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Darmstadt, 1. Februar 2024
Jan-Christoph Klie



Wissenschaftlicher Werdegang des Verfassers1

Okt 2011 – Sep 2014 Bachelor of Science (B.Sc.) in Angewandter Informatik,
Duale Hochschule Baden-Württemberg Mannheim.
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Zusammenfassung

Annotierte Daten sind in vielen wissenschaftlichen Disziplinen unverzichtbar, z. B. in
der Verarbeitung natürlicher Sprache, Linguistik, der Spracherwerbsforschung, der Bioin-
formatik, dem Gesundheitswesen oder den digitalen Geisteswissenschaften. Datensätze
werden verwendet, um Modelle mittels maschinellem Lernen zu trainieren und zu eva-
luieren, um neues Wissen zu generieren und um bestehende Theorien zu erweitern.
Insbesondere im Bereich des maschinellen Lernens spielen große, qualitativ hochwertige
Datensätze eine entscheidende Rolle, um das Feld voranzubringen und neue Ansätze
auszuwerten. Bei der Erstellung dieser essentiellen Datensätze sind zwei Themen von
zentraler Bedeutung: Annotationseffizienz und -qualität. In dieser Arbeit werden wir
beide Aspekte verbessern.

Annotierte Daten sind von grundlegender Bedeutung und sehr nachgefragt, aber die
manuelle Erstellung von Annotationen ist teuer, zeitaufwändig und erfordert oft Experten.
Es ist daher sehr wünschenswert, die Annotationskosten zu senken und die Annotations-
geschwindigkeit zu verbessern - zwei wichtige Aspekte der Annotationseffizienz.

In dieser Arbeit schlagen wir daher verschiedene Möglichkeiten zur Verbesserung der An-
notationseffizienz vor, darunter Human-in-the-Loop Annotationsvorschläge, interaktives
Annotatorentraining und Annotation durch freiwillige Helfer.

Um gut funktionierende Modelle zu trainieren und eine akkurate Auswertung zu ermöglichen,
müssen die Daten selbst von höchster Qualität sein. Annotationsfehler können zu schlech-
ten Ergebnissen in der eigentlichen Anwendung führen; Modellvorhersagen können sogar
schädlich sein. Wenn fehlerhafte Daten zur Bewertung oder zum Vergleich von Modellar-
chitekturen, Algorithmen, Trainingssystemen oder anderen Aspekten verwendet werden,
kann sich außerdem die relative Reihenfolge der Methoden in Bezug auf die Leistung
ändern. Somit können Fehler in annotierten Daten zu falschen Schlussfolgerungen führen.
Der Schwerpunkt der meisten Arbeiten im Bereich des maschinellen Lernens liegt auf
der Entwicklung neuer Modelle und Methoden; Forschung zur Datenqualität wird dabei
oft vernachlässigt. In dieser Arbeit werden zwei Beiträge zur Verbesserung der Anno-
tationsqualität vorgestellt, um Qualitätsprobleme zu reduzieren. Erstens analysieren
wir bewährte Verfahren des Annotationsqualitätsmanagements, untersuchen, wie es in
der Praxis durchgeführt wird, und leiten daraus Empfehlungen für zukünftige Daten-
satzersteller ab, wie der Annotationsprozess strukturiert und die Qualität gemanagt
werden kann. Zweitens geben wir einen Überblick über den Bereich der automatischen
Fehlererkennung bei Annotationen, formalisieren die Aufgabe, implementieren die am
häufigsten verwendeten Methoden neu und untersuchen deren Wirksamkeit. Auf der
Grundlage umfangreicher Experimente geben wir Einblicke und Empfehlungen dazu,
welche Methoden in welchem Kontext verwendet werden sollten.





Abstract

Annotated data is essential in many scientific disciplines, including natural language
processing, linguistics, language acquisition research, bioinformatics, healthcare, or the
digital humanities. Datasets are used to train and evaluate machine learning models, to
deduce new knowledge, and to suggest appropriate revisions to existing theories. Especially
in machine learning, large, high-quality datasets play a crucial role in advancing the
field and evaluate new approaches. There are two central topics when creating these
crucial datasets: annotation efficiency and annotation quality. We improve on both in
this thesis.

While annotated data is fundamental and sought after, creating it via manual annotation
is expensive, time-consuming, and often requires experts. It is therefore very desirable to
reduce costs and improve speed of data annotation, two significant aspects of annotation
efficiency. Through this thesis, we hence propose different ways of improving annotation
efficiency, including human-in-the-loop label suggestions, interactive annotator training,
and community annotation.

To train well-performing models and for their accurate evaluation, the data itself needs
to be of the highest quality. Errors in the dataset can lead to degraded downstream
task performance, biased or even cause harmful predictions. In addition, when erroneous
data is used to evaluate or compare model architectures, algorithms, training regimes,
or other scientific contributions, the relative order in performance might change. Thus,
dataset errors can cause incorrect conclusions to be drawn. The focus of most machine
learning work is on developing new models and methods; data quality is often overlooked.
To alleviate quality issues, this thesis presents two contributions to improve annotation
quality. First, we analyze best practices of annotation quality management, analyze how
it is conducted in practice, and derive recommendations for future dataset creators on
how to structure the annotation process and manage quality. Second, we survey the
field of automatic annotation error detection, formalize it, re-implement and study the
effectiveness of the most commonly used methods. Based on extensive experiments, we
provide insights and recommendations concerning which ones should be used in which
context.
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Publications and My Contributions

This thesis is based on six scientific publications to which I contributed as the lead author.
They were co-authored together with my advisors Iryna Gurevych and Richard Eckart
de Castilho as well as many excellent colleagues and collaborators: Luke Bates, Beto
Boullosa, Michael Bugert, Gözde Gül Şahin, Ji-Ung Lee, Nafise Sadat Moosavi, Dominic
Petrak, Kevin Stowe, and Bonnie Webber. I am grateful to all my co-authors and their
significant contributions to these pleasant as well as successful collaborations. In the
following, I describe my own contributions to each publication. Details on our strategy
for data handling are given in Appendix A.

Core Publications

Chapter 6 corresponds to the following publication:

Jan-Christoph Klie, Michael Bugert, Beto Boullosa, Richard Eckart de Castilho,
Iryna Gurevych. 2018. The INCEpTION Platform: Machine-Assisted and Knowledge-
Oriented Interactive Annotation. In: Proceedings of the 27th International Con-
ference on Computational Linguistics (COLING): System Demonstrations, pages
539.

This is the first system demonstration paper describing INCEpTION, our extensible,
semantic annotation platform offering intelligent assistance and knowledge management.
Richard is the project lead and main developer. I mostly worked on the internal and exter-
nal recommendation functionality, various features, code review, testing, infrastructure,
documentation, user support, student supervision, and dissemination. INCEpTION has
been used throughout my research. I wrote the initial draft of the article and performed
the subsequent corrections and discussed this work regularly with my advisors, who
helped me improve the draft. I presented the work in person at the conference venue.

Chapter 7 corresponds to the following publication:

Jan-Christoph Klie, Richard Eckart de Castilho, Iryna Gurevych. 2023a.
Analyzing Dataset Annotation Quality Management in the Wild. In: arXiv/Under
submission.

I conceived the original research contributions, collected and annotated the data, and
performed all implementations, experiments, and analyses. I wrote the initial draft of the
article and performed the subsequent corrections. Richard provided the implementation
of the PDF editor in INCEpTION, suggested using Papers with Code as the means for
finding dataset-introducing publications, and helped with his extensive proofreading. I
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discussed this work regularly with my advisors, who helped me improve the research
contributions and draft.

Chapter 8 corresponds to the following publication:

Jan-Christoph Klie, Bonnie Webber, Iryna Gurevych. 2023c. Annotation Error
Detection: Analyzing the Past and Present for a More Coherent Future. In:
Computational Linguistics, 49 (1): 1573198.

I conceived the research ideas after detailed discussions with Bonnie and Iryna. I performed
all of the implementation work, planned and conducted all experiments, and performed
all of the analyses. I wrote the initial draft of the article and performed the subsequent
corrections. I discussed this work regularly with my advisors, who helped me improve
the draft.

Chapter 9 corresponds to the following publication:

Jan-Christoph Klie, Richard Eckart de Castilho, Iryna Gurevych. 2020. From
Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains. In:
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 698236993.

The idea for this work came from Richard and was initially given as a Bachelor thesis
topic to Peter Jiang, whom Richard and I co-supervised. I extended the original idea
from using heuristics to learning-to-rank, conceived the research questions, collected the
data, planned as well as ran the experiments, devised and conducted the user study, and
performed all analyses. I did most of the implementation work; for some parts related to
INCEpTION, Richard advised me how to best add the required functionality. I wrote
the initial draft of the article and performed the subsequent corrections. I discussed this
work regularly with my advisors, who helped me improve the draft.

Chapter 10 corresponds to the following publication:

Ji-Ung Lee*, Jan-Christoph Klie*, Iryna Gurevych. 2022. Annotation Curricula
to Implicitly Train Non-Expert Annotators. In: Computational Linguistics, 48 (2):
3433373.
(*: equal contribution)

This is a joint publication between Ji-Ung and me. We developed the core ideas during
several brainstorming sessions. We researched and wrote the introduction, background,
definition, and conclusion together. We also made the subsequent corrections together. I
collected and selected the datasets for the simulation described in §10.4, implemented,
executed, analyzed the experiments, and wrote the section itself. Ji-Ung planned, con-
ducted, supervised, and analyzed the user study described in §10.5 and also wrote the
respective section. We discussed this work regularly with our advisors, who helped us
improve the draft.
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Chapter 11 corresponds to the following publication:

Jan-Christoph Klie, Ji-Ung Lee, Kevin Stowe, Gözde Gül Şahin, Nafise Sadat
Moosavi, Luke Bates, Dominic Petrak, Richard Eckart de Castilho, Iryna Gurevych.
2023b. Lessons Learned from a Citizen Science Project for Natural Language
Processing. In: Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics (EACL): Main Volume, pages
698236993.

The original research idea was conceived by Kevin, who spearheaded running the user
study. I consulted him on how to best use INCEpTION for the user study and helped
with planning and conducting it. After Kevin left our group, I stepped in as the project
lead and brought this work to publication. I wrote the largest part of the initial draft of
the article, did the analysis, and performed most of the subsequent revisions. The other
authors helped with conceptualizing the project, selecting the data, recruiting annotators
in the various channels, and writing small parts of the paper itself. I regularly discussed
this work with the team and my advisors. Our advisors helped sharpen the research
questions and supported us in improving the draft.

