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Abstract

Recent advances in neural network architectures and large-scale language model pre-
training have enabled Natural Language Understanding (NLU) systems to surpass
human-level performance on various benchmark datasets. However, a large body
of work has revealed that NLU models are brittle against examples from outside of
the training data distribution, which consequently limits their real-world application.
This brittleness is mainly attributed to models exploiting spurious correlations in the
training dataset. That is, models learn to use cues or shortcuts rather than robust
features that are representative of the underlying task. In this thesis, we present
several methods to alleviate the effect of spurious correlation on the resulting NLU
models.

We attempt to improve the robustness against spurious correlation from several
directions. Firstly, we address the issues in modeling methods that “debias” NLU
models by reducing the incentives to learn non-robust features. We introduce a
regularization method that uses the existing knowledge about spurious features’
characteristics to improve the out-of-distribution generalization without degrading
the original performance on the standard evaluation. We further propose a strat-
egy to maintain the effectiveness of the debiasing methods when the required prior
knowledge is not available. Specifically, we introduce a self-debiasing framework
that allows the identification of potentially biased examples that models should be
disincentivized to exploit. Next, we also look at the inherent robustness that lan-
guage models acquire during the pre-training on large text corpora. We show how
task-specific fine-tuning can be destructive to such robustness and propose a novel
regularizing approach to alleviate the degradation. Lastly, we tackle the issue of
data augmentation approaches that aim to improve the robust performance of NLU
models over downstream application tasks. We present a method to automatically
generate diverse and naturalistic examples from which models can reliably learn the
task.

In all task settings, we present in this thesis, models are evaluated against out-of-
distribution examples designed to penalize the reliance on spurious correlations. We
measure the improvement in robustness by showing the increase in performance on
these examples without the degradation of the existing standard evaluation. Overall,
the work in this thesis demonstrate that we can still obtain robust NLU models using
improved modeling and augmentation despite the presence of spurious correlations
in the existing training resources.
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Zusammenfassung

Jüngste Fortschritte bei neuronalen Netzwerkarchitekturen und dem Vortraining von
Sprachmodellen in großemMaßstab haben es NLU-Systemen (Natural Language Un-
derstanding) ermöglicht, bei verschiedenen Benchmark-Datensätzen die menschliche
Leistung zu übertreffen. Eine Vielzahl von Arbeiten hat jedoch gezeigt, dass NLU-
Modelle gegenüber Beispielen außerhalb der Trainingsdatenverteilung anfällig sind,
was folglich ihre praktische Anwendung einschränkt. Diese Sprödigkeit wird haupt-
sächlich auf Modelle zurückgeführt, die falsche Korrelationen im Trainingsdatensatz
ausnutzen. Das heißt, Modelle lernen, Hinweise oder Verknüpfungen anstelle robus-
ter Funktionen zu verwenden, die repräsentativ für die zugrunde liegende Aufgabe
sind.

In dieser Dissertation stellen wir mehrere Methoden vor, um den Effekt der
falschen Korrelation auf die resultierenden NLU-Modelle zu mildern. Wir versu-
chen, die Robustheit gegenüber Störkorrelationen aus mehreren Richtungen zu ver-
bessern. Zunächst befassen wir uns mit den Problemen bei Modellierungsmethoden,
die NLU-Modelle „verzerren“, indem sie die Anreize zum Erlernen nicht robuster
Funktionen verringern. Wir führen eine Regularisierungsmethode ein, die das vor-
handene Wissen über die Eigenschaften von Störmerkmalen nutzt, um die Verallge-
meinerung außerhalb der Verteilung zu verbessern, ohne die ursprüngliche Leistung
bei der Standardbewertung zu beeinträchtigen. Wir schlagen außerdem eine Strate-
gie vor, um die Wirksamkeit der Debiasing-Methoden aufrechtzuerhalten, wenn das
erforderliche Vorwissen nicht verfügbar ist. Konkret führen wir ein Framework zur
Selbstentzerrung ein, das die Identifizierung potenziell voreingenommener Beispiele
ermöglicht, für deren Nutzung die Modelle keinen Anreiz haben sollten. Als nächs-
tes betrachten wir auch die inhärente Robustheit, die Sprachmodelle während des
Vortrainings an großen Textkorpora erwerben. Wir zeigen, wie eine aufgabenspezifi-
sche Feinabstimmung diese Robustheit zerstören kann und schlagen einen neuartigen
Regularisierungsansatz vor, um die Verschlechterung zu mildern. Abschließend be-
fassen wir uns mit der Frage der Datenerweiterungsansätze, die darauf abzielen, die
robuste Leistung von NLU-Modellen gegenüber nachgelagerten Anwendungsaufga-
ben zu verbessern. Wir stellen eine Methode vor, um automatisch vielfältige und
naturalistische Beispiele zu generieren, aus denen Modelle die Aufgabe zuverlässig
lernen können.

In allen Aufgabenstellungen, die wir in dieser Arbeit vorstellen, werden Modelle
anhand von Beispielen außerhalb der Verteilung bewertet, die darauf abzielen, die
Abhängigkeit von falschen Korrelationen zu bestrafen. Wir messen die Verbesserung
der Robustheit, indem wir die Leistungssteigerung an diesen Beispielen zeigen, oh-
ne die Verschlechterung der bestehenden Standardbewertung. Insgesamt zeigt die
Arbeit in dieser Arbeit, dass wir mit verbesserter Modellierung und Erweiterung
immer noch robuste NLU-Modelle erhalten können, obwohl in den vorhandenen
Trainingsressourcen falsche Korrelationen vorhanden sind.
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tics, pages 2214–2220, Florence, Italy. Association for Computational
Linguistics
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Additionally, I performed some experiments to evaluate the proposed methods. I
also assisted the writing and performed several corrections to improve the papers.

The source code and reference to the datasets used to reproduce the results in
the publications above are available publicly at https://github.com/ukplab.
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Chapter 1

Introduction

1.1 Problem Formulation

Natural Language Understanding (NLU) is a branch of artificial intelligence that
aims to develop computer programs that are able to analyze and derive meaningful
interpretation from natural language. A large body of work within the area of
Natural Language Processing (NLP) has extensively studied NLU under a wide
range of tasks including Question Answering (QA) (Sgall, 1982; Rajpurkar et al.,
2016; McCann et al., 2018) or Recognizing Textual Entailment (RTE) (Dagan et al.,
2006; Bowman et al., 2015; Williams et al., 2018). The progress in NLU has had
a significant impact on various technologies such as search engines, automatic text
summarization, or virtual personal assistants.

Recently, the emergence of Pre-trained Language Models (PLM) has led to a sub-
stantial breakthrough in NLU. The prevailing new paradigm behind PLMs leverages
large text corpora to train neural network architectures using unsupervised language
modeling objectives. The idea is that the large-scale pre-training extracts useful
features in language that are transferable to downstream NLU tasks via supervised
fine-tuning. The evaluation using various benchmark datasets shows that the re-
sulting models have pushed the state-of-the-art by a significant margin, and often
surpassed the established human performance baselines (Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020).

This seemingly remarkable performance can be a justification to attribute their
success to models’ capabilities to better capture the semantics of the text and per-
form different types of reasoning. However, a growing number of studies have cast
doubts on the capabilities that models have truly acquired to perform well on NLU
tasks. Researchers have revealed that datasets used to evaluate the models con-
tain spurious correlations that can be exploited to make correct predictions without
learning the underlying task. For instance, Gururangan et al. (2018); Poliak et al.
(2018b) reported that in many popular datasets for RTE task, also known as Nat-
ural Language Inference (NLI), specific linguistic phenomenon such as negation is
strongly correlated with certain inference labels, e.g., contradiction. While some
correlations can be useful to learn, it becomes a problem when the correlations
are spurious, i.e., they are idiosyncratic to specific collected datasets rather than

7



8 CHAPTER 1. INTRODUCTION

representative of the underlying tasks.
Standard evaluation practices that split the collected data into train and test

sets randomly often conceal models’ reliance on spurious correlation. Since train
and test examples are drawn from the same data distribution, utilizing spurious
correlation learned from the train set still leads to high-performance score in the test
set. Researchers, therefore, proposed a novel evaluation framework by collecting out-
of-distribution (OOD) test datasets designed such that predictions based on spurious
correlation are incorrect. A prominent example of such evaluation is performed by
McCoy et al. (2019) which diagnoses NLI models’ reliance on the correlation between
lexical overlap with the entailment label. They demonstrate that models are indeed
lacking robustness as indicated by their poor performance on the counterexamples
where the correlation does not hold.

Mitigating such reliance on non-robust features is critical to transfer the success
on the benchmark evaluation to real-world applications. This challenge has thus
attracted increasing attention from the NLP community to tackle to the problem
from multiple directions. Researchers first looked at the existing NLU datasets to
characterize the non-robust features which emerge as artifacts of the data annota-
tion process. Once identified, the information about these features is then used for
improving the dataset quality or the modeling methods. On the dataset collection
side, such information is useful to filter out examples that exhibit spurious corre-
lation or to obtain counterexamples through iterative annotation (Kaushik et al.,
2020) or synthetic data generation (Min et al., 2020). On the modeling side, pro-
posed methods utilize the prior information to augment the training objective, e.g.,
using regularization terms to suppress the effect of non-robust features on the mod-
els.

In this thesis, we aim to develop several possible approaches for mitigating the
reliance on spurious correlation and ultimately improve the OOD generalization
of NLU models. We study three dimensions of the robustness improvement effort
within the recent PLM modeling paradigm: pre-training, fine-tuning, and data qual-
ity. We also look at the application of NLU models on more practical downstream
tasks and study the benefit from improved robustness. Overall, the work presented
in this thesis aims to answer the following research questions:

1. Fine-tuning: how to fine-tune models on NLU tasks without suffering from
the pitfall of spurious correlation while also maintaining good predictive per-
formance in the training data distribution?

2. Data: how to identify unknown spurious correlation in the training data?
Specifically, how can we characterize training instances that support the spu-
rious correlation without prior knowledge about their surface feature specifics?

3. Pre-training: how is the spurious correlation learning attributed to the pre-
training? If PLM acquires more robust features during pre-training, how to
train models to preferably use these features for the downstream tasks?

4. Application: how to improve the OOD generalization of NLU models to
directly improve the performance on the downstream application tasks?
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Figure 1.1: An overview of the contributions and areas of NLU robustness addressed
by each chapter in this thesis.

In Section 1.2, we provide a detailed overview of our proposed methods that
address the above research questions. In all of our studies, we perform our eval-
uation around a set of text pair classification tasks, which represent the diverse
range of knowledge and reasoning capabilities required in NLU. The improvement
in robustness and OOD generalization is measured by performance on challenging
test sets where reliance on spurious correlation degrades performance. We com-
pare our methods with various existing improvement methods as well as the vanilla
fine-tuning approach. We then show improved performance on different tasks, such
as textual entailment, fact-checking, and paraphrase identification, as well as in
settings where training resource is low. Overall, this thesis suggests that while spu-
rious correlation exists in the training datasets, efforts from multiple directions can
be applied to obtain models that generalize better to out-of-distribution data.

1.2 Approach Overview

The structure of this thesis follows the order of publication of the proposed ap-
proaches listed in Publications page. We summarize the overall thesis structure in
Figure 1.1. In what follows, we briefly discuss the details of each published work
from this thesis:

Improving Robustness against Known Spurious Features

In Chapter 5, we first consider a setting where the characteristics of the non-robust
features are known a-priori. This knowledge is typically obtained from task-specific
analysis and the intuition of the researchers. For the sentence-pair NLU tasks,
we focus on the two most common spurious correlations that affect the robustness
of models’ performance. Firstly, Gururangan et al. (2018); Poliak et al. (2018b);
Tsuchiya (2018) have shown that popular NLI datasets such as SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) contain hypothesis sentences with indicative
keywords that allow models to make correct predictions without properly using
both of the input sentences. For instance, negation words such as “no” or “never”
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are strongly correlated with the “contradiction” label, while verb like “sleeping” is
correlated with the “neutral” label. Beside this “hypothesis-only” features, McCoy
et al. (2019) also found that models also rely on simple heuristics based on the
lexical overlap features between the sentence pair. More specifically, models learn a
fallible assumption that sentence pairs that highly overlap in words are classified as
“entailment”. Due to the bias in both the training and test sets, this heuristic works
well on the majority of the test cases, but fails on simple counterexamples, e.g., “cat
chased the mouse” does not entail “the mouse chased the cat”.

This insight has motivated researchers to develop methods for disincentivizing
models to capture spurious patterns. These methods are commonly referred to
as “debiasing”. Ensemble-based debiasing strategies (Clark et al., 2019; He et al.,
2019; Karimi Mahabadi et al., 2020) have gained prominence and improved models’
performance on the OOD diagnostic datasets substantially. They work by first
training a simple hand-crafted model that relies solely on spurious features, e.g.,
predicting relationship labels only based on partial input. The main model is then
trained in an ensemble with the biased model, which reduces the incentive for the
model to learn from the examples that the biased model has predicted correctly. The
model is, in turn, encouraged to focus on “harder” examples where spurious features
are not sufficient to make correct predictions. While OOD evaluation shows the
effectiveness of these approaches for the intended aim, it also results in a trade-
off with respect to the in-distribution performance. Namely, the performance on
the standard test set, which contains a wider range of inference phenomena, is
substantially degraded.

In this work, we address this limitation by introducing a regularization method
which penalizes the overconfidence of models in “easier” examples where spurious
features give away the correct labels. We show that this leads to models being
less likely to pick up simple cues, while also still being able to learn to make the
correct prediction on these examples. The evaluation shows that models achieve
OOD improvement while preserving the in-distribution performance.

Addressing Unidentified Spurious Features

Next, in Chapter 6, we consider a scenario where the prior knowledge about the char-
acteristics of the spurious correlation is unknown, which then limits the applicability
of the existing debiasing approaches. For these approaches to work, “easy” examples
that contribute to the spurious correlation should be identified automatically with-
out hand-crafting a simple model. To this end, we look at the training dynamics
of the recent pre-trained language models during fine-tuning and found that models
initially capture simple patterns before gradually learning more complex inference
rules. Interestingly, we observe that the simple patterns in this low data regime
correspond to the non-robust features that harm the resulting OOD generalization.
The early training models behave similarly to the manual hand-crafted models used
to identify examples that support spurious correlation.

Based on this newly found insight, we propose a novel framework within which
two identical pre-trained models are fine-tuned with significantly different amounts
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of training examples. The first model trained on a small fraction of fine-tuning data
is expected to be a shallow model that heavily utilizes non-robust features. The
shallow model is then used to reweight the training examples via various mechanisms
that are introduced by previous debiasing methods. The main model, which is
trained on the reweighted training examples, is expected to learn non-overlapping
inference strategies from the shallow model, resulting in improved robustness against
spurious correlation. During test time, the shallow model is no longer needed and
only the main model is then used. Our evaluation shows that this self-identifying
framework gains equally high improvement as its counterpart that utilizes the prior
knowledge about the spurious features.

Robustness in Low Resource Learning Settings

Our finding on models’ reliance on spurious patterns during the earlier training phase
elicits a new question on the robustness of pre-trained language models. More specif-
ically, we look at whether language models obtained from large-scale pre-training
are still inherently reliant on surface features that do not generalize well. This
can severely limit the application of models in various low-resource settings, where
models only have access to a few examples to avoid learning spurious patterns. To
this end, in Chapter 7, we study a more recent prompting paradigm to adapt pre-
trained language models to perform the downstream tasks with small to no training
examples (commonly referred to as few- and zero-shot learning), which allows us to
investigate models’ robustness on low data regimes.

The prompting paradigm reformulates downstream task examples as masked
language modeling instances using textual prompts. Models, which are pre-trained
using similar formulations on a large corpus of text, can then make a “fill in the
blank” textual prediction that can be mapped directly to task-specific labels. For
instance, a textual prompt “It was .” can be added to a sentiment classification
input sentence “The food was delicious”. Probabilities assigned by the pre-trained
language models on the word “good ” and “bad ” can then be compared to determine
whether the sentiment is positive or negative.

In this work, we perform systematic robustness evaluation of zero-shot and few-
shot prompted models for NLU tasks using varying training example sizes. We
found that zero-shot models are more robust to common spurious correlation, as
measured by their performance on the corresponding diagnostic datasets. Interest-
ingly, prompt-based fine-tuning gradually degrades this robustness as more labeled
examples are used to train the pre-trained language models. We then address this
by proposing a regularization term that penalizes the fine-tuning from updating the
weights too far off the original pre-trained values. Our evaluation suggests that the
proposed regularization helps models gain in-distribution performance improvement
while maintaining their pre-trained robustness. Overall, this work highlights the
importance of preserving useful knowledge extracted during pre-training to obtain
robust models in low-resource learning settings.
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Data Augmentation for Robust Downstream Applications

Finally, in Chapter 8, we look at the implication of model robustness on the down-
stream application tasks. More specifically, we focus on the task of detecting the
factually inconsistent output of summarization models. Out-of-the-box Natural Lan-
guage Inference models are adopted for this task by formulating the input document
as the premise text and the summarization output as the hypothesis, where entailed
pairs are equivalent to factually correct summaries (Falke et al., 2019). However,
this application of NLI models has seen limited success with poor performance scores
that are close to random (Kryscinski et al., 2020).

This poor performance largely stems from the mismatch between the NLI train-
ing data and the downstream task test data. Namely, most NLI models are trained
on single-sentence premise text, while at test time, the model is used to make pre-
dictions on the document-length input text. Models may learn spurious patterns
that are idiosyncratic to single-sentence NLI datasets, which do not generalize to
document-level test cases in the downstream tasks. Additionally, the resulting NLI
models also may not capture the kind of entailment phenomena which naturally
arise in longer text input in summarization.

We argue that addressing this challenge requires effort to reduce the character-
istics discrepancy between the training and test data. More specifically, the NLI
training dataset should include document-level examples which are more oriented
to the downstream task. However, collecting such labeled training examples man-
ually can be costly and time-consuming. In this work, we address this challenge
by proposing a novel data generation framework that produces diverse and natu-
ralistic NLI examples on document-level granularity. We leverage the advances in
text-generating language models to build a text generator that takes as an input
a pair of the source document and its corresponding summary. It then generates
a perturbed summary output that is no longer entailed by the source document,
which constitutes the negative examples of the resulting dataset. We use the auto-
matically constructed document-level dataset to augment the existing sentence-level
NLI dataset. The improved performance in our evaluation on several factual incon-
sistencies benchmark shows that the resulting NLI models are more robust when
applied to the intended downstream tasks.

1.3 Terminology
We briefly clarify the terminology that we use throughout this thesis document:

• In the literature, spurious correlation is also often referred to as dataset bias
(Clark et al., 2019; He et al., 2019), annotation artifacts (Gururangan et al.,
2018; Poliak et al., 2018b), or shallow features. The choice of terminology in
this document is meant to be informal and we use these terms interchangeably.

• The resulting behavior from relying on spurious correlation is commonly re-
ferred to as inference heuristics (McCoy et al., 2019). Several works also refer
to it as shortcut learning (Du et al., 2021; Lai et al., 2021).
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• We refer to the standard evaluation set as in-distribution data since it is drawn
from the same distribution as the training data. The diagnostic datasets
used to evaluate the improvement in robustness will be referred to as out-
of-distribution (OOD) data or challenge sets.

1.4 Organization
This thesis is organized as follows:

• In Chapter 2, we start with the discussion about the existing analysis and
evaluation methods of the NLU models. We discuss the definition of the tasks
used for evaluating the models and how their performance is measured. We
finally discuss the potential downstream applications of the NLU models and
highlight the importance of robustness improvement towards this end.

• In Chapter 3, we then discuss the existing approaches for NLU tasks that
are based on neural network and deep learning. The discussion includes the
recent advances in Transformers architectures and pre-trained language mod-
els that are the keys to the current state-of-the-art performance across NLU
benchmarks.

• In Chapter 4, we summarize the body of work that studies the existing limita-
tion of NLU datasets and models with respect to robustness against spurious
correlations. We first discuss the methods to investigate the artifacts in the ex-
isting NLU datasets and the diagnoses to demonstrate the bias-reliant behav-
iors in the NLU models. We then highlight the existing robustness-improving
methods that address the problem from the dataset and modeling point of
view.

• In Part 2 of the thesis, we include the publications that comprise the main
contributions of this thesis. We start with Chapter 5 where we discuss our
proposed method to improve the robustness against the known biases in the
dataset. Chapter 6 addresses the debiasing scenario where the prior knowl-
edge about the biases is minimal. In Chapter 7, we study the low resource
settings where we show that the robustness against spurious correlation can be
improved by maintaining the knowledge acquired during pre-training. Lastly,
in Chapter 8, we discuss our proposed framework to automatically augment
the existing NLU dataset to improve the robustness of the models which is
specific toward downstream applications.

• Finally, we conclude in Chapter 9 where we discuss the summary of the con-
tribution of this thesis and highlight the possible research directions.





Chapter 2

Evaluating Natural Language
Understanding

2.1 Task Definition
In this thesis, we address the robustness problem in tasks that are designed to eval-
uate and analyze the capabilities of general NLU systems. The emerging standard
practice in this direction is based on evaluation protocols using a suite of supervised
tasks that are uniformly formatted, such as question answering (McCann et al.,
2018) and classification (Conneau and Kiela, 2018). GLUE benchmark (Wang et al.,
2018) serves as a prominent example of this approach: it provides a collection of
diverse text classification tasks of varying domains, dataset sizes, and difficulties.
The benchmark measures the overall performance of NLU models across tasks as an
estimate of models’ general linguistic knowledge and task-specific capabilities. The
majority of these NLU tasks are formulated as input pair classification, which deter-
mines the output label based on the semantics of each individual input text and the
relationship to the other. In our studies, we focus specifically on these paired input
tasks, which we argue allow the evaluation of wider linguistic phenomena occurring
from cross-text contextualization and alignment.

Formally, the input pair classification tasks are formulated as the following: given
an input text pair (x1, x2), the objective is to determine a label y that represents
the relation between meanings of x1 and x2. Existing tasks address varying types
of semantic relationships that are encapsulated by a different set of discrete labels.
Consider the following example of a sentence pair input:

1. x1: The skyscraper is under construction

2. x2: The building is under construction

In textual entailment tasks such as NLI, the relation between x1 and x2 is assigned to
the positive entailment label since x1 entails x2. Whereas Paraphrase Identification
task (Xu et al., 2014; Vo et al., 2015) considers a more precise relation to determine
whether the two sentences are semantically equivalent. Specifically, the text pair x1
and x2 are paraphrase when they entail each other (symmetrical entailment). This

15
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example illustrates the need for NLU models to acquire task-specific capabilities
besides their general knowledge. To gauge the extent of these capabilities, NLU
models have been evaluated on a wide range of paired input tasks encompassing
varying text domains and characteristics. The followings are the exemplary paired
NLU tasks and their descriptions:

2.1.1 Recognizing Textual Entailment

Recognizing Textual Entailment (e.g., Dagan et al., 2006; Bentivogli et al., 2010),
known also as Natural Language Inference or NLI (e.g., Bowman et al., 2015;
Williams et al., 2018) is a broader task that is concerned with the directional en-
tailment relationship between two fragments of text (e.g., paragraphs or sentences),
namely the entailing “premise” text P and the entailed “hypothesis” text H. Dagan
et al. (2006) introduced the somewhat imprecise definition of entailment described
below:

Text expression P entails text expression H if, a typical human reader
can infer the meaning of H from the meaning of P , based on the common
understanding of language and world knowledge.

The datasets for the task are therefore constructed by collecting human annota-
tors’ judgments on the entailment relationship between the given text pairs. In the
annotation process, annotators are typically asked to obtain the premise (P ) and
hypothesis texts (H) in varying ways including by performing information retrieval
from the web, asking a Question Answering (QA) systems, translating sentences with
Machine Translation (MT) systems (Giampiccolo et al., 2007). Alternatively, anno-
tators can also be prompted to generate free-form hypothesis texts with intended
entailment labels (Bowman et al., 2015; Williams et al., 2018). The resulting P-
H pairs from the earlier RTE datasets are then formulated as binary classification
problems where P-H texts are the inputs which are labeled as either entailment or
not-entailment. Some representative examples from the earlier RTE datasets are
the following:

1. . P : Oil prices fall back as Yukos oil threat lifted.
. H: Oil prices rise. (not-entailment)

2. . P : Money raised from the sale will go into a trust for Hepburn’s family.
. H: Proceeds go to Hepburn’s family. (entailment)

More recently, successor datasets such as SICK (Marelli et al., 2014), SNLI
(Bowman et al., 2015), and MNLI (Williams et al., 2018) break down the not-
entailment label into two separate labels contradiction and neutral and introduced
a 3-way classification formulation for the RTE/NLI task. de Marneffe et al. (2008)
define the contradiction relationship as the following:

The text expression H contradicts the text expression P if, a typical hu-
man reader infers that the statements described in P and H are unlikely
to be true at the same time.
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Similar to the definition of the entailment relationship, the judgment for the contra-
diction label is also based on human intuition and common sense. For cases where
the truth value of H is unknown given that P is true, the neutral label is used.
Consider the following example from the SNLI dataset (Bowman et al., 2015):

. P : A man in a black shirt overlooking bike maintenance.

. Hc: A man destroys a bike.

. Hn: A man learns bike maintenance.

In the above, annotators generated the contradicting sentence Hc as they inferred
that Hc is extremely unlikely to be true given the event described in P . On the
other hand, sentence Hn is generated for the neutral label because it is still possible
that Hn is true although it may not be certain.

2.1.2 Semantic Textual Similarity

Semantic Textual Similarity (STS) (e.g., Agirre et al., 2012, 2014; Cer et al., 2017)
is a task that assigns a degree of semantic relatedness between a pair of text. The
task differs from textual entailment in several ways. First, the target semantic
relationship between the text is symmetric, meaning that labels assigned to the
text pairs (T1, T2) and (T2, T1) are the same. Unlike STS, the textual entailment
relationship is directional, e.g., “playing sport” does not entail “playing football”
even though they both have the same semantic relatedness to each other. Second,
the task introduced a notion of graded semantic similarity where a label is closer to
one label than the other. Consider the following sentences:

. T1: The person is driving a minivan.

. T2: The person is sitting in a sedan.

. T3: The person is sitting in a living room.

In the textual entailment task, the meaning of both sentences T2 and T3 are
contradicting sentence T1. However, the notion of graded semantic similarity in the
STS task takes into account that “minivan” is semantically more related to “sedan”
than “living room”. Therefore, the label assigned to (T1, T2) is closer to the higher
end of the scale than the label for (T1, T3). In the corresponding benchmark dataset
for the task, STS-B (Cer et al., 2017), which includes a selection of English STS
shared tasks from 2012 to 2017, the labels are defined on a Likert scale ranging
from 0 to 5. Label 0 indicates no meaning overlap, while label 5 indicates that the
meanings of the two sentences are equivalent. The intermediate values from 1 to
4 express partial overlap in meaning where the sentences share different degrees of
details and information.

Similar to the RTE and NLI datasets, the annotations for STS tasks are also
designed to reflect pragmatic and the common understanding of the language and
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the world. The resulting tasks are commonly modeled by formulating them as
regression problems where models take the sentence pairs as input and map them
to scalar values between 0 and 5.

2.1.3 Paraphrase Identification

Paraphrase identification task (e.g., Dolan et al., 2004; Dolan and Brockett, 2005;
Xu et al., 2014) aims to identify text pairs that are semantically equivalent. The
task is formulated as a simple binary classification, where the inputs are the sentence
pairs and the labels are either “paraphrase” or “not-paraphrase”. Formally, a pair of
sentences is considered as “paraphrase” when the two sentences hold a “bidirectional
entailment” relationship, i.e., the sentences entail each other. However, Dolan and
Brockett (2005) suggest that, in practice, such a strict definition would mostly lead
to pairs that are identical at the string level. They illustrate using the following
example

. Sentence 1: The euro rose above US$1.18, the highest since its January 1999
launch.

. Sentence 2: The euro rose above $1.18 the highest level since its launch in
January 1999.

that the resulting pairs tend to present discrepancies mostly by synonymy and local
syntactic changes. To obtain a richer dataset with more types of complex para-
phrases, they, therefore, adopt a looser definition of paraphrase, where the two
sentences may differ in some details to a certain degree. Human annotators are
asked to judge whether a sampled pair of sentences, based on common sense, is
similar enough in meaning to be considered a paraphrase.

The relaxed paraphrase definition used in this task is akin to using the conflated
labels in the Semantic Textual Similarity (STS) task (Cer et al., 2017). Specifically,
the paraphrase criterion conflates the definition of labels 3, 4, and 5 of the STS tasks
where the two sentences are roughly equivalent but some information or details may
still differ. Interesting and complex paraphrases with minor discrepancies in details
can be illustrated by the following example:

. Sentence 1: They were at Raffles Hospital over the weekend for further eval-
uation.

