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Abstract

This thesis is concerned with extending the underlying logical approach as well as the
breadth of applications of the proof mining program to various (mostly previously un-
treated) areas of nonlinear analysis and optimization, with a particular focus being
placed on topics which involve set-valued operators.

For this, we extend the current logical methodology of proof mining by new systems
and corresponding so-called logical metatheorems that cover these more involved areas
of nonlinear analysis. Most of these systems crucially rely on the use of intensional
methods, treating sets with potentially high quantifier complexity in the defining ma-
trix via characteristic functions and axioms that describe only their properties and do
not completely characterize the elements of the sets.

The applicability of all of these metatheorems is then substantiated by a range of
case studies for the respective areas which in particular also highlight the naturalness
of the use of intensional methods in the design of the corresponding systems.

The first new area covered thereby is the theory of nonlinear semigroups induced by
corresponding evolution equations for accretive operators. In that context, we present
(besides an initial foray into the area from 2015) essentially the first applications of
proof mining to the theory of partial differential equations. Concretely, we provide
quantitative versions of four central results on the asymptotic behavior of solutions to
such equations.

The second new area unlocked in this thesis is that of the continuous dual of a
Banach space and its norm (which are also approached via intensional methods). This
in particular relies on a proof-theoretically tame treatment of suprema over (certain)
bounded sets in this intensional context which is further exploited later on. These
systems, which give access to this until now untreated fundamental notion from func-
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tional analysis, are then used to provide further substantial extensions to treat various
notions from convex analysis like the Fréchet derivative of a convex function, Fenchel
conjugates, Bregman distances and monotone operators on Banach spaces in the sense
of Browder.

These systems are then utilized to provide applications in the context of Picard- and
Halpern-style iterations of so-called Bregman strongly nonexpansive mappings where
we provide both new quantitative and qualitative results.

Lastly, we discuss the key notion of extensionality of a set-valued operator and its
relation to set-theoretic maximality principles in more depth (which was already singled
out – to some degree – in previous work). We thereby exhibit an issue arising with
treating full extensionality in the context of these intensional approaches to set-valued
operators and present useful fragments of the full extensionality statement where these
issues are avoided.

Corresponding to these fragments, we discuss a range of uniform continuity state-
ments for set-valued operators beyond the usual notion involving the Hausdorff-metric.
In particular, in that context, we utilize the previous tame treatment of suprema over
bounded sets to also provide the first proof-theoretic treatment of that Hausdorff-metric
in the context of systems for proof mining.

The applicability of this treatment of the Hausdorff-metric is then in particular sub-
stantiated by a last case study where we provide quantitative information for a Mann-
type iteration of set-valued mappings which are nonexpansive w.r.t. the Hausdorff-
metric.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit Erweiterungen des Proof Mining Pro-
gramms, sowohl in Bezug auf die zugrunde liegenden logischen Ansätze als auch in
Bezug auf die Breite der Anwendungen auf (meist vorher unbehandelte) Bereiche der
nichtlinearen Analysis und Optimierung, in beiden Fällen mit einem besonderen Fokus
auf Themen welche sich auf mengenwertige Operatoren beziehen.

Dafür erweitern wir die aktuellen logischen Methoden des Proof Minings durch
neue Systeme und zugehörige sogenannten logische Metatheoreme, welche diese recht
involvierten Bereiche der nichtlinearen Analysis behandeln. Die meisten dieser hier
entwickelten Systeme beruhen dabei in essenzieller Weise auf dem Ausnutzen von soge-
nannten intensionalen Methoden, das heißt der Behandlung von Mengen mit möglicher-
weise hoher Quantoren-Komplexität in der definierenden Matrix durch charakteristis-
che Funktionen und Axiome welche nur die essenziellen Eigenschaften dieser Mengen
beschreiben und nicht vollständig deren Elemente charakterisieren.

Die Anwendbarkeit all dieser neuen Metatheoreme wird dann durch eine Reihe von
Fallstudien für die entsprechenden Bereiche begründet, welche insbesondere auch die
Natürlichkeit der intensionalen Methoden als gewählten Ansatz für die entsprechenden
Systeme hervorheben.

Der erste neue Bereich, welcher damit erschlossen wird, ist die Theorie der nicht-
linearen Halbgruppen, induziert durch zugehörige Evolutionsgleichungen für akkretive
Operatoren, in dessen Kontext wir in gewissem Sinne (neben einem initialen Vorstoß
aus dem Jahr 2015) die ersten Anwendungen des Proof Minings allgemein auf die Theo-
rie der partiellen Differentialgleichungen liefern. Konkret präsentieren wir quantitative
Versionen von vier zentralen Resultaten über das asymptotische Verhalten von Lösun-
gen solcher Gleichungen.
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Der zweite neue Anwendungsbereich, welcher durch die vorliegende Thesis erschlossen
wird, ist der des stetigen Dualraums eines Banachraums und der dazugehörigen Norm
(welche auch durch intensionale Methoden angegangen werden). Dies beruht ins-
besondere auf einer beweistheoretisch-milden Behandlung von Suprema über (gewis-
sen) beschränkten Mengen, welche auch noch später weiter angewandt wird. Jene
Systeme für diese bis jetzt nicht behandelten grundlegenden Begriffe der Funktional-
analysis werden dann weiter ausgebaut um verschiedene andere Begriffe aus der kon-
vexen Analysis wie Fréchet-Ableitungen einer konvexen Funktion, Fenchel-Konjugate,
Bregman-Distanzen und monotone Operatoren auf Banachräumen im Sinne von Brow-
der zu behandeln.

Diese Systeme werden dann eingesetzt, um Proof Mining Anwendungen im Kon-
text von Picard- und Halpern-artigen Iterationen von sogenannten Bregman-stark-
nichtexpansiven Abbildungen abzuleiten. In diesem Zuge liefern diese Anwendungen
sowohl neue quantitative als auch neue qualitative Resultate.

Zuletzt diskutieren wir in dieser Arbeit den Schlüsselbegriff der Extensionalität
eines mengenwertige Operators und dessen Verhältnis zu mengentheoretischen Max-
imalitätsprinzipien in weiterer Tiefe (welches schon in vorherigen Arbeiten in einem
gewissen Rahmen herausgestellt wurde) . Dabei stellen wir ein Problem heraus, welches
mit der Behandlung der vollen Extensionalität im Kontext von diesem intensionalen
Ansatz zur Behandlung von mengenwertigen Operatoren generell auftritt, und präsen-
tieren Fragmente des Extensionalitätsprinzips welche diese Probleme vermeiden.

Korrespondierend zu diesen Fragmenten diskutieren wir neue Stetigkeitsbegriffe
für mengenwertige Operatoren, welche neben dem klassichen Begriff der gleichmäßi-
gen Stetigkeit im Sinne der Hausdorff-Metrik liegen. Insbesondere benutzen wir hier
wieder den vorherigen Ansatz zur beweistheoretisch-milden Behandlung von Suprema
über beschränkten Mengen, um den ersten beweistheoretischen Ansatz für die Behand-
lung der Hausdorff-Metrik im Kontext von Systemen des Proof Minings zu entwickeln.

Die Anwendbarkeit dieser Behandlung der Hausdorff-Metrik wird dann insbeson-
dere durch die letzte Fallstudie herausgestellt, in welcher wir quantitative Informa-
tionen für Mann-artige Iterationen von mengenwertigen Abbildungen liefern, welche
nichtexpansiv im Sinne der Hausdorff-Metrik sind.
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1 Introduction

1.1 A brief history of Proof Mining

In a way, proof theory started in the school of David Hilbert in Göttingen in the 1920s.
In particular, a driving force behind these early developments was what is today known
as Hilbert’s program, a project in early mathematical logic which aimed to show that
so-called ideal principles [78] (which may be of non-constructive, set-theoretic or of
infinitary nature) used in proofs of concrete so-called real statements could be (at least
in principle) eliminated. In a modern view, this program is often subsumed by stating
that the goal was to prove the consistency of powerful theories containing such ideal
principles in certain finitistic theories.1

As is well-known, Gödel’s second incompleteness theorem [72] already rules out the
provability of the consistency of the theory in itself, let alone some finitistic fragment.
While Hilbert’s program in this general sense is therefore impossible, research into
the relation between mathematical logic and “ordinary” core mathematics in the years
since then nevertheless yielded that this reductive perspective is still largely correct.
Concretely, evidence for this comes from the field of Proof Mining, in which this thesis
is situated.

The origins of proof mining start with Georg Kreisel in the 1950’s (see in particular
the early works [125, 126] and see [107] for a detailed discussion on the influence of
Kreisel’s work on modern proof mining). Before Kreisel’s work, the focus of most
strands of research in proof theory was on establishing methods that allowed for a
relativized version of Hilbert’s program to be carried out where one aims at providing

1If real statements are to be understood as universal statements, then establishing the consistency
of a suitable formal theory in some suitable finitistic fragment would actually suffice to establish
conservativity for real statements as formal consistency is provably equivalent to a reflection principle
for universal sentences (see [195]).
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2 CHAPTER 1. INTRODUCTION

relative consistency proofs between different theories, i.e. at reducing the consistency
of one theory T1 to another theory T2, where it may be considered less philosophically
problematic to accept the latter as being consistent than the former.

In many cases such relative consistency proofs proceed by employing a general
proof-theoretic device called a proof interpretation which transforms sentences of T1
into sentences of T2 and is sound w.r.t. the provability structure, i.e. if a sentence is
provable in T1, its translation is provable in T2. In most situations, these transfor-
mations preserve the falsum of a theory so that if T1 $ K, then the soundness of the
interpretation yields T2 $ K. In other words, if T1 is inconsistent, so is T2.

Kreisel realized that these subtly constructed methods perform a much deeper task
than just preserving the provability of falsum, often eliminating existential quantifiers
in a formula for concrete terms whose complexities relate to the principle used in the
proof, and called for a “shift of emphasis”: instead of applying the interpretations to
sentences of which anyhow no proof is expected to exist (i.e. K), one should apply them
to concrete mathematical statements with actual proofs with the projected gain being
that it is to be expected that such a treatment would reveal further information on the
statement thus proven, along the lines of the now famous leitmotif of Kreisel [129]:

[...] formulate what more we know about a formally derived theorem F than
if we merely know that F is true.

Or, in other words: taking into account the principles used in the proof, can we
infer further information on the statement thus proven?

Before we delve into what methods may be or are employed in such an endeavor, we
shortly discuss some of the various kinds of “further information” that can be considered
in relation to the quantifier complexity of a statement. E.g. for statements of the form
@xFqf pxq where Fqf is quantifier-free (which we previously called a real statement), no
additional information can sensibly be given: the statement Fqf pxq is just true for all
x.

Moving to the case of one existential quantifier DxFqf pxq, multiple kinds of further
information immediately come to mind: one could hope for actual witnesses t, i.e.
Fqf ptq, a list of potential witnesses t1, . . . , tk (kin to the conclusion of Herbrand’s the-
orem), i.e. Fqf pt1q _ ¨ ¨ ¨ _ Fqf ptkq, or bounds t on actual witnesses, i.e. Dx ď t Fqf pxq,
among some others.
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Further moving up in the quantifier ranks, for statements of the form @xDyFqf px, yq

one could hope again for precise witnesses, i.e. functions f with @xFqf px, fxq, or for
bounding functions f , i.e. @xDy ď fxFqf px, yq, among others.

The last example that we want to consider is the case of a statement of the form
@xDy@zFqf px, y, zq. The immediate kind of further information that could be considered
is a witness/bounding function on y in terms of x. The immediate issue that arises here
is that of the complexity of such a function. While in the previous case of @xDyFqf px, yq,
already the truth of the statement, in the natural numbers say, guarantees the existence
of a computable function providing a witness for y in terms of x just by unbounded
search2 through all y, it can be rather immediately seen that there are instances of
Fqf px, y, zq where even a function f bounding witnesses for y in terms of x, i.e. @xDy ď
fx@zFqf px, y, zq, can never be computable.3

However, if one is interested in computable information, one can in this case move
to the Herbrand normal form of the statement (where we for simplicity assume that we
can quantify also over functions operating on the ground variables, i.e. g is a function
variable):

@x@gDyFqf px, y, gyq.

Then, another type of further information would be a function Φpx, gq that witnesses
Dy in terms of x and g, which we can recognize as being equivalent to finding a solution
to the so-called no-counterexample interpretation of @xDy@zFqf px, y, zq as formulated
by Kreisel in [125, 126]. In the case where @xDy@zFqf px, y, zq represents a convergence
statement, upper bounds on such witnesses (for a slightly modified statement) are now
commonly called rates of metastability or quasi-rates for the convergence, where the
former name was coined by Terence Tao (see [203, 204]) who rediscovered this corre-
sponding (non-effectively equivalent) reformulation of a convergence statement in the

2While this is a computable solution, there is of course no complexity information available for this
function. In that way, it can still be considered unsatisfactory in regard to the previously discussed
leitmotif as an analysis of an actual proof of the statement @xDyFqf px, yq might provide a much more
tailored witness function whose complexity will be in proportion to the complexity of the principles
used in the proof.

3Consider e.g. Fqf px, y, zq “ T px, x, yq _ ␣T px, x, zq where T pa, b, cq is the so-called Kleene T -
predicate expressing that the Turing machine with code a run on b halts with runtime code c. Thus
Fqf expresses that the Truing machine with code x run on x either halts with runtime code y or does
not halt with runtime code z. The statement @xDy@zFqf px, y, zq ” @xpDyT px, x, yq _ @z␣T px, x, zqq,
expressing that every Turing machine with code x either does or does not halt on input x, is true just
by classical logic but any computable function f with @xDy ď fx@zFqf px, y, zq would allow one to
decide the special halting problem which is of course not possible.
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course of his interest in “finitary analysis”.

In any way, the program thus created to apply proof-theoretic methods to concrete
mathematical theorems with the aim of extracting new results was dubbed “unwinding
of proofs”. In the era of unwinding of proofs, the main emphasis was placed on methods
from structural proof theory like epsilon-substitution, cut-elimination and the extrac-
tion and analysis of Herbrand-terms from Herbrand’s theorem (see the discussions in
e.g. [60, 125, 126, 137, 138, 156]).

Besides a few highlights during this era, in particular with the notable work of
Luckhardt [137] on effective bounds for Roth’s theorem on exceptionally good ratio-
nal approximations of algebraic-irrational numbers, the era of unwinding of proofs was
rather sparsely populated regarding applications until it was essentially revived by the
work of Ulrich Kohlenbach starting with his doctoral thesis [86]. At that time, the
unwinding program saw a shift of focus both in methods and in areas of applications
and was soon to be “rebranded” under the name of “proof mining” (at the suggestion
of Dana Scott) which has since then been steadily expanded with new applications.

Concretely, Gödel’s functional interpretation [74] (also called Dialectica interpreta-
tion after the journal it was published in) became the methodological focus based on its
well-behavedness w.r.t. to negative translations to treat classical proofs (by interpreting
Markov’s principle) and because of its compositionality when treating the modus po-
nens (compared in particular to the no-counterexample interpretation). With the use
of the Dialectica interpretation, one in particular conveniently also moves to systems of
arithmetic and analysis in all finite types instead of first- or second-order systems which
also brings with it the benefit that they allow one to avoid some coding issues that exist
in low-type systems. Other methods that are used are similarly proof interpretations in
the sense discussed above and in particular include negative translations, to deal with
classical logic via a reduction to intuitionistic logic as mentioned before, and Kreisel’s
modified realizability [127, 128] for semi-intuitionistic proofs. However, the main tool
employed in modern proof mining arises as an ingenious combination of the Dialectica
interpretation and Howard’s notion of majorizability [79] as introduced in Kohlenbach’s
work beginning in [86, 87] and later given the name of monotone functional interpreta-
tion (see also in particular [91]). This interpretation only asks for the construction of
computable majorants for the Dialectica interpretation and allows for potentially non-
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computable witnesses.4 The immediate benefits are that the plethora of statements
with computable interpretations increases dramatically, with e.g. statements like weak
Kőnig’s lemma WKL having a (trivial) computable monotone functional interpretation
(as every – potentially uncomputable – path of a binary tree, coded as a 0-1-sequence,
can be majorized by the constant-1 function). The immediate drawback is of course
that via this interpretation, no precise witnesses but only computable majorants are
constructed for the interpretation of the respective theorem (which in the case of the
natural numbers amounts to upper bounds).

However, there are areas of mathematics where this drawback is often superficial
and where thus this combination of the Dialectica interpretation and majorizability
proves to be particularly rewarding. One area where this in particular is the case is
analysis where many statements are naturally monotone and so a bound is as good as
a witness. Further, analysis also seems to be particularly rewarding as many modern
proofs seem to be mainly of a geometrical nature which seem to avoid the Gödelian
phenomena that in principle could arise in these circumstances. Even further, in this
context, the availability of WKL is very convenient for formalizing a range of common
compactness arguments, being equivalent to many such central results from functional
analysis as known from the reverse mathematics program. So it is not surprising that
the main focus of proof mining since the 1990s has been centered on and around anal-
ysis. In particular, early examples of applications in this modern age of proof mining
include the applications presented by Ulrich Kohlenbach (also together with Paulo
Oliva) on best approximation theory [89, 90, 117] (note also the very recent work on
best approximations [193]).

Nevertheless, in the first period of proof mining in it its modern form, the sys-
tems employed in the pursuit of applications essentially centered around systems of
arithmetic in all finite types (which will be more precisely defined later on) like WE-
PAω

`WKL ` QF-AC for extracting primitive recursive majorants (in the sense of
Gödel [74] and Hilbert [78]) or WE-PAω

` DC ` QF-AC (adding the strong principle
of dependent choice DC) in which case one can only guarantee the extractability of
majorants which are bar-recursive in the sense of the seminal work of Spector [198].

4This monotone functional interpretation and the use of majorizability has subsequently lead to
other interpretations where this boundedness character is further infused into the interpretation, most
notably the bounded functional interpretation by Ferreira and Oliva [65] which has subsequently been
further developed in various ways (see e.g. [59, 62, 63]) and recently has found use in logical aspects
of the proof mining program [64].
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In that way, applications were naturally restricted to the context of Polish metric
spaces which are representable in Baire space, i.e. NN equipped with the metric d

defined by

dpf, gq “

$

&

%

2´minnrfpnq‰gpnqs if Dn P Npfpnq ‰ gpnqq,

0 otherwise,

for f, g P NN.

This restriction was lifted in the second main paradigm shift in the modern age
of proof mining, starting with Ulrich Kohlenbach’s seminal work [95]. Namely, in
the years leading up to this work, the crucial observation for some notable applica-
tions was made that bounds and proofs which were obtained from arguments in some
representable class of spaces also naturally hold in larger classes of spaces where the
separability assumption is dropped and, moreover, the bounds were also very uniform
in the parameters of these spaces, only depending on some simple upper bounds on
metric distances despite the absence of any (relative) compactness assumptions. The
question of whether this phenomenon was purely coincidental or was an instance of a
deeper logical reason immediately arose.

The techniques that lead to a logical explanation of this phenomenon at the same
time broadened the proof mining framework in many crucial ways that are today char-
acteristic for its success. Concretely, these applications and their uniformities can be
logically explained by systems in all finite types which additionally include new ab-
stract base types by which one gains the ability to talk abstractly about certain classes
of spaces which do not have to be separable. After extending the notion of majoriz-
ability to such classes of spaces (which we for simplicity assume to only contain metric
spaces) by majorizing objects of type X by a natural number n bounding dpa, xq for
some reference point a, the application of the respective extension of the monotone
functional interpretation extracts computable majorants in this extended sense from
corresponding proofs which therefore are uniform exactly in the way described be-
fore, depending e.g. on elements from X only via upper bounds on metric distances.
The macros obtained by an application of functional interpretation (together with a
negative translation) combined with majorization are commonly dubbed “general log-
ical metatheorems (on bound extraction)” or “bound extraction theorems” and these
metatheorems thus guarantee the existence of uniform and computable majorants for
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statements provable in the associated theories which in particular may still use full
classical logic and a wide range of other “non-constructive” principles. Further, besides
merely guaranteeing the existence of such additional information, the metatheorems
allow for an a priori estimation of their complexity (which can be as elementary as
polynomials) and they provide an algorithmic approach towards actually extracting
the quantitative information. In particular, these metatheorems also further elucidate
the extent of the phenomenon of so-called proof-theoretic tameness of modern (non-
linear) analysis as already shortly discussed before, i.e. the empirical fact that most
proofs in e.g. analysis, although in principle being subject to well-known Gödelian phe-
nomena, nevertheless “seem to be tame in the sense of allowing for the extraction of
bounds of rather low complexity” [103] (see also [139, 140] for further discussions of
these types of phenomenas and their implications for logic and mathematics).

The range of classes of spaces and of objects on them that can be treated with
this approach is rather broad: In general, if we are given a class of spaces and objects
with corresponding defining axioms, potentially using constants from an extended lan-
guage, such that all of them have a monotone functional interpretation in this extended
sense (which e.g. trivially holds if the axioms are universal) and if all corresponding
additional constants can be majorized, then the methodology immediately applies in
that context as well and allows one to also derive bound extraction theorems for such
spaces and objects. Examples of metatheorems derived in this spirit may be found
in [71, 76, 95, 115, 132, 133, 165, 192], as well as [96], for metatheorems obtained via
(modifications of) Gödel’s Dialectica interpretation, and in [63, 64] for metatheorems
obtained via the related bounded functional interpretation [65]. The spaces treated
so far in particular include general metric and normed spaces, so-called W -hyperbolic
spaces, CATp0q-spaces, uniformly convex as well as uniformly smooth Banach spaces
and Hilbert spaces, among many others.

Beyond this small introduction, and the further formal details that will be discussed
throughout this thesis, we in general refer to the monograph [96] where the whole de-
velopment of proof mining up to 2008 is detailed comprehensively. Further discussions
on early developments can be found in the survey [116] and more recent progress, with
a focus on nonlinear analysis and optimization, is surveyed in [100, 102].
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1.2 The contents of this thesis

This thesis is now concerned with extending the underlying logical approach as well as
the breadth of applications of proof mining to various (mostly previously untreated)
areas of nonlinear analysis and optimization, with a particular focus being placed on
topics which involve set-valued operators. Such set-valued operators are one of the
main objects of concern of many of the recent proof mining applications like in [101]
in the context of Bauschke’s solution [6] to the zero displacement conjecture, in [108]
for abstract Cauchy problems, in [120] for iteration schemes using set-valued operators
or in particular like in the case of the proximal point algorithm (see [145, 183]) and its
adaptations and extensions as treated in [55, 56, 104, 105, 106, 112, 134, 161].

For this, we always first extend the current logical methodology of proof mining by
new systems and corresponding metatheorems that cover these more involved areas of
nonlinear analysis. Most of the methods developed in the course of this crucially rely
on the use of intensional methods, treating sets with potentially high quantifier com-
plexity in the defining sentences via characteristic functions and axioms that describe
only their properties and do not characterize their elements completely. The applica-
bility of all of these metatheorems is then substantiated by a range of case studies for
the respective areas which in particular also highlight the naturalness of the intensional
methods in the design of the systems.

Concretely, in Chapter 2, we first sketch the definition of one of the main modern
systems employed in proof mining in general and in this thesis in particular which
provides a treatment of normed linear spaces using abstract types as discussed before.
Further, we in that context in particular give the essential logical preliminaries to sys-
tems for arithmetic in all finite types together with a primer on representations of real
numbers in these systems. Besides that, we sketch the main result for this system
treating abstract normed spaces, the general logical metatheorem, which underlies es-
sentially all of the logical contributions made in this thesis.

Then, in Chapter 3, we provide a recap of the main results from the author’s Master
Thesis [168] and the resulting logical contributions published in [165] on set-valued ac-
cretive and monotone operators in Banach and Hilbert spaces and their treatment via
intensional methods that (together with some new material) form the “spiritual” base
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for many parts of the thesis.5 In particular, we provide a more detailed sketch of the
proof of the corresponding logical metatheorems of the resulting systems, augmenting
the rather brief discussion from Chapter 2.

In Chapter 4, we extend the logical systems presented in Chapter 3 so that they
become applicable to nonlinear semigroups induced by corresponding evolutions equa-
tions for accretive operators. These logical results are contained in the pre-print [163].

In Chapters 5, 6 and 7, we provide four applications of these metatheorems to a
range of results on the asymptotic behavior of these semigroups. These applications
are contained in the pre-print [163] as well as the articles [162, 167], respectively, with
the joint work with Pedro Pinto [162] worded by myself.

In Chapter 8, we change the setting and provide proof mining metatheorems via
intensional methods for the continuous dual of a Banach space as well as various no-
tions from convex analysis like the Fréchet derivative of a convex function, Fenchel
conjugates and Bregman distances. This in particular relies on a proof-theoretically
tame treatment of suprema over (certain) bounded sets which is also exploited later on.

In Chapter 9, we give applications of the preceding metatheorems to Picard- and
Halpern-style iterations of Bregman strongly nonexpansive mappings where we in par-
ticular provide both new quantitative and qualitative results. This in particular also
yields the corresponding results for proximal point type variants of these methods for
monotone operators over Banach spaces in the sense of Browder. Parts of this chapter
(concerning Theorems 9.3.14 and 9.4.1 as well as Proposition 9.4.6 and Lemma 9.5.7)
utilized sketches communicated to me by Ulrich Kohlenbach.

In Chapter 10, we transfer the results from Chapter 3 to the setting of mono-
tone operators over Banach spaces in the sense of Browder, as mentioned before, and
their relativized resolvents in the sense of Eckstein as well as Bauschke, Borwein and
Combettes. This in particular also provides a firm logical basis for the applications to
the proximal point type methods for these operators studied in the previous Chapter 9.

In Chapter 11, we initially exhibit an issue arising with treating full extensional-

5As such, the presentation and formulation of Chapter 3 is largely taken from the works [165, 168].
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ity in the context of these intensional approaches to set-valued operators and, in that
vein, present useful fragments of the full extensionality statement where these issues
are avoided. Further, we extend the logical considerations from Chapter 3 on the
extensionality principle for set-valued operators and its relation to the set-theoretic
maximality principles of such operators by showing that this characteristic equivalence
also extends to these fragments, pointing to a rather robust phenomenon. Further, we
study the continuity principles associated with these fragments of extensionality and
show how they can be introduced in the logical systems from the preceding chapters.
In the course of this, we also employ the tame treatment of suprema over bounded sets
developed in Chapter 8 to provide a logical treatment of the Hausdorff-metric.

In Chapter 12, we provide an application of proof mining to the Mann-iteration of
set-valued mappings which are nonexpansive w.r.t. the Hausdorff-metric, illustrating
the applicability of the previous logical considerations.



2 Preliminaries

In the following, we will now sketch the definitions of the main systems employed in
this thesis and the statement of the corresponding general logical metatheorem which
underlies essentially all of the logical contributions made in this thesis. In this presen-
tation, we mostly follow the notation and presentation given in [96].

Before that, we however fix some general notation: We write N for the set of all
natural numbers including 0 and write N˚ for the set of natural numbers excluding 0.
Further, we write R for the set of real numbers and sometimes we write Rą0 for the
interval p0,8q.

We define ´ on N by n´m “ maxt0, n´mu. Further, we use the interval notation

rr; ss :“ rr, ss X N.

Lastly, in a metric space pX, dq and given r ą 0 and x P X, we write Brpxq for the
closed ball of radius r around on x and Brpxq for the open ball, respectively.

2.1 Finite type arithmetic

We begin with the basic systems for arithmetic in all finite types WE-HAω and WE-
PAω: Over the collection of all so-called finite types T defined by1

0 P T, ρ, τ P T Ñ τpρq P T,

we consider a many-sorted language containing variables and quantifiers for every type
τ P T as well as some suitable functionally complete set of propositional connectives,
which we for simplicity assume to be ^,_ and Ñ. The language of WE-HAω now

1Following [96], we denote the function type of two types ρ, τ by τpρq, representing the type of all
functions mapping objects of type ρ to objects of type τ . Other common notations of this type in the
literature include e.g. ρÑ τ .

11
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additionally contains the constants 0 for zero (of type 0) and S for successor (of type
0p0q) as well as constants Πρ,τ (of type ρpτqpρq) and Σδ,ρ,τ (of type τδpρδqpτρδq) for
the combinators of Schönfinkel [188] (which were later used extensively by Curry and
Howard, see [80] for the latter) and lastly the constants Rρ “ pR1qρ, . . . , pRkqρ for
simultaneous primitive recursion in the sense of Hilbert [78] and Gödel [74] where Ri

has the type
ρipρk0ρ

t
q . . . pρ10ρ

t
qρt0

for ρ “ pρ1q . . . pρkq and where we write ρt “ pρkq . . . pρ1q. In the above and also in the
following, we mostly use the conventions for saving parentheses in types used in [96].
Further, we stratify the types in T by their degree degpτq, defined recursively via

degp0q :“ 0, degpτpρqq :“ maxtdegpτq, degpρq ` 1u,

and we denote pure types by natural numbers via

0pnq :“ n` 1.

The only way to form new terms is by application: if t is a term of type τpρq and s

is a term of type ρ, then tpsq is a term of type τ . The only primitive predicate in the
language is “0 for equality at type 0 and equality at higher types is introduced as an
abbreviation by recursion on the type via

t “τpρq s :“ @x
ρ
ptx “τ sxq .

The theory WE-HAω now arises by extending intuitionistic logic, formulated for
the many-sorted language (see e.g. [96, 205]), by the usual equality axioms for “0, the
usual axioms for the successor constant S, the axioms specifying the combinators and
recursors (see [96] for details on all of this) and the induction axiom

F p0q ^ @x0 pF pxq Ñ F pSxqq Ñ @x0F pxq (IA)

where F px0q is any formula from the language. The last thing added to WE-HAω is
the quantifier-free extensionality rule of Spector [198]

F0 Ñ s “ρ t

F0 Ñ rrs{xρs “τ rrt{xρs
(QF-ER)

where F0 is a quantifier-free formula and t, s are terms of type ρ and r is a term of
type τ . Note that using this rule, we can actually derive the seemingly stronger

DyσF0pyq Ñ s “ξ t

DyσF0pyq Ñ rrs{xξs “τ rrt{xξs
(Σ1-ER)
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with F0, s, t and ξ, τ as before and σ an additional finite type but where we assume
that y is not free in r, s, t. To see this, note that

DyσF0pyq Ñ s “ξ t ” @y
σ
pF0pyq Ñ s “ξ tq

and the latter implies F0pyq Ñ s “ξ t. Now, using QF-ER applied to this (where
it is important that F0 in the formulation may have free variables), we get F0pyq Ñ

rrs{xξs “τ rrt{x
ξs and universal generalization yields

@yσpF0pyq Ñ rrs{xξs “τ rrt{x
ξ
sq ” DyσF0pyq Ñ rrs{xξs “τ rrt{x

ξ
s,

which is as required.

We denote the system which is obtained by instead adding the full axioms of ex-
tensionality

@zτpρq, xρ, yρ px “ρ y Ñ zx “τ zyq (Eρ,τ )

for all types ρ, τ by E-HAω.

The classical systems WE-PAω and E-PAω are now just defined as WE-HAω or E-
HAω, respectively, augmented with the law of excluded middle F _␣F for all formulas
F in the language.

Note also that through the combinators Π and Σ, the theory WE-HAω has λ-
abstraction (see e.g. [96]): for every term t of type τ , one can construct a term λxρ.t

of type τpρq such that freepλxρ.tq “ freeptqztxu and

WE-HAω
$ pλxρ.tqpsq “τ trs{xs

for any term s of type ρ where we write trs{xs for the term arising from t by simulta-
neously substituting s for all occurrences of x.

The main finite type system considered here, denoted by Aω, now arises from WE-
PAω by, for one, adding the quantifier-free axiom of choice

@xDyF0px, yq Ñ DY @xF0px, Y xq (QF-AC)

where F0 is quantifier-free but the types of the variable tuples x, y are arbitrary and
where we use the notation Y x to abbreviate Y1x, . . . , Ykx if Y “ Y1, . . . , Yk, and, for
another, adding the schema of dependent choice DC “ tDCρ

| ρ Ď T u with

@x0, yρDzρF px, y, zq Ñ Dfρp0q@x0F px, fpxq, fpSpxqqq (DCρ)
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where fρp0q stands for fρ1p0q1 , . . . , f
ρkp0q
k and F may now be arbitrary.

In the language of WE-PAω and its extensions, we will later rely on a chosen
representation of the real numbers and in that context, we follow the definitions and
conventions given in [96]. The following paragraphs only discuss the details which are
crucial for the proofs carried out later.

As usual, rational numbers are represented using pairs of natural numbers and for
that it will be convenient to fix a paring function j where we follow the choice made
in [95]:

jpn0,m0
q :“

$

&

%

minu ď0 pn`mq
2 ` 3n`mr2u “0 pn`mq

2 ` 3n`ms if existent,

00 otherwise.

The arithmetical operations `Q, ¨Q, p¨q
´1
Q can then be introduced through primitive

recursive terms operating on such codes and the relations “Q, ăQ are quantifier-free
definable.

The chosen representation of real numbers now relies on fast converging Cauchy
sequences of rational numbers (i.e. reals are coded as objects of type 1) with a fixed
Cauchy modulus 2´n (see [96] for details) and we consider N and Q as being embed-
ded in that representation via the constant sequences. Similarly as to Q, the usual
arithmetical operations like `R, ¨R, | ¨ |R are definable using closed terms and the rela-
tions “R/ăR on type 1 objects are represented by formulas in the underlying language.
Naturally, these relations are not decidable anymore but are given by Π0

1/Σ0
1-formulas,

respectively. An arithmetical operation where some care is needed in the context of
this formal treatment of real numbers is the reciprocal p¨q´1: In fact, there is no closed
term of type 1p1q in WE-PAω which represents γ´1 correctly for all γ ‰ 0. We deal
with this as in [93] by using a binary term p¨q´1¨ of type 1p1qp0q such that pγq´1l correctly
represents γ´1 for all |γ| ą 2´l. An expression like γ´1 is then dealt with by working
with an additional parameter l of type 0 and using pγq´1l together with the additional
implicative assumption |γ|R ąR 2´l. In practice, this can be mostly ignored and we
thus mainly use γ´1 freely without highlighting the additional parameter.

In this thesis, we in general omit the index of R for arithmetical operations to make
everything more readable. In proofs, we will almost always omit all types as to not
distract from the general ideas and patterns.

In the context of representing reals, we will later rely on an operator p̈which allows
for an implicit quantification over all fast-converging Cauchy sequences of rationals.
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Following [96], we define this operator via

xpn :“

$

&

%

xn if @k ă0 n
`

|xk ´Q xpk ` 1q|Q ăQ 2´k´1
˘

,

xk for k ă0 n least with |xk ´Q xpk ` 1q|Q ěQ 2´k´1 otherwise,

for x of type 1 and we refer to [96] for any further discussions of its properties.

For establishing the metatheorems, we will need to canonically select a Cauchy se-
quence representation for a given real number. For non-negative real numbers, follow-
ing [95], this can be formally achieved by a function p¨q˝ which selects a representative
prq˝ P NN via

prq˝pnq :“ jp2k0, 2
n`1

´ 1q,

where
k0 :“ max k

„

k

2n`1
ď r

ȷ

.

Naturally, such an association will be non-effective. However, it will suffice that the
operation behaves well-enough w.r.t. the notion of majorization. For this, we will in
particular rely on the following properties of p¨q˝:2

Lemma 2.1.1 ([95]). Let r P r0,8q. Then:

1. prq˝ is a representation of r in the sense of the above (see also [96]).

2. For s P r0,8q, if r ď s, then prq˝ ďR psq˝ and also prq˝ ď1 psq˝.

3. prq˝ is nondecreasing (as a type 1 function).

However, later we will need an extension of this function p¨q˝ to all real numbers
such that we retain the nice properties mentioned above regarding majorizability. For
this, if r ă 0, we define

prq˝pnq “ jp2k̄0 ´ 1, 2n`1 ´ 1q

where
k̄0 :“ max k

„

k

2n`1
ď |r|

ȷ

.

Then prq˝pnq “ ´Qp|r|q˝pnq and we get the following lemma containing exactly the
properties that we later need for this notion to be useful in the context of majorizability.

Lemma 2.1.2. Let r P R. Then:
2Here, we write f ď1 g for two objects f1, g1 if fn ď0 gn for all n0.
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1. prq˝ is a representation of r in the sense of the above (see also [96]).

2. For s P r0,8q, if |r| ď s, then prq˝ ď1 psq˝.

3. prq˝ is nondecreasing (as a type 1 function).

Proof. That prq˝ is a representation of r is immediate and clearly prq˝ is nondecreasing
as j is monotone. For item (2), let |r| ď s. If r ě 0, the result is contained in the
above Lemma 2.1.1. If r ă 0, write k̄0 for the value corresponding to |r| and k0 for the
value corresponding to s. Then we have

k̄0 “ max k

„

k

2n`1
ď |r|

ȷ

ď max k

„

k

2n`1
ď s

ȷ

“ k0

so that
prq˝pnq “ jp2k̄0 ´ 1, 2n`1 ´ 1q ď jp2k0, 2

n`1
´ 1q “ psq˝pnq

using the monotonicity of j.

Lastly, given a sequence α P NN, we write rα for the unique real represented by
αp and we sometimes write rαspnq for the n-th element of that sequence for better
readability.

2.2 Abstract types and systems for normed spaces

As motivated in Chapter 1, the main extension of Aω is obtained by adding a new
abstract base type X as originally considered by Kohlenbach in [95]. The type allows
us to deal with abstract spaces that cannot necessarily be represented in Aω/WE-PAω.
Define the extended set of types TX as follows:

0, X P TX , ξ, τ P TX ñ τpξq P TX .

The theory Aω can then be formulated over the resulting extended language by ex-
tending the constants (if appropriate) to take arguments and produce values in those
new types and by trivially extending the axiom schemes and rules to allow formulas
from the new language (see [71, 95, 96] for details on all of this).

The main extension used here will be the theory AωrX, ∥¨∥s for real normed vector
spaces, obtained by first extending the language of Aω (formulated over TX) by new
constants 0X , 1X of type X, `X of type XpXqpXq, ´X of type XpXq, ¨X of type
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XpXqp1q and ∥¨∥X of type 1pXq. It should be noted that “0 is still the only primitive
relation and in particular, identity on X is treated as a defined predicate via3

xX “X yX :“ ∥x´X y∥X “R 0

which is, by the previous discussion on the representation of the reals, a Π0
1-formula

and not decidable. To form AωrX, ∥¨∥s, we then add the relevant defining axioms
stating that X with these operations is a real normed vector space with 1X such that
∥1X∥X “R 1 and ´Xx being the additive inverse of x (see [95]):4

1. The usual vector space axioms formulated for `X , ´X , ¨X , 0X and “X ,

2. @xX p∥x´X x∥X “R 0q,

3. @xX , yX p∥x´X y∥X “R ∥y ´X x∥Xq,

4. @xX , yX , zX p∥x´X z∥X ďR ∥x´X y∥X ` ∥y ´X z∥Xq,

5. @α1, xX , yX p∥αx´X αy∥X “R |α| ¨ ∥x´X y∥Xq,

6. @α1, β1, xX p∥αx´X βx∥X “R |α ´ β| ¨ ∥x∥Xq,

7. @xX , yX , uX , vX p∥px`X yq ´X pu`X vq∥X ďR ∥x´X u∥X ` ∥y ´X v∥Xq,

8. @xX , yX p∥p´Xxq ´X p´Xyq∥X “R ∥x´X y∥Xq,

9. @xX , yX p| ∥x∥X ´ ∥y∥X | ďR ∥x´X y∥Xq,

10. ∥1X∥X “R 1.

Further, extensionality of all those operations is provable in AωrX, ∥¨∥s.5

Derived from AωrX, ∥¨∥s is the theory AωrX, x¨, ¨ys for real inner product spaces,
extending the former by the parallelogram law

@xX , yX
`

∥x`X y∥2X ` ∥x´X y∥2X “R 2
`

∥x∥2X ` ∥y∥2X
˘˘

.

3Here, and in the following, we write x´X y as an abbreviation for x`X p´Xxq.
4Here, and in the following, we will omit the types X,R from the operations ¨X , ¨R or omit ¨X , ¨R

altogether to improve the readability of the formulas.
5The easy provability of extensionality for the new constants stands behind the choice of the above

norm axioms, see Chapter 8 for a further discussion.
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As is well-known, any inner product space satisfies this law and conversely, any normed
space satisfying it actually admits an inner product which can then be defined via the
norm with

xxX , yXyX :“1
1

4

`

∥x`X y∥2X ´ ∥x´X y∥2X
˘

.

Also here, extensionality of the defined operation is provable in the system.

2.3 A general logical metatheorem

We now state the main result for the system AωrX, ∥¨∥s, the general logical metathe-
orem on the extraction of computable bounds from proofs established in [71, 95]. We
do not dive into the precise details of the proof just yet and rather postpone these
to Chapter 3 (and, beyond this discussion in Chapter 3 and the rest of this thesis,
we refer to [71, 95] as well as [96]). Also, we postpone any precise discussions of the
involved notions to Chapter 3 where we will be concerned with the main extensions of
AωrX, ∥¨∥s that underly many of the central parts of this thesis. In that vein, we now
only state the theorem for AωrX, ∥¨∥s so that the central aspects of the enterprise of
the metatheorems (which are one of the main concerns of this thesis) can be appreci-
ated. Namely, the metatheorem guarantees, as discussed in Chapter 1, the existence
of further information in the sense of the previous chapter on provable sentences in
the theory AωrX, ∥¨∥s which are essentially of a @D-form. The main features of the
bounds guaranteed by the metatheorem are that they are computable as well as very
uniform, depending not on the space or any concrete objects but only on majorants
thereof. As discussed before, this notion of majorizability goes back to Howard [79] but
in the form used here is an extension developed in [71, 95] of the strong majorizability
notion of Bezem [16]. This notion of strongly majorizable functionals over an abstract
normed space is defined in tandem with an associated model Mω,X for the language of
AωrX, ∥¨∥s. On a high level, the structure of the proof of the metatheorem is now as
follows: For theorems of a @D-form, witnesses for the existential quantifiers (in terms
of the universal quantifiers) are extracted using Gödel’s Dialectica interpretation as
mentioned before (see also the precise definitions in Chapter 3). These witnesses have
types from TX and using majorization, corresponding bounds with types from T are
constructed for the witnesses which are initially validated in the corresponding model
Mω,X . If the types are low enough, which we call admissible (see Chapter 3), one
can recover to the ordinary truth in a model based on the usual full set-theoretic type
structure Sω,X defined through a given normed space X by interpreting the additional
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constants of AωrX, ∥¨∥s accordingly (using the operator p¨q˝ to choose representations
of real numbers). Lastly, besides the existence of bounds, the metatheorems also guar-
antee an estimation of their computational complexity which, in the presence of the
axiom of dependent choice DC, can be as complex as bar-recursive in the sense of
Spector [198] but if this principle is not needed, bounds that are primitive recursive
in the sense of Gödel can be guaranteed (and this extends to further stratifications6).
Lastly, notice that full classical logic is permitted in the systems. If classical logic does
not (or only minimally) feature in the proof, then the results of the theorem can be
strengthened as we will also discuss in Chapter 3.

Theorem 2.3.1 ([71]). Let ρ be admissible and let B@px, uq/CDpx, vq be purely univer-
sal/existential, respectively, where the types of the quantifiers are admissible and such
that they only contain x, u/x, v freely. Assume that

Aω
rX, ∥¨∥s $ @xρ

`

@u0B@px, uq Ñ Dv0CDpx, vq
˘

.

Then there exists a partial functional Φ : Sρp á N which is defined on all strongly
majorizable elements of Sρp, where the corresponding restriction to these elements is
bar-recursively computable and where the following holds in all non-trivial real normed
vector spaces pX, ∥¨∥q: for all x P Sρ and x˚ P Sρp, if x˚ Á x, then

Sω,X |ù @u ď0 Φpx
˚
qB@px, uq Ñ Dv ď0 Φpx

˚
qCDpx, vq.

Here, Á is the extension due to [71, 95] of the strong majorizability relation of Bezem
and ρp P T is the type of the majorants of objects of type ρ P TX and Sρ, Sρp are the sets
of all set-theoretic functionals of type ρ, ρp, respectively.

6In particular, note [92] where a sequence of theories GnA
ω is defined whose provably total function

correspond to the n-th level of the Grzegorczyk hierarchy [75] and correspondingly (if used in a version
extended to the abstract type X) guarantee bounds of such complexity.



3 Proof Mining with Set-Valued Operators

3.1 Introduction

This chapter summarizes the main logical results on the treatment of certain classes
of set-valued operators in systems amenable for proof mining presented in the Master
Thesis of the author [168] and published (in a slightly revised form) in the paper [165].
In that vein, the formulations are largely taken from these works.

Concretely, the thesis [168] introduced formal systems that allow for the application
of methods from proof mining to proofs from accretive and monotone operator theory,
central branches of nonlinear functional analysis which constitute the abstract study of
certain prominent classes of set-valued mappings between linear spaces. In particular,
in this work we established general logical metatheorems in the spirit of Chapter 2
(recall also Chapter 1) that guarantee the existence and quantify the complexity of the
computational content of theorems pertaining to accretive and monotone set-valued
operators and, further, allow for the extraction of this content.

Besides the proofs of the logical metatheorems for the resulting systems, which
we present in more detail (complementing the brief discussion from Chapter 2), the
summary given here in general omits most proofs which can be found in [165] and
instead focuses on the main ideas behind the chosen representations for the analytical
objects in question on which the rest of the thesis crucially relies. In particular, we
want to emphasize that the chosen approach is very suitable for applications since, as
discussed extensively in [165] already, the resulting systems allow for the convenient
formalization of large classes of theorems and proofs involving abstract accretive and
monotone set-valued operators and their (total) resolvents. In particular, the systems
have already led to entirely new case studies (see e.g. [166]).

20
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Further, we also discuss some of the other main theoretical considerations made
in [165], like the characterization of the key property of an operator being maximal
by equivalent notions involving formal extensionality of the operator as well as the
treatment of range conditions and the notion of majorizability for set-valued operators.

3.2 Set-valued operators and nonexpansive maps in

Banach and Hilbert spaces

In this section, we survey the basic notions and results for accretive and monotone
operators as well as for nonexpansive maps over normed and inner product spaces
which are essential for large parts of this thesis. For this, let pX, ∥¨∥q be a real normed
space.

3.2.1 Nonexpansive functions

We begin with nonexpansive functions and their relatives on normed and inner product
spaces where we follow the definitions of [31]. Let D Ď X be non-empty and let
T : D Ñ X be a function. Then T is called

1. nonexpansive if
@x, y P D p∥Tx´ Ty∥ ď ∥x´ y∥q ,

2. firmly nonexpansive if

@x, y P D@r ą 0 p∥Tx´ Ty∥ ď ∥rpx´ yq ` p1´ rqpTx´ Tyq∥q ,

There is a useful equivalent reformulation of the notion of firm nonexpansivity when
we pass to inner product spaces pX, x¨, ¨yq: then T is firmly nonexpansive if, and only
if

@x, y P D
`

xx´ y, Tx´ Tyy ě ∥Tx´ Ty∥2
˘

.

3.2.2 Set-valued operators

A set-valued operator on a space X is simply a mapping A : X Ñ 2X . Set-theoretically,
such an A is nothing else but its graph graA :“ tpx, yq | y P Axu and we correspond-
ingly use the notations y P Ax, px, yq P A and px, yq P graA interchangeably.
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For a set-valued operator A, we define domA :“ tx P X | Ax ‰ Hu and ranA :“
Ť

xPX Ax. We write A´1 for the inverse operator defined by x P A´1u iff u P Ax. We
set λA by pλAqx :“ tλu | u P Axu. If B is another set-valued operator on X, we define
A`B via pA`Bqx :“ tu` v | u P Ax and v P Bxu.

The main classes of set-valued operators which we want to consider first are the
analytically motivated accretive and monotone operators. Besides the references cited
in the following, we in particular refer to the standard references [4, 202] for further
exposition on the theory of accretive operators in Banach spaces and to [11] for the
theory of monotone operators in Hilbert spaces.

Definition 3.2.1 ([84]). Let pX, ∥¨∥q be a normed space. A set-valued operator A is
called accretive if

@px, uq, py, vq P graA, λ ą 0 p∥x´ y ` λpu´ vq∥ ě ∥x´ y∥q

and A is called m-accretive if ranpId` γAq “ X for all γ ą 0.

Now, for an inner product space, there is the following equivalent characterization
of accretivity which is commonly called monotonicity.

Definition 3.2.2 (essentially [146, 147]). Let pX, x¨, ¨yq be an inner product space. A
set-valued operator A is called monotone if

@px, uq, py, vq P graA pxx´ y, u´ vy ě 0q

and A is called maximally monotone if it is monotone and graA Ĺ graB implies that B
is not monotone, i.e. the graph of A is not properly contained in the graph of another
monotone operator.

3.2.3 Resolvents and correspondence results

In (nonlinear) functional analysis, one of the main tools for studying many classes
of (set-valued) operators A is their corresponding resolvent JAγ , defined as follows for
γ ą 0:

JAγ :“ pId` γAq´1.

In particular, JAγ is by its definition at first a set-valued map with domJAγ “ ranpId`

γAq as well as ranJAγ Ď domA and where the following defining equivalence holds:

p P JAγ x iff γ´1px´ pq P Ap.
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However, if the operator in question is accretive, then its resolvent is characterized by
a further collection of convenient properties.

Theorem 3.2.3 (essentially [4, 31]). Let A be a set-valued operator on a normed space
X. Then the following are equivalent:

(a) A is accretive,

(b) JAγ is single-valued and firmly nonexpansive (on its domain) for all γ ą 0,

(c) JAγ is single-valued and firmly nonexpansive (on its domain) for some γ ą 0,

(d) JAγ is single-valued and nonexpansive (on its domain) for all γ ą 0.

In the case of monotonicity, this further extends to the following:

Theorem 3.2.4 (essentially [4, 31, 147], see also [11]). Let X be a Hilbert space and
A a set-valued operator.

1. Items (a) - (d) of Theorem 3.2.3 are equivalent to

(e) A is monotone.

2. A is maximally monotone if and only if JAγ is single-valued, firmly nonexpansive
and ranpId` γAq “ X for some/any γ ą 0.

The last statement is known as Minty’s theorem [147]. We already see that max-
imality conditions are linked with the totality of the resolvent, a result which sets a
characteristic theme in the correspondence theory of operators and their resolvents as
it extends to various other classes besides monotone operators (see e.g. [13, 14, 15]).

We here just want to note that this correspondence between totality of the resolvent
and set-theoretic maximality does not extend to accretive operators on normed spaces
(as first asked in [51] and then answered in [37, 49] negatively). The one direction that
remains valid is the following:

Lemma 3.2.5 (essentially [51]). Let A be accretive.

1. If ranpId` γAq “ X for some γ ą 0, then A has no proper accretive extension.

2. If ranpId` γAq “ X for some γ ą 0, then ranpId` γAq “ X for all γ ą 0.

In particular, m-accretivity implies maximal accretivity.
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3.3 Logical systems for operators and their resolvents

We now introduce the systems for operators and their resolvents defined in [165]. For
this, akin to [165], we split the treatment between whether the resolvents of the operator
are assumed to be total or partial.

Before we consider the resolvents, we have to take a look at set-valued operators.
These set-valued operators A : X Ñ 2X are now modeled using a constant χA of type
0pXqpXq which represents A via a function that takes an argument x from X and
returns a characteristic function for Ax. We write y P Ax or px, yq P A or px, yq P graA
for χAxy “0 0.

3.3.1 Formal systems for total resolvents

Regarding operators with total resolvents, we begin with the system for m-accretive
operators, i.e. accretive operators with total resolvents. To define this system, we first
add the constant χA as discussed before.

Now, over this extended language, we have to introduce the resolvent. As discussed
in Theorem 3.2.3, the resolvents of accretive or monotone operators are always single-
valued. So, in the context of m-accretive operators, we can infuse this single-valuedness
and totality of the resolvent already into the type and in that vein add a constant JχA of
typeXpXqp1q. The output of typeX shall be seen as the (unique) value of the resolvent
and the input of type 1 represents the real parameter γ ą 0. In that vein, we write JAγ
for JχAγ where γ is of type 1. This approach via a constant of such a type is of course
only of use if feasible axioms can now be presented so that bound extraction results
can be obtained and common proofs from the literature can be formalized, i.e. over this
language we now need to suitably represent the defining equality JAγ “ pId ` γAq´1.
Naively, over this extended language, this equality can be expressed formally via

@xX , pX , γ1
`

γ ąR 0Ñ p “X JAγ xØ γ´1px´X pq P Ap
˘

.

This statement, by virtue of the biimplication and the universal quantifier hidden in
“X , has too high quantifier-complexity to a priori guarantee that metatheorems for
proof mining extend to systems where it is assumed as an axiom. However, focusing
on the problematic direction

@xX , pX , γ1
`

γ ąR 0^ p “X JAγ xÑ γ´1px´X pq P Ap
˘

,
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we can, instead of requiring the inclusion for all extensionally equal representations p,
move to the intensional version

@xX , γ1
`

γ ąR 0Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

.

This statement, as inclusions in the graph of A are quantifier-free statements, is univer-
sal and thus a priori does not hinder bound extraction results. Even more, as discussed
already in [165] (and as will be further substantiated by this thesis), this axiom is in-
deed the right axiom to choose for the resolvents (note in particular that the other
direction, which already is universal and thus a priori unproblematic, will be provable
in the system later defined, see Proposition 3.3.2).

For majorization of the resolvent later on, the systems considered in [165] actually
contain three further constants besides χA and JχA : γr of type 1, mγr of type 0 and cX
of type X. These are used for majorization of the resolvent constant JχA later on in
the sense that a bound for

⃦⃦
x´ JAγ x

⃦⃦
for some x (designated by cX) and some γ ą 0

(designated by γr and where γ ą 0 is witnessed using mγr) will suffice for constructing
a majorant of JχA (see the the proof of Lemma 3.7.7 later on). With these further
constants, we now consider the following system:

Definition 3.3.1 ([165]). The theory Vω is defined as the extension of the theory
AωrX, ∥¨∥s with the above constants and corresponding axioms

(I) @xX , yXpχAxy ď0 1q,

(II) @γ1, xX
`

γ ąR 0Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

,

(III)

$

&

%

@xX , yX , uX , vX , λ1
`

u P Ax^ v P Ay

Ñ ∥x´X y `X |λ|pu´X vq∥X ěR ∥x´X y∥X
˘

,

(IV) γr ěR 2´mγr .

Note that the behavior of JAγ for γ ďR 0 is left undefined.

The system Vω is strong enough to formalize large parts of the theory of m-accretive
operators and we will see examples of some essential theorems on the operator and re-
solvent that Vω proves in Proposition 3.3.2 later on.

Before that, we introduce the formal system that accommodates inner product
spaces and corresponding maximal monotone operators (or monotone operators with



26 CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS

total resolvents): As monotonicity and accretivity are equivalent for inner product
spaces (see Theorem 3.2.4), we can utilize the previous system Vω. Hence, adding the
axioms (I)-(IV) from before to AωrX, x¨, ¨ys (or, in other words, adding the parallelo-
gram law to Vω) results in a corresponding system for monotone operators with total
resolvents which we denote by T ω.

We now turn to some of the central properties of the resolvent that the above
systems can prove:

Proposition 3.3.2 ([165]). Vω proves:

1. JAγ is unique for any γ ą 0, i.e.

@γ1, pX , xX
`

γ ąR 0^ γ´1px´X pq P ApÑ p “X JAγ x
˘

.

2. JAγ is firmly nonexpansive for any γ ą 0, i.e.

@γ1, r1, xX , yX
´

γ ąR 0^ r ąR 0Ñ
⃦⃦
JAγ x´X J

A
γ y

⃦⃦
X

ďR
⃦⃦
rpx´X yq `X p1´ rqpJ

A
γ x´X J

A
γ yq

⃦⃦
X

¯

.

3. JAγ is nonexpansive for any γ ą 0, i.e.

@γ1, xX , yX
´

γ ąR 0Ñ ∥x´X y∥X ěR
⃦⃦
JAγ x´X J

A
γ y

⃦⃦
X

¯

.

4. JχA is extensional in both arguments:

@γ1 ąR 0, γ1
1
ąR 0, xX , x1

X `

x “X x1 ^ γ “R γ
1
Ñ JAγ x “X JAγ1x1

˘

.

5. @γ1, λ1, xX
`

γ ąR 0^ λ ąR 0Ñ JAλ x “X JAγ
`

γ
λ
x`X p1´

γ
λ
qJAλ x

˘˘

.

6. @γ1, λ1, xX
´

γ ąR 0^ λ ąR 0Ñ
⃦⃦
x´X J

A
γ x

⃦⃦
X
ďR

`

2` γ
λ

˘
⃦⃦
x´X J

A
λ x

⃦⃦
X

¯

.

AωrX, x¨, ¨ys proves:

7. @xX , yXpxx, yyX ďR 0Ø @α1p∥x∥X ďR ∥x´X |α|y∥Xqq.

Further, T ω proves:

8. A is monotone, i.e.

@xX , yX , uX , vX pu P Ax^ v P Ay Ñ xx´X y, u´X vyX ěR 0q .
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9. JAγ satisfies the alternative notion of firm nonexpansivity for any γ ą 0, i.e.

@γ1, xX , yX
´

γ ąR 0Ñ xx´X y, J
A
γ x´X J

A
γ yyX ěR

⃦⃦
JAγ x´X J

A
γ y

⃦⃦2

X

¯

.

As discussed already in [165], some subtleties arise when dealing with reciprocals
like in the axioms and theorems presented above and we want to indicate what these
subtleties are and how they can be formally addressed. As mentioned in the discussion
of real arithmetic in Chapter 2, formulas containing reciprocal expressions like, e.g.,
the resolvent axiom

@γ1, xX
`

γ ąR 0Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

are just seen as abbreviations for extended versions which make the necessary depen-
dency on a parameter l0 with |γ| ąR 2´l explicit, i.e. in the above example, one actually
considers

@γ1, xX , l0
`

γ ąR 2´l Ñ pγq´1l px´X J
A
γ xq P ApJ

A
γ xq

˘

where p¨q´1l is the previously discussed closed term representing the reciprocal correctly
for arguments α1 satisfying |α| ąR 2´l.

In most situations, like, e.g., in the formal theorems presented above (and their
proofs as presented in [165]), these details can be neglected without resulting in any
issues (see e.g. the discussion in [165]).

Other important objects like e.g. the so-called Yosida approximate Aγ (which is
ubiquitous in the literature, see, e.g., [4]), can also be treated in the context of this
system. Concretely, the Yosida approximate is defined as

Aγ :“
1

γ
pId´ JAγ q

and thus can be treated by λ-abstraction as

λl0, γ1, xX .
`

pγq´1l px´X J
A
γ xq

˘

.

The additional parameter l is induced here again through the subtleties with recipro-
cals. As before, we will continue to be vague about this issue and essentially treat Aγx
like an abbreviation for γ´1px´X JAγ xq.
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3.3.2 Formal systems for partial resolvents

Some applications of accretive or monotone operators do not require full maximality
but only impose certain so-called range conditions on the operator which force the
domains of the resolvents to be “large enough” (which will be discussed in some detail
also later on). To accommodate for such operators, we now discuss how the previous
approach needs to be modified to treat partial resolvents.

We opt for the following strategy as in [165]: we still use a constant JχA of type
XpXqp1q. Instead of specifying the behavior of this constant on any point x as, e.g.,
done by

@γ1, xX
`

γ ąR 0Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

,

we only specify it on its domain in the sense of

@γ1, xX
`

γ ąR 0^ x P dompJAγ q Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

. (:)

For this to be a priori admissible in the context of bound extraction theorems, the
statement x P domJAγ has to have a suitable representation in the language of the un-
derlying system such that the resulting axiom has a monotone functional interpretation.

For this note that, as discussed in Section 3.2.3, the domain satisfies

domJAγ “ ranpId` γAq

and inclusion of an x in the latter is definable by an existential statement

DyX
ˆ

1

γ
px´X yq P Ay

̇

which may be used in the premise of the above sentence (:) to form a universal sentence
(which thus has a trivial monotone functional interpretation). In that vein, we will in
the following use the abbreviation

x P dompJAγ q :“ Dy
X
`

γ´1px´X yq P Ay
˘

and, with that choice, we obtain the theories Vωp and T ω
p from the previous ones by

replacing the axiom

@γ1, xX
`

γ ąR 0Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

(II)
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from before with

@γ1, xX
`

γ ąR 0^ DyX
`

γ´1px´X yq P Ay
˘

Ñ γ´1px´X J
A
γ xq P ApJ

A
γ xq

˘

, (II1)

instantiating p:q with the above definition for x P dompJAγ q.
The constant cX , which was previously only used to designate an arbitrary anchor

point for majorization, is now used to actually designate a common element of the
domains of all JAγ and for that we add the corresponding defining axiom

@γ1
`

γ ąR 0Ñ γ´1pcX ´X J
A
γ cXq P ApJ

A
γ cXq

˘

. (V)

This assumption that
Ş

γą0 domJ
A
γ ‰ H is easily satisfiable in many applications as

any nontrivial operator A has a non-empty domain and it is often assumed that the
operator satisfies a range condition like

domA Ď
č

γą0

ranpId` γAq,

which, as mentioned before, will be further discussed later on.

We obtain the following proposition as an immediate generalization of the previous
Proposition 3.3.2.

Proposition 3.3.3 ([165]). Vωp proves:

1. JAγ is unique for any γ ą 0, i.e.

@γ1, pX , xX
`

γ ąR 0^ γ´1px´X pq P ApÑ p “X JAγ x
˘

.

2. JAγ is firmly nonexpansive for any γ ą 0 (on its domain), i.e.

@γ1, r1, xX , yX
´

γ ąR 0^ x P dompJAγ q ^ y P dompJ
A
γ q ^ r ąR 0

Ñ
⃦⃦
JAγ x´X J

A
γ y

⃦⃦
X
ďR

⃦⃦
rpx´X yq `X p1´ rqpJ

A
γ x´X J

A
γ yq

⃦⃦
X

¯

.

3. JAγ is nonexpansive for any γ ą 0 (on its domain), i.e.

@γ1, xX , yX
´

γ ąR 0^ x P dompJAγ q ^ y P dompJ
A
γ q

Ñ ∥x´X y∥X ěR
⃦⃦
JAγ x´X J

A
γ y

⃦⃦
X

¯

.



30 CHAPTER 3. PROOF MINING WITH SET-VALUED OPERATORS

4. JA is extensional in both arguments (on its domain), i.e.
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@γ1 ąR 0, xX , x1X
`

x P dompJAγ q

^x1 P dompJAγ q ^ x “X x1 Ñ JAγ x “X JAγ1x1
˘

,

@γ1 ąR 0, γ11 ąR 0, xX
`

x P dompJAγ q

^x P dompJAγ1q ^ γ “R γ
1 Ñ JAγ x “X JAγ1x

˘

.

5.

$

&

%

@γ1, λ1, xX
`

γ ąR 0^ λ ąR 0^ x P dompJAλ q

Ñ JAλ x “X JAγ
`

γ
λ
x`X

`

1´ γ
λ

˘

JAγ x
˘ ˘

.

6.

$

’

’

&

’

’

%

@γ1, λ1, xX
ˆ

γ ąR 0^ λ ąR 0^ x P dompJAγ q ^ x P dompJ
A
λ q

Ñ
⃦⃦
x´X J

A
γ x

⃦⃦
X
ďR

`

2` γ
λ

˘
⃦⃦
x´X J

A
λ x

⃦⃦
X

̇

.

Further, T ω
p proves:

7. A is monotone, i.e.

@xX , yX , uX , vX pu P Ax^ v P Ay Ñ xx´X y, u´X vyX ěR 0q .

8. JAγ satisfies the alternative notion of firm nonexpansivity for any γ ą 0 (on its
domain), i.e.

@γ1, xX , yX
´

γ ąR 0^ x P dompJAγ q ^ y P dompJ
A
γ q

Ñ xx´X y, J
A
γ x´X J

A
γ yyX ěR

⃦⃦
JAγ x´X J

A
γ y

⃦⃦2

X

¯

.

3.4 Extensionality and maximality

The whole enterprise of proof mining of course prominently features issues with exten-
sionality as one of the main theoretical problems around the extraction of computa-
tional information from non-constructive proofs and as such, issues with extensionality
in fact lie at the heart of any such approach. For a deeper discussion of this, we refer
to [96].

In our case, as already mentioned above, these issues feature most prominently
in the fact that no system which enjoys bound extraction results (akin to the ones
established later) and which allows for discontinuous operators A (as the previously
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introduced systems do) can prove the extensionality of the operator A.1

A central theoretical result from [165] is now the connection between the extension-
ality of A and the maximality statement for A as well as to the previously mentioned
stronger version of the resolvent axiom

@γ1, xX , pX
`

γ ąR 0^ p “X JAγ xÑ γ´1px´X pq P Ap
˘

.

Theorem 3.4.1 ([165]). Over Vω, the following are equivalent:

1. Extensionality of A, i.e.

@xX , yX , x1
X
, y1

X
px “X x1 ^ y “X y1 Ñ χAxy “0 χAx

1y1q .

2. The strong resolvent axiom, i.e.

@xX , pX , γ1
`

γ ąR 0^ p “X JAγ xÑ γ´1px´X pq P Ap
˘

.

3. Maximal accretivity of A, i.e.

@xX , uX
´

@yX , vX , λ1
´

v P Ay

Ñ ∥x´X y `X |λ|pu´X vq∥X ěR ∥x´X y∥X
¯

Ñ u P Ax
¯

.

4. Closure of the graph of A, i.e.

@xX , yX , x
Xp0q
p¨q

, y
Xp0q
p¨q

´

xn ÑX x^ yn ÑX y ^ @n0
pyn P Axnq Ñ y P Ax

¯

where xn ÑX x is short for

@k0DN0
@m ě0 N

`

∥xm ´X x∥X ďR 2´k
˘

and similar for yn ÑX y.

Over T ω, items (1) - (4) are additionally equivalent to

5. maximal monotonicity of A, i.e.

@xX , uX
`

@yX , vX pv P Ay Ñ xx´X y, u´X vyX ěR 0q Ñ u P Ax
˘

.

1In fact, stronger results are possible which will be discussed in Chapter 11.
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So, in particular, the maximality of A can not be provable in any of the previous
systems, albeit being a property of any m-accretive operator. However, the systems do
recognize the set-theoretic maximality of A in the following weakened way:

Theorem 3.4.2. The system Vω proves the following intensional maximality principle:

@xX , uX
´

@yX , vX , λ1
´

v P Ay Ñ ∥x´X y `X |λ|pu´X vq∥X ěR ∥x´X y∥X
¯

Ñ Dx1
X
, u1

X
px “X x1 ^ u “X u1 ^ u1 P Ax1q

¯

.

So, if a proof uses the set-theoretic maximality of A to infer u P Ax but the rest
of the proof is extensional in x and u, then this application of maximality of A can be
treated by the system Vω (mitigated through the use of the resolvent).

Note also that full extensionality is admissible in a rule form as we still have the
following weak rule of A-extensionality

DyσF0pyq Ñ s “X s1 DyσF0pyq Ñ t “X t1

DyσF0pyq Ñ ps P AtØ s1 P At1q

for a quantifier-free formula F0 as a special case of the extensionality rule Σ1-ER of Vω.

Lastly, we want to note that over the partial systems, as explored in [165], there
also exists a classification of extensionality of A via an extensional formulation of the
definition of the domain but we do not discuss this here any further.

3.5 Range conditions

As mentioned before in the context of the systems for partial resolvents, instead of
requiring that all resolvents are total, a more minimal assumption is often made in the
literature in the form of a condition ensuring that the domains of the resolvents are
large enough relative to an application, e.g. such that some particular iteration scheme
is well-defined. Such assumptions are called range conditions and we here just briefly
sketch the discussion from [165] on how the following (rather canonical) case can be
treated in the previous systems (with more variants of such conditions discussed later
on):

domA Ď
č

γą0

pId` γAqpdomAq.

When we naively formalize the above range condition, we end up with the sentence

@γ1, xX , yX
`

γ ąR 0^ y P AxÑ x P dompJAγ q
˘

.
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So, using the previous intensional expression

x P dompJAγ q :“ Dy
X

ˆ

1

γ
px´X yq P Ay

̇

,

we are lead to the following formula:

@γ1, xX , yX
ˆ

γ ąR 0^ y P AxÑ DyX
ˆ

1

γ
px´X yq P Ay

̇̇

.

Even further however, by axiom (II1), stating

DyX
ˆ

1

γ
px´X yq P Ay

̇

is equivalent to stating
1

γ
px´X J

A
γ xq P ApJ

A
γ xq,

i.e. that the resolvent at γ is well-defined at x (which is, after all, the meaning of
x P dompJAγ q). So, we can immediately simplify the formula from above and consider

@γ1, xX , yX
ˆ

γ ąR 0^ y P AxÑ
1

γ
px´X J

A
γ xq P ApJ

A
γ xq

̇

.

This axiom expressing the range condition is in particular purely universal and thus
can be trivially used in the bound extraction theorems.

3.6 Majorizable operators

Proofs which make essential use of representatives y P Ax for x P domA (i.e. Ax ‰ H)
can be treated by providing a suitable witnessing (Skolem) functional for the statement

@xXDyXpx P domAÑ y P Axq

which can immediately be treated by adding a further constant a of typeXpXq together
with a (universal) defining axiom like

@xXpx P domAÑ ax P Axq (˚)

where we write x P domA :“ DyX py P Axq. Such a witnessing functional a can take
many forms depending on the particular application scenario (which might require
additional axioms).

In any way however, such a functional then of course requires majorizing data if
used in the bound extraction theorems and we want to shortly discuss this special
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instance of the majorizability notion here already: a function f of type 1 is called a
majorant for a, written f Á a, if it is non-decreasing, i.e. n ě m implies fn ě fm, and
it satisfies

n ě ∥x∥Ñ fn ě ∥ax∥ for all n0, xX .

Thus, any witnessing functional a for an operator A can only be treated in the
context of the bound extraction theorems if there is at least one choice which is ma-
jorizable. The following notion capturing this minimal assumption was then introduced
in [165]:

Definition 3.6.1 ([165]). An operator A is called majorizable if there exists a choice
for a satisfying p˚q which is majorizable.

A common assumption from the literature is that an operator A is bounded on
bounded sets, i.e. that ApBnp0qq “

Ť

xPBnp0q
Ax is bounded for any n. This assumption

can be seen to impose a uniform majorizability assumption on all selection functionals:

Proposition 3.6.2 ([165]). A is bounded on bounded sets if, and only if

Da˚0p0q@aXpXq
´

@xXpx P domAÑ ax P Axq

^ @xXpx R domAÑ ∥ax∥X “R 0q Ñ a˚ Á a
¯

.

3.7 Bound extraction theorems

We now present the proof mining metatheorems from [165] for the theories Vω{T ω

and their partial variants. The outline of the proofs we give in this chapter is rather
detailed by which we will for one, provide additional details on the rather informal
discussions on the structure and proof of such metatheorems from Chapter 2 as well
as, for another, we will be able to shorten later proofs of metatheorems throughout
the thesis as these follow a similar outline as the proofs given in this section (which is
similar to that of [96]).

In [165], the focus was on metatheorems which allow one to treat classical logic
as discussed in Chapter 2. However, in this thesis we will also place an emphasis
on systems tailored to semi-constructive proofs which correspondingly, according to
the absence of classical logic, allow for certain strengthenings of the conclusions of
the metatheorems. The approach to these semi-constructive metatheorems taken here
follows the general approach from [70] (and results of that kind were already discussed
in [119] for intuitionistic variants of the system(s) T ω

ppq).
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3.7.1 Classical metatheorems

As mentioned in Chapters 1 and 2, the basis for the classical metatheorems is the
utilization of Gödel’s functional interpretation (going back to Gödel’s work [74], but we
mainly use the presentations from [96, 205]) in combination with a negative translation
(which also goes back to Gödel [73] but we rely on a version by Kuroda [130]). We
recall the definitions of those interpretations here.

Definition 3.7.1 ([74, 205]). The Dialectica interpretation FD “ Dx@yFDpx, yq of a
formula F in the language of AωrX, ∥¨∥s (or any suitable extension thereof) is defined
via the following recursion on the structure of the formula:

1. FD :“ FD :“ F for F being a prime formula.

If FD “ Dx@yFDpx, yq and GD “ Du@vGDpu, vq, we set

1. pF ^GqD :“ Dx, u@y, vpF ^GqD

where pF ^GqDpx, u, y, vq :“ FDpx, yq ^GDpu, vq,

2. pF _GqD :“ Dz0, x, u@y, vpF _GqD

where pF _GqDpz0, x, u, y, vq :“ pz “ 0Ñ FDpx, yqq ^ pz ‰ 0Ñ GDpu, vqq,

3. pF Ñ GqD :“ DU, Y @x, vpF Ñ GqD

where pF Ñ GqDpU, Y , x, vq :“ FDpx, Y xvq Ñ GDpUx, vq,

4. pDzτF pzqqD :“ Dz, x@ypDzτF pzqqD

where pDzτF pzqqDpz, x, yq :“ FDpx, y, zq,

5. p@zτF pzqqD :“ DX@z, yp@zτF pzqqD

where p@zτF pzqqDpX, z, yq :“ FDpXz, y, zq.

Definition 3.7.2 ([130]). The negative translation of F is defined by F 1 :“ ␣␣F ˚

where F ˚ is defined by the following recursion on the structure of F :

1. F ˚ :“ F for prime F ;

2. pF ˝Gq˚ :“ F ˚ ˝G˚ for ˝ P t^,_,Ñu;

3. pDxτF q˚ :“ DxτF ˚;

4. p@xτF q˚ :“ @xτ␣␣F ˚.
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Following [71, 95] (see also [96]), we introduce some specific classes of types from
TX (providing precise definitions for the notions already vaguely discussed in Chapter
2). We call a type ξ of degree n if ξ P T and it has degree ď n in the usual sense (recall
Chapter 2). Further we call ξ small if it is of the form ξ “ ξ0p0q . . . p0q (including 0, X)
for ξ0 P t0, Xu and call it admissible if it is of the form ξ “ ξ0pτkq . . . pτ1q (including
0, X) where each τi is small and ξ0 P t0, Xu as before.

Further, we define certain subclasses of existential/universal formulas satisfying cer-
tain type restrictions: A formula F is called a @-formula if F “ @aξFqf paq with Fqf

quantifier-free and if all types ξi in ξ “ pξ1, . . . , ξkq are admissible. A formula F is
called an D-formula if F “ DaξFqf paq with similar ξ.

Following [76, 86, 87], we introduce another certain class of formulas: by ∆ we in
the following denote a set of formulas of the form

@aδDb ďσ ra@c
γFqf pa, b, cq

where Fqf is quantifier-free, the types in δ, σ and γ are admissible and r is a tuple of
closed terms of appropriate types. Here, ď is defined by recursion on the type via

1. x ď0 y :“ x ď0 y,

2. x ďX y :“ ∥x∥X ďR ∥y∥X ,

3. x ďτpξq y :“ @zξpxz ďτ yzq,

and we write x ďσ y for x1 ďσ1 y1 ^ ¨ ¨ ¨ ^ xk ďσk yk where x “ px1, . . . , xkq and
y “ py1, . . . , ykq are tuples with xi, yi of type σi for σ “ pσ1, . . . , σkq.

Given such a set ∆, we write ∆r for the set of all Skolem normal forms

DB ďσpδq r@a
δ
@cγFqf pa,Ba, cq

for any @aδDb ďσ ra@cγFqf pa, b, cq in ∆.

We now write AωrX, ∥¨∥s´ for AωrX, ∥¨∥s without the axioms QF-AC and DC.
Further, by pBRq, we denote the schema of simultaneous bar-recursion for the extended
types TX (see e.g. [96]), extending the notion from the seminal work of Spector [198].
Similarly we introduce Vω´

ppq and T ω´
ppq where we write Vω

ppq for Vω or Vωp and similar for
T ω
ppq.
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Lemma 3.7.3 ([95]). Let P be a set of universal sentences and let F paq be an arbitrary
formula in the language of AωrX, ∥¨∥s, the latter with only the variables a free. Then
the rule

$

&

%

AωrX, ∥¨∥s ` P $ F paq ñ

AωrX, ∥¨∥s´ ` P ` pBRq $ @a, ypF 1qDpta, y, aq

holds where t is a tuple of closed terms of the language of AωrX, ∥¨∥s´ ` pBRq which
can be extracted from the respective proof.

This result extends to any suitable extension of the language of AωrX, ∥¨∥s (e.g. by
any kind of new types and constants) together with any number of additional universal
axioms in that language.

In particular, note that the above lemma also holds for Vω
ppq and T ω

ppq.

As discussed in Chapter 2, the central concept for formulating the quantitative
bounds obtained by the metatheorems is that of majorization in the sense of the ex-
tension to the types in TX due to [71, 95] of strong majorization due to Bezem [16].
In that way, majorants of objects with types from TX will be objects with types from
T related by the following projection:

Definition 3.7.4 ([71]). Define τp P T , given τ P TX , by recursion on the structure via

0p :“ 0, Xp :“ 0, τpξqy :“ τppξpq.

The majorizability relation Áτ is then defined by recursion on the type along with
the corresponding structure Mω,X of all (strongly) majorizable functionals of finite
type as defined in [71, 95]:

Definition 3.7.5 ([71, 95]). Let pX, ∥¨∥q be a non-empty normed space. The structure
Mω,X and the majorizability relation Áτ are defined by

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

M0 :“ N, n Á0 m :“ n ě m^ n,m P N,

MX :“ X,n ÁX x :“ n ě ∥x∥^ n PM0, x PMX ,

x˚ Áτpξq x :“ x˚ PM
M

ξp

τp ^ x PM
Mξ
τ

^@y˚ PMξp, y PMξpy
˚ Áξ y Ñ x˚y˚ Áτ xyq

^@y˚, y PMξppy
˚ Áξp y Ñ x˚y˚ Áτp x

˚yq,

Mτpξq :“
!

x PM
Mξ
τ | Dx˚ PM

M
ξp

τp : x˚ Áτpξq x
)

.
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Correspondingly, the full set-theoretic type structure Sω,X is defined via S0 :“ N,
SX :“ X and

Sτpξq :“ S
Sξ
τ .

For an inner product space, the structures Sω,X and Mω,X are defined via the norm
induced by the inner product.

Now, majorization behaves as expected for functionals with multiple arguments
(represented by their “curryied” variants) as the following lemma shows:

Lemma 3.7.6 ([71, 95], see also Kohlenbach [96], Lemma 17.80). Let ξ “ τpξkq . . . pξ1q.
For x˚ : Mξ1p

Ñ pMξ2p
Ñ ¨ ¨ ¨ Ñ Mτpq . . . q and x : Mξ1 Ñ pMξ2 Ñ ¨ ¨ ¨ Ñ Mτ q . . . q, we

have x˚ Áξ x iff

(a) @y˚1 , y1, . . . , y˚k , yk
´

Źk
i“1py

˚
i Áξi yiq Ñ x˚y˚1 . . . y

˚
k Áτ xy1 . . . yk

¯

and

(b) @y˚1 , y1, . . . , y˚k , yk
´

Źk
i“1py

˚
i Áξip

yiq Ñ x˚y˚1 . . . y
˚
k Áτp x

˚y1 . . . yk

¯

.

The proof of the main bound extraction result now relies on a combination of func-
tional interpretation and negative translation together with subsequent majorization
as outlined in Chapter 2. The following lemma gives the main result for the latter
ingredient (akin to, e.g., Lemma 9.11 in [71]).

Lemma 3.7.7 ([165]). Let pX, ∥¨∥q be a (nontrivial) normed space, A an m-accretive
operator and JAγ its resolvent with parameter γ ą 0. Then Mω,X is a model of Vω´ `
pBRq (for a suitable interpretation of the additional constants). Moreover, for any
closed term t of Vω´ ` pBRq, one can construct a closed term t˚ of Aω ` pBRq such
that

Mω,X
|ù @n0

ˆ

n ěR
⃦⃦
cX ´X J

A
γr cX

⃦⃦
X
,mγr, γr, ∥cX∥X Ñ t˚pnq Á t

̇

.

Further, the same claim holds for Vω replaced with

1. T ω where the conclusion is then drawn over inner product spaces using a mono-
tone A with total resolvents,

2. the partial systems Vωp and T ω
p where the conclusion is drawn over the appropriate

spaces and operators, assuming that
Ş

γą0 dompJ
A
γ q ‰ H.
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Proof. We sketch the interpretations and the majorization for the new constants and
refer for any other details to [71] (see also [165]).2 The designated interpretation of the
constant χA in the model Mω,X is given by

rχAsM :“ λx, y P X.

$

&

%

00 if y P Ax,

10 if y R Ax,

where we write M as an abbreviation for Mω,X . In the case of total resolvents, we set

rJχAsM :“ λα P NN, x P X.

$

&

%

JArαx if rα ą 0,

0 otherwise,

where rα is the real represented by αp as before. We set rγrsM :“ pλq˝ and rmγrsM :“ mλ

for some real λ and natural mλ with λ ě 2´mλ . Lastly, in the case of the total systems,
we define rcXsM :“ c for some arbitrary c P X.

These constants are then majorizable (and their interpretations thus belong to
Mω,X): For χA, the majorant

λx0, y0.1 Á χA

is immediate by the previous Lemma 3.7.6.
For JχA , assume that we have an n with n ě

⃦⃦
cX ´ J

A
γr cX

⃦⃦
, ∥cX∥ ,mγr and γ1, xX

with x˚ Á x, i.e. x˚ ě ∥x∥, as well as α Á γ. Then in particular (with similar reasoning
as in [96], Lemma 17.85), we obtain

αp0q ` 1 ě γp0q ` 1 ě γ.

Now, if rγ ą 0, we then have⃦⃦
JAγ x

⃦⃦
ď ∥x´ cX∥`

⃦⃦
JAγ cX

⃦⃦
(nonexpansivity)

ď ∥x∥` ∥cX∥`
⃦⃦
cX ´ J

A
γ cX

⃦⃦
` ∥cX∥

ď ∥x∥` 2 ∥cX∥`
ˆ

2`
γ

γr

̇ ⃦⃦
cX ´ J

A
γr cX

⃦⃦
(Proposition 3.3.2)

ď x˚ ` 2n` p2` 2npαp0q ` 1qqn.

For rγ ď 0, we get that JAγ x “ 0. Thus,
⃦⃦
JAγ x

⃦⃦
“ 0 ď x˚ ` 2n ` p2 ` 2npαp0q ` 1qqn

in that case as well. This implies

λα1, x˚0. px˚ ` 2n` p2` 2npαp0q ` 1qqnq Á JχA

2Some details on how to deal with some of the other constants of AωrX, ∥¨∥s will be given in the
later Chapter 8.
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using Lemma 3.7.6. Lastly, pnq˝ Á0p0q γr, n ě0 mγr and n ÁX cX are immediate by the
assumptions on n (and using Lemma 2.1.2).

In the partial case, let c P dompJAγ q for any γ ą 0 and define rcXsM :“ c. Now, the
resolvent is interpreted by

rJχAsM :“ λα P NN, x P X.

$

&

%

JArαx if rα ą 0 and x P dompJArαq,

0 otherwise.

The argument for majorizability of JAγ is the same as before, just restricting to x P

dompJArγ q and using nonexpansivity on the domain and Proposition 3.3.3. The other
constants are interpreted and majorized as before.

Note that the corresponding extensions of Mω,X to the new constants are indeed
models of the respective theories as none of the axioms for JχA prescribe any behavior
of the resolvent for γ ď 0.

The intended interpretation of the language of Vω/T ω in the structure Sω,X , turn-
ing Sω,X into a model of the respective theories, is defined exactly as the interpretation
of these languages in Mω,X given in the above lemma.

We now formulate the bound extraction theorem in which we allow for potential
additional axioms ∆ of the form discussed before which are treated in spirit of the
monotone functional interpretation due to [91] (and conceptually already due to [86, 87]
as mentioned before).

We say “in spirit of the monotone functional interpretation” as we actually do not
use a monotone variant of the functional interpretation but treat the functional inter-
pretation part and the subsequent majorization separately. This nevertheless allows
one to treat the axioms of type ∆ for which we follow the presentation given for Corol-
lary 5.14 as it is obtained from Theorem 5.13 in [76]. For that, we need the following
lemma:

Lemma 3.7.8 ([76], Lemma 5.11). Let ∆ be a set of formulas of the form considered
before. Then Sω,X |ù ∆ implies Mω,X |ù ∆r .

Proof. The proof given in [76] for Lemma 5.11 carries over. See Lemma 8.6.3 later for
more details on this lemma and its proof.

We now get to the main theorem on extractions of bounds from classical proofs,
the proof of which we also give here in a more detailed way.
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Theorem 3.7.9 ([165]). Let τ be admissible, δ be of degree 1 and s be a closed term
of Vω of type σpδq for admissible σ. Let ∆ be a set of formulas of the form @aδDb ďσ

ra@cγFqf pa, b, cq where Fqf is quantifier-free, the types in δ, σ and γ are admissible and
where r is a tuple of closed terms of appropriate type. Let B@px, y, z, uq/CDpx, y, z, vq
be @-/D-formulas of Vω with only x, y, z, u/x, y, z, v free. If

Vω `∆ $ @xδ@y ďσ spxq@z
τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : Sδ ˆ Sτp ˆ N á N which is total and
(bar-recursively) computable on Mδ ˆMτp ˆ N and such that for all x P Sδ, z P Sτ ,
z˚ P Sτp and all n P N, if z˚ Á z and n ěR

⃦⃦
cX ´X J

A
γr pcXq

⃦⃦
X
,mγr, γr, ∥cX∥X , then

Sω,X |ù @y ďσ spxq
`

@u ď0 Φpx, z
˚, nqB@px, y, z, uq Ñ Dv ď0 Φpx, z

˚, nqCDpx, y, z, vq
˘

holds whenever Sω,X |ù ∆ for Sω,X defined via any (nontrivial) normed space pX, ∥¨∥q
with χA interpreted by the characteristic function of an m-accretive A and JχA by the
corresponding resolvents JAγ for γ ą 0 (and with suitable interpretations of the other
constants so that the corresponding axioms hold).