Other Publications

During my time as a Ph.D. student, I was fortunate to work with great researchers on
various topics, some of which did not fit into this thesis. In the interest of completeness,
I provide references to these papers:

Beto Boullosa, Richard Eckart de Castilho, Naveen Kumar, Jan-Christoph Klie,
Iryna Gurevych. 2018. Integrating Knowledge-Supported Search into the INCEp-
TION Annotation Platform. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP): System Demonstrations, pages
1273132.

Teresa Botschen, Iryna Gurevych, Jan-Christoph Klie, Hatem Mousselly-Sergieh,
Stefan Roth. 2018. Multimodal Frame Identification with Multilingual Evalua-
tion. In: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), Volume 1 (Long Papers), pages 148131491.

Richard Eckart de Castilho, Nancy Ide, Jin-Dong Kim, Jan-Christoph Klie,
Keith Suderman. 2019. A Multi-Platform Annotation Ecosystem for Domain
Adaptation. In: Proceedings of the 13th Linguistic Annotation Workshop, pages
189-194.

Richard Eckart de Castilho, Nancy Ide, Jin-Dong Kim, Jan-Christoph Klie,
Keith Suderman. 2019. Towards cross-platform interoperability for machine-
assisted text annotation. In: Genomics & Informatics, 17(2):e19.
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Chapter 1

Introduction

Annotated data is an essential component in many scientific disciplines, including natural
language processing (NLP) (Gururangan et al., 2020; Peters et al., 2019), linguistics (Hasel-
bach et al., 2012), language acquisition research (Behrens, 2008), bioinformatics (Zeng
et al., 2015), healthcare (Suster et al., 2017), and the digital humanities (Schreibman
et al., 2004). Annotation is defined as enriching data with additional information, for
example, assigning labels to texts so that they can be more easily processed by ma-
chines (Chapter 2). Datasets are used to train and evaluate machine learning models, to
deduce new knowledge, and to suggest appropriate revisions to existing theories. Espe-
cially in machine learning, large, high-quality datasets play a crucial role in advancing
the field (Sun et al., 2017; Sambasivan et al., 2021).

To train well-performing and accurate models as well as for their evaluation, the data itself
needs to be of the best-possible quality. For instance, large language models often require
high-quality annotated data, be it for (instruction) finetuning or their evaluation (Chen
et al., 2023; Zhang et al., 2023; Zhou et al., 2023). Errors in the dataset can lead
to degraded downstream task performance or even cause harmful predictions. As an
example, models are already used in recruitment (Maheshwary and Misra, 2018; Luo
et al., 2019) or legal cases (Rodrigues, 2020). There, they can cause real-world harm like
discrimination or wrong rulings. When used to evaluate or compare model architectures,
algorithms, training regimes, or other scientific contributions, the performance ranking
might change (Reiss et al., 2020). This might cause incorrect conclusions to be drawn.

The focus of most machine learning work is on developing new models and methods; data
quality is often overlooked and researched only seldomly (Sambasivan et al., 2021). Recent
work has shown that even commonly used datasets contain annotation errors (Northcutt
et al., 2021b). To improve the situation, we present two contributions that can help
improving data quality. Our first contribution is analyzing best practices of annotation
quality management, analyzing how it is conducted in the wild, and deriving recommen-
dations for future dataset creators on how to best structure the annotation process and
manage quality. The second contribution concerns automatic annotation error detection.
We survey the field, formalize the task, re-implement and compare the most well-known
methods, and show which of them should be used in which context.

While annotated data is fundamental to many fields of science and highly sought after,
creating it via manual annotation is expensive, time-consuming, and often requires
experts (Monarch, 2021). It is hence very desirable to reduce costs and improve annotation
speed of data annotation, two major aspects of annotation efficiency. Through this thesis,
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we therefore explore several different ways of improving annotation efficiency. These are
interactive annotation suggestions, leveraging citizen science for NLP dataset creation
and training annotators during annotation via annotation curricula.

The goal of dataset creation here is not only to train machine learning models. Annotated
datasets can and are also important for other applications, for example, devising linguistic
theories or investigating information extraction methods. Therefore, we are interested in
methods that are domain-agnostic and widely applicable.

To summarize, this thesis is guided by the following research questions:

• How can we efficiently and effectively improve annotation quality?

• How can we improve annotation speed and reduce annotation costs while retaining
annotation quality?
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Figure 1.1: Overview of how the publications making up this thesis are related to anno-
tation quality and annotation efficiency. INCEpTION is used throughout the
thesis as the foundation of most publications, either for annotating itself or
as the platform hosting the novel methods devised as part of this thesis.
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1.1 Thesis Outline

In the following, we give a brief overview of the structure and contents of this thesis.
The synopsis summarizes the topic of annotation for natural language dataset creation,
followed by the two core aspects: annotation quality and annotation efficiency.

Chapter 2 - Annotation Process Annotated data is an essential ingredient for many
fields of science, especially machine learning. This chapter summarizes the annotation
process, focusing on annotation for natural language processing.

Chapter 3 - Annotation Quality To train well-performing and precise machine
learning models and for their evaluation, the annotated data must be of high quality. We
give an overview of annotation quality, why it is important, and how it can be improved.
The most relevant methods to manage and improve annotation quality are presented.

Chapter 4 - Annotation Error Detection We discuss automatic annotation error
detection, a part of annotation quality, in detail. Annotation error detection describes
algorithms that can automatically flag or score instances with regard to their correctness.
These can save costs, as manually searching and correcting errors is expensive and
time-consuming.

Chapter 5 - Annotation Efficiency Datasets are usually manually annotated, which
is expensive and difficult while often requiring experts. Therefore, making the annotation
processes more efficient and supporting annotators throughout is advantageous. We
discuss different approaches for improving annotation efficiency, especially with regard
to reducing time and costs.

Then, the publications that make up this dissertation are listed; they are in the same
order as the publication record given in Publications and My Contributions. Figure 1.1
illustrates how they fit into the big picture of annotation quality and efficiency.

Chapter 6 - The INCEpTION Annotation Platform This dissertation was written
as part of the INCEpTION project. The project aimed to build a configurable, web-
based platform for annotating text documents at span, relation, and document levels.
Leveraging its extensibility, INCEpTION was used as the foundation for most of the
following publications.

Chapter 7 - Analyzing Annotation Quality Management High-quality annotated
data is imperative for training and evaluating machine learning models. However, recent
work has shown that even widely used benchmark datasets still contain non-negligible
amounts of annotation errors. We hence summarize best practices and analyze a large
corpus of publications introduction new datasets with regard to their annotation quality
management.

Chapter 8 - Analyzing Annotation Error Detection To reduce costs for finding
annotation errors, many different algorithms for automatic annotation error detection
have been devised over the years. However, they rarely compare their methods to previous
work or on the same datasets, making evaluation and comparisons of methods difficult.
To improve the situation, we properly define the task, re-implement the most popular
methods and evaluate them on various tasks and datasets.
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Chapter 9 - Human-In-The-Loop Entity Linking Entity Linking, that is, disam-
biguating entity mentions in a text against knowledge bases, is an essential tool in a
considerable number of fields like the digital humanities or biomedical sciences. It is a
complex and often tedious annotation task, especially for low-resource domains with
noisy texts. Hence, we propose a new kind of annotation support using recommenders
that suggest potential concepts and adaptive candidate ranking. In a simulation and a
user study, we show a significant reduction in annotation time.

Chapter 10 - Annotation Curricula Dataset creation projects often require annotators
to familiarize themselves with the task, its annotation scheme, and the data domain on
the fly. This can be overwhelming, mentally taxing, and induce errors in the resulting
annotations, especially in scenarios where domain expertise is not required. To alleviate
these issues, we propose annotation curricula, an approach to implicitly train annotators.
The goal is to gradually introduce annotators into the task by ordering annotation tasks
according to a learning curriculum, for example, by perceived difficulty. In a simulation
and a user study, we show that annotation time can be significantly reduced compared
to a random ordering without negatively impacting annotation quality.

Chapter 11 - Citizen Science For NLP Annotation Citizen science describes the
participation and collaboration of volunteers from the general public with researchers to
conduct science; it is often used for environmental data collection and analysis. By asking
the community to re-annotate parts of an already existing, crowdsourced dataset, we
show that citizen science can, under certain circumstances, be a viable way for collecting
annotations for other NLP tasks.

We conclude in Chapter 12 by summarizing the main research contributions of this thesis
and considering future research directions.
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Chapter 2

Natural Language Dataset Creation

Having large, high-quality labeled datasets available is essential for developing, training,
evaluating, and deploying reliable machine learning models (Sun et al., 2017; Bender and
Friedman, 2018; Peters et al., 2019; Gururangan et al., 2020; Sambasivan et al., 2021).
They are also used in many other fields, for example, bioinformatics (Kim et al., 2003),
healthcare (Suster et al., 2017), or the digital humanities (Nantke and Schlupkothen,
2020). A special type of dataset is a corpus, which 4 in the context of linguistic research 4
is a set of texts collected for a particular purpose according to certain criteria relevant
to that purpose. We use both terms interchangeably to refer to a collection of labeled
instances.

In the context of natural language processing (NLP), similarly to Shmueli et al. (2021),
we find three different categories of tasks annotators are asked to perform when creating
such datasets. These are annotation, production and evaluation:

Annotation (also called labeling throughout this work) describes the activity of enriching
data like text, images, audio, or video with additional information. The goal is often
that the new, structured information can then be better processed by computers,
e.g., for training machine learning models (Pustejovsky and Stubbs, 2013). In the
context of this thesis, we think of annotation as assigning labels to text. Annotations
can be made of different levels of granularity. With regard to text annotation, the
focus of this work, the unit of annotation can be for instance tokens, spans, sentences,
paragraphs or documents.

Production means that the annotators create the data themselves, e.g., writing new
texts, summarizing, or paraphrasing. This is commonly done when creating datasets
for tasks like question answering or natural language inference.

Evaluation subsumes activities like comparing, ranking, or scoring data items for quality
or other metrics.

