used in a version

extended to the abstract type X) guarantee bounds of such complexity.



3 Proof Mining with Set-Valued Operators

3.1 Introduction

This chapter summarizes the main logical results on the treatment of certain classes
of set-valued operators in systems amenable for proof mining presented in the Master
Thesis of the author [I68] and published (in a slightly revised form) in the paper [165].

In that vein, the formulations are largely taken from these works.

Concretely, the thesis [I68] introduced formal systems that allow for the application
of methods from proof mining to proofs from accretive and monotone operator theory,
central branches of nonlinear functional analysis which constitute the abstract study of
certain prominent classes of set-valued mappings between linear spaces. In particular,
in this work we established general logical metatheorems in the spirit of Chapter
(recall also Chapter (1)) that guarantee the existence and quantify the complexity of the
computational content of theorems pertaining to accretive and monotone set-valued

operators and, further, allow for the extraction of this content.

Besides the proofs of the logical metatheorems for the resulting systems, which
we present in more detail (complementing the brief discussion from Chapter , the
summary given here in general omits most proofs which can be found in [165] and
instead focuses on the main ideas behind the chosen representations for the analytical
objects in question on which the rest of the thesis crucially relies. In particular, we
want to emphasize that the chosen approach is very suitable for applications since, as
discussed extensively in [165] already, the resulting systems allow for the convenient
formalization of large classes of theorems and proofs involving abstract accretive and
monotone set-valued operators and their (total) resolvents. In particular, the systems

have already led to entirely new case studies (see e.g. [166]).

20
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Further, we also discuss some of the other main theoretical considerations made
in [I65], like the characterization of the key property of an operator being maximal
by equivalent notions involving formal extensionality of the operator as well as the

treatment of range conditions and the notion of majorizability for set-valued operators.

3.2 Set-valued operators and nonexpansive maps in

Banach and Hilbert spaces

In this section, we survey the basic notions and results for accretive and monotone
operators as well as for nonexpansive maps over normed and inner product spaces
which are essential for large parts of this thesis. For this, let (X, ||-||) be a real normed

space.

3.2.1 Nonexpansive functions

We begin with nonexpansive functions and their relatives on normed and inner product
spaces where we follow the definitions of [3T]. Let D < X be non-empty and let
T : D — X be a function. Then T is called

1. nonexpansive if

2. firmly nonexpansive if

Va,y e DVr > 0([|Te — Tyl < [lr(x —y) + 1 —r)(Tz = Ty)|),

There is a useful equivalent reformulation of the notion of firm nonexpansivity when
we pass to inner product spaces (X, {:,-)): then T is firmly nonexpansive if, and only
if

Vo,ye D (o —y,Tx —Ty) > Tz — TyHQ) :

3.2.2 Set-valued operators

A set-valued operator on a space X is simply a mapping A : X — 2%. Set-theoretically,
such an A is nothing else but its graph graA := {(z,y) | y € Az} and we correspond-
ingly use the notations y € Az, (z,y) € A and (z,y) € graA interchangeably.
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For a set-valued operator A, we define domA := {r e X | Ax # J} and ranA :=
U,ex Az. We write A™! for the inverse operator defined by x € A~ w iff u e Az. We
set AMA by (A)z := {\u | u € Azx}. If B is another set-valued operator on X, we define
A+ Bvia (A+ B)r:={u+v | ue Az and v € Bx}.

The main classes of set-valued operators which we want to consider first are the
analytically motivated accretive and monotone operators. Besides the references cited
in the following, we in particular refer to the standard references [4, 202] for further
exposition on the theory of accretive operators in Banach spaces and to [11] for the

theory of monotone operators in Hilbert spaces.

Definition 3.2.1 ([84]). Let (X, ||-||) be a normed space. A set-valued operator A is

called accretive if
V(.’L‘,U>, (y,’l)) € graAa A>0 (“l' -yt )\(U - U)H = H[L’ - y”)
and A is called m-accretive if ran(Id + vA) = X for all v > 0.

Now, for an inner product space, there is the following equivalent characterization

of accretivity which is commonly called monotonicity.

Definition 3.2.2 (essentially [146], 147]). Let (X, {:,-)) be an inner product space. A

set-valued operator A is called monotone if
V(ZL‘, U), (y7 U) € graA (<ZL‘ —Yyu-— U> = 0)

and A is called maximally monotone if it is monotone and graA < graB implies that B
is not monotone, i.e. the graph of A is not properly contained in the graph of another

monotone operator.

3.2.3 Resolvents and correspondence results

In (nonlinear) functional analysis, one of the main tools for studying many classes
of (set-valued) operators A is their corresponding resolvent Jf, defined as follows for
v > 0:
AL -1
Jy = (Id+~yA)".

In particular, Jf is by its definition at first a set-valued map with domJ;4 = ran(/d +

vA) as well as raan‘ < domA and where the following defining equivalence holds:

pe Jlwiff vz — p) € Ap.
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However, if the operator in question is accretive, then its resolvent is characterized by

a further collection of convenient properties.

Theorem 3.2.3 (essentially [4, B1]). Let A be a set-valued operator on a normed space

X. Then the following are equivalent:
(a) A is accretive,
(b) Jf is single-valued and firmly nonexpansive (on its domain) for all v > 0,
(c) Jf is single-valued and firmly nonexpansive (on its domain) for some ~y > 0,
(d) Jf is single-valued and nonexpansive (on its domain) for all v > 0.

In the case of monotonicity, this further extends to the following;:

Theorem 3.2.4 (essentially [4, B, 147, see also [I1]). Let X be a Hilbert space and

A a set-valued operator.
1. Items (a) - (d) of Theorem[3.2.9 are equivalent to
(e) A is monotone.

2. A is mazximally monotone if and only if J,‘;‘ is single-valued, firmly nonerpansive

and ran(Id + yA) = X for some/any v > 0.

The last statement is known as Minty’s theorem [147]. We already see that max-
imality conditions are linked with the totality of the resolvent, a result which sets a
characteristic theme in the correspondence theory of operators and their resolvents as

it extends to various other classes besides monotone operators (see e.g. [13] [14] [15]).

We here just want to note that this correspondence between totality of the resolvent
and set-theoretic maximality does not extend to accretive operators on normed spaces
(as first asked in [51] and then answered in [37, 49| negatively). The one direction that

remains valid is the following:

Lemma 3.2.5 (essentially [51]). Let A be accretive.
1. Ifran(Id + vA) = X for some v > 0, then A has no proper accretive extension.
2. Ifran(Id + vA) = X for some v > 0, then ran(Id + vA) = X for all v > 0.

In particular, m-accretivity implies maximal accretivity.
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3.3 Logical systems for operators and their resolvents

We now introduce the systems for operators and their resolvents defined in [I65]. For
this, akin to [165], we split the treatment between whether the resolvents of the operator
are assumed to be total or partial.

Before we consider the resolvents, we have to take a look at set-valued operators.
These set-valued operators A : X — 2% are now modeled using a constant y 4 of type
0(X)(X) which represents A via a function that takes an argument x from X and
returns a characteristic function for Az. We write y € Az or (z,y) € A or (z,y) € graA

for xyazy =0 0.

3.3.1 Formal systems for total resolvents

Regarding operators with total resolvents, we begin with the system for m-accretive
operators, i.e. accretive operators with total resolvents. To define this system, we first

add the constant x4 as discussed before.

Now, over this extended language, we have to introduce the resolvent. As discussed
in Theorem [3.2.3] the resolvents of accretive or monotone operators are always single-
valued. So, in the context of m-accretive operators, we can infuse this single-valuedness
and totality of the resolvent already into the type and in that vein add a constant JX4 of
type X (X)(1). The output of type X shall be seen as the (unique) value of the resolvent
and the input of type 1 represents the real parameter v > 0. In that vein, we write J,f
for JX4~ where 7 is of type 1. This approach via a constant of such a type is of course
only of use if feasible axioms can now be presented so that bound extraction results
can be obtained and common proofs from the literature can be formalized, i.e. over this
language we now need to suitably represent the defining equality Jj‘ = (Id +~yA)™ L.

Naively, over this extended language, this equality can be expressed formally via
VX, pX A (Y >R 0> p=x Jlo oy (@ —xp) € Ap) .

This statement, by virtue of the biimplication and the universal quantifier hidden in
=x, has too high quantifier-complexity to a priori guarantee that metatheorems for
proof mining extend to systems where it is assumed as an axiom. However, focusing

on the problematic direction

V¥, pX A (v >R 0 A p =x Jlz —> v (= —x p) € Ap),
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we can, instead of requiring the inclusion for all extensionally equal representations p,

move to the intensional version
VaX ' (v >r 0>y (@ —x J,fx) € A(fo)) .

This statement, as inclusions in the graph of A are quantifier-free statements, is univer-
sal and thus a priori does not hinder bound extraction results. Even more, as discussed
already in [165] (and as will be further substantiated by this thesis), this axiom is in-
deed the right axiom to choose for the resolvents (note in particular that the other
direction, which already is universal and thus a priori unproblematic, will be provable
in the system later defined, see Proposition .

For majorization of the resolvent later on, the systems considered in [165] actually
contain three further constants besides x4 and JX4: ¥ of type 1, ms of type 0 and cx
of type X. These are used for majorization of the resolvent constant JX4 later on in
the sense that a bound for Hx — fo” for some z (designated by cx) and some v > 0
(designated by 7 and where v > 0 is witnessed using ms) will suffice for constructing
a majorant of JX4 (see the the proof of Lemma later on). With these further

constants, we now consider the following system:

Definition 3.3.1 ([I65]). The theory V* is defined as the extension of the theory

A“[X, |||]] with the above constants and corresponding axioms
() Vo, y™* (xary <o 1),
(1) V' 2% (v >r 0 = 7 Nz —x Jiz) € A(J ),

VmX,yX,uX,vX,)\l(ueAx/\UeAy
(III)

= [z —xy+x [M(u—xv)llx >z [z —x yllx),

(IV) 5 =g 27,
Note that the behavior of J;‘ for v <g 0 is left undefined.
The system V¥ is strong enough to formalize large parts of the theory of m-accretive

operators and we will see examples of some essential theorems on the operator and re-
solvent that V¥ proves in Proposition later on.

Before that, we introduce the formal system that accommodates inner product

spaces and corresponding maximal monotone operators (or monotone operators with
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total resolvents): As monotonicity and accretivity are equivalent for inner product
spaces (see Theorem , we can utilize the previous system V. Hence, adding the
axioms (I)-(IV) from before to A¥[X,{:,-)] (or, in other words, adding the parallelo-
gram law to V*) results in a corresponding system for monotone operators with total

resolvents which we denote by 7.

We now turn to some of the central properties of the resolvent that the above
systems can prove:
Proposition 3.3.2 ([165]). V¥ proves:

1. J2 is unique for any v > 0, i.e.

5

vylaanxX (7 >R 0A /}/_1<I' -—X p) € Ap — D =X J,?.ZU) .
2. Jj‘ 1s firmly nonexpansive for any v > 0, i.e.

Vvl,rl,xX,yX@ >0 AT >R 0~ || —x Tyl
A A
<s r(e —x y) +x L= n)(La—x Tyl )-
3. Jf;‘ 1s monexpansive for any v > 0, i.e.
Wt a ¥y (720 0 > o —x ylly = || e —x Ly )

4. JXA 1s extensional in both arguments:

VAl >g 0,9 >z 0,25, 2" (zr=xa'Avy=pv — fo =x J,‘ﬁx’) .
5. VLA 2 (>R 0A N>R 0= Jio =x J2 (o +x (1 - 3)J{x)).
6. V91 M2 (722 0 A A =5 0= [0 —x Tz <a (24 3) o —x Jiall)

A“[X (-, )] proves:

7. V2%t (2, y)x <r 0 < Vol (2]l y <w [l —x lalyllx))-

Further, T* proves:

8. A is monotone, i.e.

Vol g ut vt (ue Az Ave Ay — (x —x y,u —x v)x =r 0).
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9. Jj‘ satisfies the alternative notion of firm nonexpansivity for any v > 0, i.e.
2
WL (550 0 o e o iy 3w e ).

As discussed already in [165], some subtleties arise when dealing with reciprocals
like in the axioms and theorems presented above and we want to indicate what these
subtleties are and how they can be formally addressed. As mentioned in the discussion
of real arithmetic in Chapter 2] formulas containing reciprocal expressions like, e.g.,

the resolvent axiom
Vet (v >r 0>y (2 —x fo) € A(fo))

are just seen as abbreviations for extended versions which make the necessary depen-
dency on a parameter [ with |y| > 27! explicit, i.e. in the above example, one actually

considers
Va0 (v > 27 = () (2 —x Jfa:) € A(fo))

where (-);! is the previously discussed closed term representing the reciprocal correctly

for arguments o' satisfying |o| >g 27
In most situations, like, e.g., in the formal theorems presented above (and their
proofs as presented in [165]), these details can be neglected without resulting in any

issues (see e.g. the discussion in [165]).

Other important objects like e.g. the so-called Yosida approximate A, (which is
ubiquitous in the literature, see, e.g., [4]), can also be treated in the context of this

system. Concretely, the Yosida approximate is defined as

1
oy

A (Id - J2'

2
and thus can be treated by A-abstraction as
Al07717 xX' ((V)Z_l(x - X J,;A[L')) .

The additional parameter [ is induced here again through the subtleties with recipro-
cals. As before, we will continue to be vague about this issue and essentially treat A,x

like an abbreviation for v~ !(z —x J:;‘x).
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3.3.2 Formal systems for partial resolvents

Some applications of accretive or monotone operators do not require full maximality
but only impose certain so-called range conditions on the operator which force the
domains of the resolvents to be “large enough” (which will be discussed in some detail
also later on). To accommodate for such operators, we now discuss how the previous

approach needs to be modified to treat partial resolvents.

We opt for the following strategy as in [I65]: we still use a constant JX4 of type
X(X)(1). Instead of specifying the behavior of this constant on any point z as, e.g.,
done by

Vo (v >R 0>y o —x Jla) € A(Jn)),

we only specify it on its domain in the sense of
VylaX (y>r 0 e dom(Jf) -y Nz —x Jf:v) € A(fo)) : (1)

For this to be a priori admissible in the context of bound extraction theorems, the
statement x € dome has to have a suitable representation in the language of the un-

derlying system such that the resulting axiom has a monotone functional interpretation.

For this note that, as discussed in Section [3.2.3] the domain satisfies
dome =ran(/d + vA)

and inclusion of an x in the latter is definable by an existential statement
x (1
Jy ;(aﬁ —xy) €Ay

which may be used in the premise of the above sentence () to form a universal sentence
(which thus has a trivial monotone functional interpretation). In that vein, we will in

the following use the abbreviation
T € dom(Jf) =3y~ (v (z —x y) € Ay)

and, with that choice, we obtain the theories V; and 7;° from the previous ones by

replacing the axiom

vyl ot (v >r 0>y o —x Jia) € A(J ) (I1)
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from before with
v aX (>R 0A It (V@ —xy) € Ay) =7y Nz —x Jix) € A(J ), (IT)

instantiating (f) with the above definition for 2 € dom(J2}).
The constant cx, which was previously only used to designate an arbitrary anchor
point for majorization, is now used to actually designate a common element of the

domains of all J:;‘ and for that we add the corresponding defining axiom
V’)/l (’Y >R 0— ’7_1(6)( —X J,fCX) S A(J,;LXCX)) . (V)

This assumption that [ dome # (J is easily satisfiable in many applications as

v>0
any nontrivial operator A has a non-empty domain and it is often assumed that the

operator satisfies a range condition like

domA < ﬂ ran(Id + vA),

v>0

which, as mentioned before, will be further discussed later on.

We obtain the following proposition as an immediate generalization of the previous

Proposition [3.3.2]
Proposition 3.3.3 ([165]). V' proves:
1. J3 is unique for any v >0, i.e.

vyl p*, 2 (’y >k 0Ay Ho—xp)edp - p=x ij“g;)'

2. J7A is firmly nonexpansive for any v > 0 (on its domain), i.e.

vl et Xy (fy >r0Ax€E dom(Jj;‘) Ayedom(J) Ar >R 0

~

= e —x Byl < r@—x 9) +x (0= D —x E) ).
3. J3' is nonexpansive for any v > 0 (on its domain), i.e.

VAt Xy X (7 >pr0ATE dom(Jf) AYE dom(]f)
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4. J* is extensional in both arguments (on its domain), i.e.

.
¥yl >p 0,2%, 2% (2 € dom(J2)
rz' edom(JN) A x=x 2’ — Jlr =x Jj}x’),

¥yl > 0,7 >z 0,2% (z € dom(J2)

AT € dom(J;}) Ay =rY — Jir=x J,;L}[E).

VAL 2 (v >R 0 A A >R 0 A 2 € dom(J}})
s I (3 (1 1) 29)).

Yyl AL X <'y >r 0 AXA>g 04 xedom(J)) Az e dom(J5)
0.
o= Hall <a (24 3) o - Sl )

Further, T} proves:

7. A is monotone, i.e.

Vo X uX vt (ue Az Ave Ay — (o —x y,u —x v)x =r 0).

8. J satisfies the alternative notion of firm nonexpansivity for any v > 0 (on its

domain), i.e.

vt Xy X (7 >r 0ATE dom(Jf) AYE dom(J,f)

o g T Ty e e - T8,

3.4 Extensionality and maximality

The whole enterprise of proof mining of course prominently features issues with exten-
sionality as one of the main theoretical problems around the extraction of computa-
tional information from non-constructive proofs and as such, issues with extensionality
in fact lie at the heart of any such approach. For a deeper discussion of this, we refer
to [96].

In our case, as already mentioned above, these issues feature most prominently
in the fact that no system which enjoys bound extraction results (akin to the ones

established later) and which allows for discontinuous operators A (as the previously
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introduced systems do) can prove the extensionality of the operator AH

A central theoretical result from [165] is now the connection between the extension-
ality of A and the maximality statement for A as well as to the previously mentioned

stronger version of the resolvent axiom
vl 2%, p¥ (7 SR 0Ap=x J,f:t -~y Nz —xp)e Ap) )
Theorem 3.4.1 ([165]). Over V¥, the following are equivalent:
1. Eaxtensionality of A, i.e.
Vol yX 2y (r=x 2’ Ay =x ¥ = xazy =0 Xa7'Y) .
2. The strong resolvent axiom, i.e.
VeX pX ' (y>r0Ap=x Jio >y (z —x p) € Ap) .

3. Mazimal accretivity of A, i.e.
VX uX <VyX, v N\ (U e Ay
|l —x y +x MU —x0)l[x == |z —x y||X> Sue Am).
4. Closure of the graph of A, i.e.
VxX,yX,xi_()(o),y()g(o) (xn —x T AYy —x Y AV (y, € Ax,) -y € Ax)
where x,, —x x s short for
VEPINOYm =0 N ([|lzm —x 2| <z 27F)
and similar for y, —x y.
Over TY, items (1) - (4) are additionally equivalent to

5. mazimal monotonicity of A, i.e.

v, uX (Vy¥, ot (ve Ay > (o —x y,u —x v)x =g 0) > u € Az).

In fact, stronger results are possible which will be discussed in Chapter
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So, in particular, the maximality of A can not be provable in any of the previous
systems, albeit being a property of any m-accretive operator. However, the systems do

recognize the set-theoretic maximality of A in the following weakened way:
Theorem 3.4.2. The system V¥ proves the following intensional maximality principle:
Vo, u¥ (v, 0¥ N (v e Ay — e —x g +x M@ —x )]y =2 1z —x yllx )
S>3 W (r=x 2 Au=xu ru € A:z:')).
So, if a proof uses the set-theoretic maximality of A to infer u € Ax but the rest

of the proof is extensional in x and u, then this application of maximality of A can be

treated by the system V¥ (mitigated through the use of the resolvent).

Note also that full extensionality is admissible in a rule form as we still have the
following weak rule of A-extensionality
W F(y) »s=xs Fk(y) >t=xt
Yo Fy(y) — (s € At — s’ € At')

for a quantifier-free formula Fj as a special case of the extensionality rule ¥;-ER of V¥.

Lastly, we want to note that over the partial systems, as explored in [I65], there
also exists a classification of extensionality of A via an extensional formulation of the

definition of the domain but we do not discuss this here any further.

3.5 Range conditions

As mentioned before in the context of the systems for partial resolvents, instead of
requiring that all resolvents are total, a more minimal assumption is often made in the
literature in the form of a condition ensuring that the domains of the resolvents are
large enough relative to an application, e.g. such that some particular iteration scheme
is well-defined. Such assumptions are called range conditions and we here just briefly
sketch the discussion from [I65] on how the following (rather canonical) case can be
treated in the previous systems (with more variants of such conditions discussed later
on):

domA < () (Id + vA)(domA).

¥>0

When we naively formalize the above range condition, we end up with the sentence

VAt X y¥ (’y >R 0AyeAr > x € dom(Jf)).
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So, using the previous intensional expression

x e dom(Jf) = Jy¥ <%($ —xY) € Ay) ;

we are lead to the following formula:

1
vyt eyt <7 >r0AyeAr — Fy~ (—(:g —Xy)eAy))-
v

Even further however, by axiom (II'), stating

Iy~ (%(33 —xY) € Ay)

is equivalent to stating

1
;(aj —x fo) € A(Jj;‘x),

i.e. that the resolvent at v is well-defined at x (which is, after all, the meaning of

x € dom(J;“)). So, we can immediately simplify the formula from above and consider
1
vyt oyt (7 >p0AyeAr — ;(x —x ija:) € A(me)) .

This axiom expressing the range condition is in particular purely universal and thus

can be trivially used in the bound extraction theorems.

3.6 Majorizable operators

Proofs which make essential use of representatives y € Az for € domA (i.e. Az # )

can be treated by providing a suitable witnessing (Skolem) functional for the statement
V¥ 3yX (z € domA — y e Ax)

which can immediately be treated by adding a further constant a of type X (X) together

with a (universal) defining axiom like
Vo~ (z € domA — az € Ax) (x)

where we write € domA := Iy~ (y € Ax). Such a witnessing functional a can take
many forms depending on the particular application scenario (which might require
additional axioms).

In any way however, such a functional then of course requires majorizing data if

used in the bound extraction theorems and we want to shortly discuss this special
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instance of the majorizability notion here already: a function f of type 1 is called a
magjorant for a, written f = a, if it is non-decreasing, i.e. n = m implies fn > fm, and
it satisfies

n = |z|| — fn = |lax| for all n° z*.

Thus, any witnessing functional a for an operator A can only be treated in the
context of the bound extraction theorems if there is at least one choice which is ma-
jorizable. The following notion capturing this minimal assumption was then introduced
in [165]:

Definition 3.6.1 ([I65]). An operator A is called majorizable if there exists a choice

for a satisfying () which is majorizable.

A common assumption from the literature is that an operator A is bounded on
bounded sets, i.e. that A(B,(0)) = U.eB,(0) Az is bounded for any n. This assumption

can be seen to impose a uniform majorizability assumption on all selection functionals:
Proposition 3.6.2 ([165]). A is bounded on bounded sets if, and only if
3a 0Oy XX (VmX(x € domA — ax € Ax)

AV (z ¢ domA — |jaz|y =g 0) = a* 2 a).

3.7 Bound extraction theorems

We now present the proof mining metatheorems from [165] for the theories V¥/T
and their partial variants. The outline of the proofs we give in this chapter is rather
detailed by which we will for one, provide additional details on the rather informal
discussions on the structure and proof of such metatheorems from Chapter [2] as well
as, for another, we will be able to shorten later proofs of metatheorems throughout
the thesis as these follow a similar outline as the proofs given in this section (which is
similar to that of [96]).

In [165], the focus was on metatheorems which allow one to treat classical logic
as discussed in Chapter [2] However, in this thesis we will also place an emphasis
on systems tailored to semi-constructive proofs which correspondingly, according to
the absence of classical logic, allow for certain strengthenings of the conclusions of
the metatheorems. The approach to these semi-constructive metatheorems taken here
follows the general approach from [70] (and results of that kind were already discussed

in [119] for intuitionistic variants of the system(s) 7).
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3.7.1 Classical metatheorems

As mentioned in Chapters [I] and [2 the basis for the classical metatheorems is the
utilization of Gddel’s functional interpretation (going back to Godel’s work [74], but we
mainly use the presentations from [96} 205]) in combination with a negative translation
(which also goes back to Godel [73] but we rely on a version by Kuroda [130]). We

recall the definitions of those interpretations here.

Definition 3.7.1 (|74, 205]). The Dialectica interpretation FP = dxVyFp(z,y) of a
formula F' in the language of A“[ X, ||-||] (or any suitable extension thereof) is defined

via the following recursion on the structure of the formula:
1. FP := Fp := F for F being a prime formula.
If FP = J2VyFp(z,y) and GP = JuVvGp(u,v), we set

1. (FAG)P = 3z, uvy, v(F A G)p
where (F' A G)p(z, u,

2. (FvG)P =32 2,uvy,v(FvG))p
where (F'v G)p(2", z,u,y,v) := (2 = 0 > Fp(z,y)) » (2 # 0 = Gp(u,v)),

Where (F - G)D(Q7Z7£a Q) = FD(£7 M) - GD(M7 Q)J

4. (3z"F(2))P = 3z,2¥y(32"F(2))p
where (32" F(2))p(z,2,y) := Fp(z,y, 2),

5. (V27F(2)P 1= 3XVz,y(V2"F(2))p
where (V2" F(2))p(X, z,y) := Fp(Xz,y, 2).

Definition 3.7.2 (|I30]). The negative translation of F' is defined by F’ := ——F*

where F™* is defined by the following recursion on the structure of F"
1. F*:= F for prime F’;
2. (FoG)*:=F*oG* foroe{n,v,—};
3. (F2"F)* := 3" F*;

4. (VYa™F)* := Vo™ ——F*.
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Following [71), O5] (see also [96]), we introduce some specific classes of types from
TX (providing precise definitions for the notions already vaguely discussed in Chapter
. We call a type £ of degree n if £ € T and it has degree < n in the usual sense (recall
Chapter [2). Further we call & small if it is of the form £ = £(0) ... (0) (including 0, X)
for & € {0, X} and call it admissible if it is of the form & = &(7%) ... (1) (including
0, X)) where each 7; is small and & € {0, X'} as before.

Further, we define certain subclasses of existential /universal formulas satisfying cer-
tain type restrictions: A formula F is called a V-formula if F = VatF,;(a) with F,;
quantifier-free and if all types & in § = (£1,...,&,) are admissible. A formula F' is
called an 3-formula if F' = 3a*F,;(a) with similar {.

Following [76, 86], 87|, we introduce another certain class of formulas: by A we in

the following denote a set of formulas of the form
¥a’3b <, ra¥elFyf(a, b, )

where F; is quantifier-free, the types in 9, ¢ and 7 are admissible and r is a tuple of

closed terms of appropriate types. Here, < is defined by recursion on the type via
LLz<oy:=2<0Yy,
2. x<xy:= ||5E||X SR ||y||X7
3.1 < y = Ve (w2 <5 y2),

and we write z <, y for 11 <, Y1 A - AT <o, Y Where z = (z1,...,7;) and
Yy = (Y1, .., yx) are tuples with x;,y; of type o; for o = (01,..., 0p).

Given such a set A, we write A for the set of all Skolem normal forms
3B <q(0) V2’V Fyf(a, Ba, c)

for any Va®3b <, ra¥clF,;(a,b,c) in A.

We now write A“[X, ||-||]~ for A“[X,|]]] without the axioms QF-AC and DC.
Further, by (BR), we denote the schema of simultaneous bar-recursion for the extended
types T (see e.g. [96]), extending the notion from the seminal work of Spector [198].

Similarly we introduce V&)’ and 7?‘;)’ where we write VE;) for V¥ or V; and similar for

)"



CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS 37

Lemma 3.7.3 (|95]). Let P be a set of universal sentences and let F'(a) be an arbitrary
formula in the language of AY|X, ||-||], the latter with only the variables a free. Then

the rule
AX AT+ P = Fla) =
A“[X, 117 + P + (BR) = Va, y(F')p(ta, y, a)
holds where t is a tuple of closed terms of the language of A“[ X, ||||]- + (BR) which
can be extracted from the respective proof.
This result extends to any suitable extension of the language of A“[ X, ||-|]] (e.g. by

any kind of new types and constants) together with any number of additional universal

axioms in that language.

In particular, note that the above lemma also holds for VE;) and 72;).

As discussed in Chapter [2] the central concept for formulating the quantitative
bounds obtained by the metatheorems is that of majorization in the sense of the ex-
tension to the types in T% due to [71], 95] of strong majorization due to Bezem [16].
In that way, majorants of objects with types from 7% will be objects with types from

T related by the following projection:

Definition 3.7.4 ([71]). Define 7 € T, given 7 € T, by recursion on the structure via

0:=0, X:=0, 7(€) := ?(2)

The majorizability relation =, is then defined by recursion on the type along with
the corresponding structure M**X of all (strongly) majorizable functionals of finite
type as defined in [71], 95]:

Definition 3.7.5 (|[71,05]). Let (X, ||-]|) be a non-empty normed space. The structure

M“X and the majorizability relation =, are defined by

.
My:=Nnzom:=n=man,meN,
Mx =X nzxxz:=nz|z|| AneMyxe My,
% * MS Me
T 2= e M.t Axe M;
Ay e My, y e Me(y* 2¢ y — 2*y* 2, zy)
AVY* Y € Me(y* 2¢ y — 2*y* 27 2™y),
My = {we M" | 30* € M : 0% 20 o
| M) : v P g T
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Correspondingly, the full set-theoretic type structure S“¥ is defined via Sy := N,
S X = X and
S

ST(g) = STE.

For an inner product space, the structures S“* and M“¥ are defined via the norm
induced by the inner product.

Now, majorization behaves as expected for functionals with multiple arguments

(represented by their “curryied” variants) as the following lemma shows:

Lemma 3.7.6 ([71,95], see also Kohlenbach [96], Lemma 17.80). Let & = 7(&) ... (&1).
Forz* : Mg — (Mg, — -+ —> Mz)...) and v : Mg, — (Mg, — -+ — M;)...), we

have x* Z¢ x iff
k
(a) VY5 i, U Uk (/\izl(y;-“ e Yi) = YTyl 2, xyl--.yk> and

() Yyi, ya, .- Ur Uk (/\le(y;" 2 Yi) = TRy Lyl 2ty yk)

The proof of the main bound extraction result now relies on a combination of func-
tional interpretation and negative translation together with subsequent majorization
as outlined in Chapter The following lemma gives the main result for the latter
ingredient (akin to, e.g., Lemma 9.11 in [71]).

Lemma 3.7.7 ([165]). Let (X,||-||) be a (nontrivial) normed space, A an m-accretive
operator and Jj‘ its resolvent with parameter v > 0. Then M“X is a model of V¥~ +
(BR) (for a suitable interpretation of the additional constants). Moreover, for any
closed term t of V¥~ + (BR), one can construct a closed term t* of A* + (BR) such
that

M (25 ex = x| oms 3 lexl = 000 2 1),
Further, the same claim holds for V¥ replaced with

1. T where the conclusion is then drawn over inner product spaces using a mono-

tone A with total resolvents,

2. the partial systems V) and T,° where the conclusion is drawn over the appropriate

spaces and operators, assuming that [ ) dom(Jj‘) #+ .

v>0
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Proof. We sketch the interpretations and the majorization for the new constants and
refer for any other details to [71] (see also [165]) ] The designated interpretation of the

constant x4 in the model M“* is given by

00 if y e Ax,

[XA]M = Ail?a?/ e X.
19 if y ¢ Ax,

where we write M as an abbreviation for M“X. In the case of total resolvents, we set

JAx ifr, >0,
[ = daeNY zeX.{ ™

0 otherwise,
where r, is the real represented by & as before. We set [ := (A)o and [msz]|am := my
for some real A and natural my, with A > 27" Lastly, in the case of the total systems,
we define [cx|a := ¢ for some arbitrary ¢ € X.

These constants are then majorizable (and their interpretations thus belong to
M“X): For y 4, the majorant
M %1 = va

is immediate by the previous Lemma [3.7.6]

 |lex]| , ms and A

For JX4, assume that we have an n with n > HcX — J,i;‘cx
with z* 2 x, i.e. 2* = ||z||, as well as @ 2 7. Then in particular (with similar reasoning
as in [96], Lemma 17.85), we obtain

a(0)+1=~(0)+1=~.
Now, if 7, > 0, we then have

| Lz || < |z — ex|| + || [ ex|| (nonexpansivity)

< @)l + llex|l + |lex — J2tex]| + llex]]
< ||| + 2Jex]| + (2 + %) |ex — J§‘CX|| (Proposition |3.3.2)
<a2* +2n+ (24 2"(«(0) + 1))n.

For r, < 0, we get that fo = 0. Thus,

in that case as well. This implies

J;‘x” =0<z*+2n+ (2+2"(«(0) +1))n

Ao, *0 (2% + 2n 4 (2 + 2™((0) 4+ 1))n) 2 JX4

2Some details on how to deal with some of the other constants of A“[X, ||-||] will be given in the
later Chapter
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using Lemma Lastly, (n)s o) 7, n =0 ms and n Zx cx are immediate by the
assumptions on n (and using Lemma [2.1.2)).
In the partial case, let ¢ € dom(.J:') for any v > 0 and define [cx]a := ¢. Now, the

resolvent is interpreted by

N JAz ifry, >0 and x € dom(J4),
[J]p:i=AaeNY ze X.{ ° °

0 otherwise.

The argument for majorizability of Jf is the same as before, just restricting to x €
dom(J;,i) and using nonexpansivity on the domain and Proposition m The other
constants are interpreted and majorized as before.

Note that the corresponding extensions of M“X to the new constants are indeed
models of the respective theories as none of the axioms for JX4 prescribe any behavior

of the resolvent for v < 0. O

The intended interpretation of the language of V¥ /7% in the structure S*-X, turn-
ing S“X into a model of the respective theories, is defined exactly as the interpretation

of these languages in M“X given in the above lemma.

We now formulate the bound extraction theorem in which we allow for potential
additional axioms A of the form discussed before which are treated in spirit of the
monotone functional interpretation due to [91] (and conceptually already due to [86, 87]
as mentioned before).

We say “in spirit of the monotone functional interpretation” as we actually do not
use a monotone variant of the functional interpretation but treat the functional inter-
pretation part and the subsequent majorization separately. This nevertheless allows
one to treat the axioms of type A for which we follow the presentation given for Corol-
lary 5.14 as it is obtained from Theorem 5.13 in [76]. For that, we need the following

lemma:

Lemma 3.7.8 (|76], Lemma 5.11). Let A be a set of formulas of the form considered
before. Then 8~ = A implies M“X | A.

Proof. The proof given in [76] for Lemma 5.11 carries over. See Lemma later for

more details on this lemma and its proof. ]

We now get to the main theorem on extractions of bounds from classical proofs,

the proof of which we also give here in a more detailed way.
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Theorem 3.7.9 ([165]). Let T be admissible, 6 be of degree 1 and s be a closed term
of V¥ of type o(d) for admissible o. Let A be a set of formulas of the form Ya®3b <,
ravclFye(a, b, ¢) where Fyy is quantifier-free, the types in d, o and 7y are admissible and
where T is a tuple of closed terms of appropriate type. Let By(z,y,z,u)/Cs(x,y, z,v)
be V- /3-formulas of V¥ with only x,y,z,u/x,y, z,v free. If

VY + A VaVy <, s(2)V2" (Vu'By(z,y, 2, u) — 30°Cs(2, y, 2,v))

then one can extract a partial functional ® : Ss x Sz x N — N which s total and
(bar-recursively) computable on Ms x Mz x N and such that for all x € S5, z € S,

z*eS; and allneN, if 2* 2 z and n >p |jex —x J;;‘(CX)HX .Mz, 7, |lex|| ., then
SN =Yy <, s(x) (Vu <o Pz, 2%, n)By(x,y, 2z,u) — Jv <o P(x, 2%, n)C5(x, y, z,v))

holds whenever S*X = A for 8% defined via any (nontrivial) normed space (X, |-||)
with x 4 interpreted by the characteristic function of an m-accretive A and JXA by the
corresponding resolvents Jf for v > 0 (and with suitable interpretations of the other
constants so that the corresponding azioms hold).

In particular:
1. If 7 is of degree 1, then ® is a total computable functional.

2. We may have tuples instead of single variables x,y, z,u,v and a finite conjunction

instead of a single premise Yu®By(x,y, z,u).

3. If the claim is proved without DC, then T may be arbitrary and ® will be a total
functional on Ss x S> x N which is primitive recursive in the sense of Gadel. In

that case, also plain majom'zatimﬂ can be used instead of strong magjorization.

4. The claim of the above theorem as well as the items (1) - (3) from above hold
stmilarly for T where the conclusion is then drawn over inner product spaces us-
ing monotone operators with total resolventﬂ and also for the partial systems V;,

and T’ where the conclusion is drawn over the appropriate spaces and operators,
assuming that (1), ., dom(J2) # .

Proof. We only treat the case of V¥. The set A can be treated as in the proof of Theo-
rem 5.13 in [76]: Add the Skolem functionals B from A to the language. Then, A can

3For a precise definition, see in particular the following section.
4By Minty’s theorem, all conclusions are thus in particular valid over Hilbert spaces using maxi-

mally monotone operators.
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be seen as another set of universal axioms and all the new constants are majorizable
since B <,(5) r and since r is a tuple of closed terms which is majorizable by Lemma
(which extends to this new language by Lemma [3.7.8). Then, the following proof
goes through for this extended system instead of V*.

Now, first assume that
V¢ B V2T (Vu'By(z,u) — F0°Cs(z,v)) .

By assumption, By(z,u) = YaB,s(2,u,a) and C5(z,v) = 3bC,ys(2,v,b) for quantifier-
free B,y and Cyy. Thus, prenexing the above theorem of V¥, we get

VY V2 3u, v, a,b(Byr(z,u,a) — Cyp(2,v,0)).

Using Lemma [3.7.3], disregarding the realizers for a, b and reintroducing the quantifiers,
we get closed terms t,,t, of V¥~ + (BR) such that

V4 (BR) = V2T(B(2, tu(2)) — Ca(2,10(2))).

By Lemma there are closed terms t*,t* of A“ 4+ (BR) such that for all n >

u’r v
lex = J5t(ex)

,my, 7, [lex ||, we get
M@K Et5(n) 2ty Ati(n) 2 t, A V2T (By(z,tu(2)) — Ca(z,t,(2)))

for all (nontrivial) normed spaces (X, ||-||) and all m-accretive operators A with resol-

vents Jf defining M“¥ as in Lemma m Define
®(2%,n) := max{t,(n)(z%), t;(n)(z")}
for z* of type 7. Then
MOX =Y <o ©(2%,n)By(z,u) — Jv <o ©(2%,n)C5(2,0)

holds for all n > HCX — J§‘(CX)H ,mz,7, |lex|| as well as all z € M; and 2* € M; with
2* = z. The conclusion that S“-¥ satisfies the same sentence can be achieved as in the
proof of Theorem 17.52 in [96] which we sketch here: Note that in the conclusion, we
restrict ourselves to those z which have majorants z*. As the type of z is admissible, it
takes arguments of small type for which M“* and S“¥ coincide (see [96] and see also
the later proof of Lemma for a discussion of this). Therefore, any such z, z* from

S@X also live in M“ so that ®(z*) is well-defined in S“* for z, z* with 2* = z. In
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By, all types are admissible to that truth in S*** implies truth in M“% and similarly
for C3 where thus truth in M“~% implies truth in S¥*. Lastly, as in Lemma 17.84 in
[96], we can show that as ® is of type 0(7), the interpretations of ® in S** and M®“*

coincide on majorizable elements. All in all we have that
S“* EYu < ®(2*)By(z,u) — v < &(2*)C5(z,v)

holds for all z € S; and z* € S; with 2* > z.

For the additional prefix Vz’Vy <, s(z), let § = 1 for simplicity. For x of type d,
we then define 2 (y°) = maxy{z(i) | 1 < i < y}. We get 2™ = 2z and if s(z) >, v,
then s*(n)(z*) z y where s*(n) is a majorant of s as in Lemma[3.7.7 Note now that
the above result immediately extends to tuples z instead of a single z. Then by the
above result for tuples instead of a single z, there now is a functional ®'(x*, y*, z* n)
such that

SN = Yu < O (x*, y*, 2% n)By(x, y, z,u) — Jo < & (a*, y*, 2*,n)C3(x, y, z,v)

forall z € S5,y e S,,z€ S, with z* = z, y* 2 vy, z* = 2z and n as before. In particular,

we have
SN = vu < @' (2™ y*, 2% n)By(z,y, 2,u) — Jv < &' (M, y*, 2*, n)C3(x, y, 2,0)
for any such z,y, z and y*, 2* and thus, as y <, s(z) yields s*(n)(z™) = vy, we get

SU% EVu < (™, 5% (n)(a™), 2%, n) By(2,y, u)

in that case. Then define ®(x,2* n) = & (2™, s*(n)(x™), z*,n).
Item (1) can be shown as in the proof of Theorem 17.52 from [96] (see page 428

therein). Further, (2) is immediate and (3) follows from the fact that without DC, bar

recursion and thus the use of M“* both become superfluous. O

3.7.2 Semi-constructive metatheorems

As mentioned before in Chapter [I], the basis for the semi-constructive metatheorems is
the utilization of Kreisel’s modified realizability interpretation (going back to Kreisel’s

work [127), 128], but we again mainly use the presentations from [96, 205]).



44 CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS

For this, we of course also have to rely on suitable semi-constructive systems which
are here defined over the common base A¥ := E-HA® + AC where E-HA® is Heyting
arithmetic in all finite types with the full axiom of extensionality as in Chapter 2] and
AC =/ {AC”T} is the full axiom of choice with

p,T€T
VaP3y F(z,y) — YOV F(z, V) (ACPT)

where F' is arbitrary. The base AY¥ is then extended with the machinery for abstract
types and the constants and axioms for normed linear spaces similar to A“[ X ||-||]
which results in a system that we denote by AY[X, ||-||], following [70] (and we in gen-
eral refer to [70] for any further details surrounding this system). Then we can define
Vi and T similar to Vi, and 7, but over A7[X, [|-[|] instead of A*[X, |[-[[].

We now give the definition of the main proof interpretation employed in the context
of these semi-intuitionistic systems, the modified realizability interpretation due to

Kreisel:

Definition 3.7.10 (Kreisel [127,[128]). For any formula F in the language of A¥[ X, ||]|]
(or any suitable extension thereof), we define its modified realizability interpretation

xmr F by recursion on the structure of F:
1. Omr F := F for a prime formula F' where () is the empty tuple.

Further, if zmr F' and y mr G are the modified realizability interpretations of F' and

G, respectively, then:
2. z,ymr (FAG):=xmr F AymrG,
3. 2% zymr (Fv G):=(2=00—>zmrF)a(z+#,0—ymrG),
4. YmrF - G :=VYz(zmr F - YzmrQG),
5. XmrVYwF(w) := Yw?(Xwmr F(w)),
6. 2/, zmrIw’F(w) := zmr F(z).
Note that in z mr F', both the length and the types of x depend on the structure

of F.

We define A7[X, |[-[[]” as AY[X, [|-||] with AC removed and similarly we define V;* )
and 7;“2;)
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Further, we call a formula F' to be 3-free if it is built up from prime formulas
only via A,—,— and V. It is immediate that for an 3-free formula F.; with modified

realizability interpretation x mr Fir, we have
amr Fep = Feog

and further it is clear that the modified realizability interpretation x mr F' for any F
is d-free itself.

For the following result, we also define the independence of premise schema for
3-free formulas IP.; = | J,cpx {IP7;} where IPZ, is defined as

(Fey — 327G (x)) — F27(Foy — G(x)) (IPZf)

where Fi; is 3-free and does not contain z freely (and G is arbitrary).
We similarly define IP_, by using negated formulas —F" instead of formulas Fi; with
are 3-free.

Lastly, we say that a formula is of type I'_, if it is of the form

Yzt (F — Ju <, ra—G)

for some formulas F, G and where the types in ¢ are arbitrary and the terms in r are

closed. Here, < is defined as before by recursion on the type.

We then get the following soundness result for the modified realizability interpre-

tation.

Theorem 3.7.11 (essentially Troelstra [205], see also Gerhardy and Kohlenbach [70]).
Let Af be a set of 3-free sentences. For any formula F' in (possibly an extension of ) the
language of AY[ X, ||-||] with modified realizability interpretation x mr F, if AY[ X, ||-||] +
[Pt + Ay = F, then AP[ X, ||-||]]- + Aep = tmr F where the terms t satisfy free(t) <
free(F') and can be extracted from the proof of F'.

In particular, the above result also holds for the systems V;f(p) and 7;%;7) as these ex-

tend A¥[ X, ||-||] only by new constants and further universal (and hence 3-free) axioms.

The following result now provides the principles which characterize the modified
realizability interpretation, i.e. which suffice to recover from the modified realizability

interpretation to the original formula.



46 CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS

Theorem 3.7.12 (essentially Troelstra [205], see also Gerhardy and Kohlenbach [70]).

For any formula F with modified realizability interpretation x mr F, we have
A2 X |||I] + Py - F < Jz(zmr F).

Crucially it follows from the characterization result that in strong enough systems,
being J-free is essentially the same as being negated. In this context, we also already

consider the scheme of comprehension for 3-free formulas
02 (B(z) =0 0 = Foy(z)) (CAey)

where o is an arbitrary tuple of types and ® is not free in the 3-free formula F,s.

Likewise, we can define CA_, for comprehension for all negated formulas —F'.

Lemma 3.7.13 (folklore, see Gerhardy and Kohlenbach [70]). 1. For any formula
F in the language of AY[ X, ||-||] (or for suitable extensions), there exists an 3-free
formula Gy such that

A‘{)[X7 HH] + IPef = —F < Gef‘

2. For any 3-free formula Fy:

AZJ[Xa ||||] + IPef H Fef > _'_'Fef-

3. Over A?| X, ||-|]], the following equivalences hold:
IPef <« IP_ and CAef > CAﬁ

In the context of the semi-intuitionistic systems, there is no need anymore to rely
on strong majorizability since bar-recursion is not needed in that context as choice
principles are intuitionistically weak. In that way, we here rely on the “plain” notion
of majorizability of Howard [79], again extended to the abstract types similar to the

extensions from [71].

Definition 3.7.14. The “plain” majorizability relation 2, is defined recursively on the
type via|

n

%
\%

om:i=nz=m,
nzxai=nz |,

T* 2 T = Wyt yf (V" Zey — o*y* 2, xy).

5We here use = for both the strong and “plain” majorizability relation but the context will make

it clear which relation is meant.
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The standard structure S¥¥ is defined as before. Analogous to the previous Lemma
[3.7.7] we also get the following majorizability result for the ordinary notion of majoriz-
ability (where the interpretations of the additional constants of the respective systems,

that turn S“* into a model of said systems, are defined as before):

Lemma 3.7.15. Let (X, ||-]|) be a (nontrivial) normed space, A an m-accretive operator
and J,’;‘ its resolvent with parameter v > 0. Then 8 is a model of V¥ + 1P.; (for a
suitable interpretation of the additional constants). Moreover, for any closed term t of

V¥ one can construct a closed term t* of AY such that

SX = vn' <n > |lex —x Jex|| ms, 3 llexlx = t5(n) 2 t)

The result holds with suitable modifications (see Lemma also for Vi, and 7;‘:&)).

Combining the soundness of the modified realizability interpretation with the ma-
jorizability notion (which essentially amounts to applying the monotone modified real-
izability interpretation, as first considered in [94]), we get the following result on bound
extraction for the semi-constructive systems for set-valued accretive and monotone op-
erators. This result (which, as mentioned before, was stated for 7, already in [119])

is a natural extension of the results given in [70] (which are in turn based on [94]).

Theorem 3.7.16. Let 6 be of degree 1 and o,7 be arbitrary, s be a closed term of
suitable type. Let I'— be a set of formulas of the form V< <C’(£) — v <p re—D(z, Q))
with o, B and r arbitrary. Let B,C be arbitrary formulas with only x,y,z,u or x,y, z

free, respectively. If
V¥ 4+ IP., + CA_ + T - V2'Vy <, (2)V2" (=B(z,y, 2) — uC(z,y, z,u)),

one can extract a ® : S5 x S3 x N — N which is primitive recursive in the sense of
Godel and for any x € S5, any y € S, with y <, s(x), any z € S; and z* € S; with

z* 2 z and any n € N with n > ||ex —x J,{‘CXHX .mz,7, |lex ||, we have
SN | Ju <o O(w, 2%, n)(—B(z,y,2) — C(x,y, 2,u))

whenever X |= T where 8% is defined by suitably interpreting the constants via
a (nontrivial) normed space (X, ||||), an m-accretive operator A and its resolvent J2!

with parameter v > 0.

This result hold similarly for T where the conclusion is then drawn over inner

product spaces using monotone operators with total resolvents and also for the partial
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systems V' and T} where the conclusion is drawn over the appropriate spaces and

operators, assuming that (). dom(J2') # &.

>0

Proof. At first, let Va2 (C(@) — Jv <g re—D(z, y)) be a formula from I'_ and note

that using intuitionistic logic, we have

Further, we clearly have
IV < 192 (C(z) - ~D(z,Va)) - Va (C(z) — 3v <4 ra=D(z,v)) .
So using I'—, can be reduced to considering formulas of the form
AV <p(a) r—E(V).
Now using Lemma we can replace such principles by
IV <g(o) rEL;(V)

where B, arises from —F by Lemma [3.7.13, We denote the set of all such sentences

arising from I'-, in that manner by I't ;. Similar we can replace CA- by CA.y and IP-,

by IP.; and consequently reason over the modified system V' + IP.; + CA .y + Fgf.
At first, regarding the handling of the axioms I',,;: For any axiom 3V <g

rE (V) e T, we add new constants V. with the additional axiom
Z gé(g) r A Eéf(K)

to the system. These axioms are 3-free as £/, is I-free and thus the soundness result
from Theorem [3.7.11] applies for this extension. By considering majorants for the
terms r, we see that these V are majorizable and thus the majorizability result from
Lemma [3.7.15 extends to this system. Then, the following proof goes through with
this modified system if S“* |= I",; holds (which is the case if S** =T-).

Further, we can treat CA.; by reducing it to a formula of a similar form as the

formulas from I', ;- Note that in the principle
3%V (B(x) =0 0 < Fup(z)),

the functional ® is w.l.o.g. bounded by the constant 1 function, i.e. the principle can

be equivalently rewritten as

3p0@) <o) A% 1V2Z (P(2) =0 0« Fep(x)) .



CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS 49

This is now of the same form as the formulas from T’ ’ef as the inner matrix is J-free

and thus can be treated in the same manner.

We now therefore only consider the case of V;”. The other cases can be proved

similarly. So, assume that
V4 1P - Va'Vy <, s(x)V27 (= B(z,y, 2) — u’Cl(z,y, 2,u)).

Let wmr B, vmr C be the modified realizability interpretations of B, C| respectively.

The modified realizability interpretation of the above sentence is then given by

W, U mrVaVy <, s(z)V2"(=B(z,y, 2) — 3u’C(z,y, z,u))
= V2'Vy <, s(z)Vz" (Yo—vmr Bz, y, 2) — Waxyzmr C(x,y, 2, Uzyz)).

As all the axioms forming V¢ from A¥[X, ||-||] are 3-free, soundness of the modified
realizability interpretation (Theorem [3.7.11)) now implies that there are terms ty,ty
such that

VET EVaVy <, s(2)V2T (Yo—umr B(z,y, 2) — tyayz mr C(z,y, 2, tyayz)).
Using the characterization result (Theorem [3.7.12)), we get
Ve 4 TP - Va'Vy <, s(2)V2" (= B(z,y, 2) — C(x,y, 2, tyryz)).

Using the majorizability result (Lemma/3.7.15)), we get that there exist terms ¢} (n), s*(n)

such that for any n with n > |jex — J%L‘CXH .mz, |, [lex ||:
S“X = tf(n) 2ty A 5*(n) 2 s A VE™VY <, s(2)V2T(—B(x,y, 2) — Clz,y, 2, tyry2)).

Now, given x € S5 and y € S, with y <, s(x), we get S¥* |= s*(n)(z™) 2 s(z) as in
the proof of Theorem and thus S |= s*(n)(z™) = y. Thus, for any 2 € S, and

any z* € S> with z* > z:
SN =t (n) (2™, s*(n) (™), 2*) = tyryz.
With ®(z, z*,n) := tf(n) (@™, s*(n) (M), 2*), this gives that
SN = Ju <o B(w, 2%, n)(—B(z,y,2) — C(x,y, z,u))

for any x € Sy and y € S, with y <, s(z) as well as any z € S, and any z* € S;> with

2* = 2. O]



4 A proof-theoretic metatheorem for nonlin-
ear semigroups generated by an accretive

operator

4.1 Introduction

In this chapter, we now establish the logical tools necessary to treat nonlinear semi-
groups generated by accretive operators (with applications of these systems presented
later on). Already since the pioneering studies of Browder [27], Kato [84] and Komura
[123], a major tool in the study of nonlinear evolution equations has been the theory of
nonlinear semigroups and through the notion of the generator, these are in particular
connected to the theory of accretive operators with a range of correspondences via

analogs of the Hille-Yosida theorem.

One of the most important basic results in that context is the representation the-
orem due to Crandall and Liggett [50] of the solution semigroup associated with the
Cauchy problem

u'(t) e —Au(t), 0 <t < @
u(0) ==z

(f)

over a Banach space X for a given set-valued accretive operator A : X — 2%, It is
straightforward to show that any solutionE] is unique as A is accretive and if the system
is solvabld?, then one can consider the family of operators S(t)z = u,(t) on domA

induced by the solutions u,(t) to () with initial values z € domA and for ¢t = 0. As

LA function u : [0,00) — X is a solution of (1) if u(0) = x, u(t) is absolutely continuous, differen-
tiable almost everywhere in (0,00) and satisfies (f) almost everywhere. Note that this is often called

a strong solution but we omit the prefix strong in the following.
2As shown by Crandall and Liggett [50], this is (for strong solutions) in general not the case even

for A m-accretive and domA = X.

20
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these operators are continuous in z, one can consider the resulting extensions to domA
which in that way generate the semigroup S = {S(¢) | ¢ = 0} on domA associated
with (). As shown by Brezis and Pazy [25], this solution semigroup, if existent, has a

particular fundamental representation in terms of a so-called exponential formula:

t —-n
uz(t) = lim (Id + —A) x.
n—ao0 n
As shown subsequently by Crandall and Liggett [50], this formula actually always
generates a nonexpansive semigroup on domA and thus facilitates a general study of

equations like (T) even in the absence of solutions.

Since the 1970s, an extensive range of results has been established in the theory
of these semigroups and the initial value problems in the sense of () associated with
them, in particular in regard to the asymptotic behavior of the solutions of these differ-
ential equations, their connection and use in the study of partial differential equations
and their use in the study of zeros of accretive operators (see |4} B, 1], 149, T58], among

many more).

In this chapter, we extend the state-of-the-art of the underlying logical approach to
proof mining to be applicable to proofs which make use of nonlinear semigroups gener-
ated by an accretive operator via the exponential formula. In particular, we establish
logical metatheorems in the vein of the previously discussed results that guarantee,
quantify and allow for the extraction of the computational content of theorems per-
taining to these nonlinear semigroups. For that, we introduce new underlying logical
systems that extend those developed for the treatment of accretive operators on normed
spaces as discussed in Chapter [3| by carefully selected additional constants and corre-
sponding axioms such that proofs from the mainstream literature become formalizable.
To that end, we show that the initial key properties of these semigroups can be formally

proved in these systems.

These logical results provide a formal basis for the previous proof mining application
[108] carried out in the context of systems like () induced by a certain class of accretive
operators and thus remove the ad-hoc nature surrounding it. Even further however,
these results are expected to lead to many new case studies for proof mining in the
context of that theory and we will see four particular examples of such case studies in
the upcoming Chapters o], [6] and [7]
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4.2 Nonlinear semigroups and the Crandall-Liggett

formula

The main objects of concern in this chapter are the aforementioned nonlinear (and in

this thesis in particular nonexpansive) semigroups:

Definition 4.2.1. Let C be a closed subset of X. A function S : [0,00) x C' — C'is a

(nonezpansive) semigroup on C' if
1. S(t+s)x = S(t)S(s)x for all z € C and all t,s > 0,
2. S(0)x =z for all x € C,
3. S(t)x is continuous in t = 0 for every z € C,
4. ISz — Syl < ||z —yl| for all t > 0 and all z,y € C.

As discussed in the introduction already, these semigroups frequently arise in the
study of differential and evolution equations as is e.g. exemplified by the initial value
problem (f). In particular, by the results of Crandall and Liggett [50], the exponential
formula discussed before always generates such a semigroup on domA which will be the
main object of study of this chapter. Concretely, the following result was established
in [50]:

Theorem 4.2.2 (Crandall and Liggett [50]). Let X be a Banach space and A an

accretive operator on X such that there exists a Ao > 0 with
domA < ran(Id + AA) for all X € (0, \o].

Then .
S(t)x := lim (Id + %A) x

n—ao0

exists for all x € domA and t =0 and S = {S(t) | t = 0} is a nonlinear semigroup on

domA.

We call S as defined above the semigroup generated by A (via the exponential or
Crandall-Liggett formula)

3In fact, a large part of the literature calls —A the generator of S (see e.g. [4] and the references
therein) to emphasize that the generator is dissipative. As we want to emphasize the accretiveness of

the operator, we here deviated slightly from this convention.
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In terms of a logical treatment of these semigroups generated by an accretive oper-
ator, all of the later logical considerations naturally depend on the underlying theory
of accretive operators over Banach spaces. In that vein, we crucially rely on the basic
systems introduced in Chapter [3] for the treatment of those accretive operators. How-
ever, these systems need to be extended in order to adequately deal with Theorem
and the associated notions. In particular, we need to provide logical treatments of an
alternative notion of accretivity, an extended range condition and the quantification
over elements from the closure of the domain of A. We begin with the first of these in

the following section.

4.3 The normalized duality map and the alternative

notion of accretivity

4.3.1 The duality map and selection functionals

Recall that for a Banach space X with its dual space
X*:={z*: X > R | 2" linear and continuous},
its normalized duality mapping
J:X 2% s {z* e X* | (z,2*) = z|® = Hx*||2}

is non-empty for any z € X (which follows from the Hahn-Banach theorem). Many
works in the context of the theory of accretive operators in general, and the treatment
of semigroups generated by those operators in particular, rely on the use of this map-

ping and in that way, this section is concerned with a proof-theoretic treatment thereof.

As we for now want to refrain from providing a treatment for both the operator
norm on the dual space as well as for the full duality map as a set-valued mapping, we
follow the approach initiated by Kohlenbach and Leustean in [ITT] where the authors
handle uses of J by only treating certain selection functionals for J (depending on the

situation at hand).

Concretely, a selection functional for the duality map J is just a map 5 : X — X*
such that j(x) € J(x) for any = € X. This general property of being a selection map

can then be expressed by corresponding axioms formalizing that
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1. jx : X — R is a linear operator for any x € X
2. ||jx|| < ||z|| where ||jz|| means the operator norm;
3. jox = ||z||” (which, as discussed in [I11] already, yields ||jz|| = ||z]|).

Given a constant j of type 1(X)(X), this can be formally encapsulated by the following

universal axiom introduced in [T11]:

va ¥, y¥ (jioz =z lalli A lizy] <a lallx llyllc

N valjﬂl’uX’,UX (]%(Oéu +x BU) =R ajxu +RrR B]l”l))),

Notice that the operator norm is here avoided by expressing ||jz|| < ||z| via stipulating

eyle < l[zllx vl x-

Remark 4.3.1. As discussed in [IT1], the functional j is not provably extensional from
the above axiom alone. As indicated by the use of the Dialectica interpretation, if
extensionality is to be treated then one has to stipulate an associated modulus of
uniform continuity which has been considered in [111]. As not all applications discussed
later do require an extensional or continuous selection map, we do not explicitly discuss

this issue in this chapter and instead refer to Chapter [5| for a further discussion.

4.3.2 The alternative notion of accretivity

Besides the purely metric notion of accretivity discussed in the preceding Chapter
which also forms the basis of the systems )’ and its intuitionistic variant V;’,, the more
common notion of accretivity, especially in the context of nonlinear semigroups gener-
ated by such operators, is the notion introduced by Kato in [84] where one stipulates

that A is accretive if
V(J,‘,U,), (yav) € AEU € J(‘T - y) (<U - U7j> = 0) .

In the language of the preceding subsection, this can be recognized as stipulating the
existence of a family of selection functionals j,, such that, as before, j, ,x € J(z) and

where now further (u — v, j,»(z —y)) = 0 for any u € Az and v € Ay.

Formally, this leads us to the following modification of the previous system: we
define ]A/: as the extension of A“[X, ||-||] with the axiom schemes (I), (II), (IV) and
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(V) as defined in Chapter [3, now over the language extended with a constant j of type
1(X)(X)(X)(X) together with the axioms

Vot gt ut ot <<x7juwx> =g zl% A Ky, jund] <r ll2llx vl (/)

AN VCYl? Bla ZX) wX (<05Z +X ﬁw>ju,vx> =R a<z7ju,vl'> + B<waju,vx>) )
as well as

vaX g X o (ue Az Ave Ay - (u—x v, jun(x —x y)) =r 0) (A)

where we write j,, for juv as well as (y, j,,x) for juvzy.
It is rather immediately clear through the considerations made in [I11] that the

bound extraction theorems contained in Theorem [3.7.9]and [3.7.16] extend to the system

17: as we will discuss now. For this, we first have to give a suitable interpretation to

the constant j in the model M“X associated with an accretive operator A as discussed
in Chapter For that, note that the function j is defined by contracting the two
parameters besides u, v, namely x and y, into the one argument of j (which is feasible
as the witnessing functionals required by the notion of accretivity only have to satisfy
j € J(x —y)). The interpretation of this constant in the model now has to “unwind”
this contraction (which essentially relies on a choice principle). Concretely, we are lead
to the following interpretation of j (writing M concisely for M*X): given an accretive
operator A € X x X, define [j], by

. ((w, 72 (2))e ifdz,ye X (ue Az AveAynz=xx—xY),
[j]M(U,U,Z,w): ~
((w, j(2)))o otherwise,

where (-,-) is application in the space X*, the functionals j' (z) € J(z) are those
guaranteed to exist by the definition of accretivity (if such z,y exist), j(z) is a generic
element of J(z) (which always exists as J(z) # & by the Hahn-Banach theorem) and
(+)o is defined as in Chapter [2/on all of R. With this interpretation, the previous axioms
are naturally satisfied in the model M“*¥ associated with an accretive operator A.
The Theorems [3.7.9] and [3.7.16] now extend to this setting as all the additional

axioms (J) and (A) are purely universal and since the additional constant j with its

interpretation in the model M“* can be majorized by following the ideas presented
in the proof of Theorem 2.2 in [I11]: from |{y, ju.z)| < ||| |ly||, one obtains that

nm = [{y, juvz)| for n = ||z|| and m > ||y|| which immediately yields that the function

(n,m, 1, k) — (mn),
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defined for n,m, k,l € N with ||ul| <k, ||v| <, ||z]| < m, ||w] < n is a majorant for
7. Note that as discussed in Chapter [2] o if restricted to N can be explicitly given by
a term. This majorant is in particular actually independent on the arguments induced

by the upper bounds on ||u|| and ||v]|, i.e. k¥ and .

The question of how this notion of accretivity relates to the previously used notion
immediately arises. By formalizing one direction of the proof on the equivalence of the
two notions of accretivity (essentially due to Kato [84], see also Lemma 3.1 in Chapter
IT of [4]), we obtain the following:

Proposition 4.3.2. The system ]A/: proves:

1.
Vot y ¥, ut ot (Y duer) 22 0 = VA (2]l <k [z +x Myllx)) -
2.
v,y u 0N N (2, ), (y,v) € A
= o —x y+x [M(u—x0)llx > o —x yllx )
Proof. 1. The conclusion is vacuously true for z = 0. Thus assume z # 0 and let

(Y, Junxy = 0. Then we get

|z|* = (@, junr) by (J)
= {x + [Aly = [A[Y; Juor) by (af — ER)
= (& + Ay, Jup®) = [NY, Juw®) by (J)
< (& A+ Ay, Jupr) < |lz+ [Ayl] |2 by ().

Then ||z]| < ||z + [A|y|| after dividing by ||x||.

2. By using (A), we have (u — v, jy,(x —y)) = 0 for u e Az and v € Ay. Then, we
get [z —yll < [lz —y + |Al(u —o)] by (1).
[

Therefore, the system 17; is an extension of V; as all the axioms of V' are provable

in 17: In particular, all properties of A and its resolvent exhibited in Proposition |3.3.3

are provable in ]A): Further, the system proves most of the basic facts about such
duality selection mappings. One such fact that will be particularly useful later on is

the following (proved — in passing — e.g. in the proof of Proposition 1.1 in Chapter I of

H1):
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Proposition 4.3.3. The system lA): proves:

va7yX7uX7 UX7t1 (t >1R 0 - <y7ju7’U:C> gR Hx”X

[z +x tyllx — Hfdlx)
. :

Proof. We have

2] + Y, juwr) = (& + ty, jupr) < ||2]| |2 + ty

by axiom (J). This implies

N+ ty) = ol

O

4.3.3 The mapping (-, ),

Of crucial importance in the context of many proofs from the theory of nonlinear
semigroups, and in particular in the context of the exemplary applications considered
later in Chapter , is the use of a function (-, ), : X x X — R defined by

Y, 2)s = sup{Qy, 5y | j € J(x)} -

As already observed in the early papers [23] [50], it is easy to see that {(y,z); < 400
for all x,y € X and in fact, since J(z) is weak-star compact in X*, the supremum is

actually attained.

While (-, -)s is by virtue of its definition via the supremum and the duality map J
a complex object, many proofs only rely on the existence of a mapping which shares
some essential properties with (-, -)s and in that case, such a mapping can indeed be
treated in the context of the systems discussed above and this is what we want to

briefly discuss in the following.

Concretely, under the “essential properties” mentioned above we will understand

the following:
L. {ay, Br)s = afy,x)s for z,y € X and o, B > 0;
2. {ax +y,z)s = a|jz|* + {y, ) for z,y € X and a € R;

3. [y, 25| < lyll ]| for z,y € X;



CHAPTER 4. A PROOF-THEORETIC METATHEOREM FOR NONLINEAR
58 SEMIGROUPS GENERATED BY AN ACCRETIVE OPERATOR

4. Y, jupr) < (y,x)s for x,y € X and u,v € X where the j,, are the selection

functionals for J guaranteed by accretivity;
5. {-,-)s is upper-semicontinuous (in its right argument).

For a proof for the items (1), (2) and (5), see Proposition 1.2 in Chapter I of [4]. The

other items are immediate.

If all that is required of (-, -), in a proof is that it fulfills these properties, then this
proof can, under suitable uniformization of these assumptions, be treated in the context
of the above systems by adding a further constant (-, -), of type 1(X)(X) together with

the following axioms: the items (1) - (4) are readily formulated as
()1 Vo, y*, b, BT (ely, 1Blys =k |elIBICy, 2)s),

(+)o V', y¥, ot ((az +x g, ) =z allz] + (v, 2)s),

(+)s Vo, ™ (IKy, 2)s| <w lyllx 2l %),

(+)a Yoty u v (Y, Juo) <r (Y, 2)s),

in the underlying language. For a suitable formulation of item (5), note that the logical
methodology based on the monotone Dialectica interpretation suggest that the assump-
tion is upgraded to the existence of a modulus w™ of uniform upper-semicontinuity.
Concretely, we will consider an additional constant w* of type 0(0)(0) together with

the axiom

(+)s

VX X X *(b,k)

Xy R (el Izl <w b lle —x yllx <z 27

- <Za y>s gR <Za 33'>5 + 27]6)

Note that by the uniformity on x where the rate only depends on the upper bound b,

this is actually a full modulus of uniform continuity.