In particular:

1. If τp is of degree 1, then Φ is a total computable functional.

2. We may have tuples instead of single variables x, y, z, u, v and a finite conjunction
instead of a single premise @u0B@px, y, z, uq.

3. If the claim is proved without DC, then τ may be arbitrary and Φ will be a total
functional on Sδ ˆ Sτp ˆ N which is primitive recursive in the sense of Gödel. In
that case, also plain majorization3 can be used instead of strong majorization.

4. The claim of the above theorem as well as the items (1) - (3) from above hold
similarly for T ω where the conclusion is then drawn over inner product spaces us-
ing monotone operators with total resolvents4 and also for the partial systems Vωp
and T ω

p where the conclusion is drawn over the appropriate spaces and operators,
assuming that

Ş

γą0 dompJ
A
γ q ‰ H.

Proof. We only treat the case of Vω. The set ∆ can be treated as in the proof of Theo-
rem 5.13 in [76]: Add the Skolem functionals B from ∆r to the language. Then, ∆r can

3For a precise definition, see in particular the following section.
4By Minty’s theorem, all conclusions are thus in particular valid over Hilbert spaces using maxi-

mally monotone operators.
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be seen as another set of universal axioms and all the new constants are majorizable
since B ďσpδq r and since r is a tuple of closed terms which is majorizable by Lemma
3.7.7 (which extends to this new language by Lemma 3.7.8). Then, the following proof
goes through for this extended system instead of Vω.

Now, first assume that

Vω $ @zτ
`

@u0B@pz, uq Ñ Dv0CDpz, vq
˘

.

By assumption, B@pz, uq “ @aBqf pz, u, aq and CDpz, vq “ DbCqf pz, v, bq for quantifier-
free Bqf and Cqf . Thus, prenexing the above theorem of Vω, we get

Vω $ @zτDu, v, a, bpBqf pz, u, aq Ñ Cqf pz, v, bqq.

Using Lemma 3.7.3, disregarding the realizers for a, b and reintroducing the quantifiers,
we get closed terms tu, tv of Vω´ ` pBRq such that

Vω´ ` pBRq $ @zτ pB@pz, tupzqq Ñ CDpz, tvpzqqq.

By Lemma 3.7.7 there are closed terms t˚u, t˚v of Aω ` pBRq such that for all n ě⃦⃦
cX ´ J

A
γr pcXq

⃦⃦
,mγr, γr, ∥cX∥, we get

Mω,X
|ù t˚upnq Á tu ^ t

˚
vpnq Á tv ^ @z

τ
pB@pz, tupzqq Ñ CDpz, tvpzqqq

for all (nontrivial) normed spaces pX, ∥¨∥q and all m-accretive operators A with resol-
vents JAγ defining Mω,X as in Lemma 3.7.7. Define

Φpz˚, nq :“ maxtt˚upnqpz
˚
q, t˚vpnqpz

˚
qu

for z˚ of type τp. Then

Mω,X
|ù @u ď0 Φpz

˚, nqB@pz, uq Ñ Dv ď0 Φpz
˚, nqCDpz, vq

holds for all n ě
⃦⃦
cX ´ J

A
γr pcXq

⃦⃦
,mγr, γr, ∥cX∥ as well as all z P Mτ and z˚ P Mτp with

z˚ Á z. The conclusion that Sω,X satisfies the same sentence can be achieved as in the
proof of Theorem 17.52 in [96] which we sketch here: Note that in the conclusion, we
restrict ourselves to those z which have majorants z˚. As the type of z is admissible, it
takes arguments of small type for which Mω,X and Sω,X coincide (see [96] and see also
the later proof of Lemma 8.6.3 for a discussion of this). Therefore, any such z, z˚ from
Sω,X also live in Mω,X so that Φpz˚q is well-defined in Sω,X for z, z˚ with z˚ Á z. In
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B@, all types are admissible to that truth in Sω,X implies truth in Mω,X and similarly
for CD where thus truth in Mω,X implies truth in Sω,X . Lastly, as in Lemma 17.84 in
[96], we can show that as Φ is of type 0pτpq, the interpretations of Φ in Sω,X and Mω,X

coincide on majorizable elements. All in all we have that

Sω,X |ù @u ď Φpz˚qB@pz, uq Ñ Dv ď Φpz˚qCDpz, vq

holds for all z P Sτ and z˚ P Sτp with z˚ Á z.

For the additional prefix @xδ@y ďσ spxq, let δ “ 1 for simplicity. For x of type δ,
we then define xMpy0q “ maxNtxpiq | 1 ď i ď yu. We get xM Á x and if spxq ěσ y,
then s˚pnqpxMq Á y where s˚pnq is a majorant of s as in Lemma 3.7.7. Note now that
the above result immediately extends to tuples z instead of a single z. Then by the
above result for tuples instead of a single z, there now is a functional Φ1px˚, y˚, z˚, nq
such that

Sω,X |ù @u ď Φ1px˚, y˚, z˚, nqB@px, y, z, uq Ñ Dv ď Φ1px˚, y˚, z˚, nqCDpx, y, z, vq

for all x P Sδ, y P Sσ, z P Sτ with x˚ Á x, y˚ Á y, z˚ Á z and n as before. In particular,
we have

Sω,X |ù @u ď Φ1pxM , y˚, z˚, nqB@px, y, z, uq Ñ Dv ď Φ1pxM , y˚, z˚, nqCDpx, y, z, vq

for any such x, y, z and y˚, z˚ and thus, as y ďσ spxq yields s˚pnqpxMq Á y, we get

Sω,X |ù @u ď Φ1pxM , s˚pnqpxMq, z˚, nqB@px, y, uq

Ñ Dv ď Φ1pxM , s˚pnqpxMq, z˚, nqCDpx, y, vq

in that case. Then define Φpx, z˚, nq “ Φ1pxM , s˚pnqpxMq, z˚, nq.

Item (1) can be shown as in the proof of Theorem 17.52 from [96] (see page 428
therein). Further, (2) is immediate and (3) follows from the fact that without DC, bar
recursion and thus the use of Mω,X both become superfluous.

3.7.2 Semi-constructive metatheorems

As mentioned before in Chapter 1, the basis for the semi-constructive metatheorems is
the utilization of Kreisel’s modified realizability interpretation (going back to Kreisel’s
work [127, 128], but we again mainly use the presentations from [96, 205]).
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For this, we of course also have to rely on suitable semi-constructive systems which
are here defined over the common base Aω

i :“ E-HAω
` AC where E-HAω is Heyting

arithmetic in all finite types with the full axiom of extensionality as in Chapter 2 and
AC “

Ť

ρ,τPT tAC
ρ,τ
u is the full axiom of choice with

@xρDyτF px, yq Ñ DY τpρq
@xρF px, Y xq (ACρ,τ )

where F is arbitrary. The base Aω
i is then extended with the machinery for abstract

types and the constants and axioms for normed linear spaces similar to AωrX, ∥¨∥s
which results in a system that we denote by Aω

i rX, ∥¨∥s, following [70] (and we in gen-
eral refer to [70] for any further details surrounding this system). Then we can define
Vωi,ppq and T ω

i,ppq similar to Vω
ppq and T ω

ppq, but over Aω
i rX, ∥¨∥s instead of AωrX, ∥¨∥s.

We now give the definition of the main proof interpretation employed in the context
of these semi-intuitionistic systems, the modified realizability interpretation due to
Kreisel:

Definition 3.7.10 (Kreisel [127, 128]). For any formula F in the language of Aω
i rX, ∥¨∥s

(or any suitable extension thereof), we define its modified realizability interpretation
xmr F by recursion on the structure of F :

1. xymr F :“ F for a prime formula F where xy is the empty tuple.

Further, if xmr F and y mrG are the modified realizability interpretations of F and
G, respectively, then:

2. x, y mr pF ^Gq :“ xmr F ^ y mrG,

3. z0, x, y mr pF _Gq :“ pz “0 0Ñ xmr F q ^ pz ‰0 0Ñ y mrGq,

4. Y mr F Ñ G :“ @xpxmr F Ñ Y xmrGq,

5. Xmr @wρF pwq :“ @wρpXwmr F pwqq,

6. zρ, xmr DwρF pwq :“ xmr F pzq.

Note that in xmr F , both the length and the types of x depend on the structure
of F .

We define Aω
i rX, ∥¨∥s´ as Aω

i rX, ∥¨∥s with AC removed and similarly we define Vω´i,ppq
and T ω´

i,ppq.
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Further, we call a formula F to be D-free if it is built up from prime formulas
only via ^,Ñ,␣ and @. It is immediate that for an D-free formula Fef with modified
realizability interpretation xmr Fef , we have

xmr Fef ” Fef

and further it is clear that the modified realizability interpretation xmr F for any F

is D-free itself.
For the following result, we also define the independence of premise schema for

D-free formulas IPef “
Ť

σPTXtIP
σ
efu where IPσef is defined as

pFef Ñ DxσGpxqq Ñ DxσpFef Ñ Gpxqq (IPσef )

where Fef is D-free and does not contain x freely (and G is arbitrary).
We similarly define IP␣ by using negated formulas ␣F instead of formulas Fef with

are D-free.
Lastly, we say that a formula is of type Γ␣ if it is of the form

@xα pF Ñ Dv ďσ rx␣Gq

for some formulas F,G and where the types in σ are arbitrary and the terms in r are
closed. Here, ď is defined as before by recursion on the type.

We then get the following soundness result for the modified realizability interpre-
tation.

Theorem 3.7.11 (essentially Troelstra [205], see also Gerhardy and Kohlenbach [70]).
Let ∆ef be a set of D-free sentences. For any formula F in (possibly an extension of) the
language of Aω

i rX, ∥¨∥s with modified realizability interpretation xmr F , if Aω
i rX, ∥¨∥s`

IPef `∆ef $ F , then Aω
i rX, ∥¨∥s´ `∆ef $ tmr F where the terms t satisfy freeptq Ď

freepF q and can be extracted from the proof of F .

In particular, the above result also holds for the systems Vωi,ppq and T ω
i,ppq as these ex-

tend Aω
i rX, ∥¨∥s only by new constants and further universal (and hence D-free) axioms.

The following result now provides the principles which characterize the modified
realizability interpretation, i.e. which suffice to recover from the modified realizability
interpretation to the original formula.
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Theorem 3.7.12 (essentially Troelstra [205], see also Gerhardy and Kohlenbach [70]).
For any formula F with modified realizability interpretation xmr F , we have

Aω
i rX, ∥¨∥s ` IPef $ F Ø Dxpxmr F q.

Crucially it follows from the characterization result that in strong enough systems,
being D-free is essentially the same as being negated. In this context, we also already
consider the scheme of comprehension for D-free formulas

DΦ0pσq
@xσ pΦpxq “0 0Ø Fef pxqq (CAef )

where σ is an arbitrary tuple of types and Φ is not free in the D-free formula Fef .
Likewise, we can define CA␣ for comprehension for all negated formulas ␣F .

Lemma 3.7.13 (folklore, see Gerhardy and Kohlenbach [70]). 1. For any formula
F in the language of Aω

i rX, ∥¨∥s (or for suitable extensions), there exists an D-free
formula Gef such that

Aω
i rX, ∥¨∥s ` IPef $ ␣F Ø Gef .

2. For any D-free formula Fef :

Aω
i rX, ∥¨∥s ` IPef $ Fef Ø ␣␣Fef .

3. Over Aω
i rX, ∥¨∥s, the following equivalences hold:

IPef Ø IP␣ and CAef Ø CA␣.

In the context of the semi-intuitionistic systems, there is no need anymore to rely
on strong majorizability since bar-recursion is not needed in that context as choice
principles are intuitionistically weak. In that way, we here rely on the “plain” notion
of majorizability of Howard [79], again extended to the abstract types similar to the
extensions from [71].

Definition 3.7.14. The “plain” majorizability relation Áτ is defined recursively on the
type via5

$

’

’

’

&

’

’

’

%

n Á0 m :“ n ě m,

n ÁX x :“ n ě ∥x∥ ,

x˚ Áτpξq x :“ @y˚ξ
p

, yξpy˚ Áξ y Ñ x˚y˚ Áτ xyq.

5We here use Á for both the strong and “plain” majorizability relation but the context will make
it clear which relation is meant.
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The standard structure Sω,X is defined as before. Analogous to the previous Lemma
3.7.7, we also get the following majorizability result for the ordinary notion of majoriz-
ability (where the interpretations of the additional constants of the respective systems,
that turn Sω,X into a model of said systems, are defined as before):

Lemma 3.7.15. Let pX, ∥¨∥q be a (nontrivial) normed space, A an m-accretive operator
and JAγ its resolvent with parameter γ ą 0. Then Sω,X is a model of Vωi ` IPef (for a
suitable interpretation of the additional constants). Moreover, for any closed term t of
Vωi , one can construct a closed term t˚ of Aω

i such that

Sω,X |ù @n0

ˆ

n ě
⃦⃦
cX ´X J

A
γr cX

⃦⃦
X
,mγr, γr, ∥cX∥X Ñ t˚pnq Á t

̇

.

The result holds with suitable modifications (see Lemma 3.7.7) also for Vωi,p and T ω
i,ppq.

Combining the soundness of the modified realizability interpretation with the ma-
jorizability notion (which essentially amounts to applying the monotone modified real-
izability interpretation, as first considered in [94]), we get the following result on bound
extraction for the semi-constructive systems for set-valued accretive and monotone op-
erators. This result (which, as mentioned before, was stated for T ω

i,ppq already in [119])
is a natural extension of the results given in [70] (which are in turn based on [94]).

Theorem 3.7.16. Let δ be of degree 1 and σ, τ be arbitrary, s be a closed term of
suitable type. Let Γ␣ be a set of formulas of the form @xα

´

Cpxq Ñ Dv ďβ rx␣Dpx, vq
¯

with α, β and r arbitrary. Let B,C be arbitrary formulas with only x, y, z, u or x, y, z
free, respectively. If

Vωi ` IP␣ ` CA␣ ` Γ␣ $ @x
δ
@y ďσ pxq@z

τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq,

one can extract a Φ : Sδ ˆ Sτp ˆ N Ñ N which is primitive recursive in the sense of
Gödel and for any x P Sδ, any y P Sσ with y ďσ spxq, any z P Sτ and z˚ P Sτp with
z˚ Á z and any n P N with n ě

⃦⃦
cX ´X J

A
γr cX

⃦⃦
X
,mγr, γr, ∥cX∥X , we have

Sω,X |ù Du ď0 Φpx, z
˚, nqp␣Bpx, y, zq Ñ Cpx, y, z, uqq

whenever Sω,X |ù Γ␣ where Sω,X is defined by suitably interpreting the constants via
a (nontrivial) normed space pX, ∥¨∥q, an m-accretive operator A and its resolvent JAγ
with parameter γ ą 0.

This result hold similarly for T ω
i where the conclusion is then drawn over inner

product spaces using monotone operators with total resolvents and also for the partial
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systems Vωp and T ω
p where the conclusion is drawn over the appropriate spaces and

operators, assuming that
Ş

γą0 dompJ
A
γ q ‰ H.

Proof. At first, let @xα
´

Cpxq Ñ Dv ďβ rx␣Dpx, vq
¯

be a formula from Γ␣ and note
that using intuitionistic logic, we have

DV ď r␣␣@x pCpxq Ñ ␣Dpx, V xqq ” DV ď r@x pCpxq Ñ ␣Dpx, V xqq .

Further, we clearly have

DV ď r@x pCpxq Ñ ␣Dpx, V xqq Ñ @x
´

Cpxq Ñ Dv ďβ rx␣Dpx, vq
¯

.

So using Γ␣ can be reduced to considering formulas of the form

DV ďβpαq r␣EpV q.

Now using Lemma 3.7.13, we can replace such principles by

DV ďβpαq rE
1
ef pV q

where E 1ef arises from ␣E by Lemma 3.7.13. We denote the set of all such sentences
arising from Γ␣ in that manner by Γ1ef . Similar we can replace CA␣ by CAef and IP␣

by IPef and consequently reason over the modified system Vωi ` IPef ` CAef ` Γ1ef .
At first, regarding the handling of the axioms Γ1ef : For any axiom DV ďβpαq

rE 1ef pV q P Γ
1
ef , we add new constants V with the additional axiom

V ďβpαq r ^ E
1
ef pV q

to the system. These axioms are D-free as E 1ef is D-free and thus the soundness result
from Theorem 3.7.11 applies for this extension. By considering majorants for the
terms r, we see that these V are majorizable and thus the majorizability result from
Lemma 3.7.15 extends to this system. Then, the following proof goes through with
this modified system if Sω,X |ù Γ1ef holds (which is the case if Sω,X |ù Γ␣).

Further, we can treat CAef by reducing it to a formula of a similar form as the
formulas from Γ1ef . Note that in the principle

DΦ0pσq
@xσ pΦpxq “0 0Ø Fef pxqq ,

the functional Φ is w.l.o.g. bounded by the constant 1 function, i.e. the principle can
be equivalently rewritten as

DΦ0pσq
ď0pσq λx

σ.1@xσ pΦpxq “0 0Ø Fef pxqq .
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This is now of the same form as the formulas from Γ1ef as the inner matrix is D-free
and thus can be treated in the same manner.

We now therefore only consider the case of Vωi . The other cases can be proved
similarly. So, assume that

Vωi ` IPef $ @x
δ
@y ďσ spxq@z

τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq.

Let wmrB, v mr C be the modified realizability interpretations of B, C, respectively.
The modified realizability interpretation of the above sentence is then given by

W,U mr @xδ@y ďσ spxq@z
τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq

” @xδ@y ďσ spxq@z
τ
p@v␣v mrBpx, y, zq Ñ Wxyz mr Cpx, y, z, Uxyzqq.

As all the axioms forming Vωi from Aω
i rX, ∥¨∥s are D-free, soundness of the modified

realizability interpretation (Theorem 3.7.11) now implies that there are terms tW , tU
such that

Vω´i $ @xδ@y ďσ spxq@z
τ
p@v␣v mrBpx, y, zq Ñ tWxyz mr Cpx, y, z, tUxyzqq.

Using the characterization result (Theorem 3.7.12), we get

Vωi ` IPef $ @x
δ
@y ďσ spxq@z

τ
p␣Bpx, y, zq Ñ Cpx, y, z, tUxyzqq.

Using the majorizability result (Lemma 3.7.15), we get that there exist terms t˚Upnq, s˚pnq
such that for any n with n ě

⃦⃦
cX ´ J

A
γr cX

⃦⃦
,mγr, |γr|, ∥cX∥:

Sω,X |ù t˚Upnq Á tU ^ s
˚
pnq Á s^ @xδ@y ďσ spxq@z

τ
p␣Bpx, y, zq Ñ Cpx, y, z, tUxyzqq.

Now, given x P Sδ and y P Sσ with y ďσ spxq, we get Sω,X |ù s˚pnqpxMq Á spxq as in
the proof of Theorem 3.7.9 and thus Sω,X |ù s˚pnqpxMq Á y. Thus, for any z P Sτ and
any z˚ P Sτp with z˚ Á z:

Sω,X |ù t˚Upnqpx
M , s˚pnqpxMq, z˚q ě tUxyz.

With Φpx, z˚, nq :“ t˚Upnqpx
M , s˚pnqpxMq, z˚q, this gives that

Sω,X |ù Du ď0 Φpx, z
˚, nqp␣Bpx, y, zq Ñ Cpx, y, z, uqq

for any x P Sδ and y P Sσ with y ďσ spxq as well as any z P Sτ and any z˚ P Sτp with
z˚ Á z.



4 A proof-theoretic metatheorem for nonlin-
ear semigroups generated by an accretive
operator

4.1 Introduction

In this chapter, we now establish the logical tools necessary to treat nonlinear semi-
groups generated by accretive operators (with applications of these systems presented
later on). Already since the pioneering studies of Browder [27], Kato [84] and Komura
[123], a major tool in the study of nonlinear evolution equations has been the theory of
nonlinear semigroups and through the notion of the generator, these are in particular
connected to the theory of accretive operators with a range of correspondences via
analogs of the Hille-Yosida theorem.

One of the most important basic results in that context is the representation the-
orem due to Crandall and Liggett [50] of the solution semigroup associated with the
Cauchy problem

$

&

%

u1ptq P ´Auptq, 0 ă t ă 8

up0q “ x
(:)

over a Banach space X for a given set-valued accretive operator A : X Ñ 2X . It is
straightforward to show that any solution1 is unique as A is accretive and if the system
is solvable2, then one can consider the family of operators Sptqx “ uxptq on domA

induced by the solutions uxptq to p:q with initial values x P domA and for t ě 0. As

1A function u : r0,8q Ñ X is a solution of p:q if up0q “ x, uptq is absolutely continuous, differen-
tiable almost everywhere in p0,8q and satisfies p:q almost everywhere. Note that this is often called
a strong solution but we omit the prefix strong in the following.

2As shown by Crandall and Liggett [50], this is (for strong solutions) in general not the case even
for A m-accretive and domA “ X.

50
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these operators are continuous in x, one can consider the resulting extensions to domA

which in that way generate the semigroup S “ tSptq | t ě 0u on domA associated
with p:q. As shown by Brezis and Pazy [25], this solution semigroup, if existent, has a
particular fundamental representation in terms of a so-called exponential formula:

uxptq “ lim
nÑ8

ˆ

Id`
t

n
A

̇´n

x.

As shown subsequently by Crandall and Liggett [50], this formula actually always
generates a nonexpansive semigroup on domA and thus facilitates a general study of
equations like (:) even in the absence of solutions.

Since the 1970s, an extensive range of results has been established in the theory
of these semigroups and the initial value problems in the sense of (:) associated with
them, in particular in regard to the asymptotic behavior of the solutions of these differ-
ential equations, their connection and use in the study of partial differential equations
and their use in the study of zeros of accretive operators (see [4, 5, 11, 149, 158], among
many more).

In this chapter, we extend the state-of-the-art of the underlying logical approach to
proof mining to be applicable to proofs which make use of nonlinear semigroups gener-
ated by an accretive operator via the exponential formula. In particular, we establish
logical metatheorems in the vein of the previously discussed results that guarantee,
quantify and allow for the extraction of the computational content of theorems per-
taining to these nonlinear semigroups. For that, we introduce new underlying logical
systems that extend those developed for the treatment of accretive operators on normed
spaces as discussed in Chapter 3 by carefully selected additional constants and corre-
sponding axioms such that proofs from the mainstream literature become formalizable.
To that end, we show that the initial key properties of these semigroups can be formally
proved in these systems.

These logical results provide a formal basis for the previous proof mining application
[108] carried out in the context of systems like p:q induced by a certain class of accretive
operators and thus remove the ad-hoc nature surrounding it. Even further however,
these results are expected to lead to many new case studies for proof mining in the
context of that theory and we will see four particular examples of such case studies in
the upcoming Chapters 5, 6 and 7.
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4.2 Nonlinear semigroups and the Crandall-Liggett

formula

The main objects of concern in this chapter are the aforementioned nonlinear (and in
this thesis in particular nonexpansive) semigroups:

Definition 4.2.1. Let C be a closed subset of X. A function S : r0,8q ˆC Ñ C is a
(nonexpansive) semigroup on C if

1. Spt` sqx “ SptqSpsqx for all x P C and all t, s ě 0,

2. Sp0qx “ x for all x P C,

3. Sptqx is continuous in t ě 0 for every x P C,

4. ∥Sptqx´ Sptqy∥ ď ∥x´ y∥ for all t ě 0 and all x, y P C.

As discussed in the introduction already, these semigroups frequently arise in the
study of differential and evolution equations as is e.g. exemplified by the initial value
problem (:). In particular, by the results of Crandall and Liggett [50], the exponential
formula discussed before always generates such a semigroup on domA which will be the
main object of study of this chapter. Concretely, the following result was established
in [50]:

Theorem 4.2.2 (Crandall and Liggett [50]). Let X be a Banach space and A an
accretive operator on X such that there exists a λ0 ą 0 with

domA Ď ranpId` λAq for all λ P p0, λ0s.

Then

Sptqx :“ lim
nÑ8

ˆ

Id`
t

n
A

̇´n

x

exists for all x P domA and t ě 0 and S “ tSptq | t ě 0u is a nonlinear semigroup on
domA.

We call S as defined above the semigroup generated by A (via the exponential or
Crandall-Liggett formula).3

3In fact, a large part of the literature calls ´A the generator of S (see e.g. [4] and the references
therein) to emphasize that the generator is dissipative. As we want to emphasize the accretiveness of
the operator, we here deviated slightly from this convention.
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In terms of a logical treatment of these semigroups generated by an accretive oper-
ator, all of the later logical considerations naturally depend on the underlying theory
of accretive operators over Banach spaces. In that vein, we crucially rely on the basic
systems introduced in Chapter 3 for the treatment of those accretive operators. How-
ever, these systems need to be extended in order to adequately deal with Theorem 4.2.2
and the associated notions. In particular, we need to provide logical treatments of an
alternative notion of accretivity, an extended range condition and the quantification
over elements from the closure of the domain of A. We begin with the first of these in
the following section.

4.3 The normalized duality map and the alternative

notion of accretivity

4.3.1 The duality map and selection functionals

Recall that for a Banach space X with its dual space

X˚ :“ tx˚ : X Ñ R | x˚ linear and continuousu,

its normalized duality mapping

J : X Ñ 2X
˚

, x ÞÑ
␣

x˚ P X˚
| xx, x˚y “ ∥x∥2 “ ∥x˚∥2

(

is non-empty for any x P X (which follows from the Hahn-Banach theorem). Many
works in the context of the theory of accretive operators in general, and the treatment
of semigroups generated by those operators in particular, rely on the use of this map-
ping and in that way, this section is concerned with a proof-theoretic treatment thereof.

As we for now want to refrain from providing a treatment for both the operator
norm on the dual space as well as for the full duality map as a set-valued mapping, we
follow the approach initiated by Kohlenbach and Leuştean in [111] where the authors
handle uses of J by only treating certain selection functionals for J (depending on the
situation at hand).

Concretely, a selection functional for the duality map J is just a map j : X Ñ X˚

such that jpxq P Jpxq for any x P X. This general property of being a selection map
can then be expressed by corresponding axioms formalizing that



54
CHAPTER 4. A PROOF-THEORETIC METATHEOREM FOR NONLINEAR

SEMIGROUPS GENERATED BY AN ACCRETIVE OPERATOR

1. jx : X Ñ R is a linear operator for any x P X;

2. ∥jx∥ ď ∥x∥ where ∥jx∥ means the operator norm;

3. jxx “ ∥x∥2 (which, as discussed in [111] already, yields ∥jx∥ “ ∥x∥).

Given a constant j of type 1pXqpXq, this can be formally encapsulated by the following
universal axiom introduced in [111]:

@xX , yX
´

jxx “R ∥x∥2X ^ |jxy| ďR ∥x∥X ∥y∥X

^ @α1, β1, uX , vX pjxpαu`X βvq “R αjxu`R βjxvq
¯

,

Notice that the operator norm is here avoided by expressing ∥jx∥ ď ∥x∥ via stipulating
|jxy|R ďR ∥x∥X ∥y∥X .

Remark 4.3.1. As discussed in [111], the functional j is not provably extensional from
the above axiom alone. As indicated by the use of the Dialectica interpretation, if
extensionality is to be treated then one has to stipulate an associated modulus of
uniform continuity which has been considered in [111]. As not all applications discussed
later do require an extensional or continuous selection map, we do not explicitly discuss
this issue in this chapter and instead refer to Chapter 5 for a further discussion.

4.3.2 The alternative notion of accretivity

Besides the purely metric notion of accretivity discussed in the preceding Chapter 3,
which also forms the basis of the systems Vωp and its intuitionistic variant Vωi,p, the more
common notion of accretivity, especially in the context of nonlinear semigroups gener-
ated by such operators, is the notion introduced by Kato in [84] where one stipulates
that A is accretive if

@px, uq, py, vq P ADj P Jpx´ yq pxu´ v, jy ě 0q .

In the language of the preceding subsection, this can be recognized as stipulating the
existence of a family of selection functionals ju,v such that, as before, ju,vx P Jpxq and
where now further xu´ v, ju,vpx´ yqy ě 0 for any u P Ax and v P Ay.

Formally, this leads us to the following modification of the previous system: we
define Vp

ω

p as the extension of AωrX, ∥¨∥s with the axiom schemes (I), (II), (IV) and
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(V) as defined in Chapter 3, now over the language extended with a constant j of type
1pXqpXqpXqpXq together with the axioms

@xX , yX , uX , vX
´

xx, ju,vxy “R ∥x∥2X ^ |xy, ju,vxy| ďR ∥x∥X ∥y∥X (J)

^ @α1, β1, zX , wX pxαz `X βw, ju,vxy “R αxz, ju,vxy ` βxw, ju,vxyq
¯

as well as

@xX , yX , uX , vX pu P Ax^ v P Ay Ñ xu´X v, ju,vpx´X yqy ěR 0q (A)

where we write ju,v for juv as well as xy, ju,vxy for juvxy.

It is rather immediately clear through the considerations made in [111] that the
bound extraction theorems contained in Theorem 3.7.9 and 3.7.16 extend to the system
Vp
ω

p as we will discuss now. For this, we first have to give a suitable interpretation to
the constant j in the model Mω,X associated with an accretive operator A as discussed
in Chapter 3. For that, note that the function j is defined by contracting the two
parameters besides u, v, namely x and y, into the one argument of j (which is feasible
as the witnessing functionals required by the notion of accretivity only have to satisfy
j P Jpx ´ yq). The interpretation of this constant in the model now has to “unwind”
this contraction (which essentially relies on a choice principle). Concretely, we are lead
to the following interpretation of j (writing M concisely for Mω,X): given an accretive
operator A Ď X ˆX, define rjsM by

rjsMpu, v, z, wq “

$

&

%

pxw, jAu,vpzqyq˝ if Dx, y P X pu P Ax^ v P Ay ^ z “X x´X yq ,

pxw, jrpzqyq˝ otherwise,

where x¨, ¨y is application in the space X˚, the functionals jAu,vpzq P Jpzq are those
guaranteed to exist by the definition of accretivity (if such x, y exist), jrpzq is a generic
element of Jpzq (which always exists as Jpzq ‰ H by the Hahn-Banach theorem) and
p¨q˝ is defined as in Chapter 2 on all of R. With this interpretation, the previous axioms
are naturally satisfied in the model Mω,X associated with an accretive operator A.

The Theorems 3.7.9 and 3.7.16 now extend to this setting as all the additional
axioms (J) and (A) are purely universal and since the additional constant j with its
interpretation in the model Mω,X can be majorized by following the ideas presented
in the proof of Theorem 2.2 in [111]: from |xy, ju,vxy| ď ∥x∥ ∥y∥, one obtains that
nm ě |xy, ju,vxy| for n ě ∥x∥ and m ě ∥y∥ which immediately yields that the function

pn,m, l, kq ÞÑ pmnq˝
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defined for n,m, k, l P N with ∥u∥ ď k, ∥v∥ ď l, ∥z∥ ď m, ∥w∥ ď n is a majorant for
j. Note that as discussed in Chapter 2, ˝ if restricted to N can be explicitly given by
a term. This majorant is in particular actually independent on the arguments induced
by the upper bounds on ∥u∥ and ∥v∥, i.e. k and l.

The question of how this notion of accretivity relates to the previously used notion
immediately arises. By formalizing one direction of the proof on the equivalence of the
two notions of accretivity (essentially due to Kato [84], see also Lemma 3.1 in Chapter
II of [4]), we obtain the following:

Proposition 4.3.2. The system Vp
ω

p proves:

1.
@xX , yX , uX , vX

`

xy, ju,vxy ěR 0Ñ @λ1 p∥x∥X ďR ∥x`X |λ|y∥Xq
˘

.

2.

@xX , yX , uX , vX , λ1
`

px, uq, py, vq P A

Ñ ∥x´X y `X |λ|pu´X vq∥X ěR ∥x´X y∥X
˘

.

Proof. 1. The conclusion is vacuously true for x “ 0. Thus assume x ‰ 0 and let
xy, ju,vxy ě 0. Then we get

∥x∥2 “ xx, ju,vxy by pJq

“ xx` |λ|y ´ |λ|y, ju,vxy by pqf ´ ERq

“ xx` |λ|y, ju,vxy ´ |λ|xy, ju,vxy by pJq

ď xx` |λ|y, ju,vxy ď ∥x` |λ|y∥ ∥x∥ by pJq.

Then ∥x∥ ď ∥x` |λ|y∥ after dividing by ∥x∥.

2. By using pAq, we have xu´ v, ju,vpx´ yqy ě 0 for u P Ax and v P Ay. Then, we
get ∥x´ y∥ ď ∥x´ y ` |λ|pu´ vq∥ by (1).

Therefore, the system Vp
ω

p is an extension of Vωp as all the axioms of Vωp are provable
in Vp

ω

p . In particular, all properties of A and its resolvent exhibited in Proposition 3.3.3
are provable in Vp

ω

p . Further, the system proves most of the basic facts about such
duality selection mappings. One such fact that will be particularly useful later on is
the following (proved – in passing – e.g. in the proof of Proposition 1.1 in Chapter I of
[4]):
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Proposition 4.3.3. The system Vp
ω

p proves:

@xX , yX , uX , vX , t1
ˆ

t ąR 0Ñ xy, ju,vxy ďR ∥x∥X
∥x`X ty∥X ´ ∥x∥X

t

̇

.

Proof. We have

∥x∥2 ` txy, ju,vxy “ xx` ty, ju,vxy ď ∥x∥ ∥x` ty∥

by axiom (J). This implies

xy, ju,vxy ď ∥x∥ ∥x` ty∥´ ∥x∥
t

.

4.3.3 The mapping x¨, ¨ys

Of crucial importance in the context of many proofs from the theory of nonlinear
semigroups, and in particular in the context of the exemplary applications considered
later in Chapter 7, is the use of a function x¨, ¨ys : X ˆX Ñ R defined by

xy, xys :“ sup txy, jy | j P Jpxqu .

As already observed in the early papers [23, 50], it is easy to see that xy, xys ă `8
for all x, y P X and in fact, since Jpxq is weak-star compact in X˚, the supremum is
actually attained.

While x¨, ¨ys is by virtue of its definition via the supremum and the duality map J

a complex object, many proofs only rely on the existence of a mapping which shares
some essential properties with x¨, ¨ys and in that case, such a mapping can indeed be
treated in the context of the systems discussed above and this is what we want to
briefly discuss in the following.

Concretely, under the “essential properties” mentioned above we will understand
the following:

1. xαy, βxys “ αβxy, xys for x, y P X and α, β ě 0;

2. xαx` y, xys “ α ∥x∥2 ` xy, xys for x, y P X and α P R;

3. |xy, xys| ď ∥y∥ ∥x∥ for x, y P X;
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4. xy, ju,vxy ď xy, xys for x, y P X and u, v P X where the ju,v are the selection
functionals for J guaranteed by accretivity;

5. x¨, ¨ys is upper-semicontinuous (in its right argument).

For a proof for the items (1), (2) and (5), see Proposition 1.2 in Chapter I of [4]. The
other items are immediate.

If all that is required of x¨, ¨ys in a proof is that it fulfills these properties, then this
proof can, under suitable uniformization of these assumptions, be treated in the context
of the above systems by adding a further constant x¨, ¨ys of type 1pXqpXq together with
the following axioms: the items (1) - (4) are readily formulated as

p`q1 @x
X , yX , α1, β1 px|α|y, |β|xys “R |α||β|xy, xysq,

p`q2 @x
X , yX , α1

`

xαx`X y, xys “R α ∥x∥2X ` xy, xys
˘

,

p`q3 @x
X , yX p|xy, xys| ďR ∥y∥X ∥x∥Xq,

p`q4 @x
X , yX , uX , vX pxy, ju,vxy ďR xy, xysq,

in the underlying language. For a suitable formulation of item (5), note that the logical
methodology based on the monotone Dialectica interpretation suggest that the assump-
tion is upgraded to the existence of a modulus ω` of uniform upper-semicontinuity.
Concretely, we will consider an additional constant ω` of type 0p0qp0q together with
the axiom

p`q5

@xX , yX , zX , b0, k0
´

∥x∥X , ∥z∥X ăR b^ ∥x´X y∥X ăR 2´ω
`pb,kq

Ñ xz, yys ďR xz, xys ` 2´k
¯

.

Note that by the uniformity on x where the rate only depends on the upper bound b,
this is actually a full modulus of uniform continuity.

The assumption that x¨, ¨ys is uniformly continuous is in particular true if the space
is uniformly smooth and will be in particular also be necessary if the proof to be treated
in some form uses the extensionality of the functional x¨, ¨ys (in its right argument) as
suggested by the logical methodology. However, if that is not the case and the proof
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can be formalized just using the axioms p`q1, . . . , p`q4, then the bound extraction the-
orem established later in particular guarantees a bound which is valid in all Banach
spaces.

Note also that accretivity is sometimes defined by explicitly using the functional
x¨, ¨ys through stating that

@px, uq, py, vq P A pxu´X v, x´X yys ěR 0q .

This version of accretivity is immediately provable in the system Vp
ω

p ` p`q4 as, using
axioms pAq and p`q4, we have

xu´ v, x´ yys ě xu´ v, ju,vpx´ yqy ě 0.

We later denote the collection of these five axioms p`q1 - p`q5 by p`q. Now, the
bound extraction results contained in Theorem 3.7.9 and 3.7.16 also extend to the
associated extended system(s) Vp

ω

p ` p`q1 ` ¨ ¨ ¨ ` p`q4 ` pp`q5q with the conclusion
drawn over any space (or where x¨, ¨ys is additionally uniformly continuous on bounded
subsets as above if p`q5 is included). Concretely, this follows as before since, for one,
all the axiom schemes are purely universal and, for another, the constant x¨, ¨ys can be
immediately majorized: from |xy, xys| ď ∥y∥ ∥x∥, we as before infer mn ě |xy, xys| for
m ě ∥y∥ and n ě ∥x∥. From this, a majorant for the accompanying interpretation
using p¨q˝ in the model Mω,X follows by Lemma 2.1.2. Further, the additional constant
ω` is immediately majorized (essentially by itself) as it is of type 0p0qp0q and so, similar
to Lemma 17.82 of [96], we have that ω`,M defined by

ω`,Mpb, kq “ maxtω`pa, jq | a ď b, j ď ku

is a majorant for ω`.

4.4 Systems for nonlinear semigroups and bound ex-

traction theorems

In this section, we now are concerned with a formal treatment of the semigroup S
generated by the exponential formula as guaranteed from the result of Crandall and
Liggett [50] previously discussed in Theorem 4.2.2. Before diving into the formal treat-
ment of these semigroups, we however need to consider some preliminary formal results
for the treatment of domA (which features in the premise of the range condition in
Theorem 4.2.2) as well as how JA0 is to be understood.
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4.4.1 The treatment of domA

Crucial both for the definition of the semigroup and for the central assumption of
Theorem 4.2.2, i.e. the range condition, is the use of the closure of the domain of
A and in the following formal investigations, quantification over elements from domA

will therefore be necessary. All the previous systems essentially only considered normed
spaces and in that context, we now first have to lift the previous treatment to take the
completeness of the underlying Banach space into account. For that, we are following
the approach laid out in [96] by which complete spaces are treated by adding another
operator C of type XpXp0qq which is meant to assign to a Cauchy sequence xXp0q a
limit Cpxq. To discard of the complex premise of Cauchyness in an axiom stating
that property, one then restricts oneself to Cauchy sequences with a fixed Cauchy rate
(similar to the representation of real numbers in finite type arithmetic discussed in
Chapter 2, see again [96]). To implicitly quantify only over all such sequences, a term
construction xp is used on the objects xXp0q. Precisely, xp is defined on the level of the
representation of the real value of the norm via sequences of rational numbers with
fixed Cauchy rate via4

xpn “X

$

&

%

xn if @k ă0 n
`

r∥xk ´X xk`1∥Xspk ` 1q ăQ 6 ¨ 2´k´1
˘

,

xk for min k ă0 n : r∥xk ´X xk`1∥Xspk ` 1q ěQ 6 ¨ 2´k´1, otherwise.

Then, completeness of the space can be formulated via the universal axiom5

@xXp0q, k0
`

∥Cpxq ´X xpk∥X ďR 2´k`3
˘

(C)

which indeed implies completeness of the space in the form that from

@k0Dn0
@m,mr ě0 n

`

∥xm ´X xmr ∥X ăR 2´k
˘

it follows provably in AωrX, ∥¨∥s ` pCq that

@k0Dm0
@l ě0 m

`

∥Cpxq ´X xl∥X ăR 2´k`1
˘

.

As further shown in [96], the constant C is majorizable and therefore we find that
the bound extraction theorems discussed above immediately extend to Vp

ω

p `pCq or any
suitable extension (e.g. by p`q).

4As discussed already in Chapter 2, we here follow the notion of [96] and denote by raspkq the k-th
element of the Cauchy sequence representation of the real number a.

5See the discussion in [96] for the necessity of the additional `3 in the formulation.



CHAPTER 4. A PROOF-THEORETIC METATHEOREM FOR NONLINEAR
SEMIGROUPS GENERATED BY AN ACCRETIVE OPERATOR 61

Now a statement where one is quantifying over the closure of the domain, i.e. a
statement of the form

@x P domA Bpxq (˚)

can, through the use of C, be (naively) expressed as

@xXp0q
`

@n0
DyXpy P Axpnq Ñ BpCpxqq

˘

.

The premise that xXp0q is a Cauchy sequence was removed through the use of xp and
C but the inclusion of the sequence in the domain, in the form of @n0DyXpy P Axpnq,
remains.

The approach is now to also remove this assumption in a similar style as the p̈-
operation by universally quantifying over the potential witnessing sequence yn and
defining a subsequent operation similar to p̈which potentially alters the sequence such
that xn P domA will always be guaranteed for any n. Concretely, for two objects x, y
of type Xp0q, we define

px æ yqn “X

$

&

%

xn if @k ď0 n pyk P Axkq ,

xk´1 for min k ď0 n : yk R Axk, otherwise.

Note that since inclusions in the graph of A are quantifier-free, the above indeed can
be defined by a closed term in the underlying language.

Now, using the operation æ in tandem with p̈, we can implicitly quantify over ele-
ments from domA by quantifying over elements of type Xp0q and thus we can express
the statement (˚) equivalently by

@xXp0q, yXp0q py0 P Ax0 Ñ BpCpx æ yqqq .

As a feasibility check for using x æ y, note first that

x æ yz “Xp0q xp æ y.

To see this, one can consider a case distinction on whether xp “ x holds or not and
simultaneously on whether x æ y “ x holds or not. We only consider the one case out
of the four where xp ‰ x and x æ y ‰ x. By definition, we then have a least k such
that r∥xk ´ xk`1∥spk` 1q ěQ 6 ¨ 2´k´1 as well as a least j such that yj R Axj. Then, it
immediately follows by definition of the operations as well as the minimality of k and
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j that

xp æ y “ px0, . . . , xk, xk, . . . q æ y

“ px0, . . . , xmintk,j´1u, xmintk,j´1u, . . . q

“ px0, . . . , xj´1, xj´1, . . . qp

“ x æ yz

where, in the third line, we wrote px0, . . . , xj´1, xj´1, . . . qp for the operation p̈ applied
to the sequence px0, . . . , xj´1, xj´1, . . . q.

Further, note that the premise y0 P Ax0 actually guarantees that pxp æ yqn P domA
for all n. For this, define

px ä yqn “X

$

&

%

yn if @k ď0 n pyk P Axkq ,

yk´1 for min k ď0 n : yk R Axk, otherwise.

Then clearly y0 P Ax0 implies pxp ä yqn P Appxp æ yqnq for any n.

4.4.2 Range conditions

A treatment for the canonical variant of a range condition

domA Ď
č

λą0

ranpId` λAq

was already briefly discussed in Chapter 3 where a formal version admissible in the
systems for bound extractions was presented with

@xX , λ1
`

x P domA^ λ ąR 0Ñ λ´1px´X J
A
λ xq P ApJ

A
λ xq

˘

.

Recall that this correctly expresses the range condition since stating that x P ranpId`
λAq is equivalent to stating that x P dompJAλ q just via the definition of the resolvent.
This latter statement is now equivalently formally encapsulated in our systems by stat-
ing the inclusion λ´1px ´X J

A
λ xq P ApJ

A
λ xq. Note also that this axiom is in particular

purely universal and thus can be used in the bound extraction theorems.

In the following, we want to consider two modifications: (1) we want to specify that
the inclusion is valid even for the closure of the domain; (2) we want to restrict the
intersection to λ ă λ0 for some real parameter λ0 ą 0. The use of such a λ0 can be
facilitated by adding two further constants and an axiom: λ0 of type 1 and mλ0 of type
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0 together with the accompanying axiom λ0 ěR 2´mλ0 providing a verifier to λ0 ą 0.
Note that the bound extraction results stay valid in the context of such an extension
if one additionally requires the parameter n from Theorem 3.7.9 to satisfy n ě |λ0|,mλ0 .

In the context of such additional constants, the above range condition can be im-
mediately modified to represent the restricted range condition

domA Ď
č

λ0ąλą0

ranpId` γAq

by considering

@xX , λ1
`

x P domA^ λ0 ąR λ ąR 0Ñ λ´1px´X J
A
λ xq P ApJ

A
λ xq

˘

.

Further, in both cases we can now consider the other main modification of stipu-
lating the range condition also for the closure of the domain, i.e.

domA Ď
č

λ0ąλą0

ranpId` γAq,

by using the above treatment of quantification over elements in the closure of the do-
main by quantification over sequences in X together with the operators C and p¨ æ ¨q.
Concretely, one rather immediately obtains the following natural extension to the clo-
sure of the domain:

@xXp0q, vXp0q, λ1
´

v0 P Ax0 ^ λ0 ąR λ ąR 0 pRCqλ0

Ñ λ´1pCpx æ vq ´X J
A
λ pCpx æ vqqq P ApJ

A
λ pCpx æ vqqq

¯

.

Similarly, we could here lift the restriction via λ0 again and get a full range condition
for the closure of the domain. We denoted this full range condition for the closure
of the domain by pRCq, but at the same time refrain from spelling this out in any
more detail here. Note however that all the other range conditions introduced here are
still purely universal and thus are admissible in the context of the bound extraction
theorems.

Further, note that e.g. from pRCqλ0 , the statement

@xX , λ1
`

x P domA^ λ0 ąR λ ąR 0Ñ λ´1px´X J
A
λ xq P ApJ

A
λ xq

˘

is provable: if x P domA with v P Ax, consider the constant-x and constant-v sequences
x and v, respectively. Then clearly px æ vqn “X x for any n and thus provably
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Cpx æ vq “X x by pCq. The statement pRCqλ0 yields

λ´1pCpx æ vq ´X J
A
λ pCpx æ vqqq P ApJ

A
λ pCpx æ vqqq

for λ0 ą λ ą 0 and the quantifier-free extensionality rule (as v P Ax is quantifier-free)
yields λ´1px´X JAλ xq P ApJAλ xq.

In the following remark, we lastly collect some subtleties regarding the extension
of the metatheorems to systems with these types of axioms.

Remark 4.4.1. The metatheorems exhibited in Theorems 3.7.9 and 3.7.16 require as an
assumption that

Ş

λą0 domJ
A
λ ‰ H, a requirement which would be substantiated via

a full range condition together with a witness for domA ‰ H (which was previously
– in some sense but not precisely – represented by cX). In the context of the above
restricted range conditions, it is however feasible that

Ş

λą0 domJ
A
λ is actually empty

while only
Ş

λ0ąλą0
domJAλ ‰ H holds. It should be noted that in this case, Theorems

3.7.9 and 3.7.16 can be modified to stay valid if cX is interpreted by a point in this
restricted intersection. Therefore, if we in the following write Vp

ω

p ` pCq ` pRCqλ0 or
consider any extension, we consider the axioms (IV) and (V) to be replaced by

(IV)1 λ0 ´ 2m
1
γr ěR γr ěR 2´mγr ,

(V)1 dX P AcX ,

where dX is a new constant of type X and m1
γr is a new constant of type 0, the latter

witnessing that λ0 ą γr. The majorization of all resolvents JAγ for γ P p0, λ0q is then
achieved similar to before via

⃦⃦
JAγ x

⃦⃦
ď ∥x∥` 2 ∥cX∥`

ˆ

2`
γ

γr

̇ ⃦⃦
cX ´ J

A
γr cX

⃦⃦
ď ∥x∥` 2 ∥cX∥` p2γr` γq ∥dX∥ .

In that case however, the interpretation of the resolvent constant JχA in the models
Mω,X and Sω,X has to be modified to set rJχAsMpx, γq “ 0 for all x if γ ěR λ0

(and similar for Sω,X). Therefore, the extracted bounds only remain meaningful if the
theorem does not utilize these resolvents. If it does, further modifications are necessary
but we refrain from discussing this here any further as this situation does not arise in
this chapter or even in this thesis for that matter.
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4.4.3 The resolvent at zero

Something left open by the axioms characterizing the resolvent discussed in Chapter 3
is the behavior of JA0 . This, however, takes a special role in the context of the treatment
of nonlinear semigroups S generated by the associated operator A due to the prominent
use often made of Sp0q.

The reason for this previous ambiguity in the treatment of the resolvent at 0 was
the fact that the resolvent does not always behave continuously at 0 if it is naively
defined: while the definition of the resolvent via

JAγ “ pId` γAq
´1

suggests JA0 x “ x, it is well known (see [11]) that already in Hilbert spaces with a max-
imally monotone operator A, one has JAt x Ñ PdomAx for t Ñ 0 and all x P dompJAt q.
Therefore, extensionality for the constant JχA in its first argument t at 0 can in general
not be expected if JA0 is defined in this way and the previous axiomatization left the
definition of JA0 open.

In the following, we nevertheless consider the set of axioms discussed previously
forming Vp

ω

p to actually be extended with the sixth axiom

(VI) @xX
`

JA0 x “X x
˘

,

stating the defining equality JA0 “ pId` 0Aq´1 “ Id.

Now, the above result that JAt x Ñ PdomAx for t Ñ 0 extends to Banach spaces at
least partially in the sense that one can show (see Proposition 3.2 of Chapter II in [4])
that JAt xÑ x for λ0 ą tÑ 0 and

x P domAX
č

λ0ąλą0

domJAλ .

Therefore, in the presence of a range condition, we should at least have a continuous
and thus extensional behavior of the resolvent defined in this manner at t “ 0 for all
x P domA and this can indeed be formally verified in the accompanying system.

Lemma 4.4.2. Vp
ω

p ` pCq ` pRCqλ0 proves:

@xXp0q, vXp0q, λ1, k0

˜

v0 P Ax0 ^ 0 ăR λ ăR min

"

2´pk`1q

maxt1, ∥pxp ä vqk`5∥Xu
, λ0

*

Ñ
⃦⃦
Cpx æ vq ´X J

A
λ Cpx æ vq

⃦⃦
X
ďR 2´k

¸

.
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Proof. First, by Proposition 3.3.3, we have

@xX , vX , λ1
`

0 ăR λ ăR λ0 ^ v P AxÑ
⃦⃦
x´ JAλ x

⃦⃦
ď λ ∥v∥

˘

as using pRCqλ0 and the quantifier-free extensionality rule, we obtain x P dompJAλ q for
all λ P p0, λ0q as discussed before. So, for xXp0q and vXp0q such that v0 P Ax0 for all n,
we obtain Cpx æ vq P dompJAλ q for all λ P p0, λ0q again by pRCqλ0 . Therefore, using
pCq and the nonexpansivity of JAλ on its domain:⃦⃦

Cpx æ vq ´ JAλ Cpx æ vq
⃦⃦
ď ∥Cpx æ vq ´ pxp æ vqn∥`

⃦⃦
pxp æ vqn ´ J

A
λ pxp æ vqn

⃦⃦
`
⃦⃦
JAλ pxp æ vqn ´ J

A
λ Cpx æ vq

⃦⃦
ď 2 ∥Cpx æ vq ´ pxp æ vqn∥`

⃦⃦
pxp æ vqn ´ J

A
λ pxp æ vqn

⃦⃦
ď 2 ¨ 2´n`3 ` λ ∥pxp ä vqn∥ .

Choosing n “ k ` 5, we get that for λ ď 2´pk`1q{maxt1, ∥pxp ä vqk`5∥u:⃦⃦
Cpx æ vq ´ JAλ Cpx æ vq

⃦⃦
ď 2´k.

This property will be sufficient in the following as the semigroup operates only on
domA.

4.4.4 The semigroup

For treating the semigroup on domA from Theorem 4.2.2, it is very instructive to first
consider the operator S solely on domA. In that case, we can facilitate a treatment by
directly adding a further constant S of type XpXqp1q to the underlying language to-
gether with an axiom stating that S on domA arises from the Crandall-Liggett formula,
i.e. that

Sptqx “ lim
nÑ8

ˆ

Id`
t

n
A

̇´n

x

for any x P domA. This can be achieved by further adding a constant ωS of type
0p0qp0qp0q together with the axiom

@k0, b0, T 0, xX , vX , t1
ˆ

v P Ax^ ∥x∥X , ∥v∥X ăR b^ |t| ăR T (S1)

Ñ @n ě0 ω
S
pk, b, T q

´

|t|{n ăR λ0 Ñ
⃦⃦
Sp|t|qx´X pJ

A
|t|{nq

nx
⃦⃦
X
ďR 2´k

¯

̇

,
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expressing that ωS represents a rate of convergence uniform for elements x from
bounded subsets Bbp0qXdomA and uniform in t for bounded intervals r0, T s (where we
use the absolute value to disperse of the universal premise t ě 0). The term pJA

|t|{nq
n

used here is a shorthand for a term Iptqpnqpnq where Iptqpmq is a closed term of type
XpXqp0q defined using the recursors of the underlying language of AωrX, ∥¨∥s (recall
Chapter 2) via Iptqpmqp0q “ λx.x and Iptqpmqpn ` 1q “ λx.pJAt{mpIptqpmqpnqpxqqq.

6

Note also that we in particular treat Sp0qx via JA0 x by using the absolute value |t| in
the above formula to implicitly quantify over non-negative real numbers.

Such a use of a rate of convergence is in particular justified by the fact that the proof
given in [50] of the Cauchy-property of the sequence pJAt{nq

nx for given t ą 0 and x P

domA can be immediately recognized to be provable in the system Vp
ω

i,p`pCq` pRCqλ0
(naturally defined as Vp

ω

p ` pCq ` pRCqλ0 just over Aω
i rX, ∥¨∥s instead of AωrX, ∥¨∥s).

Therefore, the extension of the semi-constructive metatheorem (Theorem 3.7.16) to this
system guarantees the existence of a rate of Cauchyness for pJAt{nq

nx and consequently
the existence of a modulus ωS as characterized by the above axiom which can moreover
be extracted from the proof given in [50] (which is in fact rather immediate and was
essentially already observed in [50]): one can (formally) show that given x P domA

with witness v P Ax and t ě 0, we have

⃦⃦
pJAt{nq

nx´ pJAt{mq
mx

⃦⃦
ď 2t

ˇ

ˇ

ˇ

ˇ

1

m
´

1

n

ˇ

ˇ

ˇ

ˇ

1{2

∥v∥ .

Thus for T ě t and b ě ∥v∥, we have for a given ε ą 0 that for any m ě n ě
Q

4T 2b2

ε2

U

:

⃦⃦
pJAt{nq

nx´ pJAt{mq
mx

⃦⃦
ď 2Tb

ˇ

ˇ

ˇ

ˇ

1

m
´

1

n

ˇ

ˇ

ˇ

ˇ

1{2

ď 2Tb
1
?
n

ď 2Tb
1

b

P

4T 2b2

ε2

T

ď ε.

Thus the mapping

ωSpk, b, T q “ 22k`2T 2b2

6We consider Iptqpmq to be trivially defined at m “ 0
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is a possible choice for the rate of convergence7 in the exponential formula as derived
from the proof and the upper bound b is here actually even independent of ∥x∥.

Now, the treatment of the extension of S to domA is best motivated by consid-
ering how it is usually defined in the literature: Sptq as a mapping domA Ñ X is
nonexpansive and thus continuous. The object Sptqx for x P domA is then defined by
considering that as x P domA, there exists a sequence xn Ñ x with xn P domA. By
convergence, the sequence xn is Cauchy and by continuity of Sptq, the sequence Sptqxn
is Cauchy as well and thus converges in a Banach space by completeness. Then Sptqx
is identified with the limit of that sequence. This crucial use of the completeness of the
space prompts us to work in the context of the formal treatment of complete spaces
and domA as discussed before.

In that vein, we now want to provide an axiom classifying the behavior of Sptq for
elements of domA by essentially stating that for any x and any Cauchy sequence xn Ñ x

with xn P domA, Sptqxn converges to Sptqx. The quantification over all elements of
domA together with their generating sequences can now be achieved as discussed in
Section 4.4.1 and in that way, the axiom stating the resulting behavior for Sptqx then
takes the form of the following universal axiom8

@xXp0q, yXp0q, t1
`

y0 P Ax0 (S2)

Ñ @n0
`

∥Sp|t|qpCpx æ yqq ´X Sp|t|qppxp æ yqnq∥X ďR 2´n`3
˘ ˘

.

Note again that the behavior of Sp0q is implicitly characterized by the above axioms
through the use of |t|. We write pSq for pS1q`pS2q as well asHω

p for Vp
ω

p`pCq`pRCqλ0`
pSq (noting again the additional axioms from Remark 4.4.1 and Section 4.4.3).

Now, the above axioms forming the theory Hω
p are suitable for formalizing large

portions on the theory of nonlinear semigroups as generated by the Crandall-Liggett
formula and as a sort of litmus test, we at least provide here sketches of formal proofs
in the resulting system of the other main semigroup properties which arise pretty
much directly by formalizing the proofs given in [50]. For that, however, some careful
consideration for iterations of the semigroup map are required here. Concretely, to

7Note that although the function is exponential in k, this is just due to requiring an error of the
form 2´k. Abstracting ε “ 2´k, the rate is actually linear in 1{ε.

8Note again that the additional `3 is included here as the axiom pCq requires this modification in
order to have a model as discussed before and the same rate applies to the semigroup-images here as
the semigroup is nonexpansive.



CHAPTER 4. A PROOF-THEORETIC METATHEOREM FOR NONLINEAR
SEMIGROUPS GENERATED BY AN ACCRETIVE OPERATOR 69

make expressions like SptqSpsqx meaningful, we have to consider how Spsqx P domA

is reflected in the system. Based on the representation of domA chosen above (which
also features in how the extension of S is formally defined by means of the axiom (S2))
we thus first have to see how Sp|t|qCpxq with xn P domA for all n can be expressed as
an element of the form Cpuq for uXp0q such that un P domA for all n. To find such a u,
note first that the convergence result encoded by (S1) for elements from domA extends
by means of (S2) to domA in the following way: provably in Hω

p , we have

@xXp0q, yXp0q, t1, k0DN0
@n ě0 N

ˆ

y0 P Ax0 ^ |t|{n ăR λ0

Ñ
⃦⃦
Sp|t|qpCpx æ yqq ´X

`

JA|t|{n
˘n
pCpx æ yqq

⃦⃦
X
ďR 2´k

̇

were moreover (although we avoid spelling this out here) the choice functional for N
can be explicitly given by closed terms build up from ωS (and the other constants).
To see the provability of the above statement, let k, x, y, t be arbitrary with y0 P Ax0.
Then using nonexpansivity of the semigroup and the resolvent (see item (4) of the
following Lemma 4.4.39), we have⃦⃦

Sp|t|qpCpx æ yqq ´
`

JA|t|{n
˘n
pCpxp æ yqq

⃦⃦
ď

⃦⃦
Sp|t|qpCpxp æ yqq ´ Sp|t|qppxp æ yqpk`5qq

⃦⃦
`
⃦⃦
Sp|t|qppxp æ yqpk`5qq ´

`

JA|t|{n
˘n
ppxp æ yqpk`5qq

⃦⃦
`
⃦⃦
`

JA|t|{n
˘n
ppxp æ yqpk`5qq ´

`

JA|t|{n
˘n
pCpx æ yqq

⃦⃦
ď

⃦⃦
Cpx æ yq ´ pxp æ yqpk`5q

⃦⃦
`
⃦⃦
Sp|t|qppxp æ yqpk`5qq ´

`

JA|t|{n
˘n
ppxp æ yqpk`5qq

⃦⃦
`
⃦⃦
pxp æ yqpk`5q ´ Cpx æ yq

⃦⃦
ď 2´k´1 `

⃦⃦
Sp|t|qppxp æ yqpk`5qq ´

`

JA|t|{n
˘n
ppxp æ yqpk`5qq

⃦⃦
ď 2´k

for any n large enough such that |t|{n ă λ0 as well as⃦⃦
Sp|t|qppxp æ yqpk`5qq ´

`

JA|t|{n
˘n
ppxp æ yqpk`5qq

⃦⃦
ď 2´pk`1q

which can be achieved via (S1). In that way, writing Nt,x,y for the choice functionals for
the quantifier over N in the above statement, we find that Sp|t|qCpx æ yq is provably

9The first four items of this lemma in particular do not rely on this construction as it will only
become necessary in the fifth item. Thus, there is no circularity induced by this construction.
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“X-equal to

C

ˆˆ

´

JA|t|{Nt,x,ypkq

¯Nt,x,ypkq

Cpx æ yq

̇

k

̇

.

We write Sp|t|qCpx æ yq in the following for this expression (where one should note again
that the N -functionals can be explicitly computed, albeit being somewhat messy). In
particular note that

´

JA|t|{Nt,x,ypkq

¯Nt,x,ypkq

Cpx æ yq P domA

with the witnessing terms defined in terms of the Yosida approximates (which follows
provably from (RC)λ0 if we w.l.o.g. assume that the functionals N , for a given t as a
parameter, are large enough such that |t|{Nt,x,ypkq ă λ0). In that way, Sp|t|qSp|s|qCpx æ
yq can be meaningfully represented by

Sp|t|qSp|s|qCpx æ yq “X Sp|t|qSp|s|qCpx æ yq.

Note that the system can nevertheless not prove that

Sp|t|qSp|s|qCpx æ yq “X Sp|t|qSp|s|qCpx æ yq

and so the latter is, in some sense, the only way to talk about iterations meaningfully.

We now get to the main properties of nonexpansive semigroups:

Lemma 4.4.3. The following are provable in Hω
p :

1. @xX , yX , t1, s1 py P AxÑ ∥Sp|t|qx´X Sp|s|qx∥X ďR 2||t| ´ |s|| ∥y∥Xq.

2.

$

&

%

@xX , yX , t1
`

x P domA^ y P domA

Ñ ∥Sp|t|qx´X Sp|t|qy∥X ďR ∥x´X y∥X
˘

.

3.

$

&

%

@xXp0q, vXp0q, t1, s1
´

v0 P Ax0 ^ ||t| ´ |s|| ďR 2´pk`2q{maxt1, ∥pxp ä vqk`5∥u

Ñ ∥Sp|t|qCpx æ vq ´X Sp|s|qCpx æ vq∥X ďR 2´k
¯

.

4.

$

’

’

’

&

’

’

’

%

@xXp0q, vXp0q, yXp0q, wXp0q, t1
´

v0 P Ax0 ^ w0 P Ay0

Ñ ∥Sp|t|qpCpx æ vqq ´X Sp|t|qpCpy æ wqq∥X
ďR ∥Cpx æ vq ´X Cpy æ wq∥X

¯

.

5.

$

&

%

@xXp0q, vXp0q, t1, s1
´

v0 P Ax0

Ñ Sp|t| ` |s|qpCpx æ vqq “X Sp|t|qSp|s|qpCpx æ vqq
¯

.
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Proof. 1. At first, note that provably in Hω
p , we have

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@x, y, µ, λ, n,m

ˆ

λ0 ą |λ| ě |µ| ^ n ě m ě 1^ y P Ax

Ñ

⃦⃦⃦
pJA
|µ|q

nx´ pJA
|λ|q

mx
⃦⃦⃦
ď

ˆ

ppn|µ| ´m|λ|q2 ` n|µ|p|λ| ´ |µ|qq
1{2

`pm|λ|p|λ| ´ |µ|q ` pm|λ| ´ n|µ|q2q
1{2

̇

∥y∥
̇

which can be shown by formalizing the proof given in [50]. Instantiating this
with m “ n, µ “ |t|{n and λ “ |s|{n for t, s of type 1, where w.l.o.g. |s| ě |t|,
and where n is large enough that |t|{n, |s|{n ă λ0, we obtain

⃦⃦
pJA|t|{nq

nx´ pJA|s|{nq
nx

⃦⃦
ď

ˆ

`

p|t| ´ |s|q2 ` |t|p|s|{n´ |t|{nq
˘1{2

`
`

|s|p|s|{n´ |t|{nq ` p|s| ´ |t|q2
˘1{2

̇

∥y∥

for any n ě 1 and any x, y with y P Ax. Let k be arbitrary. Using axiom pSq, we
get

∥Sp|t|qx´ Sp|s|qx∥ ď
⃦⃦
Sp|t|qx´ pJA|t|{nq

nx
⃦⃦
`
⃦⃦
pJA|t|{nq

nx´ pJA|s|{nq
nx

⃦⃦
`
⃦⃦
Sp|s|qx´ pJA|s|{nq

n
⃦⃦

ď
2

k ` 1
`
⃦⃦
pJA|t|{nq

nx´ pJA|s|{nq
nx

⃦⃦
ď

2

k ` 1
`

´

`

p|t| ´ |s|q2 ` |t|p|s|{n´ |t|{nq
˘1{2

`
`

|s|p|s|{n´ |t|{nq ` p|s| ´ |t|q2
˘1{2

¯

∥y∥

for any n additionally satisfying n ě ωSpk, b, T q with b ą ∥x∥ , ∥v∥ and T ą |t|, |s|.
This implies

∥Sp|t|qx´ Sp|s|qx∥ ď 2

k ` 1
` 2||t| ´ |s|| ∥y∥

and the claim follows as k was arbitrary

2. By Proposition 3.3.3 (essentially), we have provably that⃦⃦
JA|λ|x´ J

A
|λ|y

⃦⃦
ď ∥x´ y∥

for any λ0 ą λ of type 1 and any x, y of type X. By induction, we get⃦⃦
pJA|t|{nq

nx´ pJA|t|{nq
ny
⃦⃦
ď ∥x´ y∥
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for any t of type 1, any x, y of typeX and any n large enough such that |t|{n ă λ0.
Now, let k be arbitrary. Then we get

∥Sp|t|qx´ Sp|t|qy∥ ď
⃦⃦
Sp|t|qx´ pJA|t|{nq

nx
⃦⃦
`
⃦⃦
pJA|t|{nq

nx´ pJA|t|{nq
ny
⃦⃦

`
⃦⃦
Sp|t|qy ´ pJA|t|{nq

ny
⃦⃦

ď
2

k ` 1
`
⃦⃦
pJA|t|{nq

nx´ pJA|t|{nq
ny
⃦⃦

ď
2

k ` 1
` ∥x´ y∥

for any n ě ωSpk, b, T q with b ą ∥x∥ , ∥y∥ , ∥v∥ , ∥w∥ with v P Ax and w P Ay as
well as T ą |t| using pSq. As k was arbitrary, we get the claim.

3. Using item (1) and axiom (S2), we have

∥Sp|t|qCpx æ vq ´ Sp|s|qCpx æ vq∥

ď ∥Sp|t|qCpx æ vq ´ Sp|t|qpxp æ vqn∥

` ∥Sp|t|qpxp æ vqn ´ Sp|s|qpxp æ vqn∥

` ∥Sp|s|qpxp æ vqn ´ Sp|s|qCpx æ vq∥

ď 2 ¨ 2´n`3 ` ∥Sp|t|qpxp æ vqn ´ Sp|s|qpxp æ vqn∥

ď 2 ¨ 2´n`3 ` 2||t| ´ |s|| ∥pxp ä vqn∥ .

Choosing n “ k`5, we get the claim for ||t|´|s|| ď 2´pk`2q{maxt1, ∥pxp ä vqk`5∥u.

4. Using item (2), axiom (S2) as well as (C), we have

∥Sp|t|qpCpx æ vqq ´ Sp|t|qpCpy æ wqq∥

ď ∥Sp|t|qpCpx æ vqq ´ Sp|t|qppxp æ vqkq∥

` ∥Sp|t|qppxp æ vqkq ´ Sp|t|qppyp æ wqkq∥

` ∥Sp|t|qpCpy æ wqq ´ Sp|t|qppyp æ wqkq∥

ď 2 ¨ 2´k`3 ` ∥Sp|t|qppxp æ vqkq ´ Sp|t|qppyp æ wqk∥

ď 2 ¨ 2´k`3 ` ∥pxp æ vqk ´ pyp æ wqk∥

ď 2 ¨ 2´k`3 ` ∥pxp æ vqk ´ Cpx æ vq∥

` ∥Cpx æ vq ´ Cpy æ wq∥

` ∥Cpy æ wq ´ pyp æ wqk∥

ď 2 ¨ 2´k`3 ` 2 ¨ 2´k`3 ` ∥Cpx æ vq ´ Cpy æ wq∥ .

As this holds for arbitrary k, we get the claim.
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5. Let x P domA. Using the previously introduced notation of ¨ , we write
$

&

%

rSp|t|qs1x “ Sp|t|qx,

rSp|t|qsm`1x “ Sp|t|q prSp|t|qsmxq.

Note that provably
rSp|t|qsm`1x “ Sp|t|q prSp|t|qsmxq

which follows as in the discussion previous to this lemma. We now show by
induction on m that provably

@kDNm@n ě Nm

`

|t|{n ă λ0 Ñ
⃦⃦
rSp|t|qsmx´

``

JA|t|{n
˘m˘n

x
⃦⃦
ď 2´k

˘

.

The induction base follows from (S1) as was already discussed above. For the
induction step, let Nmpkq be the choice function of the above statement. Then for
arbitrary k, we get (using extensionality, see Remark 4.4.4, and nonexpansivity
of Sp|t|q on the closure of the domain) that⃦⃦⃦

rSp|t|qsm`1x´
´

`

JA|t|{n
˘m`1

¯n

x
⃦⃦⃦

ď
⃦⃦
Sp|t|qrSp|t|qsmx´

`

JA|t|{n
˘n ``

JA|t|{n
˘m˘n

x
⃦⃦

ď
⃦⃦
Sp|t|qrSp|t|qsmx´

`

JA|t|{n
˘n
rSp|t|qsmx

⃦⃦
`
⃦⃦
`

JA|t|{n
˘n
rSp|t|qsmx´

`

JA|t|{n
˘n ``

JA|t|{n
˘m˘n

x
⃦⃦

ď
⃦⃦
Sp|t|qrSp|t|qsmx´

`

JA|t|{n
˘n
rSp|t|qsmx

⃦⃦
`
⃦⃦
rSp|t|qsmx´

``

JA|t|{n
˘m˘n

x
⃦⃦

ď 2´k

for all n such that |t|{n ă λ0, n ě Nmpk` 1q and such that n is large enough for⃦⃦
Sp|t|qrSp|t|qsmx´

`

JA|t|{n
˘n
rSp|t|qsmx

⃦⃦
ď 2´pk`1q

which can be constructed as in the discussion previous to this lemma. Therefore,
given k, we in particular get

∥rSp|t|qsmx´ Spm|t|qx∥

ď
⃦⃦
rSp|t|qsmx´

``

JA|t|{n
˘m˘n

x
⃦⃦
`
⃦⃦
``

JA|t|{n
˘m˘n

x´ Spm|t|qx
⃦⃦

ď
⃦⃦
rSp|t|qsmx´

``

JA|t|{n
˘m˘n

x
⃦⃦
`
⃦⃦
`

JAm|t|{mn
˘mn

x´ Spm|t|qx
⃦⃦

ď 2´pk`1q ` 2´pk`1q

ď 2´k
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for any n such that

n ě maxtNmpk ` 1q, ωSpk ` 1, b,mT qu

for b ą ∥x∥ , ∥v∥ and T ą |t| using (S1) and the previous result. As k was
arbitrary, we get rSp|t|qsmx “ Spm|t|qx. Using this, we provably we get

S

ˆ

l

k
`
r

s

̇

x “ S

ˆ

ls` rk

ks

̇

x

“

„

S

ˆ

1

ks

̇ȷls`rk

x

“

„

S

ˆ

1

ks

̇ȷls „

S

ˆ

1

ks

̇ȷrk

x

“

„

S

ˆ

1

ks

̇ȷls

S

ˆ

rk

ks

̇

x

“ S

ˆ

ls

ks

̇

S

ˆ

rk

ks

̇

x

“ S

ˆ

l

k

̇

S
´r

s

¯

x

where we have used the above items for extensionality of S (see again Remark
4.4.4). A continuity argument using item (3) now yields the claim for arbitrary
reals |t| and |s|. Further, the claim extends to the closure of the domain via
another usual continuity argument. Both we do not spell out here.

Remark 4.4.4. The constant Sptqx is provably extensional in x P domA for any t ě 0

by (4) as well as in t ě 0 for any x P domA by (3).

Remark 4.4.5. Note that by the proof of the above item (3), we have that if the operator
A is majorizable in the sense of Chapter 3, i.e. if there exists a function A˚ : N Ñ N
such that

@b P N@x P domAXBbp0qDy P X p∥y∥ ď A˚b^ y P Axq ,

then the semigroup S generated by A through the Crandall-Liggett formula is uniformly
equicontinuous in the sense of [109], i.e. there exists a function ω : N ˆ N ˆ N Ñ N
such that

@b P N@q P domAXBbp0q@m P N@K P N@t, t1 P r0, Ks
`

|t´ t1| ă 2´ωK,bpmq Ñ ∥Sptqq ´ Spt1qq∥ ă 2´m
˘

.
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Concretely, assuming w.l.o.g. that A˚ is nondecreasing, this so-called modulus of uni-
form equicontinuity for S can be given by

ωK,bpmq “ pm` 2qmaxt1, A˚pb` 1qu.

Note in particular that this modulus is independent of the parameter K.

We now come to the main theoretical result of this chapter which comprises a proof-
theoretic bound extraction theorem for the system Hω

p akin to the usual metatheorems
of proof mining. The proof of this metatheorem follows the general outline of the proof
of Theorem 3.7.9 discussed in Chapter 3 and since the proof is very much standard
in this way, we omit most of the details and in the following mainly just sketch the
majorizability of the new constant S.

Theorem 4.4.6. Let τ be admissible, δ be of degree 1 and s be a closed term of Hω
p

of type σpδq for admissible σ. Let B@px, y, z, uq/CDpx, y, z, vq be @-/D-formulas of Hω
p

with only x, y, z, u/x, y, z, v free. Let ∆ be a set of formulas of the form @aδDb ďσ

ra@cγFqf pa, b, cq where Fqf is quantifier-free, the types in δ, σ and γ are admissible and
where r is a tuple of closed terms of appropriate type. If

Hω
p `∆ $ @xδ@y ďσ spxq@z

τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : Sδ ˆ Sτp ˆNˆNN á N which is total and
(bar-recursively) computable on MδˆMτpˆNˆNN and such that for all x P Sδ, z P Sτ ,
z˚ P Sτp and all n P N and ω P NN, if z˚ Á z and ω Á ωS as well as n ěR mγr, |γr|, ∥cX∥X ,
∥dX∥X , |λ0|, mλ0, m1

γr, then

Sω,X |ù @y ďσ spxq
`

@u ď0 Φpx, z
˚, n, ωqB@px, y, z, uq

Ñ Dv ď0 Φpx, z
˚, n, ωqCDpx, y, z, vq

˘

holds for Sω,X whenever Sω,X |ù ∆ where Sω,X is defined via any (nontrivial) Banach
space pX, ∥¨∥q with

1. χA interpreted by the characteristic function of an accretive operator A satisfying
the range condition domA Ď

Ş

λ0ąγą0
domJAγ ,

2. JχA interpreted by the corresponding resolvents JAγ x for λ0 ą γ ě 0 and x P

dompJAγ q, and by 0 otherwise,

3. j interpreted as discussed in Section 4.3.2,
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4. S interpreted by the semigroup generated by A via the Crandall-Liggett formula
on r0,8q ˆ domA, and 0 otherwise,

5. dX , cX interpreted by a pair pc, dq P A witnessing A ‰ H,

6. ωS interpreted by a rate of convergence for the limit generating the semigroup on
domA,

and with the other constants naturally interpreted so that the respective axioms are
satisfied.

Further: If τp is of degree 1, then Φ is a total computable functional. If the claim
is proved without DC, then τ may be arbitrary and Φ will be a total functional on
Sδ ˆSτpˆN which is primitive recursive in the sense of Gödel. In that latter case, also
plain majorization can be used instead of strong majorization.

Proof. The proof given in Chapter 3 immediately extends to this system, noticing
the additional considerations on the model of majorizable functionals discussed in the
context of j as well as Remark 4.4.1. In particular, note also that all axioms added to
Hω
p are purely universal and that the new constants other than S can be majorized as

discussed throughout the previous sections. For the last constant S, we can argue for
the majorizability as follows: In the context of the axiom (V)1, stating that domA is
not empty using the constants cX and dX , majorization of the constant S on t ě 0 and
x P domA follows rather immediately. It is straightforward to obtain that

Vp
ω

p $ @x
X , λ1, n0

´

x P dompJA|λ|q Ñ
⃦⃦
pJA|λ|q

nx´X x
⃦⃦
X
ďR n

⃦⃦
JA|λ|x´X x

⃦⃦
X

¯

.

Therefore, we have for x P domA with v P Ax and b ą ∥x∥ , ∥v∥ and for t ě 0 with
T ą t that for n ě pωSp0, b, T q ` rT {λ0sq:10

∥Sptqx∥ ď
⃦⃦
Sptqx´ pJAt{nq

nx
⃦⃦
`
⃦⃦
pJAt{nq

nx
⃦⃦

ď 1`
⃦⃦
pJAt{nq

nx´ pJAt{nq
ncX

⃦⃦
`
⃦⃦
pJAt{nq

ncX
⃦⃦

ď 1` ∥x´ cX∥` ∥cX∥` n
⃦⃦
JAt{ncX ´ cX

⃦⃦
ď 1` ∥x∥` 2 ∥cX∥` T ∥dX∥

which follows from the axioms pSq and pRCqλ0 . This extends to domA as follows: for
x P domA and xn Ñ x with rate of convergence 2´n and where xn P domA, we have

10We can choose e.g. n “ ωSp0, b, T q ` rT {λ0sp0q ` 1 which can be represented through a closed
term.
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∥x0 ´ x∥ ď 1 and ∥Sptqx´ Sptqx0∥ ď 1 and thus

∥Sptqx∥ ď 1` ∥Sptqx0∥

ď 2` ∥x0∥` 2 ∥cX∥` T ∥dX∥

ď 3` ∥x∥` 2 ∥cX∥` T ∥dX∥ .

Also Theorem 3.7.16 extends to an intuitionistic version Hω
i,p of the system Hω

p in
that fashion. Concretely, let Hω

i,p be defined as the extension/modification of Vωi,p with
the same constants and axioms as were added/modified to/in Vωp to form Hω

p . Then
the following semi-constructive bound extraction theorem holds:

Theorem 4.4.7. Let δ be of the form 0p0q . . . p0q and σ, τ be arbitrary, s be a closed
term of suitable type. Let Γ␣ be a set of sentences of the form @uζpCpuq Ñ Dv ďβ

tu␣Dpu, vqq with ζ, β and C,D arbitrary types and formulas respectively and where t
is a tuple of closed terms. Let Bpx, y, zq/Cpx, y, z, uq be arbitrary formulas of Hω

i,p with
only x, y, z/x, y, z, u free. If

Hω
i,p ` IP␣ ` CA␣ ` Γ␣ $ @x

δ
@y ďσ pxq @z

τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq,

one can extract a Φ : Sδ ˆ Sτp ˆ N ˆ NN Ñ N which is primitive recursive in the
sense of Gödel such that for any x P Sδ, any y P Sσ with y ďσ spxq, any z P Sτ

and z˚ P Sτp with z˚ Á z and any n P N and ω P NN with ω Á ωS as well as n ěR

mγr, |γr|, ∥cX∥X , ∥dX∥X , |λ0|,mλ0 ,m
1
γr, we have that

Sω,X |ù Du ď0 Φpx, z
˚, n, ωq p␣Bpx, y, zq Ñ Cpx, y, z, uqq

holds for Sω,X whenever Sω,X |ù Γ␣ where Sω,X is defined via any (nontrivial) Banach
space pX, ∥¨∥q with the constants interpreted as in Theorem 4.4.6.

Using the previous arguments regarding the majorizability of the new constants, the
proof is a straightforward adaptation of the proof of Theorem 3.7.16 given in Chapter
3 and we thus omit any further details.



5 Quantitative results on Pazy’s convergence
condition and first-order Cauchy problems

5.1 Introduction

As discussed in the introduction of Chapter 4, one of the fundamental questions in the
theory of differential equations is that of the asymptotic behavior of the solutions to a
particular system. Concretely, consider again the initial value problem

$

&

%

u1ptq P ´Auptq, 0 ă t ă 8

up0q “ x
(˚)

over a Banach space X generated by an initial value x P X and an accretive set-valued
operator A : X Ñ 2X . The focus of Chapter 4 was on correctly representing the semi-
group generated by an accretive operator A via the Crandall-Liggett formula which, as
also discussed in the introduction of Chapter 4, generalizes the solution semigroup of
the above system in the sense that if the system is solvable, then the solution semigroup
coincides with the semigroup generated by A.

Even further however, Crandall and Liggett in [50] also obtained a characterizing
condition for when

Sptqx “ lim
nÑ8

ˆ

Id`
t

n
A

̇´n

x

actually is a solution to p˚q. Namely, their result yields in particular that if 0 ă T ď 8

and A is m-accretive, then ux is a solution of the initial value problem with x P domA on
r0, T q if and only if uxptq “ limnÑ8

`

Id` t
n
A
˘´n

x for t P r0, T q and ux is differentiable
almost everywhere.

As this function Sptqx is Lipschitz continuous in t (see, e.g., the proof of Theorem
1.3 in [4], Chapter III or see also the previous Chapter 4), the additional differentiabil-
ity condition is in particular immediately satisfied if any Lipschitz continuous function

78
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from the real numbers into X is differentiable almost everywhere. This in turn is true
in any reflexive space X by (an extension of) Rademacher’s theorem which, as is well-
known, in particular includes uniformly convex spaces by the Milman–Pettis theorem.

In this chapter, we are concerned with the asymptotic behavior of Sptqx for tÑ 8

in the context of uniformly convex and uniformly smooth spaces. It is well-known that
Sptqx does not always converge in that case. Motivated by these circumstances, there
has been a search for potential conditions guaranteeing the convergence of the orbits
and, in that context, Pazy in [160] introduced the so-called convergence condition for
the operator A. Concretely, over a Hilbert space X with inner product x¨, ¨y (and as-
suming A´10 ‰ H), we say (following Pazy) that A satisfies the convergence condition1

if for all bounded sequences pxn, ynq Ď A such that

lim
nÑ8

xyn, xn ´ Pxny “ 0,

it holds that lim infnÑ8 ∥xn ´ Pxn∥ “ 0 where P is the projection onto the closed
and convex set A´10 (if A is maximally monotone). Then Pazy obtained the following
result:

Theorem 5.1.1 (Pazy [160]). Let X be a Hilbert space and A be maximally monotone
and let S “ tSptq | t ě 0u be the semigroup generated by A where A´10 ‰ H. If A
satisfies the convergence condition then, for every x P domA, Sptqx converges strongly
to a zero of A as tÑ 8.

This convergence result was subsequently extended to uniformly convex and uni-
formly smooth Banach spaces by Nevanlinna and Reich in [154] who simultaneously
adapted the above convergence condition to a suitable variant in said classes of Banach
spaces by modifying the premise to the assumption that

lim
nÑ8

xyn, Jpxn ´ Pxnqy “ 0

where J is the normalized-duality map (see again Chapter 4) which is single-valued
here as the space is smooth. Concretely, the following result was obtained:

Theorem 5.1.2 (Nevanlinna and Reich [154]). Let X be uniformly convex and uni-
formly smooth and A be m-accretive with A´10 ‰ H and such that it satisfies the

1Actually, Pazy also emphasized a particular consequence of the above condition as a separate
additional property for the convergence condition, but we refrain from doing so (in line with the
presentation in [154]).
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convergence condition. If S “ tSptq | t ě 0u is the semigroup generated by A via the
exponential formula then, for any x P domA, Sptqx converges strongly to a zero of A
as tÑ 8.

This result was further generalized by Xu in [208] who studied the behavior of
almost-orbits associated with the semigroup generated by A as introduced by Miyadera
and Kobayasi [150]: an almost-orbit of S is a continuous function u : r0,8q Ñ domA

such that

lim
sÑ8

supt∥upt` sq ´ Sptqupsq∥ | t ě 0u “ 0.

Concretely, Xu obtained the following result:

Theorem 5.1.3 (Xu [208]). Let X be uniformly convex and uniformly smooth and A
be m-accretive with A´10 ‰ H and such that it satisfies the convergence condition. If
S “ tSptq | t ě 0u is the semigroup generated by A via the exponential formula, then
every almost-orbit uptq of S converges strongly to a zero of A as tÑ 8.

All the above results do not offer any quantitative information on the convergence
of the orbits or almost-orbits. We here analyze the proofs of Theorem 5.1.2 as well
as Theorem 5.1.3 and extract from these explicit computable transformations which
translate a modulus witnessing a quantitative reformulation of the convergence condi-
tion into quantitative information on the convergence result. By this latter statement,
we mean in particular full rates of convergence for Sptqx for t Ñ 8 in the context of
the result of Nevanlinna and Reich. In the case of the result of Xu, this amounts to
two kinds of quantitative “translations” with the first translating a rate of convergence
for the almost-orbit into a rate of convergence of the solution of the Cauchy problem
towards a zero of the operator A.