This dissertation primarily focuses on annotation, which is one of the most important
tasks when creating datasets of supervised training of machine learning models. Therefore,
this this chapter discusses annotation in more detail. Nevertheless, many points in this
thesis also apply to the tasks of production or evaluation.
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Figure 2.1: Example annotation project for named entity recognition, entity linking, and
relation labeling using the INCEpTION annotation tool. Annotations in grey
are automatically created suggestions (§5.1.2).

2.1 Annotation

As the name implies, annotated datasets are created by annotating data, i.e., assigning
labels to pieces of text (Monarch, 2021).

We call the smallest unit of data that is annotated an instance; a collection of annotated
instances is called an annotated dataset. What makes up an instance depends on the task.
For example, text can be annotated at the document level for document classification,
paragraph level for argumentation mining, sentence level for sentiment analysis, span
level for named entity recognition (see Figure 2.1), word level for part-of-speech tagging,
or character level for morphological annotation.

Annotations are made with regard to an annotation schema, which describes the kind
of annotations that can be made, for instance, which categories can be assigned. For
text documents, this can, for example, be for annotating sentiment, i.e., whether the
content is positive, negative, or neutral. For spans, it can be the kind of named entity,
for example, person, location or organization. Annotation guidelines describe how to
annotate, e.g., which categories to assign for which instances in which context.

Annotations are made in annotation editors, which are the user interfaces that display
the data to annotate and provide labeling tools. Annotation editors can also enable user
management, configure the annotation schema, and integrate additional functionalities
like collaboration, quality management, or adjudication. Commonly used editors for
text annotation are GATE Teamware (Wilby et al., 2023), brat (Stenetorp et al., 2012),
Doccano (Nakayama et al., 2018), or WebAnno (Eckart de Castilho et al., 2016). This
dissertation was developed as part of the INCEpTION project (Klie et al., 2018); INCEp-
TION was used throughout the publications that make up this thesis. Compared to other
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annotation tools, INCEpTION is a annotation platform that incorporates all the tasks
related to the annotation process into a joint web-based platform. It was designed be
extensible from the start and supports many different annotation functionalities out of
the box. Its extensibility allowed us to integrate the newly developed methods presented
in this work. An example view of INCEpTION is shown in Figure 2.1.

2.2 Annotators

When high-quality datasets are to be created, then the annotations are usually made by
human annotators, which are given instances (here, pieces of text) for labeling. Hence,
dataset annotation often involves a non-negligible amount of manual labor to create
annotated datasets (Snow et al., 2008). Creating large, annotated datasets can take
many months or years and cost tens or hundreds of thousands of dollars (Francis and
Kucera, 1979; Hovy et al., 2006). While there are also ways that fully automatically
create annotations without manual labeling (e.g., Ratner et al., 2017; Smirnova and
Cudré-Mauroux, 2019), the resulting annotations are often of lower quality than those
using human annotators (Mintz et al., 2009) and out of scope for this thesis.

Depending on the kind of task, its difficulty, and the available budget, different types of
annotators can be hired to work on a dataset creation project. In case specific domain
knowledge is needed, for instance, for annotating linguistic, legal, biomedical, or financial
phenomena, expert annotators might be required. As an example, early, <classic= corpora
for linguistics like the Penn Treebank corpus (Marcus et al., 1993) were usually annotated
by experts (Chamberlain et al., 2013).

Snow et al. (2008) and Callison-Burch (2009) have shown that many annotation tasks
can be phrased as so-called micro-tasks. These tasks that do not need context can be
completed in seconds or minutes and require only a little skill or experience (Finnerty
et al., 2013). Micro-tasks can be farmed out to so-called crowdworkers, which are (often
anonymous) freelancers that accept work via online crowdsourcing platforms like Amazon
Mechanical Turk or Appen. The annotation costs per task are often in the range of
cents (Whiting et al., 2019). Because micro-tasks are simple and cheap and crowdworkers
do not need special qualifications, crowdsourcing can be used to create very large datasets,
which would be infeasible or impossible with expert annotation.

For several reasons, annotations created via crowdsourcing oftentimes have quality
issues (Northcutt et al., 2021b). Compared to experts, crowdworkers have less experience
and qualifications for annotating. They are also usually fiscally motivated and want to
finish as many tasks as possible in the shortest amount of time. This can result in them
not taking special care or even actively spamming to quickly finish tasks (Hovy et al.,
2013). Recently, crowdworkers themselves have been observed using machine learning in
the form of large language models to do the annotation work for them (Veselovsky et al.,
2023). This is an issue, as the data is often used to evaluate these very models, thus
poisoning the created dataset. For these reasons, quality management is crucial when
creating high-quality datasets with crowdsourcing (Callison-Burch and Dredze, 2010).
Often, many labels per instance are collected to alleviate most quality issues in a step
called adjudication (see §3.2.4).
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Crowdsourcing can have several potential ethical issues that need to be considered (Schlag-
wein et al., 2019). Crowdsourcing has been criticized for undermining workplace reg-
ulations, akin to digital sweatshops. Frequently, crowdworkers barely make the (US)
minimum wage, are exposed to global arbitrage, or are required to take on low-paid tasks
to qualify for better work (Fort et al., 2011; Kummerfeld, 2021).

But overall, if the annotation task is solvable by crowdworkers, then crowdsourcing is
often an efficient way to create datasets (Snow et al., 2008; Hovy et al., 2014).

Contractors are a middle-ground between crowdworkers and experts; they might have
experience conducting annotation tasks and a background in the domain but are not
necessarily experts in their field (Peer et al., 2017). These can be, for instance, student
workers or qualified freelancers. Recently, more and more datasets are annotated by
contractors that are hired by platforms like Upwork or Prolific (Chen et al., 2021).
Compared to crowdsourcing, usually, only a few contractors are hired for a project that
in turn annotate more. Hence, they can be individually trained and given feedback. More
complex tasks can be annotated that way that might not be suitable for crowdsourcing.
Hiring contractors can be cheaper than crowdsourcing as fewer workers and fewer
repetitions are needed. A disadvantage is that hiring such contractors itself might be
difficult; crowdsourcing platforms can be easily tapped for annotators, whereas finding
skilled contractors requires time and effort.
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Figure 2.2: Agile dataset creation. After a batch of data is annotated, it is evaluated.
If the quality is sufficient, it can be adjudicated. If not, several corrective
measures can be taken, e.g., correcting the annotations in an additional
step, annotator training, or adjusting the annotation scheme or guidelines.
This process similarly applies to text production workflows where usually no
adjudication occurs.
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2.3 Annotation Process

Dataset creation is a quite involved process consisting of many different steps. To
better understand its parts, we give an overview of the activities that make up the
typical, recommended annotation project in the following section. It is also depicted in
Figure 2.2.

An annotation project usually starts with a planning phase. It can encompass important
preliminaries as setting the goal of data collection, making initial choices for data and
annotators, setting a budget, desired quality level or reviewing the literature for similar
datasets or relevant annotation practices. Ideally, these choices are documented and
become part of the dataset documentation once the dataset gets released.

In many cases, the annotation scheme is developed during the course of an annotation
study and is a living document. As annotators only get familiar with the task during
the annotation process and can make errors, the task setup and annotations must be
repeatedly refined. Therefore, it is best practice to structure an annotation campaign
as a sequence of cycles with iterative quality improvement actions (Hovy and Lavid,
2010; Pustejovsky and Stubbs, 2013; Monarch, 2021). This approach is also called agile
corpus creation (Alex et al., 2010). In each cycle, only a slice of the data is annotated: a
batch. After a batch has been annotated, its quality is evaluated (§3.2.2), and quality-
improving/rectifying measures are taken if needed (§3.2.3). These cycles repeat until an
acceptable quality level for a sufficient number of batches has been reached. Frequently,
multiple annotation per instance are collected to increase reliability and assure quality.
These need to be adjudicated at the end to create gold instances with just one curated
gold label (§3.2.4).
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Chapter 3

Annotation Quality Management

Annotated data is an essential ingredient to train and evaluate machine learning models.
These models are then used to compare aspects like network architectures, training
regiments, or hyperparameter configurations (Reimers and Gurevych, 2017). Machine
learning models are also deployed in production and used to make business decisions
or even directly interact with humans (Ameisen, 2020; Monarch, 2021). Therefore, it is
crucially important that the underlying data is of the best-possible quality. Datasets that
are of the highest quality, are trustworthy and accepted as adhering to the annotation
schema and guidelines are also called gold-standard (Wissler et al., 2014).

Recently, conversational agents and search engines based on large language models trained
via instruction tuning have been widely adopted in science and society (Ouyang et al.,
2022; Wei et al., 2022). It is hence imperative that datasets used for fine-tuning are
factually correct and contain as few biases as possible for the resulting models to be
accurate, trustworthy and not to cause misinformation or harm. Also, when fine-tuning
large language models, it has been observed that fewer instances of higher quality yield
better results than more instances of lower quality (Chen et al., 2023; Zhang et al., 2023;
Zhou et al., 2023).

In machine learning, it is often taken for granted that gold-standard datasets have no or
only very few errors. Recent work, however, has shown that even datasets that are widely
used to train and evaluate state-of-the-art models contain non-negligible proportions
of questionable labels (Northcutt et al., 2021b). For instance, the conll-2003 (Tjong
Kim Sang and De Meulder, 2003) test split has an estimated 6.1% wrongly labeled
instances (Reiss et al., 2020; Wang et al., 2019), imagenet 5.8% (Vasudevan et al., 2022;
Northcutt et al., 2021b) and tacred 23.9% incorrect instances (Stoica et al., 2021).
goemotions (Demszky et al., 2020) is estimated to contain even up to 30% wrong
labels.1 Using these datasets for machine learning can 4among other issues4 lead to
inaccurate estimates of model performance (Manning, 2011; Reiss et al., 2020; Vasudevan
et al., 2022), generalization failure due to data bias (McCoy et al., 2019), or decreased
task performance (Nettleton et al., 2010; Stoica et al., 2021; Vădineanu et al., 2022)
When deployed in production, deployed models might even cause downstream harm to
users (Bolukbasi et al., 2016; Hildebrandt, 2019; Cheng et al., 2022), especially in critical
applications like medical or legal settings.

1https://archive.ph/jQbNM
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In order to alleviate these issues and to create high-quality datasets, proper quality
management needs to be applied throughout the annotation process. Quality management
encompasses, among others, proper data selection, choice of annotators and training,
creating and improving annotation schema and guidelines as well as annotator agreement,
data validation and error rate estimation (Hovy and Lavid, 2010; Alex et al., 2010;
Pustejovsky and Stubbs, 2013; Monarch, 2021).