The assumption that (-, -), is uniformly continuous is in particular true if the space
is uniformly smooth and will be in particular also be necessary if the proof to be treated
in some form uses the extensionality of the functional {-,-), (in its right argument) as

suggested by the logical methodology. However, if that is not the case and the proof
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can be formalized just using the axioms (+)1,. .., (4+)s, then the bound extraction the-
orem established later in particular guarantees a bound which is valid in all Banach

spaces.

Note also that accretivity is sometimes defined by explicitly using the functional
(-, )5 through stating that

V(x,u), (y,v) €A (<U —Xx U, T —x y>s 2R O)

This version of accretivity is immediately provable in the system )A): + (+)4 as, using

axioms (A) and (+)4, we have

u—v,2—1y)s = {u—0,jun(z—y)) = 0.

We later denote the collection of these five axioms (+); - (+)5 by (+). Now, the
bound extraction results contained in Theorem B.7.9 and B.7.10 also extend to the
associated extended system(s) 17: + (+)1 + -+ (+)1 + ((+)5) with the conclusion
drawn over any space (or where (-, ), is additionally uniformly continuous on bounded
subsets as above if (4); is included). Concretely, this follows as before since, for one,
all the axiom schemes are purely universal and, for another, the constant (-, -)s can be
immediately majorized: from [y, z)s| < ||y|| ||z||, we as before infer mn > |(y, x);| for
m = |ly|]| and n = ||z||. From this, a majorant for the accompanying interpretation
using (), in the model M“X follows by Lemma[2.1.2] Further, the additional constant
wt is immediately majorized (essentially by itself) as it is of type 0(0)(0) and so, similar
to Lemma 17.82 of [96], we have that w™ defined by

whM(b, k) = max{w(a,j) | a < b,j <k}

is a majorant for w™.

4.4 Systems for nonlinear semigroups and bound ex-

traction theorems

In this section, we now are concerned with a formal treatment of the semigroup S
generated by the exponential formula as guaranteed from the result of Crandall and
Liggett [50] previously discussed in Theorem [£.2.2] Before diving into the formal treat-
ment of these semigroups, we however need to consider some preliminary formal results
for the treatment of domA (which features in the premise of the range condition in
Theorem as well as how Jg' is to be understood.
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4.4.1 The treatment of domA

Crucial both for the definition of the semigroup and for the central assumption of
Theorem [4.2.2] i.e. the range condition, is the use of the closure of the domain of
A and in the following formal investigations, quantification over elements from domA
will therefore be necessary. All the previous systems essentially only considered normed
spaces and in that context, we now first have to lift the previous treatment to take the
completeness of the underlying Banach space into account. For that, we are following
the approach laid out in [96] by which complete spaces are treated by adding another

operator C' of type X (X (0)) which is meant to assign to a Cauchy sequence z~(®

a
limit C(x). To discard of the complex premise of Cauchyness in an axiom stating
that property, one then restricts oneself to Cauchy sequences with a fixed Cauchy rate
(similar to the representation of real numbers in finite type arithmetic discussed in
Chapter , see again [96]). To implicitly quantify only over all such sequences, a term

X(0)

construction 7 is used on the objects x Precisely, 7 is defined on the level of the

representation of the real value of the norm via sequences of rational numbers with

fixed Cauchy rate viaY]

- z, A VE <on ([[|ze —x Trerl|xJ(k +1) <@ 6-27F71),
n =X
wp for mink <o n: [log —x zriallx](k + 1) =g 6- 275", otherwise.

Then, completeness of the space can be formulated via the universal axiomﬂ
Va0 (|C () —x Bl <e 279) ©)
which indeed implies completeness of the space in the form that from
VE"In"Ym, m =0 n (||zm —x il x <w Q_k)
it follows provably in A“[X, ||-||]] + (C) that
VEPImOVL =0 m (||C(x) —x ]| x <r 27%) .

As further shown in [96], the constant C' is majorizable and therefore we find that
the bound extraction theorems discussed above immediately extend to )A/: + (C) or any

suitable extension (e.g. by (+)).

4 As discussed already in Chapter [2| we here follow the notion of [96] and denote by [a](k) the k-th

element of the Cauchy sequence representation of the real number a.
°See the discussion in [96] for the necessity of the additional +3 in the formulation.
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Now a statement where one is quantifying over the closure of the domain, i.e. a

statement of the form

Vz € domA B(z) (%)

can, through the use of C, be (naively) expressed as

VX (vn'3y¥(y € AZ,) — B(C(x))) .

X(0) is a Cauchy sequence was removed through the use of Z and

The premise that x
C but the inclusion of the sequence in the domain, in the form of Yn°3y*(y € AZ,),
remains.

The approach is now to also remove this assumption in a similar style as the -
operation by universally quantifying over the potential witnessing sequence y, and
defining a subsequent operation similar to ~ which potentially alters the sequence such
that z, € domA will always be guaranteed for any n. Concretely, for two objects z,y

of type X (0), we define

Ty if Yk <o n (yr € Axy),
(1Y) =x
Tp-1 for mink <gn: yg ¢ Axy, otherwise.

Note that since inclusions in the graph of A are quantifier-free, the above indeed can
be defined by a closed term in the underlying language.

Now, using the operation | in tandem with ~, we can implicitly quantify over ele-
ments from domA by quantifying over elements of type X (0) and thus we can express

the statement (+) equivalently by
o y X0 (yo € Amg — B(C(x | y))).

As a feasibility check for using = | y, note first that

—

xf?J:X(O)ify-

To see this, one can consider a case distinction on whether Z = x holds or not and
simultaneously on whether z | y = x holds or not. We only consider the one case out
of the four where T # x and x | y # x. By definition, we then have a least k such
that [||z — zx41]|](k + 1) =q 627771 as well as a least j such that y; ¢ Az;. Then, it

immediately follows by definition of the operations as well as the minimality of £ and
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J that
% f?/: (x()?""xk?ka") H/

= (51507 -+ +y Tmin{k,j=1}s Tmin{k,j =1}, - - - )

= ((L'(), NN N RR! o7 K5 P )A

=z ly
where, in the third line, we wrote (o, ..., %=1, %j-1,...)" for the operation = applied
to the sequence (zo,...,%j-1,Zj=1,...).

Further, note that the premise yy € Az actually guarantees that (Z | y), € domA
for all n. For this, define

(1) Yn if Yk <o n (yr € Axy),
n —X
Yr-1 for mink <gn :y, ¢ Axy, otherwise.

Then clearly yo € Azg implies (Z 1 y), € A((Z | y),) for any n.

4.4.2 Range conditions

A treatment for the canonical variant of a range condition

domA < ﬂ ran(/d + \A)
A>0
was already briefly discussed in Chapter [3| where a formal version admissible in the

systems for bound extractions was presented with
VaX A (z € domA A X > 0 — A Nz —x Jiz) € A(J2)) .

Recall that this correctly expresses the range condition since stating that x € ran(/d +
AA) is equivalent to stating that z € dom(J5!) just via the definition of the resolvent.
This latter statement is now equivalently formally encapsulated in our systems by stat-
ing the inclusion A~} (z —x Jlx) € A(J{'z). Note also that this axiom is in particular

purely universal and thus can be used in the bound extraction theorems.

In the following, we want to consider two modifications: (1) we want to specify that
the inclusion is valid even for the closure of the domain; (2) we want to restrict the
intersection to A < \¢ for some real parameter Ay > 0. The use of such a Ay can be

facilitated by adding two further constants and an axiom: A of type 1 and m,, of type
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0 together with the accompanying axiom Ay =g 27" providing a verifier to Ag > 0.
Note that the bound extraction results stay valid in the context of such an extension
if one additionally requires the parameter n from Theorem to satisfy n = |Ao|, my,-

In the context of such additional constants, the above range condition can be im-

mediately modified to represent the restricted range condition
domA < ﬂ ran(/d + vA)
Ao>A>0

by considering
VaX, A (z € domA A Ny >r A > 0 = Az —x Jiz) € A(J{x)).

Further, in both cases we can now consider the other main modification of stipu-

lating the range condition also for the closure of the domain, i.e.

domA < ﬂ ran(/d + ~vA),
Ao>A>0
by using the above treatment of quantification over elements in the closure of the do-
main by quantification over sequences in X together with the operators C' and (- | -).
Concretely, one rather immediately obtains the following natural extension to the clo-

sure of the domain:
Ve X©) X0 )1 ('Uo € Ao A Ao S5 A >g 0 (RC)x,

= 37Ol T o) —x J(Cla T v) € AUJNC 1 v)).

Similarly, we could here lift the restriction via )y again and get a full range condition
for the closure of the domain. We denoted this full range condition for the closure
of the domain by (RC), but at the same time refrain from spelling this out in any
more detail here. Note however that all the other range conditions introduced here are
still purely universal and thus are admissible in the context of the bound extraction

theorems.

Further, note that e.g. from (RC),,, the statement
Va*, A (z e domA A Ny >r A>p 0 — Az —x Jiz) e A(Jiz))

is provable: if x € domA with v € Az, consider the constant-z and constant-v sequences

T and U, respectively. Then clearly (T | ©), =x x for any n and thus provably
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C(z | 7) =x x by (C). The statement (RC),, yields
AHC@ 1 0) —x JL(C(T | ) € A(JL(C(T | D))

for A\y > A > 0 and the quantifier-free extensionality rule (as v € Ax is quantifier-free)
yields A\~Y(z —x J{lz) € A(J{z).

In the following remark, we lastly collect some subtleties regarding the extension

of the metatheorems to systems with these types of axioms.

Remark 4.4.1. The metatheorems exhibited in Theorems|3.7.9[and |3.7.16| require as an

assumption that (), ,dom.J & # &, a requirement which would be substantiated via
a full range condition together with a witness for domA # ¢ (which was previously
— in some sense but not precisely — represented by cx). In the context of the above
restricted range conditions, it is however feasible that [,.,dom.J AA is actually empty
while only (1), .- dom.J {1 % ¢ holds. It should be noted that in this case, Theorems
[3.7.9 and [3.7.16] can be modified to stay valid if cx is interpreted by a point in this

restricted intersection. Therefore, if we in the following write 17: + (C) + (RC),, or

consider any extension, we consider the axioms (IV) and (V) to be replaced by
(IV) Ao — 2™ >p 7 >p 27™,
<V>/ d X € Ac X,

where dx is a new constant of type X and m% is a new constant of type 0, the latter
witnessing that A\g > 4. The majorization of all resolvents Jf for v € (0, A\g) is then

achieved similar to before via

172 < llall + 2lex]| + (2 " %) lex — Jex|

< 2l + 2 flex | + (27 + ) [ldx ] -

In that case however, the interpretation of the resolvent constant JX4 in the models
M@X and 8% has to be modified to set [JX4]y(z,7) = 0 for all x if v = Ao
(and similar for §“X). Therefore, the extracted bounds only remain meaningful if the
theorem does not utilize these resolvents. If it does, further modifications are necessary
but we refrain from discussing this here any further as this situation does not arise in

this chapter or even in this thesis for that matter.
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4.4.3 The resolvent at zero

Something left open by the axioms characterizing the resolvent discussed in Chapter
is the behavior of J§'. This, however, takes a special role in the context of the treatment
of nonlinear semigroups S generated by the associated operator A due to the prominent
use often made of S(0).

The reason for this previous ambiguity in the treatment of the resolvent at 0 was
the fact that the resolvent does not always behave continuously at 0 if it is naively

defined: while the definition of the resolvent via
A 1
Jw = (Id + vA)

suggests J'x = x, it is well known (see [I1]) that already in Hilbert spaces with a max-
imally monotone operator A, one has J/'z — Pp—x for t — 0 and all z € dom(J?).
Therefore, extensionality for the constant JX4 in its first argument ¢ at 0 can in general
not be expected if Jg' is defined in this way and the previous axiomatization left the

definition of J§' open.

In the following, we nevertheless consider the set of axioms discussed previously

forming ]A/: to actually be extended with the sixth axiom
(VI) Vo~ (Jg'z =x x),
stating the defining equality J§' = (Id + 0A4)~! = Id.

Now, the above result that J'z — Pg—x for t — 0 extends to Banach spaces at
least partially in the sense that one can show (see Proposition 3.2 of Chapter II in [4])

that JAz — x for \y >t — 0 and

x € domA N ﬂ domJ§.
Ao>A>0
Therefore, in the presence of a range condition, we should at least have a continuous

and thus extensional behavior of the resolvent defined in this manner at ¢t = 0 for all

x € domA and this can indeed be formally verified in the accompanying system.
Lemma 4.4.2. ]A): + (C) + (RC),, proves:

2—(k+1)
~ 7)\0}
max{1, [|(Z 1 v)r+s/ x}

Y X(© X0 31 10 (UO e Axo A0 <g X\ <g min{

- HC@ fv) —x JfC'(x i U)HX <gr 2’“)_
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Proof. First, by Proposition [3.3.3] we have
Vo, v A (0 <g A <p Ao AvE Az — Hm - J;\‘lx” < Av]))

as using (RC),, and the quantifier-free extensionality rule, we obtain x € dom(J§') for
all X € (0, \o) as discussed before. So, for 2% and vX© such that vy € Az, for all n,
we obtain C'(z | v) € dom(J3}) for all X € (0, )\g) again by (RC),,. Therefore, using

(C) and the nonexpansivity of Ji! on its domain:

|C(z 1 o) = C(x L )| < IC T v) = @ T o)l + | 0)n = JLE T 0)al|
+[[ @ T o), — JLC( )|
<2[|Cx tv) = @ T o)all + [|@ 1 0)n = ILE 1)
<2-27"B L A@E 1 vl

Choosing n = k + 5, we get that for A < 27D /max{1, | (Z 1 v)rss]l}:
|C(z 1 v) = JiC@ 1 v)| <27
O
This property will be sufficient in the following as the semigroup operates only on

domA.

4.4.4 The semigroup

For treating the semigroup on domA from Theorem , it is very instructive to first
consider the operator S solely on domA. In that case, we can facilitate a treatment by
directly adding a further constant S of type X (X)(1) to the underlying language to-
gether with an axiom stating that S on domA arises from the Crandall-Liggett formula,
i.e. that

n—0o0

S(t)r = lim <Id + zA) x
n

for any € domA. This can be achieved by further adding a constant w® of type
0(0)(0)(0) together with the axiom

VEO b0 TO 2 ot} (v € Az Azl |v]lx <k bA |t < T (S1)

= 200 T) (<5 00 |57 —x el <227 )
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expressing that w® represents a rate of convergence uniform for elements = from
bounded subsets By(0) ndomA and uniform in ¢ for bounded intervals [0, 7] (where we
use the absolute value to disperse of the universal premise ¢ > 0). The term (‘]I?I /n)"
used here is a shorthand for a term I(t)(n)(n) where I(t)(m) is a closed term of type
X (X)(0) defined using the recursors of the underlying language of A“[X, ||-||] (recall
Chapter [2)) via I(t)(m)(0) = Az.x and I(t)(m)(n + 1) = /\I(J{;‘m(l(t)(m)(n)(x)))ﬁ
Note also that we in particular treat S(0)x via Ji'z by using the absolute value |t| in

the above formula to implicitly quantify over non-negative real numbers.

Such a use of a rate of convergence is in particular justified by the fact that the proof
given in [50] of the Cauchy-property of the sequence (Jt‘;‘n)”x for given ¢t > 0 and x €
domA can be immediately recognized to be provable in the system V:jp +(C) + (RC)»,
(naturally defined as ]A): + (C) + (RC)), just over AY[X, ||-]|] instead of A“[X, ||-|[]).
Therefore, the extension of the semi-constructive metatheorem (Theorem [3.7.16)) to this
system guarantees the existence of a rate of Cauchyness for (Jt‘;‘n)"x and consequently

9 as characterized by the above axiom which can moreover

the existence of a modulus w
be extracted from the proof given in [50] (which is in fact rather immediate and was
essentially already observed in [50]): one can (formally) show that given z € domA
with witness v € Ax and t > 0, we have

1/2

1 1
e = el <2 | = 2|l

Thus for 7' >t and b > ||v||, we have for a given ¢ > 0 that for any m >n > [42#]:
., ., 1 e

(T2 = (S, || < 2Th -
< 2T =
x \/ﬁ
<270 !

4122
£2

<€

Thus the mapping
(US(]{I, b, T) _ 22k+2T2b2

5We consider I(t)(m) to be trivially defined at m = 0
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is a possible choice for the rate of convergencdﬂ in the exponential formula as derived

from the proof and the upper bound b is here actually even independent of ||z|.

Now, the treatment of the extension of S to domA is best motivated by consid-
ering how it is usually defined in the literature: S(¢) as a mapping domA — X is
nonexpansive and thus continuous. The object S(t)z for x € domA is then defined by
considering that as z € domA, there exists a sequence x, — z with z, € domA. By
convergence, the sequence z,, is Cauchy and by continuity of S(t¢), the sequence S(t)z,,
is Cauchy as well and thus converges in a Banach space by completeness. Then S(t)z
is identified with the limit of that sequence. This crucial use of the completeness of the
space prompts us to work in the context of the formal treatment of complete spaces
and domA as discussed before.

In that vein, we now want to provide an axiom classifying the behavior of S(t) for
clements of domA by essentially stating that for any  and any Cauchy sequence x,, —
with z,, € domA, S(t)x, converges to S(t)x. The quantification over all elements of
domA together with their generating sequences can now be achieved as discussed in
Section and in that way, the axiom stating the resulting behavior for S(t)z then

takes the form of the following universal axiom[]

VIX(O),yX(O),tl(yoeAxo .
—Yn® (IS(EN(C (@ 1 ) —x SUN(E 1 y)a)llx <e 27"2)).

Note again that the behavior of S(0) is implicitly characterized by the above axioms
through the use of [t|. We write () for (S1)+(52) as well as H; for 9:—% (C)+(RC)»,+
(S) (noting again the additional axioms from Remark and Section 4.4.3]).

Now, the above axioms forming the theory H are suitable for formalizing large
portions on the theory of nonlinear semigroups as generated by the Crandall-Liggett
formula and as a sort of litmus test, we at least provide here sketches of formal proofs
in the resulting system of the other main semigroup properties which arise pretty
much directly by formalizing the proofs given in [50]. For that, however, some careful

consideration for iterations of the semigroup map are required here. Concretely, to

"Note that although the function is exponential in &, this is just due to requiring an error of the

form 27%. Abstracting e = 27, the rate is actually linear in 1/e.
8Note again that the additional +3 is included here as the axiom (C) requires this modification in

order to have a model as discussed before and the same rate applies to the semigroup-images here as

the semigroup is nonexpansive.
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make expressions like S(#)S(s)z meaningful, we have to consider how S(s)z € domA
is reflected in the system. Based on the representation of domA chosen above (which
also features in how the extension of S is formally defined by means of the axiom (S2))
we thus first have to see how S(|t|)C(z) with x,, € domA for all n can be expressed as
an element of the form C(u) for uX(® such that u, € domA for all n. To find such a u,
note first that the convergence result encoded by (S1) for elements from domA extends

by means of (S2) to domA in the following way: provably in H', we have
VX0 X O 41 LOINOp >, N(yo € Azg A |t|/n <g o

— [|S(tH(C( T y) —x (Jim)" (C@ Ty, <w z—k)

were moreover (although we avoid spelling this out here) the choice functional for N
can be explicitly given by closed terms build up from w® (and the other constants).
To see the provability of the above statement, let k, z,y,t be arbitrary with yy € Axg.

Then using nonexpansivity of the semigroup and the resolvent (see item (4) of the

following Lemma [4.4.3)), we have

[S((C( ) = (Jim)" (C@E 1 y)|
< SN (C@E 1 y)) - s<|t|><@ L) wen) ||

+[[S(th((@ ) k5) = (Jit)" (@ 1 9) ) |
+ || Jiim) (@19 wes) = (i) (Cla T y)]|
< HC(x — (T 1Y) (k+5) ||
+ ||S ED((@ T >k+5>) (Jim)" (@ 9)ess) ||
+ 1@ 1 y)ers) — ol
<2 lsqe@ m)) - (an)"«% ! 9)ses) |

<92 k
for any n large enough such that |t|/n < Ag as well as

[SUEN(E T Y)wrs) — (Jiim)" (@ T 9)gers))|| < 27D

which can be achieved via (S1). In that way, writing NV, ., for the choice functionals for

the quantifier over N in the above statement, we find that S(|t|)C(x | y) is provably

9The first four items of this lemma in particular do not rely on this construction as it will only

become necessary in the fifth item. Thus, there is no circularity induced by this construction.
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=x-equal to

N,y (k)
C (((Jﬁ/zvt,z,y(k)) Clz y))k) :

We write S(|t|)C(x | y) in the following for this expression (where one should note again
that the N-functionals can be explicitly computed, albeit being somewhat messy). In

particular note that

)Nt,z,y(k‘)

(J\ﬁ/zvt,z,y(k) C(z | y) € domA

with the witnessing terms defined in terms of the Yosida approximates (which follows
provably from (RC),, if we w.l.o.g. assume that the functionals N, for a given t as a
parameter, are large enough such that [¢|/Ny ., (k) < Ao). In that way, S(|t[)S(|s|)C(x |

y) can be meaningfully represented by

S(t)S(sNCx Ty) =x S(DS(sC(z T y).

Note that the system can nevertheless not prove that

S(thS(Is)C(x y) =x S(t))S(Is))C(z T y)

and so the latter is, in some sense, the only way to talk about iterations meaningfully.

We now get to the main properties of nonexpansive semigroups:
Lemma 4.4.3. The following are provable in H :
1 Va¥, y¥ st (y € Av — [[S(t))x —x S(IsDzllx <w 21l Is|l lyllx)-
VX Xt (x € domA A y € domA
= [[S(thz —x S(thyllx <e lz —x yllx )-

VX0, X0 1151 (w € Ay a [t~ |sl] <z 2704/ max{L, | @ 1 V)sasl)}

— [S(C(x T v) —x S(|s|)Cla 1 v)]y <w z—k).

— ISE)(C 1 o)) —x SAENCLy T w)lx
<k |0 1 ) —x Cly Tw)llx )-

VX0 X(0) ¢l g1 <U0 € Axg

= S([t] + [s)(Ca Tv)) =x SNS(sH(C (2 | v)))-

{VmX(O), X O X O) [y XO) ¢ (Uo € Azg A wo € Ayo
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Proof. 1. At first, note that provably in H, we have

-

Va:,y,u,)\,n,m()\0>|)\| lulAn=m=1nrye Az

A

HHUﬁwx_Uﬁy%Hg(GMM%4MMF+anM—Mmf”

+WMMM—w»umw—nwaﬂum)

\

which can be shown by formalizing the proof given in [50]. Instantiating this
with m = n, p = [t|/n and X = |s|/n for ¢, s of type 1, where w.l.o.g. |s| = |¢|,

and where n is large enough that |¢|/n, |s|/n < Ag, we obtain

Hummw—wmmw<(«ﬂ—Mfﬂwmm—mmwﬂ
+Uﬂwm—mmwwm—mw”)mu

for any n > 1 and any z,y with y € Az. Let k be arbitrary. Using axiom (S), we
get

1S(thz — SUshll < [|S(th — (Jim) x|l + [ (Tim) s = ()"

+[[S(shz = (F5,)" |
2

< o1 U = i)
2 /
St r1 (((!tl — [s])? + |t](|s]/n — |t]/n)) "

+ (Isl(lsl/m = lel/m) + (sl = [1)3)" ) Iy

for any n additionally satisfying n = w¥(k,b, T) with b > ||z|| , ||v]| and T > |t], |s|.
This implies

15([thz = S(szll < ki“ + 2[[t] = [s][ 1yl

and the claim follows as k was arbitrary
2. By Proposition m (essentially), we have provably that
173 = Tyl < llz = vl
for any A\g > A of type 1 and any z,y of type X. By induction, we get

(i) = (T y]| < llz =yl
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for any t of type 1, any z, y of type X and any n large enough such that [t|/n < A¢.
Now, let k be arbitrary. Then we get

1S (It = Syl < [[Sthz = (igm) || + [ (i) 2 = (igm)"y]]
+[|S(thy = (i) "yl
2

<1+ 0" = (i)l

+ —
< +la-yl

for any n > w¥(k,b,T) with b > ||z, ||yl , [|v||, ||w| with v e Az and w € Ay as
well as T' > |t| using (S). As k was arbitrary, we get the claim.

3. Using item (1) and axiom (S2), we have

IS(ENC (2 T o) = S([s)Clz [ )l

< [S(EHC( T o) = S(E)(E T v)nll
+[SUDE T v)n = SsN@ T v)nll
+[S(sD@ T v)n = S(s))C T o)

<2: 27" 4 [IS(EN)E 1 v)n — S(sD@ 1 0)all

<227 4 2lt) = sl 1 v)all -
Choosing n = k+5, we get the claim for |[t|—|s|| < 27#*2) /max{1, ||(Z 1 v)xys]}-

4. Using item (2), axiom (S2) as well as (C), we have

[S(ENH(C(z T v)) = S([EH(C(y [ w))l
< [|S([E)H(C(z T v)) = SN T v)w)ll
+ISEN(@ T o)) = SEN (Y T w))l]
+[[S([E)H(Cy T w)) =SNG T w)w)
<2275 IS (@ T o)k) = S(EN(@ T w
<2-27F 1 | L o)k — (§ 1wkl
<2 27" 4 1@ o)y —C(x ]
+[|Cz T v) = Cly
+H[Cy T w) — (7 T w)ll
<2-27F 1 2.7 L IC(z 1 o) — Oy T w).

As this holds for arbitrary &, we get the claim.
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5. Let z € domA. Using the previously introduced notation of =, we write

(S e = S(|t]),
(SN = S(|t]) ([S([Eh]m).

Note that provably
[S(EH]™ 2 = S(It]) ([S(|t))]")
which follows as in the discussion previous to this lemma. We now show by

induction on m that provably
VEIN,Yn = N, ([tl/n < Xo — |[[SUtD]™2 = ((J,0) ™) " 2] <27F).

The induction base follows from (S1) as was already discussed above. For the
induction step, let V,,,(k) be the choice function of the above statement. Then for
arbitrary k, we get (using extensionality, see Remark , and nonexpansivity
of S(|t|) on the closure of the domain) that

sty - ((Jlﬁ/ny"“)an
< ||SUeNES D™ = (i)™ (i) ™) ]|
< || SUENES DT = (i)™ (S]]
+ ||(J\?|/n)n (S = (i) (i) ™) ]
< [|SEDLS ()] — (Jlﬁ/n)” [S(t)]™=||

+ SN = ((Jidm)™) " =]
<27k

for all n such that |t|/n < Ao, n = N,,,(k + 1) and such that n is large enough for

ISAEDISUENT™ — (J)" [S(eDT ]| < 27V

which can be constructed as in the discussion previous to this lemma. Therefore,

given k, we in particular get

ILS([E)]™ > — S(mlt])z|]

IS UEDT™a = (i) ™) | + ([ (i) ™) 2 = S(mlt])=]|
< [N = (i) ™) =l + | (Timjegpmn) " & = S(mlt))
<2 (k+1)+2—(k+1)

<27*
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for any n such that
n = max{N,,(k + 1),w’(k + 1,b,mT)}

for b > ||z||,||v]| and T > [t| using (S1) and the previous result. As k was
arbitrary, we get [S(|t])]"x = S(m|t|)x. Using this, we provably we get

S<£+i)x=8(l8+rk>x
k s s

k

r 1 qls+rk
—|s(=
| (ks

I I
O) r 1
—~ R
>
~_ m|"
»nn |,
A~
Tl
~__
K

where we have used the above items for extensionality of S (see again Remark
. A continuity argument using item (3) now yields the claim for arbitrary
reals |t| and |s|. Further, the claim extends to the closure of the domain via
another usual continuity argument. Both we do not spell out here.

O

Remark 4.4.4. The constant S(t)z is provably extensional in z € domA for any ¢ > 0
by (4) as well as in ¢t > 0 for any « € domA by (3).

Remark 4.4.5. Note that by the proof of the above item (3), we have that if the operator
A is majorizable in the sense of Chapter [3] i.e. if there exists a function A* : N - N
such that

Vb e NV € domA n B,(0)3y e X (|ly|| < A*b Ay e Ax),

then the semigroup S generated by A through the Crandall-Liggett formula is uniformly
equicontinuous in the sense of [I09], i.e. there exists a function w : N x N x N — N
such that

Vb e NVq € domA n B,(0)¥m € NYK € Nvt, 1 € [0, K]
(It = ¢ < 27met™ — |[S(t)g — S(¢')gll <27™).
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Concretely, assuming w.l.o.g. that A* is nondecreasing, this so-called modulus of uni-

form equicontinuity for S can be given by
wip(m) = (m + 2) max{1, A*(b+ 1)}.

Note in particular that this modulus is independent of the parameter K.

We now come to the main theoretical result of this chapter which comprises a proof-
theoretic bound extraction theorem for the system H; akin to the usual metatheorems
of proof mining. The proof of this metatheorem follows the general outline of the proof
of Theorem [3.7.9] discussed in Chapter [3] and since the proof is very much standard
in this way, we omit most of the details and in the following mainly just sketch the

majorizability of the new constant S.

Theorem 4.4.6. Let 7 be admissible, 6 be of degree 1 and s be a closed term of H}
of type o(d) for admissible o. Let By(x,y,z,u)/C5(z,y,z,v) be ¥V-/3-formulas of HY
with only x,y, 2,u/x,y,2,v free. Let A be a set of formulas of the form Va®3b <,
ravclFye(a, b, ¢) where Fyy is quantifier-free, the types in §, o and ~y are admissible and

where 1 is a tuple of closed terms of appropriate type. If
HY + A+ Va'Vy <, s(z)Vz" (VuoBv(m, y, z,u) — °C5(z, vy, 2, v)) ,

then one can extract a partial functional ® : S5 x S> x N x NN — N which is total and
(bar-recursively) computable on Ms x Mz x N x NN and such that for all z € Ss, z € S,
z*eS; and alln e N andw e NV if 2* 2 2 andw = w® as well asn =g m, |7, lex ||«

lldx|lx, [Aol, Mg, m%, then

SN =y <, s(z) (Vu <o (2, 2%, n,w)By(z, y, 2, 1)

— Jv K (I)(l’, Z*,n,w)cﬂ(xayvzav))

holds for S whenever S*X = A where S*X is defined via any (nontrivial) Banach

space (X, ||-||) with

1. xa interpreted by the characteristic function of an accretive operator A satisfying

the range condition domA < [, _ dome,

2. JXA anterpreted by the corresponding resolvents J,‘Y“x for Ao > v =0 and x €
dom(J2), and by 0 otherwise,

3. j interpreted as discussed in Section [{.5.3,



CHAPTER 4. A PROOF-THEORETIC METATHEOREM FOR NONLINEAR
76 SEMIGROUPS GENERATED BY AN ACCRETIVE OPERATOR

4. S interpreted by the semigroup generated by A wvia the Crandall-Liggett formula

n [0,00) x domA, and 0 otherwise,
5. dx, cx interpreted by a pair (c,d) € A witnessing A # J,

6. w® interpreted by a rate of convergence for the limit generating the semigroup on

domA,

and with the other constants naturally interpreted so that the respective axioms are
satisfied.

Further: If T is of degree 1, then ® is a total computable functional. If the claim
1s proved without DC, then T may be arbitrary and ® will be a total functional on
S5 x S5 x N which is primitive recursive in the sense of Godel. In that latter case, also

plain majorization can be used instead of strong majorization.

Proof. The proof given in Chapter |3] immediately extends to this system, noticing
the additional considerations on the model of majorizable functionals discussed in the
context of j as well as Remark [£.4.T] In particular, note also that all axioms added to
H are purely universal and that the new constants other than S can be majorized as
discussed throughout the previous sections. For the last constant S, we can argue for

/

the majorizability as follows: In the context of the axiom (V)’, stating that domA is

not empty using the constants cy and dx, majorization of the constant S on ¢t > 0 and

x € domA follows rather immediately. It is straightforward to obtain that
V, = var Ah (1: € dom(Jr;“) — H(Jﬁ\“)"a: —x :U||X <gn HJC\“SL’ —x a:HX) :

Therefore, we have for x € domA with v € Az and b > ||z, ||v] and for £ > 0 with
T > t that for n > (w%(0,b,7) + [T/Xo]){Y]

ISzl < [|St)a = (Jg)" || + || (F)" ]|
L+ || (T) e = (Tga)"ex || + | (J5a)"ex||

N

N

L+ ||z —ex]|| + |lex]| +n || {InCX — cx||

< T [l + 2 fex]] + T |ldx|]

which follows from the axioms (5) and (RC),,. This extends to domA as follows: for

x € domA and x, — x with rate of convergence 27" and where z,, € domA, we have

0We can choose e.g. n = w3(0,b,T) + [T/Ao](0) + 1 which can be represented through a closed

term.
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|lzo — x| <1 and ||S(t)z — S(t)zo|| < 1 and thus

[S@)z]| <1+ IS0l
< 2+ ol + 2 lex || + T {ldx]|
< 3+ 2l + 2fex[] + Tfldx |-

]

Also Theorem extends to an intuitionistic version Hj, of the system HY in
that fashion. Concretely, let H, be defined as the extension/modification of Vy, with
the same constants and axioms as were added /modified to/in V’ to form HY. Then

the following semi-constructive bound extraction theorem holds:

Theorem 4.4.7. Let § be of the form 0(0)...(0) and o,7 be arbitrary, s be a closed
term of suitable type. Let T— be a set of sentences of the form Yus(C(u) — v <p
tu—D(u,v)) with ¢, B and C, D arbitrary types and formulas respectively and where ¢
is a tuple of closed terms. Let B(x,y, z)/C(x,y,z,u) be arbitrary formulas of H, with

only x,y,z/x,y,z,u free. If
Hy + TP + CA_ +T- + Vil Vy <, (2) V2" (=B(z,y, 2) — lC(z,y, z,u)),

one can extract a ® : S5 x S; x N x NN — N which is primitive recursive in the
sense of Gadel such that for any v € S5, any y € S, with y <, s(x), any z € S;

S

and z* € Sz with 2* = z and any n € N and w € NN with w = w° as well as n >y

msy, W|a ||CX||X ) HdXHX ) |>‘0|7m>\07m%’ we have that
SN Ju <o (w, 2% n,w) (—B(z,y,2) — C(x,y, 2,u))

holds for S*X whenever 8% = T'— where 8 is defined via any (nontrivial) Banach

space (X, ||]|) with the constants interpreted as in Theorem[{.4.6,

Using the previous arguments regarding the majorizability of the new constants, the
proof is a straightforward adaptation of the proof of Theorem [3.7.16] given in Chapter

Bl and we thus omit any further details.



5 Quantitative results on Pazy’s convergence

condition and first-order Cauchy problems

5.1 Introduction

As discussed in the introduction of Chapter [4], one of the fundamental questions in the
theory of differential equations is that of the asymptotic behavior of the solutions to a

particular system. Concretely, consider again the initial value problem

u'(t) e —Au(t), 0 <t < ©
u(0) ==

(+)

over a Banach space X generated by an initial value x € X and an accretive set-valued
operator A : X — 2%. The focus of Chapter 4 was on correctly representing the semi-
group generated by an accretive operator A via the Crandall-Liggett formula which, as
also discussed in the introduction of Chapter {4, generalizes the solution semigroup of
the above system in the sense that if the system is solvable, then the solution semigroup

coincides with the semigroup generated by A.

Even further however, Crandall and Liggett in [50] also obtained a characterizing

condition for when

S(t)r = lim <Id + EA> x
n

n—0o0

actually is a solution to (). Namely, their result yields in particular that if 0 < T < o0
and A is m-accretive, then u, is a solution of the initial value problem with z € domA on
[0, T) if and only if u,(t) = lim, . (Id + L A) " for t € [0,T) and u, is differentiable
almost everywhere.

As this function S(t)z is Lipschitz continuous in t (see, e.g., the proof of Theorem
1.3 in [], Chapter III or see also the previous Chapter [4]), the additional differentiabil-

ity condition is in particular immediately satisfied if any Lipschitz continuous function

78
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from the real numbers into X is differentiable almost everywhere. This in turn is true
in any reflexive space X by (an extension of) Rademacher’s theorem which, as is well-

known, in particular includes uniformly convex spaces by the Milman—Pettis theorem.

In this chapter, we are concerned with the asymptotic behavior of S(t)x for ¢t — o
in the context of uniformly convex and uniformly smooth spaces. It is well-known that
S(t)z does not always converge in that case. Motivated by these circumstances, there
has been a search for potential conditions guaranteeing the convergence of the orbits
and, in that context, Pazy in [160] introduced the so-called convergence condition for
the operator A. Concretely, over a Hilbert space X with inner product {-,-) (and as-
suming A710 # ), we say (following Pazy) that A satisfies the convergence conditionE]

if for all bounded sequences (x,,¥y,) S A such that
JI_I)IC}OQ/H’ Ty — Py) =0,

it holds that liminf, . ||z, — Pz,|| = 0 where P is the projection onto the closed
and convex set A0 (if A is maximally monotone). Then Pazy obtained the following

result:

Theorem 5.1.1 (Pazy [160]). Let X be a Hilbert space and A be mazimally monotone
and let S = {S(t) | t = 0} be the semigroup generated by A where A7'0 # . If A
satisfies the convergence condition then, for every x € domA, S(t)x converges strongly

to a zero of A ast — o0.

This convergence result was subsequently extended to uniformly convex and uni-
formly smooth Banach spaces by Nevanlinna and Reich in [I54] who simultaneously
adapted the above convergence condition to a suitable variant in said classes of Banach

spaces by modifying the premise to the assumption that
lim (y,, J(x, — Pz,)) =0
n—o0

where J is the normalized-duality map (see again Chapter {4)) which is single-valued

here as the space is smooth. Concretely, the following result was obtained:

Theorem 5.1.2 (Nevanlinna and Reich [I54]). Let X be uniformly convexr and uni-
formly smooth and A be m-accretive with A~'0 # & and such that it satisfies the

! Actually, Pazy also emphasized a particular consequence of the above condition as a separate
additional property for the convergence condition, but we refrain from doing so (in line with the

presentation in [154]).
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convergence condition. If S = {S(t) | t = 0} is the semigroup generated by A via the
exponential formula then, for any x € domA, S(t)x converges strongly to a zero of A

ast — 0.

This result was further generalized by Xu in [208] who studied the behavior of
almost-orbits associated with the semigroup generated by A as introduced by Miyadera
and Kobayasi [I50]: an almost-orbit of S is a continuous function u : [0, 0) — domA
such that

;Lr& sup{||u(t + s) — S(t)u(s)|| | t = 0} = 0.

Concretely, Xu obtained the following result:

Theorem 5.1.3 (Xu [208]). Let X be uniformly convex and uniformly smooth and A
be m-accretive with A7'0 # & and such that it satisfies the convergence condition. If
S ={S(t) | t = 0} is the semigroup generated by A via the exponential formula, then

every almost-orbit u(t) of S converges strongly to a zero of A ast — .

All the above results do not offer any quantitative information on the convergence
of the orbits or almost-orbits. We here analyze the proofs of Theorem as well
as Theorem [5.1.3] and extract from these explicit computable transformations which
translate a modulus witnessing a quantitative reformulation of the convergence condi-
tion into quantitative information on the convergence result. By this latter statement,
we mean in particular full rates of convergence for S(t)x for t — oo in the context of
the result of Nevanlinna and Reich. In the case of the result of Xu, this amounts to
two kinds of quantitative “translations” with the first translating a rate of convergence
for the almost-orbit into a rate of convergence of the solution of the Cauchy problem

towards a zero of the operator A.

Akin to fundamental results of Specker [197| from recursion theory whereas even
computable monotone sequences of rational numbers in [0, 1] do not have a computable
rate of convergence, one can see that those rates will in general not be computable (see
for similar results also the work of Neumann [I53]). The second quantitative result on
Theorem then takes the form of a translation converting a rate of metastability of
the almost-orbit (which will be discussed later on) into a rate of metastability for the
convergence towards a zero of the operator A. For this, note in particular the example
presented in [108] for a concrete almost-orbit where such a rate of metastability can

be naturally obtained and is moreover computable and highly uniform while any rate
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of convergence will not even be computable in this case.

In particular, we want to note that the theorem of Garcia-Falset [66] analyzed in the
work [108] is strongly related to the results of Pazy, Nevanlinna and Reich as well as Xu
presented above. Concretely, Garcia-Falset obtains a similar result on the asymptotic
behavior of the almost-orbits of the solution semigroup of the abstract Cauchy problem
generated by an operator A under the condition that A is ¢-accretive at zero as defined
in [66]. The generality gained by assuming ¢-accretivity at zero of A is that the space
is allowed to be an arbitrary Banach space.

In that context, our dichotomous situation of the two quantitative versions of the
result of Xu is also similar to the results from [108] and, as will be discussed later,
the work [I08] is where the metastable version of the almost-orbit condition was first

introduced.

In contrast to the results by Garcia-Falset in [66] where the notion of ¢-accretive at
zero carries the strength of removing the convergence condition as well as the assump-
tions on the space X but simultaneously provides a strong restriction on the operator
(by, among others, making the zero of the operator unique), the results given by Pazy,
Nevanlinna and Reich as well as Xu offer a practically higher generality at the mod-
est price of a uniformly convex and uniformly smooth space, a property which is still
fulfilled for most spaces of interest, in particular for all LP-spaces as is the case for all

examples of application given in [66].

5.2 Preliminaries: convexity and smoothness in Ba-

nach spaces

Consider a Banach space (X, ||-||). We assume throughout that X is uniformly convez,
le.

Ve € (0,213 € (0,1]vz,y € Bi(0) (Jo — 9 > HxTwH <1-9),

and uniformly smooth, i.e.
Ve > 030 > 0Va,y e X ([z] =1 A lly] <0 — [z +yl+ o —y| <2+ely]).

Note that X is uniformly convex if, and only if, its dual X™* is uniformly smooth.
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Recall the normalized duality mapping J : X — 2% associated with X from
Chapter [] i.e.

J(z) == {2" € X* | (z,2") = [z* and "] = |=[},

for x € X. This mapping is single-valued and uniformly continuous if, and only if, X
is uniformly smooth (see [43]). As is common in that context, we identify J with this

unique selection mapping X — X*.

As X is uniformly convex, if C' € X is a non-empty, closed, convex subset of X,
then the nearest point projection Py : X — C' is single-valued and outputs the unique

point satisfying the condition
|z — Pox|| = inf{|lz —y[ [y € C}.

Even further, the projection map Pg is continuous and in fact even uniformly contin-

uous in uniformly convex spaces as will be used later (see [189] for this).

5.3 The convergence condition and quantitative ver-

sions

As discussed in the introduction, the central notion for the asymptotic results from
[154, 160, 208] is that of the convergence condition for the operator A inducing the
differential equation. In the quantitative versions of these results of Pazy, Reich and
Nevanlinna as well as Xu, we will rely on a (or rather multiple) particular quantita-
tive version(s) of that condition, which we shall call a convergence condition with a
modulus. These quantitative reformulations are motivated by logical considerations on
different equivalent variants of the convergence condition as suggested by the classical
and constructive metatheorems for accretive operators from Chapter [3] This will be
discussed in more detail in Section later on. In particular, there we will discuss
that these moduli have the following two central properties guaranteed by the general
logical metatheorems: For one, the extractability of such moduli for a large class of
operators which provably satisfy the convergence condition is guaranteed. For another,
the same logical metatheorems guarantee that from any (formalizable) proof using the
assumption that an operator satisfies the convergence condition, quantitative results

can be extracted which depend on such a modulus.
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5.3.1 Variants of the convergence condition

To begin with, as mentioned in the introduction, the original formulation of the con-
vergence condition is due to Pazy [160], but in our setting of uniformly convex and
uniformly smooth Banach spaces, we follow the notion of Nevanlinna and Reich [154]
and, therefore, say that an A with A710 # & satisfies the convergence condition if for

all bounded sequences (z,,y,) S A:
iy, J (2, — Prn)y = 0 — liminf |2, — Px,| = 0.

Already in the literature, other equivalent variants are sometimes mentioned, e.g. re-
placing the limit in the premise of the implication by a limit inferior or conversely re-
placing the limit inferior in the conclusion by a limit (see for example [I71]). However,
in the following we only focus on the usual formulation of the convergence condition in
the form above, together with one particular equivalent version which is of a different

spirit entirely:

Lemma 5.3.1. An operator A satisfies the convergence condition if, and only if, for

all natural numbers k, K € N, there exists n € N such thaﬂ

1 1
A <K - P <— > |lr—Pzx|<—].
¥(w,y) € (|a:|, Iyl < K A Ky (o = Po)l < —— = [z = Pl < - 1) (+)

Proof. For sufficiency assume (+) and consider arbitrary sequences (z,), (y,) such that
Yn € Az, and |z,], |lyn| < K for some K € N. Assume that lim{y,, J(z, — Pz,)) =0
and let k € N be given. By (+), there is an n € N such that

1 1
90 & N (K T = Poad| < iy = lm = Panl < g ) (+4)

Then, by lim{y,, J(z, — Px,)) = 0 there exists N € N such that

1
v ZN maJ m_Pm < — )
2 N (K I = Pon))| < 7 )

which by (++) entails that |z, — Pz,| < 11, for all m > N. This means that

lim |z, — Px,| = 0, and we conclude that A satisfies the convergence condition.

For necessity, suppose that (+) fails. Then for some k, K € N, we have

Vn e N3(z,,y,) € A

k+1

n—+1

1
(xnn, ol < K A 1o J(@n — Paa))] < —— A 2 = Pra] > —) .

2The absolute values are actually not necessary in the premise as A is accretive.
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Then in particular [(yy, J (2, — Pz,))| < 5 for all n € N which entails that

lim{y,, J(x, — Pz,)) = 0.

However (|z,, — Px,|) is bounded away from zero by ﬁ, and so A can not satisfy the

convergence condition. O]

The above equivalent version does not feature sequences at all and, in this way, is
of a much more local nature than the original formulation. By applying the underlying
logical considerations of proof mining to these two formulations, we will now derive the
previously mentioned quantitative versions of the convergence condition in the form of
two different moduli (where this difference of the moduli can actually be recognized
in terms of logical properties of their equivalence proof as will be discussed in Section
later on). We want to note that both the above equivalence and the following
quantitative versions are similar in character to the alternative characterization of
strongly nonexpansive mappings introduced in [99] as well as the moduli introduced
there.

5.3.2 Quantitative versions of the convergence condition

Note that the convergence condition is essentially (modulo the boundedness condition)
of the general form

lima, =0 — liminfb, =0

with a,, = {yn, J(x, — Pz,)) and b, = ||x,, — Px,||. In that conceptual vein, two of our
quantitative versions of the convergence condition will be certain moduli translating a
quantitative witness for the convergence lima,, = 0 in the premise into a quantitative

witness for liminf b, = 0 in the conclusion (or even for a weakening of that).

In that way, two of these moduli arise by considering combinations of a quantitative
witness for the “convergences” in the premise or conclusion and for that, we rely on the

following notions providing such a quantitative account in various ways:
Definition 5.3.2. Let (a,) be a sequence of non-negative real numbers.

1. We say that a functional ¢ : N — N is a rate of convergence for (a,) (towards

zero) if

1
Vk e NVn > o(k n<—— .
v ()
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2. We say that a functional ¢ : N x N — N is a lim inf-rate for (a,) (towards zero)
if

1
= ; < — .
Vk,m e Nan € [m; p(k,m)] (an k+1>

3. We say that a functional ¢ : N — N is a rate of approximate zeros for (a,) if

1
VeeNdn<pk)|a, <——|.
o) (00 < 1)

Combinations of these quantitative versions of lim /liminf = 0 (or the even weaker
property of approximate zeros) now yield the previously mentioned different quantita-
tive versions of the convergence condition. We begin with the most immediate version
which translates a rate of convergence for the premise together with the upper bound

on the sequence into a lim inf-rate for the conclusion.

Definition 5.3.3. A modulus for the convergence condition is a functional 2 : N x
NN — NN guch that for any (z,,), (y,) € X and any K € Nand ¢ : N — N:

if Vn e N(y, € Azy A 2], [yal| < K)
and ¢ is a rate of convergence for |(y,, J(z, — Px,))|,

then Q(K, ) is a liminf-rate for ||z, — Px,|| .

While conceptually appealing due to its naturality, the logical considerations un-
derlying the approach of proof mining actually in general suggest a stronger type of
modulus, named a full modulus here, to be necessary in the context of general quanti-
tative analyses of results relying on the convergence condition as well as classical logic.
Actually, in Section [5.5, we will present instances of the general logical metatheorems

for the systems for semigroups from Chapter (4| that guarantee both

1. the extractability of a computable full modulus (and thus of a “plain” modulus
above) for the convergence condition from a wide range of (noneffective) proofs

of the convergence condition for definable classes of operators, as well as,

2. that from a proof using the convergence condition as a premise, a transformation

can be extracted that maps
(a) a full modulus into quantitative information on the conclusion if the under-
lying proof is nonconstructive,

(b) a “plain” modulus into quantitative information on the conclusion if the

underlying proof is “essentially” constructive,
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where, moreover, the complexity of the principles used in the proof is reflected

in the complexity of the extracted transformation.

In that way, while the above modulus is derived from a “constructive” perspective on
the convergence condition, the following full modulus is attained from a “classical”
perspective on it. We however postpone a detailed discussion of these logical aspects
to the end of the chapter (see Section where we in particular will give formal

justifications for the above statements. We now give the definition of a full modulus:

Definition 5.3.4. A full modulus for the convergence condition is a functional )/ :

N x N — N satisfying that for any k, K € N: if y € Ax are such that ||z|, |y| < K, then
1 1

—_—— — Pzx|| < ——.

Qf(K,k)+1:>Hx zl E+1

In a way, the above is a true finitization of the convergence condition in the sense

[y, J(z = Pr))l <

that the above notion only refers to finitely many objects together with the fact that
by the result given in Lemma [5.3.1, we have effectively shown the following:

Proposition 5.3.5. An operator A satisfies the convergence condition if, and only if,

it has a full modulus for the convergence condition 7.

Remark 5.3.6. Note by Lemma that the convergence condition is nothing else but
a uniform version of the property
1 1
AVk e Ndn e N - P <—— > |z—-P —_—
¥(a9) € Avk € Nan e N ([ (o~ Po)| < g = lo = Pol < 1 )

which can easily be seen to be equivalent to
V(z,y) e Ay, J(x — Px)) =0 — |z — Pz| = 0).

This property was already singled out as an important special case of the convergence
condition in Pazy’s original paper [160] (as mentioned already in a footnote in the
introduction to this chapter). In particular, based on the logical form of the above
statement, suitable extensions of the logical metatheorems for nonlinear semigroups
mentioned above actually guarantee a strengthened form of item (1) discussed above
in the sense that already from a (possibly noneffective) proof of the above property
for a class of operators, one can extract a computable full modulus (and thus a “plain”
modulus) for the convergence condition, provided the proof is as before confined by
the logical conditions of the metatheorem. Also this situation is conceptually similar
to the results on strongly nonexpansive mappings from [99], in particular to the fact
that the SNE-modulus introduced there arises as the uniform version of the notion of

strict nonexpansivity.
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In any way, even in the case of a (semi-)constructive proof and in the context of
a “plain” modulus, the required modulus can often further be weakened. While our
quantitative versions of the convergence results of Nevanlinna and Reich as well as
Xu can, for one, be stated already in terms of a “plain” modulus for the convergence
condition, the only sequences to which the convergence condition is ever applied (in
the context of this thesis) are such that ||z, — Px,|| is nonincreasing. In that case,
it is clear that it already suffices to require a modulus which translates a rate of
convergence ¢ for the sequence [(y,, J(z, — Pz,))| together with the bound K into a
rate of approximate zeros Q(K, ) for the sequence ||x,, — Px,||. As this circumstance
seems to occur rather frequentlyE] we introduce this special case as a particular other

notion for a quantitative form of the convergence condition:

Definition 5.3.7. A weak modulus for the convergence condition is a functional Q% :
N x N¥ — NN such that for any (x,), (y,) € X and any K € N and ¢ : N — N:

if Ve N(yn € Az, A |24, 3] < K)
and ¢ is a rate of convergence for |(y,, J(x, — Pz,))|,

then Q" (K, ) is a rate of approximate zeros for ||z, — Px,|| .

In that way, while both the full and “plain” moduli represent the correct quanti-
tative content of the convergence condition (from a classical and a constructive per-
spective, i.e. complying with the properties (1) and (2) mentioned above, respectively),
the extractions formulated here will be phrased in terms of the weaker quantitative
assumption of a weak modulus for the convergence condition. Note for this that there
is of course no loss of generality as given a full modulus ©/, a “plain” modulus €2 can be
defined via Q(K, ¢)(k, m) = max{m, o(Q/ (K, k))} and in turn, given a “plain” modulus
2, a weak modulus Q" can be defined just via Q¥ (K, ¢)(k) = Q(K, ¢)(k,0).

5.3.3 Examples for operators and their moduli

In the following, we survey various examples given in the works [154] [160] and beyond

for classes of operators which naturally satisfy the convergence condition. Based on

3In fact, in e.g. the related work [66] on quantitative behavior of semigroups generated by ¢-
accretive operators, the requirements in the condition of ¢-accretivity (essentially replacing the con-
vergence condition) are such that they restrict the conclusion essentially to sequences x,, such that
|z, — Px,|| is decreasing. A similar restriction could have been made in the case of the convergence
condition since, as said above, the applications given in [154] [160} 208] satisfy the requirement but it

seems that the authors have refrained from doing so to make the condition less technical.
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the corresponding proofs, we extract respective full moduli in the sense of the previous

section.

Strongly accretive operators

The following is an immediate generalization of Example 4.3 in [160].

Lemma 5.3.8. If A is strongly accretive, by which we mean there exists an o > 0
such that

(u—v,J(@—y)>allz—y|’

for any (x,u), (y,v) € A and additionally A~*0 # &, then A satisfies the convergence

condition with a full modulus for the convergence condition QI (K, k) = a(k + 1)? =1

for any a € N* such that o > a™".

Proof. Let (z,y) < A with ||z|,||y|]| < K and where

1
<y,J(m—Pm)>< m.

Then as (y, J(z — Pz)) = a ||z — Pz||* we get

1 1 o

allz — Pxl]? < < <
” | QUK k) +1  alk+1)? = (k+1)

which yields ||z — Pz| < 1/(k + 1). O

As already mentioned in [160], a particular example of a strongly monotone operator
is the negative Laplacian: Let 2 be a bounded domain in R™ with smooth boundary.
L2(2) is the space of square-integrable functions as usual and W,?(Q) the associated
subspace of the Sobolev-space W!?(Q) containing functions of zero-trace. Then using

Poncairé’s inequality (see e.g. [I31]), we get that

—JAuwmvi[WM%k>A4wm%x
Q Q Q

where A is the usual Laplacian operator and A; > 0 is the minimal eigenvalue of
—A. Therefore, A = —A is strongly monotone and by the above lemma satisfies the

convergence condition with a full modulus for the convergence condition
QUK k) = Ak +1)2 =1,

where A € N* is such that A™! is a lower bound on the eigenvalues of —A.
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Operators that are ¢-accretive at zero or uniformly accretive at zero

The above case of strongly monotone operators is a special case of the notion of oper-

ators which are ¢-accretive at zero introduced in [66] over general Banach spaces.

Definition 5.3.9 ([66]). An operator A with 0 € Az is ¢-accretive at zero in the sense
of [66] if ¢ : X — [0,00) is a continuous function with ¢(0) = 0, ¢(x) > 0 for = # 0
and

¢(zn) = 0= Hxn” -0

for every sequence (z,) € X such that ||x,|| is nonincreasing and we have that

W, J(x = 2)) = ¢(x = 2)
for all (z,y) € A.

As already mentioned in [66], it is a straightforward consequence of [68, Theorem
8| that if A is m-t-strongly accretive in the sense of [66], then A is (¢ o ||-||)-accretive
at zero.

In the course of their proof-theoretic analysis of the main result of [66], which is
similar in kind to the results analyzed here, Kohlenbach and Koutsoukou-Argyraki in
[108] introduced (similarly motivated by proof-theoretic considerations) a generalized
uniform version of the above property (without any reference to a function ¢) under

the name of uniform accretivity at zero:

Definition 5.3.10 ([108]). An accretive operator A with 0 € Az is called uniformly

accretive at zero if for all k € N and all K € N*, there exists an m € N such that
Vizu)eA (|Jz—z|e[27" K] - (uyx — 2), = 27™)
with (-, ), defined as in Chapter [4 i.e.
Y, x)s := max{(y, j) | j € J(2)}.

This notion was accompanied in [I08] with a corresponding uniform quantitative

modulus of being uniformly accretive at zero which is defined in the following sense:

Definition 5.3.11 ([108]). A function © : N x N* — N is a modulus of accretivity at
zero for A if m := Ok (k) satisfies the condition in Definition [5.3.10
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Note that this notion in particular encompasses the moduli of uniform ¢-accretivity
at zero also introduced in [I08] which provide a quantitative perspective on the above

notion of ¢-accretivity at zero.

Now, while our setting is more restrictive in terms of the space, we can nevertheless
recognize the above notion as essentially stating the existence a full modulus for the
convergence condition for A, at least in our context of uniformly convex and uniformly
smooth spaces: At first, the expression (u, z —z), reduces to (u, J(x—z)) in a uniformly
smooth space while in the context of uniformly convex spaces, through the presence
of the projection P and as the zero z is unique, the point z can be replaced by the
projection Pz for any point x. Reading the resulting condition as its contraposition,
we obtain that a modulus of accretivity at zero for A satisfies that for any k£ and K, if
|z — Px|| < K, then

V(z,u) € A (|(u, J(z — Px))| < 279k ||z — Pz|| < 27%).
Since we can bound ||z — Pz|| by
[ = Pzl < [lz]| + [|=]]

using the single witness z € zerA for zerA # J (as required in the context of the

convergence condition), we get that therefore 2/ defined by
QF (K, k) = 29%+2(k),

where Z > ||z||, is a full modulus for the convergence condition of A which is even
independent of an upper bound for u € Az. In that way, we find that the notion
of being uniformly accretive at zero is essentially an equivalent formulation of the
convergence condition in that context.

Thus, if restricted to the class of spaces considered here, we find that the quantita-
tive results on the behavior of the semigroups generated by A as derived in [108] can
also be recognized as applications of our general quantitative results, using the notion

of a full modulus for the convergence condition /.

Operators without unique zeros

All operators discussed so far are ¢-accretive in the sense of [66]. The convergence
condition however encompasses a far larger class of operators and the difference set of
those two notions is already populated with fairly simple examples of which we exhibit

one in the following. For this, we recall the following result due to Pazy:
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Proposition 5.3.12 (Pazy [160]). Let ¢ : X — R be proper, conver and lLs.c. on a
Hilbert space X and assume that (x) = 0 for all x € X as well as mingex ¢(x) = 0.
If the level-sets

Kr=A{z ||zl < R, o(z) < R}
are totally bounded, then the mazximally monotone operator dp(x) = {ue X | f(y) =

f(x) + <y —x,uy for all y € X} satisfies the convergence condition.

Now, for an example of an operator which satisfies the convergence condition but

is not ¢-accretive at 0 for any ¢, consider the following function f: R — R:

(x+ 1) ifxe(—oo,—1],
0 itz e[-1,1],
(x—1)* ifxell, o).

fx) =

This function is continuously differentiable with first derivative

4(z +1)% ifze (-, —1],
fi(x) =10 if e [-1,1]
4(x — 1) ifzel,0).

Therefore 0f(z) = {f'(x)} for any = € R (see e.g. Proposition 17.31 in [11]) and it
is easy to see that f is convex and that the level sets K are compact. Thus 0f
satisfies the convergence condition. However, we have zerdf = [—1,1] and thus Jf
does not have an unique zero. The uniqueness of the zero is, however, a property of
every operator that is ¢-accretive at zero (see [60]) or even of every operator that is
uniformly accretive at zero (see [108]).

Nevertheless, by a quantitative analysis of the application of Proposition to
the function f, we can immediately extract a full modulus for the convergence condition
Qf (K, k) = (k+1)* — 1 for the convergence condition of df: Let consider z € R and

assume |z|, | f'(z)] < K as well as

1

o =P < oo+

As in [I60], i.e. using the subgradient inequality, one can show {(y,z — Px) > f(x).

Thus in particular
1

(E+1)*=1)+1

flz) <
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One can immediately show that if f(z) < e for ¢ > 0, then z € [-1 — /e, 1 + {/¢]| and
thus ||z — Pz|| < /e. Therefore the above implies
1

— P < —
R

as desired.

5.4 Quantitative results on the asymptotic behavior

of semigroups and their almost-orbits

In this section, we employ the previous quantitative considerations on the convergence
condition for establishing quantitative versions of the theorems of Nevanlinna and Reich
as well as of Xu outlined in the introduction. Note that since the proofs of the respective
results are essentially constructive, a dependence on a “plain” (or even weak) modulus
for the convergence condition can be guaranteed a priori for the extracted results (see
the logical remarks in Section which is also the case for the concrete rates presented
below. In that vein, we in the following denote all moduli just by an 2 without the

previous superscripts. We begin with the result of Nevanlinna and Reich.

5.4.1 The asymptotic behavior of nonlinear semigroups

Consider again the setup from Theorem and write S = {S(¢) | t = 0} for the
semigroup generated by A via the exponential formula. In the following, if not stated
otherwise, let € domA. We write w,(t) for S(t)x (in the spirit of Xu [208]), v, (¢) for
—w’,(t) and j,(t) for J(w,(t) — Pw,(t)). Note that w! (¢) is defined almost-everywhere
and (w,(t), —wl(t)) € A is satisfied almost-everywhere (see [4]), say both on [0, 20)\N;

where N; is a Lebesgue null set.

The first step in the proof is to establish (v,(t),j.(f)) = 0 and subsequently that
liminf, ,o,(v,(t), j=(t)) = 0. The following results extract from their proof a rate for

the lim inf expression.

Lemma 5.4.1. If f:[0,00) — [0,00) is Lebesque integrable with

[ roa

for some L € [0,0), then for any Lebesque null set N < [0,00) and any k,n:

3t e [, [L+1](k + 1) + n]\N <f(t) < %H) |
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Proof. Suppose not. Then there are a Lebesgue null set N and k,n such that for any
te[n,[L+1|(k+1)+n]\N it holds that f(¢) > 1/(k + 1). As f is nonnegative, we
get that

@ (L+1)(k+1)+n—n)
dt > dt > =
fo fle)de > J[n,(L+1)(k+1)+n]\N fo)de > k+1 (L+1)

which is a contradiction. O]

Now, ||w,(t) — Pw,(t)|| is Lipschitz-continuous as ||x — Px|| is nonexpansive and
w,(t) is Lipschitz with ||w,(t) — w.(s)|| < 2||v|| |t — s| where v € Az which exists as = €
domA (see the proof of Theorem 1.3 in Chapter III of [4]). Thus ||w,(t) — Pw,(t)|| is ab-
solutely continuous on every [0, 7] which implies that the derivative & [Jw, () — Pw,(t) 12
exists almost everywhere, say on [0,0)\N,, and that this derivative is Lebesgue-
integrable such that the fundamental theorem of calculus is valid. Further, as shown

in [I54], we have that

Wa(t), (1)) < == [lwa(t) — P, ()|

holds almost everywhere, say w.l.o.g. also on [0, 0)\ N, where we assume, also without

loss of generality, that Ny 2 N;. Using these properties, we get the following lemma:

Lemma 5.4.2. Let b > ||z — Px||. For any Lebesgue null set N © Ny and any k,n:

It e ln Blﬁ - 1} (k+1)+ n] \N <<vz(t),jx(t)> < L) .

kE+1
Proof. We have (v,(t), j.(t)) = 0 for any t € [0,0)\N; by accretivity of A. As
(Wa(t), ju(t)) < =5 = [lwa(t) — Pwy(t)]*

holds almost everywhere, we get

Jj@d&h@ﬂﬁé—lfmgﬂw@%J%MOW&

2 )y dt
= —% Jim ([Jwe(T) = Pwy(T)|* = ||wa(0) — Pw,(0)]|?)
= %jligrolo(llwz(o) — Pw, (0)|]* — [|we(T) — Pw.(T)|]*)
< 2 lhe.(0) — Pu ()]
< lb?

2
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By Lemma [5.4.1] we get that for any N 2 N, and any k,n:

It e ln, Bb? - 1} (k+1)+ n] \N <<vm(t),jx(t)> < L)
which is the claim. O]

The next step in the proof of Nevanlinna and Reich infers the respective lim inf
result for the function ||w,(t) — Pw,(t)|| via the convergence condition together with
Lemma and then, using the fact that ||w,(t) — Pw,(t)|| is nonincreasing, infers
the convergence of w,(t). An analysis of this proof yields, in combination with the
above, the following quantitative version of Theorem [5.1.2] For this, we first focus on
the special case when = € domA. Note that the following theorem does not use the full
lim inf-rate of the previous lemma but only requires an instantiation of the above for

n = 0.

Theorem 5.4.3. Let X be uniformly conver and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition ). Let
S = {S(t) | t = 0} be the semigroup generated by A via the exponential formula. Let
A7Y0 # & with pe A710. For any x € domA with v € Ax, we have

Vk € NVs, s’ > (K, id)(2k + 1)) (HS(S)w = S5(s)zl| < ,{%J

where

2

and where b = ||z — Px|| as well as K > max{||v|, ||z — p|| + ||p||}-

x(k) = FbQ + 1} (k+1)

Proof. First, note that we have
hwa(®) = pll = || 1im Tz = || < 1o
n—a0
as p € A7'0 and thus p is a fixed point for any resolvent. Therefore
[wz @) < llz = pll + [|pl]
for any t € [0, 0). Further, Proposition 1.2 in [4] implies
[ ()] < [Jv]]

almost everywhere as v € Az, say for ¢t € [0,00)\N5. W.lo.g. we assume that N3 2
Ny 2 Nj.
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Now, Lemma yields that for any k:

3t € [0, x(k)]\ N3 ((vx(t), Ja (1) < L) . (1)

E+1

Now we choose a sequence (t,) < [0,90)\N5 using the previous (f) such that
g (tn), Ja(tn)) < nL_H and ¢, < x(n).

This is well-defined as N3 2 N, and by the above, we have |[w,(t,)] , |w.(t,)] < K
for all n where also the latter is well-defined. Now, id : N — N is a rate of convergence

for (v, (tn), j=(tn)) — 0. Then by assumption on 2, we get

Vkdn < QK id)(2k + 1) (||wx(tn) — Puy(t,)| < ﬁ)

and thus, as t,, < x(n), we get

VIt < Y (Q(K,id)(2k + 1)) (||wm(t) ~ Pu,(t)|| < 2</<;1+ 1)> .

Similar as in [I54], using that

1d

0< <Um(t)7jx(t)> < _ga ||wm<t> - Pwm(t)HQ

almost everywhere, we have that ||w,(t) — Pw,(t)|| is nonincreasing and thus

VEYt = x(QK,id)(2k + 1)) <||w$(t) — Pw,(t)]| < 2(1{:14_ 1)) .
We then get

lwe (8) = wa(t + B)|| < [Jwe(t) = Pwa(t)]| + || Pwa(t) — wa(t + h)|
< 2wy (t) = Pu, (1)

for all t,h = 0 (as ||w.(t) — p|| is nonincreasing for any p € A~'0) and therefore
1
VEVE = x(QUK,id)(2k + 1))Vh (H'wx(t) —w,(t+ h)| < k——|—1>

which yields the claim. O
The following is then an immediate extension to the case of x € domA.

Theorem 5.4.4. Assume the conditions of Theorem . Let x € domA where

f N — N s such that f is nondecreasing and

1
Vn € Nu,, v, € X <vn € Auy A lupnll s |onl] < f(R) A fju, — || < ?> .
n
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Then
1
Vk e NVs,s" = xr(Q(Ky, id)(6k + 5)) (||S(s)9: —S(s)x|| < k—+1>
where

: 1 :
0 = [yt 1o+
and where b, = ||x — Px| + ||z|| + f(3k + 2) as well as K, = f(3k +2) + 2 ||p||.