Akin to fundamental results of Specker [197] from recursion theory whereas even
computable monotone sequences of rational numbers in r0, 1s do not have a computable
rate of convergence, one can see that those rates will in general not be computable (see
for similar results also the work of Neumann [153]). The second quantitative result on
Theorem 5.1.3 then takes the form of a translation converting a rate of metastability of
the almost-orbit (which will be discussed later on) into a rate of metastability for the
convergence towards a zero of the operator A. For this, note in particular the example
presented in [108] for a concrete almost-orbit where such a rate of metastability can
be naturally obtained and is moreover computable and highly uniform while any rate
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of convergence will not even be computable in this case.

In particular, we want to note that the theorem of García-Falset [66] analyzed in the
work [108] is strongly related to the results of Pazy, Nevanlinna and Reich as well as Xu
presented above. Concretely, García-Falset obtains a similar result on the asymptotic
behavior of the almost-orbits of the solution semigroup of the abstract Cauchy problem
generated by an operator A under the condition that A is ϕ-accretive at zero as defined
in [66]. The generality gained by assuming ϕ-accretivity at zero of A is that the space
is allowed to be an arbitrary Banach space.

In that context, our dichotomous situation of the two quantitative versions of the
result of Xu is also similar to the results from [108] and, as will be discussed later,
the work [108] is where the metastable version of the almost-orbit condition was first
introduced.

In contrast to the results by García-Falset in [66] where the notion of ϕ-accretive at
zero carries the strength of removing the convergence condition as well as the assump-
tions on the space X but simultaneously provides a strong restriction on the operator
(by, among others, making the zero of the operator unique), the results given by Pazy,
Nevanlinna and Reich as well as Xu offer a practically higher generality at the mod-
est price of a uniformly convex and uniformly smooth space, a property which is still
fulfilled for most spaces of interest, in particular for all Lp-spaces as is the case for all
examples of application given in [66].

5.2 Preliminaries: convexity and smoothness in Ba-

nach spaces

Consider a Banach space pX, ∥¨∥q. We assume throughout that X is uniformly convex,
i.e.

@ε P p0, 2sDδ P p0, 1s@x, y P B1p0q
´

}x´ y} ě εÑ
›

›

›

x` y

2

›

›

›
ď 1´ δ

¯

,

and uniformly smooth, i.e.

@ε ą 0Dδ ą 0@x, y P X p}x} “ 1^ }y} ď δ Ñ }x` y} ` }x´ y} ď 2` ε}y}q .

Note that X is uniformly convex if, and only if, its dual X˚ is uniformly smooth.
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Recall the normalized duality mapping J : X Ñ 2X
˚ associated with X from

Chapter 4, i.e.

Jpxq :“ tx˚ P X˚
| xx, x˚y “ }x}2 and }x˚} “ }x}u,

for x P X. This mapping is single-valued and uniformly continuous if, and only if, X
is uniformly smooth (see [43]). As is common in that context, we identify J with this
unique selection mapping X Ñ X˚.

As X is uniformly convex, if C Ď X is a non-empty, closed, convex subset of X,
then the nearest point projection PC : X Ñ C is single-valued and outputs the unique
point satisfying the condition

}x´ PCx} “ inft}x´ y} | y P Cu.

Even further, the projection map PC is continuous and in fact even uniformly contin-
uous in uniformly convex spaces as will be used later (see [189] for this).

5.3 The convergence condition and quantitative ver-

sions

As discussed in the introduction, the central notion for the asymptotic results from
[154, 160, 208] is that of the convergence condition for the operator A inducing the
differential equation. In the quantitative versions of these results of Pazy, Reich and
Nevanlinna as well as Xu, we will rely on a (or rather multiple) particular quantita-
tive version(s) of that condition, which we shall call a convergence condition with a
modulus. These quantitative reformulations are motivated by logical considerations on
different equivalent variants of the convergence condition as suggested by the classical
and constructive metatheorems for accretive operators from Chapter 3. This will be
discussed in more detail in Section 5.5 later on. In particular, there we will discuss
that these moduli have the following two central properties guaranteed by the general
logical metatheorems: For one, the extractability of such moduli for a large class of
operators which provably satisfy the convergence condition is guaranteed. For another,
the same logical metatheorems guarantee that from any (formalizable) proof using the
assumption that an operator satisfies the convergence condition, quantitative results
can be extracted which depend on such a modulus.
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5.3.1 Variants of the convergence condition

To begin with, as mentioned in the introduction, the original formulation of the con-
vergence condition is due to Pazy [160], but in our setting of uniformly convex and
uniformly smooth Banach spaces, we follow the notion of Nevanlinna and Reich [154]
and, therefore, say that an A with A´10 ‰ H satisfies the convergence condition if for
all bounded sequences pxn, ynq Ď A:

limxyn, Jpxn ´ Pxnqy “ 0Ñ lim inf }xn ´ Pxn} “ 0.

Already in the literature, other equivalent variants are sometimes mentioned, e.g. re-
placing the limit in the premise of the implication by a limit inferior or conversely re-
placing the limit inferior in the conclusion by a limit (see for example [171]). However,
in the following we only focus on the usual formulation of the convergence condition in
the form above, together with one particular equivalent version which is of a different
spirit entirely:

Lemma 5.3.1. An operator A satisfies the convergence condition if, and only if, for
all natural numbers k,K P N, there exists n P N such that2

@px, yq P A

ˆ

}x}, }y} ď K ^ |xy, Jpx´ Pxqy| ď
1

n` 1
Ñ }x´ Px} ď

1

k ` 1

̇

. (`)

Proof. For sufficiency assume p`q and consider arbitrary sequences pxnq, pynq such that
yn P Axn, and }xn}, }yn} ď K for some K P N. Assume that limxyn, Jpxn ´ Pxnqy “ 0

and let k P N be given. By p`q, there is an n P N such that

@m P N
ˆ

|xym, Jpxm ´ Pxmqy| ď
1

n` 1
Ñ }xm ´ Pxm} ď

1

k ` 1

̇

. (``)

Then, by limxyn, Jpxn ´ Pxnqy “ 0 there exists N P N such that

@m ě N

ˆ

|xym, Jpxm ´ Pxmqy| ď
1

n` 1

̇

,

which by p``q entails that }xm ´ Pxm} ď
1

k`1
, for all m ě N . This means that

lim }xn ´ Pxn} “ 0, and we conclude that A satisfies the convergence condition.

For necessity, suppose that p`q fails. Then for some k,K P N, we have

@n P NDpxn, ynq P A
ˆ

}xn}, }yn} ď K ^ |xyn, Jpxn ´ Pxnqy| ď
1

n` 1
^ }xn ´ Pxn} ą

1

k ` 1

̇

.

2The absolute values are actually not necessary in the premise as A is accretive.
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Then in particular |xyn, Jpxn ´ Pxnqy| ď 1
n`1

for all n P N which entails that

limxyn, Jpxn ´ Pxnqy “ 0.

However p}xn´Pxn}q is bounded away from zero by 1
k`1

, and so A can not satisfy the
convergence condition.

The above equivalent version does not feature sequences at all and, in this way, is
of a much more local nature than the original formulation. By applying the underlying
logical considerations of proof mining to these two formulations, we will now derive the
previously mentioned quantitative versions of the convergence condition in the form of
two different moduli (where this difference of the moduli can actually be recognized
in terms of logical properties of their equivalence proof as will be discussed in Section
5.5 later on). We want to note that both the above equivalence and the following
quantitative versions are similar in character to the alternative characterization of
strongly nonexpansive mappings introduced in [99] as well as the moduli introduced
there.

5.3.2 Quantitative versions of the convergence condition

Note that the convergence condition is essentially (modulo the boundedness condition)
of the general form

lim an “ 0Ñ lim inf bn “ 0

with an “ xyn, Jpxn´Pxnqy and bn “ ∥xn ´ Pxn∥. In that conceptual vein, two of our
quantitative versions of the convergence condition will be certain moduli translating a
quantitative witness for the convergence lim an “ 0 in the premise into a quantitative
witness for lim inf bn “ 0 in the conclusion (or even for a weakening of that).

In that way, two of these moduli arise by considering combinations of a quantitative
witness for the “convergences” in the premise or conclusion and for that, we rely on the
following notions providing such a quantitative account in various ways:

Definition 5.3.2. Let panq be a sequence of non-negative real numbers.

1. We say that a functional φ : N Ñ N is a rate of convergence for panq (towards
zero) if

@k P N@n ě φpkq

ˆ

an ď
1

k ` 1

̇

.
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2. We say that a functional φ : Nˆ NÑ N is a lim inf-rate for panq (towards zero)
if

@k,m P NDn P rm;φpk,mqs

ˆ

an ď
1

k ` 1

̇

.

3. We say that a functional φ : NÑ N is a rate of approximate zeros for panq if

@k P NDn ď φpkq

ˆ

an ď
1

k ` 1

̇

.

Combinations of these quantitative versions of lim { lim inf “ 0 (or the even weaker
property of approximate zeros) now yield the previously mentioned different quantita-
tive versions of the convergence condition. We begin with the most immediate version
which translates a rate of convergence for the premise together with the upper bound
on the sequence into a lim inf-rate for the conclusion.

Definition 5.3.3. A modulus for the convergence condition is a functional Ω : N ˆ
NN Ñ NNˆN such that for any pxnq, pynq Ď X and any K P N and φ : NÑ N:

if @n P N pyn P Axn ^ }xn}, }yn} ď Kq

and φ is a rate of convergence for |xyn, Jpxn ´ Pxnqy|,

then ΩpK,φq is a lim inf-rate for ∥xn ´ Pxn∥ .

While conceptually appealing due to its naturality, the logical considerations un-
derlying the approach of proof mining actually in general suggest a stronger type of
modulus, named a full modulus here, to be necessary in the context of general quanti-
tative analyses of results relying on the convergence condition as well as classical logic.
Actually, in Section 5.5, we will present instances of the general logical metatheorems
for the systems for semigroups from Chapter 4 that guarantee both

1. the extractability of a computable full modulus (and thus of a “plain” modulus
above) for the convergence condition from a wide range of (noneffective) proofs
of the convergence condition for definable classes of operators, as well as,

2. that from a proof using the convergence condition as a premise, a transformation
can be extracted that maps

(a) a full modulus into quantitative information on the conclusion if the under-
lying proof is nonconstructive,

(b) a “plain” modulus into quantitative information on the conclusion if the
underlying proof is “essentially” constructive,
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where, moreover, the complexity of the principles used in the proof is reflected
in the complexity of the extracted transformation.

In that way, while the above modulus is derived from a “constructive” perspective on
the convergence condition, the following full modulus is attained from a “classical”
perspective on it. We however postpone a detailed discussion of these logical aspects
to the end of the chapter (see Section 5.5) where we in particular will give formal
justifications for the above statements. We now give the definition of a full modulus:

Definition 5.3.4. A full modulus for the convergence condition is a functional Ωf :

NˆNÑ N satisfying that for any k,K P N: if y P Ax are such that }x}, }y} ď K, then

|xy, Jpx´ Pxqy| ď
1

Ωf pK, kq ` 1
ñ ∥x´ Px∥ ď 1

k ` 1
.

In a way, the above is a true finitization of the convergence condition in the sense
that the above notion only refers to finitely many objects together with the fact that
by the result given in Lemma 5.3.1, we have effectively shown the following:

Proposition 5.3.5. An operator A satisfies the convergence condition if, and only if,
it has a full modulus for the convergence condition Ωf .

Remark 5.3.6. Note by Lemma 5.3.1 that the convergence condition is nothing else but
a uniform version of the property

@px, yq P A@k P NDn P N
ˆ

|xy, Jpx´ Pxqy| ď
1

n` 1
Ñ }x´ Px} ă

1

k ` 1

̇

,

which can easily be seen to be equivalent to

@px, yq P A pxy, Jpx´ Pxqy “ 0Ñ }x´ Px} “ 0q .

This property was already singled out as an important special case of the convergence
condition in Pazy’s original paper [160] (as mentioned already in a footnote in the
introduction to this chapter). In particular, based on the logical form of the above
statement, suitable extensions of the logical metatheorems for nonlinear semigroups
mentioned above actually guarantee a strengthened form of item (1) discussed above
in the sense that already from a (possibly noneffective) proof of the above property
for a class of operators, one can extract a computable full modulus (and thus a “plain”
modulus) for the convergence condition, provided the proof is as before confined by
the logical conditions of the metatheorem. Also this situation is conceptually similar
to the results on strongly nonexpansive mappings from [99], in particular to the fact
that the SNE-modulus introduced there arises as the uniform version of the notion of
strict nonexpansivity.
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In any way, even in the case of a (semi-)constructive proof and in the context of
a “plain” modulus, the required modulus can often further be weakened. While our
quantitative versions of the convergence results of Nevanlinna and Reich as well as
Xu can, for one, be stated already in terms of a “plain” modulus for the convergence
condition, the only sequences to which the convergence condition is ever applied (in
the context of this thesis) are such that ∥xn ´ Pxn∥ is nonincreasing. In that case,
it is clear that it already suffices to require a modulus which translates a rate of
convergence φ for the sequence |xyn, Jpxn ´ Pxnqy| together with the bound K into a
rate of approximate zeros ΩpK,φq for the sequence ∥xn ´ Pxn∥. As this circumstance
seems to occur rather frequently,3 we introduce this special case as a particular other
notion for a quantitative form of the convergence condition:

Definition 5.3.7. A weak modulus for the convergence condition is a functional Ωw :

Nˆ NN Ñ NN such that for any pxnq, pynq Ď X and any K P N and φ : NÑ N:

if @n P N pyn P Axn ^ }xn}, }yn} ď Kq

and φ is a rate of convergence for |xyn, Jpxn ´ Pxnqy|,

then Ωw
pK,φq is a rate of approximate zeros for ∥xn ´ Pxn∥ .

In that way, while both the full and “plain” moduli represent the correct quanti-
tative content of the convergence condition (from a classical and a constructive per-
spective, i.e. complying with the properties (1) and (2) mentioned above, respectively),
the extractions formulated here will be phrased in terms of the weaker quantitative
assumption of a weak modulus for the convergence condition. Note for this that there
is of course no loss of generality as given a full modulus Ωf , a “plain” modulus Ω can be
defined via ΩpK,φqpk,mq “ maxtm,φpΩf pK, kqqu and in turn, given a “plain” modulus
Ω, a weak modulus Ωw can be defined just via ΩwpK,φqpkq “ ΩpK,φqpk, 0q.

5.3.3 Examples for operators and their moduli

In the following, we survey various examples given in the works [154, 160] and beyond
for classes of operators which naturally satisfy the convergence condition. Based on

3In fact, in e.g. the related work [66] on quantitative behavior of semigroups generated by ϕ-
accretive operators, the requirements in the condition of ϕ-accretivity (essentially replacing the con-
vergence condition) are such that they restrict the conclusion essentially to sequences xn such that
∥xn ´ Pxn∥ is decreasing. A similar restriction could have been made in the case of the convergence
condition since, as said above, the applications given in [154, 160, 208] satisfy the requirement but it
seems that the authors have refrained from doing so to make the condition less technical.
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the corresponding proofs, we extract respective full moduli in the sense of the previous
section.

Strongly accretive operators

The following is an immediate generalization of Example 4.3 in [160].

Lemma 5.3.8. If A is strongly accretive, by which we mean there exists an α ą 0

such that
xu´ v, Jpx´ yqy ě α ∥x´ y∥2

for any px, uq, py, vq P A and additionally A´10 ‰ H, then A satisfies the convergence
condition with a full modulus for the convergence condition Ωf

apK, kq “ apk ` 1q2 ´ 1

for any a P N˚ such that α ě a´1.

Proof. Let px, yq Ď A with ∥x∥ , ∥y∥ ď K and where

xy, Jpx´ Pxqy ď
1

Ωf
apK, kq ` 1

.

Then as xy, Jpx´ Pxqy ě α ∥x´ Px∥2 we get

α ∥x´ Px∥2 ď 1

Ωf
apK, kq ` 1

ď
1

apk ` 1q2
ď

α

pk ` 1q2

which yields ∥x´ Px∥ ď 1{pk ` 1q.

As already mentioned in [160], a particular example of a strongly monotone operator
is the negative Laplacian: Let Ω be a bounded domain in Rn with smooth boundary.
L2pΩq is the space of square-integrable functions as usual and W1,2

0 pΩq the associated
subspace of the Sobolev-space W1,2pΩq containing functions of zero-trace. Then using
Poncairé’s inequality (see e.g. [131]), we get that

´

ż

Ω

∆u ¨ u dx “

ż

Ω

|∇u|2 dx ě λ1

ż

Ω

|u|2 dx

where ∆ is the usual Laplacian operator and λ1 ą 0 is the minimal eigenvalue of
´∆. Therefore, A “ ´∆ is strongly monotone and by the above lemma satisfies the
convergence condition with a full modulus for the convergence condition

Ωf
ΛpK, kq “ Λpk ` 1q2 ´ 1,

where Λ P N˚ is such that Λ´1 is a lower bound on the eigenvalues of ´∆.



CHAPTER 5. QUANTITATIVE RESULTS ON PAZY’S CONVERGENCE
CONDITION AND FIRST-ORDER CAUCHY PROBLEMS 89

Operators that are ϕ-accretive at zero or uniformly accretive at zero

The above case of strongly monotone operators is a special case of the notion of oper-
ators which are ϕ-accretive at zero introduced in [66] over general Banach spaces.

Definition 5.3.9 ([66]). An operator A with 0 P Az is ϕ-accretive at zero in the sense
of [66] if ϕ : X Ñ r0,8q is a continuous function with ϕp0q “ 0, ϕpxq ą 0 for x ‰ 0

and

ϕpxnq Ñ 0ñ ∥xn∥Ñ 0

for every sequence pxnq Ď X such that ∥xn∥ is nonincreasing and we have that

xy, Jpx´ zqy ě ϕpx´ zq

for all px, yq P A.

As already mentioned in [66], it is a straightforward consequence of [68, Theorem
8] that if A is m-ψ-strongly accretive in the sense of [66], then A is pψ ˝ ∥¨∥q-accretive
at zero.

In the course of their proof-theoretic analysis of the main result of [66], which is
similar in kind to the results analyzed here, Kohlenbach and Koutsoukou-Argyraki in
[108] introduced (similarly motivated by proof-theoretic considerations) a generalized
uniform version of the above property (without any reference to a function ϕ) under
the name of uniform accretivity at zero:

Definition 5.3.10 ([108]). An accretive operator A with 0 P Az is called uniformly
accretive at zero if for all k P N and all K P N˚, there exists an m P N such that

@px, uq P A
`

∥x´ z∥ P r2´k, Ks Ñ xu, x´ zys ě 2´m
˘

with x¨, ¨ys defined as in Chapter 4, i.e.

xy, xys :“ maxtxy, jy | j P Jpxqu.

This notion was accompanied in [108] with a corresponding uniform quantitative
modulus of being uniformly accretive at zero which is defined in the following sense:

Definition 5.3.11 ([108]). A function Θ : N ˆ N˚ Ñ N is a modulus of accretivity at
zero for A if m :“ ΘKpkq satisfies the condition in Definition 5.3.10.
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Note that this notion in particular encompasses the moduli of uniform ϕ-accretivity
at zero also introduced in [108] which provide a quantitative perspective on the above
notion of ϕ-accretivity at zero.

Now, while our setting is more restrictive in terms of the space, we can nevertheless
recognize the above notion as essentially stating the existence a full modulus for the
convergence condition for A, at least in our context of uniformly convex and uniformly
smooth spaces: At first, the expression xu, x´zys reduces to xu, Jpx´zqy in a uniformly
smooth space while in the context of uniformly convex spaces, through the presence
of the projection P and as the zero z is unique, the point z can be replaced by the
projection Px for any point x. Reading the resulting condition as its contraposition,
we obtain that a modulus of accretivity at zero for A satisfies that for any k and K, if
∥x´ Px∥ ď K, then

@px, uq P A
`

|xu, Jpx´ Pxqy| ă 2´ΘKpkq Ñ ∥x´ Px∥ ă 2´k
˘

.

Since we can bound ∥x´ Px∥ by

∥x´ Px∥ ď ∥x∥` ∥z∥

using the single witness z P zerA for zerA ‰ H (as required in the context of the
convergence condition), we get that therefore Ωf defined by

Ωf
pK, kq “ 2ΘK`Zpkq,

where Z ě ∥z∥, is a full modulus for the convergence condition of A which is even
independent of an upper bound for u P Ax. In that way, we find that the notion
of being uniformly accretive at zero is essentially an equivalent formulation of the
convergence condition in that context.

Thus, if restricted to the class of spaces considered here, we find that the quantita-
tive results on the behavior of the semigroups generated by A as derived in [108] can
also be recognized as applications of our general quantitative results, using the notion
of a full modulus for the convergence condition Ωf .

Operators without unique zeros

All operators discussed so far are ϕ-accretive in the sense of [66]. The convergence
condition however encompasses a far larger class of operators and the difference set of
those two notions is already populated with fairly simple examples of which we exhibit
one in the following. For this, we recall the following result due to Pazy:
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Proposition 5.3.12 (Pazy [160]). Let φ : X Ñ R be proper, convex and l.s.c. on a
Hilbert space X and assume that φpxq ě 0 for all x P X as well as minxPX φpxq “ 0.
If the level-sets

KR “ tx | ∥x∥ ď R,φpxq ď Ru

are totally bounded, then the maximally monotone operator Bφpxq “ tu P X | fpyq ě

fpxq ` xy ´ x, uy for all y P Xu satisfies the convergence condition.

Now, for an example of an operator which satisfies the convergence condition but
is not ϕ-accretive at 0 for any ϕ, consider the following function f : RÑ R:

fpxq “

$

’

’

’

&

’

’

’

%

px` 1q4 if x P p´8,´1s,

0 if x P r´1, 1s,

px´ 1q4 if x P r1,8q.

This function is continuously differentiable with first derivative

f 1pxq “

$

’

’

’

&

’

’

’

%

4px` 1q3 if x P p´8,´1s,

0 if x P r´1, 1s,

4px´ 1q3 if x P r1,8q.

Therefore Bfpxq “ tf 1pxqu for any x P R (see e.g. Proposition 17.31 in [11]) and it
is easy to see that f is convex and that the level sets KR are compact. Thus Bf
satisfies the convergence condition. However, we have zerBf “ r´1, 1s and thus Bf
does not have an unique zero. The uniqueness of the zero is, however, a property of
every operator that is ϕ-accretive at zero (see [66]) or even of every operator that is
uniformly accretive at zero (see [108]).

Nevertheless, by a quantitative analysis of the application of Proposition 5.3.12 to
the function f , we can immediately extract a full modulus for the convergence condition
Ωf pK, kq “ pk ` 1q4 ´ 1 for the convergence condition of Bf : Let consider x P R and
assume |x|, |f 1pxq| ď K as well as

xy, x´ Pxy ď
1

ppk ` 1q4 ´ 1q ` 1
.

As in [160], i.e. using the subgradient inequality, one can show xy, x ´ Pxy ě fpxq.
Thus in particular

fpxq ď
1

ppk ` 1q4 ´ 1q ` 1
.
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One can immediately show that if fpxq ď ε for ε ą 0, then x P r´1´ 4
?
ε, 1` 4

?
εs and

thus ∥x´ Px∥ ď 4
?
ε. Therefore the above implies

∥x´ Px∥ ď 1

k ` 1

as desired.

5.4 Quantitative results on the asymptotic behavior

of semigroups and their almost-orbits

In this section, we employ the previous quantitative considerations on the convergence
condition for establishing quantitative versions of the theorems of Nevanlinna and Reich
as well as of Xu outlined in the introduction. Note that since the proofs of the respective
results are essentially constructive, a dependence on a “plain” (or even weak) modulus
for the convergence condition can be guaranteed a priori for the extracted results (see
the logical remarks in Section 5.5) which is also the case for the concrete rates presented
below. In that vein, we in the following denote all moduli just by an Ω without the
previous superscripts. We begin with the result of Nevanlinna and Reich.

5.4.1 The asymptotic behavior of nonlinear semigroups

Consider again the setup from Theorem 5.1.2 and write S “ tSptq | t ě 0u for the
semigroup generated by A via the exponential formula. In the following, if not stated
otherwise, let x P domA. We write wxptq for Sptqx (in the spirit of Xu [208]), vxptq for
´w1xptq and jxptq for Jpwxptq ´ Pwxptqq. Note that w1xptq is defined almost-everywhere
and pwxptq,´w1xptqq P A is satisfied almost-everywhere (see [4]), say both on r0,8qzN1

where N1 is a Lebesgue null set.

The first step in the proof is to establish xvxptq, jxptqy ě 0 and subsequently that
lim inftÑ8xvxptq, jxptqy “ 0. The following results extract from their proof a rate for
the lim inf expression.

Lemma 5.4.1. If f : r0,8q Ñ r0,8q is Lebesgue integrable with
ż 8

0

fptqdt ď L

for some L P r0,8q, then for any Lebesgue null set N Ď r0,8q and any k, n:

Dt P rn, rL` 1spk ` 1q ` nszN

ˆ

fptq ď
1

k ` 1

̇

.
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Proof. Suppose not. Then there are a Lebesgue null set N and k, n such that for any
t P rn, rL` 1spk ` 1q ` nszN it holds that fptq ą 1{pk ` 1q. As f is nonnegative, we
get that

ż 8

0

fptqdt ě

ż

rn,pL`1qpk`1q`nszN

fptqdt ě
ppL` 1qpk ` 1q ` n´ nq

k ` 1
“ pL` 1q

which is a contradiction.

Now, ∥wxptq ´ Pwxptq∥ is Lipschitz-continuous as ∥x´ Px∥ is nonexpansive and
wxptq is Lipschitz with ∥wxptq ´ wxpsq∥ ď 2 ∥v∥ |t´s| where v P Ax which exists as x P
domA (see the proof of Theorem 1.3 in Chapter III of [4]). Thus ∥wxptq ´ Pwxptq∥ is ab-
solutely continuous on every r0, T s which implies that the derivative d

dt
∥wxptq ´ Pwxptq∥2

exists almost everywhere, say on r0,8qzN2, and that this derivative is Lebesgue-
integrable such that the fundamental theorem of calculus is valid. Further, as shown
in [154], we have that

xvxptq, jxptqy ď ´
1

2

d

dt
∥wxptq ´ Pwxptq∥2

holds almost everywhere, say w.l.o.g. also on r0,8qzN2 where we assume, also without
loss of generality, that N2 Ě N1. Using these properties, we get the following lemma:

Lemma 5.4.2. Let b ě ∥x´ Px∥. For any Lebesgue null set N Ě N2 and any k, n:

Dt P

„

n,

R

1

2
b2 ` 1

V

pk ` 1q ` n

ȷ

zN

ˆ

xvxptq, jxptqy ď
1

k ` 1

̇

.

Proof. We have xvxptq, jxptqy ě 0 for any t P r0,8qzN1 by accretivity of A. As

xvxptq, jxptqy ď ´
1

2

d

dt
∥wxptq ´ Pwxptq∥2

holds almost everywhere, we get
ż 8

0

xvxptq, jxptqydt ď ´
1

2

ż 8

0

d

dt
∥wxptq ´ Pwxptq∥2 dt

“ ´
1

2
lim
TÑ8

p∥wxpT q ´ PwxpT q∥2 ´ ∥wxp0q ´ Pwxp0q∥2q

“
1

2
lim
TÑ8

p∥wxp0q ´ Pwxp0q∥2 ´ ∥wxpT q ´ PwxpT q∥2q

ď
1

2
∥wxp0q ´ Pwxp0q∥2

ď
1

2
b2.
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By Lemma 5.4.1, we get that for any N Ě N2 and any k, n:

Dt P

„

n,

R

1

2
b2 ` 1

V

pk ` 1q ` n

ȷ

zN

ˆ

xvxptq, jxptqy ď
1

k ` 1

̇

which is the claim.

The next step in the proof of Nevanlinna and Reich infers the respective lim inf

result for the function ∥wxptq ´ Pwxptq∥ via the convergence condition together with
Lemma 5.4.2 and then, using the fact that ∥wxptq ´ Pwxptq∥ is nonincreasing, infers
the convergence of wxptq. An analysis of this proof yields, in combination with the
above, the following quantitative version of Theorem 5.1.2. For this, we first focus on
the special case when x P domA. Note that the following theorem does not use the full
lim inf-rate of the previous lemma but only requires an instantiation of the above for
n “ 0.

Theorem 5.4.3. Let X be uniformly convex and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition Ω. Let
S “ tSptq | t ě 0u be the semigroup generated by A via the exponential formula. Let
A´10 ‰ H with p P A´10. For any x P domA with v P Ax, we have

@k P N@s, s1 ě χpΩpK, idqp2k ` 1qq

ˆ

∥Spsqx´ Sps1qx∥ ď 1

k ` 1

̇

where
χpkq “

R

1

2
b2 ` 1

V

pk ` 1q

and where b ě ∥x´ Px∥ as well as K ě maxt∥v∥ , ∥x´ p∥` ∥p∥u.

Proof. First, note that we have

∥wxptq ´ p∥ “
⃦⃦⃦
lim
nÑ8

Jnt{nx´ p
⃦⃦⃦
ď ∥x´ p∥

as p P A´10 and thus p is a fixed point for any resolvent. Therefore

∥wxptq∥ ď ∥x´ p∥` ∥p∥

for any t P r0,8q. Further, Proposition 1.2 in [4] implies

∥w1xptq∥ ď ∥v∥

almost everywhere as v P Ax, say for t P r0,8qzN3. W.l.o.g. we assume that N3 Ě

N2 Ě N1.
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Now, Lemma 5.4.2 yields that for any k:

Dt P r0, χpkqszN3

ˆ

xvxptq, jxptqy ď
1

k ` 1

̇

. (:)

Now we choose a sequence ptnq Ď r0,8qzN3 using the previous p:q such that
xvxptnq, jxptnqy ď

1
n`1

and tn ď χpnq.
This is well-defined as N3 Ě N2 and by the above, we have ∥wxptnq∥ , ∥w1xptnq∥ ď K

for all n where also the latter is well-defined. Now, id : NÑ N is a rate of convergence
for xvxptnq, jxptnqy Ñ 0. Then by assumption on Ω, we get

@kDn ď ΩpK, idqp2k ` 1q

ˆ

∥wxptnq ´ Pwxptnq∥ ď
1

2pk ` 1q

̇

and thus, as tn ď χpnq, we get

@kDt ď χpΩpK, idqp2k ` 1qq

ˆ

∥wxptq ´ Pwxptq∥ ď
1

2pk ` 1q

̇

.

Similar as in [154], using that

0 ď xvxptq, jxptqy ď ´
1

2

d

dt
∥wxptq ´ Pwxptq∥2

almost everywhere, we have that ∥wxptq ´ Pwxptq∥ is nonincreasing and thus

@k@t ě χpΩpK, idqp2k ` 1qq

ˆ

∥wxptq ´ Pwxptq∥ ď
1

2pk ` 1q

̇

.

We then get

∥wxptq ´ wxpt` hq∥ ď ∥wxptq ´ Pwxptq∥` ∥Pwxptq ´ wxpt` hq∥

ď 2 ∥wxptq ´ Pwxptq∥

for all t, h ě 0 (as ∥wxptq ´ p∥ is nonincreasing for any p P A´10) and therefore

@k@t ě χpΩpK, idqp2k ` 1qq@h

ˆ

∥wxptq ´ wxpt` hq∥ ď
1

k ` 1

̇

which yields the claim.

The following is then an immediate extension to the case of x P domA.

Theorem 5.4.4. Assume the conditions of Theorem 5.4.3. Let x P domA where
f : NÑ N is such that f is nondecreasing and

@n P NDun, vn P X
ˆ

vn P Aun ^ ∥un∥ , ∥vn∥ ď fpnq ^ ∥un ´ x∥ ď
1

n` 1

̇

.
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Then

@k P N@s, s1 ě χkpΩpKk, idqp6k ` 5qq

ˆ

∥Spsqx´ Sps1qx∥ ď 1

k ` 1

̇

where

χkpjq “

R

1

2
b2k ` 1

V

pj ` 1q

and where bk ě ∥x´ Px∥` ∥x∥` fp3k ` 2q as well as Kk ě fp3k ` 2q ` 2 ∥p∥.

Proof. By assumption on f , we get that there exists a u, v with v P Au such that
∥u∥ , ∥v∥ ď fp3k ` 2q and such that ∥x´ u∥ ď 1{p3pk ` 1qq. Therefore, as Sptq is
nonexpansive for every t, we have

∥Spsqx´ Sps1qx∥ ď ∥Spsqx´ Spsqu∥` ∥Spsqu´ Sps1qu∥` ∥Sps1qx´ Sps1qu∥

ď 2 ∥x´ u∥` ∥Spsqu´ Sps1qu∥

ď
2

3pk ` 1q
` ∥Spsqu´ Sps1qu∥ .

Using the previous Theorem 5.4.3, since v P Au, we get that

@k@s, s1 ě χkpΩpKk, idqp6k ` 5qq

ˆ

∥Spsqu´ Sps1qu∥ ď 1

3pk ` 1q

̇

and thus

@k@s, s1 ě χkpΩpKk, idqp6k ` 5qq

ˆ

∥Spsqx´ Sps1qx∥ ď 1

k ` 1

̇

since

maxt∥v∥ , ∥u´ p∥` ∥p∥u ď maxtfp3k ` 2q, fp3k ` 2q ` 2 ∥p∥u ď Kk

as well as

∥u´ Pu∥ ď ∥u´ Px∥ ď ∥u´ x∥` ∥x´ Px∥

and thus ∥u´ Pu∥ ď bk.

Remark 5.4.5. As revealed by the quantitative analysis, the above result as well as
Theorem 5.4.3 already hold in general Banach spaces whenever there exist selections of
the duality map and of the projection satisfying some simple requirements. See Section
5.5 for further comments on this.
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5.4.2 The asymptotic behavior of almost-orbits of nonlinear

semigroups

We now turn to an analysis of Xu’s result. For that, consider the setup from Theorem
5.1.3 and write S “ tSptq | t ě 0u for the semigroup generated by A via the exponential
formula as before.

As already discussed in the introduction, the (logically speaking) complicated premise
of u being an almost-orbit in that context induces two natural quantitative versions of
that property which were introduced in [108] and also feature in the finitary variants
of Xu’s result given here. Concretely, in the following, we will obtain (similar to [108])
two translations converting respectively

1. a rate of metastability Φ of the almost-orbit as introduced in [108], i.e. Φ satisfies

@k P N@f : NÑ NDn ď Φpk, fq@t P r0, fpnqs

ˆ

}S1{2ptqupnq ´ upt` nq} ď
1

k ` 1

̇

,

into a rate of metastability Γ for the Cauchy property of the almost-orbit, i.e. Γ
satisfies

@k P N@f : NÑ NDn ď Γpk, fq@t, t1 P rn, n` fpnqs

ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

,

2. a rate of convergence Φ for the almost-orbit, i.e. Φ satisfies

@k P N@s ě Φpkq

ˆ

sup
tě0

⃦⃦
ups` tq ´ S1{2ptqupsq

⃦⃦
ď

1

k ` 1

̇

.

into a rate of Cauchyness of the almost-orbit of the Cauchy problem in a similar
manner as before.

We begin with the former.

Theorem 5.4.6. Let X be uniformly convex and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition Ω. Let
S “ tSptq | t ě 0u be the semigroup generated by A via the exponential formula. Let
A´10 ‰ H with p P A´10 and assume that P , the nearest point projection onto A´10,
is uniformly continuous on bounded subsets of X with a modulus ω : N2 Ñ N, i.e.

@r, k P N@x, y P Brppq

ˆ

}x´ y} ď
1

ωpr, kq ` 1
Ñ }Px´ Py} ď

1

k ` 1

̇

,
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and, without loss of generality, assume that ωpr, kq ě k for all r, k P N. Let u be an
almost-orbit of S with a rate of metastability Φ on the almost-orbit condition, i.e.

@k P N@f : NÑ NDn ď Φpk, fq@t P r0, fpnqs

ˆ

}Sptqupnq ´ upt` nq} ď
1

k ` 1

̇

.

Let B P N˚ be such that }uptq ´ p} ď B for all t ě 0 and let fs : N Ñ N for s ě 0 be
such that fs is nondecreasing and

@n P NDxs,n, ys,n P X
ˆ

ys,n P Axs,n ^ ∥xs,n∥ , ∥ys,n∥ ď fspnq ^ ∥xs,n ´ upsq∥ ď
1

n` 1

̇

.

Then we have

@k P N@f : NÑ NDn ď Γpk, fq@t, t1 P rn, n` fpnqs

ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

,

where

Γpk, fq :“ maxtΓ1p8k ` 7, jk,f q,Φp8k ` 7, hN,f q | N ď Γ1p8k ` 7, jk,f qu

with

hN,f pnq :“ fpmaxtN, nuq `maxtN, nu ´ n,

jk,f pnq :“ maxtn,Φp8k ` 7, hn,f qu ´ n

gk,f pmq :“ Ωmp3k ` 2q ` fpm` Ωmp3k ` 2qq,

Γ1pk, fq :“ ΦpωpB, 3k ` 2q, gk,f q `maxtΩmp3k ` 2q | m ď ΦpωpB, 3k ` 2q, gk,f qu,

for Ωspkq with s ě 0 defined by

Ωspkq :“ χpΩpKs,k, idqp3k ` 2qq,

now with
χpkq :“

R

1

2
pB ` 1q2 ` 1

V

pk ` 1q

and where Ks,k ě maxtfspωpB ` 1, 3k ` 2qq, B ` 1` }p}u.

Proof. For x P domA with v P Ax consider Sptqx. As in the proof of Theorem 5.4.3,
we get

@k P N@t ě Ω1K,bpkq

ˆ

}Sptqx´ PSptqx} ď
1

k ` 1

̇

, (´)

where
Ω1K,bpkq :“

R

1

2
b2 ` 1

V

pΩpK, idqpkq ` 1q,
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with K ě maxt∥v∥ , ∥x´ p∥` ∥p∥u and b ě ∥x´ Px∥.

Claim 1: For all s ě 0,

@k P N@t ě Ωspkq

ˆ

}Sptqupsq ´ PSptqupsq} ď
1

k ` 1

̇

.

Proof of claim 1: For given s ě 0, note that by assumption on fs there exist
ys,k P Axs,k with ∥xs,k∥ , ∥ys,k∥ ď fspωpB ` 1, 3k ` 2qq such that

}xs,k ´ upsq} ď
1

ωpB ` 1, 3k ` 2q ` 1

ˆ

ď
1

3pk ` 1q

̇

.

For χ and Ks,k as above, since

}xs,k ´ Pxs,k} ď }xs,k ´ p} ď }xs,k ´ upsq} ` }upsq ´ p} ď B ` 1,

we have by (´) that

@k P N@t ě Ωspkq

ˆ

}Sptqxs,k ´ PSptqxs,k} ď
1

3pk ` 1q

̇

,

with Ωspkq defined as above since Ωspkq “ Ω1Ks,k,pB`1q
p3k ` 2q. For t ě Ωspkq, we thus

also have

}Sptqupsq ´ PSptqupsq} ď }Sptqupsq ´ Sptqxs,k} ` }Sptqxs,k ´ PSptqxs,k}

` }PSptqxs,k ´ PSptqupsq}

ď }upsq ´ xs,k} ` }Sptqxs,k ´ PSptqxs,k}

` }PSptqxs,k ´ PSptqupsq}

ď
1

3pk ` 1q
`

1

3pk ` 1q
` }PSptqxs,k ´ PSptqupsq}.

Since }Sptqxs,k´Sptqupsq} ď }xs,k´upsq} ď 1{pωpB`1, 3k`2q`1q (using nonexpansiv-
ity of Sptq) as well as }Sptqxs,k´p} ď }xs,k´p} ď B`1 and }Sptqupsq´p} ď B ď B`1

(using nonexpansivity of Sptq and that p is a common fixed-point of all Sptq), we con-
clude that }PSptqxs,k ´ PSptqupsq} ď 1{p3pk ` 1qq. This yields the claim. ■

Claim 2: For all k P N and f : NÑ N:

Dn ď Γ1pk, fq@t P rn, n` fpnqs

ˆ

}uptq ´ Puptq} ď
1

k ` 1

̇

.
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Proof of claim 2: For given k P N and f : N Ñ N, consider the function gk,f as
defined above. Using the fact that u is an almost-orbit with rate of metastability Φ,
there is some n0 ď ΦpωpB, 3k ` 2q, gk,f q such that

@t P r0, gk,f pn0qs

ˆ

}Sptqupn0q ´ upt` n0q} ď
1

ωpB, 3k ` 2q ` 1

̇

.

Since }Sptqupn0q ´ p}, }upt` n0q ´ p} ď B, we conclude that

@t P r0, gk,f pn0qs

ˆ

}PSptqupn0q ´ Pupt` n0q} ď
1

3pk ` 1q

̇

.

Thus, for t P r0, gk,f pn0qs, we get

}upt` n0q ´ Pupt` n0q} ď }upt` n0q ´ Sptqupn0q} ` }Sptqupn0q ´ PSptqupn0q}

` }PSptqupn0q ´ Pupt` n0q}

ď
2

3pk ` 1q
` }Sptqupn0q ´ PSptqupn0q}.

Using Claim 1, we get

@t ě Ωn0p3k ` 2q

ˆ

}Sptqupn0q ´ PSptqupn0q} ď
1

3pk ` 1q

̇

,

from which follows that

@t P rΩn0p3k ` 2q, gk,f pn0qs

ˆ

}upt` n0q ´ Pupt` n0q} ď
1

k ` 1

̇

,

and thus

@t P rn0 ` Ωn0p3k ` 2q, n0 ` gk,f pn0qs

ˆ

}uptq ´ Puptq} ď
1

k ` 1

̇

.

This yields the claim by the definition of gk,f . ■

Claim 3: For all k,N P N and f : NÑ N:

Dn P rN,maxtN,Φp2k ` 1, hN,f qus@t ď fpnq

ˆ

}Sptqupnq ´ upt` nq} ď
1

k ` 1

̇

.

Proof of claim 3: Since Φ is a rate of metastability for the almost-orbit u, there is
n0 ď Φp2k ` 1, hN,f q such that

@t ď hN,f pn0q

ˆ

}Sptqupn0q ´ upt` n0q} ď
1

2pk ` 1q

̇

,
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with hN,f defined as above. Writing n :“ maxtN, n0u P rN,maxtN,Φp2k ` 1, hN,f qus,
we have for t ď fpnq that

}Sptqupnq ´ upt` nq} ď }Sptqupnq ´ Spt` n´ n0qupn0q}

` }Spt` n` n0qupn0q ´ upt` nq}

ď }upnq ´ Spn´ n0qupn0q}

` }Spt` n´ n0qupn0q ´ upt` nq}.

Since n´ n0 ď t` n´ n0 ď hN,f pn0q, we conclude the claim. ■

Claim 4: For all k P N and f : NÑ N, there is some n0 ď Γ1p8k ` 7, jk,f q such that

Dn1 ď maxtn0,Φp8k ` 7, hn0,f qu@t ď fpn1q

ˆ

}upn1q ´ upt` n1q} ď
1

2pk ` 1q

̇

.

Proof of claim 4: Let k P N and f : NÑ N be given. From Claim 2 with the function
jk,f pnq defined as above, we may consider n0 ď Γ1p8k ` 7, jk,f q such that

@t P rn0, n0 ` jk,f pn0qs

ˆ

}uptq ´ Puptq} ď
1

8pk ` 1q

̇

.

By Claim 3, there exists n1 P rn0,maxtn0,Φp8k ` 7, hn0,f qus satisfying

@t ď fpn1q

ˆ

}Sptqupn1q ´ upt` n1q} ď
1

4pk ` 1q

̇

.

Since n1 P rn0,maxtn0,Φp8k ` 7, hn0,f qus “ rn0, n0 ` jk,f pn0qs, we also have }upn1q ´

Pupn1q} ď 1{p8pk ` 1qq. Thus, for any t ď fpn1q:

}upn1q ´ upt` n1q} ď }upn1q ´ Pupn1q} ` }Pupn1q ´ Sptqupn1q}

` }Sptqupn1q ´ upt` n1q}

ď 2}upn1q ´ Pupn1q} ` }Sptqupn1q ´ upt` n1q}

ď
2

8pk ` 1q
`

1

4pk ` 1q
“

1

2pk ` 1q

which yields the claim. ■

Lastly, using the n1 from Claim 4, by triangle inequality it follows that

@t, t1 P rn1, n1 ` fpn1qs

ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

and this yields the claim of the theorem, noticing that n1 ď Γpk, fq.
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Remark 5.4.7. Similar to Remark 5.4.5, as revealed by the quantitative analysis, the
above result already holds in general Banach spaces whenever there exist suitable
selections of the duality map and projection. We again refer to Section 5.5 for further
comments on this.

This theorem is (essentially) now a true finitization of Xu’s original convergence
result since it trivially (though non-effectively) implies back the original statement but
(if instantiated to sequences tn with tn Ñ 8) only talks about finite initial segments.

Remark 5.4.8. As used above, if X is uniformly convex, then P is uniformly continuous
on bounded subsets of X and it should be noted that given a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s in the sense that

@ε P p0, 2s@x, y P X
´

∥x∥ , ∥y∥ ď 1^ ∥x´ y∥ ě εÑ
⃦⃦⃦x` y

2

⃦⃦⃦
ď 1´ ηpεq

¯

,

one can compute a modulus of uniform continuity ω for P as used above. Concretely,
we want to mention the following result given e.g. in [189]: if distpx,A´10q ď r and

∥x´ y∥ ď 1

2
α

ˆ

ε

1` r

̇

where
αpεq “ min

"

1,
ε

4
,

εηpεq

4p1´ ηpεqq

*

,

then ∥Px´ Py∥ ď ε. From this, a suitable modulus ωpr, kq can be immediately
derived.

Now, similarly to [108] and as discussed before already, the analysis of Xu’s result
(by being essentially constructive) allows for the extraction of two kinds of quantitative
“translations” and we now focus on the other variant compared to the above which
translates the stronger quantitative assumption of a rate of convergence for the almost-
orbit into a rate of convergence of the solution of the Cauchy problem towards a zero
of the operator A.

Theorem 5.4.9. Let X be uniformly convex and uniformly smooth and A be m-
accretive such that there exists a weak modulus for the convergence condition Ω. Let
S “ tSptq | t ě 0u be the semigroup generated by A via the exponential formula. Let
A´10 ‰ H with p P A´10 and assume that P , the nearest point projection onto A´10,
is uniformly continuous on bounded subsets of X with a modulus ω : N2 Ñ N, i.e.

@r, k P N@x, y P Brppq

ˆ

}x´ y} ď
1

ωpr, kq ` 1
Ñ }Px´ Py} ď

1

k ` 1

̇

,
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and, without loss of generality, assume that ωpr, kq ě k for all r, k P N. Let u be an
almost-orbit with a rate of convergence Φ : NÑ N on the almost-orbit condition, i.e.

@k P N@s ě Φpkq

ˆ

sup
tě0

∥ups` tq ´ Sptqupsq∥ ď 1

k ` 1

̇

.

Let B P N˚ be such that }uptq ´ p} ď B for all t ě 0 and let fs : N Ñ N for s ě 0 be
such that fs is nondecreasing and

@n P NDxs,n, ys,n P X
ˆ

ys,n P Axs,n ^ ∥xs,n∥ , ∥ys,n∥ ď fspnq ^ ∥xs,n ´ upsq∥ ď
1

n` 1

̇

.

Then we have

@k@t, t1 ě maxtΦp8k`7q, s˚`maxtΩmp24k`23q | m ď s˚uu

ˆ

∥uptq ´ upt1q∥ ď 1

k ` 1

̇

where s˚ “ ΦpωpB, 24k ` 23qq and where Ωspkq is defined as in Theorem 5.4.6.

Proof. Given a rate of convergence Φ on the almost-orbit condition, it is clear that
Φpk, fq :“ Φpkq (ignoring the slight abuse of notation) is a rate of metastability for
the almost-orbit. Therefore, by Theorem 5.4.6, we get that the previously constructed
Γpk, fq is rate of metastability for the conclusion. As shown in Proposition 2.6 of [118],
a function4 ρ : p0,8q Ñ N is a Cauchy rate of a sequence iff φpε, fq :“ ρpεq is a rate of
metastability (which also holds in our adapted context where we consider rates to be
functions operating on natural numbers as errors). Now, using that Φpk, fq “ Φpkq, we
find by inspection of the defining term that also Γpk, fq is independent of the parameter
f . Thus, we get that Γpkq :“ Γpk, fq is a rate of convergence and the given bound in
the above theorem just results by simplifying the expressions accordingly.

Note in particular that the above result is indeed a consequence of the previous
metastability result and does not require one to reiterate the proof. In that way, the
metastability result already contained the quantitative information regarding rates of
convergence. We refer to [97] for further discussions of such phenomena.

Remark 5.4.10. Such a rate of convergence of the almost-orbit condition as required as
a premise in the above theorem, i.e. a Φ : NÑ N such that

@k P N@s ě Φpkq

ˆ

sup
tě0

∥ups` tq ´ Sptqupsq∥ ď 1

k ` 1

̇

4Note the typo in [118] where it instead says ρ : p0,8q Ñ p0,8q



104
CHAPTER 5. QUANTITATIVE RESULTS ON PAZY’S CONVERGENCE

CONDITION AND FIRST-ORDER CAUCHY PROBLEMS

can actually be derived from the seemingly weaker assumption on the existence of a Φ

such that

@k P NDs0 ď φpkq

ˆ

sup
tě0

∥ups0 ` tq ´ Sptqups0q∥ ď
1

k ` 1

̇

.

Namely, for given k P N and for s ě s0 with s0 ď φp2k ` 1q as stipulated above, we
can express s “ s0 ` s1 for s1 ě 0 and then compute for all t ě 0:

∥ups` tq ´ Sptqupsq∥ “ ∥ups0 ` s1 ` tq ´ Sptqups0 ` s1q∥

ď ∥ups0 ` s1 ` tq ´ Spt` s1qups0q∥

` ∥Spt` s1qups0q ´ Sptqups0 ` s1q∥

ď
1

2pk ` 1q
` ∥SptqSps1qups0q ´ Sptqups0 ` s1q∥

ď
1

2pk ` 1q
` ∥Sps1qups0q ´ ups0 ` s1q∥

ď
1

k ` 1
.

Thus, Φpkq “ φp2k`1q is actually a full rate of convergence. This remark also applies to
the results regarding rates of convergence presented in [108] which thus also essentially
depend on a rate of convergence of the almost-orbit condition.

Further, note that in both cases the existence of the assumed bound on ∥uptq ´ p∥ is
actually guaranteed by the assumption of u being an almost-orbit and that A´10 ‰ H:
the definition implies

Ds˚ sup
tě0

∥upt` s˚q ´ Sptqups˚q∥ ď 1

and thus for p P A´10, we have

∥upt` s˚q ´ p∥ ď ∥upt` s˚q ´ Sptqups˚q∥` ∥Sptqups˚q ´ p∥

ď 1` ∥ups˚q ´ p∥ ă 8

for all t ě 0. As u is continuous, we get that

sup
tPr0,s˚s

∥uptq ´ p∥ ă 8

which implies that uptq ´ p is bounded in norm. Note that a concrete bound can
therefore be computed using a modulus of continuity for u on bounded sets together
with a rate of convergence Φ on the almost-orbit condition and a norm upper bound
on p.
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5.5 Logical aspects of the above results

The extractions presented in this chapter rest on some logical considerations which
we want to discuss in this section by sketching in what ways the previous system Hω

p

needs to be extended to recognize the quantitative results presented in this chapter as
instances of the general logical metatheorems established in Chapter 4. For this, we
write Hω for the variant of Hω

p where the range condition is replaced with axiom (II)
from Chapter 3 (or, in other words, if the extensions that make Hω

p result from Vωp are
applied instead to Vω). This Hω provides the basic system for this section. In this
section, we switch from a representation of errors via 1{pk ` 1q to 2´k to be more in
line with the presentation from Chapter 4. This has no real practical consequences.

5.5.1 Uniform convexity and projections

As discussed already in some of the earliest papers on the treatment of abstract spaces
in proof mining (see [71, 95]), uniformly convex spaces can be treated by adding an
additional constant together with a corresponding universal axiom to express that this
new constant represents a modulus of uniform convexity (see also the later Chapter 7).

In the works [154, 208], the uniform convexity is only assumed to infer the existence
of an (in the case of Xu, uniformly continuous) selection of the projection map onto
closed and convex subsets of X. In fact, the only selection map of a projection ever
needed is a selection of the projection onto the set A´10 which we as before denote just
by P . For that, the set A´10 is assumed to be non-empty which can be hardwired into
the language of the systems by adding a designated constant p0 of type X together
with the corresponding axiom

0 P Ap0. (NE)

In the context of the above systems for the treatment of m-accretive operators and
their extensions, this kind of projection map can be immediately treated by adding a
further constant P of type XpXq together with the axiom scheme

@xX , pX p0 P ApPxq ^ p0 P ApÑ ∥x´X Px∥X ďR ∥x´X p∥Xqq , (P1)

characterizing that P is indeed a selection of the projection onto the set A´10. In par-
ticular, note also that these axioms are in particular purely universal as the statement
0 P Ap in the context of the system Hω is quantifier-free, being an abbreviation for
χApp, 0q “0 0 (see again Chapter 3). Note also again that in that way, as stressed
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before, the treatment of the projection does not require it to be unique but only to be
a suitable selection from the potentially multi-valued nearest point projection.

Further, it is immediate from the axioms that P is provably majorizable in Hω `

pP1q ` pNEq as we can prove

∥Px∥ ď ∥x∥` ∥x´ Px∥ ď ∥x∥` ∥x´ p0∥ ď 2 ∥x∥` ∥p0∥

from the axioms (P1) and (NE).

If extensionality or continuity is needed for the projection P (as is the case in the
context of Xu’s result), the above system needs to be extended with a modulus of
uniform continuity ωP of type 0p0qp0q together with a corresponding axiom like

$

&

%

@r0, k0, xX , yX
´

∥x´X p0∥X , ∥y ´X p0∥X ăR r

^ ∥x´X y∥X ăR 2´ω
P pr,kq Ñ ∥Px´X Py∥X ďR 2´k

¯

.
(P2)

In that way, the bound extraction theorems stated in Theorem 4.4.6 and Theorem
4.4.7 immediately extend to the system Hω ` pNEq ` pP1q p`pP2qq where one then
additionally requires n to satisfy n ě ∥p0∥ (and in the case of pP2q, Φ additionally
depends on ωP ).

5.5.2 Uniform smoothness and the normalized duality map

Regarding uniformly smooth spaces, we focus on the dual characterization of such
spaces via the requirement of a single-valued duality map J which is norm-to-norm
uniformly continuous on bounded subsets (recall again Section 5.2).

As becomes clear through inspection of the analyses presented above, they actually
“only” require a function j1 : X Ñ X˚ which selects a specific point from the duality
set, namely such that

1. xy ´ Px, j1px´ Pxqy ď 0 for all x P X and all y P A´10;

2. xu´ v, j1px´ yqy ě 0 for all px, uq, py, vq P A.

Both properties are satisfied for the unique selection if X is uniformly smooth and A

is m-accretive with A´10 ‰ H and where a selection P of the projection onto that
set exists as above. But, actually, any such selection suffices which is in particular
suggested by the proof-theoretic perspective.
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In that way, we find that the use of the duality map made in the above extractions
can be formalized by using the approach to axiomatizations of duality selection maps
developed in [111] and previously used for our treatment of the alternative notion of
accretivity in Chapter 4. In that vein, we can thus treat the existence of such a map
by extending Hω ` pP1q ` pNEq (+pP2q) by a constant j1 of type 1pXqpXq together
with the axiom

pj1q

$

&

%

@xX , yX
´

xx, j1xy “R ∥x∥2X ^ |xy, j1xy| ďR ∥x∥X ∥y∥X
^ @α1, β1, uX , vX pxαu`X βv, j

1xy “R αxu, j
1xy ` βxv, j1xyq

¯

,

which instantiates the axiom from [111], stating that j1 is indeed a selection (recall also
Chapter 4), together with two additional axioms expressing the above properties (1)
and (2)

pM1q @xX , yX p0 P Ay Ñ xy ´X Px, j
1px´X PxqyX ďR 0q ,

pM2q @xX , yX , uX , vX pu P Ax^ v P Ay Ñ xu´X v, j
1px´X yqyX ěR 0q .

The bound extraction theorems stated before also here immediately extend to the
system Hω ` pP1q ` pNEq ` pj1q ` pM1q ` pM2q (`pP2q) as is immediately clear
through the discussion in [111] and the fact that all the new axioms are universal.

Remark 5.5.1. Clearly, the system Hω ` pP1q ` pNEq ` pj1q ` pM1q ` pM2q is over-
specified regarding the accretivity of A as Hω already contains a family of selection
functionals witnessing accretivity but pM2q says that j1 is a uniform witness for this
property. This over-specification has no impact on the theoretical results, however, so
we do not “trim” the system.

Now, by itself, the existence of a selection functional for the duality map in par-
ticular does not imply that the latter has to be single-valued. However, as shown by
Körnlein [124], the existence of a selection functional which is uniformly norm-to-norm
continuous is actually equivalent to uniform smoothness of the space X and thus ac-
tually implies that this selection is the unique selection. As discussed in [111], the
uniform continuity of the selection is already implied by the logical methodology in the
case that the proof relies on the extensionality of it.

However, as the above analysis shows, the proofs of Nevanlinna and Reich as well
as Xu do not rely on uniform continuity or even extensionality of j1 and, in that way,
can be formalized in the system Hω`pP1q`pNEq`pj1q`pM1q`pM2q (with pP2q in
the case of Xu) which also explains the absence of any moduli of uniform smoothness
for the space or any moduli of uniform continuity for the selection j1 in the analysis.
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In particular this additionally shows that the results are already valid in the context of
the existence of a selection functional satisfying (1) and (2) which is potentially weaker
than uniform smoothness.

This insight that conditions (1) and (2) are sufficient, now here facilitated via a
proof-theoretic method, was essentially already observed in the last section of the work
of Nevanlinna and Reich [154] although it was not stressed in this abstract nature.
Instead, they list additional conditions on the operator in order to guarantee that the
conditions (1) and (2) are naturally satisfied. Concretely, they require that the operator
then is accretive in the sense of Browder [29] to enable that the condition (2) is satisfied
for any possible selection j1 of J and they require that A´10 is a so-called proximal sun
(see [154]) in order to guarantee that a selection satisfying (1) always exists and they
require that the semigroup is differentiable so that the orbit generated by the Crandall-
Liggett formula is actually a solution of the corresponding initial valued problem (as
shown in [50]) which was previously guaranteed by the uniform convexity and uniform
smoothness. In the vein of the previous logical discussion, we thus find that our above
quantitative results also apply to these generalizations.

5.5.3 Logical aspects of the convergence condition

Besides the quantitative analyses of the results of Nevanlinna and Reich as well as
Xu, the main contribution of this chapter is the introduction of the new notions of
“moduli for the convergence condition”. Already in Bishop’s work [17], arguments for
the functional interpretation as the correct numerical interpretation of theorems of the
form D@ Ñ D@ are given and, in modern times, the proof mining program has been
very effective in arguing that the monotone functional interpretation (in combination
with a negative translation) provides the right numerical information in the search for
uniform bounds in analysis (see in particular the detailed discussion in [116]). In the
following, we will now see how, through this lens, these moduli actually arise from the
underlying logical methodology and thus, in various ways, represent the real finitary
core of the convergence condition from both a classical and a constructive perspective.
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The convergence condition from a classical perspective

Based on the equivalence laid out in Lemma 5.3.1, any proof that a class of operators
satisfies the convergence condition, written in the immediate formal translation

@pxnq
Xp0q, pynq

Xp0q, K0

˜

@i0 pyi P Axi ^ ∥xi∥X , ∥yi∥X ďR Kq

^ @a0Db0@c0
`

c ě0 bÑ |xyc, j
1
pxc ´X Pxcqy| ďR 2´a

˘

(1)

Ñ @k0, N0
Dn0

`

n ě0 N ^ ∥xn ´X Pxn∥X ďR 2´k
˘

¸

,

can be transformed into a proof for satisfying the equivalent statement

@xX , yX , K0, k0Dn0

ˆ

y P Ax^ ∥x∥X , ∥y∥X ďR K

^ |xy, j1px´X Pxqy| ďR 2´n Ñ }x´X Px}X ďR 2´k
̇

, (2)

however at the expense of using classical logic as well as countable choice. However,
this use of countable choice is in essence only applied to a quantifier-free formula and
thus is an instance of QF-AC. It is clear that (after equivalently writing (2) with ăR

in the conclusion to make the inner matrix existential) the negative translation of (2)
is equivalent to its original version by the use of Markov’s principle and thus that the
negative translation followed by the monotone functional interpretation, applied to (2),
immediately produces a full modulus (as defined in Definition 5.3.4) as the suggested
finitization of this variant of the convergence condition.

Thus, a priori, through the application of the classical metatheorem given in The-
orem 4.4.6, we have the following:

Proposition 5.5.2. There are primitive-recursive (in the sense of Gödel) translations
which transform any full modulus for the convergence condition into a solution of the
negative translation followed by the monotone functional interpretation of (1), and vice
versa.

Therefore, the two variants of the convergence condition and the accompanying
moduli can be extracted from proofs and used interchangeably without yielding a far
increase of complexity beyond the principles used in the proof. Thus the bound ex-
traction result discussed in Theorem 4.4.6 guarantees the extractability of such moduli
even from classical proofs that A satisfies the convergence condition, provided that the
proof can be formalized in Hω ` pP1q ` pNEq ` pj1q ` pM1q ` pM2q ` ∆ (which we
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abbreviate in the following by Cω) for suitable ∆ or any extension/fragment thereof
pertaining to the bound extraction theorems. Even further, as already hinted on in Re-
mark 5.3.6, this extraction is already possible from suitable proofs of the much weaker
requirement

@px, yq P A pxy, j1px´ Pxqy “ 0Ñ }x´ Px} “ 0q .

In that way, a formalized version of the argument in Remark 5.3.6 in fact shows the
following:

Proposition 5.5.3. If Cω (or any suitable extension or fragment thereof) proves that
A satisfies

@px, yq P A pxy, j1px´X Pxqy “R 0Ñ }x´X Px}X “R 0q ,

then from the proof one can extract a (potentially bar-recursively) computable full mod-
ulus for the convergence condition. If the proof does not use DC, then the modulus is
even primitive recursive in the sense of Gödel.

This in particular also holds if there exists a suitable proof of the convergence condi-
tion itself as this proof can be transformed into a proof of the above property (without
any additional use of classical logic or choice).

However, the modularity of the approach to quantitative information via the mono-
tone functional interpretation further yields that from any proof using the convergence
condition as a premise (formulated in any variant p1q or p2q as discussed above) and
formalizable in the respective systems, quantitative information on the conclusion can
be extracted which depends then additionally on such a modulus solving the monotone
functional interpretation of the convergence condition. This is collected in the following
derived metatheorem:

Theorem 5.5.4. Under the assumptions of Theorem 4.4.6, we have the following: If

Cω $ @xδ@y ďσ spxq@zτ
`

A satisfies the convergence condition Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a bar-recursively computable partial function

Φ : Sδ ˆ Sτp ˆ pS0p0qp0qq
2
ˆ Nˆ NN

Ñ N

such that for all x P Sδ, z P Sτ , z˚ P Sτp, Ωf , ω1 P S0p0qp0q and all n P N and ω P NN, if
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z˚ Á z, ω Á ωS and ω1 Á ωP as well as n ěR
⃦⃦
JA1 p0q

⃦⃦
X
, ∥p0∥X ,5, then

Sω,X |ù@y ďσ spxq
´

Ωf is a full modulus for the convergence condition for A

Ñ Dv ď0 Φpx, z
˚,Ωf , ω1, n, ωqCDpx, y, z, vq

¯

holds whenever Sω,X |ù ∆ for Sω,X defined as in Theorem 4.4.6 for the constants of
Hω and with the other new constants of Cω naturally interpreted so that the respective
axioms are satisfied.

Moreover: if the proof does not use DC, then the modulus is even primitive recursive
in the sense of Gödel. The result remains true for any suitable extension or fragment
of Cω.

In that way, by Proposition 5.5.3 and Theorem 5.5.4, we find that a full modulus
is indeed the right quantitative notion for the convergence condition in the sense that
both items (1) and (2), discussed before as the central properties on page 85, are
fulfilled.

The convergence condition from a constructive perspective

From the semi-constructive perspective of the monotone modified realizability inter-
pretation and the associated system Vωi and its extensions, the quantitative version
of the convergence condition is exactly what is captured by the notion of the “plain”
modulus introduced in Definition 5.3.3.

For this, we now work over the semi-constructive variant of the previous theories.
Concretely, we abbreviate with Cωi in the following the system Hω

i ` IP␣ ` CA␣ `

pP1q ` pNEq ` pj1q ` pM1q ` pM2q ` Γ␣ for suitable Γ␣ where Hω
i results from Vωi by

extending it in the same manner as Vω is extended to form Hω.
Concretely, applying the monotone modified realizability interpretation to the for-

mal statement (1) considered previously, we get that it asks for a functional Ω which
transforms K and majorants for pxnq, pynq (which w.l.o.g. are assumed to coincide
with the constant K-function and are in that way represented by the input K) and a
majorant of a realizer for the premise

@aDb@c
`

c ě bÑ |xyc, j
1
pxc ´ Pxcqy| ď 2´a

˘

,

5We can here simplify the assumptions on n compared to Theorem 4.4.6 as, in the context of Hω,
the resolvents are all total so that we can pick mγr ,mλ0 ,m

1
γr “ 0 with γr “ 1, λ0 “ 2 as well as cX “ 0

and dX “ 0´X JA
1 p0q.
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i.e. of a φ of type 1 such that

@a, c
`

c ě φpaq Ñ |xyc, j
1
pxc ´ Pxcqy| ď 2´a

˘

into a majorant of a realizer for the conclusion @k,NDn
`

n ě N ^ ∥xn ´ Pxn∥ ď 2´k
˘

,
i.e. into an ΩpK,φq of type 0p0qp0q such that

@k,NDn ď ΩpK,φqpk,Nq
`

n ě N ^ ∥xn ´ Pxn∥ ď 2´k
˘

.

Thus, this is exactly what is represented by a “plain” modulus for the convergence
condition.

An immediate application of the bound extraction result contained in Theorem
4.4.7 yields the following result, similarly to the previous Proposition 5.5.3.

Proposition 5.5.5. If Cωi (or any suitable extension or fragment thereof) proves

@px, yq P A pxy, j1px´X Pxqy “R 0Ñ }x´X Px}X “R 0q ,

then from the proof one can extract a primitive-recursive full modulus for the conver-
gence condition.

As discussed before, this in particular also holds if there exists a suitable proof of
the convergence condition.

Note that in the presence of the previous Proposition 5.5.3, the above result is never-
theless not void. While an intuitionistic proof is especially a classical proof, Proposition
5.5.3 of course guarantees already the extractability of a full modulus. However, this
only applies in the case that the additional axioms Γ␣ potentially contained in the
above system Cωi have a monotone functional interpretation as required by Proposition
5.5.3. So if the real strength of Γ␣ is used while restricting to intuitionistic logic, then
the above result nevertheless guarantees the existence and extractability of a primitive
recursive full modulus.

Now, in similarity to Theorem 5.5.4, we obtain a macro for the logical metatheorem
contained in Theorem 4.4.7 which guarantees that now from a semi-constructive proof
of a result using the convergence condition as a premise, one can extract a transforma-
tion which transforms any modulus for the convergence condition into information on
the conclusion, even in the presence of the axioms Γ␣.
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Theorem 5.5.6. Under the assumptions of Theorem 4.4.7 we have the following: If

Cωi $ @xδ@y ďσ spxq@zτ
`

A satisfies the convergence condition Ñ Du0Cpx, y, z, uq
˘

,

one can extract a

Φ : Sδ ˆ Sτp ˆ S1p0qp1qp0q ˆ S0p0qp0q ˆ Nˆ NN
Ñ N

with is primitive recursive in the sense of Gödel such that for any x P Sδ, any y P Sσ
with y ďσ spxq, any z P Sτ and z˚ P Sτp with z˚ Á z6 and any n P N, Ω P S1p0qp1qp0q,
ω1 P S0p0qp0q, ω P NN with n ěR

⃦⃦
JA1 p0q

⃦⃦
X
, ∥p0∥X as well as ω Á ωS and ω1 Á ωP we

have that

Sω,X |ù Du ď0 Φpx, z
˚,Ω, ω1, n, ωq

´

Ω is a modulus for the convergence condition for A

Ñ Cpx, y, z, uq
¯

holds whenever Sω,X |ù Γ␣ for Sω,X defined as in Theorem 4.4.7 for the constants of
Hω and with the other new constants of Cωi naturally interpreted so that the respective
axioms are satisfied.

Note lastly that it is also this result which a priori guaranteed the dependence of
the quantitative versions of the result of Nevanlinna and Reich as well as Xu on our
“plain” modulus instead of on the full modulus and which in that way lies behind the
extraction.

6Here, Á denotes (not necessarily strong) majorization interpreted in the model Sω,X , as before.



6 Rates of convergence for the asymptotic
behavior of second-order Cauchy problems

6.1 Introduction

While the previous Chapter 5 was concerned with the theorems of Nevanlinna and
Reich as well as Xu in the context of first-order systems, we are in this short chapter
now concerned with a result due to Poffald and Reich [171] which extends the work of
Nevanlinna and Reich to incomplete second-order Cauchy problems. Namely, for the
second-order system

$

’

’

’

&

’

’

’

%

u2ptq P Auptq, 0 ă t ă 8,

up0q “ x,

supt∥uptq∥ | t ě 0u ă 8,

(:)

over a uniformly smooth and uniformly convex Banach space X with a strongly mono-
tone duality map1 J , i.e. for a constant M ą 0 it holds that xx ´ y, Jx ´ Jyy ě

M ∥x´ y∥2 for all x, y P X, and A m-accretive as before, the solution set

S “ tuptq | u is a solution to p:q for some x in the sense of [171, Theorem 2.8]u

is a nonlinear semigroup for x P domA as shown in [171]. Thus, by the results from
[172], this semigroup is generated by some unique m-accretive operator which is denoted
by A1{2 and called the square root of A. Similarly, we write S1{2 for this semigroup.
Various properties of this semigroup and the accompanying system were exhibited in
[171], generalizing previous work in the context of Hilbert spaces by Barbu [3] as well
as Brezis [24]. In particular, Poffald and Reich obtained the following result on the
asymptotic behavior of the semigroup:

1As shown in [171, Proposition 2.11], a smooth Banach space has a strongly monotone duality map
if, and only if, it is uniformly convex with a modulus of convexity of power type 2.
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Theorem 6.1.1 (Poffald and Reich [171]). Let X be uniformly convex and uniformly
smooth with a strongly monotone duality map J , i.e. for a constant M ą 0 it holds that
xx´ y, Jx´ Jyy ěM ∥x´ y∥2 for all x, y P X, and A be m-accretive with A´10 ‰ H
and such that it satisfies the convergence condition. If S1{2 “ tS1{2ptq | t ě 0u is
the semigroup generated by A1{2 via the exponential formula as above, then S1{2ptqx

converges strongly to a zero of A for tÑ 8 for any x P domA.

In this chapter, we exhibit the quantitative content of this result by extracting an
explicit and computable transformation from the proof of Theorem 6.1.1 which trans-
lates the previously introduced modulus of the convergence condition, together with
some minor quantitative data, into a full rate of convergence for the strong conver-
gence of S1{2ptqx to a zero of A.

For simplicity, we formulate all the results only for the full moduli from Chapter
5 for simplicity. It should however be noted that the results also hold already in the
context of a “plain” modulus for the convergence condition as before.

Going beyond the range of proof mining however, we are here further concerned
with generalizations of the theorem of Poffald and Reich to new results. As discussed in
Chapter 5, Xu [208] studied the behavior of almost-orbits associated with the semigroup
generated by A (see Theorem 5.1.3).

Combining the ideas of the quantitative analysis obtained in the previous Chapter
5 of this result of Xu together with the quantitative version of the result of Poffald and
Reich established in this chapter, we obtain a similar quantitative version of a result on
almost-orbit convergence for the semigroup S1{2. This result, while finitary in nature,
in particular also implies back the following basic “infinitary” result for S1{2 which is
similar to Xu’s result from before:

Theorem 6.1.2. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M ą 0, i.e. xx ´ y, Jx ´ Jyy ě M ∥x´ y∥2 for
all x, y P X. Let A be m-accretive such that it satisfies the convergence condition and
that A´10 ‰ H. Let S1{2 “ tS1{2ptq | t ě 0u be the semigroup generated by A1{2 via the
exponential formula. Then every almost-orbit uptq of S1{2 converges strongly to a zero
of A as tÑ 8.

This result on the behavior of almost-orbits in the case of S1{2 seems to be new
to the literature and the approach taken here to establish it in particular exhibits the
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strength of quantitative analyses obtained in the proof mining program as these exhibit
the real finitary core of a mathematical proof, stripped of any non-essential notions and
arguments, which sometimes allows for easy generalizations that lead to new results.

6.2 An analysis of Poffald’s and Reich’s result

To derive a quantitative version of the convergence result contained in Theorem 6.1.1,
by means of applying a modulus for the convergence condition, we first have to extract
from the proof given in [171] explicit quantitative bounds on the norms of the orbits
and their derivatives involved.

For that, we follow the way a solution for the associated system (:) is constructed
in [171] (which differs in comparison to the construction of Barbu [3] (see also [24]) who
considered this problem in the context of Hilbert spaces before Poffald and Reich). To
solve (:), Poffald and Reich first solve the system

$

’

’

’

&

’

’

’

%

u2ptq P Auptq ` puptq, 0 ă t ă 8,

up0q “ x,

u P L2p0,8;Xq,

p:qp

in W 2,2p0,8;Xq for pÑ 0` which in turn is solved by solving the approximate system
$

’

’

’

&

’

’

’

%

u2ptq “ Aruptq ` puptq, 0 ă t ă 8,

up0q “ x,

u P L2p0,8;Xq,

p:qrp

for r Ñ 0` where Ar is the Yosida approximate.
In the latter case, they conclude that the unique solution urp of p:qrp converges in

L2p0,8;Xq and Cpr0,8q;Xq to a (unique) solution up of p:qp. For the approximate
solutions urp, the following bounds on urp and its derivatives are obtained in [171]:

•
⃦⃦
urpptq

⃦⃦
ď ∥x∥ for all t ě 0 (p. 521, (2.7));

•
ş8

0

⃦⃦
urp
1ptq

⃦⃦2
dt ď 2{M2pdp0, Axq ` p ∥x∥q1{2 ∥x∥3{2 (p. 522, (2.17));

•
ş8

0

⃦⃦
urp
2ptq

⃦⃦2
dt ď 2{M2pdp0, Axq ` p ∥x∥q3{2 ∥x∥1{2 (p. 522, (2.14)).

As remarked in [171], these bounds immediately transfer to the solution up of p:qp by
applying Lemma 2.6 of [171] to urp Ñ up for r Ñ 0`.
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Following [171], these bounds can then be used to establish bounds on the respective
norms of a solution u to p:q by applying Lemma 2.7 of [171] to the convergence up Ñ u

for p Ñ 0` which immediately yields the following bounds for the solution of p:q
corresponding to the initial value x:

• ∥uptq∥ ď ∥x∥ for all t ě 0;

•
ş8

0
∥u1ptq∥2 dt ď 2{M2dp0, Axq1{2 ∥x∥3{2;

•
ş8

0
∥u2ptq∥2 dt ď 2{M2dp0, Axq3{2 ∥x∥1{2.

The quantitative version of Theorem 6.1.1 now takes the following form for the case
of x P domA.

Theorem 6.2.1. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M ą 0, i.e. xx ´ y, Jx ´ Jyy ě M ∥x´ y∥2 for
all x, y P X. Let A be m-accretive with A´10 ‰ H with p P A´10 and such that it
satisfies the convergence condition with a full modulus for the convergence condition
Ω. Let S1{2 “ tS1{2ptq | t ě 0u be the semigroup generated by A1{2 via the exponential
formula. For any x P domA, we have

@k P N@t, t1 ě χppΩp2k ` 1,maxt1, duq ` 1q2 ´ 1q

ˆ⃦⃦
S1{2ptqx´ S1{2pt

1
qx
⃦⃦
ď

1

k ` 1

̇

with χpkq “ pD ` 1qpk ` 1q and where

D ě p1` b2q
2

M2
dp0, Axq3{2d1{2

as well as b ě ∥x´ Px∥ and d ě ∥x∥.

Proof. We write uptq “ S1{2ptqx. Then u2 exists almost everywhere, say on r0,8qzN .
As outlined in the discussion before, we have ∥uptq∥ ď ∥x∥ for all t ě 0 as well as

ż 8

0

∥u2ptq∥2 dt ď
2

M2
dp0, Axq3{2 ∥x∥1{2 .

Now, using the defining property of the projection P and the definition of u, we have

∥upt` hq ´ Pupt` hq∥ ď ∥upt` hq ´ Puptq∥ ď ∥uptq ´ Puptq∥
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which in particular implies that
ż 8

0

xu2ptq, Jpuptq ´ Puptqqy2 dt ď

ż 8

0

∥u2ptq∥2 ∥Jpuptq ´ Puptqq∥2 dt

“

ż 8

0

∥u2ptq∥2 ∥uptq ´ Puptq∥2 dt

ď

ż 8

0

∥u2ptq∥2 ∥up0q ´ Pup0q∥2 dt

ď
2

M2
dp0, Axq3{2 ∥x∥1{2 ∥x´ Px∥2 .

Therefore also
ż 8

0

´

∥u2ptq∥2 ` xu2ptq, Jpuptq ´ Puptqqy2
¯

dt

ď p1` ∥x´ Px∥2q 2

M2
dp0, Axq3{2 ∥x∥1{2

ď D.

Lemma 5.4.1 now implies that for any k P N:

Dt P r0, χpkqszN

ˆ

max
!

∥u2ptq∥2 , xu2ptq, Jpuptq ´ Puptqqy2
)

ď
1

k ` 1

̇

.

Thus in particular, we have

Dt P r0, χppk ` 1q2 ´ 1qszN

ˆ

max t∥u2ptq∥ , xu2ptq, Jpuptq ´ Puptqqyu ď 1

k ` 1

̇

which yields

Dt ď χppΩpk,maxt1, duq ` 1q2 ´ 1q
ˆ

max t∥u2ptq∥ , xu2ptq, Jpuptq ´ Puptqqyu ď 1

Ωpk,maxt1, duq ` 1

̇

and thus, as ∥u2ptq∥ ď 1 for such a t, the properties of Ω yield that

Dt ď χppΩpk,maxt1, duq ` 1q2 ´ 1q

ˆ

∥uptq ´ Puptq∥ ď 1

k ` 1

̇

.

But as discussed above, ∥uptq ´ Puptq∥ is decreasing and thus actually

@t ě χppΩpk,maxt1, duq ` 1q2 ´ 1q

ˆ

∥uptq ´ Puptq∥ ď 1

k ` 1

̇

.

As in [171], we can now show

∥upt` hq ´ uptq∥ ď 2 ∥uptq ´ Puptq∥
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and thus we obtain

@t ě χppΩp2k ` 1,maxt1, duq ` 1q2 ´ 1q@h

ˆ

∥upt` hq ´ uptq∥ ď 1

k ` 1

̇

which is the claim.

By continuity of S1{2, the result for x P domA extends to x P domA and by an
analysis of this proof, we obtain the following quantitative result for the extension.

Theorem 6.2.2. Assume the conditions of Theorem 6.2.1. Let x P domA with f :

NÑ N be such that f is nondecreasing and

@k P NDz, y P X
ˆ

z P Ay ^ ∥y∥ , ∥z∥ ď fpkq ^ ∥x´ y∥ ď 1

k ` 1

̇

.

Then

@k P N@t, t1 ě χkppΩp6k ` 5,maxt1, fp3k ` 2quq ` 1q2 ´ 1q
ˆ⃦⃦

S1{2ptqx´ S1{2pt
1
qx
⃦⃦
ď

1

k ` 1

̇

with χkpkq “ pDk ` 1qpk ` 1q and where

Dk ě p1` b
2
kq

2

M2
fp3k ` 2q2

as well as bk ě ∥x´ Px∥` ∥x∥` fp3k ` 2q.

Proof. By the properties of f , we get that there exists z P Ay such that ∥z∥ , ∥y∥ ď
fp3k ` 2q and ∥x´ y∥ ď 1{p3k ` 3q. Therefore⃦⃦

S1{2ptqx´ S1{2pt
1
qx
⃦⃦
ď

⃦⃦
S1{2ptqx´ S1{2pt

1
qy
⃦⃦
`
⃦⃦
S1{2ptqy ´ S1{2pt

1
qy
⃦⃦

`
⃦⃦
S1{2pt

1
qx´ S1{2pt

1
qy
⃦⃦

ď 2 ∥x´ y∥`
⃦⃦
S1{2ptqy ´ S1{2pt

1
qy
⃦⃦

ď
2

3pk ` 1q
`
⃦⃦
S1{2ptqy ´ S1{2pt

1
qy
⃦⃦
.

Using the previous Theorem 6.2.1, we get that

@k P N@t, t1 ě χkppΩp6k ` 5,maxt1, fp3k ` 2quq ` 1q2 ´ 1q
ˆ⃦⃦

S1{2ptqy ´ S1{2pt
1
qy
⃦⃦
ď

1

3k ` 3

̇
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since

∥y ´ Py∥ ď ∥x´ Px∥` |∥y ´ Py∥´ ∥x´ Px∥|

ď ∥x´ Px∥` ∥y ´ x∥

ď ∥x´ Px∥` ∥x∥` fp3k ` 2q

ď bk

as well as ∥y∥ ď fp3k ` 2q and dp0, Ayq ď ∥z∥ ď fp3k ` 2q. This gives the claim.

6.3 A generalization to almost-orbits

We now generalize the result of Xu from the first-order to the second-order case. The
new result in Theorem 6.1.2 follows from the following quantitative result which itself
arises as a generalization of the quantitative version of Xu’s result (Theorem 5.4.6)
given in Chapter 5.

Theorem 6.3.1. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M ą 0, i.e. xx ´ y, Jx ´ Jyy ě M ∥x´ y∥2 for
all x, y P X. Let A be m-accretive such that it satisfies the convergence condition with
a full modulus for the convergence condition Ω. Let S1{2 “ tS1{2ptq | t ě 0u be the
semigroup generated by A1{2 via the exponential formula. Let A´10 ‰ H with p P A´10
and assume that P , the nearest point projection onto A´10, is uniformly continuous on
bounded subsets of X with a modulus ω : N2 Ñ N, i.e.

@r, k P N@x, y P Brppq

ˆ

}x´ y} ď
1

ωpr, kq ` 1
Ñ }Px´ Py} ď

1

k ` 1

̇

,

and, without loss of generality, assume that ωpr, kq ě k for all r, k P N. Let u be an
almost-orbit of S1{2 with a rate of metastability Φ on the almost-orbit condition, i.e.

@k P N@f : NÑ NDn ď Φpk, fq@t P r0, fpnqs
ˆ

}S1{2ptqupnq ´ upt` nq} ď
1

k ` 1

̇

.

Let B P N˚ be such that }uptq ´ p} ď B for all t ě 0 and let fs : N Ñ N for s ě 0 be
such that fs is nondecreasing and

@n P NDxs,n, ys,n P X
ˆ

ys,n P Axs,n ^ ∥xs,n∥ , ∥ys,n∥ ď fspnq ^ ∥xs,n ´ upsq∥ ď
1

n` 1

̇

.
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Then we have

@k P N@f : NÑ NDn ď Γpk, fq@t, t1 P rn, n` fpnqs

ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

,

where

Γpk, fq :“ maxtΓ1p8k ` 7, jk,f q,Φp8k ` 7, hN,f q | N ď Γ1p8k ` 7, jk,f qu

with

hN,f pnq :“ fpmaxtN, nuq `maxtN, nu ´ n,

jk,f pnq :“ maxtn,Φp8k ` 7, hn,f qu ´ n

gk,f pmq :“ Ωmp3k ` 2q ` fpm` Ωmp3k ` 2qq,

Γ1pk, fq :“ ΦpωpB, 3k ` 2q, gk,f q `maxtΩmp3k ` 2q | m ď ΦpωpB, 3k ` 2q, gk,f qu,

for Ωspkq with s ě 0 defined by

Ωspkq :“ χs,kppΩp3k ` 2,maxt1, fspωpB ` 1, 3k ` 2qquq ` 1q2 ´ 1q

with χs,kpkq :“ pDs,k ` 1qpk ` 1q and where

Ds,k ě p1` pB ` 1q2q
2

M2
fspωpB ` 1, 3k ` 2qq2.

We omit the proof as it is, in essence, a careful reimplementation of the proof of
Theorem 5.4.6, now using Theorem 6.2.1 in the beginning instead of Theorem 5.4.3 as
before.

This finitary result now in particular implies a usual infinitary result on the con-
vergence of almost-orbits of S1{2 as formulated in Theorem 6.1.2 since metastability
trivially (though non-effectively) implies back convergence of the respective sequence.