As the literature concerning annotation quality management is quite scattered throughout
many books and scientific publications, we first give a brief summary on annotation
quality management for data annotation. Based on this, we then analyze how annotation
quality management is handled in practice by inspecting a large set of publications that
introduce new datasets (Chapter 7).

3.1 Quality Aspects

Before describing quality management methods, we first define what annotation quality
actually subsumes. Following Krippendorff (1980); Neuendorf (2016), we suggest targeting
at least the following quality aspects:

Stability An annotation process is stable if there is no drift over time in its output.
Instability can, for example, occur due to carelessness, distractions, tiredness, or
even learning through practice.

Reproducibility An annotation process is reproducible if different annotators under
varying conditions can still deliver the same results.

Accuracy Annotations are accurate if they adhere to the guidelines and the desired
outcome.

Unbiasedness This describes the extent to which the annotations are free of systematic,
nonrandom errors (bias).

Stability, reproducibility, and accuracy are also subsumed under the term reliability in con-
tent analysis (Krippendorff, 1980). Consistency is related to stability and reproducibility.
Reliability thus measures the differences that occur when repeatedly annotating the same
instances; it is empirical (Hardt and Recht, 2022). It is required to infer validity, that
is, to show that the annotations capture the underlying phenomenon targeted (Artstein
and Poesio, 2008), but not sufficient. Validity is latent and cannot be directly measured.
Therefore, proxy metrics targeting reliability, for example agreement, need to be used
instead.

Note that dataset quality is not only limited to label accuracy but also encompasses
aspects such as the quality of the underlying text, annotation scheme, and social or data
bias.

3.2 Methods

This section presents the most relevant and frequently used quality management methods
for data annotation. It is a condensed summary of §7.3. This list is derived from best
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Annotation Process

� Agile Corpus Creation

� Careful Data Selection

� Annotation Scheme

� Guideline Design

� Pilot Study

� Validation Step

Annotator Management

� Workforce Selection

� Qualification Test

� Annotator Training

� Annotator Debriefing

� Monetary Incentive

Quality Estimation

� Error Rate

� Control Questions

� Agreement

Quality Improvement

� Correction

� Updating Guidelines

� Filtering

� Annotator Feedback

� Annotator Deboarding

Adjudication

� Manual Curation

� Majority Voting

� Probabilistic Aggrega-

tion

Figure 3.1: Quality Management methods discussed in this work. We categorize methods
into annotation process, annotator management, quality estimation, quality
improvement, and adjudication. The annotation process is described in §2.3.

practices in previous works and the methods found while surveying the dataset papers
(Chapter 7). An overview of the discussed methods is also given in Figure 3.1.

3.2.1 Annotator Management

Annotation projects stand or fall with the quality of the annotators; an annotation
project is often an exercise in people management (Monarch, 2021). It is crucial to treat
annotators fairly and respectfully throughout the process. The following gives a high-level
overview of the different aspects of annotator management that influence annotation
quality.

Annotator Selection The background of the workers who annotate considerably im-
pacts annotation time, cost, and quality. Here, we differentiate between domain
experts, contractors with annotation but not necessarily domain experience, crowd-
workers, and volunteers (see also §2.2). The more experienced an annotator is, the
higher the resulting quality of their annotation, but also their cost. We discuss the
impact of workforce selection on annotation time and cost in more depth in §5.1.1.

Qualification Filter As a common way to filter out annotators that might produce
low-quality work, many crowdsourcing tools offer setting requirements for the
worker, such as a certain percentage of accepted tasks or a number of already
completed tasks. Kummerfeld (2021) analyses the impact of these measures on
quality and discusses the ethical aspects of requiring a minimum number of tasks,
as it forces lower-paying work to reach these requirements.
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Qualification Test A more elaborate way to restrict annotators from participating in a
task is to use qualification tests (Kummerfeld, 2021). Before an interested annotator
can participate in the annotation process itself, they need to work on a small set of
qualification tasks. If their performance is acceptable, then annotators are allowed
to work on the real annotations.

Annotator Training Before involving new annotators in a campaign, it is often bene-
ficial to train them in the annotation task at hand, to go through the guidelines
with them and make sure that everything is clear (Neuendorf (2016, p. 133); Sabou
et al. (2014)). Training is also vital for annotation stability, as early in the process,
annotators are often not sure and unfamiliar with the annotation process. This
changes with more time spent annotating, rendering earlier annotations potentially
inconsistent with later ones.

Annotator Debriefing During and after the run of an annotation project, it is often
useful to ask one’s annotators for feedback about the annotation project (Neuendorf,
2016, p. 134). This input can then, for instance, be used to improve the guidelines,
update the annotation scheme, or alleviate issues that became only apparent while
annotating.

Monetary Incentive Giving annotators additional monetary compensation in addition
to their base pay might be an option (Harris, 2011; Ho et al., 2015). This can be,
for instance, based on their performance on control questions or after feedback
rounds have shown that they reach the target for a bonus. Another way is to pay
annotators more for sticking to a task (Parrish et al., 2021).

3.2.2 Annotation Quality Estimation

After annotations have been created, their quality should be estimated and compared to
the desired quality level. In case it is insufficient, counter-measures should be taken to
improve it.

Manual Inspection In order to judge the quality of an instance dichotomously as
correct or incorrect, annotators (usually, they are different from the annotators
who created the instances in the first place) or project managers can manually
inspect and grade them. Inspection can either be done on a subset of instances or
as a complete validation step. After the dataset has been completely annotated, its
error rate can be estimated and reported because even datasets that are considered
gold often still contain errors (Northcutt et al., 2021b).

Control Instances To gauge the performance of annotators, control instances can be
injected into the annotation process for which the answer is known (Callison-Burch
and Dredze, 2010). Another way is to compare a single annotator’s submissions
to the others’; the performance estimate is then the deviation from the majority
vote (Hsueh et al., 2009) or the agreement (Monarch, 2021). For example, the
resulting estimates then can be used to assign more involved tasks like manual
adjudication to well-performing annotators, retrain annotators if they annotated
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too many instances incorrectly, send batches created by underperforming annotators
back for re-annotation or remove annotators from the workforce.

Agreement A common way to quantify the reliability of annotations and annotators
is to compute their inter-annotator agreement (Ebel, 1951; Krippendorff, 1980,
2004). For natural language processing, it has been increasingly adopted after
Carletta (1996) introduced agreement, coming from the field of content analysis, as
an alternative to previously used ad-hoc measures.

One of the most common agreement measures is percent agreement (Klie et al.,
2023a). It is computed as the percentage of coded units on which two annotators
agreed. Percentage agreement suffers, however, from several issues (Krippendorff,
1980, 2004; Artstein and Poesio, 2008). First, it yields skewed results for imbalanced
datasets, similar to accuracy when evaluating classification. Second, it does not
take into account when annotators assign the same label by chance, for example, in
case they just randomly guess or spam. Third, percent agreement is influenced by
the size of the label set and thus is difficult to compare across annotation schemes.

In order to remedy the issues of percent agreement, Cohen (1960) proposes a
chance-corrected coefficient to measure the agreement between two annotators
called Cohen’s κ. It is the quotient of chance agreement and observed agreement.
Fleiss (1971) extend Scott’s π (Scott, 1955) to multiple annotators (Fleiss’ κ).2

Cohen’s and Fleiss’ κ both require that all instances are annotated by the same
number of annotators; no entries may be missing. In addition, Fleiss’ κ assumes that
annotators for each instance are sampled randomly, it is not suitable for settings
where all annotators annotate all instances (Fleiss et al., 2003). Also, annotations
need to be categorical. κ are one of the most commonly used agreement measures
for text annotation.

A different way to estimate agreement has been proposed by Krippendorff (1980). It
is based on the quotient of observed and chance disagreement. Compared to Fleiss’ κ,
Krippendorff’s α is more powerful and versatile: it can deal with missing annotations,
supports more than two annotations per instance, and can be generalized to even
handle categorical, ordinal, hierarchical, or continuous data (Hayes and Krippendorff,
2007). For instance, span labeling tasks like named entity recognition or relation
extraction can be evaluated using a coefficient of the Krippendorff’s unitized α (αu)
family Krippendorff et al. (2016).3 Unitizing means that annotators first divide
the instances into smaller units and only then assign labels (Lombard et al., 2002,
Chapter 4). In the context of named entity annotation, unitizing, for example, can
be marking spans that contain entities. Hence, Krippendorff’s α can also be applied
to any task with a one-to-many relation between instances and annotations.

2Fleiss’ κ is not an extension of Cohen’s κ, as it assumes similarly to Scott’s π that the labeling
distributions are the same for each annotator, which Cohen’s κ does not (Artstein and Poesio, 2008).

3The αu family currently consists of four different coefficients Krippendorff et al. (2016). They differ in
how and whether ‘gaps’ (unannotated units) are take into consideration, whether labels or only units
are used, or whether only a subset of labels are used when computing agreement. αcu is the most
applicable choice of the four that ignores gaps and takes label values into account.
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Evaluation tasks (Chapter 2) consist of assigning scores to instances on a numerical,
continuous, or discrete rating scale or a Likert (Likert, 1932) scale. These tasks are,
among others, annotating sentiment (Socher et al., 2013), emotions (Demszky et al.,
2020), or semantic textual similarity (Cer et al., 2017). Correlation measures like
Pearson’s r, Spearman’s ρ, or Kendall’s τ are often used to compute agreement in
these settings. Nevertheless, using correlation coefficients as an agreement measure is
controversial, as they measure covariation, not agreement, i.e., they measure whether
variables move together, but not whether they are actually similar (van Stralen et al.,
2012; Ranganathan et al., 2017; Edwards et al., 2021). A better alternative to the
aforementioned correlation coefficients is using Intraclass Correlation (ICC) (Fisher,
1925), which is explicitly designed to measure agreement.