Proof. By assumption on f, we get that there exists a w,v with v € Au such that
llu|l, |v]] < f(3k + 2) and such that || —u| < 1/(3(k + 1)). Therefore, as S(t) is

nonexpansive for every ¢, we have

15(s)z = S(s")xl| < [|S(s)z = S(s)ull + [[S(s)u = S(sull + [[S(s )z = S(s")ull

< 2|z —ul + [[S(s)u — S(s)u]
2
<
3(k+1)

+ |S(s)u — S(s")ul| .

Using the previous Theorem [5.4.3] since v € Au, we get that

VEYs,s' = xr(QUKy,id)(6k + 5)) (||S(S)u — S(sul| < ! )
and thus
VEYs, s = xr(QUKy,id)(6k + 5)) <]|S(s)w — S(sz|| < —)
since
max{[|v], [lu — pl| + [[pll} < max{f(3k +2), fF(3k +2) + 2|[p[|} < Kk

as well as

lu = Pull < lu = Pa|| < flu— | + |z - Pzl

and thus ||u — Pul| < by. O

Remark 5.4.5. As revealed by the quantitative analysis, the above result as well as
Theorem already hold in general Banach spaces whenever there exist selections of
the duality map and of the projection satisfying some simple requirements. See Section

[.5 for further comments on this.
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5.4.2 The asymptotic behavior of almost-orbits of nonlinear

semigroups

We now turn to an analysis of Xu’s result. For that, consider the setup from Theorem
and write S = {S(t) | t = 0} for the semigroup generated by A via the exponential

formula as before.

As already discussed in the introduction, the (logically speaking) complicated premise
of u being an almost-orbit in that context induces two natural quantitative versions of
that property which were introduced in [108] and also feature in the finitary variants
of Xu’s result given here. Concretely, in the following, we will obtain (similar to [108])

two translations converting respectively

1. arate of metastability ® of the almost-orbit as introduced in [108§], i.e. ® satisfies

V€NV N = N30 < (6, 1) € 0. 0] (Syatt)ate) — e +0)] < s )

into a rate of metastability I' for the Cauchy property of the almost-orbit, i.e. I"

satisfies

Wk e NYf: N — Nin < T(k, /)Vt, ¢ € [n,n + f(n)] (Iu(t) —u(t)] < ﬁ) )

2. a rate of convergence ® for the almost-orbit, i.e. ® satisfies

1
Vk e NVYs = ®(k) (sup ||u(s +t) — Sl/z(t)u(s)” < —) .
=0 E+1

into a rate of Cauchyness of the almost-orbit of the Cauchy problem in a similar

manner as before.
We begin with the former.

Theorem 5.4.6. Let X be uniformly conver and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition ). Let
S ={S(t) | t = 0} be the semigroup generated by A via the exponential formula. Let
A0 # & with p e A710 and assume that P, the nearest point projection onto A~10,

is uniformly continuous on bounded subsets of X with a modulus w : N> — N, i.e.

— 1 1
Vr, k e NY B, -y < —+———|Px—-Py| < —+|,
ke Ny e Bp) (lo - vl < Sy — 1Po = Pul < i)
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and, without loss of generality, assume that w(r,k) = k for all v,k € N. Let u be an

almost-orbit of S with a rate of metastability ® on the almost-orbit condition, 1i.e.

VkeNVf: N — Nin < ®(k, f)Vt € [0, f(n)] (\S(t)u(n) —u(t+n)| < %4—1) .

Let B € N* be such that ||u(t) — p| < B for allt = 0 and let fs : N — N for s =0 be

such that fs is nondecreasing and

1
Vn e N3z, ysn € X (ys,n € Az A Zspll s |Ysnll < fs(n) A ||@sn —ul(s)]| < ) :

Then we have

Vk e NV : N — Nan < T(k, f)Vt,¢ € [n,n + f(n)] (IU(t) —u(t)] < ﬁ) )
where
(K, f) = max{I"(8k + 7, jx.s), ®(8k + T, hw.s) | N < T'(8k + 7, ji.s)}
with

hy f(n) := f(max{N,n}) + max{N,n} —n,
Jk.r(n) := max{n, ®(8k + 7, h, ¢)} —n
Gr,p(m) = Qp(3k + 2) + f(m + 2, (3k + 2)),
I(k, f) := ®(w(B, 3k + 2), g.f) + max{Q,,(3k +2) | m < ®(w(B, 3k +2), gx.7)},

for Qs(k) with s = 0 defined by
Qs (k) == x (UK, id) (3K + 2)),

now with

x(k) := B(B +1)% + 1}(1@‘ +1)

and where Ky = max{fs(w(B + 1,3k +2)),B+ 1+ |p|}.

Proof. For x € domA with v € Az consider S(¢)x. As in the proof of Theorem

we get

Vk e NVt > Q) (k) <||S(t)a: — PS(t)z| < ﬁ) : (—)

where

Qo (k) = Ezﬁ + 1} (Q(K,id) (k) + 1),
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with K = max{||v|, ||z — p|| + ||p||} and b > ||z — Pz]|.

Claim 1: For all s > 0,

Wk € NVt > Q(k) (|S(t)u(s) — PS(t)u(s)| < %H) .

Proof of claim 1: For given s > 0, note that by assumption on f; there exist
Ysk € Azsp With ||z il [[ysll < fo(w(B + 1,3k + 2)) such that

1 1
_ < < .
%o = uls)] MB+13k+m+1( ak+n)

For x and K, as above, since
|z — Pl < |zsn — pl < 2 —uls)] + |uls) —pll < B+1,

we have by (—) that

1
= 3lg sk s S ’
Vk e NVt > Q,(k) <IIS(t):B = PSStz 3(k + 1))

with Q4(k) defined as above since Q,(k) = Q’Ks’k’(BH)(Bk +2). For t = Q,(k), we thus

also have

[S(®)uls) — PS(u(s)]| < [SE)uls) = S)zsr] + |S(E)xer — PS(E)xs k]
+ | PS()zs s — PS(t)u(s)|
< fuls) = zonll + 1S ()zsnr — PSE)zs k]

+ |PS(t)zsp — PS(t)u(s)]
< ! +
3(k+1) 3(k+1)

+ |PS(t)xsp — PS(t)u(s)|.

Since ||S(t)xs e —S(t)u(s)| < |zsp—u(s)| < 1/(w(B+1,3k+2)+1) (using nonexpansiv-
ity of S(t)) as well as |S(t)zsr—p| < |zspg—p| < B+1and ||S(t)u(s)—p| < B< B+1
(using nonexpansivity of S(t) and that p is a common fixed-point of all S(t)), we con-
clude that |PS(t)xsr — PS(t)u(s)| < 1/(3(k + 1)). This yields the claim. [ |

Claim 2: Forall ke Nand f: N —- N:

n < T'(k, )Vt e [n,n+ f(n)] <”u(t) — Pu(t)| < —> :
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Proof of claim 2: For given £ € N and f : N — N, consider the function g s as
defined above. Using the fact that w is an almost-orbit with rate of metastability ®,
there is some ng < ®(w(B, 3k + 2), g r) such that

vt € [0, gr.r(no)] (S(t)u(no) —u(t +mng)| < e 3k1+ 5 1) .

Since |[S(t)u(no) — pl, [u(t + no) — p| < B, we conclude that

Ye st (PS(t)u(”O) = Pu(t +no)| < 3(kzl+ 1)) .

Thus, for t € [0, g r(no)], we get

lu(t +no) — Pu(t +no)| < [u(t +no) — SE)ulno)| + |S(t)u(ne) — PS(t)u(no)]|
+ | PS(t)u(ng) — Pu(t + ng)||

< + 1S(H)u(no) — PS(t)u(no)|.

3(k+1)

Using Claim 1, we get

1
Vt = Q,, (3k + 2) (\S(t)u(ng) — PS(t)u(ng)| < > :
from which follows that

e € [y (3K + 2), guy ()] (|u<t f o) — Pult + no)| < #) ,

kE+1
and thus
1
Vt € [ng + Qo (3K + 2), 1m0 + gk, r(n0)] (u(t) — Pu(t)]| < k‘—H) )
This yields the claim by the definition of gy ;. |

Claim 3: For all k, Ne Nand f: N — N:

In e [N, max{N, ®(2k + 1, hy ;) }]Vt < f(n) <IS(t)u(n) —u(t+n)| < k—i1> :

Proof of claim 3: Since ® is a rate of metastability for the almost-orbit w, there is
no < ®(2k + 1, hy ¢) such that

vVt < hN,f(nO) (\S(t)u(no) —U(t—l- TlO)” < Q(kl_"_ 1>> )
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with hy s defined as above. Writing n := max{N,ng} € [N, max{N, ®(2k + 1, hn )},
we have for ¢t < f(n) that

[S(®)u(n) —ut +n)|| < [SE)u(n) — St +n —no)u(no)|
+ | S(t + n + no)u(ng) — u(t +n)|
< [u(n) = S(n — no)u(no)|

+S(t +n —no)u(ng) — u(t +n)|.

Since n —ny <t +n—ng < hy,f(ng), we conclude the claim. [

Claim 4: For all ke N and f : N — N, there is some ny < I"(8%k + 7, ji ) such that
1
Iny < max{ng, ®(8k + 7, hyy 1)Vt < f(n1) <Hu(n1) —u(t+mny)| < m) .

Proof of claim 4: Let k € Nand f : N — N be given. From Claim 2 with the function
Jk,r(n) defined as above, we may consider ng < IV(8%k + 7, ji, ) such that

‘ 1
w1 [nn o+ ist)] Jult) = Putt)] < g )
By Claim 3, there exists ny € [ng, max{ng, ®(8k + 7, hy, ) }] satistying
1
vt < f(m) <HS(t)u(n1) —u(t +n)| < ikt D) 1)) :

Since ny € [ng, max{ng, ®(8k + 7, hny r)} = [n0, 10 + Jr,r(n0)], we also have [ju(n;) —
Pu(ny)| <1/(8(k + 1)). Thus, for any t < f(nq):

|u(ny) — u(t +n1)| < [u(ng) — Pu(ng)|| + [Pu(ni) — S()u(n,)]|
+ [S@)u(ny) —u(t + ni)|
< 2lu(ni) — Pu(na)| + [[S(H)u(ni) — ult + ni)|
2 1 1

< +
8k+1) 4(k+1) 2(k+1)

which yields the claim. [ |

Lastly, using the n; from Claim 4, by triangle inequality it follows that

Vi, € [ny,ny + f(n)] (U(t) —u(t)] < ﬁ)

and this yields the claim of the theorem, noticing that n; < T'(k, f). O]
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Remark 5.4.7. Similar to Remark [5.4.5] as revealed by the quantitative analysis, the
above result already holds in general Banach spaces whenever there exist suitable
selections of the duality map and projection. We again refer to Section for further

comments on this.

This theorem is (essentially) now a true finitization of Xu’s original convergence
result since it trivially (though non-effectively) implies back the original statement but

(if instantiated to sequences t,, with ¢, — o0) only talks about finite initial segments.

Remark 5.4.8. As used above, if X is uniformly convex, then P is uniformly continuous
on bounded subsets of X and it should be noted that given a modulus of uniform
convexity 7 : (0,2] — (0, 1] in the sense that

rT+y
2

vee (0,20, ye X (ol gl < 1A llz = ll = e = |2 < 1-ne)).

one can compute a modulus of uniform continuity w for P as used above. Concretely,

we want to mention the following result given e.g. in [I89]: if dist(x, A7!0) < r and

1
|z -yl < ~a [ —
2 1+7r

then ||Px — Py|| < e. From this, a suitable modulus w(r, k) can be immediately

where

derived.

Now, similarly to [I08] and as discussed before already, the analysis of Xu’s result
(by being essentially constructive) allows for the extraction of two kinds of quantitative
“translations” and we now focus on the other variant compared to the above which
translates the stronger quantitative assumption of a rate of convergence for the almost-
orbit into a rate of convergence of the solution of the Cauchy problem towards a zero

of the operator A.

Theorem 5.4.9. Let X be uniformly convexr and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition €). Let
S ={S(t) | t = 0} be the semigroup generated by A via the exponential formula. Let
A0 # & with p e A710 and assume that P, the nearest point projection onto A~10,

is uniformly continuous on bounded subsets of X with a modulus w : N> — N, i.e.

1 1
Vr, k e NV B, -yl < —— > |Px—Py| < —— |,
r.k € NVx,y € B.(p) <”x vl w(r, k) + 1 | Pz yl L+ 1>
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and, without loss of generality, assume that w(r,k) = k for all v,k € N. Let u be an

almost-orbit with a rate of convergence ® : N — N on the almost-orbit condition, i.e.

1
Vk e NVs = ®(k) (sup lu(s +t) = S(t)u(s)|| < —) .
=0 k+1

Let B € N* be such that ||u(t) — p| < B for allt = 0 and let fs : N — N for s >0 be

such that fg is nondecreasing and

1
€ N300 € X (1 € A A [l Teall € £0) 2 = 9] < 7 )
n

Then we have

VEVE ' = max{®(8k+7), s* + max{€,,(24k+23) | m < s*}} (||u(t) —u(t] < k—+1>

where s* = ®(w(B,24k + 23)) and where Q,(k) is defined as in Theorem [5.4.6,

Proof. Given a rate of convergence ® on the almost-orbit condition, it is clear that
O(k, f) := ®(k) (ignoring the slight abuse of notation) is a rate of metastability for
the almost-orbit. Therefore, by Theorem [5.4.6] we get that the previously constructed
['(k, f) is rate of metastability for the conclusion. As shown in Proposition 2.6 of [11§],
a function] p : (0,0) — N is a Cauchy rate of a sequence iff ¢(e, f) := p(e) is a rate of
metastability (which also holds in our adapted context where we consider rates to be
functions operating on natural numbers as errors). Now, using that ®(k, f) = ®(k), we
find by inspection of the defining term that also I'(k, f) is independent of the parameter
f. Thus, we get that T'(k) := T'(k, f) is a rate of convergence and the given bound in

the above theorem just results by simplifying the expressions accordingly. O

Note in particular that the above result is indeed a consequence of the previous
metastability result and does not require one to reiterate the proof. In that way, the
metastability result already contained the quantitative information regarding rates of

convergence. We refer to [97] for further discussions of such phenomena.

Remark 5.4.10. Such a rate of convergence of the almost-orbit condition as required as

a premise in the above theorem, i.e. a ® : N — N such that

Vk € NVs = ®(k) (sup lu(s +t) — S(t)u(s)| < —>
=0 E+1

“Note the typo in [TI8] where it instead says p : (0,00) — (0, 0)
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can actually be derived from the seemingly weaker assumption on the existence of a ®
such that

1
Vk € Nso < (k) [ sup ||u(so +t) — S(t)u(so)]| < —— | .
>0 k+1

Namely, for given k € N and for s > sy with sy < ¢(2k + 1) as stipulated above, we

can express s = Sg + s1 for s; = 0 and then compute for all ¢ > 0:

[u(s + 1) = S@)u(s)|| = llu(so + s1 + 1) = S(t)u(so + s1)|
< lu(so + s1+t) — St + s1)u(so)]|

+ [|S(t + s1)u(se) — S(t)u(sg + 1)l
1
(

< m + ||S(t)S(s1)u(se) — S(t)u(so + s1)|
< ﬁ + 118 (s1)uls0) — ulso + 1)
< L

k41

Thus, ®(k) = ¢(2k+1) is actually a full rate of convergence. This remark also applies to
the results regarding rates of convergence presented in [I08] which thus also essentially

depend on a rate of convergence of the almost-orbit condition.

Further, note that in both cases the existence of the assumed bound on ||u(t) — p|| is
actually guaranteed by the assumption of u being an almost-orbit and that A=10 # &:

the definition implies

Js* sup ||u(t + s*) — S(t)u(s*)]| < 1

=0
and thus for p e A710, we have

[u(t +s%) = pll < llut + %) = SE)ul(s™)|| + [[S(E)u(s*) = pl|
<1+ flu(s™) —pll <o
for all t > 0. As u is continuous, we get that
sup lu(t) —pl| <o
te[0,s%]

which implies that u(t) — p is bounded in norm. Note that a concrete bound can
therefore be computed using a modulus of continuity for v on bounded sets together
with a rate of convergence ® on the almost-orbit condition and a norm upper bound

on p.
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5.5 Logical aspects of the above results

The extractions presented in this chapter rest on some logical considerations which
we want to discuss in this section by sketching in what ways the previous system H}’
needs to be extended to recognize the quantitative results presented in this chapter as
instances of the general logical metatheorems established in Chapter [l For this, we
write H* for the variant of H? where the range condition is replaced with axiom (II)
from Chapter [3| (or, in other words, if the extensions that make HY result from V;’ are
applied instead to V). This H* provides the basic system for this section. In this
section, we switch from a representation of errors via 1/(k + 1) to 27% to be more in

line with the presentation from Chapter |4l This has no real practical consequences.

5.5.1 Uniform convexity and projections

As discussed already in some of the earliest papers on the treatment of abstract spaces
in proof mining (see [71], 95]), uniformly convex spaces can be treated by adding an
additional constant together with a corresponding universal axiom to express that this
new constant represents a modulus of uniform convexity (see also the later Chapter [7).
In the works [I54] 208], the uniform convexity is only assumed to infer the existence
of an (in the case of Xu, uniformly continuous) selection of the projection map onto
closed and convex subsets of X. In fact, the only selection map of a projection ever
needed is a selection of the projection onto the set A~*0 which we as before denote just
by P. For that, the set A710 is assumed to be non-empty which can be hardwired into
the language of the systems by adding a designated constant py of type X together
with the corresponding axiom
0 € Apg. (NE)

In the context of the above systems for the treatment of m-accretive operators and
their extensions, this kind of projection map can be immediately treated by adding a

further constant P of type X (X) together with the axiom scheme
V', p* (0 € A(Px) A (0€ Ap — [l —x Pr|y <g [lz —x pllx)) (P1)

characterizing that P is indeed a selection of the projection onto the set A=10. In par-
ticular, note also that these axioms are in particular purely universal as the statement
0 € Ap in the context of the system H®“ is quantifier-free, being an abbreviation for

xa(p,0) = 0 (see again Chapter [3). Note also again that in that way, as stressed
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before, the treatment of the projection does not require it to be unique but only to be
a suitable selection from the potentially multi-valued nearest point projection.

Further, it is immediate from the axioms that P is provably majorizable in H“ +
(P1) + (NE) as we can prove

1P|l < [zl + [l = Pell < {lz]l + [l = poll < 2 [|2I[ + [lpoll

from the axioms (P1) and (NE).

If extensionality or continuity is needed for the projection P (as is the case in the
context of Xu'’s result), the above system needs to be extended with a modulus of

uniform continuity w” of type 0(0)(0) together with a corresponding axiom like

VTO’kﬂ’l.X’yX(Hw _Xp0||X7||y _Xp0||X <R T (P2)
Al —x bl <a 2709 [P —x Pyl <2 2%).

In that way, the bound extraction theorems stated in Theorem [4.4.6] and Theorem
immediately extend to the system H“ + (NE) + (P1) (+(P2)) where one then
additionally requires n to satisfy n = ||pp| (and in the case of (P2), ® additionally

depends on w?).

5.5.2 Uniform smoothness and the normalized duality map

Regarding uniformly smooth spaces, we focus on the dual characterization of such
spaces via the requirement of a single-valued duality map J which is norm-to-norm
uniformly continuous on bounded subsets (recall again Section [5.2).

As becomes clear through inspection of the analyses presented above, they actually
“only” require a function j' : X — X™* which selects a specific point from the duality

set, namely such that
1. {y — Px,j'(x — Px)) <0 for all z € X and all y € A7'0;
2. {u—w,j'(x—y)) =0 for all (z,u),(y,v) € A.

Both properties are satisfied for the unique selection if X is uniformly smooth and A
is m-accretive with A='0 # ¢ and where a selection P of the projection onto that
set exists as above. But, actually, any such selection suffices which is in particular

suggested by the proof-theoretic perspective.
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In that way, we find that the use of the duality map made in the above extractions
can be formalized by using the approach to axiomatizations of duality selection maps
developed in [I11] and previously used for our treatment of the alternative notion of
accretivity in Chapter @] In that vein, we can thus treat the existence of such a map
by extending H¥ + (P1) + (NE) (+(P2)) by a constant j" of type 1(X)(X) together

with the axiom

. 2 .
va X,y (o, 2 = Nzl A Ky, 70| <a il Iyl
A Yol Bu® vX (lau +x Bu, j'x) =g alu, j'z) + 5<v,j’x>)>,

(4")

which instantiates the axiom from [IT1], stating that j’ is indeed a selection (recall also
Chapter [4)), together with two additional axioms expressing the above properties (1)
and (2)

(Ml) vava (OE Ay - <y - X Pl’,j/(.ﬁ[ - X px>>X <R 0)7
(M2) VX yX uX X (ue Aw rve Ay —> {u—x 0,5 (2 —x y))x =r 0) .

The bound extraction theorems stated before also here immediately extend to the
system H* + (P1) + (NE) + (j') + (M1) + (M2) (+(P2)) as is immediately clear

through the discussion in [I1I] and the fact that all the new axioms are universal.

Remark 5.5.1. Clearly, the system H* + (P1) + (NE) + (') + (M1) + (M2) is over-
specified regarding the accretivity of A as H“ already contains a family of selection
functionals witnessing accretivity but (M2) says that j' is a uniform witness for this
property. This over-specification has no impact on the theoretical results, however, so

we do not “trim” the system.

Now, by itself, the existence of a selection functional for the duality map in par-
ticular does not imply that the latter has to be single-valued. However, as shown by
Kornlein [124], the existence of a selection functional which is uniformly norm-to-norm
continuous is actually equivalent to uniform smoothness of the space X and thus ac-
tually implies that this selection is the unique selection. As discussed in [I11], the
uniform continuity of the selection is already implied by the logical methodology in the
case that the proof relies on the extensionality of it.

However, as the above analysis shows, the proofs of Nevanlinna and Reich as well
as Xu do not rely on uniform continuity or even extensionality of j' and, in that way,
can be formalized in the system HY + (P1)+ (NE) + (j') + (M1) + (M2) (with (P2) in
the case of Xu) which also explains the absence of any moduli of uniform smoothness

for the space or any moduli of uniform continuity for the selection j' in the analysis.
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In particular this additionally shows that the results are already valid in the context of
the existence of a selection functional satisfying (1) and (2) which is potentially weaker

than uniform smoothness.

This insight that conditions (1) and (2) are sufficient, now here facilitated via a
proof-theoretic method, was essentially already observed in the last section of the work
of Nevanlinna and Reich [I54] although it was not stressed in this abstract nature.
Instead, they list additional conditions on the operator in order to guarantee that the
conditions (1) and (2) are naturally satisfied. Concretely, they require that the operator
then is accretive in the sense of Browder [29] to enable that the condition (2) is satisfied
for any possible selection j’ of J and they require that A0 is a so-called proximal sun
(see [I54]) in order to guarantee that a selection satisfying (1) always exists and they
require that the semigroup is differentiable so that the orbit generated by the Crandall-
Liggett formula is actually a solution of the corresponding initial valued problem (as
shown in [50]) which was previously guaranteed by the uniform convexity and uniform
smoothness. In the vein of the previous logical discussion, we thus find that our above

quantitative results also apply to these generalizations.

5.5.3 Logical aspects of the convergence condition

Besides the quantitative analyses of the results of Nevanlinna and Reich as well as
Xu, the main contribution of this chapter is the introduction of the new notions of
“moduli for the convergence condition”. Already in Bishop’s work [17], arguments for
the functional interpretation as the correct numerical interpretation of theorems of the
form 3V — 3V are given and, in modern times, the proof mining program has been
very effective in arguing that the monotone functional interpretation (in combination
with a negative translation) provides the right numerical information in the search for
uniform bounds in analysis (see in particular the detailed discussion in [116]). In the
following, we will now see how, through this lens, these moduli actually arise from the
underlying logical methodology and thus, in various ways, represent the real finitary

core of the convergence condition from both a classical and a constructive perspective.
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The convergence condition from a classical perspective

Based on the equivalence laid out in Lemma [5.3.1] any proof that a class of operators

satisfies the convergence condition, written in the immediate formal translation

V(@) ¥, (), KO (Vio (yi € Azi A |zl lyill x <m K)
AV IV (¢ 20 b — [{ye, 5 (e —x Pae))| <w 27%) (1)
— VK%, N%3n° (n =0 N A ||z, —x Paylly < 27%) )
can be transformed into a proof for satisfying the equivalent statement
w003 (y € An ol Dol <o K

A (7@ —x Pr))| <2 2" — |o —x Palx <a 2) @)

however at the expense of using classical logic as well as countable choice. However,
this use of countable choice is in essence only applied to a quantifier-free formula and
thus is an instance of QF-AC. It is clear that (after equivalently writing (2) with <g
in the conclusion to make the inner matrix existential) the negative translation of (2)
is equivalent to its original version by the use of Markov’s principle and thus that the
negative translation followed by the monotone functional interpretation, applied to (2),
immediately produces a full modulus (as defined in Definition as the suggested
finitization of this variant of the convergence condition.

Thus, a priori, through the application of the classical metatheorem given in The-
orem we have the following:

Proposition 5.5.2. There are primitive-recursive (in the sense of Gddel) translations
which transform any full modulus for the convergence condition into a solution of the
negative translation followed by the monotone functional interpretation of (1), and vice

Versa.

Therefore, the two variants of the convergence condition and the accompanying
moduli can be extracted from proofs and used interchangeably without yielding a far
increase of complexity beyond the principles used in the proof. Thus the bound ex-
traction result discussed in Theorem guarantees the extractability of such moduli
even from classical proofs that A satisfies the convergence condition, provided that the
proof can be formalized in H* + (P1) + (NE) + (j') + (M1) + (M2) + A (which we
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abbreviate in the following by C*) for suitable A or any extension/fragment thereof
pertaining to the bound extraction theorems. Even further, as already hinted on in Re-
mark [5.3.6, this extraction is already possible from suitable proofs of the much weaker

requirement

V(z,y)e A ({y,j'(x — Pz)) = 0 — [z — Pz = 0).

In that way, a formalized version of the argument in Remark [5.3.6] in fact shows the

following;:

Proposition 5.5.3. If C¥ (or any suitable extension or fragment thereof) proves that
A satisfies

V(z,y) € A ((y,j'(x —x Px)) =r 0 = |2 —x Pz|x =r 0),

then from the proof one can extract a (potentially bar-recursively) computable full mod-
ulus for the convergence condition. If the proof does not use DC, then the modulus is

even primitive recursive in the sense of Godel.

This in particular also holds if there exists a suitable proof of the convergence condi-
tion itself as this proof can be transformed into a proof of the above property (without

any additional use of classical logic or choice).

However, the modularity of the approach to quantitative information via the mono-
tone functional interpretation further yields that from any proof using the convergence
condition as a premise (formulated in any variant (1) or (2) as discussed above) and
formalizable in the respective systems, quantitative information on the conclusion can
be extracted which depends then additionally on such a modulus solving the monotone
functional interpretation of the convergence condition. This is collected in the following

derived metatheorem:
Theorem 5.5.4. Under the assumptions of Theorem[{.4.6, we have the following: If
C¥ I Va'Vy <, s(z)Vz" (A satisfies the convergence condition — I°Cs(z,y, 2, v)) ,
then one can extract a bar-recursively computable partial function
®: S5 x Sz x (Soy0)° x Nx NV > N

such that for allz € S5, z€ S;, 2" € Sz, QW' e So(0y(0) and alln e N and w € NN, of
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2* 22, wzw’ and W z w? as well asn =g HJ{‘(O)HX , ||p0||X then

SN Yy <, s(x) (Qf is a full modulus for the convergence condition for A

— Ju < B(z, 2%, QW' n,w) Cs(z, y, z,v))

holds whenever S*X = A for 8 defined as in Theorem for the constants of
H“ and with the other new constants of C¥ naturally interpreted so that the respective
axioms are satisfied.

Moreover: if the proof does not use DC, then the modulus is even primitive recursive

in the sense of Gadel. The result remains true for any suitable extension or fragment

of C¥.

In that way, by Proposition [5.5.3] and Theorem [5.5.4] we find that a full modulus
is indeed the right quantitative notion for the convergence condition in the sense that
both items (1) and (2), discussed before as the central properties on page 5] are
fulfilled.

The convergence condition from a constructive perspective

From the semi-constructive perspective of the monotone modified realizability inter-
pretation and the associated system V;” and its extensions, the quantitative version
of the convergence condition is exactly what is captured by the notion of the “plain”
modulus introduced in Definition [5.3.3]

For this, we now work over the semi-constructive variant of the previous theories.
Concretely, we abbreviate with C in the following the system H{ + IP_ + CA_ +
(P1)+ (NE)+ (') + (M1) + (M2) 4+ T'~. for suitable I'_, where H¥ results from V¢ by
extending it in the same manner as V* is extended to form H“.

Concretely, applying the monotone modified realizability interpretation to the for-
mal statement (1) considered previously, we get that it asks for a functional © which
transforms K and majorants for (x,),(y,) (which w.l.o.g. are assumed to coincide
with the constant K-function and are in that way represented by the input K) and a

majorant of a realizer for the premise

Vadbve (¢ = b — [ye, j'(zc — Pxe))| <27,

5We can here simplify the assumptions on n compared to Theorem as, in the context of H¥,
the resolvents are all total so that we can pick my,my,, m% =0withy=1,\g=2aswellascx =0
and dx = 0 —x J{(0).



CHAPTER 5. QUANTITATIVE RESULTS ON PAZY’S CONVERGENCE
112 CONDITION AND FIRST-ORDER CAUCHY PROBLEMS

i.e. of a  of type 1 such that
Va,c(c = p(a) = [(ye, j'(xc — Px.))| < 27%)

into a majorant of a realizer for the conclusion Vk, Nan (n = N A ||z, — Pz,|| < 27F),
i.e. into an Q(K, ¢) of type 0(0)(0) such that

Vk,N3n < Q(K, 9)(k,N) (n = N A ||z, — Px,| <27%).

Thus, this is exactly what is represented by a “plain” modulus for the convergence

condition.

An immediate application of the bound extraction result contained in Theorem

[4.4.7 yields the following result, similarly to the previous Proposition [5.5.3

Proposition 5.5.5. If C¥ (or any suitable extension or fragment thereof) proves
V(z,y) e A ((y,j'(z —x Pz)) = 0 = |lx —x Pz|x =z 0),

then from the proof one can extract a primitive-recursive full modulus for the conver-

gence condition.

As discussed before, this in particular also holds if there exists a suitable proof of

the convergence condition.

Note that in the presence of the previous Proposition[5.5.3] the above result is never-
theless not void. While an intuitionistic proof is especially a classical proof, Proposition
5.5.3| of course guarantees already the extractability of a full modulus. However, this
only applies in the case that the additional axioms I'_, potentially contained in the
above system C¢ have a monotone functional interpretation as required by Proposition
So if the real strength of I'_, is used while restricting to intuitionistic logic, then
the above result nevertheless guarantees the existence and extractability of a primitive

recursive full modulus.

Now, in similarity to Theorem [5.5.4] we obtain a macro for the logical metatheorem
contained in Theorem [£.4.7] which guarantees that now from a semi-constructive proof
of a result using the convergence condition as a premise, one can extract a transforma-
tion which transforms any modulus for the convergence condition into information on

the conclusion, even in the presence of the axioms I'_.
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Theorem 5.5.6. Under the assumptions of Theorem[{.4.7] we have the following: If
Cy + Va'Vy <, s(x)Vz" (A satisfies the convergence condition — Ju’C(z,y,z,u)),
one can extract a
® : S5 x Sz x Si0)m)0) % Soyo) X Nx N¥ - N

with is primitive recursive in the sense of Godel such that for any x € Ss, any y € S,
with y <, s(x), any z € S; and z* € S; with z* 2 2E| and any n € N, Q € Sy0)1)(0),
w' € Soq)0), w € NV with n >g HJlA(O)”X pollx as well as w 2 w¥ and W' 2 W' we
have that

SN = Ju <o O, 25, QW n,w) (Q is a modulus for the convergence condition for A
— C(z,y, 2, u))

holds whenever S = T'_ for 8 defined as in Theoremfor the constants of
H*® and with the other new constants of C{’ naturally interpreted so that the respective

axioms are satisfied.

Note lastly that it is also this result which a priori guaranteed the dependence of
the quantitative versions of the result of Nevanlinna and Reich as well as Xu on our
“plain” modulus instead of on the full modulus and which in that way lies behind the

extraction.

SHere, = denotes (not necessarily strong) majorization interpreted in the model S*:X, as before.



6 Rates of convergence for the asymptotic

behavior of second-order Cauchy problems

6.1 Introduction

While the previous Chapter [5| was concerned with the theorems of Nevanlinna and
Reich as well as Xu in the context of first-order systems, we are in this short chapter
now concerned with a result due to Poffald and Reich [I71] which extends the work of
Nevanlinna and Reich to incomplete second-order Cauchy problems. Namely, for the
second-order system

u”’(t) € Au(t), 0 <t < oo,

u(0) = =z, (1)

sup{[lu(t)[| [t = 0} < oo,

over a uniformly smooth and uniformly convex Banach space X with a strongly mono-
tone duality malﬂ J, i.e. for a constant M > 0 it holds that {z — y, Jx — Jy) =

M ||z — y||” for all 2,y € X, and A m-accretive as before, the solution set
S = {u(t) | u is a solution to (f) for some z in the sense of [I71, Theorem 2.8}

is a nonlinear semigroup for x € domA as shown in [I7I]. Thus, by the results from
[172], this semigroup is generated by some unique m-accretive operator which is denoted
by Ay, and called the square root of A. Similarly, we write Sy, for this semigroup.
Various properties of this semigroup and the accompanying system were exhibited in
[I71], generalizing previous work in the context of Hilbert spaces by Barbu [3] as well
as Brezis [24]. In particular, Poffald and Reich obtained the following result on the

asymptotic behavior of the semigroup:

! As shown in [I71} Proposition 2.11], a smooth Banach space has a strongly monotone duality map

if, and only if, it is uniformly convex with a modulus of convexity of power type 2.
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Theorem 6.1.1 (Poffald and Reich [I71]). Let X be uniformly convex and uniformly
smooth with a strongly monotone duality map J, i.e. for a constant M > 0 it holds that
(x—y,Jo—Jy)= M|z —y| for all z,y € X, and A be m-accretive with A=*0 # &
and such that it satisfies the convergence condition. If S1pp = {Si2(t) | t = 0} is
the semigroup generated by Ay via the exponential formula as above, then Sy (t)x

converges strongly to a zero of A fort — o for any r € domA.

In this chapter, we exhibit the quantitative content of this result by extracting an
explicit and computable transformation from the proof of Theorem which trans-
lates the previously introduced modulus of the convergence condition, together with
some minor quantitative data, into a full rate of convergence for the strong conver-

gence of Sy/s(t)x to a zero of A.

For simplicity, we formulate all the results only for the full moduli from Chapter
for simplicity. It should however be noted that the results also hold already in the

context of a “plain” modulus for the convergence condition as before.

Going beyond the range of proof mining however, we are here further concerned
with generalizations of the theorem of Poffald and Reich to new results. As discussed in
Chapter , Xu [208] studied the behavior of almost-orbits associated with the semigroup
generated by A (see Theorem .

Combining the ideas of the quantitative analysis obtained in the previous Chapter
of this result of Xu together with the quantitative version of the result of Poffald and
Reich established in this chapter, we obtain a similar quantitative version of a result on
almost-orbit convergence for the semigroup &;j,. This result, while finitary in nature,

Y

in particular also implies back the following basic “infinitary” result for S/ which is

similar to Xu’s result from before:

Theorem 6.1.2. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M > 0, i.e. {x —y,Jo — Jy) = M ||z — yH2 for
all x,y € X. Let A be m-accretive such that it satisfies the convergence condition and
that A='0 # . Let Sijo = {S12(t) | t = 0} be the semigroup generated by Ay via the
exponential formula. Then every almost-orbit u(t) of 12 converges strongly to a zero

of A ast — o0.

This result on the behavior of almost-orbits in the case of &1/, seems to be new

to the literature and the approach taken here to establish it in particular exhibits the
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strength of quantitative analyses obtained in the proof mining program as these exhibit
the real finitary core of a mathematical proof, stripped of any non-essential notions and

arguments, which sometimes allows for easy generalizations that lead to new results.

6.2 An analysis of Poffald’s and Reich’s result

To derive a quantitative version of the convergence result contained in Theorem [6.1.1}
by means of applying a modulus for the convergence condition, we first have to extract
from the proof given in [I71] explicit quantitative bounds on the norms of the orbits

and their derivatives involved.

For that, we follow the way a solution for the associated system (t) is constructed
in [I71] (which differs in comparison to the construction of Barbu [3] (see also [24]) who
considered this problem in the context of Hilbert spaces before Poffald and Reich). To
solve (), Poffald and Reich first solve the system

u'(t) € Au(t) + pu(t), 0 <t < oo,
u(0) = =, (F)p
ue L2(0,00; X),

in W22(0,00; X) for p — 0T which in turn is solved by solving the approximate system

u’(t) = Asu(t) + pu(t), 0 <t < oo,
u(0) = z, ()p
ue L*(0,00; X),

for r — 0" where A, is the Yosida approximate.

In the latter case, they conclude that the unique solution u; of (f); converges in

L*(0,00; X) and C([0,0); X) to a (unique) solution u, of (1),. For the approximate

r

, and its derivatives are obtained in [T71]:

solutions wy, the following bounds on u

ur(t)|] < ||lz|| for all ¢ =0 (p. 521, (2.7));

p

o {0 [Juy @) db < 2/M2(d(0, Az) + p |l V2 []|** (p. 522, (2.17));

o [0 |[ur()|]” dt < 2/M2(d(0, Ax) + p||=[))¥2 [|=]|"* (p. 522, (2.14)).

p

As remarked in [I71], these bounds immediately transfer to the solution w, of (1), by

applying Lemma 2.6 of [I71] to u;, — u, for r — 07.
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Following [I71], these bounds can then be used to establish bounds on the respective
norms of a solution u to (f) by applying Lemma 2.7 of [I7I] to the convergence u, — u
for p — 0% which immediately yields the following bounds for the solution of ()

corresponding to the initial value x:
o |[u(t)|| < ||z| for all t = 0;
o §y e @) de < 2/M2d(0, Ax)"? |l]*;
o {7l (1)) dt < 2/M2d(0, Ax)¥2 ][>,

The quantitative version of Theorem [6.1.1| now takes the following form for the case

of x € domA.

Theorem 6.2.1. Let X be uniformly convexr and uniformly smooth with a strongly
monotone duality map J with value M > 0, i.e. {x — 1y, Jx — Jy) = M|z —y|* for
all x,y € X. Let A be m-accretive with A™10 # & with p € A7'0 and such that it
satisfies the convergence condition with a full modulus for the convergence condition
Q. Let S1)p = {S12(t) | t = 0} be the semigroup generated by A, via the exponential

formula. For any x € domA, we have

Yk e NVt t' = x((Q2k + 1, max{1,d}) + 1)? = 1) (H,S'l/g(t)x — S1p(t)z| < ﬁ)

with x(k) = (D + 1)(k + 1) and where
2
D= (1+ bQ)Wd(O, Ax)*2d"?
as well as b = ||x — Pz|| and d > ||z||.

Proof. We write u(t) = Si2(t)xz. Then u” exists almost everywhere, say on [0,0)\N.

As outlined in the discussion before, we have ||u(t)|| < ||z|| for all £ = 0 as well as

Q0
2
| ol de< 50,4072 ).
0

Now, using the defining property of the projection P and the definition of u, we have

[ut + h) = Pu(t + h)|| < [[u(t + h) = Pu()]| < [[u(t) = Pu(t)]
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which in particular implies that

f<u"<t>, J(u(t) — Pu(t))y dt < OO IO 17 (u(t) — Pu()|? dt
_ w I O Jult) — Pue)]? de
< OO 1) [a(0) — Pu(O)] at

A

2
(0, Az [lo] 2 & — Pa?.

Therefore also

[ (e + o, w0 - Pu)?) a

0

< (14 [|lz = Pa||*) 7 75d(0, Ax)¥? |||

2
ek
< D.

Lemma [5.4.1| now implies that for any k£ € N:

st 10 (max {1 ' 0). Tule) - Pu)?} < ).

Thus in particular, we have

3t € [0, x((k + 1) = DIV (max{uu”<t>u (), T(u(t) — Pu(t)))) < L)
which yields
3t < x((Q(k, max{1,d}) + 1)* = 1)

(max{”u”(t)“ (), J(u(t) — Pu(t)))} < Q(k, max%l, d}) + 1)

and thus, as ||u”(t)]| < 1 for such a ¢, the properties of Q2 yield that

3t < x((Qk, max{1,d}) + 1)? = 1) (Hu(t) — Pu(t)]| < ﬁ) :

But as discussed above, ||u(t) — Pu(t)|| is decreasing and thus actually

vt > y(Qk, max{L, d}) + 1)2 = 1) (Hu(t) — Pult)] < %H) |

As in [I71], we can now show

lut + h) —u®)] < 2[ju(t) — Pu(t)]
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and thus we obtain

VE > (2K + 1, max{1,d}) + 1)* = 1)Vh (||u(t +h) —ult)] < ﬁ)

which is the claim. O

By continuity of S/, the result for z € domA extends to x € domA and by an

analysis of this proof, we obtain the following quantitative result for the extension.

Theorem 6.2.2. Assume the conditions of Theorem |6.2.1 Let x € domA with f :

N — N be such that f is nondecreasing and

1
ke Nz ye X (€ Ay a ol o0 < F0) A o=l < 7).

Then
Vk e NVt t' = v ((Q(6k + 5, max{1, f(3k + 2)}) + 1)> = 1)

(||51/2(t)x Syt %)

+1

N

with x,(k) = (D + 1)(k + 1) and where

2
Dy=(1+ bi)m (3k +2)?

as well as by = ||z — Px|| + ||z|| + f(3k + 2).

Proof. By the properties of f, we get that there exists z € Ay such that [|z]], [ly|| <
f(8k +2) and ||z — y|| < 1/(3k + 3). Therefore

HSl/g(t)x _ 51/2<t/)x|| < H51/2(t)1’ — 51/2(t’)yH + HS1/2(t)y - 51/2(75’)9“
(1St = Sua(t]
<2z —y| + [|S12(t)y — Sia(t)y]|

2 /
<3 FISuey = Sua(y]]

Using the previous Theorem [6.2.1] we get that
Vk e NVt t' = v ((Q(6k + 5, max{1, f(3k + 2)}) + 1)> = 1)

(Isiattly = Suptt ) < 35
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since

ly = Pyl < [lx = Pzl + [[ly = Pyl — [l — Pzl

< o = Pl + [ly — 2|
< |z = Px|| + ||=[| + f(3k +2)
< by,

as well as ||y|| < f(3k + 2) and d(0, Ay) < ||z|| < f(3k + 2). This gives the claim. [J

6.3 A generalization to almost-orbits

We now generalize the result of Xu from the first-order to the second-order case. The
new result in Theorem follows from the following quantitative result which itself
arises as a generalization of the quantitative version of Xu’s result (Theorem
given in Chapter

Theorem 6.3.1. Let X be uniformly convexr and uniformly smooth with a strongly
monotone duality map J with value M > 0, i.e. {x —y, Jx — Jy) = M ||z —y||* for
all x,y € X. Let A be m-accretive such that it satisfies the convergence condition with
a full modulus for the convergence condition 2. Let Sy = {Si2(t) | t = 0} be the
semigroup generated by Ay via the exponential formula. Let A~*0 # & withp e A™10
and assume that P, the nearest point projection onto A0, is uniformly continuous on

bounded subsets of X with a modulus w : N> - N, i.e.

_ 1 1
Vr,k e NVx,y € B,.(p) <||$ yl w(r, k) + 1 | Pz ul k+ 1) ’

and, without loss of generality, assume that w(r,k) = k for all v,k € N. Let u be an

almost-orbit of 812 with a rate of metastability ® on the almost-orbit condition, i.e.
Vke NVf:N — Nin < ®(k, f)Vt € [0, f(n)]

(1at0nutn) — -+l < 1 )

E+1

Let B € N* be such that ||u(t) — p| < B for allt = 0 and let fs : N — N for s >0 be

such that fg is nondecreasing and

1
€ N30 € X (1 © A & [l Tl  £00) A = 9] < 7 )
n
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Then we have

Vke NYf: N — Nin < T'(k, f)Vt,t' € [n,n + f(n)] (|u(t) —u(t)| < ﬁ) ;
where
L(k, f) == max{T"(8k + 7, jis), P8k + T, hn ) | N < T'(8k + 7, jr.s)}
with

hy ¢(n) := f(max{N,n}) + max{N,n} —n,
Jk,p(n) := max{n, ®(8k + 7, h, )} — n
Gr,p(m) = Qp(3k 4+ 2) + f(m + Q0 (3k + 2)),
I(k, f) = ®(w(B, 3k + 2), gr.r) + max{Q,(3k +2) | m < ®(w(B,3k +2),9r.r)},

for Qg(k) with s = 0 defined by
Qs (k) := xs£((Q3k + 2, max{1, fs(w(B + 1,3k + 2))}) + 1)* =~ 1)
with xsx(k) :== (Dsp + 1)(k + 1) and where

2
Dgr=(1+(B+ 1)2)Wfs(w(B +1,3k +2))°

We omit the proof as it is, in essence, a careful reimplementation of the proof of
Theorem [5.4.6], now using Theorem [6.2.1] in the beginning instead of Theorem [5.4.3| as

before.

This finitary result now in particular implies a usual infinitary result on the con-
vergence of almost-orbits of &/, as formulated in Theorem since metastability

trivially (though non-effectively) implies back convergence of the respective sequence.

Proof of Theorem[6.1.4 Let X be uniformly convex and uniformly smooth with a
strongly monotone duality map J with value M > 0 and let A be m-accretive such that
it satisfies the convergence condition and that A='0 # &. Let u be an almost-orbit of
S1/2. By Proposition , there exists a full modulus for the convergence condition (2.
As in [108], it is rather immediate to see that u has a rate of metastability ®. Then, for
the other minor quantitative data as required in the above theorem (which naturally
exist), we get that there exists a function I' such that

Wk e NYf: N — Nin < T(k, /)Vt, ¢ € [n,n + f(n)] (\u(t) —u(t)] < %H> :
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In particular

ke NYf : N — Nine Nvt,t € [n,n + f(n)] (yu<t) — ()] < k—-lu)

and this formulation implies the Cauchy property of u(t) as follows: suppose

1
ke NVn e N3t, ' = n (|u(t) —u(t| > k‘—+1>

and define f(n) non-effectively such that f(n) +n > t,¢ for these two t,¢' guaranteed
by this property. Then for that k£ and f:

e e o 500] (1) - o)) > 1)

which is in contradiction to the metastability of u. O]

Lastly, similar to both [I08] and to the previous chapter, we can also give the second
quantitative version of Theorem [6.1.2] based on the previously discussed strengthened
premise of a rate of convergence for the almost-orbit. This then takes the form of the

following theorem.

Theorem 6.3.2. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M > 0, i.e. {x —y, Jz — Jy) = M ||z — y||* for all
x,y € X. Let A be m-accretive such that there exists a weak modulus for the convergence
condition Q). Let S1jp = {S12(t) | t = 0} be the semigroup generated by Ayj via the
exponential formula. Let A0 # & with p € A7'0 and assume that P, the nearest
point projection onto A0, is uniformly continuous on bounded subsets of X with a
modulus w : N> - N, i.e.
ke Ny e B0 (o - ol < oy — 1Po = Pall < 17 ).
w(r k) +1 E+1

and, without loss of generality, assume that w(r,k) = k for all v,k € N. Let u be an
almost orbit with a rate of convergence ® : N — N on the almost-orbit condition, i.e.

1
Vk e NVs = ®(k) <sup ||u(s +t) — Sl/z(t)u(s)” < —) )
=0 k+1

Let B € N* be such that ||u(t) — p| < B for allt = 0 and let fs : N — N for s >0 be

such that f is nondecreasing and

Vn e N3z, ., ysn € X (ysm € Axs

1
< s s,n < .
ANl Mgl < So(0) A N = uls)] nﬂ)
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Then we have

Vi e NVt, t' = max{®(8k + 7), s* + max{,,(24k + 23) | m < s*}}

1
t) —u(t)] < ——
(1)~ u(®)l = 15 )
where s* = ®(w(B, 24k + 23)) and where Q4(k) is defined as in Theorem [6.3. 1.

Also here, we omit the proof as it is completely analogous to the proof of Theorem

[6.3.2] from Chapter [3]



7 Quantitative asymptotic behavior of non-

linear semigroups

7.1 Introduction

The previous chapters were concerned with conditions under which strong convergence
of S(t)z can be guaranteed. In this chapter, we now care for asymptotic results for
semigroups generated by accretive operators which are of a more relative flavor, i.e.
which provide results that link the asymptotic behavior of the semigroup with that
of other objects without guaranteeing convergence outright. Concretely, this chapter
provides two case studies on results due to Plant [I70] and Reich [I74] for the asymp-
totic behavior of these semigroups and in that context, under suitable quantitative
translations of the assumptions used in the respective results, we are able to extract
rates of convergence for the limits involved which are moreover polynomial in all data.
In particular, we want to note that full rates of convergence are obtained here despite
the fact that the sequence in question is not monotone and that the original proof is
classical. This is due to a logical particularity that will be discussed after the extrac-

tions.

In that way, the current chapter further illustrates the applicability of the formal
systems developed in Chapter [4] for the semigroups generated by accretive operators
via the exponential formula as it employs the bound extraction theorems introduced
before to provide quantitative information on the above mentioned two results. These
two theorems of Reich and Plant, respectively, were motivated by the results of Pazy

[159] for iterations of nonexpansive mappings and take the following form:E]

Theorem 7.1.1 (Plant [170]). Let X be uniformly convex, A be an accretive operator

ITo simplify the notation in the following, we drop the superscript of the operator A from the

resolvent.
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that satisfies the range condition (RC')y, and let x € domA. Then
i - S(0a]

Ao>t—0t t

0.

Theorem 7.1.2 (Reich [I74]). Let X be uniformly convex, A be an accretive operator
that satisfies the range condition (RC') and let x € domA. Then

| e = S0l _
t |

lim

t—00

A usual application of negative translation and monotone functional interpretation

as used by the metatheorems suggest the extractability of “metastability-like” rates
here (provided that the proof formalizes in the underlying systems). However, as we
will see, classical logic features in these proofs only in two ways: at first, it features in
some of the basic underlying convergence results in which case the limits are decreasing
and a rate of convergence can thus nevertheless be obtained using the metatheorem
from Theorem [£.4.6] For both results, the proof then proceeds via a case distinction
on real numbers between = 0 and > 0. In both results, the proofs for the “= 0"-cases
are trivial and rates of convergence can be immediately extracted. While the proofs
for the “> (’-cases are nontrivial, they are nevertheless essentially constructive which
allows, through the use of the semi-constructive metatheorem of Theorem [1.4.7] for
the extraction of full rates of convergence for both limits exhibited above, under the
appropriate quantitative reformulations of the “> 0’-assumption, respectively. So, a
rate of convergence can be obtained in either case, for both results. Only in the com-
bination of these rates to a rate for the full result, the issues from the use of classical
logic could feature but as we will see, in both cases the rates can be smoothed to be

combined into a full rate of convergence for the whole result.

The next two sections now present the extractions of the quantitative results and
in that context do not explicitly focus on the logical particularities of the extraction
which will only be discussed in the last section. In that way, to present these results
in a way more amenable to the usual literature of the theory of semigroups, we also
move to using ¢’s for the errors instead of 27% or similar constructions using natural
numbers like 1/(k + 1).

In general, the main assumption featuring in both results is the uniform convexity
of the underlying space which can be treated, as extensively discussed in the proof
mining literature starting from the earliest works on the treatment of abstract spaces

(see [95]), by a so-called modulus of uniform convexity:
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Definition 7.1.3. A modulus of uniform convexity for a space X is a mapping 7 :
(0,2] — (0, 1] such that

zT+y
vee (0.2)¥z,y e X (Jlall, Iyl < 1A llo —yl > e~ | 2| < 1-n().

Of course, the rates in general will then depend on such a modulus. It should be
further noted that this modulus is conceptually related to the common analytic notion
of a modulus of convexity ¢ : [0,2] — [0, 1] (implicit already used in e.g. [45]) defined
as

0(e) = inf {1 — [l +yl /2|l = llyl =1, lz —yll = &}

In fact, as is well-known, uniformly convex spaces are characterized by the property that
d(e) > 0 whenever € > 0 and the modulus of uniform convexity 7 effectively provides
a witness for this inequality in the form of a lower bound, i.e. that d(¢) = n(e) > 0 for
e € (0,2].

The proofs of the results of both Plant and Reich make an essential use of § but
closer inspection reveals that they only rely on a lower bound on d(g) greater than 0
which therefore can be substituted by the modulus of uniform convexity 7. Note that
1 can be assumed to be nondecreasing which we will do w.l.o.g. in the following. In

that case, one in particular has that 7(¢) < () implies € < 4.

7.2 An analysis of Plant’s result

In this section, if not said otherwise, let X be a fixed Banach space, A be a fixed
accretive operator that satisfies the range condition (RC),, and let S be the semigroup
on domA generated by A using the Crandall-Liggett formula. The proof of Plant’s
result now proceeds by establishing that the sequence
x — Jux
PR
is Cauchy and that we have the limit
r—Ju  x—S(s)z

t S

(t—07)

lim = 0.

t,s/t—0%

Both results rely crucially on the existence and equality of the limits

—J, — S(t
lim —Hx tx“ and lim —||x ( )$H
t—0+ t t—0+

The first sequence is nondecreasing for t — 0% (see e.g. [52]) and bounded by ||v|| for

v € Az witnessing x € domA (see e.g. [4]). Following [48], we denote the first limit
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by |Az| which naturally satisfies |Az| < ||v||. The second limit was shown to coincide
with |Az| in [48)].

Now, the proof given in [I70] crucially relies on the use of the limit operator |Az|
and some elementary properties thereof. For the following, we denote the expression

(x—Jyx)/t (which is just the Yosida approximate) by A;x, in contrast to Plants notation.

As discussed in Chapter |3| (and as will be discussed further later on), one of the
main theoretical obstacles in treating accretive and monotone operators is the use
of extensionality in proofs as this requires one to provide some sort of quantitative
modulus of uniform continuity as dictated by the monotone functional interpretation.
While this will be discussed in more detail in the later logical remarks, we also find

here that the main convergence principle
|Ayz|| — |Az| for t — 07 with x € domA,

on which the proof of Plant relies can be recognized as a particular weak version of
such a kind of extensionality statement, namely it can be shown that it is provably
equivalent to the lower semi-continuity on domA of the operator |A - | associated with
A (see Proposition later on).

As in the case of the functional (-, -), (recall Chapter [4]), the logical methodology
based on the monotone Dialectica interpretation now implies the following quantitative
version of this statement: under this interpretation, the statement is upgraded to the

existence of a “modulus of uniform lower-semicontinuity” ¢ : R.g x N — R, i.e.

Vbe N, e e Ro, (z,u), (y,v) € A
Ul Tl Myl vl < 0 alz =yl < (e, b) — [Az| — [Ay| <),

which, as discussed already in the context of (-, ), is essentially a modulus of uniform
continuity.
Based on the above mentioned equivalence, this modulus can then be used to derive

a rate of convergence for the Yosida approximates towards |Azx|.

Lemma 7.2.1. Let ¢ be a modulus of uniform continuity for |A - | and let n satisfy
n = |||, ||d]| ; Ao, for (¢,d) € A and 0 < 5 < Xg. Then for x € domA with v € Ax

and b e N* with b = ||z|| , ||v||, we have

_JA
Ve > OVt € (0, p1(e,b,n, ¢)] <|A:c| — M < g)
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where
©1(g,b,m,0) 1= min{p(e, b+ 2n + 3n?)/b, \g/2}.

Proof. Let € be given and let ¢t < ¢1(g,b,n, ). We at first have ||Ax| < |Jv]| < b as
well as
[ el < Nl + 2 lel] + (25 + 2) [|d]
2]l + 2 el + (27 + Ao) [ld]
< |zl +2n+ 2n+n)n
<|

A

|z|| + 2n + 3n?

using Proposition 3.3.3] (as t < Xo). Now as Az € AJyz, we have |AJ,z| < ||Az|| and
thus
|Az| — || Asz|| < |Az| — |Ad].
Now, we getf]
o~ Jiall < t o] < or(e. b1, )b < ole.b+ 20 + 30?)

and thus, as v € Ar and Ayx € AJyx with ||z||, |v]|, | Jix]| , [[Asz|| < b+ 2n + 3n?, we

have

|Az| — [|Ax|| < |Ax| — |Adx| < e
which is the claim. O]

As mentioned before, the fact that

e S(hal
t—0t t

~ |4g]
was proved by Crandall in [48] and the proof proceeds by establishing that ||x — S(t)x|| /t <

|Az| for any ¢ > 0 as well as

lim inf —Hs(t)f — |

t—0t Z ’Ax‘

and in that way crucially relies on the limit operator |A - | as well. The latter of these
results relies on a result established by Miyadera in [148]@ that

limsup<M,C*> < (Yo, To — T )s

t—0t t

2As v € Az and t < \g, we have # € domJ; using (RC)y,. Clearly x + tv € (Id + tA)z. So
Ji(xz 4+ tv) = x by uniqueness of J;. Thus by the nonexpansivity of J; on its domain: |z — Jyz|| =
[Je(z + tv) — Jez| < ||z + tv —zf| = t|v].

3The result goes back to earlier work by Brezis [23] with a special case already contained in [50]

and more general results proved in [52].
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for yy € Az, x € domA and * € J(z — xp).

The proof given by Crandall actually only invokes this result for x € domA and,
for the proof of Plant’s result, it is further sufficient to obtain it only for some (* €
J(x — z¢). Lastly, the proof relies crucially on the use of the functional (-, ) and
in particular on the upper semicontinuity of this functional. In that way, based on
the logical methodology that upgrades this upper semicontinuity to a modulus of uni-
form continuity, we extract the following quantitative version of the above fragment of

Miyadera’s result:
Lemma 7.2.2. Let w be such that
Vo,y,z€ X,beN,e >0 (|||, ||z]] b A ||z —y|| S w(be) = (z,y)s < {(z,2)s + ¢).

For (* € J(z — xo) as well as x € domA with v e Ax and yo € Axy where b € N* with

]l ol ol s llyoll < b

ve = ot e (0.0 b, (27000 < Gnaa -+ )
where
P(e, byw) = w(221;), 6).

Proof. At first, given an &, we get for any ¢ € (0, £] and for all v € Az with ||z|, [[v]| < b
that

lz — S(t)z| = |S(0)z — S(t)z| < 2|t < QbQib <e

by Lemma [£.4.3 (1). Now, as in Miyadera’s proof from [I48], we get

Stz —2,¢) < L t<yo, o — S(7)a)dT.
Then for b = [lz]|, [[v]], [[zoll , [[yoll, we get
(o, w0 — S(t)x)s < (Yo, w0 — )5 + €
for any t € (0,9 (e, b,w)] as by the above, we have
|S(t)r — || < w(2b,¢)

for all such ¢ by assumption on w and since we trivially have ||z — z¢|| < 2b. Thus in

particular we have
t
St)r —z,(") < J (Yo, wg — S(7T)x)sdT
0

< t<<y0,$0 — ZE>3 + 5)

which gives the claim. O]
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Then, by following the proof given in [48], we obtain a quantitative version of the

crucial direction

S(t)r —
liminfM > |Az|
t—0+ t
of Crandall’s proof. Now, already here, a case distinction on whether |Az| = 0 or

|Az| > 0 features in the proof of Crandall and the following result first provides a

quantitative result on the latter case.

Lemma 7.2.3. Let w be such that
Vi,y,z€ X,beN,e > 0 (|||, ||z]| b A ||z —y|| S w(be) = (z,y)s < {(z,2)s +¢).

Let further ¢ be a modulus of uniform continuity for |A - | and let n be as in Lemma
7.2.1. Then for x € domA with v € Ax and b € N* with b > ||z||,||v| and where

|Az| = ¢ for c € Rog, we have

—S(t
Ve > 0Vt € (0, 5(e, b, ¢,n, o, w)] <\Ax| - u < 5)

where
©h(e,b,c,m, p,w) := (ecmin{p; (min{e/2, ¢/2},b,n, ©), Ao/2}/4,b + 2n + 3n?, W)

with 1 as in Lemma[7.2.9 and ¢1 as in Lemma[7.2.1]
Proof. Using Lemma [7.2.2] we get

S(t)x —x

Ve > OVt e (0,?/1(575’00)] (<fa <*> < <y0,:1:0 - x>s + 5)

for ||z, |||, llxoll s lvo|| < b and (* € J(x — x). Now, for yo = Ayz and zy = Jyx with
A < Ag, we have
(Yo, 0 — )5 = =M [|Axz |’

as well as

[l = x|

<5(t>:§ - x’<*> - HS@f e

:_sti_x

A Axx|| -

Therefore, we obtain

S(t)r —x

Ve > 0Vt € (0,4(e, b+ 2n + 3n*, w)] (H /

g
lsel > el - 5)
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for all such A since b+ 2n + 3n? > ||Juz|| and b > || A,x|| as before. Since |Az| > ¢, we
have that for A < min{p;(c/2,b,n,¢), \o/2} that

c/2 =c—c/2 <|Azx| —c/2 < ||Axz||
by Lemma [7.2.1] Therefore, we have that

t _
Ve > 0Vt € (0,4¢(e, b+ 2n + 3n*, w)] <HW

9
> 4l - 575

for all A < min{p;(c/2,b,n, @), \o/2} and thus in particular

S(t)r —x €
I | e S anEa | BV _ -
R R R e
5
<0/2
o/ +/\c/2

for all t < ¢(g,b + 2n + 3n?,w) and for all A < min{e,(min{d/2,c/2},b,n,p), \o/2}.
Thus, lastly, for

t < Y(ecmin{ip; (min{e/2, c/2},b,n, ), \o/2}/4,b + 2n + 3n*, W)
we have

S(t)r —x

< €.
t ~

|Az| — H

]

For the other case, i.e. where |Az| = 0, it is immediately clear that for |Ax| < e,

we get

for all . However, this allows for a smoothening of the above case distinction (see the

later logical remarks for further discussions of this) in the form of the following lemma:
Lemma 7.2.4. Let w be such that
Ve, y,z€ X,beN,e > 0([[z]], [|z] < b A flz = yll < w(b ) = (z,9)s < (2,205 +€) .

Let further ¢ be a modulus of uniform continuity for |A - | and let n be as in Lemma

[7.2.1 Then for x € domA with v e Az and b e N* with b > ||z|| ,||v||, we have

— 9(t
Ve > OVt € (0, pa(e, b, n,w, )] (]Ax] - thﬂ < 5)

where

©a(g,b,m,w, ) := (e min{p;(g/2,b,n, ), Ao/2} /4, b+ 2n + 3n?, w).

with 1 as in Lemma[7.2.9 and ¢1 as in Lemma[7.2.1]
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Proof. Let € be given. Then either |Az| < ¢ whereas

g =508l

for any ¢. Otherwise, we have |Az| > ¢ and thus from Lemma with ¢ = ¢, it
follows that
lz — S(t)x]]

|Az| - ——— < ¢
t

for all
£ < (e min{pa(e/2,b, 1, ), Ao/2}/4, b+ 20 + 37, w).

]

Using those two results, we can then give a quantitative version of the partial results
on the way to Plants results discussed above, in the form of a rate of Cauchyness and

a rate of convergence, respectively.

In that context, we follow the notation used in [170] and write

a(a,b) = '

lall HbH

where a,b # 0 for the generalized angle of Clarkson [45]. Similar to the proof given in

[170], we rely on two fundamental inequalities of «:
Lemma 7.2.5 (essentially [45]). Let a,b # 0. Then
| lall a(a, b) = [la = o]l | < [flall = |l |
If further a +b # 0, then
la+ bl < (1 =2n(a(a +b,a))) ] + o]
where 1 1s a modulus of uniform convexity for the space X.

Lemma 7.2.6. Let X be a uniformly conver Banach space with a nondecreasing mod-
ulus of uniform convexity n : (0,2] — (0,1]. Let further ¢ be a modulus of uniform
continuity for |A-| and let n be as in Lemma|7.2.1 Let further x € domA with v € Ax
and b e N* with b > ||z, ||v||. Suppose |Ax| = ¢ for c € R.y. Then

< 5)

r—Jix x—Jux
t S

Ve > OVt € (0, ¢h(e, by ey m, )] Vs € (0, (
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where

@3(67 b> G, n, 90) = min{901 (5/27 b> n, Qp)a ¥1 (n(min{g/zba 2})6/2’ b> n, 90)7
#1 (0/27 b? n, gD), )‘0/2}

with @1 as in Lemma[7.2.1]

Proof. If © = Jyx or x = Jyx, then 0 € Az and thus |Az| = 0. As we have assumed
|Az| = ¢ > 0, we get x # Jyx and x # Jsx. We write ag; = a(r — Jsz, v — Jyx) where
s€(0,t) and t < A\g/2 < Ag. Using Lemma [7.2.5| with a = z — Jz and b = Jyz — Jyz,
we have

o = Jezl| < (1 = 2n(sy)) lz — Jozl| + [[Jew — Joz]|

Using Proposition [3.3.3] items (3) and (5), we get

t_
Js (fx + SJt:B) — Jx
t t

< (1=3) llz = Jal

|Jix — Jszx|| =

and thus we have
s || A < (1 —2n(asy)) [|v — Jsz |,

i.e.

2n(as,) | Asz]| < [[Ase|| = [| Al

Therefore, we have for 0 < t < ¢1(c/2,b,n, ) that
c— || Awz|| < |Az| — ||Awx|| < ¢/2
so that ¢/2 < || Ayz|| and for s € (0,t), we get that
n(ase)e < 2n(as) [[ A < 2n(ase) [[Asz| < [[Asz] — | A]] < [Az| — [[Ap]] .
By Lemma [7.2.1] we have for any ¢ that
Vt € (0, min {¢1(g,b,n, @), p1(c/2,b,n,0)}| Vs € (0,t) (n(asi)e < €)
which, in particular, implies

Vt € (0, min {1 (n(min{e/2b, 2})c/2,b,n, ), p1(c/2,b,n,¢)}]| Vs € (0,1)
(n(as,e) < n(min{e/2b,2})/2)
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and using that 7 is nondecreasing, we get
Vt € (0, min {¢ (n(min{e/2b, 2})c/2,b,n, ), v1(c/2,b,n, ), Ao} Vs € (0,1) (ass < €/20).

Using Lemma with a = ||z — Juz|| /t and b = ||z — Jsx|| /s (noting that ay,,; =

a(a,b) for these a, b) together with s < ¢ as well as the triangle inequality, we now have

r—Juw x—Jx |z — Jex|| r—Juw x—Jx |z — Jex||
— < | — — + g
t S t ’ t S t ’
r— Jix r— Jx |z — Jex||
< =+ ",
t ] t ’
— J,
< (\Ax| | > + bos ¢
Thus for 0 < t < ¢4(e,b,¢,m,n, ) and for s € (0,t), we have
—J, —Js
ot 2 | £/2 4 be/2b
t S
<¢€
by Lemma [7.2.1]. O

Again, the case for |[Az| = 0 is trivial and yields the following quantitative version:
if |Az| < €/2, then in particular

r—Jir r—Jz
t

< || Awz]] + [[Asz|| < |Az| + |Az| < e.

In that way, we get the following smoothening for both results combined.