. Sentence 2: They underwent more tests over the weekend, and are now warded
at Raffles Hospital.

To make sure the datasets for this task consist of naturally occurring and non-
handcrafted sentence pairs, researchers extracted the pairs from various sources us-
ing several heuristics to narrow down the search space. Dolan and Brockett (2005)
collected news story pairs from the web and use heuristics based on lexical proper-
ties and the sentence position in the document. More recently, online community
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question-answering websites such as Quora1 have become major sources of vari-
ous NLU datasets (Nakov et al., 2016, 2017; Abujabal et al., 2019) including for
paraphrase detection. Quora Question Pairs (QQP)2 dataset consists of question
sentence pairs with expert annotations on whether the questions are duplicates.
The syntactic variation in lexically similar questions can pose a challenge for NLU
models to determine the difference in meaning, e.g., “Is there a direct flight from
New York to London?” vs. “Is there a direct flight from London to New York?”.

2.1.4 Fact Verification

Fact Verification (e.g., Vlachos and Riedel, 2014; Ferreira and Vlachos, 2016; Thorne
et al., 2018) presents a practical task of automatically recognizing the factual correct-
ness of a textual claim given source or evidence texts. This task adopted definitions
of factual relationship labels which are similar to the labels in the textual entailment
(RTE/NLI) tasks, in that a claim is factual only if all details and information in the
claim text are entailed by the given evidence text. Datasets for the claim verification
task such as (Thorne et al., 2018) formulated the task as a 3-way classification prob-
lem where the evidence and claim text pairs are labeled as either “support”, “refute”,
or “not-enough-info”. These labels correspond to the RTE/NLI labels “entailment”,
“contradiction”, and ”neutral ”, respectively.

The key difference between the fact verification task and the textual entailment
task is that in RTE/NLI datasets, typically both the input texts (premise and hy-
pothesis) consist of a single sentence. In fact verification task, however, the claim
is verified against longer passages that are obtained from additional retrieval steps
from a large collection of documents. For NLU task formulation, this retrieval step
can be omitted, and the gold evidence passages are already provided. The resulting
multi-sentence source or context texts present challenging inference phenomena for
NLU models. Consider the following example from the Fever dataset:

. Evidence 1: The 1992 Los Angeles riots, also known as the Rodney King riots
were a series of riots, lootings, arsons, and civil disturbances that occurred in
Los Angeles County, California in April and May 1992.

. Evidence 2: Los Angeles County, officially the County of Los Angeles, is the
most populous county in the USA.

. Claim: The Rodney King riots took place in the most populous county in
the USA.

The above evidence passages that are relevant to the claim text are retrieved from
multiple Wikipedia pages. The relevant information from each passage then needs
to be consolidated for the claim text to be properly verified. The fact verification
in such an example requires multi-hop (multi-step) inference (Welbl et al., 2018):
inferring that The Rodney King riots happened in Los Angeles, based on evidence 1,

1https://www.quora.com/
2https://www.kaggle.com/competitions/quora-question-pairs/data

https://www.quora.com/
https://www.kaggle.com/competitions/quora-question-pairs/data
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and figuring out that Los Angeles is the most populous county in the USA, based on
evidence 2. Evaluating NLU models on this type of example can provide an estimate
of their ability to handle more inference phenomena that are present in tasks with
longer input texts.

2.2 Performance Measures
Metrics The performance of the models applied for the NLU tasks is measured by
varying metrics depending on the characteristics of the datasets. For classification
tasks like RTE/NLI where the class distribution is balanced, the accuracy metric is
typically used. It is calculated by the following:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP (true positive) and TN (true negative) represent the number of correct
predictions and the summation of TP, TN, FP (false positive), and FN (false nega-
tive) represent the total number of predictions. In tasks where the class distribution
is imbalanced, the accuracy metric is not sufficient to estimate the performance. Two
better metrics commonly used for class-imbalanced tasks are precision and recall.
Precision is interpreted as the proportion of positive predictions that are actually
correct. It is defined as follows:

Precision =
TP

TP + FP

On the other hand, recall measures the proportion of actual positive cases that were
predicted correctly by the model. The definition is as follows:

Precision =
TP

TP + FN

The performance of the models in the class-imbalanced cases should be evaluated in
terms of both precision and recall. The improvement of either of these two metrics,
however, is often at odds with the other. It is often reasonable to optimize models
such that both precision and recall are maximized. F1 score is used to summarize
the metrics into a single score. It is mathematically defined as follows:

F1 = 2 · precision · recall
precision + recall

This harmonic mean formulation between precision and recall ensures that the de-
crease of either metric will penalize the F1 score.

Baselines There are several baselines that are typically used to measure the
progress in modeling an NLU task. The random baseline, which randomly assigns a
target label to a test case, can be used as a performance lower bound for the NLU
models. Alternatively, most frequent class baseline, which always predicts the most
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frequent label in the training set, is useful to interpret models’ performance metrics.
For example, on a binary classification task, where 70% of the training examples are
labeled as the negatives, the most frequent class baseline would achieve around 70%
of accuracy. Based on this, we can infer that the model that achieves 72% accuracy
is not making substantial progress for the task. Lastly, the human performance
baseline is often used in many NLU tasks to gauge the upper-bound performance of
the NLU models (Wang et al., 2018). Establishing a human baseline performance
on already annotated NLU datasets requires the further collection of human judg-
ment on the existing test cases. For instance, Nangia and Bowman (2019) presents
an estimation of human performance on GLUE benchmark tasks by asking crowd-
workers to perform the task after training them using a few examples from each task.
This human baseline was able to outperform several state-of-the-art NLU models on
this benchmark. However, the human baseline performance presents a tight upper
bound, meaning there was only a limited headroom remaining for further progress
in this set of tasks.

2.3 Task Application

A myriad of inference phenomena, which occur in multiple downstream applications,
can be cast in terms of paired text task formulation, such as textual entailment
(Poliak et al., 2018a). This means that the paired input tasks present a generic
formulation for common evaluation and comparison between various applied NLU
models. In the following, we describe how several NLU applications can be expressed
in terms of paired text task format.

Summarization The summarization task, in which systems are developed to gen-
erate human-readable summaries from longer text input. While existing summa-
rization systems can produce highly fluent and coherent summaries, a large body
of work shows that the generated summaries are often factually inconsistent with
respect to the source document (Kryscinski et al., 2019). This gives rise to a sub-
task of recognizing factual consistency which aims to identify whether the newly
generated sentence contains information already expressed in the source document.
This sub-task can be formulated as an entailment pair where the source document
is the premise text and the generated summary is the hypothesis text. Consider the
following document (P ) and generated summary (H) pair:

. P : The classic video game ”Space Invaders” was developed in Japan back in
the late 1970’s – and now their real-life counterparts are the topic of an earnest
political discussion in Japan’s corridors of power.

. H: Video game ”Space Invaders” was developed in Japan back in 1970.

In the above, the summarization system incorrectly consolidates the phrase “back
in the late 1970’s” into “back in 1970 ”. Using RTE/NLI or Fact Verification task
formulation, the pair should be labeled as contradiction or refute. The generated
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summary is considered factually consistent only when the source document and
the summary pair hold the entailment or refute labels. Despite this aligned task
formulation, applying out-of-the-box RTE/NLI or Fact Verification models directly
to the task still result in unsatisfactory performance (Kryscinski et al., 2020; Falke
et al., 2019). Several follow-up works, e.g., the work by Laban et al. (2022) and
our work discussed in this thesis, address this limitation of NLU models to improve
their downstream application performance.

Relation Extraction The task of relation extraction (RE) aims to recognize a
fixed set of real-world relationships between pairs of entities from natural language
texts. The outputs of a relation extraction system are (entity1, relation, entity2)
tuples that are defined in the schema of a knowledge base. These fixed sets of
relations and entities can be expressed in varying surface forms in the text. For
instance, the relation born_in can appear in the text in the following sentence:

“Jo went to visit Alex in his native York.”

where the target relation tuple is (Alex, born_in, York). This extraction can be re-
cast into an entailment format by formulating the above text as the premise sentence
and the candidate tuple as the following hypothesis sentence:

“Alex was born in York.”

The tuple is determined to occur in the text if the applied RTE/NLI system predicts
that the source text entails the generated hypothesis text.

Question Answering Reading comprehension question answering task (RCQA)
aims to answer a question Q to a passage P by generating either a free-form text (Lai
et al., 2017; Tapaswi et al., 2015) or by extracting a text span (substring) from P
(Rajpurkar et al., 2016; Trischler et al., 2017). The task can be formulated to paired
text input format by transforming the question Q and the answer output A into a
declarative answer statement D. Consider the following example from the SQuAD
dataset:

. P: “Super Bowl 50 was an American football game to determine the champion
of the National Football League (NFL) for the 2015 season. The American
Football Conference (AFC) champion Denver Broncos defeated the National
Football Conference (NFC) championCarolina Panthers 24–10 to earn their
third Super Bowl title. (. . . )”

. Q: “Which NFL team represented the NFC at Super Bowl 50?”

. A: “Carolina Panthers”

By using various approaches such as rule-based syntactic transformation or neural
sequence modeling Demszky et al. (2018); Mishra et al. (2021), the text Q and A can
be converted to a declarative sentence D:
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“Carolina Panthers is the NFL team that represented the NFC at Super
Bowl 50”

Once the (P, D) pair is obtained, a textual entailment can be directly applied. One
promising application of the RTE/NLI model for RCQA tasks is to verify the output
of QA systems Chen et al. (2021). More specifically, an answer A is determined to
be correct when the converted declarative sentence D (hypothesis) is entailed by
the given passage P (premise) which contain all the necessary information. The
probability assigned by the NLI model to the entailment label can then be used
to re-rank the candidate answers or to improve the calibration for “unanswerable”
(Rajpurkar et al., 2018) or “selective” (Kamath et al., 2020) QA settings.

2.4 Thesis Contribution
In the above, we elaborate on the wide range of NLU tasks that are formulated
as paired input text classification. While the work in this thesis focuses on these
tasks, the utility of this task formulation means that the contribution of this thesis
extends to wider NLU problems. In Utama et al. (2020a,b, 2021), we evaluate the
proposed methods on tasks including Natural Language Inference (NLI), Paraphrase
Identification, and Fact Verification. Our evaluations use a variety of large-scale
datasets such as MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015), and
Fever (Thorne et al., 2018) which cover a broad range of domains and language
phenomena. As previously discussed in the above section, the significance of our
contribution is also highlighted by the utility of the resulting models for these paired
input tasks for downstream applications. In Utama et al. (2022), we study the
application of NLI models for the task of verifying factuality in summarization. We
show that the robustness improvement by our proposed method allows for a more
reliable application of out-of-the-box models in downstream tasks.





Chapter 3

Modeling Natural Language
Understanding

3.1 Methods

The current dominant approaches for NLU tasks are based on deep learning algo-
rithms, which aim to encode input text into meaningful vector representations and
map them to the target task labels. In this section, we briefly discuss the deep
learning models’ main building blocks, which include the artificial neural network,
sequence encoder, and transfer learning from the pre-trained language models based
on the transformers architecture.

3.1.1 Neural Networks

Neural networks are computational models used in machine learning that work by
learning the representations of the input that are expressed in terms of other simpler
representations. This learning approach is argued to enable the model to build
complex concepts out of simpler concepts (Goodfellow et al., 2016). For instance,
the meaning representation of a sentence can be expressed as a composition of the
words and phrases representations.

Feedforward neural network which is also known as Multilayer Perceptron
(MLP), is a quintessential example of deep neural network models that are still
widely used across domains as part of more complex neural models. MLP is in
essence a function that is formed by composing a set of simpler functions. It maps
the input values to the output values by sequentially applying the simpler functions
to the output of the previous ones. Figure 3.1 illustrates a simple 2-layer feedforward
neural network for a 2-way classification task. Given an input vector x ∈ Rn, the
neural network F consists of learned weights matrices W0 ∈ Rn×m and W1 ∈ Rm×2.
F is a function defined as follows:

F(x) = σ1(σ0(xW0)W1)

25



26 CHAPTER 3. MODELING NATURAL LANGUAGE UNDERSTANDING

Figure 3.1: An illustration of a simple 2-layer feedforward network for a 2-way
classification task. The output layer uses a softmax function which normalizes the
output values into probabilities that sum to 1.

where σ0 is a non-linear activation function, e.g., ReLU(x) = max(0, x), that follows
the matrix multiplication on each intermediate layer. On the final layer, a softmax
function is commonly used to produce normalized probability values which sum to
1 and are assigned to each target class. The output of a simple softmax function σ1
on each class i can be defined as σ1(x)i = exi∑2

j=1 e
xj
.

Training or learning of the neural network is performed by finding the weights’
values that minimize a certain objective or loss function J(W) via some variant of
gradient descent optimization. Typically, the loss function is defined as a perfor-
mance measure that is evaluated over the training data (as well as the additional
regularization terms), e.g., log-likelihood loss for classification. The gradient of
the loss with respect to each weight can be efficiently calculated using the Back-
propagation algorithm (Rumelhart et al., 1986). The optimization algorithm then
uses the gradients computed by Back-propagation to update the weights with certain
learning rates.

3.1.2 Sequence Encoder

The basic feedforward neural network is rarely used by itself as it is insufficient to
represent the sequential structure of text input in NLU tasks. In the following, we
introduce the most common neural model architecture classes designed to capture
and represent sequential data: recurrent networks and transformers.
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Recurrent neural networks process a sequence of values x = x(1), x(2), . . . , x(n),
e.g., word vector representations in a sentence, by using network connections that
form a directed cycle. More specifically, a recurrent neural network (RNN) shares
the same weights W across time step t to compute the hidden state representation
h(t), given the current input x(t) and the previous hidden state h(t−1). Namely, the
current hidden state h(t) is computed as the following:

h(t) = F(h(t−1);x(t);W)

This chain-like structure allows RNN to incorporate the information from the pre-
vious values in the input sequence into the representation of the current time step.
The ability to “memorize” past information is crucial for various language tasks
such as language modeling, where the context from the previous words is required
to correctly predict the next word (Bengio et al., 2003). Consider the following text:

I grew up in Germany. I speak fluent .

By looking at the longer context, which includes information about the country, the
model not only can predict that the missing word is a name of a country but also
narrow down which language it is most likely to be. While in theory, vanilla RNNs
should be capable of handling such “long-term dependencies”, in practice, RNNs
often fail to learn them. The two main reasons are the vanishing gradient and ex-
ploding gradient problems which are described in Bengio et al. (1994) and explored
further in Pascanu et al. (2013). Researchers, therefore, proposed variants of RNN
based on Long Short Term Memory (LSTM) units (Hochreiter and Schmidhuber,
1997) to address the known training issues. Models derived from LSTM are success-
fully applied to a large variety of problems including sequence-to-sequence modeling
tasks such as machine translation (Sutskever et al., 2014). LSTM networks are also
adopted for paired input NLU tasks including NLI using various approaches. For
instance, in Conneau et al. (2017), a sentence representation of each input sentence
is obtained by either taking the last hidden state h(t) or by taking mean/max pool-
ing over all of the hidden states. Once the vector representations for each sentence
v1 and v2 are obtained, the inference is performed by a 3-class MLP classifier G.
Namely, G takes as input the concatenation of these two vectors and their element-
wise comparisons, e.g., G(v1, v2, v1 ∗ v2, |v1 − v2|).

Transformers architecture (Vaswani et al., 2017) is designed to address the funda-
mental constraint of sequential computation in models based on RNN. Specifically, in
RNN, computing hidden states for each time step t depends on the previous hidden
state h(t−1), which makes it unsuitable to parallelize the computation over sepa-
rate time steps. This introduces a scalability issue when processing longer sequence
lengths. Transformer networks dispense with this limiting recurrence structure by
solely using attention mechanisms (Bahdanau et al., 2015).

While Transformer architecture is originally introduced as an encoder-decoder
model for sequence-to-sequence tasks, the following description focuses only on the
encoder side, which is more relevant to its application to the paired input NLU
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Figure 3.2: The illustration of each multi-head self-attention layer in the Transformer
architecture (right). Each layer computes the scaled dot product attention (left).
The figures are taken from Vaswani et al. (2017).

tasks (Devlin et al., 2019). The encoder consists of a stack of N transformer layers,
each encodes the input sequence of symbol representations (x1, . . . , xn) and maps
them to a sequence of intermediate representations h = (h1, . . . , hn). We show
the illustration of each layer in Figure 3.2. Each layer l has two sub-layers: the
multi-head self-attention mechanism and a simple position-wise feedforward neural
network (FFN). The multi-head structure of the self-attention layer allows the model
to attend to different representation subspaces of the symbol in the input sequence.
Each attention head first takes the input vector representation x1 ∈ Rd at each
position and calculates the scaled dot product attention:

zi =
n∑

j=1

αijWV xj

where zi represents other symbols in the sequence , i.e., xj, that xi attends using
the soft-alignment weights αij which is computed as the following softmax function:

αij =
exp eij∑n
k exp eik

and sum to 1 over j, i.e.,
∑n

k αij. The attention formulation above uses the alignment
score eij between the projection of xi and xj:

eij =
(WQ · xi)T (WK · xj)√

dz
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where dz is the dimension size of the output vector. This alignment score is akin
to a dot-product similarity measure with a scaling factor of 1√

dz
. The weights

WK ,WQ,WK ∈ Rdz×dx used for the projections of input representations are pa-
rameters that are learned during the training. The output of the multi-head at-
tention layer on each symbol, denoted as z̄i, is then obtained by taking the linear
transformation of the concatenation of each attention head’s output:

z̄i = WO ·Concat(z
(1)
i , . . . , z

(p)
i )

where p is the number of heads and WO is another learnable parameters. Finally,
layer normalization and a fully connected feedforward network (FFN) are applied
along with the residual connections (He et al., 2015) to compute the output repre-
sentation hi of the transformer layer:

z̃i = LayerNorm(z̄i + xi)

hi = LayerNorm(FFN(z̃i) + z̃i)

The output representation h(l)i of each tranformer layer l is later used as the input
for the next layer (l + 1). The output of the final layer is usually used as the
representation that encodes rich information about the input sequence. For instance,
subsequent work such as BERT (Devlin et al., 2019) uses the representation of
a special input symbol produced by the Transformer model as the input to an
additional task-specific MLP layer.

3.1.3 Language Model Pre-training

Contextualized Word Embeddings

Word embeddings are continuous vector representations for each smallest unit of
the input text to the neural models introduced above. In practice, these units are
obtained using certain tokenization algorithms which may produce units smaller
than words such wordpiece (Schuster and Nakajima, 2012; Wu et al., 2016) or BPE
(Sennrich et al., 2016).1 The word embeddings, similar to other neural network
weights, can be randomly initialized and learned using task-specific training objec-
tives. However, training from scratch requires more data and unseen words during
the test will still be represented by random vectors that do not capture the necessary
information for the downstream tasks.

Due to these limitations, pre-trained word embeddings (Collobert et al., 2011;
Mikolov et al., 2013; Pennington et al., 2014) are instead used in many successful
neural models in NLP. These embeddings are trained on a large corpus of text
using word co-occurrence information to capture meaningful and general-purpose
representations that can be further fine-tuned for specific tasks. Using pre-trained
word embeddings as an input to neural architectures such as RNN is shown to
help the training and ultimately improve the performance on various NLU tasks,
including NLI (Chen et al., 2017) and question answering (Liu et al., 2018).

1These units are also commonly referred to as subwords.
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Although pre-trained word embeddings offer many advantages, the methods for
learning these embeddings only allow for a single, context-independent representation
of each word. The task-specific models, therefore, still have to learn to contextualize
the word representations from the limited number of labeled data, instead of focusing
on learning the alignment between the words and the mapping to the target labels.
This motivates the development of the pre-trained neural text encoder models that
assign each token with vector representation which is a function of the entire input
sentence. These contextualized word embeddings models allow the same words to
have different representations depending on their context in a sentence, e.g., the
polysemy of the word “bank ” in “river bank ” and in “investment bank ”. Furthermore,
the embeddings are also shown to capture some aspects of syntax, e.g., part-of-
speech tags (Peters et al., 2018). Similar to static word embeddings, adapting to
downstream tasks can be performed by taking the output representations as the
input to the task-specific models. Two common choices of adaptation include using
the pre-trained model as a feature extractor (pre-trained weights are frozen) or
directly fine-tuning the pre-trained model for the target task Peters et al. (2019).

Language Modeling

Language modeling (LM) has emerged as the dominant approach that allows the
pre-training of neural text encoders on large unlabeled text data. In recent years,
various pre-trained language models, including ELMo (Peters et al., 2018), ULM-
FiT (Howard and Ruder, 2018), BERT (Devlin et al., 2019), and GPT, have been
introduced and have significantly improved the state-of-the-art performance on a
range of natural language understanding tasks. The task of language modeling it-
self is traditionally formulated to model the likelihood of a sequence of words in a
language. Namely, given a sequence of N words, it aims to estimate the probability
P (t1, t2, . . . , tN) which can be written as the product of the probabilities of each
individual word, given the previous words in the sentence:

P (t1, t2, . . . , tN) =
N∏

k=1

P (tk | t1, t2, . . . , tk−1)

The above formulation is also commonly referred to as the “autoregressive” language
model because it uses the previous words or tokens in the sequence to predict the
probability of the next word or token. RNN-based models such as ELMo (Peters
et al., 2018) usually model both directions of the sequence by jointly maximizing
the log-likelihood of the forward and backward directions. Combining the forward
and backward LM allows the model to consider both past and future contexts to
learn a better representation of a token.

More recently, the Transformers architecture has allowed an alternative language
modeling formulation where the probability of a token is estimated given other
tokens in the input sequence that may appear before or after it. This offers an
advantage over the RNN-based pre-trained LM that can only model each direction
separately. In the seminal work that introduces the BERT model (Devlin et al.,
2019), the authors put this formulation into practice by using a novel task referred to
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Figure 3.3: An overview of input formulation of text pair NLU classification using
Transformers-based language model. The intermediate token representations are
denoted as E and the final hidden vectors are denoted as T . The final hidden vector
for special token [CLS] is fed into the multi-layer perceptron (MLP).

as the Masked Language Model (MLM). The procedure involves randomly selecting
some of the words or tokens in the input sequence and replacing them with special
[MASK] tokens. Specifically, the input sequence t = (t1, t2, . . . , tN) is randomly
masked into its corrupted form t̃ = (t̃1, t̃2, . . . , t̃N), where t̃k can be either the original
token or the masking token.2 The Transformer model is then trained to predict
all the tokens that are randomly selected to be “masked”, i.e., it estimates P (tk |
t̃1, . . . , t̃N). Finally, the Transformer architecture allows the masked language model
pre-training to scale to higher capacity models (bigger number of parameters) and
larger text corpus such as BookCorpus (Zhu et al., 2015) and English Wikipedia
which contain more than 3B words.

Transfer Learning Paradigms

The advances in large-scale pre-training of language models are closely followed by
novel transfer learning paradigms that have gained prominence across NLU tasks.
These paradigms work by assuming that the language model pre-training captures
rich linguistic and real-world knowledge that is encoded in the contextualized word
or sentence representation of the input text. This useful knowledge can then be
transferred to the downstream target tasks via supervised fine-tuning. Specifically,
given the availability of labeled task examples, the model weights θ, which is ini-
tialized by the pre-training step, is fine-tuned to optimize the likelihood objective
Pθ(y|x), where x is the input text and y is the target label.

Existing approaches for effective transfer learning often involve formatting target
task inputs into a single contiguous sequence, similar to how inputs are formatted
for language modeling tasks. In paired input tasks such as NLI, the tokens of the
sentence pair (x1, x2) are concatenated using a special token [SEP] as the separator.

2The paper describes that 15% of the tokens are randomly selected for the predictions. Out of
the 15%, only 80% are replaced by the special [MASK] tokens, while the remaining are replaced by
either random or the original tokens.
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Another special token [CLS] is also appended to the front of every input. The
final hidden state that corresponds to this [CLS] token is expected to aggregate
the representation of the two input sequences and their alignment. Finally, an
output layer, typically a multi-layer perceptron, takes this final hidden vector as
the input to compute the task-specific label prediction. The output of this layer
can either be softmax probability distribution for a classification task or continuous
value for a regression task. Figure 3.3 illustrates the input formulation of paired
text classification in a fine-tuned Transformers model.

There are varying strategies to fine-tune pre-trained language models for the
target tasks. The common practice is to plug in task-specific output layers on top of
the pre-trained Transformers model. The weights of the output layers are initialized
randomly. During training on the end task, the gradient from the loss function is
propagated from the output layers to the pre-trained Transformers layers and their
weights are updated. The resulting model, which includes the output layers and the
Transformer layers, is retrofitted for the specific end task.

More recently, prompting has emerged as a promising alternative paradigm in
adopting pre-trained language models for downstream tasks. The new approach
reformulates downstream tasks as fill-in-the-blank problems, in which specific words
correspond to the target labels (Schick and Schütze, 2021). Language models, which
are pre-trained to predict missing words, can thus transfer the knowledge acquired in
pre-training more directly to the target tasks. Given a textual prompt for the target
task, pre-trained language models make predictions by mapping the most probable
word to the associated label. For instance, in the Paraphrase Identification task, we
can formulate the sentence pair in 2.1 as:

“The skyscraper is under construction ? [MASK] , the building is under
construction.”

We can then use the language model prediction on the missing [MASK] token. Proba-
bilities that the model assigns to the token “Yes” and “No” can be compared to make
a classification decision between paraphrase and no-paraphrase label. The prompt-
ing paradigm does not require newly initialized layer extension to the pre-trained
models and thus allows them to perform on zero-shot settings. Recent studies also
show that prompting formulation can further improve data efficiency of fine-tuning
on low resource settings (Gao et al., 2021).

3.2 Thesis Contribution

In this thesis, we focus mainly on improving the robustness of the state-of-the-art
modeling approach for NLU tasks, e.g., BERT (Devlin et al., 2019) and Roberta (Liu
et al., 2019b).3 Namely, we evaluate our proposed methods on Transformers-based
pre-trained language models which are fine-tuned with task-specific supervision.

3At the time of the publication of our work, BERT model (Devlin et al., 2019) and its derivations
are the top performing models for various NLU benchmarks including GLUE Wang et al. (2018).
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Even though more recently introduced models have outperformed our evaluated
models, Transformers architectures and language model fine-tuning remain the es-
sential building blocks of these newer models, e.g., T5 (Raffel et al., 2020). In what
follows, we detail how the significance of the contribution in each chapter to the
existing NLU modeling approaches that we discuss in previous sections:

• In Utama et al. (2020a), we propose a regularized objective function that disin-
centivized models from exploiting non-robust features during training. While
we perform the evaluation on Transformers models, the proposed method is
architecture-agnostic and can be applied to different architecture and training
paradigms. Concurrent work of He et al. (2019) applies a similar robustness
improvement method to non-Transformers models such as Decomposable At-
tention (Parikh et al., 2016) and ESIM (Chen et al., 2017). They show that
their method also improves the robustness of these models. This suggests that
our proposed method is highly likely to also benefit other types of models.

• We then investigate in Utama et al. (2020b) the learning dynamics of pre-
trained language models during fine-tuning and establish the connection with
the robustness against spurious correlations. Even though our analysis in this
work focuses on the BERT model, we note that a similar tendency of neural
models to exploit simple patterns early in the training is also reported in
other model architectures in varying domains (Arpit et al., 2017; Liu et al.,
2020). We, therefore, believe that the insight from our work will still be highly
relevant to future modeling approaches which are predominantly based on deep
learning.

• Next, in Utama et al. (2021), we extend our study on robustness to the recently
introduced prompting paradigm which allows pre-trained language models to
perform well on low resource NLU settings. As more language models with in-
creased general-purpose NLU capabilities emerge, the advances in prompting
approaches are increasingly more important (Liu et al., 2023). Consequently,
the insight and the proposed method from our work remain relevant for im-
proving the robustness of prompt-based NLU models.

• Finally, in Utama et al. (2022), we propose a data generation framework that
improves the generalization of NLU models for the downstream task of summa-
rization. The framework and the resulting datasets are model or architecture-
specific and therefore can be extended to more recent approaches. Better-
performing pre-trained LM can benefit from our work by using our generated
dataset to augment the targeted NLI datasets.





Chapter 4

Robustness in Natural Language
Understanding

In this chapter, we summarize and discuss a growing body of literature that high-
lights the shortcomings of NLU datasets and the brittleness of the resulting models.
We first look at the methods proposed to quantify the lack of robustness in NLU
systems. We then discuss the existing effort in both dataset collection and modeling
to improve robustness.