Especially for sequence labeling tasks like named entity recognition, classification
metrics like accuracy, precision, recall, and F1 are often used between two annotators
to compute agreement (Brandsen et al., 2020). This comes with several issues. First,
they are only applicable as pairwise agreement; having more annotators would
require averaging, which might lose information. Second, they are not chance-
corrected (Powers, 2011). Third, using precision and recall for computing agreement
also has the downside of not being symmetric. Given two lists of labels a and b, the
precision value for p of a and b turns into the recall when swapping its arguments:
precision(a, b) = recall(b, a). Being symmetric is essential for agreement metrics, as
one annotator should not be preferred over another. This differs from classification
metrics, where one input is from the gold data, and the other is usually from model
predictions.

For a more in-depth treatment of agreement and how to apply it, we refer the
interested reader to the excellent works of Krippendorff (1980); Lombard et al.
(2002); Artstein and Poesio (2008); Neuendorf (2016); Monarch (2021).

3.2.3 Quality Improvement

In case quality estimation has shown that the annotation quality is insufficient, rectifying
measures need to be taken to improve it.

Manual Correction If the quality in a batch of annotations is too low, then it can be
given back to the annotators for further improvement (Monarch, 2021). Also, it
can be routed to different, more experienced annotators to resolve issues in case
instances are found to be too difficult for the original annotators (Yang et al., 2019).

Updating Guidelines It can happen that the annotation guidelines are not covering
certain phenomena in the underlying text, are ambiguous or difficult to understand.
Then, it might be appropriate to go back to the annotation schema or guidelines
and improve them (Pustejovsky and Stubbs, 2013). Updating the guidelines may
require discarding previously created annotations or at least reviewing and updating
them.

Data Filtering Sometimes, certain instances are too ambiguous and annotators strongly
disagree on a single, correct label. Or annotations are of low quality and should be
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removed. A simple solution is to filter out these instances and not process them
further. The filtering can for instance be based on expert judgement or if there is no
majority agreement. Sometimes, it might also be useful to measure the time it takes
annotators to process instances and filter out annotations which have improbably
low annotation times.

Filtering instances has the potential disadvantage of reducing diversity, which
should be taken into account. When removing difficult instances and using the
resulting dataset for evaluating machine learning models, its performance might
be overestimated. Recent work also emphasizes that disagreement is inherent to
natural language (Aroyo and Welty, 2015) and can for instance be used to create
a hard dataset split or even directly learn from them (Checco et al., 2017; Uma
et al., 2021).

Annotator Training through Feedback After a batch has been completed, experts
can manually inspect the data and give annotators feedback on it. Thereby, common
errors can be pointed out and aspects to improve can be discussed. More detailed
and extensive feedback might be more feasible for smaller annotator pools, e.g.,
contractors or expert annotators.

Annotator Deboarding If certain annotators repeatedly deliver low quality work, it
might be desirable to remove them from the annotator team. One way to find these
annotators is via annotation noise (Hsueh et al., 2009), that is, the deviation of
each annotator from the majority. Another is manual inspection by the dataset
creators or more seasoned annotators. Spammers can also be detected during
adjudication (§3.2.4), for instance by using MACE (Hovy et al., 2013). After
deboarding annotators, it is recommended that their annotations are marked to
be redone. Even though some platforms like Amazon Mechanical Turk make it
possible to withhold payment, they should still be payed for the work already done
unless there is compelling evidence for excessive fraudulent behavior.

Automatic Annotation Error Detection (and Correction) Instead of having hu-
man annotators manually inspect instances and search for errors, automatic ap-
proaches can be used. For some error types, it is possible to write checks that
automatically find issues and sometimes even correct them (Kvĕtoň and Oliva, 2002;
Qian et al., 2021). These checks can be simple rules which define wrong combina-
tions of surface form and label and are derived from the data. For noisy text like
Twitter data or crawled forum texts, spell checking might improve the underlying
text before it is given to annotators. A more involved approach is annotation error
detection, which leverages machine learning models to automatically find error
candidates, which can then be given to annotators for manual inspection and an
eventual correction (e.g., Dickinson and Meurers, 2003b; Northcutt et al., 2021a;
Klie et al., 2023c). Annotation error detection is discussed in detail in Chapter 4.

3.2.4 Adjudication

In order to increase overall annotation reliability, commonly, more than one label per
instance is collected (Bontcheva et al., 2014). These then usually need to be adjudicated,
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that is, finding a consensus, to create the final dataset, which has a single label per
instance (Hovy and Lavid, 2010). For reproducibility, it is suggested to publish not only
the adjudicated corpus but also raw annotations by the respective annotators. Learning
from individual labels is also an option, especially in tasks with significant ambiguity
and disagreement (Uma et al., 2021); then, no adjudication is used. The most common
adjudication methods are described in the following.

Manual Adjudication To create a gold corpus, skilled annotators, often domain ex-
perts, manually inspect and curate each instance to a single label. While slow and
expensive, this approach can yield high-quality data because ties can be broken
and errors corrected during this inspection procedure. Curation can be sped up
with automatic tooling, for instance, by automatically merging instances for which
there is no disagreement or where the disagreement is below a certain threshold.

Majority Voting When using majority voting, given an instance rated by multiple
annotators, its resulting label is the one that has been chosen most often. Instances
without majority label can either be discarded or given to an additional annotator
to break the tie. These are often experts but can also be (experienced) crowdworkers
or contractors. In some works, supermajority voting is used, meaning that more
than 50% of annotators need to agree, e.g., at most one differing label is allowed or
even an unanimous vote is required. Lease (2011) notes that using majority voting
might drown out valid minority voices and can reduce diversity, which should be
taken into account.

Probabilistic Aggregation In majority voting, it is assumed that all annotators are
equally reliable as well as skilled and errors are made uniformly random. This is not
always the case in real annotation settings, especially in crowdsourcing. Annotators
can be better or worse in certain aspects, might be biased, spamming, or even
adversarial (Passonneau and Carpenter, 2014). To alleviate these issues, Dawid and
Skene (1979) propose a probabilistic graphical model that associates a confusion
matrix over label classes for each annotator, thereby modeling their proficiency and
bias. The resulting aggregation is then based on weighing labels with the respective
annotator’s expertise for this label. An alternative formulation called MACE that
also models spammers is given by Hovy et al. (2013).

It has been shown that using more sophisticated aggregation techniques can yield
higher-quality gold standards (Passonneau and Carpenter, 2014; Paun et al., 2018;
Simpson and Gurevych, 2019), but majority voting is often a strong baseline. The
aforementioned works also discuss probabilistic aggregation in more detail.

3.3 Contributions

Quality management is an essential part of creating high-quality annotated datasets.
Disseminating and analyzing quality management is especially relevant in the context of
an increasing number of datasets being created and released. These datasets can then
exhibit the aforementioned dangers of low-quality data collection. To better understand
how annotation quality management is conducted in practice, as part of our publication
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Analyzing Dataset Annotation Quality Management in the Wild (Chapter 7), we survey
the relevant literature and annotate a large corpus of dataset-introducing publications
for their quality management. From these, we derive recommendations for future dataset
creators concerning which quality management exists and in which situations they can
and should be applied. In summary, our contributions concerning annotation quality
management are the following:

• Even though there exists an extensive body of work that discusses quality manage-
ment in theory (see §3.2), we found that this knowledge is difficult to find and to
consult. It is scattered across many different sources and usually treated as part
of the general annotation process, hence often lacking depth. Therefore, we first
survey the literature and summarize best practices regarding quality management
for annotating datasets.

• To better understand how quality management is actually performed in practice,
based on Papers With Code4, we collect a large set of publications (591, of which
314 report human annotation or validation) that introduced new text dataset and
annotate their quality management. Based on these annotations, we analyze how
often and how well the different quality management methods were used. We find
that a majority of the annotated publications apply good or very good quality
management. However, we deem the effort of 30% of the works as only subpar. Our
analysis also shows common errors, especially when using inter-annotator agreement
and computing annotation error rates.

• We provide a list of recommendations (§7.6) that can be used by future dataset
creators to improve the quality of their datasets and to avoid common pitfalls,
for instance, how to best structure the annotation process, how to properly use
agreement and how to compute the sample sizes when manually inspecting instances
for their correctness.

• To foster further investigation into quality management for data annotation, we
also release the code to collect and analyze the dataset and our annotations. Our
dataset can also be used as a reference to find papers that use specific quality
management methods, thereby serving as an example of how to apply them.

4https://paperswithcode.com/datasets
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Chapter 4

Annotation Error Detection

One of the most impactful ways to estimate and improve annotation quality is to find
erroneous or inconsistently labeled instances by manual inspection and then either correct
them or filter them out (e.g., Barnes et al., 2019; Reiss et al., 2020; Northcutt et al., 2021b;
Chen et al., 2022; Kreutzer et al., 2022). While effective, it is costly and time-consuming
because it requires manual efforts and often employs expert labor. Therefore, many
methods for automatic annotation error detection (AED) have been devised over the years.
These methods enable dataset creators and machine learning practitioners to narrow down
the instances that need manual inspection and 4if necessary4 correction (Dickinson,
2005). This reduces the overall work needed to find and fix annotation errors (see, e.g.,
Reiss et al., 2020).

AED has been used to discover that widely used benchmark datasets contain errors and
inconsistencies (Northcutt et al., 2021b). Around 2% of the samples (sometimes even
more than 5%) found to be incorrectly annotated in datasets like penn treebank (Dick-
inson and Meurers, 2003a), sentiment analysis datasets like sst, amazon reviews, or
imdb (Barnes et al., 2019; Northcutt et al., 2021b), conll-2003 (Wang et al., 2019; Reiss
et al., 2020), or relation extraction in tacred (Alt et al., 2020; Stoica et al., 2021). AED
has likewise been used to find inconsistently annotated instances, e.g., for part-of-speech
(POS) annotation (Dickinson and Meurers, 2003a). Additionally, it has been shown that
errors in automatically annotated (silver) corpora can also be found and fixed with the
help of AED (Rehbein, 2014; Ménard and Mougeot, 2019).

In the following, we define the task of annotation error detection (AED) and present the
most commonly used methods and metrics for their evaluation.

4.1 Task definition

Given an adjudicated dataset with one label per annotated instance, the goal of AED
is to find instances labeled incorrectly or inconsistently. These instances can then be
given to human annotators for manual inspection or used in annotation error correction
methods. The definition of <instance= depends on the task and defines the granularity
on which errors or inconsistencies are detected. For instance, when using AED for text
classification, instances can be sentences; in POS tagging, instances can be tokens, and
in named entity recognition, instances can be spans.
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AED is typically used after a new dataset has been annotated and adjudicated. It is
assumed that no already cleaned data or other data with the same annotation scheme is
available.