Lemma 7.2.7. Let X be a uniformly convexr Banach space with a nondecreasing mod-
ulus of uniform convexity n : (0,2] — (0,1]. Let further ¢ be a modulus of uniform

continuity for |A-| and let n be as in Lemma|7.2.1 Let further x € domA with v e Ax
and b e N* with b = ||z, ||v||. Then
< a)

@3(87 b7 n,n, 90) = min{gpl (6/27 b7 n, 80), ¥1 (n(mln{g/va 2})6/47 ba n, 90)7
®1 (5/47 ba n, 90)7 )\0/2}

v—Jir o —JM

t S

Ve > OVt € (0, p3(e,b,m,n, )] Vs € (0,t) (

where

with ¢1(,b,n) as in Lemma[7.2.1
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Proof. Let € be given. Then either |Az| < /2 whereas

v—Jir  x—J
t s

<e¢

for any ¢, s < \g as discussed above. Otherwise we have |Az| > ¢/2 and thus by Lemma

7.2.6| with ¢ = £/2, it follows that

v—Jir  x—J
t s

<e¢

for s € (0,t) and

t < min{e;(g/2,b,n, ), p1(n(min{e/2b,2})e/4,b,n,¢), v1(e/4,b,n, @), Xo/2}.

Lemma 7.2.8 (Plant [I70], Eq. (2.10)). Let x € domA and t, A > 0. Then

t 2 ("
s = S(e)el < (1= 5 ) o= dhal + 5 [ o = Sl s,
0

Lemma 7.2.9. Let X be a uniformly convexr Banach space with a nondecreasing mod-

ulus of uniform convezity n : (0,2] — (0,1] and let w be such that
vy, 2 € X,be Noe > 0 ([lz]], Izl < b A flz =yl S w(b,e) = (2,95 < (z0)5 +€).

Let further ¢ be a modulus of uniform continuity for |A - | and let n be as in Lemma
7.2.1. Let further x € domA with v € Ax and b € N* with b > ||z, ||v||. Suppose that
|Ax| = ¢ for ce Rog. Then

< 5)

r—JAr oz —S(s)x

t S

Ve > OVt, ; € (074,021(57 b7 ¢ nn,w, 90)] (

where

8021(57 ba ¢ n,n,w, QO) = min{gpl(é/?), ba n, 90)7 302(6/37 ba n,w, 90)7
¥1 (n(min{ea 2})0/47 ba n, 90)7 \/(102(0/27 ba n,w, 30)7
n(min{gv 2})0/8ba L, )‘0/2}

with @1, pa as in Lemmas[7.2.1], respectively.

Proof. As before, x # S(s)z and = # Jix as |Az| = ¢ > 0. We write o, = a(r —
S(s)x,x — Jyx) for t, s < Ag. Using Lemma we again obtain

lo = izl < (1= 2n(e,)) o = S(s)zll + |z — S(s)z].
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Using Lemma we get for t, s < min{)\y/2, 1}:

o = Jiall < (1= 2n(al,)) o~ <mw+(r—ﬁux—4m

t
f |z — S(T)z| dr

< (1=2n(al) lle = S(s)all + (1= 3) Il = el
L2 fs”x ~ S()all

t T
2
S S
< (1=20(al) le = S(s)all + (1= 3 ) ll = e + =25

which implies that

eSO )=l s,
Now for
t < min{py(£/2,b,n, ), v/ ¢2(c/2,b,n,w, ©)}
and

< min{€/4b, \/@2(6/27 ba n,w, 90)}

| »

we obtain that

s<tj wa(c/2,b,n,w, )

and thus (using Lemma [7.2.4]), we obtain

n(al)e < 2n(al,) (|Az] - ¢/2)
lz = Ss)l

< 2n(c
n(as,t) g

< |Al’| . ||£L' _t‘]t‘TH

+ 2op
t
S
< e/2 + 2be/4b

< e

Dividing by ¢, we get n(c ;) < £ for all such ¢, s. Thus, using that 7 is nondecreasing,

we have o, < ¢ for

t < min{ip; (n(min{e, 2})c/4,b,n, 9), A/ p2(c/2,b,1,w, )}

and

< min{n(min{e, 2})c/8b, v/ p2(c/2,b, 1, w, p)}.

~+~| ®»
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Using Lemma [7.2.5] and triangle inequality again, we now have similarly to before
r—Juw  x—S(s)z
t s
o~ Jl

t )
x— Jix
t

< <|Ax] -

x—Ju x—S(s)x

t a s
r—S(s)x
s

) + <|Ax| =

Thus for 0 < t,7 < ¢)(e,b,¢,m,n,w, p), we have

—J,
Iz~ Jal,

< t S,t

o~ Jaal

t ’

r—S(s)x
s

~

r— Jix

) + bar ;.

r—Jix  x—S(s)x

t S

<e/3+¢/3+be/3b

<e¢

by Lemma [7.2.T] and Lemma [7.2.4] O

As before, smoothening this result can be achieved by extracting from the proof for

the case of |Az| = 0 the following quantitative version: if |Ax| < £/2, then

x— JAx = S(s)

o = Jtel| | iz = S(s)al
t S

< ‘ t S

< |Az| + |Az| <e.

Therefore, we obtain the following result:

Lemma 7.2.10. Let X be a uniformly convexr Banach space with a nondecreasing

modulus of uniform convexity n : (0,2] — (0,1] and let w be such that
Va,y,2€ X,beNje > 0(||z||, |1zl <0 Az —y|| Swl(be) = (z,y)s < (z,2)s + €) .

Let further ¢ be a modulus of uniform continuity for |A - | and let n be as in Lemma

7.2.1. Let further x € domA with v e Ax and b € N* with b = ||z||, ||v]|. Then

<€)

r— Jix o =S(s)z
t s

Ve > 0\#,? € (0, pa(e, b,m,n,w, 0)] (

where

904(57 b7 nn,w, 90) = min{(:Ol (5/3’ b7 n, 90)7 902(5/3’ bv n,w, 90)7
©1 (n(min{€7 2})8/87 b7 n, @)7 \/902<€/47 b7 n,w, @)7
n(min{e, 2})e/16b, 1, \o/2}

with o1, s as in Lemmas respectively.
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Proof. Let € be given. Then either |Az| < /2 which implies

r—Jiz oz —S(s)x

t S

<e€

as above for any such ¢ and s or |Az| > /2 where now the result is implies for any
S /
t? ; € (O7 @4(57 ba 5/27 n,n,w, 90)]
by Lemma with ¢ = ¢/2. O

Finally, a combination of these two quantitative results yields a quantitative version
of the theorem of Plant.

Theorem 7.2.11. Let X be a uniformly convex Banach space with a nondecreasing

modulus of uniform convexity n : (0,2] — (0,1] and let w be such that
Vo,y,z€ X,beN,e > 0([[z], ||z <0 A flz =yl < w(b,e) = (z,9)s < (z,2)s +€).

Let further ¢ be a modulus of uniform continuity for |A - | and let n be as in Lemma

7.2.1. Let further x € domA with v e Az and b e N* with b > ||z, ||v]|. Then

Ap
Ve > OVt € (0, P(g,b,m,w,p,n)] (HJt ’ S(t)x” < €>

t

where
O(c,b,m,w, @,n) := (min{ps(e/2,b,1,1,9), ¢a(/2,b,1,n,w,9)})?

with p1 - p4 as well as ¥ defined by

©1(g,b,m, @) := min{p(e, b+ 2n + 3n?)/b, \o/2},
w(2b,¢)

1/)(67 baw) = 2—b7

wa(e,b,m,w, @) 1= (e min{p;(e/2,b,n, p), \o/2}/4,b + 2n + 3n*,w),
ws(e,b,m,m, ) := min{e1(e/2,b,n, ), @1 (n(min{e/20, 2})e /4, b,n, @),
p1(e/4,0,n, 9), Mo/2},
a(e,b,m,n,w, ) := min{pi(e/3,b,n, ), pa2(e/3,b,n,w, ),
p1(n(minfe, 2})e/8,b,n,¢), v/ @a(e/4,b,n,w, ),
n(min{e, 2})e/16b, 1, A\g/2}.
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Proof. Using the triangle inequality, we have

| = S(t)al _
t

r—Jiw = Jum v—Jur x-St

t Vit Nz t

Then, for t < 1, we have t < v/t and t/A/t = \/t so that for t < ®(e,b,n,w, p,n), we

obtain

e — Syl _ _
t

using Lemmas [7.2.7] and [7.2.10] O]

Remark 7.2.12. While the above result uses the construction of ¢; from ¢ exhibited in

Lemma [7.2.1] it is clear that if ¢ is any other rate of convergence for ||Ax| to |Azx|

as t — 0, the above result nevertheless remains valid.

7.3 An analysis of Reich’s result

Similar as in the context of Plant’s result, in this section we fix a Banach space X and
an accretive operator A that now satisfies the range condition (RC). As before, let S
be the semigroup on domA generated by A using the Crandall-Liggett formula. The

proof for Reich’s result now proceeds by establishing

t—00

lim HJ;—'CE” = d(0,ranA)

and concluding from this that Jiz/t is Cauchy for ¢ — oo. This result is then in
turn used to conclude the claim. While Reich actually establishes his result even for
z € domA, we here focus for simplicity on the case where x € domA. As mentioned in
the brief outline at the beginning of this chapter, all the following results in the context

of Reich’s theorem take place for an operator A which satisfies the full range condition
(RC) for the closure of the domain (recall Chapter |4]).

The main object used in these proofs is the concrete value
d := d(0,ranA) = inf{||y|| | y € ranA}

and for the quantitative results, the logical methodology implies (see the later logical
remarks for a discussion of this) a dependence on a function f witnessing the above

infimum quantitatively in the sense that f : R.q — N satisfies

Ve > 03(y, 2) € A(llyll, 2] < f(&) A Izl —d < ).
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The proof of Reich’s result then proceeds by a case distinction on whether d > 0 or
d = 0 but, as before with the quantitative analysis of Plant’s result, this case distinction
can be smoothed as will be exhibited later. We at first begin with the following result
which provides a rate of convergence for the limit ||J;z|| /t — d for t — oo (which can

be obtained as the sequence is monotone).

Lemma 7.3.1. Let x € domA with v € Az and b € N* where b > ||z|, ||v||. Suppose
that f : R.og — N satisfies f(e) = f(0) fore <0 and

Ve > 03(y, 2) € A(llyll 2]l < fe) Allzll —d < ¢

Then we have

Ve > OVt = ¢(e, b, f) (’M - d‘ < 5)
where - )

Proof. As Ayx € AJyx for any ¢ > 0, we have d < ||A;z||. Let € be given and let z € Ay
such that ||z|| —d < £/2 and ||y|, ||z|] < f(/2). Then using Proposition [3.3.3] (7), we

have

[Az]| < | A — Ayl + ([ Ayl

2
< = o —yll+ 2]

< 2+ 1(/2) {(5/2)) +d+¢e/2.

Thus, for t > (e/4(b+ f(¢/2)))"!, we have

2 2
| Az]| < (6/481;82;;)1 vdte2<d+e
Now, for t > (¢/8(b+ f(£/2)))~!, we obtain
Ui _ f o U b gy g
<My Ay —a
<e¢

ast = (/8(b+ f(g/2)))~! and thus ||Az| —d < /2 as well as t > (¢/2b)~! and thus
|zl /t < e/2. O
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The following result is a quantitative version of the well-known result due to Reich
[173] that d > 0 implies that ||J;z|| — oo for t — 0 and = € domA.

Lemma 7.3.2. Assume that d = D for D € R.y. Let v € domA with v € Ax and
be N* where b = ||z||, ||v||. Then we have

VK > 0¥t > (K, b, D) (|| = K)

where b K
+
K,b,D) := .
d}( 9 Y ) D
Proof. Suppose the claim is false, i.e. there is a K and a t > (K, b, D) such that

||Jiz|| < K. Then, we have

\|Jex — JiJix|| < |Adpx]
< |z — Jux| /t
<(b+K)/D'b+ K)
D.

N

Thus ||A;Jiz|| < D < d which is a contradiction as A;J;x € ranA. O

Lemma 7.3.3 (essentially Reich [174]). Let X be uniformly convex with a modulus of
uniform convexity n. Then, for e € (0,2], we have 2n(e) < 1—{y, j) for all j € Jx with
2]l = llyll = 1 and ||z —y|| > €.

Proof. Let z,y and j € Jx be given with ||z|| = ||y|| = 1 and ||z — y|| = . Then

=+ y
2

<1-n(e)
by definition of 1. Thus as (z,j) = ||z||* = 1 and ||j|| = ||z| = 1, we have
12+ 1/2y, j) = (& +9)/2,7) < 1 = n(e)
which yields the claim. O

Lemma 7.3.4. Let X be a uniformly convex Banach space with a modulus of uniform
convezity n : (0,2] — (0,1]. Suppose that [ : R.q — N satisfies

ve > 03(y, 2) € A([[yll, Izl < fe) A [zl —d < e).
Let € > 0 be given, assume that D € R.g with d = D and let z € Ay be such that

Ilz]] < d + 2dn(min{e/2,2})
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as well as ¢ = ||y||,||z||. Let x € domA with v € Az and b € N* with b = ||z, ||v]|.
Then, for any t = p1(e,b,D,c,n, f):

()01(5ab7D7c777af) = maX{’l?D(C—Fl,b,D),’l?b ((§+1) c?b7D)7

z Jix

_|_
2l 1]

~

where

18
. (D(Qn(min{s/Q,Z}))Q’b’ f> }

<D@MWNUZ%W>A@+®7

18
with ¢ defined as in Lemma|[7.5.1) and ¢ as in Lemma

Proof. As Ayx € AJix and as A is accretive, there is a j; € J(y — Jyx) such that

(z — Az, jiy = 0. Therefore we have

< z Jt >> <At$ Jt >
1211 ly — Jex|| 2] Mly — Jel|

for any ¢ such that ¢t > ¢(c + 1,b, D) as then ||J;z|| > ¢ which implies y # Jiz and
z # 0 follows by ||z]| = d = D > 0. Then further

Jt
Jxr —x, ——— Y < ||y — || — ||y — Jex|| ,
(o g < o=l =y

by (an argument similar to the proof of) Proposition and we thus obtain
My =

] J,
<Axﬂ_> . Hy _J
ly — iz t ot t

o el Nyl _ My ==l
t t t

Thus for any ¢ € R.y and any

t = max {(6/3) " (c+b),(6/3,b, )},

we obtain from Lemma [7.3.1] that

<Z jt >> d - 1)
=l ly = Jell /-~ M=l =]
1 o
=

~ 1+ 2p(min{e/2,2}) 2|
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Now we get 1 — (2n(min{e/2,2}))* + (2n(min{e/2,2}))* = 1 and therefore 1 = (1 +
2n(min{e/2,2}))(1 — 2n(min{e/2,2})) + (2n(min{e/2, 2}))* which yields
1 , (2n(min{e/2, 2}))”
T apmnie/z oy L 2nminde/ 2 )+ .21
(2n(min{/2,2}))*

> 1 —2n(min{e/2,2}) +

3
Thus for
—1
D (2n(min{e/2,2}))* D (2n(min{e/2,2}))”
> ) (D20minte/22)7\ (D @yingerz2)? |
18 18

we obtain (using z € ranA) that

(2n(min{e/2, 2}))*

2n(min{e/2,2}) +
<HZH ly — Jt$\|> 3
_ D (2n(min{e/2,2}))"
6z
2n(min{e/2,2}))?
> 1 — 2n(min{e/2, 2}).
Then in particular
‘ z Y= Jix €
20 My = Jexll]] 2
by Lemma [7.3.3| for all such t.
Now, secondly:
H y—Jhr [yl ‘ [ Jexl
< +1-—
ly =l Tl |l S Tl = 15Tl ly — Juz|]

For § > 0and t = ¥((6~' + 1)¢,b, D), we immediately have

bl e _,
Myl =Nl Tl (671 + Ve —lyll
by Lemma [7.3.2] Similarly, we get for ¢ > ¢((67! + 1)c,b, D), as (67! + 1)c = § ¢,
that

| B c _ cl s
Iyl + |zl ~ |yl + 6~ ~ d-te

Further, we have

S [ I /% B
o+ 1eall = Ty = eall = Tl = 17l
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and thus for t = ¥ ((67* + 1)¢, b, D), we get

[z

| < 0.
ly — Jex|

'1_

Combining the above, we have that for any ¢ > ¢(((¢/4)~' + 1)¢, b, D):
y— Jix Jix
ly = Jux| |||
Thus, finally for t > ¢1(¢,b, D, ¢,n, f) we obtain the desired result by triangle inequal-
ity. 0

‘ €

Lemma 7.3.5. Let X be a uniformly convex Banach space with a modulus of uniform
convexity n : (0,2] — (0,1]. Suppose that f : Rog — N satisfies f(e) = f(0) fore < §
and

Ve > 03(y,2) € A(llyll, llzll < f(e) A llzll —d <€)
Let € > 0 be given, assume that E € N*, D € R.g where E > d > D. Let v € domA
with v e Ax and b € N* where b = ||z||, ||v||. Then, for any t,s = p4(e,b,D,n, E, f):
' Jsr Jiw

S t
©5(e,0,D,n, B, f) := max{p(e/3,b, ), p1(e/6E,b, D, f(2Dn(min{e/12E,2})), 1, f)}

with ¢ as in Lemma[7.3.1) and @1 as in Lemma[7.3.4)

Proof. We have that there exits z € Ay such that ||z]| < d + 2dn(min{e/4,2}) with
lyll, 2] < f(2Dn(min{e/4,2})). Thus, using Lemma [7.3.4] we have that for ¢t,s >

@1(5/27 bv D7 f(2DT](miIl{6/4, 2}))7 n, f)

~

where

Jx J,x z Jx ‘ H z J,x ‘
- + — <
[ Jszl| ([ S| =)l ([Tl Izl [ ex]
Therefore, we in particular have that
‘ Jsv S|l H Jsx || Jsx|| i | Jox| ‘
S [Jsz|| s [ Jexl| ¢
Jsx || Jsx|| Jsx: H Jsx ”
< — d|| + d— d
HHkﬁH s |5 [ Jsxl| = | el
H Jt.fl; Jtl’ HJt.’L'“ ‘
HﬁxH I
[Sszl| ‘ “ Jyx ‘ ' [ /e
< +d +|d———
‘ [Tzl [ el] t

Thus, for t,s = ¢4(e,b, D, n, E, f), we get the claim by Lemma together with the
above. O
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This result, which presents the quantitative version of the Cauchyness of Jyz/t in
the case that d > 0, can now be smoothed to omit this assumption. For this, note that
through the trivial proof of the case of d = 0, one obtains the following quantitative

version of the full result:

Lemma 7.3.6. Let X be a uniformly convex Banach space with a modulus of uniform
convezity n : (0,2] — (0,1]. Suppose that f : Rog — N satisfies f(e) = f(0) fore <§
and

Ve > 03(y, 2) € A(llyll, =l < fle) Allzll —d < ¢).

Let € > 0 be given, assume that E € N* where E > d. Let x € domA with v e Ax and
be N* where b = ||z|| ,||v||. Then, for anyt,s = ps(e,b,n, E, f):

i

p2(e,b,m, B, f) := max{p(e/4,b, f), 0(/3,b, f),
$1 (5/6E> ba 5/47 f(577(min{5/12E7 2})/2)7 , f)}

Jox  Jix
S t

<e¢

where

with ¢ as in Lemma and ¢y as in Lemma[7.5.4.

Proof. Suppose that d < /4. By Lemma [7.3.1} we have that

for any t = ¢(e/4,b, f). Thus in particular we have that ||Jix| /t < €/2 for all such ¢

and thus

bl

Jsx Jtl’ JS.I’ th
S e +{[ 2= <e
s t S t
for all t,s = p(e/4,b, f) in that case. Otherwise d > £/4 and thus the above result
holds for ¢, s = (e, b,e/4,n, E, f) by Lemma with D = ¢/4. O

The rest of the proof given in [I74] now relies on the use of the limit —v, of Jyx/t for
t — o0. By the above Lemma, this limit exists as X is complete. While we emphasized
that this limit a priori depends on the starting point z, the following lemma (which
provides a concrete quantitative version of Lemma 3.2 given in [I74]) shows that this

limit is actually unique, i.e all the v, coincide.
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Lemma 7.3.7. Let X be a uniformly convex Banach space with a modulus of uniform
convezity n : (0,2] — (0, 1] with (w.l.o.g.) n(e) < e. Suppose that f : Rog — N satisfies
fle) = f(0) fore < § and

Ve > 03(y, 2) € A(llyll 2l < fle) Allzll —d <€)

Let € > 0 be given, assume that E € N* and D € Roy where E > d > D and let z € Ay

be such that
€
< 2 in{ ——— 2 )
2|l < d+ 2dn (mln { 6E+ 1) })

If x € domA, then ||z — v,|| < e.

Proof. We write . = 2dn(min{e/16(E + 1),2}). Then, for ||z|| < d + J., we have

J,
t | Jex| ¢
< |z ——2| + Z 4+
(] 2l ezl ¢
d J, J,
< |zl —d+ H P I Jel ’
2l (et
d Jex || x| '
<0, + H z+ )
2" |l t
Similar to before, we have
‘ d Jix || x| d z ||th||’ z || Juz|| Jyx HJtJ}H’
2 S|l t 2 =l t =] ¢ | Jex]| ¢
_ ‘d_ [ Jexl[| | ISzl || 2 Jix '
t N 11 1 |
From this we obtain that
thE g
24+ | <64 -
t 4

for all

t > max{p(min{e/8,1},b, f), ¢1(e/8(E +1),b, D, ¢, n, f)}
where ¢,b € N* are such that ¢ = ||y||, [|z]| and b = ||z, ||v]| for v € Ax as, for one,
t = ¢(min{e/8,1},b, f) and thus

_ ezl
t

d < min{e/8, 1}

by Lemma as well as HJ?” < d+1 < E+1 and, for another, t > ¢,(¢/8(F +
1),b,D,c,n, f) and thus

JtI
[ Jex]|

[ Jex|
t

G
I2]]

‘ < /8.
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by Lemma [7.3.4, Then the properties of n imply that J. < ¢/4 and thus
JtQZ

for all such ¢t. Then
Jt$

th
z+ =
t t

|2 —ve|| < Vg

Kl

for all £ and thus choosing

t= max{go(min{a/& 1}7b7 f>’§01(6/8(E + 1)7b7 Dac7n7f)7902(6/27b7777 E7 f)}

implies ||z — v, || < € by definition of v, (which yields that s is a rate of convergence
for Jyz/t towards —v,) and Lemma [7.3.6] O

Lemma 7.3.8. Let X be a uniformly convex Banach space with a modulus of uniform
convezity n : (0,2] — (0, 1] with (w.l.o.g.) n(e) < e. Suppose that f : Rog — N satisfies
fle) = f(0) fore < § and

Ve > 03(y,2) € A(llyll, llzll < fle) A llzll —d <€)

Let € > 0 be given, assume that E € N* where E > d and let z € Ay be such that

|2]| < d + min {gn (min {m 2}) /4, 6/8} .

If v € domA, then ||z — v, || < e.

Proof. Let € be given. Then either d < ¢/8 which, since ||z]| < d + £/8, implies
l|z|| <e/4. For
t = max{p(c/4,b, f),p2(e/4,0,m, E, f)},

we then get

12 = vall < 2 + [lve|

JtiU

J,
il ., he

<||z||+d+’d—

< e

Otherwise we have d > ¢/8 and thus, we get the same result for

€ €
< i —_ 2 4 < 2 ] _— 2
lz]] < d +en <mm{16(E+1), })/ d + 2dn (m1n{16(E+1), })
by Lemma with D = ¢/8. O
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Theorem 7.3.9. Let X be a uniformly convex Banach space with a modulus of uniform
convezity n : (0,2] — (0,1]. Suppose that f : Rog — N satisfies f(e) = f(0) fore < §
and

Ve > 03(y, 2) € A(llyll Izl < fle) Allzll —d < ¢

Assume that E € N* where E = d and further that x € domA with v € Ax and b € N*
with b = ||z||, ||v||. Then

A
Ve > 0Vt = D(e, b1, E, f) (”Jt =50 5>

t

O(c,b,n, B, f) := max {g (b 4 f <min {577 (min {% 2}) /32, 5/64})) :
gf (min{en @m{%g}) /32,5/64}) ,

902<8/27b7777E7f)}

with

o(e,b, f) = w’
W(K,b, D) = b;f{

()01(€7 b7 'D7 077]7 f) ‘= max {¢(C + 17b7 D)7¢ ((é + 1> c? b7 D) )

(p (2n(min{e/2. 2}))2) T

18
. (D(Qn(min{e/Q,Q}))z’a f> }

18
902(57 bn, E, f) = max{gp(g/él, b, f)u (:0(6/37 b, f)7
¥1 (5/6E7 ba 5/4a f(577(min{5/12Ea 2})/2)a n, f)}

Proof. Given ¢, there are z € Ay such that

||| < d + min {gn <min {% 2}) /32, 8/64}

and such that ||y||, ||z]] < f <min {67} (min {%,2}) /32,8/64}). Now, we in par-

| <

ticular have [|A,J,al| < |AJya| < ||Aqa] for all @ € domA and thus HAt/nJZ/ny
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HAt/” yH Iterating this gives

| AynTinyl] < [[Aguy]] < 2] < d + min {gn (min {% 2}) /32, 5/64}

for all i € [0;n — 1]. Now we get

ATy — oo < &/8

< ¢/8 for all

for any i € [0;n — 1] by Lemma |7.3.8/ which implies H( J/ny)/ Vg

t and all n as

o Jz‘ Jl+1 n—1
21:0 1 t/n t/n 2

A "o Vs
t ‘ nt/n n
ne1 . J’H;Ll
i (% a UI)
N n

—_01 HAt/thi/ny — Ve

n

Thus
< /8

_fo

e
t

for all ¢.

Then in particular

=
t

< vl
t

ol ||y =Sty _
t t

for all ¢. In particular, for

> (e/8)7\f (min {gn (min {% 2}) /32, 5/64}) ,

we have (s
H% + v, || < eg/4.
Continuing, we obtain
S(t)x S(t)y |z =yl
R S < —_— 7 - - <
I N
which implies

Vg

"
t

<eg/2
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for all

t > max {(5/8)_1f (min {57] (min {%, 2}) /32, 5/64}) ,
(e/4)~" (b 4 f (min {577 <min {% 2}) /32, 5/64})) }

Finally, we get

HS(t)m— Jrx - HS(t)x ol e+ Jiw
t t t
and thus
S(t)x — Jux <
t
for all t = ®(e,b,n, E, f) by Lemma and the definition of v, (which yields that
9 is a rate of convergence as before). m

7.4 Logical remarks on the above results

Lastly, we want to outline the additional modifications to H necessary for formalizing
the proofs of the theorems of Plant and Reich. These modifications in that way give
rise to the systems and bound extraction results underlying the extractions outlined in
this chapter. In that context, we here in particular move away from the use of arbitrary
real errors € and again consider representations of errors via natural numbers through
27k,

At first, both results are formulated for points x € domA and by the logical method-
ology, this stands for the existential assumption Jy(y € Az) which yields that at least
a priori the extracted rates will in particular depend on an upper bound on the norm

of this witness which is also the case for the above rates.

The second prominent assumption in both results is that of uniform convexity which
was quantitatively treated above via the modulus of uniform convexity 7. Formally,
this can be achieved by adding an additional constant n of type 1 together with a
corresponding axiom stating that it represents a modulus of uniform convexity for X

(see [96] for more details):

ZL‘+XyH
2 X

¥a X,y (Il Myl <z 1 | >p 1= 270 o —x il <a 27).
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To really formally encapsulate the previous proof where 1 was applied to various reals,

one would first have to extend 1 to Q n (0, 2] via
77(€> = 2—n(mink[27’“<5])

for e € Q@ n (0,2] and then move to rational approximations of the reals in question.

We avoid spelling this out any further.

We now first focus on the theorem of Plant. The main object featuring in Plant’s
proof (and consequently in the above results as well) is the limit functional |Az|. The
use of this functional can now be emulated in the context of H; by extending the
underlying language with a further constant of type 1(X) which we denote by |A - |
(where we correspondingly denote |A - |x by |Az| for simplicity). One first natural
axiom for this constant is induced by the natural bound on |Az| by ||v|| for v € Az

witnessing x € domA:
VX v M (ve Ax A 0 <g X <g Ao — || Axz||x <g |Az] <g ||v]x)- (L1)

As shortly mentioned in the above quantitative results, the convergence of || A x| to
|Az| for z € domA as A — 0 is “equivalent” to the lower semi-continuity of |Az| on
domA. This vague “equivalence” can now be made precise through the system H;'+(L1)

in the following sense:
Proposition 7.4.1. Over H; + (L1), the following are equivalent:
1. ||Awz|| — |Ax| while t — 0% for all x € domA, i.e.

V¥, k°3n° (z € domA — |Az| — ||Ag-nz| y <r 27F);

2. lower semi-continuity for |Ax| for all x € domA, i.e.

VEY, 2% ImOvy X (x € domA A y € domA

Ao —x yly <2 27 — |As]| - [Ay] <= 27F).

Proof. From (1) to (2), let € domA and k be given. For y € domA, we have

|Az| — |Ay| < [Az| — [[Axy]]
< |Az| = [[Axz ]| + || Axz ]| = [[Axyll|
< |Az| = [[Axz]| +2/A |z =yl
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for any A € (0, \g). Now, using (1) we pick n such that |Az| — || As-nz| < 27*+D and
then pick m = n+k+2 such that 21 ||z — y|| < 2=**V which yields |Az|—|Ay| < 27F.

From (2) to (1), let x € domA and k be given. Using (2), we pick an m such that
|Az| — |Ay| < 27% for all y € domA such that ||z — y|| < 27™. Now, for n > b + m for

b = ||v|| for some v € Az, we then get
[ = Jonz]] < 27" [Jof| < 27
which in particular implies
|Ax| — || Ay < |Ax| — |AJy-nz| < 27F
using Ay—nx € AJy-n. O

In that way, the convergence of || A z|| to |Az| on domA relates to an extensionality
principle of |A - |. Now, in the context of set-valued operators, these continuity and
extensionality principles can be logically complicated and their study actually gives
rise to a hierarchy of fragments of extensionality with a corresponding hierarchy of
continuity principles with various intricacies (which will be discussed in Chapter .
In any way, as in the case of the functional (-, -)s, the logical methodology based on
the monotone Dialectica interpretation now implies the following quantitative version
of the statement of item (2): under this interpretation, the statement (2) is upgraded
to the existence of a “modulus of uniform lower-semicontinuity” which, as with (-, ),
by the uniformity on z induced by majorization, is essentially a modulus of uniform
continuity. Concretely, this uniformized version of item (2) can be formally hardwired
into the system by extending it with an additional constant ¢ of type 0(0)(0) together

with the axiom
W B2,y w0 (we Avave Ay a el Tyl el ol <e b
Aa—xylly <2 27709) - [Ao| - |4yl < 27). (L2)

Under this extension, Lemma is then the natural extraction of a corresponding
rate of convergence from the above equivalence proof, under this (therefore) necessary
assumption of a modulus of uniform continuity for |A-|, following the previous metathe-
orems. Note however that these metatheorems in general, through this treatment of
|A-|, imply a dependence of the extracted bounds on a majorant for the constant |A- |,

i.e. on a function f : N — N such that

|z|| < b— |Az| < f(b) for all x € domA.
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Only under this additional dependence on a majorant for |A-| do the previous metathe-
orems contained in Theorems {4.4.6/and {4.4.7 extend to H? + (L1) + (L2).

Here, we shortly want to make a note on the strength of the existence of such a
majorant. For this, recall the notion of majorizability for set-valued operators from
Chapter : an operator A : X — 2% is called majorizable if there exists a function
f N — N such that

Vo e domA,be N(||z|| <b—3Jye Az (ly]| < f(b))).

As discussed in [165], there are non-majorizable operators and so the assumption that
A is majorizable is a proper restriction. In particular, note now that if A is such that
the minimal selection A°x = argmin{||ly|| | y € Az} exists, then |Az| = ||A°z|| and
thus majorizability of A is equivalent to majorizability of |A -|. Thus, while in general
potentially a bit weaker, the assumption of majorizability of |A - | in particular also

seems to carry additional strength similar to that of majorizability of A in most cases.

However, as apparent from the result in Lemma [7.2.1] such a majorant however
does not feature in the extracted bounds and we actually find that such a majorant
also does not feature in any of the other quantitative results in the context of Plant’s
theorem. While this seems to be a particular coincidence in the context of Lemma
there is actually a logical reason which guarantees this “non-dependence” a priori
for all the other results. Concretely, the reason is that all the other proofs analyzed
have the two crucial properties that, for one, they can be formalized under the assump-
tion of a rate of convergence for || A z|| toward |Az| which can similarly be added to
the system and that, for another, they are “pointwise” results in x in the sense that
they do not require knowledge of |A - | for any point other than z. In that way, instead
of following the above route of formalizing the whole functional |A - |, one can add two
constant representing this “particular” x and a witness v € Ax as well as a constant | Ax|
of type 1 for this single value of |A - | at the constant x and a constant ¢ representing
a rate of convergence for ||A x| to |Az| for this single constant x. Then, the other
proofs still formalize and in particular depend only on majorants for ¢, =, v and |Ax|
and the one for the latter three can be assumed to coincide and to be represented in
the above results by b. In particular, the strong assumption of majorizability of |A - |
can be avoided a priori in that way. That the extracted rates are true for all x then
is drawn as a conclusion on the metalevel as the additional constants were generic. In

this way, this also provides a logical insight on why all the other results in the context
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of Plant’s theorem remain true if ¢, represents any other rate of convergence besides
the one constructed from the modulus of uniform continuity for |A - | as commented on

before.

As a last comment on the logical particularities of the proofs towards Plant’s the-
orem, we want to note in the context of Miyadera’s lemma from [I48] that the only
properties of (-, ), required in the proof given in [148] are the properties discussed
in Section . Further, by the fact that the proof given by Crandall in [48] of his
respective result actually only invokes Miyadera’s lemma for x € domA and for some
¢* € J(x — ), this ¢* can thus for simplicity be assumed to coincide with j,,, for
v € Az witnessing x € domA and gy, € Axg as in Miyadera’s lemma. So, combined we
have that this use of Miyadera’s lemma in the context of the proof of Plant’s result

immediately formalizes in the system H + (+).

We now consider the theorem of Reich (which features less logical subtleties). The
main object featuring in Reich’s proof is the value d, the infimum over norms of all
elements in the range of the operator. Internally in /7, this value can be represented by
adding a further constant of type 1 which we, for simplicity, also denote by d together
with a further constant f of type 1 representing the witness for the monotone Dialectica

interpretation of the property
VikIy,z (z€ Ay A ||z]| —d < 27F)

expressing that d indeed is the said infimum. So, we can concretely facilitate the use

of d by adding the following two axioms for d:

Wyt ¥ (z€ Ay —> d <g ||zllx),

(d)
VE 3y, z <x f(k)1x (z€ Ay A |2y —d <g 27F).

The additional constants are immediately majorizable: f is majorized by fM as it is of
type 1 and d is just majorized by (n), for n > ||dx||. Therefore the bound extraction
theorems extend to this augmentation of H’ in an immediate way where, in particular,
the extracted bounds will in general depend on an upper bound on d as can be seen

from some of the bounds extracted in the context of Reich’s theorem.

The second particularity of the formalization of the proof of Reich’s result is that

one actually needs to work with the limit of Jyx/t, called —v, in the above, as a
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concrete object. In the context of the limit operator C' however, we can formally deal
with this object in the context of the formal systems underlying this extraction rather
immediately by utilizing the previously extracted rate ps(k) (where we for simplicity
omit the other parameters for now and switched to a representation of errors via 27%)

to then address the limit v, in the system by considering

()

In particular, with this definition of v,, the other proofs in the context of Reich’s the-

orem immediately formalize.

As a last logical comment, we shortly want to discuss on the particular use of the
law of excluded middle (and thus of classical logic) in the proofs for the results of Reich
and Plant and how this features in the extractions, considering the fact that rates of
convergence were nevertheless extracted in the absence of monotonicity. This in fact
relates to the circumstances of the (previously called “smoothable’) case distinctions.
Namely, as can be observed by closer inspection of the corresponding proofs, the only
part where classical logic actually features in the proofs of Reich and Plant is through
the use of multiple case distinctions which, in the case of Reich’s result, takes the form

on dividing the proof between whether
d=0ord>0
and, in the case of Plant’s result, takes the form of dividing the proof between whether
|Az| = 0 or |Az| > 0.

The deductions of the main results from both parts of this case distinction are essen-
tially constructive (where the = O-case is almost trivial in both cases) and in that way,
the constructive metatheorems actually allow for the extraction of a rate of convergence

from the > 0O-cases as the corresponding results are of the form
d>p 0> C=V"(d>r 27— C) and |[Az| >g 0 > C = V" (|[Az| 2 27° — O)

where C' is any of the respective convergence statements. These rates will moreover

depend on the parameter c. For the = 0-cases, being of the form

d=g0— C and |Az| =g 0 > C
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where C' is any of the respective convergence statements, we find that in these cases
one can actually find different constructive proofs (compared to the ones given in the

literature) of the classically equivalent but constructively stronger statements
3° (d <279 > C’) and 3¢”° <\A$| <R 27 — C) :

These new proofs of said statements (which were presented and analyzed in the previ-
ous section) are again essentially constructive so that the constructive metatheorems
guarantee the extraction of a rate again, now together with the extraction of an upper
bound on (and thus a realizer of) the value . The previously mentioned “smoothen-
ing” is now just a combination of these two cases by instantiating the former rate with

¢ = ¢ and combining the two resulting rates.



8 Proof mining for the dual of a Banach space
with extensions for uniformly Fréchet dif-

ferentiable functions

8.1 Introduction

In this chapter, we move away from the theory of nonlinear semigroups and strive to
extend the current logical methods used in proof mining so that they become appli-
cable to proofs which involve some of the most fundamental notions from convex and
nonlinear functional analysis, including the dual space of a Banach space and its norm
as well as uniformly Fréchet differentiable functions and their gradients and Fenchel

conjugates.

In more detail, since the first modern metatheorems of proof mining were developed
in [71) 95], a focus for applications of proof mining has been placed on the areas of
convex and functional analysis. Interestingly, one of the most fundamental objects in
the context of the latter, the continuous dual of a Banach space, has not yet received a
proper treatment (due to various difficulties arising in that context which will be dis-
cussed further below). Similarly, many if not most applications to convex analysis have
been concerned with fixed point iterations for nonexpansive maps and their cousins as
well as abstract monotone and accretive operator theory and so, also here, some of the
main objects in convex analysis have not been treated so far, in particular including
the gradients of differentiable convex functions as well as their Fenchel conjugates. In
that way, proof mining has so far missed out on some of the most promising areas
of applications which rely on these objects. For two prominent examples, we want to
mention the theory and applications of the prominent Bregman distances (going back

to the seminal work [22]) as well as the theory of von Neumann algebras/f]

'For the latter, an approach for extending proof mining methods to the context of tracial von
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Now, the main results of this chapter are logical metatheorems that quantify and
allow for the extraction of the computational content of theorems pertaining to the use
of the continuous dual of an abstract normed space together with the associated dual
norm. This is achieved by extending the systems currently in use for proof mining in
the context of normed linear spaces by carefully selected constants and corresponding
axioms that govern the use of the involved objects. In particular, a novel approach is
used in this context to circumvent some of the difficulties which are a priori present
when treating the dual space: The dual space is a concretely defined object relative
to the underlying normed space represented by, say, an abstract type X. Naively, ele-
ments of the continuous dual therefore live in the type 1(X) and, in that way, singling
out the continuous linear maps from all functionals of that type requires the use of
a predicate which is of high quantifier complexity and which thus makes essentially
all attempts at a direct specification futile if one wants to retain meaningful bound
extraction results as the high computational strength of the comprehension needed to
deal with the predicate would distort the complexity of bounds extracted from proofs
which discuss these objects only in an abstract way while not carrying any apparent
computational strength in the principles used in the proof. A second issue is that the
norm of the continuous dual is also a concrete object that derives from the norm of
the underlying space X via the use of a supremum over elements from this abstract
space and such suprema cannot be represented in the pure underlying language of the
systems commonly used in proof mining. We avoid these problems in the following
ways: Instead of specifying the continuous dual as the subspace of all continuous and
linear functionals of type 1(X), we present an abstract approach using an additional
abstract base type X* and then axiomatically specify that all elements of this abstract
space represented by X* behave like continuous linear functionals. However, there
are no axioms specifying that this abstract space really contains representations for
all elements from the continuous dual associated with X as represented by a set of
functionals of type 1(X). Instead, we only include a corresponding rule that facilitates
the closure of the space as represented by the new abstract type X* under functionals
which are provably linear and continuous. In this way, our approach is intensional
(and in some way similar to the treatment of set-valued operators in the context of
proof mining developed in [165] as will be discussed later). This intensional treatment

of the dual then allows us to utilize a proof-theoretically tame approach for treating

Neumann algebras has recently been given in [I57].
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suprema over (certain) bounded sets in abstract spaces, developed in the first part of

this chapter, to provide defining axioms for the norm of the dual.

As discussed before already, the success of applications of proof mining to concrete
mathematical proofs in many ways relies on a modularity of this logical approach in
the sense that the main logical systems can be extended and adapted with specific
mathematical objects or notions and associated axioms to fit specific problems, all the
while guaranteeing that our metatheorems still hold. As examples of such extensions,
we shall discuss how one can utilize the new system for the dual of a normed space
to provide a novel treatment of the reflexivity property of a Banach space (in certain
circumstances) and with that the second dual. Further, we extend these systems to
deal with various notions from convex analysis that utilize the dual of a normed space,
including uniformly Fréchet differentiable functions and their gradients as well as cor-
responding Fenchel conjugates, where in particular the treatment of the latter is made
possible by again utilizing the intensional approach to the dual which allows for a treat-
ment of the supremum defining the Fenchel conjugate via the proof-theoretically tame
approach to suprema over bounded sets mentioned before. So also in those cases, we
find that the intensional approach provides mathematically strong systems for treat-
ing very concrete objects in the context of systems that allow for bound extraction
metatheorems which accurately reflect the complexity of the principles used in proofs

by the complexity of the extracted bounds.

The applicability of the metatheorems for these systems as established in this chap-
ter will then in particular be justified by the fact that they allow for many new case
studies to be carried out in the areas discussed above and examples for such applica-
tions will be given in the next Chapter [0 However, we want to also mention the works
[T, [7, 12, 22) 38, 140, 83, 121, 19T], 213] as promising future applications as, by inspec-
tion of the proofs, they seem to be formalizable in (suitable extensions of) the systems
introduced here. Lastly, we also strongly believe that the general approach to suprema
over bounded sets introduced here as well as the tame intensional approach to the dual
space and to convex functions and their gradients and conjugates will be useful in in-
spiring further developments in the realm of the logical metatheorems of proof mining.
As an initial indication of this, in Chapter [10] we will extend the systems introduced
in this chapter to provide a suitable base for a treatment of monotone operators on
Banach spaces as introduced by Browder [28| [30]. Further, in Chapter |11 we treat
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the Hausdorff-metric in systems which are amenable to proof mining metatheorems by
using an intensional approach to the sets measured by the Hausdorff-metric together
with the tame approach to suprema over bounded sets presented here and we then
illustrate the applicability of this treatment in the last Chapter [12] where we provide

quantitative results on Mann-type iterations of set-valued nonexpansive mappingsﬂ

8.2 Proof-theoretically tame suprema over bounded

sets

In this section, we now want to present a way that suprema over (certain) bounded
sets in abstract spaces can be treated in the context of finite type arithmetic such that
one retains meaningful bound extraction theorems in the sense that the treatment of
the supremum in question does not result in any change in the computational strength
of extracted bounds (besides of that caused by the other principles used in the proof).
The presentation is conceptual and in that way to some degree informal. We will later
discuss concrete instantiating examples for suprema where such a treatment can be uti-
lized. In the following, we focus on the case of normed spaces and consequently work
over (possibly extensions of) the language of A“[ X, ||-||]. The same considerations can

however be immediately applied in the context of metric spaces too.

Assume for this that we have a predicate C'(x, p) specifying a subset of X (possibly
in an extension of the underlying language) in terms of external parameters p with types
0 = 01,...,0; from a second set specified by a predicate D(p). Write ol =o0p,...,00
as in Chapter [2l Then, stating for an additional term s of type 1(¢') that it represents
the supremum of a function f of type 1(g*)(X) over the set specified by C (if existent),
ie.

sup f(z,p) =g s(p) for all p= with D(p),
zX:C(z,p) - - - -

can be facilitated by two axioms: one stating that s(p) is an upper bound, i.e.

VP£7xX (D(Z_?) /\C(%B)—’f(l’aﬂ) <R 3(2_7))? (S>1

2Besides these examples listed here, we also want to mention that intensional methods together
with the tame approach to suprema over bounded sets may in particular be useful to treat the so-
called generalized Bregman distances recently introduced by Burachik, Dao and Lindstrom [33] and
that the approach to the dual space may be adapted to treat function spaces between general vector

spaces in order to treat associated operator algebras.
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as well as an axiom stating that the values of f(x,p) get arbitrarily close to s(p) over
the specified set, i.e.

VpZ (D(p) — Vk" 3™ (C(z,p) A s(p) — 27" <g f(z,p))). (9),

Remark 8.2.1. Note that it is a rather immediate consequence of (S), that s(p) also

satisfies the usual defining property of being a supremum in the sense that s(p) is the

least upper bound of all f(z,p) over the specified set, i.e.
vp?, Wk (D(Q) AM < S(B) — 32X (C(a:,]_y) AM <p f(:c,g))) , (+)

as by unraveling the quantifiers hidden in the real inequalities in the above statement

and prenexing accordingly, we get that (+) is in fact equivalent to

VpZ, M', k° 32, j° (D(p) A M + 27" <g s(p) — (C(x,p) A M + 277 <g f(z,p))),
(++)
and so, assuming M +27% < s(p), we pick an z using ()5 that satisfies s(p) — o~ (k+1) <

f(z,p). This z therefore also satisfies M + 2-**1) < f(z,p). So (++) holds true with
this x and j =k + 1.

In and of themselves, these schemes are not amenable to proof mining methods
without resulting in additional computational strength. We now want to discuss situ-
ations in which the above two axioms do become admissible a priori in the context of
bound extraction theorems (in the sense that they do not result in additional computa-
tional strength). In particular, we want to consider what happens if the set specified by
C(x,p) is such that every element x satisfies (not necessarily provably) that [|z[| < b(p)
for some additional term b of type 1(c'), i.e. the elements x such that C(z,p) holds
true are bounded in terms of the parameters p. In that case, the existential quantifier
in (5)5 becomes bounded and, after prenexing the inner quantifiers accordingly, the

statement can therefore be equivalently written as

Vp%, k"3z* <x b(p)1x (D(p) — (C(z,p) A s(p) — 27% <p f(z,p))). (5)2

Now, in the case of a quantifier-free C' and an existential D, the above statement
is of the form A exhibited in [76], [96] (and discussed before at various places, see e.g.
Chapter [3)) which is a priori permissible in the bound extraction theorems based on the
monotone functional interpretation. Even further, the statement is still of the form A
if C'is purely universal. In that case however, the boundedness statement (S5); can only

be rephrased in an admissible way if C' can be equivalently written as an existential
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statement or if the universal quantifiers can themselves be bounded.

By generalizing this pattern of the duality of the requirements on C' induced by
(S); and (S),, we can immediately exhibit a much larger class of statements which
are a priori permissible for C': the above approach indeed yields admissible ways of

phrasing suprema if C' can be simultaneously written as a formula of the form

Vay'3b, <o, ryay - . Yalr3b, <, Tpty ... a VD (T,p,ay, ., 8y, 0,5, 0y, C)

) =n) = ) Zn) =

which is a kind of generalized form A which we, following Remark 10.24 in [96], denote

by A* as well as equivalently as a formula of the form

~

SN SV S~ N . >
3a,'Vby <z, T10, - .- 3GV, <z, Ty - G, 3D (2,0, 81, -+ 5 s by - - -5 by, ©)

y=mr» =1 Y Zmy =

which we want to denote by A*. In more suggestive words, the statements (S); and
(S)2 are a priori admissible in particular if C'is a ‘A;(A*)’ formula. Further, it is clear
that D can also be of the form A* as it is immediate to see that also in that case, both

statements (S); and (S)2 have a monotone functional interpretation.

However, in many cases the mathematical particularities of a situation at hand
actually yield that such a representation of C' is not even necessary for specifying a
concrete supremum in an admissible way since other facts about it sometimes allow
one to equivalently express that s(]_o) is an upper bound for the given function over
the given set in a way that does not require the above format of (S);. An immediate
example where the above formulation of (S); can be avoided is when the bounded
subset specified by C'is just B,(0) in, say, a given normed space (X, |-||) and D(p,r)
specifies a set of parameters p,r as before (now with types g,1). If f is additionally

extensional in that case, then the statement (S); can be replaced by

vrt,p?a” (D(p,r) — f(@p.7) <w s(p,7))

where we make use of the functional]

~ rT

- maxg{[zfly 7}

which allows for implicit quantification over elements from B,.(0).

3This functional seems to have first been used for r = 1 in [I11].
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In that way, it is in many cases in particular the complexity of D(p), specifying the
set of parameters, that is crucial for the admissibility of the above axioms. However,
even in situations where a natural D(p) is not of the right complexity, one can some-
times mitigate the resulting issues by providing a suitable quantifier-free intensional
description of the set specified by D(p) (potentially over an extended language). The
case that we want to make in this chapter (as well as in this thesis for that matter)
is that such situations, where the circumstances allow for an intensional treatment
of the set specified by D(p) such that the above treatment is applicable so that one
can deal with certain suprema in that context but one nevertheless retains meaningful
and mathematically strong systems that allow for the formalization of theorems and
proofs from the respective areas that one wants to treat, occur rather frequently in the
mainstream mathematical literature. We therefore want to make the case that this
perspective thus provides a suitable way of approaching many previously untreated
objects from (nonlinear) analysis. Concretely, the following sections will present some
prime examples for such situations where we will in particular see that, in the context
of an intensional formulation of the dual space of a Banach space, both the norm of
that dual as well as the conjugate of a convex function can be treated in such a manner
which results in proof-theoretically tame but mathematically strong systems for these

areas, unlocking these branches for methods from proof mining for the first time.

8.3 A formal system for a normed space and its dual

In this section, we will now define the respective extensions of A“[ X, ||-]|] that allow us
to deal with notions in the context of the dual space of the normed space represented
by X. For this, given a real normed space (X, |-||), we write X* for the continuous

dual of X and we write {(x, z*) for application of an z* € X* to an =z € X.

The main object associated with X* is of course the norm ||-|| that turns X* into a
normed space which in particular will be a Banach space. The norm on X* is concretely
defined as

[2*|| = sup{[<z, 2] | w € X, [|z]] < 1}

for z* € X*. Any other basic notions from functional analysis will be introduced as
needed throughout the chapter but we in general refer to [185] 202] for standard refer-

ences on the subject.
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The formal approach we choose towards the dual space is now as discussed in
the introduction: We treat the dual space as an intensional object and so, instead
of specifying the dual space as those objects with type 1(X) which indeed represent
continuous linear functionals X — R, we introduce a new abstract type X™* into the

language and correspondingly consider the extended set of types TX" defined as
0, X, X*eTXX*  preT = 7(p) e T¥Y".

This new type X* is used to abstractly signify a space which we consider to be the

dual space of X.

In and of itself, the immediate issue with this is that elements of type X™* have no
relationship with elements of type X. To restore the application character of elements
of type X*, i.e. that they shall represent functionals that can be applied to elements
of type X, we then need to further introduce a functional (-, -)x= of type 1(X)(X*) by
means of a new constant with suitable axioms that facilitates an abstract account of
this application in the sense that (x,z*)x« is a formal representation of the resulting

real value. Also, we need constants to restore the linear structure on X*.

Once these extensions are in place, we will be able to introduce the norm into the
system by another additional constant which is specified to be the true dual norm on
X* induced by the norm on X by using the tame approach to suprema over bounded

sets in abstract spaces outlined before.

Concretely, we thus add the following constants to the underlying language of the
system A“[ X ||-||] extended with the new base type X*:

1. +x# of type X*(X*)(X*),
2. —xx of type X*(X*),

3. -x# of type X*(X*)(1),

4. Ox= of type X*,

5. 1x« of type X*,

6. (-, )x= of type 1(X)(X™).
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For treating X* as a normed vector space, we add another constant [|-|| v« of type 1(X*)
for dealing with the dual norm. Indeed, the defining property of that norm being a
certain supremum now has to be appropriately stated by suitable axioms which we
obtain by instantiating the previous schemes (S5); and (S)s. The first part of the
supremum, i.e. that ||2*|| v« is an upper bound on the function values of z*, can be

equivalently stated by the axiom

*
v e (€ )] < Jla | 2] ) (*)1

essentially stating that a Cauchy-Schwarz type inequality holds. In that way, we avoid
the otherwise necessary task of removing the premise ||z|y <g 1 suggested by the
general scheme (S); as mentioned before (e.g. via implicitly quantifying over B;(0)
through the use of %1). For the other part of the supremum, i.e. the statement that
||z*|| v« is indeed the least such upper bound, we follow the general approach outlined

in the previous section by instantiating (S)s and we thus opt for the axiom
Vot K03e <x L (" e — 27 < @, 2%)xs]) (+)

expressing that (x,2*) gets arbitrarily close to ||z*|| on the unit ball. This axiom
(%)g is of the form A and thus a priori permissible when aiming for bound extraction
theorems. We will later see that the usual norm axioms can be immediately derived
from these two axioms. For now, just note that the intensional approach to X* via an
abstract type was crucially used here to provide quantification over elements from the
dual in a quantifier-free way and thus to guarantee that the previous predicate D can
be avoided so that the axioms resulting from instantiating the schemes (.5)1, (S)2 have

a monotone functional interpretation.

Remark 8.3.1. Similar to Remark in the context (x)a, it can be easily seen that
||z*|| 5« also (provably) satisfies the usual definition of being a supremum in the sense

that it is the least upper bound of all values |[(x, z*)x=|, i.e.
Vo X MY (M <g [|2¥]| o — 32 <x 1x (M <g [(z,2%)x]))

and, as also similar to the discussion in Remark that (*)q actually even (provably)

implies the following ‘instantiated’” version of that statement:
Vo X MY 3 <x 1y (M 4275 <g [Ja*]| o — (M + 270D < [z, 2)xe])) -

It should be noted that this consequence of (x), formalizes the defining property of
||z*|| x+ being a supremum in a way as it is often used in proofs from the literature

(which we will see in the various formal proofs given later).
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Using the norm, we can now provide an internal definition of equality on X* via
the abbreviation(
at =xx Y= |77 —x Y =R O

* X* g X*
for x**  y** .

We now turn to the axioms for the application constant {:,-)x= which essentially

just state that the map is bilinearﬂ

*

VX, x*X*,y*X cal, B (o, ax® +xx By*xx =g alx, x*)xx + Bx, y*)xx),

va’ m*X*7y*X*’a17 ﬂl (<ZE, az® X ﬁy*>X* —R Q{<l’, x*>X* - 5<$,y*>X*) )

VaX,yX a7 o, B ((ax +x By, %) xs =g ala, %) xx + By, 7)),

V$XayXax*X*7alaﬁl (<O{$ - X /Byaz*>X* —R Ol<l‘,l’*>X* - 5<y7$*>X*) )

Lastly, we specify the vector space structure of X* further, akin to [95] :ﬂ
The vector space axioms for + =, —x=, "x#, Oxx, Lxs W.r.t. =x=. (%)5

With this abstract approach, an issue of course arises regarding the connection
between the bounded linear functionals represented in 1(X) and the elements of X*.
Concretely, it is clear just by examination of the quantifier complexity that an axiom
stating that every element of 1(X) which is a continuous linear functional is indeed
represented by some corresponding element of X* will not be permissible meanwhile
aiming for bound extraction theorems due to the complex premise of linearity and
continuity (which is why we opted for an intensional treatment in the first place). In
that way, we resort to the next best thing available in this situation: we include a
rule guaranteeing that at least all terms of type 1(X) which provably belong to the
dual of X are represented by an element of X*. Concretely, we consider the following

quantifier-free linearity ruld]

Fy— (%%, 5%, ', 8" (t(az +x By) = atz + Bty) A ¥o¥ (Jtal <p M Jlly))
Fo — 3o <xx M1x«VaX (tx =g {z,x*)x*)

(QF-LR)

4Similar as in the context of A“[X, ||-||] with —x, we write 2* —xx y* for 2* +xx (—x=y*).

°In the following, we omit the types from -x# or -xs altogether, similar as with -x.

6In particular, by including 1x# in the list of constants in the description of this collection of
axioms, we want to indicate that these axioms include ||1x#|| % =r 1.

Similar to before, given objects z*,y* of type X*, we here write 2% <xx y* for [|z*| v« <r

1™l %
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where Fj is a quantifier-free formula and where ¢ and M are terms of type 1(X) and

1, respectively.

But of course even in the context of this rule, the treatment of X* can be regarded
as an intensional one and the type X* will also be interpretable by a suitable subspace
of X* (see also Remark later on). What we want to argue with this approach
outlined here is that full knowledge of X™* from the perspective of X seems seldom
necessary for many applications and it often suffices if the subset specified by X* is
populated “enough” (with “enough” being relative to a certain application). For this,
the above rule provides a minimal population of X* which we now further extend by
the following axiom which guarantees the existence of certain elements in X* that will
later be convenient to have so that we can develop the main aspects of the basic theory
of X* formally with ease. Concretely, this axiom codes a central consequence of the
Hahn-Banach theorem for X* by which it follows that J(z) # & for any x € X where
J is the normalized duality map of X, i.e. that for any z € X:

ot e X* (G, a*yxs = |l2f® = 7))

Instead of arguing that this statement is provable on the level of X using types 1(X)
and then using the above rule (QF-LR) to transfer the existence of such functionals to

the type X*, we can just state this inclusion via an axiom of type A:
Va3 e [lofly Las (Goue®xes =g [zl =w 2% ]%s) - (*)o

Definition 8.3.2. We define the system A“[X, |||y, X ™, ||| x«] for the abstract dual
space of an abstract normed space as the extension of A“[X, ||-||], formulated over the
extended language using the types TXX" by the constants +x#, —x#, -x#, Ox, Ly,
C,ox#, |||l x#, the axioms ()1 - ()¢ and the rule (QF-LR).

Remark 8.3.3. In the spirit of the above discussion preceding the rule (QF-LR), we
want to mention that the use of a new abstract type for treating X* intensionally can
be avoided while achieving a system of similar strength. Concretely, we could alterna-
tively have introduced a characteristic function x x* of type 0(1(X)) into the language
of A“[X,||-||] together with a constant for the norm on X*, now formulated using
the type 1(X) instead of X*. The respective axioms for the norm then could have
been formulated with a quantification over X™* facilitated by the additional premise
Xx#(2*) =0 0 for elements z* of type 1(X) (i.e. by similarly instantiating the schemes
(S)1, (S)2 but where one now uses xx= to instantiate D). In particular, in this con-

text, the arithmetical operations on X* would be definable by A-abstraction together
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with the arithmetical operations on X and R and application of elements from X* to
elements from X would not require a new functional but would just be represented by
a proper application of terms. This would be a kind of intensional treatment in the
spirit of the previous approaches to set-valued operators from Chapter [3] However, the
above approach via a new abstract type together with an application functional seemed
to us more adherent to the abstract character that the dual space seems to have in
many application scenarios (which is in particular further substantiated through the
perspective of the notion of dual systems from the theory of topological vector spaces
as will be discussed later in Remark and also seemed to confine a bit better to
the general abstract nature of the whole approach to normed spaces using abstract

types in proof mining.

In the following, for simplicity, we abbreviate A“[ X, ||-||x , X, ||| x«] by D¥. It can
be immediately shown that, in this system, the bilinear application form (-, -)x is non-
degenerate (in the sense of dual systems, see the later Remark [8.3.5)) and extensional:

Lemma 8.3.4. The system D“ proves:

1. The bilinear form (-, )xx is extensional, i.e.

*

Vo g e T (= oy A2t =xe gt — (@) xe =r (U, Y xs) |

2. The bilinear form {-,-yx= is non-degenerate, i.e.

(a) Vo~ (Vm*X* ((x,2*)x+ =r 0) > x =x 0X>,

(b) Yo" (YaX ((o, 2*)xr =g 0) — 2% =xx Ox).

Proof. We begin with item (1): Let z,y and x*, y* be given and suppose that x =y
as well as z* = y*. Then note that lv = v is a vector space axiom (and corresponding
instantiations for z, y, z*, y* thus follow from the axioms of A“[ X ||-||] and axiom (x)s)

and thus we have

[z, %) =y, y™) < [z, 2™) = (y, 2™ + [y, 2%) — . y™)
= Lz, 2%) — Ly, 2™)| + [Wy, %) — Ly, y")|
= [z — 1y, 2%)| + [{y, 12* — 1y*)|
= [z —y, 2] + [y, 2" — y")|
< llz =yl l*]| + [yl l=* — y*[| = 0
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where the the third line follows from axioms (*)s3 4, the fourth line follows from multi-
ple applications of the quantifier-free extensionality rule together with the previously
mentioned vector space axiom and the last line follows from axiom (x); and the as-

sumptions that x = y and x* = y*.

For item (2), we begin with (a). For this, we actually show
Vo k032 <xs ||zl 1xx ([<2, 2%)xe| < (27%)° > |lz||y < 27%).

Let x be given and pick x* via axiom (x)g such that ||z*|| = ||z|| as well as (z,2*) =
|z||*. Thus in particular if [(z, 2*)| < (27%)2, then ||z| < 27

For (b), we actually show
Vo ke <x Ly (Ko, 2% )xe] <o 22702 o [|a¥]| o <p 27F)

Thus, let 2* be given and suppose |z*|| > 27F = 2=+ 1 2=+ By axiom (x),
(recall Remark [8.3.1)), we get that there exists an x with ||z|| < 1 and such that
[, 2%y = 270D 4 2=(k+2) o [(z, 2*)| > 2- 27 (kF2), O

Remark 8.3.5. The above treatment of X* ties to the notion of dual systems from
the context of topological vector spaces (see e.g. [I87]). Concretely, a dual system is
a triple (X,Y, f) consisting of real vector spaces X,Y together with a bilinear form
f: X xY — R. The dual system is called non-degenerate if

1. f(z,y) =0 for all y € Y implies = = 0,
2. f(z,y) =0 for all z € X implies y = 0.

In that way, the idea of the above approach using axioms (x); - (*)5 is to essentially
axiomatize that X and X* with (-,-)x+ form a dual system. In particular, also the
idea of an additional application functional is influenced by that perspective.

The linearity rule (QF-LR) and the axiom (*)g then guarantee that this subspace
of the dual coded by X* is at least in a certain way “close enough” to the full dual
space and together with potential additional axioms they can serve to make sure that
the subspace is rich enough for the application at hand. In particular, () yields that
the dual system thus axiomatized is non-degenerate which is exactly what was shown

in the above lemma.

It still remains to be seen that the function specified by |||y« is indeed a norm on

X*. For that, we show in the following lemma that the axioms for norms commonly in
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place for systems used in proof mining (as e.g. in the case of A“[ X, ||-||]) are provable
for the constant ||-|| v« in D¥. In contrast to the usual norm axioms, these norm axioms
are chosen such that it immediately follows that the arithmetical operations and the
norm are extensional. In that way, we also find here that all the new constants that we
added for the dual space are provably extensional in our system and that the system

proves the same facts about the normed linear structure of X* that it also proves of
X.

Lemma 8.3.6. The system D“ proves the norm axioms exhibited in [95], now formu-
lated for |||y«

1 Y2 (||o* —x+ %] g« =R 0),

2. Vx*X*,y*X* (Hl'* —X* y*Hx* =R Hy* X x*HX*);

392y 2 (o e <z e —xe 2 12F e ),

4 ¥ X o (laa® —x oyl =g o |7% —xx y¥[|xx ),
5. VX" ot B (|lax® —x Br* || xx = | — Bl [|2* || x4 ),

Va:*X*,y*X* *X*,U*X*(H(

, U T* 4+ xx y*) — x% (u* + x* U*)“X*

<R ||a:* Xk U*”X* +Rr ||y* —X* U*Hx*)a
792y (| (—xxa™) = (—xey)|gr =R (|75 =0 ¥* ]| x5,
8 VX X (¥ e — 11y e | < 2% =06 4] )

Proof. We only show items (1), (3), (4), (6) as well as (8) to exhibit the general pattern
of proof used here. The other items can be done similarly. For items (4), (6) and (8), we
will omit mentioning the use of axiom (x); and freely manipulate algebraic expressions
in X*F| Also, in the context of the use of axiom (x),, recall Remark for the
particular consequence of ()9 that formalizes the usual least upper bound property of

the supremum for ||-|| -

8For this, some care of course needs to be exerted in order to guarantee that we do not require
extensionality of these operations in the first place. By making the following arguments more precise,
this can actually be verified for the given proofs (using e.g. Lemma but we are here content
with just sketching the arguments without this care. If one does not want to deal with this careful

exercise, one could also just add the above statements about the norm as additional universal axioms.
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(1)

Since |[(x, z*)| < ||z*|| ||z||, we have ||z*|| = 0 for any «* (by instantiating x with
lx). Suppose now that ||z* —z*|| > 0. By the axiom (x)y, we get an x such
that 0 < [(z,2* — 2*)|. Now, using (*)5, we get 1z* = x* and so the quantifier-
free extensionality rule yields 0 < [(z,1lz* — 12*)|. By axiom (*)3;, we have

0 < |I{z,z*) — 1{x,x*)| = 0 which is a contradiction. This gives ||z* — z*|| = 0.

Suppose that [|z* — y*|| > ||z* — 2*|| + ||2* — v*||. Then by axiom (), we get an

x with ||z|| <1 and
|G, 2™ =yl > flo* = 2% + (|27 =yl

Now, instantiating the vector space axioms ()5, we get z* + (—2z*) = 0 and
x*+0 = z* so that by two applications of the quantifier-free rule of extensionality,

we have
[z, 2™ —y™)| = [z, (2" + (2" + (=27))) + (=y")l.

By instantiating the associativity and commutativity axioms for + from (x)5, we

get through multiple applications of the quantifier-free extensionality rule that

Kz, o™ —y*) = Kz, («F = 2%) + (2" —¢"))l.
At last, we get

[l = 2% + 2" =yl < Kz, 2™ = ™)l
= [, 1(a" = 2%) + 1(z" = y7))]
= [, 2% = 2%) + (2" — "))
< [l fle® = 271+ [l {l2* = o7l

< % =2+ 12 =l

where the second line follows from the previous by further instantiating the vector
space axiom lv = v from (x); and using the quantifier-free extensionality rule,
the third line follows from axiom (*)3; and real arithmetic, the fourth line follows
from real arithmetic and axiom (*); and the last line follows as ||z|| < 1. Clearly,
the above is a contradiction and so

[ =yl < lla® = 2%+ 2" = 7]l

holds after all.
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(4) Suppose first that ||ez* — ay*|| > |a| ||z* — y*||. Then by axiom (*);, ()2 and

(%)3, we get an x with ||z| < 1 such that
lal 2% = y*|| < Kz, ax® — ay™)]

= |a| - [z, 2" —y*)|

< | [J]| f|l=* = y]]

< |l [J2* — 7|
which is a contradiction. On the other hand, if ||az* — ay*|| < |af||z* — v*|,
then |a| > 0 since otherwise 0 < ||az* — ay*|| < 0. Thus in particular we have

Jos® — oy "

<|z* -y
||

Again, by axioms (x)q, ()2 and (x)3, we get an = with ||z| < 1 such that

* *
o oyl _ o e e

1
= ml@, az® — ay*)|

ol

1
< 7 llaa® —ay||

|

which is a contradiction.
(6) Assume ||(z* + y*) — (u* +v*)|| > ||Jz* — u*|| + ||y* — v*||. Then by axioms (x),
(%)2 and ()3 there exists an x with ||z|| < 1 such that
[ = w*[| + [ly* — o™ < Kz, (27 + ¢") = (u” + 7))
< [, 2® —uh)] + €,y = 0™))|
< [l fle® = w* -+l ly™ = o™l
< [l =t + ly* = ol

which is a contradiction.