Proof of Theorem 6.1.2. Let X be uniformly convex and uniformly smooth with a
strongly monotone duality map J with value M ą 0 and let A be m-accretive such that
it satisfies the convergence condition and that A´10 ‰ H. Let u be an almost-orbit of
S1{2. By Proposition 5.3.5, there exists a full modulus for the convergence condition Ω.
As in [108], it is rather immediate to see that u has a rate of metastability Φ. Then, for
the other minor quantitative data as required in the above theorem (which naturally
exist), we get that there exists a function Γ such that

@k P N@f : NÑ NDn ď Γpk, fq@t, t1 P rn, n` fpnqs

ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

.
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In particular

@k P N@f : NÑ NDn P N@t, t1 P rn, n` fpnqs
ˆ

}uptq ´ upt1q} ď
1

k ` 1

̇

and this formulation implies the Cauchy property of uptq as follows: suppose

Dk P N@n P NDt, t1 ě n

ˆ

}uptq ´ upt1q} ą
1

k ` 1

̇

and define fpnq non-effectively such that fpnq ` n ě t, t1 for these two t, t1 guaranteed
by this property. Then for that k and f :

@n P NDt, t1 P rn, n` fpnqs
ˆ

}uptq ´ upt1q} ą
1

k ` 1

̇

which is in contradiction to the metastability of u.

Lastly, similar to both [108] and to the previous chapter, we can also give the second
quantitative version of Theorem 6.1.2, based on the previously discussed strengthened
premise of a rate of convergence for the almost-orbit. This then takes the form of the
following theorem.

Theorem 6.3.2. Let X be uniformly convex and uniformly smooth with a strongly
monotone duality map J with value M ą 0, i.e. xx´ y, Jx´ Jyy ěM ∥x´ y∥2 for all
x, y P X. Let A be m-accretive such that there exists a weak modulus for the convergence
condition Ω. Let S1{2 “ tS1{2ptq | t ě 0u be the semigroup generated by A1{2 via the
exponential formula. Let A´10 ‰ H with p P A´10 and assume that P , the nearest
point projection onto A´10, is uniformly continuous on bounded subsets of X with a
modulus ω : N2 Ñ N, i.e.

@r, k P N@x, y P Brppq

ˆ

}x´ y} ď
1

ωpr, kq ` 1
Ñ }Px´ Py} ď

1

k ` 1

̇

,

and, without loss of generality, assume that ωpr, kq ě k for all r, k P N. Let u be an
almost orbit with a rate of convergence Φ : NÑ N on the almost-orbit condition, i.e.

@k P N@s ě Φpkq

ˆ

sup
tě0

⃦⃦
ups` tq ´ S1{2ptqupsq

⃦⃦
ď

1

k ` 1

̇

.

Let B P N˚ be such that }uptq ´ p} ď B for all t ě 0 and let fs : N Ñ N for s ě 0 be
such that f is nondecreasing and

@n P NDxs,n, ys,n P X
ˆ

ys,n P Axs,n

^ ∥xs,n∥ , ∥ys,n∥ ď fspnq ^ ∥xs,n ´ upsq∥ ď
1

n` 1

̇

.
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Then we have

@k P N@t, t1 ě maxtΦp8k ` 7q, s˚ `maxtΩmp24k ` 23q | m ď s˚uu
ˆ

∥uptq ´ upt1q∥ ď 1

k ` 1

̇

where s˚ “ ΦpωpB, 24k ` 23qq and where Ωspkq is defined as in Theorem 6.3.1.

Also here, we omit the proof as it is completely analogous to the proof of Theorem
6.3.2 from Chapter 5.



7 Quantitative asymptotic behavior of non-
linear semigroups

7.1 Introduction

The previous chapters were concerned with conditions under which strong convergence
of Sptqx can be guaranteed. In this chapter, we now care for asymptotic results for
semigroups generated by accretive operators which are of a more relative flavor, i.e.
which provide results that link the asymptotic behavior of the semigroup with that
of other objects without guaranteeing convergence outright. Concretely, this chapter
provides two case studies on results due to Plant [170] and Reich [174] for the asymp-
totic behavior of these semigroups and in that context, under suitable quantitative
translations of the assumptions used in the respective results, we are able to extract
rates of convergence for the limits involved which are moreover polynomial in all data.
In particular, we want to note that full rates of convergence are obtained here despite
the fact that the sequence in question is not monotone and that the original proof is
classical. This is due to a logical particularity that will be discussed after the extrac-
tions.

In that way, the current chapter further illustrates the applicability of the formal
systems developed in Chapter 4 for the semigroups generated by accretive operators
via the exponential formula as it employs the bound extraction theorems introduced
before to provide quantitative information on the above mentioned two results. These
two theorems of Reich and Plant, respectively, were motivated by the results of Pazy
[159] for iterations of nonexpansive mappings and take the following form:1

Theorem 7.1.1 (Plant [170]). Let X be uniformly convex, A be an accretive operator

1To simplify the notation in the following, we drop the superscript of the operator A from the
resolvent.
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that satisfies the range condition pRCqλ0 and let x P domA. Then

lim
λ0ątÑ0`

∥Jtx´ Sptqx∥
t

“ 0.

Theorem 7.1.2 (Reich [174]). Let X be uniformly convex, A be an accretive operator
that satisfies the range condition pRCq and let x P domA. Then

lim
tÑ8

∥Jtx´ Sptqx∥
t

“ 0.

A usual application of negative translation and monotone functional interpretation
as used by the metatheorems suggest the extractability of “metastability-like” rates
here (provided that the proof formalizes in the underlying systems). However, as we
will see, classical logic features in these proofs only in two ways: at first, it features in
some of the basic underlying convergence results in which case the limits are decreasing
and a rate of convergence can thus nevertheless be obtained using the metatheorem
from Theorem 4.4.6. For both results, the proof then proceeds via a case distinction
on real numbers between “ 0 and ą 0. In both results, the proofs for the ““ 0”-cases
are trivial and rates of convergence can be immediately extracted. While the proofs
for the “ą 0’-cases are nontrivial, they are nevertheless essentially constructive which
allows, through the use of the semi-constructive metatheorem of Theorem 4.4.7, for
the extraction of full rates of convergence for both limits exhibited above, under the
appropriate quantitative reformulations of the “ą 0’-assumption, respectively. So, a
rate of convergence can be obtained in either case, for both results. Only in the com-
bination of these rates to a rate for the full result, the issues from the use of classical
logic could feature but as we will see, in both cases the rates can be smoothed to be
combined into a full rate of convergence for the whole result.

The next two sections now present the extractions of the quantitative results and
in that context do not explicitly focus on the logical particularities of the extraction
which will only be discussed in the last section. In that way, to present these results
in a way more amenable to the usual literature of the theory of semigroups, we also
move to using ε’s for the errors instead of 2´k or similar constructions using natural
numbers like 1{pk ` 1q.

In general, the main assumption featuring in both results is the uniform convexity
of the underlying space which can be treated, as extensively discussed in the proof
mining literature starting from the earliest works on the treatment of abstract spaces
(see [95]), by a so-called modulus of uniform convexity:
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Definition 7.1.3. A modulus of uniform convexity for a space X is a mapping η :

p0, 2s Ñ p0, 1s such that

@ε P p0, 2s@x, y P X
´

∥x∥ , ∥y∥ ď 1^ ∥x´ y∥ ě εÑ
⃦⃦⃦x` y

2

⃦⃦⃦
ď 1´ ηpεq

¯

.

Of course, the rates in general will then depend on such a modulus. It should be
further noted that this modulus is conceptually related to the common analytic notion
of a modulus of convexity δ : r0, 2s Ñ r0, 1s (implicit already used in e.g. [45]) defined
as

δpεq “ inf t1´ ∥x` y∥ {2 | ∥x∥ “ ∥y∥ “ 1, ∥x´ y∥ “ εu .

In fact, as is well-known, uniformly convex spaces are characterized by the property that
δpεq ą 0 whenever ε ą 0 and the modulus of uniform convexity η effectively provides
a witness for this inequality in the form of a lower bound, i.e. that δpεq ě ηpεq ą 0 for
ε P p0, 2s.

The proofs of the results of both Plant and Reich make an essential use of δ but
closer inspection reveals that they only rely on a lower bound on δpεq greater than 0

which therefore can be substituted by the modulus of uniform convexity η. Note that
η can be assumed to be nondecreasing which we will do w.l.o.g. in the following. In
that case, one in particular has that ηpεq ă ηpδq implies ε ď δ.

7.2 An analysis of Plant’s result

In this section, if not said otherwise, let X be a fixed Banach space, A be a fixed
accretive operator that satisfies the range condition pRCqλ0 and let S be the semigroup
on domA generated by A using the Crandall-Liggett formula. The proof of Plant’s
result now proceeds by establishing that the sequence

x´ Jtx

t
, ptÑ 0`q

is Cauchy and that we have the limit

lim
t,s{tÑ0`

⃦⃦⃦⃦
x´ Jtx

t
´
x´ Spsqx

s

⃦⃦⃦⃦
“ 0.

Both results rely crucially on the existence and equality of the limits

lim
tÑ0`

∥x´ Jtx∥
t

and lim
tÑ0`

∥x´ Sptqx∥
t

.

The first sequence is nondecreasing for t Ñ 0` (see e.g. [52]) and bounded by ∥v∥ for
v P Ax witnessing x P domA (see e.g. [4]). Following [48], we denote the first limit
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by |Ax| which naturally satisfies |Ax| ď ∥v∥. The second limit was shown to coincide
with |Ax| in [48].

Now, the proof given in [170] crucially relies on the use of the limit operator |Ax|
and some elementary properties thereof. For the following, we denote the expression
px´Jtxq{t (which is just the Yosida approximate) byAtx, in contrast to Plants notation.

As discussed in Chapter 3 (and as will be discussed further later on), one of the
main theoretical obstacles in treating accretive and monotone operators is the use
of extensionality in proofs as this requires one to provide some sort of quantitative
modulus of uniform continuity as dictated by the monotone functional interpretation.
While this will be discussed in more detail in the later logical remarks, we also find
here that the main convergence principle

∥Atx∥Ñ |Ax| for tÑ 0` with x P domA,

on which the proof of Plant relies can be recognized as a particular weak version of
such a kind of extensionality statement, namely it can be shown that it is provably
equivalent to the lower semi-continuity on domA of the operator |A ¨ | associated with
A (see Proposition 7.4.1 later on).

As in the case of the functional x¨, ¨ys (recall Chapter 4), the logical methodology
based on the monotone Dialectica interpretation now implies the following quantitative
version of this statement: under this interpretation, the statement is upgraded to the
existence of a “modulus of uniform lower-semicontinuity” φ : Rą0 ˆ NÑ Rą0, i.e.

@b P N, ε P Rą0, px, uq, py, vq P A

p∥x∥ , ∥u∥ , ∥y∥ , ∥v∥ ď b^ ∥x´ y∥ ď φpε, bq Ñ |Ax| ´ |Ay| ď εq ,

which, as discussed already in the context of x¨, ¨ys, is essentially a modulus of uniform
continuity.

Based on the above mentioned equivalence, this modulus can then be used to derive
a rate of convergence for the Yosida approximates towards |Ax|.

Lemma 7.2.1. Let φ be a modulus of uniform continuity for |A ¨ | and let n satisfy
n ě ∥c∥ , ∥d∥ , λ0, γ̃ for pc, dq P A and 0 ă γ̃ ă λ0. Then for x P domA with v P Ax

and b P N˚ with b ě ∥x∥ , ∥v∥, we have

@ε ą 0@t P p0, φ1pε, b, n, φqs

˜

|Ax| ´

⃦⃦
x´ JAt x

⃦⃦
t

ď ε

¸
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where
φ1pε, b, n, φq :“ mintφpε, b` 2n` 3n2

q{b, λ0{2u.

Proof. Let ε be given and let t ď φ1pε, b, n, φq. We at first have ∥Atx∥ ď ∥v∥ ď b as
well as

∥Jtx∥ ď ∥x∥` 2 ∥c∥` p2γ̃ ` tq ∥d∥

ď ∥x∥` 2 ∥c∥` p2γ̃ ` λ0q ∥d∥

ď ∥x∥` 2n` p2n` nqn

ď ∥x∥` 2n` 3n2

using Proposition 3.3.3 (as t ă λ0). Now as Atx P AJtx, we have |AJtx| ď ∥Atx∥ and
thus

|Ax| ´ ∥Atx∥ ď |Ax| ´ |AJtx|.

Now, we get2

∥x´ Jtx∥ ď t ∥v∥ ď φ1pε, b, n, φqb ď φpε, b` 2n` 3n2
q

and thus, as v P Ax and Atx P AJtx with ∥x∥ , ∥v∥ , ∥Jtx∥ , ∥Atx∥ ď b ` 2n ` 3n2, we
have

|Ax| ´ ∥Atx∥ ď |Ax| ´ |AJtx| ď ε

which is the claim.

As mentioned before, the fact that

lim
tÑ0`

∥x´ Sptqx∥
t

“ |Ax|

was proved by Crandall in [48] and the proof proceeds by establishing that ∥x´ Sptqx∥ {t ď
|Ax| for any t ą 0 as well as

lim inf
tÑ0`

∥Sptqx´ x∥
t

ě |Ax|

and in that way crucially relies on the limit operator |A ¨ | as well. The latter of these
results relies on a result established by Miyadera in [148]3 that

lim sup
tÑ0`

B

Sptqx´ x

t
, ζ˚

F

ď xy0, x0 ´ xys

2As v P Ax and t ă λ0, we have x P domJt using pRCqλ0 . Clearly x ` tv P pId ` tAqx. So
Jtpx ` tvq “ x by uniqueness of Jt. Thus by the nonexpansivity of Jt on its domain: ∥x´ Jtx∥ “
∥Jtpx` tvq ´ Jtx∥ ď ∥x` tv ´ x∥ “ t ∥v∥.

3The result goes back to earlier work by Brezis [23] with a special case already contained in [50]
and more general results proved in [52].
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for y0 P Ax0, x P domA and ζ˚ P Jpx´ x0q.
The proof given by Crandall actually only invokes this result for x P domA and,

for the proof of Plant’s result, it is further sufficient to obtain it only for some ζ˚ P

Jpx ´ x0q. Lastly, the proof relies crucially on the use of the functional x¨, ¨ys and
in particular on the upper semicontinuity of this functional. In that way, based on
the logical methodology that upgrades this upper semicontinuity to a modulus of uni-
form continuity, we extract the following quantitative version of the above fragment of
Miyadera’s result:

Lemma 7.2.2. Let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

For ζ˚ P Jpx ´ x0q as well as x P domA with v P Ax and y0 P Ax0 where b P N˚ with
∥x∥ , ∥v∥ , ∥x0∥ , ∥y0∥ ď b:

@ε ą 0@t P p0, ψpε, b, ωqs

ˆB

Sptqx´ x

t
, ζ˚

F

ď xy0, x0 ´ xys ` ε

̇

where
ψpε, b, ωq :“

ωp2b, εq

2b
.

Proof. At first, given an ε, we get for any t P
`

0, ε
2b

‰

and for all v P Ax with ∥x∥ , ∥v∥ ď b

that
∥x´ Sptqx∥ “ ∥Sp0qx´ Sptqx∥ ď 2 ∥v∥ t ď 2b

ε

2b
ď ε

by Lemma 4.4.3, (1). Now, as in Miyadera’s proof from [148], we get

xSptqx´ x, ζ˚y ď

ż t

0

xy0, x0 ´ Spτqxysdτ.

Then for b ě ∥x∥ , ∥v∥ , ∥x0∥ , ∥y0∥, we get

xy0, x0 ´ Sptqxys ď xy0, x0 ´ xys ` ε

for any t P p0, ψpε, b, ωqs as by the above, we have

∥Sptqx´ x∥ ď ωp2b, εq

for all such t by assumption on ω and since we trivially have ∥x´ x0∥ ď 2b. Thus in
particular we have

xSptqx´ x, ζ˚y ď

ż t

0

xy0, x0 ´ Spτqxysdτ

ď t pxy0, x0 ´ xys ` εq

which gives the claim.
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Then, by following the proof given in [48], we obtain a quantitative version of the
crucial direction

lim inf
tÑ0`

∥Sptqx´ x∥
t

ě |Ax|

of Crandall’s proof. Now, already here, a case distinction on whether |Ax| “ 0 or
|Ax| ą 0 features in the proof of Crandall and the following result first provides a
quantitative result on the latter case.

Lemma 7.2.3. Let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

Let further φ be a modulus of uniform continuity for |A ¨ | and let n be as in Lemma
7.2.1. Then for x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥ and where
|Ax| ě c for c P Rą0, we have

@ε ą 0@t P p0, φ12pε, b, c, n, φ, ωqs

ˆ

|Ax| ´
∥x´ Sptqx∥

t
ď ε

̇

where

φ12pε, b, c, n, φ, ωq :“ ψpεcmintφ1pmintε{2, c{2u, b, n, φq, λ0{2u{4, b` 2n` 3n2, ωq

with ψ as in Lemma 7.2.2 and φ1 as in Lemma 7.2.1.

Proof. Using Lemma 7.2.2, we get

@ε ą 0@t P p0, ψpε, b, ωqs

ˆB

Sptqx´ x

t
, ζ˚

F

ď xy0, x0 ´ xys ` ε

̇

for ∥x∥ , ∥v∥ , ∥x0∥ , ∥y0∥ ď b and ζ˚ P Jpx´x0q. Now, for y0 “ Aλx and x0 “ Jλx with
λ ă λ0, we have

xy0, x0 ´ xys “ ´λ ∥Aλx∥2

as well as
B

Sptqx´ x

t
, ζ˚

F

ě ´

⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
∥x´ Jλx∥

“ ´

⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
λ ∥Aλx∥ .

Therefore, we obtain

@ε ą 0@t P
`

0, ψpε, b` 2n` 3n2, ωq
‰

ˆ
⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
∥Aλx∥ ě ∥Aλx∥2 ´

ε

λ

̇
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for all such λ since b` 2n` 3n2 ě ∥Jλx∥ and b ě ∥Aλx∥ as before. Since |Ax| ě c, we
have that for λ ď mintφ1pc{2, b, n, φq, λ0{2u that

c{2 “ c´ c{2 ď |Ax| ´ c{2 ď ∥Aλx∥

by Lemma 7.2.1. Therefore, we have that

@ε ą 0@t P
`

0, ψpε, b` 2n` 3n2, ωq
‰

ˆ
⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
ě ∥Aλx∥´

ε

λc{2

̇

for all λ ď mintφ1pc{2, b, n, φq, λ0{2u and thus in particular

|Ax| ´

⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
ď |Ax| ´ ∥Aλx∥`

ε

λc{2

ď δ{2`
ε

λc{2

for all t ď ψpε, b ` 2n ` 3n2, ωq and for all λ ď mintφ1pmintδ{2, c{2u, b, n, φq, λ0{2u.
Thus, lastly, for

t ď ψpεcmintφ1pmintε{2, c{2u, b, n, φq, λ0{2u{4, b` 2n` 3n2, ωq

we have
|Ax| ´

⃦⃦⃦⃦
Sptqx´ x

t

⃦⃦⃦⃦
ď ε.

For the other case, i.e. where |Ax| “ 0, it is immediately clear that for |Ax| ď ε,
we get

|Ax| ´
∥x´ Sptqx∥

t
ď |Ax| ď ε

for all t. However, this allows for a smoothening of the above case distinction (see the
later logical remarks for further discussions of this) in the form of the following lemma:

Lemma 7.2.4. Let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

Let further φ be a modulus of uniform continuity for |A ¨ | and let n be as in Lemma
7.2.1. Then for x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥, we have

@ε ą 0@t P p0, φ2pε, b, n, ω, φqs

ˆ

|Ax| ´
∥x´ Sptqx∥

t
ď ε

̇

where

φ2pε, b, n, ω, φq :“ ψpε2mintφ1pε{2, b, n, φq, λ0{2u{4, b` 2n` 3n2, ωq.

with ψ as in Lemma 7.2.2 and φ1 as in Lemma 7.2.1.
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Proof. Let ε be given. Then either |Ax| ď ε whereas

|Ax| ´
∥x´ Sptqx∥

t
ď ε

for any t. Otherwise, we have |Ax| ě ε and thus from Lemma 7.2.3 with c “ ε, it
follows that

|Ax| ´
∥x´ Sptqx∥

t
ď ε

for all
t ď ψpε2mintφ1pε{2, b, n, φq, λ0{2u{4, b` 2n` 3n2, ωq.

Using those two results, we can then give a quantitative version of the partial results
on the way to Plants results discussed above, in the form of a rate of Cauchyness and
a rate of convergence, respectively.

In that context, we follow the notation used in [170] and write

αpa, bq “

⃦⃦⃦⃦
a

∥a∥
´

b

∥b∥

⃦⃦⃦⃦
ď 2

where a, b ‰ 0 for the generalized angle of Clarkson [45]. Similar to the proof given in
[170], we rely on two fundamental inequalities of α:

Lemma 7.2.5 (essentially [45]). Let a, b ‰ 0. Then

| ∥a∥αpa, bq ´ ∥a´ b∥ | ď | ∥a∥´ ∥b∥ |.

If further a` b ‰ 0, then

∥a` b∥ ď p1´ 2ηpαpa` b, aqqq ∥a∥` ∥b∥

where η is a modulus of uniform convexity for the space X.

Lemma 7.2.6. Let X be a uniformly convex Banach space with a nondecreasing mod-
ulus of uniform convexity η : p0, 2s Ñ p0, 1s. Let further φ be a modulus of uniform
continuity for |A ¨ | and let n be as in Lemma 7.2.1. Let further x P domA with v P Ax
and b P N˚ with b ě ∥x∥ , ∥v∥. Suppose |Ax| ě c for c P Rą0. Then

@ε ą 0@t P p0, φ13pε, b, c, η, n, φqs @s P p0, tq

ˆ
⃦⃦⃦⃦
x´ Jtx

t
´
x´ Jsx

s

⃦⃦⃦⃦
ď ε

̇
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where

φ13pε, b, c, η, n, φq :“ mintφ1pε{2, b, n, φq, φ1pηpmintε{2b, 2uqc{2, b, n, φq,

φ1pc{2, b, n, φq, λ0{2u

with φ1 as in Lemma 7.2.1.

Proof. If x “ Jtx or x “ Jsx, then 0 P Ax and thus |Ax| “ 0. As we have assumed
|Ax| ě c ą 0, we get x ‰ Jtx and x ‰ Jsx. We write αs,t “ αpx´ Jsx, x´ Jtxq where
s P p0, tq and t ď λ0{2 ă λ0. Using Lemma 7.2.5 with a “ x´ Jsx and b “ Jsx´ Jtx,
we have

∥x´ Jtx∥ ď p1´ 2ηpαs,tqq ∥x´ Jsx∥` ∥Jtx´ Jsx∥ .

Using Proposition 3.3.3, items (3) and (5), we get

∥Jtx´ Jsx∥ “
⃦⃦⃦⃦
Js

ˆ

s

t
x`

t´ s

t
Jtx

̇

´ Jsx

⃦⃦⃦⃦
ď

´

1´
s

t

¯

∥x´ Jtx∥

and thus we have
s ∥Atx∥ ď p1´ 2ηpαs,tqq ∥x´ Jsx∥ ,

i.e.
2ηpαs,tq ∥Asx∥ ď ∥Asx∥´ ∥Atx∥ .

Therefore, we have for 0 ă t ď φ1pc{2, b, n, φq that

c´ ∥Atx∥ ď |Ax| ´ ∥Atx∥ ď c{2

so that c{2 ď ∥Atx∥ and for s P p0, tq, we get that

ηpαs,tqc ď 2ηpαs,tq ∥Atx∥ ď 2ηpαs,tq ∥Asx∥ ď ∥Asx∥´ ∥Atx∥ ď |Ax| ´ ∥Atx∥ .

By Lemma 7.2.1, we have for any ε that

@t P p0,min tφ1pε, b, n, φq, φ1pc{2, b, n, φqus @s P p0, tq pηpαs,tqc ď εq

which, in particular, implies

@t P p0,min tφ1pηpmintε{2b, 2uqc{2, b, n, φq, φ1pc{2, b, n, φqus @s P p0, tq

pηpαs,tq ď ηpmintε{2b, 2uq{2q



134
CHAPTER 7. QUANTITATIVE ASYMPTOTIC BEHAVIOR OF NONLINEAR

SEMIGROUPS

and using that η is nondecreasing, we get

@t P p0,min tφ1pηpmintε{2b, 2uqc{2, b, n, φq, φ1pc{2, b, n, φq, λ0us @s P p0, tq pαs,t ď ε{2bq .

Using Lemma 7.2.5 with a “ ∥x´ Jtx∥ {t and b “ ∥x´ Jsx∥ {s (noting that αs,t “
αpa, bq for these a, b) together with s ă t as well as the triangle inequality, we now have⃦⃦⃦⃦

x´ Jtx

t
´
x´ Jsx

s

⃦⃦⃦⃦
ď

ˇ

ˇ

ˇ

ˇ

∥x´ Jtx∥
t

αs,t ´

⃦⃦⃦⃦
x´ Jtx

t
´
x´ Jsx

s

⃦⃦⃦⃦ˇ
ˇ

ˇ

ˇ

`
∥x´ Jtx∥

t
αs,t

ď

ˇ

ˇ

ˇ

ˇ

⃦⃦⃦⃦
x´ Jtx

t

⃦⃦⃦⃦
´

⃦⃦⃦⃦
x´ Jsx

s

⃦⃦⃦⃦ˇ
ˇ

ˇ

ˇ

`
∥x´ Jtx∥

t
αs,t

ď

ˆ

|Ax| ´

⃦⃦⃦⃦
x´ Jtx

t

⃦⃦⃦⃦
̇

` bαs,t.

Thus for 0 ă t ď φ13pε, b, c, η, n, φq and for s P p0, tq, we have⃦⃦⃦⃦
x´ Jtx

t
´
x´ Jsx

s

⃦⃦⃦⃦
ď ε{2` bε{2b

ď ε

by Lemma 7.2.1.

Again, the case for |Ax| “ 0 is trivial and yields the following quantitative version:
if |Ax| ď ε{2, then in particular⃦⃦⃦⃦

x´ JAt x

t
´
x´ JAs x

s

⃦⃦⃦⃦
ď ∥Atx∥` ∥Asx∥ ď |Ax| ` |Ax| ď ε.

In that way, we get the following smoothening for both results combined.

Lemma 7.2.7. Let X be a uniformly convex Banach space with a nondecreasing mod-
ulus of uniform convexity η : p0, 2s Ñ p0, 1s. Let further φ be a modulus of uniform
continuity for |A ¨ | and let n be as in Lemma 7.2.1. Let further x P domA with v P Ax
and b P N˚ with b ě ∥x∥ , ∥v∥. Then

@ε ą 0@t P p0, φ3pε, b, η, n, φqs @s P p0, tq

ˆ⃦⃦⃦⃦
x´ JAt x

t
´
x´ JAs x

s

⃦⃦⃦⃦
ď ε

̇

where

φ3pε, b, η, n, φq :“ mintφ1pε{2, b, n, φq, φ1pηpmintε{2b, 2uqε{4, b, n, φq,

φ1pε{4, b, n, φq, λ0{2u

with φ1pε, b, nq as in Lemma 7.2.1.
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Proof. Let ε be given. Then either |Ax| ď ε{2 whereas⃦⃦⃦⃦
x´ JAt x

t
´
x´ JAs x

s

⃦⃦⃦⃦
ď ε

for any t, s ă λ0 as discussed above. Otherwise we have |Ax| ě ε{2 and thus by Lemma
7.2.6 with c “ ε{2, it follows that⃦⃦⃦⃦

x´ JAt x

t
´
x´ JAs x

s

⃦⃦⃦⃦
ď ε

for s P p0, tq and

t ď mintφ1pε{2, b, n, φq, φ1pηpmintε{2b, 2uqε{4, b, n, φq, φ1pε{4, b, n, φq, λ0{2u.

Lemma 7.2.8 (Plant [170], Eq. (2.10)). Let x P domA and t, λ ą 0. Then

∥Jλx´ Sptqx∥ ď
ˆ

1´
t

λ

̇

∥x´ Jλx∥`
2

λ

ż t

0

∥x´ Spsqx∥ ds.

Lemma 7.2.9. Let X be a uniformly convex Banach space with a nondecreasing mod-
ulus of uniform convexity η : p0, 2s Ñ p0, 1s and let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

Let further φ be a modulus of uniform continuity for |A ¨ | and let n be as in Lemma
7.2.1. Let further x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥. Suppose that
|Ax| ě c for c P Rą0. Then

@ε ą 0@t,
s

t
P p0, φ14pε, b, c, η, n, ω, φqs

ˆ
⃦⃦⃦⃦
x´ JAt x

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď ε

̇

where

φ14pε, b, c, η, n, ω, φq :“ mintφ1pε{3, b, n, φq, φ2pε{3, b, n, ω, φq,

φ1pηpmintε, 2uqc{4, b, n, φq,
a

φ2pc{2, b, n, ω, φq,

ηpmintε, 2uqc{8b, 1, λ0{2u

with φ1, φ2 as in Lemmas 7.2.1, 7.2.4, respectively.

Proof. As before, x ‰ Spsqx and x ‰ Jtx as |Ax| ě c ą 0. We write α1s,t “ αpx ´

Spsqx, x´ Jtxq for t, s ă λ0. Using Lemma 7.2.5, we again obtain

∥x´ Jtx∥ ď
`

1´ 2ηpα1s,tq
˘

∥x´ Spsqx∥` ∥Jtx´ Spsqx∥ .
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Using Lemma 7.2.8, we get for t, s ď mintλ0{2, 1u:

∥x´ Jtx∥ ď
`

1´ 2ηpα1s,tq
˘

∥x´ Spsqx∥`
´

1´
s

t

¯

∥x´ Jtx∥

`
2

t

ż s

0

∥x´ Spτqx∥ dτ

ď
`

1´ 2ηpα1s,tq
˘

∥x´ Spsqx∥`
´

1´
s

t

¯

∥x´ Jtx∥

`
2

t

ż s

0

s
∥x´ Spτqx∥

τ
dτ

ď
`

1´ 2ηpα1s,tq
˘

∥x´ Spsqx∥`
´

1´
s

t

¯

∥x´ Jtx∥`
s2

t
2b

which implies that

2ηpα1s,tq
∥x´ Spsqx∥

s
ď |Ax| ´

∥x´ Jtx∥
t

`
s

t
2b.

Now for
t ď mintφ1pε{2, b, n, φq,

a

φ2pc{2, b, n, ω, φqu

and
s

t
ď mintε{4b,

a

φ2pc{2, b, n, ω, φqu

we obtain that
s ď t

s

t
ď φ2pc{2, b, n, ω, φq

and thus (using Lemma 7.2.4), we obtain

ηpα1s,tqc ď 2ηpα1s,tq p|Ax| ´ c{2q

ď 2ηpα1s,tq
∥x´ Spsqx∥

s

ď |Ax| ´
∥x´ Jtx∥

t
`
s

t
2b

ď ε{2`
s

t
2b

ď ε{2` 2bε{4b

ď ε.

Dividing by c, we get ηpα1s,tq ď
ε
c

for all such t, s. Thus, using that η is nondecreasing,
we have α1s,t ď ε for

t ď mintφ1pηpmintε, 2uqc{4, b, n, φq,
a

φ2pc{2, b, n, ω, φqu

and
s

t
ď mintηpmintε, 2uqc{8b,

a

φ2pc{2, b, n, ω, φqu.
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Using Lemma 7.2.5 and triangle inequality again, we now have similarly to before⃦⃦⃦⃦
x´ Jtx

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď

ˇ

ˇ

ˇ

ˇ

∥x´ Jtx∥
t

α1s,t ´

⃦⃦⃦⃦
x´ Jtx

t
´
x´ Spsqx

s

⃦⃦⃦⃦ˇ
ˇ

ˇ

ˇ

`
∥x´ Jtx∥

t
α1s,t

ď

ˇ

ˇ

ˇ

ˇ

⃦⃦⃦⃦
x´ Jtx

t

⃦⃦⃦⃦
´

⃦⃦⃦⃦
x´ Spsqx

s

⃦⃦⃦⃦ˇ
ˇ

ˇ

ˇ

`
∥x´ Jtx∥

t
α1s,t

ď

ˆ

|Ax| ´

⃦⃦⃦⃦
x´ Jtx

t

⃦⃦⃦⃦
̇

`

ˆ

|Ax| ´

⃦⃦⃦⃦
x´ Spsqx

s

⃦⃦⃦⃦
̇

` bα1s,t.

Thus for 0 ă t, s
t
ď φ14pε, b, c, η, n, ω, φq, we have⃦⃦⃦⃦

x´ Jtx

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď ε{3` ε{3` bε{3b

ď ε

by Lemma 7.2.1 and Lemma 7.2.4.

As before, smoothening this result can be achieved by extracting from the proof for
the case of |Ax| “ 0 the following quantitative version: if |Ax| ď ε{2, then⃦⃦⃦⃦

x´ JAt x

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď

⃦⃦
x´ JAt x

⃦⃦
t

`
∥x´ Spsqx∥

s
ď |Ax| ` |Ax| ď ε.

Therefore, we obtain the following result:

Lemma 7.2.10. Let X be a uniformly convex Banach space with a nondecreasing
modulus of uniform convexity η : p0, 2s Ñ p0, 1s and let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

Let further φ be a modulus of uniform continuity for |A ¨ | and let n be as in Lemma
7.2.1. Let further x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥. Then

@ε ą 0@t,
s

t
P p0, φ4pε, b, η, n, ω, φqs

ˆ
⃦⃦⃦⃦
x´ JAt x

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď ε

̇

where

φ4pε, b, η, n, ω, φq :“ mintφ1pε{3, b, n, φq, φ2pε{3, b, n, ω, φq,

φ1pηpmintε, 2uqε{8, b, n, φq,
a

φ2pε{4, b, n, ω, φq,

ηpmintε, 2uqε{16b, 1, λ0{2u

with φ1, φ2 as in Lemmas 7.2.1, 7.2.4, respectively.
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Proof. Let ε be given. Then either |Ax| ď ε{2 which implies⃦⃦⃦⃦
x´ JAt x

t
´
x´ Spsqx

s

⃦⃦⃦⃦
ď ε

as above for any such t and s or |Ax| ě ε{2 where now the result is implies for any

t,
s

t
P p0, φ14pε, b, ε{2, η, n, ω, φqs

by Lemma 7.2.9 with c “ ε{2.

Finally, a combination of these two quantitative results yields a quantitative version
of the theorem of Plant.

Theorem 7.2.11. Let X be a uniformly convex Banach space with a nondecreasing
modulus of uniform convexity η : p0, 2s Ñ p0, 1s and let ω be such that

@x, y, z P X, b P N, ε ą 0 p∥x∥ , ∥z∥ ď b^ ∥x´ y∥ ď ωpb, εq Ñ xz, yys ď xz, xys ` εq .

Let further φ be a modulus of uniform continuity for |A ¨ | and let n be as in Lemma
7.2.1. Let further x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥. Then

@ε ą 0@t P p0,Φpε, b, η, ω, φ, nqs

˜ ⃦⃦
JAt x´ Sptqx

⃦⃦
t

ď ε

¸

where

Φpε, b, η, ω, φ, nq :“ pmintφ3pε{2, b, η, n, φq, φ4pε{2, b, η, n, ω, φquq
2

with φ1 - φ4 as well as ψ defined by

φ1pε, b, n, φq :“ mintφpε, b` 2n` 3n2
q{b, λ0{2u,

ψpε, b, ωq :“
ωp2b, εq

2b
,

φ2pε, b, n, ω, φq :“ ψpε2mintφ1pε{2, b, n, φq, λ0{2u{4, b` 2n` 3n2, ωq,

φ3pε, b, η, n, φq :“ mintφ1pε{2, b, n, φq, φ1pηpmintε{2b, 2uqε{4, b, n, φq,

φ1pε{4, b, n, φq, λ0{2u,

φ4pε, b, η, n, ω, φq :“ mintφ1pε{3, b, n, φq, φ2pε{3, b, n, ω, φq,

φ1pηpmintε, 2uqε{8, b, n, φq,
a

φ2pε{4, b, n, ω, φq,

ηpmintε, 2uqε{16b, 1, λ0{2u.
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Proof. Using the triangle inequality, we have

∥Jtx´ Sptqx∥
t

ď

⃦⃦⃦⃦
x´ Jtx

t
´
x´ J?tx
?
t

⃦⃦⃦⃦
`

⃦⃦⃦⃦
x´ J?tx
?
x

´
x´ Sptqx

t

⃦⃦⃦⃦
Then, for t ď 1, we have t ď

?
t and t{

?
t “

?
t so that for t ď Φpε, b, η, ω, φ, nq, we

obtain
∥Jtx´ Sptqx∥

t
ď ε

using Lemmas 7.2.7 and 7.2.10.

Remark 7.2.12. While the above result uses the construction of φ1 from φ exhibited in
Lemma 7.2.1, it is clear that if φ1 is any other rate of convergence for ∥Atx∥ to |Ax|
as tÑ 0, the above result nevertheless remains valid.

7.3 An analysis of Reich’s result

Similar as in the context of Plant’s result, in this section we fix a Banach space X and
an accretive operator A that now satisfies the range condition pRCq. As before, let S
be the semigroup on domA generated by A using the Crandall-Liggett formula. The
proof for Reich’s result now proceeds by establishing

lim
tÑ8

∥Jtx∥
t

“ dp0, ranAq

and concluding from this that Jtx{t is Cauchy for t Ñ 8. This result is then in
turn used to conclude the claim. While Reich actually establishes his result even for
x P domA, we here focus for simplicity on the case where x P domA. As mentioned in
the brief outline at the beginning of this chapter, all the following results in the context
of Reich’s theorem take place for an operator A which satisfies the full range condition
pRCq for the closure of the domain (recall Chapter 4).

The main object used in these proofs is the concrete value

d :“ dp0, ranAq “ inft∥y∥ | y P ranAu

and for the quantitative results, the logical methodology implies (see the later logical
remarks for a discussion of this) a dependence on a function f witnessing the above
infimum quantitatively in the sense that f : Rą0 Ñ N satisfies

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .
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The proof of Reich’s result then proceeds by a case distinction on whether d ą 0 or
d “ 0 but, as before with the quantitative analysis of Plant’s result, this case distinction
can be smoothed as will be exhibited later. We at first begin with the following result
which provides a rate of convergence for the limit ∥Jtx∥ {t Ñ d for t Ñ 8 (which can
be obtained as the sequence is monotone).

Lemma 7.3.1. Let x P domA with v P Ax and b P N˚ where b ě ∥x∥ , ∥v∥. Suppose
that f : Rą0 Ñ N satisfies fpεq ě fpδq for ε ď δ and

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Then we have
@ε ą 0@t ě φpε, b, fq

ˆ
ˇ

ˇ

ˇ

ˇ

∥Jtx∥
t

´ d

ˇ

ˇ

ˇ

ˇ

ď ε

̇

where
φpε, b, fq :“

8pb` fpε{2qq

ε
.

Proof. As Atx P AJtx for any t ą 0, we have d ď ∥Atx∥. Let ε be given and let z P Ay
such that ∥z∥´ d ď ε{2 and ∥y∥ , ∥z∥ ď fpε{2q. Then using Proposition 3.3.3, (7), we
have

∥Atx∥ ď ∥Atx´ Aty∥` ∥Aty∥

ď
2

t
∥x´ y∥` ∥z∥

ď
2pb` fpε{2qq

t
` d` ε{2.

Thus, for t ě pε{4pb` fpε{2qqq´1, we have

∥Atx∥ ď
2pb` fpε{2qq

pε{4pb` fpε{2qqq´1
` d` ε{2 ď d` ε

Now, for t ě pε{8pb` fpε{2qqq´1, we obtain
ˇ

ˇ

ˇ

ˇ

∥Jtx∥
t

´ d

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

∥Jtx∥
t

´
∥x´ Jtx∥

t

ˇ

ˇ

ˇ

ˇ

` |∥Atx∥´ d|

ď
∥x∥
t
` |∥Atx∥´ d|

ď ε

as t ě pε{8pb ` fpε{2qqq´1 and thus ∥Atx∥ ´ d ď ε{2 as well as t ě pε{2bq´1 and thus
∥x∥ {t ď ε{2.
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The following result is a quantitative version of the well-known result due to Reich
[173] that d ą 0 implies that ∥Jtx∥Ñ 8 for tÑ 8 and x P domA.

Lemma 7.3.2. Assume that d ě D for D P Rą0. Let x P domA with v P Ax and
b P N˚ where b ě ∥x∥ , ∥v∥. Then we have

@K ą 0@t ě ψpK, b,Dq p∥Jtx∥ ě Kq

where
ψpK, b,Dq :“

b`K

D
.

Proof. Suppose the claim is false, i.e. there is a K and a t ě ψpK, b,Dq such that
∥Jtx∥ ă K. Then, we have

∥Jtx´ J1Jtx∥ ď |AJtx|

ď ∥x´ Jtx∥ {t

ă pb`Kq{D´1pb`Kq

ď D.

Thus ∥A1Jtx∥ ă D ď d which is a contradiction as A1Jtx P ranA.

Lemma 7.3.3 (essentially Reich [174]). Let X be uniformly convex with a modulus of
uniform convexity η. Then, for ε P p0, 2s, we have 2ηpεq ď 1´xy, jy for all j P Jx with
∥x∥ “ ∥y∥ “ 1 and ∥x´ y∥ ě ε.

Proof. Let x, y and j P Jx be given with ∥x∥ “ ∥y∥ “ 1 and ∥x´ y∥ ě ε. Then

∥x` y∥
2

ď 1´ ηpεq

by definition of η. Thus as xx, jy “ ∥x∥2 “ 1 and ∥j∥ “ ∥x∥ “ 1, we have

1{2` 1{2xy, jy “ xpx` yq{2, jy ď 1´ ηpεq

which yields the claim.

Lemma 7.3.4. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s. Suppose that f : Rą0 Ñ N satisfies

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Let ε ą 0 be given, assume that D P Rą0 with d ě D and let z P Ay be such that

∥z∥ ď d` 2dηpmintε{2, 2uq
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as well as c ě ∥y∥ , ∥z∥. Let x P domA with v P Ax and b P N˚ with b ě ∥x∥ , ∥v∥.
Then, for any t ě φ1pε, b,D, c, η, fq:⃦⃦⃦⃦

z

∥z∥
`

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď ε

where

φ1pε, b,D, c, η, fq :“ max

#

ψpc` 1, b,Dq, ψ

ˆˆ

4

ε
` 1

̇

c, b,D

̇

,

˜

D p2ηpmintε{2, 2uqq2

18

¸´1

pc` bq,

φ

˜

D p2ηpmintε{2, 2uqq2

18
, b, f

¸+

with φ defined as in Lemma 7.3.1 and ψ as in Lemma 7.3.2

Proof. As Atx P AJtx and as A is accretive, there is a jt P Jpy ´ Jtxq such that
xz ´ Atx, jty ě 0. Therefore we have

B

z

∥z∥
,

jt
∥y ´ Jtx∥

F

ě

B

Atx

∥z∥
,

jt
∥y ´ Jtx∥

F

for any t such that t ě ψpc ` 1, b,Dq as then ∥Jtx∥ ą c which implies y ‰ Jtx and
z ‰ 0 follows by ∥z∥ ě d ě D ą 0. Then further

B

Jtx´ x,
jt

∥y ´ Jtx∥

F

ď ∥y ´ x∥´ ∥y ´ Jtx∥ ,

by (an argument similar to the proof of) Proposition 4.3.3 and we thus obtain
B

Atx,
jt

∥y ´ Jtx∥

F

ě

⃦⃦⃦⃦
y

t
´
Jtx

t

⃦⃦⃦⃦
´

∥y ´ x∥
t

ě
∥Jtx∥
t

´
∥y∥
t
´

∥y ´ x∥
t

.

Thus for any δ P Rą0 and any

t ě max
␣

pδ{3q´1pc` bq, φpδ{3, b, fq
(

,

we obtain from Lemma 7.3.1 that
B

z

∥z∥
,

jt
∥y ´ Jtx∥

F

ě
d

∥z∥
´

δ

∥z∥

ě
1

1` 2ηpmintε{2, 2uq
´

δ

∥z∥
.
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Now we get 1 ´ p2ηpmintε{2, 2uqq2 ` p2ηpmintε{2, 2uqq2 “ 1 and therefore 1 “ p1 `

2ηpmintε{2, 2uqqp1´ 2ηpmintε{2, 2uqq ` p2ηpmintε{2, 2uqq2 which yields

1

1` 2ηpmintε{2, 2uq
“ 1´ 2ηpmintε{2, 2uq `

p2ηpmintε{2, 2uqq2

1` 2ηpmintε{2, 2uq

ě 1´ 2ηpmintε{2, 2uq `
p2ηpmintε{2, 2uqq2

3
.

Thus for

t ě max

$

&

%

˜

D p2ηpmintε{2, 2uqq2

18

¸´1

pc` bq, φ

˜

D p2ηpmintε{2, 2uqq2

18
, b, f

¸

,

.

-

,

we obtain (using z P ranA) that
B

z

∥z∥
,

jt
∥y ´ Jtx∥

F

ě 1´ 2ηpmintε{2, 2uq `
p2ηpmintε{2, 2uqq2

3

´
D p2ηpmintε{2, 2uqq2

6 ∥z∥

ě 1´ 2ηpmintε{2, 2uq `
p2ηpmintε{2, 2uqq2

6

ą 1´ 2ηpmintε{2, 2uq.

Then in particular ⃦⃦⃦⃦
z

∥z∥
´

y ´ Jtx

∥y ´ Jtx∥

⃦⃦⃦⃦
ď
ε

2

by Lemma 7.3.3 for all such t.

Now, secondly:⃦⃦⃦⃦
y ´ Jtx

∥y ´ Jtx∥
`

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď

∥y∥
|∥y∥´ ∥Jtx∥|

`

ˇ

ˇ

ˇ

ˇ

1´
∥Jtx∥

∥y ´ Jtx∥

ˇ

ˇ

ˇ

ˇ

For δ ą 0 and t ě ψppδ´1 ` 1qc, b,Dq, we immediately have

∥y∥
|∥y∥´ ∥Jtx∥|

ď
c

pδ´1 ` 1qc´ ∥y∥
ď δ

by Lemma 7.3.2. Similarly, we get for t ě ψppδ´1 ` 1qc, b,Dq, as pδ´1 ` 1qc ě δ´1c,
that

∥y∥
∥y∥` ∥Jtx∥

ď
c

∥y∥` δ´1c
ď

c

δ´1c
“ δ.

Further, we have

1´
∥y∥

∥y∥` ∥Jtx∥
ď

∥Jtx∥
∥y ´ Jtx∥

ď 1`
∥y∥

| ∥y∥´ ∥Jtx∥ |
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and thus for t ě ψppδ´1 ` 1qc, b,Dq, we get
ˇ

ˇ

ˇ

ˇ

1´
∥Jtx∥

∥y ´ Jtx∥

ˇ

ˇ

ˇ

ˇ

ď δ.

Combining the above, we have that for any t ě ψpppε{4q´1 ` 1qc, b,Dq:⃦⃦⃦⃦
y ´ Jtx

∥y ´ Jtx∥
`

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď
ε

2
.

Thus, finally for t ě φ1pε, b,D, c, η, fq we obtain the desired result by triangle inequal-
ity.

Lemma 7.3.5. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s. Suppose that f : Rą0 Ñ N satisfies fpεq ě fpδq for ε ď δ

and
@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Let ε ą 0 be given, assume that E P N˚, D P Rą0 where E ě d ě D. Let x P domA

with v P Ax and b P N˚ where b ě ∥x∥ , ∥v∥. Then, for any t, s ě φ12pε, b,D, η, E, fq:⃦⃦⃦⃦
Jsx

s
´
Jtx

t

⃦⃦⃦⃦
ď ε

where

φ12pε, b,D, η, E, fq :“ maxtφpε{3, b, fq, φ1pε{6E, b,D, fp2Dηpmintε{12E, 2uqq, η, fqu

with φ as in Lemma 7.3.1 and φ1 as in Lemma 7.3.4.

Proof. We have that there exits z P Ay such that ∥z∥ ď d ` 2dηpmintε{4, 2uq with
∥y∥ , ∥z∥ ď fp2Dηpmintε{4, 2uqq. Thus, using Lemma 7.3.4, we have that for t, s ě
φ1pε{2, b,D, fp2Dηpmintε{4, 2uqq, η, fq:⃦⃦⃦⃦

Jsx

∥Jsx∥
´

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
z

∥z∥
`

Jsx

∥Jsx∥

⃦⃦⃦⃦
`

⃦⃦⃦⃦
´

z

∥z∥
´

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď ε.

Therefore, we in particular have that⃦⃦⃦⃦
Jsx

s
´
Jtx

t

⃦⃦⃦⃦
“

⃦⃦⃦⃦
Jsx

∥Jsx∥
∥Jsx∥
s

´
Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
Jsx

∥Jsx∥
∥Jsx∥
s

´
Jsx

∥Jsx∥
d

⃦⃦⃦⃦
`

⃦⃦⃦⃦
Jsx

∥Jsx∥
d´

Jtx

∥Jtx∥
d

⃦⃦⃦⃦
`

⃦⃦⃦⃦
Jtx

∥Jtx∥
d´

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď

ˇ

ˇ

ˇ

ˇ

∥Jsx∥
s

´ d

ˇ

ˇ

ˇ

ˇ

` d

⃦⃦⃦⃦
Jsx

∥Jsx∥
´

Jtx

∥Jtx∥

⃦⃦⃦⃦
`

ˇ

ˇ

ˇ

ˇ

d´
∥Jtx∥
t

ˇ

ˇ

ˇ

ˇ

.

Thus, for t, s ě φ12pε, b,D, η, E, fq, we get the claim by Lemma 7.3.1 together with the
above.
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This result, which presents the quantitative version of the Cauchyness of Jtx{t in
the case that d ą 0, can now be smoothed to omit this assumption. For this, note that
through the trivial proof of the case of d “ 0, one obtains the following quantitative
version of the full result:

Lemma 7.3.6. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s. Suppose that f : Rą0 Ñ N satisfies fpεq ě fpδq for ε ď δ

and

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Let ε ą 0 be given, assume that E P N˚ where E ě d. Let x P domA with v P Ax and
b P N˚ where b ě ∥x∥ , ∥v∥. Then, for any t, s ě φ2pε, b, η, E, fq:⃦⃦⃦⃦

Jsx

s
´
Jtx

t

⃦⃦⃦⃦
ď ε

where

φ2pε, b, η, E, fq :“ maxtφpε{4, b, fq, φpε{3, b, fq,

φ1pε{6E, b, ε{4, fpεηpmintε{12E, 2uq{2q, η, fqu

with φ as in Lemma 7.3.1 and φ1 as in Lemma 7.3.4.

Proof. Suppose that d ď ε{4. By Lemma 7.3.1, we have that
ˇ

ˇ

ˇ

ˇ

∥Jtx∥
t

´ d

ˇ

ˇ

ˇ

ˇ

ď ε{4

for any t ě φpε{4, b, fq. Thus in particular we have that ∥Jtx∥ {t ď ε{2 for all such t

and thus ⃦⃦⃦⃦
Jsx

s
´
Jtx

t

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
Jsx

s

⃦⃦⃦⃦
`

⃦⃦⃦⃦
Jtx

t

⃦⃦⃦⃦
ď ε

for all t, s ě φpε{4, b, fq in that case. Otherwise d ě ε{4 and thus the above result
holds for t, s ě φ12pε, b, ε{4, η, E, fq by Lemma 7.3.5 with D “ ε{4.

The rest of the proof given in [174] now relies on the use of the limit ´vx of Jtx{t for
tÑ 8. By the above Lemma, this limit exists as X is complete. While we emphasized
that this limit a priori depends on the starting point x, the following lemma (which
provides a concrete quantitative version of Lemma 3.2 given in [174]) shows that this
limit is actually unique, i.e all the vx coincide.
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Lemma 7.3.7. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s with (w.l.o.g.) ηpεq ď ε. Suppose that f : Rą0 Ñ N satisfies
fpεq ě fpδq for ε ď δ and

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Let ε ą 0 be given, assume that E P N˚ and D P Rą0 where E ě d ě D and let z P Ay
be such that

∥z∥ ď d` 2dη

ˆ

min

"

ε

16pE ` 1q
, 2

*̇

.

If x P domA, then ∥z ´ vx∥ ď ε.

Proof. We write δε “ 2dηpmintε{16pE ` 1q, 2uq. Then, for ∥z∥ ď d` δε, we have⃦⃦⃦⃦
z `

Jtx

t

⃦⃦⃦⃦
“

⃦⃦⃦⃦
z `

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
z ´

d

∥z∥
z

⃦⃦⃦⃦
`

⃦⃦⃦⃦
d

∥z∥
z `

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď ∥z∥´ d`

⃦⃦⃦⃦
d

∥z∥
z `

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď δε `

⃦⃦⃦⃦
d

∥z∥
z `

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
.

Similar to before, we have⃦⃦⃦⃦
d

∥z∥
z `

Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
d

∥z∥
z ´

z

∥z∥
∥Jtx∥
t

⃦⃦⃦⃦
`

⃦⃦⃦⃦
z

∥z∥
∥Jtx∥
t

`
Jtx

∥Jtx∥
∥Jtx∥
t

⃦⃦⃦⃦
“

ˇ

ˇ

ˇ

ˇ

d´
∥Jtx∥
t

ˇ

ˇ

ˇ

ˇ

`
∥Jtx∥
t

⃦⃦⃦⃦
z

∥z∥
`

Jtx

∥Jtx∥

⃦⃦⃦⃦
.

From this we obtain that ⃦⃦⃦⃦
z `

Jtx

t

⃦⃦⃦⃦
ď δε `

ε

4

for all
t ě maxtφpmintε{8, 1u, b, fq, φ1pε{8pE ` 1q, b,D, c, η, fqu

where c, b P N˚ are such that c ě ∥y∥ , ∥z∥ and b ě ∥x∥ , ∥v∥ for v P Ax as, for one,
t ě φpmintε{8, 1u, b, fq and thus

ˇ

ˇ

ˇ

ˇ

d´
∥Jtx∥
t

ˇ

ˇ

ˇ

ˇ

ď mintε{8, 1u

by Lemma 7.3.1 as well as ∥Jtx∥
t
ď d ` 1 ď E ` 1 and, for another, t ě φ1pε{8pE `

1q, b,D, c, η, fq and thus

∥Jtx∥
t

⃦⃦⃦⃦
z

∥z∥
`

Jtx

∥Jtx∥

⃦⃦⃦⃦
ď ε{8.
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by Lemma 7.3.4. Then the properties of η imply that δε ď ε{4 and thus⃦⃦⃦⃦
z `

Jtx

t

⃦⃦⃦⃦
ď ε{2

for all such t. Then
∥z ´ vx∥ ď

⃦⃦⃦⃦
z `

Jtx

t

⃦⃦⃦⃦
`

⃦⃦⃦⃦
vx `

Jtx

t

⃦⃦⃦⃦
for all t and thus choosing

t “ maxtφpmintε{8, 1u, b, fq, φ1pε{8pE ` 1q, b,D, c, η, fq, φ2pε{2, b, η, E, fqu

implies ∥z ´ vx∥ ď ε by definition of vx (which yields that φ2 is a rate of convergence
for Jtx{t towards ´vx) and Lemma 7.3.6.

Lemma 7.3.8. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s with (w.l.o.g.) ηpεq ď ε. Suppose that f : Rą0 Ñ N satisfies
fpεq ě fpδq for ε ď δ and

@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Let ε ą 0 be given, assume that E P N˚ where E ě d and let z P Ay be such that

∥z∥ ď d`min

"

εη

ˆ

min

"

ε

16pE ` 1q
, 2

*̇

{4, ε{8

*

.

If x P domA, then ∥z ´ vx∥ ď ε.

Proof. Let ε be given. Then either d ď ε{8 which, since ∥z∥ ď d ` ε{8, implies
∥z∥ ď ε{4. For

t ě maxtφpε{4, b, fq, φ2pε{4, b, η, E, fqu,

we then get

∥z ´ vx∥ ď ∥z∥` ∥vx∥

ď ∥z∥` d`
ˇ

ˇ

ˇ

ˇ

d´
∥Jtx∥
t

ˇ

ˇ

ˇ

ˇ

`

⃦⃦⃦⃦
vx `

Jtx

t

⃦⃦⃦⃦
ď ε.

Otherwise we have d ě ε{8 and thus, we get the same result for

∥z∥ ď d` εη

ˆ

min

"

ε

16pE ` 1q
, 2

*̇

{4 ď d` 2dη

ˆ

min

"

ε

16pE ` 1q
, 2

*̇

by Lemma 7.3.7 with D “ ε{8.
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Theorem 7.3.9. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η : p0, 2s Ñ p0, 1s. Suppose that f : Rą0 Ñ N satisfies fpεq ě fpδq for ε ď δ

and
@ε ą 0Dpy, zq P A p∥y∥ , ∥z∥ ď fpεq ^ ∥z∥´ d ď εq .

Assume that E P N˚ where E ě d and further that x P domA with v P Ax and b P N˚

with b ě ∥x∥ , ∥v∥. Then

@ε ą 0@t ě Φpε, b, η, E, fq

˜ ⃦⃦
JAt x´ Sptqx

⃦⃦
t

ď ε

¸

where

Φpε, b, η, E, fq :“max

#

4

ε

ˆ

b` f

ˆ

min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*̇̇

,

8

ε
f

ˆ

min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*̇

,

φ2pε{2, b, η, E, fq

+

with

φpε, b, fq :“
8pb` fpε{2qq

ε
,

ψpK, b,Dq :“
b`K

D
,

φ1pε, b,D, c, η, fq :“ max

#

ψpc` 1, b,Dq, ψ

ˆˆ

4

ε
` 1

̇

c, b,D

̇

,

˜

D p2ηpmintε{2, 2uqq2

18

¸´1

pc` bq,

φ

˜

D p2ηpmintε{2, 2uqq2

18
, b, f

¸+

,

φ2pε, b, η, E, fq :“ maxtφpε{4, b, fq, φpε{3, b, fq,

φ1pε{6E, b, ε{4, fpεηpmintε{12E, 2uq{2q, η, fqu.

Proof. Given ε, there are z P Ay such that

∥z∥ ď d`min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*

and such that ∥y∥ , ∥z∥ ď f
´

min
!

εη
´

min
!

ε{8
16pE`1q

, 2
)¯

{32, ε{64
)¯

. Now, we in par-

ticular have ∥ArJra∥ ď |AJra| ď ∥Ara∥ for all a P domA and thus
⃦⃦⃦
At{nJ

i
t{ny

⃦⃦⃦
ď
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⃦⃦⃦
At{nJ

i´1
t{n y

⃦⃦⃦
. Iterating this gives

⃦⃦
At{nJ

i
t{ny

⃦⃦
ď

⃦⃦
At{ny

⃦⃦
ď ∥z∥ ď d`min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*

for all i P r0;n´ 1s. Now we get⃦⃦
At{nJ

i
t{ny ´ vx

⃦⃦
ď ε{8

for any i P r0;n ´ 1s by Lemma 7.3.8 which implies
⃦⃦⃦
py ´ Jnt{nyq{t´ vx

⃦⃦⃦
ď ε{8 for all

t and all n as ⃦⃦⃦⃦
y ´ Jnt{ny

t
´ vx

⃦⃦⃦⃦
“

⃦⃦⃦⃦
⃦
ř

i“0n´1 J it{ny ´ J
i`1
t{n y

nt{n
´

řn´1
i“0 vx
n

⃦⃦⃦⃦
⃦

“

⃦⃦⃦⃦
⃦⃦⃦⃦řn´1

i“0

ˆ

Ji
t{n
y´Ji`1

t{n
y

t{n
´ vx

̇

n

⃦⃦⃦⃦
⃦⃦⃦⃦

ď

řn´1
i“0

⃦⃦⃦
At{nJ

i
t{ny ´ vx

⃦⃦⃦
n

.

Thus ⃦⃦⃦⃦
y ´ Sptqy

t
´ vx

⃦⃦⃦⃦
ď ε{8

for all t.
Then in particular⃦⃦⃦⃦

Sptqy

t
` vx

⃦⃦⃦⃦
ď

∥y∥
t
`

⃦⃦⃦⃦
y ´ Sptqy

t
´ vx

⃦⃦⃦⃦
ď

∥y∥
t
` ε{8

for all t. In particular, for

t ě pε{8q´1f

ˆ

min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*̇

,

we have ⃦⃦⃦⃦
Sptqy

t
` vx

⃦⃦⃦⃦
ď ε{4.

Continuing, we obtain ⃦⃦⃦⃦
Sptqx

t
` vx

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
Sptqy

t
` vx

⃦⃦⃦⃦
`

∥x´ y∥
t

which implies ⃦⃦⃦⃦
Sptqx

t
` vx

⃦⃦⃦⃦
ď ε{2
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for all

t ěmax

#

pε{8q´1f

ˆ

min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*̇

,

pε{4q´1
ˆ

b` f

ˆ

min

"

εη

ˆ

min

"

ε{8

16pE ` 1q
, 2

*̇

{32, ε{64

*̇̇

+

.

Finally, we get ⃦⃦⃦⃦
Sptqx´ Jtx

t

⃦⃦⃦⃦
ď

⃦⃦⃦⃦
Sptqx

t
` vx

⃦⃦⃦⃦
`

⃦⃦⃦⃦
vx `

Jtx

t

⃦⃦⃦⃦
and thus ⃦⃦⃦⃦

Sptqx´ Jtx

t

⃦⃦⃦⃦
ď ε

for all t ě Φpε, b, η, E, fq by Lemma 7.3.6 and the definition of vx (which yields that
φ2 is a rate of convergence as before).

7.4 Logical remarks on the above results

Lastly, we want to outline the additional modifications to Hω
p necessary for formalizing

the proofs of the theorems of Plant and Reich. These modifications in that way give
rise to the systems and bound extraction results underlying the extractions outlined in
this chapter. In that context, we here in particular move away from the use of arbitrary
real errors ε and again consider representations of errors via natural numbers through
2´k.

At first, both results are formulated for points x P domA and by the logical method-
ology, this stands for the existential assumption Dypy P Axq which yields that at least
a priori the extracted rates will in particular depend on an upper bound on the norm
of this witness which is also the case for the above rates.

The second prominent assumption in both results is that of uniform convexity which
was quantitatively treated above via the modulus of uniform convexity η. Formally,
this can be achieved by adding an additional constant η of type 1 together with a
corresponding axiom stating that it represents a modulus of uniform convexity for X
(see [96] for more details):

@xX , yX , k0
´

∥x∥X , ∥y∥X ăR 1^
⃦⃦⃦x`X y

2

⃦⃦⃦
X
ąR 1´ 2´ηpkq Ñ ∥x´X y∥X ďR 2´k

¯

.
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To really formally encapsulate the previous proof where η was applied to various reals,
one would first have to extend η to QX p0, 2s via

ηpεq :“ 2´ηpmin kr2´kďεsq

for ε P Q X p0, 2s and then move to rational approximations of the reals in question.
We avoid spelling this out any further.

We now first focus on the theorem of Plant. The main object featuring in Plant’s
proof (and consequently in the above results as well) is the limit functional |Ax|. The
use of this functional can now be emulated in the context of Hω

p by extending the
underlying language with a further constant of type 1pXq which we denote by |A ¨ |
(where we correspondingly denote |A ¨ |x by |Ax| for simplicity). One first natural
axiom for this constant is induced by the natural bound on |Ax| by ∥v∥ for v P Ax
witnessing x P domA:

@xX , vX , λ1 pv P Ax^ 0 ăR λ ăR λ0 Ñ ∥Aλx∥X ďR |Ax| ďR ∥v∥Xq . (L1)

As shortly mentioned in the above quantitative results, the convergence of ∥Aλx∥ to
|Ax| for x P domA as λ Ñ 0 is “equivalent” to the lower semi-continuity of |Ax| on
domA. This vague “equivalence” can now be made precise through the systemHω

p `pL1q

in the following sense:

Proposition 7.4.1. Over Hω
p ` pL1q, the following are equivalent:

1. ∥Atx∥Ñ |Ax| while tÑ 0` for all x P domA, i.e.

@xX , k0Dn0
`

x P domAÑ |Ax| ´ ∥A2´nx∥X ďR 2´k
˘

;

2. lower semi-continuity for |Ax| for all x P domA, i.e.

@k0, xXDm0
@yX

´

x P domA^ y P domA

^ ∥x´X y∥X ďR 2´m Ñ |Ax| ´ |Ay| ďR 2´k
¯

.

Proof. From (1) to (2), let x P domA and k be given. For y P domA, we have

|Ax| ´ |Ay| ď |Ax| ´ ∥Aλy∥

ď |Ax| ´ ∥Aλx∥` | ∥Aλx∥´ ∥Aλy∥ |

ď |Ax| ´ ∥Aλx∥` 2{λ ∥x´ y∥
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for any λ P p0, λ0q. Now, using (1) we pick n such that |Ax| ´ ∥A2´nx∥ ď 2´pk`1q and
then pick m “ n`k`2 such that 2n`1 ∥x´ y∥ ď 2´pk`1q which yields |Ax|´|Ay| ď 2´k.

From (2) to (1), let x P domA and k be given. Using (2), we pick an m such that
|Ax| ´ |Ay| ď 2´k for all y P domA such that ∥x´ y∥ ď 2´m. Now, for n ě b`m for
b ě ∥v∥ for some v P Ax, we then get

∥x´ J2´nx∥ ď 2´n ∥v∥ ď 2´m

which in particular implies

|Ax| ´ ∥A2´nx∥ ď |Ax| ´ |AJ2´nx| ď 2´k

using A2´nx P AJ2´nx.

In that way, the convergence of ∥Aλx∥ to |Ax| on domA relates to an extensionality
principle of |A ¨ |. Now, in the context of set-valued operators, these continuity and
extensionality principles can be logically complicated and their study actually gives
rise to a hierarchy of fragments of extensionality with a corresponding hierarchy of
continuity principles with various intricacies (which will be discussed in Chapter 11).
In any way, as in the case of the functional x¨, ¨ys, the logical methodology based on
the monotone Dialectica interpretation now implies the following quantitative version
of the statement of item (2): under this interpretation, the statement (2) is upgraded
to the existence of a “modulus of uniform lower-semicontinuity” which, as with x¨, ¨ys,
by the uniformity on x induced by majorization, is essentially a modulus of uniform
continuity. Concretely, this uniformized version of item (2) can be formally hardwired
into the system by extending it with an additional constant φ of type 0p0qp0q together
with the axiom

@bN, kN, xX , yX , uX , vX
´´

u P Ax^ v P Ay ^ ∥x∥X , ∥y∥X , ∥u∥X , ∥v∥X ăR b

^ ∥x´X y∥X ăR 2´φpk,bq
¯

Ñ |Ax| ´ |Ay| ďR 2´k
¯

. (L2)

Under this extension, Lemma 7.2.1 is then the natural extraction of a corresponding
rate of convergence from the above equivalence proof, under this (therefore) necessary
assumption of a modulus of uniform continuity for |A¨|, following the previous metathe-
orems. Note however that these metatheorems in general, through this treatment of
|A ¨ |, imply a dependence of the extracted bounds on a majorant for the constant |A ¨ |,
i.e. on a function f : NÑ N such that

∥x∥ ď bÑ |Ax| ď fpbq for all x P domA.
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Only under this additional dependence on a majorant for |A¨| do the previous metathe-
orems contained in Theorems 4.4.6 and 4.4.7 extend to Hω

p ` pL1q ` pL2q.

Here, we shortly want to make a note on the strength of the existence of such a
majorant. For this, recall the notion of majorizability for set-valued operators from
Chapter 3: an operator A : X Ñ 2X is called majorizable if there exists a function
f : NÑ N such that

@x P domA, b P N p∥x∥ ď bÑ Dy P Ax p∥y∥ ď fpbqqq .

As discussed in [165], there are non-majorizable operators and so the assumption that
A is majorizable is a proper restriction. In particular, note now that if A is such that
the minimal selection A˝x “ argmint∥y∥ | y P Axu exists, then |Ax| “ ∥A˝x∥ and
thus majorizability of A is equivalent to majorizability of |A ¨ |. Thus, while in general
potentially a bit weaker, the assumption of majorizability of |A ¨ | in particular also
seems to carry additional strength similar to that of majorizability of A in most cases.

However, as apparent from the result in Lemma 7.2.1, such a majorant however
does not feature in the extracted bounds and we actually find that such a majorant
also does not feature in any of the other quantitative results in the context of Plant’s
theorem. While this seems to be a particular coincidence in the context of Lemma
7.2.1, there is actually a logical reason which guarantees this “non-dependence” a priori
for all the other results. Concretely, the reason is that all the other proofs analyzed
have the two crucial properties that, for one, they can be formalized under the assump-
tion of a rate of convergence for ∥Aλx∥ toward |Ax| which can similarly be added to
the system and that, for another, they are “pointwise” results in x in the sense that
they do not require knowledge of |A ¨ | for any point other than x. In that way, instead
of following the above route of formalizing the whole functional |A ¨ |, one can add two
constant representing this “particular” x and a witness v P Ax as well as a constant |Ax|
of type 1 for this single value of |A ¨ | at the constant x and a constant φ representing
a rate of convergence for ∥Aλx∥ to |Ax| for this single constant x. Then, the other
proofs still formalize and in particular depend only on majorants for φ, x, v and |Ax|
and the one for the latter three can be assumed to coincide and to be represented in
the above results by b. In particular, the strong assumption of majorizability of |A ¨ |
can be avoided a priori in that way. That the extracted rates are true for all x then
is drawn as a conclusion on the metalevel as the additional constants were generic. In
this way, this also provides a logical insight on why all the other results in the context



154
CHAPTER 7. QUANTITATIVE ASYMPTOTIC BEHAVIOR OF NONLINEAR

SEMIGROUPS

of Plant’s theorem remain true if φ1 represents any other rate of convergence besides
the one constructed from the modulus of uniform continuity for |A ¨ | as commented on
before.

As a last comment on the logical particularities of the proofs towards Plant’s the-
orem, we want to note in the context of Miyadera’s lemma from [148] that the only
properties of x¨, ¨ys required in the proof given in [148] are the properties discussed
in Section 4.3.3. Further, by the fact that the proof given by Crandall in [48] of his
respective result actually only invokes Miyadera’s lemma for x P domA and for some
ζ˚ P Jpx ´ x0q, this ζ˚ can thus for simplicity be assumed to coincide with jv,y0 for
v P Ax witnessing x P domA and y0 P Ax0 as in Miyadera’s lemma. So, combined we
have that this use of Miyadera’s lemma in the context of the proof of Plant’s result
immediately formalizes in the system Hω

p ` p`q.

We now consider the theorem of Reich (which features less logical subtleties). The
main object featuring in Reich’s proof is the value d, the infimum over norms of all
elements in the range of the operator. Internally inHω

p , this value can be represented by
adding a further constant of type 1 which we, for simplicity, also denote by d together
with a further constant f of type 1 representing the witness for the monotone Dialectica
interpretation of the property

@kDy, z
`

z P Ay ^ ∥z∥´ d ď 2´k
˘

expressing that d indeed is the said infimum. So, we can concretely facilitate the use
of d by adding the following two axioms for d:

$

&

%

@yX , zX pz P Ay Ñ d ďR ∥z∥Xq ,

@k0Dy, z ďX fpkq1X
`

z P Ay ^ ∥z∥X ´ d ďR 2´k
˘

.
(d)

The additional constants are immediately majorizable: f is majorized by fM as it is of
type 1 and d is just majorized by pnq˝ for n ě ∥dX∥. Therefore the bound extraction
theorems extend to this augmentation of Hω

p in an immediate way where, in particular,
the extracted bounds will in general depend on an upper bound on d as can be seen
from some of the bounds extracted in the context of Reich’s theorem.

The second particularity of the formalization of the proof of Reich’s result is that
one actually needs to work with the limit of Jtx{t, called ´vx in the above, as a
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concrete object. In the context of the limit operator C however, we can formally deal
with this object in the context of the formal systems underlying this extraction rather
immediately by utilizing the previously extracted rate φ2pkq (where we for simplicity
omit the other parameters for now and switched to a representation of errors via 2´k)
to then address the limit vx in the system by considering

vx “ ´C

ˆˆ

Jφ2pkqx

φ2pkq

̇

k

̇

.

In particular, with this definition of vx, the other proofs in the context of Reich’s the-
orem immediately formalize.

As a last logical comment, we shortly want to discuss on the particular use of the
law of excluded middle (and thus of classical logic) in the proofs for the results of Reich
and Plant and how this features in the extractions, considering the fact that rates of
convergence were nevertheless extracted in the absence of monotonicity. This in fact
relates to the circumstances of the (previously called “smoothable’) case distinctions.
Namely, as can be observed by closer inspection of the corresponding proofs, the only
part where classical logic actually features in the proofs of Reich and Plant is through
the use of multiple case distinctions which, in the case of Reich’s result, takes the form
on dividing the proof between whether

d “ 0 or d ą 0

and, in the case of Plant’s result, takes the form of dividing the proof between whether

|Ax| “ 0 or |Ax| ą 0.

The deductions of the main results from both parts of this case distinction are essen-
tially constructive (where the “ 0-case is almost trivial in both cases) and in that way,
the constructive metatheorems actually allow for the extraction of a rate of convergence
from the ą 0-cases as the corresponding results are of the form

d ąR 0Ñ C ” @c0
`

d ěR 2´c Ñ C
˘

and |Ax| ąR 0Ñ C ” @c0
`

|Ax| ěR 2´c Ñ C
˘

where C is any of the respective convergence statements. These rates will moreover
depend on the parameter c. For the “ 0-cases, being of the form

d “R 0Ñ C and |Ax| “R 0Ñ C
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where C is any of the respective convergence statements, we find that in these cases
one can actually find different constructive proofs (compared to the ones given in the
literature) of the classically equivalent but constructively stronger statements

Dc1
0
´

d ďR 2´c
1

Ñ C
¯

and Dc10
´

|Ax| ďR 2´c
1

Ñ C
¯

.

These new proofs of said statements (which were presented and analyzed in the previ-
ous section) are again essentially constructive so that the constructive metatheorems
guarantee the extraction of a rate again, now together with the extraction of an upper
bound on (and thus a realizer of) the value c1. The previously mentioned “smoothen-
ing” is now just a combination of these two cases by instantiating the former rate with
c “ c1 and combining the two resulting rates.



8 Proof mining for the dual of a Banach space
with extensions for uniformly Fréchet dif-
ferentiable functions

8.1 Introduction

In this chapter, we move away from the theory of nonlinear semigroups and strive to
extend the current logical methods used in proof mining so that they become appli-
cable to proofs which involve some of the most fundamental notions from convex and
nonlinear functional analysis, including the dual space of a Banach space and its norm
as well as uniformly Fréchet differentiable functions and their gradients and Fenchel
conjugates.

In more detail, since the first modern metatheorems of proof mining were developed
in [71, 95], a focus for applications of proof mining has been placed on the areas of
convex and functional analysis. Interestingly, one of the most fundamental objects in
the context of the latter, the continuous dual of a Banach space, has not yet received a
proper treatment (due to various difficulties arising in that context which will be dis-
cussed further below). Similarly, many if not most applications to convex analysis have
been concerned with fixed point iterations for nonexpansive maps and their cousins as
well as abstract monotone and accretive operator theory and so, also here, some of the
main objects in convex analysis have not been treated so far, in particular including
the gradients of differentiable convex functions as well as their Fenchel conjugates. In
that way, proof mining has so far missed out on some of the most promising areas
of applications which rely on these objects. For two prominent examples, we want to
mention the theory and applications of the prominent Bregman distances (going back
to the seminal work [22]) as well as the theory of von Neumann algebras.1

1For the latter, an approach for extending proof mining methods to the context of tracial von
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Now, the main results of this chapter are logical metatheorems that quantify and
allow for the extraction of the computational content of theorems pertaining to the use
of the continuous dual of an abstract normed space together with the associated dual
norm. This is achieved by extending the systems currently in use for proof mining in
the context of normed linear spaces by carefully selected constants and corresponding
axioms that govern the use of the involved objects. In particular, a novel approach is
used in this context to circumvent some of the difficulties which are a priori present
when treating the dual space: The dual space is a concretely defined object relative
to the underlying normed space represented by, say, an abstract type X. Naively, ele-
ments of the continuous dual therefore live in the type 1pXq and, in that way, singling
out the continuous linear maps from all functionals of that type requires the use of
a predicate which is of high quantifier complexity and which thus makes essentially
all attempts at a direct specification futile if one wants to retain meaningful bound
extraction results as the high computational strength of the comprehension needed to
deal with the predicate would distort the complexity of bounds extracted from proofs
which discuss these objects only in an abstract way while not carrying any apparent
computational strength in the principles used in the proof. A second issue is that the
norm of the continuous dual is also a concrete object that derives from the norm of
the underlying space X via the use of a supremum over elements from this abstract
space and such suprema cannot be represented in the pure underlying language of the
systems commonly used in proof mining. We avoid these problems in the following
ways: Instead of specifying the continuous dual as the subspace of all continuous and
linear functionals of type 1pXq, we present an abstract approach using an additional
abstract base type X˚ and then axiomatically specify that all elements of this abstract
space represented by X˚ behave like continuous linear functionals. However, there
are no axioms specifying that this abstract space really contains representations for
all elements from the continuous dual associated with X as represented by a set of
functionals of type 1pXq. Instead, we only include a corresponding rule that facilitates
the closure of the space as represented by the new abstract type X˚ under functionals
which are provably linear and continuous. In this way, our approach is intensional
(and in some way similar to the treatment of set-valued operators in the context of
proof mining developed in [165] as will be discussed later). This intensional treatment
of the dual then allows us to utilize a proof-theoretically tame approach for treating

Neumann algebras has recently been given in [157].
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suprema over (certain) bounded sets in abstract spaces, developed in the first part of
this chapter, to provide defining axioms for the norm of the dual.

As discussed before already, the success of applications of proof mining to concrete
mathematical proofs in many ways relies on a modularity of this logical approach in
the sense that the main logical systems can be extended and adapted with specific
mathematical objects or notions and associated axioms to fit specific problems, all the
while guaranteeing that our metatheorems still hold. As examples of such extensions,
we shall discuss how one can utilize the new system for the dual of a normed space
to provide a novel treatment of the reflexivity property of a Banach space (in certain
circumstances) and with that the second dual. Further, we extend these systems to
deal with various notions from convex analysis that utilize the dual of a normed space,
including uniformly Fréchet differentiable functions and their gradients as well as cor-
responding Fenchel conjugates, where in particular the treatment of the latter is made
possible by again utilizing the intensional approach to the dual which allows for a treat-
ment of the supremum defining the Fenchel conjugate via the proof-theoretically tame
approach to suprema over bounded sets mentioned before. So also in those cases, we
find that the intensional approach provides mathematically strong systems for treat-
ing very concrete objects in the context of systems that allow for bound extraction
metatheorems which accurately reflect the complexity of the principles used in proofs
by the complexity of the extracted bounds.

The applicability of the metatheorems for these systems as established in this chap-
ter will then in particular be justified by the fact that they allow for many new case
studies to be carried out in the areas discussed above and examples for such applica-
tions will be given in the next Chapter 9. However, we want to also mention the works
[1, 7, 12, 22, 38, 40, 83, 121, 191, 213] as promising future applications as, by inspec-
tion of the proofs, they seem to be formalizable in (suitable extensions of) the systems
introduced here. Lastly, we also strongly believe that the general approach to suprema
over bounded sets introduced here as well as the tame intensional approach to the dual
space and to convex functions and their gradients and conjugates will be useful in in-
spiring further developments in the realm of the logical metatheorems of proof mining.
As an initial indication of this, in Chapter 10, we will extend the systems introduced
in this chapter to provide a suitable base for a treatment of monotone operators on
Banach spaces as introduced by Browder [28, 30]. Further, in Chapter 11, we treat
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the Hausdorff-metric in systems which are amenable to proof mining metatheorems by
using an intensional approach to the sets measured by the Hausdorff-metric together
with the tame approach to suprema over bounded sets presented here and we then
illustrate the applicability of this treatment in the last Chapter 12 where we provide
quantitative results on Mann-type iterations of set-valued nonexpansive mappings.2

8.2 Proof-theoretically tame suprema over bounded

sets

In this section, we now want to present a way that suprema over (certain) bounded
sets in abstract spaces can be treated in the context of finite type arithmetic such that
one retains meaningful bound extraction theorems in the sense that the treatment of
the supremum in question does not result in any change in the computational strength
of extracted bounds (besides of that caused by the other principles used in the proof).
The presentation is conceptual and in that way to some degree informal. We will later
discuss concrete instantiating examples for suprema where such a treatment can be uti-
lized. In the following, we focus on the case of normed spaces and consequently work
over (possibly extensions of) the language of AωrX, ∥¨∥s. The same considerations can
however be immediately applied in the context of metric spaces too.

Assume for this that we have a predicate Cpx, pq specifying a subset of X (possibly
in an extension of the underlying language) in terms of external parameters p with types
σ “ σ1, . . . , σk from a second set specified by a predicate Dppq. Write σt “ σk, . . . , σ1

as in Chapter 2. Then, stating for an additional term s of type 1pσtq that it represents
the supremum of a function f of type 1pσtqpXq over the set specified by C (if existent),
i.e.

sup
xX :Cpx,pq

fpx, pq “R sppq for all pσ with Dppq,

can be facilitated by two axioms: one stating that sppq is an upper bound, i.e.

@pσ, xX
`

Dppq ^ Cpx, pq Ñ fpx, pq ďR sppq
˘

, pSq1

2Besides these examples listed here, we also want to mention that intensional methods together
with the tame approach to suprema over bounded sets may in particular be useful to treat the so-
called generalized Bregman distances recently introduced by Burachik, Dao and Lindstrom [33] and
that the approach to the dual space may be adapted to treat function spaces between general vector
spaces in order to treat associated operator algebras.
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as well as an axiom stating that the values of fpx, pq get arbitrarily close to sppq over
the specified set, i.e.

@pσ
`

Dppq Ñ @k0DxX
`

Cpx, pq ^ sppq ´ 2´k ďR fpx, pq
˘˘

. pSq12

Remark 8.2.1. Note that it is a rather immediate consequence of pSq12 that sppq also
satisfies the usual defining property of being a supremum in the sense that sppq is the
least upper bound of all fpx, pq over the specified set, i.e.

@pσ,M1
`

Dppq ^M ăR sppq Ñ DxX
`

Cpx, pq ^M ăR fpx, pq
˘˘

, (+)

as by unraveling the quantifiers hidden in the real inequalities in the above statement
and prenexing accordingly, we get that p`q is in fact equivalent to

@pσ,M1, k0DxX , j0
`

Dppq ^M ` 2´k ăR sppq Ñ
`

Cpx, pq ^M ` 2´j ďR fpx, pq
˘˘

,

(++)
and so, assuming M`2´k ă sppq, we pick an x using pSq12 that satisfies sppq´2´pk`1q ď

fpx, pq. This x therefore also satisfies M ` 2´pk`1q ď fpx, pq. So p``q holds true with
this x and j “ k ` 1.

In and of themselves, these schemes are not amenable to proof mining methods
without resulting in additional computational strength. We now want to discuss situ-
ations in which the above two axioms do become admissible a priori in the context of
bound extraction theorems (in the sense that they do not result in additional computa-
tional strength). In particular, we want to consider what happens if the set specified by
Cpx, pq is such that every element x satisfies (not necessarily provably) that ∥x∥ ď bppq

for some additional term b of type 1pσtq, i.e. the elements x such that Cpx, pq holds
true are bounded in terms of the parameters p. In that case, the existential quantifier
in pSq12 becomes bounded and, after prenexing the inner quantifiers accordingly, the
statement can therefore be equivalently written as

@pσ, k0DxX ďX bppq1X
`

Dppq Ñ
`

Cpx, pq ^ sppq ´ 2´k ďR fpx, pq
˘˘

. pSq2

Now, in the case of a quantifier-free C and an existential D, the above statement
is of the form ∆ exhibited in [76, 96] (and discussed before at various places, see e.g.
Chapter 3) which is a priori permissible in the bound extraction theorems based on the
monotone functional interpretation. Even further, the statement is still of the form ∆

if C is purely universal. In that case however, the boundedness statement pSq1 can only
be rephrased in an admissible way if C can be equivalently written as an existential
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statement or if the universal quantifiers can themselves be bounded.

By generalizing this pattern of the duality of the requirements on C induced by
pSq1 and pSq2, we can immediately exhibit a much larger class of statements which
are a priori permissible for C: the above approach indeed yields admissible ways of
phrasing suprema if C can be simultaneously written as a formula of the form

@a
δ1
1 Db1 ďσ1

r1a1 . . . @a
δn
n Dbn ďσn

rna1 . . . an@c
γDqf px, p, a1, . . . , an, b1, . . . , bn, cq

which is a kind of generalized form ∆ which we, following Remark 10.24 in [96], denote
by ∆˚ as well as equivalently as a formula of the form

Dar
δr1
1 @b

r

1 ďσr1 rr1ar1 . . . Dar
δrm
m @b

r

m ďσrm rrmar1 . . . armDcr
γrDr qf px, p, ar1, . . . , arm, b

r

1, . . . , b
r

m, crq

which we want to denote by ∆˚. In more suggestive words, the statements pSq1 and
pSq2 are a priori admissible in particular if C is a ‘∆1p∆

˚q’ formula. Further, it is clear
that D can also be of the form ∆˚ as it is immediate to see that also in that case, both
statements pSq1 and pSq2 have a monotone functional interpretation.

However, in many cases the mathematical particularities of a situation at hand
actually yield that such a representation of C is not even necessary for specifying a
concrete supremum in an admissible way since other facts about it sometimes allow
one to equivalently express that sppq is an upper bound for the given function over
the given set in a way that does not require the above format of pSq1. An immediate
example where the above formulation of pSq1 can be avoided is when the bounded
subset specified by C is just Brp0q in, say, a given normed space pX, ∥¨∥q and Dpp, rq

specifies a set of parameters p, r as before (now with types σ, 1). If f is additionally
extensional in that case, then the statement pSq1 can be replaced by

@r1, pσ@xX
`

Dpp, rq Ñ fpxrr, p, rq ďR spp, rq
˘

where we make use of the functional3

xrr “
rx

maxRt∥x∥X , ru

which allows for implicit quantification over elements from Brp0q.