4.1 Robustness Analysis Methods

We distinguish between the methods to investigate the issues in the training and
evaluation data, and the methods to measure the impact of the flaws in the dataset
to the models’ performance:

4.1.1 Datasets Investigation

Realistic datasets for NLU tasks are prone to contain spurious correlations which are
characterized as surface features that are predictive to the target label but are irrel-
evant to the underlying task. As such, they fail to transfer to the out-of-distribution
data for the same task. The occurrence of these spurious correlations can be traced
back to a large extent to the artifacts of the data collection and annotation pro-
cesses. During the collection step, the selected examples to be annotated can be
biased with respect to the features and the target labels, e.g., the frequency of a
unique sentence occurrence in the Quora Question Pairs dataset is reported to be
highly correlated with the “duplicate” label (Zhang et al., 2019). Furthermore, once
the data are selected for annotation, human annotators are likely to adopt simple
strategies to maximize the output. As an example, contradicting sentences for the
NLI task can simply be obtained by negating the given sentence by adding negation
words such as “don’t” or “never ”. This shortcut, if disproportionately employed by
the annotators, results in a spurious correlation between the negation words and the
target label “contradiction” which models will likely capture.

35
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Figure 4.1: (a) shows a typical bi-encoder architecture approach for NLI that en-
codes both the premise p and hypothesis h before classifying them. (b) illustrates
the partial input baseline method that excludes the premise and only encodes the
hypothesis sentence to make the predictions.

Existing investigation methods are proposed to quantify these spurious correla-
tions and to identify examples that support them. In NLU tasks where an input
consists of a text pair, Partial Input Baselines method is used to reveal whether
all parts of the input are necessary for making the correct predictions in the task.
Gururangan et al. (2018); Poliak et al. (2018b); Tsuchiya (2018) propose to train
classifiers for NLI tasks using only the hypothesis sentence to predict the entail-
ment relationship. As illustrated in Figure 4.1, given the premise sentence p and
the hypothesis sentence h, they train the model to estimate the target label using
only h, i.e., P (y | h), instead of p(y | p, h). Ideally, the partial input h should
not be informative and the label y should not be determinable without the premise
sentence p. However, they find that the partial input models perform significantly
above the random baselines. This indicates the presence of predictive features in
the hypothesis sentences that models can utilize to make correct predictions. Simi-
lar artifacts that the partial input baseline method reveals also occur in many other
paired input NLU tasks. For instance, in reading comprehension question answering
tasks, Kaushik and Lipton (2018) show that models achieve non-trivial performance
by looking only at either the context passage text or the question sentence.

The predictions of the partial input models can be used to identify whether
an example is consistent with the spurious correlation (Gururangan et al., 2018).
Namely, examples are considered as easy when the model, which relies solely on the
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Task Artifact Example

NLI Lexical cues in the hypo-
thesis sentence

Premise:
Two dogs are running through a field.

Hypothesis:
The animals are sleeping.

Label: contradiction

NLI
Lexical overlap between the
premise and hypothesis
sentences

Premise:
A child was pulled by a woman on a sled.

Hypothesis:
A woman pulled a child on a sled.

Label: entailment

Paraphrase
Identification

Lexical overlap between the
input sentence pair

S1:
Flights from Florida to NYC

S2:
Flights to NYC from Florida

Label: duplicate

Fact
Verification

Lexical cues in the
claim sentence

Evidence:
Johnson played point guard for the
Lakers for 13 seasons. [...]

Claim:
Johnson did not play for the Lakers.

Label: refutes

Table 4.1: Examples of known dataset artifacts in several NLU tasks. Input words
in boldface are cues that models can potentially use to make correct predictions.

spurious correlation, assigns them to the correct labels. The remaining examples
are then considered to be the hard subset of the dataset. These harder examples,
however, are not necessarily free of spurious features. Exploitable shortcuts can
occur when both of the input texts are considered by the models. Feng et al. (2019)
demonstrate, in both synthetic and real NLI datasets, the presence of shortcut fea-
tures that are only visible when both input texts are combined. Firstly, they show
how a combination of synthetic “code” words that are appended to both the premise
and hypothesis can give away the target label. Next, they show that hypothesis-only
model performance improves even more by simply adding the last noun word from
the premise sentence to the input. The improvement from the addition of this sup-
posedly non-predictive feature is an indication of spurious correlation that partial
input baselines fail to detect. McCoy et al. (2019) further identify a more concrete
spurious correlation beyond partial input features. They demonstrate that the lex-
ical overlap between premise and hypothesis sentences in popular NLI datasets is
strongly correlated with the “entailment” label, which they expect to be easily ex-
ploited by the models.1 Table 4.1 shows examples of several known dataset artifacts
in various NLU tasks.

1Premise sentence “The doctor near the actor danced.” does not entail the hypothesis “The
actor danced.” even though they consist of overlapping words.
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Dataset
/ Task Heuristic Counter-example

HANS
McCoy et al. (2019)
/ NLI

Assumes “entailment” if the
premise and hypothesis
highly overlap.

Premise:
The artist was paid by the lawyer.

Hypothesis:
The artist paid the lawyer.

Label: not-entailment

PAWS
Zhang et al. (2019)
/ Paraphrase
Identification

Assumes “duplicate” if the
sentence pairs highly overlap.

S1:
Can a bad person become good?

S2:
Can a good person become bad?

Label: non-duplicate

Symmetric
Schuster et al. (2019)
/ Fact
Verification

Assumes “refutes” label
if the claim sentence
contains a negation.

Evidence:
Johnson played for the Giants
and no other team. [...]

Claim:
Johnson did not play for the Lakers.

Label: supports

Table 4.2: The examples of several heuristics that describe the shallow features
models use along with the expected labels. The counter-examples demonstrate cases
where the heuristics lead to wrong predictions.

4.1.2 Model diagnosis

Most NLU datasets are commonly split randomly to obtain the train, validation,
and test subsets. The spurious correlations that models pick up in the training
set therefore also present in the test data used to evaluate the performance. The
results of models’ evaluation on this in-distribution test data may not be therefore
a reliable estimate of their true NLU capabilities. To illustrate the drawback of this
standard evaluation, Nie et al. (2019) train NLI models on examples in which the
input word orders are randomly shuffled while keeping the labels the same. They
then evaluate the resulting models on the original evaluation data. They observe
that this procedure does not substantially degrade the models’ performance on the
evaluation sets. These results provide evidence that the in-distribution test data may
be insufficient to distinguish between models that sufficiently capture compositional
semantics of the input and models that are mostly reliant on spurious correlation.
Gauging models’ robust performance, therefore, requires evaluating models on test
sets that are carefully designed to minimize spurious correlations.

Previous work designed and collected such test sets, which are commonly referred
to as out-of-distribution (OOD) or challenge sets, based on the insight about the
characteristics of the spurious features. For instance, McCoy et al. (2019) introduce
the HANS evaluation set to diagnose whether NLI models have adopted syntactic
heuristics, i.e., models relying on word overlap cue between input sentence pair to
predict “entailment” label. All examples in HANS consist of sentence pairs that
exhibit the lexical overlap cue. These examples are generated using templates and
rules such that they can support (labeled as “entailment”) or against (labeled as “not-
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entailment”) the syntactic heuristics. Table 4.2 shows counter-examples to several
known heuristics in NLU. Poor performance on these examples that are inconsistent
with the heuristics and high scores on the other set is interpreted as an indication
of models’ reliance on the spurious correlation.

Besides using templates, challenge sets are also collected for varying tasks us-
ing other automatic or manual approaches. These methods include adversarial input
perturbation (Glockner et al., 2018; Naik et al., 2018; Jia and Liang, 2017) or manual
human annotation (Schuster et al., 2019; Kaushik et al., 2020). Even though these
test sets are designed to target different types of phenomena, they collectively show
performance degradation of NLU models relative to the standard evaluation results.
Previous work later look at whether models can be “inoculated ” against phenomena-
specific weaknesses by fine-tuning them on the small portion of the challenge sets
(Liu et al., 2019a). They observe that fine-tuning improves the scores on the remain-
ing examples of the challenge set with only a negligible drop in the original data
performance. However, Rozen et al. (2019) demonstrate that this performance im-
provement does not necessarily indicate systematic generalization to the phenomena
of interest, but rather that models overfit on the specifics of the challenge set. These
results illustrate that the utility of challenge sets is mostly limited for evaluation
and that more naturalistic OOD datasets are required for augmenting the training
data. Furthermore, collecting new training examples each time new artifacts are
identified is costly. Adjustments to the model architecture and training procedure
are equally crucial to avoid learning spurious correlations in the datasets.

4.2 Robustness-improving Methods

We broadly classify the existing approaches aimed to mitigate the learning of spu-
rious correlation into two categories: training data refinement and model-centric
training adjustment. The improvement in robustness from these approaches is typi-
cally estimated by models’ out-of-distribution performance increase on the challenge
sets. It is also crucial that models achieve the OOD improvement while still main-
taining the predictive performance in the original in-distribution evaluation set.

4.2.1 Datasets Quality Improvement

Existing approaches that aim to improve the quality of the datasets with respect to
spurious correlation can be broadly categorized as (a) approaches to build entirely
new datasets that do not contain the undesired artifacts; and (b) approaches that
refine the existing datasets by identifying and removing instances that contribute to
the presence of the artifacts. The two sets of approaches are not mutually exclusive
and can be applied simultaneously to complement each other’s advantages. For
instance, a newly created dataset for the task can still be refined to remove the
remaining or newly identified artifacts to improve the quality further. In what
follows, we discuss several specific methods for dataset construction or refinement:
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Enhanced Annotation Protocol By identifying and characterizing the weak
points of a dataset that cause robustness issues, researchers are able to design novel
annotation protocols to alleviate the known shortcomings. As an example, the work
by Sharma et al. (2018) identified that models for the task of Story Cloze Test
(Mostafazadeh et al., 2016) are mostly reliant on the stylistic features of the partial
story input rather than comprehending the narrative context. They then design a
refined annotation guideline to reduce the statistical difference between the positive
and negative samples on the surface level. The guideline imposes restrictions on the
number of tokens to write, token n-grams to use, or the changes of topic or sentiment
between the sentences of opposing labels. Similarly for NLI, Han et al. (2020); Hu
et al. (2020) employ several strategies to elicit diverse hypotheses generation from
the annotators that contain less bias. The following are several constraints and
encouragements in the new annotation guideline along with the resulting examples:

1. Constraint: write a contradicting hypothesis sentence that does not contain
negation words.

. P: “Going there at the end of October, be back at the end of November.”

. H: “Will stay there for two months before coming back.”

. Label: contradiction

2. Encouragement: write an entailing hypothesis sentence whose tokens overlap
with the premise by at most 70%.

. P: “Yes, look, what he talked about is very interesting.”

. H: “What he talked about has caught my attention.”

. Label: entailment

While this work has demonstrated the importance of the specificity of annotation
instruction, it does not study systematic ways to verify whether the instructions can
be followed or need to be iteratively updated throughout the annotation process.
Parrish et al. (2021) investigate several strategies to put the expertise and knowl-
edge of linguists in the loop during data collection. As more samples are collected,
these experts are asked to dynamically assess the annotated data to identify any
artifacts or other weaknesses. As issues arise, the experts can notify the non-expert
annotators and advise them to employ alternative annotation strategies accordingly.
They show that NLI models that are fine-tuned on their collected data perform bet-
ter on the challenge datasets. This further suggests that improving the annotation
protocol has significant implications for the robustness of the resulting models.

Counterfactual Perturbation The quality of the datasets can also be improved
by augmenting them with counterfactual examples, i.e., perturbed examples that
preserve the original features except for a key attribute that can flip the label. The
idea is to have minimally differing example texts with contrasting labels in the
training data so that models are able to learn the difference that makes a difference.
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Kaushik et al. (2020); Gardner et al. (2020) propose strategies to obtain counter-
factual examples by asking annotators to minimally existing labeled examples so
that they correspond to the counterfactual label while preserving the original char-
acteristics such as coherence and stylistic features. For the NLI task, the manual
perturbation can be applied to the hypothesis sentence as in the following example:

. P: “Several farmers bent over working on the fields while lady with a baby and
four other children accompany them.”

. Orig. H: “The lady has three children.” (contradiction)

. New H: “The lady has many children.” (entailment)

The numerical modification in the example above (boldface) is sufficient to flip
the label of the existing pair from contradiction to entailment. Having these two
examples in the training dataset can provide an incentive for the model to learn a
more robust representation of quantifier words that allow better numerical reasoning.
Kaushik et al. (2020); Khashabi et al. (2020) demonstrate that training models
on counterfactually augmented datasets improves robustness and generalization as
shown by the out-of-distribution performance.

Model–in-the-Loop Researchers also investigated adversarial methods which in-
volve other models that adversarially reduce the artifacts during the data collection
process. The adversarial models are employed through different mechanisms includ-
ing filtering out examples that exhibit the artifacts (Sakaguchi et al., 2020; Le Bras
et al., 2020; Zellers et al., 2018) or to prompt annotators to generate more chal-
lenging examples (Nie et al., 2020). While these adversarial models are shown to
reduce the presence of several known dataset artifacts (e.g., hypothesis-only biases
in NLI), many of them are not explicitly designed to target specific types of arti-
facts. This is in contrast with the top-down approaches mentioned above where the
intuitions and insights of the researchers about the characteristics of the biases are
required to apply the intervention during the annotation. For instance, in AFLite
algorithm (Sakaguchi et al., 2020), an ensemble of weak learners (logistic regression
models) are trained on different subsets of the annotated dataset and tested on their
corresponding test sets. The predictions of these models on each instance are then
aggregated and used to determine whether the instance should be filtered or not.
More specifically, if the ratio of correct predictions over the total number of predic-
tions on a given instance is higher than the threshold τ , then the example is likely
to exhibit biases and will be filtered. This process is performed iteratively until the
number of filtered instances is below k or until the number of remaining dataset
instances is below m.2 Similarly, Nie et al. (2020) employs an iterative approach in
which the adversarial models are expected to have stronger predictive performance
at each iteration. This strategy aims to elicit annotators to produce higher qual-
ity and more challenging examples that expose the weaknesses of the increasingly

2The variables τ , k, and m are hyperparameters that the authors set during the construction
of their dataset.
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strong adversarial models. Specifically, annotators are asked to write task instances
that satisfy the target label but are predicted incorrectly by the current best model.
The collected data from each round are then used to re-train the model for the next
iteration. They show that the proposed framework incentivizes the annotators to
be more creative in devising examples that contain a wider range of inference types
(Williams et al., 2022).

Rule-based Data Augmentation Finally, researchers also study the use of rule-
based text perturbation to generate examples that reduce the spurious correlation
when augmented into the existing datasets. The perturbation rules are usually
designed based on insights about the targeted artifacts in the datasets. For instance,
Naik et al. (2018) propose a perturbation rule that addresses the spurious correlation
between negation words such as “not” with the contradiction label in the NLI task.
They construct examples with negation words that are not necessarily labeled as a
contradiction, such as the following:

. P: “Possibly no other country has had such a turbulent history.”

. H: “The country’s history has been turbulent and false is not true .”

. Label: Entailment

While the appended tautology “and false is not true” contains the known cue
word “not” (Gururangan et al., 2018), the statement is independently true in all
world and its conjunction with the original hypothesis sentence will preserve the
label. Training models on such examples can be useful to reduce the effects of the
existing artifacts (Liu et al., 2019a). However, Rozen et al. (2019) highlighted the
limitation of this augmentation approach, where the training and evaluation are
performed on the synthetic examples that are drawn from the same distribution.
Min et al. (2020); Rozen et al. (2019) recommend that the construction of these
augmentation examples should be diversified on various factors, such as syntactic
complexity or lexical variations. Evaluating models on different splits based on the
level of complexity can therefore ensure a more reliable estimation of the models’
generalization.

4.2.2 Model Training Improvement

Model-centric improvement approaches seek to reduce the adverse impact of spurious
correlations that potentially still exist in the training dataset. These approaches
introduce various mechanisms through which models are incentivized to preferably
use more robust features that generalize well for the underlying task. In what follows,
we discuss several categories of model improvement with respect to robustness:

Pre-training Researchers have been studying the connection between models’
pre-training with the out-of-distribution (OOD) robustness. Hendrycks et al. (2020)
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systematically compare pre-trained Transformers such as RoBERTa against non-
pretrained models such as LSTM on OOD generalization setup. They found that
the relative decreases in OOD performance (compared to the in-distribution) of pre-
trained Transformers are significantly lower. Tu et al. (2020) further show that the
RoBERTa model, which has a similar architecture to its predecessor BERT model
but is trained on ten times as much text data, performs more reliably on the OOD
examples. They also show that when other factors are controlled (e.g., training
data, pre-training objective, model architectures) the size of the model contributes
significantly to the overall robustness. A study by Lovering et al. (2021) provides
an explanation of the effectiveness of models’ pre-training to improve robustness.
They introduce a notion of extractibility of rich features of linguistic information in
the pre-trained models which can be measured using information-theoric probing
methods (Hewitt and Manning, 2019; Voita and Titov, 2020). They then show that
the extent to which useful linguistic features are preferably used (instead of the non-
robust spurious correlations) is determined by the degree of extractibility and the
amount of statistical evidence available in the fine-tuning dataset. More evidence,
which is defined as the co-occurrence rate between the robust features and the
target label, may be required for pre-trained models with weaker extractibility and
vice versa. Pre-training on larger and more diverse text data with larger capacity
models can increase the degree of robust features extractibility which results in higher
OOD performance despite the same fine-tuning datasets.

Leveraging External Resources Various approaches have been explored to
leverage external knowledge to regularize the fine-tuning and minimize the effects of
spurious correlations. Tu et al. (2020) applies multi-task learning (Caruana, 1997)
to jointly learn the target task using the main dataset and several auxiliary datasets
of other related tasks. The idea is to allow the useful knowledge from other tasks
to transfer to the main task and to counter the existing spurious correlations. Spe-
cific external tasks such as semantic role labeling (SRL) are widely used as they
provide the explicit signal for the model to learn and utilize syntactic and seman-
tic information that is useful for the target task. The auxiliary supervision from
the semantic role labeling instances can either be used to decompose and re-align
the input text (Chen and Durrett, 2021; Wu et al., 2019), augmented directly to
the target task input (Moosavi et al., 2020), or learned jointly with the main task
(Cengiz and Yuret, 2020). Lastly, researchers also investigate the use of task expla-
nation to discourage models from exploiting spurious correlations. Camburu et al.
(2018) introduce e-SNLI corpus which extends the existing SNLI dataset (Bowman
et al., 2015) with sentential justification texts which are collected through human
annotation. Consider the example below from their paper:

. P: “P: An adult dressed in black holds a stick.”

. H: “An adult is walking away, empty-handed.”

. Label: Contradiction

. Explanation: “Holds a stick implies using hands so it is not empty-handed.”
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Each SNLI instance is annotated by highlighting phrases that human considers to
be salient for inferring the target label. They show that models, which are trained
to jointly predict the NLI label and generate the explanation tokens, generalize
better to OOD datasets. Using this resource, Stacey et al. (2022) propose an ap-
proach to explicitly supervise models’ self-attention weights to add more attention
to important tokens according to human explanation. They show that the resulting
NLI models perform better on both the in-distribution OOD evaluation while also
become more interpretable.

Adversarial Training In the context of addressing the spurious correlations in
NLU, adversarial training is applied to minimize the information about the non-
robust features in the learned representation of the input text. Earlier work by
Belinkov et al. (2019a), proposes the use of two models that share the same text
encoder and are trained jointly. Specifically, the first model is the main classifier
for the target task while the other model is the adversarial classifier which aims to
predict the presence of the artifact attributes in the input text. The adversarial
classifier is a limited capacity model such as a hypothesis-only model, which is
designed based on prior knowledge about the characteristics of the artifacts. Using
the gradient reversal layer method (Ganin and Lempitsky, 2015), they train the
encoder and the main task classifier to optimize the target task objective while
degrading the ability of the adversarial classifier to predict the artifacts. While
conceptually promising, the strength of the adversaries is crucial to ensure that the
artifacts do not remain hidden in the representation.3 Stacey et al. (2020) address
this by ensembling a set of adversarial classifiers which increase the overall strength
of the adversary.

Debiasing Loss Function Removing biased features in the text representation
may degrade the overall performance since these features often conflate broadly use-
ful semantic information and surface-level cues, e.g., negation words. Instead of
explicitly removing certain information from the representation, more recent meth-
ods aim to improve robustness by emphasizing the learning on “harder” examples
where the simple features are insufficient to make correct predictions. This incen-
tivizes models to learn more robust representations and inference strategies that
generalize to out-of-distribution examples. There are multiple mechanisms through
which models can focus on challenging examples. They typically involve the mod-
ification of the loss functions to take into account the presence of the artifacts in
each training instance. The measure of artifacts in an instance can be measured by
a hand-crafted weighting scheme based on word occurrence (Schuster et al., 2019)
or by using the output of biased models that are trained to solely rely on spurious
correlations. The simple method to incorporate the measure of bias into the train-
ing is by reweighting the individual loss term on each training instance. Specifically,

3Belinkov et al. (2019b) show that the adversarial classifiers can indeed re-gain high performance
after being re-trained separately on the frozen text encoder which means that the artifacts are not
fully removed from the representations.
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given a training example xi labeled with yi with bias weight of bi ∈ [0, 1], with 0
means that the example is bias-free, the loss from that particular example is defined
as:

Li = −(1− bi) · yi · log p

where p is the probability assigned by the model to the label yi using the output of
the softmax layer. The weight term in the loss function means that the contribution
of an example to the overall loss is gradually decreased as the bias measure increases.
An alternative mechanism to reweighting involves an ensembling of the main model
with the biased model. As proposed by the existing work (Clark et al., 2019; He
et al., 2019; Karimi Mahabadi et al., 2020), the prediction of the two models can be
combined using product-of-expert method (Hinton, 2002). Specifically, the ensem-
bled predicted probability pi is obtained by taking the sum of the biased model’s
prediction pb and the main model’s prediction pd in the logarithmic space:

pi = softmax(log pd + log pb)

The ensembling of the models allows the main model to learn to fit the residual of
the biased model prediction (He et al., 2019). Intuitively, this residual represents a
signal on the information in the input that cannot be captured using only the biased
features or the spurious correlations. Examples that are predicted well by the biased
model with low loss will provide a weak signal for the main model to learn from.
On the contrary, high loss by the biased model on an example incentivizes the main
model to learn an inference strategy that is less reliant on the biased features.

4.3 Thesis Contribution
In what follows we discuss the relevance of the contributions of this thesis to the
robustness-improving methods that we discussed above.

• We build upon the work that investigates the datasets and the models to
identify and characterize the robustness issues across NLU tasks (Section
4.1). Specifically, in Utama et al. (2020a), we propose a robustness-improving
method that mitigates models’ reliance on spurious correlation based on the
knowledge about the bias in the datasets. This knowledge is used to design
a bias-only model which quantifies the presence of biased features in each
training instance. The proposed confidence regularization method that we in-
troduce addresses the drawback of the existing debiasing loss methods which
degrade the in-distribution performance as a trade-off with the OOD perfor-
mance improvement. Our novel regularization strategy prevents the model to
exploit the biased features by discouraging overconfident predictions on easier
examples that can be solved by relying on spurious correlation. This allows
the model to still learn from these examples which in turn improves the OOD
performance without hurting the existing in-distribution performance.

• While effective, the above-proposed method still relies on the insight from the
robustness analysis work. The insight and knowledge about the biases may be
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limited for newly collected NLU tasks or datasets. In Utama et al. (2020b),
we, therefore, proposed a framework to automatically quantify the presence
of biases in each training instance with minimum prior knowledge about the
dataset. Related to the model-in-the-loop approaches we discussed above, the
proposed framework utilizes an additional model that is trained to be a bias-
reliant model. We train this model based on our finding that the bias-reliant
behavior of a model is most prominent during the early stage of the training.
We then find that intentionally allowing the model to overfit to a very small
portion of the training data can amplify this behavior. The predictions of this
model can therefore be used by the existing debiasing methods as a proxy
measure of biases on each example.

• As previously discussed, pre-training of language models has been shown to be
a crucial determiner of robustness against spurious correlation. In Utama et al.
(2021), we systematically study the importance of pre-training representation
using a prompt-based approach where the OOD performance of the models
can be directly evaluated even without task-specific fine-tuning and the intro-
duction of newly added model weights. This allows us to find that pre-trained
language models perform surprisingly well on zero-shot settings and that the
fine-tuning, even only with a small number of target task examples, can be
destructive to this OOD performance. This motivates our proposed regular-
ized fine-tuning objective that allows the prompt-based model to optimize the
target task on a few shot settings without significantly degrading the existing
OOD performance.

• Lastly, in Utama et al. (2022), we propose a data augmentation strategy to
improve robustness which is oriented towards the better downstream applica-
tion of NLU models. Specifically, we introduce a data generation framework
that produces high-quality negative examples for document-level NLI tasks.
The resulting NLI models are capable of performing NLI predictions that are
reliable for the downstream task of detecting factuality in document summa-
rization. This work shows that the quality of the augmented data, in terms
of naturalness and diversity, plays a crucial role in improving the robustness
toward the intended applications.

4.4 Related Topics

Fairness Studies on robustness in NLU are closely related to a body of work on
fairness in machine learning. Some work in fairness aims to remove sensitive features
(e.g., race or gender information) from the learned representation of the model. For
instance, Zhao et al. (2018); Prost et al. (2019) propose methods to learn word
embeddings that do not have gender information. This is not applicable to NLU
since biased features often conflate useful linguistics information with shallow cues
(e.g., negation words in the NLI tasks). Existing work on the robustness of NLU,
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therefore, focus on improving how models learn more robust inference strategies
from the training examples that still contain biases.

Domain Generalization and Adaptation Robustness in NLU is related to a
broader problem of domain generalization and domain adaptation. Existing work
in domain generalization are similar in that they also seek to mitigate the tendency
of models in learning domain-specific spurious features (Ganin et al., 2016). On the
contrary, domain adaption aims to increase the generalization of models to a specific
set of target domains (Wang et al., 2019), whereas the goal of both robust learning
in NLU and domain generalization are to generalize over unforeseen distribution
shifts (Hendrycks et al., 2020).
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Abstract
Models for natural language understanding
(NLU) tasks often rely on the idiosyncratic
biases of the dataset, which make them brit-
tle against test cases outside the training dis-
tribution. Recently, several proposed debias-
ing methods are shown to be very effective
in improving out-of-distribution performance.
However, their improvements come at the ex-
pense of performance drop when models are
evaluated on the in-distribution data, which
contain examples with higher diversity. This
seemingly inevitable trade-off may not tell
us much about the changes in the reasoning
and understanding capabilities of the result-
ing models on broader types of examples be-
yond the small subset represented in the out-
of-distribution data. In this paper, we address
this trade-off by introducing a novel debias-
ing method, called confidence regularization,
which discourage models from exploiting bi-
ases while enabling them to receive enough
incentive to learn from all the training ex-
amples. We evaluate our method on three
NLU tasks and show that, in contrast to its
predecessors, it improves the performance on
out-of-distribution datasets (e.g., 7pp gain on
HANS dataset) while maintaining the original
in-distribution accuracy.1

1 Introduction

Despite the impressive performance on many nat-
ural language understanding (NLU) benchmarks
(Wang et al., 2018), recent pre-trained language
models (LM) such as BERT (Devlin et al., 2019)
are shown to rely heavily on idiosyncratic biases
of datasets (McCoy et al., 2019b; Schuster et al.,
2019; Zhang et al., 2019). These biases are com-
monly characterized as surface features of input
examples that are strongly associated with the tar-
get labels, e.g., occurrences of negation words in

1The code is available at https://github.com/
UKPLab/acl2020-confidence-regularization

natural language inference (NLI) datasets which
are biased towards the contradiction label (Guru-
rangan et al., 2018; Poliak et al., 2018). As a rami-
fication of relying on biases, models break on the
out-of-distribution data, in which such associative
patterns between the surface features and the tar-
get labels are not present. This brittleness has, in
turn, limited their practical applicability in some
extrinsic use cases (Falke et al., 2019).

This problem has sparked interest among re-
searchers in building models that are robust against
dataset biases. Proposed methods in this direc-
tion build on previous works, which have largely
explored the format of several prominent label-
revealing biases on certain datasets (Belinkov et al.,
2019). Two current prevailing methods, product-of-
expert (He et al., 2019; Mahabadi and Henderson,
2019) and learned-mixin (Clark et al., 2019a) in-
troduce several strategies to overcome the known
biases by correcting the conditional distribution
of the target labels given the presence of biased
features. They achieve this by reducing the impor-
tance of examples that can be predicted correctly
by using only biased features. As a result, models
are forced to learn from harder examples in which
utilizing solely superficial features is not sufficient
to make correct predictions.