(8) We show
e[l <l = y* I + [ly™[| and [ly™[| < [l = y*|| + [l="]]
For the former, suppose ||z*| > [|z* — y*|| + ||y*||. By axiom (x);, (*)2 and (x)s,
we get that there exists an x with ||z|] < 1 and
e = + lly*l < <, %)
=z, 2" —y*) +{x,y*)
< lz* = y*[l + lly"]]



CHAPTER 8. PROOF MINING FOR THE DUAL OF A BANACH SPACE WITH
EXTENSIONS 173

which is a contradiction.
For the latter, similarly suppose ||y*|| > ||z* — v*|| + ||=*|| where we again get an
x with ||z|| < 1 such that
2% =y + ™[] < {2, 9%)
= —<ZL', _y*>
= —(x,z* —y*) + {x, ")
[l =y + [l

N

which is again a contradiction.
O

Remark 8.3.7. A simple property of Banach spaces (see e.g. [I85]) is that being a
Banach space is inherited from a space Y to all spaces B(X,Y’) of continuous linear
functionals mapping into Y from a normed space X. In that way, the dual X* =
B(X,R) of a normed space X is always a Banach space as R is itself complete. The
latter property of completeness of R is formally represented in WE-PA® in the following
way (where we follow the discussion given in [96]): provably in WE-PA® (and already

in weak fragments thereof), we have
VOO (VnVm, k =o n |0k — dm| <g 27") — 3f'¥n’ (|on — f| < 27"))

o —_

where, in fact, f can be given by fk:= ®(k + 3)(k + 3). In that way, also the Cauchy
completeness of X* can be represented: provably in D¥, given a sequence z*~ *O) with
VnoVm, k =0 n (||[2*k —xx 2*m| yx <p 27"),
we have for any =~ that
[z, 2" k)xx = Cx, a"myx| <g [[27F —xor 2"m| o [l ¢
and thus we immediately getﬂ
Vo vnYm, k =g (n + [[|2]|x](0) + 1) (|<2, 2 k) xx — (o, 2™ m)yxs| <g 277) .

By the above completeness of R we can define its limit by a term in x in the sense that
provably
Yt Vn 2o ([[l2]x](0) + 1) (<o, 2" n)xx — fa| <p 27")

9Here, we write [a](n) for the n-th number in the type 1 representation of the real number a as

before.
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for fx of type 1 defined by
frk = (o, 2 (k + 3+ [[|#][x](0) + 1))x+) " (k + 3)

where we wrote (-)" for the “-operation. So f is a functional of type 1(X) and by
formalizing a standard textbook proof it is now provable that this functional is linear
and that it indeed has a bounded norm (in the sense that there is a K with |fz| <
K ||z||). The fact that this is indeed the limit of the sequence (z¥) w.r.t. the norm
of X* also has a trivial proof but this proof cannot be formalized in the underlying
system and the reason for this is the basic issue with this whole approach: while the
limit of the sequence can be pinpointed by a closed term, this term is of type 1(X).
We however have no immediate way of inferring that this limit is indeed represented in
X* in general. Only if (z}) is provably Cauchy in the above sense (i.e. with the given
rate), then f is provably and without any assumptions linear and bounded. Then the
quantifier-free linearity rule (QF-LR) can be used to conclude the existence of an x}

of type X™* such that provably

VaX (fo =g (z,a5)x+) .

This 2% can then be shown to be the limit. But if the sequence is not provably Cauchy
in the above sense, the use of this rule is not permitted. Note that this issue is also not
avoided by using a characteristic function y x= to single out X* from all functionals of
type 1(X) as discussed in Remark since also here, only a corresponding rule could
be formulated which states the closure of yx+ under functionals which are provably
linear and bounded. However, if we would be working with y xx, we could add an axiom
stating that the above term is included for any such sequence z* which would require
implicit quantification over Cauchy sequences in X* akin to the methods employed in
the context of the limit functional C' of Kohlenbach (see [96] and Chapter [4). But in
that case, we can also achieve the same result in the context of the abstract type X*
by formulating C' and its axiom over this language. We do not explore this here any
further.

Remark 8.3.8. By formalizing a standard argument (see e.g. Chapter 2, §4, Theorem 1
in [54]), one can also show in D* that the uniform smoothness of X, formulated using

a so-called modulus of uniform smoothness 7 of type 1 (see [I11]), i.e[7]

VX S K (el >r 1Ayl < 2770

I el + 17 ol <= 2427 D)

10Here, 7' is defined as in Section
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is equivalent to the uniform convexity of X* formulated using a modulus of uniform

convexity 7 of type 1 (recall Chapter [7), i.e.

¥ + y*

>p 1 — 277
2 R

vx*X*,y*X*»’f(J(Hx*HX* Ayl <w 1A
X

e — e 5l < 2’“)-

We do not spell this out here any further.

8.4 Reflexivity of Banach spaces

8.4.1 The evaluation map and reflexivity

In the following, we write X** for the bidual of X. We begin with the central notion

of reflexivity.

Definition 8.4.1. Define the evaluation map ¢ : X — X** by

¢(z)(z*) = (z,z%)
for z* € X* and x € X. The space X is called reflexive if ¢ is surjective.

Basic properties of the evaluation map needed in formal discussions later are the
following: At first, using the Hahn-Banach theorem, it is immediate that the mapping

¢ is injective and preserves norms, i.e.
llo(x)|| = ||z|| for all z € X.

In that way, ¢ maps X isometrically into X** and X is reflexive if, equivalently, ¢ is
an isometric isomorphism between X and X**. Further, the following result is central

for reflexive spaces:

Proposition 8.4.2 (James’ theorem [81]). A Banach space X is reflexive if, and only

if, for any x* € X* with ||z*|| = 1, there is an x € X with ||z|| = 1 and {x,z*) = 1.

8.4.2 Treating reflexivity

To treat reflexivity in its version given by Definition we will need access to the
bidual X**. Similarly to our abstract approach to X*, we do not define this space from

the objects from X* but treat it in an abstract way as we did with X™*. Concretely,
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we first extend the underlying language by a third abstract type X**, moving to a
further extended set of types TXX*X* and to the resulting extended language similar
to before. We then utilize this type to further introduce, as before, constants for the
linear and normed structure on X** as well as for the application of elements from X**

to elements from X*, i.e[1]

1. +x#x of type X**(X**)(X**),
2. —x#x of type X**(X**),

3. -x#x of type X**(X**)(1),

4. Oxsx of type X**,

5. 1xs=x of type X**,

6. (-, x=x of type 1(X*)(X**),
7. Il s of type 1(X™**).

These constants are then used to formulate the previous axioms (*); - (x)g and the rule
(QF-LR) for the bidual{?]

vx**X** .Z'*X* (

[, ™) x| < (|27 s 27| 0) 5 ()1

V:L‘**X**,/{/‘Oﬂl'* gx* lx* (HZE**HX** - 2_k gR |<$*,$**>X**|) ’ (**)2

?

.
# XF g XFF g XFF 1 pl
Vo y &L Y , O, B

?

(<I*, Q™ + e ﬂy**>x** =R O{<$*, CL‘**>X** + ﬁ<l‘*,y**>X**) ,

# X* s XFF s X*Y 1 01
vx ""E y 7a ’/6

Y
(<£L'*, ar** — X k% 5y**>X** =R Oz<$*, :E**>X>x<>x< - ﬂ<$*,y**>x**) s

.
# X¥ e XF e XFF 1 51
vx ’y ’a ’/8

, L

(<Oé$* +xx By*, 37**>X** =R Oé<(lf*, :L'**>X** + 5<y*7x**>x**) ,

# X*  wxXF sk XFF 1 01
vx 7y 7a 7/6

T
(o™ — xx By*, &™) xue =g alx™, 2% ) xux — BY*, %) x0ex )
The vector space axioms for + yusx, — x#x, -x#x, Oxms, Lyss W.I.t. = xux. (%%)5

Vot 30 Sy 0% ||gr Lioww (@, 2% )er =g 2% %00 =2 2% | 2ee) - (+%)6

\

11 As before, in formulas, we often omit the types around the - y «x-operation or we omit the operation

entirely.
12Gimilar to before, by including 1y« in the list of constants in the description of axiom (##)5, we

want to indicate that these axioms include ||1 x|y =r 1.
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For the rule, we opt for the formulation]

Fy — (Vx*X*, y*X*, ol B (tlaz* +x= By*) =g atx* + Sty*)
AV X ([t <z M [|2*]|x+))

FO — Jx** Sx#x Mlx**VZL‘*X* (tQT* =R <1’*, ZL‘**>X**)

(QF-LR*)

where Fj is a quantifier-free formula as before and ¢ is a term of type 1(X*) and M a
term of type 1. We write DY[X™*, ||-|| y«] for the system D“ extended by the above

constants, axioms and the rule.

In that formalism, reflexivity of the space — defined by means of the surjectivity of

the evaluation map — can be easily expressed:
Vs X 3 Xy X ((z, 2™ )xn = {x™, 2™ ) xx) .

As discussed above, the map ¢ is an isometry and thus any such z naturally satisfies

lz|| = ||~ Therefore, the above statement is naturally equivalent to one of the form

A which we henceforth adopt as our axiom for reflexivity:

VZE**X**HI’ <x Hx**HX** 1va*X*

Uzl x =r |27 | xun A <2, 2%)50x =g % 275 x00x) . (R)

As a simple example for the use of the axiom (R), we now consider the formal

provability of one direction of James’ theorem.

Lemma 8.4.3. The system D[ X, ||-|| y«x] + (R) proves:
ot 3 (o, 2 = [l2ly = 1275 -
In particular, DY[X**, ||| x| + (R) proves
Vo 32X (] = 1= Jallx =k 1A (@, 2%)xe =g 1)
as in James’ theorem.

Proof. Let x* be given. By axiom (#x)g, we have that there exists an z** with
(a*, 2y = [la™*|* = ||l2*||*.

By axiom (R), we obtain that there exists an x with ||z|| = ||z**|| = ||z*|| and {z,z*) =
(a*, o) = [|l2*||". O

13 Also here, given objects z**, y** of type X**, we write 2** <xux y** for [|2%% || yuu <k [[U**]] xax

similarly to before.
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Note that the above version of the characterization of reflexive spaces as in James’

Theorem is easily formulated as an axiom of type A via
Va0 < 0 ye T (G a*ye =z ol = l*]%) (T)

If the bidual is not used in the context of reflexivity but one only needs to rely on the
dual and the characterization via James’ theorem, then the system D* + (JT) can be
used instead [M]

However, there is a central issue surrounding this treatment of reflexivity. Namely,
the axioms inherit a potential weakness through the intensionality used in the ap-
proach: the strength of the axioms (R) and (JT) is determined by the degree of how
populated X** and X* are, respectively, i.e. how concretely they are specified. The
more functionals the systems can provably determine to belong to these spaces, the
stronger the axioms get. In that way, if a proof relies on the use of reflexivity on a
specific complicated object x** from X**  then this complexity will be reflected by
a potential analysis as, to formalize this use, one first has to provide formal means
to hardwire this object into X** via corresponding axioms which have a monotone

functional interpretation.

Remark 8.4.4. By formalizing a standard argument (see e.g. Chapter 2, §4, Theorem 2
in [54]), one can show that D together with an axiom specifying that X is uniformly

convex (using a corresponding modulus 7) proves the above axiom (JT).

8.5 Extensions for uniformly Fréchet differentiable func-

tions, their gradients and conjugates

We will now discuss the main extension of the above system for the dual of a normed
space which provides a firm basis for the treatment of uniformly Fréchet differentiable
convex functions, their gradients and in particular their Fenchel conjugates in Banach
spaces. In that way, as we will further discuss later on, these extensions then allow for a
formal treatment of Bregman distances associated with the respective convex function.
This provides the first proper foray of proof mining into this part of convex analysis
and also provides a first approach to deal with these rather concrete and complex

objects. The bound extraction results established later for these extensions then also

4 Note that this system is conservative over the base system by relativizing the quantifiers over

elements of X* accordingly.
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form the basis for the extraction of quantitative results on the asymptotic regularity
and convergence of iterations involving Bregman strongly nonexpansive operators given
in Chapter [9] We refer to the references given in the introduction for further examples

from the vast array of potential future applications of these systems.

8.5.1 Basic properties of Fréchet differentiable functions

We here shortly survey the (very minimal) essential definitions from the realm of con-
vex analysis. Further definitions are given throughout the sections as needed. For any
other details, we refer to the standard works [11], [182] [184] 212].

Let f : X — (—o0,+00] be a given function with extended real values. In the

following analytical section, we will assume that

1. f is proper, i.e.
domf :={re X | f(z) < +0} # &,

2. f is lower-semicontinuous, i.e.

Vo e domfVy < f(x)30 > 0Vz € Bs(x) (f(2) > v),

3. f is convex, i.e.

Va,y e domfyAe [0, 1] (f Az + (1 =N y) < Af(z)+ (1= A) f(y)).

One of the central tools to study convex functions analytically are so-called gen-
eralized gradients. The central kind of these generalized gradients are the so-called
subgradients as prominently already used in earliest works on modern convex analysis
by Brgndsted and Rockafellar (see e.g. [26, [I80]). For this, we write intdomf for the

interior of domf.
Definition 8.5.1 (Subdifferential). Let x € intdomf. We define
of(x) :={a*e X* | f(x) +{y —x,2%) < f(y) for all y € X}.

In this work, the focus will be on convex functions which are also Fréchet differen-
tiable.
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Definition 8.5.2 (Gateaux and Fréchet differentiability). A function f is called Gateaux
differentiable at x if there exists an element V f(z) € X* such that

i 4@ 1Y) = f()

t—0 t

=y, Vf(z))

for any y. It is called Gateaux differentiable if it is Gateaux differentiable at every
x € intdomf. Further, f is called Fréchet differentiable if this limit is uniform in
llyl| = 1 and uniformly Fréchet differentiable if the limit is also uniform in z. We call

V f the Gateaux or Fréchet derivative, respectively.

The simplest example of a Fréchet derivative is obtained in uniformly smooth Ba-
nach spaces where for f = ||-||* /2, we obtain Vf = .J for the normalized duality map
J (see e.g. [212]). In particular, in Hilbert spaces, this reduces to the identity after
identifying X* with X.

The following properties connect the Fréchet derivative with the subgradients dis-
cussed before and will be essential for our treatment of the gradient for uniformly
Fréchet differentiable functions. Their proofs can be found e.g. in [212] (or in [11] for

the case of Hilbert spaces where the proofs are rather similar).
Proposition 8.5.3. Let x € intdomf. Then, the following are equivalent:

1. f is Fréchet differentiable at x.

2. Every selection of 0f is norm-to-norm continuous at x.

3. There exists a selection of 0f that is norm-to-norm continuous at x.
Further it holds that:

1. If f is Gateauz differentiable at x, then 0f(x) = {V f(z)}.

2. If f is continuous at v and 0f(x) = {u}, then [ is Gateaux differentiable at x
and u =V f(z).

By the following result due to Reich and Sabach [176], being uniformly Fréchet
differentiable (essentially) implies being Fréchet differentiable with a gradient that is

uniformly norm-to-norm continuous on bounded sets.

Proposition 8.5.4 ([176]). If f is uniformly Fréchet differentiable and V f is bounded
on bounded sets (which in particular holds if X is reflexive and f is bounded on bounded

sets), then V f is uniformly norm-to-norm continuous on bounded sets.
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The focus of the following sections will now be on providing logical systems for the
treatment of convex functions f with uniformly continuous gradients as well as their
conjugate functions and their corresponding gradients. By the above proposition, this
therefore in particular treats uniformly Fréchet differentiable functions where Vf is

bounded on bounded sets.

8.5.2 A first formal treatment of gradients for uniformly Fréchet

differentiable functions

To treat a convex function, we add a constant f of type 1(X) to the language. In
the following discussions, we will for simplicity disregard the potential “partialness”
of the function (induced by it taking values in the extended real line) and only treat
total functions f : X — R and their properties. Note the longer Remark for a
discussion on how the treatment presented below can be adapted to also handle the

general setting.

The first immediate axiom for f is the following:
(f)1 That f is convex, i.e.
VX y® A\ (f (X:c +x (1 — X) y) <R Xf(x) + <1 — X) f(y)> )
Here, we have used the operation ~ as e.g. defined in [96] for implicit quantification
over [0, 1].

The lower-semicontinuity will not be added formally to the system as it will be deriv-
able (in the form of uniform continuity on bounded subsets) from the axioms on the

gradient.

Note that therefore, some caution is warranted for the use of the axiom (f); as the
use of \ for formulating convexity requires the extensionality of f to work properly.
However, Lemma [8.5.5| establishes the uniform continuity of f as mentioned above and
thus the extensionality of f and this lemma does not rely on (f); so that no issues

arise here.

Regarding the gradient, we add another constant V f of type X*(X) to the system.
The relevant axioms for this constant will now stipulate that V f is a selection func-

tion for df together with the fact that V f is uniformly continuous on bounded subsets.
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Since the main emphasis will later be on systems which treat Legendre functions
and since these functions naturally satisfy domV f = intdom f and since we have be-
fore assumed that dom f = X, we also consider V f to be totally defined.

We thus arrive at the following axioms:

(Vf)1 That V[ is a selection of df, i.e.
Yoty (f(2) + Y —x 2, Vf(2))xx <g f(y))-
(Vf)2 That Vf is uniformly continuous on bounded subsets, i.e.
v,y 60 K (el syl <s b
Al —x 3lly <2 276D S [V F() —xe VI@)le < 27F).
Here, wV/ is another additional constant of type 0(0)(0).

We write D¥[ f, V f] for the theory resulting from D* by extending it with the pre-
vious constants as well as the axioms (f)1, (Vf)1 and (Vf)2. By the results contained
in Proposition [8.5.3, any model of this system has to interpret the constant V[ via
the true gradient and what we want to argue is that this system is indeed sufficient to
develop a large part of the theory of these gradients. As an initial litmus test, we in the
following consider formalizations of various basic but central results on the function f

and its gradient if the latter is uniformly continuous.
Lemma 8.5.5. The theory D*|[f,V f] proves:

1. f is uniformly Fréchet differentiable on bounded subsets, i.e.
vb°, k035002 < |zl <g b A0 <g [lylly <277

L ety = f@) = V@)xel 2—k)
1yl x b ’

where in fact one can choose
j=wY(k,b+1).
2. V f is bounded on bounded subsets, i.e.
W03 (o]l <r b — [V f(2)]lxs <z ),
where in fact one can choose

¢ =C(b) = b2 P 4 [[IVF(0)]] x1(0) + 2.
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3. f is uniformly continuous on bounded subsets, i.e.
VR, 035y ([l vl <e D
Al =xylly <e 277 = |f(2) = f(y)| <z 27%),
where in fact one can choose
j=wl(k,b) =k+C().
4. [ 1s bounded on bounded sets, i.e.
W03V (2] < b — |f(2)| <z d),
where i fact one can choose

d = D(b) = b2/ OV 1 [|£(0)[](0) + 2.

Proof. 1. Using (Vf); and extensionality of (-, -), we get
fle+y)—flo) 2 +y—z, V()
=y, Vf(2)).

Similarly we derive

f@) = flz+y) =2y, VI(z+y))
Together, we get
0< flz+y)— flz) = V)

<yllIVf(z+y) = V@)

Therefore we get

[f(x+y) = fx) =y, V()]
[yl

<[Vf(z+y) = V().

Vf(

So, for ||z|| < b and y with ||y|| < 27< ' ®**D we get ||z +y|| < b+ 1 and as

|z +y —z|| = |jy|| < 27«7 ®b+D | this yields

|f(x+y) = flz) =y, V()

<27*
1yl

by (Vf)2.
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2. We have

V!
Va,y (Il Iyl < b A ko =yl <2700 [V f() - Vi) <1).

One can then inductively construct 52¢7’ @) _many points 21, . . ., z_1 with ||z;| <
b and
loall o = 2l gy = ) < 277700,
This yields
IV£0) = V@Il IV f(21) = V@)l - IV f(21) = V@) <277 =1

so that, using the triangle inequality, we derive
IVF @)l <0270+ 1+ |V F(O)]].
The claim now follows from the fact that [||V £(0)| x«](0) + 1 = ||V £(0)]|.
3. We have
f@) = fly) < o =y, V()
< llz =yl IV £ ()]l

and similarly, we get

fy) = f(@) < llz =yl IVl

Using the fact that Vf is bounded on bounded sets with ||V f(x)| < C(b) for
l|z|| < b, we then get that

[f(z) = fly)l <27

for 1] Iyl < b with
lz - gl < 200,

4. Similar to item (2).
[

Remark 8.5.6. We can incorporate functions f : X — (—o0, +0] into the above frame-
work by using an intensional account of f’s domain. Concretely, to deal with such
an f, we may introduce a new constant y; of type 0(X) into the language and then

formulate all statements regarding f(x) by relativizing x to

x € domf := xsr =0 0.
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The problem with this approach is now that the gradient V f also requires a treatment
for its domain domV f < intdomf and it is further crucial that this inclusion can be
recognized by the system. For this, we can further modify the above intensional ap-
proach to domains of partial functions on X by incorporating the information required
by the “openness” of the domain into the characteristic function. Concretely, the do-
main of V f can be treated by considering a slightly augmented characteristic function

represented by a constant yv; of type 0(0)(X) together with the defining universal
axiom["]

Vo k° <vaa7k: —0 0 — Vo ((m —x @(Q_k)) € domf))

expressing that domV f < intdomf indeed holds by encoding the radius witnessing
that x € intdomf with = in xys. It is now an easy exercise to generalize the above
formal forays into the theory of f and its gradient V f to this modification by also

relativizing statements regarding V f(z) using
(z,k) e domV f := xyrrk =9 0

and
redomVf :=3Ik((x, k) € domV f).

Note further that this approach is very flexible not only regarding applications
but also regarding formalizations of further properties of these domains which may
be required in certain contexts. For example, as mentioned before, in the context of
Legendre functions, a characterizing condition for these domains is in fact that the
full equality domV f = intdomf holds. This property can be further expressed by an
axiom of type A. For this, note that the naive formulation of the reverse inclusion

intdom f € domV f can be formally expressed as
VX (%0va ((a: . §<2”“>> e dom f) ~ 3% ((z,§) € domV f))

But now, if z € intdomf with a radius 27" is already supposed to hold, we can just
simplify the above expression by instantiating it with j = k which, after prenexing

accordingly, brings us to the following axiom
Vo K03y <y 2771y ((x —x y@””) edomf — (z,k) € dome)

which is of type A by the restriction ||y|| < 27% which does not restrict the meaning of

the original statement as we anyhow move to g@’k).

15Here, we use the > operation on elements of type X as defined in Section
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8.5.3 The Fenchel conjugate and its formal treatment

In the following, we will work over a reflexive space X. A main object in nonlinear
analysis, in particular lying at the heart of the main approach to duality theory in
Banach spaces, is the Fenchel conjugate f* of a convex function f (as introduced in
[61], see also |27, 181]): concretely, f* : X* — (—o0, +0] is defined by

ff(x*) = sup (x,z*) — f(x)).

reX

The first immediate result from the definition is the following Young-Fenchel inequality:

for any x € X and any x* € X*, it holds that

f(x) + f*(@%) = (x, 27).

If f* is to be treated in any formal way in the underlying systems, we will have to
require that f* is majorizable which amounts to it being bounded on bounded sets.

This requirement is linked with coercivity conditions on f by the following result:

Proposition 8.5.7 ([8]). Call f supercoercive (or strongly coercive) if
f(z)

lell—+o0 |||

Then, the following are equivalent:
1. f is supercoercive.
2. f* 1s bounded on bounded subsets.
In particular, both imply that dom f* = X*.

In that way, any metatheorem treating f* via a constant (say of type 1(X*)) is
in essence restricted to requiring that f is supercoercive. In that situation, however,
the treatment of the supremum defining f* is possible, following the tame approach
to suprema outlined in the preceding sections. This in particular follows from the
fact that if f is supercoercive, then the set on which the supremum is approached is

bounded without loss of generality. This is formalized in the following lemma.

Lemma 8.5.8. Let a: N — N be a modulus of supercoercivity, i.e.

VK eN,ze X (|z]| > a(K) — f(z)/ ||lz] = K)
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and let F* : N — N be a function witnessing that f* is bounded below on bounded sets,

1.€.

Vbe N,z* e X* (||lz*|| < b — f*(z*) = —F*(b)).

Then for x* € X* with ||z*|| < b, we have

ff@®) = sup (z,2%) - f(z))

err(a,F* ,b) (0)

where
r(a, F*,b) = max{a(b+ 1) + 1, F*(b) + 1}.

Proof. Let x € X be given such that ||z| > a(b+ 1)+ 1. Then f(z) = (b+ 1) |z

Naturally, we then have

e,y = fla) < |zl 2] = (b+ 1) ||z
= (=% = (b + 1)) [l

il
Thus, if ||z|| = F*(b) + 1 also holds, then we have
(o,a%) = f(@) < —F*(b) —1 < f*(a") 1
and therefore, we get the claim. O]

The lower bound F* featured in the above result is naturally computed from f.

Concretely, using the totality of f, we get
fH(@%) = 0,2%) = £(0) = =[£(0)| = =([|£(0)[1(0) + 1).
So, in our concrete situation for a total f, we even have that
r(a,b) = max{a(b+ 1) + 1,[|f(0)|](0) + 2}
suffices. Majorizing f* can now also be trivially achieved by just noting that
[, %) = f(@)] < [l [l + [ ()]

and thus, knowing that there is an = with ||z|| < r(«,b) and such that {(z,z*) — f(x)

approximates the supremum f*(x*) with error 1, we get
FH@*) < (o, b) ||| + (e, )22 @) 4[] £(0)[](0) + 3

using Lemma which immediately allows us to compute a majorant for f*.

The axioms for f* are now readily presented:
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(f)2 That f supercoercive with modulus o/, i.e.
VE®, 2% (2]l x >& o/ (K) — f(2)/||z] x 2r K).
Here, o is an additional constant of type 1.

(f*)1 That f* is a pointwise upper bound for all affine functionals g, (z*) = (z,2*) —
f(z), ie.

Vo e X (o ) xs — flo) < fH(@))
(f*)2 That f* is indeed the pointwise supremum of all these affine functionals, i.e.

Va0 k032X <x max{af(b+ 1) + 1,[|£(0)[](0) + 2}1x
(2"l xs <r b— (f*(2*) = 27" <g (&, 2")xx — f(2))) .
Note that also here, we have a natural benefit in approaching this supremum as we can

avoid instantiating C' in the schema (5); since the corresponding claim that f* is an

upper bound actually holds in an unrestricted form.

Remark 8.5.9. Similar to Remark (recall also Remark 8.3.1)), in the context (f*)a,
also f*(x*) satisfies the usual definition of being a supremum in the sense that it is the
least upper bound of all values {(z,x*) — f(z) and, also similar to before, (f*)s even

implies the following statement:
VX 00, MY 032X <y max{a/(b+ 1) + 1, [|£(0)]](0) + 2}1x
(lo* | x <R b A M +27F < f*(2*) — (M + 27" < (o, 0%y 5 — f(2))).
A first immediate property that can be derived for f* is its convexity:

Lemma 8.5.10. The system D* extended with constants for f, o/ and f* together

with the axioms (f*)1 and (f*)a proves that f* is convex.
Proof. Suppose that f* is not convex, i.e. that there are z*, y* and « € [0, 1] such that
af* (@) + (1 —a)f*(y*) < fHaz” + (1 - a)y”)
Then by (f*)2 (recall Remark [8.5.9)), we get a z such that
aft (@) + (1 —a)f*(y") < (zax” + (1 - a)y) — f(2)

=a((z,2*) = f(2)) + 1 = ) ((z,¥*) — f(2))

< aff (@) + (1 —a)f* ()

where the last line follows from (f*);. This is a contradiction. O
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Note that not even the convexity of f is necessary for this.

If f* is uniformly Fréchet differentiable as well, its gradient can now be introduced

as before: we add a constant V f* of type X (X*) and consider the following axioms.

(Vf*); That Vf* is a selection of 0f* i.e.
VT T () (V) 5 —xe 2 xe <e FR(Y)).
(Vf*)2 That V f* is uniformly continuous on bounded subsets, i.e.
0y (e [l <o

_VirF _
Al —xo ¥ llye <w 277 W) — V") —x V() x < 2 )

Here, wV/™ is another additional constant of type 0(0)(0).

We want to note that the gradients of f and f* are simultaneously well-defined
only if f is Legendre in the sense of the following influential definition of Bauschke,

Borwein and Combettes.
Definition 8.5.11 ([§]). A function f is called:
1. essentially smooth if df is locally bounded and single-valued on its domain,

2. essentially strictly convex if (0f)~! is locally bounded and f is strictly convex on

every convex subset of domdf,
3. Legendre if it is both essentially smooth and essentially strictly convex.

Over reflexive spaces, these properties can be recognized as equivalently stating a

particularly nice differentiability property for both f and its conjugate f*.
Proposition 8.5.12 ([8]). If X is reflexive, then f is Legendre if, and only if

1. It holds that intdomf # &, that f is Gateaur differentiable on intdomf, and
domV f = intdom f.

2. It holds that intdom f* # &, that f* is Gateauzr differentiable on intdomf*, and
domV f* = intdom f*.

Therefore, the above axioms can only be satisfied if f is already Legendre since any

f and f* satisfying them are even uniformly Fréchet differentiable.
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Remark 8.5.13. While reflexivity features as a key assumption in the above proposition,
if further differentiability assumptions are made regarding f and f*, then reflexivity
is an inherent property in that context. Concretely, by a result of Borwein and Van-
derwerff [19], any space where f and f* are Fréchet differentiable, f is continuous
and domf* = X* is already reflexive and it follows from results by Borwein, Guirao,
Hajek and Vanderwerff [18] that if f and f* are uniformly Fréchet differentiable and
domf* = X* then X is even superreflexive. In that way, in the context of the continu-
ity assumptions formalized by the above axioms, we are always conceptually working
over (super-)reflexive spaces and we used this reflexivity here already to formalize V f*
via an object of type X (X*), using X as the type for the images in order to formally
avoid X**.

Further, the following relation between the gradient of a function and of its conju-

gate holds for Legendre functions:

Proposition 8.5.14 (|8]). If X is reflexive and f is Legendre, then V f is a bijection
with ranV f = domV f*, ranV f* = domV f = intdomf and

V=V

Instead of formalizing the corresponding proof to verify whether the previous axioms
already suffice for proving this relation, we can just hardwire this property into the

system by adding the following corresponding axiom:
(L) Vo™, " (VY f*(0*) =xx 2 A V[V f(2) =x ).

We write D[ f, Vf, f*, V f*] for the system D“[f, Vf] extended with the above
constants and axioms (f)2, (f*)1, (f*)2 as well as (Vf*)1, (Vf*)q, (L).

Remark 8.5.15. Note that the previous Lemma [8.5.5] if suitably adapted, also holds
for f* and V f* in this new theory D“[f, Vf, f*, Vf*]. We therefore do not replicate
this here.

Remark 8.5.16. It is well-known in the literature on convex analysis that differentia-
bility properties of the conjugate f* are related to convexity properties of the original
function f (see e.g. [34, 35, 36] among many others). In that way, any function f that
induces a model of the theory D“[f, V[, f*, V f*] actually is even totally convex on
bounded subsets as well as uniformly strictly convex. We refer to Chapters [9] and
for further (formal) investigations into the interrelations of these properties and their

quantitative analogues as guided by the logical methodology introduced in this chapter.
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8.5.4 Bregman distances and their formal treatment

As a small indication for the applicability of the above formal systems, we just want to
note that the language is already expressive enough to deal with some of the central ob-
jects in the modern realm of convex analysis. The object that we want to focus on here
is the central Bregman distance introduced in [22] which features in many algorithmic
approaches in that field (see in particular again the references in the introduction as
well as the references in [9]).

These Bregman distances are defined relative to a convex function in terms of its

gradient:

Definition 8.5.17 (|22]). Let f be Gateaux differentiable. The function D : domf x
intdomf — [0, +o0) is defined as follows:

Dy(z,y) = f(x) — fly) =<z —y, Vf(y))

As such, a benefit of the above treatment of f and V f is that in the context of the
system D[ f, V f], this function can just be given by a closed term.

The same is true for the function Wy : dom f x dom f* — [0, +0) defined by

Wiz, 2*) = f(z) = Cx,2) + f*(27).

which often provides a medium through which Dy is studied (see e.g. [143] [144]).
Also this function can be represented by a closed term in the underlying system
D[f, V[, f*,Vf*] and the basic properties of both are immediately provable. We

just mention two of these here:

Lemma 8.5.18. The system D[f,V f, f*,V f*] proves the three and four point iden-
tities (see e.g. [9]):
VQ?X,yX,ZX(Df(JI,y) + Df(ya Z) - Df(I,Z)
=k (& —x Y, Vf(2) =x+ Vf(y))x+).

Va®, yX, 2% wX (Dy(y,x) — Dy(y, z) — Dp(w,z) + Dy(w, 2)
=R <y —x W, Vf(Z) —X* Vf(l‘)>X*)

Not only does the system D“[f, V[, f*, Vf*] provide a framework for adequately

expressing the central objects and theorems in the theory of these Bregman distances

2.
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but, as common in proof mining, the metatheorems for this system established in the
upcoming section can be used to provide a finitary quantitative account on some of
the central assumptions used in the context of applications of these Bregman distances

like that of consistency of the Bregman distance, i.e.
V$X7?JX (I =X Y < Df(l’,y) =R 0)7

as well as total convexity and sequential consistency (see e.g. [30]), among many oth-
ers, where the metatheorems suggest appropriate moduli that witness the quantitative
content of these statements. These moduli are then crucially used in applications as

will also be the case in the forthcoming work [164] as well as in Chapter [0

8.6 A bound extraction theorem

We now establish the bound extraction theorems for the system D“ and the extensions
discussed previously. Our proof follows the approach of [71) 95 96| as presented in
Chapter |3l and in that way is rather standard. Consequently, we will omit some proofs
(only giving those details that concern new material) and sometimes be brief about
the presentation, occasionally only sketching the general outline of the arguments. For
the following, recall the definition of Godel’s functional interpretation and the negative
translation from Chapter [3] These naturally extend to the new languages from this

chapter.

Also recall Lemma [3.7.3] formulated for A“[X, ||-]|]] and extensions of that theory
by universal sentences, for the soundness result for the combination of both the Dialec-
tica interpretation and the negative translation which forms the basis for the upcoming

metatheorems. Similar to that context, we write D~ for the respective system without
the axiom schemes QF-AC and DC.

Besides Godel’s functional interpretation, the other central notion used in the bound
extraction results is that of (strong) majorizability and the associated structure M.
In this chapter, based on the use of a second abstract type X* (and potentially a third
with X**), we have to further extend these notions to this second (and third) type
(similar to the discussion in [96], Section 17.6). We here only focus on the case of a
single additional type X* and do not explicitly discuss the extension with X** which

can be treated analogously. In our context, the majorants for objects of types from
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TXX* will still be objects with a type from 7 according to the following extended

projection:

Definition 8.6.1 (essentially [71]). Define 7 € T, given 7 € TXX", by recursion on the
structure via

—_

0:=0, X = 0, X* = 0, 7(§) := ?(E)

TX’X*

The majorizability relation for the types is then defined recursively along

with the structure M“ XX of all majorizable functionals over a given normed space
X with dual X™*:

Definition 8.6.2 (essentially [71,95]). Let (X, ||-]|) be a non-empty normed space with

dual X*. The structure M“*X* and the majorizability relation > , are defined by

g
My:=Nnzoym:=n=m~an,meN,

My :=X,nzxz:=nz2=|z| AneMy,xe My,
Mxs = X* nZx« 2% :=n = ||z*]| A ne My, z* € Mxx,

MA
Z.r(g)x:ZfEJW_?S/\376]\47{\/15

A

AYg € Mgy e Me(g ey — fg 2r 2y)

AYg,y € M(g 2z y — fg 2+ fy),
M.,-(é) = {{E € Myﬁ | E|f € M;_wé : Z.,-(é) ZL‘}

\

Correspondingly, the full set-theoretic type structure S*~X* is defined via Sy := N,
Sx =X, Sxx := X* and
ST(E) = st.

These structures later turn into models of our systems if equipped with corresponding

interpretations for the additional constants.

The general high-level outline of the proof of the bound extraction theorem is now
as before: we use functional interpretation and negative translation to extract real-
izers from (essentially) VY3-theorems which have types that belong to T%*". Using
majorizability, we then construct bounds for these realizers which are moreover valid
in a model based on M*XX*_If the types occurring in the axioms and the theorem
are “low enough”, we can then in a final step recover to the truth in the usual full

. *
set-theoretic structure S@XX".
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For the concrete implementation of “low enough”, we need to extend the previous
definitions of small and admissible types to the new base type. This can be done in
complete analogy to before (see Chapter [3): We call £ small if it is of the form & =
£0(0) ... (0) (including 0, X, X*) for & € {0, X, X*} and call it admissible if it is of the
form & = &(x) ... (m1) (including 0, X, X*) where each 7; is small and &, € {0, X, X*}
as before.

Similarly, take the notions of V-/3-formulas to be now defined by also considering
the new abstract type and the same also holds for the class A where the type restrictions
are now to be understood in this extended sense. For this, we in particular also rely
on the following extension of the relation < which is now defined by recursion on the

type via
1.z <oy =2 <o v,
2. v <x y:= |zl x <e [lYlx,
3. w% <xx Y= |2 xu <m Y lxs
4 x <pg y = Vi (22 <5 y2).

Given a set A of such formulas, we write A for the set of all Skolem normal forms as

before.

In the bound extraction theorems, axioms of type A are also treated as before “in
spirit” of the monotone functional interpretation. Here however, we want to exert a bit
more care as sentences of type A already occur in the axioms of D* (and its extensions).
Further, the treatment of the rule (QF-LR) relies crucially on the treatment of sentences
of type A as well. Write D" for D without any of its axioms of type A and without
the rule (QF-LR). Then, given a set A of additional axioms of type A, we treat all
axioms of type A present in D¥ + A together with (QF-LR) by forming a new theory
52 which arises from D by adding the Skolem functionals B for any axiom of type

A, say of the form

as new constants to the language and adding its “instantiated Skolem normal form”,

i.e. the sentence

B <,5) 1 A Va®¥e2Fy¢(a, Ba,c),
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as a new axiom. Further, we do the same with all conclusions of the rule (QF-LR): for

any provable premise
D*+A+ Fy — (VX% of, B (t(ax +x By) =r otz + Bty) A Vo™ (|tz] <e M ||z||y))

with terms ¢ and M, we add a new constant x} of type X* to the language of Y_DZ

together with the corresponding axiom
2F || o <e M A (Fo — Vo~ (tr =g (z, 2} )x+)) -

This new theory Dy extends A“[X, ||-||] only by new types, constants and universal
axioms and, consequently, Lemma also applies to this theory 52 where the con-
clusion is proved in T)Z_ + (BR) where 52_ arises from 52 by removing the principles
QF-AC and DC.

Similar constructions can also be made for the respective extensions of D“.

The central majorizability result is now the following, guaranteeing the majoriz-
ability of all closed terms in D (and its extensions). In that way, the result extends
the central Lemma 9.11 in [71] and is analogous in spirit to Lemma from Chapter
3l

Lemma 8.6.3. Let A be a set of additional axioms of type A. Let (X,|||) be a
(nontrivial) Banach space with its dual X*. Then M“XX* is a model of D + (BR),
provided SN = A (with M@XX" and S*XX* defined via suitable interpretations
of the additional constants). Moreover, for any closed term t of Dx + (BR), one can
construct a closed term t* of A + (BR) such that

Mw,X,X* ): (t* > t) )
Further, the same claim holds for the following extensions of D¥:

1. The theory DY[X**, ||-|| x«x| over the language with the additional abstract type
X** or its extension with the reflexivity axiom where the model and the majoriz-
ability relation have to be extended to also incorporate this type (and the space
has to be reflexive in the latter case). In any case, one then has to employ a
similar construction as with (QF-LR) to also eliminate the rule (QF-LR**) and

any other potential axioms of type A for these new systems.

2. Assume a convexr and Fréchet differentiable function f : X — R where Vf is

uniformly continuous on bounded subsets with modulus w¥'. Then the result
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holds for D[ f,V f| where, in that case, we will have the modified conclusion that

there exists a term t* such that
M 00 10 (152 0 A 2 |FO)],[IVF(0) o — £*(w,m) 2 1)

holds. If f is additionally supercoercive with a modulus of and f* is Fréchet
differentiable with a gradient V f* that is uniformly continuous on bounded subsets
with a modulus w¥/™, the same claim also holds for D*[f NV f, f*,Vf*] if we
further require that w = WV af and n =g [f*(0)],[IVf*(0)|x. In any case,
one then has to employ a similar construction as before to also eliminate the rule

(QF-LR) and any other potential axioms of type A for these new systems.

Proof. As with the proof of Lemma [3.7.7] the structure of the proof is very much stan-
dard and follows that of the proof of Lemma 17.85 in [96]. In particular, many parts of
that proof carry over and we in that vein only discuss the interpretations and verify the
majorizability of the new constants contained in D“ and its extensions together with
their validity in the resulting models. In particular, we at first do not explicitly deal
with the additional constants induced by the axioms of type A in D + A (and its ex-

tensions) through forming the theory 52 and only discuss these at the end of the proof.

We now first focus on D“ and assume that there are no further axioms of type A
beyond those in D¥. For that, we initially provide the corresponding interpretations of
the constants of D*. For the constants already contained in A“[ X ||-]|], we may choose
suitable interpretations as in [96] (which are anyhow analogous to the interpretation for
the constants related to X* chosen below). For the new constants added to A“[X, ||-|]

to form D, we consider the following interpretations (writing M for M« XX*);
1. [+x#*]m := addition in X*,
2. [—xx]|m = inverse of + in X*
3. ['x#]m = Aa e NN 2% e X* (r, - 2*) where - is the scalar multiplication in X*,
4. [0x#]r := the zero vector in X*,
5. [1x#]|m := some canonically chosen unit vector a* € X*,
6. [(-, Dx*|m = v e X, 2" € X*.((x,2*)), where (x, z*) is the value of x under z*,

7. s ] := Ax* € X*.(]|z*]|)o where ||z*|| denotes the norm of z* in X*.
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Note that the element a* in item (5) exists since X and thus X* is non-trivial.

This is only well-defined in M*“X* if we can construct majorants of these objects.

This we can do as follows:
1 A%y (2 + y) = +x,
2. Az = —yx,
3. Aat, 2% ((a(0) + 1)z) = -xx,
4. 0° = Oxx,
5. 10 > 1y,
6. Az¥ 90 n® g ((z-y)2nt2, 20 — 1) = () Hxx,
7.9 00 (272 2m — 1) 2 || || s

The justifications that those terms listed in item (1) - (5) and (7) really are majorants
are completely analogous to the usual normed case of X alone (see e.g. the proof of
Lemma 17.85 in [96]) and we thus omit the details for them (note that item (7), similar
to item (6) discussed below, relies on Lemma [2.1.2)). We thus only discuss item (6)
explicitly: to show that A\x®, 4% n.j((x - y)2""2, 2" — 1) = (-, ) x«, note first that

Al ((z-y)2"2 2" — 1) = (z-9),

for the natural numbers x,y. Now, we need to show that if n 2 2* and m 2 z (i.e.
n = ||z*|| and m = ||z||), then (n-m), 2 ({x,2*)), and if n" = n, m' = m, then
(n'-m/)s = (n-m),. For the former, note that by axiom (*);, we have [(z,z*)| <
|z*|| [|z|| < n-m and thus Lemmal[2.1.2)implies (n-m), = ((z,2*)),. The latter follows
immediately from Lemma as well.

The above arguments can be similarly used for treating X** and we thus do not

spell this out in any more detail here.

Lastly, we consider the extensions D[ f, V f] and D[ f, V £, f*, V f*] where we focus
only on the latter. For this, we fix the interpretation of the constants Vf and V f* as
well as af, wV7/ and wV’™ just by their respective counterparts fixed in the formulation

of item (2). Further, we set
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L [flm = Az e X.(f(2))o,
2. [f*]m = Ax* e X*(f*(2%))o.

Given w € NN and n € N with w = wV/, w¥/™, af as well as n = [£(0)], |f*(0)],
IV, IV f*(0)]], majorizability of the other constants follows rather immediately

according to the following constructions:
Lo Az%, mO 5 ((22¢@ 4 n 4 1)2m+2 2m+l 1) > f,
2. A%, m0.((226®) 4 n 4 1)2m+2 2mFl 1) > f*
3. M. (C(x)) = Vf,
4. \av.(C(z)) = V f*,

where C(x) = 22¢®%) 4+ n + 1. Justifications that those terms really are majorants
can again be given in a completely analogous way as before (utilizing Lemma as
before but also Lemma and its variant for f* and V f* as in Remark 8.5.15)) and

we thus omit the details.

That M“XX* with these chosen interpretations is a model of D*~ + (BR) (and
its extensions) can be shown similarly as in analogous results (see e.g. [96]). The in-
tended interpretations of the constants of D and its extensions in S“X** turning
S“X* into a model of these systems, are defined in analogy to the corresponding

model M“XX™ defined above.

For treating the other additional axioms in D¥ + A (or its extensions) of type A
beyond the axioms already contained in D* (or its extensions), we rely on the following
argument (akin to [76], Lemma 5.11) showing that S*XX* = A implies M“XX" = A,
For this, the proof given in [76] for Lemma 5.11 carries over which we sketch here: While

M“XX* 40 general is not a model of the axiom of choice [88], one can show (similar

to [88]) that M« XX* = h-ACx x+ where

b-ACxx«:= | b-AC»

5,peT X, X*

with

b-AC** := Y2 (Va'Ty <, ZaA(z,y, Z) — IY <, Z¥2°A(2, Y2, 7))
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Further, we now can see the significance of the notions of small and admissible types
in axioms of type A: for small types p, we have M, = S, while for admissible types p,
we have M, < S, (for which it is important that admissible types take arguments of
small types). For this, the proof given in [71] carries over. Further, we need that it is
provable in D~ that

Vx’,a:,y(x' pr/\x>10y_)x/ ZP?J) (+)

holds for all types p which can be shown similar as e.g. in [96].

Suppose now that
Sw7XuX* ’: VQQHQ <g ngquf (Qu l_)7 Q)

Then also M“*X* is a model of this sentence: First the types of the variables which
are universally quantified are admissible, so over M*XX* the domain of the universal
quantifiers is reduced. For the witnesses for b, which exist in S*X**  note first that
these could potentially live in M“ X" as the types of the variables in b are admissible,
i.e. they take arguments of small types and map into small types. It thus only remains
to be seen whether such a witness is majorizable for majorizable inputs a. However, by
the above argument, the terms in r are all majorizable and if a comes from M“XX*
then ra is majorizable. That we have b <, ra now implies that b is majorizable by
(+) (and consequently the corresponding interpretations exist in M“*X* too). Lastly,
it is rather immediate to see that M“*X* &= A implies M<X*X* & A using b-ACyx_y+.

From M®XX" = ﬁ, we immediately get that the above majorizability result ex-
tends to those variants of the systems where the corresponding Skolem functionals of
these axioms are added and where the axioms themselves are replaced by their instan-
tiated Skolem normal forms (i.e. Dy and its extensions) and we also immediately get
that the corresponding structures defined by canonical interpretations of those addi-

tional constants are indeed models of the corresponding systems.

Note that, technically, these arguments were already needed in the above consid-
erations to see that M“*~" really is a model of D~ (and its extensions). However,
we did not discuss this there explicitly as for those specific axioms of type A belonging
to D~ (and its extensions), the types of the variables occurring in them are not only
small but actually all among {0, 1, X, X*} so that it was immediately clear that the
models coincide at that level (essentially just by definition) and we thus omitted such

a general discussion there. O]
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Combined with the Dialectica interpretation, the main result we then arrive at is

the following bound extraction result for classical proofs:

Theorem 8.6.4. Let 7 be admissible, 6 be of degree 1 and s be a closed term of
D* of type o(0) for admissible o. Let A be a set of formulas of the form Ya?3b <,
ravclFye(a, b, ¢) where Fyy is quantifier-free, the types in §, o and y are admissible and
where 1 is a tuple of closed terms of appropriate type. Let By(z,y,z,u)/Cs(x,y, z,v)
be V- /3-formulas of D with only x,y, z,u/x,y, z,v free. If

DY + A+ Va'Vy <, s(x)Vz" (VuBy(z,y, z,u) — 30°C5(2,y, 2,v)) ,

then one can extract a partial functional ® : S5 x Sz — N which is total and (bar-
recursively) computable on Mg x M and such that for all x € S5, z € S;, 2* € Sz, if

z* = z, then
ST Ly < s(x) (Yu <o D(x, 2°) By(z, y, 2, u) — Jv <o O(x, 2*)Cs(x, y, 2,v))

holds whenever S**X* = A for SXX* defined via any (nontrivial) Banach space
(X, ||-]]) with its dual X* (and with suitable interpretations of the additional constants).
Further:

1. If 7 is of degree 1, then ® is a total computable functional.

2. We may have tuples instead of single variables x,y, z, u,v and a finite conjunction

instead of a single premise Yu®By(z,y, z,u).

3. If the clavm s proved without DC, then T may be arbitrary and ® will be a total
functional on S5 x S3 which is primitive recursive in the sense of Godel. In that

case, also plain majorization can be used instead of strong majorization.

4. The claim of the theorem as well as the items (1) - (3) from above hold similarly
for

(a) DX, ||| x| o7 its extension with the reflexivity axiom where the model

and the majorizability relation, etc., have to be suitably extended,

(b) DI,V f] and D[ f, V[, f*,Vf*], assuming a convex and Fréchet differ-
entiable function f: X — R where V f is uniformly continuous on bounded
subsets for the former or where f is additionally supercoercive and V f* is
uniformly continuous on bounded subsets for the latter. Then the result holds

for the additional constants suitably interpreted and the resulting bound will
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depend additionally on some w € NN and some n € N such that w = w¥/ and
n =g |£(0)], IV £(0)| y« for the former and where additionally w = w¥'™, o
and n =g |f*(0)[, ||V f*(0)||x for the latter.

Proof. The structure of the proof is very much standard and follows that of the proof
of Theorem from Chapter [3| and so we just briefly sketch the key parts. For this,

we focus on D* + A and so we just assume for simplicity now that
D¥ + A+ Va'Vy <, s(x)Vz" (Yu'By(z,y, z,u) — 30°Cs(z,y, 2,v)) .
Clearly, it then also holds that
Dy - V2oVy <, s(z)Vz" (Vu’By(z,y, z,u) — 30°C5(z,y, 2,v))

where D is defined as above. To this theory, Lemma still applies and we can
extract witnesses of the quantifiers which by Lemma have majorants in the model
defined over M“X*X*  We then can recover to the truth in S¥**X* as the types are

low enough as before. O]

Further, following the methodology for the semi-constructive metatheorems laid
out in Chapter [3| we obtain the following semi-constructive version for the system Dy
defined similar to D but over A¥[X, ||-||] instead of A“[X,|]|]] and similar for the
respective extensions. For this, the additional axioms of type A as well as the linearity
rules again have to be eliminated as above but as the constructions and proofs are

completely analogous, we omit them here and just state the result:

Theorem 8.6.5. Let § be of the form 0(0)...(0) and o,7 be arbitrary, s be a closed
term of suitable type. Let T be a set of sentences of the form Vus(C(u) — v <p
tu—D(u,v)) with ¢, B and C,D arbitrary types and formulas respectively and wherez
is a tuple of closed terms. Let B(x,y, z)/C(x,y,z,u) be arbitrary formulas of DY with

only x,y,z/x,y, z,u free. If
DY + 1P + CA_ + T - V2’ Yy <, (2) V2" (=B(z,y, 2) — 3’C(2,y, 2,u)),

one can extract a ® : Ss x S; — N with is primitive recursive in the sense of Godel
such that for any x € S5, any y € S, with y <, s(x), any z € S; and z* € S> with

z* = z, we have that

Sw’X7X* ): Ju <0 CI)([E, Z*) (ﬁB(ZL’, Y, Z) - C(I7 Y, % U))
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holds whenever S*X~* = T where SXX* is defined via any (nontrivial) Banach

space (X, ||-||) with dual X* and with the constants interpreted as in Theorem [8.6.4)
Further, the results also hold for the analogously defined theories D[ X, ||| yux ],

DL f,Vf] and DL f,V f, £,V f*] with similar modifications as in Theorem m



9 Effective rates for iterations involving Breg-

man strongly nonexpansive operators

9.1 Introduction

In this chapter, we provide applications of the metatheorems established in the previous
Chapter [§| to Picard- and Halpern-style iterations of Bregman strongly nonexpansive
mappings. These types of mappings were first considered in [I75], extending the in-
fluential notion of strongly nonexpansive maps [3I] (or, more precisely, that of quasi
strongly nonexpansive maps) to a notion involving Bregman distances.

The class of strongly nonexpansive maps is of vital importance for many influential
developments in modern nonlinear optimization and analysis and consequently also has
been at the focus of many recent developments in proof mining, first having been stud-
ied in [99] in the context of Picard-iterations involving such mappings. Subsequently,
these mappings and their quantitative properties have in particular played a crucial
role in the analysis given by Kohlenbach in [I0I] of Bauschke’s proof [6] of the zero

displacement conjecture [10].

The results presented here are partly in that same vein as the work [99] is situated
in as we provide quantitative versions of the respective asymptotic regularity results for
Picard iterations of these Bregman strongly nonexpansive maps contained in [143] [144].
In the context of Bregman distances and monotone operators on Banach spaces in the
sense of Browder 28], 3], there also exists a notion of resolvent relative to the convex
function f (as defined in [9, B8])] and as discussed in [9], such resolvents and thus
in particular also the so-called Bregman projections as defined already in Bregman’s

foundational work [22] are Bregman strongly nonexpansive. In that way, the results

IThese types of operators, while not covered by the formal discussions from the previous Chapter
will be discussed in the upcoming Chapter [10] which in particular will provide full formal justification

for all extractions presented here.

203
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presented here in particular also cover the influential proximal point algorithm (as in-
troduced by Rockafellar [I83] and Martinet [145]) extended to Bregman distances (as

first considered in [58]) as well as the method of cyclic Bregman projections (see [175]).

Besides Picard-type iterations, we are also concerned here with Halpern-type itera-
tions of Bregman strongly nonexpansive maps. The original method of Halpern, which
relies on convex combinations of the iterations with an anchor to induce strong con-
vergence (see [77] where the iteration was introduced for the anchor 0 by Halpern and
[207] for the consequent seminal extension by Wittmann), is one of the most influential
methods studied in nonlinear analysis in the recent decades. Consequently, also this
method has attracted extensive attention from the research program of proof mining
and the original iterations as well as a wide breadth of extension were analyzed (see
e.g. [64, 98, 110, 124, [186] among many others).

Here, we are initially concerned with the work [I99] where the authors extend
the usual strong convergence results for Halpern-type iterations to Bregman strongly
nonexpansive maps. We analyze this result in the similar spirit as in [104] and obtain
a quantitative version providing a rate of metastability for the strong convergence.
Further, we are able to also incorporate families of Bregman strongly nonexpansive
maps which relate to an anchor map via a uniform quantitative version of the influential
NST condition (see e.g. [2]). From this, by forgetting about the quantitative aspects,
we are able to derive a new “ordinary” (that is non-quantitative) strong convergence

result for this specific iteration involving a family of maps.

At last, we exploit this new generality and discuss what old and in particular new
results can be derived from it. In that vein, we in particular obtain (quantitative)
strong convergence results for Halpern-type variants of the method of cyclic Bregman
projections, of the proximal point algorithm, of a special case of a method solving
operator equations due to Butnariu and Resmerita [36] as well as of a special case
of the forward-backward Bregman splitting method discussed by Bui and Combettes
[32] (see also Van Nguyen [155]), of a method for finding common zeros of maximally
monotone operators as discussed by Naraghirad [I52] and of a Halpern-Mann type
iteration of Bregman strongly nonexpansive maps [214] where we obtain a qualitative

improvement on the conditions presented in [214].

Further, inspired by the recent considerations [41] on the relationship between mod-
ified Halpern methods in the sense of [53] 85] and Tikhonov-Mann type methods as

developed in [20] 42, 210], we even provide a new strong convergence result for a
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Tikhonov-Mann type iteration of Bregman strongly nonexpansive maps which we newly

define in this chapter.

This chapter relies on various notions from convex analysis, in particular surround-
ing convex functions, their gradients and their corresponding Bregman distances. Al-
though already discussed in the context of the logical investigations of Chapter [§ we
will sometimes (re-)introduce these notions as needed throughout the chapter. For
further expositions about convex analysis in Banach or Hilbert spaces, we again refer
to the standard works [IT), 182, 184, 212]. In this section, we just at first collect the

essential notions regarding Bregman distances.

Throughout, if not specified otherwise, let X be a Banach space with norm |||
and let f : X — (—o0,+00] be a given function with extended real values. In the
following, we will assume that f is proper, lower-semicontinuous and convex (compare
the definitions in Chapter . Similarly, we also rely on the other notions discussed in

Chapter |8 regarding the differentiability of convex functions.

The fundamental notion of distance in this chapter is that of the influential Bregman
distance already briefly discussed in Chapter [§} Let f be Gateaux differentiable. The
Bregman distance associated with f is the function Dy : domf x intdomf — [0, +0)

which is defined as follows:

Dy(z,y) == flz) = f(y) =<z =y, V()
For this Bregman distance, in particular recall the so-called three and four point iden-
tities for Dy:

Lemma 9.1.1 (folklore, see e.g. [9]). The following equalities are true for all x,y, z, w €
intdom f:

1. Dg(x,y) + Dy(y, z) = Dy(x,2) =<z —y, Vf(2) = VI(y)).

2. Dyg(y,x) = Dy(y, z) = Dy(w, x) + Dy(w, 2) = (y —w,Vf(z) = Vf(x)).

Recall also the following dual function Wy : domf x domf* — [0, 4+00) defined by
Wiz, %) = fla) =z, 2%) + f*(27).

For this function, we will rely here on a few further properties: If f : X — R is

Legendre and supercoercive and if X is reflexive, one in particular has that

Wiz, Vf(y)) = Ds(z,y)
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for all 2,y € X (see also Chapter [10]) as well as that 1, is convex in its right argument

and satisfies the inequality
Wiz, z*) < Wi(z,2* + y*) = (V f*(2) —z,y")

for any z € X and any z*,y* € X* (see [122]).

9.2 Gradients, Bregman distances and their quanti-

tative properties

Throughout most of this chapter, if not indicated otherwise, we will now assume that
f and f* are total (i.e. domf = X and domf* = X* respectively) and that both
are Fréchet differentiable everywhere with gradients V f and V f*. This section now
introduces the main quantitative notions related to the core objects like the gradients

and distances. For this, and in this chapter in general, we use ’s to represent errors.

9.2.1 Quantitative properties of gradients

Definition 9.2.1. We say that a function wV/ : (0,00)? — (0,0) is a modulus of

uniform continuity (on bounded sets) for V f if for any &,b > 0 and any x,y € B;(0):
lz —yll <w¥(e,b) = [V f(z) = V()] <e.

Using such a modulus, we can immediately derive quantitative witnesses for various
central properties of V f and f. In that vein, the following lemma, giving such witnesses,
is essentially just a reformulation of Lemma written using €’s instead of 27% and

as such, the proof is essentially the same and thus omitted.

Lemma 9.2.2. Assume that V f is uniformly continuous on bounded subsets with a

modulus wV7’. Then:
1. f is uniformly Fréchet differentiable on bounded subsets with modulus
A(e,b) = min{wV¥ (e,b + 1), 1},
i.e. for all bye > 0 and all x € By(0),y € X:

0 < HyH <A(E,b)—> |f(:1:—|—y)—f(36)—<y,Vf(x)>] < e

Iyl
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2. Vf is bounded on bounded subsets with modulus
Cb) = [b/w¥ (1,0)] + [VF(O)] + 1,
i.e. for allb> 0 and all x € By(0):

IV (@) < Cb).

3. f uniformly continuous on bounded subsets with modulus

wf(& b) = m,

i.e. for all ,b > 0 and all z,y € By(0):
lz = yll < w'(e,b) = |f(2) = f(y)] <e.
4. f is bounded on bounded sets with modulus
D(b) = [b/w!(1,0)] +1£(0)] +1,
i.e. for allb> 0 and all x € By(0):

|[f ()] < D(b).

Similar results of course also hold for the conjugate f* if we assume a modulus of

uniform continuity on bounded sets for the respective gradient V f*.

If f is Fréchet differentiable, then the associated Bregman distance is continuous
in both arguments and by analyzing the corresponding proof, we can extract a trans-
formation that turns a modulus for the uniform continuity of the gradient of f into
a modulus for the uniform continuity of the associated Bregman distance. This is

collected in the following lemma:

Lemma 9.2.3. Assume that V f is uniformly continuous on bounded subsets with a
modulus w¥7'. Let C' be a modulus for Vf being bounded on bounded sets

2As shown in the previous Lemma such a C can actually be constructed from wVf. We
however throughout work with a given C' as a black box so that the contributions of the different

types of moduli are highlighted.
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1. For any e,b > 0 and any x,y,1y' € By(0):

ly = ¢'ll < &(,0) = [Dy(w,y) = Dy(w,y)| < &

where & : (0,00)% — (0,00) can be explicitly given by

e =y ()}

2. For any e,b > 0 and any z, 7',y € By(0):

lz ="l < §'(e,b) = [Dy(w,y) = Dy(a', )| < €
where £ : (0,00)? — (0,0) can be explicitly given by

£/<57b) =

2C(b)
Proof. For item (1), note that we have

[y, Viy) =& V)l = Ky, Viy) = Vify + S Viy) — S VYD
<Ky =y, Vipl+ Ky, Viy—=VIy)
<[IVfyllly =yl + VI IV fy = VY]

Using that, we derive

1Dy(x,y) — Dy, )l < 1f(y) = W) + Ko =o', V) — (@ =y, Vy)l
<|fy) = FW)I + K&, VY = Vy)
+ [y, Viiy) =, VYDl
<If) = FOO+ =l IV fy = VY
+IVIyllly =o'+ 11V fy = VYL
This yields the claim by the definition of ¢ as by Lemma , we have that £/4C(b) =

w'(g/4,b) for a suitably defined modulus of uniform continuity w’ for f.

For item (2), note that

Dy, y) = Dy(a', y)l f@) + Kz =",V f(y)l

FEO) + Mz =2V )l

and this yields the claim by the definition of ¢ as by Lemma [9.2.2) we have that
e/2C(b) = w'(/2,b) for a suitably defined modulus of uniform continuity w/ for f. [

f(x)

<|
<|f()
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An assumption that is later used in the context of Halpern-type iterations is that

f is uniformly strictly convex on bounded subsets in the sense of [36], i.e.

Ve,b>035>0Vx,yeX<||x||,||y|| Sba|lz—yl=e

- (f (“4) <%f(x)+%f(y)5)).

In the following, we will occasionally assume a modulus of uniform strict convexity

n: (0,00)* — (0,00) for f, i.e. an n witnessing the above quantifier 3§ > 0 in terms
of ¢ and b. By the equivalent characterization of strictly convex functions f as those
where V f is strictly monotone, we can translate such a modulus of uniform strict
convexity into a modulus witnessing the “uniform strict monotonicity” of Vf, i.e. an

7 :(0,00)% — (0, 0) witnessing § in terms of ¢,b in the following condition:
Ve,b> 030 > 0V, y € X(|lzf|, [yl b A flz —yll 2 e = (o —y, Viz = Vfy) =0)).
This is collected in the following lemma.

Lemma 9.2.4. Let n(e,b) be a modulus of uniform strict convexity for f. Then

fi(e,b) = 4n(e,b) is a modulus of uniform strict monotonicity for VF.
Proof. Note that we have
1 (55Y) < 124) + 1/24() = (e,
= f(@) + 1/2(f(y) — f(x)) — nle,b)

if |z —y|| = ¢ as n is a modulus of uniform strict convexity of f. As Vfw is a

subgradient of f at w, we have

(2, Vfuw) < inf flw+ az) - f(w)’

for all w, z and from this we get

-z, Vie)< fly) - flz) —2n(e, D).
Similarly, we get
&=y, Viy < flx) = fly) - 2n(e,0)
and this implies
(x—y,Vfy—Vfr) < —dn(e,b)

which gives that 7(e,b) = 4n(e,b) is a modulus of uniform strict monotonicity of
Vf. O
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Conversely, also from a modulus 7) for the uniform strict monotonicity we can con-
struct a modulus 7 for the uniform strict convexity but we omit this other direction as,
for one, this construction is rather messy and, for another, the one direction presented
above suffices to justify that such an 7) exists in the context of the central assumptions

featured in the convergence results later on.

9.2.2 Sequential consistency and total convexity

Another central assumption featuring in the convergence results later on is that of the
total convexity of f which we want to discuss in the following. For this, we briefly only

assume that f: X — (—o0, 4+00] is proper, lower-semicontinuous and convex.

Definition 9.2.5 (see e.g. [34]). Given a function f, define its modulus of total con-

vexity vy @ intdomf x [0, +0) — [0, +0] by
v(z,t) ;= inf{D(y,x) | y € domf, ||y — z|| = t}.

The function f is called totally convex at a point = € intdomf if vs(x,¢) > 0 whenever
t > 0. It is called totally convex if it is totally convex at every point. Lastly, we call f

totally convex on bounded sets if
v(B,t) := inf{vs(z,t) | x € B nintdomf} > 0
for any ¢ > 0 and for any non-empty bounded set B < X.

This notion is intimately connected with the so-called sequential consistency for the

function f:

Definition 9.2.6 ([36]). A function f is called sequentially consistent if for all bounded

sequences (z,) and (y,) in intdomf:
D¢(xn,yn) — 0 (n — ) implies ||z, — yn| — 0 (n — o).

Concretely, the main result connecting total convexity and sequential consistency

is now the following:

Lemma 9.2.7 (|34]). A proper, lower-semicontinuous and convex function f : X —
(=0, 40| whose domain contains at least two points is totally convex on bounded sets

iof, and only if, it is sequentially consistent.
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In the following, we will rely on a modulus witnessing the sequential consistency
of a function quantitatively. To motivate this, we move to another equivalent way
of formulating sequential consistency (which is somewhat in spirit of e.g. Proposition
2.5 of [36], see also [I79]). For the following, let f now again be total and Fréchet

differentiable everywhere like in the previous standing assumptions.

Lemma 9.2.8. A function f is sequentially consistent if, and only if, for allb > 0 and

e > 0, there exists a 6 > 0 such that
Vo,ye X (=, llyll <b A Dy(z,y) <6 — flz—yll <e). (+)

Proof. For sufficiency, consider arbitrary sequences (x,), (y,) with ||z, |ly.|| < b for
some b > 0 and assume that lim D¢(z,,y,) = 0. Let ¢ > 0 be given. By (+), there is
a 0 such that

Vm € N(D(Tp, Ym) < 0 = ||Zm — ym|| <€) (++)

Then, by lim D¢(x,,,y,) = 0 there exists N € N such that
Vm > N(Df(xmaym) < 5)7

which by (++) entails that ||z, — ym|| < &, for all m > N. This means that

and we conclude the sequential consistency of f.

For necessity, suppose that (+) fails. Then for some € > 0 and b > 0, we have

¥n € N3z, y, € X (H%H Nyl < oA Dy(@n, yn) < Aen =yl = 8) :

n+1
Then in particular Dy (x,,y,) < -+ for all n € N which entails that
D¢(xp, yn) — 0.

However ||z, — y,|| is bounded away from zero by ¢, and so f can not be sequentially

consistent as x,, and ¥, are bounded. O

Definition 9.2.9. Let f be sequentially consistent. A modulus of consistency for f is

a function p : (0,00)? — (0, 00) such that for all b€ N and ¢ > 0:

Vo,y e X ([lz]l, lyll < b A Dy(z,y) < ple,b) = llz —yll <e).
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By the above result, a function f is sequentially consistent if, and only if, it has a

modulus of consistency.