We consider an instance labeled incorrectly if, according to the annotation guidelines,
there is a unique, true label, but it is different from the current label of the instance. As
an example for named entity recognition, ‘Obama’ is a per and not an org. An instance
is labeled inconsistently if its label implies that it belongs to one type, where it actually
belongs to another, e.g., if ‘Manchester’ is used to refer to its football team, its label
should be org and not loc. An instance that is neither incorrect nor inconsistent is
correct. Annotations can also be ambiguous; that is, at least two different labels are valid
given the context. For example, in the sentence ‘They were visiting relatives’,
‘visiting’ can either be a verb or an adjective. We discuss the impact of ambiguity on
AED in §8.3.1.

Flaggers vs. scorers We divide automatic methods for AED into two categories which
we dub flaggers and scorers. Flagging refers to methods that cast a binary judgment
of whether the label assigned to an instance is correct or incorrect. Scoring methods
estimate how likely it is that an annotation is incorrect. These correspond to classification
and ranking from machine learning and information retrieval.

While flaggers are explicit about whether they consider an annotation incorrect, they do
not indicate the likelihood of that decision. On the other hand, while scorers provide a
likelihood, they require a threshold value to decide when an annotation is considered an
error 4 for example, instances with a score above 80%. Those would then be given to
human evaluators. Scorers can also be used in settings similar to active learning for error
correction (Vlachos, 2006; Lin et al., 2016).

This distinction between flaggers and scorers regarding AED has not been made in
previous work. However, it is critical to understand why different metrics need to be used
when evaluating flaggers compared to scorers (see §8.5). Flaggers need to be evaluated
with classification metrics like precision, recall, and F1 score. Scorers, however, require
evaluation with ranking metrics like precision@k, recall@k or average precision.

4.2 Methods

Over the past three decades, many different methods have been developed for AED. Here,
we group them by how they detect annotation errors and briefly describe each. It is a
condensed summary of §8.3.2. Table 4.1 shows all methods discussed in this thesis (in
alphabetical order).

4.2.1 Variation-based

Methods based on the variation principle leverage the observation that similar surface
forms are often annotated with only one or, at most, a few distinct labels. If an instance
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Abbr Method Name Proposed by

Flagger methods
CL Confident Learning Northcutt et al. (2021a)
CS Curriculum Spotter Amiri et al. (2018)
DE Diverse Ensemble Loftsson (2009)
IRT Item Response Theory Rodriguez et al. (2021)
LA Label Aggregation Amiri et al. (2018)
LS Leitner Spotter Amiri et al. (2018)
PE Projection Ensemble Reiss et al. (2020)
RE Retag van Halteren (2000)
VN Variation N-Grams Dickinson et al. (2003a)

Scorer methods
BC Borda Count Larson et al. (2020)
CU Classification Uncertainty Hendrycks et al. (2017)
DM Data Map Confidence Swayamdipta et al. (2020)
DU Dropout Uncertainty Amiri et al. (2018)
KNN k-Nearest Neighbor Entropy Grivas et al. (2020)
LE Label Entropy Hollenstein et al. (2016)
MD Mean Distance Larson et al. (2019)
PM Prediction Margin Dligach et al. (2011)
WD Weighted Discrepancy Hollenstein et al. (2016)

Table 4.1: Annotation error detection methods discussed in this thesis.

is annotated with a different, rarer label, it may be an annotation error or an incon-
sistency. Variation-based methods are relatively easy to implement and can be used in
settings in which it is difficult to train a machine learning model, such as low-resource
scenarios or tasks that are difficult to train models for, e.g., detecting lexical semantic
units (Hollenstein et al., 2016). The main disadvantage of variation-based methods is
that they need similar surface forms to perform well, which is not the case in settings
like text classification or datasets with diverse instances.

Variation n-grams The most frequently used method of this kind is variation n-grams,
which has been initially developed for POS tagging (Dickinson and Meurers, 2003a)
and later extended to discontinuous constituents (Dickinson and Meurers, 2005),
predicate-argument structures (Dickinson and Lee, 2008), dependency parsing (Boyd
et al., 2008), and slot filling (Larson et al., 2020). For each instance, n-gram contexts
of different sizes are collected and compared. It is considered incorrect if the label
for an instance disagrees with labels from other instances with the same n-gram
context.

Label Entropy and Weighted discrepancy Hollenstein et al. (2016) derive metrics
from the surface form and label counts, which are then used as scorers. These are the
entropy over the label count distribution per surface form or the weighted difference
between the most and least frequent labels. They apply their methods to find
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possible annotation errors in datasets for multi-word expressions and super-sense
tagging, which are then reviewed manually for tokens that are actual errors.

4.2.2 Model-Based

Probabilistic classifiers trained on the to-be-corrected dataset can be used to find annota-
tion errors. Models in this context are usually trained via cross-validation (CV), and the
respective holdout set is used to detect errors. The complete dataset is analyzed after all
folds have been used as holdouts. Several ways have been devised for model-based AED,
which are described below.

Re-tagging A simple way to use a trained model for AED is to use model predictions
directly; when the predicted labels are different from the manually assigned ones,
instances are flagged as annotation errors (van Halteren, 2000). Larson et al.
(2020) apply this using a conditional random field (CRF) tagger to find errors
in crowdsourced slot-filling annotations. Similarly, Amiri et al. (2018) use Retag
for text classification. Yaghoub-Zadeh-Fard et al. (2019) train machine learning
models to classify whether paraphrases contain errors and, if they do, what kind of
error it is. To reduce the need to annotate instances repeatedly and adjudicate to
achieve higher quality, Dligach and Palmer (2011) train a model on the labels given
by an initial annotator. If the model disagrees with the instance’s labeling, it is
flagged for re-annotation. For cleaning dependency annotations in a Hindi treebank,
Ambati et al. (2011) train a logistic regression classifier. If the prediction does not
agree with the original annotation and the model confidence is above a predefined
threshold, then the annotation is considered incorrect. CrossWeigh (Wang et al.,
2019) is similar to Retag with repeated CV. During CV, entity disjoint filtering is
used to force more model errors: instances are flagged as erroneous if the probability
of their correct label falls below the respective threshold.

Classification Uncertainty Probabilistic classification models assign probabilities
that are typically higher for correctly labeled instances compared to erroneous
ones (Hendrycks and Gimpel, 2017). Therefore, the class probabilities of noisy labels
can be used to score these for being an annotation error. Using model uncertainty is
identical to using the network loss 4 which was, for example, used by Amiri et al.
(2018) 4 because the cross-entropy function used to compute the loss is monotonic.

Prediction Margin Inspired by active learning (Settles, 2012), prediction margin (Dli-
gach and Palmer, 2011) uses the probabilities of the two highest-scoring labels for
an instance. The resulting score is their difference. The intuition behind this is
that samples with smaller margins are more likely to be an annotation error since
the smaller the decision margin is, the more unsure the model is. For multi-class
classification, this could be generalized by using entropy.

Confident Learning This method estimates the joint distribution of noisy and true
labels (Northcutt et al., 2021a). A threshold (the average self-confidence) is then
learned, and instances whose computed probability of having the correct label is
below the respective threshold are flagged as erroneous.
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Dropout Uncertainty Amiri et al. (2018) use Monte Carlo dropout (Gal and Ghahra-
mani, 2016) to estimate the uncertainty of an underlying model. There are different
acquisition methods to compute uncertainty from the stochastic passes. A summary
can be found in Shelmanov et al. (2021). The work of Amiri et al. (2018) uses the
probability variance averaged over classes.

Label Aggregation Given a set of predictions obtained via Monte Carlo dropout,
Amiri et al. (2018) use MACE (Hovy et al., 2013), an aggregation technique from
crowdsourcing to adjudicate the resulting repeated predictions.

4.2.3 Training Dynamics

Methods based on training dynamics use information derived from how a model behaves
during training and how predictions change throughout training.

Curriculum and Leitner Spotter Amiri et al. (2018) train a model via curriculum
learning, where the network trains on easier instances during earlier epochs and
is then gradually introduced to harder instances. Instances then are ranked by
how difficult they are to learn for the model during training. They also adapt
the ideas of the Zettelkasten (Ahrens, 2017) and Leitner queue networks (Leitner,
1974) to model training. There, difficult instances are presented more often during
training than easier ones. The assumption behind both of these methods is that
instances that are perceived as harder or misclassified more frequently are more
often annotation errors than easier ones. These two methods require that the
instances can be scheduled independently. This requirement does not hold for tasks
like sequence labeling, as the model trains on complete sentences, not individual
tokens or spans.

Data Map Confidence Swayamdipta et al. (2020) use the class probability for each
instance’s gold label across epochs to measure confidence. Low confidence correlates
well with an item with an incorrect label in their experiments.

4.2.4 Vector Space Proximity

Approaches of this kind leverage dense embeddings of tokens, spans, and texts into a
vector space and use their distribution therein. The distance of an instance to semantically
similar instances is expected to be smaller than the distance to semantically different
ones. Embeddings are typically obtained by using BERT-type models (Devlin et al., 2019)
for tokens and spans or S-BERT (Reimers and Gurevych, 2019) for sentences.

Mean distance Larson et al. (2019) compute the centroid of each class by averaging
vector embeddings of the respective instances. Items are then scored by the distance
between their embedding vector and their centroid. The underlying assumption is
that semantically similar items should have the same label and be close together
(and thereby close to the centroid) in the vector space.
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k-Nearest-Neighbor Entropy In the context of named entity recognition in clinical
reports, Grivas et al. (2020) leverage the work of Khandelwal et al. (2020) regarding
nearest-neighbor language models to find mislabeled named entities. First, all in-
stances are embedded into a vector space. Then, each instance’s k nearest neighbors
according to their Euclidean distance are retrieved. Their distances to the instance
embedding vector are then used to compute a distribution over labels by applying
softmax. An instance’s score is then the entropy of its distance distribution; if large,
it indicates uncertainty, hinting at being mislabeled.

4.2.5 Ensembling

Ensemble methods combine the scores or predictions of several individual flaggers or
scorers to obtain better a performance than each method would on its own.