3This functional seems to have first been used for r “ 1 in [111].
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In that way, it is in many cases in particular the complexity of Dppq, specifying the
set of parameters, that is crucial for the admissibility of the above axioms. However,
even in situations where a natural Dppq is not of the right complexity, one can some-
times mitigate the resulting issues by providing a suitable quantifier-free intensional
description of the set specified by Dppq (potentially over an extended language). The
case that we want to make in this chapter (as well as in this thesis for that matter)
is that such situations, where the circumstances allow for an intensional treatment
of the set specified by Dppq such that the above treatment is applicable so that one
can deal with certain suprema in that context but one nevertheless retains meaningful
and mathematically strong systems that allow for the formalization of theorems and
proofs from the respective areas that one wants to treat, occur rather frequently in the
mainstream mathematical literature. We therefore want to make the case that this
perspective thus provides a suitable way of approaching many previously untreated
objects from (nonlinear) analysis. Concretely, the following sections will present some
prime examples for such situations where we will in particular see that, in the context
of an intensional formulation of the dual space of a Banach space, both the norm of
that dual as well as the conjugate of a convex function can be treated in such a manner
which results in proof-theoretically tame but mathematically strong systems for these
areas, unlocking these branches for methods from proof mining for the first time.

8.3 A formal system for a normed space and its dual

In this section, we will now define the respective extensions of AωrX, ∥¨∥s that allow us
to deal with notions in the context of the dual space of the normed space represented
by X. For this, given a real normed space pX, ∥¨∥q, we write X˚ for the continuous
dual of X and we write xx, x˚y for application of an x˚ P X˚ to an x P X.

The main object associated with X˚ is of course the norm ∥¨∥ that turns X˚ into a
normed space which in particular will be a Banach space. The norm onX˚ is concretely
defined as

∥x˚∥ “ supt|xx, x˚y| | x P X, ∥x∥ ď 1u

for x˚ P X˚. Any other basic notions from functional analysis will be introduced as
needed throughout the chapter but we in general refer to [185, 202] for standard refer-
ences on the subject.
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The formal approach we choose towards the dual space is now as discussed in
the introduction: We treat the dual space as an intensional object and so, instead
of specifying the dual space as those objects with type 1pXq which indeed represent
continuous linear functionals X Ñ R, we introduce a new abstract type X˚ into the
language and correspondingly consider the extended set of types TX,X˚ defined as

0, X,X˚
P TX,X

˚

, ρ, τ P TX,X
˚

ñ τpρq P TX,X
˚

.

This new type X˚ is used to abstractly signify a space which we consider to be the
dual space of X.

In and of itself, the immediate issue with this is that elements of type X˚ have no
relationship with elements of type X. To restore the application character of elements
of type X˚, i.e. that they shall represent functionals that can be applied to elements
of type X, we then need to further introduce a functional x¨, ¨yX˚ of type 1pXqpX˚q by
means of a new constant with suitable axioms that facilitates an abstract account of
this application in the sense that xx, x˚yX˚ is a formal representation of the resulting
real value. Also, we need constants to restore the linear structure on X˚.

Once these extensions are in place, we will be able to introduce the norm into the
system by another additional constant which is specified to be the true dual norm on
X˚ induced by the norm on X by using the tame approach to suprema over bounded
sets in abstract spaces outlined before.

Concretely, we thus add the following constants to the underlying language of the
system AωrX, ∥¨∥s extended with the new base type X˚:

1. `X˚ of type X˚pX˚qpX˚q,

2. ´X˚ of type X˚pX˚q,

3. ¨X˚ of type X˚pX˚qp1q,

4. 0X˚ of type X˚,

5. 1X˚ of type X˚,

6. x¨, ¨yX˚ of type 1pXqpX˚q.
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For treating X˚ as a normed vector space, we add another constant ∥¨∥X˚ of type 1pX˚q

for dealing with the dual norm. Indeed, the defining property of that norm being a
certain supremum now has to be appropriately stated by suitable axioms which we
obtain by instantiating the previous schemes pSq1 and pSq2. The first part of the
supremum, i.e. that ∥x˚∥X˚ is an upper bound on the function values of x˚, can be
equivalently stated by the axiom

@x˚X
˚

, xX p|xx, x˚yX˚ | ďR ∥x˚∥X˚ ∥x∥Xq , p˚q1

essentially stating that a Cauchy-Schwarz type inequality holds. In that way, we avoid
the otherwise necessary task of removing the premise ∥x∥X ďR 1 suggested by the
general scheme pSq1 as mentioned before (e.g. via implicitly quantifying over B1p0q

through the use of xr1). For the other part of the supremum, i.e. the statement that
∥x˚∥X˚ is indeed the least such upper bound, we follow the general approach outlined
in the previous section by instantiating pSq2 and we thus opt for the axiom

@x˚X
˚

, k0Dx ďX 1X
`

∥x˚∥X˚ ´ 2´k ďR |xx, x
˚
yX˚ |

˘

, p˚q2

expressing that xx, x˚y gets arbitrarily close to ∥x˚∥ on the unit ball. This axiom
p˚q2 is of the form ∆ and thus a priori permissible when aiming for bound extraction
theorems. We will later see that the usual norm axioms can be immediately derived
from these two axioms. For now, just note that the intensional approach to X˚ via an
abstract type was crucially used here to provide quantification over elements from the
dual in a quantifier-free way and thus to guarantee that the previous predicate D can
be avoided so that the axioms resulting from instantiating the schemes pSq1, pSq2 have
a monotone functional interpretation.

Remark 8.3.1. Similar to Remark 8.2.1, in the context p˚q2, it can be easily seen that
∥x˚∥X˚ also (provably) satisfies the usual definition of being a supremum in the sense
that it is the least upper bound of all values |xx, x˚yX˚ |, i.e.

@x˚X
˚

,M1
pM ăR ∥x˚∥X˚ Ñ Dx ďX 1X pM ăR |xx, x

˚
yX˚ |qq ,

and, as also similar to the discussion in Remark 8.2.1, that p˚q2 actually even (provably)
implies the following ‘instantiated’ version of that statement:

@x˚X
˚

,M1, k0Dx ďX 1X
`

M ` 2´k ăR ∥x˚∥X˚ Ñ
`

M ` 2´pk`1q ďR |xx, x
˚
yX˚ |

˘˘

.

It should be noted that this consequence of p˚q2 formalizes the defining property of
∥x˚∥X˚ being a supremum in a way as it is often used in proofs from the literature
(which we will see in the various formal proofs given later).
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Using the norm, we can now provide an internal definition of equality on X˚ via
the abbreviation4

x˚ “X˚ y˚ :“ ∥x˚ ´X˚ y˚∥X˚ “R 0

for x˚X
˚

, y˚X
˚

.

We now turn to the axioms for the application constant x¨, ¨yX˚ which essentially
just state that the map is bilinear:5

$

&

%

@xX , x˚X
˚

, y˚X
˚

, α1, β1 pxx, αx˚ `X˚ βy˚yX˚ “R αxx, x
˚yX˚ ` βxx, y˚yX˚q ,

@xX , x˚X
˚

, y˚X
˚

, α1, β1 pxx, αx˚ ´X˚ βy˚yX˚ “R αxx, x
˚yX˚ ´ βxx, y˚yX˚q ,

p˚q3

$

&

%

@xX , yX , x˚X
˚

, α1, β1 pxαx`X βy, x
˚yX˚ “R αxx, x

˚yX˚ ` βxy, x˚yX˚q ,

@xX , yX , x˚X
˚

, α1, β1 pxαx´X βy, x
˚yX˚ “R αxx, x

˚yX˚ ´ βxy, x˚yX˚q ,
p˚q4

Lastly, we specify the vector space structure of X˚ further, akin to [95]:6

The vector space axioms for `X˚ , ´X˚ , ¨X˚ , 0X˚ , 1X˚ w.r.t. “X˚ . p˚q5

With this abstract approach, an issue of course arises regarding the connection
between the bounded linear functionals represented in 1pXq and the elements of X˚.
Concretely, it is clear just by examination of the quantifier complexity that an axiom
stating that every element of 1pXq which is a continuous linear functional is indeed
represented by some corresponding element of X˚ will not be permissible meanwhile
aiming for bound extraction theorems due to the complex premise of linearity and
continuity (which is why we opted for an intensional treatment in the first place). In
that way, we resort to the next best thing available in this situation: we include a
rule guaranteeing that at least all terms of type 1pXq which provably belong to the
dual of X are represented by an element of X˚. Concretely, we consider the following
quantifier-free linearity rule7

F0 Ñ
`

@xX , yX , α1, β1 ptpαx`X βyq “R αtx` βtyq ^ @x
X p|tx| ďR M ∥x∥Xq

˘

F0 Ñ Dx˚ ďX˚ M1X˚@xX ptx “R xx, x˚yX˚q

(QF-LR)
4Similar as in the context of AωrX, ∥¨∥s with ´X , we write x˚ ´X˚ y˚ for x˚ `X˚ p´X˚y˚q.
5In the following, we omit the types from ¨X˚ or ¨X˚ altogether, similar as with ¨X .
6In particular, by including 1X˚ in the list of constants in the description of this collection of

axioms, we want to indicate that these axioms include ∥1X˚∥X˚ “R 1.
7Similar to before, given objects x˚, y˚ of type X˚, we here write x˚ ďX˚ y˚ for ∥x˚∥X˚ ďR

∥y˚∥X˚ .
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where F0 is a quantifier-free formula and where t and M are terms of type 1pXq and
1, respectively.

But of course even in the context of this rule, the treatment of X˚ can be regarded
as an intensional one and the type X˚ will also be interpretable by a suitable subspace
of X˚ (see also Remark 8.3.5 later on). What we want to argue with this approach
outlined here is that full knowledge of X˚ from the perspective of X seems seldom
necessary for many applications and it often suffices if the subset specified by X˚ is
populated “enough” (with “enough” being relative to a certain application). For this,
the above rule provides a minimal population of X˚ which we now further extend by
the following axiom which guarantees the existence of certain elements in X˚ that will
later be convenient to have so that we can develop the main aspects of the basic theory
of X˚ formally with ease. Concretely, this axiom codes a central consequence of the
Hahn-Banach theorem for X˚ by which it follows that Jpxq ‰ H for any x P X where
J is the normalized duality map of X, i.e. that for any x P X:

Dx˚ P X˚
`

xx, x˚yX˚ “ ∥x∥2 “ ∥x˚∥2
˘

.

Instead of arguing that this statement is provable on the level of X using types 1pXq

and then using the above rule pQF-LRq to transfer the existence of such functionals to
the type X˚, we can just state this inclusion via an axiom of type ∆:

@xXDx˚ ďX˚ ∥x∥X 1X˚

`

xx, x˚yX˚ “R ∥x∥2X “R ∥x˚∥2X˚

˘

. p˚q6

Definition 8.3.2. We define the system AωrX, ∥¨∥X , X˚, ∥¨∥X˚s for the abstract dual
space of an abstract normed space as the extension of AωrX, ∥¨∥s, formulated over the
extended language using the types TX,X˚ , by the constants `X˚ , ´X˚ , ¨X˚ , 0X˚ , 1X˚ ,
x¨, ¨yX˚ , ∥¨∥X˚ , the axioms p˚q1 - p˚q6 and the rule pQF-LRq.

Remark 8.3.3. In the spirit of the above discussion preceding the rule pQF-LRq, we
want to mention that the use of a new abstract type for treating X˚ intensionally can
be avoided while achieving a system of similar strength. Concretely, we could alterna-
tively have introduced a characteristic function χX˚ of type 0p1pXqq into the language
of AωrX, ∥¨∥s together with a constant for the norm on X˚, now formulated using
the type 1pXq instead of X˚. The respective axioms for the norm then could have
been formulated with a quantification over X˚ facilitated by the additional premise
χX˚px˚q “0 0 for elements x˚ of type 1pXq (i.e. by similarly instantiating the schemes
pSq1, pSq2 but where one now uses χX˚ to instantiate D). In particular, in this con-
text, the arithmetical operations on X˚ would be definable by λ-abstraction together
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with the arithmetical operations on X and R and application of elements from X˚ to
elements from X would not require a new functional but would just be represented by
a proper application of terms. This would be a kind of intensional treatment in the
spirit of the previous approaches to set-valued operators from Chapter 3. However, the
above approach via a new abstract type together with an application functional seemed
to us more adherent to the abstract character that the dual space seems to have in
many application scenarios (which is in particular further substantiated through the
perspective of the notion of dual systems from the theory of topological vector spaces
as will be discussed later in Remark 8.3.5) and also seemed to confine a bit better to
the general abstract nature of the whole approach to normed spaces using abstract
types in proof mining.

In the following, for simplicity, we abbreviate AωrX, ∥¨∥X , X˚, ∥¨∥X˚s by Dω. It can
be immediately shown that, in this system, the bilinear application form x¨, ¨yX˚ is non-
degenerate (in the sense of dual systems, see the later Remark 8.3.5) and extensional:

Lemma 8.3.4. The system Dω proves:

1. The bilinear form x¨, ¨yX˚ is extensional, i.e.

@xX , yX , x˚X
˚

, y˚X
˚

px “X y ^ x˚ “X˚ y˚ Ñ xx, x˚yX˚ “R xy, y
˚
yX˚q .

2. The bilinear form x¨, ¨yX˚ is non-degenerate, i.e.

(a) @xX
´

@x˚X
˚

pxx, x˚yX˚ “R 0q Ñ x “X 0X

¯

,

(b) @x˚X
˚ `

@xX pxx, x˚yX˚ “R 0q Ñ x˚ “X˚ 0X˚

˘

.

Proof. We begin with item (1): Let x, y and x˚, y˚ be given and suppose that x “ y

as well as x˚ “ y˚. Then note that 1v “ v is a vector space axiom (and corresponding
instantiations for x, y, x˚, y˚ thus follow from the axioms of AωrX, ∥¨∥s and axiom p˚q5)
and thus we have

|xx, x˚y ´ xy, y˚y| ď |xx, x˚y ´ xy, x˚y| ` |xy, x˚y ´ xy, y˚y|

“ |1xx, x˚y ´ 1xy, x˚y| ` |1xy, x˚y ´ 1xy, y˚y|

“ |x1x´ 1y, x˚y| ` |xy, 1x˚ ´ 1y˚y|

“ |xx´ y, x˚y| ` |xy, x˚ ´ y˚y|

ď ∥x´ y∥ ∥x˚∥` ∥y∥ ∥x˚ ´ y˚∥ “ 0



CHAPTER 8. PROOF MINING FOR THE DUAL OF A BANACH SPACE WITH
EXTENSIONS 169

where the the third line follows from axioms p˚q3,4, the fourth line follows from multi-
ple applications of the quantifier-free extensionality rule together with the previously
mentioned vector space axiom and the last line follows from axiom p˚q1 and the as-
sumptions that x “ y and x˚ “ y˚.

For item (2), we begin with (a). For this, we actually show

@xX , k0Dx˚ ďX˚ ∥x∥X 1X˚

`

|xx, x˚yX˚ | ďR p2
´k
q
2
Ñ ∥x∥X ďR 2´k

˘

.

Let x be given and pick x˚ via axiom p˚q6 such that ∥x˚∥ “ ∥x∥ as well as xx, x˚y “
∥x∥2. Thus in particular if |xx, x˚y| ď p2´kq2, then ∥x∥ ď 2´k.

For (b), we actually show

@x˚X
˚

, k0Dx ďX 1X
`

|xx, x˚yX˚ | ďR 2 ¨ 2´pk`2q Ñ ∥x˚∥X˚ ďR 2´k
˘

.

Thus, let x˚ be given and suppose ∥x˚∥ ą 2´k “ 2´pk`1q ` 2´pk`1q. By axiom p˚q2

(recall Remark 8.3.1), we get that there exists an x with ∥x∥ ď 1 and such that
|xx, x˚y| ě 2´pk`1q ` 2´pk`2q, i.e. |xx, x˚y| ą 2 ¨ 2´pk`2q.

Remark 8.3.5. The above treatment of X˚ ties to the notion of dual systems from
the context of topological vector spaces (see e.g. [187]). Concretely, a dual system is
a triple pX, Y, fq consisting of real vector spaces X, Y together with a bilinear form
f : X ˆ Y Ñ R. The dual system is called non-degenerate if

1. fpx, yq “ 0 for all y P Y implies x “ 0,

2. fpx, yq “ 0 for all x P X implies y “ 0.

In that way, the idea of the above approach using axioms p˚q1 - p˚q5 is to essentially
axiomatize that X and X˚ with x¨, ¨yX˚ form a dual system. In particular, also the
idea of an additional application functional is influenced by that perspective.

The linearity rule pQF-LRq and the axiom p˚q6 then guarantee that this subspace
of the dual coded by X˚ is at least in a certain way “close enough” to the full dual
space and together with potential additional axioms they can serve to make sure that
the subspace is rich enough for the application at hand. In particular, p˚q6 yields that
the dual system thus axiomatized is non-degenerate which is exactly what was shown
in the above lemma.

It still remains to be seen that the function specified by ∥¨∥X˚ is indeed a norm on
X˚. For that, we show in the following lemma that the axioms for norms commonly in
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place for systems used in proof mining (as e.g. in the case of AωrX, ∥¨∥s) are provable
for the constant ∥¨∥X˚ in Dω. In contrast to the usual norm axioms, these norm axioms
are chosen such that it immediately follows that the arithmetical operations and the
norm are extensional. In that way, we also find here that all the new constants that we
added for the dual space are provably extensional in our system and that the system
proves the same facts about the normed linear structure of X˚ that it also proves of
X.

Lemma 8.3.6. The system Dω proves the norm axioms exhibited in [95], now formu-
lated for ∥¨∥X˚:

1. @x˚X
˚

p∥x˚ ´X˚ x˚∥X˚ “R 0q,

2. @x˚X
˚

, y˚X
˚

p∥x˚ ´X˚ y˚∥X˚ “R ∥y˚ ´X˚ x˚∥X˚q,

3. @x˚X
˚

, y˚X
˚

, z˚X
˚

p∥x˚ ´X˚ y˚∥X˚ ďR ∥x˚ ´X˚ z˚∥X˚ `R ∥z˚ ´X˚ y˚∥q,

4. @x˚X
˚

, y˚X
˚

, α1 p∥αx˚ ´X˚ αy˚∥X˚ “R |α| ∥x˚ ´X˚ y˚∥X˚q,

5. @x˚X
˚

, α1, β1 p∥αx˚ ´X˚ βx˚∥X˚ “ |α ´ β| ∥x˚∥X˚q,

6.

$

&

%

@x˚X
˚

, y˚X
˚

, u˚X
˚

, u˚X
˚

p∥px˚ `X˚ y˚q ´X˚ pu˚ `X˚ v˚q∥X˚

ďR ∥x˚ ´X˚ u˚∥X˚ `R ∥y˚ ´X˚ v˚∥X˚q,

7. @x˚X
˚

, y˚X
˚

p∥p´X˚x˚q ´X˚ p´X˚y˚q∥X˚ “R ∥x˚ ´X˚ y˚∥X˚q,

8. @x˚X
˚

, y˚X
˚

p| ∥x˚∥X˚ ´ ∥y˚∥X˚ | ďR ∥x˚ ´X˚ y˚∥X˚q.

Proof. We only show items (1), (3), (4), (6) as well as (8) to exhibit the general pattern
of proof used here. The other items can be done similarly. For items (4), (6) and (8), we
will omit mentioning the use of axiom p˚q5 and freely manipulate algebraic expressions
in X˚.8 Also, in the context of the use of axiom p˚q2, recall Remark 8.3.1 for the
particular consequence of p˚q2 that formalizes the usual least upper bound property of
the supremum for ∥¨∥X˚ .

8For this, some care of course needs to be exerted in order to guarantee that we do not require
extensionality of these operations in the first place. By making the following arguments more precise,
this can actually be verified for the given proofs (using e.g. Lemma 8.3.4) but we are here content
with just sketching the arguments without this care. If one does not want to deal with this careful
exercise, one could also just add the above statements about the norm as additional universal axioms.
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(1) Since |xx, x˚y| ď ∥x˚∥ ∥x∥, we have ∥x˚∥ ě 0 for any x˚ (by instantiating x with
1X). Suppose now that ∥x˚ ´ x˚∥ ą 0. By the axiom p˚q2, we get an x such
that 0 ă |xx, x˚ ´ x˚y|. Now, using p˚q5, we get 1x˚ “ x˚ and so the quantifier-
free extensionality rule yields 0 ă |xx, 1x˚ ´ 1x˚y|. By axiom p˚q3, we have
0 ă |1xx, x˚y ´ 1xx, x˚y| “ 0 which is a contradiction. This gives ∥x˚ ´ x˚∥ “ 0.

(3) Suppose that ∥x˚ ´ y˚∥ ą ∥x˚ ´ z˚∥` ∥z˚ ´ y˚∥. Then by axiom p˚q2, we get an
x with ∥x∥ ď 1 and

|xx, x˚ ´ y˚y| ą ∥x˚ ´ z˚∥` ∥z˚ ´ y˚∥ .

Now, instantiating the vector space axioms p˚q5, we get z˚ ` p´z˚q “ 0 and
x˚`0 “ x˚ so that by two applications of the quantifier-free rule of extensionality,
we have

|xx, x˚ ´ y˚y| “ |xx, px˚ ` pz˚ ` p´z˚qqq ` p´y˚qy|.

By instantiating the associativity and commutativity axioms for ` from p˚q5, we
get through multiple applications of the quantifier-free extensionality rule that

|xx, x˚ ´ y˚y| “ |xx, px˚ ´ z˚q ` pz˚ ´ y˚qy|.

At last, we get

∥x˚ ´ z˚∥` ∥z˚ ´ y˚∥ ă |xx, x˚ ´ y˚y|

“ |xx, 1px˚ ´ z˚q ` 1pz˚ ´ y˚qy|

“ |xx, x˚ ´ z˚y ` xx, z˚ ´ y˚y|

ď ∥x∥ ∥x˚ ´ z˚∥` ∥x∥ ∥z˚ ´ y˚∥

ď ∥x˚ ´ z˚∥` ∥z˚ ´ y˚∥

where the second line follows from the previous by further instantiating the vector
space axiom 1v “ v from p˚q5 and using the quantifier-free extensionality rule,
the third line follows from axiom p˚q3 and real arithmetic, the fourth line follows
from real arithmetic and axiom p˚q1 and the last line follows as ∥x∥ ď 1. Clearly,
the above is a contradiction and so

∥x˚ ´ y˚∥ ď ∥x˚ ´ z˚∥` ∥z˚ ´ y˚∥

holds after all.
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(4) Suppose first that ∥αx˚ ´ αy˚∥ ą |α| ∥x˚ ´ y˚∥. Then by axiom p˚q1, p˚q2 and
p˚q3, we get an x with ∥x∥ ď 1 such that

|α| ∥x˚ ´ y˚∥ ă |xx, αx˚ ´ αy˚y|

“ |α| ¨ |xx, x˚ ´ y˚y|

ď |α| ∥x∥ ∥x˚ ´ y˚∥

ď |α| ∥x˚ ´ y˚∥

which is a contradiction. On the other hand, if ∥αx˚ ´ αy˚∥ ă |α| ∥x˚ ´ y˚∥,
then |α| ą 0 since otherwise 0 ď ∥αx˚ ´ αy˚∥ ă 0. Thus in particular we have

∥αx˚ ´ αy˚∥
|α|

ă ∥x˚ ´ y˚∥ .

Again, by axioms p˚q1, p˚q2 and p˚q3, we get an x with ∥x∥ ď 1 such that
∥αx˚ ´ αy˚∥

|α|
ă |xx, x˚ ´ y˚y|

“
1

|α|
|xx, αx˚ ´ αy˚y|

ď
1

|α|
∥αx˚ ´ αy˚∥

which is a contradiction.

(6) Assume ∥px˚ ` y˚q ´ pu˚ ` v˚q∥ ą ∥x˚ ´ u˚∥` ∥y˚ ´ v˚∥. Then by axioms p˚q1,
p˚q2 and p˚q3 there exists an x with ∥x∥ ď 1 such that

∥x˚ ´ u˚∥` ∥y˚ ´ v˚∥ ă |xx, px˚ ` y˚q ´ pu˚ ` v˚qy|

ď |xx, x˚ ´ u˚y| ` |xx, y˚ ´ v˚y|

ď ∥x∥ ∥x˚ ´ u˚∥` ∥x∥ ∥y˚ ´ v˚∥

ď ∥x˚ ´ u˚∥` ∥y˚ ´ v˚∥

which is a contradiction.

(8) We show

∥x˚∥ ď ∥x˚ ´ y˚∥` ∥y˚∥ and ∥y˚∥ ď ∥x˚ ´ y˚∥` ∥x˚∥ .

For the former, suppose ∥x˚∥ ą ∥x˚ ´ y˚∥` ∥y˚∥. By axiom p˚q1, p˚q2 and p˚q3,
we get that there exists an x with ∥x∥ ď 1 and

∥x˚ ´ y˚∥` ∥y˚∥ ă xx, x˚y

“ xx, x˚ ´ y˚y ` xx, y˚y

ď ∥x˚ ´ y˚∥` ∥y˚∥
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which is a contradiction.

For the latter, similarly suppose ∥y˚∥ ą ∥x˚ ´ y˚∥` ∥x˚∥ where we again get an
x with ∥x∥ ď 1 such that

∥x˚ ´ y˚∥` ∥x˚∥ ă xx, y˚y

“ ´xx,´y˚y

“ ´xx, x˚ ´ y˚y ` xx, x˚y

ď ∥x˚ ´ y˚∥` ∥x˚∥

which is again a contradiction.

Remark 8.3.7. A simple property of Banach spaces (see e.g. [185]) is that being a
Banach space is inherited from a space Y to all spaces BpX, Y q of continuous linear
functionals mapping into Y from a normed space X. In that way, the dual X˚ “

BpX,Rq of a normed space X is always a Banach space as R is itself complete. The
latter property of completeness of R is formally represented in WE-PAω in the following
way (where we follow the discussion given in [96]): provably in WE-PAω (and already
in weak fragments thereof), we have

@Φ1p0q
`

@n0
@m, k ě0 n

`

|Φk ´ Φm| ďR 2´n
˘

Ñ Df 1
@n0

`

|Φn´ f | ďR 2´n
˘˘

where, in fact, f can be given by fk :“ Φpk ` 3q{ pk ` 3q. In that way, also the Cauchy
completeness of X˚ can be represented: provably in Dω, given a sequence x˚X

˚p0q with

@n0
@m, k ě0 n

`

∥x˚k ´X˚ x˚m∥X˚ ďR 2´n
˘

,

we have for any xX that

|xx, x˚kyX˚ ´ xx, x˚myX˚ | ďR ∥x˚k ´X˚ x˚m∥X˚ ∥x∥X

and thus we immediately get9

@xX@n0
@m, k ě0 pn` r∥x∥Xsp0q ` 1q

`

|xx, x˚kyX˚ ´ xx, x˚myX˚ | ďR 2´n
˘

.

By the above completeness of R we can define its limit by a term in x in the sense that
provably

@xX@n ě0 pr∥x∥Xsp0q ` 1q
`

|xx, x˚nyX˚ ´ fx| ďR 2´n
˘

9Here, we write raspnq for the n-th number in the type 1 representation of the real number a as
before.



174
CHAPTER 8. PROOF MINING FOR THE DUAL OF A BANACH SPACE WITH

EXTENSIONS

for fx of type 1 defined by

fxk :“ pxx, x˚pk ` 3` r∥x∥Xsp0q ` 1qyX˚q ˆpk ` 3q

where we wrote p¨qˆ for the p̈-operation. So f is a functional of type 1pXq and by
formalizing a standard textbook proof it is now provable that this functional is linear
and that it indeed has a bounded norm (in the sense that there is a K with |fx| ď
K ∥x∥). The fact that this is indeed the limit of the sequence px˚nq w.r.t. the norm
of X˚ also has a trivial proof but this proof cannot be formalized in the underlying
system and the reason for this is the basic issue with this whole approach: while the
limit of the sequence can be pinpointed by a closed term, this term is of type 1pXq.
We however have no immediate way of inferring that this limit is indeed represented in
X˚ in general. Only if px˚nq is provably Cauchy in the above sense (i.e. with the given
rate), then f is provably and without any assumptions linear and bounded. Then the
quantifier-free linearity rule pQF-LRq can be used to conclude the existence of an x˚f

of type X˚ such that provably

@xX
`

fx “R xx, x
˚
fyX˚

˘

.

This x˚f can then be shown to be the limit. But if the sequence is not provably Cauchy
in the above sense, the use of this rule is not permitted. Note that this issue is also not
avoided by using a characteristic function χX˚ to single out X˚ from all functionals of
type 1pXq as discussed in Remark 8.3.3 since also here, only a corresponding rule could
be formulated which states the closure of χX˚ under functionals which are provably
linear and bounded. However, if we would be working with χX˚ , we could add an axiom
stating that the above term is included for any such sequence x˚ which would require
implicit quantification over Cauchy sequences in X˚ akin to the methods employed in
the context of the limit functional C of Kohlenbach (see [96] and Chapter 4). But in
that case, we can also achieve the same result in the context of the abstract type X˚

by formulating C and its axiom over this language. We do not explore this here any
further.

Remark 8.3.8. By formalizing a standard argument (see e.g. Chapter 2, §4, Theorem 1
in [54]), one can also show in Dω that the uniform smoothness of X, formulated using
a so-called modulus of uniform smoothness τ of type 1 (see [111]), i.e.10

@xX , yX , k0
`

∥x∥X ąR 1^ ∥y∥X ăR 2´τpkq

Ñ
⃦⃦
xr1
`X y

⃦⃦
X
`
⃦⃦
xr1
´X y

⃦⃦
X
ďR 2` 2´k ∥y∥X

˘

,

10Here, xr1 is defined as in Section 8.2.
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is equivalent to the uniform convexity of X˚, formulated using a modulus of uniform
convexity η of type 1 (recall Chapter 7), i.e.

@x˚X
˚

, y˚X
˚

, k0
ˆ

∥x˚∥X˚ , ∥y˚∥X˚ ăR 1^

⃦⃦⃦⃦
x˚ `X˚ y˚

2

⃦⃦⃦⃦
X˚

ąR 1´ 2´ηpkq

Ñ ∥x˚ ´X˚ y˚∥X˚ ďR 2´k
̇

.

We do not spell this out here any further.

8.4 Reflexivity of Banach spaces

8.4.1 The evaluation map and reflexivity

In the following, we write X˚˚ for the bidual of X. We begin with the central notion
of reflexivity.

Definition 8.4.1. Define the evaluation map ϕ : X Ñ X˚˚ by

ϕpxqpx˚q “ xx, x˚y

for x˚ P X˚ and x P X. The space X is called reflexive if ϕ is surjective.

Basic properties of the evaluation map needed in formal discussions later are the
following: At first, using the Hahn-Banach theorem, it is immediate that the mapping
ϕ is injective and preserves norms, i.e.

∥ϕpxq∥ “ ∥x∥ for all x P X.

In that way, ϕ maps X isometrically into X˚˚ and X is reflexive if, equivalently, ϕ is
an isometric isomorphism between X and X˚˚. Further, the following result is central
for reflexive spaces:

Proposition 8.4.2 (James’ theorem [81]). A Banach space X is reflexive if, and only
if, for any x˚ P X˚ with ∥x˚∥ “ 1, there is an x P X with ∥x∥ “ 1 and xx, x˚y “ 1.

8.4.2 Treating reflexivity

To treat reflexivity in its version given by Definition 8.4.1, we will need access to the
bidual X˚˚. Similarly to our abstract approach to X˚, we do not define this space from
the objects from X˚ but treat it in an abstract way as we did with X˚. Concretely,
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we first extend the underlying language by a third abstract type X˚˚, moving to a
further extended set of types TX,X˚,X˚˚ and to the resulting extended language similar
to before. We then utilize this type to further introduce, as before, constants for the
linear and normed structure on X˚˚ as well as for the application of elements from X˚˚

to elements from X˚, i.e.11

1. `X˚˚ of type X˚˚pX˚˚qpX˚˚q,

2. ´X˚˚ of type X˚˚pX˚˚q,

3. ¨X˚˚ of type X˚˚pX˚˚qp1q,

4. 0X˚˚ of type X˚˚,

5. 1X˚˚ of type X˚˚,

6. x¨, ¨yX˚˚ of type 1pX˚qpX˚˚q,

7. ∥¨∥X˚˚ of type 1pX˚˚q.

These constants are then used to formulate the previous axioms p˚q1 - p˚q6 and the rule
pQF-LRq for the bidual:12

@x˚˚X
˚˚

, x˚X
˚

p|xx˚, x˚˚yX˚˚ | ďR ∥x˚˚∥X˚˚ ∥x˚∥X˚q , p˚˚q1

@x˚˚X
˚˚

, k0Dx˚ ďX˚ 1X˚

`

∥x˚˚∥X˚˚ ´ 2´k ďR |xx
˚, x˚˚yX˚˚ |

˘

, p˚˚q2
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@x˚X
˚

, x˚˚X
˚˚

, y˚˚X
˚˚

, α1, β1

pxx˚, αx˚˚ `X˚˚ βy˚˚yX˚˚ “R αxx
˚, x˚˚yX˚˚ ` βxx˚, y˚˚yX˚˚q ,

@x˚X
˚

, x˚˚X
˚˚

, y˚˚X
˚˚

, α1, β1

pxx˚, αx˚˚ ´X˚˚ βy˚˚yX˚˚ “R αxx
˚, x˚˚yX˚˚ ´ βxx˚, y˚˚yX˚˚q ,

p˚˚q3

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@x˚X
˚

, y˚X
˚

, x˚˚X
˚˚

, α1, β1

pxαx˚ `X˚ βy˚, x˚˚yX˚˚ “R αxx
˚, x˚˚yX˚˚ ` βxy˚, x˚˚yX˚˚q ,

@x˚X
˚

, y˚X
˚

, x˚˚X
˚˚

, α1, β1

pxαx˚ ´X˚ βy˚, x˚˚yX˚˚ “R αxx
˚, x˚˚yX˚˚ ´ βxy˚, x˚˚yX˚˚q ,

p˚˚q4

The vector space axioms for `X˚˚ , ´X˚˚ , ¨X˚˚ , 0X˚˚ , 1X˚˚ w.r.t. “X˚˚ . p˚˚q5

@x˚X
˚

Dx˚˚ ďX˚˚ ∥x˚∥X˚ 1X˚˚

`

xx˚, x˚˚yX˚˚ “R ∥x˚∥2X˚ “R ∥x˚˚∥2X˚˚

˘

. p˚˚q6

11As before, in formulas, we often omit the types around the ¨X˚˚ -operation or we omit the operation
entirely.

12Similar to before, by including 1X˚˚ in the list of constants in the description of axiom p˚˚q5, we
want to indicate that these axioms include ∥1X˚˚∥X˚˚ “R 1.
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For the rule, we opt for the formulation13

$

&

%

F0 Ñ p@x˚X
˚

, y˚X
˚

, α1, β1 ptpαx˚ `X˚ βy˚q “R αtx
˚ ` βty˚q

^@x˚X
˚

p|tx˚| ďR M ∥x˚∥X˚qq

F0 Ñ Dx˚˚ ďX˚˚ M1X˚˚@x˚X
˚
ptx˚ “R xx˚, x˚˚yX˚˚q

(QF-LR˚˚)

where F0 is a quantifier-free formula as before and t is a term of type 1pX˚q and M a
term of type 1. We write DωrX˚˚, ∥¨∥X˚˚s for the system Dω extended by the above
constants, axioms and the rule.

In that formalism, reflexivity of the space – defined by means of the surjectivity of
the evaluation map – can be easily expressed:

@x˚˚X
˚˚

DxX@x˚X
˚

pxx, x˚yX˚ “R xx
˚, x˚˚yX˚˚q .

As discussed above, the map ϕ is an isometry and thus any such x naturally satisfies
∥x∥ “ ∥x˚˚∥. Therefore, the above statement is naturally equivalent to one of the form
∆ which we henceforth adopt as our axiom for reflexivity:

@x˚˚X
˚˚

Dx ďX ∥x˚˚∥X˚˚ 1X@x
˚X˚

p∥x∥X “R ∥x˚˚∥X˚˚ ^ xx, x
˚
yX˚ “R xx

˚, x˚˚yX˚˚q . (R)

As a simple example for the use of the axiom (R), we now consider the formal
provability of one direction of James’ theorem.

Lemma 8.4.3. The system DωrX˚˚, ∥¨∥X˚˚s ` pRq proves:

@x˚X
˚

DxX
`

xx, x˚yX˚ “R ∥x∥2X “R ∥x˚∥2X˚

˘

.

In particular, DωrX˚˚, ∥¨∥X˚˚s ` pRq proves

@x˚X
˚

DxX p∥x˚∥X˚ “R 1Ñ ∥x∥X “R 1^ xx, x˚yX˚ “R 1q

as in James’ theorem.

Proof. Let x˚ be given. By axiom p˚˚q6, we have that there exists an x˚˚ with

xx˚, x˚˚y “ ∥x˚˚∥2 “ ∥x˚∥2 .

By axiom (R), we obtain that there exists an x with ∥x∥ “ ∥x˚˚∥ “ ∥x˚∥ and xx, x˚y “
xx˚, x˚˚y “ ∥x˚∥2.

13Also here, given objects x˚˚, y˚˚ of type X˚˚, we write x˚˚ ďX˚˚ y˚˚ for ∥x˚˚∥X˚˚ ďR ∥y˚˚∥X˚˚

similarly to before.
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Note that the above version of the characterization of reflexive spaces as in James’
Theorem is easily formulated as an axiom of type ∆ via

@x˚X
˚

DxX ďX ∥x˚∥X˚ 1X
`

xx, x˚yX˚ “R ∥x∥2X “R ∥x˚∥2X˚

˘

. (JT)

If the bidual is not used in the context of reflexivity but one only needs to rely on the
dual and the characterization via James’ theorem, then the system Dω ` pJTq can be
used instead.14

However, there is a central issue surrounding this treatment of reflexivity. Namely,
the axioms inherit a potential weakness through the intensionality used in the ap-
proach: the strength of the axioms pRq and pJTq is determined by the degree of how
populated X˚˚ and X˚ are, respectively, i.e. how concretely they are specified. The
more functionals the systems can provably determine to belong to these spaces, the
stronger the axioms get. In that way, if a proof relies on the use of reflexivity on a
specific complicated object x˚˚ from X˚˚, then this complexity will be reflected by
a potential analysis as, to formalize this use, one first has to provide formal means
to hardwire this object into X˚˚ via corresponding axioms which have a monotone
functional interpretation.

Remark 8.4.4. By formalizing a standard argument (see e.g. Chapter 2, §4, Theorem 2
in [54]), one can show that Dω together with an axiom specifying that X is uniformly
convex (using a corresponding modulus η) proves the above axiom pJTq.

8.5 Extensions for uniformly Fréchet differentiable func-

tions, their gradients and conjugates

We will now discuss the main extension of the above system for the dual of a normed
space which provides a firm basis for the treatment of uniformly Fréchet differentiable
convex functions, their gradients and in particular their Fenchel conjugates in Banach
spaces. In that way, as we will further discuss later on, these extensions then allow for a
formal treatment of Bregman distances associated with the respective convex function.
This provides the first proper foray of proof mining into this part of convex analysis
and also provides a first approach to deal with these rather concrete and complex
objects. The bound extraction results established later for these extensions then also

14Note that this system is conservative over the base system by relativizing the quantifiers over
elements of X˚ accordingly.
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form the basis for the extraction of quantitative results on the asymptotic regularity
and convergence of iterations involving Bregman strongly nonexpansive operators given
in Chapter 9. We refer to the references given in the introduction for further examples
from the vast array of potential future applications of these systems.

8.5.1 Basic properties of Fréchet differentiable functions

We here shortly survey the (very minimal) essential definitions from the realm of con-
vex analysis. Further definitions are given throughout the sections as needed. For any
other details, we refer to the standard works [11, 182, 184, 212].

Let f : X Ñ p´8,`8s be a given function with extended real values. In the
following analytical section, we will assume that

1. f is proper, i.e.

domf :“ tx P X | fpxq ă `8u ‰ H,

2. f is lower-semicontinuous, i.e.

@x P domf@y ă fpxqDδ ą 0@z P Bδpxq pfpzq ą yq ,

3. f is convex, i.e.

@x, y P domf@λ P r0, 1s pf pλx` p1´ λq yq ď λfpxq ` p1´ λq fpyqq .

One of the central tools to study convex functions analytically are so-called gen-
eralized gradients. The central kind of these generalized gradients are the so-called
subgradients as prominently already used in earliest works on modern convex analysis
by Brøndsted and Rockafellar (see e.g. [26, 180]). For this, we write intdomf for the
interior of domf .

Definition 8.5.1 (Subdifferential). Let x P intdomf . We define

Bfpxq :“ tx˚ P X˚
| fpxq ` xy ´ x, x˚y ď fpyq for all y P Xu.

In this work, the focus will be on convex functions which are also Fréchet differen-
tiable.
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Definition 8.5.2 (Gâteaux and Fréchet differentiability). A function f is called Gâteaux
differentiable at x if there exists an element ∇fpxq P X˚ such that

lim
tÑ0

fpx` tyq ´ fpxq

t
“ xy,∇fpxqy

for any y. It is called Gâteaux differentiable if it is Gâteaux differentiable at every
x P intdomf . Further, f is called Fréchet differentiable if this limit is uniform in
∥y∥ “ 1 and uniformly Fréchet differentiable if the limit is also uniform in x. We call
∇f the Gâteaux or Fréchet derivative, respectively.

The simplest example of a Fréchet derivative is obtained in uniformly smooth Ba-
nach spaces where for f “ ∥¨∥2 {2, we obtain ∇f “ J for the normalized duality map
J (see e.g. [212]). In particular, in Hilbert spaces, this reduces to the identity after
identifying X˚ with X.

The following properties connect the Fréchet derivative with the subgradients dis-
cussed before and will be essential for our treatment of the gradient for uniformly
Fréchet differentiable functions. Their proofs can be found e.g. in [212] (or in [11] for
the case of Hilbert spaces where the proofs are rather similar).

Proposition 8.5.3. Let x P intdomf . Then, the following are equivalent:

1. f is Fréchet differentiable at x.

2. Every selection of Bf is norm-to-norm continuous at x.

3. There exists a selection of Bf that is norm-to-norm continuous at x.

Further it holds that:

1. If f is Gâteaux differentiable at x, then Bfpxq “ t∇fpxqu.

2. If f is continuous at x and Bfpxq “ tuu, then f is Gâteaux differentiable at x
and u “ ∇fpxq.

By the following result due to Reich and Sabach [176], being uniformly Fréchet
differentiable (essentially) implies being Fréchet differentiable with a gradient that is
uniformly norm-to-norm continuous on bounded sets.

Proposition 8.5.4 ([176]). If f is uniformly Fréchet differentiable and ∇f is bounded
on bounded sets (which in particular holds if X is reflexive and f is bounded on bounded
sets), then ∇f is uniformly norm-to-norm continuous on bounded sets.
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The focus of the following sections will now be on providing logical systems for the
treatment of convex functions f with uniformly continuous gradients as well as their
conjugate functions and their corresponding gradients. By the above proposition, this
therefore in particular treats uniformly Fréchet differentiable functions where ∇f is
bounded on bounded sets.

8.5.2 A first formal treatment of gradients for uniformly Fréchet

differentiable functions

To treat a convex function, we add a constant f of type 1pXq to the language. In
the following discussions, we will for simplicity disregard the potential “partialness”
of the function (induced by it taking values in the extended real line) and only treat
total functions f : X Ñ R and their properties. Note the longer Remark 8.5.6 for a
discussion on how the treatment presented below can be adapted to also handle the
general setting.

The first immediate axiom for f is the following:

pfq1 That f is convex, i.e.

@xX , yX , λ1
´

f
´

λrx`X

´

1´ λr
¯

y
¯

ďR λrfpxq `
´

1´ λr
¯

fpyq
¯

.

Here, we have used the operation r̈as e.g. defined in [96] for implicit quantification
over r0, 1s.

The lower-semicontinuity will not be added formally to the system as it will be deriv-
able (in the form of uniform continuity on bounded subsets) from the axioms on the
gradient.

Note that therefore, some caution is warranted for the use of the axiom pfq1 as the
use of λr for formulating convexity requires the extensionality of f to work properly.
However, Lemma 8.5.5 establishes the uniform continuity of f as mentioned above and
thus the extensionality of f and this lemma does not rely on pfq1 so that no issues
arise here.

Regarding the gradient, we add another constant ∇f of type X˚pXq to the system.
The relevant axioms for this constant will now stipulate that ∇f is a selection func-
tion for Bf together with the fact that ∇f is uniformly continuous on bounded subsets.
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Since the main emphasis will later be on systems which treat Legendre functions
and since these functions naturally satisfy dom∇f “ intdom f and since we have be-
fore assumed that dom f “ X, we also consider ∇f to be totally defined.

We thus arrive at the following axioms:

p∇fq1 That ∇f is a selection of Bf , i.e.

@xX , yX pfpxq ` xy ´X x,∇fpxqyX˚ ďR fpyqq .

p∇fq2 That ∇f is uniformly continuous on bounded subsets, i.e.

@xX , yX , b0, k0
´

∥x∥X , ∥y∥X ăR b

^ ∥x´X y∥X ăR 2´ω
∇f pk,bq

Ñ ∥∇fpxq ´X˚ ∇fpyq∥X˚ ďR 2´k
¯

.

Here, ω∇f is another additional constant of type 0p0qp0q.

We write Dωrf,∇f s for the theory resulting from Dω by extending it with the pre-
vious constants as well as the axioms pfq1, p∇fq1 and p∇fq2. By the results contained
in Proposition 8.5.3, any model of this system has to interpret the constant ∇f via
the true gradient and what we want to argue is that this system is indeed sufficient to
develop a large part of the theory of these gradients. As an initial litmus test, we in the
following consider formalizations of various basic but central results on the function f
and its gradient if the latter is uniformly continuous.

Lemma 8.5.5. The theory Dωrf,∇f s proves:

1. f is uniformly Fréchet differentiable on bounded subsets, i.e.

@b0, k0Dj0@xX , yX
ˆ

∥x∥X ăR b^ 0 ăR ∥y∥X ăR 2´j

Ñ
|fpx` yq ´ fpxq ´ xy,∇fpxqyX˚ |

∥y∥X
ďR 2´k

̇

,

where in fact one can choose

j “ ω∇f
pk, b` 1q.

2. ∇f is bounded on bounded subsets, i.e.

@b0Dc0@xX p∥x∥X ăR bÑ ∥∇fpxq∥X˚ ďR cq ,

where in fact one can choose

c “ Cpbq “ b2ω
∇f p0,bq

` r∥∇fp0q∥X˚sp0q ` 2.
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3. f is uniformly continuous on bounded subsets, i.e.

@k0, b0Dj0@xX , yXp∥x∥X , ∥y∥X ăR b

^ ∥x´X y∥X ďR 2´j Ñ |fpxq ´ fpyq| ďR 2´kq,

where in fact one can choose

j “ ωf pk, bq “ k ` Cpbq.

4. f is bounded on bounded sets, i.e.

@b0Dd0@xX p∥x∥X ăR bÑ |fpxq| ďR dq ,

where in fact one can choose

d “ Dpbq “ b2ω
f p0,bq

` r|fp0q|sp0q ` 2.

Proof. 1. Using p∇fq1 and extensionality of x¨, ¨y, we get

fpx` yq ´ fpxq ě xx` y ´ x,∇fpxqy

“ xy,∇fpxqy.

Similarly we derive

fpxq ´ fpx` yq ě x´y,∇fpx` yqy.

Together, we get

0 ď fpx` yq ´ fpxq ´ xy,∇fpxqy

ď xy,∇fpx` yqy ´ xy,∇fpxqy

ď ∥y∥ ∥∇fpx` yq ´∇fpxq∥ .

Therefore we get

|fpx` yq ´ fpxq ´ xy,∇fpxqy|
∥y∥

ď ∥∇fpx` yq ´∇fpxq∥ .

So, for ∥x∥ ă b and y with ∥y∥ ă 2´ω
∇f pk,b`1q, we get ∥x` y∥ ă b ` 1 and as

∥x` y ´ x∥ “ ∥y∥ ă 2´ω
∇f pk,b`1q, this yields

|fpx` yq ´ fpxq ´ xy,∇fpxqy|
∥y∥

ď 2´k

by p∇fq2.
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2. We have

@x, y
´

∥x∥ , ∥y∥ ď b^ ∥x´ y∥ ď 2´ω
∇f p0,bq

Ñ ∥∇fpxq ´∇fpyq∥ ď 1
¯

.

One can then inductively construct b2ω∇f p0,bq-many points x1, . . . , xk´1 with ∥xi∥ ă
b and

∥x1∥ , ∥x1 ´ x2∥ , . . . , ∥xk´1 ´ x∥ ă 2´ω
∇f p0,bq.

This yields

∥∇fp0q ´∇fpx1q∥ , ∥∇fpx1q ´∇fpx2q∥ , . . . , ∥∇fpxk´1q ´∇fpxq∥ ď 2´0 “ 1

so that, using the triangle inequality, we derive

∥∇fpxq∥ ď b2ω
∇f p0,bq

` 1` ∥∇fp0q∥ .

The claim now follows from the fact that r∥∇fp0q∥X˚sp0q ` 1 ě ∥∇fp0q∥.

3. We have

fpxq ´ fpyq ď xx´ y,∇fpxqy

ď ∥x´ y∥ ∥∇fpxq∥

and similarly, we get

fpyq ´ fpxq ď ∥x´ y∥ ∥∇fpyq∥ .

Using the fact that ∇f is bounded on bounded sets with ∥∇fpxq∥ ď Cpbq for
∥x∥ ă b, we then get that

|fpxq ´ fpyq| ď 2´k

for ∥x∥ , ∥y∥ ă b with
∥x´ y∥ ď 2´pk`Cpbqq.

4. Similar to item (2).

Remark 8.5.6. We can incorporate functions f : X Ñ p´8,`8s into the above frame-
work by using an intensional account of f ’s domain. Concretely, to deal with such
an f , we may introduce a new constant χf of type 0pXq into the language and then
formulate all statements regarding fpxq by relativizing x to

x P domf :“ χfx “0 0.
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The problem with this approach is now that the gradient ∇f also requires a treatment
for its domain dom∇f Ď intdomf and it is further crucial that this inclusion can be
recognized by the system. For this, we can further modify the above intensional ap-
proach to domains of partial functions on X by incorporating the information required
by the “openness” of the domain into the characteristic function. Concretely, the do-
main of ∇f can be treated by considering a slightly augmented characteristic function
represented by a constant χ∇f of type 0p0qpXq together with the defining universal
axiom15

@xX , k0
´

χ∇fxk “0 0Ñ @yk
´´

x´X yr
p2´kq

¯

P domf
¯¯

expressing that dom∇f Ď intdomf indeed holds by encoding the radius witnessing
that x P intdomf with x in χ∇f . It is now an easy exercise to generalize the above
formal forays into the theory of f and its gradient ∇f to this modification by also
relativizing statements regarding ∇fpxq using

px, kq P dom∇f :“ χ∇fxk “0 0

and
x P dom∇f :“ Dk0ppx, kq P dom∇fq.

Note further that this approach is very flexible not only regarding applications
but also regarding formalizations of further properties of these domains which may
be required in certain contexts. For example, as mentioned before, in the context of
Legendre functions, a characterizing condition for these domains is in fact that the
full equality dom∇f “ intdomf holds. This property can be further expressed by an
axiom of type ∆. For this, note that the naive formulation of the reverse inclusion
intdomf Ď dom∇f can be formally expressed as

@xX
´

Dk0@yX
´´

x´X yr
p2´kq

¯

P domf
¯

Ñ Dj0 ppx, jq P dom∇fq
¯

But now, if x P intdomf with a radius 2´k is already supposed to hold, we can just
simplify the above expression by instantiating it with j “ k which, after prenexing
accordingly, brings us to the following axiom

@xX , k0DyX ďX 2´k1X

´´

x´X yr
p2´kq

¯

P domf Ñ px, kq P dom∇f
¯

which is of type ∆ by the restriction ∥y∥ ď 2´k which does not restrict the meaning of
the original statement as we anyhow move to yrp2

´kq.
15Here, we use the r̈r operation on elements of type X as defined in Section 8.2.
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8.5.3 The Fenchel conjugate and its formal treatment

In the following, we will work over a reflexive space X. A main object in nonlinear
analysis, in particular lying at the heart of the main approach to duality theory in
Banach spaces, is the Fenchel conjugate f˚ of a convex function f (as introduced in
[61], see also [27, 181]): concretely, f˚ : X˚ Ñ p´8,`8s is defined by

f˚px˚q “ sup
xPX

pxx, x˚y ´ fpxqq .

The first immediate result from the definition is the following Young-Fenchel inequality:
for any x P X and any x˚ P X˚, it holds that

fpxq ` f˚px˚q ě xx, x˚y.

If f˚ is to be treated in any formal way in the underlying systems, we will have to
require that f˚ is majorizable which amounts to it being bounded on bounded sets.
This requirement is linked with coercivity conditions on f by the following result:

Proposition 8.5.7 ([8]). Call f supercoercive (or strongly coercive) if

lim
∥x∥Ñ`8

fpxq

∥x∥
“ `8.

Then, the following are equivalent:

1. f is supercoercive.

2. f˚ is bounded on bounded subsets.

In particular, both imply that domf˚ “ X˚.

In that way, any metatheorem treating f˚ via a constant (say of type 1pX˚q) is
in essence restricted to requiring that f is supercoercive. In that situation, however,
the treatment of the supremum defining f˚ is possible, following the tame approach
to suprema outlined in the preceding sections. This in particular follows from the
fact that if f is supercoercive, then the set on which the supremum is approached is
bounded without loss of generality. This is formalized in the following lemma.

Lemma 8.5.8. Let α : NÑ N be a modulus of supercoercivity, i.e.

@K P N, x P X p∥x∥ ą αpKq Ñ fpxq{ ∥x∥ ě Kq
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and let F ˚ : NÑ N be a function witnessing that f˚ is bounded below on bounded sets,
i.e.

@b P N, x˚ P X˚
p∥x˚∥ ď bÑ f˚px˚q ě ´F ˚pbqq .

Then for x˚ P X˚ with ∥x˚∥ ď b, we have

f˚px˚q “ sup
xPBrpα,F˚,bqp0q

pxx, x˚y ´ fpxqq

where
rpα, F ˚, bq “ maxtαpb` 1q ` 1, F ˚pbq ` 1u.

Proof. Let x P X be given such that ∥x∥ ě αpb ` 1q ` 1. Then fpxq ě pb ` 1q ∥x∥.
Naturally, we then have

xx, x˚y ´ fpxq ď ∥x∥ ∥x˚∥´ pb` 1q ∥x∥

“ p∥x˚∥´ pb` 1qq ∥x∥

ď ´ ∥x∥ .

Thus, if ∥x∥ ě F ˚pbq ` 1 also holds, then we have

xx, x˚y ´ fpxq ď ´F ˚pbq ´ 1 ď f˚px˚q ´ 1

and therefore, we get the claim.

The lower bound F ˚ featured in the above result is naturally computed from f .
Concretely, using the totality of f , we get

f˚px˚q ě x0, x˚y ´ fp0q ě ´|fp0q| ě ´pr|fp0q|sp0q ` 1q.

So, in our concrete situation for a total f , we even have that

rpα, bq “ maxtαpb` 1q ` 1, r|fp0q|sp0q ` 2u

suffices. Majorizing f˚ can now also be trivially achieved by just noting that

|xx, x˚y ´ fpxq| ď ∥x∥ ∥x˚∥` |fpxq|

and thus, knowing that there is an x with ∥x∥ ă rpα, bq and such that xx, x˚y ´ fpxq

approximates the supremum f˚px˚q with error 1, we get

f˚px˚q ď rpα, bq ∥x˚∥` rpα, bq2ωf p0,rpα,bqq
` r|fp0q|sp0q ` 3

using Lemma 8.5.5 which immediately allows us to compute a majorant for f˚.

The axioms for f˚ are now readily presented:
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pfq2 That f supercoercive with modulus αf , i.e.

@K0, xX
`

∥x∥X ąR α
f
pKq Ñ fpxq{ ∥x∥X ěR K

˘

.

Here, αf is an additional constant of type 1.

pf˚q1 That f˚ is a pointwise upper bound for all affine functionals gxpx˚q “ xx, x˚y ´
fpxq, i.e.

@x˚X
˚

, xX pxx, x˚yX˚ ´ fpxq ďR f
˚
px˚qq .

pf˚q2 That f˚ is indeed the pointwise supremum of all these affine functionals, i.e.

@x˚X
˚

, b0, k0DxX ďX maxtαf pb` 1q ` 1, r|fp0q|sp0q ` 2u1X
`

∥x˚∥X˚ ăR bÑ
`

f˚px˚q ´ 2´k ďR xx, x
˚
yX˚ ´ fpxq

˘˘

.

Note that also here, we have a natural benefit in approaching this supremum as we can
avoid instantiating C in the schema pSq1 since the corresponding claim that f˚ is an
upper bound actually holds in an unrestricted form.

Remark 8.5.9. Similar to Remark 8.2.1 (recall also Remark 8.3.1), in the context pf˚q2,
also f˚px˚q satisfies the usual definition of being a supremum in the sense that it is the
least upper bound of all values xx, x˚y ´ fpxq and, also similar to before, pf˚q2 even
implies the following statement:

@x˚X
˚

, b0,M1, k0DxX ďX maxtαf pb` 1q ` 1, r|fp0q|sp0q ` 2u1X
`

∥x˚∥X˚ ăR b^M ` 2´k ăR f
˚
px˚q Ñ

`

M ` 2´pk`1q ďR xx, x
˚
yX˚ ´ fpxq

˘˘

.

A first immediate property that can be derived for f˚ is its convexity:

Lemma 8.5.10. The system Dω extended with constants for f , αf and f˚ together
with the axioms pf˚q1 and pf˚q2 proves that f˚ is convex.

Proof. Suppose that f˚ is not convex, i.e. that there are x˚, y˚ and α P r0, 1s such that

αf˚px˚q ` p1´ αqf˚py˚q ă f˚pαx˚ ` p1´ αqy˚q

Then by pf˚q2 (recall Remark 8.5.9), we get a z such that

αf˚px˚q ` p1´ αqf˚py˚q ă xz, αx˚ ` p1´ αqy˚y ´ fpzq

“ αpxz, x˚y ´ fpzqq ` p1´ αqpxz, y˚y ´ fpzqq

ď αf˚px˚q ` p1´ αqf˚py˚q.

where the last line follows from pf˚q1. This is a contradiction.
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Note that not even the convexity of f is necessary for this.

If f˚ is uniformly Fréchet differentiable as well, its gradient can now be introduced
as before: we add a constant ∇f˚ of type XpX˚q and consider the following axioms.

p∇f˚q1 That ∇f˚ is a selection of Bf˚, i.e.

@x˚X
˚

, y˚X
˚

pf˚px˚q ` x∇f˚px˚q, y˚ ´X˚ x˚yX˚ ďR f
˚
py˚qq .

p∇f˚q2 That ∇f˚ is uniformly continuous on bounded subsets, i.e.

@x˚X
˚

, y˚X
˚

, b0, k0
ˆˆ

∥x˚∥X˚ , ∥y˚∥X˚ ăR b

^ ∥x˚ ´X˚ y˚∥X˚ ăR 2´ω
∇f˚

pk,bq

̇

Ñ ∥∇f˚px˚q ´X ∇f˚py˚q∥X ďR 2´k
̇

.

Here, ω∇f˚ is another additional constant of type 0p0qp0q.

We want to note that the gradients of f and f˚ are simultaneously well-defined
only if f is Legendre in the sense of the following influential definition of Bauschke,
Borwein and Combettes.

Definition 8.5.11 ([8]). A function f is called:

1. essentially smooth if Bf is locally bounded and single-valued on its domain,

2. essentially strictly convex if pBfq´1 is locally bounded and f is strictly convex on
every convex subset of domBf ,

3. Legendre if it is both essentially smooth and essentially strictly convex.

Over reflexive spaces, these properties can be recognized as equivalently stating a
particularly nice differentiability property for both f and its conjugate f˚.

Proposition 8.5.12 ([8]). If X is reflexive, then f is Legendre if, and only if

1. It holds that intdomf ‰ H, that f is Gâteaux differentiable on intdomf , and
dom∇f “ intdomf .

2. It holds that intdomf˚ ‰ H, that f˚ is Gâteaux differentiable on intdomf˚, and
dom∇f˚ “ intdomf˚.

Therefore, the above axioms can only be satisfied if f is already Legendre since any
f and f˚ satisfying them are even uniformly Fréchet differentiable.
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Remark 8.5.13. While reflexivity features as a key assumption in the above proposition,
if further differentiability assumptions are made regarding f and f˚, then reflexivity
is an inherent property in that context. Concretely, by a result of Borwein and Van-
derwerff [19], any space where f and f˚ are Fréchet differentiable, f is continuous
and domf˚ “ X˚ is already reflexive and it follows from results by Borwein, Guirao,
Hájek and Vanderwerff [18] that if f and f˚ are uniformly Fréchet differentiable and
domf˚ “ X˚, then X is even superreflexive. In that way, in the context of the continu-
ity assumptions formalized by the above axioms, we are always conceptually working
over (super-)reflexive spaces and we used this reflexivity here already to formalize ∇f˚

via an object of type XpX˚q, using X as the type for the images in order to formally
avoid X˚˚.

Further, the following relation between the gradient of a function and of its conju-
gate holds for Legendre functions:

Proposition 8.5.14 ([8]). If X is reflexive and f is Legendre, then ∇f is a bijection
with ran∇f “ dom∇f˚, ran∇f˚ “ dom∇f “ intdomf and

∇f “ p∇f˚q´1.

Instead of formalizing the corresponding proof to verify whether the previous axioms
already suffice for proving this relation, we can just hardwire this property into the
system by adding the following corresponding axiom:

(L) @xX , x˚X
˚

p∇f∇f˚px˚q “X˚ x˚ ^∇f˚∇fpxq “X xq.

We write Dωrf,∇f, f˚,∇f˚s for the system Dωrf,∇f s extended with the above
constants and axioms pfq2, pf˚q1, pf˚q2 as well as p∇f˚q1, p∇f˚q2, pLq.

Remark 8.5.15. Note that the previous Lemma 8.5.5, if suitably adapted, also holds
for f˚ and ∇f˚ in this new theory Dωrf,∇f, f˚,∇f˚s. We therefore do not replicate
this here.

Remark 8.5.16. It is well-known in the literature on convex analysis that differentia-
bility properties of the conjugate f˚ are related to convexity properties of the original
function f (see e.g. [34, 35, 36] among many others). In that way, any function f that
induces a model of the theory Dωrf,∇f, f˚,∇f˚s actually is even totally convex on
bounded subsets as well as uniformly strictly convex. We refer to Chapters 9 and 10
for further (formal) investigations into the interrelations of these properties and their
quantitative analogues as guided by the logical methodology introduced in this chapter.
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8.5.4 Bregman distances and their formal treatment

As a small indication for the applicability of the above formal systems, we just want to
note that the language is already expressive enough to deal with some of the central ob-
jects in the modern realm of convex analysis. The object that we want to focus on here
is the central Bregman distance introduced in [22] which features in many algorithmic
approaches in that field (see in particular again the references in the introduction as
well as the references in [9]).

These Bregman distances are defined relative to a convex function in terms of its
gradient:

Definition 8.5.17 ([22]). Let f be Gâteaux differentiable. The function Df : domf ˆ

intdomf Ñ r0,`8q is defined as follows:

Df px, yq :“ fpxq ´ fpyq ´ xx´ y,∇fpyqy.

As such, a benefit of the above treatment of f and ∇f is that in the context of the
system Dωrf,∇f s, this function can just be given by a closed term.

The same is true for the function Wf : dom f ˆ dom f˚ Ñ r0,`8q defined by

Wf px, x
˚
q “ fpxq ´ xx, x˚y ` f˚px˚q.

which often provides a medium through which Df is studied (see e.g. [143, 144]).
Also this function can be represented by a closed term in the underlying system
Dωrf,∇f, f˚,∇f˚s and the basic properties of both are immediately provable. We
just mention two of these here:

Lemma 8.5.18. The system Dωrf,∇f, f˚,∇f˚s proves the three and four point iden-
tities (see e.g. [9]):

1.

$

&

%

@xX , yX , zX
`

Df px, yq `Df py, zq ´Df px, zq

“R xx´X y,∇fpzq ´X˚ ∇fpyqyX˚

˘

.

2.

$

&

%

@xX , yX , zZ , wX
`

Df py, xq ´Df py, zq ´Df pw, xq `Df pw, zq

“R xy ´X w,∇fpzq ´X˚ ∇fpxqyX˚

˘

.

Not only does the system Dωrf,∇f, f˚,∇f˚s provide a framework for adequately
expressing the central objects and theorems in the theory of these Bregman distances
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but, as common in proof mining, the metatheorems for this system established in the
upcoming section can be used to provide a finitary quantitative account on some of
the central assumptions used in the context of applications of these Bregman distances
like that of consistency of the Bregman distance, i.e.

@xX , yX px “X y Ø Df px, yq “R 0q ,

as well as total convexity and sequential consistency (see e.g. [36]), among many oth-
ers, where the metatheorems suggest appropriate moduli that witness the quantitative
content of these statements. These moduli are then crucially used in applications as
will also be the case in the forthcoming work [164] as well as in Chapter 9.

8.6 A bound extraction theorem

We now establish the bound extraction theorems for the system Dω and the extensions
discussed previously. Our proof follows the approach of [71, 95, 96] as presented in
Chapter 3 and in that way is rather standard. Consequently, we will omit some proofs
(only giving those details that concern new material) and sometimes be brief about
the presentation, occasionally only sketching the general outline of the arguments. For
the following, recall the definition of Gödel’s functional interpretation and the negative
translation from Chapter 3. These naturally extend to the new languages from this
chapter.

Also recall Lemma 3.7.3, formulated for AωrX, ∥¨∥s and extensions of that theory
by universal sentences, for the soundness result for the combination of both the Dialec-
tica interpretation and the negative translation which forms the basis for the upcoming
metatheorems. Similar to that context, we write Dω´ for the respective system without
the axiom schemes QF-AC and DC.

Besides Gödel’s functional interpretation, the other central notion used in the bound
extraction results is that of (strong) majorizability and the associated structure Mω,X .
In this chapter, based on the use of a second abstract type X˚ (and potentially a third
with X˚˚), we have to further extend these notions to this second (and third) type
(similar to the discussion in [96], Section 17.6). We here only focus on the case of a
single additional type X˚ and do not explicitly discuss the extension with X˚˚ which
can be treated analogously. In our context, the majorants for objects of types from
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TX,X
˚ will still be objects with a type from T according to the following extended

projection:

Definition 8.6.1 (essentially [71]). Define τp P T , given τ P TX,X˚ , by recursion on the
structure via

0p :“ 0, Xp :“ 0, Xx̊ :“ 0, τpξqy :“ τppξpq.

The majorizability relation for the types TX,X˚ is then defined recursively along
with the structure Mω,X,X˚ of all majorizable functionals over a given normed space
X with dual X˚:

Definition 8.6.2 (essentially [71, 95]). Let pX, ∥¨∥q be a non-empty normed space with
dual X˚. The structure Mω,X,X˚ and the majorizability relation Áρ are defined by

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

M0 :“ N, n Á0 m :“ n ě m^ n,m P N,

MX :“ X,n ÁX x :“ n ě ∥x∥^ n PM0, x PMX ,

MX˚ :“ X˚, n ÁX˚ x˚ :“ n ě ∥x˚∥^ n PM0, x
˚ PMX˚ ,

f Áτpξq x :“ f PM
M

ξp

τp ^ x PM
Mξ
τ

^@g PMξp, y PMξpg Áξ y Ñ fg Áτ xyq

^@g, y PMξppg Áξp y Ñ fg Áτp fyq,

Mτpξq :“
!

x PM
Mξ
τ | Df PM

M
ξp

τp : f Áτpξq x
)

.

Correspondingly, the full set-theoretic type structure Sω,X,X˚ is defined via S0 :“ N,
SX :“ X, SX˚ :“ X˚ and

Sτpξq :“ S
Sξ
τ .

These structures later turn into models of our systems if equipped with corresponding
interpretations for the additional constants.

The general high-level outline of the proof of the bound extraction theorem is now
as before: we use functional interpretation and negative translation to extract real-
izers from (essentially) @D-theorems which have types that belong to TX,X

˚ . Using
majorizability, we then construct bounds for these realizers which are moreover valid
in a model based on Mω,X,X˚ . If the types occurring in the axioms and the theorem
are “low enough”, we can then in a final step recover to the truth in the usual full
set-theoretic structure Sω,X,X˚ .
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For the concrete implementation of “low enough”, we need to extend the previous
definitions of small and admissible types to the new base type. This can be done in
complete analogy to before (see Chapter 3): We call ξ small if it is of the form ξ “

ξ0p0q . . . p0q (including 0, X,X˚) for ξ0 P t0, X,X˚u and call it admissible if it is of the
form ξ “ ξ0pτkq . . . pτ1q (including 0, X,X˚) where each τi is small and ξ0 P t0, X,X

˚u

as before.

Similarly, take the notions of @-/D-formulas to be now defined by also considering
the new abstract type and the same also holds for the class ∆ where the type restrictions
are now to be understood in this extended sense. For this, we in particular also rely
on the following extension of the relation ď which is now defined by recursion on the
type via

1. x ď0 y :“ x ď0 y,

2. x ďX y :“ ∥x∥X ďR ∥y∥X ,

3. x˚ ďX˚ y˚ :“ ∥x˚∥X˚ ďR ∥y˚∥X˚ ,

4. x ďτpξq y :“ @zξpxz ďτ yzq.

Given a set ∆ of such formulas, we write ∆r for the set of all Skolem normal forms as
before.

In the bound extraction theorems, axioms of type ∆ are also treated as before “in
spirit” of the monotone functional interpretation. Here however, we want to exert a bit
more care as sentences of type ∆ already occur in the axioms of Dω (and its extensions).
Further, the treatment of the rule pQF-LRq relies crucially on the treatment of sentences
of type ∆ as well. Write Dp

ω
for Dω without any of its axioms of type ∆ and without

the rule pQF-LRq. Then, given a set ∆ of additional axioms of type ∆, we treat all
axioms of type ∆ present in Dω `∆ together with pQF-LRq by forming a new theory
Dω

∆ which arises from Dp
ω

by adding the Skolem functionals B for any axiom of type
∆, say of the form

@aδDb ďσ ra@c
γFqf pa, b, cq,

as new constants to the language and adding its “instantiated Skolem normal form”,
i.e. the sentence

B ďσpδq r ^ @a
δ
@cγFqf pa,Ba, cq,
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as a new axiom. Further, we do the same with all conclusions of the rule pQF-LRq: for
any provable premise

Dω
`∆ $ F0 Ñ

`

@xX , yX , α1, β1
ptpαx`X βyq “R αtx` βtyq ^ @x

X
p|tx| ďR M ∥x∥Xq

˘

with terms t and M , we add a new constant x˚t of type X˚ to the language of Dω

∆

together with the corresponding axiom

∥x˚t ∥X˚ ďR M ^
`

F0 Ñ @xX ptx “R xx, x
˚
t yX˚q

˘

.

This new theory Dω

∆ extends AωrX, ∥¨∥s only by new types, constants and universal
axioms and, consequently, Lemma 3.7.3 also applies to this theory Dω

∆ where the con-
clusion is proved in Dω´

∆ `pBRq where Dω´

∆ arises from Dω

∆ by removing the principles
QF-AC and DC.

Similar constructions can also be made for the respective extensions of Dω.

The central majorizability result is now the following, guaranteeing the majoriz-
ability of all closed terms in Dω

∆ (and its extensions). In that way, the result extends
the central Lemma 9.11 in [71] and is analogous in spirit to Lemma 3.7.7 from Chapter
3.

Lemma 8.6.3. Let ∆ be a set of additional axioms of type ∆. Let pX, ∥¨∥q be a
(nontrivial) Banach space with its dual X˚. Then Mω,X,X˚ is a model of Dω´

∆ `pBRq,
provided Sω,X,X˚

|ù ∆ (with Mω,X,X˚ and Sω,X,X˚ defined via suitable interpretations
of the additional constants). Moreover, for any closed term t of Dω´

∆ ` pBRq, one can
construct a closed term t˚ of Aω ` pBRq such that

Mω,X,X˚

|ù pt˚ Á tq .

Further, the same claim holds for the following extensions of Dω:

1. The theory DωrX˚˚, ∥¨∥X˚˚s over the language with the additional abstract type
X˚˚ or its extension with the reflexivity axiom where the model and the majoriz-
ability relation have to be extended to also incorporate this type (and the space
has to be reflexive in the latter case). In any case, one then has to employ a
similar construction as with pQF-LRq to also eliminate the rule pQF-LR˚˚q and
any other potential axioms of type ∆ for these new systems.

2. Assume a convex and Fréchet differentiable function f : X Ñ R where ∇f is
uniformly continuous on bounded subsets with modulus ω∇f . Then the result
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holds for Dωrf,∇f s where, in that case, we will have the modified conclusion that
there exists a term t˚ such that

Mω,X,X˚

|ù @ω0p0qp0q, n0
`

ω Á ω∇f
^ n ěR |fp0q|, ∥∇fp0q∥X˚ Ñ t˚pω, nq Á t

˘

holds. If f is additionally supercoercive with a modulus αf and f˚ is Fréchet
differentiable with a gradient ∇f˚ that is uniformly continuous on bounded subsets
with a modulus ω∇f˚, the same claim also holds for Dωrf,∇f, f˚,∇f˚s if we
further require that ω Á ω∇f˚

, αf and n ěR |f
˚p0q|, ∥∇f˚p0q∥X . In any case,

one then has to employ a similar construction as before to also eliminate the rule
pQF-LRq and any other potential axioms of type ∆ for these new systems.

Proof. As with the proof of Lemma 3.7.7, the structure of the proof is very much stan-
dard and follows that of the proof of Lemma 17.85 in [96]. In particular, many parts of
that proof carry over and we in that vein only discuss the interpretations and verify the
majorizability of the new constants contained in Dω and its extensions together with
their validity in the resulting models. In particular, we at first do not explicitly deal
with the additional constants induced by the axioms of type ∆ in Dω `∆ (and its ex-
tensions) through forming the theory Dω

∆ and only discuss these at the end of the proof.

We now first focus on Dω and assume that there are no further axioms of type ∆

beyond those in Dω. For that, we initially provide the corresponding interpretations of
the constants of Dω. For the constants already contained in AωrX, ∥¨∥s, we may choose
suitable interpretations as in [96] (which are anyhow analogous to the interpretation for
the constants related to X˚ chosen below). For the new constants added to AωrX, ∥¨∥s
to form Dω, we consider the following interpretations (writing M for Mω,X,X˚):

1. r`X˚sM :“ addition in X˚,

2. r´X˚sM :“ inverse of ` in X˚,

3. r¨X˚sM :“ λα P NN, x˚ P X˚.prα ¨ x
˚q where ¨ is the scalar multiplication in X˚,

4. r0X˚sM :“ the zero vector in X˚,

5. r1X˚sM :“ some canonically chosen unit vector a˚ P X˚,

6. rx¨, ¨yX˚sM :“ λx P X, x˚ P X˚.pxx, x˚yq˝ where xx, x˚y is the value of x under x˚,

7. r∥¨∥X˚sM :“ λx˚ P X˚.p∥x˚∥q˝ where ∥x˚∥ denotes the norm of x˚ in X˚.
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Note that the element a˚ in item (5) exists since X and thus X˚ is non-trivial.

This is only well-defined in Mω,X,X˚ if we can construct majorants of these objects.
This we can do as follows:

1. λx0, y0.px` yq Á `X˚ ,

2. λx0.x Á ´X˚ ,

3. λα1, x0. ppαp0q ` 1qxq Á ¨X˚ ,

4. 00 Á 0X˚ ,

5. 10 Á 1X˚ ,

6. λx0, y0, n0.jppx ¨ yq2n`2, 2n`1 ´ 1q Á x¨, ¨yX˚ ,

7. λx0, n0.jpx2n`2, 2n`1 ´ 1q Á ∥¨∥X˚ .

The justifications that those terms listed in item (1) - (5) and (7) really are majorants
are completely analogous to the usual normed case of X alone (see e.g. the proof of
Lemma 17.85 in [96]) and we thus omit the details for them (note that item (7), similar
to item (6) discussed below, relies on Lemma 2.1.2). We thus only discuss item (6)
explicitly: to show that λx0, y0, n0.jppx ¨ yq2n`2, 2n`1 ´ 1q Á x¨, ¨yX˚ , note first that

λn0.jppx ¨ yq2n`2, 2n`1 ´ 1q “ px ¨ yq˝

for the natural numbers x, y. Now, we need to show that if n Á x˚ and m Á x (i.e.
n ě ∥x˚∥ and m ě ∥x∥), then pn ¨ mq˝ Á pxx, x˚yq˝ and if n1 ě n, m1 ě m, then
pn1 ¨ m1q˝ Á pn ¨ mq˝. For the former, note that by axiom p˚q1, we have |xx, x˚y| ď
∥x˚∥ ∥x∥ ď n ¨m and thus Lemma 2.1.2 implies pn ¨mq˝ Á pxx, x˚yq˝. The latter follows
immediately from Lemma 2.1.2 as well.

The above arguments can be similarly used for treating X˚˚ and we thus do not
spell this out in any more detail here.

Lastly, we consider the extensions Dωrf,∇f s and Dωrf,∇f, f˚,∇f˚s where we focus
only on the latter. For this, we fix the interpretation of the constants ∇f and ∇f˚ as
well as αf , ω∇f and ω∇f˚ just by their respective counterparts fixed in the formulation
of item (2). Further, we set
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1. rf sM :“ λx P X.pfpxqq˝,

2. rf˚sM :“ λx˚ P X˚.pf˚px˚qq˝.

Given ω P NN and n P N with ω Á ω∇f , ω∇f˚

, αf as well as n ě |fp0q|, |f˚p0q|,
∥∇fp0q∥, ∥∇f˚p0q∥, majorizability of the other constants follows rather immediately
according to the following constructions:

1. λx0,m0.jppx2Cpxq ` n` 1q2m`2, 2m`1 ´ 1q Á f ,

2. λx0,m0.jppx2Cpxq ` n` 1q2m`2, 2m`1 ´ 1q Á f˚,

3. λx0.pCpxqq Á ∇f ,

4. λx0.pCpxqq Á ∇f˚,

where Cpxq “ x2ωp0,xq ` n ` 1. Justifications that those terms really are majorants
can again be given in a completely analogous way as before (utilizing Lemma 2.1.2 as
before but also Lemma 8.5.5 and its variant for f˚ and ∇f˚ as in Remark 8.5.15) and
we thus omit the details.

That Mω,X,X˚ with these chosen interpretations is a model of Dω´ ` pBRq (and
its extensions) can be shown similarly as in analogous results (see e.g. [96]). The in-
tended interpretations of the constants of Dω and its extensions in Sω,X,X˚ , turning
Sω,X,X˚ into a model of these systems, are defined in analogy to the corresponding
model Mω,X,X˚ defined above.

For treating the other additional axioms in Dω ` ∆ (or its extensions) of type ∆

beyond the axioms already contained in Dω (or its extensions), we rely on the following
argument (akin to [76], Lemma 5.11) showing that Sω,X,X˚

|ù ∆ implies Mω,X,X˚

|ù ∆r .
For this, the proof given in [76] for Lemma 5.11 carries over which we sketch here: While
Mω,X,X˚ in general is not a model of the axiom of choice [88], one can show (similar
to [88]) that Mω,X,X˚

|ù b-ACX,X˚ where

b-ACX,X˚ :“
ď

δ,ρPTX,X˚

b-ACδ,ρ

with

b-ACδ,ρ :“ @Zρpδq
`

@xδDy ďρ ZxApx, y, Zq Ñ DY ďρpδq Z@x
δApx, Y x, Zq

˘

.
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Further, we now can see the significance of the notions of small and admissible types
in axioms of type ∆: for small types ρ, we have Mρ “ Sρ while for admissible types ρ,
we have Mρ Ď Sρ (for which it is important that admissible types take arguments of
small types). For this, the proof given in [71] carries over. Further, we need that it is
provable in Dω´ that

@x1, x, y px1 Áρ x^ x ěρ y Ñ x1 Áρ yq (+)

holds for all types ρ which can be shown similar as e.g. in [96].
Suppose now that

Sω,X,X˚

|ù @aδDb ďσ ra@c
γFqf pa, b, cq.

Then also Mω,X,X˚ is a model of this sentence: First the types of the variables which
are universally quantified are admissible, so over Mω,X,X˚ the domain of the universal
quantifiers is reduced. For the witnesses for b, which exist in Sω,X,X˚ , note first that
these could potentially live in Mω,X,X˚ as the types of the variables in b are admissible,
i.e. they take arguments of small types and map into small types. It thus only remains
to be seen whether such a witness is majorizable for majorizable inputs a. However, by
the above argument, the terms in r are all majorizable and if a comes from Mω,X,X˚ ,
then ra is majorizable. That we have b ďσ ra now implies that b is majorizable by
p`q (and consequently the corresponding interpretations exist in Mω,X,X˚ too). Lastly,
it is rather immediate to see that Mω,X,X˚

|ù ∆ implies Mω,X,X˚

|ù ∆r using b-ACX,X˚ .

From Mω,X,X˚

|ù ∆r , we immediately get that the above majorizability result ex-
tends to those variants of the systems where the corresponding Skolem functionals of
these axioms are added and where the axioms themselves are replaced by their instan-
tiated Skolem normal forms (i.e. Dω´

∆ and its extensions) and we also immediately get
that the corresponding structures defined by canonical interpretations of those addi-
tional constants are indeed models of the corresponding systems.

Note that, technically, these arguments were already needed in the above consid-
erations to see that Mω,X,X˚ really is a model of Dω´ (and its extensions). However,
we did not discuss this there explicitly as for those specific axioms of type ∆ belonging
to Dω´ (and its extensions), the types of the variables occurring in them are not only
small but actually all among t0, 1, X,X˚u so that it was immediately clear that the
models coincide at that level (essentially just by definition) and we thus omitted such
a general discussion there.
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Combined with the Dialectica interpretation, the main result we then arrive at is
the following bound extraction result for classical proofs:

Theorem 8.6.4. Let τ be admissible, δ be of degree 1 and s be a closed term of
Dω of type σpδq for admissible σ. Let ∆ be a set of formulas of the form @aδDb ďσ

ra@cγFqf pa, b, cq where Fqf is quantifier-free, the types in δ, σ and γ are admissible and
where r is a tuple of closed terms of appropriate type. Let B@px, y, z, uq/CDpx, y, z, vq
be @-/D-formulas of Dω with only x, y, z, u/x, y, z, v free. If

Dω
`∆ $ @xδ@y ďσ spxq@z

τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : Sδ ˆ Sτp á N which is total and (bar-
recursively) computable on Mδ ˆMτp and such that for all x P Sδ, z P Sτ , z˚ P Sτp, if
z˚ Á z, then

Sω,X,X˚

|ù @y ďσ spxq p@u ď0 Φpx, z
˚
qB@px, y, z, uq Ñ Dv ď0 Φpx, z

˚
qCDpx, y, z, vqq

holds whenever Sω,X,X˚

|ù ∆ for Sω,X,X˚ defined via any (nontrivial) Banach space
pX, ∥¨∥q with its dual X˚ (and with suitable interpretations of the additional constants).
Further:

1. If τp is of degree 1, then Φ is a total computable functional.

2. We may have tuples instead of single variables x, y, z, u, v and a finite conjunction
instead of a single premise @u0B@px, y, z, uq.

3. If the claim is proved without DC, then τ may be arbitrary and Φ will be a total
functional on Sδ ˆ Sτp which is primitive recursive in the sense of Gödel. In that
case, also plain majorization can be used instead of strong majorization.

4. The claim of the theorem as well as the items (1) - (3) from above hold similarly
for

(a) DωrX˚˚, ∥¨∥X˚˚s or its extension with the reflexivity axiom where the model
and the majorizability relation, etc., have to be suitably extended,

(b) Dωrf,∇f s and Dωrf,∇f, f˚,∇f˚s, assuming a convex and Fréchet differ-
entiable function f : X Ñ R where ∇f is uniformly continuous on bounded
subsets for the former or where f is additionally supercoercive and ∇f˚ is
uniformly continuous on bounded subsets for the latter. Then the result holds
for the additional constants suitably interpreted and the resulting bound will
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depend additionally on some ω P NN and some n P N such that ω Á ω∇f and
n ěR |fp0q|, ∥∇fp0q∥X˚ for the former and where additionally ω Á ω∇f˚

, αf

and n ěR |f
˚p0q|, ∥∇f˚p0q∥X for the latter.

Proof. The structure of the proof is very much standard and follows that of the proof
of Theorem 3.7.9 from Chapter 3 and so we just briefly sketch the key parts. For this,
we focus on Dω `∆ and so we just assume for simplicity now that

Dω
`∆ $ @xδ@y ďσ spxq@z

τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

.

Clearly, it then also holds that

Dω

∆ $ @x
δ
@y ďσ spxq@z

τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

where Dω

∆ is defined as above. To this theory, Lemma 3.7.3 still applies and we can
extract witnesses of the quantifiers which by Lemma 8.6.3 have majorants in the model
defined over Mω,X,X˚ . We then can recover to the truth in Sω,X,X˚ as the types are
low enough as before.