We call a modulus of this type but for the converse implication, i.e. translating
errors for the metric distance into errors for the Bregman distance, a modulus of reverse
consistency. Further, such a modulus can actually be computed from a modulus of V f

being bounded on bounded sets.

Lemma 9.2.10. Let V f be bounded on bounded sets with a modulus C. Then for all
e>0and b > 0:

Vo, y € X (lz]l, [lyll < b lle —yll < P(e,b) — Dy(z,y) <e)

where P(e,b) can be given in terms of C via

. g
—20(b)

P(e,b)

Proof. By Lemma [9.2.2] we have that w/(s,b) = &/C(b) is a modulus of uniform
continuity for f on bounded sets. So for ||z —y|| < P(e,b) = w/(g/2,b), we have
f(z) — f(y) < e/2 and thus

Di(z,y) = f(x) — fly) =<z —y,Vf(y))
<e2+ |z =yl IVFWI
<e/2+ [lz —yl|C(b)

<€

which is the claim. O

We want to note that the collection of such a modulus P together with a modulus
of consistency p are called moduli of consistency in [164]. In particular, as discussed
in [164], these moduli can be used to derive a so-called modulus of weak triangularity
for Dy, i.e. a function 6 : (0,0)? — (0, 00) such that

Ve,b> 0V, y,z € X (lal]. lyll. 2] < b A Dy(y, ). Dy(y, =) < 6(,b) — Dy(z,2) <)

In other words, 6 witnesses that although the triangle inequality is not valid for Dy,
it locally behaves similar to a distance function with a triangle inequality. To derive

such a 6 from a given p and P as above, set

0(e,b) = p(P(g,b)/2,b).
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Then, if D¢(y,z), D(y, z) < 6(e,b) for ||z||, ||y]|, ||z]] < b, we have
lz =yl |z = yll < P(e,b)/2
using the properties of p. This implies
|z — 2] < P(e, b)

by triangle inequality of ||||. So, using the properties of P, this yields D¢(x,z) < ¢.

Remark 9.2.11. Note that in the presence of such moduli p and P, all moduli introduced
later that depend on measuring a distance ||z — y|| in the premise or conclusion could

be translated into moduli that depend on measuring the distance D¢(x,y).

Besides sequential consistency, being totally convex on bounded sets can be further
recognized to be equivalent to another well-known convexity property for f already

mentioned before, at least in the context of the standing assumptions of this chapter.

Lemma 9.2.12 (essentially |36, Theorem 2.10]). Let f : X — R be Fréchet differen-
tiable and let V f be uniformly continuous on bounded sets. Then f is totally convex

on bounded sets if, and only if, f is uniformly strictly convex on bounded sets.

In that vein, the following remark shortly discusses the relationship between the
modulus of consistency and the previous modulus of uniform strict convexity together

with other convexity moduli from the literature.

Remark 9.2.13. Note that it can be easily shown that p is a modulus of consistency if
vy (By(0),t) = p(t,b)

for any t,b > 0 (using e.g. Proposition 2.1 from [36]) and conversely, if p is a modulus
of consistency, then v;(By(0),t) = p(t,b+ t) for any ¢,b > 0. In that way, moduli of
consistency as defined in this chapter actually immediately witness the total convexity
of the function f.

Further, define the modulus of uniform convexity pu(z,t) as in [206] (see also [35]
911]), i.c.

:U/f(x>t) =
inf{)\ﬂx) G A){((gl/)_—/\g()\x A=Y e Xy —al = t, 4 e (O, 1)}
and write

:uf(B7t) = inf{ﬂf(x7t) | z e B}



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
214 STRONGLY NONEXPANSIVE OPERATORS

for a given set B < X similar as with vy. Similarly define

r+y
2

ip(o,t) = inf { f2) + () = 2f (S52) Ty e X, lly — ) =t}

as in [34] (see also [35]). Then as shown in [35], we have

_ 1

for any z € X and t > 0 as well as vy(z,t) = pus(x,t) for any x € X and ¢t > 0 as shown
in [34, Proposition 1.2.5|. Now, it is also immediate that 1 is a modulus of uniform

strict convexity of f as defined above if

Sy (Bul0). 1) = n(t.b)
for any ¢,0 > 0 where 7i;(B,t), given a set B < X, is defined similarly as py(B,1t).
Conversely, if 7 is a modulus of uniform strict convexity, then 7 ;(By(0),t) = 2n(t,b+1)
for any t,b > 0. Thus any modulus 7 of uniform strict convexity of f induces a modulus
of consistency and thus witnesses the total convexity of f.
Conversely, as follows from the above Lemmas [9.2.7 and [0.2.12] if f is Fréchet

differentiable with a gradient that is uniformly continuous on bounded sets, then f

being sequentially consistent implies f being uniformly strictly convex on bounded
sets. As shown in [35], both of these items are further equivalent to f* being uniformly

Fréchet differentiable (and thus to V f* being uniformly continuous on bounded sets if

f is also supercoercive by Propositions [8.5.4] and [8.5.7]).

9.2.3 Boundedness properties of the Bregman distance

As is well-known, the distances Dy in general have very weak properties. In particular,
a sequence (x,) such that Dy(x,,y) is bounded for some y is not necessarily bounded
itself. In that way, it is thus a common requirement in the context of Bregman distances

to require that the level sets

A

Ll(yaa) = {.CEEX ‘ Df(il?,y) = a}a
Lo(z,0) ={y € X | Dy(z,y) < o,

are bounded for every a > 0 and z,y € X. In particular, this condition features in
the list of conditions exhibited by Eckstein in [58] and by Butnariu and Iusem in [34]
regarding Bregman functions and a stronger requirement of these sets being compact

already featured in Bregman’s seminal work [22] for the conditions imposed on his
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general distances D.

As shown in [34], in the case that Ls(x, ) is bounded for all x and « and if f is

additionally sequentially consistent, then L;(y, «) is likewise bounded.

Further, as shown in [7] (Theorem 3.7) fif f is essentially strictly convex and dom f*
is open, then Dy(z,-) is coercive for any = € intdomf and thus, in that case, Lo(z, a)
is bounded for any «. This is in particular the case for supercoercive f and thus guar-

anteed in essentially all situations in this chapter.

In the following, we will rely on so-called moduli of boundedness for Dy that witness
a uniform quantitative version of the boundedness of L,. Concretely, by a modulus of

boundedness for D; we will mean a function o : (0,00)%* — (0, 00) such that
Ve,ye XVa,b > 0(||z|| <b A Df(z,y) < a— |ly]| <ola,b)).

We call Dy uniformly bounded if such a modulus exists.

Remark 9.2.14. Such a modulus of boundedness for D in particular exists if f, V f* are
bounded on bounded sets and f* is supercoercive (which actually follows from f being
bounded on bounded sets by Proposition since f = f** holds by the Fenchel-
Moreau theorem) and it can be explicitly constructed from corresponding moduli wit-

nessing these properties. This will be discussed in Chapter [10] in more detail.

9.3 Bregman strongly nonexpansive mappings and re-

lated notions

The main notion of mapping considered in this chapter will be that of a Bregman

strongly nonexpansive mapping as introduced in [39, [175].

Let T : X — X be a mapping. We say that a point p € X is an asymptotic
fixed point of T if there is a sequence (x,) which converges weakly to p and satisfies
My, op |2 — Tn|| = 0. We write F(T) for the set of all such asymptotic fixed points
and F(T) for the set of ordinary fixed points of 7.

3While [7] is set in finite-dimensional spaces, the proof given there for Theorem 3.7 can be easily

seen to be valid in general Banach spaces.
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Definition 9.3.1. A map T : X — X is called
1. Bregman nonexpansive (see [144]) if
Dy(Tx, Ty) < Dy(z,y)
for any x,y € X,

2. Bregman quasi-nonexpansive (see [142] [144]) if
Dy(p, Tx) < Dy(p, )
for any = € X and p € F(T),

3. Bregman strongly nonexpansive (see [39] [I75]) if
Dy(p,Tx) < Dy(p, )
for any = € X, p € F(T) and if additionally

lim (D¢(p,zn) — Dy(p,Txy)) = 0 — lim Dy(Txy, z,) =0

n—0o0 n—0o0

for any bounded sequence (z,) € X and any p € I (T),
4. Bregman firmly nonexpansive (see e.g. [9]) if
(Te —Ty,VfTe -V [fTy) <{(Tx—Ty,Vfr—Vfy
for all x,y e X.

It is rather immediate to see that being Bregman firmly nonexpansive implies being
Bregman strongly nonexpansive (see also Lemma later) and it is clear that any

Bregman strongly nonexpansive mapping is Bregman quasi-nonexpansive.

We want to note that the above notion of Bregman strongly nonexpansive operators
is called strictly left Bregman strongly nonexpansive in other parts of the literature
(see in particular [143]) since the fixed points occur in the left argument of the Breg-
man distance and since we used F (T). It F(T) = I (T') is further assumed, then the
resulting notion is called fully left Bregman strongly nonexpansive in these parts of the
literature. Note also that Bregman firmly nonexpansive maps are called D-firm in [9]

and V f firmly nonexpansive in [15].
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Fundamental for the quantitative results discussed later for iterations involving such
mappings are moduli which quantitatively witness the defining properties of Bregman
strongly nonexpansive mappings. The whole approach taken here in regard to quanti-
tative moduli witnessing the Bregman strongly nonexpansiveness is modeled after the
work [99] for “ordinary” quasi-nonexpansive functions. In these quantitative moduli, it
will always be F(T') that we use when deriving the moduli which results e.g. in the fact
that instead of full fixed points, these moduli will concern approximate fixed points. If
it is presumed that F (T) = F(T) and if this assumption features crucially in a given
proof, then a uniform quantitative version of this fact will feature necessarily in its

analysis (see p. for this uniform quantitative version).
Definition 9.3.2. A function w : (0,00)? — (0, c0) such that

Ve, b > 0¥p e F(T) n By(0)Vz € By(0)
(D4 (p, z) — Dy(p, Tx) < w(e,b) — Dy(Tx,z) < )

is called a BSNE-modulus of T'.

Conceptually, BSNE-moduli are similar to the (uniform) SQNE-moduli introduced
in [99].

If we are given a specific element p € F(T), we will later say that a function
w: (0,0)? — (0,00) is a BSNE-modulus w.r.t. p if

Ve, b > 0Vz € By(0) (Ds(p,x) — Dy(p, Tx) < w(e,b) — Dy(Tz, ) <€)

holds for that specific p.

We will later be concerned with a stronger type of modulus which only requires p

to be a sufficiently good approximate fixed point.

Definition 9.3.3. A function w : (0,0)? — (0,00) is called a strong BSNE-modulus
of T if

Ve, b > 0Va,pe X(([Ipll, ||| < b A ||Tp —p| < w(e,b)
A Dy(p,z) — Dy(p, Tx) < w(e,b)) — Dy(Tz,x) < €).

We say that T is uniformly Bregman strongly nonexpansive if it has such a modulus.
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Clearly, a strong BSNE-modulus is also an ordinary BSNE-modulus.

From the following lemma, we get that a uniformly Bregman strongly nonexpansive

map 7 is in particular Bregman strongly nonexpansive whenever FI(T) = F(T).

Lemma 9.3.4. Let f be such that Dy satisfies D¢(z,y) = 0 < ||z —y|| = 0 for any
zv,ye X[ Let T : X — X be given. If T satisfies that for any ,b > 0 there exists a
6 > 0 such that for any p € By(0) with |[p— Tp|| < & and any x € B,(0):

D¢(p,x) — D¢(p,Tz) < § — D¢(Tx,x) < ¢
and if ﬁ(T) = F(T), then T is Bregman strongly nonexpansive.
Proof. The existence of such a 6 > 0 for any ,b > 0 clearly implies
lim (D¢(p,zn) = D¢(p, Txy)) =0 — lim D¢(Tx,, x,) =0

n—o0 n—0o0

~

for all bounded sequences (z,,) and fixed points p. As F(T') = F(T), this also holds for
all p e 2 (T'). Further, note that it also implies that T is Bregman quasi-nonexpansive
as either Dy(T'z,z) = 0 which yields + = Tz and thus Ds(p,Tx) = D(p,x), or
D¢(Tx,z) > 0 which yields D¢(p,x) — Ds(p,Tx) > 0, i.e. Ds(p,Tx) < Ds(p,x) as

well. Thus 7' is Bregman strongly nonexpansive. O

Assuming that a given mapping even satisfies this strengthened notion of being
uniformly Bregman strongly nonexpansive has practically often very little impact as
in most concrete applications, a corresponding strong BSNE-modulus can actually be
obtained (as is e.g. the case for Bregman firmly nonexpansive maps as Lemma m

shows).

If D¢ is uniformly bounded with a modulus of boundedness o as introduced in
Section [9.2.3] then any Bregman quasi-nonexpansive map 7' with a non-empty fixed
point set is bounded on bounded sets and we can also construct a witness for that in

the following sense:

Lemma 9.3.5. Let T be Bregman quasi-nonezpansive and let pg € F(T) # . Let
Vf, f be bounded on bounded sets with moduli C, D, respectively. Let o be a modulus
of boundedness for Dy.

“Naturally, this is the case if f is strictly convex.
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Then T is bounded on bounded sets with
ITz|| < E(b) := 0o(2D(b) + 2bC'(b), b)
for o= |z||, ||pol-

Proof. Note that D¢(po, Tx) < Ds(po, x) as T' is Bregman quasi-nonexpansive and thus

Dy (po, Tx) < | f(po)| + [f(2)| + [{po — 2, V f(2))|
< 2D(b) + 2bC(b)

from which the claim follows using the properties of o. n

Conceptually, the strong BSNE-moduli are related to the notion of “quantitative
quasiness” as discussed in [194] and from such a strong BSNE-modulus, one can in

particular derive a modulus ' : (0,90)? — (0, 00) which satisfies
Ve,b> 0¥z, pe X(|lpll, 2] <o A [|[Tp —pl| <w'(e;b) = Dys(p,Tx) — Dy(p, x) <e).
This is collected in the following lemma:

Lemma 9.3.6. Let § be a modulus of uniform continuity on bounded sets for Dy in its
second argument and let p be a modulus of consistency for f. Let E be a modulus for
T being bounded on bounded sets and let w be a strong BSNE-modulus for T'.

Then there exists an w' such that

Ve,b> 0¥z, pe X(|[pl,|lz]| <b
A Tp —pll < w'(e,b) = Dy(p, Tx) — Dy(p,x) < e).

which can be moreover constructed as

~

W'(e,b) := w(p(§(e,), ), b)
where b = max{b, £(b)}.

Proof. If D¢(p, Tx)—Dy(p, x) < 0, then the claim holds trivially. So suppose D¢(p, Tx)—
D¢(p,z) > 0. Then trivially Ds(p,z) — Ds(p,Tx) < 0 < w'(g,b) which implies
D¢(Tx,x) < p(§(5,g),/b\). This yields ||[Tz — x| < 5(5,5). Thus, we in particular
have Dy(p, Tx) — Dys(p,x) < €. O
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In the following, we will call such an w" a derived modulus of w.

As mentioned above, any Bregman firmly nonexpansive map is Bregman strongly
nonexpansive. From the proof of this fact, we can immediately extract a (strong)
BSNE-modulus for any Bregman firmly nonexpansive map 7. Crucial for this is the

following equivalent characterization of Bregman firmly nonexpansive mappings:

Lemma 9.3.7 ([9]). A map T : X — X is Bregman firmly nonexpansive if, and only
of,

Di(Tx,Ty) + Dy(Ty,Tx) < Di(Tx,y) + D(Ty,x) — Dy(Tx,z) — Ds(Ty,y).
forall x,ye X.

Lemma 9.3.8. Let T' be a Bregman firmly nonexpansive map which is bounded on
bounded sets with a modulus E and let §, & be moduli that Dy is uniformly continuous
on bounded sets in its right and left argument, respectively.

Then T is uniformly Bregman strongly nonexpansive with a strong BSNE-modulus

w defined by
w(e,b) = min{¢(e/4,b), € (e/4,b),2/4}
where b = max{b, E(b)}.
Further, one can choose w(e,b) = € as a BSNE-modulus for any Bregman firmly

nonexpansive 1.

Proof. For the strong modulus, let x,p be given. Using Lemma with y = p, we
get

D¢(Tx,Tp) + D¢(Tp,Tx) < Dy(Tx,p) + Dy(Tp,x) — Dy(Tx,2) — Ds(Tp, p)
< D¢(Tx,p) + Dy(Tp,x) — D¢(Tx, x).

Rearranging yields

D¢(Tx,x) < Dy(Tx,p) — Dp(Tx,Tp) + D¢(Tp,x) — Ds(Tp, Tx)
< (Dy(Tx,p) = Dy(Tx, Tp)) + (Dy(Tp,x) — Ds(p, x))
+ (Dy(p,x) = Dy(p, Tx)) + (Dys(p, Tx) — Dy(Tp, Tx)).

Thus if ||p||, ||z]| < band ||Tp — p|| < w(e,b) as well as Ds(p, z)—Dy(p, Tx) < w(e,b) <
/4, then we get Dy(Tx,z) <e.
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For the ordinary BSNE-modulus, note that if p = T'p, then Lemma[9.3. 7 with y = p
even yields
Dy(p, Tz) < Dy(p,z) — Dy(T'x, x)

which is equivalent to
Df(TZB,QT) < Df(p,{lf) - Df(vax)
which yields the given modulus. O]

Compare this BSNE-modulus in particular to the modulus extracted in [99] for or-
dinary (meaning in the usual metric sense) strongly (quasi-)nonexpansive maps which
even in the simple case of Hilbert spaces (where the notions of firmly nonexpansive and
Bregman firmly nonexpansive for f = ||-||* /2 coincide) is quadratic in . By taking a
look at the above proof, this seems due to the fact even in the Hilbert case with the
specific choice f = ||-||* /2, the distance D; fits closer to the notion of firmly nonexpan-

sive maps and the quadratic increase comes from converting from D to the usual norm.

A concrete example for Bregman firmly nonexpansive mappings are the resolvents
Resﬁ relative to f for a given monotone operator A in Banach spaces. For this, we first

recall the notion of monotone operators.

Definition 9.3.9 ([28,30]). Let A : X — 2%" be a set-valued operator. The operator
A is called monotone if
-y 2" —y"H =0

for all (z,z*), (y,y*) € A.
Further, A is called maximally monotone if its graph is not strictly contained in

the graph of another monotone operator.
The f-resolvents of A are then defined using V f ﬂ

Definition 9.3.10 (|9, 58]). Let A : X — 2" be a set-valued operator. Given f, we

define the resolvent of A relative to f as the operator Resﬁ : X — 2% with
Res/)(z) := (Vf + A) 1o V) (2).

The following properties are essential for the resolvent relative to f:

°The idea of considering the above notion in general Banach spaces is due to [9] (where it was
introduced under the name of D-resolvents) but this notion of a resolvent relative to f was already

considered by Eckstein in [58] in the context of finite-dimensional spaces.
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Proposition 9.3.11 ([9]). Let f : X — (-0, +x] be a function which is proper,
convez, lower semicontinuous, Gateauz differentiable and strictly convexr on intdom f
and let A be a monotone operator such that intdomf n domA # . Then following

statements hold:
1. dom Res/, < intdomf and ran Res’, < intdom,
2. Res£ is single-valued on its domain,
3. F(Res’) = intdomf n A~10,
4. Resﬁ is Bregman firmly nonexpansive on its domain.

Further, the classical result for monotone operators in Hilbert spaces established by
Minty [147] that maximal monotonicity is equivalent to the totality of the resolvents

extends to these resolvents relative to f under suitable assumptions on f:

Proposition 9.3.12 ([15]). Let X be reflezivel| Let A be monotone and assume that
[+ X — R is Gateaux differentiable, strictly convex and cofinite (i.e. dom f* = X*).
Then A is mazimal monotone if and only if ran(A + Vf) = X*.

As we will mostly consider a fixed operator A in the following, we introduce a more
compact notation for resolvents with real parameters in such a case: given v > 0, we

simply write Resﬁ for Res§ A

Important for the study of resolvents are their corresponding Yosida approximates
defined by
1
Aﬁ(x) = 5 (Vf(z) - VfResﬁ(m))
for a given v > 0.
It follows essentially by the definitions of Resﬁ and A/ (see e.g. [177]) that

Res/z, Alz) e A
v Ly

for any v > 0 and any = € dom Resﬁ.

By the above results, as any Res§ is Bregman firmly nonexpansive, all such resol-

vents for a maximal monotone A have the same BSNE-modulus (and also the same

6Recall Remark [8.5.13| by which this is true in the standing assumptions of this chapter.



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
STRONGLY NONEXPANSIVE OPERATORS 223

strong BSNE-modulus if they are bounded on bounded sets with a common modulus).

These resolvents relative to f also include Bregman projections (see [22]) as these
can be considered to be special resolvents: If C' is a non-empty, closed and convex

subset, we may define the indicator function

0, ifreC,
+oo, ifxé¢C.

Lc(x> =

It is straightforward to see that this function is proper, lower-semicontinuous and
convex. Therefore, the subgradient dic (recall Chapter is maximally monotone
[180, [182]. The Bregman projection PZ is then defined as the resolvent Resf;C and in

particular is Bregman firmly nonexpansive. Thus also here the above moduli apply.

In general, already for Bregman firmly nonexpansive mappings, it is not immedi-
ately clear which (if any) form of ordinary metric continuity such mappings inherit.
However, if one assumes that V f is uniformly continuous on bounded subsets as well
as uniformly strictly monotone, then at least every Bregman firmly nonexpansive map
that is bounded on bounded sets (i.e., by Lemma [9.3.5 in particular any such map

with a fixed point) is indeed uniformly continuous on bounded subsets.

Lemma 9.3.13. Let T be Bregman firmly nonexpansive and assume that T' is bounded
on bounded sets with a modulus E. Assume that V f is uniformly continuous on bounded
sets with a modulus w¥/ and that it is uniformly strictly monotone with a modulus 1,

i.€.
Ve, b > 0Vr,y e X (|lzf], lyll < b Az =y, Viiz =V fy) <nle,b) = llz —yll < ).
Then T is uniformly continuous on bounded sets with
Ve, b > 0¥,y € By(0) (|l — y|| < w¥ (n(e, E(b))/2E(b),b) — ||Tz — Ty|| < ¢).

Proof. Let x,y be given with ||z||, ||y|| < b. As T is Bregman firmly nonexpansive, we
get by definition that

Tz —-Ty, VfTe —VfTyy < Tz —Ty,Vfr—Vfy)
< [Tz =Ty[[[Vfz - V/fy|
<2E(b) [Vfz =V fyll.
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In particular, if ||z — y|| < wV/(e/2E(b),b), we have
(Tex —Ty,VfTe -V [Ty)<e
and thus, if ||z — y|| < wV/(n(e, E(b))/2E(b),b), we get [|[Tx — Ty|| < e. O

A crucial feature of strongly nonexpansive maps (in the usual sense) as compared
to e.g. firmly nonexpansive maps is that they are closed under composition. A similar
result holds for Bregman strongly nonexpansive maps as established in [I43]. We now
derive a quantitative variant that allows one to combine (strong) BSNE-moduli for the
factors into a (strong) BSNE-modulus for the composition. This result is similar to
the corresponding results for “ordinary” (quasi)-strongly nonexpansive maps given in
[99] (see Theorem 2.10 and Theorem 4.6 therein).

However, before we move to this result on moduli for compositions, we first consider
a quantitative treatment of the fact that fixed points of compositions of Bregman
strongly nonexpansive operators are fixed points of the factors (see e.g. Proposition
3.4 in [143]). This result, however, crucially relies on the fact that F(T) < F(T) and
so here, we will have to rely on a quantitative treatment of this aspect. The inclusion

~

F(T) < F(T) concretely expresses the closure property
Ve e X, (z,) € X (||zp, — Txyn|| — 0 and z,, — & (weakly) — 2z = Tx)

of which the underlying logical methods used in this chapter suggest the following

uniform quantitative version to be necessary in the analysis:

Ve,b> 03k > OVz,y € X(||z]|, lyl| < b
Ay =Tyl lly — f] < & =l = Taf| <e).

We call a function (e, b) that provides witness for such a  in terms of £, b a modulus
of uniform closedness for F'(T') as this kind of modulus is essentially just a concrete
instantiation of the moduli of uniform closedness considered in an abstract context in
[112]. In particular, we want to note that this modulus can from a logical perspective

be recognized as a quantitative form of a weak extensionality principle for 7', namely
Ve,yly=Tyrxz=y —>x="Tx)

which has previously received attention in proof mining, in particular due to the fact
that there are meaningful classes of maps that posses such moduli of uniform closed-

ness but fail to be uniformly continuous (as e.g. maps satisfying Suzuki’s (E) condition
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[67, 201], see also the discussions in [100, 112]).

In the presence of such a modulus, we can now turn to the following quantitative

result (which is anyhow analogous to Proposition 4.15 from [99]):

Theorem 9.3.14. Let & be a modulus of uniform continuity on bounded subsets for
Dy in its second argument. Let 0 be a modulus of weak triangularity for Dy. Let p be a
modulus of consistency for f and let P be a modulus for reverse consistency for f. Let
Ti,...,Tn : X — X be Bregman strongly nonexpansive with a (not necessarily strong)
BSNE-modulus w w.r.t. some common fized point p € ﬂfil F(T;). Let k be a common
modulus of uniform closedness of F(T1),..., F(Ty).

Then for all € > 0:

N
1Ty o0 Thw — af| < P(o(e, b, N),b) — \ llv = Thal| < ¢
=1

whenever b = ||z||, ||p|| and b = ||Txo---oTiz|| for 1 < k < N where p(e,b, N) =
Xo(N — 1,¢) and, given b, x, : N x (0,00) — (0,00) is defined by

x6(0,€) := min{p(r(e, b), b), p(e, b)},
Yol + 1,2) = min{p(E(w(min{8xs(n, ), ), p(x(=,b), b)}, b),b), ),
Xb(n,€),0(xp(n,€),b)}.
In particular, if E s a common modulus for Ty,..., Ty being bounded on bounded

sets, then above claim holds for b = ||z||, |p|| and P(p(e,b, N),b) with o(e,b, N) =
X3(N —1,¢) and where b = max{b, E(b),..., EM(b)}.

Proof (compare also [99]). Note first that

Xb(n, €) < min{p(k(e, b), b), p(e, b)}. (0)

Also note that every T}, is in particular Bregman quasi-nonexpansive w.r.t. p. We show
by induction on 1 < k < N that Ds(Tyo0---oTix,x) < xp(k—1,¢) implies ||z — Tiz|| < e
for 1 < ¢ < k. For k = 1, the statement trivially holds since x,(0,¢) < p(e,b). So let
1 < k < N and assume that the claim holds for £ — 1 and that

D¢(Tyo---oTiz,x) < xp(k —1,¢)
= min{p(&(w(min{e(Xb(k - 275)? b),p(lﬁ(e’:‘, b)? b)}, b)? b>7 b),
ok —2,¢),0(xp(k — 2,€),b)}. (1)
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For y = Tp_10---oTix, we have

[l = Thyll < &(w(min{(xs(k — 2, €),0), p(ri(e, b), b)}, ), b). (2)

Hence by (2), the assumption on £ and p € ﬂle F(T;), we derive

Df(p, y) - w(min{e(Xb<k -2, €)> b)a p(/ﬁ(é‘, b)> b)}7 b)
S Df(p7 I) - W(min{Q(Xb(k -2, 5)7 b)? p(/{(s, b)v b)}’ b)
< Dy(p, Thy)

where we in particular used that D¢(p,y) < Dy(p, x). Thus, since w is a BSNE-modulus
for T}.:

Df(Tky7 y) < min{e(Xb(k - 27 5)7 b)’ p(/i(é—f, b)7 b)} (3)

By (1) and (3) together with the assumption on 6, we thus obtain
Df(Tk‘—lo”'oTlx>$):Df(y7$)<Xb(k727€) (4)

from which we derive .
1
Nz = Tz| < e
i=1

using the induction hypothesis. From (0) and (4) together with the definition of p, we
also get

||.T — Tk—l O---0 TlI“ < :‘1(8, b)
and so by (3), we obtain ||z — Tiz|| < e. O

We now turn to the following result on moduli for compositions of Bregman strongly

nonexpansive maps (which is modeled after Theorem 2.10 and Theorem 4.6 from [99)]):

Theorem 9.3.15. Let & be a modulus of uniform continuity on bounded subsets for
Dy in its second argument. Let 6 be a modulus of weak triangularity for Dy. Let p
be a modulus of consistency for Dy and let P be a modulus of reverse consistency.
Let Ty,...,T, : X — X be uniformly Bregman strongly nonexpansive maps with
strong BSNE-moduli wy,...,w, and derived moduli wi,...,w) and assume that the
T;’s have a common fixed point. Let k be a common modulus of uniform closedness of
F(Ty),...,F(Ty).

Then T =T, o---0oTy is uniformly Bregman strongly nonexpansive with modulus

w(e,b) := min {@(5,b)/2,P(go(min{@’(s,b),@(s,b)},g, n),B)}
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where
&(e,b) := min {wl (p(P(2,0)/n,D).D),. .. ,wn(p<P(g,6)/n,B),6)} ,
&'(e,b) := min {w;(@(g, b)/2(n — 1),D),. .., w.(@(c, b)/2(n — 1),6)} ,

and where ¢ is defined as in Theorem where b = max{b, B(b), ..., E®(b)} for
b satisfying b = ||q|| for a common fized point q of the T;’s and where E is a common
modulus for Ty, ..., T, being bounded on bounded sets.

If the w; are ordinary BSNE-moduli, then w defined by

w(e,b) = min {wi(p(P(e,5)/n, D), 5), wa(p(P(e, B)/n,5),B), ... walp(P(,5)/n, ), 5)}
is a BSNE-modulus for T' =T, o---o T} where b is defined as before.

Proof (compare also [99]). Define

51, ... En,b) = min {M(p(gl,z),a), . ,wn(p(gn,g),z)},
and
&' (1,...,En,b) := min {wg(@(sh L Enb)/2(n—1),D),
Wl (B(er, .. en, b)/2(n — 1),8)}
as well as

w(er,y ..., En,b) := min {@(81, ey Eny 0)/2,

P(o(min{@' (1, . .., en,b), D(eL, - . ., €n, b)), b, n),B)}.
Now, suppose
lp—Tpl|l,Ds(p,x) — Ds(p, Tx) <wleq,...,en,b),
for points x, p with ||z, ||p|| < b. Then Theorem yields that
lp — Tip|| < min{@ (g1, ...,6n,b),0(c1,...,n,0)}.
Therefore, we get

D¢(p,Tx) = D¢(p, T, 0T}y 0 -+ 0 Ty)
< D¢(p,Th—10---oThx) +W(ey,...,en,0)/2(n — 1)

N

N

D¢(p, Thx) + (n—1)D(e1, ... ,en,0)/2(n — 1)
D¢(p,x) + ni(eq, ..., en,0)/2(n — 1)

N
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and therefore

D¢(p,Ti—y0---0oTix) — Dy(p,T;0T;—y0---0Thx)
< D¢(p,z) — Dy(p,Tx)
+ (n—1)o(e1,...,6n,0)/2(n — 1)
< W(eg, ..., en,b)
< w;(p(ei, b),b)
for any i = 1,...,n. This, together with ||p — T;p|| < wi(p(&:, b), b), yields

Dy(T;0Tiy o0 Thw, Ty 00 Tix) < plei, b)
as w; is a strong BSNE-modulus for 7;. In particular, we have

|TioTi—yo---oTx—Tiyo---oTiz| <¢

so that we get ||t —Tz| < e + -+ + &,. Now, for ¢; = P(g,g)/n, we then get
|lx —Tx| < P(s,g) so that D¢(Tz,z) < €.

If the w;’s are BSNE-moduli and if p is a real fixed point of 7' (and thus a common
fixed point of the Ty’s as F(T) < (', F(T;), see [143]), then it is clear that the second

i=1

term involving ¢ can be dropped. O

The last type of operation on Bregman strongly nonexpansive operators that we
consider here is that of the block operator introduced in [143] [144]:

Definition 9.3.16 ([143], [144]). Let T}, i = 1,..., N, be finitely many operators and
let w; € [0,1], 7 = 1,..., N, be finitely many weights with Zf\il w; = 1. Then the

associated block operator is defined as

N
Tz =V f* <Z w;V fT,-x) .
i=1

In particular, as shown in [143], [144], such block operators, if composed of Bregman
strongly nonexpansive maps, are again Bregman strongly nonexpansive. For a quanti-

tative version of the said result, we consider the following lemmas.

At first, we note that a block operator is bounded on bounded sets if its summands

are.
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Lemma 9.3.17. Let Vf, Vf* be bounded on bounded sets with moduli C, F', respec-
tively. Let T;, i = 1,..., N, be finitely many operators which are bounded on bounded
sets with a common modulus E and let w; € [0,1], i = 1,..., N, be finitely many
weights with YN w; = 1.

Then the associated block operator T is bounded on bounded sets with a modulus

E'(b) := F(C(E(®))).

Proof. For ||z|| < b, we clearly have

< 2 wi[VfTix|| < C(E(®b))

i=1

N
Z w;V fT;x
i=1

and thus ||Tz| = HVf* SN VT

| < F(CE®D)). 0

As shown in [144], one has F(T') < F(T;) for a block operator 7" and a summand
T;. The following lemma gives a quantitative version of this, translating bounds for

approximate fixed points.

Theorem 9.3.18. Let £ be a modulus of uniform continuity of Dy in its second argu-
ment. Let T;, 1 =1,..., N, be finitely many Bregman strongly nonexpansive operators
with a (not necessarily strong) BSNE-modulus w and let w; € [0,1], i = 1,..., N, be
finitely many weights with ZZ]\LI w; = 1. Let T be the associated block operator. Assume
that T and all T;’s are bounded on bounded sets with a common modulus E. Let py be

a common fized point of all T;’s and let b = ||po]|-

Then for any x with ||z|| <b and any k =1,...,N:
wp=w>0A ||z — Tzl <€ (ww(p(g,z),b),z) e — Tha|| < ¢
where b = max{b, £(b)}.

Proof. 1t

o= T < € (wwlp(e,).5).5)

then we get

~

Dy(po,z) — Dy(po, Tx) < ww(p(e, b),b).
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Fix k=1,...,N. Then

Dy(po, Tx) < wiDy(po, Tiw) + > wiDy(po, Tixx)
ik
< wiDy(po, Thz) + Z w; D¢ (po, )
ik
< wiDy(po, Thr) + (1 — wy)Dy(po, x)
< wi(Dg(po, Trw) — Dy (po, x)) + Dy(po, )

and thus in particular

~

wi(Dg(po, v) — Dg(po, Txr)) < Dy(po, ) — Dy(po, Tx) < ww(p(e,b),b)

which implies D¢ (po, x) — D(po, Tx) < w(p(g,g), b). As w is a BSNE-modulus for T,
we get Dy(Tyx, x) < p(a,g) which yields ||z — Tpx|| < e. O

The following lemma now provides a map that translates strong BSNE-moduli for
the summands into strong BSNE-moduli for the block operator and in that sense is a

quantitative version of Proposition 14 in [144].

Theorem 9.3.19. Let § be a modulus of uniform continuity of Dy in its second ar-
gument. Let w¥/ be a modulus of uniform continuity of Vf on bounded sets and C
N
be finitely many uniformly Bregman strongly nonexpansive operators with a common
strong BSNE-modulus w and derived modulus w' and let w; € [0,1], i = 1,..., N, be
finitely many weights with Zf\il w; = 1. Let T be the associated block operator. As-

be a modulus witnessing that V f is bounded on bounded sets. Let T;, i = 1,..., N,

sume that T and all T;’s are bounded on bounded sets with a common modulus E. Let
po € F(T) be a common fized point of all T;’s and let b = ||po]|-

Then T is uniformly Bregman strongly nonexpansive with a strong BSNE-modulus
W which can be defined by

&(e,b) := min{w?w (e, b), & (ww(p(minfw(e’, b), ' (ww(e', b),b)},b), b),b)}

where b = max{b, £(b)} and & = p(wvf(e/élg, B),g) and w = min{e/SNgC(g), 1}.
If w is only a (not necessarily strong) BSNE-modulus, then we can chose &(e,b) =
ww(e’,b) as a BSNE-modulus for T

Proof. Let x,p be given with ||z, ||p|| < b, ||[p — Tp|| < &(e,b) as well as

D¢(p,x) — D¢(p, Tx) < &(e,b).
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Then in particular
Ip = Tpll < £(ww(p(minfw(e’, b), o' (ww(e', b),b)},b),b),b)
and by Theorem [9.3.18] we have
lp = Tipl| < minfw(e’, b), o/ (ww(e', b), b)}

for any k with wy > w.
We further have

N
Dy(p,Tw) < Y wiDy(p, Tix)
i=1
and, therefore,

N
2, wi(Dy(p,x) = Dy(p. Tiw)) < Dy(p, ) — Dy(p, Tx) < &(e,b)
i=1

which implies

wy, (Dy(p,x) — Dy (p, Tiz)) < B(e,b) + Y w; (Dy(p, Tix) — Dy (p, x))
i#k
(g,0) + (1 — wy)ww(e', b)

<
< w?w(e,b) + (1 — w)ww(e', b)

ww(e',b)
and thus D¢(p,z) — Ds(p, Tyr) < w(e’,b) for any k with wy, > w. As w is a strong
BSNE-modulus for T}, this gives Dy(Tyx,x) < €’ for any such k. Thus in particular
|z — Typz|| < w¥7(/4b,b) which yields

IV fz — VfTiz| < /4b.
As we have

N
VfTx—Vfr= Zwi(VfTix—fo)
i=1
the above yields

N
IV fTx =V fzl| < > w; |Vfz - VTl
=1

- Z w; ||V fex =V fTx| + 2 w; |V fz — VT

Lw; =W Tw; <w

< Z wqe/4b + Z w;2C(D)

Lw; =w 7w <w

<5/4g 2 w; + Z w2C’@)

LW =W w; <w

< /2b.
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Now using the three point identity, we have

D¢(Tz,z) + Dy(x,Tz) = Tz —2,Vf(Tx)—Vf(x))
< ||VfTx — Vx| |Tx — 2
< HVme—foHZg

<€

which in particular yields D(Tz,z) < e.

It is immediate to see that if w is just a (not necessarily strong) BSNE-modulus

and p is a fixed point of T, that ww(e’, b) suffices. [

9.4 Picard iterations

We now consider the first type of iteration of Bregman strongly nonexpansive map-
pings: as shown in [142], a Bregman strongly nonexpansive map 7' : X — X (in the
context of some surrounding assumptions) is asymptotically regular, i.e. it holds that
\|xn, — Tx,|| — 0 where z,, := T"x is the Picard iteration of T". In this section, we now
derive quantitative rates for the above limit. In fact, we will actually first establish
a corresponding quantitative result for a more general iteration involving a family of
Bregman strongly nonexpansive operators of which the above Picard iteration will be

a special case.

For this, we now fix the following moduli abstractly{|
(a) Let 6 : (0,90)% — (0,0) be a modulus of weak triangularity for Dy, i.e.

Ve,b> 0V, y,z € X([lz|, [yl , =]l < b
A Dy(z,y), Dy(z,y) < 0(c,b) — Dy(x,2) < ¢).

(b) Let & : (0,90)? — (0,90) be a modulus for D;(x,y) being uniformly continuous in

y on bounded sets, i.e.

Ve, b > 0V, y1,y2 € X([lz]] ([l lgall <
Al = yoll < €(e,0) = [Dy(z, 1) = Dyl )| <€)

"Note the previous sections for how such moduli can be derived from respective moduli for the

uniform continuity of V£, etc.
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(c) Let p: (0,00)* — (0,00) be a modulus of consistency for f, i.e.

Ve, b > O0Vz,y e X (|||, [|y]| <b A Ds(x,y) < ple,b) — |z —yl <e).

We then obtain the following result on rates of metastability and rates of conver-
gence for iterations of families of Bregman strongly nonexpansive mappings. In that
vein, the result provides a quantitative version of the respective asymptotic regularity
results contained in [143, 144]. Further, the theorem is an adaptation of a similar re-
sult (see Theorem 4.7 in [99]) on strongly quasi-nonexpansive mappings in the ordinary

sense.

Theorem 9.4.1. Let (T,,)nen be a sequence of functions T,, : X — X which are Breg-
man strongly nonexpansive w.r.t. some p € [\ .y F(T) with a common BSNE-modulus

w(e,b). Let voe X, xpy1 = Ty and b= Dy(p, xo), |||, || zall-
Therf

Ve > 0Vg : N — Nan < ¢y (e, 9)Vk € [n;n + g(n)] (Ds(zg11, 1) < €)

where
Gl 9) == gl =D (0)
and g(n) :=n+ g(n) + 1.

In particular, if o is a modulus of boundedness of Dy, then the above results holds
true for iy (e, 9) where b = Dy(p, o), [|p|| and b = max{o(b,b), b}.
Further, if T,, =T for alln € N and T, additionally, is also Bregman nonexpansive,

then we even have

A~

b
Ve > OVEk = = (Df(l‘k+1,l‘k) < 8) .
w(e, b)

Proof. Since T, in particular is Bregman quasi-nonexpansive w.r.t. p, we get that
0 < D¢(p,xn) < Df(p,x0) < b.
Hence by Corollary 2.28 and Remark 2.29 from [96], we get that the function
ele,9) = 51ED(0)
satisfies

Ve > 0Vg : N — Nin < (e, g)Vi, j € [n;n+ g(n) + 1] (|Ds(p, z;) — Dy(p, z;)| < e)

8Here, and in the following, we write [n;m] = [n,m] N N.
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and so, in particular, we have
Ve > 0Vg : N — Nin < ¢(e, g)Vk € [n;n + g(n)] (| Dy (p, z) — Dy (p, Thwi)| <€)

Hence for w(e,b) in place of ¢ in the above and using the fact that 7} is Bregman

strongly nonexpansive with modulus w, we get that
Ve > 0Vg : N — Nin < p(w(e, b), 9)Vk € [n;n + g(n)] (Dg(Thxy, xx) <€)

which proves the first claim. For g(n) = 0 for all n, we thus in particular have

ve > 03n < gllzem D (0) = {ﬁ} (D (2psr,am) <€)

If now T}, = T for all k and T is additionally Bregman nonexpansive, then
Di(py1, 1) = Dp(TF e, TF2) < Dp(T" ', T"2) = Dy(2n41, )
for all k£ > n and so the second claim follows. O

From this, we get the following corollary to derive convergence of the norm distance:

Corollary 9.4.2. In addition to the assumptions in Theorem [0.4.1] let p be a modulus

of consistency for f. Then
Ve > 0VYg : N — Nin < ¢y, (p(e, d), g)Vk € [n;n + g(n)] ([[ze — 41| < €).

If again T, = T for all £ and T is additionally Bregman nonexpansive or nonexpansive
(wr.t. ||), then

b
w(p(e, d),b)

The main application of this Picard process now follows if the iterated map is a

Ve > OVk > [ } (leg — zpaa]] <€) .

composition. Together with Theorem [9.3.15] we can then obtain the following result
giving that the Picard iteration z,,, = Tz, of a composition T' = T}, 0---oT} is asymp-
totically regular w.r.t. each T (which in particular provides a quantitative perspective

on the method of cyclic Bregman projections [175]):

Theorem 9.4.3. Let £ be a modulus of uniform continuity on bounded subsets for
Dy in its second argument. Let 8 be a modulus of weak triangularity for Dy. Let p

be a modulus of consistency for f and let P be a modulus for reverse consistency for
f. Let o be a modulus of boundedness of Dy. Let Vf and f be bounded on bounded



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
STRONGLY NONEXPANSIVE OPERATORS 235

sets with moduli C', D. Let Ty,..., T, : X — X be Bregman strongly nonexpansive
w.r.t. some p € F(Ty) n--- n F(Ty) with a (not necessarily strong) BSNE-modulus
w. Let k be a common modulus of uniform closedness of F(Ty),...,F(Tn). Define
T =Tyo---0Ty as well as x,, = T"xy for some xg € X. Let b = Dy(p, o), ||p||
and define b = max{o(b,b),b} as well as b = max{b, E(b),..., E®(b)} for E(b) :=
o(2D(b) + 2bC'(b),b).

Then

Ve > O0Vg : N — Nin < ®(e, g)Vi € [n;n + g(n)|Vj € [1; k] (| Tz — xi]| <€)

where ® 1s defined by

)c->

(e, g) = g([mb(m
where p(e,b, k) = xp(k — 1,¢) with x defined by

,b), ple, 0)},
w(mln{g(Xb(n 5) b) (H(57b)7b>}’b)7b)ab)7
(

Xb(n, ), 0(xs(n, €), )}

x5(0,€) := min{p((e,
Xo(n + 1,¢) := min{p(

b)
(

and where

~ ~

O(2,0) == w(p(P(e,b)/k,b),b).
Proof. The theorem is a straightforward combination of Corollary [0.4.2] Theorem
9.3.15, Theorem and Lemma O

Corollary 9.4.4. Let Q;, 7 = 1,...,k, be non-empty, closed and convex sets with

Bregman projections Ps];j and assume in addition to the assumptions in Theorem [9.4.3

that Vf is uniformly continuous on bounded sets with a modulus wV/ and that it is

uniformly strictly monotone with a modulus 7, i.e.
Ve,b> 0Vz,y e X (2], lyll < oAz —y, Ve -V fy) <nleb) — [z -yl <e).
Then for T = PSJ;k 0---0 P{;l and x, = T"xq for some xg € X, we have

Ve > 0Vg : N — Nin < ®(g,g)Vi € [n;n + g(n)]Vj € [1; k] <HPS{]L -z

)

with ® defined by A
(e, g) := §qmb(o)

with ¢ and x defined as in Theorem [9.4.3] now using

k(g,b) = min{e/3,w¥ ¥ (n(c/3, E(b))/2E(D),b)}.



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
236 STRONGLY NONEXPANSIVE OPERATORS

Proof. The corollary immediately follows from the above Theorem [0.4.3] where, for the
particular case of Bregman projections, one additionally invokes Lemma as well
as Lemma9.3.8 (by which we can use w(e, b) = ¢ as the common BSNE-modulus). [

The following proposition now provides an analogous result in the case that z,; is
not exactly given by T,,x, but actually is allowed to differ from that point up to some
summable error (compare this now to Theorem 4.9 from [99]). For that, we use the

following result from [99]:

Lemma 9.4.5 (Lemma 4.8, [99]). Let (ay), (0,) be sequences of nonnegative reals with
Ap+1 < an + 5n;

where >0, < . Let A, D € N with A > ag and D > Y,6,. Define

4(A+5D)

Paple, g) = ﬁ(K)(O), where K = [ -

} and g(n) :==n+ g(n).
Then $ 4 p is a rate of metastability for (ay).

Proposition 9.4.6. Let (T,).en be a sequence of functions T, : X — X which are Breg-
man strongly nonezpansive w.r.t. some p € ),y F(T},) with a common BSNE-modulus
w(e,b). Let & be a modulus of uniform continuity of D¢(p,u) in the argument u. Let
(z,) € X be such that ||xps1 — Thxy|| < £(0n, b) where b = ||pll, |kl || Texk|| , Ds(p, x0)
for all k and where (6,) < [0,0) with >,6, < D. Let o be a rate of convergence for
0p — 0, 1.e.

Ve > 0Vn = a(e) (0, < e).

Then
Ve > 0Vg: N — Nin < 171b7w(6,g)Vk’ € [nyn+ g(n)| (Df(Trxy, xx) <€)

with
wb,w<87 g) = SNDb,D(w<E7 b)/27 Ja(w(e,b)/2) + 1)) + a(w(a, b)/2>

where gi(n) == g(n+1) +1 and
~ ~ _ 4(b+ 5D -
Orple g) = 75)(0) with K = [%} and g(n) :=n+ g(n).

In particular, if o is a modulus of boundedness of Dy, then the above results holds true
for &gw(s,g) where b = D¢(p, xo), ||p|| and b= max{o(b+ D,b),b}.
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Proof. Using the definition of £, we get for all n € N:
0 < D¢(p, xns1) < Dy(p, Toy) + 8 < Dp(p, ) + 0.
Hence by Lemma applied to a,, := Df(p,x,) (note that b > ag), we get that

Ve > 0Vg: N — Nin < @, p(e, g + 1)Vi,j € [n;n + g(n) + 1]
(1Ds(p, i) = Dy(p, ;)| <€)

and so, in particular, we have

Ve > 0VYg: N — Nin < @, p(e, g + 1)Vk € [n;n + g(n)]
(ID¢(p, xr) — Dy (p, was1)| <€)

Applied to gq() for a given e, this yields
In < By p(€: Gae) + DVE € [n5n + g(n + a(e)) + a(e)] (|1Df(p, zx) — Dy(p, zas1)| <€)
and so (by considering n + a(e) instead of n), we get
In € [o(e); @y p(€, ga(e) + 1) + ) [VE € [n;n + g(n)] ([Df(p, 2x) — Dy(p, 2xs1)| <€)
In turn, this then yields that

In < Gy p(e, gae) + 1) + ale)Vk € [n;n + g(n)] (| Dy (p, xx) — Dy (p, Tiwy)| < 2¢)
since for k > n = a(e), we have

|D¢(p, wx) — Dy (p, Trwy)|
< |Df(Pa xk) - Df(p> $k+1)| + |Df(p, $k+1) - Df(?% Tk$k)|
<€+ 5k

< 2e.

Hence we lastly get that

I < (Byp(w(E,0)/2, Gagenyp + 1) + a(w(e,0)/2)) Yk € [nn + g(n)]
(Df(Tk.ﬁL'k, [L'k) < 5) .
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9.5 A rate of metastability for a Halpern-type itera-

tion of a family of maps

To obtain a strong convergence result, in [I99], the authors defined a suitable Halpern-
type iteration of a given Bregman strongly nonexpansive mapping. Concretely, the

following result was established:

Theorem 9.5.1 ([199]). Let X be a real reflexive Banach space and f: X — R be a
supercoercive Legendre function which is bounded on bounded sets, uniformly Fréchet
differentiable and totally convexr on bounded subsets. Let T be a Bregman strongly

nonexpansive mapping such that F(T) = F(T) # &. Given au e X, define a sequence

Ty by xg =2 € X and
Tpt1 = VI (@, Vfu+ (1 —a,)VfTx,)

where (ay,) € (0,1) satisfies lima,, = 0 and Y, a, = 0. Then (z,) converges strongly
f
to Ppp(u).
The aim of this section is to provide a quantitative analysis of this result as well as
its extension to a family of mappings (7,) as considered in [199], i.e. given u and x,

we will consider the sequence
Tpp1 = VI (anVfu+ (1= an)V fT,). (+)

The proof of convergence for Theorem [9.5.1] as well as its extension to families of
maps relies on a Lemma by Xu [209] as well as a subsequence construction due to
Maingé [141], both of which have been treated quantitatively before in [124] as well as
[104], respectivelyﬂ, and we present the quantitative versions of these crucial lemmas

below.

Lemma 9.5.2 ([104], essentially [124]). Let b > 0 and (a,) < [0, b] with
An+1 < (1 - an)an + O‘nﬂn + Tn

for all n where (o) < (0, 1] with >, o, = +0 (ice. [, (1—ay,) =0 for allm e N)
and (B,) € R as well as (v,) < [0,00). Let S : (0,00) x N — N be nondecreasing in m
such that

S(e,m)
VmeN,5>O< H (1—ak)<5>.

k=m

9The quantitative version of Xu’s lemma presented in [124] works with slightly stronger assumptions
than that presented in [104].
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Fore >0 and g: N — N, define
g(n) := g™ (n + S(/4b,n) + 1) + S(c/4b,n).
Suppose that N satisfies

dm < NVie [mym+g(m)] (5 <e/4).

Then for
P(e,5,N,b) := N+ S(e/4b, N) + 1,
we get that
®(g,9,N,b)+gM (®(e,5,N,b))
> v <&/2 > In < Be, S, N,b)Vie [n;n+gn)](a <e).
i=0

Lemma 9.5.3 ([104]). Let b > 0 and (a,) < [0,].
1. Let 7 : N — N be such that
VnkeN(k<nAa,<ap —k<71(n)). (+)
For KeN, g:N—N,e>0 and §g(n) :=n+ g(n), define
(e, g, K, b) := 1V ().
Then
T(U(e, g, K,b0) < K
— In< V(e g9, K,b)(n= K AVi,je[nn+gn)](la—aj <e)).
2. Let ng € N be such that In < ng (a, < any1). Define
7(n) := max{k < max{ng,n} | ax < agy1}.
Then 7 is well-defined and satisfies (+). Moreover,

(a) YneN (aT(n) < ar(n)ﬂ),
(b) ¥YneN(r(n) < 7(n+1)),

(c) Vn = ny (an < aT(n)H).
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Before we move to quantitative results on the iteration considered above, we are first
concerned with providing a quantitative account for Bregman projections onto fixed
point sets of Bregman strongly nonexpansive maps. For this, the following lemma
initially provides a quantitative version of the convexity of F'(T') as (essentially) shown
in [178].

Lemma 9.5.4. Let p be a modulus of consistency for f. Let T" be uniformly Bregman
strongly nonexpansive with strong BSNE-modulus w and derived modulus w'. Let T be
bounded on bounded sets with a modulus E. Let €,b > 0 be given and let x,y be such
that ||z|| , [|y]| < b and let z = tx + (1 —t)y for some t € [0, 1].
If
[T — ||, [Ty — yl| < w'(p(e, max{b, E(b)}),b),
then we have

Tz —z|| <e.

Proof. Note that ||z|| <t|z| + (1 —¢) |ly|| <b. Asin [I78], we get
Dy(z,Tz) = f(2) + tDs(2,Tz) + (1 = ) Dy(y, Tz) = tf(x) = (1 = 1) f(y)-
Using ', we get
Dy(x,Tz) = Dy(x, ), Dy, Tz) = Dy(y, 2) < ple, max{b, E(b)})
and thus, using the above and the definition of Dy, we get

Dy(2,T2) < £(2) + Dy (x,2) + (1~ Dy, 2) — t(x) — (1~ ()
+ p(e, max{b, E(b)})
= p(e, max{b, E(b)}).
As ||Tz|| < E(b), we get ||z —Tz| <e. O

Now, the following lemma provides a quantitative result on the existence of ap-
proximative projections onto fixed point sets of Bregman strongly nonexpansive maps.
While the first part is concerned with the definition of said projections in terms of an in-
fimum over Bregman distances, the second part is concerned with the characterization
of Bregman projections in terms of a generalized type of variational inequality pro-
vided in [36] by which for a non-empty, closed and convex subset C' and for a Gateaux
differentiable and totally convex function f : X — R, it holds that z = Pg(x) if, and
only if ze C

{y—2,Vfr—Vfz)<0forall yecC.
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Note for both results that for a Bregman quasi-nonexpansive map 7', the set of fixed
points F(T) is closed and convex (see e.g. [178] and so PI{:(T) is defined for such a
map whenever F(T) # &.

Lemma 9.5.5. Let p be a modulus of consistency for f. LetT" be uniformly Bregman
strongly nonexpansive with strong BSNE-modulus w and derived modulus w'. Let T be
bounded on bounded sets with a modulus E. Let pg € X be a fized point of T with

Dy (po, u), [[poll < b.

1. For anye >0 and v : (0,0) — (0,00), let

p(e,v) = min{g (1) [+ < [(b+ 1)/e]}.

Then there exists a pe X and a 6 = p(e,7) with ||p|| < b and ||Tp — p|| < ¥(6)

and

Vge X (lqgll <bA |Tq—qll <0 — Dy(p,u) < Ds(q,u) +¢).

2. Let further A be a modulus witnessing that Dy(-,u) is uniformly Fréchet differ-
entiable on bounded subsets with derivative x — V fx —V fu, i.e. for any b,e > 0

and any x € By(0), ye X:

Dy 4w = Dyt w) — 9, V=Vl _

0 <[lyll < Ale;b) T

For any e > 0 and ¢ : (0,00) — (0,0), let

¢ (e, ¢) = min{ (o0 (1), max{d, EO)}),b) | r < [(b+ 1)/}

with €' = %min{%, 1/2} and with

¥'(6) = min{¢(w'(p(6, max{b, E(b)}), b)), w'(p(6, max{b, E(b)}),)}.

Then there exists a p e X with ||p|| < b and a 8" = ¢'(g,) such that ||Tp — p|| <
$(0')

Vge X (llall <band [[Tq—qll <" —<g—p,VI(u) = Vfp) <e).

ONote here, as well as already in the context of Lemma that the results from [I78], while
phrased for Bregman firmly nonexpansive maps, clearly already hold for Bregman quasi-nonexpansive

maps.
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Proof. 1. Assume the contrary, i.e. that there are € and ¢ such that for any p e X
and any & = ¢(e,v) with [|p[| < b and [|Tp — p|| < ¥(0):

3 X (lgll < b |Ta—qll < 6 A Dy(p,u) — = = Dy(g,)
Let r = [(b+ 1)/e] and pick go = po. Then clearly ||qo|| < b and
ITg0 — qoll < "V (1) = ¥ ((1)).

By definition, we have ¥ (1) > ¢(e,7) so that there exits a ¢; with [q|| < b
and | Tq1 — q1|| < ¥™(1) as well as

D¢(qo,u) — e = Dy(qr,u).
Iterating this up to r yields a ¢, such that
0> Dy¢(qo,u) — (b+1) = Dy(qo,u) — [(b+1)/c|le = Ds(qo,u) — re = Dy(q,, u)
which is a contradiction.

2. Using (the proof of) (1), let p € X and § = /¥(1) for i < [(b+ 1)/'] be such
that [|p[| < b, [|Tp — pl| <+'(d) and

Vge X (lqll <b A lTq—qll <6 — Dylp,u) < Dy(g,u) +€).
Let &' = w'(p(9, max{b, £(b)}),b). Then at first
1P — pll < ¢'(6) = min{(5"), 8"} < ¥(d).

Now let ¢ be such that ||¢|| < b and ||T'q — q|| < ¢'. If ¢ = p, the claim is trivial.

So suppose ¢ # p. Then we can now reason along the lines of [34]: write p(«) for
p + a(q — p). Using Lemma as ||Tp — p|| <&, we have

ITp(er) — ple)|| < 0.
Therefore, for any « € [0, 1]:
Dy(p.w) < Dy(p(a),u) +

Now, using the fact that Dy is convex and differentiable in its left argument with

[Dy(,2)]'(y) = VI(y) = Vf(z),
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we get
|Ds(p(e),u) = Dy(p,u) = Calg = p), VIip = Viw| _ /b
lac(g — )l
if ||a(g — p)|| < A(g/4b,b), i.e. in particular if
_ A(g/4b, b)‘
20

Thus in particular

g-pVfu-Vfp) —Lalg—p),Vip—-Viuw
g — pll la(qg —p)|
Df(p7 u) _Df(p(a)7u)
la(g —p)ll

+ ¢/4b

which implies

/

f(p>u) _Df(p(a)’u) +e/4b|lq —p| < % +¢/2

«

{qg—p,Vfu—-Vfp) < b

for any o < min {W, 1}. In particular, for a = min {W, 1/2}, we get

{q—p,Vfu—-Vifp <e/2+¢/2=c.
O
Remark 9.5.6. Such a modulus A witnessing that Dy (-, u) is uniformly Fréchet differ-

entiable on bounded subsets with derivative x — V fr — V fu can be computed from

wV7: we have that

D5 ()] (2) = [Ds () (W)l = [VFz = V iy

so that wV/ is a modulus for [ Dy (-, u)]’ being uniformly continuous on bounded subsets.
Therefore, we can apply Lemma [9.2.2] (1) to derive that A(e,b) = min{w"V/(e,b+1),1}

is a suitable such modulus.

For the rest of this section, we are now concerned with quantitative results on the
extension of the iteration from Theorem to families of mappings discussed before.

For the following quantitative results, we again fix some moduli abstractly:

(a) Let (T,) be a family of uniformly Bregman strongly nonexpansive maps with a

common strong BSNE-modulus w and a common derived modulus «’, i.e.

Ve,b > 0Vz,pe X(|pll, [|z]] < b A ||Tup — p|| < w(e,b)
A Dg(p,x) — Dy(p, Thx) < w(e,b) » Dp(Thx,x) <€)
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as well as

Ve > 0,b>0,z,pe X(||p|, |l=]| <b
A Top = pll < W'(e,0) = Dy(p, Tox) — Dy(p,x) <€)

for any n € N.
(b) Let (ay,) < (0, 1] converge to zero with a rate o : (0,0) — N, i.e.

Vn = o(e) (a, <e).

(c) Let f be sequentially consistent with a modulus of consistency p.

(d) Let b e N* be given and let z,, be defined by (x) such that

b = [lznll [ Tanll, IV F(Taaa) | IV F )] [l IV F ()]
Dol IV f (po)ll s Dy (Po; ), D (po, Tnin), Dy (po, u)

for all n € N where p is some given element of F(T').

(e) Let w¥™ : (0,0) — (0,%) be a modulus of uniform continuity for Vf* on b-

bounded sets.

(f) Let w/ : (0,00) — (0,90) be a modulus of uniform continuity for f on b-bounded

sets.

(g) Let S:(0,00) x N — N be nondecreasing in m such that

S(e,m
VmeN,5>O<H 1 —ag) )
(h) For each n, let @, be such that 0 < @, < «, and define &, = min{a@; | i < n}.
Lemma 9.5.7. Let ¢ > 0 be given and let x,, be defined by (+). Define

- ¥ x
N = Vi <
g (mm{Sb 1602 26" (mm {4&; (4) }) })

where € = w(p(e,b),b).
For anyn > N and pe X with

||p|| ) ||vfp|| 7Df(pv an),Df(p,TnZEn),Df(p, u) <b
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for the above b and where || T,p — p|| < min{Z,w’'(/8,b)} as well as

Df(pv 'Tn) < Df(p> anrl) or ’Df(p> xn+1) - Df(p7 an)‘ < g/47

it holds that

|xn — Tha,l| < e.
Proof. At first, given an n > N with D(p, x,) < D(p, zp+1), we have

0< Df<p7 anrl) - Df(p7 xn)

5 :

< an (Dy(p,u) — Dy(p, Tozn)) + 3 (using (a) and (d))
< bay, + % (using (d))

< b% + % (using that n = N)
_Z

=7

Therefore, the first disjunct of the premise implies the second disjunct. So assume

n = N and |D¢(p, tp41) — Ds(p, z,)| < €/4. Now, we have

IV f(2n41) = Vf (Toy) |
=, [|[Vf(u) = Vf(To,)|
< a2 (using (d))

< min {%,wvf* <min {i,wf (i) })} (using (b) and n > N)

and so by (e) and (d), we obtain

|Zni1 — Tonll = VAV f(@n41) = VIV (L))l

< min wa %
h 4b’ 4/

|f(xn+1) - f(TnInN <

By (f), we get

W~ e



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
246 STRONGLY NONEXPANSIVE OPERATORS

and hence we obtain (reasoning similarly to [199])

D¢ (p, Tnwn) — Dy (p, zn)|
= |f(p) = f(Tazn) — {p = Totn, V f(Tnwn)) — Dy(p, )]
=1f®) = f(@ns1) + f(@ns1) = [(Tazn) = <P = T, Vf(@n11))
+ P = Tnt1, VI (@n41)) =< = Toton, Vf(Thwn)) — Dy(p, )|
= [Dy(p, Tns+1) + f(@ns1) — f(Laxn) + P — Tnt1, VF(@nt1))
—p = Than, V f(Thwn)) — Dy(p, @)
= |D¢(p, xnr1) = Dy(p,an) + fanar) — f(Thwn)
+{p = a1, VI (@n41) = VI (Tazn)) — nar = Ton, VI (Trn))|
< |Dy(p; wni1) = Dy(p,xn)| + [f (@nr1) = f(Toz)]
+ ||Vf(l’n+1) = VHTaza)l llp = znsall + IV F(Taza) [ lon s — Totall

Hence by (a) and (d), we obtain D¢(T,x,,x,) < p(c,b) and so, by (c) and (d), we get
|xn — Thx,| < e. O

Lemma 9.5.8. Fore >0 and g : N — N, assume that we have a value ¢ and a pe X
such that additionally

”p” ) ”pr” ,Df(p, xn)v Df(p7 Tnxn)>Df(pa U,) < b

for the above b and

Y

w
( O‘@aeg g M (@4 (e,9))) b)

e R éAam>+nﬁ)}

OOISe

nﬂm—pn<mm{

as well as

Vye X(lyll <b A Twy —yll <o — <y —p, VI(u) = Vf(p) < ple b)/8)
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for any n < (e, 9) + ¢ (Py(e, g)) where we define

N oo e fo (wVf* GELILL))

2b
wd? @2 1 o (il ® (@
o (mm {8()’ 602 Y (mln {4b,w 1 1
with @ = w(p(¢’,),b) and ¢ = min{y, p(e,b)/16b} as well as
(I)‘p(g,g) = Kl + S(p(g, b)/Sb, K1) +1

with

and gN’(n) = ¢'(n) + n where ¢g'(n) = g(n) + 2 for
g(n) = g™ (n+ S(p(e, b)/8b,n) + 1) + S(p(e, b)/8b,n).
Then it holds that
In < @y(e, g)Vie [nn+ gn)] (Ilp — il <e).

Proof (compare also [104] [194]). We write a; := D(p, x;). To establish the claim, we

divide between two cases:

Case 1: Vi < Ky (a1 < ;).

Suppose first that
Vi< [4(b+1)/P] <ag~,(i+1)(N) < @50y~ 80/4> .
Then we would get

ag~/(o) = ag;/u) N) + &/4 == ag~/[4<b+1)/¢1 + [4(1) + 1)/(,’5](70/4 >b

(N) ( (N)

which is a contradiction. Thus, we have
Jig < [4(b + 1)/3] (a;(mm(m > s )~ 90/4> .
. . ~ (o)
and in particular for n = ¢ " (IV), we have

Vi, j € [nin+G(n) + 2] (la; — a;] < an — anigmy+e < $/4) -
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Therefore, we in particular have
Vi€ [n;n+g(n) + 1([Ds(p, xie1) — Dy(p, )| < §/4)
Using Lemma [9.5.7] we get
Vie [mn+g(n) + 1] (|la; — Tixsl| < ¢’ < ).

Using the assumption on ¢, we in particular get

Vie [nin+g(n) + 1] ((zi —p, Vf(u) = Vf(p)) < p(e,b)/8)
and thus

Vie [nin+g(n)] (w1 —p, V(u) = VI(p)) < p(e,b)/8).
As in [199)] (p. 495), we can derive

Dyp. 1) < (1= ) Dy(p, i) + s — b, VS () = V f(5)
for any ¢ which implies
Dy(p, xit1) <

(1 —a;)Ds(p,x;) + ilzivs —p, Vf(u) = Vf(p)) + ple,b)

4 Dy(e,9) + gM(Py(e,9)) + 1)

for any i < ®,(e, g) + ¢ (P, (e, g)) using the assumption on p and the assumption on

w'. Using Lemma [9.5.2[" we get
In < Ko+ S(p(e,b)/8b, Ko) + 1 < @y(e, g)Vi € [n;n+ g(n)]
)

(Drtpn) < 252 < pieon)

2

which implies ||p — z;|| < € for all such i by (c).

Case 2: di < Kg (aHl > CLi).
Then, we define 7 as in Lemma[9.5.3/(2), i.e.

7(n) := max{k < max{Ko,n} | ar < agi1}.