While these two state-of-the-art debiasing meth-
ods provide a remarkable improvement on the tar-
geted out-of-distribution test sets, they do so at the
cost of degrading the model’s performance on the
in-distribution setting, i.e., evaluation on the origi-
nal test data which contains more diverse inference
phenomena. It raises a question on whether these
debiasing methods truly help in capturing a better
notion of language understanding or simply bias-
ing models to other directions. Ideally, if such an
improvement is achieved for the right reasons (i.e.,
better reasoning capabilities by learning a more
general feature representation), a debiased model



product-of-
expert

learned-
mixin

conf-reg
(our)

in-distribution
out-of-distribution

calibration

requires biased model 4 4 4

requires hyperparameter 6 4 6

Table 1: Comparison of our method against the state-of-
the-art debiasing methods. Learned-mixin (Clark et al.,
2019a) is a parameterized variant of Product-of-expert
(He et al., 2019; Mahabadi and Henderson, 2019). Our
novel confidence regularization method improves the
out-of-distribution performance while optimally main-
tain the in-distribution accuracy.

should still be able to maintain its accuracy on pre-
viously unambiguous instances (i.e., instances that
are predicted correctly by the baseline model), even
when they contain biases.

In this work, we address this shortcoming by in-
troducing a novel debiasing method that improves
models’ performance on the out-of-distribution ex-
amples while preserves the in-distribution accu-
racy. The method, called confidence regulariza-
tion, draws a connection between the robustness
against dataset biases and the overconfidence pre-
diction problem in neural network models (Feng
et al., 2018; Papernot et al., 2016). We show that
by preventing models from being overconfident on
biased examples, they are less likely to exploit the
simple cues from these examples. The motivation
of our proposed training objective is to explicitly
encourage models to make predictions with lower
confidence (i.e., assigning a lower probability to the
predicted label) on examples that contain biased
features.

Table 1 shows the comparison of our method
with the existing state-of-the-art debiasing methods:
product-of-expert and learned-mixin. We show that
our method is highly effective in improving out-
of-distribution performance while preserving the
in-distribution accuracy. For example, our method
achieves 7 points gain on an out-of-distribution
NLI evaluation set, while slightly improves the
in-distribution accuracy. Besides, we show that
our method is able to improve models’ calibration
(Guo et al., 2017) so that the confidences of their
predictions are more aligned with their accuracies.
Overall, our contributions are the following:

• We present a novel confidence regularization
method to prevent models from utilizing bi-

ased features in the dataset. We evaluate the
advantage of our method over the state-of-the-
art debiasing methods on three tasks, includ-
ing natural language inference, fact verifica-
tion, and paraphrase identification. Experi-
mental results show that our method provides
competitive out-of-distribution improvement
while retaining the original in-distribution per-
formance.

• We provide insights on how the debiasing
methods behave across different datasets with
varying degrees of biases and show that our
method is more optimal when enough bias-
free examples are available in the dataset.

2 Related Work

Biases in Datasets Researchers have recently
studied more closely the success of large fine-tuned
LMs in many NLU tasks and found that models are
simply better in leveraging biased patterns instead
of capturing a better notion of language understand-
ing for the intended task (Bender and Koller, 2020).
Models’ performance often drops to a random base-
line when evaluated on out-of-distribution datasets
which are carefully designed to be void of the bi-
ases found in the training data. Using such targeted
evaluation, McCoy et al. (2019b) observe that mod-
els trained on MNLI dataset (Williams et al., 2018)
leverage syntactic patterns involving word overlap
to blindly predict entailment. Similarly, Schuster
et al. (2019) show that the predictions of fact verifi-
cation models trained for the FEVER task (Thorne
et al., 2018) are largely driven by the presence of
indicative words in the input claim sentences.

Following similar observations across other
tasks and domains, e.g., visual question-answering
(Agrawal et al., 2016), paraphrase identification
(Zhang et al., 2019), and argument reasoning com-
prehension (Niven and Kao, 2019), researchers
proposed improved data collection techniques to
reduce the artifacts that result in dataset biases.
While these approaches are promising, only apply-
ing them without additional efforts in the modeling
part may still deliver an unsatisfactory outcome.
For instance, collecting new examples by asking hu-
man annotators to conform to specific rules may be
costly and thus limit the scale and diversity of the
resulting data (Kaushik et al., 2020). Recently pro-
posed adversarial filtering methods (Zellers et al.,
2019; Sakaguchi et al., 2019) are more cost effec-
tive but are not guaranteed to be artifacts-free. It is,



therefore, crucial to develop learning methods that
can overcome biases as a complement to the data
collection efforts.

Debiasing Models There exist several methods
that aim to improve models’ robustness and gen-
eralization by leveraging the insights from previ-
ous work about the datasets’ artifacts. In the NLI
task, Belinkov et al. (2019) make use of the finding
that partial input information from the hypothesis
sentence is sufficient to achieve reasonable accu-
racy. They then remove this hypothesis-only bias
from the input representation using an adversarial
training technique. More recently, three concurrent
works (Clark et al., 2019a; He et al., 2019; Ma-
habadi and Henderson, 2019) introduce a model-
agnostic debiasing method for NLU tasks called
product-of-expert. Clark et al. (2019a) also
propose an adaptive variant of this method called
learned-mixin. These two methods first iden-
tify examples that can be predicted correctly based
only on biased features. This step is done by using
a biased model2, which is a weak classifier that is
trained using only features that are known to be in-
sufficient to perform the task but work well due to
biases. The output of this pre-trained biased model
is then used to adjust the loss function such that it
down-weights the importance of examples that the
biased model can solve. While this approach pre-
vents models from learning the task mainly using
biased features, it also reduces model’s ability to
learn from examples that can be solved using these
features. As a result, models are unable to optimize
accuracy on the original training distribution, and
they possibly become biased in some other ways.

Similar to these methods, our method also uses
a biased model to identify examples that exhibit
biased features. However, instead of using it to
diminish the training signal from these examples,
we use it to scale the confidence of models’ pre-
dictions. This enables the model to receive enough
incentive to learn from all of the training examples.

Confidence Regularization Methods for regu-
larizing the output distribution of neural network
models have been used to improve generalization.
Pereyra et al. (2017) propose to penalize the en-
tropy of the output distribution for encouraging
models to be less confident in their predictions.
Previously, Szegedy et al. (2016) introduce a label
smoothing mechanism to reduce overfitting by pre-

2We follow the terminology used by He et al. (2019).

venting the model from assigning a full probability
to each training example. Our method regularizes
models’ confidence differently: we first perform
an adaptive label smoothing for the training us-
ing knowledge distillation (Hinton et al., 2015),
which, by itself, is known to improve the overall
performance. However, our method involves an ad-
ditional bias-weighted scaling mechanism within
the distillation pipelines. As we will show, our pro-
posed scaling mechanism is crucial in leveraging
the knowledge distillation technique for the pur-
pose of overcoming the targeted bias while main-
taining high accuracy in the training distribution.

Similar to our work, Feng et al. (2018) propose
a regularization method that encourages the model
to be uncertain on specific examples. However,
the objective and the methodology are different:
they apply an entropy penalty term on examples
that appear nonsensical to humans with the goal
of improving models’ interpretability. On the con-
trary, we apply our confidence regularization on
every training example with a varying strength
(i.e., higher uncertainty on more biased examples)
to improve models’ performance on the out-of-
distribution data.

3 Method

Overview We consider the common formulation
of NLU tasks as a multi-class classification prob-
lem. Given a dataset D that consists of n examples
(xi, yi)i∈[1,n], with xi ∈ X as a pair of sentences,
and yi ∈ {1, 2, ...,K} where K is the number of
classes. The goal is to learn a robust classifier Fm,
which computes the probability distribution over
target labels, i.e., Fm(xi) = pi.

The key idea of our method is to explicitly train
Fm to compute lower probability, i.e., less confi-
dence, on the predicted label when the input ex-
ample exhibits a bias. This form of confidence
regularization can be done by computing the loss
function with the “soft” target labels that are ob-
tained through our proposed smoothing mechanism.
The use of soft targets as the training objective is
motivated by the observation that the probability
distribution of labels for each sample provides valu-
able information about the underlying task (Hinton
et al., 2015; Pereyra et al., 2017). When the soft
targets of certain examples have higher entropy,
models can be explicitly taught that some labels
are more likely to be correct than the others. Based
on this intuition, we argue that adjusting the con-
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Figure 1: An overview of our debiasing strategy when applied to the MNLI dataset. An input example that contains
lexical-overlap bias is predicted as entailment by the teacher model with a high confidence. When biased model
predicts this example well, the output distribution of the teacher will be re-scaled to indicate higher uncertainty
(lower confidence). The re-scaled output distributions are then used to distill the main model.

fidence on soft labels can better inform the model
about the true conditional distribution of the labels
given the presence of the biased features.

We first produce a meaningful softened target
distribution for each training example by perform-
ing knowledge distillation (Hinton et al., 2015).
In this learning framework, a “teacher” model Ft,
which we parameterize identically to the main
model Fm, is trained on the dataset D using a
standard classification loss. We then use Ft to
compute output probability distribution p̂i, where
Ft(xi) = p̂i. In the original knowledge distilla-
tion approach, the output of the teacher model p̂i is
then used to train Fm. We extend this approach by
adding a novel scaling procedure before we distill
the teacher model into Fm. We define a scaling
function S that takes the probability distribution
p̂i and scale it such that the probability assigned
to its predicted label is lowered when the example
can be predicted well by only relying on the biased
features.

Training the biased model For several NLU
tasks, biased features are known a-priori, e.g.,
the word overlapping features in NLI datasets are
highly correlated with the entailment label (McCoy
et al., 2019b). We leverage this a-priori knowledge
to design a measure of how well an example can be
predicted given only the biased features. We refer
to this measure as bias weight, denoted as βi for
every example xi.

Similar to previous debiasing methods (Clark
et al., 2019a), we compute bias weights using
a biased model. This biased model, denoted as
Fb, predicts the probability distribution bi, where
Fb(xi) = bi = 〈bi,1, bi,2, ..., bi,K〉. We define
the bias weight βi as the scalar value of the as-

signed probability by Fb to the ground truth label:
βi = bi,c (c-th label is the ground truth).

Bias-weighted scaling As illustrated in Figure 1,
our method involves scaling the teacher output p̂i
using βi. We do this by defining a scaling function
S : RK → RK :

S(p̂i, βi)j =
ˆpi,j

(1−βi)
∑K

k=1 ˆpi,k
(1−βi)

for j = 1, ...,K. The value of βi controls the
strength of the scaling: as βi → 1, the scaled prob-
ability assigned to each label approaches 1

K , which
presents a minimum confidence. Conversely, when
βi → 0, the teacher’s probability distribution re-
mains unchanged, i.e., S(p̂i, 0) = p̂i.

Training the main model The final step is to
train Fm by distilling from the scaled teacher
model’s outputs. Since the main model is parame-
terized identically to the teacher model, we refer to
this step as self-distillation (Furlanello et al., 2018).
Self-distillation is performed by training Fm on
pairs of input and the obtained soft target labels
(xi,S(p̂i, βi)). Specifically, Fm is learned by min-
imizing a standard cross-entropy loss between the
scaled teacher’s output S(p̂i, βi) and the current
prediction of the main model:

L(xi,S(p̂i, βi)) = −S(p̂i, βi) · logFm(xi)

In practice, each S(p̂i, βi) is computed only once
as a preprocessing step. Our method does not re-
quire hyperparameters, which can be an advantage
since most out-of-distribution datasets do not pro-
vide a development set for tuning the hyperparame-
ters.



4 Experimental Setup

In this section, we describe the datasets, models,
and training details used in our experiments.

4.1 Natural Language Inference

We use the MNLI dataset (Williams et al., 2018) for
training. The dataset consists of pairs of premise
and hypothesis sentences along with their inference
labels (i.e., entailment, neutral, and contradiction).
MNLI has two in-distribution development and test
sets, one that matches domains of the training data
(MNLI-m), and one with mismatching domains
(MNLI-mm). We consider two out-of-distribution
datasets for NLI: HANS (Heuristic Analysis for
NLI Systems) (McCoy et al., 2019b) and MNLI-
hard test sets (Gururangan et al., 2018).

HANS The dataset is constructed based on the
finding that the word overlapping between premise
and hypothesis in NLI datasets is strongly corre-
lated with the entailment label. HANS consists of
examples in which such correlation does not ex-
ist, i.e., hypotheses are not entailed by their word-
overlapping premises. HANS is split into three
test cases: (a) Lexical overlap (e.g., “The doctor
was paid by the actor” ; “The doctor paid the
actor”), (b) Subsequence (e.g., “The doctor near
the actor danced” ; “The actor danced”), and (c)
Constituent (e.g., “If the artist slept, the actor ran”
; “The artist slept”). Each category contains both
entailment and non-entailment examples.

MNLI-hard Hypothesis sentences in NLI
datasets often contain words that are highly
indicative of target labels (Gururangan et al., 2018;
Poliak et al., 2018). It allows a simple model that
predicts based on the hypothesis-only input to
perform much better than the random baseline.
Gururangan et al. (2018) presents a “hard” split of
the MNLI test sets, in which examples cannot be
predicted correctly by the simple hypothesis-only
model.

4.2 Fact Verification

For this task, we use the training dataset provided
by the FEVER challenge (Thorne et al., 2018).
The task concerns about assessing the validity of a
claim sentence in the context of a given evidence
sentence, which can be labeled as either support,
refutes, and not enough information. We use the
Fever-Symmetric dataset (Schuster et al., 2019) for
the out-of-distribution evaluation.

Fever-Symmetric Schuster et al. (2019) intro-
duce this dataset to demonstrate that FEVER mod-
els mostly rely on the claim-only bias, i.e., the
occurrence of words and phrases in the claim that
are biased toward certain labels. The dataset is
manually constructed such that relying on cues of
the claim can lead to incorrect predictions. We
evaluate the models on the two versions (version 1
and 2) of their test sets.3

4.3 Paraphrase Identification
We use the Quora Question Pairs (QQP) dataset
for training. QQP consists of pairs of questions
which are labeled as duplicate if they are para-
phrased, and non-duplicate otherwise. We evaluate
the out-of-distribution performance of QQP models
on the QQP subset of PAWS (Paraphrase Adver-
saries from Word Scrambling) (Zhang et al., 2019).

PAWS The QQP subset of PAWS consists of
question pairs that are highly overlapping in words.
The majority of these question pairs are labeled as
non-duplicate. Models trained on QQP are shown
to perform worse than the random baseline on this
dataset. This partly indicates that models largely
rely on lexical-overlap features to perform well
on QQP. We report models’ performance on the
duplicate and non-duplicate examples separately.

4.4 Models
Baseline Model We apply all of the debiasing
methods across our experiments on the BERT base
model (Devlin et al., 2019), which has shown im-
pressive in-distribution performance on the three
tasks. In our method, BERT base is used for both
Ft and Fm. We follow the standard setup for sen-
tence pair classification tasks, in which the two
sentences are concatenated into a single input and
the special token [CLF] is used for classification.

Biased Model (Fb) We consider the biased fea-
tures of each of the examined out-of-distribution
datasets to train the biased models. For HANS
and PAWS, we use hand-crafted features that indi-
cate how words are shared between the two input
sentences. Following Clark et al. (2019a), these
features include the percentage of hypothesis words
that also occur in the premise and the average of
cosine distances between word embedding in the
premise and hypothesis.4 We then train a simple

3https://github.com/TalSchuster/
FeverSymmetric

4We include the detailed description in the appendix.



Method MNLI-m MNLI-mm HANS Hard subset
dev test dev test lex. subseq. const. avg. MNLI-m MNLI-mm

BERT-base 84.3 ± 0.3 84.6 84.7 ± 0.1 83.3 72.4 52.7 57.9 61.1 ± 1.1 76.8 75.9

Learned-mixin hans 84.0 ± 0.2 84.3 84.4 ± 0.3 83.3 77.5 54.1 63.2 64.9 ± 2.4 - -
Product-of-expert hans 82.8 ± 0.2 83.0 83.1 ± 0.3 82.1 72.9 65.3 69.6 69.2 ± 2.6 - -

Regularized-conf hans 84.3 ± 0.1 84.7 84.8 ± 0.2 83.4 73.3 66.5 67.2 69.1 ± 1.2 - -

Learned-mixin hypo 80.5 ± 0.4 79.5 81.2 ± 0.4 80.4 - - - - 79.2 78.2
Product-of-expert hypo 83.5 ± 0.4 82.8 83.8 ± 0.2 84.1 - - - - 79.8 78.7

Regularized-conf hypo 84.6 ± 0.2 84.1 85.0 ± 0.2 84.2 - - - - 78.3 77.3

Table 2: The in-distribution accuracy (in percentage point) of the NLI models along with their accuracy on out-
of-distribution test sets: HANS and MNLI hard subsets. Models are only evaluated against their targeted out-of-
distribution dataset.

nonlinear classifier using these features. We refer
to this biased model as the hans model.

For MNLI-hard and Fever-Symmetric, we train
a biased model on only hypothesis sentences and
claim sentences for MNLI and FEVER, respec-
tively. The biased model is a nonlinear classifier
trained on top of the vector representation of the in-
put sentence. We obtain this vector representation
by max-pooling word embeddings into a single vec-
tor for FEVER, and by learning an LSTM-based
sentence encoder for MNLI.

State-of-the-art Debiasing Models We com-
pare our method against existing state-of-the-art
debiasing methods: product-of-expert (He et al.,
2019; Mahabadi and Henderson, 2019) and its vari-
ant learned-mixin (Clark et al., 2019a). product-of-
expert ensembles the prediction of the main model
(pi) with the prediction of the biased model (bi)
using p′i = softmax(log pi + log bi), where p′i
is the ensembled output distribution. This ensem-
bling enables the main model to focus on learning
from examples that are not predicted well by the bi-
ased model. Learned-mixin improves this method
by parameterizing the ensembling operation to let
the model learn when to incorporate or ignore the
output of the biased model for the ensembled pre-
diction.

On FEVER, we also compare our method against
the example-reweighting method by Schuster et al.
(2019). They compute the importance weight of
each example based on the correlation of the n-
grams within the claim sentences with the target
labels. These weights are then used to compute the
loss of each training batch.

Training Details As observed by McCoy et al.
(2019a), models can show high variance in their

out-of-distribution performance. Therefore, we
run each experiment five times and report both
average and standard deviation of the scores.5 We
also use training configurations that are known to
work well for each task.6 For each experiment, we
train our confidence regularization method as well
as product-of-expert and learned-mixin using the
same biased-model. Since the challenge datasets
often do not provide a development set, we could
not tune the hyperparameter of learned-mixin. We,
therefore, use their default weight for the entropy
penalty term.7

5 Results

The results for the tasks of NLI, fact verification,
and paraphrase identification are reported in Ta-
ble 2, Table 3, and Table 4, respectively.

5.1 In-distribution Performance

The results on the original development and test
sets of each task represent the in-distribution per-
formance. Since we examine two types of bi-
ases in NLI, we have two debiased NLI mod-
els, i.e., Regularized-conf hans and Regularized-
conf hypo which are trained for debiasing HANS
and hypothesis-only biases, respectively.

We make the following observations from the
results: (1) Our method outperforms product-of-
expert and learned-mixin when evaluated on the
corresponding in-distribution data of all the three
tasks; (2) Product-of-expert and learned-mixin
drop the original BERT baseline accuracy on most

5Due to the limited number of possible submissions, we
report the MNLI test scores only from a model that holds the
median out-of-distribution performance.

6We set a learning rate of 5e−5 for MNLI and 2e−5 for
FEVER and QQP.

7E.g., w = 0.03 for training on MNLI.



Method FEVER dev Symm. v1 Symm. v2

BERT-base 85.8 ± 0.1 57.9 ± 1.1 64.4 ± 0.6

Learned-mixin claim 83.1 ± 0.7 60.4 ± 2.4 64.9 ± 1.6

Product-of-expert claim 83.3 ± 0.3 61.7 ± 1.5 65.5 ± 0.7

Reweighting bigrams 85.5 ± 0.3 61.7 ± 1.1 66.5 ± 1.3

Regularized-conf claim 86.4 ± 0.2 60.5 ± 0.4 66.2 ± 0.6

Table 3: Accuracy on the FEVER dataset and the cor-
responding challenge datasets.

of the in-distribution experiments; (3) Regardless
of the type of bias, our method preserves the in-
distribution performance. However, it is not the
case for the other two methods, e.g., learned-mixin
only results in a mild decrease in the accuracy
when it is debiased for HANS, but suffers from
substantial drop when it is used to address the
hypothesis-only bias; (4) Our method results in
a slight in-distribution improvement in some cases,
e.g., on FEVER, it gains 0.6pp over BERT baseline.
The models produced by Regularized-conf hans also
gain 0.1 points to both MNLI-m and MNLI-mm
test sets; (5) All methods, including ours decrease
the in-distribution performance on QQP, particu-
larly on its duplicate examples subset. We will
discuss this performance drop in Section 6.

5.2 Out-of-distribution Performance
The rightmost columns of each table report the eval-
uation results on the out-of-distribution datasets for
each task. Based on our out-of-distribution evalua-
tions, we observe that: (1) Our method minimizes
the trade-off between the in-distribution and out-
of-distribution performance compared to the other
methods. For example, on HANS, learned-mixin
maintains the in-distribution performance but only
improves the average HANS accuracy from 61.1%
to 64.9%. product-of-expert gains 7 points improve-
ment over the BERT baseline while reducing the
MNLI-m test accuracy by 1.6 points. On the other
hand, our method achieves the competitive 7 points
gain without dropping the in-distribution perfor-
mance; (2) The performance trade-off is stronger
on some datasets. On PAWS, the two compared
methods improve the accuracy on the non-duplicate
subset while reducing models’ ability to detect the
duplicate examples. Our method, on the other hand,
finds a balance point, in which the non-duplicate ac-
curacy can no longer be improved without reducing
the duplicate accuracy; (3) depending on the use of
hyperparameters, learned-mixin can make a lower

Method
QQP dev PAWS test

dupl ¬dupl dupl ¬dupl

BERT-base 88.4 ± 0.3 92.5 ± 0.3 96.9 ± 0.3 9.8 ± 0.4

LMixin hans 77.5 ± 0.7 91.9 ± 0.2 69.7 ± 4.3 51.7 ± 4.3

Prod-exp hans 80.8 ± 0.2 93.5 ± 0.1 71.0 ± 2.3 49.9 ± 2.3

Reg-conf hans 85.0 ± 0.7 91.5 ± 0.4 91.0 ± 1.8 19.8 ± 1.3

Table 4: Results of the evaluation on the QQP task.

out-of-distribution improvement compared to ours,
even after substantially degrading in-distribution
performance, e.g., on FEVER-symmetricv2, it only
gains 0.5 points while dropping 3 points on the
FEVER development set.

6 Discussions and Analysis

Ablation studies In this section, we show that
the resulting improvements from our method come
from the combination of both self-distillation and
our scaling mechanism. We perform ablation
studies to examine the impact of each of the
components including (1) self-distillation: we
train a model using the standard self-distillation
without bias-weighted scaling, and (2) example-
reweighting: we train a model with the standard
cross-entropy loss with an example reweighting
method to adjust the importance of individual ex-
amples to the loss. The weight of each example
is obtained from the (scaled) probability that is as-
signed by the teacher model to the ground truth
label.8 The aim of the second setting is to exclude
the effect of self-distillation while keeping the ef-
fect of our scaling mechanism.

Table 5 presents the results of these experiments
on MNLI and HANS. We observe that each com-
ponent individually still gains substantial improve-
ments on HANS over the baseline, albeit not as
strong as the full method. The results from the
self-distillation suggest that the improvement from
our method partly comes from the regularization
effect of the distillation objective (Clark et al.,
2019b; Furlanello et al., 2018). In the example-
reweighting experiment, we exclude the effect of all
the scaled teacher’s output except for the probabil-
ity assigned to the ground truth label. Compared to
self-distillation, the proposed example-reweighting
has a higher impact on improving the performance
in both in-distribution and out-of-distribution eval-

8Details of the ablation experiments are included in the
supplementary materials.
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Figure 2: Distribution of models’ confidence on their predicted labels. The blue areas indicate the fraction of each
bin that are correct. (a) Distribution on MNLI-m dev by models trained using hypothesis-only biased model. (b)
Distribution on non-entailment subsequence subset of HANS by models trained using hans biased-model.

Method MNLI HANS

BERT-base 84.3 61.1

Full method 84.3 69.1

self-distillation 84.6 64.4
example-reweighting 84.7 65.3

Table 5: Results of the ablation experiments. The
MNLI column refers to the MNLI-m dev set.

BERT-
baseline

product-of-
expert

learned-
mixin

conf-reg
(our)

MNLI-m 9.0 7.7 9.9 5.4
MNLI-mm 8.5 7.6 9.5 5.6

Table 6: The calibration scores of models measured by
ECE (lower is better).

uations. However, both components are necessary
for the overall improvements.

In-distribution performance drop of product-
of-expert The difference between our method
with product-of-expert and its variants is the use
of biased examples during training. Product-of-
expert in practice scales down the gradients on the
biased training examples to allow the model to fo-
cus on learning from the harder examples (He et al.,
2019). As a result, models often receive little to no
incentive to solve these examples throughout the
training, which can effectively reduce the training
data size. Our further examination on a product-of-
expert model (trained on MNLI for HANS) shows
that its degradation of in-distribution performance
largely comes from the aforementioned examples.
Ensembling back the biased-model to the main

model can indeed bring the in-distribution accu-
racy back to the BERT baseline. However, this also
leads to the original poor performance on HANS,
which is counterproductive to the goal of improving
the out-of-distribution generalization.

Impact on Models’ Calibration We expect the
training objective used in our method to discour-
age models from making overconfident predictions,
i.e., assigning high probability to the predicted la-
bels even when they are incorrect. We investigate
the changes in models’ behavior in terms of their
confidence using the measure of calibration, which
quantifies how aligned the confidence of the pre-
dicted labels with their actual accuracy are (Guo
et al., 2017). We compute the expected calibra-
tion error (ECE) (Naeini et al., 2015) as a scalar
summary statistic of calibration. Results in Table 6
show that our method improves model’s calibra-
tion on MNLI-m and MNLI-mm dev sets, with the
reduction of ECE ranging from 3.0 to 3.6. The his-
tograms in figure 2 show the distribution of mod-
els’ confidences in their predictions. Figure 2a
demonstrates that the prediction confidences of our
resulting model on MNLI-m are more smoothly
distributed. In figure 2b, we observe that our debi-
ased model predicts examples that contain lexical
overlap features with lower confidence, and when
the confidence is higher, the prediction is more
likely to be correct.

Impact of biased examples ratio To investigate
the slight in-distribution drop by our method in
QQP (Table 4), we examine the ratio of biased ex-
amples in the QQP training data by evaluating the
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Figure 3: Results on the PAWS-augmented QQP
dataset.

performance of the biased model on the dataset.
We find that almost 80% of the training examples
can be solved using the lexical overlap features
alone, which indicates a severe lexical overlap bias
in QQP.9 Moreover, in 53% of all examples, the
biased model makes correct predictions with a very
high confidence (βi > 0.8). For comparison, the
same biased model predicts only 12% of the MNLI
examples with confidence above 0.8 (more com-
parisons are shown in the supplementary material.
As a result, there are not enough unbiased exam-
ples in QQP and the resulting soft target labels
in this dataset are mostly close to a uniform dis-
tribution, which in turn may provide insufficient
training signal to maximize the accuracy on the
training distribution.

Impact of adding bias-free examples Finally,
we investigate how changing the ratio of biased
examples affects the behavior of debiasing meth-
ods. To this end, we split PAWS data into training
and test sets. The training set consists of 2500 ex-
amples, and we use the remaining 10K examples
as a test set. We train the model on QQP that is
gradually augmented with fractions of this PAWS
training split and evaluate on a constant PAWS
test set. Figure 3 shows the results of this experi-
ment. When more PAWS examples are added to
the training data, the accuracy of the BERT base-
line gradually improves on the non-duplicate subset
while its accuracy slowly drops on the duplicate
subset. We observe that product-of-expert exagger-
ates this effect: it reduces the duplicate accuracy up

9The random baseline is 50% for QQP.

to 40% to obtain the 93% non-duplicate accuracy.
We note that our method is the most effective when
the entire 2500 PAWS examples are included in the
training, obtaining the overall accuracy of 77.05%
compared to the 71.63% from the baseline BERT.

7 Conclusion

Existing debiasing methods improve the perfor-
mance of NLU models on out-of-distribution
datasets. However, this improvement comes at
the cost of strongly diminishing the training sig-
nal from a subset of the original dataset, which
in turn reduces the in-distribution accuracy. In
this paper, we address this issue by introducing a
novel method that regularizes models’ confidence
on biased examples. This method allows models
to still learn from all training examples without
exploiting the biases. Our experiments on four
out-of-distribution datasets across three NLU tasks
show that our method provides a competitive out-
of-distribution performance while preserves the
original accuracy.