Further, following the methodology for the semi-constructive metatheorems laid
out in Chapter 3, we obtain the following semi-constructive version for the system Dω

i

defined similar to Dω but over Aω
i rX, ∥¨∥s instead of AωrX, ∥¨∥s and similar for the

respective extensions. For this, the additional axioms of type ∆ as well as the linearity
rules again have to be eliminated as above but as the constructions and proofs are
completely analogous, we omit them here and just state the result:

Theorem 8.6.5. Let δ be of the form 0p0q . . . p0q and σ, τ be arbitrary, s be a closed
term of suitable type. Let Γ␣ be a set of sentences of the form @uζpCpuq Ñ Dv ďβ

tu␣Dpu, vqq with ζ, β and C,D arbitrary types and formulas respectively and where t
is a tuple of closed terms. Let Bpx, y, zq/Cpx, y, z, uq be arbitrary formulas of Dω

i with
only x, y, z/x, y, z, u free. If

Dω
i ` IP␣ ` CA␣ ` Γ␣ $ @x

δ
@y ďσ pxq @z

τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq,

one can extract a Φ : Sδ ˆ Sτp Ñ N with is primitive recursive in the sense of Gödel
such that for any x P Sδ, any y P Sσ with y ďσ spxq, any z P Sτ and z˚ P Sτp with
z˚ Á z, we have that

Sω,X,X˚

|ù Du ď0 Φpx, z
˚
q p␣Bpx, y, zq Ñ Cpx, y, z, uqq
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holds whenever Sω,X,X˚

|ù Γ␣ where Sω,X,X˚ is defined via any (nontrivial) Banach
space pX, ∥¨∥q with dual X˚ and with the constants interpreted as in Theorem 8.6.4.

Further, the results also hold for the analogously defined theories Dω
i rX

˚˚, ∥¨∥X˚˚s,
Dω
i rf,∇f s and Dω

i rf,∇f, f˚,∇f˚s with similar modifications as in Theorem 8.6.4.



9 Effective rates for iterations involving Breg-
man strongly nonexpansive operators

9.1 Introduction

In this chapter, we provide applications of the metatheorems established in the previous
Chapter 8 to Picard- and Halpern-style iterations of Bregman strongly nonexpansive
mappings. These types of mappings were first considered in [175], extending the in-
fluential notion of strongly nonexpansive maps [31] (or, more precisely, that of quasi
strongly nonexpansive maps) to a notion involving Bregman distances.

The class of strongly nonexpansive maps is of vital importance for many influential
developments in modern nonlinear optimization and analysis and consequently also has
been at the focus of many recent developments in proof mining, first having been stud-
ied in [99] in the context of Picard-iterations involving such mappings. Subsequently,
these mappings and their quantitative properties have in particular played a crucial
role in the analysis given by Kohlenbach in [101] of Bauschke’s proof [6] of the zero
displacement conjecture [10].

The results presented here are partly in that same vein as the work [99] is situated
in as we provide quantitative versions of the respective asymptotic regularity results for
Picard iterations of these Bregman strongly nonexpansive maps contained in [143, 144].
In the context of Bregman distances and monotone operators on Banach spaces in the
sense of Browder [28, 30], there also exists a notion of resolvent relative to the convex
function f (as defined in [9, 58])1 and as discussed in [9], such resolvents and thus
in particular also the so-called Bregman projections as defined already in Bregman’s
foundational work [22] are Bregman strongly nonexpansive. In that way, the results

1These types of operators, while not covered by the formal discussions from the previous Chapter 8,
will be discussed in the upcoming Chapter 10 which in particular will provide full formal justification
for all extractions presented here.
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presented here in particular also cover the influential proximal point algorithm (as in-
troduced by Rockafellar [183] and Martinet [145]) extended to Bregman distances (as
first considered in [58]) as well as the method of cyclic Bregman projections (see [175]).

Besides Picard-type iterations, we are also concerned here with Halpern-type itera-
tions of Bregman strongly nonexpansive maps. The original method of Halpern, which
relies on convex combinations of the iterations with an anchor to induce strong con-
vergence (see [77] where the iteration was introduced for the anchor 0 by Halpern and
[207] for the consequent seminal extension by Wittmann), is one of the most influential
methods studied in nonlinear analysis in the recent decades. Consequently, also this
method has attracted extensive attention from the research program of proof mining
and the original iterations as well as a wide breadth of extension were analyzed (see
e.g. [64, 98, 110, 124, 186] among many others).

Here, we are initially concerned with the work [199] where the authors extend
the usual strong convergence results for Halpern-type iterations to Bregman strongly
nonexpansive maps. We analyze this result in the similar spirit as in [104] and obtain
a quantitative version providing a rate of metastability for the strong convergence.
Further, we are able to also incorporate families of Bregman strongly nonexpansive
maps which relate to an anchor map via a uniform quantitative version of the influential
NST condition (see e.g. [2]). From this, by forgetting about the quantitative aspects,
we are able to derive a new “ordinary” (that is non-quantitative) strong convergence
result for this specific iteration involving a family of maps.

At last, we exploit this new generality and discuss what old and in particular new
results can be derived from it. In that vein, we in particular obtain (quantitative)
strong convergence results for Halpern-type variants of the method of cyclic Bregman
projections, of the proximal point algorithm, of a special case of a method solving
operator equations due to Butnariu and Resmerita [36] as well as of a special case
of the forward-backward Bregman splitting method discussed by Búi and Combettes
[32] (see also Van Nguyen [155]), of a method for finding common zeros of maximally
monotone operators as discussed by Naraghirad [152] and of a Halpern-Mann type
iteration of Bregman strongly nonexpansive maps [214] where we obtain a qualitative
improvement on the conditions presented in [214].

Further, inspired by the recent considerations [41] on the relationship between mod-
ified Halpern methods in the sense of [53, 85] and Tikhonov-Mann type methods as
developed in [20, 42, 210], we even provide a new strong convergence result for a
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Tikhonov-Mann type iteration of Bregman strongly nonexpansive maps which we newly
define in this chapter.

This chapter relies on various notions from convex analysis, in particular surround-
ing convex functions, their gradients and their corresponding Bregman distances. Al-
though already discussed in the context of the logical investigations of Chapter 8, we
will sometimes (re-)introduce these notions as needed throughout the chapter. For
further expositions about convex analysis in Banach or Hilbert spaces, we again refer
to the standard works [11, 182, 184, 212]. In this section, we just at first collect the
essential notions regarding Bregman distances.

Throughout, if not specified otherwise, let X be a Banach space with norm ∥¨∥
and let f : X Ñ p´8,`8s be a given function with extended real values. In the
following, we will assume that f is proper, lower-semicontinuous and convex (compare
the definitions in Chapter 8). Similarly, we also rely on the other notions discussed in
Chapter 8 regarding the differentiability of convex functions.

The fundamental notion of distance in this chapter is that of the influential Bregman
distance already briefly discussed in Chapter 8: Let f be Gâteaux differentiable. The
Bregman distance associated with f is the function Df : domf ˆ intdomf Ñ r0,`8q

which is defined as follows:

Df px, yq :“ fpxq ´ fpyq ´ xx´ y,∇fpyqy.

For this Bregman distance, in particular recall the so-called three and four point iden-
tities for Df :

Lemma 9.1.1 (folklore, see e.g. [9]). The following equalities are true for all x, y, z, w P
intdomf :

1. Df px, yq `Df py, zq ´Df px, zq “ xx´ y,∇fpzq ´∇fpyqy.

2. Df py, xq ´Df py, zq ´Df pw, xq `Df pw, zq “ xy ´ w,∇fpzq ´∇fpxqy.

Recall also the following dual function Wf : domf ˆ domf˚ Ñ r0,`8q defined by

Wf px, x
˚
q “ fpxq ´ xx, x˚y ` f˚px˚q.

For this function, we will rely here on a few further properties: If f : X Ñ R is
Legendre and supercoercive and if X is reflexive, one in particular has that

Wf px,∇fpyqq “ Df px, yq
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for all x, y P X (see also Chapter 10) as well as that Wf is convex in its right argument
and satisfies the inequality

Wf px, x
˚
q ď Wf px, x

˚
` y˚q ´ x∇f˚px˚q ´ x, y˚y

for any x P X and any x˚, y˚ P X˚ (see [122]).

9.2 Gradients, Bregman distances and their quanti-

tative properties

Throughout most of this chapter, if not indicated otherwise, we will now assume that
f and f˚ are total (i.e. domf “ X and domf˚ “ X˚, respectively) and that both
are Fréchet differentiable everywhere with gradients ∇f and ∇f˚. This section now
introduces the main quantitative notions related to the core objects like the gradients
and distances. For this, and in this chapter in general, we use ε’s to represent errors.

9.2.1 Quantitative properties of gradients

Definition 9.2.1. We say that a function ω∇f : p0,8q2 Ñ p0,8q is a modulus of
uniform continuity (on bounded sets) for ∇f if for any ε, b ą 0 and any x, y P Bbp0q:

∥x´ y∥ ă ω∇f
pε, bq Ñ ∥∇fpxq ´∇fpyq∥ ă ε.

Using such a modulus, we can immediately derive quantitative witnesses for various
central properties of ∇f and f . In that vein, the following lemma, giving such witnesses,
is essentially just a reformulation of Lemma 8.5.5 written using ε’s instead of 2´k and
as such, the proof is essentially the same and thus omitted.

Lemma 9.2.2. Assume that ∇f is uniformly continuous on bounded subsets with a
modulus ω∇f . Then:

1. f is uniformly Fréchet differentiable on bounded subsets with modulus

∆pε, bq “ mintω∇f
pε, b` 1q, 1u,

i.e. for all b, ε ą 0 and all x P Bbp0q, y P X:

0 ă ∥y∥ ă ∆pε, bq Ñ
|fpx` yq ´ fpxq ´ xy,∇fpxqy|

∥y∥
ă ε.
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2. ∇f is bounded on bounded subsets with modulus

Cpbq “
P

b{ω∇f
p1, bq

T

` ∥∇fp0q∥` 1,

i.e. for all b ą 0 and all x P Bbp0q:

∥∇fpxq∥ ď Cpbq.

3. f uniformly continuous on bounded subsets with modulus

ωf pε, bq “
ε

Cpbq
,

i.e. for all ε, b ą 0 and all x, y P Bbp0q:

∥x´ y∥ ă ωf pε, bq Ñ |fpxq ´ fpyq| ă ε.

4. f is bounded on bounded sets with modulus

Dpbq “
P

b{ωf p1, bq
T

` |fp0q| ` 1,

i.e. for all b ą 0 and all x P Bbp0q:

|fpxq| ď Dpbq.

Similar results of course also hold for the conjugate f˚ if we assume a modulus of
uniform continuity on bounded sets for the respective gradient ∇f˚.

If f is Fréchet differentiable, then the associated Bregman distance is continuous
in both arguments and by analyzing the corresponding proof, we can extract a trans-
formation that turns a modulus for the uniform continuity of the gradient of f into
a modulus for the uniform continuity of the associated Bregman distance. This is
collected in the following lemma:

Lemma 9.2.3. Assume that ∇f is uniformly continuous on bounded subsets with a
modulus ω∇f . Let C be a modulus for ∇f being bounded on bounded sets.2

2As shown in the previous Lemma 9.2.2, such a C can actually be constructed from ω∇f . We
however throughout work with a given C as a black box so that the contributions of the different
types of moduli are highlighted.
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1. For any ε, b ą 0 and any x, y, y1 P Bbp0q:

∥y ´ y1∥ ă ξpε, bq Ñ |Df px, yq ´Df px, y
1
q| ă ε

where ξ : p0,8q2 Ñ p0,8q can be explicitly given by

ξpε, bq :“ min

"

ε

4Cpbq
, ω∇f

´ ε

4b
, b
¯

*

.

2. For any ε, b ą 0 and any x, x1, y P Bbp0q:

∥x´ x1∥ ă ξ1pε, bq Ñ |Df px, yq ´Df px
1, yq| ă ε

where ξ1 : p0,8q2 Ñ p0,8q can be explicitly given by

ξ1pε, bq :“
ε

2Cpbq
.

Proof. For item (1), note that we have

|xy,∇fyy ´ xy1,∇fy1y| “ |xy,∇fyy ´ xy1,∇fyy ` xy1,∇fyy ´ xy1,∇fy1y|

ď |xy ´ y1,∇fyy| ` |xy1,∇fy ´∇fy1y|

ď ∥∇fy∥ ∥y ´ y1∥` ∥y1∥ ∥∇fy ´∇fy1∥ .

Using that, we derive

|Df px, yq ´Df px, y
1
q| ď |fpyq ´ fpy1q| ` |xx´ y1,∇fy1y ´ xx´ y,∇fyy|

ď |fpyq ´ fpy1q| ` |xx,∇fy1 ´∇fyy|

` |xy,∇fyy ´ xy1,∇fy1y|

ď |fpyq ´ fpy1q| ` ∥x∥ ∥∇fy ´∇fy1∥

` ∥∇fy∥ ∥y ´ y1∥` ∥y1∥ ∥∇fy ´∇fy1∥ .

This yields the claim by the definition of ξ as by Lemma 9.2.2, we have that ε{4Cpbq “
ωf pε{4, bq for a suitably defined modulus of uniform continuity ωf for f .

For item (2), note that

|Df px, yq ´Df px
1, yq| ď |fpxq ´ fpx1q| ` |xx´ x1,∇fpyqy|

ď |fpxq ´ fpx1q| ` ∥x´ x1∥ ∥∇fpyq∥

and this yields the claim by the definition of ξ1 as by Lemma 9.2.2, we have that
ε{2Cpbq “ ωf pε{2, bq for a suitably defined modulus of uniform continuity ωf for f .
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An assumption that is later used in the context of Halpern-type iterations is that
f is uniformly strictly convex on bounded subsets in the sense of [36], i.e.

@ε, b ą 0Dδ ą 0@x, y P X

ˆ

∥x∥ , ∥y∥ ď b^ ∥x´ y∥ ě ε

Ñ

ˆ

f
´x` y

2

¯

ď
1

2
fpxq `

1

2
fpyq ´ δ

̇̇

.

In the following, we will occasionally assume a modulus of uniform strict convexity
η : p0,8q2 Ñ p0,8q for f , i.e. an η witnessing the above quantifier Dδ ą 0 in terms
of ε and b. By the equivalent characterization of strictly convex functions f as those
where ∇f is strictly monotone, we can translate such a modulus of uniform strict
convexity into a modulus witnessing the “uniform strict monotonicity” of ∇f , i.e. an
ηp : p0,8q2 Ñ p0,8q witnessing δ in terms of ε, b in the following condition:

@ε, b ą 0Dδ ą 0@x, y P Xp∥x∥ , ∥y∥ ď b^ ∥x´ y∥ ě εÑ pxx´ y,∇fx´∇fyy ě δqq.

This is collected in the following lemma.

Lemma 9.2.4. Let ηpε, bq be a modulus of uniform strict convexity for f . Then
ηppε, bq “ 4ηpε, bq is a modulus of uniform strict monotonicity for ∇f .

Proof. Note that we have

f
´x` y

2

¯

ď 1{2fpyq ` 1{2fpxq ´ ηpε, bq

“ fpxq ` 1{2pfpyq ´ fpxqq ´ ηpε, bq

if ∥x´ y∥ ě ε as η is a modulus of uniform strict convexity of f . As ∇fw is a
subgradient of f at w, we have

xz,∇fwy ď inf
αą0

fpw ` αzq ´ fpwq

α
,

for all w, z and from this we get

xy ´ x,∇fxy ď fpyq ´ fpxq ´ 2ηpε, bq.

Similarly, we get
xx´ y,∇fyy ď fpxq ´ fpyq ´ 2ηpε, bq

and this implies
xx´ y,∇fy ´∇fxy ď ´4ηpε, bq

which gives that ηppε, bq “ 4ηpε, bq is a modulus of uniform strict monotonicity of
∇f .
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Conversely, also from a modulus ηp for the uniform strict monotonicity we can con-
struct a modulus η for the uniform strict convexity but we omit this other direction as,
for one, this construction is rather messy and, for another, the one direction presented
above suffices to justify that such an ηp exists in the context of the central assumptions
featured in the convergence results later on.

9.2.2 Sequential consistency and total convexity

Another central assumption featuring in the convergence results later on is that of the
total convexity of f which we want to discuss in the following. For this, we briefly only
assume that f : X Ñ p´8,`8s is proper, lower-semicontinuous and convex.

Definition 9.2.5 (see e.g. [34]). Given a function f , define its modulus of total con-
vexity vf : intdomf ˆ r0,`8q Ñ r0,`8s by

vf px, tq :“ inftDf py, xq | y P domf, ∥y ´ x∥ “ tu.

The function f is called totally convex at a point x P intdomf if vf px, tq ą 0 whenever
t ą 0. It is called totally convex if it is totally convex at every point. Lastly, we call f
totally convex on bounded sets if

vf pB, tq :“ inftvf px, tq | x P B X intdomfu ą 0

for any t ą 0 and for any non-empty bounded set B Ď X.

This notion is intimately connected with the so-called sequential consistency for the
function f :

Definition 9.2.6 ([36]). A function f is called sequentially consistent if for all bounded
sequences pxnq and pynq in intdomf :

Df pxn, ynq Ñ 0 pnÑ 8q implies ∥xn ´ yn∥Ñ 0 pnÑ 8q.

Concretely, the main result connecting total convexity and sequential consistency
is now the following:

Lemma 9.2.7 ([34]). A proper, lower-semicontinuous and convex function f : X Ñ

p´8,`8s whose domain contains at least two points is totally convex on bounded sets
if, and only if, it is sequentially consistent.
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In the following, we will rely on a modulus witnessing the sequential consistency
of a function quantitatively. To motivate this, we move to another equivalent way
of formulating sequential consistency (which is somewhat in spirit of e.g. Proposition
2.5 of [36], see also [179]). For the following, let f now again be total and Fréchet
differentiable everywhere like in the previous standing assumptions.

Lemma 9.2.8. A function f is sequentially consistent if, and only if, for all b ą 0 and
ε ą 0, there exists a δ ą 0 such that

@x, y P X p∥x∥ , ∥y∥ ď b^Df px, yq ă δ Ñ ∥x´ y∥ ă εq . (`)

Proof. For sufficiency, consider arbitrary sequences pxnq, pynq with ∥xn∥ , ∥yn∥ ď b for
some b ą 0 and assume that limDf pxn, ynq “ 0. Let ε ą 0 be given. By p`q, there is
a δ such that

@m P N pDf pxm, ymq ă δ Ñ ∥xm ´ ym∥ ă εq . (``)

Then, by limDf pxn, ynq “ 0 there exists N P N such that

@m ě N pDf pxm, ymq ă δq ,

which by p``q entails that ∥xm ´ ym∥ ă ε, for all m ě N . This means that

∥xn ´ yn∥Ñ 0,

and we conclude the sequential consistency of f .

For necessity, suppose that p`q fails. Then for some ε ą 0 and b ą 0, we have

@n P NDxn, yn P X
ˆ

∥xn∥ , ∥yn∥ ď b^Df pxn, ynq ă
1

n` 1
^ ∥xn ´ yn∥ ě ε

̇

.

Then in particular Df pxn, ynq ă
1

n`1
for all n P N which entails that

Df pxn, ynq Ñ 0.

However ∥xn ´ yn∥ is bounded away from zero by ε, and so f can not be sequentially
consistent as xn and yn are bounded.

Definition 9.2.9. Let f be sequentially consistent. A modulus of consistency for f is
a function ρ : p0,8q2 Ñ p0,8q such that for all b P N and ε ą 0:

@x, y P X p∥x∥ , ∥y∥ ď b^Df px, yq ă ρpε, bq Ñ ∥x´ y∥ ă εq .
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By the above result, a function f is sequentially consistent if, and only if, it has a
modulus of consistency.

We call a modulus of this type but for the converse implication, i.e. translating
errors for the metric distance into errors for the Bregman distance, a modulus of reverse
consistency. Further, such a modulus can actually be computed from a modulus of ∇f
being bounded on bounded sets.

Lemma 9.2.10. Let ∇f be bounded on bounded sets with a modulus C. Then for all
ε ą 0 and b ą 0:

@x, y P X p∥x∥ , ∥y∥ ď b^ ∥x´ y∥ ă P pε, bq Ñ Df px, yq ă εq

where P pε, bq can be given in terms of C via

P pε, bq “
ε

2Cpbq
.

Proof. By Lemma 9.2.2, we have that ωf pε, bq “ ε{Cpbq is a modulus of uniform
continuity for f on bounded sets. So for ∥x´ y∥ ă P pε, bq “ ωf pε{2, bq, we have
fpxq ´ fpyq ă ε{2 and thus

Df px, yq “ fpxq ´ fpyq ´ xx´ y,∇fpyqy

ă ε{2` ∥x´ y∥ ∥∇fpyq∥

ď ε{2` ∥x´ y∥Cpbq

ă ε

which is the claim.

We want to note that the collection of such a modulus P together with a modulus
of consistency ρ are called moduli of consistency in [164]. In particular, as discussed
in [164], these moduli can be used to derive a so-called modulus of weak triangularity
for Df , i.e. a function θ : p0,8q2 Ñ p0,8q such that

@ε, b ą 0@x, y, z P X p∥x∥ , ∥y∥ , ∥z∥ ď b^Df py, xq, Df py, zq ă θpε, bq Ñ Df px, zq ă εq .

In other words, θ witnesses that although the triangle inequality is not valid for Df ,
it locally behaves similar to a distance function with a triangle inequality. To derive
such a θ from a given ρ and P as above, set

θpε, bq “ ρpP pε, bq{2, bq.
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Then, if Df py, xq, Dpy, zq ă θpε, bq for ∥x∥ , ∥y∥ , ∥z∥ ď b, we have

∥x´ y∥ , ∥z ´ y∥ ă P pε, bq{2

using the properties of ρ. This implies

∥x´ z∥ ă P pε, bq

by triangle inequality of ∥¨∥. So, using the properties of P , this yields Df px, zq ă ε.

Remark 9.2.11. Note that in the presence of such moduli ρ and P , all moduli introduced
later that depend on measuring a distance ∥x´ y∥ in the premise or conclusion could
be translated into moduli that depend on measuring the distance Df px, yq.

Besides sequential consistency, being totally convex on bounded sets can be further
recognized to be equivalent to another well-known convexity property for f already
mentioned before, at least in the context of the standing assumptions of this chapter.

Lemma 9.2.12 (essentially [36, Theorem 2.10]). Let f : X Ñ R be Fréchet differen-
tiable and let ∇f be uniformly continuous on bounded sets. Then f is totally convex
on bounded sets if, and only if, f is uniformly strictly convex on bounded sets.

In that vein, the following remark shortly discusses the relationship between the
modulus of consistency and the previous modulus of uniform strict convexity together
with other convexity moduli from the literature.

Remark 9.2.13. Note that it can be easily shown that ρ is a modulus of consistency if

vf pBbp0q, tq ě ρpt, bq

for any t, b ą 0 (using e.g. Proposition 2.1 from [36]) and conversely, if ρ is a modulus
of consistency, then vf pBbp0q, tq ě ρpt, b ` tq for any t, b ą 0. In that way, moduli of
consistency as defined in this chapter actually immediately witness the total convexity
of the function f .

Further, define the modulus of uniform convexity µf px, tq as in [206] (see also [35,
211]), i.e.

µf px, tq :“

inf

"

λfpxq ` p1´ λqfpyq ´ fpλx` p1´ λqyq

λp1´ λq
| y P X, ∥y ´ x∥ “ t, λ P p0, 1q

*

and write
µf pB, tq :“ inftµf px, tq | x P Bu
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for a given set B Ď X similar as with vf . Similarly define

µf px, tq :“ inf
!

fpxq ` fpyq ´ 2f
´x` y

2

¯

| y P X, ∥y ´ x∥ “ t
)

as in [34] (see also [35]). Then as shown in [35], we have

µf px, tq ě µf px, tq ě
1

2
µf px, tq

for any x P X and t ě 0 as well as vf px, tq ě µf px, tq for any x P X and t ą 0 as shown
in [34, Proposition 1.2.5]. Now, it is also immediate that η is a modulus of uniform
strict convexity of f as defined above if

1

2
µf pBbp0q, tq ě ηpt, bq

for any t, b ą 0 where µf pB, tq, given a set B Ď X, is defined similarly as µf pB, tq.
Conversely, if η is a modulus of uniform strict convexity, then µf pBbp0q, tq ě 2ηpt, b`tq

for any t, b ą 0. Thus any modulus η of uniform strict convexity of f induces a modulus
of consistency and thus witnesses the total convexity of f .

Conversely, as follows from the above Lemmas 9.2.7 and 9.2.12, if f is Fréchet
differentiable with a gradient that is uniformly continuous on bounded sets, then f

being sequentially consistent implies f being uniformly strictly convex on bounded
sets. As shown in [35], both of these items are further equivalent to f˚ being uniformly
Fréchet differentiable (and thus to ∇f˚ being uniformly continuous on bounded sets if
f is also supercoercive by Propositions 8.5.4 and 8.5.7).

9.2.3 Boundedness properties of the Bregman distance

As is well-known, the distances Df in general have very weak properties. In particular,
a sequence pxnq such that Df pxn, yq is bounded for some y is not necessarily bounded
itself. In that way, it is thus a common requirement in the context of Bregman distances
to require that the level sets

L1py, αq “ tx P X | Df px, yq ď αu,

L2px, αq “ ty P X | Df px, yq ď αu,

are bounded for every α ą 0 and x, y P X. In particular, this condition features in
the list of conditions exhibited by Eckstein in [58] and by Butnariu and Iusem in [34]
regarding Bregman functions and a stronger requirement of these sets being compact
already featured in Bregman’s seminal work [22] for the conditions imposed on his
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general distances D.

As shown in [34], in the case that L2px, αq is bounded for all x and α and if f is
additionally sequentially consistent, then L1py, αq is likewise bounded.

Further, as shown in [7] (Theorem 3.7),3 if f is essentially strictly convex and domf˚

is open, then Df px, ¨q is coercive for any x P intdomf and thus, in that case, L2px, αq

is bounded for any α. This is in particular the case for supercoercive f and thus guar-
anteed in essentially all situations in this chapter.

In the following, we will rely on so-called moduli of boundedness for Df that witness
a uniform quantitative version of the boundedness of L2. Concretely, by a modulus of
boundedness for Df we will mean a function o : p0,8q2 Ñ p0,8q such that

@x, y P X@α, b ą 0 p∥x∥ ď b^Df px, yq ď αÑ ∥y∥ ď opα, bqq .

We call Df uniformly bounded if such a modulus exists.

Remark 9.2.14. Such a modulus of boundedness for Df in particular exists if f,∇f˚ are
bounded on bounded sets and f˚ is supercoercive (which actually follows from f being
bounded on bounded sets by Proposition 8.5.7 since f “ f˚˚ holds by the Fenchel-
Moreau theorem) and it can be explicitly constructed from corresponding moduli wit-
nessing these properties. This will be discussed in Chapter 10 in more detail.

9.3 Bregman strongly nonexpansive mappings and re-

lated notions

The main notion of mapping considered in this chapter will be that of a Bregman
strongly nonexpansive mapping as introduced in [39, 175].

Let T : X Ñ X be a mapping. We say that a point p P X is an asymptotic
fixed point of T if there is a sequence pxnq which converges weakly to p and satisfies
limnÑ8 ∥xn ´ Txn∥ “ 0. We write FppT q for the set of all such asymptotic fixed points
and F pT q for the set of ordinary fixed points of T .

3While [7] is set in finite-dimensional spaces, the proof given there for Theorem 3.7 can be easily
seen to be valid in general Banach spaces.
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Definition 9.3.1. A map T : X Ñ X is called

1. Bregman nonexpansive (see [144]) if

Df pTx, Tyq ď Df px, yq

for any x, y P X,

2. Bregman quasi-nonexpansive (see [142, 144]) if

Df pp, Txq ď Df pp, xq

for any x P X and p P FppT q,

3. Bregman strongly nonexpansive (see [39, 175]) if

Df pp, Txq ď Df pp, xq

for any x P X, p P FppT q and if additionally

lim
nÑ8

pDf pp, xnq ´Df pp, Txnqq “ 0Ñ lim
nÑ8

Df pTxn, xnq “ 0

for any bounded sequence pxnq Ď X and any p P FppT q,

4. Bregman firmly nonexpansive (see e.g. [9]) if

xTx´ Ty,∇fTx´∇fTyy ď xTx´ Ty,∇fx´∇fyy

for all x, y P X.

It is rather immediate to see that being Bregman firmly nonexpansive implies being
Bregman strongly nonexpansive (see also Lemma 9.3.8 later) and it is clear that any
Bregman strongly nonexpansive mapping is Bregman quasi-nonexpansive.

We want to note that the above notion of Bregman strongly nonexpansive operators
is called strictly left Bregman strongly nonexpansive in other parts of the literature
(see in particular [143]) since the fixed points occur in the left argument of the Breg-
man distance and since we used FppT q. If F pT q “ FppT q is further assumed, then the
resulting notion is called fully left Bregman strongly nonexpansive in these parts of the
literature. Note also that Bregman firmly nonexpansive maps are called D-firm in [9]
and ∇f firmly nonexpansive in [15].
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Fundamental for the quantitative results discussed later for iterations involving such
mappings are moduli which quantitatively witness the defining properties of Bregman
strongly nonexpansive mappings. The whole approach taken here in regard to quanti-
tative moduli witnessing the Bregman strongly nonexpansiveness is modeled after the
work [99] for “ordinary” quasi-nonexpansive functions. In these quantitative moduli, it
will always be F pT q that we use when deriving the moduli which results e.g. in the fact
that instead of full fixed points, these moduli will concern approximate fixed points. If
it is presumed that FppT q “ F pT q and if this assumption features crucially in a given
proof, then a uniform quantitative version of this fact will feature necessarily in its
analysis (see p. 224 for this uniform quantitative version).

Definition 9.3.2. A function ω : p0,8q2 Ñ p0,8q such that

@ε, b ą 0@p P F pT q XBbp0q@x P Bbp0q

pDf pp, xq ´Df pp, Txq ă ωpε, bq Ñ Df pTx, xq ă εq

is called a BSNE-modulus of T .

Conceptually, BSNE-moduli are similar to the (uniform) SQNE-moduli introduced
in [99].

If we are given a specific element p P F pT q, we will later say that a function
ω : p0,8q2 Ñ p0,8q is a BSNE-modulus w.r.t. p if

@ε, b ą 0@x P Bbp0q pDf pp, xq ´Df pp, Txq ă ωpε, bq Ñ Df pTx, xq ă εq

holds for that specific p.

We will later be concerned with a stronger type of modulus which only requires p
to be a sufficiently good approximate fixed point.

Definition 9.3.3. A function ω : p0,8q2 Ñ p0,8q is called a strong BSNE-modulus
of T if

@ε, b ą 0@x, p P Xpp∥p∥ , ∥x∥ ď b^ ∥Tp´ p∥ ă ωpε, bq

^Df pp, xq ´Df pp, Txq ă ωpε, bqq Ñ Df pTx, xq ă εq.

We say that T is uniformly Bregman strongly nonexpansive if it has such a modulus.
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Clearly, a strong BSNE-modulus is also an ordinary BSNE-modulus.

From the following lemma, we get that a uniformly Bregman strongly nonexpansive
map T is in particular Bregman strongly nonexpansive whenever FppT q “ F pT q.

Lemma 9.3.4. Let f be such that Df satisfies Df px, yq “ 0 Ø ∥x´ y∥ “ 0 for any
x, y P X.4 Let T : X Ñ X be given. If T satisfies that for any ε, b ą 0 there exists a
δ ą 0 such that for any p P Bbp0q with ∥p´ Tp∥ ă δ and any x P Bbp0q:

Df pp, xq ´Df pp, Txq ă δ Ñ Df pTx, xq ă ε

and if FppT q “ F pT q, then T is Bregman strongly nonexpansive.

Proof. The existence of such a δ ą 0 for any ε, b ą 0 clearly implies

lim
nÑ8

pDf pp, xnq Ñ Df pp, Txnqq “ 0Ñ lim
nÑ8

Df pTxn, xnq “ 0

for all bounded sequences pxnq and fixed points p. As FppT q “ F pT q, this also holds for
all p P FppT q. Further, note that it also implies that T is Bregman quasi-nonexpansive
as either Df pTx, xq “ 0 which yields x “ Tx and thus Df pp, Txq “ Df pp, xq, or
Df pTx, xq ą 0 which yields Df pp, xq ´ Df pp, Txq ą 0, i.e. Df pp, Txq ď Df pp, xq as
well. Thus T is Bregman strongly nonexpansive.

Assuming that a given mapping even satisfies this strengthened notion of being
uniformly Bregman strongly nonexpansive has practically often very little impact as
in most concrete applications, a corresponding strong BSNE-modulus can actually be
obtained (as is e.g. the case for Bregman firmly nonexpansive maps as Lemma 9.3.8
shows).

If Df is uniformly bounded with a modulus of boundedness o as introduced in
Section 9.2.3, then any Bregman quasi-nonexpansive map T with a non-empty fixed
point set is bounded on bounded sets and we can also construct a witness for that in
the following sense:

Lemma 9.3.5. Let T be Bregman quasi-nonexpansive and let p0 P F pT q ‰ H. Let
∇f , f be bounded on bounded sets with moduli C, D, respectively. Let o be a modulus
of boundedness for Df .

4Naturally, this is the case if f is strictly convex.
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Then T is bounded on bounded sets with

∥Tx∥ ď Epbq :“ op2Dpbq ` 2bCpbq, bq

for b ě ∥x∥ , ∥p0∥.

Proof. Note that Df pp0, Txq ď Df pp0, xq as T is Bregman quasi-nonexpansive and thus

Df pp0, Txq ď |fpp0q| ` |fpxq| ` |xp0 ´ x,∇fpxqy|

ď 2Dpbq ` 2bCpbq

from which the claim follows using the properties of o.

Conceptually, the strong BSNE-moduli are related to the notion of “quantitative
quasiness” as discussed in [194] and from such a strong BSNE-modulus, one can in
particular derive a modulus ω1 : p0,8q2 Ñ p0,8q which satisfies

@ε, b ą 0@x, p P Xp∥p∥ , ∥x∥ ď b^ ∥Tp´ p∥ ă ω1pε, bq Ñ Df pp, Txq ´Df pp, xq ă εq.

This is collected in the following lemma:

Lemma 9.3.6. Let ξ be a modulus of uniform continuity on bounded sets for Df in its
second argument and let ρ be a modulus of consistency for f . Let E be a modulus for
T being bounded on bounded sets and let ω be a strong BSNE-modulus for T .

Then there exists an ω1 such that

@ε, b ą 0@x, p P Xp∥p∥ , ∥x∥ ď b

^ ∥Tp´ p∥ ă ω1pε, bq Ñ Df pp, Txq ´Df pp, xq ă εq.

which can be moreover constructed as

ω1pε, bq :“ ωpρpξpε, bpq, bpq, bq

where bp“ maxtb, Epbqu.

Proof. IfDf pp, Txq´Df pp, xq ď 0, then the claim holds trivially. So supposeDf pp, Txq´

Df pp, xq ą 0. Then trivially Df pp, xq ´ Df pp, Txq ă 0 ă ω1pε, bq which implies
Df pTx, xq ă ρpξpε, bpq, bpq. This yields ∥Tx´ x∥ ă ξpε, bpq. Thus, we in particular
have Df pp, Txq ´Df pp, xq ă ε.
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In the following, we will call such an ω1 a derived modulus of ω.

As mentioned above, any Bregman firmly nonexpansive map is Bregman strongly
nonexpansive. From the proof of this fact, we can immediately extract a (strong)
BSNE-modulus for any Bregman firmly nonexpansive map T . Crucial for this is the
following equivalent characterization of Bregman firmly nonexpansive mappings:

Lemma 9.3.7 ([9]). A map T : X Ñ X is Bregman firmly nonexpansive if, and only
if,

Df pTx, Tyq `Df pTy, Txq ď Df pTx, yq `Df pTy, xq ´Df pTx, xq ´Df pTy, yq.

for all x, y P X.

Lemma 9.3.8. Let T be a Bregman firmly nonexpansive map which is bounded on
bounded sets with a modulus E and let ξ, ξ1 be moduli that Df is uniformly continuous
on bounded sets in its right and left argument, respectively.

Then T is uniformly Bregman strongly nonexpansive with a strong BSNE-modulus
ω defined by

ωpε, bq “ mintξpε{4, bpq, ξ1pε{4, bpq, ε{4u

where bp“ maxtb, Epbqu.
Further, one can choose ωpε, bq “ ε as a BSNE-modulus for any Bregman firmly

nonexpansive T .

Proof. For the strong modulus, let x, p be given. Using Lemma 9.3.7 with y “ p, we
get

Df pTx, Tpq `Df pTp, Txq ď Df pTx, pq `Df pTp, xq ´Df pTx, xq ´Df pTp, pq

ď Df pTx, pq `Df pTp, xq ´Df pTx, xq.

Rearranging yields

Df pTx, xq ď Df pTx, pq ´Df pTx, Tpq `Df pTp, xq ´Df pTp, Txq

ď pDf pTx, pq ´Df pTx, Tpqq ` pDf pTp, xq ´Df pp, xqq

` pDf pp, xq ´Df pp, Txqq ` pDf pp, Txq ´Df pTp, Txqq.

Thus if ∥p∥ , ∥x∥ ď b and ∥Tp´ p∥ ă ωpε, bq as well as Df pp, xq´Df pp, Txq ă ωpε, bq ď

ε{4, then we get Df pTx, xq ă ε.
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For the ordinary BSNE-modulus, note that if p “ Tp, then Lemma 9.3.7 with y “ p

even yields
Df pp, Txq ď Df pp, xq ´Df pTx, xq

which is equivalent to

Df pTx, xq ď Df pp, xq ´Df pp, Txq

which yields the given modulus.

Compare this BSNE-modulus in particular to the modulus extracted in [99] for or-
dinary (meaning in the usual metric sense) strongly (quasi-)nonexpansive maps which
even in the simple case of Hilbert spaces (where the notions of firmly nonexpansive and
Bregman firmly nonexpansive for f “ ∥¨∥2 {2 coincide) is quadratic in ε. By taking a
look at the above proof, this seems due to the fact even in the Hilbert case with the
specific choice f “ ∥¨∥2 {2, the distance Df fits closer to the notion of firmly nonexpan-
sive maps and the quadratic increase comes from converting fromDf to the usual norm.

A concrete example for Bregman firmly nonexpansive mappings are the resolvents
ResfA relative to f for a given monotone operator A in Banach spaces. For this, we first
recall the notion of monotone operators.

Definition 9.3.9 ([28, 30]). Let A : X Ñ 2X
˚ be a set-valued operator. The operator

A is called monotone if
xx´ y, x˚ ´ y˚y ě 0

for all px, x˚q, py, y˚q P A.
Further, A is called maximally monotone if its graph is not strictly contained in

the graph of another monotone operator.

The f -resolvents of A are then defined using ∇f :5

Definition 9.3.10 ([9, 58]). Let A : X Ñ 2X
˚ be a set-valued operator. Given f , we

define the resolvent of A relative to f as the operator ResfA : X Ñ 2X with

ResfApxq :“
`

p∇f ` Aq´1 ˝∇f
˘

pxq.

The following properties are essential for the resolvent relative to f :
5The idea of considering the above notion in general Banach spaces is due to [9] (where it was

introduced under the name of D-resolvents) but this notion of a resolvent relative to f was already
considered by Eckstein in [58] in the context of finite-dimensional spaces.
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Proposition 9.3.11 ([9]). Let f : X Ñ p´8,`8s be a function which is proper,
convex, lower semicontinuous, Gâteaux differentiable and strictly convex on intdomf

and let A be a monotone operator such that intdomf X domA ‰ H. Then following
statements hold:

1. dom ResfA Ď intdomf and ran ResfA Ď intdomf ,

2. ResfA is single-valued on its domain,

3. F pResfAq “ intdomf X A´10,

4. ResfA is Bregman firmly nonexpansive on its domain.

Further, the classical result for monotone operators in Hilbert spaces established by
Minty [147] that maximal monotonicity is equivalent to the totality of the resolvents
extends to these resolvents relative to f under suitable assumptions on f :

Proposition 9.3.12 ([15]). Let X be reflexive.6 Let A be monotone and assume that
f : X Ñ R is Gâteaux differentiable, strictly convex and cofinite (i.e. dom f˚ “ X˚).
Then A is maximal monotone if and only if ranpA`∇fq “ X˚.

As we will mostly consider a fixed operator A in the following, we introduce a more
compact notation for resolvents with real parameters in such a case: given γ ą 0, we
simply write Resfγ for ResfγA.

Important for the study of resolvents are their corresponding Yosida approximates
defined by

Afγpxq “
1

γ

`

∇fpxq ´∇fResfγpxq
˘

for a given γ ą 0.

It follows essentially by the definitions of Resfγ and Afγ (see e.g. [177]) that

pResfγx,A
f
γxq P A

for any γ ą 0 and any x P dom Resfγ .

By the above results, as any Resfγ is Bregman firmly nonexpansive, all such resol-
vents for a maximal monotone A have the same BSNE-modulus (and also the same

6Recall Remark 8.5.13 by which this is true in the standing assumptions of this chapter.
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strong BSNE-modulus if they are bounded on bounded sets with a common modulus).

These resolvents relative to f also include Bregman projections (see [22]) as these
can be considered to be special resolvents: If C is a non-empty, closed and convex
subset, we may define the indicator function

ιCpxq “

$

&

%

0, if x P C,

`8, if x R C.

It is straightforward to see that this function is proper, lower-semicontinuous and
convex. Therefore, the subgradient BιC (recall Chapter 8) is maximally monotone
[180, 182]. The Bregman projection P f

C is then defined as the resolvent ResfBιC and in
particular is Bregman firmly nonexpansive. Thus also here the above moduli apply.

In general, already for Bregman firmly nonexpansive mappings, it is not immedi-
ately clear which (if any) form of ordinary metric continuity such mappings inherit.
However, if one assumes that ∇f is uniformly continuous on bounded subsets as well
as uniformly strictly monotone, then at least every Bregman firmly nonexpansive map
that is bounded on bounded sets (i.e., by Lemma 9.3.5, in particular any such map
with a fixed point) is indeed uniformly continuous on bounded subsets.

Lemma 9.3.13. Let T be Bregman firmly nonexpansive and assume that T is bounded
on bounded sets with a modulus E. Assume that ∇f is uniformly continuous on bounded
sets with a modulus ω∇f and that it is uniformly strictly monotone with a modulus η,
i.e.

@ε, b ą 0@x, y P X p∥x∥ , ∥y∥ ď b^ xx´ y,∇fx´∇fyy ă ηpε, bq Ñ ∥x´ y∥ ă εq .

Then T is uniformly continuous on bounded sets with

@ε, b ą 0@x, y P Bbp0q
`

∥x´ y∥ ă ω∇f
pηpε, Epbqq{2Epbq, bq Ñ ∥Tx´ Ty∥ ă ε

˘

.

Proof. Let x, y be given with ∥x∥ , ∥y∥ ď b. As T is Bregman firmly nonexpansive, we
get by definition that

xTx´ Ty,∇fTx´∇fTyy ď xTx´ Ty,∇fx´∇fyy

ď ∥Tx´ Ty∥ ∥∇fx´∇fy∥

ď 2Epbq ∥∇fx´∇fy∥ .
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In particular, if ∥x´ y∥ ă ω∇f pε{2Epbq, bq, we have

xTx´ Ty,∇fTx´∇fTyy ă ε

and thus, if ∥x´ y∥ ă ω∇f pηpε, Epbqq{2Epbq, bq, we get ∥Tx´ Ty∥ ă ε.

A crucial feature of strongly nonexpansive maps (in the usual sense) as compared
to e.g. firmly nonexpansive maps is that they are closed under composition. A similar
result holds for Bregman strongly nonexpansive maps as established in [143]. We now
derive a quantitative variant that allows one to combine (strong) BSNE-moduli for the
factors into a (strong) BSNE-modulus for the composition. This result is similar to
the corresponding results for “ordinary” (quasi)-strongly nonexpansive maps given in
[99] (see Theorem 2.10 and Theorem 4.6 therein).

However, before we move to this result on moduli for compositions, we first consider
a quantitative treatment of the fact that fixed points of compositions of Bregman
strongly nonexpansive operators are fixed points of the factors (see e.g. Proposition
3.4 in [143]). This result, however, crucially relies on the fact that FppT q Ď F pT q and
so here, we will have to rely on a quantitative treatment of this aspect. The inclusion
FppT q Ď F pT q concretely expresses the closure property

@x P X, pxnq Ď X p∥xn ´ Txn∥Ñ 0 and xn Ñ x (weakly) Ñ x “ Txq

of which the underlying logical methods used in this chapter suggest the following
uniform quantitative version to be necessary in the analysis:

@ε, b ą 0Dκ ą 0@x, y P Xp∥x∥ , ∥y∥ ď b

^ ∥y ´ Ty∥ , ∥y ´ x∥ ă κÑ ∥x´ Tx∥ ă εq.

We call a function κpε, bq that provides witness for such a κ in terms of ε, b a modulus
of uniform closedness for F pT q as this kind of modulus is essentially just a concrete
instantiation of the moduli of uniform closedness considered in an abstract context in
[112]. In particular, we want to note that this modulus can from a logical perspective
be recognized as a quantitative form of a weak extensionality principle for T , namely

@x, y py “ Ty ^ x “ y Ñ x “ Txq

which has previously received attention in proof mining, in particular due to the fact
that there are meaningful classes of maps that posses such moduli of uniform closed-
ness but fail to be uniformly continuous (as e.g. maps satisfying Suzuki’s (E) condition
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[67, 201], see also the discussions in [100, 112]).

In the presence of such a modulus, we can now turn to the following quantitative
result (which is anyhow analogous to Proposition 4.15 from [99]):

Theorem 9.3.14. Let ξ be a modulus of uniform continuity on bounded subsets for
Df in its second argument. Let θ be a modulus of weak triangularity for Df . Let ρ be a
modulus of consistency for f and let P be a modulus for reverse consistency for f . Let
T1, . . . , TN : X Ñ X be Bregman strongly nonexpansive with a (not necessarily strong)
BSNE-modulus ω w.r.t. some common fixed point p P

ŞN
i“1 F pTiq. Let κ be a common

modulus of uniform closedness of F pT1q, . . . , F pTNq.
Then for all ε ą 0:

∥TN ˝ ¨ ¨ ¨ ˝ T1x´ x∥ ă P pφpε, b,Nq, bq Ñ
N
ľ

i“1

∥x´ Tix∥ ă ε

whenever b ě ∥x∥ , ∥p∥ and b ě ∥Tk ˝ ¨ ¨ ¨ ˝ T1x∥ for 1 ď k ď N where φpε, b,Nq “
χbpN ´ 1, εq and, given b, χb : Nˆ p0,8q Ñ p0,8q is defined by

$

’

’

’

&

’

’

’

%

χbp0, εq :“ mintρpκpε, bq, bq, ρpε, bqu,

χbpn` 1, εq :“ mintρpξpωpmintθpχbpn, εq, bq, ρpκpε, bq, bqu, bq, bq, bq,

χbpn, εq, θpχbpn, εq, bqu.

In particular, if E is a common modulus for T1, . . . , TN being bounded on bounded
sets, then above claim holds for b ě ∥x∥ , ∥p∥ and P pφpε, bp, Nq, bpq with φpε, b,Nq “

χbppN ´ 1, εq and where bp“ maxtb, Epbq, . . . , EpNqpbqu.

Proof (compare also [99]). Note first that

χbpn, εq ď mintρpκpε, bq, bq, ρpε, bqu. (0)

Also note that every Tk is in particular Bregman quasi-nonexpansive w.r.t. p. We show
by induction on 1 ď k ď N thatDf pTk˝¨ ¨ ¨˝T1x, xq ă χbpk´1, εq implies ∥x´ Tix∥ ă ε

for 1 ď i ď k. For k “ 1, the statement trivially holds since χbp0, εq ď ρpε, bq. So let
1 ă k ď N and assume that the claim holds for k ´ 1 and that

Df pTk ˝ ¨ ¨ ¨ ˝ T1x, xq ă χbpk ´ 1, εq

“ mintρpξpωpmintθpχbpk ´ 2, εq, bq, ρpκpε, bq, bqu, bq, bq, bq,

χbpk ´ 2, εq, θpχbpk ´ 2, εq, bqu. (1)
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For y “ Tk´1 ˝ ¨ ¨ ¨ ˝ T1x, we have

∥x´ Tky∥ ă ξpωpmintθpχbpk ´ 2, εq, bq, ρpκpε, bq, bqu, bq, bq. (2)

Hence by (2), the assumption on ξ and p P
Şk
i“1 F pTiq, we derive

Df pp, yq ´ ωpmintθpχbpk ´ 2, εq, bq, ρpκpε, bq, bqu, bq

ď Df pp, xq ´ ωpmintθpχbpk ´ 2, εq, bq, ρpκpε, bq, bqu, bq

ă Df pp, Tkyq

where we in particular used thatDf pp, yq ď Df pp, xq. Thus, since ω is a BSNE-modulus
for Tk:

Df pTky, yq ă mintθpχbpk ´ 2, εq, bq, ρpκpε, bq, bqu. (3)

By (1) and (3) together with the assumption on θ, we thus obtain

Df pTk´1 ˝ ¨ ¨ ¨ ˝ T1x, xq “ Df py, xq ă χbpk ´ 2, εq (4)

from which we derive
k´1
ľ

i“1

∥x´ Tix∥ ă ε

using the induction hypothesis. From (0) and (4) together with the definition of ρ, we
also get

∥x´ Tk´1 ˝ ¨ ¨ ¨ ˝ T1x∥ ă κpε, bq

and so by (3), we obtain ∥x´ Tkx∥ ă ε.

We now turn to the following result on moduli for compositions of Bregman strongly
nonexpansive maps (which is modeled after Theorem 2.10 and Theorem 4.6 from [99]):

Theorem 9.3.15. Let ξ be a modulus of uniform continuity on bounded subsets for
Df in its second argument. Let θ be a modulus of weak triangularity for Df . Let ρ
be a modulus of consistency for Df and let P be a modulus of reverse consistency.
Let T1, . . . , Tn : X Ñ X be uniformly Bregman strongly nonexpansive maps with
strong BSNE-moduli ω1, . . . , ωn and derived moduli ω11, . . . , ω1n and assume that the
Ti’s have a common fixed point. Let κ be a common modulus of uniform closedness of
F pT1q, . . . , F pTNq.

Then T “ Tn ˝ ¨ ¨ ¨ ˝ T1 is uniformly Bregman strongly nonexpansive with modulus

ωpε, bq :“ min
!

ωppε, bq{2, P pφpmintωp1pε, bq, ωppε, bqu, bp, nq, bpq
)
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where

ωppε, bq :“ min
!

ω1pρpP pε, bpq{n, bpq, bpq, . . . , ωnpρpP pε, bpq{n, bpq, bpq
)

,

ωp1pε, bq :“ min
!

ω11pωppε, bq{2pn´ 1q, bpq, . . . , ω1npωppε, bq{2pn´ 1q, bpq
)

,

and where φ is defined as in Theorem 9.3.14, where bp “ maxtb, Epbq, . . . , Epnqpbqu for
b satisfying b ě ∥q∥ for a common fixed point q of the Ti’s and where E is a common
modulus for T1, . . . , Tn being bounded on bounded sets.

If the ωi are ordinary BSNE-moduli, then ω defined by

ωpε, bq :“ min
!

ω1pρpP pε, bpq{n, bpq, bpq, ω2pρpP pε, bpq{n, bpq, bpq, . . . , ωnpρpP pε, bpq{n, bpq, bpq
)

is a BSNE-modulus for T “ Tn ˝ ¨ ¨ ¨ ˝ T1 where bp is defined as before.

Proof (compare also [99]). Define

ωppε1, . . . , εn, bq :“ min
!

ω1pρpε1, bpq, bpq, . . . , ωnpρpεn, bpq, bpq
)

,

and

ωp1pε1, . . . , εn, bq :“ min

"

ω11pωppε1, . . . , εn, bq{2pn´ 1q, bpq,

. . . , ω1npωppε1, . . . , εn, bq{2pn´ 1q, bpq

*

as well as

ωpε1, . . . , εn, bq :“ min

"

ωppε1, . . . , εn, bq{2,

P pφpmintωp1pε1, . . . , εn, bq, ωppε1, . . . , εn, bqu, bp, nq, bpq

*

.

Now, suppose

∥p´ Tp∥ , Df pp, xq ´Df pp, Txq ă ωpε1, . . . , εn, bq,

for points x, p with ∥x∥ , ∥p∥ ď b. Then Theorem 9.3.14 yields that

∥p´ Tip∥ ă mintωp1pε1, . . . , εn, bq, ωppε1, . . . , εn, bqu.

Therefore, we get

Df pp, Txq “ Df pp, Tn ˝ Tn´1 ˝ ¨ ¨ ¨ ˝ T1xq

ď Df pp, Tn´1 ˝ ¨ ¨ ¨ ˝ T1xq ` ωppε1, . . . , εn, bq{2pn´ 1q

ď . . .

ď Df pp, T1xq ` pn´ 1qωppε1, . . . , εn, bq{2pn´ 1q

ď Df pp, xq ` nωppε1, . . . , εn, bq{2pn´ 1q
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and therefore

Df pp, Ti´1 ˝ ¨ ¨ ¨ ˝ T1xq ´Df pp, Ti ˝ Ti´1 ˝ ¨ ¨ ¨ ˝ T1xq

ď Df pp, xq ´Df pp, Txq

` pn´ 1qωppε1, . . . , εn, bq{2pn´ 1q

ă ωppε1, . . . , εn, bq

ď ωipρpεi, bpq, bpq

for any i “ 1, . . . , n. This, together with ∥p´ Tip∥ ă ωipρpεi, bpq, bpq, yields

Df pTi ˝ Ti´1 ˝ ¨ ¨ ¨ ˝ T1x, Ti´1 ˝ ¨ ¨ ¨ ˝ T1xq ă ρpεi, bpq

as ωi is a strong BSNE-modulus for Ti. In particular, we have

∥Ti ˝ Ti´1 ˝ ¨ ¨ ¨ ˝ T1x´ Ti´1 ˝ ¨ ¨ ¨ ˝ T1x∥ ă εi

so that we get ∥x´ Tx∥ ă ε1 ` ¨ ¨ ¨ ` εn. Now, for εi “ P pε, bpq{n, we then get
∥x´ Tx∥ ă P pε, bpq so that Df pTx, xq ă ε.

If the ωi’s are BSNE-moduli and if p is a real fixed point of T (and thus a common
fixed point of the Ti’s as FppT q Ď

Şn
i“1 F

ppTiq, see [143]), then it is clear that the second
term involving φ can be dropped.

The last type of operation on Bregman strongly nonexpansive operators that we
consider here is that of the block operator introduced in [143, 144]:

Definition 9.3.16 ([143, 144]). Let Ti, i “ 1, . . . , N , be finitely many operators and
let wi P r0, 1s, i “ 1, . . . , N , be finitely many weights with

řN
i“1wi “ 1. Then the

associated block operator is defined as

Tx “ ∇f˚
˜

N
ÿ

i“1

wi∇fTix

¸

.

In particular, as shown in [143, 144], such block operators, if composed of Bregman
strongly nonexpansive maps, are again Bregman strongly nonexpansive. For a quanti-
tative version of the said result, we consider the following lemmas.

At first, we note that a block operator is bounded on bounded sets if its summands
are.
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Lemma 9.3.17. Let ∇f , ∇f˚ be bounded on bounded sets with moduli C, F , respec-
tively. Let Ti, i “ 1, . . . , N , be finitely many operators which are bounded on bounded
sets with a common modulus E and let wi P r0, 1s, i “ 1, . . . , N , be finitely many
weights with

řN
i“1wi “ 1.

Then the associated block operator T is bounded on bounded sets with a modulus
E 1pbq :“ F pCpEpbqqq.

Proof. For ∥x∥ ď b, we clearly have⃦⃦⃦⃦
⃦ N
ÿ

i“1

wi∇fTix

⃦⃦⃦⃦
⃦ ď N

ÿ

i“1

wi ∥∇fTix∥ ď CpEpbqq

and thus ∥Tx∥ “
⃦⃦⃦
∇f˚

řN
i“1wi∇fTix

⃦⃦⃦
ď F pCpEpbqqq.

As shown in [144], one has F pT q Ď F pTiq for a block operator T and a summand
Ti. The following lemma gives a quantitative version of this, translating bounds for
approximate fixed points.

Theorem 9.3.18. Let ξ be a modulus of uniform continuity of Df in its second argu-
ment. Let Ti, i “ 1, . . . , N , be finitely many Bregman strongly nonexpansive operators
with a (not necessarily strong) BSNE-modulus ω and let wi P r0, 1s, i “ 1, . . . , N , be
finitely many weights with

řN
i“1wi “ 1. Let T be the associated block operator. Assume

that T and all Ti’s are bounded on bounded sets with a common modulus E. Let p0 be
a common fixed point of all Ti’s and let b ě ∥p0∥.

Then for any x with ∥x∥ ď b and any k “ 1, . . . , N :

wk ě w ą 0^ ∥x´ Tx∥ ă ξ
´

wωpρpε, bpq, bq, bp
¯

Ñ ∥x´ Tkx∥ ă ε

where bp“ maxtb, Epbqu.

Proof. If

∥x´ Tx∥ ă ξ
´

wωpρpε, bpq, bq, bp
¯

,

then we get

Df pp0, xq ´Df pp0, Txq ă wωpρpε, bpq, bq.
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Fix k “ 1, . . . , N . Then

Df pp0, Txq ď wkDf pp0, Tkxq `
ÿ

i‰k

wiDf pp0, Tixq

ď wkDf pp0, Tkxq `
ÿ

i‰k

wiDf pp0, xq

ď wkDf pp0, Tkxq ` p1´ wkqDf pp0, xq

ď wkpDf pp0, Tkxq ´Df pp0, xqq `Df pp0, xq

and thus in particular

wkpDf pp0, xq ´Df pp0, Tkxqq ď Df pp0, xq ´Df pp0, Txq ă wωpρpε, bpq, bq

which implies Df pp0, xq ´Df pp0, Tkxq ă ωpρpε, bpq, bq. As ω is a BSNE-modulus for Tk,
we get Df pTkx, xq ă ρpε, bpq which yields ∥x´ Tkx∥ ă ε.

The following lemma now provides a map that translates strong BSNE-moduli for
the summands into strong BSNE-moduli for the block operator and in that sense is a
quantitative version of Proposition 14 in [144].

Theorem 9.3.19. Let ξ be a modulus of uniform continuity of Df in its second ar-
gument. Let ω∇f be a modulus of uniform continuity of ∇f on bounded sets and C

be a modulus witnessing that ∇f is bounded on bounded sets. Let Ti, i “ 1, . . . , N ,
be finitely many uniformly Bregman strongly nonexpansive operators with a common
strong BSNE-modulus ω and derived modulus ω1 and let wi P r0, 1s, i “ 1, . . . , N , be
finitely many weights with

řN
i“1wi “ 1. Let T be the associated block operator. As-

sume that T and all Ti’s are bounded on bounded sets with a common modulus E. Let
p0 P F pT q be a common fixed point of all Ti’s and let b ě ∥p0∥.

Then T is uniformly Bregman strongly nonexpansive with a strong BSNE-modulus
ωp which can be defined by

ωppε, bq :“ mintw2ωpε1, bq, ξpwωpρpmintωpε1, bq, ω1pwωpε1, bq, bqu, bpq, bq, bpqu

where bp“ maxtb, Epbqu and ε1 “ ρpω∇f pε{4bp, bpq, bpq and w “ mintε{8NbpCpbpq, 1u.
If ω is only a (not necessarily strong) BSNE-modulus, then we can chose ωppε, bq “

wωpε1, bq as a BSNE-modulus for T .

Proof. Let x, p be given with ∥x∥ , ∥p∥ ď b, ∥p´ Tp∥ ă ωppε, bq as well as

Df pp, xq ´Df pp, Txq ă ωppε, bq.
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Then in particular

∥p´ Tp∥ ă ξpwωpρpmintωpε1, bq, ω1pwωpε1, bq, bqu, bpq, bq, bpq

and by Theorem 9.3.18, we have

∥p´ Tkp∥ ă mintωpε1, bq, ω1pwωpε1, bq, bqu

for any k with wk ě w.
We further have

Df pp, Txq ď
N
ÿ

i“1

wiDf pp, Tixq

and, therefore,
N
ÿ

i“1

wi pDf pp, xq ´Df pp, Tixqq ď Df pp, xq ´Df pp, Txq ă ωppε, bq

which implies

wk pDf pp, xq ´Df pp, Tkxqq ă ωppε, bq `
ÿ

i‰k

wi pDf pp, Tixq ´Df pp, xqq

ă ωppε, bq ` p1´ wkqwωpε
1, bq

ď w2ωpε1, bq ` p1´ wqwωpε1, bq

“ wωpε1, bq

and thus Df pp, xq ´ Df pp, Tkxq ă ωpε1, bq for any k with wk ě w. As ω is a strong
BSNE-modulus for Tk, this gives Df pTkx, xq ă ε1 for any such k. Thus in particular
∥x´ Tkx∥ ă ω∇f pε{4bp, bpq which yields

∥∇fx´∇fTkx∥ ă ε{4bp.

As we have

∇fTx´∇fx “
N
ÿ

i“1

wip∇fTix´∇fxq

the above yields

∥∇fTx´∇fx∥ ď
N
ÿ

i“1

wi ∥∇fx´∇fTix∥

“
ÿ

i:wiěw

wi ∥∇fx´∇fTix∥`
ÿ

i:wiăw

wi ∥∇fx´∇fTix∥

ă
ÿ

i:wiěw

wiε{4bp`
ÿ

i:wiăw

wi2Cpbpq

ă ε{4bp
ÿ

i:wiěw

wi `
ÿ

i:wiăw

w2Cpbpq

ď ε{2bp.
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Now using the three point identity, we have

Df pTx, xq `Df px, Txq “ xTx´ x,∇fpTxq ´∇fpxqy

ď ∥∇fTx´∇fx∥ ∥Tx´ x∥

ď ∥∇fTx´∇fx∥ 2bp

ă ε

which in particular yields Df pTx, xq ă ε.

It is immediate to see that if ω is just a (not necessarily strong) BSNE-modulus
and p is a fixed point of T , that wωpε1, bq suffices.

9.4 Picard iterations

We now consider the first type of iteration of Bregman strongly nonexpansive map-
pings: as shown in [142], a Bregman strongly nonexpansive map T : X Ñ X (in the
context of some surrounding assumptions) is asymptotically regular, i.e. it holds that
∥xn ´ Txn∥Ñ 0 where xn :“ T nx is the Picard iteration of T . In this section, we now
derive quantitative rates for the above limit. In fact, we will actually first establish
a corresponding quantitative result for a more general iteration involving a family of
Bregman strongly nonexpansive operators of which the above Picard iteration will be
a special case.

For this, we now fix the following moduli abstractly:7

(a) Let θ : p0,8q2 Ñ p0,8q be a modulus of weak triangularity for Df , i.e.

@ε, b ą 0@x, y, z P Xp∥x∥ , ∥y∥ , ∥z∥ ď b

^Df px, yq, Df pz, yq ă θpε, bq Ñ Df px, zq ă εq.

(b) Let ξ : p0,8q2 Ñ p0,8q be a modulus for Df px, yq being uniformly continuous in
y on bounded sets, i.e.

@ε, b ą 0@x, y1, y2 P Xp∥x∥ , ∥y1∥ , ∥y2∥ ď b

^ ∥y1 ´ y2∥ ă ξpε, bq Ñ |Df px, y1q ´Df px, y2q| ă εq.

7Note the previous sections for how such moduli can be derived from respective moduli for the
uniform continuity of ∇f , etc.
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(c) Let ρ : p0,8q2 Ñ p0,8q be a modulus of consistency for f , i.e.

@ε, b ą 0@x, y P X p∥x∥ , ∥y∥ ď b^Df px, yq ă ρpε, bq Ñ ∥x´ y∥ ă εq .

We then obtain the following result on rates of metastability and rates of conver-
gence for iterations of families of Bregman strongly nonexpansive mappings. In that
vein, the result provides a quantitative version of the respective asymptotic regularity
results contained in [143, 144]. Further, the theorem is an adaptation of a similar re-
sult (see Theorem 4.7 in [99]) on strongly quasi-nonexpansive mappings in the ordinary
sense.

Theorem 9.4.1. Let pTnqnPN be a sequence of functions Tn : X Ñ X which are Breg-
man strongly nonexpansive w.r.t. some p P

Ş

nPN F pTnq with a common BSNE-modulus
ωpε, bq. Let x0 P X, xn`1 “ Tnxn and b ě Df pp, x0q, ∥p∥ , ∥xn∥.

Then8

@ε ą 0@g : NÑ NDn ď ψb,ωpε, gq@k P rn;n` gpnqs pDf pxk`1, xkq ă εq

where
ψb,ωpε, gq :“ grpr

b
ωpε,bq sqp0q

and grpnq :“ n` gpnq ` 1.
In particular, if o is a modulus of boundedness of Df , then the above results holds

true for ψbp,ωpε, gq where b ě Df pp, x0q, ∥p∥ and bp“ maxtopb, bq, bu.
Further, if Tn “ T for all n P N and T , additionally, is also Bregman nonexpansive,

then we even have

@ε ą 0@k ě

S

bp

ωpε, bpq

W

pDf pxk`1, xkq ă εq .

Proof. Since Tn in particular is Bregman quasi-nonexpansive w.r.t. p, we get that

0 ď Df pp, xnq ď Df pp, x0q ď b.

Hence by Corollary 2.28 and Remark 2.29 from [96], we get that the function

φpε, gq :“ grpr
b
εsqp0q

satisfies

@ε ą 0@g : NÑ NDn ď φpε, gq@i, j P rn;n` gpnq ` 1s p|Df pp, xiq ´Df pp, xjq| ă εq

8Here, and in the following, we write rn;ms “ rn,ms X N.
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and so, in particular, we have

@ε ą 0@g : NÑ NDn ď φpε, gq@k P rn;n` gpnqs p|Df pp, xkq ´Df pp, Tkxkq| ă εq .

Hence for ωpε, bq in place of ε in the above and using the fact that Tk is Bregman
strongly nonexpansive with modulus ω, we get that

@ε ą 0@g : NÑ NDn ď φpωpε, bq, gq@k P rn;n` gpnqs pDf pTkxk, xkq ă εq

which proves the first claim. For gpnq “ 0 for all n, we thus in particular have

@ε ą 0Dn ď grpr
b

ωpε,bq sqp0q “

R

b

ωpε, bq

V

pDf pxn`1, xnq ă εq .

If now Tk “ T for all k and T is additionally Bregman nonexpansive, then

Df pxk`1, xkq “ Df pT
k`1x, T kxq ď Df pT

n`1x, T nxq “ Df pxn`1, xnq

for all k ě n and so the second claim follows.

From this, we get the following corollary to derive convergence of the norm distance:

Corollary 9.4.2. In addition to the assumptions in Theorem 9.4.1, let ρ be a modulus
of consistency for f . Then

@ε ą 0@g : NÑ NDn ď ψb,ωpρpε, dq, gq@k P rn;n` gpnqs p∥xk ´ xk`1∥ ă εq .

If again Tk “ T for all k and T is additionally Bregman nonexpansive or nonexpansive
(w.r.t. ∥¨∥), then

@ε ą 0@k ě

R

b

ωpρpε, dq, bq

V

p∥xk ´ xk`1∥ ă εq .

The main application of this Picard process now follows if the iterated map is a
composition. Together with Theorem 9.3.15, we can then obtain the following result
giving that the Picard iteration xn`1 “ Txn of a composition T “ Tk ˝¨ ¨ ¨˝T1 is asymp-
totically regular w.r.t. each Tj (which in particular provides a quantitative perspective
on the method of cyclic Bregman projections [175]):

Theorem 9.4.3. Let ξ be a modulus of uniform continuity on bounded subsets for
Df in its second argument. Let θ be a modulus of weak triangularity for Df . Let ρ
be a modulus of consistency for f and let P be a modulus for reverse consistency for
f . Let o be a modulus of boundedness of Df . Let ∇f and f be bounded on bounded
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sets with moduli C, D. Let T1, . . . , Tk : X Ñ X be Bregman strongly nonexpansive
w.r.t. some p P F pT1q X ¨ ¨ ¨ X F pTkq with a (not necessarily strong) BSNE-modulus
ω. Let κ be a common modulus of uniform closedness of F pT1q, . . . , F pTNq. Define
T “ Tk ˝ ¨ ¨ ¨ ˝ T1 as well as xn “ T nx0 for some x0 P X. Let b ě Df pp, x0q, ∥p∥
and define br “ maxtopb, bq, bu as well as bp “ maxtbr, Epbrq, . . . , Epkqpbrqu for Epbq :“

op2Dpbq ` 2bCpbq, bq.
Then

@ε ą 0@g : NÑ NDn ď Φpε, gq@i P rn;n` gpnqs@j P r1; ks p∥Tjxi ´ xi∥ ă εq

where Φ is defined by

Φpε, gq :“ gr

´Q

bp

ωppP pφpε,bp,kq,bpq,bpq

U¯

p0q

where φpε, b, kq “ χbpk ´ 1, εq with χ defined by
$

’

’

’

&

’

’

’

%

χbp0, εq :“ mintρpκpε, bq, bq, ρpε, bqu,

χbpn` 1, εq :“ mintρpξpωpmintθpχbpn, εq, bq, ρpκpε, bq, bqu, bq, bq, bq,

χbpn, εq, θpχbpn, εq, bqu.

and where
ωppε, bq :“ ωpρpP pε, bpq{k, bpq, bpq.

Proof. The theorem is a straightforward combination of Corollary 9.4.2, Theorem
9.3.15, Theorem 9.3.14 and Lemma 9.3.5.

Corollary 9.4.4. Let Ωj, j “ 1, . . . , k, be non-empty, closed and convex sets with
Bregman projections P f

Ωj
and assume in addition to the assumptions in Theorem 9.4.3

that ∇f is uniformly continuous on bounded sets with a modulus ω∇f and that it is
uniformly strictly monotone with a modulus η, i.e.

@ε, b ą 0@x, y P X p∥x∥ , ∥y∥ ď b^ xx´ y,∇fx´∇fyy ă ηpε, bq Ñ ∥x´ y∥ ă εq .

Then for T “ P f
Ωk
˝ ¨ ¨ ¨ ˝ P f

Ω1
and xn “ T nx0 for some x0 P X, we have

@ε ą 0@g : NÑ NDn ď Φpε, gq@i P rn;n` gpnqs@j P r1; ks
´⃦⃦⃦
P f
Ωj
xi ´ xi

⃦⃦⃦
ă ε

¯

with Φ defined by

Φpε, gq :“ gr

´Q

bp

P pφpε,bp,kq,bpq

U¯

p0q

with φ and χ defined as in Theorem 9.4.3, now using

κpε, bq “ mintε{3, ω∇f
pηpε{3, Epbqq{2Epbq, bqu.
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Proof. The corollary immediately follows from the above Theorem 9.4.3 where, for the
particular case of Bregman projections, one additionally invokes Lemma 9.3.13 as well
as Lemma 9.3.8 (by which we can use ωpε, bq “ ε as the common BSNE-modulus).

The following proposition now provides an analogous result in the case that xn`1 is
not exactly given by Tnxn but actually is allowed to differ from that point up to some
summable error (compare this now to Theorem 4.9 from [99]). For that, we use the
following result from [99]:

Lemma 9.4.5 (Lemma 4.8, [99]). Let panq, pδnq be sequences of nonnegative reals with

an`1 ď an ` δn,

where
ř

δn ă 8. Let A,D P N with A ě a0 and D ě
ř

δn. Define

φrA,Dpε, gq :“ grpKqp0q, where K “

R

4pA` 5Dq

ε

V

and grpnq :“ n` gpnq.

Then φrA,D is a rate of metastability for panq.

Proposition 9.4.6. Let pTnqnPN be a sequence of functions Tn : X Ñ X which are Breg-
man strongly nonexpansive w.r.t. some p P

Ş

nPN F pTnq with a common BSNE-modulus
ωpε, bq. Let ξ be a modulus of uniform continuity of Df pp, uq in the argument u. Let
pxnq Ď X be such that ∥xn`1 ´ Tnxn∥ ă ξpδn, bq where b ě ∥p∥ , ∥xk∥ , ∥Tkxk∥ , Df pp, x0q

for all k and where pδnq Ď r0,8q with
ř

δn ď D. Let α be a rate of convergence for
δn Ñ 0, i.e.

@ε ą 0@n ě αpεq pδn ă εq .

Then

@ε ą 0@g : NÑ NDn ď ψrb,ωpε, gq@k P rn;n` gpnqs pDf pTkxk, xkq ă εq

with
ψrb,ωpε, gq :“ φrb,Dpωpε, bq{2, gαpωpε,bq{2q ` 1qq ` αpωpε, bq{2q

where glpnq :“ gpn` lq ` l and

φrb,Dpε, gq :“ grpKqp0q with K “

R

4pb` 5Dq

ε

V

and grpnq :“ n` gpnq.

In particular, if o is a modulus of boundedness of Df , then the above results holds true
for ψrbp,ωpε, gq where b ě Df pp, x0q, ∥p∥ and bp“ maxtopb`D, bq, bu.
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Proof. Using the definition of ξ, we get for all n P N:

0 ď Df pp, xn`1q ď Df pp, Tnxnq ` δn ď Df pp, xnq ` δn.

Hence by Lemma 9.4.5 applied to an :“ Df pp, xnq (note that b ě a0), we get that

@ε ą 0@g : NÑ NDn ď φrb,Dpε, g ` 1q@i, j P rn;n` gpnq ` 1s

p|Df pp, xiq ´Df pp, xjq| ă εq

and so, in particular, we have

@ε ą 0@g : NÑ NDn ď φrb,Dpε, g ` 1q@k P rn;n` gpnqs

p|Df pp, xkq ´Df pp, xk`1q| ă εq .

Applied to gαpεq for a given ε, this yields

Dn ď φrb,Dpε, gαpεq ` 1q@k P rn;n` gpn` αpεqq ` αpεqs p|Df pp, xkq ´Df pp, xk`1q| ă εq

and so (by considering n` αpεq instead of n), we get

Dn P rαpεq;φrb,Dpε, gαpεq ` 1q ` αpεqs@k P rn;n` gpnqs p|Df pp, xkq ´Df pp, xk`1q| ă εq .

In turn, this then yields that

Dn ď φrb,Dpε, gαpεq ` 1q ` αpεq@k P rn;n` gpnqs p|Df pp, xkq ´Df pp, Tkxkq| ă 2εq

since for k ě n ě αpεq, we have

|Df pp, xkq ´Df pp, Tkxkq|

ď |Df pp, xkq ´Df pp, xk`1q| ` |Df pp, xk`1q ´Df pp, Tkxkq|

ă ε` δk

ď 2ε.

Hence we lastly get that

Dn ď
`

φrb,Dpωpε, bq{2, gαpωpε,bq{2q ` 1qq ` αpωpε, bq{2q
˘

@k P rn;n` gpnqs

pDf pTkxk, xkq ă εq .
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9.5 A rate of metastability for a Halpern-type itera-

tion of a family of maps

To obtain a strong convergence result, in [199], the authors defined a suitable Halpern-
type iteration of a given Bregman strongly nonexpansive mapping. Concretely, the
following result was established:

Theorem 9.5.1 ([199]). Let X be a real reflexive Banach space and f : X Ñ R be a
supercoercive Legendre function which is bounded on bounded sets, uniformly Fréchet
differentiable and totally convex on bounded subsets. Let T be a Bregman strongly
nonexpansive mapping such that F pT q “ FppT q ‰ H. Given a u P X, define a sequence
xn by x0 “ x P X and

xn`1 “ ∇f˚ pαn∇fu` p1´ αnq∇fTxnq

where pαnq Ď p0, 1q satisfies limαn “ 0 and
ř

αn “ 8. Then pxnq converges strongly
to P f

F pT qpuq.

The aim of this section is to provide a quantitative analysis of this result as well as
its extension to a family of mappings pTnq as considered in [199], i.e. given u and x0,
we will consider the sequence

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fTnxnq. (˚)

The proof of convergence for Theorem 9.5.1 as well as its extension to families of
maps relies on a Lemma by Xu [209] as well as a subsequence construction due to
Maingé [141], both of which have been treated quantitatively before in [124] as well as
[104], respectively9, and we present the quantitative versions of these crucial lemmas
below.

Lemma 9.5.2 ([104], essentially [124]). Let b ą 0 and panq Ď r0, bs with

an`1 ď p1´ αnqan ` αnβn ` γn

for all n where pαnq Ď p0, 1s with
ř8

n“0 αn “ `8 (i.e.
ś8

n“mp1´αnq “ 0 for all m P N)
and pβnq Ď R as well as pγnq Ď r0,8q. Let S : p0,8q ˆ NÑ N be nondecreasing in m

such that

@m P N, ε ą 0

˜

Spε,mq
ź

k“m

p1´ αkq ď ε

¸

.

9The quantitative version of Xu’s lemma presented in [124] works with slightly stronger assumptions
than that presented in [104].
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For ε ą 0 and g : NÑ N, define

gppnq :“ gM pn` Spε{4b, nq ` 1q ` Spε{4b, nq.

Suppose that N satisfies

Dm ď N@i P rm;m` gppmqs pβi ď ε{4q .

Then for

Φpε, S,N, bq :“ N ` Spε{4b,Nq ` 1,

we get that

Φpε,S,N,bq`gM pΦpε,S,N,bqq
ÿ

i“0

γi ď ε{2Ñ Dn ď Φpε, S,N, bq@i P rn;n` gpnqs pai ď εq .

Lemma 9.5.3 ([104]). Let b ą 0 and panq Ď r0, bs.

1. Let τ : NÑ N be such that

@n, k P N pk ď n^ ak ă ak`1 Ñ k ď τpnqq . (+)

For K P N, g : NÑ N, ε ą 0 and grpnq :“ n` gpnq, define

Ψpε, g,K, bq :“ grprb{εsq
pKq.

Then

τpΨpε, g,K, bqq ă K

Ñ Dn ď Ψpε, g,K, bq pn ě K ^ @i, j P rn;n` gpnqs p|ai ´ aj| ď εqq .

2. Let n0 P N be such that Dn ď n0 pan ă an`1q. Define

τpnq :“ maxtk ď maxtn0, nu | ak ă ak`1u.

Then τ is well-defined and satisfies (+). Moreover,

(a) @n P N
`

aτpnq ď aτpnq`1
˘

,

(b) @n P N pτpnq ď τpn` 1qq,

(c) @n ě n0

`

an ď aτpnq`1
˘

.
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Before we move to quantitative results on the iteration considered above, we are first
concerned with providing a quantitative account for Bregman projections onto fixed
point sets of Bregman strongly nonexpansive maps. For this, the following lemma
initially provides a quantitative version of the convexity of F pT q as (essentially) shown
in [178].

Lemma 9.5.4. Let ρ be a modulus of consistency for f . Let T be uniformly Bregman
strongly nonexpansive with strong BSNE-modulus ω and derived modulus ω1. Let T be
bounded on bounded sets with a modulus E. Let ε, b ą 0 be given and let x, y be such
that ∥x∥ , ∥y∥ ď b and let z “ tx` p1´ tqy for some t P r0, 1s.

If
∥Tx´ x∥ , ∥Ty ´ y∥ ă ω1pρpε,maxtb, Epbquq, bq,

then we have
∥Tz ´ z∥ ă ε.

Proof. Note that ∥z∥ ď t ∥x∥` p1´ tq ∥y∥ ď b. As in [178], we get

Df pz, Tzq “ fpzq ` tDf px, Tzq ` p1´ tqDf py, Tzq ´ tfpxq ´ p1´ tqfpyq.

Using ω1, we get

Df px, Tzq ´Df px, zq, Df py, Tzq ´Df py, zq ă ρpε,maxtb, Epbquq

and thus, using the above and the definition of Df , we get

Df pz, Tzq ă fpzq ` tDf px, zq ` p1´ tqDf py, zq ´ tfpxq ´ p1´ tqfpyq

` ρpε,maxtb, Epbquq

“ ρpε,maxtb, Epbquq.

As ∥Tz∥ ď Epbq, we get ∥z ´ Tz∥ ă ε.

Now, the following lemma provides a quantitative result on the existence of ap-
proximative projections onto fixed point sets of Bregman strongly nonexpansive maps.
While the first part is concerned with the definition of said projections in terms of an in-
fimum over Bregman distances, the second part is concerned with the characterization
of Bregman projections in terms of a generalized type of variational inequality pro-
vided in [36] by which for a non-empty, closed and convex subset C and for a Gâteaux
differentiable and totally convex function f : X Ñ R, it holds that z “ P f

Cpxq if, and
only if z P C

xy ´ z,∇fx´∇fzy ď 0 for all y P C.
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Note for both results that for a Bregman quasi-nonexpansive map T , the set of fixed
points F pT q is closed and convex (see e.g. [178]10) and so P f

F pT q is defined for such a
map whenever F pT q ‰ H.

Lemma 9.5.5. Let ρ be a modulus of consistency for f . Let T be uniformly Bregman
strongly nonexpansive with strong BSNE-modulus ω and derived modulus ω1. Let T be
bounded on bounded sets with a modulus E. Let p0 P X be a fixed point of T with
Df pp0, uq, ∥p0∥ ď b.

1. For any ε ą 0 and ψ : p0,8q Ñ p0,8q, let

φpε, ψq “ mintψprqp1q | r ď rpb` 1q{εsu.

Then there exists a p P X and a δ ě φpε, ψq with ∥p∥ ď b and ∥Tp´ p∥ ă ψpδq

and

@q P X p∥q∥ ď b^ ∥Tq ´ q∥ ă δ Ñ Df pp, uq ă Df pq, uq ` εq .

2. Let further ∆ be a modulus witnessing that Df p¨, uq is uniformly Fréchet differ-
entiable on bounded subsets with derivative x ÞÑ ∇fx´∇fu, i.e. for any b, ε ą 0

and any x P Bbp0q, y P X:

0 ă ∥y∥ ă ∆pε, bq Ñ
|Df px` y, uq ´Df px, uq ´ xy,∇fx´∇fuy|

∥y∥
ă ε.

For any ε ą 0 and ψ : p0,8q Ñ p0,8q, let

φ1pε, ψq “ mintω1pρpψ1
prq
p1q,maxtb, Epbquq, bq | r ď rpb` 1q{ε1su

with ε1 “ ε
2
min

!

∆pε{4b,bq
4b

, 1{2
)

and with

ψ1pδq “ mintψpω1pρpδ,maxtb, Epbquq, bqq, ω1pρpδ,maxtb, Epbquq, bqu.

Then there exists a p P X with ∥p∥ ď b and a δ1 ě φ1pε, ψq such that ∥Tp´ p∥ ă
ψpδ1q

@q P X p∥q∥ ď b and ∥Tq ´ q∥ ă δ1 Ñ xq ´ p,∇fpuq ´∇fppqy ă εq .

10Note here, as well as already in the context of Lemma 9.5.4, that the results from [178], while
phrased for Bregman firmly nonexpansive maps, clearly already hold for Bregman quasi-nonexpansive
maps.
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Proof. 1. Assume the contrary, i.e. that there are ε and ψ such that for any p P X
and any δ ě φpε, ψq with ∥p∥ ď b and ∥Tp´ p∥ ă ψpδq:

Dq P X p∥q∥ ď b^ ∥Tq ´ q∥ ă δ ^Df pp, uq ´ ε ě Df pq, uqq .

Let r “ rpb` 1q{εs and pick q0 “ p0. Then clearly ∥q0∥ ď b and

∥Tq0 ´ q0∥ ă ψpr`1qp1q “ ψpψprqp1qq.

By definition, we have ψprqp1q ě φpε, ψq so that there exits a q1 with ∥q1∥ ď b

and ∥Tq1 ´ q1∥ ă ψprqp1q as well as

Df pq0, uq ´ ε ě Df pq1, uq.

Iterating this up to r yields a qr such that

0 ą Df pq0, uq ´ pb` 1q ě Df pq0, uq ´ rpb` 1q{εsε “ Df pq0, uq ´ rε ě Df pqr, uq

which is a contradiction.

2. Using (the proof of) (1), let p P X and δ “ ψ1piqp1q for i ď rpb` 1q{ε1s be such
that ∥p∥ ď b, ∥Tp´ p∥ ă ψ1pδq and

@q P X p∥q∥ ď b^ ∥Tq ´ q∥ ă δ Ñ Df pp, uq ă Df pq, uq ` ε
1
q .

Let δ1 “ ω1pρpδ,maxtb, Epbquq, bq. Then at first

∥Tp´ p∥ ă ψ1pδq “ mintψpδ1q, δ1u ď ψpδ1q.

Now let q be such that ∥q∥ ď b and ∥Tq ´ q∥ ă δ1. If q “ p, the claim is trivial.
So suppose q ‰ p. Then we can now reason along the lines of [34]: write ppαq for
p` αpq ´ pq. Using Lemma 9.5.4, as ∥Tp´ p∥ ă δ1, we have

∥Tppαq ´ ppαq∥ ă δ.

Therefore, for any α P r0, 1s:

Df pp, uq ă Df pppαq, uq ` ε
1

Now, using the fact that Df is convex and differentiable in its left argument with

rDf p¨, xqs
1
pyq “ ∇fpyq ´∇fpxq,
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we get
|Df pppαq, uq ´Df pp, uq ´ xαpq ´ pq,∇fp´∇fuy|

∥αpq ´ pq∥
ă ε{4b

if ∥αpq ´ pq∥ ă ∆pε{4b, bq, i.e. in particular if

α ă
∆pε{4b, bq

2b
.