In particular, we have

"To apply Lemma we set a, = Dy(p,x,) on [0; @, (2, 9) +g'™ (D, (e, g)) + 1] and 0 otherwise.
Further, we set 8, = (zn4+1 —p, Vf(u) — Vf(p)) and v, = p(e,b)/4(Py (e, g) + g™ (P, (g, g)) + 1) and

use the same «,, as in (b). Note that we then indeed have a; = Df(p, z;) for any a; in the conclusion

of Lemma @
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L V1 (arm) < @r@my+1, 7(n) < 7(n+ 1)),

2. Yn = Ko (an < arm)41)-

Case 2.1: 3m e [Ky; Ky + ¢ (Ky)] (1(m) < Kj).

As m > K, we have

~([8(b+1)/%])
T (g' [ i (KO)) =7(K;) <71(m) < K,

and thus using Lemma 9.5.3/(1), we get

~ ([8(b+1)/p
I < FIECHORD

(Ko) (n = Ko A Vi, je[nn+g(n)+2](la; —a;| < 3/8 < 3/4))
from which we can deduce

In < Dy(e, g)Vi € [nsn + g(n)] (lp — zil| <e)

as in Case 1.

Case 2.2: Vm e [Ky; Ki + ¢'(K1)] (1(m) = K,).

Using the properties of 7, we in particular have

D¢(p, Zrm)) = Grim) < Army41 = D05 Trimy+1)

for all m. Therefore

0 < Dy(p; Tr(my+1) — Dy, r(m))
< Qr(m) Dy (p,u) + (1 = Qo)) Dy (0, Tr(m)Tr(my) — Dy (P Tr(my)
< ar(my (Ds (0 w) = Dy(p, Trmy@romy)) + (D (P, Trtay ) — Dy (0, Trm)))
< bor(my + §/8

using the assumption on p (as 7(m) < m < K1+ ¢'(K1)). Asfor m e [Ky; K1+ ¢/ (Ky)],

we have 7(m) = Ky = N, we get
0 < Dy(p, Trmys1) = Dy(ps rimy) < $/4
for all such m. Using Lemma [0.5.7 we get

||x7'(m) - T‘r(m)xf(m) H < QD/ = min{(p) ,0(8, b)/16b}
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Thus, using the assumption on ¢, we get

Grtomy = 1> VI (1) = VI(B)) < pl=,5)/8 < ple, b)/4.

As in the proof Lemma [9.5.7] we get

[V £ (2rimys1) = V(T o)) || < Qrom 20

As 7(m) = Ko = N, we in particular have H:UT(m)H - TT(m)xT(m)H < p(e, b)/16b. Fur-
ther, from above we also have er(m) — TT(m)xT(m)H < p(g,b)/16b such that this com-

bined yields Hx’r(m)-i-l — xT(m)H < p(e,b)/8b. Therefore:

Er(my+1 —p, Vf(u) =V £(p)
= {Zrtmy+1 — Tr(my, V() = VF(p)) + {trimy — 0, V() = V f(p))
< Harf(m)ﬂ — xf(m)” 2b + p(e,b)/4
< ple,b)/2.

Similar to before, we can derive

Df(p7 xT(m)-&-l) < (1 - aT(m))Df(p7 TT(m)xT(m)) + O‘T(m)<x7(m)+1 ey 2 Vf(lb) - Vf(p)>
< (1 - aT(m))Df(p7 mr(m)) + CY7—(m)<xﬂ'(m)+1 - D, Vf(’LL) - Vf(p)>

:0(67 b)a(éw(s,g)Jrg/M(‘1%0(579)))
2

< (1= ar(m)) Dy (D5 Tr(my+1) + Qr(m){Trmy+1 — P, V. (u) = V(D))
P&, D)8 @, (c.0) 40 (@p(.0))

2
for all m e [Ky; K + ¢'(K4)] (since 7(m) < m < K; + ¢'(K4)

+

_l’_

). From this, we get
g,b)a /M
Dy (p, Tr(my+1) < {Tr(my+1 — p,Vf(u)—Vf(p)>+p (&,5) <4>s02<;g>(+§ (@4 (.9))

for all such m. Again as 7(m) < m < K; + ¢'(K;), we get

~

Ay (c.g)+9™M (@p(c9)) S Fr(m) S Cr(m)
for all such m and thus we have

D(p, Zrimys1) < {Ergemyir — 15 VI (1) — V(p)) + 2

Lastly, as we thus have

Df(p, xm) < Df<pv xT(m)-i-l) < p(é,b)

for all such m by using the properties of 7, we can now deduce the claim of the theorem

as before. O]



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
STRONGLY NONEXPANSIVE OPERATORS 251

Together with Lemma [0.5.5] we thus obtain the following combined result for se-
quences of uniformly Bregman strongly nonexpansive maps. One crucial property that
features therein is a uniform version of the NST condition as e.g. considered in [2] for
sequences of strongly nonexpansive maps in the ordinary sense: given a sequence (7},)
of strongly nonexpansive maps and an additional such map 7', these are said to satisfy
the NST condition if any fixed point of 7" is a common fixed point for all 7}, and if
|z — Thxy| — 0 implies ||z, — Tz, || — 0 for any bounded sequence (x,,).

Concretely, the following uniform quantitative variant of this condition will feature
crucially in the following combined result: we assume a modulus p : (0,0)% x N —
(0,0) such that

Ve,b> OVK e NVpe X(|p|| <b
Allp=Tpll < p(e, b, K) = Vn < K (||p— Tup|| < €)) (")

as well as a modulus v : (0,0)% — (0,0) such that
Ve,b>0Vne NVpe X ([lpl| <o A |lp—Tupll < v(e,d) = lp—Tpll <e). (1)

If such moduli exist, we say that (7,,) and T satisfy the uniform NST condition.
As we will discuss later, such moduli can in particular be explicitly computed for
the resolvents relative to f, thereby allowing applications to a Halpern-type proximal

point algorithm.

Theorem 9.5.9. Let (o) < (0,1] converge to zero with a rate o and, for any n, let
@, be such that 0 < @, < «, and define &, = min{@; | i < n}. Let f be sequentially
consistent with a modulus of consistency p. Let S : (0,0) x N — N be nondecreasing

in the right argument such that

S(e,m)
VmeN,a>0< H (1—ozk)<s>.

k=m

Let (T,,) be a sequence of uniformly Bregman strongly nonexpansive maps and T be
another uniformly Bregman strongly nonexpansive map with a common strong BSNE-
modulus w and a common deriwed modulus w'. Let each T, and T be bounded on
bounded sets with a common modulus E and let pg € X be a common fixed point of all
T, and T. Let o be a modulus of boundedness for Dy. Let Vf and f be bounded on
bounded sets with moduli C', D, respectively. Let b e N* with

b= HpOH >Df(p07u)7 ||UH 7Df(p0ax0)
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and define

b = max{b, C(b), (b, b), E(o(b,b)), C(E(0(b,))), C(o(b, b)),
D(b) + D(E(o(b,))) + (b + E(o(b, 1)))C(E(o(b, 1)),
D(b) + D(o(b,0)) + (b + o(b, ))C(0(b, b)), 2D(b) + 26C(b)}-

Let w¥ I, wl be moduli of uniform continuity of Vf*, f, respectively. Let further A
be a modulus witnessing that D¢ (-,u) is uniformly Fréchet differentiable on bounded
subsets with derivative v — V fx — V fu as in Lemma[9.5.5. Assume that we have a
modulus p1: (0,00)? x N — (0,00) such that

Ve,b>0,KeN,pe X (|pl <bnllp—Tpll < ple, b, K) = Vn < K(lp - Tupll <))
as well as a modulus v : (0,00)* — (0,00) such that
Ve,b> 0,neN,pe X (Ipll <b A llo— Tupll < vle,8) — llp— Tl <<).

For anye >0 and g : N — N as well as p > 0, we define
o(e)i= min {30 (23
iy <P(5: D)8, ()9 (Bo(c9) 73) |

2

, p(e,b) ~
“ <4<<1> (2, 9) + g™ (Dy(e, >>+1>’b)}’

and

~

V() = n(w(v(e,0),0, 0,5 (. 9) + g™ (®,,75(.9)),
Y/ (ip) = min{gh (o (p(, max{b, E(0)}). b)), w (p(ep, max{b, E(b)}),b)},

WY
- < 5b/16b b)>,
< { AQ, vaf* (mm{ gp,wf (fﬁ)}ﬁ)}) ,1}
8b 1657 2b 4b 4

where @ = w(p(gp’,g),g) and ¢’ = min{gp,p(s,g)/wg} as well as

with

O, (e, g) := K1 + S(p(e, b)/8b, K1) + 1
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with

Ko

||
Q
ol
=
||
=
5
ol

and g~/(n) = ¢'(n) + n where ¢'(n) = g(n) + 2 for
G(n) = g™ (n + S(p(e,b)/8h,n) + 1) + S(p(e,0)/8b,n).
Then it holds that
Ve > 0Vg : N — Nin < ®(e, g)Vi, j € [n:n + g(n)] (|| — z|| <e)

where

~

with

o P2 {A<p<e/z,§>/326, b, /2} |

16 1D

Proof. Let € and g be given. Using (the proof of) Lemma [9.5.5, (2), we get that for
the above 1, there exists a p € X with ||p|| < b <band an r < [(g + 1)/5’} such that

for § = w'(p(¢'") (1), max{b, E(b)}), b) we have | Tp - p|| < $(5)
vge X (|lall < and [Tq—qll <6 lg—p,Vf(u) = VIB)) < ple/2,0)/8).
Then, as
ITp = pll < $(0) = p(W(v(8,0)),5, @, 55 (5/2.9) + 9" (@, 55 (/2. 9))),

we get
[Top = pll < ((5,0))

forall n < @, ;3 (¢/2,9) + g’M(CDV(&g) (¢/2,9)). Further, if ||¢ — Tpq|| < v(8,b), we have
ITq — q|| < ¢ and thus also

vge X (Jlall <Band [ Tug—qll < v(0.5) = g = p, V() = V(p)) < ple/2,5)/3)
for any n. Lemma [9.5.8| then yields that
In < @,;5(/2,9)¥i € [mn + g(n)] (Ip — @il < ¢/2)

as b bounds all the objects involved. After using the triangle inequality, we get the

desired claim. O]
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In particular, since having a rate of metastability is equivalent to being convergent,
the above quantitative result implies the following (non-quantitative) convergence re-
sult. For that, we say that (7,,) and 7" are commonly uniformly Bregman strongly non-
expansive if all T}, and T" are uniformly Bregman strongly nonexpansive with a common
strong BSNE-modulus and we say that they are commonly bounded on bounded sets if
there exists a common modulus witnessing that all 7,, and T" are bounded on bounded

sets.

Theorem 9.5.10. Let X be a real reflexive Banach space and f : X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let (T,,) be a sequence of selfmaps and
T be a selfmap such that they are commonly uniformly Bregman strongly nonexpansive
and commonly bounded on bounded sets. Assume that (T,) and T satisfy the uniform
NST condition and that they posses a common fixed point. Given a u € X, define a

sequence T, by ro = xr € X and
Tpi1 = VI (@, Vfu+ (1 —a,)VfT,x,)

where (ay,) < (0, 1] satisfies lim o, = 0 and Y] o, = 0. Then (z,,) is Cauchy.
Further, if we have F(T) € F(T) where F(T) is the set of all strong asymptotic fized
points (i.e. of all p such that there is a sequence (p,) with p, — p and ||p, — Tpy| — 0

forn — ), then (x,) converges strongly to Pf;(T) (u).

Proof. First, note that under the assumptions presented above, all moduli featured
in Theorem [9.5.9] exist and we shortly discuss this for the assumptions not explicitly
covered already: A modulus of consistency p exists for f as f is totally convex on
bounded sets using Lemmas[0.2.7]and[9.2.8] As f is uniformly Fréchet differentiable and

bounded on bounded sets, V f is uniformly continuous on bounded sets by Proposition

and thus a corresponding modulus wV’ exists which allows us to construct a
corresponding modulus w/ for the uniform continuity of f as well as moduli for Vf,
f being bounded on bounded sets using Lemma [0.2.2] Also, as discussed in Remark
w¥/ can be used to construct the modulus A featured in Theorem [9.5.9) Now,
as discussed in Remark [9.2.13] f being totally convex on bounded sets implies f*
being uniformly Fréchet differentiable and thus V f* being uniformly continuous as f
is supercoercive (again using Proposition . Thus a corresponding modulus wV/™
exists. Lastly, a modulus of boundedness for Dy exists as well and can be constructed

as discussed in Remark [0.2.74]
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So Theorem [9.5.9) applies and we therefore get
Ve > O0Vg : N — NanVi, j € [n;n+ g(n)] (J|lx; — ;|| <¢).

Thus z,, is Cauchy as if not, there exists an € > 0 such that for any n, there exists an
m such that ||z, — Z,4m|| = €. Pick g(n) = m for such an m. Then this € and g refute
the above property. Now, as x, is Cauchy, it converges to a limit x.

To see that this limit is indeed the projection P}C(T) (u), let (e, b) be a modulus of
uniform continuity on bounded sets for the function p — {(y — p, V fu — V fp) uniform
in |[ull, |lyll < b Now, let & > 0 be given and let K be so large that

1 ~
Vm = K (||:1cm —z| < =Q (?b)) .
2 2

Now, for &' := 1/29(6/275% we can use Lemma to choose a p € X and a § with
Ipll < b and lp—Tp| < @(5) as well as

vge X (llall <band llg—Tql <8 (g—p,Vfu-Vfp)<pb)8).

Then, using this p and reasoning as in the proof of Theorem [9.5.9| we can apply Lemma
9.5.8/to g(n) := K and £ which yields an n > K such that |[p — x| <€ = 1/2(2(5/2,3).
That n > K holds in particular yields ||p — z|| < Q(/2,b). Let w.l.o.g. p(¢,b) < € and

Q(e,b) < e. Then we in particular have
{a=p,Vfu—-Vfp) <e/2
for any ¢ with ||g|| < b and ||¢ — Tq|| < 8. Thus
(q—z,Vfu—-Vfr)<e

for all such q.
If now g = T'q, then we get (¢ —z,Vfu—V fry<eforalle >0, ie.

Vge F(T)({qg —z,Vfu—Vfzr)y<0).

Further, if we assume that F(T') < F(T), then z is also fixed point of T". For this, note

that as in Lemma [9.5.7] we have

vamn-&-l - vanxn“ = Oy Hv.fu - vaan — 0

121t can be easily seen that such a modulus  can actually be constructed from wV¥
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as o, — 0 and as V [Tz, is bounded since z,, is bounded and since T and V[ are
bounded on bounded sets. Thus ||z,,4+1 — T,x,| — 0 and therefore also ||z, — T,x,| —
0. As (7,,) and T satisfy the uniform NST condition, we get ||z, — Tx,| — 0. As
|z, — || — 0, this yields x € F(T) < F(T). Combined, this yields that z = P};(T) (u)
(recall the discussion before Lemma [9.5.5)). O

Remark 9.5.11. The above result in particular contains the previous Theorem for
uniformly Bregman strongly nonexpansive maps 1" by picking 7,, = T. Naturally T
is bounded on bounded sets as F(T) # ¢ and as T' is Bregman quasi-nonexpansive.
However, note that in the context of uniformly Bregman strongly nonexpansive maps
T, the assumption that F(T) < F(T') was properly weakened through the analysis to
F(T) < F(T). As discussed before in Remark , reflexivity is already an inherent
property from assuming that f is supercoercive, bounded on bounded sets, uniformly
Fréchet differentiable and totally convex on bounded sets as this implies that f* is
uniformly Fréchet differentiable. For that same reason, also being a Legendre function

is an inherent property of any such function. So these assumptions could have been
omitted in Theorem [9.5.1] already.

Using this theorem, we will in particular be able to derive the strong convergence
of the Halpern-type proximal point algorithm in all Banach spaces together with other

interesting instantiations that will be discussed in the following section.

9.6 Special cases and instantiations

We are now concerned with the range of the above results. For that, this section dis-
cusses how the above (quantitative) results can be instantiated in various ways so that
they apply to many other well-known methods in the context of Bregman distance. In
particular, we obtain quantitative strong convergence results for Halpern-type variants
of the method of cyclic Bregman projections, of the proximal point algorithm, of a
special case of a method solving operator equations due to Butnariu and Resmerita
[36] as well as of a special case of the forward-backward Bregman splitting method
discussed by Bui and Combettes [32] (see also Van Nguyen [I55]), of a method for
finding common zeros of maximally monotone operators as discussed by Naraghirad
[152] and of a Halpern-Mann type iteration of Bregman strongly nonexpansive maps
[214].
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In particular, we show how the Halpern-Mann type iteration presented in [214] can
be recognized as an instantiation of the Halpern-iteration considered before for a fam-
ily of uniformly Bregman strongly nonexpansive maps. Further, inspired by the recent
considerations [4I] on the relationship between modified Halpern methods in the sense
of [53, 85] and Tikhonov-Mann type methods as developed by [20], 42], 2T0], we use this
instantiation to even provide a strong convergence result for a new Tikhonov-Mann
type iteration of uniformly Bregman strongly nonexpansive maps which provides a
suitable lift of such iterations to this Bregman context. Lastly, we discuss another new
strongly convergent method for two uniformly Bregman strongly nonexpansive maps
inspired by the recently introduced alternating Halpern-Mann type method introduced
by Dinis and Pinto [57].

All these results in particular further show that the additional requirement in the
previous theorems that the maps are even uniformly Bregman strongly nonexpansive
is practically of lesser significance as most maps encountered in the literature that are

Bregman strongly nonexpansive are already uniformly Bregman strongly nonexpansive.

9.6.1 Cyclic projections

A first readily defined instantiation of Theorem [9.5.10| on the Halpern-iteration is that

obtained by using the cyclic projection operator
T =Pj ooP

where Pg;j is the Bregman projection onto a given non-empty closed convex set 2,
for j = 1,...,k. Assume that 2y n--- N Q, # . Then this operator T' is uniformly
Bregman strongly nonexpansive since every projection Péj is even Bregman firmly non-
expansive and moduli for the Bregman strong nonexpansivity of 7' can be calculated
from the moduli of the factors by following Theorem as well as Lemma[9.3.8] For
this, note further that by 2y n---n Q, # &, using Lemma (9.3.5], each P{;j and thus T’

is bounded on bounded sets. Further, note that any Bregman firmly nonexpansive map

that is bounded on bounded sets actually possesses a modulus of uniform closedness if
V f is uniformly continuous on bounded subsets as well as uniformly strictly monotone
(the latter of which, recalling the discussion from Remark [9.2.13] follows from the as-
sumption that f is totally convex on bounded sets) as by Lemma each such map
is then uniformly continuous on bounded subsets. Thus Ps{j is uniformly continuous on

bounded subsets. In particular, from a corresponding (common) modulus of uniform
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continuity, a (common) modulus x of uniform closedness can be immediately defined.
Note that through the uniform continuity of each PSJ;],, also T is uniformly continuous
on bounded sets and thus also T" possesses a modulus of uniform closedness which in
particular yields that F(T) < F(T).

Combining this with Theorem [9.5.10 we get the following corollary on a Halpern-
type variant of the method of cyclic projections (where we can identify the limit as the

corresponding projection as we have previously established F(T) < F(T)).

Theorem 9.6.1. Let X be a real reflexive Banach space and f : X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet dif-
ferentiable and totally convex on bounded subsets. Let €q,...,8 be non-empty closed
convex sets and assume that Q1 N --- N Q. # . Given a uw e X, define a sequence x,

by xg =x € X and
turt = VI* (Vfu+ (1= a)VP o0 Pa,)

where (ay,) < (0,1] satisfies lima,, = 0 and >, a,, = 0. Then (z,) converges strongly
to Pl (u) for T = P§ o---o P .

In particular, a rate of metastability can be calculated using Theorem[9.5.9 together
with Lemmas|9.3.5 and|9.5.8 as well as Theorems|9.3.15 and [9.5.1/).

9.6.2 The proximal point algorithm

We are now concerned with a Halpern-type variant of the proximal point algorithm
for a maximally monotone operator A with resolvents Resﬁ as before. Concretely, for

a given u and xg, we consider the sequence
Tni1 = VI (@, Vfu+ (1 —a,)VfRes! z,) (%)
for a given additional sequence r,, that satisfies
0 <7 =inf{r, | neN}.

To show that the previous results contained in Theorems [9.5.9 and [9.5.10] apply here,

we will in the following provide concrete instantiations for the moduli x and v for the

concrete choices of
T, = Resfn and T = Resg.

T
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For this, we will however need some further facts about the resolvent relative to f.
It is straightforward to show that the set of fixed points of any Resf/ equals to the set
of zeros A710 of the operator A. The following lemma provides a quantitative result

for one of the directions of the equivalence.

Lemma 9.6.2. Let 1) be a modulus of uniform strict monotonicity of Vf on bounded

sets. Given v >0 and e > 0, let (x,y) € A with b > 0 such that b > ||z||, ReS£x Y-
If we have
(e, b)
Iyl < 2
then ||x - Res,J;xH <e.
Proof. By monotonicity of A, we have <Res§x -, Aim —y) >0 and thus
(x — ResJ;x, Vfir— VfRes’;:@ < pWx — Resix, Yy
< (llzll + [ Res]|)) 1yl
<26 [lyll-
Thus |jy|| < 7i(e, b)/2b* implies ||z — Resf;xH < ¢ by the assumptions on 7. O

The following lemma due to Reich and Sabach provides a crucial relation between

the resolvent relative to f and the Bregman distance associated with f.

Lemma 9.6.3 ([177,[178]). Let A be mazimally monotone and assume that A=10 # .
Then
Dy (u, Reséx) + Df(Resim, z) < D¢(u, )

forally>0,ue A710 and v € X.

In particular, we will in the following rely on a quantitative version of this result

as given in the next lemma.

Lemma 9.6.4. Let wV/(g,b) < € be a modulus of uniform continuity of V f on bounded

subsets. Let x,y € X and r,s > 0 be given such that

b= |z||,||Res!x

Al s || Resfy]| -
Then for any € > 0, if
Hm — Resix” <wV! (%, b) for E = max{2b,rs 2b},

then we have

Df(m,Resfy) + Df(Res{fy,y) < D¢(z,y) +e.
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Proof. Using the three-point-identity for Dy, we get

D¢(x,y) = Dy(x, Resfy) + Df(Resfy, y) + (x — Resfy, VfResffy - Viy)
= Dy(x, Resfy) + Df(Resfy, y) + rl{x — Resfy, —Afy).

Using the monotonicity of A, we further derive that

(x = Resly, —Aly)
= (x — Reslz, —Aly) + (Res[z — Resly, —Aly)
= (x — Resla, —Aly) + (Res/x — Resly, s (Vfr — VfRes!z) — Aly)
+ (Res!z — Resly, —s 1 (V fo — V fRes!z))
> (x — Res!z, —Aly) + s7(Res!z — Res!y, VfRes!z — V fr)
— Hm - Res£x|| A,’fyH —s! HResﬁx — ResfyH HVfResf:x — Vfac”
o= Resfal|r (IResfy] + o)
— 5! (HResﬁxH + ||ResfyH) HVfResfa: - fo” .

\Y

\Y

Combined with the above, this yields

Dy(e,) > Dy, Resfy) + Dy(Resly, ) — [lo — Rest| ([Resfy] + 1)
—rs? (HResf:EH + HResffy”) HVfReSf:z - foH
> Dy(z, Resly) + Dy(Resly,y) — 2b ||z — Res/z|
—rs 120 ||VfRes£x — Vf:L'H
> Dy(x,Resly) + Dy(Resly, y)
- K (Hx - Resf:a:” + HVfResgx - fo”)

and therefore, for x such that
“Reslzll <V ( < b)
||[E Resst w 570)

we get that
Dy(z,y) > Df(x,Res{fy) + Df(Resfy,y) — €
which is the claim. O

As a concrete instantiation of Theorem [9.5.10] we now obtain the following

Theorem 9.6.5. Let X be a real reflexive Banach space and f : X — R be a su-

percoercive Legendre function which is bounded on bounded sets, uniformly Fréchet
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differentiable and totally convex on bounded subsets. Let A be a maximally monotone
operator with resolvents Res£ and assume that A7'0 # &. Given a u € X, define a

sequence x, by xo = x € X and
Tni1 = V(@ Vfu+ (1 —a,)VfRes! z,)

where () < (0, 1] satisfies lima,, = 0 and >, o, = 0 and where (ry,) € (0,00) satisfies
0 <7 =inf{r, | n e N}. Then (x,) converges strongly to Pj,lo(u).

In particular, a rate of metastability can be calculated using Theorem[9.5.9 together
with Lemmas [9.3.9 and [9.3.8 and with moduli

p(e, b, K) = w¥f (p(e,b)/2E'(K),b) and v(e,b) = w¥ (p(e, b)/4b, D)

for the uniform NST condition where E'(K) = max{Qg, R(K)T“QE} and b = max{b, £(b)}
as well as R(n) = max{ry | k < n} and where E is a modulus for Resgr being bounded

on bounded sets.

Proof. Note that using Lemmas|9.3.5/and [9.3.8]as well as A~'0 = F(Res/) for any r > 0,

it is immediate that the Resfn and Resg are commonly uniformly Bregman strongly

nonexpansive and commonly bounded on bounded sets and corresponding moduli can

be calculated. This also yields that a modulus of uniform closedness exists for F(Res?).

The only thing left to prove is that the constructed p and v witness the uniform
NST condition for T, = Resffn and T = Res;’f . By Lemma , we get that

|z — Res{z|| < w¥f (e/2F' D)

for ||z|| < b implies that
Dy(w,Reslz) <

for E' > max{ZB, 7“3_123} and b = max{b, £(b)}. In particular, we have
Hx — Resfo <e
for any z with ||z|| < b and
|z — Res{z|| < w¥f (p(e,b)/2E",b).
So, for s = r we get for ||z|| < b and

|z — Res£a7|| < wvf(p(s,/l;)/élg,/l;)
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that HI - Resfx H < &. Therefore, as 7 < r, for all n, we get that v indeed satisfies
(1)2 for the given T), and T.

Further, assuming that Hx — Resg x

‘ < pu(e, b, K), we get by the above that
Hx — Resfan <e

as F'(K) = max{2b, R(K)r12b} > max{2b, r,7~'2b} for n < K. Thus y satisfies (f);
for the given T,, and T O]

9.6.3 A rate of convergence for the asymptotic regularity of the
Halpern-type proximal point algorithm relative to resol-

vents in the case of r, —

The convergence proof of the previous Halpern-type proximal point algorithm relies on
an argument revolving around a case distinction and (essentially) because of this, we
are not able to derive full rates of convergence for the asymptotic regularity relative to

the resolvents, i.e. rates for the convergence
Hxn — Resﬁxnn -0 (n— o)

for v > 0. In this section, we consider the previous Halpern-type proximal point
algorithm under the additional condition r,, — o0 (conceptually similar to the work of
Kohsaka and Takahashi [121]) for which we are able to derive full rates of convergence
for the asymptotic regularity relative to the resolvents. In the case of Hilbert spaces
with the ordinary Halpern-type proximal point algorithm induced by a maximally
monotone operator, such a rate of convergence (in the context of the assumption of

rn, — o0 similar to here) was first given by Pinto in [161].

Lemma 9.6.6. Let b > |ul|,||z,l|, |Res z| for all n with (x,) defined as in (s*)
and let o be a rate of convergence for a,, — 0 as n — 0. Let further C' be a modulus

for V f being bounded on bounded sets. Then, for any e > 0:

Vn>o ( 8())) (”Vfwnﬂ — VfResfnan < 5) )

20
In particular, if w¥'™ is a modulus of uniform continuity for ¥V f* on bounded subsets,

then for any ¢ > 0:

WY (e, C (b))

o (20

> (Han — Resffn:an < 5) )
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Proof. As before, we have

HfonH — VfResffnan = q, HVfu — VfRes{fnwn”
< a,20(D).

It immediately follows from the assumption on ¢ that
HfonH — VfResfnan < 0,20(0) <e
for all n = o(¢/2C(b)). The second part of the lemma is immediate. O

Theorem 9.6.7. Let v > 0 be given. Assume that b > 0 is such that

b= ull, ||zall HResfﬂan Yy }Res,J;Resfnan : ||Res£an

for all n with (z,) defined as in (xx). Let P be a modulus of reverse consistency.
Assume that 1) is a modulus of uniform strict monotonicity of V f on bounded sets and
let p be a modulus of consistency for f. Let further C' be a modulus for Vf being
bounded on bounded sets and let o be a rate of convergence for a,, — 0 as n — oo. Let

T be a rate of divergence for r, — o as n — oo, i.e.
VE > 0Vn > 7(E)(r, > E).

Let w¥T* is a modulus of uniform continuity for Vf* on bounded subsets and let
wVf(e,b) < e be a modulus of uniform continuity of Vf on bounded subsets. Then
for any e > 0:

Vn = ®(e) (Han — ResﬁanH < E)

where

2C(b
®(e) := max<{ T = Vfi>0b o :
X(va <p<w (71" (£,0@)/26.) b))

?

. (P (WW* (0029 b)) Y (wW* 2%(%@/2) }

and

_7j(e,b) (WY (e,C0))
x(e) : , o(e) =0 (T(b)) :

Proof. Note that
2C'(b)

Tn

1
HAf || = - |V fzn — VfResZn:)an <

Tn
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and thus 5C(b
Ve > 0¥n > 7 (%) (AL 2| < ).

Therefore, since Af x, € A(Res/ x,), we have that

(55

implies HResfn:Un — ReSZ;Res{fna:n” < ¢ by Lemma W Therefore, we have for

20(b)
nz=zrT <_X(WW (%’ b)))

HResfﬂxn — Res’éResfnan <wV! (%, b) ,

that

and thus
Df(Resfnxn, ReS,};fEn_t,_l) < Df(Resfnxn,an) +¢/2

in that case by Lemma m (with s := r := v and using F = 2b). Now, for

2C'(b)
n > max {7’ <m> ,o(P(e/2, b))}

we get Df(Resffn:En, Resémnﬂ) < Df(Resf;xn, Tns1) + €/2 from before as well as that
Dy(Res! z,,2,41) < /2 by Lemma and the assumption on P. Thus in that case,

we also have

Dy (Res! z,, Resﬁxnﬂ) <e.

Thus for
2C(b)

(e,b)
X (wVf (%7

we get HResfnxn — ResianH < ¢ using the assumption on p. Now, note that

n=max-<{ T

APl b)/2.b)
)

|V frni1 — VRes x| < o HVfu - VfResfnan + HVfResfnxn — VfReSJ;a:nHH
< 0,2C(b) + }|VfRes£nxn — VfResﬁanH

Thus, for

20(b)
wVf(e/2,b),b ’
X (wVf (p( (c/22) >7b)>

(e (0 ) o () )

we get HfonH — VfResgmnHH < e. This gives the claim using wV/™. O]

n = max{r
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As before, a b bounding all objects involved can be constructed using the range
of moduli discussed before together with some simple initial bounds. We refrain from

spelling this out in more detail.

9.6.4 Finding common zeros of maximally monotone operators

Another readily defined instantiation of Theorem [9.5.10] on the Halpern-iteration is

that of finding common zeros of a finite collection (A;);—1.. n of maximally monotone

,,,,,

operators with A7'0n---n Ay'0 # . Similar to the idea in [152], we in that context

can consider a composite operator

N
Tx =V f* > w;VfRes),

i=1
for weights w; € (0, 1) such that Zf\il w; = 1. Then T is a block operator in the sense
of [143, 144] (as also discussed in the previous sections) and moduli for the uniform
Bregman strong nonexpansivity for this operator can be calculated from the moduli
of the summands following Theorem [9.3.19] From Lemma [9.3.17] also a modulus for
T being bounded on bounded sets can be calculated from corresponding moduli for
Vf, Vf*and Resi, being bounded on bounded sets (using Lemma the latter of
which in particular exists as A;'0 N - 1 A3'0 # & as any Resﬁi is Bregman firmly
nonexpansive and thus Bregman quasi-nonexpansive). Lastly, note that by Lemma
, each Resf;_ is uniformly continuous on bounded sets and it is easy to see that,
since V f, V f* are also uniformly continuous, this extends to T" as well. Therefore, a

corresponding modulus of uniform closedness exists for F'(T).

Combining this with Theorem [9.5.10, we get the following corollary on the approx-

imation of common zeros:

Theorem 9.6.8. Let X be a real reflexive Banach space and f : X — R be a superco-
ercive Legendre function which is bounded on bounded sets, uniformly Fréchet differen-
tiable and totally convexr on bounded subsets. Let Aq,..., Ax be maximally monotone
operators with resolvents Resﬁi at parameter 1. Assume that A7'0 n - 0 A0 # &.

Given a u € X, define a sequence x,, by xto = v € X and

N
Tn+1 = vf* <OéanU + (1 - Oén) Z infRGSgi.Tn>

i=1
where (a,) < (0,1] satisfies lima,, = 0 and Y, o, = 0 and where the w; € (0,1) are

such that ZZNZI w; = 1. Then (x,) converges strongly to Pg(T) (u) forT defined as above.
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In particular, a rate of metastability can be calculated using Theorem[9.5.9 together
with Lemmas[9.3.9 and[9.3.8 as well as Theorems[9.3.19 and[9.53.18.

9.6.5 Bregman forward-backward splitting

We may also consider a forward-backward type of iteration in conjunction with the
Halpern-type algorithm considered before. By abstracting the general approach taken
in [I55] for combining Bregman distances and forward-backward splitting methods, Bi
and Combettes in [32] considered the following iteration under suitable conditions on

the scalars and f,,’s:

Tn+1 = (vfn + ’ynA>71<anxn - fYann)

for given A : X — 25" and B : X — X*. At least in the context of the special case
where f,, = f for all n for a specific f as considered throughout this chapter and where

the operator B is of the form
Bx =V fxr—-VfCx

for a given uniformly Bregman strongly nonexpansive map C' : X — X, we can now
provide a strong convergence result for a Halpern-type variant of this method. For

this, similar to [36], consider the map
Blz = Vf*(Vfx — \Bz).

It is straightforward to verify that B{x = Vf*(A\VfCx + (1 — \)Vfz). In particu-
lar, B{ is a block operator for any A € [0,1] and thus is uniformly Bregman strongly

nonexpansive (where a corresponding strong BSNE-modulus can be computed from a

modulus for C' according to Theorem [9.3.19)).

In particular, we have that
Res{ o B{ = (Vf + \A)"Y(Vf - \B)

which is exactly of the form considered in [32]. We assume that F (Res{ o B{ ) # .
It is rather immediate to show that (A + B)~'0 = F(Res] o B]). Thus, as a composi-
tion of uniformly Bregman strongly nonexpansive maps, it is itself uniformly Bregman
strongly nonexpansive if we require a modulus of uniform closedness for F(C). Note

for this that F (Res{) is naturally uniformly closed since Res’; is even Bregman firmly
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nonexpansive and that using Lemma [0.3.18] it can be easily seen that from the uni-
form closedness of F(C), we get the uniform closedness of F(B]). Further, note that
using Lemma we thus also get that F (Res{ o B{ ) is uniformly closed. Also, the
composition is therefore also bounded on bounded sets by Lemma as we assume
that F(Res] o B]) # .

We thus get the following corollary on a Halpern-type forward-backward splitting

method using Bregman distances:

Theorem 9.6.9. Let X be a real reflexive Banach space and f : X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convexr on bounded subsets. Let C' be uniformly Bregman strongly
nonexpansive such that F(C) is uniformly closed and let Bx =V fx —V fCx. Assume
that (A + B)7'0 # &. Given a ue X, define a sequence x,, by 1o = v € X and

Top1 = VI, Viu+ (1 —a,) VIV +AA) "V fz, — A\Bz,))

for A > 0 where (a,) < (0,1] satisfies lim o, = 0 and Y, oy, = 0. Then (x,) converges
strongly to P(];JFB),lO(u).

In particular, a rate of metastability can be calculated using Theorem[9.5.9 together
with Theorems|9.3.19 and|9.5.18.

As a further special case, we want to note that for a B of this form, this also covers
a Halpern-type variant of the iteration studied in [36] regarding the solution of operator
equations of the form Bz = 0 for an operator B : X — X™* over a closed and convex

set 2. Concretely, in [36], the authors considered the iteration
Tyl = Hé(fon — ABzx,,)

where Hé = Ps]; o V f* for the Bregman projection Pg{ . As discussed in the previous
section, we have that
Pg; = Res.éiQ

where 1o is the characteristic function of €2. In particular, as we then have
II,(Vfr — ABz) = P}Blx

with B{:c = Vf*(Vfx — ABzx) as before, we find that the above iteration is a special
case (if we would relax the parameter A of Res{ to a separate parameter) of the previous

forward-backward method and we thus also obtain the following corollary:
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Theorem 9.6.10. Let X be a real reflexive Banach space and f : X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convexr on bounded subsets. Let C' be uniformly Bregman strongly
nonezpansive such that F(C) is uniformly closed and let Bx = V fx —V fCx. Assume
that B0 n Q # &. Given a ue X, define a sequence x,, by 1o = v € X and

Tni1 = VI (anVfu+ (1 — an)VfIL(V f2, — A\Bz,,))

for X > 0 where (o) < (0, 1] satisfies lima,, = 0 and Y, v, = 0. Then (z,) converges
strongly to Pl’;_lOmQ(u).

In particular, a rate of metastability can be calculated using Theorem[9.5.9 together
with Theorems|9.3.19 and 19.3.15.

9.6.6 Modified-Halpern, Tikhonov-Mann and Halpern-Mann
type methods

In this last subsection, we are concerned with a few generalizations of Halpern-type
iterations that incorporate elements from Mann-type iterations. The first such gener-
alization that we consider is the modified Halpern iteration as introduced in [85] (see

also [53])
Tpi1 = Yot + (1 — v (anzn + (1 — ) T2y,)

where (7,) and («,) are sequences in [0,1] and 7' : X — X is a given mapping. Such a
type of iteration has been considered for Bregman strongly nonexpansive maps in [214]
under the name of Halpern-Mann iterations. Concretely, in [214] the authors proved

the strong convergence of the iteration
Ini1 = VI (anViu+ (1= an)(BaVfzn + (1= )V fTn))
under the scalar conditions that («,) and (f3,,) are sequences in (0, 1) satisfying
1. o, > 0 for n — oo,
2. Y a, = +x,
3. 0 <liminf g8, < limsup g, < 1.

We begin by showing that for uniformly Bregman strongly nonexpansive maps, the

convergence of this iteration can be derived by our previous result for families of maps.
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For this, note first that the above iteration is nothing else but a usual Halpern-type

iteration of the family of operators
Towr =V *(B.Vfr+ (1—-p,)VfTx)

Assume F(T') # . Then these operators, being block operators, are uniformly Breg-
man strongly nonexpansive and using Theorem [9.3.19| we can construct even a common
strong BSNE-modulus from a strong BSNE-modulus of 7" using the assumption of a
fixed point for 7. Note however that for this, condition (3) is not needed at all and
Brn € [0,1] can be permitted. Also note that the T,, together with T are commonly
bounded on bounded sets by using Lemmas [0.3.17] and [9.3.5] together with the assump-
tion of a fixed point for 7.

To see that this sequence is permissible for our Halpern-type iteration for families of
maps, we need to again provide concrete instantiations of the moduli p and v witnessing
the uniform NST condition for the choice of these T, together with the map T. For
this, it is rather immediately clear that given moduli E, C', F for T\, Vf, V f* being
bounded on bounded sets as well as a modulus of consistency p and a modulus of

reverse consistency P, one has that
1, b, K) = P(p(e, max{b, F(C(E(b)))}), max{b, E(b)})

suffices as we immediately have for given €, > 0 and p € X with ||p — Tp|| < u(e, b, K)
that

Df(p, T, ) < (1 - ﬁn)Df@, Tp)
< Dy(p,Tp)
< p(e, max{b, F(C(E(b)))})

so that ||p — To.p|| < e.

For v, assume that we have an Nz and a B < 1 with 8, < f for all n > Nz (wit-
nessing limsup,, 5, < 1), a modulus of consistency p, a modulus of uniform continuity
of Dy in its second argument &, a BSNE-modulus w for 7', moduli &, C, F for T', Vf,
V f* being bounded on bounded sets, and a fixed point of 7" named py with b = ||p||.
Then by Theorem [9.3.18} for any  with [|z|| < b, we have

o = Tl < € (1= Bleo(p(e, 5),0),5) = |l — Taf| < =
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for n > N where b = max{b, E(b), F(C(E(b)))} so that

v(e,b) = € (1 = Bwlo(e, b),b).b)

suffices (after suitably shifting the sequence with NE)' Combined, we thus derive the

following result from Theorem [9.5.10

Theorem 9.6.11. Let X be a real reflexive Banach space and f: X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let T be uniformly Bregman strongly

nonexpansive with F(T) # . Given auw e X, define a sequence x,, by xo = x € X and
Tpr1 =V (@, Vfu+(1—a,)( 8. Vfr,+ (1 —p6,)VfTz,))

where (o) < (0, 1] satisfies lim v, = 0 and Y o, = 0 and where (5,,) < [0,1) satisfies
limsup 8, < 1. If F(T) < F(T), then (z,) converges strongly to Pj;(:r) (u).

In particular, a rate of metastability can be obtained by suitably instantiating the
rate given in Theorem using Theorems |9.3.19 and [9.5.18 as well as the above

moduli for u and v.

In particular, with this theorem we reobtain the strong convergence result for this
iteration established in [214] (recall for this Remark for uniformly Bregman
strongly nonexpansive maps. However, the assumption (3) presented above which fea-
tures in [214] could be substantially weakened to limsup 3, < 1 which in particular
allows (3, = 0 for all n. Thus, in the above iteration, the Mann-part can be “deacti-

vated” and the original Halpern-type result can be reobtained, contrary to [214].

The other generalization of Halpern’s method which we consider is an iteration of
Tikhonov—Mann type. In the usual metric case, this type of iteration takes the form
of

Yn+1 = (1 - An)((l - 5n)u + ann) + )‘HT((l - Bn)u + 6nmn)

as defined in [42] where (\,), (8,) are sequences in [0,1] and 7 : X — X is a again
a given mapping. In particular, for u = 0, this iteration becomes the modified Mann
iteration as studied in [210] and rediscovered in the seminal work by Bot, Csetnek and
Meier [20]. For these types of iterations, we can now prove a (new) strong convergence
result for the following natural analog in the context of Bregman strongly nonexpansive

maps:

Yn+1 = Vf* <5nvfun + (1 - Bn)vaun) with Up = Vf*(aanU + (1 - an)vfyn)
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As discussed in [4I], methods of a modified Halpern type as well as methods of a
Tikhonov-Mann type in both a normed and a hyperbolic context are closely related
and in fact can be translated into each other.

By suitably adapting the arguments from [41] to this Bregman case, we arrive at

the following result (which is similar to Proposition 3.2 in [41]):

Lemma 9.6.12. Define the iterations
Tpr1 = VI (a1 Viu+ (1 = ane1)Vfo,) with v, = Vf*(68,Vfr,+ (1 —6,)VfTz,))
as well as
Yns1 = VBV fu, + (1 = 8,V fTuy,) with u, = Vf*(a,Vfu+ (1 —a,)V fy,).
If g = V*(aoVfu+ (1 — )V fyo), then for any n e N:
Up = Ty aNd Ypy1 = Up.

Proof. The proof is by induction on n. For n = 0, it follows by the definition of ug as

well as the assumption on xg that ¢y = ug. From that, we get

Y1 = VI (BoV fuo + (1 — Bo)V fTug)
= Vf*(BoV fro+ (1= Bo)VfTxo)

= 1.
For the induction step, suppose now that u, = x, and y,.1 = v,. Then

Tpy1 = Vf*(an-i-lv.fu + (1 - an+l)van)
= Vf*(an+1vfu + (1 - an+1)vfyn+1)

= Un+1

where the second equality follows by induction hypothesis. Further, we thus have

Yn+2 = vf*(ﬁn+1vfun+l + (1 - 5n+1)vaun+1)
= vf*(6n+1vfxn+1 + (1 - 5n+1)va$n+1)

= Un+t1-
[

Together with the above theorem, this allows us to derive the following new strong

convergence result:
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Theorem 9.6.13. Let X be a real reflexive Banach space and f : X — R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let T be uniformly Bregman strongly

nonezpansive with F(T) # . Given a uw e X, define a sequence y, by yo =y € X and
Ynt1 = V(B V fu, + (1 = 5,)VfTu,) with u, = Vf*(a,V fu+ (1 — a,)V fy,)

where (a,) < (0, 1] satisfies lim a,, = 0 and Y, v, = 00 and where (5,) < [0, 1) satisfies
limsup 3, < 1. If F(T) < F(T), then (y,) converges strongly to PIJ;(T) (u).
In particular, a rate of metastability can be obtained by suitably translating the rate

from Theorem [9.6.11.

Proof. 1t suffices to show that given a rate of metastability €2 for the sequence z,, as
defined in Theorem [9.6.11| (with a1 instead of «y,), i.e. §2 satisfying

Ve > 0,9 : N — Nin < Q(e,9)Vi,j € [n;n+ gn)] (||z; — zj|| <e),

we can construct a rate of metastability for y,.
For this, note first that ||y, — u,|| — 0 for n — oo and we can witness this limit
even by a rate of convergence. To see this, let b be such that b = D (yn, u), [[yn| , ||wnll

for all nH Let o be a rate of convergence for a,, — 0 as before. Then we get

Df(yna un) < Oéan(yn,U) + (1 - an)Df(ymyn)
= aan(yn7 u)

so that for n > o(g/b), we have D;(y,,u,) < ¢. In particular, for n > o(p(e,b)/b) we
get ||yn — un|| <e.

We can now construct a rate of metastability for y,, given one for xz,,. At first, using
Lemma [9.6.12 we get u,, = z,, for all n so that € is also a rate of metastability for u,,.
Then

1y = sl < Ny = wall + [l = wyl + llu; =yl
and by reasoning similar to [41], it can be rather immediately seen that 2" defined by
(e, 9) = Ue/3,9.9(p(e/3,0)/D)).
Qe 9,q) = Qe, gg) + ¢ with gg(n) :=g(n +q) + ¢,

is therefore a rate of metastability for y,,. ]

13Such a b can naturally be constructed from a b > Dy(p,u), Df(p,yo) for a given fixed point p
together with a modulus of boundedness for D and moduli for Vf, f being bounded on bounded
sets. We omit the details.
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As the last application, we sketch how these constructions can be extended to define
another new strongly convergent method for common fixed points of two uniformly
Bregman strongly nonexpansive maps. Inspired by the recently introduced alternating

Halpern-Mann type method by Dinis and Pinto [57], we consider the iteration
Tpt1 = Vf*(ozanu + (1 - an)vfsvf*(ﬂnvfxn + (1 - Bn)vamn))

for two uniformly Bregman strongly nonexpansive maps S, 7 : X — X with similar

conditions on the 3, and a,.

Then, in similarity to before, the iteration is nothing else but the Halpern-type it-
eration of the family of maps S oT,, for T}, as before. We can therefore derive a rate of
metastability for (and therefore establish the convergence of) this sequence whenever
the family S oT,, possesses the quantitative NST-style moduli u and v relative to some
other map R where we can exhibit a common strong BSNE-modulus. To find such an
R, note that we can employ the previous Theorems and to derive that
approximate fixed points of S o T}, are approximate common fixed points of 7" and S.
Using this, a modulus v relating SoT, to Vf*((VfS+ V fT)/2) (which has exactly as
fixed points the common fixed points of S and T') can be constructed. This modulus
will in particular depend on moduli of uniform closedness for F(S) and F(7,,) (the

latter being definable from a corresponding modulus for F(T)).

Conversely, any approximate fixed point of V f*((V fS+ V fT')/2) can be shown to
be a common fixed point of S and 7" by using Theorem and thus of S and T,,. If
we further have a modulus of uniform closedness for F'(S), then we can infer that an
approximate fixed point of Vf*((VfS + VfT)/2) is also an approximate fixed point

of S oT, from which we can extract a modulus pu.

A common strong BSNE-modulus can then be constructed using Theorems [9.3.15

and [0.3.19

As these moduli will depend on moduli of uniform closedness, the resulting conver-
gence theorem for the iteration above will in particular only hold for mappings where
such a moduli exist. This in particular includes uniformly continuous mappings and
thus in particular covers the case of Bregman firmly nonexpansive mappings which are
bounded on bounded sets and a fortiori also the usual firmly nonexpansive maps in

Hilbert spaces with which one in that case can re-obtain the convergence of the alter-
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nating Halpern-Mann Douglas-Rachford method from [57].

Presumably, a Tikhonov-Mann type variant of this iteration could be defined as

well, relating to the above via a similar argument as in Lemma [9.6.12, We omit any

concrete details on how all of this can be formally spelled out.



10 Monotone operators in Banach spaces and

their resolvents

10.1 Introduction

In this chapter, we extend the considerations of Chapter |3| to monotone operators on
Banach spaces which were already considered in the previous Chapter[d] To treat these
operators (which also require the use of the dual of the underlying Banach space), we

rely on the system D* introduced in Chapter [§]

Even though the setting, being in the context of the dual of the space, is different in
this chapter, the chosen approach to the set-valued operators is the same as in Chapter
and in that way, the present chapter further elucidates the naturalness and appli-

cability of the methods developed therein to treat set-valued operators of various types.

Besides treating these operators, this chapter also provides a proof-theoretic treat-
ment of the resolvents relative to a convex function f already discussed and used in
Chapter |§] (and in that vein, we also rely on Chapter |§] for some analytical background).
To that end, we show that the main properties of the operator and the resolvents rela-
tive to f are provable in the system that we define. Also, we show that the equivalence
between maximality of the operator and extensionality discussed in Chapter [3] extends

to these new objects.

At last, we extend the bound extraction results from the previous chapters to these
systems. These new metatheorems in particular fully explain the applications given in

Chapter [J] for these operators and their relativized resolvents.

275
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10.2 Logical systems for operators and their resol-

vents

At first, we want to mention that all the considerations made here could be extended
mutatis mutandis to the case where we only consider partial convex functions f with
an intensional treatment of the domain as discussed in Chapter |8 but, for simplicity,

we refrain from spelling this out in detail.

Also, while we previously have divided the treatment of resolvents on whether
they are partial or total, we in the following will only consider systems for monotone
operators on Banach spaces where the resolvents are all total. If one would want to
treat operators with partial resolvents, then a similar approach as presented in Chapter
[B] could also be followed here.

10.2.1 Further considerations on convex functions

The basic system for all extensions considered here will be D“[f, V f, f*, V f*] from
Chapter [§ treating the dual of the abstract normed space together with a convex
function, its Fenchel-conjugate and their uniformly continuous gradients. It will be
convenient to slightly extend this system so that the theory of monotone operators
can be developed smoothly. Concretely, it will be convenient to include a few more
properties of the Fenchel conjugate f* axiomatically into the previous systems: by the
Fenchel-Moreau theorem (see e.g. [21]), we know that if f is proper, lower-semicontinuous

and convex, then f* is proper and f = f** where we define f** : X — (—o0, +0] by

() = sup ((w,2%) = f*(a7)).

r*eX*®

With this definition, we follow one particular approach to biconjugates as e.g. outlined
in [21]. In other works, one finds f** introduced as (f*)* acting on X** and thus on X
by its embedding into X** (which coincides with X in the context of reflexivity). As
the spaces considered in the context of DY[f, Vf, f*, V f*] are anyhow superreflexive
by the results of [I8], these different approaches yield the same object but the above

formulation will also influence the types of objects considered later.

This fact that f = f** is crucial for the development of the theory of monotone

operators and we need to deal with it formally. Naturally, a function f as axiomatized
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by the system D“[f, V f, f*, V f*] satisfies the assumptions of the Fenchel-Moreau the-
orem but instead of analyzing the proof, we instead hardwire this fact into the system
akin to how f* was treated in Chapter [

In more detail, note that f = f** = (f*)* is bounded on bounded sets and therefore
f* is supercoercive by Proposition .57 So f = f** can be wired into the system
by using a modulus of supercoercivity o™ for f* together with the following axioms
instantiating the schemes (S)1, (), as in Chapter [§}

(f*)s f* is supercoercive with modulus o/*, i.e.
VK, (o e = ol () — £(@")/ o] o 22 K.
Here, o™ is an additional constant of type 1.

(f**)1 f is the pointwise upper bound for all affine functionals g, (x) = {x, x*)— f*(z*),
le.

VxX,x*X* ((x,z*)xx — f*(2*) <gr f(2)).
(f**)2 f is indeed the pointwise supremum of these affine functionals, i.e.

Vo 00, K032 < max{ad™ (b+ 1) + 1, [|£*(0)]](0) + 2} 1x+
(Il <eb— (f(z) = 27" <z (o, 2%)x — f*(2%))) -

With D% ..[FM] we abbreviate the system that arises from D“[f,Vf, f*,Vf*] by

adding these constants and axioms.

Before we consider the monotone operators in Banach spaces, we first establish
the following properties of f and f* in D*[f, V[, f*, V f*] regarding the relationship
between the continuity of Vf and the convexity of f* and vice versa (as already
discussed at various points in Chapter |§|, recall in particular Remark . For this,
we also in particular establish a quantitative variant of the uniqueness of Vf as a

subgradient.
Lemma 10.2.1. The system D*[f, NV f, f*,V f*] proves:

1. The “Fenchel-Young equalityﬁ for any subgradient u* of f at x, i.e.

VX, T (Y (F(y) = f(2) + QY —x 2, u)xe) — f(@) + F(u*) =g (o, u)xe).

IBy this expression, we mean in the following that the Fenchel-Young inequality is not strict, i.e.

is satisfied with equality.
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2. The “Fenchel-Young equality” for Vfz, i.e.
Vl’X (f(l’) + f* (Vfﬂ?) =R <l’, Vf$>x>k) .
3. Approximate subgradients of f are close to the gradient of f, i.e.

Vb()? kalevl,X’ x*X*(HxHX <R b A va (<y X l’,il?*>X* + f(ZE) <R f(y) + 2_j)

= [Ja* —xx V| g <z 277),
where in fact we can take

j=k+4+oV(k+3,b+1).

4. The “Fenchel-Young equality” characterizes gradients of f, i.e.
vl,X7x*X* (f($) + f*(l'*) =R <$ax*>X* — " = X* foE) )
where in fact it moreover holds that

Vo0, k0302 N (]| < b A f(@) + fH(2*) — (o xe <g 27

= |lz* —xx Ve <2 27%)

where we can take
j=k+4+oV(k+3,b+1).

5. V fx is the unique subgradient of f at x, i.e.

VX X (Vy* (f(y) =r f(z) + Y —x 2, u*)xx) > u* =xx V[z).

6. f* is uniformly strictly convex on bounded subsets, i.e.

VEY, 10 603500 X T (2w [ w <r DA <pt<gl—27"
At )+ (L= (y") = f(t* +xe (1= t)y*) <g 277

= [la" —xx Y[l < 27%)
where we in fact can choose
j=(k+4+ w0V (k+4,F0b)+2)+i

where F' is a modulus for V f* being bounded on bounded sets (which can be

constructed similar to Lemma .
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7. NV f* is uniformly strictly monotone on bounded subsets, i.e.

WA, 00350y T (| e 97 e <m b A |2 —x Y s >R 27F

— ((Vfra* —x VY, 0% —xx y")xs 2r 277)).
where we in fact can choose
j=k+5+wV(k+4,F)+2).
with all other constants as in (6).

Proof. 1. Let u* be such that

Yy (f(y) = fz) + <y —z,u%)),
i.e.
W, u*) = fly) <z, u’) — f(2)
for all y. Using (f*)2, we get that for any j, there exists a y; such that
Fru*) = (o,u*y = f2)) < f*(u*) = (ygou®) = fyy)) <27

and thus we have
[ ) < Cz,u®) = f(a).

Using axiom (f*);, we get (x,u*) — f(x) < f*(u*) and combined this gives the

result.
2. Follows immediately from (1) and (V f);.
3. Let 2* be such that
¥y (Cy —z,2%) + f(2) < fly) +27)

for j defined as above. This yields

(y—w,0" =Vfr)y={y—z1°)—{y—1zVf(r)
< fly)— fla) =y —=,Vf(x)+277.

Using Lemmam (1), we get that for ||y — x| < 9—wVI (1,b+1).

fly)— fla) =y —a,Vf(z) <27y — 2|
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and so {y — x,2* — Vfz) < 277 + 27 ||y — || for all such y which in particular
yields
(z,0* =V fr) <27 + 27|

for all z with ||z]| < 27"/ 241 given any [. For the given k, now use the same
argument as in the proof of Lemma[8.3.4] (2).(b) to pick a zj such that (w.l.o.g.)
0 < [|zx]] <1 and

(apoa® = Vfa) <27®F2) " — Vx| < 27%.

Define
5 = 2—(wVf(k+3,b+1)+1)

Zk-
Clearly ||5]| < 27« (E+3641) and thus

Gy x* = Vfr) <279 + 2% 31 4
which yields by definition of j that

<Zk; e Vf$> _ z(wvf(k+3,b+1)+1)<z/;€7 e Vf$>
< 2(wvf(k+3,b+1)+1)<27j + 9—(k+3) Hé;cm
_ 2(wvf(k‘+3,b+1)+1)2—j + 2—(k+3)2(wvf(k+37b+1)+1) HZAkH)
< 2—(k+4+wv-f(k+3,b+1))2(wvf(k+3,b+1)+1) + 2—(k+3)
_ 27(k+2)
which implies ||z* — V fx|| < 27 by the properties of z.
4. Let x* be such that
fla) + f*(@*) = {w,a*)xx < 277
with j defined as above. Then we get
fH(x*) <279 + (o, 2 — f(x)
which yields through (f*); that
for all y which is equivalent to
(y—w,2%)+ fz) < fly) +27

for all y. Then item (3) yields the result.
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5. This follows immediately from (3).

6. Suppose
[t (@) + (A=) f*(y") = f*(ta* + (1~ t)y*)| <w 277

for j as above. Then write z* = tx*+ (1—1t)y* and pick z = V f*2* ie. Vfr = 2*
by (L). Then by item (2), the extensionality of f* (recall Remark [8.5.15) and
the extensionality of (-, -), we get

0=fz)+ (%) =<z, 2%)
> fa) +tf (@) + (1= f*(y") =277 — (@, 2%),

i.e. we have

2 > 4(f () + F1(a*) — (o, 2) + (1= D (@) + (") — (o, y™)

and thus, using t,1 — ¢ > 27" and that f(z) + f*(2*) — (&, 2*) > 0 as well as
f(x) + f*(y*) — (x,y*) = 0 by the Fenchel-Young inequality (which follows from

axiom (f*)1), we get
292 > f(2) + (@) — G0, f2) + P ) — oy
By definition of j, we get
g (T P O2) > f(0) + [*(2°) = G, 2%, [(@) + (") = (o).

Noting that [|z*| < ¢ ||«*|| + (1 — ) ||y*|| < b and thus ||z|| < F(b) + 1, item (4)
implies that
lz* =V fz||, [ly* — V fz|| < 270D

which yields [|z* — y*|| < 27*.

7. Using item (6), note that for ¢ = 1/2, we have

Iz ( . y*) <121y + 120 () — 2
= ) 1R — ) - 2
if |a* —y*|| > 27%. As

<vf*w* Z*> < f*(w* + az*) - f*(w*)

«
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for any a > 0 (using (Vf*)1), we get

(Vg —a®) < fHy) — fHa¥) — 2277
Similarly, we get

(VR ot =y < fHa) — fry*) — 227

and this implies
(Vf*y* =V a* —y*) < —4-277

which gives the claim.

]

Now, the additional axioms in DY ;«[FM] can be used to carry out the above proof

with the roles of f and f* exchanged. We collect this in the following lemma.
Lemma 10.2.2. The system D% ;[FM] proves:
1. The “Fenchel-Young equality” for any subgradient u of f* at x*, i.e.
Vo X (VY () 2 7 (27) + g —xe ) xe)
= [H@") + f(u) =g (u, 27%)xx).
2. The “Fenchel-Young equality” for V f*x, i.e.

Vo (5 (a%) + F(V A r*) =p (V2% a%)xs) .

3. Approzimate subgradients of f* are close to the gradient of f*, i.e.

V00, k03002 2 X (2% || e <m b
T (o, y* —x= a*)xx + [5(2*) <w f*(y*) +27)

= |lo —x Vff "]y <g 27F),
where i fact we can take

j=k+4+wV(k+3,b+1).

. The “Fenchel-Young equality” characterizes gradients of f*, i.e.
4 g equality g ;

vt X (1 (@) + f(2) == (. 2)xe >z =x Via),



CHAPTER 10. MONOTONE OPERATORS IN BANACH SPACES AND THEIR
RESOLVENTS 283

where in fact it moreover holds that

VB0, k03002 2 X (|0 || gu < b A FF(3%) + flz) — (@, 35 xn <g 27

= |lz —x Vf*2*||x <w 27F)

where we can take
J=k+4+w(k+3,b+1).

5. V f*z* is the unique subgradient of f* at x*, i.e.
LZARNT (Vy*x* (f*W) Zr [5(@%) +{uy* —xx 2% )xx) = u =x Vf*-r*> :
6. f is uniformly strictly convex on bounded subsets, i.e.

vk, i, 00350yt (el o llylly < b A2 <gt <g1—27"
Atf(x) + (1 =1)f(y) = flte +x (1 —t)y) <z 277

— [l —x yllx <z 27%)
where we in fact can choose
j=k+4+Vk+4,C0)+2) +1i

where C' is a modulus for V f being bounded on bounded sets (which can be con-

structed as in Lemma .

7. V[ is uniformly strictly monotone on bounded subsets, i.e.

vE, 00350yt (Lol vl <e b o —x yllx >r 27"

— ((z—x y, Vfr —x« VIy)x« >r 27)).
where we in fact can choose
J=k+5+w(k+4,00)+2).
with all other constants as in (6).

In particular, in the system D% ;.[FM] we can now formally establish some of the
central properties of Bregman distances used extensively throughout Chapter [9] We
begin with the fact that We(xz, Vf(y)) = Ds(x,y):

Lemma 10.2.3. The system D$ ;[FM] proves:

VX, y* (Dy(z,y) =r f(z) + [(Vfy) — (o, Vy)x=).
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Proof. By Lemma [10.2.1] (2), we have

[*(Vfy) =y, Viy — f(y)

and thus

f@) + f*(Vfy) =&, Viy) = flx) = fly) ={e =y, Vy)
:Df(may)'

]

Lemma 10.2.4. The system DY ;« [FM] proves that Dy is uniformly bounded in the
sense of Chapter|9, i.e.

Vb0, 030"y (|2l <r b A Dy(2,y) <p @ — ||yl x <z 0)
and o can be realized by
0 =o(a,b) = F(a/ (. + D(b) + b) + 1).

where D, F are moduli of f, V f* being bounded on bounded sets, respectively, and o™

is a modulus of supercoercivity for f* as before.

Proof. First, note that f*(z*) — (x,x*) is also supercoercive. For this, let ||z| < b. If

|z*|| > of* (K + b), from axiom (f*)s we derive

@) =Gy )

[l e

~lef > K.
Now, we have
[(VIy) =&,V fy) = Dy(x,y) = f(x) < a+ D(b)
using the above Lemma [10.2.3] Therefore, we derive
IVfyll < o’ (a+ D) +1b)

and thus we get |ly|| = |Vf*V fyl| < F(a/" (a + D(b) +b) + 1). O
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10.2.2 Monotone operators and their relativized resolvents

Set-valued operators of the form A : X — 2% are, in similarity to before in Chapter
modeled via a constant for their characteristic function. In the context of the system
D¢ for the dual of a Banach space, we in that way add a constant x 4 of type 0(X*)(X)
and write z* € Ax, (z,2%) € A or (x,2*) € graA for yaxz* = 0. The first natural
axiom is

Vo o (yaze* <o 1) (1)

which witnesses that x4 is a characteristic function as before.

Also, the treatment of the resolvent is conceptually similar to before. For this, let
A be monotone (in the sense of Browder, recall Chapter [J) and recall Definition [9.3.10
for the resolvents of such monotone operators relative to f: Res£ : X — 2% is defined
by

Resf/x = ((Vf +~yA) o Vf) (x)

for any x € X and v > 0 where, as before, since A remains fixed, we write Res§ for
Resﬁ 4- It follows by our assumptions on f and Proposition [9.3.11| that this map is
single-valued, satisfies F (Resﬁ) = A7'0 (noting that domf = X in this chapter) and

that it is Bregman firmly nonexpansive.

So, for treating an operator A with total relativized resolvents, we add a constant
Res’ of type X (X)(1) and write Res?; for Res’y. The natural axiom for the resolvent
now can be derived as before: If seen as a set-valued operator, the resolvent satisfies

pe Resﬁx epe (Vf+yA) V()
< Vf(z) e Vf(p) +~vAp
=771 (Vf(z) = Vf(p) € Ap.
This naturally leads us to consider the axiom scheme
vy et (v > 0>y (Vfr —xs Vf(ResJ;x)) € A(Res’ém)) (I1)*
in similarity to axiom (II) considered in Chapter [3| as an intensional version of the
crucial direction of the above equivalence for total resolvents.

Remark 10.2.5. As in the context of the systems from Chapter [3| note that also here,
the above axiom (17)* is actually an abbreviation for the following sentence where the

dependence of v~ on a lower bound of 7 is made explicit:

V' o k0 (v e 27F — (), (Vfr —x» Vf(Resﬁm)) € A(Resix)) .
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Also the monotonicity of A is easily specified by a universal axiom:
vaa yX7x*X*7y*X* ((‘T’ l'*), (ya y*) €A— <ZL’ X y,ZL’* XF y*>X* ZR 0) : (III)*

Lastly, all uses of the resolvent presented in Chapter [J] are made in the context of
the assumption that A7'0 # & and we will also assume this here as it in particular
will allow us to majorize the resolvent rather immediately. For this, we add a constant

px of type X together with a corresponding axiom stating that px is a zero of A:
0e Apx. (1V)*
This leads us to the following system:

Definition 10.2.6. The theory B* is defined as the extension of the theory D% ;.. [FM]

with the above constants and corresponding axioms (I)* - (IV)*.

Now, in similarity to the systems from Chapter [3} also B is sufficient for formalizing
the first main aspects of the theory of monotone operators in Banach spaces and their

resolvents relative to f as the following proposition shows.
Proposition 10.2.7. The system B“ proves:
1. Res; is unique for any v >0, i.e.

vl pX X (7 >p 0 Ay YV fr —x+ Vfp)e Ap — p =x Resﬁx) :

2. Res; 1s Bregman firmly nonexpansive for any v > 0, i.e.

vyt 2yt (y > 0 — <Res£;x —x Resi;y, VfResﬁm —x* VfReS£y>X*
<gr <Res£x —x Resf/y, Ve —x« Vfy)xs).

3. Res; satisfies the alternative notion of Bregman firm nonexpansivity for any v >

0, e

Vot o * g (v >r 0 — Df(Resf/x, Res{iy) + Df(Resiy, ResJ;x)
<R Df(Resﬁx, y) + Df(Res,J;y, x) — Df(Resi;x, x) — Df(Resﬁy, v)).

4. A710 < F(Res,’;) for any v > 0, i.e.

vp~, 4t (7 > 0OA0€eAp —> p=x Resﬁp).
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Proof. 1. Suppose that v > 0 and that v1(Vfx — Vfp) € Ap. Axiom (II)* gives
v YV fz— VfResix) € A(Resﬁx). Axiom (III)* then implies that

0< <Res£:c —p,y N (Vfr — VfResJ;x) —y Y (Vfr—Vfp)
= <Res£:v —p, 7 NV fp— VfResJ;x»

where we have used extensionality of {-,-) and of the arithmetical operations in

X*. In particular, since v~ > 0 as v > 0, we get that
<Res£:c —p, VfResZ;x —Vfp)<0.

Thus, as V f is provably strictly monotone (Lemma|10.2.2), we get HResJﬁ — p|| =
0, i.e. Resﬁx =p.