Our debiasing framework is general and can be
extended to other task setups where the biases lever-
aged by models are correctly identified. Several
challenges in this direction of research may include
extending the debiasing methods to overcome mul-
tiple biases at once or to automatically identify the
format of those biases which simulate a setting
where the prior knowledge is unavailable.
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A Ablation Details

For the second setting of our ablation studies, we
perform an example reweighting using the scaled
probability of the teacher model Ft on the ground
truth label. Specifically, the cross entropy loss as-
signed to each batch of size m is computed by the
following:

−
b∑

s=1

ˆps,c∑b
u=1 ˆpu,c

· log(ps,c)

where we assume that cth label is the ground truth
label. The probability assigned to the correct label
by the teacher model is then denoted as ˆps,c. The
currect predicted probability of the main model is
denoted as ps,c.

B Bias Weights Distribution

Figure 4 shows the performance of biased models
on QQP, MNLI, and FEVER. For QQP and MNLI
we show the results of biased model trained using
lexical overlap features. For FEVER, the biased
model is trained with claim-only partial input. We
show that on PAWS (figure 4a), a large portion of
examples can be predicted with a very high confi-
dence by the biased model.

C HANS Biased Model

We use the hand-crafted HANS-based features pro-
posed by Clark et al. (2019a). These features in-
clude: (1) whether all words in the hypothesis exist
in the premise; (2) whether the hypothesis is a con-
tiguous subsequence of the premise; (3) the frac-
tion of hypothesis words that exist in the premise;
(4) the average and the max of cosine distances
between word vectors in the premise and the hy-
pothesis.
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Abstract
NLU models often exploit biases to achieve
high dataset-specific performance without
properly learning the intended task. Recently
proposed debiasing methods are shown to be
effective in mitigating this tendency. However,
these methods rely on a major assumption that
the types of bias should be known a-priori,
which limits their application to many NLU
tasks and datasets. In this work, we present
the first step to bridge this gap by introducing
a self-debiasing framework that prevents mod-
els from mainly utilizing biases without know-
ing them in advance. The proposed framework
is general and complementary to the existing
debiasing methods. We show that it allows
these existing methods to retain the improve-
ment on the challenge datasets (i.e., sets of ex-
amples designed to expose models’ reliance
on biases) without specifically targeting cer-
tain biases. Furthermore, the evaluation sug-
gests that applying the framework results in
improved overall robustness.1

1 Introduction

Neural models often achieve impressive perfor-
mance on many natural language understanding
tasks (NLU) by leveraging biased features, i.e.,
superficial surface patterns that are spuriously as-
sociated with the target labels (Gururangan et al.,
2018; McCoy et al., 2019b).2 Recently proposed
debiasing methods are effective in mitigating the
impact of this tendency, and the resulting mod-
els are shown to perform better beyond training
distribution. They improved the performance on
challenge test sets that are designed such that rely-
ing on the spurious association leads to incorrect
predictions.

1The code is available at https://github.com/
UKPLab/emnlp2020-debiasing-unknown

2E.g., in several textual entailment datasets, negation
words such as “never” or “nobody” are highly associated with
the contradiction label.

Prevailing debiasing methods, e.g., example
reweighting (Schuster et al., 2019), confidence reg-
ularization (Utama et al., 2020), and model ensem-
bling (He et al., 2019; Clark et al., 2019; Mahabadi
et al., 2020), are agnostic to model’s architecture
as they operate by adjusting the training loss to ac-
count for biases. Namely, they first identify biased
examples in the training data and down-weight their
importance in the training loss so that models focus
on learning from harder examples.3

While promising, these model agnostic methods
rely on the assumption that the specific types of
biased features (e.g., lexical overlap) are known
a-priori. This assumption, however, is a limitation
in various NLU tasks or datasets because it de-
pends on researchers’ intuition and task-specific in-
sights to manually characterize the spurious biases,
which may range from simple word/n-grams co-
occurrence (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Schuster et al., 2019) to
more complex stylistic and lexico-syntactic pat-
terns (Zellers et al., 2019; Snow et al., 2006; Van-
derwende and Dolan, 2006). The existing datasets
or the newly created ones (Zellers et al., 2019; Sak-
aguchi et al., 2020; Nie et al., 2019b) are, therefore,
still very likely to contain biased patterns that re-
main unknown without an in-depth analysis of each
individual dataset (Sharma et al., 2018).

In this paper, we propose a new strategy to en-
able the existing debiasing methods to be appli-
cable in settings where there is little to no prior
information about the biases. Specifically, mod-
els should automatically identify potentially biased
examples without being pinpointed at a specific
bias in advance. Our work makes the following
novel contributions in this direction of automatic
bias mitigation.

First, we analyze the learning dynamics of a
3We refer to biased examples as examples that can be

solved using only biased features.



large pre-trained model such as BERT (Devlin
et al., 2019) on a dataset injected with a syn-
thetic and controllable bias. We show that, in very
small data settings, models exhibit a distinctive
response to synthetically biased examples, where
they rapidly increase the accuracy (→ 100%) on bi-
ased test set while performing poorly on other sets,
indicating that they are mainly relying on biases.

Second, we present a self-debiasing framework
within which two models of the same architecture
are pipelined to address the unknown biases. Using
the insight from the synthetic dataset analysis, we
train the first model to be a shallow model that is
effective in automatically identifying potentially bi-
ased examples. The shallow model is then used to
train the main model through the existing debiasing
methods, which work by down-weighting the po-
tentially biased examples. These methods present
a caveat in that they may lose useful training sig-
nals from the down-weighted training examples.
To account for this, we also propose an anneal-
ing mechanism which helps in retaining models’
in-distribution performance (i.e., evaluation on the
test split of the original dataset).

Third, we experiment on three NLU tasks and
evaluate the models on their existing challenge
datasets. We show that models obtained through
our self-debiasing framework gain equally high im-
provement compared to models that are debiased
using specific prior knowledge. Furthermore, our
cross-datasets evaluation suggests that our general
framework that does not target only a particular
type of bias results in better overall robustness.

Terminology This work relates to the growing
number of research that addresses the effect of
dataset biases on the resulting models. Most re-
search aims to mitigate different types of bias on
varying parts of the training pipeline (e.g., dataset
collection or modeling). Without a shared defini-
tion and common terminology, it is quite often that
the term “bias” discussed in one paper refers to
a different kind of bias mentioned in the others.
Following the definition established in the recent
survey paper by Shah et al. (2020), the dataset bias
that we address in this work falls into the category
of label bias. This bias emerges when the condi-
tional distribution of the target label given certain
features in the training data diverges substantially
at test time. These features that are associated with
the label bias may differ from one classification set-
ting to the others, and although they are predictive,

MNLI synthetic:
premise: What’s truly striking, though, is that

Jobs has never really let this idea go.

orig. hypo.: Jobs never held onto an idea for long.

biased: 0 Jobs never held onto an idea for long.

anti-biased: 1 Jobs never held onto an idea for long.

label: 0 (contradiction)

Figure 1: Synthetic bias datasets are created by ap-
pending an artificial feature to the input text that al-
lows models to use it as a shortcut to the target la-
bel. For each example in MNLI, a number-coded la-
bel (contradiction: 0 , entailment: 1 , neutral:
2 ) is appended to the hypothesis sentences.

relying on them for prediction may be harmful to
fairness (Elazar and Goldberg, 2018) or generaliza-
tion (McCoy et al., 2019b). The instances of these
features may include protected socio-demographic
attributes (gender, age, etc.) in automatic hiring
decision systems; or surface-level patterns (nega-
tion words, lexical overlap, etc.) in NLU tasks.
Further, we consider the label bias to be unknown
when the information about the characteristics of
its associated features is not precise enough for the
existing debiasing strategies to identify potentially
biased examples.

2 Motivation and Analysis

Debiasing NLU models Recent NLU tasks are
commonly formulated as multi-class classification
problems (Wang et al., 2018), in which the goal is
to predict the semantic relationship label y ∈ Y
given an input sentence pairs x ∈ X . For each ex-
ample x, let b(x) be the biased features that happen
to be predictive of label y in a specific dataset. The
aim of a debiasing method for an NLU task is to
learn a debiased classifier fd that does not mainly
use b(x) when computing p(y|x).

Model-agnostic debiasing methods (e.g.,
product-of-expert (Clark et al., 2019)) achieve this
by reducing the importance of biased examples
in the learning objective. To identify whether an
example is biased, they employ a shallow model
fb, a simple model trained to directly compute
p(y|b(x)), where the features b(x) are hand-crafted
based on the task-specific knowledge of the biases.
However, obtaining the prior information to design
b(x) requires a dataset-specific analysis (Sharma
et al., 2018). Given the ever-growing number of
new datasets, it would be a time-consuming and
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costly process to identify biases before applying
the debiasing methods.

In this work, we propose an alternative strat-
egy to automatically obtain fb to enable existing
debiasing methods to work with no precise prior
knowledge. This strategy assumes a connection be-
tween large pre-trained models’ reliance on biases
with their tendency to operate as a rapid surface
learner, i.e., they tend to quickly overfit to surface
form information especially when they are fine-
tuned in a small training data setting (Zellers et al.,
2019). This tendency of deep neural network to
exploit simple patterns in the early stage of the
training is also well-observed in other domains of
artificial intelligence (Arpit et al., 2017; Liu et al.,
2020). Since biases are commonly characterized
as simple surface patterns, we expect that models’
rapid performance gain is mostly attributed to their
reliance on biases. Namely, they are likely to oper-
ate similarly as fb after they are exposed to only a
small number of training instances, i.e., achieving
high accuracy on the biased examples while still
performing poorly on the rest of the dataset.

Synthetic bias We investigate this assumption by
analyzing the comparison between models’ perfor-
mance trajectory on biased and anti-biased (“coun-

terexamples” to the biased shortcuts) test sets as
more examples are seen during the training. Our
goal is to obtain a fair comparison without the
confounds that may result in performance differ-
ences on these two sets. Specifically, the exam-
ples from the two sets should be similar except for
the presence of a feature that is biased in one set
and anti-biased in the other. For this reason, we
construct a synthetically biased data based on the
MNLI dataset (Williams et al., 2018) using a pro-
cedure illustrated in Figure 1. A synthetic bias is
injected by appending an artificial feature to 30%
of the original examples. We simulate the presence
of bias by controlling m portion of these manipu-
lated examples such that their artificial feature is
associated with the ground truth label (“biased”),
whereas, in the remaining (1−m), the feature is
disassociated with the label (“anti-biased”).4 Us-
ing a similar injection procedure we can produce
both fully biased and anti-biased test sets in which
100% of the examples contain the synthetic fea-
tures. Models that blindly predict based on the
artificial feature are guaranteed to achieve 0% ac-

4The remaining 70% of the dataset remain the same. The
biased and anti-biased examples refer to the fraction within
the other 30% that are injected with the artificial feature.



curacy on the anti-biased test.

Model’s performance trajectory We finetune
a bert-base-uncased model (Wolf et al.,
2019) on the whole MNLI datasets that are par-
tially biased with different proportions (m =
{0.9, 0.8, 0.7, 0.6}). We evaluate each model on
the original as well as the two fully biased and anti-
biased test sets. Figure 2 shows the performance
trajectory in all settings. As expected, the models
show the tendency of relying on biases after only
seeing a small fraction of the dataset. Specifically,
at an early point during training, models achieve
100% accuracy on the biased test and drop to al-
most 0% on the anti-biased test. This behavior is
more apparent as the proportion of biased examples
is increased by adjusting m from 0.6 to 0.9.

Training a shallow model The analysis suggests
that we can obtain a substitute fb by taking a check-
point of the main model early in the training, i.e.,
when the model has only seen a small portion of
the training data. However, we observe that the
resulting model makes predictions with rather low
confidence, i.e., assigns a low probability to the pre-
dicted label. As shown in Figure 3 (top), most pre-
dictions fall in the 0.4 probability bin, only slightly
higher than a uniform probability (0.3). We further
find that by training the model for multiple epochs,
we can obtain a confident fb that overfits biased
features from a smaller sample size (Figure 3, bot-
tom). We show in Section 3 that overconfident fb
is particularly important to better identify biased
examples.

3 Self-debiasing Framework

We propose a self-debiasing framework that en-
ables existing debiasing methods to work without
requiring a dataset-specific knowledge about the
biases’ characteristics. Our framework consists of
two stages: (1) automatically identifying biased
examples using a shallow model; and (2) using this
information to train the main model through the
existing debiasing methods, which are augmented
with our proposed annealing mechanism.

3.1 Biased examples identification

First, we train a shallow model fb, which approxi-
mates the behavior of a simple hand-crafted model
that is commonly used by the existing debiasing
methods to identify biased examples. As men-
tioned in Section 2, we obtain fb for each task

by training a copy of the main model on a small
random subset of the dataset for several epochs.
The model fb is then used to make predictions on
the remaining unseen training examples. Given a
training example {x(i), y(i)}, we denote the output
of the shallow model as fb(x(i)) = p

(i)
b .

Probabilities pb are assigned to each training
instance to indicate how likely that it contains bi-
ases. Specifically, the presence of biases can be es-
timated using the scalar probability value of p(i)b on
the correct label, which we denote as p(i,c)b , where
c is the index of the correct label. We can interpret
p
(i,c)
b by the following: when the model predicts an

example x(i) correctly with high confidence, i.e.,
p
(i,c)
b → 1, x(i) is potentially biased. Conversely,

when the model makes an overconfident error, i.e.,
p
(i,c)
b → 0, x(i) is likely to be a harder example

from which models should focus on learning.

3.2 Debiased training objective
We use the obtained pb to train the main model fd
parameterized by θd. Specifically, pb is utilized
by the existing model-agnostic debiasing methods
to down-weight the importance of biased exam-
ples in the training objective. In the following, we
describe how the three recent model-agnostic de-
biasing methods (example reweighting (Schuster
et al., 2019), product-of-expert (He et al., 2019;
Clark et al., 2019; Mahabadi et al., 2020), and con-
fidence regularization (Utama et al., 2020)) operate
within our framework:

Example reweighting This method adjusts the
importance of a training instance by directly as-
signing a scalar weight that indicates whether the
instance exhibits a bias. Following Clark et al.
(2019), this weight scalar is computed as 1− p(i,c)b .
The individual loss term is thus defined as:

L(θd) = −(1− p(i,c)b )y(i) · log pd

Where pd is the softmax output of fd. This formu-
lation means that the contribution of an example to
the overall loss is steadily decreased as the shallow
model assigns a higher probability to the correct
label (i.e., more confident prediction).

Product-of-expert In this method, the main
model fd is trained in an ensemble with the shallow
model fb, by combining their softmax outputs. The
ensemble loss on each example is defined as:

L(θd) = −y(i) · log softmax(log pd + log pb)



During the training, we only optimize the parame-
ters of fd while keeping the parameters of fb fixed.
At test time, we use only the prediction of fd.

Confidence regularization This method works
by regularizing model confidence on the examples
that are likely to be biased. Utama et al. (2020)
use a self-distillation training objective (Furlanello
et al., 2018; Hinton et al., 2015), in which the super-
vision by the teacher model is scaled down using
the output of the shallow model. The loss on each
individual example is defined as a cross entropy
between pd and the scaled teacher output:

L(θd) = −S(pt, p(i,c)b ) · log pd

Where ft is the teacher model (parameterized iden-
tically to fd) that is trained using a standard cross
entropy loss on the full dataset, and ft(x) = pt.
This “soft” label supervision provided by the scaled
teacher output discourages models to make over-
confident predictions on examples containing bi-
ased features.

3.3 Annealing mechanism

Our shallow model fb is likely to capture multi-
ple types of bias, leading to more examples be-
ing down-weighted in the debiased training ob-
jectives. As a result, the effective training data
size is reduced even more, which leads to a sub-
stantial in-distribution performance drop in several
debiasing methods (He et al., 2019; Clark et al.,
2019). To mitigate this, we propose an anneal-
ing mechanism that allows the model to gradually
learn from all examples, including ones that are
detected as biased. This is done by steadily low-
ering p(i,c)b as the training progresses toward the
end. At training step t, the probability vector p(i)b

is scaled down by re-normalizing all probability
values that have been raised to the power of αt:

p
(i,j)
b =

p
(i,j)αt

b∑K
k=1 p

(i,k)αt

b

, where K is the number of

labels and index j ∈ {1, ...,K}. The value of αt

is gradually decreased throughout the training us-
ing a linear schedule. Namely, we set the value
of αt to range from the maximum value 1 at the
start of the training to the minimum value a in the
end of the training: αt = 1 − t (1−a)T , where T is
the total number of training steps. In the extreme
case where a is set to 0, pb vectors are scaled down
closer to uniform distribution near the end of the
training. This results in a more equal importance

of all examples, which is equivalent to the standard
cross entropy loss.

We note that since this mechanism gradually
exposes models to potentially biased instances, it
presents the risk of model picking up biases and
adopting back the baseline behavior. However, our
results and analysis suggest that when the param-
eter a is set to a value close to 1, the annealing
mechanism can still provide an improvement on
the in-distribution data while retaining a reasonably
well performance on the challenge test sets.

4 Experimental Setup

4.1 Evaluation Tasks

We perform evaluations on three NLU tasks: natu-
ral language inference, fact verification, and para-
phrase identification. We simulate a setting where
we have not enough information about the biases
for training a debiased model, and thus biased ex-
amples should be identified automatically. There-
fore, we only use the existing challenge test set
for each examined task strictly for evaluation and
do not use the information about their correspond-
ing bias types during training. In the following,
we briefly discuss the datasets used for training
on each task as well as their corresponding chal-
lenge test sets to evaluate the impact of debiasing
methods:

Natural language inference We use the English
Multi-Genre Natural Language Inference (MNLI)
dataset (Williams et al., 2018) which consists of
392K pairs of premise and hypothesis sentences
annotated with their textual entailment information.
We test NLI models on lexical overlap bias using
HANS evaluation set (McCoy et al., 2019b). It
contains examples, in which premise and hypothe-
sis sentences that consist of the same set of words
may not hold an entailment relationship, e.g., “cat
caught a mouse” vs. “mouse caught a cat”. Since
word overlapping is biased towards entailment in
MNLI, models trained on this dataset often perform
close to a random baseline on HANS.

Paraphrase identification We experiment with
the Quora Question Pairs dataset.5 It consists of
362K questions pairs annotated as either duplicate
or non-duplicate. We perform an evaluation using
PAWS dataset (Zhang et al., 2019) to test whether

5The dataset is available at https://www.kaggle.
com/c/quora-question-pairs



Method MNLI (Acc.) FEVER (Acc.) QQP (F1)
dev HANS ∆ dev symm. ∆ D dev ¬D dev D PAWS ∆ ¬D PAWS ∆

BERT-base 84.5 61.5 - 85.6 63.1 - 87.9 92.9 48.7 - 17.6 -
Reweighting known-bias 83.5‡ 69.2‡ +7.7 84.6♣ 66.5♣ +3.4 85.5 91.9 49.7 +1.0 51.2 +33.6
Reweighting self-debias 81.4 68.6 +7.1 87.2 65.6 +2.5 75.7 86.7 43.7 −5.0 69.9 +52.3

Reweighting ♠ self-debias 82.3 69.7 +8.2 87.1 65.5 +2.4 79.4 88.6 46.4 −2.3 61.8 +44.2

PoE known-bias 82.9‡ 67.9‡ +6.4 86.5† 66.2† +3.1 84.3 91.4 50.3 +1.6 61.2 +43.6
PoE self-debias 80.7 68.5 +7.0 85.4 65.3 +2.1 77.4 87.7 44.1 −4.6 69.4 +51.8

PoE ♠ self-debias 81.9 66.8 +5.3 85.9 65.8 +2.7 80.7 89.3 47.4 −1.3 59.8 +42.2

Conf-reg known-bias 84.5[ 69.1[ +7.6 86.4[ 66.2[ +3.1 85.0 91.3 49.0 +0.3 30.9 +13.3
Conf-reg self-debias 83.9 67.7 +6.2 87.9 66.1 +3.0 83.9 90.6 49.2 +0.5 33.1 +15.5

Conf-reg ♠ self-debias 84.3 67.1 +5.6 87.6 66.0 +2.9 85.0 91.3 48.8 +0.1 28.7 +11.1

Table 1: Models’ performance when evaluated on MNLI, Fever, QQP, and their corresponding challenge test sets.
The known-bias results for MNLI and FEVER are taken from Utama et al. (2020)([), Clark et al. (2019)(‡),
Mahabadi et al. (2020)(†), and Schuster et al. (2019)(♣). The results of the proposed framework are indicated by
self-debias. (♠) indicates the training with our proposed annealing mechanism. Boldface numbers indicate
the highest challenge test set improvement for each debiasing setup on a particular task.

the resulting models perform the task by relying on
lexical overlap biases.

Fact verification We run debiasing experiments
on the FEVER dataset (Thorne et al., 2018). It
contains pairs of claim and evidence sentences la-
beled as either support, refutes, and not-enough-
information. We evaluate on the FeverSymmetric
test set (Schuster et al., 2019), which is collected to
reduced claim-only biases (e.g., negative phrases
such as “refused to” or “did not” are associated
with the refutes label).

4.2 Main Model

We apply our self-debiasing framework on the
BERT model (Devlin et al., 2019), which performs
very well on the three considered tasks.6 It also
shows substantial improvements on the correspond-
ing challenge datasets when trained through the
existing debiasing methods (Clark et al., 2019; He
et al., 2019). For each examined debiasing method,
we show the comparison between the results when
it is applied within our framework and when it is
trained using prior knowledge to detect training
examples with a specific bias. For the second sce-
nario, MNLI and QQP models are debiased using a
lexical overlap bias prior, whereas FEVER model
is debiased using hand-crafted claim-only biased
features. We use the results reported in their corre-
sponding papers. Additionally, we train a baseline
BERT model with a standard cross entropy loss.

6We use the pre-trained bert-base-uncased
model available at https://huggingface.co/
transformers/pretrained_models.html.

4.3 Hyperparameters
The hyperparameters of our framework include the
number of training samples and epochs to train the
shallow model fb as well as parameter a to sched-
ule the annealing process. We only use the training
data, and no information about the challenging sets,
for tuning these parameters. Based on the insight
from our synthetic bias analysis (Section 2), we
choose the sample size and the number of epochs
which result in fb that satisfies the following condi-
tions: (1) its accuracy on the unseen training exam-
ples is around 60% to 70%; (2) More than 90% of
their predictions fall into the high confidence bin
(> 0.9). These variables vary for each task depend-
ing on their diversity and difficulty. For instance,
it takes 2000 examples and 3 epochs of training
for MNLI, and only 500 examples and 4 epochs
for an easier task such as QQP.7 For the annealing
mechanism, we set a = 0.8 as the minimum value
of αt for all experiments across the three tasks. Al-
though this may not be an optimal configuration for
all tasks, it still allows us to observe how gradually
increasing the importance of “biased” examples
may affect the overall performance.

5 Results and Discussion

Main results We experiment with several train-
ing methods for each task: the baseline training,
debiased training with prior knowledge, and the
debiased training using our self-debiasing frame-
work (with and without annealing mechanism). We
present the results on the three tasks in Table 1.

7We perform a search on all combinations of 1, 2, 3, 4, and
5 epochs and 500, 1000, 1500, and 2000 examples.



Dataset base. confidence-regularization (∆)
known HANS self-deb. self-deb. ♠

SICK 55.2 +1.2 ⇒ +3.0 =⇒ +2.1 =⇒
RTE 63.6 −0.5 ⇐ +0.5 ⇒ +0.6 ⇒
Diag. 58.6 −0.6 ⇐ +0.4 ⇒ +0.5 ⇒
Scitail 65.4 +1.4 =⇒ +0.4 ⇒ +1.0 =⇒

Table 2: Accuracy results of self-debias confidence reg-
ularization on cross-dataset evaluation.

Each model is evaluated both in terms of their in-
distribution performance on the original develop-
ment set and their out-of-distribution performance
on the challenge test set. For each setting, we report
the average results across 5 runs.

We observe that: (1) models trained through
self-debiasing framework obtain equally high im-
provements on challenge sets of the three tasks
compared to their corresponding debiased mod-
els trained with a prior knowledge (indicated
as known-bias). In some cases, the existing
debiasing methods can even be more effective
when applied using the proposed framework, e.g.,
self-debias example reweighting obtains 52.3
F1 score improvement over the baseline on the non-
duplicate subset of PAWS (compared to 33.6 by its
known-bias counterpart). This indicates that the
framework is equally effective in identifying biased
examples without previously needed prior knowl-
edge; (2) Most improvements on the challenge
datasets come at the expense of the in-distribution
performance (dev column) except for the confi-
dence regularization models. For instance, the
self-debias product-of-expert (PoE) model,
without annealing, performs 2.2pp lower than the
known-bias model on MNLI dev set. This in-
dicates that self-debiasing may identify more po-
tentially biased examples and thus effectively omit
more training data; (3) Annealing mechanism (in-
dicated by ♠) is effective in mitigating this issue
in most cases, e.g., improving PoE by 0.5pp on
FEVER dev and 1.2pp on MNLI dev while keeping
relatively high challenge test accuracy. Self-debias
reweighting augmented with annealing mechanism
even achieves the highest HANS accuracy in addi-
tion to its improved in-distribution performance.

Cross-datasets evaluation Previous work
demonstrated that targeting a specific bias to opti-
mize performance in the corresponding challenge
dataset may bias the model in other unwanted
directions, which proves to be counterproductive

in improving the overall robustness (Nie et al.,
2019a; Teney et al., 2020). One way to evaluate
the impact of debiasing methods on the overall
robustness is to train models on one dataset and
evaluate them against other datasets of the same
task, which may have different types and amounts
of biases (Belinkov et al., 2019a). A contemporary
work by Wu et al. (2020) specifically finds that
debiasing models based on only a single bias
results in models that perform significantly worse
upon cross-datasets evaluation for the reading
comprehension task.

Motivated by this, we perform similar evalu-
ations for models trained on MNLI through the
three debiasing setups: known-bias to target
the HANS-specific bias, self-debiasing, and
self-debiasing augmented with the proposed
annealing mechanism. We do not tune the hyperpa-
rameters for each target dataset and use the models
that we previously reported in the main results. As
the target datasets, we use 4 NLI datasets: Scitail
(Khot et al., 2018), SICK (Marelli et al., 2014),
GLUE diagnostic set (Wang et al., 2018), and 3-
way version of RTE 1, 2, and 3 (Dagan et al., 2005;
Bar-Haim et al., 2006; Giampiccolo et al., 2007).8

We present the results in Table 2. We observe
that the debiasing with prior knowledge to tar-
get the specific lexical overlap bias (indicated by
knownHANS) can help models to perform better
on SICK and Scitail. However, its resulting mod-
els under-perform the baseline in RTE sets and
GLUE diagnostic, degrading the accuracy by 0.5
and 0.6pp. In contrast, the self-debiased models,
with and without annealing mechanism, outperform
the baseline on all target datasets, both achieving
additional 1.1pp on average. The gains by the two
self-debiasing suggest that while they are effec-
tive in mitigating the effect of one particular bias
(i.e., lexical overlap), they do not result in models
learning other unwanted patterns that may hurt the
performance on other datasets. These results also
extend the findings of Wu et al. (2020) to the NLU
settings in that addressing multiple biases at once,
as done by our general debiasing method, leads to
a better overall generalization.

Analyzing the annealing mechanism In previ-
ous experiments, we show that setting the mini-
mum αt to only slightly lower than 1 (i.e., a = 0.8)

8We compiled and reformated the dataset files which
are available at https://nlp.stanford.edu/
projects/contradiction/.
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Figure 4: Analysis of the annealing mechanism using
different values of minimum αt.

results in improvements on the in-distribution with-
out substantial degradation on challenge datasets
scores. We question whether this behavior persists
once we set a closer to 0. Specifically, do models
fall back to the baseline performance when the loss
gets more equivalent to the standard cross-entropy
at the end of the training?

We run additional experiments using the self-
debiased example reweighting on QQP⇒ PAWS
evaluations. We consider the following values to
set the minimum αt: 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0.
For each experiment, we report the average scores
across multiple runs. As we see in Figure 4, the
challenge test scores decrease as we set minimum
a to lower values. Annealing can still offer a rea-
sonable trade-off between in-distribution and chal-
lenge test performances up until a = 0.6, before
falling back to baseline performance at a = 0.
These results suggest that models are still likely
to learn spurious shortcuts from biased examples
that they are exposed to even at the end of the
training. Consequently, the annealing mechanism
should be used cautiously by setting the minimum
αt to moderate values, e.g., 0.6 or 0.8.