Diverse Ensemble Instead of using a single prediction like Retag does, the predictions
of several architecturally different models are aggregated. For instance, if the
majority disagrees with the label, it will likely be an annotation error. Alt et al.
(2020) use an ensemble of 49 different models to find annotation errors in the
tacred relation extraction corpus. In their setup, instances are ranked by how
often a model suggests a label different from the original. Barnes et al. (2019) use
three models to analyze error types on several sentiment analysis datasets; they
flag instances where all models disagree with the gold label. Loftsson (2009); Angle
et al. (2018) use an ensemble of different taggers to correct POS tags.

Projection Ensemble In order to correct the conll-2003 named entity corpus, Reiss
et al. (2020) train 17 logistic regression models on different Gaussian projections
of BERT embeddings. The aggregated predictions that disagreed with the dataset
were then corrected by hand.

Item Response Theory Lord et al. (1968) developed Item Response Theory as a
mathematical framework to model relationships between measured responses of test
subjects (e.g., answers to questions in an exam) for an underlying, latent trait (e.g.,
the overall grasp on the subject that is tested). It can also be used to estimate the
discriminative power of an item, i.e., how well the response to a question can be
used to distinguish between subjects of different abilities. In the context of AED,
test subjects are trained models; the observations are the predictions on the dataset,
and the latent trait is task performance. Rodriguez et al. (2021) have shown that
items that negatively discriminate 4 i.e., where a better response indicates being
less skilled 4 correlate with annotation errors.

Borda Count Similarly to combining several flaggers into an ensemble, rankings ob-
tained from different scorers can also be combined. For that, Dwork et al. (2001)
propose to leverage Borda counts (de Borda, 1781), a voting scheme that assigns
points based on their ranking. For each scorer, given scores for N instances, the
instance that is ranked the highest is given N points, the second-highest N − 1 and
so on (Szpiro, 2010). The points assigned by different scorers are then summed up
for each instance and form the aggregated ranking. Larson et al. (2019) use this to
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combine scores for runs of Mean Distance with different embeddings and show that
this improves overall performance compared to only using individual scores.

4.2.6 Rule-based

Several works leverage rules that describe which annotations are valid and which are
not. For example, to find errors in POS annotated corpora, Kvĕtoň and Oliva (2002)
developed a set of conditions that tags have to fulfill in order to be valid, especially
n-grams that are impossible based on the underlying lexical or morphological information
of their respective surface forms. Rule-based approaches for AED can be very effective
but are hand-tailored to the respective dataset, its domain, language, and task.

4.3 Contributions

While annotation error detection (AED) methods have been applied successfully in the
past, several issues hinder their widespread use. First, there is no agreed-upon task
definition and formalization, which causes many different ways to evaluate and apply
AED methods. Second, new approaches for AED are often only evaluated on newly
introduced datasets that are proprietary or not otherwise available (e.g., Dligach and
Palmer, 2011; Amiri et al., 2018; Larson et al., 2019). Third, for most AED methods, there
exists no publicly available implementation. Also, they rarely compare newly introduced
methods to previous works or baselines. These issues make comparisons of AED methods
very difficult. As a result, it is often unclear how well AED works in practice, especially
which AED methods should be applied to which kind of data and underlying tasks. To
alleviate these issues, as part of our publication Annotation Error Detection: Analyzing
the Past and Present for a More Coherent Future (Chapter 8), we define a unified
evaluation setup for AED, conduct a large-scale analysis of 18 AED methods, and apply
them to 9 datasets for text classification, token labeling, and span labeling. The research
reported in Chapter 8 addresses the aforementioned issues by providing the following
contributions:

Evaluation methodology To unify its findings and establish comparability, we first
define the task of annotation error detection (AED) and a standardized evaluation
setup, including an improvement for evaluating span labeling in this context.

Easy to use reference implementations We survey past work from the last 25 years
and implement the 18 most common and generally applicable AED methods. We
publish our implementation in a Python package called nessie

1 which is easy to
use, thoroughly tested, and extensible to new methods and tasks. Our package
makes it significantly easier for researchers and practitioners to get started with
AED.

1https://github.com/UKPLab/nessie
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Benchmarking datasets We provide a common ground for benchmarking these ap-
proaches by collecting and generating 9 datasets for text classification, token
labeling, as well as span labeling. We also publish the collected datasets to facilitate
easy comparison and reproducibility.

Evaluation and analysis Using our implementation, we investigate several fundamen-
tal research questions regarding AED. We specifically focus on exploring how to
achieve the best AED performance for each task and dataset, taking model cali-
bration, usage of cross-validation, and model selection into account. Based on our
results, we provide recipes and recommend how to best use AED in practice.

Takeaways Overall, the methods that worked best are Classification Uncertainty, Con-
fident Learning, Curriculum Spotter , Datamap Confidence, Diverse Ensemble, Label
Aggregation, Leitner Spotter , Projection Ensemble, and Retag; more complicated
methods are not necessarily better. Model-based methods should be trained via
cross-validation, otherwise the recall of downstream methods is heavily degraded
(while the precision improves). Calibration can improve these model-based anno-
tation error detection methods, but more research is needed to determine when
exactly it can be useful.
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Chapter 5

Annotation Efficiency

The creation of human-annotated datasets is often very time-consuming, expensive,
and difficult (Ringger et al., 2008; Pustejovsky and Stubbs, 2013; Monarch, 2021).
Annotation projects can take from months to even years. While often not explicitly
reported, annotation costs per instance can range from cents to dollars. At first thought,
this does not sound like much, but manually annotated dataset sizes typically range in the
thousands or ten thousands of instances, and are often even be larger. Thereby, costs can
quickly add up. For instance, He et al. (2018) report that for creating duchinse, a machine
reading comprehension dataset, it took 51, 408 person-hours by about 800 crowdworkers
and 52 experts to label 200, 000 questions and write 400, 000 answers. FitzGerald et al.
(2018) collect annotations for Question-Answer driven Semantic Role Labeling and
give a cost of $43, 647.33 for 265, 000 questions. Ning et al. (2020) report a price of
around $15, 000 while developing a dataset for reading comprehension benchmarking
(30 700 instances); Dua et al. (2019) spent $60, 000 for a similar dataset (96, 567 instances).
nlvr2 (Suhr et al., 2019), a dataset for visual reasoning required $19, 132.99 in annotation
costs. The Stanford Natural Language Inference (SNLI, 570k instances) Corpus (Bowman
et al., 2015) cost around $60, 000 to create. Note that costs can vary greatly, depending
on the dataset size, the number of labels per instance, the annotator’s expertise and
salary, or whether the annotation is outsourced or done in-house.

As annotated data is often an essential ingredient of training and evaluating machine
learning models, it is very desirable to reduce annotation time as well as overall annotation
costs while sustaining a target quality level. We subsume algorithms and methods to
alleviate the data annotation with this under the term annotation efficiency.

Annotation efficiency can benefit machine learning practitioners in two ways. First, the
same number of instances can be annotated for less effort. Second, with the same effort,
larger datasets can be created.

5.1 Methods

The following section reviews the most commonly used methods to increase annotation
efficiency. We only list methods that are applicable to projects that rely on manual
annotations as part of their dataset creation, as we are interested in ways to reduce
costs and improve quality when human annotators are involved. We exclude, for instance,
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methods to create datasets solely by indirect or self-supervision, whose improvements we
leave for future work.

5.1.1 Task Setup

The overall task setup is comprised of the choice of annotation editor, task design and
structure, as well as choice of annotators. These choices can strongly influence the
annotation efficiency.

Annotation Editor The annotation editor 4i.e., the user interface element annotators
use to make annotations4 is an essential ingredient towards a successful and efficient
annotation process (Cerezo et al., 2021). Also, it determines and limits what and how it
can be annotated.

Annotation editors can implement many features that support the annotators, thus
increasing annotation efficiency. They can be designed to minimize the effort needed
to annotate. This, for instance, can be done by reducing the cognitive load by present-
ing a streamlined user interface, reducing clicks needed, or being responsive to user
inputs (Dandapat et al., 2009; Kummerfeld, 2019). Further speed-up can be achieved
by providing keyboard shortcuts or macros for commonly executed actions like selecting
labels or jumping to the next instance to annotate (Mikulová et al., 2022). More advanced
annotation efficiency features like label suggestions via pre-annotation or recommenders
(see §5.1.2) also require the editor to support these features.

Many annotation projects start with developing a new annotation editor (Chamberlain
et al., 2013), which binds many resources. Reinventing the wheel also comes with the
danger of repeating mistakes that have already been solved in other projects. For these
reasons, using existing, general-purpose annotation tools like INCEpTION (Klie et al.,
2018) is usually recommended if applicable.

Task Design Oftentimes, it can be more efficient to split a complex task into several,
more manageable phases (Verhagen, 2010), which are then annotated separately. For
example, for relation extraction, the first step can be marking spans, then labeling their
relation later. When annotating treebanks, this can be annotating the different layers
sequentially instead of annotating all layers at the same time (Zeldes, 2017). Kulkarni et al.
(2012) even propose a system where crowdworkers themselves can split their assignments
into subtasks and later consolidate them. Splitting can ease tasks and thus reduce costs
but also might remove context, thereby potentially reducing quality.

Annotator Selection As previously mentioned in §2.2 and §3.2.1, the choice of
annotators can significantly impact annotation time, cost, and quality. Which kind of
annotators to employ depends, among others, on the task difficulty, availability, target
language, and whether particular expertise is needed. If the annotation task is solvable
by crowdworkers, this is often an efficient way to annotate (Snow et al., 2008). However,
using crowdworkers usually also involves repeated annotations per instance that need to
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be adjudicated (see §3.2.4), which increases costs (Hovy et al., 2014). Trained contractors
can be an alternative to hiring crowdsourcing or domain experts (Chen et al., 2021) and,
in many cases, even be cheaper, as fewer repetitions and less cleanup are needed. While
it is desirable to reduce costs, it is essential to pay and treat annotators well and thereby
build a pool of trusted annotations. Minimizing the annotation costs via saving on the
salary of annotators comes with ethical issues (Fort et al., 2011; Kummerfeld, 2021) that
need to be taken into account.

It is also possible to leverage annotators of diverse backgrounds, e.g., give more straight-
forward instances to crowdworkers and let experts validate. For biomedical relation
extraction, Yang et al. (2019) have shown that estimating annotation difficulty and
routing more difficult instances to experts yields better results than solely relying on
crowdsourcing. Alonso and Romeo (2014) let crowdworkers annotate in the first phase
and only route instances with disagreement to experts afterward, thus reducing costs.