2. Let v > 0. Axiom (I1)* gives
vV fz — VfResJ;a:) € A(Resﬁx) and v 1V fy — VfRes%cy) € A(Resgy).
Axiom (II1)* and y~! > 0 gives
<Res£$ - ReSJ;y, Vfr—Vfy— (VfRes%c:B - VfRes’;y» >0
which implies

<Resﬂ§w — Resf;y, Vfr—-Vfy > <Resf;x — Resfyy, VfRes,’;x — VfResijy}

3. By the provability of the three-point identity for D; (Lemma [8.5.18)), we get

<Resi;x - Resf/y, VfResﬁa: - VfResJ;y>
= Df(Resgx, Res?;y) + Df(Resf/y, Resﬁx) - Df(ResZ;x, Resﬁaz)
= Df(ResJ;a:, Reséy) + Df(ResJ;y, Resﬁx).

Further, by the provability of the four-point identity for D; (Lemma [8.5.18)), we
get

<Res£m - Resﬁy, Vfr—-Vfy
= Df(ResZ;x, y) — Df(ResZ;x, x) — Df(Resijy, y) + Df(Resf;y,a:).

Thus, using item (2), we get the claimed inequality.
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4. Let p be such that 0 € Ap. Then provably with the only assumption being v > 0,
we have v 1(V fp—V fp) = 0 and thus, using 3;-ER, we have that 0 € Ap implies

7N (Vfp—Vfp) e Ap.

Using item (1), we get p = Resf{p.
O

Also the boundedness and continuity properties of maps that are Bregman firmly
nonexpansive, as already discussed in Chapter [0, can now be formally replicated in
the context of the system B“ (where we here formulate these properties just for the

resolvents):
Proposition 10.2.8. B“ proves:

1. Resf: s bounded on bounded sets for any v > 0, i.e.
Vlyp03ely <7 >r 0 A loxl s 2]l x <k b — HResﬁxHX <g e> :
where in fact one can choose
e = FE(b) = 0o(2D(b) + 2bC(b),b)

where C,; D are moduli witnessing that V f, f are bounded on bounded sets, re-

spectively, and o is defined as in Lemma |10.2.4).

2. Res,’; is uniformly continuous on bounded sets for any v > 0, i.e.
Wyt K 0030yt (> 0 A Mlpxly s ol ol <w
AMlz—xylly <g 277 — HResﬂ:x —x Resf{y”X <r 27%)
where in fact one can choose
j=w(k,b) =w¥ (k+1+ E(b),b)
fork =k+5+w"" (k+4,C(b) +2) with C being a modulus witnessing that V f
is bounded on bounded sets and where E is defined as in (1).

Proof. For item (1), note that by Lemma [10.2.7, (3) and (4), and with p = px from
axiom (IV)*, we have (using the extensionality of Dy which follows from that of f, V f

and <'7 >)
D¢(Res!x,p) + Dy(p,Reslw) < Dy(Reslw, p) + Dy(p, x) — Dy(Res]z,x) — Dy (p,p)
< Df(Resf;x,p) + D¢(p, x)
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and thus
Dy(p,Reslz) < Dy(p,z) < 2D(b) + 2bC(b).

Thus, by Lemma [10.2.4] we get
|Res/z|| < o(2D(b) + 2bC(b),b).
For item (2), by Lemma [10.2.7] (2), we have

<Res£:v — Resﬂ;y, VfResf/x — VfRes£y>
< <Res£x - Resf;y, Vix—Vfy
< HResﬁx — Res?;yH IV fx—Vfyl
<2EQ®) |[Vfx =V fyll.

using the above item (1). So, for ||z — y|| < 277, by the definition of j, we have
V52 =V y| < 27 ke

and thus

<Res’;x - Resf/y, VfResﬁx - VfResf/y> <27k
Thus by Lemma |10.2.2, (7), we get

||Res,1;x — ResJ;yH <27k

Notice that therefore the system B“ proves that Res£ is extensional.

10.3 Maximality and extensionality

As discussed in Chapter 3| a central theoretical result from [165] is the connection
between the extensionality of A and the maximality statement for A. We can now

extend this result to the monotone operators over Banach spaces.
Theorem 10.3.1. Over B, the following are equivalent:
1. Extensionality of A, i.e.

va,x*X*,yX,y*X* (ZL‘ —x YA I* =y y* N XAffl‘* =0 XAyy*)-
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2. The strong resolvent axiom, i.e.

vz, p~ At (7 >r 0Ap=x Res’;x — NV fr —x+ Vfp) eAp).

3. Mazimal monotonicity of A, i.e.
VX, X (VyX,y*X* (y*e Ay > {x —x y, 2" —x» y*)x*» 2r 0) > ¥ € Am) )
Proof. For the direction (1) = (3), let x, * be such that
Yy, y* (y" € Ay — (r —y, 2" —y*) = 0).
We consider z = V f*(2* + V fz). Then
17Y(Vfz — VfRes!z) € A(Res!z).

by axiom (I7)*. Thus by the assumption on z, z*, axiom (L) and the extensionality of

(-, ) we get

0 <{x—Reslz,2* — (Vfz — VfRes!2))
— (z — Res] 2, VfRes]z — Vfz)

which is equivalent to
(x —Res!z, Vfr — VfRes!2) <0
and this yields = Res!z as Vf is (provably) strictly monotone. Further, we have
1 (sz - VfRes{z) =z2*+Vfr—Vfr=zx*

using (L) and the extensionality of V f and thus the extensionality of A yields z* € Ax.

For the direction (3) = (2), assume that v > 0 and p = Resﬂix. Then at first
vV fr — VfResﬁx) € A(Resﬁx)

by axiom (I7)*. By monotonicity (axiom (I/11)*) together with the extensionality of
(-,-y and Vf, we get

V(y,y*) € A(lp—y,v ' (Vfz =V fp) —y*)=0).

By (3), we get
v (Vfx =V [p) e Alp).
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For (2) = (1), let x = y and z* = y* with 2* € Ax. Define

z=V[iy" + Vfy).
By (I1)*, we get
17Y(Vfz — VfRes!z) € A(Res?2).
Axiom (I11)* together with the extensionality of (-,-) and V f* as well as using (L)
yields
0 < (x —Res!z,2* — (Vfz — VfRes!|2))
=y — Res{z, VfRes{z - Viy
and this is equivalent to
{y —Res! 2,V fy — VfRes]2) <0
which yields y = Res{ z by provable strict monotonicity of V f. Using (2), we have
17/(Vfz = Vfy) e Ay
which yields by the quantifier-free extensionality rule that y* € Ay as 171V fz —
V fy) = y* holds without any additional assumptions. O

As before, extensionality is not provable (as will be discussed in more detail later
on in Chapter [L1]as well). As all the results are considered in the context of a Legendre
function where f and f* are Fréchet differentiable with gradients that are uniformly
continuous on bounded sets, we find by Proposition that the totality of the
resolvent implies that the operators A which are considered are maximally monotone.
As before, this maximality can then not be provable due to the above equivalence. For
now, we are content with the following replica of Theorem [3.4.2] which establishes that

also here, the system B actually proves a weakened maximality principle.

Theorem 10.3.2. The system B proves the following intensional maximality princi-

ple:
v, ot (Vyx, v (v € Ay — (@ —x y, 7" —xx Y )xx =2 0)
— ﬂx’X,x'*X* (x =v 2 Axt=xx 2" Aa" e Am') )
Proof. As in the proof of the direction (1) = (3) from the above Theorem [10.3.1] we
get that
17Y(Vfz — VfRes!z) € A(Res? 2)
together with z = Res/z and 17(Vfz — VfRes]2) = z* for z = Vf*(z* + Vfz)

without any use of extensionality. This gives the claim. O]
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10.4 A bound extraction theorem

We now state the bound extraction theorems for the theory B which extends those
for D* and its extensions from Chapter [§ In that vein, we keep the proofs short and
only briefly discuss the key ingredients. All other considerations regarding the dual
space can be made similar to Chapter |8 and all considerations regarding the operator
A can be made similar to Chapter

In particular, the models of all set-theoretic and of all majorizable functionals can
be defined for the theory B by combining the ideas from Chapter [§ and Chapter [3]
We do not spell this out here any further.

We begin with the classical metatheorem:

Theorem 10.4.1. Let 7 be admissible, 6 be of degree 1 and s be a closed term of
B of type () for admissible o. Let A be a set of formulas of the form Va?3b <,
ravclFye(a, b, ¢) where Fyy is quantifier-free, the types in §, o and ~y are admissible and
where 1 is a tuple of closed terms of appropriate type. Let By(z,y,z,u)/Cs(x,y, z,v)
be V- /3-formulas of B with only z,y,z,u/x,y, z,v free. If

BY + A - Va2Vy <, s(x)V2" (VuOBV(x,y, z,u) — °C5(,y, z,v)) ,

then one can extract a partial functional ® : NN x N x S5 x S; — N which is total
and (bar-recursively) computable on NN x N x M; x M; and such that for all x € S;,
z€S;, 2* €8x with z* = z and for allw e NV, ne N with w = wVf, WV of ol and

nze [fO)L VIO L, [F*OLNVFO)x s lpxllx-

XX Ly <, s() (Vu <o B(w, n, 3, 2) Bolw, 4, 2,)

— dou <o @(w,n,x,z*)C’g(I,y, Z,’U))

holds whenever S*XX* = A for SXX* defined via any (nontrivial) reflexive Banach
space (X, |||]) with its dual X* (and via a suitable interpretation of the additional
constants similar to Chapters@ and @ and using a convez, supercoercive (with modulus
ol ) and Fréchet differentiable function f : X — R where Vf, Vf* are uniformly
continuous on bounded subsets with moduli w¥7,w¥!™, respectively and where f* is
supercoercive (with modulus of” ). In particular, x4 is interpreted by the characteristic
function of a mazimally monotone operator A : X — 25 with A=10 # & and Res’ by
the corresponding resolvents ResﬁA for v > 0.
Further:
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1. If 7 is of degree 1, then ® is a total computable functional.

2. We may have tuples instead of single variables x,y, z,u,v and a finite conjunction

instead of a single premise Yu®By(z,y, z,u).

3. If the claim is proved without DC, then T may be arbitrary and ® will be a total
functional on NN x N x Ss x Sz which is primitive recursive in the sense of Gadel.

In that case, also plain majorization can be used instead of strong majorization.

Proof. To define the models based on M“XX* and S**X* the interpretation of the
constants relating to the normed space and the dual can be achieved similar to Chapter
[ while the interpretation of the constants relating to the operators can be achieved
similar to Chapter [3] Majorizability of the characteristic function is immediate as
before and majorization of the resolvent follows from Proposition [I0.2.8f Thus the
previous Lemmas [3.7.7] and [8.6.3] extend to B*. The previous proofs therefore go

through exactly as before since all the new axioms are purely universal or of type A

(dealing with the linearity rule and any other axioms of type A in B“ as in the case of
D* in Chapter . O

Similar, we can also obtain a semi-constructive metatheorem by extending the ones
presented in the previous chapters. For this, we can also define BY similar to B“ but
over AY[X, ||-||] instead of A“[X, ||-||]]. As before, since the constructions and proofs

are completely analogous, we omit them here and just state the result:

Theorem 10.4.2. Let § be of the form 0(0)...(0) and o, 7 be arbitrary, s be a closed
term of suitable type. Let T be a set of sentences of the form Yus(C(u) — Jv <g
tu—D(u,v)) with ¢, B and C, D arbitrary types and formulas respectively and where t
is a tuple of closed terms. Let B(x,y,z)/C(z,y, z,u) be arbitrary formulas of BY with

only x,y,z/x,y,z,u free. If
BY +1IP_ + CA_ + T - V2’ Yy <, (2) V2" (=B(z,y, 2) — 3'C(x,y, 2,u)),

one can extract a ® : S1 x Sy x S5 x Sz — N with is primitive recursive in the sense
of Gédel such that for any x € S5, any y € S, with y <, s(x), any z € S, and
2* e S; with 2* 2 z and for all w € NV, n € N with w = w¥/, WV o/, a/" and

nzg [fO)L VO xu, [FFOLIVOM x5 px] x -
SwXAXF EJu <o ®(w,n,z, 2%) (—-B(z,y,2) = C(z,y, z,u))

holds whenever S = T_, for SXX* defined via any (nontrivial) reflexive Banach

space (X, |||]) with its dual X* (and via a suitable interpretation of the additional
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constants similar to Chapters@ and @ and using a convez, supercoercive (with modulus
ol ) and Fréchet differentiable function f : X — R where Vf, Vf* are uniformly
continuous on bounded subsets with moduli w¥ 7, wVT* | respectively and where f* is
supercoercive (with modulus o/ * ). In particular, x 4 is interpreted by the characteristic
function of a mazimally monotone A : X — 2X* with A7'0 # & and Res’ by the

corresponding resolvents ResﬁA for v > 0.



11 On extensionality and uniform continuity

for set-valued operators

11.1 Introduction

As discussed extensively in [165], the large applicability of the systems for accretive and
monotone operators (and by extension also — presumably — the large applicability of
the system B for monotone operators in Banach spaces from Chapter 10)) is due to the
empirical fact that in many situations from the mainstream literature of m-accretive
or monotone operator theory, one does not require the full maximality of the operator

but it actually suffices to have the intensional maximality principle (recall Theorems

13.4.2| and [10.3.2)) together with an (intensionally) total resolvent. New examples for

this are also discussed in [I65] but many others can in particular be found throughout
the previous case studies for set-valued operators in proof mining as most of them do

not require any such quantitative treatment of extensionality.

If, however, the proof is not of that nature and really requires an extensionality
(viz. maximality) principle, then a quantitative treatment of such will be necessary
(as was e.g. the case in the recent application [166]). A short discussion of possible
remedies and choices in that situation was given in [165], without indulging into too
many details. In particular, a fragment of the extensionality statement corresponding
to a certain continuity statement featured in [120] [166] was discussed, though only in

brief.

The purpose of this chapter is now twofold:

1. We discuss the main issue with treating full extensionality in the context of the
previous intensional approaches to accretivity and to the monotonicity notions for
set-valued operators. Motivated by these problems, we discuss three fragments

of the extensionality statement for set-valued operators which avoid these issues

295
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and discuss their corresponding quantitative versions (under the guidance of the
monotone functional interpretation). This provides a corresponding hierarchy of
uniform continuity statements for set-valued operators with various strengths. To
that end, we show that all of the considered uniform continuity statements can be
added to the systems for proof mining in the context of set-valued operator theory
while preserving the bound extraction theorems as discussed in the previous
chapters. In particular, in the course of these discussions, we provide a proof-
theoretic treatment of the Hausdorff-metric using the tame treatment of suprema

over bounded sets developed in Chapter [§]

2. We further show that the correspondence of extensionality and maximality is a
fundamental and robust phenomenon in the context of set-valued operators by
extending it to the various weakenings of the full extensionality statement and
corresponding natural weak forms of the maximality statement. In particular,
we discuss similar equivalences in the context of the extensionality of the set of

zeros of an operator.

11.2 Motivating considerations: full extensionality and

issues with the intensional approach

As before, by (full) extensionality of A we mean the statement (£) defined as

VX X X X(

zh oyt 2zt wt (r=xyAz=xwAzEAr - we Ay)

or, in the case of monotone operators on Banach spaces, defined as
X* X
Vo, yt, 2 w0t (r =x y A2t =y 0t A 2T € A — w* e Ay).

Note that through the bound extraction theorems established in Chapters |3| and |10} it
is immediately clear that this version of full extensionality can not be provable in any
of the theories V¥, T% as defined in Chapter [3]or B“ as defined in Chapter [I0]

In fact, the situation regarding extensionality in this intensional approach to set-
valued operators is much more dire: any extension of the systems V¥, T* or B“ which
has a model based on S¥X or S*XX* respectively, and which still allows for bound
extraction theorems in the previous sense can not prove the extensionality of A. To

see this, let C¥ be any extension of V* which has a model based on §“% and for which
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bound extraction theorems hold similar as for V. If the extensionality statement (£)

were to be provable in C¥, we would be able to extract a functional w such that

va,y, z,w e XVbe N(|lz|[, [yl |zl [lw]| < b

Al =yl ]z —w|] <27® A ze Az — w e Ay)

holds for any m-accretive operator A for which the model based on S“* which arises
by interpreting x4 by A actually is a model of C¥. However, any such operator has to

be open in X x X: given (z,z) € A with [|z||, ||z]| < b and y, w such that

lz =yl |2 = w|| < 27¢*,

we have [|y||, ||w|| < b+ 1 and so (y,w) € A. But any m-accretive operator A is max-
imally accretive and thus closed in X x X (see e.g. [4]) so that the only two possible
interpretations of A are ¢ or X x X. The former is not allowed in C¥ as the theory
extends V* by which axioms we have domA # ¢J and the latter is not accretive. So
C* does not have a model based on S“X after all. Similar considerations also hold for

maximally monotone operators A € X x X* and B*.

This is an inherent limitation that comes with the intensional approach chosen
for set-valued operators (which however is essentially the only approach that allows
for bound extraction theorems that do not outright distort the complexity of the ex-
tracted bounds due to analyzing maximality). In Section we will later discuss
a different approach for treating operators with full extensionality but for now, from
the perspective of these intensional systems, there are two possible avenues to at least

provide partial remedies to this situation.

The first might be to restrict the kind of x, y permissible in the extensionality state-
ment: the above argument does not work if x and y are required to be contained in
the domain of A before applying extensionality. As a second option, one might want to
weaken the conclusion from z € Az — w € Ay to a less “explicit” and more “analytic”
version (we will later see concrete instantiations which illuminate what we mean by

this).

For the former however, even if (E) is restricted to the domain of A, this still poses

an exceedingly large limitation on the systems as if the principle

VX X X X X(

xh oyt 2zt wt vt (r=xyAz=xwAzeAr AveE Ay — w e Ay) (E)4
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would be provable in the previously presumed extension C* of V¥, then the bound

extraction results would yield the existence of a functional w with

va,y, z,w,0 € XVbe N(|lzll, lyll =1, [[wll, loll < b

w(b)

A=yl llz —w|| <27 A ze Az Ave Ay — w e Ay).

In particular, this implies still that Az is open for any x € domA as if z € Ax with
Izl lz]| < b, and w such that ||z — w| < 27“®*D ] then w € Az. As before, if A is
m-accretive, then it is maximally accretive and so Az is closed. Thus, in this case, Ax
is clopen, i.e. equal to X or . The latter is not possible as © € domA. Therefore, the

only m-accretive operators for which such an w exists are of the form

X if z € domA,
Az —
&5 otherwise.

While such operators exist (take e.g. the normal cone N, for the singleton {z} in a
Hilbert space, see [I1]) this class is of course extremely restrictive. Similar considera-

tions can also be made for monotone operators in Banach spaces.

So, even though the extension of V¥ where the above quantitative variant is added
as an axiom allows for bound extraction theorems and still has a model constructed
over S¥X_ the restrictions on the class of axiomatized operators are so strong that this

is presumably of little practical relevance.

In the following, we will thus investigate the second option and discuss fragments
of (E) and (E)¢ that arise by modifying the conclusion together with the quantitative
notions that they induce on set-valued operators. Regarding these potential weakenings
or reformulations of the conclusion, we are in particular interested in reformulations of

the above full extensionality principle in the form of the general scheme
z=xy— E(Az, Ay)

where F is a placeholder for some predicate expressing “Ax = Ay”. If F is sufficiently
of an “analytical nature” in the sense that it allows for quantifying the difference of Ax
and Ay in the case that Ax # Ay, then such a formulation immediately gives rise to
a meaningful associated uniform continuity principle and in this chapter, we will see

three instantiations in that vein.
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11.3 The Hausdorff-metric and its extensionality state-

ment
A motivating example is the extensionality principle
Vi, y(x,y € domA A x =y — H(Azx, Ay) = 0)
where H is the Hausdorff-metric defined via
H(P,Q) := max {ilellg inf [lp - g 7Sqtel£;g]£ Ip — q||}

for closed non-empty sets P, () in the space. This extensionality statement immediately
induces a notion of uniform continuity for A (as commonly used in the analytic liter-
ature, see e.g. [I51]7), witnessed by an accompanying modulus of uniform continuity

w:
Yo,y e XVk,be N (z,y € domA n By(0) A [lz — y|| < 27°%Y) — H(Az, Ay) <27%).

Note that this restriction to domA is necessary for H(Axz, Ay) to be well-defined.

We now begin with showing that for certain sets P, (), the Hausdorff distance
H(P,Q) can be treated in the context of the systems considered before. For this,
we work over V¥ for now. Let P be a set in a normed space X which is bounded, i.e.

Ip|| < ¢ for all p e P where c € N. Then we can treat the real-valued distance function
d(z, P) = inf ||z — p||
peP

by adding an additional constant d(-, P) of type 1(X) with axioms determined similar
to the schemes (5);, (5)2 discussed in Chapter [8 Concretely, we consider the two

axioms schemes
VX, p* (P(p) — d(z, P) < ||z —x plly) (dp)1

as well as
V¥, k%3p <x clx (P(p) A ||z —x pllx <r d(z, P) +27%) (dp)s

where P(p) is a predicate describing p € P. The motivation for (dp)s is again the same

as with (9)s, just from the perspective of an infimum instead of a supremum: any

"While the following principle stipulates uniform continuity on bounded subsets, the literature

often even considers situations where the continuity is uniform over the whole space.
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interpretation of d(z, P) by the real infimum will have to satisfy (dp)s as there will
be elements p € P such that ||z — p|| is arbitrary close to d(x, P) and this property of

course also characterizes the infimum.

As before with the discussion in Chapter [§| these schemes become admissible if
they are instantiated with an P such that the two axioms have a monotone functional
interpretation which can again be guaranteed a priori if P is of a “A;(A*)”-form. How-
ever, later we will be only concerned with the case where P(p) is quantifier-free (and

potentially contains parameters).

Similarly, we can add a constant d(-, )) of the same type for a second bounded set
@ (w.l.o.g. also bounded by ¢) together with the following axioms determined as above

over a predicate Q)(q) describing ¢ € @:
Vo, % (Q(q) — d(,Q) <w |l —x qllx), (do )
VX, k93¢ <x clx (Q(q) Az —xqllx <r d(z,Q) + 2_k) ) (do)2

In the context of both d(x, P) and d(z, @), we can then introduce the quantities

d(P, Q) = supd(p, Q) and d(Q, P) = supd(q, P)

peP qeqQ

into the system by adding corresponding constants (for simplicity also denoted by)
d(P,Q) and d(Q, P) of type 1 into the language together with another set of instanti-

ations of the schemes (S);, (S),. Concretely, we consider the schemes

¥p* (P(p) — d(P,Q) 2r d(p. Q) (dpo

as well as
VE'3p <x clx (P(p) A d(p, Q) =r d(P,Q) —27") . (dpg)a

Similarly, for the quantity d(Q, P), we consider the accompanying axiom schemes

Ve* (Qq) — d(Q, P) =g d(q, P)) (dg,p)

as well as
Vi3 <x clx (Q(q) A d(g, P) =r d(Q,P) —27%). (do.p)2

Lastly, we move to the concrete Hausdorff-metric which can now just be introduced
by a closed term involving d(P, Q) and d(Q, P):

H(P,Q) = max{d(P,Q),d(Q, P)}.



CHAPTER 11. ON EXTENSIONALITY AND UNIFORM CONTINUITY FOR
SET-VALUED OPERATORS 301

Of course, this distance can also be introduced uniformly for a family of sets de-
scribed by formulas P(p,z), Q(q,z) with parameters z of type ¢ if the sets described
by P(p,z),Q(q,x) are bounded by a function ¢(z) pointwise in the parameters. We
could also introduce the Hausdorff-metric on X* over the language of D“ (which we

do not spell out here any further).

Note that the non-emptiness of the sets P, () is not needed to define these formulas
but the non-emptyness is required on a semantic level in order for these formulas to
actually have a model as the objects, mapping to type 1, have to be interpreted by a

real number (or by a function mapping into real numbers, respectively).

As mentioned before, this abstract treatment is fruitful at least in the context
of sets describable by “A;(A*)-formulas (in the sense of Chapter [8). Then these
constants and axioms are suitable for extending the previous metatheorems where the
interpretations of the constants d(-, P),d(-,Q),d(P,Q) and d(Q, P) in the respective
models are naturally defined via (-),. In particular, majorization of these constants

can be easily achieved: For d(-, P), via the axiom (dp);, we have
d(z, P) < ||z = pll < [lz]l + llpll < =]l + ¢

where p is some point witnessing that P is non-empty (and thus the non-emptyness is

also important for majorization). Further, we have
d@Q,P)<d(q,P)+1<|q|+c+1<2c+1

for a suitable ¢ chosen with axiom (dg p)2. From this, majorants for d(-, P) and d(Q, P)
are immediate.

By a similar reasoning, d(-, Q) as well as d(P, Q) are majorizable and this extends
to any variant using additional parameters if the sets are non-empty and bounded
pointwise for all parameters. Naturally, also the resulting bounding function ¢(z) then

has to be majorizable as a function of type 0(g?).

We are now in particular interested in using this way of formulating the Hausdorft-
distance to talk about uniform continuity formulations for set-valued operators. Then
the sets P and () can be taken to be of the form Az with a parameter z of type X
for a given set-valued operator A which is represented in the system by an intensional

description over its graph via y 4 as discussed in the preceding chapters. As the resulting
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formulation of the set Az by P(p,x) := xa(z,p) =o 0 is quantifier-free, the above
axioms in particular become admissible for bound extraction results if, as discussed
before, the operator A is actually such that all Az are bounded with a bounding
function ¢ of type 0(X) that is majorizable. In the language of Chapter , the existence
of such a c is equivalent to the operator A being uniformly majorizable, i.e. bounded
on bounded sets. Thus we consider an additional constant A* of type 1 together with

the axiom

Yoy b (y € Av Azl <e b — llyllx <z A™D) (A7)

which serves as a majorant of a witness to ¢. Then we can as above introduce constants
d(-, Az) and d(Az, Ay) for z,y € domA into the language using y4 and A* to form H
such that the expression H(Az, Ay) is represented by a term for any = and y.

With this, the previous extensionality statement using the Hausdorff-metric now

indeed can be written as a formal sentence in this extended language:
Vo, y* (z,y € domA A v =x y — H(Az, Ay) =g 0).

The monotone functional interpretation now suggests an associated uniform continuity

principle as before together with a modulus w of type 0(0)(0):

vxxayX7UX7UX7kOabO<($7u)7 (yav) € A A HxHX ) ”yHX ) HUHX ) HUHX <R b

Az —xyllx <wr o—wkb) _, H(Az, Ay) <z 2"“). (UC)

This statement is universal and can thus be added to the system together with a con-

stant w and, for this extension, one retains the bound extraction results.

A similar type of uniform continuity statement could of course also be defined for

set-valued mappings A : X — 2X* but we do not spell this out in any detail here.

In Chapter [12], we will illustrate the applicability of this approach towards the
Hausdorff-metric by analyzing iterative methods related to set-valued mappings which

are uniformly continuous w.r.t. the Hausdorff-metric.
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11.4 A Hausdorfl-like predicate and approximate ex-

tensionality

In [I20], Kohlenbach and Powell refrained from using H due to its use of infima and
suprema and as a substitute, they introduced a so-called Hausdorff-like predicate H*

defined via
H*[P,Q,e] :==Vpe PIge Q(llp —ql| <¢)

and, corresponding to this, they considered a uniform continuity principle for A w.r.t.
H*:
Vz,ye X, ke N (z,y € domA A ||z —y| < o=k _, f* [Az, Ay, 2_k]) . (ueH)

Regarding an associated extensionality statement, we follow the discussion laid out
in [I65]: we can immediately recognize (UC*) as the uniform quantitative version,
guided by the monotone functional interpretation, of the following approzimate exten-

stonality principleE]
VX, y~ (:10, yedomA Az =xy— VE'H* [Ax, Ay, Q_k]) (AE)
as, by making the hidden quantifier in =x apparent, this is equivalent to
VX, y* (z,y € domA A VSO (lz —x ylly <z 277) = VE"H* [Az, Ay,27"])

and the monotone functional interpretation extracts from this statement a uniform

bound (potentially depending on upper bounds on the norm of z and y) on j in terms
of the k[

Now, as also discussed in [165], this uniform continuity principle (UC*) can be
(rather immediately) phrased as an axiom of type A: considering the definition of H*,

the principle (UC*) is equivalent to

vaX, X, kO(x,y e domA A ||z —x yllx <r 9—w(k)

— Vze Azdw e Ay (|2 —x ||y <z 27%)).

2See the later parts of this section for a motivation of prefix “approximate” in the name.
3Note in the above that the formulation

H*[Az, Ay, €] := VX JuwX (zeAz s we Ay A ||z —x w| x <r €)

is indeed a formula of the language of the underlying system.
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Now, the quantifier “Jw € Ay” can be bounded in norm in terms of the other parameters
as if [|z — w| < 27%, then [[w]| < [|2]] + ||z —w] < |l2]| + 27" < ||z + 1. Thus, (UC*)

is equivalent to
VEY, 2%,y 2 3w <x (|2]lx + 1) 1x (x,y edomA A ze Ax A |z —x ¥y <z 277"
—weAy Az —x w|y <wr 2k>.

This is of the form A as all variables have admissible types and the inner matrix is
purely universal after making the hidden quantifiers in <g, <g apparent and prenexing

appropriately.

As (UC*) can be transformed into a statement of the form A, we can add it (to-
gether with a corresponding constant w of type 1) to the systems V¥ T“ and still
retain the bound extraction theorems established in the previous chapters.

Of course, we could also formulate H* for X* and then develop these principles

over the language of B¥ for operators A : X — 2X*.

Remark 11.4.1. One can similarly show that the principle where @ additionally depends
on norm upper bounds of z, y, z and v witnessing y € domA (i.e. v € Ay) can be written

as a formula of type A via
VEY, B0, 2y, 2t 0t 3wt <k (2]l + 1) 1x(|\$Hx Ayl M2llx s 1ol <e b
AveAynzeAr Az —xylxy <e 277D s we Ay A ||z —x wlx < 2k>

and thus can be added to the systems used in proof mining. However, we here wanted

to focus on the principle introduced in [120].

11.5 A weak fragment of full extensionality

There is a case to be made regarding how natural the formulation of “Ax = Ay’
via VKO H*[ Az, Ay, 27"] actually is, in particular compared to H*[Az, Ay, 0] where the
quantifier over £ is internalized in the bound. This leads us to consider the following

weak version of extensionality

Vao* yX (z,y € domA A x =x y — H*[Ax, Ay, 0]).
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Unraveling the definition of the H*-predicate, this can be rewritten as
Vo g (z,y e domA A v =x y — Vz € Azdw e Ay(z =x w)). (WE)

Naturally, this fragment of the full extensionality statement is therefore stronger than

the approximate extensionality statement from before.

Making the hidden quantifiers apparent, this statement is equivalent to
Vol y*, 2 0w VE' T (v e Ay A z e Ax
MMz —xyllxy <27 = |z —x wlly <e 27" A we Ay)

and a quantitative version of this is therefore given by the existence of a modulus w
such that

Vo, y ¥, 2N 0t IR B (v e Ay Az e Ax Azl llylly s 2l vl <e D

Alr—xyllx < 277FY - Iz —x w|y < 27F A we Ay). (WuQC)

Similar to before, (WUC') can be written in the form A as we can easily give the
same norm bound on w as with (UC*): for ||z — w|| < 27% < 1, we get ||w| < ||z + 1.
The statement (WUC) is thus equivalent to

VaX g% 2N 0¥ 30N < (||2) + 1) 1x VA, B0
(U e Ay nze Az Azl x iy 12l x s [vllx <w

(k)b

Az —xylly <e 2% 5 |z —yw||ly g2 F Awe Ay)‘

This is of the form A as the inner matrix is still (equivalent to a) universal formula

and all quantifiers have admissible types as before.

11.6 The strength of not restricting to the domain

While the restriction x,y € domA is essential in uniform continuity statements formu-
lated using the Hausdorff-metric, the principle (UC*) could similarly well have been
formulated without this restriction, i.e. we could consider the existence of a modulus

o with

VkeNVm,y,zeXﬂweX(zeAxA |z —y|| <27"W s we Ay A ||z —w| < 2"“)
(f)
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What we here want to discuss is that the existence of such a w is already excessively
strong. For simplicity, we here only focus on accretive operators. Then, for this, we

rely on the following result of Chidume and Morales{]]
Theorem 11.6.1 ([44]). Let X,Y be topological spaces and call A : X — 2Y lower

semi-continuous if for every x € X and every neighborhood V (y) of y € Ax, there exists

a neighborhood U(x) of x such that for all ue U(x):
Alu) nV(y) # &.

If X is a real normed space and A : domA € X — 2% is a lower semi-continuous and

accretive mapping, then A is a single-valued mapping on intdomA.

Theorem 11.6.2. Let A # & be accretive and assume there exists a w satisfying ().

Then domA = X, A is single-valued and uniformly continuous.

Proof. We first show that domA = X. As A # &, let (z,u) € A as well as y € X be

given. Then we can inductively construct points vy, ..., yx such that

=l v — il s llye — | < 2-=(0)

for all 7. Using (), we pick z; € Ay; and 2’ € Ay with
Iz = 21l 1z = ziall Ml2w — 2l < 1.

In particular y € domA.

Now, if such a w exists that satisfies (), then we actually have that A is lower
semi-continuous in the above sense: Let x € X(= domA) and k € N. Then for
any y € Byww(z) and z € Az, there exists a w € By« (2) such that w € Ay, i.e.
AQy) nBpal(2) # &

The single-valuedness now follows from Theorem and the uniform continuity

is then immediate by using . O]

Thus, to summarize, we seem to find a sort of dichotomy of proof-theoretic ap-
proaches to set-valued operators. Extensionality of A can only be treated up to a
certain point in intensional systems if sensible bound extraction theorems shall be re-
tained but if strong-enough fragments of extensionality are actually required by the
proof, the methodology actually upgrades this assumption to A being total, single-
valued and uniformly continuous, in which case we might switch the formal framework
to a system where A is treated as an object of type X (X) together with a modulus of

uniform continuity.

4Actually, in [44] the authors work with locally accretive mappings but we do not care for this

weakened assumption here.
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11.7 Characterizations in terms of fragments of max-
imality

As discussed in Chapter , a crucial result from [165] is the equivalence between max-

imality as well as other analytic closure principles of the operators to extensionality, if

the operators in questions are accretive or monotone (in Hilbert spaces). Also recall

the extension of that result to monotone operators in Banach spaces from Chapter

As mentioned in the introduction, we extend this correspondence by two new results
(and, in a sense, another similar result given in the next Section, characterizing the
previously discussed extensionality principles by respective fragments of the maximal
accretiveness or maximal monotonicity as well as the closure of the graph which, for one,
shows the robustness of this correspondence and, for another, provides equivalent forms
of the fragments of full extensionality considered before in terms of principles which

are more easily recognizable in actual applications to results from core mathematics.

Theorem 11.7.1. Quver the systems V¥ or T¥, the weak extensionality statement

(WE) of A is equivalent to weak closure of the graph of A, i.e.

V:EX,yX,xgg(o),y()g(o) (a: edomA Az, >x TAY, >x VY

AR (y, € Azy,) — I (w =x y Aw e Ax)) (WG)
with x,, —>x x, Y, —x y defined as in Theorem|53.4.1, as well as respectively to
1. weak maximal accretivity of A, i.e.
VX, u® <:L' e domA A Yy~ v~ (v e Ay
— o —x y+x (w—x 0)lly =z 2 —x ylly ) = 30X (@ =x uw A we Az)),
in the case of V¥,

2. weak maximal monotonicity of A, i.e.

Vo uX (z e domA A Vy* 0¥ (ve Ay — {(z —x y,u —x v)x =g 0)

— Jw(w =x u A w e Azx)),

in the case of TY.
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Similar equivalences also hold for B if the statements are appropriately modified with
X*.

Proof. We only show the equivalence for V¥, the other systems can be treated similarly.
(WE) = (1) Let z,u be such that z € domA and
Vy,o(ve Ay — [z —y + (u—v)|| = |lz — y|).
By axiom (II) of V¥, we have
1Y (z +u) — JMNe +u) e A(JMNx +u))
We get by simple arithmetic together with the assumption on x,u that
0=|z— JMe4+u) 4+ (u—1""((z +u) — J(z + u)))H
> Hx — JMx + u)H

using additionally the extensionality of the norm. Thus z = J{'(z + u) and
therefore u = z +u — J(z +u) = 171 ((z +u) — J{*(z +u)). Thus, 171 ((x +u) —
JA(z +u)) € A(J{(x + u)) implies that there exists a w € Az such that w = u

by weak extensionality of A.

(1) = (WG) Let x, — = and y, — y as well as y, € Ax, for all n. Let v,w be
arbitrary with v € Aw. Then, by axiom (III)

[ = w + yn — 0| = [l2n —w]

for all n and thus by taking the limit ||z — w + y — v|| > ||z — w||. By maximal

accretivity, as v, w are arbitrary, we have w € Ax for some w = y.

(WG) = (WE) Let 2 = y and z € Az. Then (z), — y and (z),, — z for the constant
x- and z-sequences (x), and (z),, respectively, and thus there exists a w = z

with w € Ay.
O

Theorem 11.7.2. Over the systems V¥ or T, the approximate extensionality state-

ment (AE) of A is equivalent to approximate closure of the graph of A, i.e.
va7 yX’ xi{)(O): y(X)(O) <I € domA A Tp PX T ANYn XY
AR (y, € Azy,) — VEOTWX (lw —x ylly <277 A we Az) ) (AG)

as well as respectively to
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1. approximate maximal accretivity of A, i.e.
VX, u® (VyX, v¥ (3: € domA A v e Ay

— |z —xy+x (u—xv)|y =r ||z —x ?JHX)

— VEOJuX (|lw —x ully <277 A w e Az) )

in the case of V¥,

2. approximate maximal monotonicity of A, i.e.
Vo, uX (x e domA A Yy~ 0¥ (ve Ay - {(x —x y,u —x v)x =g 0)
— VEO X (lw —x ully 27" A w e Ax) >,

in the case of TY.

Similar equivalences also hold for B“ if the statements are appropriately modified with
X*.

Proof. As before, we only show the equivalence for V*, the other systems can be
treated similarly. The cases (1) = (AG) and (AG) = (AFE) are completely similar
to the previous Theorem and so we just sketch (AE) = (1): As before with
(WE) = (1) in the proof of Theorem we get © =x J{'(z +u) and u =x
v+u—JMz+u) =x 17 H((x4+u)—JP (z+uw)) with 171 ((z4u) =P (z+u)) € A(JP (z+u)).

Approximate extensionality implies that for any k, there exists an w € Az such
that [w — ul| = ||w — 17 ((z + u) — J{*(z + u))|| < 27% by extensionality of ||-||. O

These fragments can occur, or can be substituted for the full extensionality state-
ment, in various situations in proofs from set-valued operator theory and we want to
indicate on a high level what these situations could be: If, after an application of ex-
tensionality to points z,z with z € Ax to infer w € Ay from w = z,x = y, the rest of
the formulas in the proof are not extensional in z/y but at least can be reformulated so
that an approximation of z/w suffices for the rest to be carried out, then the approx-
imate extensionality principle (AE) suffices. If the rest of the formulas in the proof
are not extensional in z/y but at least are extensional in z/w, then the stronger weak
extensionality principle (W E) suffices. As before, if after this application the rest of
the proof is extensional in both z/y and z/w, then the previous intensional maximality

principles already suffice which are provable in the underlying systems.
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Of course, the above considerations on the quantitative versions of those principles
then provide a guideline of what assumptions have to be placed on A in terms of mod-
uli of uniform continuity to provide an analysis using the bound extraction theorems
established in the previous chapters. Examples of these kind of scenarios in previ-
ous proof mining applications include [120, [166] where, in the latter case, the above
considerations on different fragments of extensionality were crucial for obtaining the

analysis.

11.8 Extensionality of the set of zeros

The last investigation regarding extensionality that we want to make here is on the set
of zeros of the operator. If 0 € Ax, then v}z — ) € Az or v 1 (Vfz — Vfz) € Az
for v > 0 by the quantifier-free extensionality rule and thus we get J:;‘:U =x & Or
Resﬁx =y x in the systems V¥, T* or B* as the uniqueness of the resolvents is provable.

Thus, these systems prove
VX (O e Axr — Vo' (fy >r 0 — J,‘;‘x =x x))
or
Vo (0 e Ax — V! (7 >r 0 — Resj;x =x x))

respectively, as discussed already before.

Even further, we provably have
Va¥ 2X (ze Az nz=x 0> V¥ (y>p 0— J,‘?gj =x 1))

or

VxX,zX (zeAxAz=X0—>nyl (’y >RO—>Res£:c =x x))

respectively. To see this, note that by the quantifier-free extensionality rule we have
from z € Az that v '(yz + v — x) € Az or v L (VfVf*(vz + Vfz) — Vfz) € Az and
thus
T =x J,‘;‘(’yz + ) =x J,‘;‘a:
and similarly Resﬁ:p =x x, in both cases using the extensionality of the resolvent and
z=0.
As we will see now, the converse assertions are connected to the extensionality of

the set of zeros of A.
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Theorem 11.8.1. Qver V¥, the following are equivalent:
1. VX, X (Jf‘:z: =xrAz=x0—>z€ A;E),
2. Vo, 2% (V4! (y > 0 — Jj‘x =xz) Az=x0—>z€Az),
3NV yX 22X X (r=xyrz=x2 =x0nzeAr — 2 € Ay).

A fortiori, the same holds for T®. This statement also holds for B if J;‘ 15 replaced
by Res£ and X by X* at the appropriate places.

Proof. We only consider the case for V*. The implication from (1) to (2) is clear. For
(2) = (3), let z = y and let z = 2z’ = 0 with 2 € Az. Then using (2) and the provability
of

VX, X(ZEAJJ/\Z—)(O—)V’}/ (7>R0—>J$$=Xx)),

we get

zeAw<—>V’y(’y>O—>ijx=x)
<—>V7(7>0—>J§4y=y)
2 e Ay

by the extensionality of Jf. Lastly, for (3) = (1), assume that J'z = x and 2z = 0.
Then by axiom (II), we get

1 Yo — Ji'z) e A(J ).

By (3) and 17} (z — J{'z) = 0 = 2, we get z € Ax.
The case for B* follows similarly as Res§ is extensional (recall Proposition [10.2.8]).
[

Further, as we will see now, this form of the extensionality of the zero set of A is

even equivalent to a corresponding fragment of the maximality principle:
Theorem 11.8.2. Over V¥, the following are equivalent:

1 VaX yX 25X X (e =xynz=x2 =x0Aze Az — 2 € Ay),

2. V¥, 2% (V(y,v) e Allr —x y —x vllx Zr [z —x yllx) A 2 =x 0 — z € Aa).
A fortiori, the same holds for T where all are also equivalent to

3. VxX, 22X (V(y,v) e Ale —x y,—xv)x 2r 0) A 2 =x 0 — z € Ax).
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Lastly, the same holds for B if items (1) and (2) are replaced by
(1)’ VxX,yX,z*X*,z’*X* (r=xynzt=x«2"=xx 0n2"€ Ar — /" € Ay),
(2) VaX, 22 (V(y,y*) € A(x —x y, —xxy*dxx =r 0) A 2% =xx 0 — 2* € Ax).

Proof. Also here, we only consider the case for V. For the direction (1) = (2), assume
V(y,v) € A(||]x —y —v|| = ||x — y||). Without any assumptions, we have 17! (z—Jz) €

A(J{*z). Therefore, we have
0=|z—Ji'e =17 — J{'2)|| = ||v — J{z]]

and thus x = Jz as well as 171(x — Jz) = 0. (1) yields z € Az for any z = 0.
Conversely, for (2) = (1), assume that x = y and z = 2/ = 0 as well as z € Aux.

Then by accretivity and the extensionality of the norm, we have
V(a,b) € A(lly —a—0l = [ly —al]).
(2) yields that 2’ € Ay. O

However, similar to the full extensionality statement, already the provability of the

extensionality of the zero set of A as formulated by
Vo, y* (z =x y A0 € Az — 0 € Ay)

will result in any standard model, i.e. any model based on S~ (or S“*** in the
case of BY), for extensions of V¥, T (or B¥) that allow for bound extractions to be
rather degenerate: For suppose this extensionality principle would be provable in some

extension, then we would be able to extract a functional w such that
Vo,ye XVbe N(|z|, |yl <bA [z -yl < 270 A 0eAr - 0¢ Ay) .

Note that in the presence of such an w, the set A710 is open in X as for z € A~0 with
|lz]| < b, we have that any y with ||z — y|| < 27“(®*+1 also satisfies y € A~'0. However,
for any maximal operator, as it is closed in X x X, we get that also A710 is closed
and therefore A=*0 would be clopen, i.e. would be equal to ¢ or X, which renders any
discussion on zeros of the operator pointless. The same argument can also be made in
the context of X™* and B“.



12 Quantitative results on
Mann-iterations for set-valued mappings

in Banach spaces

12.1 Set-valued nonexpansive maps and Mann-type

iterations

As a last application, we provide quantitative results on a Mann-type iteration of set-

valued mappings which are nonexpansive w.r.t. the Hausdorff-metric.

Concretely, let X be a Banach space and denote by C'B(X) the collection of non-
empty, closed and bounded subsets of X. Then the Hausdorff-metric

H(A, B) = max {sup inf ||a — b]| ,sup inf ||a — bH}
B beB a€A

acA be
is well-defined and real-valued for A, B e CB(X). We write
d(z,A) = inf ||z — al
acA
for a given set A € C'B(X) as before. A set-valued map 7 : D € X — C'B(X) is called

nonexpansive if
H(Tz,Ty) < ||z —y||

for any z,y € D. We say that a point x is a fixed point of T" if x € T'r and we denote
the set of fixed points of T by F(T).

The following is a rather immediate consequence of the definition of the Hausdorff-

metric:

Lemma 12.1.1 (see e.g. [82]). Let A,B € CB(X). For any a € A and € > 0, there
exists some b e B with

lla—b|| < H(A, B) + .

313
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Based on this lemma, it is immediately clear that given a non-empty convex set K
and starting points zg € K, yo € Tx¢ together with scalars o, € [0, 1] and ~, € (0, ©0),

one can inductively define an iteration

Tp+1 = (1 - an)xn + nlYn (T)

where y,41 € Tx,.1 is chosen such that ||y,41 — ynl| < H(Txpi1,T2yn) + Yo This
iteration defined in that way was studied in [I96] and in the case that the set K is

additionally compact, the authors obtained the following convergence result:

Theorem 12.1.2 ([196]). Let K < X be non-empty, conver and compact. Let T :
K — CB(K) be a set-valued map that is nonezpansive and suppose that F(T) # & as
well as T'(p) = {p} for each pe F(T). Let (z,) be defined as in (1) with starting points
zo € K, yo € Ty and scalars (a,) < [0,1] and (v,) < (0,0) such that

1. lim, .oy, — 0,
2. 0 < liminf, 4 a, < limsup,,_,,, o, < 1.
Then (z,,) converges strongly to a fized point of T

The main feature of the sequence exploited in the proof is that it is Fejér monotone
(see in particular [46] 47]). This well-studied class of sequences possesses very general
convergence theorems which guarantee the weak convergence of such sequences under
very mild asymptotic regularity assumptions. In compact (metric) spaces, like in the

above result, the convergence is in particular strong.

These general convergence results for Fejér monotone sequences from compact sets
were analyzed through the lens of proof mining in [112] where, under the assumption of
the existence of moduli which witness quantitative reformulations of the central prop-
erties involved, a construction of a rate of metastability for the sequence in question
is presented. Further, in [114], a general principle of metric regularity is studied (en-
compassing various forms of well-known regularity assumptions from nonlinear analysis
and optimization like metric subregularity, weak sharp minima, error bounds, etc.) and
under the assumption of such a metric regularity principle, the authors then provide a
construction for a computable as well as highly uniform full rate of convergence for a
given Fejér monotone iteration which moreover holds in the absence of any compact-

ness assumptions.
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These general but abstract proof mining results were previously successfully instan-
tiated for many different situations in which Fejér monotone sequences occur to derive
rates of metastability and rates of convergence. In particular, we want to mention
the applications in the context of the asymptotic behavior of the composition of two
mappings [I13], the proximal point algorithm in uniformly convex Banach spaces [105]
and in CAT(0)-spaces [I35] 136], subgradient-methods for equilibrium problems [169]

as well as algorithms for finding zeros of differences of monotone operators [166].

It is also here that we apply the results from [112, [114] to derive rates of metasta-
bility and rates of convergence (under a metric regularity assumption) for the above
iteration which are, as before, not only computable in their parameters but also highly
uniform. For that, we need to extract the previously mentioned moduli witnessing
quantitative versions of the Fejér monotonicity and asymptotic regularity which them-
selves arise from an application of proof mining to the respective proofs of these prop-
erties given in the course of the proof of Theorem in [196]. As these proofs in
particular rely on the utilization of the Hausdorff-metric, this application given here is
in particular to be seen as a case study to illustrate the applicability of the treatment
of the Hausdorff-metric discussed in Chapter [L1]

12.2 The central assumptions and their quantitative

content

In this section, we now first discuss the central assumptions present in Theorem [12.1.2
and in particular discuss (using the underlying logical methodology) what kind of
quantitative assumptions they entail to potentially feature in the analysis of the main

theorem given later.

The first important assumption present in Theorem [12.1.2] is the compactness of
the set K. This compactness assumption on K is witnessed in the following by a
quantitative modulus of compactness introduced in [69] under the name of a modulus

of total boundednesd]] which takes the form of a function v : N — N such that for any

In [112], the name II-modulus of total boundedness is used but we here follow the conventions

from [69] where such a modulus is just called a modulus of total boundedness.
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k € N and for any (z,) < K:

As discussed in [112], such a modulus exists if, and only if, K is compact and we refer
to [I12] for various discussions on the construction of such moduli for certain concrete

classes of compact sets and spaces.

As a second assumption, we find the non-emptyness of the fixed point set F(7T)
which will be represented by a concrete witness py (i.e. po € K and py € T'pg) in the
following. As follows by the metatheorems, the bounds extracted later will of course
only depend on an upper bound on the norm of py, which by the compactness and
therefore the boundedness of K, is in particular represented by any upper bound on
the diameter of K.

One of the most crucial assumptions, in some sense, is the single-valuedness of T’
on actual fixed points, i.e. the assumption that T'p = {p} if p € F/(T"). This implication

is equivalent to
Vpe K (d(p,Tp) = 0 — H({p}, Tp) = 0) ()

which in turn unravels into

1 1
KVYEk e N3j d(p,Tp) < —— — H({p},Tp) < ——
e Kok N3y €N (4 Tp) < Ly H(pL T < )

and in that way the logical methodology inducesﬂ a modulus 6 : N — N bounding (and

thus witnessing) such a j in terms of k, i.e. such thatf]

1 1
KVk d(p,Tp) < 77— — H({p},Tp) < —— | .
e Kk N (dpT) < g — BT < )

2To formalize the above statement in the language of the previous systems, we have to represent
the set {p} using an additional constant x, of type 0(X)(X) together with two axioms expressing that
Xs(p, -) intensionally codes the singleton {p} for all p:

Vp* (xs(p,p) =0 0),
VpX, 2% (xs(p,7) =0 0 > = =x p).

In that way, the treatment of {p} is intensional as we can not prove that for x = p, we also have
x € {p} in the sense that x(p,x) =¢ 0. Then H({p},Tz) can be introduced using x, and some xr

coding T as detailed in Chapter
3Note that the (full) independence on p is suggested by the logical methodology as the set K is in

particular bounded.
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Note that by a simple compactness argument, possessing such a modulus is equivalent

to the property (*) in compact spaces:

Lemma 12.2.1. Let K be compact and let T : K — CB(K) be a nonexpansive opera-
tor. Then T satisfies (x) if, and only if,

1 1
eN3jeNvpe ((p, D) ] ({p}, Tp) k+1) (%)

Proof. Clearly, (#x) implies (x). Conversely, suppose that (=) fails, i.e. suppose there
exists a k € N such that for any j € N:

. 1
W, e K (d(pj,ij) <o A HURLTR) > k;+1)'

Then d(pj, Tp;) < jﬁ implies that for any j > 1, there exists a ¢; € Tp; such that

p; — q;|| < 1/4. Further, H({p,},Tp,) > - now implies that there exists a ¢’ € Tp;
J J J J k+1 J J

1
k+1°

We now pick subsequences pj;, g;, and q; such that p;, — p, ¢;, — ¢ and q; —

such that Hpj — qéH >

¢ with p,q,¢ € K. Then |[p—¢| = 0 and H(Tp;,,Tp) — 0 for i — oo as T is
nonexpansive. Thus in particular d(g;,, Tp), d(q;,, Tp) — 0 which yields

d(q,Tp) < |lq — ;|| + d(g;,, Tp) — 0

and thus d(p, Tp) = d(q, Tp) = 0. Similarly d(¢’, Tp) = 0 and thus ¢’ € T'p. However,
we have [|p — ¢|| = 5 and so H({p},Tp) = |lp— ¢l = 75- This is a contradiction

to (x). O

In that way, the existence of such a modulus is implied already by the assumptions

in Theorem [[2.1.2]

At last, we consider the assumptions on the auxiliary sequences v, and «,,. For ,,
where it is assumed that

lim ~, — 0,
n—0oo

we will later rely on a rate of convergence 7 witnessing this property, i.e. on a 7

satisfying

1
Vk € NVn T()(’}/ k:+1)

For a,, the assumption that

0 < liminf o, < limsupa,, <1
n—0 n—00
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is witnessed by a value a € N* with the property

1 1
Vnza|l-<a,<1—-
a a

in similarity to [55].

Remark 12.2.2. For the previous treatment of the Hausdorff-metric, it was crucial that
the sets come equipped with a modulus witnessing their boundedness. Note that the
existence of such a modulus is immediate for sets of the form Tz as T € CB(K) and
thus Tx < K which is bounded as K is compact. In that way, for the quantitative
results, we will later rely on a bound on the diameter of K (as mentioned before). Note
that such a bound can not be computed from the modulus of total boundedness ~ for
K as this modulus is only non-effectively equivalent to the total boundedness of K in
the usual sense and thus only implies the boundedness of K non-effectively (see [112]

for a further discussion of this).

12.3 Suzuki’s lemma and its analysis

The main analytical ingredient into the convergence proof from [196] is a well-known

lemma from Suzuki [200]:

Lemma 12.3.1 (Suzuki [200]). Let (), (y,) be bounded sequences in a Banach space
X and let (o) < [0,1] be such that 0 < liminf, o o, < limsup,,.ya, < 1. Suppose
that x,11 = apx, + (1 — o)y, as well as
hmsup(Hyn-‘rl - yn” - ||mn+1 - xn”) < 0.
n—0o0

Then limy, o || — yu|| = 0.

This lemma was analyzed quantitatively in [55] and we will rely in the following on

this analysis:

Lemma 12.3.2 (Dinis and Pinto [55]). Let (x,,), (y,) be sequences in a Banach space
X with ||z, ||lyal| < b for b € N* and let (o) < [0,1] be such that there exists a
a € N* with the property

1 1
Vnzal|l-<a,<1—-].
a a

Suppose that 11 = Ty + (1 — )y, as well as that there exists a monotone function

7: N — N such that

1
Vk e NVn > 7(k el — Ynll = [|Tne1 —20l]) < —— ) .
< 859> 70 ((lmen =l = s = ]) < 117
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Then for any k € N and any g : N — N:

1

] < Qa,r k7 ) m — Yml| S )
0 Ganalh g i+ 9] (o = vl < 1)

where pq 1 p(k, g) = max{a, 7(t(2t + 1)a'(k+ 1) — 1)} + (bt (2t + 1)a’ (k+ 1) — 1)t + ro for

0 if i = b(k + 1),
t +ri1 + g(max{a, 7(¢(2t + 1)a'(k + 1) — D)} + it + ri41)  if i < b(k + 1).

ry =

where g(m) =t + g(m) and t = 2ba(k + 1).

12.4 Fejér monotonicity and metastability

We now present the extractions of the quantitative versions of Fejér monotonicity and

asymptotic regularity.

For this, we first need to define an appropriate notion of an approximate solution
(i.e. of an approximate fixed point) as the results given in [112] rely on uniform refor-
mulations of the respective properties in terms of such approximate solutions. For our

concrete situation here, note that p is a fixed point of T if, and only if, d(p, Tp) = 0

1

i-approximate fixed

(as T'p is closed since Tp € CB(K)). In that vein, we call p a
point of 71" if

d(p,Tp) < ——
(p, Tp) A

and define correspondingly

1
AL}, = K |d(p,Tp) < ——
b {pe | d(p, Tp) k+1}
as the set of approximate solutions which extend the set of full solutions
F={pe K|d(p,Tp) =0} = F(T).

Now, for the Fejér monotonicity of (z,), we concretely strive to establish the exis-

tence of the following modulus relative to the chosen AFy:

Definition 12.4.1 ([I12]). A function x : N* — N is a modulus of uniform Fejér
monotonicity for (x,) w.r.t. AFy if for any n,m,r € N, any p € AF\(4m,) and any
[ <m:

1
net — pll < llzn — p|| + ——.
| Zner — 2l < ||z — | T
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For this, we can now extract the following from the proof of Fejér monotonicity

given in [196] for the sequence (z,) defined as in (7).

Lemma 12.4.2. Let 6 be such that

1 1
KVk d(p,Tp) < ;- = HUp},Tp) < . — |-
e Kk N (dpTo) < gl AL T < )

Then the sequence (x,,) defined as in (T) is uniformly Fejér monotone w.r.t. AF}), with
a modulus

x(n,m,r) =60(m(r+1)+1).

Proof. Let p be given with d(p, Tp) < ﬁ Then

(n,m,r)

[2ni1 = pll < (1 = an) [[zn = pll + an [lyn = Pl
(1 = an) [lzn = pll + nd(yn, Tp) + cn(l[yn — pll = d(yn, Tp))
(

<
< (1= ap) [|zn = pl| + anH(T2n, Tp) + an(||yn — pll — d(yn, Tp))
< 2w = pll + (|lyn — 2ll — d(yn, Tp))

and by induction we get

-1

|2ast = ol < 2w = pll + X (90t = Il = d(Ynss, Tp))
i=0

for any [ > 1. It is rather immediate to see that in general, for non-empty sets Y, Z < X

and a point x, we have d(z,Y) < d(z,Z) + H(Y, Z) and instantiating this yields

|Yn+i = pll = d(Yn+i, {P}) < d(Ynsi, Tp) + H({p}, Tp)

and thus [|yn+i — pl| — d(Ynti, Tp) < H({p},Tp). As now p € AF,(nmr), We get

H({p},Tp) < mir £ 1)

In particular, in that case we have

|Znst — Pl < ||lzn — pl| + mH ({p}, Tp)

<l |+ !
Ty — —_—
p r+1

for I <m. O]

Remark 12.4.3. Note that if T" satisfies (*), the sequence is Fejér monotone w.r.t. F'(T)
in the usual sense as can be shown by following the proof of the above Lemma

In particular, this results holds without any compactness assumption for K.
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For the asymptotic behavior, we are interested in the following type of quantitative

information:

Definition 12.4.4 ([112]). A function ® is an approximate F-point bound for (z,)
w.r.t. AFy if for any k € N:
In < ®(k) (z, € AF}) .

The construction of such a ® for the sequence studied here relies on analyzing the
proof of the statement d(x,,Txz,) — 0 from [196] which relies on Suzuki’s lemma.

Concretely, we get the following:

Lemma 12.4.5. Let b be a bound on the diameter of K and let (o) < [0, 1] be such
that there exists an a € N* with the property

1 1
Vn>a(—<an<1——).
a a

Let T be a monotone rate of convergence for vy, — 0. Let @, be defined as in Lemma
12.3.2. Then (z,) defined as in (T) has approximate F-points with an approximate
F-point bound

D(k) = parp(k,0).
Proof. As in [196], we can derive
”yn-i-l - yn” < H(T$n+17TIn) + T S ||:En+1 - xn” + Yn
which yields that

||yn+1 - yn” - ||xn+1 - xn” < Tn

and thus 7 satisfies the assumption of Lemma [12.3.2] Applying Lemma [12.3.2] we get
that for any k€ N and any g : N — N:

1
n < @arp(k, ) m = Ym|l S 777
0% Ganalb g i+ 9] (o = ool < )

In particular, we get for any k£ € N that

1
Elgar ]{7,0 n_ng—
0% aral0) (1=l < 1 )

which yields that for this n, we have

dn7Tn< n_n<—7
(on, Tn) < ln = vl <

ie. x, € AF},. O
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Remark 12.4.6. Note that
arp(k,0) = max{a, 7(¢(2t + 1)a’(k + 1) — 1)} + (bt(2t + 1)a’(k + 1) — 1)t + 2b(k + 1)t

for t = 2ba(k + 1).

Lastly, we show that F'(T') is not only closed but that it is even sufficiently uniformly

closed respective to the approximations AFj in a concrete way introduced in [112]:

Definition 12.4.7 ([I12]). The solution set F is called uniformly closed w.r.t. AFj
with moduli §, w if for any k € N, any g € AFj;) and any p with |[p — ¢|| < 1/(w(k)+1),
we have p € AF},.

Lemma 12.4.8. The set F' = F(T) is uniformly closed w.r.t. AFy with moduli

d(k) =2k +1,
w(k) = 4k + 3.

Proof. Note that we have

d(p,Tp) < d(p,Tq) + H(Tp,Tq)
<|lp—qll +d(qg.Tq) + |lg — |

and thus if ¢ € AFy,1 and ||p — then d(p, Tp) < ie. pe AFy,. ]

q” = 4(k+1 = k+1’

Combined, we can now apply the general result from [112]| to get the following
quantitative version of Theorem [12.1.2

Theorem 12.4.9. Let v be a modulus of total boundedness for K. Let b be a bound
on the diameter of K and let (ay,) < [0, 1] be such that there exists an a € N* with the

property
1 1
Vnzal-<a,<1-—-]).
a a

Let 7 be a monotone rate of convergence for v, — 0. Let 6 be such that
Vpe KVke N (dp, Tp) < — H({ph Tp) < —
b N T PRAPrs 1)

Let ©q (K, 0) be defined as in Remark i.e.

Garp(k,0) = max{a, 7(t(2t + 1)a’(k + 1) — 1)} + (bt(2t + V)a’(k + 1) — 1)t + 2b(k + 1)t
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fort =2ba(k + 1). Then (z,) defined as in (T) is Cauchy and moreover, for all k € N
and all g : N — N,

SN < Wi = N3N + ()] (o~ ] <
where V(k, g) = Vo(P, k, g) for P = ~(4k + 3) and with

‘110(07]{;7.9) = 07
\Ijg(n + 1, k,g) = Qpa,T,b(X]]c\/,Ig(\Ij0<n7 k7g)7 8k + 7)7 0)7

and where

x(n,m,r) =0(m(r+1)+1),
Xk(n,m,r) = max{2k + 1, x(n,m,r)},
X;c\/,[g(na 7“) = maX{Xk(ivg<i)a 7“) ‘ L < n}
Proof. The result rather immediately follows from Theorem 5.3 in [I12] (which itself
builds on Theorem 5.1 in [I12]) by instantiating the bound given there with the moduli
obtained in Lemmas [12.4.2} [12.4.5] [12.4.8| and where G = H = id and thus ag(k) =
Bu(k) = k. O

Remark 12.4.10. Theorem [[2.4.9] is a real finitization of Theorem [12.1.2] in the sense
of Tao as it only references finite segments of the iteration (z,) but it trivially implies
back the original formulation of Theorem as all the moduli naturally exist and
since metastability is (non-effectively) equivalent to convergence (see also Remark 5.5
in [112]).

12.5 Moduli of regularity and rates of convergence

In this section, using the results from [114], we give constructions for rates of conver-
gence based on the assumption of a (very general) kind of regularity notion as discussed

in the introduction.

The central notion here is consequently the following instantiation of the abstract

notion of a modulus of regularity from [114]:

Definition 12.5.1. Let z € F(T) and r > 0. A function ¢ : (0,00) — (0,00) is called
a modulus of regularity for T w.r.t B,(z) if for all ¢ > 0 and all x € B,(2):

d(p, Tp) < ¢() — d(z, F(T)) <e.
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If there is a z € F(T) such that ¢ is a modulus of regularity w.r.t. B,(z) for all r > 0,

then ¢ is just called a modulus of regularity for 7.

Remark 12.5.2. Note that the work [114] is written in the context of a formal setup
where instead of using sets F'/AF}, as above to formulate the solutions and approxi-
mative solutions, a function F' : X — [0, +o0] is employed and the roles of the sets
F/AF, are (conceptually) replaced by zerF'/{z | F(x) < €} for ¢ > 0. The above
notion arises from the general definition given in [I114] by using F'(z) := d(z, Tz) but

we in the following suppress this whole setup from [114].

Note that the function d(p, T'p) is continuous in p if 7' is nonexpansive as

d(p,Tp) < d(p,Tq) + H(Tp,Tq)
<|lp—ql| +d(qg.Tq) + |lg — |

and thus
|d(p,Tp) — d(q, Tq)| < 2|p—qll-
It follows from Proposition 3.3 of [114] that any such nonexpansive map 7" has a mod-

ulus of regularity (albeit in general being uncomputable) if K is compact.

Under the assumption of such a modulus, we now get the following result on rates

of convergence by instantiating the corresponding abstract result from [114]:

Theorem 12.5.3. Let z € F(T) # & and let b be a bound on the diameter of K.
Assume that K is closed. Let (x,) be defined as in (T). Assume that T satisfies (x).
Let (a,) < [0, 1] be such that there ezists an a € N* with the property

1 1
Vn>a(—<an<1——).
a a

Let 7 be a monotone rate of convergence for ~, — 0. Let ¢, 5(k,0) be defined as in

Remark[12.7.4, i.e.
Garp(k,0) = max{a, 7(t(2t + 1)a’(k + 1) — 1)} + (bt(2t + V)a’(k + 1) — 1)t + 2b(k + 1)t

fort = 2ba(k + 1). Let ¢ be a modulus of reqularity for T w.r.t. By(z). Then (z,) is

Cauchy with

Ve > 0Vi, 5 = Parp G@W : 0) (d(zs,x5) <€)

and further (x,) converges to a fixed point of T with a rate of convergence

oo (s 0)
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Proof. The result is a straightforward instantiation of the general abstract Theorem
4.1 from [114], using the previous Lemma [12.4.5 by which we have that

1
Ve > 03n < @urp ([J , 0) (d(xy, Tx,) <e).

Note for this that the sequence (z,,) is Fejér monotone w.r.t. F(T') by Remark
since T satisfies (x). That (z,) converges to a fixed point of T with the given rate
follows from Theorem 4.1, (i) in [I14] for which we need that K is complete (which
follows as X is a Banach space and as K is closed) and that F'(T') is closed which follows
from the fact that d(p, T'p) is uniformly continuous in p and F(T) = (d(-,7-))*(0). O

Remark 12.5.4. Note that the above Theorem [12.5.3] holds without any compactness
assumptions on K. Thus, in the presence of a modulus of regularity, the convergence
result from Theorem [12.1.2| immediately holds for any closed, bounded and non-empty

set K and any nonexpansive mapping 7" with F(T') # ¢J that satisfies (*).

At last, we look at a notion for multi-valued mappings where simple instances
of such moduli of regularity can be derived. Following Senter and Dotson [190], a
multivalued mapping 7' : K — CB(K) is said to satisfy Condition I if there is a
nondecreasing function f : [0,00) — [0,00) with f(0) =0, f(r) > 0 for r € (0,0) and

d(zx,Tx) = f(d(x, F(T)))

for all x € K. If the property that f(r) > 0 for r € (0,00) is witnessed in a uniform

and quantitative way by a function ¢ : (0,0) — (0,0) with

f(r)y<ole) »>r<e

for any r,e > 0, then such a ¢ is clearly already a modulus of regularity for T". This
in particular is true for mappings that satisfy Condition II of Senter and Dotson [190],

i.e. where there exists a real o > 0 such that
d(xz,Tz) = ad(z, F(T))

where then ¢ can be given by ¢(¢) = ae. Examples of mappings which satisfy Condition
IT are for instance discussed in [I90] and for these, the above rates of convergence

therefore instantiate immediately.
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