Impact on learning dynamics We previously
show (Figure 2) that baseline models tend to learn
easier examples more rapidly, allowing them to
make correct predictions by relying on biases. As
the self-debiasing framework manages to mitigate
this fallible reliance, we expect some changes in
models’ learning dynamics. We are, therefore, in-
terested in characterizing these changes by analyz-
ing their training loss curve. In particular, we exam-
ine the individual losses on each training batch and
measure their variability using percentiles (i.e., 0th,
25th, 50th, 75th, and 100th percentile). Figure 5
shows the comparison of the individual loss vari-
ability between the baseline and the self-debiased
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100
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Figure 5: Training loss curves for the first 15K steps by
the baseline and self-debias example reweighting train-
ing (shown in log scale). Solid lines indicate the me-
dian loss within each training batch. The dark and light
shadow areas represent the range between 25th to 75th
percentile and the range between 0th (minimum) and
100th percentile (maximum), respectively.

models when trained on MNLI. We observe that
the median loss of the baseline model converges
faster than the self-debiased counterpart (dotted
solid lines). However, examples below its 25th
percentile already have losses smaller than 10−1

when the majority of the losses are still high (darker
shadow area). This indicates that unregularized
training optimizes faster on certain examples, pos-
sibly due to the presence of biases. On the con-
trary, self-debiased training maintains relatively
less variability of losses throughout the training.
This result suggests that overconfident predictions
(unusually low loss examples) can be an indication
of the model utilizing biases. This is in line with
the finding of Utama et al. (2020), which shows
that regularizing confidence on biased examples
leads to improved robustness against biases.

Bias identification stability Researchers have
recently observed large variability in the general-
ization performance of fine-tuned BERT model
(Mosbach et al., 2020; Zhang et al., 2020), espe-
cially in the out-of-distribution evaluation settings
(McCoy et al., 2019a; Zhou et al., 2020). This
may raise concerns on whether our shallow models,
which are trained on the sub-sample of the training
data, can consistently learn to rely mostly on biases.
We, therefore, train 10 instances of shallow models
on the MNLI dataset using different random seeds
(for classifier’s weight initialization and training
sub-sampling). For evaluation, we perform two dif-
ferent partitionings of MNLI dev set based on the
output of two simple hand-crafted models, which
use lexical overlap and hypothesis-only features
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Figure 6: Evaluation of 10 shallow model instances on
easy/hard partitioning of MNLI dev based on the pres-
ence of lexical overlap and hypothesis-only biases. The
results suggest the stability of shallow models in captur-
ing the two biases.

(Gururangan et al., 2018), respectively. The stabil-
ity of bias utilization across the runs is evaluated
by measuring their performance on easy and hard
subsets of each partitioning, where examples that
simple models predicted correctly belong to easy
and the rest belong to hard.9

Figure 6 shows the results. We observe small
variability in the overall dev set performance which
ranges in 61-65% accuracy. Similarly, the models
obtain consistently higher accuracy on the easy
subsets over the hard ones: 79-85% vs. 56-59%
on the lexical-overlap partitioning and 72-77% vs.
48-50% on the hypothesis-only partitioning. The
results indicate that: 1) the bias-reliant behavior of
shallow models is stable; and 2) shallow models
capture multiple types of bias. However, we also
observe one rare instance of the shallow model that
fails to converge during training and is stuck at
making random predictions (33% in MNLI). This
may indicate that the biased examples are under-
sampled in that particular run. In that case, we
can easily spot this undesired behavior, discard the
model, and perform another sampling.

6 Related Work

The artifacts of large scale dataset collections re-
sult in dataset biases that allow models to perform
well without learning the intended reasoning skills.
In NLI, models can perform better than chance
by only using the partial input (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018) or by
basing their predictions on whether the inputs are
highly overlapped (McCoy et al., 2019b; Dasgupta

9Although this may seem to be against the spirit of not
using prior knowledge about the biases, we believe that this
step is necessary to show the stability of the shallow models
and to validate if they indeed capture the intended biases.

et al., 2018). Similar phenomena exist in various
tasks, including argumentation mining (Niven and
Kao, 2019), reading comprehension (Kaushik and
Lipton, 2018), or story cloze completion (Schwartz
et al., 2017; Cai et al., 2017). To allow a better
evaluation of models’ reasoning capabilities, re-
searchers constructed challenge test sets composed
of “counterexamples” to the spurious shortcuts that
models may adopt (Jia and Liang, 2017; Glockner
et al., 2018; Zhang et al., 2019; Naik et al., 2018).
Models evaluated on these sets often fall back to
random baseline performance.

There has been a flurry of work in dynamic
dataset construction to systematically reduce
dataset biases through adversarial filtering (Zellers
et al., 2018; Sakaguchi et al., 2020; Bras et al.,
2020) or human in the loop (Nie et al., 2019b;
Kaushik et al., 2020; Gardner et al., 2020). While
promising, researchers also show that newly con-
structed datasets may not be fully free of hidden
biased patterns (Sharma et al., 2018). It is thus
crucial to complement the data collection efforts
with learning algorithms that are more robust to
biases, such as the recently proposed product-of-
expert (Clark et al., 2019; He et al., 2019; Mahabadi
et al., 2020), confidence regularization (Utama
et al., 2020), or adversarial training (Belinkov et al.,
2019b). Despite their effectiveness, these methods
are limited by their assumption on the availabil-
ity of information about the task-specific biases.
Our framework aims to alleviate this limitation and
enable them to address unknown biases. In the
same vein as ours, Yaghoobzadeh et al. (2019) and
Sanh et al. (2021) identify biased training instances
automatically via “example forgetting” measure
(Toneva et al., 2019) and limited capacity models,
respectively. Lastly, Tu et al. (2020) incorporate
auxiliary datasets through multi-task learning to
improve model’s robustness without strong a priori
knowledge about the biases.

7 Conclusion

We present a general self-debiasing framework to
address the impact of unknown dataset biases by
omitting the need for thorough dataset-specific
analysis to discover the types of biases for each
new dataset. We adopt the existing debiasing meth-
ods into our framework and enable them to obtain
equally high improvements on several challenge
test sets without targeting a specific bias. The eval-
uation also suggests that our framework results



in better overall robustness compared to the bias-
specific counterparts. Based on our analysis, future
work in the direction of automatic bias mitigation
may include identifying potentially biased exam-
ples in an online fashion and discouraging models
from exploiting them throughout the training.
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A Natural Language Inference

Main model We finetune the BERT base model
for all settings (baseline, known-bias, and self-
debiasing) using default parameters: 3 epochs of
training with learning rate 5−5. An exception is
made for product-of-expert and confidence regular-
ization, where we follow He et al. (2019) to run the
training longer, i.e. 5 epochs.

Shallow model The shallow model for MNLI is
trained on 2K of examples for 3 epochs using the
default learning rate of 5−5.

B Fact verification

Main model We follow Schuster et al. (2019) in
finetuning the BERT base model on FEVER dataset
using the following parameters: learning rate 2−5

and 3 epochs of training.

Shallow model The shallow model can be
trained in lesser amount of data, 500 examples. We
train the model for 5 epochs with the same learning
rate, 2−5.

C Paraphrase Identification

Main model We follow Utama et al. (2020) in
setting the parameters for training a QQP model:
learning rate 2−5 and 3 epochs of training.

Shallow model Similar to FEVER, we train the
shallow model using only 500 examples. It con-
verges in 4 epochs using the same learning rate,
2−5.

D Synthetic MNLI Results

We report the final accuracy of models when trained
on our synthetic bias datasets. We show that the
anti-biased accuracy correlates negatively with the
proportion of the biased examples. We present the
results in Table 3.

Bias prop. test sets
original biased anti-biased

0.9 83.6 ⇐ 97.1 =⇒ 61.7 ⇐=

0.8 83.7 ⇐ 95.3 =⇒ 70.4 ⇐=

0.7 83.9 ⇐ 92.8 ⇒ 75.5 ⇐
0.6 84.1 = 90.9 ⇒ 78.5 ⇐

Table 3: Final accuracy of models trained on synthetic
bias datasets.

E Detailed HANS Results

HANS dataset (McCoy et al., 2019b) consist of
three subsets, covering different inference phenom-
ena which happen to have lexical overlap: (a) Lex-
ical overlap e.g., “The doctor was paid by the ac-
tor” vs. “The doctor paid the actor”; (b) Subse-
quence, e.g., “The doctor near the actor danced”
vs. “The actor danced”; and (c) Constituent e.g.,
“If the artist slept, the actor ran” vs. “The artist
slept”. Each subset contains examples of both en-
tailment and non-entailment. The 3-way predic-
tions on MNLI is mapped to HANS by taking max
pool between neutral and contradiction labels. We
present the results of our experiments in Table 4.

Method HANS all sets (Acc.)
Lex Lex. Sub. Sub. Con. ¬Con.

BERT-base 96.0 51.8 99.5 7.4 99.4 14.5

Rew. self-debias 81.3 73.3 94.7 34.5 92.8 42.3
Rew. ♠ self-debias 84.7 77.1 96.0 30.5 95.3 37.4

PoE self-debias 77.0 73.6 92.1 42.2 89.3 49.8
PoE ♠ self-debias 78.5 67.7 91.3 28.6 95.4 45.1

Conf-reg self-debias 81.8 78.2 93.7 31.7 95.1 31.5
Conf-reg ♠ self-debias 87.4 74.5 96.3 27.4 95.1 26.6

Table 4: Models’ performance on HANS challenge test
set (McCoy et al., 2019b). Column lex., con., and
sub. stand for lexical overlap, constituency, and sub-
sequence, respectively. The (¬) symbol indicates the
non-entailment subset.
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Abstract

Recent prompt-based approaches allow pre-
trained language models to achieve strong per-
formances on few-shot finetuning by reformu-
lating downstream tasks as a language mod-
eling problem. In this work, we demon-
strate that, despite its advantages on low data
regimes, finetuned prompt-based models for
sentence pair classification tasks still suffer
from a common pitfall of adopting inference
heuristics based on lexical overlap, e.g., mod-
els incorrectly assuming a sentence pair is of
the same meaning because they consist of the
same set of words. Interestingly, we find
that this particular inference heuristic is sig-
nificantly less present in the zero-shot evalu-
ation of the prompt-based model, indicating
how finetuning can be destructive to useful
knowledge learned during the pretraining. We
then show that adding a regularization that pre-
serves pretraining weights is effective in mit-
igating this destructive tendency of few-shot
finetuning. Our evaluation on three datasets
demonstrates promising improvements on the
three corresponding challenge datasets used to
diagnose the inference heuristics.1

1 Introduction

Prompt-based finetuning has emerged as a promis-
ing paradigm to adapt Pretrained Language Models
(PLM) for downstream tasks with limited number
of labeled examples (Schick and Schütze, 2021a;
Radford et al., 2019). This approach reformulates
downstream task instances as a language modeling
input,2 allowing PLMs to make non-trivial task-
specific predictions even in zero-shot settings. This
in turn, provides a good initialization point for data
efficient finetuning (Gao et al., 2021), resulting in

1The code is available at https://github.com/
UKPLab/emnlp2021-prompt-ft-heuristics

2E.g., appending a cloze prompt “It was [MASK]” to a
sentiment prediction input sentence “Delicious food!”, and
obtaining the sentiment label by comparing the probabilities
assigned to the words “great” and “terrible”.

a strong advantage on low data regimes where the
standard finetuning paradigm struggles. However,
the success of this prompting approach has only
been shown using common held-out evaluations,
which often conceal certain undesirable behaviors
of models (Niven and Kao, 2019).

One such behavior commonly reported in down-
stream models is characterized by their preference
to use surface features over general linguistic in-
formation (Warstadt et al., 2020). In the Natu-
ral Language Inference (NLI) task, McCoy et al.
(2019) documented that models preferentially use
the lexical overlap feature between sentence pairs
to blindly predict that one sentence entails the other.
Despite models’ high in-distribution performance,
they often fail on counterexamples of this inference
heuristic, e.g., they predict that “the cat chased the
mouse” entails “the mouse chased the cat”.

At the same time, there is a mounting evidence
that pre-training on large text corpora extracts rich
linguistic information (Hewitt and Manning, 2019;
Tenney et al., 2019). However, based on recent
studies, standard finetuned models often overlook
this information in the presence of lexical overlap
(Nie et al., 2019; Dasgupta et al., 2018). We there-
fore question whether direct adaptation of PLMs us-
ing prompts can better transfer the use of this infor-
mation during finetuning. We investigate this ques-
tion by systematically studying the heuristics in a
prompt-based model finetuned across three datasets
with varying data regimes. Our intriguing results
reveal that: (i) zero-shot prompt-based models are
more robust to using the lexical overlap heuristic
during inference, indicated by their high perfor-
mance on the corresponding challenge datasets; (ii)
however, prompt-based finetuned models quickly
adopt this heuristic as they learn from more labeled
data, which is indicated by gradual degradation of
the performance in challenge datasets.

We then show that regularizing prompt-based
finetuning, by penalizing the learning from up-



dating the weights too far from their original pre-
trained values, is an effective approach to improve
the in-distribution performance on target datasets,
while mitigating the adoption of inference heuris-
tics. Overall, our work suggests that while prompt-
based finetuning has gained impressive results on
standard benchmarks, it can has a negative impact
regarding inference heuristics, which in turn sug-
gests the importance of a more thorough evaluation
setup to ensure meaningful progress.

2 Inference Heuristics in Prompt-based
Finetuning

Prompt-based PLM Finetuning In this work,
we focus on sentence pairs classification tasks,
where the goal is to predict semantic relation y
of an input pair x = (s1, s2). In a standard finetun-
ing setting, s1 and s2 are concatenated along with
a special token [CLS], whose embedding is used
as an input to a newly initialized classifier head.

The prompt-based approach, on the other hand,
reformulates pair x as a masked language model
input using a pre-defined template and word-to-
label mapping. For instance, Schick and Schütze
(2021a) formulate a natural language inference in-
stance (s1, s2, y) as:

[CLS]s1?[MASK], s2[SEP]

with the following mapping for the masked token:
“yes”→ “entailment”, “maybe”→“neutral”, and
“no”→ “contradiction”. The probabilities assigned
by the PLM to the label words at the [MASK] to-
ken can then be directly used to make task-specific
predictions, allowing PLM to perform in a zero-
shot setting. Following Gao et al. (2021), we fur-
ther finetune the prompt-based model on the avail-
able labeled examples for each task. Note that this
procedure finetunes only the existing pre-trained
weights, and does not introduce new parameters.

Task and Datasets We evaluate on three English
language datasets included in the GLUE bench-
mark (Wang et al., 2018) for which there are chal-
lenge datasets to evaluate the lexical overlap heuris-
tic: MNLI (Williams et al., 2018), SNLI (Bowman
et al., 2015), and Quora Question Pairs (QQP). In
MNLI and SNLI, the task is to determine whether
premise sentence s1 entails, contradicts, or is neu-
tral to the hypothesis sentence s2. In QQP, s1 and
s2 are a pair of questions that are labeled as either
duplicate or non-duplicate.

Original Input

Premise The actors that danced saw the author.
Hypothesis The actors saw the author.
Label entailment (support)

Premise The managers near the scientist resigned.
Hypothesis The scientist resigned.
Label non-entailment (against)

Reformulated Input

Premise The actors that danced saw the author?
[MASK], the actors saw the author.

Label word Yes

Premise The managers near the scientist resigned?
[MASK], the scientist resigned.

Label word No / Maybe

Table 1: Top: input examples of the NLI task that sup-
port or are against the lexical overlap heuristics. Bot-
tom: reformulated NLI instances as masked language
model inputs with the expected label words.

Researchers constructed corresponding chal-
lenge sets for the above datasets, which are de-
signed to contain examples that are against the
heuristics, i.e., the examples exhibit word overlap
between the two input sentences but are labeled as
non-entailment for NLI or non-duplicate for QQP.
We evaluate each few-shot model against its corre-
sponding challenge dataset. Namely, we evaluate
models trained on MNLI against entailment and
non-entailment subsets of the HANS dataset (Mc-
Coy et al., 2019), which are further categorized into
lexical overlap (lex.), subsequence (subseq.), and
constituent (const.) subsets; SNLI models against
the long and short subsets of the Scramble Test
challenge set (Dasgupta et al., 2018); and QQP
models against the PAWS dataset (Zhang et al.,
2019).3 We illustrate challenge datasets examples
and their reformulation as prompts in Table 1.

Model and Finetuning Our training and stan-
dard evaluation setup closely follow Gao et al.
(2021), which measure finetuning performances
across five different randomly sampled training
data of size K to account for finetuning instabil-
ity on small datasets (Dodge et al., 2020; Mos-
bach et al., 2021). We perform five data subsam-
pling for each dataset and each data size K, where
K ∈ {16, 32, 64, 128, 256, 512}. Note that K indi-
cates the number of examples per label. We use the
original development sets of each training dataset
for testing the in-distribution performance. We per-

3See appendix A for details of HANS, PAWS, and Scram-
ble Test test sets.
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Figure 1: In-distribution (bold) vs. challenge datasets (italic) evaluation results of prompt-based finetuning across
different data size K (x axis), where K = 0 indicates zero-shot evaluation. In all challenge sets, the overall
zero-shot performance (both blue and green plots) degrades as the model is finetuned using more data.

form all experiments using the RoBERTa-large
model (Liu et al., 2019b).

Inference heuristics across data regimes We
show the results of the prompt-based finetun-
ing across different K in Figure 1. For the in-
distribution evaluations (leftmost of each plot), the
prompt-based models finetuned on MNLI, SNLI,
and QQP improve rapidly with more training data
before saturating at K = 512. In contrast to
the in-distribution results, we observe a different
trajectory of performance on the three challenge
datasets. On the Scramble and HANS sets, prompt-
based models show non-trivial zero-shot perfor-
mance (K = 0) that is above its in-distribution
counterpart. However, as more data is available,
the models exhibit stronger indication of adopting
heuristics. Namely, the performance on examples
subset that support the heuristics increases, while
the performance on cases that are against heuris-
tics decreases. This pattern is most pronounced on
the lexical overlap subset of HANS, where the me-
dian accuracy on non-entailment subset drops to be-
low 10% while the entailment performance reaches
100%. The results suggest that few-shot finetun-
ing can be destructive against the initial ability of
prompt-based classifier to ignore surface features
like lexical overlap. Finetuning appears to over-
adjust model parameters to the small target data,
which contain very few to no counter-examples to
the heuristics (Min et al., 2020; Lovering et al.,
2021).

3 Avoiding Inference Heuristics

Here we look to mitigate the adverse impact of
finetuning by viewing the issue as an instance of
catastrophic forgetting (French, 1999), which is
characterized by the loss of performance on the
original dataset after subsequent finetuning on new
data. We then propose a regularized prompt-based
finetuning based on the Elastic Weight Consoli-
dation (EWC) method (Kirkpatrick et al., 2017),
which penalizes updates on weights crucial for
the original zero-shot performance. EWC iden-
tifies these weights using empirical Fisher matrix
(Martens, 2020), which requires samples of the
original dataset. To omit the need of accessing the
pretraining data, we follow Chen et al. (2020) that
assume stronger independence between the Fisher
information and the corresponding weights. The
penalty term is now akin to the L2 loss between
updated weights θi and the original weights θ∗i ,
resulting in the following overall loss:

LrFT = αLFT + (1− α)λ
2

∑

i

(θi − θ∗i )2

where LFT is a standard cross entropy, λ is a
quadratic penalty coefficient, and α is a coefficient
to linearly combine the two terms. We use the
RecAdam implementation (Chen et al., 2020) for
this loss, which also applies an annealing mecha-
nism to gradually upweight the standard loss LFT

toward the end of training.4

4See Appendix A for implementation details.



MNLI (acc.) QQP (F1) SNLI (acc.)
In-dist. HANS avg. In-dist. PAWS avg. In-dist. Scramble avg.

Prompt-based

zero-shot #0 51.1 62.6 56.8 35.4 51.8 43.6 49.7 64.7 57.2

FT #512 84.3 54.8 69.5 82.1 29.6 55.8 88.1 50.1 69.1

rFT #512 82.7 60.2 71.5 81.5 37.1 59.3 87.6 55.4 71.5

FT-fix18 #512 76.5 61.6 69.1 78.6 35.6 57.1 84.5 45.3 64.9
FT-fix12 #512 83.5 54.3 68.9 81.9 35.3 57.1 87.1 50.5 68.8

FT-fix6 #512 84.2 52.9 68.5 82.1 32.7 57.4 87.9 50.1 68.9

Classifier head

FT #512 81.4 52.6 67.0 80.9 26.8 53.8 86.5 49.8 68.1

Table 2: Results of different strategies for finetuning prompt-based model (using #k examples). Models are evalu-
ated against the in-distribution set and corresponding challenge sets. The zero-shot row indicates prompting results
before finetuning. The avg columns report the average score on in-distribution and challenge datasets.

Baselines We compare regularized finetuning
with another method that also minimally update the
pretraining weights. We consider simple weight
fixing of the first n layers of the pretrained model,
where the n layers are frozen (including the token
embeddings) and only the weights of upper layers
and LM head are updated throughout the finetun-
ing. In the evaluation, we use n ∈ {6, 12, 18}. We
refer to these baselines as FT-fixn.

Results We evaluate all the considered finetun-
ing strategies by taking their median performance
after finetuning on 512 examples (for each la-
bel) and compare them with the original zero-shot
performance. We report the results on Table 2,
which also include the results of standard classifier
head finetuning (last row). We observe the follow-
ing: (1) Freezing the layers has mixed challenge
set results, e.g., FT-fix18 improves over vanilla
prompt-based finetuning on HANS and PAWS, but
degrades Scramble and all in-distribution perfor-
mances; (2) The L2 regularization strategy, rFT,
achieves consistent improvements on the challenge
sets while only costs small drop on the correspond-
ing in-distribution performance, e.g., +6pp, +8pp,
and +5pp on HANS, PAWS, and Scramble, respec-
tively; (3) Although vanilla prompt-based finetun-
ing performs relatively poorly, it still has an ad-
vantage over standard classifier head finetuning by
+2.5pp, +2.0pp, and +1.0pp on the average scores
of each in-distribution and challenge dataset pair.

Additionally, Figure 2 shows rFT’s improvement
over vanilla prompt-based finetuning across data
regimes on MNLI and HANS. We observe that the
advantage of rFT is the strongest on the lexical
overlap subset, which initially shows the highest

MNLI

Lex-overlap (ent)

Lex-overlap (non)
Const. (ent)

Const. (non)

Subseq. (ent)

Subseq. (non)

512

256

128

64

32

16

-1.60 -2.68 25.56 -3.18 17.88 -8.70 9.82

-2.41 -2.38 27.28 -6.52 7.76 -3.42 8.52

-3.65 -2.54 36.26 -2.90 7.76 1.22 11.48

-6.40 -11.96 39.10 -11.68 17.84 -7.32 20.34

-5.63 -15.26 41.26 -2.64 17.24 -10.12 19.12

-3.34 -9.42 32.72 -2.94 15.02 -9.14 8.94

MNLI / HANS

40

20

0

20

40

Figure 2: Relative difference between median accuracy
of prompt-based finetuning across data regimes (y axis)
with and without regularization on MNLI and HANS.

zero-shot performance. The results also suggest
that the benefit of rFT peaks at mid data regimes
(e.g., K = 32), before saturating when training
data size is increased further. We also note that our
results are consistent when we evaluate alternative
prompt templates, or finetune for varying number
of epochs.5 The latter indicates that the adoption
of inference heuristics is more likely attributed to
the amount of training examples rather than the
number of learning steps.

4 Related Work

Inference Heuristics Our work relates to a large
body of literature on the problem of “bias” in the
training datasets and the ramifications to the result-
ing models across various language understanding
tasks (Niven and Kao, 2019; Poliak et al., 2018;
Tsuchiya, 2018; Gururangan et al., 2020). Previ-

5See Appendix B for the detailed results.



ous work shows that the artifacts of data annota-
tions result in spurious surface cues, which gives
away the labels, allowing models to perform well
without properly learning the intended task. For
instance, models are shown to adopt heuristics
based on the presence of certain indicative words
or phrases in tasks such as reading comprehension
(Kaushik and Lipton, 2018), story cloze completion
(Schwartz et al., 2017; Cai et al., 2017), fact verifi-
cation (Schuster et al., 2019), argumentation min-
ing (Niven and Kao, 2019), and natural language
inference (Gururangan et al., 2020). Heuristics
in models are often investigated using constructed
“challenge datasets” consisting of counter-examples
to the spurious cues, which mostly result in incor-
rect predictions (Jia and Liang, 2017; Glockner
et al., 2018; Naik et al., 2018; McCoy et al., 2019).
Although the problem has been extensively stud-
ied, most works focus on models that are trained
in standard settings where larger training datasets
are available. Our work provides new insights in
inference heuristics in models that are trained in
zero- and few-shot settings.

Heuristics Mitigation Significant prior work at-
tempt to mitigate the heuristics in models by im-
proving the training dataset. Zellers et al. (2019);
Sakaguchi et al. (2020) propose to reduce artifacts
in the training data by using adversarial filtering
methods; Nie et al. (2020); Kaushik et al. (2020)
aim at a similar improvement via iterative data col-
lection using human-in-the-loop; Min et al. (2020);
Schuster et al. (2021); Liu et al. (2019a); Rozen
et al. (2019) augment the training dataset with
adversarial instances; and Moosavi et al. (2020a)
augment each training instances with their seman-
tic roles information. Complementary to this, re-
cent work introduces various learning algorithms to
avoid adopting heuristics including by re-weighting
(He et al., 2019; Karimi Mahabadi et al., 2020;
Clark et al., 2020) or regularizing the confidence
(Utama et al., 2020a; Du et al., 2021) on the training
instances which exhibit certain biases. The type of
bias can be identified automatically (Yaghoobzadeh
et al., 2021; Utama et al., 2020b; Sanh et al., 2021;
Clark et al., 2020) or by hand-crafted models de-
signed based on prior knowledge about the bias.
Our finding suggests that prompted zero-shot mod-
els are less reliant on heuristics when tested against
examples containing the cues, and preserving this
learned behavior is crucial to obtain more robust
finetuned models.

Efficiency and Robustness Prompting formula-
tion enables language models to learn efficiently
from a small number of training examples, which
in turn reduces the computational cost for training
(Le Scao and Rush, 2021). The efficiency bene-
fit from prompting is very relevant to the larger
efforts towards sustainable and green NLP mod-
els (Moosavi et al., 2020b; Schwartz et al., 2020a)
which encompass a flurry of techniques includ-
ing knowledge distillation (Hinton et al., 2015;
Sanh et al., 2019), pruning (Han et al., 2015),
quantization (Jacob et al., 2018), and early exiting
(Schwartz et al., 2020b; Xin et al., 2020). Recently,
Hooker et al. (2020) show that methods improv-
ing compute and memory efficiency using pruning
and quantization may be at odds with robustness
and fairness. They report that while performance
on standard test sets is largely unchanged, the per-
formance of efficient models on certain underrep-
resented subsets of the data is disproportionately
reduced, suggesting the importance of a more com-
prehensive evaluation to estimate overall changes
in performance.

5 Conclusion

Our experiments shed light on the negative impact
of low resource finetuning to the models’ overall
performance that is previously obscured by stan-
dard evaluation setup. The results indicate that
while finetuning helps prompt-based models to
rapidly gain the in-distribution improvement as
more labeled data are available, it also gradually
increases models’ reliance on surface heuristics,
which we show to be less present in the zero-shot
evaluation. We further demonstrate that applying
regularization that preserves pretrained weights dur-
ing finetuning mitigates the adoption of heuristics
while also maintains high in-distribution perfor-
mances.
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A Experimental Details

Manual templates and mapping We use the
following prompt templates and word-to-label map-
ping for the three tasks we evaluate on:

Template Label Words

MNLI (manual): entailment, neutral, contradiction

s1?[MASK], s2 Yes, Maybe, No

SNLI (manual): entailment, neutral, contradiction

s1?[MASK], s2 Yes, Maybe, No

QQP (manual): duplicate, non-duplicate

s1[MASK], s2 Yes, No

MNLI (auto): entailment, neutral, contradiction

s1.[MASK], you are right , s2 Fine, Plus, Otherwise
s1.[MASK], you’re right , s2 There, Plus, Otherwise
s1.[MASK] ! s2 Meaning, Plus, Otherwise

Table 3: Templates and label words used to finetune
and evaluate on MNLI, SNLI, and QQP.

The last 3 rows are automatically generated tem-
plates and label words that are shown by Gao et al.
(2021) to improve the few-shot finetuning further.
Note that we use the corresponding task’s template
when evaluating on the challenge datasets.

Challenge datasets We provide examples from
each challenge datasets considered in our evalua-
tion to illustrate sentence pairs that support or are
against the heuristics. Table 4 shows examples for
HANS, PAWS, and Scramble Test. Following Mc-
Coy et al. (2019), we obtain the probability for the
non-entailment label by summing the probabilities
assigned by models trained on MNLI to the neutral
and contradiction labels. We use the same-type sub-
set of Scramble Test (Dasgupta et al., 2018) which
contain examples of both entailment (support) and
contradiction (against) relations.