Thus in particular

xq ´ p,∇fu´∇fpy
∥q ´ p∥

“
´xαpq ´ pq,∇fp´∇fuy

∥αpq ´ pq∥

ă
Df pp, uq ´Df pppαq, uq

∥αpq ´ pq∥
` ε{4b

which implies

xq ´ p,∇fu´∇fpy ă Df pp, uq ´Df pppαq, uq

α
` ε{4b ∥q ´ p∥ ď ε1

α
` ε{2

for any α ă min
!

∆pε{4b,bq
2b

, 1
)

. In particular, for α “ min
!

∆pε{4b,bq
4b

, 1{2
)

, we get

xq ´ p,∇fu´∇fpy ă ε{2` ε{2 “ ε.

Remark 9.5.6. Such a modulus ∆ witnessing that Df p¨, uq is uniformly Fréchet differ-
entiable on bounded subsets with derivative x ÞÑ ∇fx ´∇fu can be computed from
ω∇f : we have that

∥rDf p¨, uqs
1
pxq ´ rDf p¨, uqs

1
pyq∥ “ ∥∇fx´∇fy∥

so that ω∇f is a modulus for rDf p¨, uqs
1 being uniformly continuous on bounded subsets.

Therefore, we can apply Lemma 9.2.2, (1) to derive that ∆pε, bq “ mintω∇f pε, b`1q, 1u

is a suitable such modulus.

For the rest of this section, we are now concerned with quantitative results on the
extension of the iteration from Theorem 9.5.1 to families of mappings discussed before.
For the following quantitative results, we again fix some moduli abstractly:

(a) Let pTnq be a family of uniformly Bregman strongly nonexpansive maps with a
common strong BSNE-modulus ω and a common derived modulus ω1, i.e.

@ε, b ą 0@x, p P Xp∥p∥ , ∥x∥ ď b^ ∥Tnp´ p∥ ă ωpε, bq

^Df pp, xq ´Df pp, Tnxq ă ωpε, bq Ñ Df pTnx, xq ă εq
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as well as

@ε ą 0, b ą 0, x, p P Xp∥p∥ , ∥x∥ ď b

^ ∥Tnp´ p∥ ă ω1pε, bq Ñ Df pp, Tnxq ´Df pp, xq ă εq

for any n P N.

(b) Let pαnq Ď p0, 1s converge to zero with a rate σ : p0,8q Ñ N, i.e.

@n ě σpεq pαn ă εq .

(c) Let f be sequentially consistent with a modulus of consistency ρ.

(d) Let b P N˚ be given and let xn be defined by (˚) such that

b ě ∥xn∥ , ∥Tnxn∥ , ∥∇fpTnxnq∥ , ∥∇fpxnq∥ , ∥u∥ , ∥∇fpuq∥ ,

∥p0∥ , ∥∇fpp0q∥ , Df pp0, xnq, Df pp0, Tnxnq, Df pp0, uq

for all n P N where p0 is some given element of F pT q.

(e) Let ω∇f˚

: p0,8q Ñ p0,8q be a modulus of uniform continuity for ∇f˚ on b-
bounded sets.

(f) Let ωf : p0,8q Ñ p0,8q be a modulus of uniform continuity for f on b-bounded
sets.

(g) Let S : p0,8q ˆ NÑ N be nondecreasing in m such that

@m P N, ε ą 0

˜

Spε,mq
ź

k“m

p1´ αkq ď ε

¸

.

(h) For each n, let αn be such that 0 ă αn ď αn and define αrn “ mintαi | i ď nu.

Lemma 9.5.7. Let ε ą 0 be given and let xn be defined by (˚). Define

N :“ σ

ˆ

min

"

εr

8b
,
εr

16b2
,
1

2b
ω∇f˚

ˆ

min

"

εr

4b
, ωf

ˆ

εr

4

̇*̇*̇

where εr “ ωpρpε, bq, bq.
For any n ě N and p P X with

∥p∥ , ∥∇fp∥ , Df pp, xnq, Df pp, Tnxnq, Df pp, uq ď b
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for the above b and where ∥Tnp´ p∥ ă mintεr, ω1pεr{8, bqu as well as

Df pp, xnq ď Df pp, xn`1q or |Df pp, xn`1q ´Df pp, xnq| ă εr{4,

it holds that

∥xn ´ Tnxn∥ ă ε.

Proof. At first, given an n ě N with Df pp, xnq ď Df pp, xn`1q, we have

0 ď Df pp, xn`1q ´Df pp, xnq

ď αnDf pp, uq ` p1´ αnqDf pp, Tnxnq ´Df pp, xnq

“ αn pDf pp, uq ´Df pp, Tnxnqq `Df pp, Tnxnq ´Df pp, xnq

ď αn pDf pp, uq ´Df pp, Tnxnqq `
εr

8
(using (a) and (d))

ď bαn `
εr

8
(using (d))

ă b
εr

8b
`
εr

8
(using that n ě N)

“
εr

4
.

Therefore, the first disjunct of the premise implies the second disjunct. So assume
n ě N and |Df pp, xn`1q ´Df pp, xnq| ă εr{4. Now, we have

∥∇fpxn`1q ´∇fpTnxnq∥

“ αn ∥∇fpuq ´∇fpTnxnq∥

ď αn2b (using (d))

ă min

"

εr

8b
, ω∇f˚

ˆ

min

"

εr

4b
, ωf

ˆ

εr

4

̇*̇*

(using (b) and n ě N)

and so by (e) and (d), we obtain

∥xn`1 ´ Tnxn∥ “ ∥∇f˚p∇fpxn`1qq ´∇f˚p∇fpTnxnqq∥

ď min

"

εr

4b
, ωf

ˆ

εr

4

̇*

.

By (f), we get

|fpxn`1q ´ fpTnxnq| ă
εr

4
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and hence we obtain (reasoning similarly to [199])

|Df pp, Tnxnq ´Df pp, xnq|

“ |fppq ´ fpTnxnq ´ xp´ Tnxn,∇fpTnxnqy ´Df pp, xnq|

“ |fppq ´ fpxn`1q ` fpxn`1q ´ fpTnxnq ´ xp´ xn`1,∇fpxn`1qy

` xp´ xn`1,∇fpxn`1qy ´ xp´ Tnxn,∇fpTnxnqy ´Df pp, xnq|

“ |Df pp, xn`1q ` fpxn`1q ´ fpTnxnq ` xp´ xn`1,∇fpxn`1qy

´ xp´ Tnxn,∇fpTnxnqy ´Df pp, xnq|

“ |Df pp, xn`1q ´Df pp, xnq ` fpxn`1q ´ fpTnxnq

` xp´ xn`1,∇fpxn`1q ´∇fpTnxnqy ´ xxn`1 ´ Tnxn,∇fpTnxnqy|

ď |Df pp, xn`1q ´Df pp, xnq| ` |fpxn`1q ´ fpTnxnq|

` ∥∇fpxn`1q ´∇fpTnxnq∥ ∥p´ xn`1∥` ∥∇fpTnxnq∥ ∥xn`1 ´ Tnxn∥

ă
εr

4
`
εr

4
`

εr

8b
2b`

εr

4b
b

“ εr.

Hence by (a) and (d), we obtain Df pTnxn, xnq ă ρpε, bq and so, by (c) and (d), we get
∥xn ´ Tnxn∥ ă ε.

Lemma 9.5.8. For ε ą 0 and g : NÑ N, assume that we have a value φ and a p P X
such that additionally

∥p∥ , ∥∇fp∥ , Df pp, xnq, Df pp, Tnxnq, Df pp, uq ď b

for the above b and

∥Tnp´ p∥ ă min

"

φr, ω1
ˆ

φr

8
, b

̇

,

ω1

˜

ρpε, bqαrpΦφpε,gq`g1M pΦφpε,gqqq

2
, b

¸

,

ω1
ˆ

ρpε, bq

4pΦφpε, gq ` gMpΦφpε, gqq ` 1q
, b

̇*

as well as

@y P X p∥y∥ ď b^ ∥Tny ´ y∥ ă φÑ xy ´ p,∇fpuq ´∇fppqy ă ρpε, bq{8q
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for any n ď Φφpε, gq ` g
1MpΦφpε, gqq where we define

N :“ max

"

σ

ˆ

ω∇f˚

pρpε, bq{16b, bq

2b

̇

,

σ

ˆ

min

"

φr

8b
,
φr

16b2
,
1

2b
ω∇f˚

ˆ

min

"

φr

4b
, ωf

ˆ

φr

4

̇*̇*̇

, 1

*

with φr “ ωpρpφ1, bq, bq and φ1 “ mintφ, ρpε, bq{16bu as well as

Φφpε, gq :“ K1 ` Spρpε, bq{8b,K1q ` 1

with

K0 “ g1r
pr4pb`1q{φrsq

pNq, K1 “ g1r
pr8pb`1q{φrsq

pK0q,

and g1rpnq “ g1pnq ` n where g1pnq “ gppnq ` 2 for

gppnq :“ gM pn` Spρpε, bq{8b, nq ` 1q ` Spρpε, bq{8b, nq.

Then it holds that

Dn ď Φφpε, gq@i P rn;n` gpnqs p∥p´ xi∥ ă εq .

Proof (compare also [104, 194]). We write ai :“ Df pp, xiq. To establish the claim, we
divide between two cases:

Case 1: @i ď K0 pai`1 ď aiq.
Suppose first that

@i ă r4pb` 1q{φrs

´

a
g1r

pi`1q
pNq
ď a

g1r
piq
pNq
´ φr{4

¯

.

Then we would get

a
g1r

p0q
pNq
ě a

g1r
p1q
pNq
` φr{4 ě ¨ ¨ ¨ ě a

g1r
r4pb`1q{φrs

pNq
` r4pb` 1q{φrsφr{4 ą b

which is a contradiction. Thus, we have

Di0 ă r4pb` 1q{φrs

´

a
g1r

pi0`1q
pNq
ą a

g1r
pi0q
pNq
´ φr{4

¯

.

and in particular for n “ g1r
pi0q
pNq, we have

@i, j P rn;n` gppnq ` 2s
`

|ai ´ aj| ď an ´ an`gppnq`2 ă φr{4
˘

.
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Therefore, we in particular have

@i P rn;n` gppnq ` 1s p|Df pp, xi`1q ´Df pp, xiq| ă φr{4q

Using Lemma 9.5.7, we get

@i P rn;n` gppnq ` 1s p∥xi ´ Tixi∥ ă φ1 ď φq .

Using the assumption on φ, we in particular get

@i P rn;n` gppnq ` 1s pxxi ´ p,∇fpuq ´∇fppqy ă ρpε, bq{8q

and thus
@i P rn;n` gppnqs pxxi`1 ´ p,∇fpuq ´∇fppqy ă ρpε, bq{8q .

As in [199] (p. 495), we can derive

Df pp, xi`1q ď p1´ αiqDf pp, Tixiq ` αixxi`1 ´ p,∇fpuq ´∇fppqy

for any i which implies

Df pp, xi`1q ď

p1´ αiqDf pp, xiq ` αixxi`1 ´ p,∇fpuq ´∇fppqy ` ρpε, bq

4pΦφpε, gq ` gMpΦφpε, gqq ` 1q

for any i ď Φφpε, gq ` g
1MpΦφpε, gqq using the assumption on p and the assumption on

ω1. Using Lemma 9.5.2,11 we get

Dn ď K0 ` Spρpε, bq{8b,K0q ` 1 ď Φφpε, gq@i P rn;n` gpnqs
ˆ

Df pp, xiq ď
ρpε, bq

2
ă ρpε, bq

̇

which implies ∥p´ xi∥ ă ε for all such i by (c).

Case 2: Di ď K0 pai`1 ą aiq.
Then, we define τ as in Lemma 9.5.3.(2), i.e.

τpnq :“ maxtk ď maxtK0, nu | ak ă ak`1u.

In particular, we have
11To apply Lemma 9.5.2, we set an “ Df pp, xnq on r0; Φφpε, gq`g1M pΦφpε, gqq`1s and 0 otherwise.

Further, we set βn “ xxn`1 ´ p,∇fpuq ´∇fppqy and γn “ ρpε, bq{4pΦφpε, gq ` gM pΦφpε, gqq ` 1q and
use the same αn as in (b). Note that we then indeed have ai “ Df pp, xiq for any ai in the conclusion
of Lemma 9.5.2.
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1. @n
`

aτpnq ď aτpnq`1, τpnq ď τpn` 1q
˘

,

2. @n ě K0

`

an ď aτpnq`1
˘

.

Case 2.1: Dm P rK1;K1 ` g
1pK1qs pτpmq ă K0q.

As m ě K1, we have

τ

ˆ

g1r
pr8pb`1q{φrsq

pK0q

̇

“ τpK1q ď τpmq ă K0

and thus using Lemma 9.5.3.(1), we get

Dn ď g1r
pr8pb`1q{φrsq

pK0q pn ě K0 ^ @i, j P rn;n` gppnq ` 2s p|ai ´ aj| ď φr{8 ă φr{4qq

from which we can deduce

Dn ď Φφpε, gq@i P rn;n` gpnqs p∥p´ xi∥ ă εq

as in Case 1.

Case 2.2: @m P rK1;K1 ` g
1pK1qs pτpmq ě K0q.

Using the properties of τ , we in particular have

Df pp, xτpmqq “ aτpmq ď aτpmq`1 “ Df pp, xτpmq`1q

for all m. Therefore

0 ď Df pp, xτpmq`1q ´Df pp, xτpmqq

ď ατpmqDf pp, uq ` p1´ ατpmqqDf pp, Tτpmqxτpmqq ´Df pp, xτpmqq

ď ατpmq
`

Df pp, uq ´Df pp, Tτpmqxτpmqq
˘

`
`

Df pp, Tτpmqxτpmqq ´Df pp, xτpmqq
˘

ă bατpmq ` φr{8

using the assumption on p (as τpmq ď m ď K1`g
1pK1q). As for m P rK1;K1`g

1pK1qs,
we have τpmq ě K0 ě N , we get

0 ď Df pp, xτpmq`1q ´Df pp, xτpmqq ă φr{4

for all such m. Using Lemma 9.5.7, we get⃦⃦
xτpmq ´ Tτpmqxτpmq

⃦⃦
ă φ1 “ mintφ, ρpε, bq{16bu.
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Thus, using the assumption on φ, we get

xxτpmq ´ p,∇fpuq ´∇fppqy ă ρpε, bq{8 ă ρpε, bq{4.

As in the proof Lemma 9.5.7, we get⃦⃦
∇fpxτpmq`1q ´∇fpTτpmqxτpmqq

⃦⃦
ď ατpmq2b.

As τpmq ě K0 ě N , we in particular have
⃦⃦
xτpmq`1 ´ Tτpmqxτpmq

⃦⃦
ă ρpε, bq{16b. Fur-

ther, from above we also have
⃦⃦
xτpmq ´ Tτpmqxτpmq

⃦⃦
ă ρpε, bq{16b such that this com-

bined yields
⃦⃦
xτpmq`1 ´ xτpmq

⃦⃦
ă ρpε, bq{8b. Therefore:

xxτpmq`1 ´ p,∇fpuq ´∇fppqy

“ xxτpmq`1 ´ xτpmq,∇fpuq ´∇fppqy ` xxτpmq ´ p,∇fpuq ´∇fppqy

ă
⃦⃦
xτpmq`1 ´ xτpmq

⃦⃦
2b` ρpε, bq{4

ă ρpε, bq{2.

Similar to before, we can derive

Df pp, xτpmq`1q ď p1´ ατpmqqDf pp, Tτpmqxτpmqq ` ατpmqxxτpmq`1 ´ p,∇fpuq ´∇fppqy

ď p1´ ατpmqqDf pp, xτpmqq ` ατpmqxxτpmq`1 ´ p,∇fpuq ´∇fppqy

`
ρpε, bqαrpΦφpε,gq`g1M pΦφpε,gqqq

2

ď p1´ ατpmqqDf pp, xτpmq`1q ` ατpmqxxτpmq`1 ´ p,∇fpuq ´∇fppqy

`
ρpε, bqαrpΦφpε,gq`g1M pΦφpε,gqqq

2

for all m P rK1;K1 ` g
1pK1qs (since τpmq ď m ď K1 ` g

1pK1q). From this, we get

Df pp, xτpmq`1q ď xxτpmq`1 ´ p,∇fpuq ´∇fppqy `
ρpε, bqαrpΦφpε,gq`g1M pΦφpε,gqqq

2ατpmq

for all such m. Again as τpmq ď m ď K1 ` g
1pK1q, we get

αrpΦφpε,gq`g1M pΦφpε,gqqq
ď ατpmq ď ατpmq

for all such m and thus we have

Df pp, xτpmq`1q ď xxτpmq`1 ´ p,∇fpuq ´∇fppqy ` ρpε, bq

2
ă ρpε, bq.

Lastly, as we thus have

Df pp, xmq ď Df pp, xτpmq`1q ă ρpε, bq

for all such m by using the properties of τ , we can now deduce the claim of the theorem
as before.
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Together with Lemma 9.5.5, we thus obtain the following combined result for se-
quences of uniformly Bregman strongly nonexpansive maps. One crucial property that
features therein is a uniform version of the NST condition as e.g. considered in [2] for
sequences of strongly nonexpansive maps in the ordinary sense: given a sequence pTnq
of strongly nonexpansive maps and an additional such map T , these are said to satisfy
the NST condition if any fixed point of T is a common fixed point for all Tn and if
∥xn ´ Tnxn∥Ñ 0 implies ∥xn ´ Txn∥Ñ 0 for any bounded sequence pxnq.

Concretely, the following uniform quantitative variant of this condition will feature
crucially in the following combined result: we assume a modulus µ : p0,8q2 ˆ N Ñ

p0,8q such that

@ε, b ą 0@K P N@p P Xp∥p∥ ď b

^ ∥p´ Tp∥ ă µpε, b,Kq Ñ @n ď K p∥p´ Tnp∥ ă εqq p:q1

as well as a modulus ν : p0,8q2 Ñ p0,8q such that

@ε, b ą 0@n P N@p P X p∥p∥ ď b^ ∥p´ Tnp∥ ă νpε, bq Ñ ∥p´ Tp∥ ă εq . p:q2

If such moduli exist, we say that pTnq and T satisfy the uniform NST condition.
As we will discuss later, such moduli can in particular be explicitly computed for

the resolvents relative to f , thereby allowing applications to a Halpern-type proximal
point algorithm.

Theorem 9.5.9. Let pαnq Ď p0, 1s converge to zero with a rate σ and, for any n, let
αn be such that 0 ă αn ď αn and define αrn “ mintαi | i ď nu. Let f be sequentially
consistent with a modulus of consistency ρ. Let S : p0,8q ˆ N Ñ N be nondecreasing
in the right argument such that

@m P N, ε ą 0

˜

Spε,mq
ź

k“m

p1´ αkq ď ε

¸

.

Let pTnq be a sequence of uniformly Bregman strongly nonexpansive maps and T be
another uniformly Bregman strongly nonexpansive map with a common strong BSNE-
modulus ω and a common derived modulus ω1. Let each Tn and T be bounded on
bounded sets with a common modulus E and let p0 P X be a common fixed point of all
Tn and T . Let o be a modulus of boundedness for Df . Let ∇f and f be bounded on
bounded sets with moduli C, D, respectively. Let b P N˚ with

b ě ∥p0∥ , Df pp0, uq, ∥u∥ , Df pp0, x0q
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and define

bp“ maxtb, Cpbq, opb, bq, Epopb, bqq, CpEpopb, bqqq, Cpopb, bqq,

Dpbq `DpEpopb, bqqq ` pb` Epopb, bqqqCpEpopb, bqqq,

Dpbq `Dpopb, bqq ` pb` opb, bqqCpopb, bqq, 2Dpbq ` 2bCpbqu.

Let ω∇f˚, ωf be moduli of uniform continuity of ∇f˚, f , respectively. Let further ∆

be a modulus witnessing that Df p¨, uq is uniformly Fréchet differentiable on bounded
subsets with derivative x ÞÑ ∇fx ´∇fu as in Lemma 9.5.5. Assume that we have a
modulus µ : p0,8q2 ˆ NÑ p0,8q such that

@ε, b ą 0, K P N, p P X p∥p∥ ď b^ ∥p´ Tp∥ ă µpε, b,Kq Ñ @n ď K p∥p´ Tnp∥ ă εqq

as well as a modulus ν : p0,8q2 Ñ p0,8q such that

@ε, b ą 0, n P N, p P X p∥p∥ ď b^ ∥p´ Tnp∥ ă νpε, bq Ñ ∥p´ Tp∥ ă εq .

For any ε ą 0 and g : NÑ N as well as φ ą 0, we define

ψpφq :“ min

"

φr, ω1
ˆ

φr

8
, bp
̇

,

ω1

˜

ρpε, bpqαrpΦφpε,gq`g1M pΦφpε,gqqq

2
, bp

¸

,

ω1

˜

ρpε, bpq

4pΦφpε, gq ` gMpΦφpε, gqq ` 1q
, bp

¸

*

,

and

ψppφq “ µpψpνpφ, bpqq, bp,Φνpφ,bpqpε, gq ` g
1M
pΦνpφ,bpqpε, gqqq,

ψ1pφq “ mintψppω1pρpφ,maxtbp, Epbpquq, bpqq, ω1pρpφ,maxtbp, Epbpquq, bpqu,

with

N :“ max

"

σ

˜

ω∇f˚

pρpε, bpq{16bp, bpq

2bp

¸

,

σ

ˆ

min

"

φr

8bp
,
φr

16bp
2 ,

1

2bp
ω∇f˚

ˆ

min

"

φr

4bp
, ωf

ˆ

φr

4
, bp
̇*

, bp
̇*̇

, 1

*

where φr “ ωpρpφ1, bpq, bpq and φ1 “ mintφ, ρpε, bpq{16bpu as well as

Φφpε, gq :“ K1 ` Spρpε, bpq{8bp, K1q ` 1
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with

K0 “ g1r
pr4pbp`1q{φrsq

pNq, K1 “ g1r
pr8pbp`1q{φrsq

pK0q,

and g1rpnq “ g1pnq ` n where g1pnq “ gppnq ` 2 for

gppnq :“ gM
´

n` Spρpε, bpq{8bp, nq ` 1
¯

` Spρpε, bpq{8bp, nq.

Then it holds that

@ε ą 0@g : NÑ NDn ď Φppε, gq@i, j P rn;n` gpnqs p∥xi ´ xj∥ ă εq

where

Φppε, gq :“ max
!

Φνpω1pρpψ1prqp1q,maxtbp,Epbpquq,bpq,bpqpε{2, gq | r ď
Q

pbp` 1q{ε1
U)

with

ε1 “
ρpε{2, bpq

16
min

#

∆pρpε{2, bpq{32bp, bpq

4bp
, 1{2

+

.

Proof. Let ε and g be given. Using (the proof of) Lemma 9.5.5, (2), we get that for
the above ψp, there exists a p P X with ∥p∥ ď b ď bp and an r ď

Q

pbp` 1q{ε1
U

such that

for δ “ ω1pρpψ1prqp1q,maxtbp, Epbpquq, bpq we have ∥Tp´ p∥ ă ψppδq

@q P X
´

∥q∥ ď bp and ∥Tq ´ q∥ ă δ Ñ xq ´ p,∇fpuq ´∇fppqy ă ρpε{2, bpq{8
¯

.

Then, as

∥Tp´ p∥ ă ψppδq “ µpψpνpδ, bpqq, bp,Φνpδ,bpqpε{2, gq ` g
1M
pΦνpδ,bpqpε{2, gqqq,

we get
∥Tnp´ p∥ ă ψpνpδ, bpqq

for all n ď Φνpδ,bpqpε{2, gq ` g
1MpΦνpδ,bpqpε{2, gqq. Further, if ∥q ´ Tnq∥ ă νpδ, bpq, we have

∥Tq ´ q∥ ă δ and thus also

@q P X
´

∥q∥ ď bp and ∥Tnq ´ q∥ ă νpδ, bpq Ñ xq ´ p,∇fpuq ´∇fppqy ă ρpε{2, bpq{8
¯

for any n. Lemma 9.5.8 then yields that

Dn ď Φνpδ,bpqpε{2, gq@i P rn;n` gpnqs p∥p´ xi∥ ă ε{2q

as bp bounds all the objects involved. After using the triangle inequality, we get the
desired claim.
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In particular, since having a rate of metastability is equivalent to being convergent,
the above quantitative result implies the following (non-quantitative) convergence re-
sult. For that, we say that pTnq and T are commonly uniformly Bregman strongly non-
expansive if all Tn and T are uniformly Bregman strongly nonexpansive with a common
strong BSNE-modulus and we say that they are commonly bounded on bounded sets if
there exists a common modulus witnessing that all Tn and T are bounded on bounded
sets.

Theorem 9.5.10. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let pTnq be a sequence of selfmaps and
T be a selfmap such that they are commonly uniformly Bregman strongly nonexpansive
and commonly bounded on bounded sets. Assume that pTnq and T satisfy the uniform
NST condition and that they posses a common fixed point. Given a u P X, define a
sequence xn by x0 “ x P X and

xn`1 “ ∇f˚ pαn∇fu` p1´ αnq∇fTnxnq

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8. Then pxnq is Cauchy.
Further, if we have F pT q Ď F pT q where F pT q is the set of all strong asymptotic fixed

points (i.e. of all p such that there is a sequence ppnq with pn Ñ p and ∥pn ´ Tpn∥Ñ 0

for nÑ 8), then pxnq converges strongly to P f
F pT qpuq.

Proof. First, note that under the assumptions presented above, all moduli featured
in Theorem 9.5.9 exist and we shortly discuss this for the assumptions not explicitly
covered already: A modulus of consistency ρ exists for f as f is totally convex on
bounded sets using Lemmas 9.2.7 and 9.2.8. As f is uniformly Fréchet differentiable and
bounded on bounded sets, ∇f is uniformly continuous on bounded sets by Proposition
8.5.4 and thus a corresponding modulus ω∇f exists which allows us to construct a
corresponding modulus ωf for the uniform continuity of f as well as moduli for ∇f ,
f being bounded on bounded sets using Lemma 9.2.2. Also, as discussed in Remark
9.5.6, ω∇f can be used to construct the modulus ∆ featured in Theorem 9.5.9. Now,
as discussed in Remark 9.2.13, f being totally convex on bounded sets implies f˚

being uniformly Fréchet differentiable and thus ∇f˚ being uniformly continuous as f
is supercoercive (again using Proposition 8.5.4). Thus a corresponding modulus ω∇f˚

exists. Lastly, a modulus of boundedness for Df exists as well and can be constructed
as discussed in Remark 9.2.14.
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So Theorem 9.5.9 applies and we therefore get

@ε ą 0@g : NÑ NDn@i, j P rn;n` gpnqs p∥xi ´ xj∥ ă εq .

Thus xn is Cauchy as if not, there exists an ε ą 0 such that for any n, there exists an
m such that ∥xn ´ xn`m∥ ě ε. Pick gpnq “ m for such an m. Then this ε and g refute
the above property. Now, as xn is Cauchy, it converges to a limit x.

To see that this limit is indeed the projection P f
F pT qpuq, let Ωpε, bq be a modulus of

uniform continuity on bounded sets for the function p ÞÑ xy ´ p,∇fu´∇fpy uniform
in ∥u∥ , ∥y∥ ď b.12 Now, let ε ą 0 be given and let K be so large that

@m ě K

ˆ

∥xm ´ x∥ ă
1

2
Ω
´ε

2
, bp
¯

̇

.

Now, for ε1 :“ 1{2Ωpε{2, bpq, we can use Lemma 9.5.5 to choose a p P X and a δ with
∥p∥ ď bp and ∥p´ Tp∥ ă ψppδq as well as

@q P X
´

∥q∥ ď bp and ∥q ´ Tq∥ ă δ Ñ xq ´ p,∇fu´∇fpy ă ρpε1, bpq{8
¯

.

Then, using this p and reasoning as in the proof of Theorem 9.5.9, we can apply Lemma
9.5.8 to gpnq :“ K and ε1 which yields an n ě K such that ∥p´ xn∥ ă ε1 “ 1{2Ωpε{2, bpq.
That n ě K holds in particular yields ∥p´ x∥ ă Ωpε{2, bpq. Let w.l.o.g. ρpε, bq ď ε and
Ωpε, bq ď ε. Then we in particular have

xq ´ p,∇fu´∇fpy ă ε{2

for any q with ∥q∥ ď bp and ∥q ´ Tq∥ ă δ. Thus

xq ´ x,∇fu´∇fxy ă ε

for all such q.
If now q “ Tq, then we get xq ´ x,∇fu´∇fxy ă ε for all ε ą 0, i.e.

@q P F pT q pxq ´ x,∇fu´∇fxy ď 0q .

Further, if we assume that F pT q Ď F pT q, then x is also fixed point of T . For this, note
that as in Lemma 9.5.7, we have

∥∇fxn`1 ´∇fTnxn∥ “ αn ∥∇fu´∇fTxn∥Ñ 0

12It can be easily seen that such a modulus Ω can actually be constructed from ω∇f
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as αn Ñ 0 and as ∇fTxn is bounded since xn is bounded and since T and ∇f are
bounded on bounded sets. Thus ∥xn`1 ´ Tnxn∥Ñ 0 and therefore also ∥xn ´ Tnxn∥Ñ
0. As pTnq and T satisfy the uniform NST condition, we get ∥xn ´ Txn∥ Ñ 0. As
∥xn ´ x∥ Ñ 0, this yields x P F pT q Ď F pT q. Combined, this yields that x “ P f

F pT qpuq

(recall the discussion before Lemma 9.5.5).

Remark 9.5.11. The above result in particular contains the previous Theorem 9.5.1 for
uniformly Bregman strongly nonexpansive maps T by picking Tn “ T . Naturally T

is bounded on bounded sets as F pT q ‰ H and as T is Bregman quasi-nonexpansive.
However, note that in the context of uniformly Bregman strongly nonexpansive maps
T , the assumption that FppT q Ď F pT q was properly weakened through the analysis to
F pT q Ď F pT q. As discussed before in Remark 8.5.13, reflexivity is already an inherent
property from assuming that f is supercoercive, bounded on bounded sets, uniformly
Fréchet differentiable and totally convex on bounded sets as this implies that f˚ is
uniformly Fréchet differentiable. For that same reason, also being a Legendre function
is an inherent property of any such function. So these assumptions could have been
omitted in Theorem 9.5.1 already.

Using this theorem, we will in particular be able to derive the strong convergence
of the Halpern-type proximal point algorithm in all Banach spaces together with other
interesting instantiations that will be discussed in the following section.

9.6 Special cases and instantiations

We are now concerned with the range of the above results. For that, this section dis-
cusses how the above (quantitative) results can be instantiated in various ways so that
they apply to many other well-known methods in the context of Bregman distance. In
particular, we obtain quantitative strong convergence results for Halpern-type variants
of the method of cyclic Bregman projections, of the proximal point algorithm, of a
special case of a method solving operator equations due to Butnariu and Resmerita
[36] as well as of a special case of the forward-backward Bregman splitting method
discussed by Búi and Combettes [32] (see also Van Nguyen [155]), of a method for
finding common zeros of maximally monotone operators as discussed by Naraghirad
[152] and of a Halpern-Mann type iteration of Bregman strongly nonexpansive maps
[214].
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In particular, we show how the Halpern-Mann type iteration presented in [214] can
be recognized as an instantiation of the Halpern-iteration considered before for a fam-
ily of uniformly Bregman strongly nonexpansive maps. Further, inspired by the recent
considerations [41] on the relationship between modified Halpern methods in the sense
of [53, 85] and Tikhonov-Mann type methods as developed by [20, 42, 210], we use this
instantiation to even provide a strong convergence result for a new Tikhonov-Mann
type iteration of uniformly Bregman strongly nonexpansive maps which provides a
suitable lift of such iterations to this Bregman context. Lastly, we discuss another new
strongly convergent method for two uniformly Bregman strongly nonexpansive maps
inspired by the recently introduced alternating Halpern-Mann type method introduced
by Dinis and Pinto [57].

All these results in particular further show that the additional requirement in the
previous theorems that the maps are even uniformly Bregman strongly nonexpansive
is practically of lesser significance as most maps encountered in the literature that are
Bregman strongly nonexpansive are already uniformly Bregman strongly nonexpansive.

9.6.1 Cyclic projections

A first readily defined instantiation of Theorem 9.5.10 on the Halpern-iteration is that
obtained by using the cyclic projection operator

T “ P f
Ωk
˝ ¨ ¨ ¨ ˝ P f

Ω1

where P f
Ωj

is the Bregman projection onto a given non-empty closed convex set Ωj

for j “ 1, . . . , k. Assume that Ω1 X ¨ ¨ ¨ X Ωk ‰ H. Then this operator T is uniformly
Bregman strongly nonexpansive since every projection P f

Ωj
is even Bregman firmly non-

expansive and moduli for the Bregman strong nonexpansivity of T can be calculated
from the moduli of the factors by following Theorem 9.3.15 as well as Lemma 9.3.8. For
this, note further that by Ω1X ¨ ¨ ¨ XΩk ‰ H, using Lemma 9.3.5, each P f

Ωj
and thus T

is bounded on bounded sets. Further, note that any Bregman firmly nonexpansive map
that is bounded on bounded sets actually possesses a modulus of uniform closedness if
∇f is uniformly continuous on bounded subsets as well as uniformly strictly monotone
(the latter of which, recalling the discussion from Remark 9.2.13, follows from the as-
sumption that f is totally convex on bounded sets) as by Lemma 9.3.13, each such map
is then uniformly continuous on bounded subsets. Thus P f

Ωj
is uniformly continuous on

bounded subsets. In particular, from a corresponding (common) modulus of uniform
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continuity, a (common) modulus κ of uniform closedness can be immediately defined.
Note that through the uniform continuity of each P f

Ωj
, also T is uniformly continuous

on bounded sets and thus also T possesses a modulus of uniform closedness which in
particular yields that F pT q Ď F pT q.

Combining this with Theorem 9.5.10, we get the following corollary on a Halpern-
type variant of the method of cyclic projections (where we can identify the limit as the
corresponding projection as we have previously established F pT q Ď F pT q).

Theorem 9.6.1. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet dif-
ferentiable and totally convex on bounded subsets. Let Ω1, . . . ,Ωk be non-empty closed
convex sets and assume that Ω1 X ¨ ¨ ¨ X Ωk ‰ H. Given a u P X, define a sequence xn
by x0 “ x P X and

xn`1 “ ∇f˚
´

αn∇fu` p1´ αnq∇fP f
Ωk
˝ ¨ ¨ ¨ ˝ P f

Ω1
xn

¯

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8. Then pxnq converges strongly
to P f

F pT qpuq for T “ P f
Ωk
˝ ¨ ¨ ¨ ˝ P f

Ω1
.

In particular, a rate of metastability can be calculated using Theorem 9.5.9 together
with Lemmas 9.3.5 and 9.3.8 as well as Theorems 9.3.15 and 9.3.14.

9.6.2 The proximal point algorithm

We are now concerned with a Halpern-type variant of the proximal point algorithm
for a maximally monotone operator A with resolvents Resfγ as before. Concretely, for
a given u and x0, we consider the sequence

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fResfrnxnq (˚˚)

for a given additional sequence rn that satisfies

0 ă r̄ “ inftrn | n P Nu.

To show that the previous results contained in Theorems 9.5.9 and 9.5.10 apply here,
we will in the following provide concrete instantiations for the moduli µ and ν for the
concrete choices of

Tn “ Resfrn and T “ Resfr̄ .
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For this, we will however need some further facts about the resolvent relative to f .
It is straightforward to show that the set of fixed points of any Resfγ equals to the set
of zeros A´10 of the operator A. The following lemma provides a quantitative result
for one of the directions of the equivalence.

Lemma 9.6.2. Let ηp be a modulus of uniform strict monotonicity of ∇f on bounded
sets. Given γ ą 0 and ε ą 0, let px, yq P A with b ą 0 such that b ě ∥x∥ ,

⃦⃦
Resfγx

⃦⃦
, γ.

If we have

∥y∥ ă ηppε, bq

2b2
,

then
⃦⃦
x´ Resfγx

⃦⃦
ă ε.

Proof. By monotonicity of A, we have xResfγx´ x,Afγx´ yy ě 0 and thus

xx´ Resfγx,∇fx´∇fResfγxy ď γxx´ Resfγx, yy

ď γp∥x∥`
⃦⃦
Resfγx

⃦⃦
q ∥y∥

ď 2b2 ∥y∥ .

Thus ∥y∥ ă ηppε, bq{2b2 implies
⃦⃦
x´ Resfγx

⃦⃦
ă ε by the assumptions on ηp.

The following lemma due to Reich and Sabach provides a crucial relation between
the resolvent relative to f and the Bregman distance associated with f .

Lemma 9.6.3 ([177, 178]). Let A be maximally monotone and assume that A´10 ‰ H.
Then

Df pu,Res
f
γxq `Df pRes

f
γx, xq ď Df pu, xq

for all γ ą 0, u P A´10 and x P X.

In particular, we will in the following rely on a quantitative version of this result
as given in the next lemma.

Lemma 9.6.4. Let ω∇f pε, bq ď ε be a modulus of uniform continuity of ∇f on bounded
subsets. Let x, y P X and r, s ą 0 be given such that

b ě ∥x∥ ,
⃦⃦
Resfsx

⃦⃦
, ∥y∥ ,

⃦⃦
Resfry

⃦⃦
.

Then for any ε ą 0, if⃦⃦
x´Resfsx

⃦⃦
ă ω∇f

´ ε

2E
, b
¯

for E ě maxt2b, rs´12bu,

then we have
Df px,Res

f
ryq `Df pRes

f
ry, yq ă Df px, yq ` ε.
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Proof. Using the three-point-identity for Df , we get

Df px, yq “ Df px,Res
f
ryq `Df pRes

f
ry, yq ` xx´ Resfry,∇fResfry ´∇fyy

“ Df px,Res
f
ryq `Df pRes

f
ry, yq ` rxx´ Resfry,´A

f
ryy.

Using the monotonicity of A, we further derive that

xx´ Resfry,´A
f
ryy

“ xx´ Resfsx,´A
f
ryy ` xRes

f
sx´ Resfry,´A

f
ryy

“ xx´ Resfsx,´A
f
ryy ` xRes

f
sx´ Resfry, s

´1
p∇fx´∇fResfsxq ´ Afryy

` xResfsx´ Resfry,´s
´1
p∇fx´∇fResfsxqy

ě xx´ Resfsx,´A
f
ryy ` s

´1
xResfsx´ Resfry,∇fResfsx´∇fxy

ě ´
⃦⃦
x´ Resfsx

⃦⃦ ⃦⃦
Afry

⃦⃦
´ s´1

⃦⃦
Resfsx´ Resfry

⃦⃦ ⃦⃦
∇fResfsx´∇fx

⃦⃦
ě ´

⃦⃦
x´ Resfsx

⃦⃦
r´1

`
⃦⃦
Resfry

⃦⃦
` ∥y∥

˘

´ s´1
`⃦⃦

Resfsx
⃦⃦
`
⃦⃦
Resfry

⃦⃦˘ ⃦⃦
∇fResfsx´∇fx

⃦⃦
.

Combined with the above, this yields

Df px, yq ě Df px,Res
f
ryq `Df pRes

f
ry, yq ´

⃦⃦
x´ Resfsx

⃦⃦
`
⃦⃦
Resfry

⃦⃦
` ∥y∥

˘

´ rs´1
`
⃦⃦
Resfsx

⃦⃦
`
⃦⃦
Resfry

⃦⃦
˘
⃦⃦
∇fResfsx´∇fx

⃦⃦
ě Df px,Res

f
ryq `Df pRes

f
ry, yq ´ 2b

⃦⃦
x´ Resfsx

⃦⃦
´ rs´12b

⃦⃦
∇fResfsx´∇fx

⃦⃦
ě Df px,Res

f
ryq `Df pRes

f
ry, yq

´ E
`⃦⃦
x´ Resfsx

⃦⃦
`
⃦⃦
∇fResfsx´∇fx

⃦⃦
˘

and therefore, for x such that⃦⃦
x´ Resfsx

⃦⃦
ă ω∇f

´ ε

2E
, b
¯

,

we get that
Df px, yq ą Df px,Res

f
ryq `Df pRes

f
ry, yq ´ ε

which is the claim.

As a concrete instantiation of Theorem 9.5.10, we now obtain the following

Theorem 9.6.5. Let X be a real reflexive Banach space and f : X Ñ R be a su-
percoercive Legendre function which is bounded on bounded sets, uniformly Fréchet
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differentiable and totally convex on bounded subsets. Let A be a maximally monotone
operator with resolvents Resfγ and assume that A´10 ‰ H. Given a u P X, define a
sequence xn by x0 “ x P X and

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fResfrnxnq

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8 and where prnq P p0,8q satisfies
0 ă r̄ “ inftrn | n P Nu. Then pxnq converges strongly to P f

A´10puq.
In particular, a rate of metastability can be calculated using Theorem 9.5.9 together

with Lemmas 9.3.5 and 9.3.8 and with moduli

µpε, b,Kq “ ω∇f
pρpε, bpq{2E 1pKq, bpq and νpε, bq “ ω∇f

pρpε, bpq{4bp, bpq

for the uniform NST condition where E 1pKq “ maxt2bp, RpKqr̄´12bpu and bp“ maxtb, Epbqu

as well as Rpnq “ maxtrk | k ď nu and where E is a modulus for Resfγ being bounded
on bounded sets.

Proof. Note that using Lemmas 9.3.5 and 9.3.8 as well as A´10 “ FpResfr q for any r ą 0,
it is immediate that the Resfrn and Resfr̄ are commonly uniformly Bregman strongly
nonexpansive and commonly bounded on bounded sets and corresponding moduli can
be calculated. This also yields that a modulus of uniform closedness exists for F pResfr̄ q.

The only thing left to prove is that the constructed µ and ν witness the uniform
NST condition for Tn “ Resfrn and T “ Resfr̄ . By Lemma 9.6.4, we get that⃦⃦

x´ Resfsx
⃦⃦
ă ω∇f

pε{2E 1, bpq

for ∥x∥ ď b implies that
Df px,Res

f
rxq ă ε

for E 1 ě maxt2bp, rs´12bpu and bp“ maxtb, Epbqu. In particular, we have⃦⃦
x´ Resfrx

⃦⃦
ă ε

for any x with ∥x∥ ď b and⃦⃦
x´ Resfsx

⃦⃦
ă ω∇f

pρpε, bpq{2E 1, bpq.

So, for s ě r we get for ∥x∥ ď b and⃦⃦
x´ Resfsx

⃦⃦
ă ω∇f

pρpε, bpq{4bp, bpq
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that
⃦⃦
x´ Resfrx

⃦⃦
ă ε. Therefore, as r̄ ď rn for all n, we get that ν indeed satisfies

p:q2 for the given Tn and T .
Further, assuming that

⃦⃦⃦
x´ Resfr̄x

⃦⃦⃦
ă µpε, b,Kq, we get by the above that⃦⃦

x´ Resfrnx
⃦⃦
ă ε

as E 1pKq “ maxt2bp, RpKqr̄´12bpu ě maxt2bp, rnr̄
´12bpu for n ď K. Thus µ satisfies p:q1

for the given Tn and T .

9.6.3 A rate of convergence for the asymptotic regularity of the

Halpern-type proximal point algorithm relative to resol-

vents in the case of rn Ñ 8

The convergence proof of the previous Halpern-type proximal point algorithm relies on
an argument revolving around a case distinction and (essentially) because of this, we
are not able to derive full rates of convergence for the asymptotic regularity relative to
the resolvents, i.e. rates for the convergence⃦⃦

xn ´ Resfγxn
⃦⃦
Ñ 0 pnÑ 8q

for γ ą 0. In this section, we consider the previous Halpern-type proximal point
algorithm under the additional condition rn Ñ 8 (conceptually similar to the work of
Kohsaka and Takahashi [121]) for which we are able to derive full rates of convergence
for the asymptotic regularity relative to the resolvents. In the case of Hilbert spaces
with the ordinary Halpern-type proximal point algorithm induced by a maximally
monotone operator, such a rate of convergence (in the context of the assumption of
rn Ñ 8 similar to here) was first given by Pinto in [161].

Lemma 9.6.6. Let b ě ∥u∥ , ∥xn∥ ,
⃦⃦
Resfrnxn

⃦⃦
for all n with pxnq defined as in p˚˚q

and let σ be a rate of convergence for αn Ñ 0 as n Ñ 8. Let further C be a modulus
for ∇f being bounded on bounded sets. Then, for any ε ą 0:

@n ě σ

ˆ

ε

2Cpbq

̇

`⃦⃦
∇fxn`1 ´∇fResfrnxn

⃦⃦
ă ε

˘

.

In particular, if ω∇f˚ is a modulus of uniform continuity for ∇f˚ on bounded subsets,
then for any ε ą 0:

@n ě σ

ˆ

ω∇f˚

pε, Cpbqq

2Cpbq

̇

`⃦⃦
xn`1 ´ Resfrnxn

⃦⃦
ă ε

˘

.
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Proof. As before, we have⃦⃦
∇fxn`1 ´∇fResfrnxn

⃦⃦
“ αn

⃦⃦
∇fu´∇fResfrnxn

⃦⃦
ď αn2Cpbq.

It immediately follows from the assumption on σ that⃦⃦
∇fxn`1 ´∇fResfrnxn

⃦⃦
ď αn2Cpbq ă ε

for all n ě σpε{2Cpbqq. The second part of the lemma is immediate.

Theorem 9.6.7. Let γ ą 0 be given. Assume that b ą 0 is such that

b ě ∥u∥ , ∥xn∥ ,
⃦⃦
Resfrnxn

⃦⃦
, γ,

⃦⃦
ResfγRes

f
rnxn

⃦⃦
,
⃦⃦
Resfγxn

⃦⃦
for all n with pxnq defined as in p˚˚q. Let P be a modulus of reverse consistency.
Assume that ηp is a modulus of uniform strict monotonicity of ∇f on bounded sets and
let ρ be a modulus of consistency for f . Let further C be a modulus for ∇f being
bounded on bounded sets and let σ be a rate of convergence for αn Ñ 0 as nÑ 8. Let
τ be a rate of divergence for rn Ñ 8 as nÑ 8, i.e.

@E ą 0@n ě τpEq prn ą Eq .

Let ω∇f˚ is a modulus of uniform continuity for ∇f˚ on bounded subsets and let
ω∇f pε, bq ď ε be a modulus of uniform continuity of ∇f on bounded subsets. Then
for any ε ą 0:

@n ě Φpεq
`
⃦⃦
xn`1 ´ Resfγxn`1

⃦⃦
ă ε

˘

where

Φpεq :“ max

#

τ

¨

˝

2Cpbq

χ
´

ω∇f
´

ρpω∇f pω∇f˚
pε,Cpbqq{2,bq,bq
8b

, b
¯¯

˛

‚,

φ

ˆ

P

ˆ

ρpω∇f pω∇f˚

pε, Cpbqq{2, bq, bq

2
, b

̇̇

, σ

ˆ

ω∇f˚

pε, Cpbq{2

2Cpbq

̇

+

and

χpεq :“
ηppε, bq

2b2
, φpεq :“ σ

ˆ

ω∇f˚

pε, Cpbqq

2Cpbq

̇

.

Proof. Note that ⃦⃦
Afrnxn

⃦⃦
“

1

rn

⃦⃦
∇fxn ´∇fResfrnxn

⃦⃦
ď

2Cpbq

rn
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and thus
@ε ą 0@n ě τ

ˆ

2Cpbq

ε

̇

`
⃦⃦
Afrnxn

⃦⃦
ă ε

˘

.

Therefore, since Afrnxn P ApRes
f
rnxnq, we have that

n ě τ

ˆ

2Cpbq

χpεq

̇

implies
⃦⃦
Resfrnxn ´ ResfγRes

f
rnxn

⃦⃦
ă ε by Lemma 9.6.2. Therefore, we have for

n ě τ

˜

2Cpbq

χpω∇f
`

ε
8b
, b
˘

q

¸

that ⃦⃦
Resfrnxn ´ ResfγRes

f
rnxn

⃦⃦
ă ω∇f

´ ε

8b
, b
¯

,

and thus
Df pRes

f
rnxn,Res

f
γxn`1q ď Df pRes

f
rnxn, xn`1q ` ε{2

in that case by Lemma 9.6.4 (with s :“ r :“ γ and using E “ 2b). Now, for

n ě max

#

τ

˜

2Cpbq

χpω∇f
`

ε
8b
, b
˘

q

¸

, φpP pε{2, bqq

+

we get Df pRes
f
rnxn,Res

f
γxn`1q ď Df pRes

f
rnxn, xn`1q ` ε{2 from before as well as that

Df pRes
f
rnxn, xn`1q ă ε{2 by Lemma 9.6.6 and the assumption on P . Thus in that case,

we also have
Df pRes

f
rnxn,Res

f
γxn`1q ă ε.

Thus for

n ě max

$

&

%

τ

¨

˝

2Cpbq

χ
´

ω∇f
´

ρpε,bq
8b

, b
¯¯

˛

‚, φpP pρpε, bq{2, bqq

,

.

-

we get
⃦⃦
Resfrnxn ´ Resfγxn`1

⃦⃦
ă ε using the assumption on ρ. Now, note that

∥∇fxn`1 ´∇fResγxn`1∥ ď αn
⃦⃦
∇fu´∇fResfrnxn

⃦⃦
`
⃦⃦
∇fResfrnxn ´∇fResfγxn`1

⃦⃦
ď αn2Cpbq `

⃦⃦
∇fResfrnxn ´∇fResfγxn`1

⃦⃦
Thus, for

n ě max

#

τ

¨

˝

2Cpbq

χ
´

ω∇f
´

ρpω∇f pε{2,bq,bq
8b

, b
¯¯

˛

‚,

φ

ˆ

P

ˆ

ρpω∇f pε{2, bq, bq

2
, b

̇̇

, σ

ˆ

ε{2

2Cpbq

̇

+

we get
⃦⃦
∇fxn`1 ´∇fResfγxn`1

⃦⃦
ă ε. This gives the claim using ω∇f˚ .



CHAPTER 9. EFFECTIVE RATES FOR ITERATIONS INVOLVING BREGMAN
STRONGLY NONEXPANSIVE OPERATORS 265

As before, a b bounding all objects involved can be constructed using the range
of moduli discussed before together with some simple initial bounds. We refrain from
spelling this out in more detail.

9.6.4 Finding common zeros of maximally monotone operators

Another readily defined instantiation of Theorem 9.5.10 on the Halpern-iteration is
that of finding common zeros of a finite collection pAiqi“1,...,N of maximally monotone
operators with A´11 0X ¨ ¨ ¨XA´1N 0 ‰ H. Similar to the idea in [152], we in that context
can consider a composite operator

Tx “ ∇f˚
N
ÿ

i“1

wi∇fResfAi

for weights wi P p0, 1q such that
řN
i“1wi “ 1. Then T is a block operator in the sense

of [143, 144] (as also discussed in the previous sections) and moduli for the uniform
Bregman strong nonexpansivity for this operator can be calculated from the moduli
of the summands following Theorem 9.3.19. From Lemma 9.3.17, also a modulus for
T being bounded on bounded sets can be calculated from corresponding moduli for
∇f,∇f˚ and ResfAi

being bounded on bounded sets (using Lemma 9.3.5, the latter of
which in particular exists as A´11 0 X ¨ ¨ ¨ X A´1N 0 ‰ H as any ResfAi

is Bregman firmly
nonexpansive and thus Bregman quasi-nonexpansive). Lastly, note that by Lemma
9.3.13, each ResfAi

is uniformly continuous on bounded sets and it is easy to see that,
since ∇f , ∇f˚ are also uniformly continuous, this extends to T as well. Therefore, a
corresponding modulus of uniform closedness exists for F pT q.

Combining this with Theorem 9.5.10, we get the following corollary on the approx-
imation of common zeros:

Theorem 9.6.8. Let X be a real reflexive Banach space and f : X Ñ R be a superco-
ercive Legendre function which is bounded on bounded sets, uniformly Fréchet differen-
tiable and totally convex on bounded subsets. Let A1, . . . , AN be maximally monotone
operators with resolvents ResfAi

at parameter 1. Assume that A´11 0X ¨ ¨ ¨ X A´1N 0 ‰ H.
Given a u P X, define a sequence xn by x0 “ x P X and

xn`1 “ ∇f˚
˜

αn∇fu` p1´ αnq
N
ÿ

i“1

wi∇fResfAi
xn

¸

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8 and where the wi P p0, 1q are
such that

řN
i“1wi “ 1. Then pxnq converges strongly to P f

F pT qpuq for T defined as above.
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In particular, a rate of metastability can be calculated using Theorem 9.5.9 together
with Lemmas 9.3.5 and 9.3.8 as well as Theorems 9.3.19 and 9.3.18.

9.6.5 Bregman forward-backward splitting

We may also consider a forward-backward type of iteration in conjunction with the
Halpern-type algorithm considered before. By abstracting the general approach taken
in [155] for combining Bregman distances and forward-backward splitting methods, Búi
and Combettes in [32] considered the following iteration under suitable conditions on
the scalars and fn’s:

xn`1 “ p∇fn ` γnAq´1p∇fnxn ´ γnBxnq

for given A : X Ñ 2X
˚ and B : X Ñ X˚. At least in the context of the special case

where fn “ f for all n for a specific f as considered throughout this chapter and where
the operator B is of the form

Bx “ ∇fx´∇fCx

for a given uniformly Bregman strongly nonexpansive map C : X Ñ X, we can now
provide a strong convergence result for a Halpern-type variant of this method. For
this, similar to [36], consider the map

Bf
λx “ ∇f˚p∇fx´ λBxq.

It is straightforward to verify that Bf
λx “ ∇f˚pλ∇fCx ` p1 ´ λq∇fxq. In particu-

lar, Bf
λ is a block operator for any λ P r0, 1s and thus is uniformly Bregman strongly

nonexpansive (where a corresponding strong BSNE-modulus can be computed from a
modulus for C according to Theorem 9.3.19).

In particular, we have that

Resfλ ˝B
f
λ “ p∇f ` λAq

´1
p∇f ´ λBq

which is exactly of the form considered in [32]. We assume that F pResfλ ˝ B
f
λq ‰ H.

It is rather immediate to show that pA`Bq´10 “ F pResfλ ˝B
f
λq. Thus, as a composi-

tion of uniformly Bregman strongly nonexpansive maps, it is itself uniformly Bregman
strongly nonexpansive if we require a modulus of uniform closedness for F pCq. Note
for this that F pResfλq is naturally uniformly closed since Resfλ is even Bregman firmly
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nonexpansive and that using Lemma 9.3.18, it can be easily seen that from the uni-
form closedness of F pCq, we get the uniform closedness of F pBf

λq. Further, note that
using Lemma 9.3.14, we thus also get that F pResfλ ˝B

f
λq is uniformly closed. Also, the

composition is therefore also bounded on bounded sets by Lemma 9.3.5 as we assume
that F pResfλ ˝B

f
λq ‰ H.

We thus get the following corollary on a Halpern-type forward-backward splitting
method using Bregman distances:

Theorem 9.6.9. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let C be uniformly Bregman strongly
nonexpansive such that F pCq is uniformly closed and let Bx “ ∇fx´∇fCx. Assume
that pA`Bq´10 ‰ H. Given a u P X, define a sequence xn by x0 “ x P X and

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fp∇f ` λAq´1p∇fxn ´ λBxnqq

for λ ą 0 where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8. Then pxnq converges
strongly to P f

pA`Bq´10puq.
In particular, a rate of metastability can be calculated using Theorem 9.5.9 together

with Theorems 9.3.19 and 9.3.18.

As a further special case, we want to note that for a B of this form, this also covers
a Halpern-type variant of the iteration studied in [36] regarding the solution of operator
equations of the form Bx “ 0 for an operator B : X Ñ X˚ over a closed and convex
set Ω. Concretely, in [36], the authors considered the iteration

xn`1 “ Πf
Ωp∇fxn ´ λBxnq

where Πf
Ω “ P f

Ω ˝ ∇f˚ for the Bregman projection P f
Ω. As discussed in the previous

section, we have that
P f
Ω “ ResfBιΩ

where ιΩ is the characteristic function of Ω. In particular, as we then have

Πf
Ωp∇fx´ λBxq “ P f

ΩB
f
λx

with Bf
λx “ ∇f˚p∇fx ´ λBxq as before, we find that the above iteration is a special

case (if we would relax the parameter λ of Resfλ to a separate parameter) of the previous
forward-backward method and we thus also obtain the following corollary:
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Theorem 9.6.10. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let C be uniformly Bregman strongly
nonexpansive such that F pCq is uniformly closed and let Bx “ ∇fx´∇fCx. Assume
that B´10X Ω ‰ H. Given a u P X, define a sequence xn by x0 “ x P X and

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fΠf
Ωp∇fxn ´ λBxnqq

for λ ą 0 where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8. Then pxnq converges
strongly to P f

B´10XΩpuq.
In particular, a rate of metastability can be calculated using Theorem 9.5.9 together

with Theorems 9.3.19 and 9.3.18.

9.6.6 Modified-Halpern, Tikhonov-Mann and Halpern-Mann

type methods

In this last subsection, we are concerned with a few generalizations of Halpern-type
iterations that incorporate elements from Mann-type iterations. The first such gener-
alization that we consider is the modified Halpern iteration as introduced in [85] (see
also [53])

xn`1 “ γnu` p1´ γnqpαnxn ` p1´ αnqTxnq

where pγnq and pαnq are sequences in r0, 1s and T : X Ñ X is a given mapping. Such a
type of iteration has been considered for Bregman strongly nonexpansive maps in [214]
under the name of Halpern-Mann iterations. Concretely, in [214] the authors proved
the strong convergence of the iteration

xn`1 “ ∇f˚pαn∇fu` p1´ αnqpβn∇fxn ` p1´ βnq∇fTxnqq

under the scalar conditions that pαnq and pβnq are sequences in p0, 1q satisfying

1. αn Ñ 0 for nÑ 8,

2.
ř

αn “ `8,

3. 0 ă lim inf βn ď lim sup βn ă 1.

We begin by showing that for uniformly Bregman strongly nonexpansive maps, the
convergence of this iteration can be derived by our previous result for families of maps.
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For this, note first that the above iteration is nothing else but a usual Halpern-type
iteration of the family of operators

Tnx “ ∇f˚pβn∇fx` p1´ βnq∇fTxq

Assume F pT q ‰ H. Then these operators, being block operators, are uniformly Breg-
man strongly nonexpansive and using Theorem 9.3.19, we can construct even a common
strong BSNE-modulus from a strong BSNE-modulus of T using the assumption of a
fixed point for T . Note however that for this, condition (3) is not needed at all and
βn P r0, 1s can be permitted. Also note that the Tn together with T are commonly
bounded on bounded sets by using Lemmas 9.3.17 and 9.3.5 together with the assump-
tion of a fixed point for T .

To see that this sequence is permissible for our Halpern-type iteration for families of
maps, we need to again provide concrete instantiations of the moduli µ and ν witnessing
the uniform NST condition for the choice of these Tn together with the map T . For
this, it is rather immediately clear that given moduli E, C, F for T , ∇f , ∇f˚ being
bounded on bounded sets as well as a modulus of consistency ρ and a modulus of
reverse consistency P , one has that

µpε, b,Kq “ P pρpε,maxtb, F pCpEpbqqquq,maxtb, Epbquq

suffices as we immediately have for given ε, b ą 0 and p P X with ∥p´ Tp∥ ă µpε, b,Kq

that

Df pp, Tnpq ď p1´ βnqDf pp, Tpq

ď Df pp, Tpq

ă ρpε,maxtb, F pCpEpbqqquq

so that ∥p´ Tnp∥ ă ε.

For ν, assume that we have an Nβ and a β ă 1 with βn ď β for all n ě Nβ (wit-
nessing lim supn βn ă 1), a modulus of consistency ρ, a modulus of uniform continuity
of Df in its second argument ξ, a BSNE-modulus ω for T , moduli E, C, F for T , ∇f ,
∇f˚ being bounded on bounded sets, and a fixed point of T named p0 with b ě ∥p0∥.
Then by Theorem 9.3.18: for any x with ∥x∥ ď b, we have

∥x´ Tnx∥ ă ξ
´

p1´ βqωpρpε, bpq, bq, bp
¯

Ñ ∥x´ Tx∥ ă ε
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for n ě Nβ where bp“ maxtb, Epbq, F pCpEpbqqqu so that

νpε, bq “ ξ
´

p1´ βqωpρpε, bpq, bq, bp
¯

suffices (after suitably shifting the sequence with Nβ). Combined, we thus derive the
following result from Theorem 9.5.10.

Theorem 9.6.11. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let T be uniformly Bregman strongly
nonexpansive with F pT q ‰ H. Given a u P X, define a sequence xn by x0 “ x P X and

xn`1 “ ∇f˚pαn∇fu` p1´ αnqpβn∇fxn ` p1´ βnq∇fTxnqq

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8 and where pβnq Ď r0, 1q satisfies
lim sup βn ă 1. If F pT q Ď F pT q, then pxnq converges strongly to P f

F pT qpuq.
In particular, a rate of metastability can be obtained by suitably instantiating the

rate given in Theorem 9.5.9 using Theorems 9.3.19 and 9.3.18 as well as the above
moduli for µ and ν.

In particular, with this theorem we reobtain the strong convergence result for this
iteration established in [214] (recall for this Remark 9.5.11) for uniformly Bregman
strongly nonexpansive maps. However, the assumption (3) presented above which fea-
tures in [214] could be substantially weakened to lim sup βn ă 1 which in particular
allows βn “ 0 for all n. Thus, in the above iteration, the Mann-part can be “deacti-
vated” and the original Halpern-type result can be reobtained, contrary to [214].

The other generalization of Halpern’s method which we consider is an iteration of
Tikhonov–Mann type. In the usual metric case, this type of iteration takes the form
of

yn`1 “ p1´ λnqpp1´ βnqu` βnxnq ` λnT pp1´ βnqu` βnxnq

as defined in [42] where pλnq, pβnq are sequences in r0, 1s and T : X Ñ X is a again
a given mapping. In particular, for u “ 0, this iteration becomes the modified Mann
iteration as studied in [210] and rediscovered in the seminal work by Boţ, Csetnek and
Meier [20]. For these types of iterations, we can now prove a (new) strong convergence
result for the following natural analog in the context of Bregman strongly nonexpansive
maps:

yn`1 “ ∇f˚pβn∇fun ` p1´ βnq∇fTunq with un “ ∇f˚pαn∇fu` p1´ αnq∇fynq.
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As discussed in [41], methods of a modified Halpern type as well as methods of a
Tikhonov-Mann type in both a normed and a hyperbolic context are closely related
and in fact can be translated into each other.

By suitably adapting the arguments from [41] to this Bregman case, we arrive at
the following result (which is similar to Proposition 3.2 in [41]):

Lemma 9.6.12. Define the iterations

xn`1 “ ∇f˚pαn`1∇fu` p1´ αn`1q∇fvnq with vn “ ∇f˚pβn∇fxn ` p1´ βnq∇fTxnqq

as well as

yn`1 “ ∇f˚pβn∇fun ` p1´ βnq∇fTunq with un “ ∇f˚pαn∇fu` p1´ αnq∇fynq.

If x0 “ ∇f˚pα0∇fu` p1´ α0q∇fy0q, then for any n P N:

un “ xn and yn`1 “ vn.

Proof. The proof is by induction on n. For n “ 0, it follows by the definition of u0 as
well as the assumption on x0 that x0 “ u0. From that, we get

y1 “ ∇f˚pβ0∇fu0 ` p1´ β0q∇fTu0q

“ ∇f˚pβ0∇fx0 ` p1´ β0q∇fTx0q

“ v0.

For the induction step, suppose now that un “ xn and yn`1 “ vn. Then

xn`1 “ ∇f˚pαn`1∇fu` p1´ αn`1q∇fvnq

“ ∇f˚pαn`1∇fu` p1´ αn`1q∇fyn`1q

“ un`1

where the second equality follows by induction hypothesis. Further, we thus have

yn`2 “ ∇f˚pβn`1∇fun`1 ` p1´ βn`1q∇fTun`1q

“ ∇f˚pβn`1∇fxn`1 ` p1´ βn`1q∇fTxn`1q

“ vn`1.

Together with the above theorem, this allows us to derive the following new strong
convergence result:
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Theorem 9.6.13. Let X be a real reflexive Banach space and f : X Ñ R be a super-
coercive Legendre function which is bounded on bounded sets, uniformly Fréchet differ-
entiable and totally convex on bounded subsets. Let T be uniformly Bregman strongly
nonexpansive with F pT q ‰ H. Given a u P X, define a sequence yn by y0 “ y P X and

yn`1 “ ∇f˚pβn∇fun ` p1´ βnq∇fTunq with un “ ∇f˚pαn∇fu` p1´ αnq∇fynq

where pαnq Ď p0, 1s satisfies limαn “ 0 and
ř

αn “ 8 and where pβnq Ď r0, 1q satisfies
lim sup βn ă 1. If F pT q Ď F pT q, then pynq converges strongly to P f

F pT qpuq.
In particular, a rate of metastability can be obtained by suitably translating the rate

from Theorem 9.6.11.

Proof. It suffices to show that given a rate of metastability Ω for the sequence xn as
defined in Theorem 9.6.11 (with αn`1 instead of αn), i.e. Ω satisfying

@ε ą 0, g : NÑ NDn ď Ωpε, gq@i, j P rn;n` gpnqs p∥xi ´ xj∥ ă εq ,

we can construct a rate of metastability for yn.
For this, note first that ∥yn ´ un∥ Ñ 0 for n Ñ 8 and we can witness this limit

even by a rate of convergence. To see this, let b̄ be such that b̄ ě Df pyn, uq, ∥yn∥ , ∥un∥
for all n.13 Let σ be a rate of convergence for αn Ñ 0 as before. Then we get

Df pyn, unq ď αnDf pyn, uq ` p1´ αnqDf pyn, ynq

“ αnDf pyn, uq

so that for n ě σpε{b̄q, we have Df pyn, unq ă ε. In particular, for n ě σpρpε, b̄q{b̄q we
get ∥yn ´ un∥ ă ε.

We can now construct a rate of metastability for yn given one for xn. At first, using
Lemma 9.6.12, we get un “ xn for all n so that Ω is also a rate of metastability for un.
Then

∥yi ´ yj∥ ď ∥yi ´ ui∥` ∥ui ´ uj∥` ∥uj ´ yj∥

and by reasoning similar to [41], it can be rather immediately seen that Ω1 defined by

Ω1pε, gq “ Ωrpε{3, g, σpρpε{3, b̄q{b̄qq,

Ωrpε, g, qq “ Ωpε, gqq ` q with gqpnq :“ gpn` qq ` q,

is therefore a rate of metastability for yn.
13Such a b̄ can naturally be constructed from a b ě Df pp, uq, Df pp, y0q for a given fixed point p

together with a modulus of boundedness for Df and moduli for ∇f , f being bounded on bounded
sets. We omit the details.
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As the last application, we sketch how these constructions can be extended to define
another new strongly convergent method for common fixed points of two uniformly
Bregman strongly nonexpansive maps. Inspired by the recently introduced alternating
Halpern-Mann type method by Dinis and Pinto [57], we consider the iteration

xn`1 “ ∇f˚pαn∇fu` p1´ αnq∇fS∇f˚pβn∇fxn ` p1´ βnq∇fTxnqq

for two uniformly Bregman strongly nonexpansive maps S, T : X Ñ X with similar
conditions on the βn and αn.

Then, in similarity to before, the iteration is nothing else but the Halpern-type it-
eration of the family of maps S ˝ Tn for Tn as before. We can therefore derive a rate of
metastability for (and therefore establish the convergence of) this sequence whenever
the family S ˝Tn possesses the quantitative NST-style moduli µ and ν relative to some
other map R where we can exhibit a common strong BSNE-modulus. To find such an
R, note that we can employ the previous Theorems 9.3.14 and 9.3.18 to derive that
approximate fixed points of S ˝ Tn are approximate common fixed points of T and S.
Using this, a modulus ν relating S ˝Tn to ∇f˚pp∇fS`∇fT q{2q (which has exactly as
fixed points the common fixed points of S and T ) can be constructed. This modulus
will in particular depend on moduli of uniform closedness for F pSq and F pTnq (the
latter being definable from a corresponding modulus for F pT q).

Conversely, any approximate fixed point of ∇f˚pp∇fS`∇fT q{2q can be shown to
be a common fixed point of S and T by using Theorem 9.3.18 and thus of S and Tn. If
we further have a modulus of uniform closedness for F pSq, then we can infer that an
approximate fixed point of ∇f˚pp∇fS `∇fT q{2q is also an approximate fixed point
of S ˝ Tn from which we can extract a modulus µ.

A common strong BSNE-modulus can then be constructed using Theorems 9.3.15
and 9.3.19.

As these moduli will depend on moduli of uniform closedness, the resulting conver-
gence theorem for the iteration above will in particular only hold for mappings where
such a moduli exist. This in particular includes uniformly continuous mappings and
thus in particular covers the case of Bregman firmly nonexpansive mappings which are
bounded on bounded sets and a fortiori also the usual firmly nonexpansive maps in
Hilbert spaces with which one in that case can re-obtain the convergence of the alter-
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nating Halpern-Mann Douglas-Rachford method from [57].

Presumably, a Tikhonov-Mann type variant of this iteration could be defined as
well, relating to the above via a similar argument as in Lemma 9.6.12. We omit any
concrete details on how all of this can be formally spelled out.



10 Monotone operators in Banach spaces and
their resolvents

10.1 Introduction

In this chapter, we extend the considerations of Chapter 3 to monotone operators on
Banach spaces which were already considered in the previous Chapter 9. To treat these
operators (which also require the use of the dual of the underlying Banach space), we
rely on the system Dω introduced in Chapter 8.

Even though the setting, being in the context of the dual of the space, is different in
this chapter, the chosen approach to the set-valued operators is the same as in Chapter
3 and in that way, the present chapter further elucidates the naturalness and appli-
cability of the methods developed therein to treat set-valued operators of various types.

Besides treating these operators, this chapter also provides a proof-theoretic treat-
ment of the resolvents relative to a convex function f already discussed and used in
Chapter 9 (and in that vein, we also rely on Chapter 9 for some analytical background).
To that end, we show that the main properties of the operator and the resolvents rela-
tive to f are provable in the system that we define. Also, we show that the equivalence
between maximality of the operator and extensionality discussed in Chapter 3 extends
to these new objects.

At last, we extend the bound extraction results from the previous chapters to these
systems. These new metatheorems in particular fully explain the applications given in
Chapter 9 for these operators and their relativized resolvents.

275
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10.2 Logical systems for operators and their resol-

vents

At first, we want to mention that all the considerations made here could be extended
mutatis mutandis to the case where we only consider partial convex functions f with
an intensional treatment of the domain as discussed in Chapter 8 but, for simplicity,
we refrain from spelling this out in detail.

Also, while we previously have divided the treatment of resolvents on whether
they are partial or total, we in the following will only consider systems for monotone
operators on Banach spaces where the resolvents are all total. If one would want to
treat operators with partial resolvents, then a similar approach as presented in Chapter
3 could also be followed here.

10.2.1 Further considerations on convex functions

The basic system for all extensions considered here will be Dωrf,∇f, f˚,∇f˚s from
Chapter 8, treating the dual of the abstract normed space together with a convex
function, its Fenchel-conjugate and their uniformly continuous gradients. It will be
convenient to slightly extend this system so that the theory of monotone operators
can be developed smoothly. Concretely, it will be convenient to include a few more
properties of the Fenchel conjugate f˚ axiomatically into the previous systems: by the
Fenchel–Moreau theorem (see e.g. [21]), we know that if f is proper, lower-semicontinuous
and convex, then f˚ is proper and f “ f˚˚ where we define f˚˚ : X Ñ p´8,`8s by

f˚˚pxq :“ sup
x˚PX˚

pxx, x˚y ´ f˚px˚qq.

With this definition, we follow one particular approach to biconjugates as e.g. outlined
in [21]. In other works, one finds f˚˚ introduced as pf˚q˚ acting on X˚˚ and thus on X
by its embedding into X˚˚ (which coincides with X in the context of reflexivity). As
the spaces considered in the context of Dωrf,∇f, f˚,∇f˚s are anyhow superreflexive
by the results of [18], these different approaches yield the same object but the above
formulation will also influence the types of objects considered later.

This fact that f “ f˚˚ is crucial for the development of the theory of monotone
operators and we need to deal with it formally. Naturally, a function f as axiomatized
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by the system Dωrf,∇f, f˚,∇f˚s satisfies the assumptions of the Fenchel-Moreau the-
orem but instead of analyzing the proof, we instead hardwire this fact into the system
akin to how f˚ was treated in Chapter 8.

In more detail, note that f “ f˚˚ “ pf˚q˚ is bounded on bounded sets and therefore
f˚ is supercoercive by Proposition 8.5.7. So f “ f˚˚ can be wired into the system
by using a modulus of supercoercivity αf

˚ for f˚ together with the following axioms
instantiating the schemes pSq1, pSq2 as in Chapter 8:

pf˚q3 f˚ is supercoercive with modulus αf˚ , i.e.

@K0, x˚X
˚
´

∥x˚∥X˚ ąR α
f˚

pKq Ñ f˚px˚q{ ∥x˚∥X˚ ěR K
¯

.

Here, αf˚ is an additional constant of type 1.

pf˚˚q1 f is the pointwise upper bound for all affine functionals gx˚pxq “ xx, x˚y´f˚px˚q,
i.e.

@xX , x˚X
˚

pxx, x˚yX˚ ´ f˚px˚q ďR fpxqq .

pf˚˚q2 f is indeed the pointwise supremum of these affine functionals, i.e.

@xX , b0, k0Dx˚X
˚

ďX˚ maxtαf
˚

pb` 1q ` 1, r|f˚p0q|sp0q ` 2u1X˚

`

∥x∥X ăR bÑ
`

fpxq ´ 2´k ďR xx, x
˚
yX˚ ´ f˚px˚q

˘˘

.

With Dω
f,f˚rFMs we abbreviate the system that arises from Dωrf,∇f, f˚,∇f˚s by

adding these constants and axioms.

Before we consider the monotone operators in Banach spaces, we first establish
the following properties of f and f˚ in Dωrf,∇f, f˚,∇f˚s regarding the relationship
between the continuity of ∇f and the convexity of f˚ and vice versa (as already
discussed at various points in Chapter 9, recall in particular Remark 9.2.13). For this,
we also in particular establish a quantitative variant of the uniqueness of ∇f as a
subgradient.

Lemma 10.2.1. The system Dωrf,∇f, f˚,∇f˚s proves:

1. The “Fenchel-Young equality”1 for any subgradient u˚ of f at x, i.e.

@xX , u˚X
˚

p@yX pfpyq ěR fpxq ` xy ´X x, u
˚
yX˚q Ñ fpxq` f˚pu˚q “R xx, u

˚
yX˚q.

1By this expression, we mean in the following that the Fenchel-Young inequality is not strict, i.e.
is satisfied with equality.
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2. The “Fenchel-Young equality” for ∇fx, i.e.

@xX pfpxq ` f˚p∇fxq “R xx,∇fxyX˚q .

3. Approximate subgradients of f are close to the gradient of f , i.e.

@b0, k0Dj0@xX , x˚X
˚

p∥x∥X ăR b^ @y
X
`

xy ´X x, x
˚
yX˚ ` fpxq ďR fpyq ` 2´j

˘

Ñ ∥x˚ ´X˚ ∇fx∥X˚ ďR 2´kq,

where in fact we can take

j “ k ` 4` ω∇f
pk ` 3, b` 1q.

4. The “Fenchel-Young equality” characterizes gradients of f , i.e.

@xX , x˚X
˚

pfpxq ` f˚px˚q “R xx, x
˚
yX˚ Ñ x˚ “X˚ ∇fxq ,

where in fact it moreover holds that

@b0, k0Dj0@xX , x˚X
˚

p∥x∥X ăR b^ fpxq ` f
˚
px˚q ´ xx, x˚yX˚ ďR 2´j

Ñ ∥x˚ ´X˚ ∇fx∥X˚ ďR 2´kq

where we can take
j “ k ` 4` ω∇f

pk ` 3, b` 1q.

5. ∇fx is the unique subgradient of f at x, i.e.

@xX , u˚X
˚ `

@yX pfpyq ěR fpxq ` xy ´X x, u
˚
yX˚q Ñ u˚ “X˚ ∇fx

˘

.

6. f˚ is uniformly strictly convex on bounded subsets, i.e.

@k0, i0, b0Dj0@x˚X
˚

, y˚X
˚

, t1p∥x˚∥X˚ , ∥y˚∥X˚ ăR b^ 2´i ďR t ďR 1´ 2´i

^ tf˚px˚q ` p1´ tqf˚py˚q ´ f˚ptx˚ `X˚ p1´ tqy˚q ďR 2´j

Ñ ∥x˚ ´X˚ y˚∥X˚ ďR 2´kq

where we in fact can choose

j “ pk ` 4` ω∇f
pk ` 4, F pbq ` 2qq ` i

where F is a modulus for ∇f˚ being bounded on bounded sets (which can be
constructed similar to Lemma 8.5.5).
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7. ∇f˚ is uniformly strictly monotone on bounded subsets, i.e.

@k0, b0Dj0@x˚X
˚

, y˚X
˚

p∥x˚∥X˚ , ∥y˚∥X˚ ăR b^ ∥x˚ ´X˚ y˚∥X˚ ąR 2´k

Ñ
`

x∇f˚x˚ ´X ∇f˚y˚, x˚ ´X˚ y˚yX˚ ěR 2´j
˘

q.

where we in fact can choose

j “ k ` 5` ω∇f
pk ` 4, F pbq ` 2q.

with all other constants as in (6).

Proof. 1. Let u˚ be such that

@y pfpyq ě fpxq ` xy ´ x, u˚yq ,

i.e.
xy, u˚y ´ fpyq ď xx, u˚y ´ fpxq

for all y. Using pf˚q2, we get that for any j, there exists a yj such that

f˚pu˚q ´ pxx, u˚y ´ fpxqq ď f˚pu˚q ´ pxyj, u
˚
y ´ fpyjqq ď 2´j

and thus we have
f˚pu˚q ď xx, u˚y ´ fpxq.

Using axiom pf˚q1, we get xx, u˚y ´ fpxq ď f˚pu˚q and combined this gives the
result.

2. Follows immediately from (1) and p∇fq1.

3. Let x˚ be such that

@y
`

xy ´ x, x˚y ` fpxq ď fpyq ` 2´j
˘

for j defined as above. This yields

xy ´ x, x˚ ´∇fxy “ xy ´ x, x˚y ´ xy ´ x,∇fpxqy

ď fpyq ´ fpxq ´ xy ´ x,∇fpxqy ` 2´j.

Using Lemma 8.5.5, (1), we get that for ∥y ´ x∥ ă 2´ω
∇f pl,b`1q:

fpyq ´ fpxq ´ xy ´ x,∇fpxqy ď 2´l ∥y ´ x∥



280
CHAPTER 10. MONOTONE OPERATORS IN BANACH SPACES AND THEIR

RESOLVENTS

and so xy ´ x, x˚ ´∇fxy ď 2´j ` 2´l ∥y ´ x∥ for all such y which in particular
yields

xz, x˚ ´∇fxy ď 2´j ` 2´l ∥z∥

for all z with ∥z∥ ă 2´ω
∇f pl,b`1q given any l. For the given k, now use the same

argument as in the proof of Lemma 8.3.4, (2).(b) to pick a zk such that (w.l.o.g.)
0 ă ∥zk∥ ď 1 and

xzk, x
˚
´∇fxy ď 2´pk`2q Ñ ∥x˚ ´∇fx∥ ď 2´k.

Define
zkp “ 2´pω

∇f pk`3,b`1q`1qzk.

Clearly ∥zkp ∥ ă 2´ω
∇f pk`3,b`1q and thus

xzkp , x
˚
´∇fxy ď 2´j ` 2´pk`3q ∥zkp ∥

which yields by definition of j that

xzk, x
˚
´∇fxy “ 2pω

∇f pk`3,b`1q`1q
xzkp , x

˚
´∇fxy

ď 2pω
∇f pk`3,b`1q`1q

p2´j ` 2´pk`3q ∥zkp ∥q

“ 2pω
∇f pk`3,b`1q`1q2´j ` 2´pk`3q2pω

∇f pk`3,b`1q`1q ∥zkp ∥q

ď 2´pk`4`ω
∇f pk`3,b`1qq2pω

∇f pk`3,b`1q`1q
` 2´pk`3q

“ 2´pk`2q

which implies ∥x˚ ´∇fx∥ ď 2´k by the properties of zk.

4. Let x˚ be such that

fpxq ` f˚px˚q ´ xx, x˚yX˚ ď 2´j

with j defined as above. Then we get

f˚px˚q ď 2´j ` xx, x˚y ´ fpxq

which yields through pf˚q1 that

xy, x˚y ´ fpyq ď 2´j ` xx, x˚y ´ fpxq

for all y which is equivalent to

xy ´ x, x˚y ` fpxq ď fpyq ` 2´j

for all y. Then item (3) yields the result.
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5. This follows immediately from (3).

6. Suppose
|tf˚px˚q ` p1´ tqf˚py˚q ´ f˚ptx˚ ` p1´ tqy˚q| ďR 2´j

for j as above. Then write z˚ “ tx˚`p1´tqy˚ and pick x “ ∇f˚z˚, i.e. ∇fx “ z˚

by pLq. Then by item (2), the extensionality of f˚ (recall Remark 8.5.15) and
the extensionality of x¨, ¨y, we get

0 “ fpxq ` f˚pz˚q ´ xx, z˚y

ě fpxq ` tf˚px˚q ` p1´ tqf˚py˚q ´ 2´j ´ xx, z˚y,

i.e. we have

2´j ě tpfpxq ` f˚px˚q ´ xx, x˚yq ` p1´ tqpfpxq ` f˚py˚q ´ xx, y˚yq

and thus, using t, 1 ´ t ě 2´i and that fpxq ` f˚px˚q ´ xx, x˚y ě 0 as well as
fpxq ` f˚py˚q ´ xx, y˚y ě 0 by the Fenchel-Young inequality (which follows from
axiom pf˚q1), we get

2´j2i ě fpxq ` f˚px˚q ´ xx, x˚y, fpxq ` f˚py˚q ´ xx, y˚y

By definition of j, we get

2´pk`4`ω
∇f pk`4,F pbq`2qq

ě fpxq ` f˚px˚q ´ xx, x˚y, fpxq ` f˚py˚q ´ xx, y˚y.

Noting that ∥z˚∥ ď t ∥x˚∥ ` p1 ´ tq ∥y˚∥ ă b and thus ∥x∥ ă F pbq ` 1, item (4)
implies that

∥x˚ ´∇fx∥ , ∥y˚ ´∇fx∥ ď 2´pk`1q

which yields ∥x˚ ´ y˚∥ ď 2´k.

7. Using item (6), note that for t “ 1{2, we have

f˚
ˆ

x˚ ` y˚

2

̇

ď 1{2f˚py˚q ` 1{2f˚px˚q ´ 2´j

“ f˚px˚q ` 1{2pf˚py˚q ´ f˚px˚qq ´ 2´j

if ∥x˚ ´ y˚∥ ą 2´k. As

x∇f˚w˚, z˚y ď f˚pw˚ ` αz˚q ´ f˚pw˚q

α
,
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for any α ą 0 (using p∇f˚q1), we get

x∇f˚x˚, y˚ ´ x˚y ď f˚py˚q ´ f˚px˚q ´ 2 ¨ 2´j.

Similarly, we get

x∇f˚y˚, x˚ ´ y˚y ď f˚px˚q ´ f˚py˚q ´ 2 ¨ 2´j

and this implies
x∇f˚y˚ ´∇f˚x˚, x˚ ´ y˚y ď ´4 ¨ 2´j

which gives the claim.

Now, the additional axioms in Dω
f,f˚rFMs can be used to carry out the above proof

with the roles of f and f˚ exchanged. We collect this in the following lemma.

Lemma 10.2.2. The system Dω
f,f˚rFMs proves:

1. The “Fenchel-Young equality” for any subgradient u of f˚ at x˚, i.e.

@x˚X
˚

, uXp@y˚X
˚

pf˚py˚q ěR f
˚
px˚q ` xu, y˚ ´X˚ x˚yX˚q

Ñ f˚px˚q ` fpuq “R xu, x
˚
yX˚q.

2. The “Fenchel-Young equality” for ∇f˚x, i.e.

@x˚X
˚

pf˚px˚q ` fp∇f˚x˚q “R x∇f˚x˚, x˚yX˚q .

3. Approximate subgradients of f˚ are close to the gradient of f˚, i.e.

@b0, k0Dj0@x˚X
˚

, xXp∥x˚∥X˚ ăR b

^ @y˚X
˚ `

xx, y˚ ´X˚ x˚yX˚ ` f˚px˚q ďR f
˚
py˚q ` 2´j

˘

Ñ ∥x´X ∇f˚x˚∥X ďR 2´kq,

where in fact we can take

j “ k ` 4` ω∇f˚

pk ` 3, b` 1q.

4. The “Fenchel-Young equality” characterizes gradients of f˚, i.e.

@x˚X
˚

, xX pf˚px˚q ` fpxq “R xx, x
˚
yX˚ Ñ x “X ∇f˚x˚q ,
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where in fact it moreover holds that

@b0, k0Dj0@x˚X
˚

, xXp∥x˚∥X˚ ăR b^ f
˚
px˚q ` fpxq ´ xx, x˚yX˚ ďR 2´j

Ñ ∥x´X ∇f˚x˚∥X ďR 2´kq

where we can take
j “ k ` 4` ω∇f˚

pk ` 3, b` 1q.

5. ∇f˚x˚ is the unique subgradient of f˚ at x˚, i.e.

@x˚X
˚

, uX
´

@y˚X
˚

pf˚py˚q ěR f
˚
px˚q ` xu, y˚ ´X˚ x˚yX˚q Ñ u “X ∇f˚x˚

¯

.