HANS details HANS dataset is designed based
on the insight that the word overlapping between
premise and hypothesis in NLI datasets is spuri-
ously correlated with the entailment label. HANS
consists of examples in which relying to this corre-
lation leads to incorrect label, i.e., hypotheses are
not entailed by their word-overlapping premises.
HANS is split into three test cases: (a) Lexical
overlap (e.g., “The doctor was paid by the ac-
tor” → “The doctor paid the actor”), (b) Subse-
quence (e.g., “The doctor near the actor danced”
→ “The actor danced”), and (c) Constituent (e.g.,
“If the artist slept, the actor ran” → “The artist

HANS (McCoy et al., 2019)

premise The artists avoided the senators that
thanked the tourists.

hypothesis The artists avoided the senators.
label entailment (support)

premise The managers near the scientist resigned.
hypothesis The scientist resigned.
label non-entailment (against)

PAWS (Zhang et al., 2019)

S1 What are the driving rules in Georgia ver-
sus Mississippi?

S2 What are the driving rules in Mississippi
versus Georgia?

label duplicate (support)

S1 Who pays for Hillary’s campaigning for
Obama?

S2 Who pays for Obama’s campaigning for
Hillary?

label non-duplicate (against)

Scramble Test (Dasgupta et al., 2018)

premise The woman is more cheerful than the man.
hypothesis The woman is more cheerful than the man.
label entailment (support)

premise The woman is more cheerful than the man.
hypothesis The man is more cheerful than the woman.
label contradiction (against)

Table 4: Sampled examples from each of the challenge
datasets we used for evaluation.

slept”). Each subset contains both entailment and
non-entailment examples that always exhibit word
overlap.

Hyperparameters Following Schick and
Schütze (2021b,a), we use a fixed set of hyperpa-
rameters for all finetuning: learning rate of 1e−5,
batch size of 8, and maximum length size of 256.

Regularization implementation We use the
RecAdam implementation by Chen et al. (2020)
with the following hyperparameters. We set the
quadratic penalty λ to 5000, and the linear combi-
nation factor α is set dynamically throughout the
training according to a sigmoid function schedule,
where α at step t is defined as:

α = s(t) =
1

1 + exp(−k · (t− t0))
where parameter k regulates the rate of the sigmoid,
and t0 sets the point where s(t) goes above 0.5. We
set k to 0.01 and t0 to 0.6 of the total training steps.

B Additional Results

Standard CLS finetuning Previously, Gao et al.
(2021) reported that the performance of standard
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Figure 3: Results of prompt-based finetuning with varying number of epochs and fixed amount of training exam-
ples. Top: finetuning on 32 examples per label for epochs ranging from 10 to 50. Bottom: finetuning on 512
examples per label for 1 to 9 epochs. Both results show an immediate drop of non-entailment HANS performances
which later stagnate even after more training steps.
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Figure 4: Results of non-prompt finetuning.

non-prompt finetuning with additional classifier
head (CLS) can converge to that of prompt-based
counterpart after certain amount of data, e.g., 512.
It is then interesting to compare both finetuning
paradigm in terms of their heuristics-related behav-
ior. Figure 4 shows the results of standard fine-
tuning using standard classifier head across vary-
ing data regimes on MNLI and the 3 subsets of
HANS. We observe high instability of the results
when only small amount of data is available (e.g.,
K = 64). The learning trajectories are consistent
across the HANS subsets, i.e., they start making
random predictions on lower data regime and im-

MNLI (acc.)
IN HANS

manual 51.1 62.6
manual Ft-#512 84.3 54.8

template-1 46.3 62.0
template-1 Ft-#512 84.2 53.2

template-2 49.9 61.3
template-2 Ft-#512 83.9 52.7

template-3 44.5 61.7
template-3 Ft-#512 84.4 56.0

Table 5: Evaluation results of different MNLI tem-
plates provided by Gao et al. (2021). Models are evalu-
ated against both the in-distribution (IN) set and corre-
sponding challenge set of MNLI.

mediately adopt heuristics by predicting almost all
examples exhibiting lexical overlap as entailment.
We observe that standard prompt-based finetun-
ing still performs better than CLS finetuning, indi-
cating that prompt-based approach provides good
initialization to mitigate heuristics, and employ-
ing regularization during finetuning can improve
the challenge datasets (out-of-distribution) perfor-
mance further.

Impact of prompt templates A growing num-
ber of work propose varying prompt generation
strategies to push be benefits of prompt-based pre-
dictions (Gao et al., 2021; Schick et al., 2020). We



MNLI (acc.) QQP (F1) SNLI (acc.)
In. HANS avg. In. PAWS avg. In. Scramble avg.

zero-shot RoBERTa-large 51.1 62.6 56.8 35.4 51.8 43.6 49.7 64.7 57.2
FT #512 RoBERTa-large 84.3 54.8 69.5 82.1 29.6 55.8 88.1 50.1 69.1

zero-shot RoBERTa-base 48.2 58.1 53.15 37.3 41.5 39.4 48.8 56.4 52.6
FT #512 RoBERTa-base 74.4 49.9 62.15 79.0 26.9 52.9 83.7 48.5 66.1

zero-shot BERT-large-uncased 45.3 55.4 50.4 34.7 33.4 34.0 41.5 54.8 48.1
FT #512 BERT-large-uncased 70.9 50.0 60.4 77.3 26.3 51.8 79.9 49.5 64.7

zero-shot BERT-base-uncased 43.5 55.9 49.7 40.7 50.8 45.8 38.7 49.9 44.3
FT #512 BERT-base-uncased 63.2 50.1 56.65 73.9 29.1 51.5 74.5 42.6 58.5

Table 6: Evaluation results of different pretrained language models. Models are evaluated against both the in-
distribution (In.) set and corresponding challenge set.
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Figure 5: Relative difference between median accuracy
of prompt-based finetuning across data regimes (y axis)
with and without regularization on QQP / PAWS and
SNLI / Scramble Test.

therefore questions whether different choices of
templates would affect the model’s behavior re-
lated to lexical overlap. We evaluate the 3 top-
performing templates for MNLI that are obtained
automatically by Gao et al. (2021) and show the
results in Table 5. We observe similar behavior
from the resulting models over the manual prompt
counterpart, achieving HANS average accuracy of
around 62% and below 55% on zero-shot and fine-
tuning with 512 examples.

Impact of learning steps We investigate the
degradation of the challenge datasets performance
as the function of the number of training data
available during finetuning. However, adding
more training examples while fixing the number
of epochs introduces a confound factor to our find-
ing, which is the number of learning steps to the
model’s weights. To factor out the number of steps,
we perform similar evaluation with a fixed amount
of training data and varying number of training
epochs. On 32 examples per label, we finetune
for 10, 20, 30, 40, and 50 epochs. Additionally,

we finetune on 512 examples for 1 until 10 epochs
to see if the difference in learning steps results in
different behavior. We plot the results in Figure
3. We observe that both finetuning settings result
in similar trajectories, i.e., models start to adopt
heuristics immediately in early epochs and later
stagnate even with increasing number of learning
steps. For instance, finetuning on 32 examples for
the same number of training steps as in 512 ex-
amples finetuning for 1 epoch still result in higher
overall HANS performance. We conclude that the
number of finetuning data plays a more signifi-
cant role over the number of training steps. Intu-
itively, larger training data is more likely to contain
more examples that disproportionately support the
heuristics; e.g. NLI pairs with lexical overlap are
rarely of non-entailment relation (McCoy et al.,
2019).

Regularization across data regimes Figure 5
shows the results improvement of L2 weight regu-
larization over vanilla prompt-based finetuning on
QQP and SNLI. Similar to results in MNLI/HANS,
the improvements are highest on mid data regimes,
e.g., 32 examples per label.

Impact of pretrained model In addition to
evaluating RoBERTa-large, we also evalu-
ate on other commonly used pretrained lan-
guage models based on transformers such as
RoBERTa-base, BERT-base-uncased, and
BERT-large-uncased. The results are shown
in Table 6. We observe similar pattern across PLMs,
i.e., improved in-distribution scores come at the
cost of the degradation in the corresponding chal-
lenge datasets.
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Abstract

Neural abstractive summarization models are
prone to generate summaries which are fac-
tually inconsistent with their source docu-
ments. Previous work has introduced the task
of recognizing such factual inconsistency as a
downstream application of natural language in-
ference (NLI). However, state-of-the-art NLI
models perform poorly in this context due to
their inability to generalize to the target task.
In this work, we show that NLI models can be
effective for this task when the training data
is augmented with high-quality task-oriented
examples. We introduce Falsesum, a data gen-
eration pipeline leveraging a controllable text
generation model to perturb human-annotated
summaries, introducing varying types of fac-
tual inconsistencies. Unlike previously intro-
duced document-level NLI datasets, our gen-
erated dataset contains examples that are di-
verse and inconsistent yet plausible. We show
that models trained on a Falsesum-augmented
NLI dataset improve the state-of-the-art perfor-
mance across four benchmarks for detecting
factual inconsistency in summarization.1

1 Introduction

Recent advances in conditional text generation and
the availability of large-scale datasets have given
rise to models which generate highly fluent ab-
stractive summaries (Lewis et al., 2019; Zhang
et al., 2019). However, studies indicate that such
models are susceptible to generating factually in-
consistent outputs, i.e., where the content of the
summary is not semantically entailed by the in-
put document (Kryscinski et al., 2019; Goodrich
et al., 2019). This motivates a new line of research
for recognizing factual inconsistency in generated
summaries (Kryscinski et al., 2020; Pagnoni et al.,
2021; Wang et al., 2020; Fabbri et al., 2021).

1The code to obtain the dataset is available online at
https://github.com/joshbambrick/Falsesum

This factual consistency problem is closely re-
lated to the task of natural language inference (NLI)
whereby a hypothesis sentence is classified as ei-
ther entailed, neutral, or contradicted by a given
premise sentence (Condoravdi et al., 2003; Dagan
et al., 2006; Bowman et al., 2015). Using an in-
put document as the premise and a corresponding
generated summary as the hypothesis, earlier so-
lutions have adopted out-of-the-box NLI models
to detect factual inconsistency, albeit with limited
success (Falke et al., 2019; Kryscinski et al., 2020).

This poor performance largely stems from the
fact that most NLI datasets are not designed to
reflect the input characteristics of downstream
tasks (Khot et al., 2018). Such datasets may not
always capture the kinds of entailment phenom-
ena which naturally arise from neural abstractive
summarization. More importantly, there is also a
discrepancy in terms of the input granularity, i.e.,
the premises in this consistency classification task
consist of multi-sentence documents while com-
mon NLI datasets use single-sentence premises.

In this work, we introduce Falsesum, a data
generation pipeline that produces NLI examples
consisting of documents paired with gold sum-
maries as positive examples and automatically
generated inconsistent summaries as negative
examples. We propose a novel strategy to train a
text generation model to render false summaries
of a given document using only supervision from
an existing summarization dataset (Nallapati
et al., 2016). In addition, our generator supports
switchable input control codes to determine the
type of factual error exhibited in the generated
output. This design allows Falsesum to compose
diverse and naturalistic outputs which more closely
resemble the inconsistent summaries generated by
summarization models (Maynez et al., 2020). This
contrasts with previous solutions (e.g., Kryscinski
et al., 2020; Yin et al., 2021), which synthesize
NLI examples using rule-based transformations



Original document:
[...] Melbourne, currently in its sixth 
lockdown, will see some restrictions eased on 
this date, when 70 percent of eligible 
Victorians are expected to have received their 
first vaccination jab after the time between 
AstraZeneca jabs was cut to six weeks. [...]

Gold summary:
Australia's state of Victoria is currently under 
its sixth coronavirus lockdown.

Control code: [intrinsic / extrinsic]

Intrinsic error output:
Australia's state of 
Victoria is receiving their 
first vaccination jab  

Extrinsic error output:
Australia's state of 
Victoria is going back to 
normal 

intrinsic

extrinsic

Preprocessing

Formatting

Fine-tuned 
T5-base 

FALSESUM

A

B

C

D

E

   Generated NLI pairs:

    (         ,           , entailment)

    (         ,           , non-entailment)

    (         ,           , non-entailment)

A B

A D

A E

Figure 1: Overview of the Falsesum generation framework. Falsesum preprocesses and formats the source doc-
ument (A) and a gold summary (B) before feeding it to a fine-tuned generator model. The model produces a
factually inconsistent summary, which can then be used to obtain (A,D) or (A,E) as the negative (non-entailment)
NLI premise-hypothesis example pair. We also use the original (A,B) as a positive NLI example (entailment).

or language model-based replacements, limiting
their diversity and ability to reflect realistic factual
errors in summarization. Overall, our contributions
in this paper are the following:

First, we present a novel training pipeline to
create a text generation model which takes as input
a pair of a document and a corresponding gold
summary. It then perturbs the summary such that it
is no longer factually consistent with the original
document. Our strategy obviates the need for
explicit examples of inconsistent summaries, using
only an existing summarization dataset. We use
this model to generate a large-scale NLI dataset
for the task of recognizing factually inconsistent
summaries. The resultant dataset consists of pairs
with documents as the premise and naturalistic
summaries as the hypotheses, each labeled as
either entailment or non-entailment.

Second, we demonstrate the utility of our gen-
erated data for augmenting existing NLI datasets.
We show that on four benchmark datasets, NLI
models trained on Falsesum-augmented data out-
perform those trained on previous document-level
NLI datasets. We conduct an analysis to show that
Falsesum-generated summaries are plausible and
hard to distinguish from human-written summaries.
Lastly, we show that the improvement over the
benchmarks is largely attributable to the diversity
of factual errors that Falsesum introduces.

2 Related Work

This work is related to the growing body of re-
search into factual consistency and hallucination
in text generation models, particularly for summa-

rization (Cao et al., 2018). Research has found that
around 30% of summaries generated by abstractive
summarization models contain information which
is inconsistent with the source document (Kryscin-
ski et al., 2019). This motivates the development
of an automatic approach to assess factual consis-
tency in generated summaries, in addition to the
benchmark datasets to measure the progress in this
task (Falke et al., 2019; Kryscinski et al., 2020;
Pagnoni et al., 2021; Fabbri et al., 2021).

Earlier work by Goodrich et al. (2019) proposes
to use an information extraction model to extract
relation tuples from the ground-truth summary text
and the generated summary and then count the over-
lap as the measure of factuality. Eyal et al. (2019);
Durmus et al. (2020); Wang et al. (2020) use a
question-answering model to detect factual incon-
sistency by matching the predicted answers using
the document and the summary as the context.

Concurrently, researchers have drawn a connec-
tion between factual consistency and natural lan-
guage inference (NLI), observing that all infor-
mation in a summary should be entailed by the
source document. While this approach enables the
summary to be directly evaluated without first ex-
tracting its intermediate semantic structure, earlier
attempts were largely unsuccessful. Falke et al.
(2019) use the probabilities assigned to the entail-
ment label by NLI models to re-rank the summary
candidates given by beam search but found no im-
provement in the consistency errors. Kryscinski
et al. (2020) evaluate out-of-the-box NLI models
on the task of inconsistency detection in a binary
classification setting and show that the performance
is only slightly better than majority voting.

In the same paper, Kryscinski et al. (2020) pro-



pose FactCC, a synthetic NLI data generation pro-
cess which applies a set of transformation rules to
obtain examples of inconsistent summaries (e.g.,
sentence negation, entity swapping). They demon-
strate that the resulting NLI model performs well
on realistic test cases which are obtained by manu-
ally annotating the output of several summarization
models. This highlights the importance of NLI
examples beyond sentence-level granularity and
which more closely resemble the input characteris-
tics of the downstream tasks (Mishra et al., 2021).2

While the FactCC model is moderately effec-
tive for detecting factual inconsistency, subsequent
work indicates that it only performs well on easier
test cases, where highly extractive summaries (i.e.,
those with high lexical overlap between a summary
and the source document) tend to be factually con-
sistent and more abstractive summaries are likely to
be inconsistent (Zhang et al., 2020). Furthermore,
Goyal and Durrett (2021) show that the synthetic
and rule-based nature of FactCC leads to lack of
diversity of consistency error types and it poorly
aligns with the error distribution found in more
abstractive summaries.

Falsesum addresses these limitations using con-
trolled natural language generation to construct an
NLI dataset which better targets the summarization
domain. Inspired by the recent work on control-
lable generation (Keskar et al., 2019; Ross et al.,
2021), we employ a generation model conditioned
on an input code which controls the type of consis-
tency errors induced. We further use the generated
document-level NLI examples for augmentation
and show that NLI models can benefit from the
additional data without hurting their existing infer-
ence ability (Min et al., 2020).

3 Falsesum Approach

3.1 Design Overview

Falsesum takes as an input a source document D
and a corresponding reference summary S+. The
framework then preprocesses and formats D and
S+ and feeds them into a generation model G
which outputs a factually inconsistent summary
S−. For each summarization example, we then
have both positive (entailment) and negative (non-

2Contemporaneous work by Laban et al. (2022) attempts
to improve the application of sentence-level NLI models to
detect document-level factual inconsistencies using a learn-
able aggregation of sentence-level predictions. Our work is
orthogonal since they can benefit from better quality training
examples to train their aggregation weights.

entailment) NLI tuples (D, S+,Y = 1), (D, S−,Y =

0), which consist of a document-level premise, a
summary sentence, and the consistency label (1
indicates entailment).

Falsesum aims to produce a naturalistic S−

which is contrastive with respect to its correspond-
ing S+. This means that S+ and S− should be in-
distinguishable in their surface characteristics (e.g.,
style, length, vocabularies) and only differ in their
factual consistency with respect to D. This ensures
that the resulting NLI model learns the correct no-
tion of factual consistency rather than discriminat-
ing based on surface features (McCoy et al., 2019).
In addition to naturalness, we consider the diversity
of the consistency error types exhibited by S−. We
follow the consistency error typology introduced
by Maynez et al. (2020), which categorizes con-
sistency errors as either intrinsic, i.e., errors due
to incorrect consolidation of information from the
source document, or extrinsic, i.e., errors due to
assuming new information not directly inferable
from the contents of the source document.

As illustrated in Figure 1, a generation model
G is trained to imitate the consistency mistakes
of summarization models. Specifically, it gener-
ates perturbed summaries by either (1) incorrectly
inserting pieces of information from the source doc-
ument into random spans of the original summary;
or (2) amending pieces of information in the sum-
mary by hallucinating new “facts” not present in
the source document.

To this end, the framework identifies (♦i) what
information or “facts” in the source document are
available to the generator; and (♦ii) where the in-
correct information can be inserted into the gold
summary, which is indicated by span masking. We
obtain both by subsequently performing input pre-
processing and formatting steps (§3.2 and §3.3).

Next, we define the following seq2seq task to
train the modelG: “Given (♦i) a list of shuffled and
formatted pieces of information extracted from
source document and gold summary and (♦ii) a
partially masked gold summary, fill in the blanks
and generate the original gold summary.” Note
that using gold summaries means that we can apply
the existing summarization corpus to train G to
generate more coherent and plausible sentences.

3.2 Input Preprocessing

Following Goodrich et al. (2019), “facts” in the
source document and the gold summary are de-



fined as an open information extraction (OpenIE)
tuple, which represents the predicate and argument
structures found in a sentence. We denote each re-
lation tuple as (arg0, pred, . . . , argn), where predi-
cate pred describes the event (what happened) and
its complementing semantic arguments arg rep-
resent the who, to whom, where, or how of the
event. Predicates are usually the main verb of a
clause. Both predicates and their arguments consist
of spans of tokens (Fader et al., 2011).

We use an OpenIE implementation of Pred-
Patt (White et al., 2016; Zhang et al., 2017), a
pattern-based framework for predicate-arguments
extraction.3 As illustrated in the top half of Fig-
ure 2, we extract the relation tuples from each
source document and its corresponding reference
summaries. To minimize the risk ofG inadvertently
generating consistent summaries, we corrupt each
extracted “fact” by removing one randomly chosen
argument from each tuple. For instance, OpenIE
may extract the following tuple from a sentence:

(
Jo

ARG0
,
plans to give

PRED
,
Alex

ARG1
,
apples

ARG2
)

We then randomly choose applesARG2 to be re-
moved from the tuple. We additionally lemmatize
the dependency root word of each argument and
predicate span, e.g., plans to give⇒ plan to give.
This forces the model to learn to correct for gram-
maticality by inflecting the spans when inserting
them to the masked spans. Once all such spans
are extracted and processed, they are grouped and
shuffled into two lists (predicates and arguments).

3.3 Input Formatting

Let P = (PRED1, . . . , PREDn) and A = (ARG1, . . . ,

ARGm) be the unordered lists of extracted predi-
cates and arguments from a source document D
and the summary sentence S+. Additionally, we
assume a masked summary sentence M (described
later), derived from S+, and a control code vari-
able c ∈ {intrinsic, extrinsic}. Generator G
is trained to compute p(S+|P,A,M, c). As illus-
trated in the bottom half of Figure 2, we encode all
the conditional variables into the following format:

Predicates:P; Arguments:A; Code:c; Summary:M

In the following, we describe the key steps in the
input formatting process:

3We note that the quality of the OpenIE extractions may
impact the overall quality of our data generation framework.

Predicates:       ,       , … ,       ; Arguments:       ,       , …. ,       ; Code: [intrinsic | extrinsic]; 

Summary: <span_1> <span_0> under its sixth coronavirus lockdown

  

arg1

Australia’s State of Victoria

pred1

is

arg1

under its sixth coronavirus lockdown

Gold summary:

arg1

Melbourne

arg1

will

pred1

see

Original document:

pred4

was cut

arg2

some restrictions

pred2

eased when 

arg3

70 percent of eligible 
Victorians

are expected to have 

pred3

received

arg3

their first vaccination jab after

arg4

the time between 
AstraZeneca jabs

arg4

to six weeks [...] 

Input:

Australia’s State of Victoria is under its sixth coronavirus lockdown </s>

Output:

Figure 2: Input format design of Falsesum. The frame-
work first extracts the predicate and argument spans
from the source document and the gold summary. The
spans are then corrupted, lemmatized, and shuffled be-
fore being inserted into the input template.

Step 1: Span Removal Initially, P and A in-
clude predicate and argument spans from the orig-
inal summary which may be used to reconstruct
S+. However, at test time we remove these “gold”
spans from the two lists to force the G to make con-
sistency mistakes. The removal is also done when
training the model for control code extrinsic to
train G to predict plausible unseen spans.4 We sum-
marize the different input formatting in Table 1.

Step 2: Span Reduction To encourage G to
generate fine-grained errors (Pagnoni et al., 2021;
Goyal and Durrett, 2021), we also train it to hal-
lucinate incorrect modifiers into spans from P and
A. To this end, we randomly drop adjectives and
adverbs from 10% of the gold predicate and argu-
ment spans. For instance, an argument span “re-
cently elected prime minister” will be reduced to
“minister”. This teaches the model to generate the
remaining part of the span given only the context
provided in the formatted input.

Step 3: Control Code To control the type of
consistency errors generated by G, we append the
string “code:” followed by either “intrinsic”
or “extrinsic” into the input tokens. The code is
determined randomly with equal probability of 0.5.

4It is possible that some spans from the source document
are duplicates of gold ones. For instance, the document may
mention “The Queen of England”, while the gold span from
the summary is “The Queen”. We use a simple heuristic to
remove such duplicates by searching for other spans whose
(lemmatized) dependency root token is the same.



Mode Input Expected Output Description

train
intrinsic

Predicates : caught, plead guilty to, . . . , appear before,
face; Arguments : the corruption scandal, Two Pennsylva-
nia judges, . . . , many children, the U.S. Code : intrinsic;
Summary :<span_1> <span_0> federal fraud charges.

Two Pennsylvania judges
plead guilty to federal
fraud charges.

Model learns to
combines listed
spans to produce
most plausible
summary.

test
intrinsic

Predicates : caught, plead guilty to, . . . , appear before,
face; Arguments : the corruption scandal, Two Pennsylva-

nia judges, . . . , many children, the U.S. Code : intrinsic;
Summary :<span_1> <span_0> federal fraud charges.

Many of the children face
federal fraud charges.

Model consoli-
dates incorrect
information.

train
extrinsic

Predicates : is pressing for, limit, . . . , is being erode, is
fight; Arguments : panelist, action, . . . , sea level, Arctic melt,

at the climate change conference Code : extrinsic; Summary :
The Alliance <span_0> <span_1> <span_2>.

The Alliance is pressing
for action at the climate
change conference.

Model learns
to hallucinate
new unsupported
information.

test
extrinsic

Predicates : is pressing for, limit, . . . , is being erode, is
fight; Arguments : panelist, action, . . . , sea level, Arctic melt,

at the climate change conference Code : extrinsic; Summary :
The Alliance <span_0> <span_1> <span_2>.

The Alliance is planning
to impose limits on emis-
sions.

Model hallu-
cinates new
unsupported
information.

Table 1: Examples of input formatting on two different summarization instances for both intrinsic and extrinsic
error types during training and testing. Gold input spans (indicated by boldface), which are extracted from the
gold summary, are only visible to the model during intrinsic training. They are removed from the input in all other
settings, as indicated by strikethrough text.

Once the code is chosen, we perform the remaining
formatting steps accordingly (see Table 1).

Step 4: Summary Masking We derive masked
summary M by replacing the spans of randomly
selected predicates and arguments with a special to-
ken <span_i>, where i = 0 is reserved for the pred-
icate, and i > 0 for their arguments. These tokens
control where the incorrect information should be
inserted by the generator model into the original
summary (see Table 1).

3.4 Training Falsesum

We run the Falsesum data generation pipeline on
the train split of the CNN/DailyMail corpus (Her-
mann et al., 2015), originally collected for ques-
tion answering, but subsequently reformulated for
summarization by Nallapati et al. (2016). This
dataset contains English news documents paired
with human-written summaries, each consisting of
multiple sentences. We break the summaries down
such that each Falsesum example consists of the
document text and a single sentence summary. We
then run the preprocessing and formatting steps
on each document-summary pair. The resulting
pairs of formatted input and target output are sub-
sequently split into train and test sets which consist
of 394,774 and 262,692 instances, respectively.

We use the T5-base model (Raffel et al., 2020)
as generator G and fine-tune it on the seq2seq task
described in §3.1. The NLI examples are produced
by running the fine-tuned generator on the prepro-
cessed and formatted test split.5 This renders an
equal number of positive and negative examples.
In our experiments, we randomly sample 100,000
Falsesum examples to augment the NLI dataset.

4 Experimental Settings

Our experiments aim to demonstrate the effective-
ness of Falsesum-generated document-level exam-
ples for NLI dataset augmentation. We evaluate
the downstream performance of the NLI models
by testing them against several benchmarks for
determining the factual inconsistency of generated
summaries. In this section, we describe the training
setup of the NLI models, including the model and
both the sentence- and document-level datasets.

4.1 Training

NLI models We train several NLI models by
fine-tuning RoBERTa-base (Liu et al., 2019)
on either the original or the augmented MNLI
dataset (Williams et al., 2018). The MNLI dataset
consists of 392,702 train instances, each labeled

5See Appendix A for the hyperparameter details.



as either “entailment”, “neutral”, or “contradic-
tion”. To enable the application of NLI data to this
factual consistency task, we use a binary formula-
tion of NLI, where the “neutral” and “contradic-
tion” labels are combined into “non-entailment”.
The document-level inputs are formatted similarly
to sentence-level examples, i.e., the document
premise D and summary hypothesis (S+ or S−)
are concatenated and a special classification token
([CLS]) is used (Devlin et al., 2019).

Document-level NLI datasets We conduct aug-
mentation comparisons with several multi-sentence
NLI datasets which obtain examples from news or
summarization domains. We consider the follow-
ing datasets: ANLI (Nie et al., 2020), a paragraph-
level NLI dataset collected via an iterative and
adversarial human-in-the-loop annotation proto-
col. It consists of mostly Wiki data but also in-
cludes a small portion of news text; DocNLI (Yin
et al., 2021), a document-level NLI dataset con-
taining multi-sentence premise and hypothesis sen-
tences, collected by converting QA examples to
NLI instances (Demszky et al., 2018) and replac-
ing words and sentences in news summaries us-
ing a language model; FactCC (Kryscinski et al.,
2020), a large-scale dataset specifically generated
for training summary factual correctness classifi-
cation models. The positive examples in FactCC
are obtained by backtranslating a random sentence
from a CNN/DailyMail news story, while nega-
tive examples are obtained by perturbing the sen-
tence using predefined rules, e.g., entity swapping.
For fair comparison, we sample 100,000 examples
from each augmentation dataset in our experiments.

4.2 Benchmark Datasets
We evaluate these NLI models on four benchmark
datasets to classify the factual consistency of ab-
stractive summaries. These datasets differ in terms
of the annotation protocol, the granularity of the
summaries (single- or multi-sentence), the sum-
marization corpus used, and the models used to
generate the summaries that are annotated. The
tasks are formulated as a binary classification with
the labels “consistent” and “inconsistent”. We
evaluate NLI models on these tasks by mapping the
predicted label “entailment” to “consistent” and

“non-entailment” to “inconsistent”. The bench-
marks datasets are detailed in the following:

FactCC In addition introducing a synthetic train-
ing dataset for the task, Kryscinski et al. (2020)

introduce a manually annotated test set. It contains
1,431 document and single-sentence summary pairs
generated by various neural abstractive summariza-
tion models trained on CNN/DailyMail corpus.6

Ranksum Falke et al. (2019) formulate the fac-
tual consistency problem in summarization as a
ranking task. They introduce a dataset consist-
ing of 107 documents, each paired with a set of
five ranked summary candidates obtained from the
beam search of a summarization model. Given the
manually annotated consistency label on summary
candidates, the task is to re-rank the list such that
the top-1 summary is factually consistent.

Summeval Fabbri et al. (2021) introduce a com-
prehensive benchmark for factual consistency de-
tection in summarization. It includes summaries
generated by seven extractive models and sixteen
abstractive models, which are judged by three an-
notators using a 5-point Likert scale.7

QAGS The dataset collected by Wang et al.
(2020) consists of 239 test set instances from
XSUM (Narayan et al., 2018) and 714 instances
from CNN/DailyMail.8 Each instance consists of
a pair of a source document and a single-sentence
summary, which is labeled via majority voting on
three annotators’ labels.

5 Results and Discussion

5.1 Main Results

Performance on FactCC, QAGS, and SummEval is
measured using balanced accuracy, which is suit-
able for class imbalanced settings, since the factu-
ally consistent label is the majority in some bench-
mark datasets. It is defined as the average recall
of the two classes, such that majority label voting
obtains only a 50% score. To measure ranking per-
formance in Ranksum, we calculate the average
Precision@1, which computes the fraction of times
a factually consistent summary is ranked highest
on each test instance. We perform five training
runs for each setup using different random seeds
and take the mean to address performance instabil-
ity (Reimers and Gurevych, 2017).

6We merge the test and validation sets into a single test set.
7We aggregate the label as “consistent” if all annotators

rated the summary as a 5 and “inconsistent” otherwise.
8This is the number of instances after we split multi-

sentence summaries into separate single-sentence summary
test instances, where an individual factuality judgement is
available.



Benchmark Datasets
Dataset Augmentation FactCC Ranksum QAGS SummEval Overall

Majority voting - 50.00 50.46 50.00 50.00 50.11

MNLI-128 - 57.39 57.01 59.72 54.11 57.06
[split-doc]MNLI-128 - 72.07 68.03 71.08 55.32 66.63

MNLI-512 - 57.93 51.40 52.73 48.75 51.43
MNLI-512 ANLI 53.91 55.76 53.54 49.56 53.19
MNLI-512 DocNLI 58.13 53.58 57.10 52.59 55.35
MNLI-512 FactCC 73.87 67.29 73.50 60.04 69.02
MNLI-512 Falsesum (ours) 83.52 72.90 75.05 65.18 74.17

Table 2: Performance of MNLI models with different augmentation data across benchmarks to classify the factual
consistency of summaries. MNLI-128 and MNLI-512 are RoBERTa-base models trained using maximum token
length of 128 and 512, respectively.

Training Dataset Overall ∆

MNLI+Falsesum 74.17
MNLI+Falsesum -Contrastive 73.11 -1.06
MNLI+Falsesum -Extrinsic 71.95 -2.22
MNLI+Falsesum -Intrinsic 69.14 -5.03

Table 3: Model performance when trained on ablated
Falsesum dataset. Excluding the contrastive, extrinsic,
and intrinsic examples results in lower overall perfor-
mance, indicating each property is beneficial.

From the results in Table 2, we observe the
following: (1) Models trained on sentence-level
MNLI datasets perform poorly when evaluated
directly on document-level benchmarks, even af-
ter we increase the maximum input token length
from 128 to 512;9 (2) This limitation can be
alleviated by the sentence-wise prediction strat-
egy ([split-doc]MNLI-128),10 which achieves
66.63. Note, however, that this improvement comes
at the expense of compute cost which is multi-
plied by a significant factor; (3) DocNLI and ANLI
perform poorly even though they contain longer
premise sentences, indicating that the length mis-
match may not be the primary issue; (4) Falsesum
obtains substantial improvement over the previous
state-of-the-art FactCC, despite being derived from
the same summarization dataset (CNN/DailyMail).
This indicates that Falsesum provides higher qual-
ity examples and includes more types of entailment
phenomena that occur naturally in this task.

5.2 Ablation Analysis on Falsesum Data

We perform an ablation analysis to study how
each component of our data generation pipeline

9Average context word count is only 22 in MNLI and 546
in FactCC.

10See details in Appendix B

contributes to the final performance. We first re-
move the contrastive property of the Falsesum data
by randomly including only either the positive
(D,S+,Y = 1) or negative (D,S−,Y = 0) NLI
examples obtained from a single (D, S+) pair. Next,
we filter out the negative NLI instances that are
generated using either intrinsic or extrinsic
code. We refer to the three ablated datasets as
−contrastive, −intrinsic and −extrinsic,
respectively. We set the sampled training size to
100,000 for the three ablation setups and aggregate
the results from five training runs.

Table 3 shows the performance of the ablated
models. We observe that removing contrastive
pairs in the augmented training data results in a
1.06% drop on the overall benchmarks score. We
also see that removing intrinsic error examples
results in the highest performance loss, −5.03%
compared to −2.22% by −extrinsic. This is ex-
plained by the fact that intrinsic consistency errors
are more dominant on benchmarks that are built
on the CNN/DailyMail corpus (Goyal and Dur-
rett, 2021). We conclude that all the above prop-
erties are important for the overall improvements
obtained by Falsesum.

5.3 Fine-grained Evaluation
Previous work has shown that NLI models are
prone to relying on fallible heuristics which asso-
ciate lexical overlap with entailment labels (McCoy
et al., 2019). In the factual consistency task, this
corresponds to models associating highly extractive
summaries with the “consistent” label. This raises
a question about whether Falsesum data alleviates
this tendency in the resulting NLI models.

To answer this question, we partition the FactCC
annotated test examples into five ordered sub-
sets based on the lexical overlap between their
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Figure 3: Comparison between NLI models augmented
with Falsesum and FactCC across different measures of
summary extractiveness. The x-axis shows the median
overlap score of each test subset.

summary hypothesis and the source document
premise. We define an overlap score using the
normalized coverage and density summary extrac-
tiveness scores introduced by Grusky et al. (2018).
Both measures have the range [0.0, 1.0], where
density = 1.0 indicates that all words in a sum-
mary are also present in the source document and
normalized coverage = 1.0 indicates that the sum-
mary is obtained by copying a continuous frag-
ment of the source document. We then define
overlap = normalized coverage × density.

Figure 3 shows the comparison of FactCC and
Falsesum augmentation performance across vary-
ing lexical overlap scores. We see that Falsesum
performs better on all subsets of the FactCC test
set with the greatest performance gap appearing
on the 0.9 overlap subset. Upon closer inspection,
we see that the FactCC model makes mostly false
positive classification errors on this subset, i.e., it
tends to predict highly extractive summaries as
“consistent”, leading to near majority voting perfor-
mance of 50%. Falsesum, on the other hand, better
discriminates the factual consistency of examples
without over-relying on lexical overlap.

5.4 Data Quality Analysis

We conduct both manual and automatic quality
evaluation of the Falsesum-generated dataset. First,
we sample 200 generated negative examples and
manually verify whether (i) the perturbed sum-
mary S− is indeed factually inconsistent; (ii) the
type of consistency error follows the specified con-
trol code; (iii) the incorrect “fact” is inserted at
the specified missing span. Following Kryscinski

Code Label X Type X Span X

Intrinsic 86% 94% 94%
Extrinsic 81% 65% 95%

Table 4: Manual verification of Falsesum-generated
NLI examples. Label, type, and span indicate the per-
centage of generated summaries with correct inconsis-
tency label, error type, and error span, respectively.

FactCC DocNLI Falsesum

Majority voting 50.84 53.55 50.00

CBOW-GloVe 60.36 70.38 56.13
BiLSTM-GloVe 68.26 73.04 57.62
RoBERTA-base 82.15 78.46 69.38

Table 5: Hypothesis-only model performance (accu-
racy) to measure the presence of artifacts and natural-
ness of Falsesum dataset (lower is better).

et al. (2020), the authors perform this annotation
to avoid high disagreement by crowd annotators in
this task (Falke et al., 2019). The results in Table 4
show that about 86% of intrinsic 81% of extrinsic
generated error examples are factually inconsistent,
which happen due to several reasons, e.g., gen-
erator model chooses a span from the list that is
similar to the original span, or generator model
correctly guesses the original missing span. This
further suggests that pre-trained language models
such as RoBERTa-base can be robust against the
induced label noise and can still learn a performant
classifier. While G almost always inserts the incor-
rect “fact” at the specified positions, we observe
that it often fails to follow the specified extrinsic
code correctly. We suspect that this is because the
model prefers the easier task of copying the input
over generating novel phrases.11

Following Gururangan et al. (2018), we also
evaluate the naturalness of the generated dataset.
We train an NLI model using positive examples
from CNN/DailyMail and Falsesum-generated neg-
ative examples. The model receives no premise so
must distinguish between entailed and non-entailed
hypotheses using semantic plausibility or spuri-
ous surface features, e.g., grammatical mistakes
or fluency errors. The relatively low accuracy of
these models on Falsesum data (shown in Table 5)
suggests that, compared to FactCC and DocNLI,
Falsesum-generated summaries are relatively hard
to distinguish from the gold ones.

11We include more examples of generated NLI instances as
well as the inadvertently consistent output in Appendix D.



Conclusion

NLI models present a promising solution for au-
tomatic assessment of factual consistency in sum-
marization. However, the application of existing
models for this task is hindered by several chal-
lenges, such as the mismatch of characteristics be-
tween their training dataset and the target task data.
This mismatch includes the difference in terms of
the input granularity (sentence vs. document level
premises) and the types of (non-)entailment phe-
nomena that must be recognized.

In this work, we present Falsesum, a data gener-
ation pipeline which renders large-scale document-
level NLI datasets without manual annotation. Us-
ing our training strategy, we demonstrate that it is
possible to learn to generate diverse and naturalis-
tic factually inconsistent (non-entailed) summaries
using only existing (entailed) consistent summaries
for training. We show that the resultant data is ef-
fective for augmenting NLI datasets to improve the
state-of-the-art performance across four summary
factual inconsistency benchmarks.
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A Hyperparameters

Generator model We train a T5-base model
for three epochs with batch size of 24 using the
AdamW optimizer. We set the maximum source
token length to 256 and the target token length to
42. We use a learning rate of 3e−5 and fix the ran-
dom seed to 11. For decoding, we set the minimum
and maximum sequence length to 10 and 60, re-
spectively. We sample using beam search with a
beam of size two. We additionally set the repetition
penalty to 2.5 and the length penalty to 1.0.

Classification model We train RoBERTa-base
models on augmented and original MNLI datasets
for three epochs with a batch size of 32. The learn-
ing rate is set to 1e−5, while the maximum input
token length is set to either 128 or 512. We use the
following random seeds for the five training runs:
11, 12, 13, 14, and 15.

B Aggregating Predictions

We follow Falke et al. (2019) to adapt out-of-the-
box MNLI models to document-level input by per-
forming a sentence-wise prediction before aggre-
gating the output. Given a document D consisting
of sentences d1, . . . , dn, and a multi-sentence sum-
mary S consisting of s1, . . . , sm, we aggregate the
probability scores given by the classifier model F
on each di, s j pair. The aggregated consistency
score σ(D, S ) is given by:

σ(D, S ) =
1
m

m∑

j=1

max
d∈D

F(d, s j)

This means that it is sufficient for a summary sen-
tence to be factually consistent given only a single
entailing sentence in the source document. We then
take the average scores across the summary sen-
tences since each of them needs to be entailed by
the source document. We use a similar aggregation
method to evaluate augmented MNLI models on
multi-sentence summaries from the Summeval and
Ranksum benchmarks.

C Falsesum Details

In the preprocessing steps, we only perform the
predicate and argument span extraction on the first
15 sentences for computational efficiency. For train-
ing, this is not an issue since the gold spans from
the reference summary are included in the input.
Additionally, we may extract multiple OpenIE re-
lation tuples from each sentence. To avoid having

overlapping spans from a single input, we randomly
select two tuples from each sentence.

D Falsesum Examples

We include more examples of generated NLI in-
stances in Table 6. We also include cases where
Falsesum inadvertently generates factually consis-
tent summaries in Table 7. Lastly, we show several
examples of the formatted input and the generated
output at test time in Table 8.



Mexican federal police have arrested a fugitive on the FBI’s 10 Most Wanted list, Mexican authorities said. Jorge Alberto
Lopez Orozco allegedly murdered his girlfriend and her two young sons. Jorge Alberto Lopez Orozco is wanted in Elmore
County, Idaho, on charges that he shot and killed three people, the FBI said. The charred remains of a woman and her
sons, ages 2 and 4, were found inside a burned-out vehicle on August 11, 2002, it said. Each victim had been shot in the
head or chest. The FBI was still working Friday to confirm the identity of the man in custody, said Debbie Dujanovic, a
spokeswoman in the agency’s Salt Lake City, Utah, field office. The Salt Lake City office has jurisdiction in the case. An
extradition order was issued in January 2007, the Mexican attorney general’s office said in a news release Thursday. A reward
of up to $100,000 was being offered, the FBI said. Lopez, 33, was captured in Zihuatanejo, a city northwest of Acapulco
on the Pacific Coast in southern Mexico, the Mexican attorney general’s office said. Zihuatanejo is in Guerrero state, but
Lopez was transferred to a jail in neighboring Michoacan state, officials said. The arrest came about after investigation
and intelligence work by Mexican authorities, the attorney general’s office said. According to the FBI, Lopez abducted his
girlfriend, Rebecca Ramirez, and her two young sons from her father’s house in Nyssa, Oregon, on July 30, 2002. The car he
had been driving was found nearly two weeks later on a rural road near Mountain Home, Idaho, officials said. . . .

entailment FBI was still working Friday to confirm the identity of the man in custody.
(intrinsic) non-entailment An extradition order was issued in July 30, 2002, to determine the identity of the man in

custody.

He may have been allowed to leave the club without ever playing a league game for the first team, but Kristoffer Olsson
still showed Arsenal some love as he departed. The 19-year-old Swede, whose only first-team appearance for the Gunners
came off the bench in the Capital One Cup last season, has joined FC Midtjylland this week on a permanent deal. But, as the
news was announced, Olsson took to Twitter to say ’Once a Gunner, always a Gunner’. Kristoffer Olsson (right) played just
once for Arsenal’s first team, in the Capital One cup against West Brom . Olsson expressed his love for the club on Twitter,
despite being sold to FC Midtjylland . The tweet reflects Cesc Fabregas’ comments when he left the club to join Barcelona,
although the Spanish midfielder has sinced joined rivals Chelsea, after Arsene Wenger opted not to buy him back. Olsson
has been on loan at FC Midtjylland since the beginning of the season, playing six times in the Danish top flight. The Sweden
U21 international said on joining permanently: ’this is a club that believes in me and sees my potential.’ Olsson has played
six times on loan with FC Midtjylland and has now joined the Danish club permanently.

entailment Swedish international takes to social media to express love for Arsenal.
(intrinsic) non-entailment Swedish international has been on loan at Chelsea since last season.

A teenager who was struck down with an agonising bowel condition says dancing has helped him to overcome his debilitating
illness. Macaulay Selwood, 17, was diagnosed with Crohn’s two years ago and was so unwell that he was often left in
agony on the floor unable to move. But his determination to continue his promising dancing career gave him the spur he
needed to battle through. Lord of the Dance: Macaulay at his practice studio. He was diagnosed with Crohn’s in September
2010 after collapsing in agony during a dance class . Recovery: ’Dancing has helped me overcome it (Crohn’s). It kept me
motivated’ Now the teenager from Bristol has made it to the finals of the Irish dancing world championships in Boston, USA,
and is hotly-tipped for glory. He will then have a trial at the famous performing arts school, ArtsEd, in London. At shows
he has been compared with Riverdance star Michael Flatley while others have taken to calling him Billy Elliot, after the
film character who overcomes the odd to becoming a dancing star. Macaulay did ballet at college before focusing on Irish
dancing for the world championships and works at Tesco to fund his passion. . . .

entailment Macaulay Selwood, 17, first starting suffering from Crohn’s disease in 2010.
(extrinsic) non-entailment The 22-year-old, who was diagnosed with Crohn’s in 2010, has been recovering since

2010.

When Matthew Briggs, 32, from Huntington in North Yorkshire noticed that his father had posted a photo of them together
on Facebook, he was initially pleased. But when he opened the photo and saw the image, Mr Briggs was left horrified by the
sight of his 31st frame. Now, two years on, he has shed an astonishing 17st and, in November, will complete the New York
marathon in memory of his mother Susan who died from multiple sclerosis when he was just 18. Pounding the pavements:
Matthew Briggs, 32, has lost an impressive 17st in just two years of slimming . ’In March of 2000, she lost her battle with
Multiple Sclerosis,’ he says. ’She has always been my inspiration. I am the man I am today because of the woman she was.’
Money raised by Mr Briggs’ 26-mile run will be donated to the Multiple Sclerosis Society, a charity dedicated to beating the
disease as well as supporting sufferers and their families. Mr Briggs, who has dropped from 31st to just under 14st, had piled
on the pounds thanks to a diet of ready meals, takeaways and daily two litre bottles of Coca-Cola. But, after seeing the photo
posted on Facebook and spurred on by a bet with his father, Mr Briggs joined his local Slimming World group and went on
to shed more than 17st over two years. . . .

entailment She died in 2000 of multiple sclerosis and funds raised will go to charity.
(extrinsic) non-entailment She died in 2000 of multiple sclerosis and every penny she saves will go to charity.

Table 6: Examples of NLI pairs generated by Falsesum. We show both the entailment and non-entailment hypothe-
ses obtained from each source document. Green-highlighted spans indicate the information used consistently in
the summary. Red-highlighted spans indicate information used or inserted by the model to generate an inconsistent
summary.



The Mojito, a Cuban mix of white rum, sugar, lime, mint and soda water, is the most popular cocktail in Britain according to
a report . Sales of cocktails have risen by more than 10 per cent in the past two years. More than one in five of Britain’s pubs
and bars now serve cocktails and the Mojito – a Cuban mix of white rum, sugar, lime, mint and soda water – is the most
popular, according to a report. Pina Coladas (rum, coconut and pineapple juice) and Woo Woos (vodka, peach schnapps and
cranberry juice) were also popular. The Mixed Drinks Report, by consultancy firm CGA Strategy, found more women than
men choose cocktails, as 54 per cent of cocktail drinkers are female. Bomb and pitcher serves remain popular, with 74 per
cent of 18 to 24-year-olds admitting to have bought a bomb drink, while nine in 10 in the same age range say they drink
pitchers. Cocktails are enjoyed by the core 18 to 35-year-old demographic ’in all on-trade occasions’ including throughout
the night, as opposed to just the start. . . .

gold Sales of cocktails have risen by more than 10 per cent in the past two years.
(extrinsic) generated Cocktails have soared in popularity over the past two years.

From Yellowstone National Park to the Everglades, America’s 391 national parks are in need of repair – and thanks to
the economic stimulus signed into law, help is now underway. President Obama and his family visit the Grand Canyon in
Arizona, a national park. President Obama’s $787 billion economic stimulus plan passed in February and designated $750
million dollars to the national parks. But not all of the stimulus money is being used – and the parks are facing a $9 billion
backlog in maintenance projects. So far, nearly 10 percent is in the pipeline. "We are picking away at it as much as we can
and we’ve been fortunate to have the recovery act money," said Jeffrey Olson of the National Park Service. Olson said half
of the $9 billion is slated to go for road repairs. "Half of that [$9 billion] is roads and about $2 billion of that are the most
pressing needs – those we get some help from the stimulus. The president’s budget proposal is calling for more maintenance
and construction money," Olsen said. Dan Wenk, the acting director of the National Park Service says most of those pressing
needs include, "camp grounds, camp sites, it’s amphitheaters for evening programs. It’s the bathrooms. . . .

gold Park Service is dealing with a $9 billion backlog of maintenance needs.
(intrinsic) generated America’s 391 national parks are facing a $9 billion backlog of maintenance needs.

Table 7: Falsesum-generated summaries that are unintentionally consistent with the source document. Green-high-
lighted spans indicate information which is consistent with the document.

Predicates : is being offer for, were steal from, sell, Both as a solo artist and leader of the Heartbreakers, is one of ,
according to, where were rehearse for, contribute to, was induct into in; Arguments : the Heartbreakers, The band, Denise
Quan, five guitars, the Recording Industry Association of America, more than 57 million albums, Petty, A 7,500 reward, a
soundstage, the Rock & Roll Hall of Fame; Code : intrinsic; Summary :<span_1> <span_0> the 1960s.

gold Three of them were vintage guitars from the 1960s.
(intrinsic) generated The band was inducted into the Rock & Roll Hall of Fame in the 1960s.

Predicates : : is only the second time in, How could have do with, was lace with, struggle against at, have score,
expect to match, had settle into, ignite, has lost, Just as was walk into, were already circulate on, begin to filter, watch on
in; Arguments : his chair, Anfield, clips, the stands, symbolism, 13 Premier League goals, Brendan Rodgers, through,

Liverpool, the 100-plus strikes of last season, 13 games against Hull, everything, one; Code : intrinsic; Summary :Luis
Suarez took three minutes to <span_0> <span_1>.

gold Luis Suarez took three minutes to get his first assist for Barcelona.
(intrinsic) generated Luis Suarez took three minutes to ignite symbolism.

Predicates : allegedly know, supposedly write, in ’ was underway, is investigate, file against in by, file in, forbid, was toss
by in, wait for, fire at, accuse of, decide to fire based on, new information state, told, allegedly sent to, was complicate by,
Even though was toss, allegedly made, hold no more, expose to; Arguments : the case, new information states, his sexual
abuse, more recent damages, people, the blog posts, 2011, him, This week, her, allowing at one of his Los Angeles stores to
post naked photos of Morales on a blog that was meant to appear as though it belonged to Morales, American Apparel, The
Post, a settlement, The clothing company, Charney, new information saying he allowed an employee to impersonate and post
naked photos online of an alleged victim of his sexual abuse who filed a case against him in 2011, a settlement ’in the low
six-digits’ was underway, the company title, employee, 2012, The $260 million lawsuit, a report from March 25, 2011 that
said Morales allegedly sent nude photos of herself to Charney after she stopped working at the store, nude photos of herself,
Morales; Code : extrinsic; Summary :Women in the video <span_0> <span_1>.

gold Women in the video have been identified as current or former American Apparel workers.
(extrinsic) generated Women in the video were allegedly sexually assaulted by Morales.

Table 8: Examples of the formatted input at test time and the real output of the Falsesum generation model.
Blue-highlighted spans show the formatted input predicates. Green-highlighted spans show the formatted input
arguments. Yellow-highlighted spans show the formatted input control code. Gray-highlighted spans show the for-
matted input masked gold summary. Red-highlighted spans show the information inserted by the model to render
inconsistent summaries.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The robustness of Natural Language Understanding (NLU) models is paramount to
enabling reliable and trustworthy real-world applications of the resulting systems.
In this thesis, we present methods and analysis which address several avenues to
mitigate the reliance of models on spurious correlations in the training data and
gain more robust generalization to out-of-distribution data.

In Chapter 5, we first propose a method to prevent models from exploiting spuri-
ous features that are known apriori. The proposed strategy addresses the limitation
in the existing work where there is a substantial trade-off between the in-distribution
and the out-of-distribution performance upon the “debiasing” process. In the next
chapter, we discuss realistic settings where the prior knowledge about the spurious
correlation is not explicitly available. We provide an analysis that demonstrates how
the training dynamics of the Pre-trained Language Model (PLM) can explain the
learning of spurious correlation during task-specific fine-tuning. We then propose
a novel strategy to incorporate this insight to effectively “debias” models with only
implicit knowledge of the spurious features. That is, we only need to know which ex-
amples are supporting the spurious correlation (and to what degree) without know-
ing the specifics of the features. Later in Chapter 7, we look at the importance
of the inherent capabilities of PLM to resist using inference shortcuts. Using the
new paradigm of prompting, we show that zero-shot PLMs perform initially well
on the out-of-distribution test data, but this performance is gradually degraded by
task-specific fine-tuning. We then propose a regularization method for low resource
fine-tuning that improves the task-specific performance while still maintaining the
out-of-distribution generalization. Finally, in Chapter 8, we study the data aug-
mentation strategy to address the data discrepancy between NLU training and the
downstream applications. Specifically, we look at the task of factual inconsistency
detection in summarization as an out-of-the-box application of Natural Language
Inference (NLI) models. We discuss the limitation of the current synthetic data
generation and propose a novel method that generates diverse and more naturalis-
tic examples for data augmentation. Our evaluation shows that the proposed data
augmentation improves the robustness of NLI models on the downstream tasks ap-
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plication.
Overall, we show that the problem of spurious correlation learning can be at-

tributed to various components of the NLU model training including the dataset,
pre-training, fine-tuning and learning dynamics. Our proposed strategies then ad-
dress these components to facilitate the development of NLU models with minimized
adverse effects of the spurious correlation.

9.2 Future Work
We highlight a few remaining challenges in the improvement of robustness against
spurious correlation that deserve further study by the community:

Combining mitigation approaches In this thesis, we discuss several directions
from which the NLU community is tackling the robustness issues. While the result-
ing improvement is promising, the existing work evaluates their proposed approaches
in isolation. In practice, refinement in various parts of the model development
pipeline can be applied at the same time to increase their effects. It is therefore
crucial to study how to effectively combine the existing mitigation approaches and
measure their compounded effects.

Addressing multiple biases Multiple types of bias often co-occur across datasets
of NLU tasks. They may interact with each other and so it is difficult and distin-
guish and explicitly characterize them (Shah et al., 2020). Models trained on these
datasets are also likely to rely on multiple spurious correlations in their predictions.
For instance, an NLI model can adopt both hypothesis-only (Gururangan et al.,
2018) and lexical overlap (McCoy et al., 2019) at the same time. A possible ap-
proach is to ensemble multiple “bias-only” models where each captures a specific
type of bias. Their predictions can then be combined to identify training exam-
ples that exhibit biases. Alternatively, our proposed approach to address unknown
biases in Chapter 6 may reduce the effects of multiple biases, as suggested by the
datasets generalization evaluation. However, more systematic evaluation and studies
are required to precisely characterized how each bias is alleviated.

Improved pre-training for robustness Our zero-shot analysis using prompt-
based NLU formulation in Chapter 7 demonstrates that pre-training plays a signifi-
cant role in determining the robustness to spurious correlations. Our results suggest
that models that are pre-trained on refined training loss and larger text corpora,
e.g., RoBERTa (Liu et al., 2019b), acquire higher out-of-distribution performance
compared to the standard BERT model (Devlin et al., 2019). This warrant further
studies to look at other existing pre-trained language models or to develop a novel
pre-training approach oriented toward improving robustness. Several possible di-
rections include explicit injection of linguistics and world knowledge, architecture
design changes, training loss refinement, or better curation of pre-training data.
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Appendix A

Data Handling

In accordance with DFG’s “Principles for the Handling of Research Data”,1 we en-
sured the long-term preservation of research data and/or experimental software that
has been developed as part of this dissertation. We made this data openly accessi-
ble when possible. The following software has been made available for the scientific
community (see the repositories for licensing details):

• Chapter 5: https://github.com/UKPLab/acl2020-confidence-regularization

• Chapter 6: https://github.com/UKPLab/emnlp2020-debiasing-unknown

• Chapter 7: https://github.com/UKPLab/emnlp2021-prompt-ft-heuristics

• Chapter 8: https://github.com/joshbambrick/Falsesum

All publications related to this thesis are publicly available on the ACL Anthol-
ogy (aclweb.org/anthology/):

• Chapter 5: https://aclanthology.org/2020.acl-main.770/

• Chapter 6: https://aclanthology.org/2020.emnlp-main.613/

• Chapter 7: https://aclanthology.org/2021.emnlp-main.713/

• Chapter 8: https://aclanthology.org/2022.naacl-main.199/

Moreover, all research results of the aforementioned publications are documented
in the present thesis, which is archived by the Universitäts- und Landesbibliothek
Darmstadt.

1https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/
forschungsdaten/leitlinien_forschungsdaten.pdf
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