6. f is uniformly strictly convex on bounded subsets, i.e.

@k0, i0, b0Dj0@xX , yX , t1p∥x∥X , ∥y∥X ăR b^ 2´i ďR t ďR 1´ 2´i

^ tfpxq ` p1´ tqfpyq ´ fptx`X p1´ tqyq ďR 2´j

Ñ ∥x´X y∥X ďR 2´kq

where we in fact can choose

j “ pk ` 4` ω∇f˚

pk ` 4, Cpbq ` 2qq ` i

where C is a modulus for ∇f being bounded on bounded sets (which can be con-
structed as in Lemma 8.5.5).

7. ∇f is uniformly strictly monotone on bounded subsets, i.e.

@k0, b0Dj0@xX , yXp∥x∥X , ∥y∥X ăR b^ ∥x´X y∥X ąR 2´k

Ñ
`

xx´X y,∇fx´X˚ ∇fyyX˚ ěR 2´j
˘

q.

where we in fact can choose

j “ k ` 5` ω∇f˚

pk ` 4, Cpbq ` 2q.

with all other constants as in (6).

In particular, in the system Dω
f,f˚rFMs we can now formally establish some of the

central properties of Bregman distances used extensively throughout Chapter 9. We
begin with the fact that Wf px,∇fpyqq “ Df px, yq:

Lemma 10.2.3. The system Dω
f,f˚rFMs proves:

@xX , yX pDf px, yq “R fpxq ` f
˚
p∇fyq ´ xx,∇fyyX˚q .
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Proof. By Lemma 10.2.1, (2), we have

f˚p∇fyq “ xy,∇fyy ´ fpyq

and thus

fpxq ` f˚p∇fyq ´ xx,∇fyy “ fpxq ´ fpyq ´ xx´ y,∇fyy

“ Df px, yq.

Lemma 10.2.4. The system Dω
f,f˚rFMs proves that Df is uniformly bounded in the

sense of Chapter 9, i.e.

@b0, α0
Do0@xX , yX p∥x∥X ăR b^Df px, yq ăR αÑ ∥y∥X ďR oq

and o can be realized by

o “ opα, bq “ F pαf
˚

pα `Dpbq ` bq ` 1q.

where D,F are moduli of f , ∇f˚ being bounded on bounded sets, respectively, and αf˚

is a modulus of supercoercivity for f˚ as before.

Proof. First, note that f˚px˚q ´ xx, x˚y is also supercoercive. For this, let ∥x∥ ă b. If
∥x˚∥ ą αf

˚

pK ` bq, from axiom pf˚q3 we derive

f˚px˚q ´ xx, x˚y

∥x˚∥
ě
f˚px˚q

∥x˚∥
´ ∥x∥ ě K.

Now, we have

f˚p∇fyq ´ xx,∇fyy “ Df px, yq ´ fpxq ă α `Dpbq

using the above Lemma 10.2.3. Therefore, we derive

∥∇fy∥ ď αf
˚

pα `Dpbq ` bq

and thus we get ∥y∥ “ ∥∇f˚∇fy∥ ď F pαf
˚

pα `Dpbq ` bq ` 1q.
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10.2.2 Monotone operators and their relativized resolvents

Set-valued operators of the form A : X Ñ 2X
˚ are, in similarity to before in Chapter 3,

modeled via a constant for their characteristic function. In the context of the system
Dω for the dual of a Banach space, we in that way add a constant χA of type 0pX˚qpXq

and write x˚ P Ax, px, x˚q P A or px, x˚q P graA for χAxx˚ “0 0. The first natural
axiom is

@xX , x˚X
˚

pχAxx
˚
ď0 1q pIq˚

which witnesses that χA is a characteristic function as before.

Also, the treatment of the resolvent is conceptually similar to before. For this, let
A be monotone (in the sense of Browder, recall Chapter 9) and recall Definition 9.3.10
for the resolvents of such monotone operators relative to f : Resfγ : X Ñ 2X is defined
by

Resfγx :“
`

p∇f ` γAq´1 ˝∇f
˘

pxq

for any x P X and γ ą 0 where, as before, since A remains fixed, we write Resfγ for
ResfγA. It follows by our assumptions on f and Proposition 9.3.11 that this map is
single-valued, satisfies F pResfγq “ A´10 (noting that domf “ X in this chapter) and
that it is Bregman firmly nonexpansive.

So, for treating an operator A with total relativized resolvents, we add a constant
Resf of type XpXqp1q and write Resfγ for Resfγ. The natural axiom for the resolvent
now can be derived as before: If seen as a set-valued operator, the resolvent satisfies

p P Resfγxô p P p∇f ` γAq´1∇fpxq

ô ∇fpxq P ∇fppq ` γAp

ô γ´1 p∇fpxq ´∇fppqq P Ap.

This naturally leads us to consider the axiom scheme

@γ1, xX
`

γ ąR 0Ñ γ´1p∇fx´X˚ ∇fpResfγxqq P ApResfγxq
˘

pIIq˚

in similarity to axiom (II) considered in Chapter 3 as an intensional version of the
crucial direction of the above equivalence for total resolvents.

Remark 10.2.5. As in the context of the systems from Chapter 3, note that also here,
the above axiom pIIq˚ is actually an abbreviation for the following sentence where the
dependence of γ´1 on a lower bound of γ is made explicit:

@γ1, xX , k0
`

γ ąR 2´k Ñ pγq´1k p∇fx´X˚ ∇fpResfγxqq P ApResfγxq
˘

.
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Also the monotonicity of A is easily specified by a universal axiom:

@xX , yX , x˚X
˚

, y˚X
˚

ppx, x˚q, py, y˚q P AÑ xx´X y, x
˚
´X˚ y˚yX˚ ěR 0q . pIIIq˚

Lastly, all uses of the resolvent presented in Chapter 9 are made in the context of
the assumption that A´10 ‰ H and we will also assume this here as it in particular
will allow us to majorize the resolvent rather immediately. For this, we add a constant
pX of type X together with a corresponding axiom stating that pX is a zero of A:

0 P ApX . pIV q˚

This leads us to the following system:

Definition 10.2.6. The theory Bω is defined as the extension of the theory Dω
f,f˚rFMs

with the above constants and corresponding axioms pIq˚ - pIV q˚.

Now, in similarity to the systems from Chapter 3, also Bω is sufficient for formalizing
the first main aspects of the theory of monotone operators in Banach spaces and their
resolvents relative to f as the following proposition shows.

Proposition 10.2.7. The system Bω proves:

1. Resfγ is unique for any γ ą 0, i.e.

@γ1, pX , xX
`

γ ąR 0^ γ´1p∇fx´X˚ ∇fpq P ApÑ p “X Resfγx
˘

.

2. Resfγ is Bregman firmly nonexpansive for any γ ą 0, i.e.

@γ1, xX , yXpγ ąR 0Ñ xResfγx´X Resfγy,∇fResfγx´X˚ ∇fResfγyyX˚

ďR xRes
f
γx´X Resfγy,∇fx´X˚ ∇fyyX˚q.

3. Resfγ satisfies the alternative notion of Bregman firm nonexpansivity for any γ ą
0, i.e.

@γ1, xX , yXpγ ąR 0Ñ Df pRes
f
γx,Res

f
γyq `Df pRes

f
γy,Res

f
γxq

ďR Df pRes
f
γx, yq `Df pRes

f
γy, xq ´Df pRes

f
γx, xq ´Df pRes

f
γy, yqq.

4. A´10 Ď F pResfγq for any γ ą 0, i.e.

@pX , γ1
`

γ ąR 0^ 0 P ApÑ p “X Resfγp
˘

.
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Proof. 1. Suppose that γ ą 0 and that γ´1p∇fx ´∇fpq P Ap. Axiom pIIq˚ gives
γ´1p∇fx´∇fResfγxq P ApResfγxq. Axiom pIIIq˚ then implies that

0 ď xResfγx´ p, γ
´1
p∇fx´∇fResfγxq ´ γ´1p∇fx´∇fpqy

“ xResfγx´ p, γ
´1
p∇fp´∇fResfγxqy

where we have used extensionality of x¨, ¨y and of the arithmetical operations in
X˚. In particular, since γ´1 ą 0 as γ ą 0, we get that

xResfγx´ p,∇fResfγx´∇fpy ď 0.

Thus, as ∇f is provably strictly monotone (Lemma 10.2.2), we get
⃦⃦
Resfγx´ p

⃦⃦
“

0, i.e. Resfγx “ p.

2. Let γ ą 0. Axiom pIIq˚ gives

γ´1p∇fx´∇fResfγxq P ApResfγxq and γ´1p∇fy ´∇fResfγyq P ApResfγyq.

Axiom pIIIq˚ and γ´1 ą 0 gives

xResfγx´ Resfγy,∇fx´∇fy ´ p∇fResfγx´∇fResfγyqy ě 0

which implies

xResfγx´ Resfγy,∇fx´∇fyy ě xResfγx´ Resfγy,∇fResfγx´∇fResfγyy.

3. By the provability of the three-point identity for Df (Lemma 8.5.18), we get

xResfγx´ Resfγy,∇fResfγx´∇fResfγyy

“ Df pRes
f
γx,Res

f
γyq `Df pRes

f
γy,Res

f
γxq ´Df pRes

f
γx,Res

f
γxq

“ Df pRes
f
γx,Res

f
γyq `Df pRes

f
γy,Res

f
γxq.

Further, by the provability of the four-point identity for Df (Lemma 8.5.18), we
get

xResfγx´ Resfγy,∇fx´∇fyy

“ Df pRes
f
γx, yq ´Df pRes

f
γx, xq ´Df pRes

f
γy, yq `Df pRes

f
γy, xq.

Thus, using item (2), we get the claimed inequality.
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4. Let p be such that 0 P Ap. Then provably with the only assumption being γ ą 0,
we have γ´1p∇fp´∇fpq “ 0 and thus, using Σ1-ER, we have that 0 P Ap implies

γ´1p∇fp´∇fpq P Ap.

Using item (1), we get p “ Resfγp.

Also the boundedness and continuity properties of maps that are Bregman firmly
nonexpansive, as already discussed in Chapter 9, can now be formally replicated in
the context of the system Bω (where we here formulate these properties just for the
resolvents):

Proposition 10.2.8. Bω proves:

1. Resfγ is bounded on bounded sets for any γ ą 0, i.e.

@γ1@b0De0@xX
´

γ ąR 0^ ∥pX∥X , ∥x∥X ăR bÑ
⃦⃦
Resfγx

⃦⃦
X
ďR e

¯

,

where in fact one can choose

e “ Epbq “ op2Dpbq ` 2bCpbq, bq

where C,D are moduli witnessing that ∇f, f are bounded on bounded sets, re-
spectively, and o is defined as in Lemma 10.2.4.

2. Resfγ is uniformly continuous on bounded sets for any γ ą 0, i.e.

@γ1, k0, b0Dj0@xX , yXpγ ąR 0^ ∥pX∥X , ∥x∥X , ∥y∥X ăR b

^ ∥x´X y∥X ăR 2´j Ñ
⃦⃦
Resfγx´X Resfγy

⃦⃦
X
ďR 2´kq

where in fact one can choose

j “ ϖpk, bq “ ω∇f
pkp` 1` Epbq, bq

for kp “ k` 5`ω∇f˚

pk` 4, Cpbq` 2q with C being a modulus witnessing that ∇f
is bounded on bounded sets and where E is defined as in (1).

Proof. For item (1), note that by Lemma 10.2.7, (3) and (4), and with p “ pX from
axiom pIV q˚, we have (using the extensionality of Df which follows from that of f,∇f
and x¨, ¨y):

Df pRes
f
γx, pq `Df pp,Res

f
γxq ď Df pRes

f
γx, pq `Df pp, xq ´Df pRes

f
γx, xq ´Df pp, pq

ď Df pRes
f
γx, pq `Df pp, xq



CHAPTER 10. MONOTONE OPERATORS IN BANACH SPACES AND THEIR
RESOLVENTS 289

and thus

Df pp,Res
f
γxq ď Df pp, xq ă 2Dpbq ` 2bCpbq.

Thus, by Lemma 10.2.4, we get⃦⃦
Resfγx

⃦⃦
ď op2Dpbq ` 2bCpbq, bq.

For item (2), by Lemma 10.2.7, (2), we have

xResfγx´ Resfγy,∇fResfγx´∇fResfγyy

ď xResfγx´ Resfγy,∇fx´∇fyy

ď
⃦⃦
Resfγx´ Resfγy

⃦⃦
∥∇fx´∇fy∥

ď 2Epbq ∥∇fx´∇fy∥ .

using the above item (1). So, for ∥x´ y∥ ă 2´j, by the definition of j, we have

∥∇fx´∇fy∥ ď 2´pk
p`1`Epbqq

and thus

xResfγx´ Resfγy,∇fResfγx´∇fResfγyy ď 2´k
p

.

Thus by Lemma 10.2.2, (7), we get⃦⃦
Resfγx´ Resfγy

⃦⃦
ď 2´k.

Notice that therefore the system Bω proves that Resfγ is extensional.

10.3 Maximality and extensionality

As discussed in Chapter 3, a central theoretical result from [165] is the connection
between the extensionality of A and the maximality statement for A. We can now
extend this result to the monotone operators over Banach spaces.

Theorem 10.3.1. Over Bω, the following are equivalent:

1. Extensionality of A, i.e.

@xX , x˚X
˚

, yX , y˚X
˚

px “X y ^ x˚ “X˚ y˚ Ñ χAxx
˚
“0 χAyy

˚
q .
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2. The strong resolvent axiom, i.e.

@xX , pX , γ1
`

γ ąR 0^ p “X ResfγxÑ γ´1p∇fx´X˚ ∇fpq P Ap
˘

.

3. Maximal monotonicity of A, i.e.

@xX , x˚X
˚
´

@yX , y˚X
˚

py˚ P Ay Ñ xx´X y, x
˚
´X˚ y˚yX˚ ěR 0q Ñ x˚ P Ax

¯

.

Proof. For the direction (1) ñ (3), let x, x˚ be such that

@y, y˚ py˚ P Ay Ñ xx´ y, x˚ ´ y˚y ě 0q .

We consider z “ ∇f˚px˚ `∇fxq. Then

1´1p∇fz ´∇fResf1zq P ApRes
f
1zq.

by axiom pIIq˚. Thus by the assumption on x, x˚, axiom pLq and the extensionality of
x¨, ¨y we get

0 ď xx´ Resf1z, x
˚
´ p∇fz ´∇fResf1zqy

“ xx´ Resf1z,∇fRes
f
1z ´∇fxy

which is equivalent to

xx´ Resf1z,∇fx´∇fResf1zy ď 0

and this yields x “ Resf1z as ∇f is (provably) strictly monotone. Further, we have

1´1
´

∇fz ´∇fResf1z
¯

“ x˚ `∇fx´∇fx “ x˚

using pLq and the extensionality of ∇f and thus the extensionality of A yields x˚ P Ax.

For the direction (3) ñ (2), assume that γ ą 0 and p “ Resfγx. Then at first

γ´1p∇fx´∇fResfγxq P ApResfγxq

by axiom pIIq˚. By monotonicity (axiom pIIIq˚) together with the extensionality of
x¨, ¨y and ∇f , we get

@py, y˚q P Apxp´ y, γ´1p∇fx´∇fpq ´ y˚y ě 0q.

By (3), we get
γ´1p∇fx´∇fpq P Appq.
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For (2) ñ (1), let x “ y and x˚ “ y˚ with x˚ P Ax. Define

z “ ∇f˚py˚ `∇fyq.

By pIIq˚, we get
1´1p∇fz ´∇fResf1zq P ApRes

f
1zq.

Axiom pIIIq˚ together with the extensionality of x¨, ¨y and ∇f˚ as well as using pLq
yields

0 ď xx´ Resf1z, x
˚
´ p∇fz ´∇fResf1zqy

“ xy ´ Resf1z,∇fRes
f
1z ´∇fyy

and this is equivalent to

xy ´ Resf1z,∇fy ´∇fResf1zy ď 0

which yields y “ Resf1z by provable strict monotonicity of ∇f . Using (2), we have

1´1p∇fz ´∇fyq P Ay

which yields by the quantifier-free extensionality rule that y˚ P Ay as 1´1p∇fz ´
∇fyq “ y˚ holds without any additional assumptions.

As before, extensionality is not provable (as will be discussed in more detail later
on in Chapter 11 as well). As all the results are considered in the context of a Legendre
function where f and f˚ are Fréchet differentiable with gradients that are uniformly
continuous on bounded sets, we find by Proposition 9.3.12 that the totality of the
resolvent implies that the operators A which are considered are maximally monotone.
As before, this maximality can then not be provable due to the above equivalence. For
now, we are content with the following replica of Theorem 3.4.2 which establishes that
also here, the system Bω actually proves a weakened maximality principle.

Theorem 10.3.2. The system Bω proves the following intensional maximality princi-
ple:

@xX , x˚X
˚
´

@yX , y˚X
˚

py˚ P Ay Ñ xx´X y, x
˚
´X˚ y˚yX˚ ěR 0q

Ñ Dx1
X
, x1

˚X˚ `

x “X x1 ^ x˚ “X˚ x1
˚
^ x1

˚
P Ax1

˘

¯

.

Proof. As in the proof of the direction (1) ñ (3) from the above Theorem 10.3.1, we
get that

1´1p∇fz ´∇fResf1zq P ApRes
f
1zq

together with x “ Resf1z and 1´1p∇fz ´ ∇fResf1zq “ x˚ for z “ ∇f˚px˚ ` ∇fxq
without any use of extensionality. This gives the claim.
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10.4 A bound extraction theorem

We now state the bound extraction theorems for the theory Bω which extends those
for Dω and its extensions from Chapter 8. In that vein, we keep the proofs short and
only briefly discuss the key ingredients. All other considerations regarding the dual
space can be made similar to Chapter 8 and all considerations regarding the operator
A can be made similar to Chapter 3.

In particular, the models of all set-theoretic and of all majorizable functionals can
be defined for the theory Bω by combining the ideas from Chapter 8 and Chapter 3.
We do not spell this out here any further.

We begin with the classical metatheorem:

Theorem 10.4.1. Let τ be admissible, δ be of degree 1 and s be a closed term of
Bω of type σpδq for admissible σ. Let ∆ be a set of formulas of the form @aδDb ďσ

ra@cγFqf pa, b, cq where Fqf is quantifier-free, the types in δ, σ and γ are admissible and
where r is a tuple of closed terms of appropriate type. Let B@px, y, z, uq/CDpx, y, z, vq
be @-/D-formulas of Bω with only x, y, z, u/x, y, z, v free. If

Bω `∆ $ @xδ@y ďσ spxq@z
τ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : NN ˆ N ˆ Sδ ˆ Sτp á N which is total
and (bar-recursively) computable on NN ˆ N ˆMδ ˆMτp and such that for all x P Sδ,
z P Sτ , z˚ P Sτp with z˚ Á z and for all ω P NN, n P N with ω Á ω∇f , ω∇f˚

, αf , αf
˚ and

n ěR |fp0q|, ∥∇fp0q∥X˚ , |f˚p0q|, ∥∇f˚p0q∥X , ∥pX∥X :

Sω,X,X˚

|ù @y ďσ spxqp@u ď0 Φpω, n, x, z
˚
qB@px, y, z, uq

Ñ Dv ď0 Φpω, n, x, z
˚
qCDpx, y, z, vqq

holds whenever Sω,X,X˚

|ù ∆ for Sω,X,X˚ defined via any (nontrivial) reflexive Banach
space pX, ∥¨∥q with its dual X˚ (and via a suitable interpretation of the additional
constants similar to Chapters 8 and 3) and using a convex, supercoercive (with modulus
αf) and Fréchet differentiable function f : X Ñ R where ∇f , ∇f˚ are uniformly
continuous on bounded subsets with moduli ω∇f , ω∇f˚, respectively and where f˚ is
supercoercive (with modulus αf˚). In particular, χA is interpreted by the characteristic
function of a maximally monotone operator A : X Ñ 2X

˚ with A´10 ‰ H and Resf by
the corresponding resolvents ResfγA for γ ą 0.

Further:
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1. If τp is of degree 1, then Φ is a total computable functional.

2. We may have tuples instead of single variables x, y, z, u, v and a finite conjunction
instead of a single premise @u0B@px, y, z, uq.

3. If the claim is proved without DC, then τ may be arbitrary and Φ will be a total
functional on NNˆNˆSδˆSτp which is primitive recursive in the sense of Gödel.
In that case, also plain majorization can be used instead of strong majorization.

Proof. To define the models based on Mω,X,X˚ and Sω,X,X˚ , the interpretation of the
constants relating to the normed space and the dual can be achieved similar to Chapter
8 while the interpretation of the constants relating to the operators can be achieved
similar to Chapter 3. Majorizability of the characteristic function is immediate as
before and majorization of the resolvent follows from Proposition 10.2.8. Thus the
previous Lemmas 3.7.7 and 8.6.3 extend to Bω. The previous proofs therefore go
through exactly as before since all the new axioms are purely universal or of type ∆

(dealing with the linearity rule and any other axioms of type ∆ in Bω as in the case of
Dω in Chapter 8).

Similar, we can also obtain a semi-constructive metatheorem by extending the ones
presented in the previous chapters. For this, we can also define Bωi similar to Bω but
over Aω

i rX, ∥¨∥s instead of AωrX, ∥¨∥s. As before, since the constructions and proofs
are completely analogous, we omit them here and just state the result:

Theorem 10.4.2. Let δ be of the form 0p0q . . . p0q and σ, τ be arbitrary, s be a closed
term of suitable type. Let Γ␣ be a set of sentences of the form @uζpCpuq Ñ Dv ďβ

tu␣Dpu, vqq with ζ, β and C,D arbitrary types and formulas respectively and where t
is a tuple of closed terms. Let Bpx, y, zq/Cpx, y, z, uq be arbitrary formulas of Bωi with
only x, y, z/x, y, z, u free. If

Bωi ` IP␣ ` CA␣ ` Γ␣ $ @x
δ
@y ďσ pxq @z

τ
p␣Bpx, y, zq Ñ Du0Cpx, y, z, uqq,

one can extract a Φ : S1 ˆ S0 ˆ Sδ ˆ Sτp Ñ N with is primitive recursive in the sense
of Gödel such that for any x P Sδ, any y P Sσ with y ďσ spxq, any z P Sτ and
z˚ P Sτp with z˚ Á z and for all ω P NN, n P N with ω Á ω∇f , ω∇f˚

, αf , αf
˚ and

n ěR |fp0q|, ∥∇fp0q∥X˚ , |f˚p0q|, ∥∇f˚p0q∥X , ∥pX∥X :

Sω,X,X˚

|ù Du ď0 Φpω, n, x, z
˚
q p␣Bpx, y, zq Ñ Cpx, y, z, uqq

holds whenever Sω,X,X˚

|ù Γ␣ for Sω,X,X˚ defined via any (nontrivial) reflexive Banach
space pX, ∥¨∥q with its dual X˚ (and via a suitable interpretation of the additional
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constants similar to Chapters 8 and 3) and using a convex, supercoercive (with modulus
αf) and Fréchet differentiable function f : X Ñ R where ∇f , ∇f˚ are uniformly
continuous on bounded subsets with moduli ω∇f , ω∇f˚, respectively and where f˚ is
supercoercive (with modulus αf˚). In particular, χA is interpreted by the characteristic
function of a maximally monotone A : X Ñ 2X

˚ with A´10 ‰ H and Resf by the
corresponding resolvents ResfγA for γ ą 0.



11 On extensionality and uniform continuity
for set-valued operators

11.1 Introduction

As discussed extensively in [165], the large applicability of the systems for accretive and
monotone operators (and by extension also – presumably – the large applicability of
the system Bω for monotone operators in Banach spaces from Chapter 10) is due to the
empirical fact that in many situations from the mainstream literature of m-accretive
or monotone operator theory, one does not require the full maximality of the operator
but it actually suffices to have the intensional maximality principle (recall Theorems
3.4.2 and 10.3.2) together with an (intensionally) total resolvent. New examples for
this are also discussed in [165] but many others can in particular be found throughout
the previous case studies for set-valued operators in proof mining as most of them do
not require any such quantitative treatment of extensionality.

If, however, the proof is not of that nature and really requires an extensionality
(viz. maximality) principle, then a quantitative treatment of such will be necessary
(as was e.g. the case in the recent application [166]). A short discussion of possible
remedies and choices in that situation was given in [165], without indulging into too
many details. In particular, a fragment of the extensionality statement corresponding
to a certain continuity statement featured in [120, 166] was discussed, though only in
brief.

The purpose of this chapter is now twofold:

1. We discuss the main issue with treating full extensionality in the context of the
previous intensional approaches to accretivity and to the monotonicity notions for
set-valued operators. Motivated by these problems, we discuss three fragments
of the extensionality statement for set-valued operators which avoid these issues

295
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and discuss their corresponding quantitative versions (under the guidance of the
monotone functional interpretation). This provides a corresponding hierarchy of
uniform continuity statements for set-valued operators with various strengths. To
that end, we show that all of the considered uniform continuity statements can be
added to the systems for proof mining in the context of set-valued operator theory
while preserving the bound extraction theorems as discussed in the previous
chapters. In particular, in the course of these discussions, we provide a proof-
theoretic treatment of the Hausdorff-metric using the tame treatment of suprema
over bounded sets developed in Chapter 8.

2. We further show that the correspondence of extensionality and maximality is a
fundamental and robust phenomenon in the context of set-valued operators by
extending it to the various weakenings of the full extensionality statement and
corresponding natural weak forms of the maximality statement. In particular,
we discuss similar equivalences in the context of the extensionality of the set of
zeros of an operator.

11.2 Motivating considerations: full extensionality and

issues with the intensional approach

As before, by (full) extensionality of A we mean the statement pEq defined as

@xX , yX , zX , wX px “X y ^ z “X w ^ z P AxÑ w P Ayq

or, in the case of monotone operators on Banach spaces, defined as

@xX , yX , z˚X
˚

, w˚X
˚

px “X y ^ z˚ “X˚ w˚ ^ z˚ P AxÑ w˚ P Ayq .

Note that through the bound extraction theorems established in Chapters 3 and 10, it
is immediately clear that this version of full extensionality can not be provable in any
of the theories Vω, T ω as defined in Chapter 3 or Bω as defined in Chapter 10.

In fact, the situation regarding extensionality in this intensional approach to set-
valued operators is much more dire: any extension of the systems Vω, T ω or Bω which
has a model based on Sω,X or Sω,X,X˚ , respectively, and which still allows for bound
extraction theorems in the previous sense can not prove the extensionality of A. To
see this, let Cω be any extension of Vω which has a model based on Sω,X and for which
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bound extraction theorems hold similar as for Vω. If the extensionality statement pEq
were to be provable in Cω, we would be able to extract a functional ω such that

@x, y, z, w P X@b P Np∥x∥ , ∥y∥ , ∥z∥ , ∥w∥ ď b

^ ∥x´ y∥ , ∥z ´ w∥ ď 2´ωpbq ^ z P AxÑ w P Ayq

holds for any m-accretive operator A for which the model based on Sω,X which arises
by interpreting χA by A actually is a model of Cω. However, any such operator has to
be open in X ˆX: given px, zq P A with ∥x∥ , ∥z∥ ď b and y, w such that

∥x´ y∥ , ∥z ´ w∥ ď 2´ωpb`1q,

we have ∥y∥ , ∥w∥ ď b ` 1 and so py, wq P A. But any m-accretive operator A is max-
imally accretive and thus closed in X ˆX (see e.g. [4]) so that the only two possible
interpretations of A are H or X ˆ X. The former is not allowed in Cω as the theory
extends Vω by which axioms we have domA ‰ H and the latter is not accretive. So
Cω does not have a model based on Sω,X after all. Similar considerations also hold for
maximally monotone operators A Ď X ˆX˚ and Bω.

This is an inherent limitation that comes with the intensional approach chosen
for set-valued operators (which however is essentially the only approach that allows
for bound extraction theorems that do not outright distort the complexity of the ex-
tracted bounds due to analyzing maximality). In Section 11.6, we will later discuss
a different approach for treating operators with full extensionality but for now, from
the perspective of these intensional systems, there are two possible avenues to at least
provide partial remedies to this situation.

The first might be to restrict the kind of x, y permissible in the extensionality state-
ment: the above argument does not work if x and y are required to be contained in
the domain of A before applying extensionality. As a second option, one might want to
weaken the conclusion from z P Ax Ø w P Ay to a less “explicit” and more “analytic”
version (we will later see concrete instantiations which illuminate what we mean by
this).

For the former however, even if pEq is restricted to the domain of A, this still poses
an exceedingly large limitation on the systems as if the principle

@xX , yX , zX , wX , vX px “X y ^ z “X w ^ z P Ax^ v P Ay Ñ w P Ayq pEqd
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would be provable in the previously presumed extension Cω of Vω, then the bound
extraction results would yield the existence of a functional ω with

@x, y, z, w, v P X@b P Np∥x∥ , ∥y∥ , ∥z∥ , ∥w∥ , ∥v∥ ď b

^ ∥x´ y∥ , ∥z ´ w∥ ď 2´ωpbq ^ z P Ax^ v P Ay Ñ w P Ayq.

In particular, this implies still that Ax is open for any x P domA as if z P Ax with
∥z∥ , ∥x∥ ď b, and w such that ∥z ´ w∥ ď 2´ωpb`1q, then w P Ax. As before, if A is
m-accretive, then it is maximally accretive and so Ax is closed. Thus, in this case, Ax
is clopen, i.e. equal to X or H. The latter is not possible as x P domA. Therefore, the
only m-accretive operators for which such an ω exists are of the form

A : x ÞÑ

$

&

%

X if x P domA,

H otherwise.

While such operators exist (take e.g. the normal cone Nx for the singleton txu in a
Hilbert space, see [11]) this class is of course extremely restrictive. Similar considera-
tions can also be made for monotone operators in Banach spaces.

So, even though the extension of Vω where the above quantitative variant is added
as an axiom allows for bound extraction theorems and still has a model constructed
over Sω,X , the restrictions on the class of axiomatized operators are so strong that this
is presumably of little practical relevance.

In the following, we will thus investigate the second option and discuss fragments
of pEq and pEqd that arise by modifying the conclusion together with the quantitative
notions that they induce on set-valued operators. Regarding these potential weakenings
or reformulations of the conclusion, we are in particular interested in reformulations of
the above full extensionality principle in the form of the general scheme

x “X y Ñ EpAx,Ayq

where E is a placeholder for some predicate expressing “Ax “ Ay”. If E is sufficiently
of an “analytical nature” in the sense that it allows for quantifying the difference of Ax
and Ay in the case that Ax ‰ Ay, then such a formulation immediately gives rise to
a meaningful associated uniform continuity principle and in this chapter, we will see
three instantiations in that vein.
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11.3 The Hausdorff-metric and its extensionality state-

ment

A motivating example is the extensionality principle

@x, y px, y P domA^ x “ y Ñ HpAx,Ayq “ 0q

where H is the Hausdorff-metric defined via

HpP,Qq :“ max

"

sup
pPP

inf
qPQ

∥p´ q∥ , sup
qPQ

inf
pPP

∥p´ q∥
*

for closed non-empty sets P,Q in the space. This extensionality statement immediately
induces a notion of uniform continuity for A (as commonly used in the analytic liter-
ature, see e.g. [151]1), witnessed by an accompanying modulus of uniform continuity
ω:

@x, y P X@k, b P N
`

x, y P domAXBbp0q ^ ∥x´ y∥ ď 2´ωpk,bq Ñ HpAx,Ayq ď 2´k
˘

.

Note that this restriction to domA is necessary for HpAx,Ayq to be well-defined.

We now begin with showing that for certain sets P,Q, the Hausdorff distance
HpP,Qq can be treated in the context of the systems considered before. For this,
we work over Vω for now. Let P be a set in a normed space X which is bounded, i.e.
∥p∥ ď c for all p P P where c P N. Then we can treat the real-valued distance function

dpx, P q “ inf
pPP

∥x´ p∥

by adding an additional constant dp¨, P q of type 1pXq with axioms determined similar
to the schemes pSq1, pSq2 discussed in Chapter 8. Concretely, we consider the two
axioms schemes

@xX , pX pP ppq Ñ dpx, P q ďR ∥x´X p∥Xq pdP q1

as well as
@xX , k0Dp ďX c1X

`

P ppq ^ ∥x´X p∥X ďR dpx, P q ` 2´k
˘

pdP q2

where P ppq is a predicate describing p P P . The motivation for pdP q2 is again the same
as with pSq2, just from the perspective of an infimum instead of a supremum: any

1While the following principle stipulates uniform continuity on bounded subsets, the literature
often even considers situations where the continuity is uniform over the whole space.
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interpretation of dpx, P q by the real infimum will have to satisfy pdP q2 as there will
be elements p P P such that ∥x´ p∥ is arbitrary close to dpx, P q and this property of
course also characterizes the infimum.

As before with the discussion in Chapter 8, these schemes become admissible if
they are instantiated with an P such that the two axioms have a monotone functional
interpretation which can again be guaranteed a priori if P is of a “∆1p∆

˚q”-form. How-
ever, later we will be only concerned with the case where P ppq is quantifier-free (and
potentially contains parameters).

Similarly, we can add a constant dp¨, Qq of the same type for a second bounded set
Q (w.l.o.g. also bounded by c) together with the following axioms determined as above
over a predicate Qpqq describing q P Q:

@xX , qX pQpqq Ñ dpx,Qq ďR ∥x´X q∥Xq , pdQq1

@xX , k0Dq ďX c1X
`

Qpqq ^ ∥x´X q∥X ďR dpx,Qq ` 2´k
˘

. pdQq2

In the context of both dpx, P q and dpx,Qq, we can then introduce the quantities

dpP,Qq “ sup
pPP

dpp,Qq and dpQ,P q “ sup
qPQ

dpq, P q

into the system by adding corresponding constants (for simplicity also denoted by)
dpP,Qq and dpQ,P q of type 1 into the language together with another set of instanti-
ations of the schemes pSq1, pSq2. Concretely, we consider the schemes

@pXpP ppq Ñ dpP,Qq ěR dpp,Qqq pdP,Qq1

as well as
@k0Dp ďX c1X

`

P ppq ^ dpp,Qq ěR dpP,Qq ´ 2´k
˘

. pdP,Qq2

Similarly, for the quantity dpQ,P q, we consider the accompanying axiom schemes

@qXpQpqq Ñ dpQ,P q ěR dpq, P qq pdQ,P q1

as well as
@k0Dq ďX c1X

`

Qpqq ^ dpq, P q ěR dpQ,P q ´ 2´k
˘

. pdQ,P q2

Lastly, we move to the concrete Hausdorff-metric which can now just be introduced
by a closed term involving dpP,Qq and dpQ,P q:

HpP,Qq “ maxtdpP,Qq, dpQ,P qu.
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Of course, this distance can also be introduced uniformly for a family of sets de-
scribed by formulas P pp, xq, Qpq, xq with parameters x of type σ if the sets described
by P pp, xq, Qpq, xq are bounded by a function cpxq pointwise in the parameters. We
could also introduce the Hausdorff-metric on X˚ over the language of Dω (which we
do not spell out here any further).

Note that the non-emptiness of the sets P,Q is not needed to define these formulas
but the non-emptyness is required on a semantic level in order for these formulas to
actually have a model as the objects, mapping to type 1, have to be interpreted by a
real number (or by a function mapping into real numbers, respectively).

As mentioned before, this abstract treatment is fruitful at least in the context
of sets describable by “∆1p∆

˚q”-formulas (in the sense of Chapter 8). Then these
constants and axioms are suitable for extending the previous metatheorems where the
interpretations of the constants dp¨, P q, dp¨, Qq, dpP,Qq and dpQ,P q in the respective
models are naturally defined via p¨q˝. In particular, majorization of these constants
can be easily achieved: For dp¨, P q, via the axiom pdP q1, we have

dpx, P q ď ∥x´ p∥ ď ∥x∥` ∥p∥ ď ∥x∥` c

where p is some point witnessing that P is non-empty (and thus the non-emptyness is
also important for majorization). Further, we have

dpQ,P q ď dpq, P q ` 1 ď ∥q∥` c` 1 ď 2c` 1

for a suitable q chosen with axiom pdQ,P q2. From this, majorants for dp¨, P q and dpQ,P q
are immediate.

By a similar reasoning, dp¨, Qq as well as dpP,Qq are majorizable and this extends
to any variant using additional parameters if the sets are non-empty and bounded
pointwise for all parameters. Naturally, also the resulting bounding function cpxq then
has to be majorizable as a function of type 0pσtq.

We are now in particular interested in using this way of formulating the Hausdorff-
distance to talk about uniform continuity formulations for set-valued operators. Then
the sets P and Q can be taken to be of the form Ax with a parameter x of type X
for a given set-valued operator A which is represented in the system by an intensional
description over its graph via χA as discussed in the preceding chapters. As the resulting
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formulation of the set Ax by P pp, xq :“ χApx, pq “0 0 is quantifier-free, the above
axioms in particular become admissible for bound extraction results if, as discussed
before, the operator A is actually such that all Ax are bounded with a bounding
function c of type 0pXq that is majorizable. In the language of Chapter 3, the existence
of such a c is equivalent to the operator A being uniformly majorizable, i.e. bounded
on bounded sets. Thus we consider an additional constant A˚ of type 1 together with
the axiom

@xX , yX , b0 py P Ax^ ∥x∥X ăR bÑ ∥y∥X ďR A
˚bq (A˚)

which serves as a majorant of a witness to c. Then we can as above introduce constants
dp¨, Axq and dpAx,Ayq for x, y P domA into the language using χA and A˚ to form H

such that the expression HpAx,Ayq is represented by a term for any x and y.

With this, the previous extensionality statement using the Hausdorff-metric now
indeed can be written as a formal sentence in this extended language:

@xX , yX px, y P domA^ x “X y Ñ HpAx,Ayq “R 0q .

The monotone functional interpretation now suggests an associated uniform continuity
principle as before together with a modulus ω of type 0p0qp0q:

@xX , yX , uX , vX , k0, b0ppx, uq, py, vq P A^ ∥x∥X , ∥y∥X , ∥u∥X , ∥v∥X ăR b

^ ∥x´X y∥X ăR 2´ωpk,bq Ñ HpAx,Ayq ďR 2´kq. (UC)

This statement is universal and can thus be added to the system together with a con-
stant ω and, for this extension, one retains the bound extraction results.

A similar type of uniform continuity statement could of course also be defined for
set-valued mappings A : X Ñ 2X

˚ but we do not spell this out in any detail here.

In Chapter 12, we will illustrate the applicability of this approach towards the
Hausdorff-metric by analyzing iterative methods related to set-valued mappings which
are uniformly continuous w.r.t. the Hausdorff-metric.
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11.4 A Hausdorff-like predicate and approximate ex-

tensionality

In [120], Kohlenbach and Powell refrained from using H due to its use of infima and
suprema and as a substitute, they introduced a so-called Hausdorff-like predicate H˚

defined via
H˚
rP,Q, εs :“ @p P PDq P Q p∥p´ q∥ ď εq

and, corresponding to this, they considered a uniform continuity principle for A w.r.t.
H˚:

@x, y P X, k P N
`

x, y P domA^ ∥x´ y∥ ď 2´ϖpkq Ñ H˚
“

Ax,Ay, 2´k
‰˘

. (UC˚)

Regarding an associated extensionality statement, we follow the discussion laid out
in [165]: we can immediately recognize (UC˚) as the uniform quantitative version,
guided by the monotone functional interpretation, of the following approximate exten-
sionality principle2

@xX , yX
`

x, y P domA^ x “X y Ñ @k0H˚
“

Ax,Ay, 2´k
‰˘

(AE)

as, by making the hidden quantifier in “X apparent, this is equivalent to

@xX , yX
`

x, y P domA^ @j0
`

∥x´X y∥X ďR 2´j
˘

Ñ @k0H˚
“

Ax,Ay, 2´k
‰˘

and the monotone functional interpretation extracts from this statement a uniform
bound (potentially depending on upper bounds on the norm of x and y) on j in terms
of the k.3

Now, as also discussed in [165], this uniform continuity principle (UC˚) can be
(rather immediately) phrased as an axiom of type ∆: considering the definition of H˚,
the principle (UC˚) is equivalent to

@xX , yX , k0px, y P domA^ ∥x´X y∥X ďR 2´ϖpkq

Ñ @z P AxDw P Ay
`

∥z ´X w∥X ďR 2´k
˘

q.

2See the later parts of this section for a motivation of prefix “approximate” in the name.
3Note in the above that the formulation

H˚rAx,Ay, εs :“ @zXDwX pz P AxÑ w P Ay ^ ∥z ´X w∥X ďR εq

is indeed a formula of the language of the underlying system.
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Now, the quantifier “Dw P Ay” can be bounded in norm in terms of the other parameters
as if ∥z ´ w∥ ď 2´k, then ∥w∥ ď ∥z∥` ∥z ´ w∥ ď ∥z∥` 2´k ď ∥z∥` 1. Thus, (UC˚)
is equivalent to

@k0, xX , yX , zXDwX ďX p∥z∥X ` 1q 1X

ˆ

x, y P domA^ z P Ax^ ∥x´X y∥X ăR 2´ϖpkq

Ñ w P Ay ^ ∥z ´X w∥X ďR 2´k
̇

.

This is of the form ∆ as all variables have admissible types and the inner matrix is
purely universal after making the hidden quantifiers in ăR,ďR apparent and prenexing
appropriately.

As (UC˚) can be transformed into a statement of the form ∆, we can add it (to-
gether with a corresponding constant ϖ of type 1) to the systems Vω, T ω and still
retain the bound extraction theorems established in the previous chapters.

Of course, we could also formulate H˚ for X˚ and then develop these principles
over the language of Bω for operators A : X Ñ 2X

˚ .

Remark 11.4.1. One can similarly show that the principle whereϖ additionally depends
on norm upper bounds of x, y, z and v witnessing y P domA (i.e. v P Ay) can be written
as a formula of type ∆ via

@k0, b0, xX , yX , zX , vXDwX ďX p∥z∥X ` 1q 1X

ˆ

∥x∥X , ∥y∥X , ∥z∥X , ∥v∥X ăR b

^ v P Ay ^ z P Ax^ ∥x´X y∥X ăR 2´ϖpk,bq Ñ w P Ay ^ ∥z ´X w∥X ďR 2´k
̇

and thus can be added to the systems used in proof mining. However, we here wanted
to focus on the principle introduced in [120].

11.5 A weak fragment of full extensionality

There is a case to be made regarding how natural the formulation of “Ax “ Ay”
via @k0H˚rAx,Ay, 2´ks actually is, in particular compared to H˚rAx,Ay, 0s where the
quantifier over k0 is internalized in the bound. This leads us to consider the following
weak version of extensionality

@xX , yXpx, y P domA^ x “X y Ñ H˚
rAx,Ay, 0sq.
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Unraveling the definition of the H˚-predicate, this can be rewritten as

@xX , yXpx, y P domA^ x “X y Ñ @z P AxDw P Aypz “X wqq. (WE)

Naturally, this fragment of the full extensionality statement is therefore stronger than
the approximate extensionality statement from before.

Making the hidden quantifiers apparent, this statement is equivalent to

@xX , yX , zX , vXDwX@k0Dj0pv P Ay ^ z P Ax

^ ∥x´X y∥X ăR 2´j Ñ ∥z ´X w∥X ďR 2´k ^ w P Ayq

and a quantitative version of this is therefore given by the existence of a modulus ϖ
such that

@xX , yX , zX , vXDwX@k0, b0pv P Ay ^ z P Ax^ ∥x∥X , ∥y∥X , ∥z∥X , ∥v∥X ăR b

^ ∥x´X y∥X ăR 2´ϖpk,bq Ñ ∥z ´X w∥X ďR 2´k ^ w P Ayq. (WUC)

Similar to before, (WUC) can be written in the form ∆ as we can easily give the
same norm bound on w as with (UC˚): for ∥z ´ w∥ ď 2´k ď 1, we get ∥w∥ ď ∥z∥` 1.
The statement (WUC) is thus equivalent to

@xX , yX , zX , vXDwX ďX p∥z∥X ` 1q 1X@k
0, b0

ˆ

v P Ay ^ z P Ax^ ∥x∥X , ∥y∥X , ∥z∥X , ∥v∥X ăR b

^ ∥x´X y∥X ăR 2´ϖpk,bq Ñ ∥z ´X w∥X ďR 2´k ^ w P Ay

̇

.

This is of the form ∆ as the inner matrix is still (equivalent to a) universal formula
and all quantifiers have admissible types as before.

11.6 The strength of not restricting to the domain

While the restriction x, y P domA is essential in uniform continuity statements formu-
lated using the Hausdorff-metric, the principle pUC˚q could similarly well have been
formulated without this restriction, i.e. we could consider the existence of a modulus
ϖ with

@k P N@x, y, z P XDw P X
ˆ

z P Ax^ ∥x´ y∥ ď 2´ϖpkq Ñ w P Ay ^ ∥z ´ w∥ ď 2´k
̇

.

(:)
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What we here want to discuss is that the existence of such a ϖ is already excessively
strong. For simplicity, we here only focus on accretive operators. Then, for this, we
rely on the following result of Chidume and Morales:4

Theorem 11.6.1 ([44]). Let X, Y be topological spaces and call A : X Ñ 2Y lower
semi-continuous if for every x P X and every neighborhood V pyq of y P Ax, there exists
a neighborhood Upxq of x such that for all u P Upxq:

Apuq X V pyq ‰ H.

If X is a real normed space and A : domA Ď X Ñ 2X is a lower semi-continuous and
accretive mapping, then A is a single-valued mapping on intdomA.

Theorem 11.6.2. Let A ‰ H be accretive and assume there exists a ϖ satisfying p:q.
Then domA “ X, A is single-valued and uniformly continuous.

Proof. We first show that domA “ X. As A ‰ H, let px, uq P A as well as y P X be
given. Then we can inductively construct points y1, . . . , yk such that

∥x´ y1∥ , ∥yi ´ yi`1∥ , ∥yk ´ y∥ ď 2´ϖp0q

for all i. Using p:q, we pick zi P Ayi and z1 P Ay with

∥z ´ z1∥ , ∥zi ´ zi`1∥ , ∥zk ´ z1∥ ď 1.

In particular y P domA.
Now, if such a ϖ exists that satisfies p:q, then we actually have that A is lower

semi-continuous in the above sense: Let x P Xp“ domAq and k P N. Then for
any y P B2´ϖpkqpxq and z P Ax, there exists a w P B2´kpzq such that w P Ay, i.e.
Apyq XB2´kpzq ‰ H.

The single-valuedness now follows from Theorem 11.6.1 and the uniform continuity
is then immediate by using ϖ.

Thus, to summarize, we seem to find a sort of dichotomy of proof-theoretic ap-
proaches to set-valued operators. Extensionality of A can only be treated up to a
certain point in intensional systems if sensible bound extraction theorems shall be re-
tained but if strong-enough fragments of extensionality are actually required by the
proof, the methodology actually upgrades this assumption to A being total, single-
valued and uniformly continuous, in which case we might switch the formal framework
to a system where A is treated as an object of type XpXq together with a modulus of
uniform continuity.

4Actually, in [44] the authors work with locally accretive mappings but we do not care for this
weakened assumption here.



CHAPTER 11. ON EXTENSIONALITY AND UNIFORM CONTINUITY FOR
SET-VALUED OPERATORS 307

11.7 Characterizations in terms of fragments of max-

imality

As discussed in Chapter 3, a crucial result from [165] is the equivalence between max-
imality as well as other analytic closure principles of the operators to extensionality, if
the operators in questions are accretive or monotone (in Hilbert spaces). Also recall
the extension of that result to monotone operators in Banach spaces from Chapter 10.

As mentioned in the introduction, we extend this correspondence by two new results
(and, in a sense, another similar result given in the next Section 11.8), characterizing the
previously discussed extensionality principles by respective fragments of the maximal
accretiveness or maximal monotonicity as well as the closure of the graph which, for one,
shows the robustness of this correspondence and, for another, provides equivalent forms
of the fragments of full extensionality considered before in terms of principles which
are more easily recognizable in actual applications to results from core mathematics.

Theorem 11.7.1. Over the systems Vω or T ω, the weak extensionality statement
pWEq of A is equivalent to weak closure of the graph of A, i.e.

@xX , yX , x
Xp0q
p¨q

, y
Xp0q
p¨q

´

x P domA^ xn ÑX x^ yn ÑX y

^ @n0
pyn P Axnq Ñ DwXpw “X y ^ w P Axq

¯

(WG)

with xn ÑX x, yn ÑX y defined as in Theorem 3.4.1, as well as respectively to

1. weak maximal accretivity of A, i.e.

@xX , uX
´

x P domA^ @yX , vX
´

v P Ay

Ñ ∥x´X y `X pu´X vq∥X ěR ∥x´X y∥X
¯

Ñ DwXpw “X u^ w P Axq
¯

,

in the case of Vω,

2. weak maximal monotonicity of A, i.e.

@xX , uXpx P domA^ @yX , vX pv P Ay Ñ xx´X y, u´X vyX ěR 0q

Ñ DwXpw “X u^ w P Axqq,

in the case of T ω.
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Similar equivalences also hold for Bω if the statements are appropriately modified with
X˚.

Proof. We only show the equivalence for Vω, the other systems can be treated similarly.

pWEq ñ p1q Let x, u be such that x P domA and

@y, vpv P Ay Ñ ∥x´ y ` pu´ vq∥ ě ∥x´ y∥q.

By axiom (II) of Vω, we have

1´1ppx` uq ´ JA1 px` uqq P ApJ
A
1 px` uqq

We get by simple arithmetic together with the assumption on x, u that

0 “
⃦⃦
x´ JA1 px` uq ` pu´ 1´1ppx` uq ´ JA1 px` uqqq

⃦⃦
ě

⃦⃦
x´ JA1 px` uq

⃦⃦
using additionally the extensionality of the norm. Thus x “ JA1 px ` uq and
therefore u “ x`u´ JA1 px`uq “ 1´1ppx`uq´ JA1 px`uqq. Thus, 1´1ppx`uq´
JA1 px ` uqq P ApJA1 px ` uqq implies that there exists a w P Ax such that w “ u

by weak extensionality of A.

p1q ñ pWGq Let xn Ñ x and yn Ñ y as well as yn P Axn for all n. Let v, w be
arbitrary with v P Aw. Then, by axiom (III)

∥xn ´ w ` yn ´ v∥ ě ∥xn ´ w∥

for all n and thus by taking the limit ∥x´ w ` y ´ v∥ ě ∥x´ w∥. By maximal
accretivity, as v, w are arbitrary, we have w P Ax for some w “ y.

pWGq ñ pWEq Let x “ y and z P Ax. Then pxqn Ñ y and pzqn Ñ z for the constant
x- and z-sequences pxqn and pzqn, respectively, and thus there exists a w “ z

with w P Ay.

Theorem 11.7.2. Over the systems Vω or T ω, the approximate extensionality state-
ment pAEq of A is equivalent to approximate closure of the graph of A, i.e.

@xX , yX , x
Xp0q
p¨q

, y
Xp0q
p¨q

ˆ

x P domA^ xn ÑX x^ yn ÑX y

^ @n0
pyn P Axnq Ñ @k0DwX

`

∥w ´X y∥X ď 2´k ^ w P Ax
˘

̇

(AG)

as well as respectively to
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1. approximate maximal accretivity of A, i.e.

@xX , uX
ˆ

@yX , vX
´

x P domA^ v P Ay

Ñ ∥x´X y `X pu´X vq∥X ěR ∥x´X y∥X
¯

Ñ @k0DwX
`

∥w ´X u∥X ď 2´k ^ w P Ax
˘

̇

.

in the case of Vω,

2. approximate maximal monotonicity of A, i.e.

@xX , uX
ˆ

x P domA^ @yX , vX pv P Ay Ñ xx´X y, u´X vyX ěR 0q

Ñ @k0DwX
`

∥w ´X u∥X ď 2´k ^ w P Ax
˘

̇

,

in the case of T ω.

Similar equivalences also hold for Bω if the statements are appropriately modified with
X˚.

Proof. As before, we only show the equivalence for Vω, the other systems can be
treated similarly. The cases p1q ñ pAGq and pAGq ñ pAEq are completely similar
to the previous Theorem 11.7.1 and so we just sketch pAEq ñ p1q: As before with
pWEq ñ p1q in the proof of Theorem 11.7.1, we get x “X JA1 px ` uq and u “X

x`u´JA1 px`uq “X 1´1ppx`uq´JA1 px`uqq with 1´1ppx`uq´JA1 px`uqq P ApJ
A
1 px`uqq.

Approximate extensionality implies that for any k, there exists an w P Ax such
that ∥w ´ u∥ “

⃦⃦
w ´ 1´1ppx` uq ´ JA1 px` uqq

⃦⃦
ď 2´k by extensionality of ∥¨∥.

These fragments can occur, or can be substituted for the full extensionality state-
ment, in various situations in proofs from set-valued operator theory and we want to
indicate on a high level what these situations could be: If, after an application of ex-
tensionality to points z, x with z P Ax to infer w P Ay from w “ z, x “ y, the rest of
the formulas in the proof are not extensional in x/y but at least can be reformulated so
that an approximation of z/w suffices for the rest to be carried out, then the approx-
imate extensionality principle (AE) suffices. If the rest of the formulas in the proof
are not extensional in x/y but at least are extensional in z/w, then the stronger weak
extensionality principle (WE) suffices. As before, if after this application the rest of
the proof is extensional in both x/y and z/w, then the previous intensional maximality
principles already suffice which are provable in the underlying systems.
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Of course, the above considerations on the quantitative versions of those principles
then provide a guideline of what assumptions have to be placed on A in terms of mod-
uli of uniform continuity to provide an analysis using the bound extraction theorems
established in the previous chapters. Examples of these kind of scenarios in previ-
ous proof mining applications include [120, 166] where, in the latter case, the above
considerations on different fragments of extensionality were crucial for obtaining the
analysis.

11.8 Extensionality of the set of zeros

The last investigation regarding extensionality that we want to make here is on the set
of zeros of the operator. If 0 P Ax, then γ´1px ´ xq P Ax or γ´1p∇fx ´ ∇fxq P Ax
for γ ą 0 by the quantifier-free extensionality rule and thus we get JAγ x “X x or
Resfγx “X x in the systems Vω, T ω or Bω as the uniqueness of the resolvents is provable.

Thus, these systems prove

@xX
`

0 P AxÑ @γ1
`

γ ąR 0Ñ JAγ x “X x
˘˘

or
@xX

`

0 P AxÑ @γ1
`

γ ąR 0Ñ Resfγx “X x
˘˘

respectively, as discussed already before.

Even further, we provably have

@xX , zX
`

z P Ax^ z “X 0Ñ @γ1
`

γ ąR 0Ñ JAγ x “X x
˘˘

or
@xX , zX

`

z P Ax^ z “X 0Ñ @γ1
`

γ ąR 0Ñ Resfγx “X x
˘˘

respectively. To see this, note that by the quantifier-free extensionality rule we have
from z P Ax that γ´1pγz ` x ´ xq P Ax or γ´1p∇f∇f˚pγz `∇fxq ´∇fxq P Ax and
thus

x “X JAγ pγz ` xq “X JAγ x

and similarly Resfγx “X x, in both cases using the extensionality of the resolvent and
z “ 0.

As we will see now, the converse assertions are connected to the extensionality of
the set of zeros of A.
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Theorem 11.8.1. Over Vω, the following are equivalent:

1. @xX , zX
`

JA1 x “X x^ z “X 0Ñ z P Ax
˘

,

2. @xX , zX
`

@γ1
`

γ ąR 0Ñ JAγ x “X x
˘

^ z “X 0Ñ z P Ax
˘

,

3. @xX , yX , zX , z1X px “X y ^ z “X z1 “X 0^ z P AxÑ z1 P Ayq.

A fortiori, the same holds for T ω. This statement also holds for Bω if JAγ is replaced
by Resfγ and X by X˚ at the appropriate places.

Proof. We only consider the case for Vω. The implication from (1) to (2) is clear. For
(2) ñ (3), let x “ y and let z “ z1 “ 0 with z P Ax. Then using (2) and the provability
of

@xX , zX
`

z P Ax^ z “X 0Ñ @γ1
`

γ ąR 0Ñ JAγ x “X x
˘˘

,

we get

z P AxØ @γ
`

γ ą 0Ñ JAγ x “ x
˘

Ø @γ
`

γ ą 0Ñ JAγ y “ y
˘

Ø z1 P Ay

by the extensionality of JAγ . Lastly, for (3) ñ (1), assume that JA1 x “ x and z “ 0.
Then by axiom (II), we get

1´1px´ JA1 xq P ApJ
A
1 xq.

By (3) and 1´1px´ JA1 xq “ 0 “ z, we get z P Ax.
The case for Bω follows similarly as Resfγ is extensional (recall Proposition 10.2.8).

Further, as we will see now, this form of the extensionality of the zero set of A is
even equivalent to a corresponding fragment of the maximality principle:

Theorem 11.8.2. Over Vω, the following are equivalent:

1. @xX , yX , zX , z1X px “X y ^ z “X z1 “X 0^ z P AxÑ z1 P Ayq,

2. @xX , zX p@py, vq P A p∥x´X y ´X v∥X ěR ∥x´X y∥Xq ^ z “X 0Ñ z P Axq.

A fortiori, the same holds for T ω where all are also equivalent to

3. @xX , zX p@py, vq P A pxx´X y,´XvyX ěR 0q ^ z “X 0Ñ z P Axq.
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Lastly, the same holds for Bω if items (1) and (2) are replaced by

(1)’ @xX , yX , z˚X
˚

, z1˚
X˚

px “X y ^ z˚ “X˚ z1˚ “X˚ 0^ z˚ P AxÑ z1˚ P Ayq,

(2)’ @xX , z˚X
˚

p@py, y˚q P A pxx´X y,´X˚y˚yX˚ ěR 0q ^ z˚ “X˚ 0Ñ z˚ P Axq.

Proof. Also here, we only consider the case for Vω. For the direction (1)ñ (2), assume
@py, vq P A p∥x´ y ´ v∥ ě ∥x´ y∥q. Without any assumptions, we have 1´1px´JA1 xq P
ApJA1 xq. Therefore, we have

0 “
⃦⃦
x´ JA1 x´ 1´1px´ JA1 xq

⃦⃦
ě

⃦⃦
x´ JA1 x

⃦⃦
and thus x “ JA1 x as well as 1´1px´ JA1 xq “ 0. (1) yields z P Ax for any z “ 0.

Conversely, for (2) ñ (1), assume that x “ y and z “ z1 “ 0 as well as z P Ax.
Then by accretivity and the extensionality of the norm, we have

@pa, bq P A p∥y ´ a´ b∥ ě ∥y ´ a∥q .

(2) yields that z1 P Ay.

However, similar to the full extensionality statement, already the provability of the
extensionality of the zero set of A as formulated by

@xX , yX px “X y ^ 0 P AxÑ 0 P Ayq

will result in any standard model, i.e. any model based on Sω,X (or Sω,X,X˚ in the
case of Bω), for extensions of Vω, T ω (or Bω) that allow for bound extractions to be
rather degenerate: For suppose this extensionality principle would be provable in some
extension, then we would be able to extract a functional ω such that

@x, y P X@b P N
`

∥x∥ , ∥y∥ ď b^ ∥x´ y∥ ď 2´ωpbq ^ 0 P AxÑ 0 P Ay
˘

.

Note that in the presence of such an ω, the set A´10 is open in X as for x P A´10 with
∥x∥ ď b, we have that any y with ∥x´ y∥ ď 2´ωpb`1q also satisfies y P A´10. However,
for any maximal operator, as it is closed in X ˆ X, we get that also A´10 is closed
and therefore A´10 would be clopen, i.e. would be equal to H or X, which renders any
discussion on zeros of the operator pointless. The same argument can also be made in
the context of X˚ and Bω.



12 Quantitative results on
Mann-iterations for set-valued mappings
in Banach spaces

12.1 Set-valued nonexpansive maps and Mann-type

iterations

As a last application, we provide quantitative results on a Mann-type iteration of set-
valued mappings which are nonexpansive w.r.t. the Hausdorff-metric.

Concretely, let X be a Banach space and denote by CBpXq the collection of non-
empty, closed and bounded subsets of X. Then the Hausdorff-metric

HpA,Bq “ max

"

sup
aPA

inf
bPB

∥a´ b∥ , sup
bPB

inf
aPA

∥a´ b∥
*

is well-defined and real-valued for A,B P CBpXq. We write

dpx,Aq “ inf
aPA

∥x´ a∥

for a given set A P CBpXq as before. A set-valued map T : D Ď X Ñ CBpXq is called
nonexpansive if

HpTx, Tyq ď ∥x´ y∥

for any x, y P D. We say that a point x is a fixed point of T if x P Tx and we denote
the set of fixed points of T by F pT q.

The following is a rather immediate consequence of the definition of the Hausdorff-
metric:

Lemma 12.1.1 (see e.g. [82]). Let A,B P CBpXq. For any a P A and ε ą 0, there
exists some b P B with

∥a´ b∥ ď HpA,Bq ` ε.

313
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Based on this lemma, it is immediately clear that given a non-empty convex set K
and starting points x0 P K, y0 P Tx0 together with scalars αn P r0, 1s and γn P p0,8q,
one can inductively define an iteration

xn`1 “ p1´ αnqxn ` αnyn (:)

where yn`1 P Txn`1 is chosen such that ∥yn`1 ´ yn∥ ď HpTxn`1, Txnq ` γn. This
iteration defined in that way was studied in [196] and in the case that the set K is
additionally compact, the authors obtained the following convergence result:

Theorem 12.1.2 ([196]). Let K Ď X be non-empty, convex and compact. Let T :

K Ñ CBpKq be a set-valued map that is nonexpansive and suppose that F pT q ‰ H as
well as T ppq “ tpu for each p P F pT q. Let pxnq be defined as in p:q with starting points
x0 P K, y0 P Tx0 and scalars pαnq Ď r0, 1s and pγnq Ď p0,8q such that

1. limnÑ8 γn Ñ 0,

2. 0 ă lim infnÑ8 αn ď lim supnÑ8 αn ă 1.

Then pxnq converges strongly to a fixed point of T .

The main feature of the sequence exploited in the proof is that it is Fejér monotone
(see in particular [46, 47]). This well-studied class of sequences possesses very general
convergence theorems which guarantee the weak convergence of such sequences under
very mild asymptotic regularity assumptions. In compact (metric) spaces, like in the
above result, the convergence is in particular strong.

These general convergence results for Fejér monotone sequences from compact sets
were analyzed through the lens of proof mining in [112] where, under the assumption of
the existence of moduli which witness quantitative reformulations of the central prop-
erties involved, a construction of a rate of metastability for the sequence in question
is presented. Further, in [114], a general principle of metric regularity is studied (en-
compassing various forms of well-known regularity assumptions from nonlinear analysis
and optimization like metric subregularity, weak sharp minima, error bounds, etc.) and
under the assumption of such a metric regularity principle, the authors then provide a
construction for a computable as well as highly uniform full rate of convergence for a
given Fejér monotone iteration which moreover holds in the absence of any compact-
ness assumptions.
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These general but abstract proof mining results were previously successfully instan-
tiated for many different situations in which Fejér monotone sequences occur to derive
rates of metastability and rates of convergence. In particular, we want to mention
the applications in the context of the asymptotic behavior of the composition of two
mappings [113], the proximal point algorithm in uniformly convex Banach spaces [105]
and in CATp0q-spaces [135, 136], subgradient-methods for equilibrium problems [169]
as well as algorithms for finding zeros of differences of monotone operators [166].

It is also here that we apply the results from [112, 114] to derive rates of metasta-
bility and rates of convergence (under a metric regularity assumption) for the above
iteration which are, as before, not only computable in their parameters but also highly
uniform. For that, we need to extract the previously mentioned moduli witnessing
quantitative versions of the Fejér monotonicity and asymptotic regularity which them-
selves arise from an application of proof mining to the respective proofs of these prop-
erties given in the course of the proof of Theorem 12.1.2 in [196]. As these proofs in
particular rely on the utilization of the Hausdorff-metric, this application given here is
in particular to be seen as a case study to illustrate the applicability of the treatment
of the Hausdorff-metric discussed in Chapter 11.

12.2 The central assumptions and their quantitative

content

In this section, we now first discuss the central assumptions present in Theorem 12.1.2
and in particular discuss (using the underlying logical methodology) what kind of
quantitative assumptions they entail to potentially feature in the analysis of the main
theorem given later.

The first important assumption present in Theorem 12.1.2 is the compactness of
the set K. This compactness assumption on K is witnessed in the following by a
quantitative modulus of compactness introduced in [69] under the name of a modulus
of total boundedness1 which takes the form of a function γ : N Ñ N such that for any

1In [112], the name II-modulus of total boundedness is used but we here follow the conventions
from [69] where such a modulus is just called a modulus of total boundedness.
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k P N and for any pxnq Ď K:

D0 ď i ă j ď γpkq

ˆ

∥xi ´ xj∥ ď
1

k ` 1

̇

.

As discussed in [112], such a modulus exists if, and only if, K is compact and we refer
to [112] for various discussions on the construction of such moduli for certain concrete
classes of compact sets and spaces.

As a second assumption, we find the non-emptyness of the fixed point set F pT q
which will be represented by a concrete witness p0 (i.e. p0 P K and p0 P Tp0) in the
following. As follows by the metatheorems, the bounds extracted later will of course
only depend on an upper bound on the norm of p0, which by the compactness and
therefore the boundedness of K, is in particular represented by any upper bound on
the diameter of K.

One of the most crucial assumptions, in some sense, is the single-valuedness of T
on actual fixed points, i.e. the assumption that Tp “ tpu if p P F pT q. This implication
is equivalent to

@p P K pdpp, Tpq “ 0Ñ Hptpu, Tpq “ 0q (˚)

which in turn unravels into

@p P K@k P NDj P N
ˆ

dpp, Tpq ď
1

j ` 1
Ñ Hptpu, Tpq ď

1

k ` 1

̇

and in that way the logical methodology induces2 a modulus θ : NÑ N bounding (and
thus witnessing) such a j in terms of k, i.e. such that3

@p P K@k P N
ˆ

dpp, Tpq ď
1

θpkq ` 1
Ñ Hptpu, Tpq ď

1

k ` 1

̇

.

2To formalize the above statement in the language of the previous systems, we have to represent
the set tpu using an additional constant χs of type 0pXqpXq together with two axioms expressing that
χspp, ¨q intensionally codes the singleton tpu for all p:

@pX pχspp, pq “0 0q ,

@pX , xX pχspp, xq “0 0Ñ x “X pq .

In that way, the treatment of tpu is intensional as we can not prove that for x “ p, we also have
x P tpu in the sense that χspp, xq “0 0. Then Hptpu, Txq can be introduced using χs and some χT

coding T as detailed in Chapter 11.
3Note that the (full) independence on p is suggested by the logical methodology as the set K is in

particular bounded.
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Note that by a simple compactness argument, possessing such a modulus is equivalent
to the property p˚q in compact spaces:

Lemma 12.2.1. Let K be compact and let T : K Ñ CBpKq be a nonexpansive opera-
tor. Then T satisfies p˚q if, and only if,

@k P NDj P N@p P K
ˆ

dpp, Tpq ď
1

j ` 1
Ñ Hptpu, Tpq ď

1

k ` 1

̇

. (˚˚)

Proof. Clearly, p˚˚q implies p˚q. Conversely, suppose that p˚˚q fails, i.e. suppose there
exists a k P N such that for any j P N:

Dpj P K

ˆ

dppj, Tpjq ď
1

j ` 1
^Hptpju, Tpjq ą

1

k ` 1

̇

.

Then dppj, Tpjq ď
1
j`1

implies that for any j ě 1, there exists a qj P Tpj such that
∥pj ´ qj∥ ď 1{j. Further, Hptpju, Tpjq ą 1

k`1
now implies that there exists a q1j P Tpj

such that
⃦⃦
pj ´ q

1
j

⃦⃦
ą 1

k`1
.

We now pick subsequences pji , qji and q1ji such that pji Ñ p, qji Ñ q and q1ji Ñ

q1 with p, q, q1 P K. Then ∥p´ q∥ “ 0 and HpTpji , Tpq Ñ 0 for i Ñ 8 as T is
nonexpansive. Thus in particular dpqji , Tpq, dpq1ji , Tpq Ñ 0 which yields

dpq, Tpq ď ∥q ´ qji∥` dpqji , Tpq Ñ 0

and thus dpp, Tpq “ dpq, Tpq “ 0. Similarly dpq1, Tpq “ 0 and thus q1 P Tp. However,
we have ∥p´ q1∥ ě 1

k`1
and so Hptpu, Tpq ě ∥p´ q1∥ ě 1

k`1
. This is a contradiction

to p˚q.

In that way, the existence of such a modulus is implied already by the assumptions
in Theorem 12.1.2.

At last, we consider the assumptions on the auxiliary sequences γn and αn. For γn,
where it is assumed that

lim
nÑ8

γn Ñ 0,

we will later rely on a rate of convergence τ witnessing this property, i.e. on a τ

satisfying

@k P N@n ě τpkq

ˆ

γn ď
1

k ` 1

̇

.

For αn, the assumption that

0 ă lim inf
nÑ8

αn ď lim sup
nÑ8

αn ă 1



318
CHAPTER 12. QUANTITATIVE RESULTS ON MANN-ITERATIONS FOR

SET-VALUED MAPPINGS IN BANACH SPACES

is witnessed by a value a P N˚ with the property

@n ě a

ˆ

1

a
ď αn ď 1´

1

a

̇

in similarity to [55].

Remark 12.2.2. For the previous treatment of the Hausdorff-metric, it was crucial that
the sets come equipped with a modulus witnessing their boundedness. Note that the
existence of such a modulus is immediate for sets of the form Tx as Tx P CBpKq and
thus Tx Ď K which is bounded as K is compact. In that way, for the quantitative
results, we will later rely on a bound on the diameter of K (as mentioned before). Note
that such a bound can not be computed from the modulus of total boundedness γ for
K as this modulus is only non-effectively equivalent to the total boundedness of K in
the usual sense and thus only implies the boundedness of K non-effectively (see [112]
for a further discussion of this).

12.3 Suzuki’s lemma and its analysis

The main analytical ingredient into the convergence proof from [196] is a well-known
lemma from Suzuki [200]:

Lemma 12.3.1 (Suzuki [200]). Let pxnq, pynq be bounded sequences in a Banach space
X and let pαnq Ď r0, 1s be such that 0 ă lim infnÑ8 αn ď lim supnPN αn ă 1. Suppose
that xn`1 “ αnxn ` p1´ αnqyn as well as

lim sup
nÑ8

p∥yn`1 ´ yn∥´ ∥xn`1 ´ xn∥q ď 0.

Then limnÑ8 ∥xn ´ yn∥ “ 0.

This lemma was analyzed quantitatively in [55] and we will rely in the following on
this analysis:

Lemma 12.3.2 (Dinis and Pinto [55]). Let pxnq, pynq be sequences in a Banach space
X with ∥xn∥ , ∥yn∥ ď b for b P N˚ and let pαnq Ď r0, 1s be such that there exists a
a P N˚ with the property

@n ě a

ˆ

1

a
ď αn ď 1´

1

a

̇

.

Suppose that xn`1 “ αnxn`p1´αnqyn as well as that there exists a monotone function
τ : NÑ N such that

@k P N@n ě τpkq

ˆ

p∥yn`1 ´ yn∥´ ∥xn`1 ´ xn∥q ď
1

k ` 1

̇

.
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Then for any k P N and any g : NÑ N:

Dn ď φa,τ,bpk, gq@m P rn;n` gpnqs

ˆ

∥xm ´ ym∥ ď
1

k ` 1

̇

,

where φa,τ,bpk, gq “ maxta, τptp2t`1qatpk`1q´1qu` pbtp2t`1qatpk`1q´1qt` r0 for

ri :“

$

&

%

0 if i “ bpk ` 1q,

t` ri`1 ` gppmaxta, τptp2t` 1qatpk ` 1q ´ 1qu ` it` ri`1q if i ă bpk ` 1q.

where gppmq “ t` gpmq and t “ 2bapk ` 1q.

12.4 Fejér monotonicity and metastability

We now present the extractions of the quantitative versions of Fejér monotonicity and
asymptotic regularity.

For this, we first need to define an appropriate notion of an approximate solution
(i.e. of an approximate fixed point) as the results given in [112] rely on uniform refor-
mulations of the respective properties in terms of such approximate solutions. For our
concrete situation here, note that p is a fixed point of T if, and only if, dpp, Tpq “ 0

(as Tp is closed since Tp P CBpKq). In that vein, we call p a 1
k`1

-approximate fixed
point of T if

dpp, Tpq ď
1

k ` 1

and define correspondingly

AFk “

"

p P K | dpp, Tpq ď
1

k ` 1

*

as the set of approximate solutions which extend the set of full solutions

F “ tp P K | dpp, Tpq “ 0u “ F pT q.

Now, for the Fejér monotonicity of pxnq, we concretely strive to establish the exis-
tence of the following modulus relative to the chosen AFk:

Definition 12.4.1 ([112]). A function χ : N3 Ñ N is a modulus of uniform Fejér
monotonicity for pxnq w.r.t. AFk if for any n,m, r P N, any p P AFχpk,m,rq and any
l ď m:

∥xn`l ´ p∥ ă ∥xn ´ p∥`
1

r ` 1
.
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For this, we can now extract the following from the proof of Fejér monotonicity
given in [196] for the sequence pxnq defined as in (:).

Lemma 12.4.2. Let θ be such that

@p P K@k P N
ˆ

dpp, Tpq ď
1

θpkq ` 1
Ñ Hptpu, Tpq ď

1

k ` 1

̇

.

Then the sequence pxnq defined as in p:q is uniformly Fejér monotone w.r.t. AFk with
a modulus

χpn,m, rq “ θpmpr ` 1q ` 1q.

Proof. Let p be given with dpp, Tpq ď 1
χpn,m,rq`1

. Then

∥xn`1 ´ p∥ ď p1´ αnq ∥xn ´ p∥` αn ∥yn ´ p∥

ď p1´ αnq ∥xn ´ p∥` αndpyn, Tpq ` αnp∥yn ´ p∥´ dpyn, Tpqq

ď p1´ αnq ∥xn ´ p∥` αnHpTxn, Tpq ` αnp∥yn ´ p∥´ dpyn, Tpqq

ď ∥xn ´ p∥` p∥yn ´ p∥´ dpyn, Tpqq

and by induction we get

∥xn`l ´ p∥ ď ∥xn ´ p∥`
l´1
ÿ

i“0

p∥yn`i ´ p∥´ dpyn`i, Tpqq

for any l ě 1. It is rather immediate to see that in general, for non-empty sets Y, Z Ď X

and a point x, we have dpx, Y q ď dpx, Zq `HpY, Zq and instantiating this yields

∥yn`i ´ p∥ “ dpyn`i, tpuq ď dpyn`i, Tpq `Hptpu, Tpq

and thus ∥yn`i ´ p∥´ dpyn`i, Tpq ď Hptpu, Tpq. As now p P AFχpn,m,rq, we get

Hptpu, Tpq ă
1

mpr ` 1q
.

In particular, in that case we have

∥xn`l ´ p∥ ď ∥xn ´ p∥`mHptpu, Tpq

ă ∥xn ´ p∥`
1

r ` 1

for l ď m.

Remark 12.4.3. Note that if T satisfies p˚q, the sequence is Fejér monotone w.r.t. F pT q
in the usual sense as can be shown by following the proof of the above Lemma 12.4.2.
In particular, this results holds without any compactness assumption for K.
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For the asymptotic behavior, we are interested in the following type of quantitative
information:

Definition 12.4.4 ([112]). A function Φ is an approximate F -point bound for pxnq
w.r.t. AFk if for any k P N:

Dn ď Φpkq pxn P AFkq .

The construction of such a Φ for the sequence studied here relies on analyzing the
proof of the statement dpxn, Txnq Ñ 0 from [196] which relies on Suzuki’s lemma.
Concretely, we get the following:

Lemma 12.4.5. Let b be a bound on the diameter of K and let pαnq Ď r0, 1s be such
that there exists an a P N˚ with the property

@n ě a

ˆ

1

a
ď αn ď 1´

1

a

̇

.

Let τ be a monotone rate of convergence for γn Ñ 0. Let φa,τ,b be defined as in Lemma
12.3.2. Then pxnq defined as in p:q has approximate F -points with an approximate
F -point bound

Φpkq “ φa,τ,bpk, 0q.

Proof. As in [196], we can derive

∥yn`1 ´ yn∥ ď HpTxn`1, Txnq ` γn ď ∥xn`1 ´ xn∥` γn

which yields that
∥yn`1 ´ yn∥´ ∥xn`1 ´ xn∥ ď γn

and thus τ satisfies the assumption of Lemma 12.3.2. Applying Lemma 12.3.2, we get
that for any k P N and any g : NÑ N:

Dn ď φa,τ,bpk, gq@m P rn;n` gpnqs

ˆ

∥xm ´ ym∥ ď
1

k ` 1

̇

.

In particular, we get for any k P N that

Dn ď φa,τ,bpk, 0q

ˆ

∥xn ´ yn∥ ď
1

k ` 1

̇

which yields that for this n, we have

dpxn, Txnq ď ∥xn ´ yn∥ ď
1

k ` 1
,

i.e. xn P AFk.
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Remark 12.4.6. Note that

φa,τ,bpk, 0q “ maxta, τptp2t` 1qatpk ` 1q ´ 1qu ` pbtp2t` 1qatpk ` 1q ´ 1qt` 2bpk ` 1qt

for t “ 2bapk ` 1q.

Lastly, we show that F pT q is not only closed but that it is even sufficiently uniformly
closed respective to the approximations AFk in a concrete way introduced in [112]:

Definition 12.4.7 ([112]). The solution set F is called uniformly closed w.r.t. AFk
with moduli δ, ω if for any k P N, any q P AFδpkq and any p with ∥p´ q∥ ď 1{pωpkq`1q,
we have p P AFk.

Lemma 12.4.8. The set F “ F pT q is uniformly closed w.r.t. AFk with moduli
$

&

%

δpkq “ 2k ` 1,

ωpkq “ 4k ` 3.

Proof. Note that we have

dpp, Tpq ď dpp, Tqq `HpTp, Tqq

ď ∥p´ q∥` dpq, T qq ` ∥q ´ p∥

and thus if q P AF2k`1 and ∥p´ q∥ ď 1
4pk`1q

, then dpp, Tpq ď 1
k`1

, i.e. p P AFk.

Combined, we can now apply the general result from [112] to get the following
quantitative version of Theorem 12.1.2:

Theorem 12.4.9. Let γ be a modulus of total boundedness for K. Let b be a bound
on the diameter of K and let pαnq Ď r0, 1s be such that there exists an a P N˚ with the
property

@n ě a

ˆ

1

a
ď αn ď 1´

1

a

̇

.

Let τ be a monotone rate of convergence for γn Ñ 0. Let θ be such that

@p P K@k P N
ˆ

dpp, Tpq ď
1

θpkq ` 1
Ñ Hptpu, Tpq ď

1

k ` 1

̇

.

Let φa,τ,bpk, 0q be defined as in Remark 12.4.6, i.e.

φa,τ,bpk, 0q “ maxta, τptp2t` 1qatpk ` 1q ´ 1qu ` pbtp2t` 1qatpk ` 1q ´ 1qt` 2bpk ` 1qt
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for t “ 2bapk ` 1q. Then pxnq defined as in p:q is Cauchy and moreover, for all k P N
and all g : NÑ N,

DN ď Ψpk, gq@i, j P rN ;N ` gpNqs

ˆ

∥xi ´ xj∥ ď
1

k ` 1
^ xi P AFk

̇

where Ψpk, gq “ Ψ0pP, k, gq for P “ γp4k ` 3q and with
$

&

%

Ψ0p0, k, gq “ 0,

Ψ0pn` 1, k, gq “ φa,τ,bpχ
M
k,gpΨ0pn, k, gq, 8k ` 7q, 0q,

and where

χpn,m, rq “ θpmpr ` 1q ` 1q,

χkpn,m, rq “ maxt2k ` 1, χpn,m, rqu,

χMk,gpn, rq “ maxtχkpi, gpiq, rq | i ď nu.

Proof. The result rather immediately follows from Theorem 5.3 in [112] (which itself
builds on Theorem 5.1 in [112]) by instantiating the bound given there with the moduli
obtained in Lemmas 12.4.2, 12.4.5, 12.4.8 and where G “ H “ id and thus αGpkq “
βHpkq “ k.

Remark 12.4.10. Theorem 12.4.9 is a real finitization of Theorem 12.1.2 in the sense
of Tao as it only references finite segments of the iteration pxnq but it trivially implies
back the original formulation of Theorem 12.1.2 as all the moduli naturally exist and
since metastability is (non-effectively) equivalent to convergence (see also Remark 5.5
in [112]).

12.5 Moduli of regularity and rates of convergence

In this section, using the results from [114], we give constructions for rates of conver-
gence based on the assumption of a (very general) kind of regularity notion as discussed
in the introduction.

The central notion here is consequently the following instantiation of the abstract
notion of a modulus of regularity from [114]:

Definition 12.5.1. Let z P F pT q and r ą 0. A function ϕ : p0,8q Ñ p0,8q is called
a modulus of regularity for T w.r.t Brpzq if for all ε ą 0 and all x P Brpzq:

dpp, Tpq ă ϕpεq Ñ dpx, F pT qq ă ε.
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If there is a z P F pT q such that ϕ is a modulus of regularity w.r.t. Brpzq for all r ą 0,
then ϕ is just called a modulus of regularity for T .

Remark 12.5.2. Note that the work [114] is written in the context of a formal setup
where instead of using sets F/AFk as above to formulate the solutions and approxi-
mative solutions, a function F : X Ñ r0,`8s is employed and the roles of the sets
F/AFk are (conceptually) replaced by zerF/tx | F pxq ď εu for ε ą 0. The above
notion arises from the general definition given in [114] by using F pxq :“ dpx, Txq but
we in the following suppress this whole setup from [114].

Note that the function dpp, Tpq is continuous in p if T is nonexpansive as

dpp, Tpq ď dpp, Tqq `HpTp, Tqq

ď ∥p´ q∥` dpq, T qq ` ∥q ´ p∥

and thus
|dpp, Tpq ´ dpq, T qq| ď 2 ∥p´ q∥ .

It follows from Proposition 3.3 of [114] that any such nonexpansive map T has a mod-
ulus of regularity (albeit in general being uncomputable) if K is compact.

Under the assumption of such a modulus, we now get the following result on rates
of convergence by instantiating the corresponding abstract result from [114]:

Theorem 12.5.3. Let z P F pT q ‰ H and let b be a bound on the diameter of K.
Assume that K is closed. Let pxnq be defined as in p:q. Assume that T satisfies p˚q.
Let pαnq Ď r0, 1s be such that there exists an a P N˚ with the property

@n ě a

ˆ

1

a
ď αn ď 1´

1

a

̇

.

Let τ be a monotone rate of convergence for γn Ñ 0. Let φa,τ,bpk, 0q be defined as in
Remark 12.4.6, i.e.

φa,τ,bpk, 0q “ maxta, τptp2t` 1qatpk ` 1q ´ 1qu ` pbtp2t` 1qatpk ` 1q ´ 1qt` 2bpk ` 1qt

for t “ 2bapk ` 1q. Let ϕ be a modulus of regularity for T w.r.t. Bbpzq. Then pxnq is
Cauchy with

@ε ą 0@i, j ě φa,τ,b

ˆR

1

ϕpε{2q

V

, 0

̇

pdpxi, xjq ă εq .

and further pxnq converges to a fixed point of T with a rate of convergence

φa,τ,b

ˆR

1

ϕpε{2q

V

, 0

̇

.
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Proof. The result is a straightforward instantiation of the general abstract Theorem
4.1 from [114], using the previous Lemma 12.4.5 by which we have that

@ε ą 0Dn ď φa,τ,b

ˆR

1

ε

V

, 0

̇

pdpxn, Txnq ă εq .

Note for this that the sequence pxnq is Fejér monotone w.r.t. F pT q by Remark 12.4.3
since T satisfies p˚q. That pxnq converges to a fixed point of T with the given rate
follows from Theorem 4.1, (i) in [114] for which we need that K is complete (which
follows as X is a Banach space and as K is closed) and that F pT q is closed which follows
from the fact that dpp, Tpq is uniformly continuous in p and F pT q “ pdp¨, T ¨qq´1p0q.

Remark 12.5.4. Note that the above Theorem 12.5.3 holds without any compactness
assumptions on K. Thus, in the presence of a modulus of regularity, the convergence
result from Theorem 12.1.2 immediately holds for any closed, bounded and non-empty
set K and any nonexpansive mapping T with F pT q ‰ H that satisfies p˚q.

At last, we look at a notion for multi-valued mappings where simple instances
of such moduli of regularity can be derived. Following Senter and Dotson [190], a
multivalued mapping T : K Ñ CBpKq is said to satisfy Condition I if there is a
nondecreasing function f : r0,8q Ñ r0,8q with fp0q “ 0, fprq ą 0 for r P p0,8q and

dpx, Txq ě fpdpx, F pT qqq

for all x P K. If the property that fprq ą 0 for r P p0,8q is witnessed in a uniform
and quantitative way by a function ϕ : p0,8q Ñ p0,8q with

fprq ă ϕpεq Ñ r ă ε

for any r, ε ą 0, then such a ϕ is clearly already a modulus of regularity for T . This
in particular is true for mappings that satisfy Condition II of Senter and Dotson [190],
i.e. where there exists a real α ą 0 such that

dpx, Txq ě αdpx, F pT qq

where then ϕ can be given by ϕpεq “ αε. Examples of mappings which satisfy Condition
II are for instance discussed in [190] and for these, the above rates of convergence
therefore instantiate immediately.
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