5.1.2 Label Suggestions

A line of research that explicitly aims to increase annotation efficiency are label suggestions.
Label suggestions are automatically generated, potential annotations that are presented
to human annotators during annotation. These low-cost, quick-to-create but unreliable
annotations are then given to human annotators for subsequent review and, if necessary,
correction. Many automatic annotations are correct and therefore require no manual
correction. Accepting suggestions instead of creating new annotations can also be mentally
less taxing. Therefore, when using label suggestions, potentially, annotation time can be
saved. Annotations can for instance be generated by dictionaries/gazetteers (e.g., Savary
et al., 2010; Simon et al., 2015), pre-trained machine learning models (e.g., Schulz et al.,
2019; Beck et al., 2021) or rules (e.g., Ratner et al., 2017; Névéol et al., 2011; Mikulová
et al., 2022).

Several aspects must be considered when using label suggestions for an annotation project.
First, they need to be helpful to annotators; that is, have sufficient precision and not
be distracting (Greinacher and Horn, 2018). Second, it needs to be taken into account
whether annotators can reliably differentiate between correct or incorrect annotations,
which is not always the case, especially in more complex or domain-specific annotation
tasks (Fort and Sagot, 2010). Third, label suggestions might introduce model bias into
the resulting dataset, for example, if annotators accept the suggestions as is to reduce
their effort. Bias here means whether label suggestions increase the discrepancy between
annotations and a final, aggregated gold dataset (Lingren et al., 2014).

We differentiate between two different kinds of label suggestions based on whether they
are added before annotation starts (pre-annotation) or while annotating (recommenders).
Works that used either kind are summarized together with their impact on annotation
efficiency in Table 5.1.

Pre-Annotation This describes the practice of automatically annotating a dataset
with silver quality, i.e., potentially erroneous, annotations before giving them to
annotators for correction. For pre-annotation, label suggestions are only generated
before the annotation project takes place and are static afterward; annotators can
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either leave them as correct, delete them, or correct them. Many datasets have been
created while using pre-annotation, of which we mention several in this section.
More works that used pre-annotations paired with their impact on annotation
quality and efficiency are given in Table 5.1.

A famous example of using pre-annotations is the creation of penn treebank (Mar-
cus et al., 1993), which leveraged a POS tagger trained on the brown corpus (Fran-
cis and Kucera, 1979). Compared to manual tagging, pre-annotation halved the
annotation time and the annotator disagreement rate. Fort and Sagot (2010) further
analyze their setup by manually re-annotating parts of the penn treebank using
different taggers and annotation configurations. They confirm the initial findings
of Marcus et al. (1993) and further note that even pre-annotations generated by
not-so-accurate taggers already provide a reduction in annotation time. In addition,
they conclude that the better a model is, the better the resulting inter-annotator
agreement after correction and the lower the overall annotation time. Their findings
agree with the observations of Dandapat et al. (2009), who analyzed a similar setting
for POS labeling in Bangla and Hindi. For frame-semantic argument structure
annotation, Rehbein et al. (2009) observe an increase in annotation quality but
no impact on annotation time when using pre-annotation compared to annotation
without.

Concerning how annotators react to pre-annotations, Dandapat et al. (2009) in-
terviewed annotators after letting them annotate documents with and without
pre-annotations; they reported that they felt less distracted and could focus more
on the task without pre-annotations. Rosset et al. (2013) found that annotators of
all experience levels liked pre-annotations, even in some cases where the evaluation
showed for some annotators that they had no impact on time or quality.

Recommenders An extension of the static pre-annotations are recommenders (Ganchev
et al., 2007). These provide annotation suggestions that are generated during
annotation. Suggestions created that way are displayed to the user alongside
already-made annotations. The user may accept a suggestion, which turns the
suggestion into a proper annotation, which can then be further edited if desired.
The user may also reject the suggestion to hide it and prevent the recommender
from suggesting it again. The difference between pre-annotation and recommenders
is that no recommender suggestion is accepted without validation, as it requires
an additional action to accept. In contrast, pre-annotations can be left as is to
create new annotations which can cause more missed errors. Also, the default
action for incorrect suggestions does not require any work for users, while deleting
annotations for pre-annotation does. Moreover, instead of only presenting the best
option, it is easier for recommenders to display top-k suggestions, e.g., based on
model confidence, thereby increasing the chance that a correct recommendation is
given.

Recommenders can be either static or interactive. Static ones use, for instance,
pre-trained models or dictionaries that are created ahead of time; they do not
incorporate feedback during annotation. Interactive recommenders can learn from
user feedback and improve over time, e.g., by re-training on newly made annotations.
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The advantage of interactive recommenders is that even if no in-domain data exists, a
model can be trained on the annotations made so far. Also, issues caused by concept
drifts or domain differences can be reduced as models are trained on the same domain
they are asked to predict. Interactive recommenders are especially interesting when
there is insufficient training data to train a good-enough performing model for pre-
annotation. Then, the recommender model can be trained once enough annotations
are made, and it can be interactively improved throughout the annotation project.
Even new classes can be added to the recommender while an annotation project is
underway, which would be difficult to achieve with pre-annotations. Models can
also be trained globally, that is, on annotations of all users, or models can be
personalized. In the latter case, this means that a model used as a recommender
for an annotator is only ever trained on that individual’s annotations.

A disadvantage of interactive recommenders is that re-training on incoming anno-
tations can be expensive based on the underlying model architecture. Probabilistic
machine learning models like conditional random fields, logistic regression, or
gradient-boosted machines can often be made fast enough to re-train after every
annotation is made (Klie et al., 2020; Lee et al., 2022). However, re-training for
neural models can take minutes or hours and often requires a GPU. Therefore,
updates are usually staggered and only made after a certain number of new anno-
tations are made (Schulz et al., 2019; Beck et al., 2021). Alternatively, models can
be used that support online or continuous learning, thereby only requiring training
time related to the number of new annotations made (e.g., Yimam et al., 2016).

Several works have leveraged recommenders for their annotation project. Brants
et al. (2002) are an early user of interactive recommenders to create the TIGER
Treebank; they did not compare using recommenders to annotating without them.
Yimam et al. (2016) use interactive recommenders for biomedical entity and relation
annotation. Schulz et al. (2019) find that even for the task of segmentation and
classification of epistemic activities in diagnostic reasoning texts, which is difficult
even for experts, the use of recommenders can reduce annotation time and increase
agreement. Beck et al. (2021) investigate annotation suggestions for opinion mining
in German Covid-19 social media texts. They find that while overall, annotation
suggestions substantially improved agreement and quality, interactive recommenders
did not yield improvements over static ones. Felt et al. (2014) report statistically
significant improvements of annotation time and quality if recommender quality is
above 70% accuracy.

Most works report a reduction in annotation time and observe no or only minor
introduction of bias compared to annotating without recommender support. More
examples are given in Table 5.1.

To summarize, for the practical use of label suggestions, annotation time is usually reduced
(see Table 5.1). However, if the suggestion quality is too low, annotation time can even
increase (Ogren et al., 2008). In some cases, consistency and quality also improves (e.g.,
Rehbein et al., 2009; Mikulová et al., 2022).

Concerning bias, Fort et al. (2009) report that in their experiments for annotating
named entities, annotators often tended to leave pre-annotations as is, even if they were
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wrong. Dandapat et al. (2009) also found that pre-annotations introduce bias; the more
experienced the annotator, the less pronounced the influence is. In contrast to that,
most works that analyzed bias introduced by label suggestions found no bias when using
pre-annotations for named entity annotation (e.g., Rosset et al., 2013; Lingren et al.,
2014; Schulz et al., 2019). While finding no particular bias in their experiments, Beck
et al. (2021) note that interactive recommenders should be used with care in non-expert
annotation settings due to the dangers of amplifying biases during re-training.

By What Domain Annotators Q T A B

Pre-annotation
Marcus et al. (1993) Treebank English newswire Expert · ¸ · :

Chiou et al. (2001) Treebank Chinese newswire Expert → ¸ · 6

Xue et al. (2002) POS tagging Contemporary Chinese ? → ¸ · ·

Tanaka et al. (2005) Treebank Japanese dictionary entries Novice · ¸ · ·

Chou et al. (2006) PropBank MEDLINE abstracts ? · ¸ · ·

Ogren et al. (2008) Named entities Clinical notes Expert · · · 6

Dandapat et al. (2009) POS tagging Bangla/Hindi sentences
Novice · ¸ → 6

Expert · ¸ · :

Rehbein et al. (2009) Frame labeling FrameNet 1.3 Expert · → · :

Fort and Sagot (2010) POS tagging English newswire Expert · ¸ · 6

Meurs et al. (2011) Text mining PubMed Expert · ¸ · ·

Skjærholt (2011) POS+Morph. Analysis Old Latin
Novice · ¸ · ·

Expert · → · ·

Rosset et al. (2013) Named entities Contemporary French Novice+Expert · ¸ · ·

Felt et al. (2014) Morphological analysis Classical Syriac Expert · ¸ · ·

Lingren et al. (2014) Named entities Clinical Trial Reports Expert → ¸ → :

Eckhoff et al. (2016) Dependency parsing Old East Slavic texts Novice+Expert → ¸ · ·

Lu et al. (2016) Named entities English&Chinese newswire Expert → ¸ · ·

Recommender
Ganchev et al. (2007) Named entities MEDLINE abstracts Expert · ¸ · ·

Ulinski et al. (2016) Dependency parsing Video descriptions Novice+Expert ¸ ¸ · ·

Yimam et al. (2016) Entity linking MEDLINE abstract Expert · ¸ · ·

Greinacher and Horn (2018) Named entities German newswire Novice · ¸ · ·

Schulz et al. (2019) Epistemic activities Diagnostic reasoning Expert · ¸ · :

Klie et al. (2020) Entity linking Old English Expert · ¸ · ·

Beck et al. (2021) Opinion mining German Tweets Novice · · · :

Table 5.1: Overview of works levering label suggestions and its influence on Quality,
Annotation Time, Agreement, Bias. We differentiate between increase ·,
decrease ¸ and no change → of the respective metric. In case bias was analyzed,
if some bias observed, we indicate it as 6, if not observed, as :. If an aspect
was not analyzed by a work, then we put <·=.

5.1.3 Efficient Data Selection

To better focus project resources on the annotation of instances that are most relevant,
interesting, or beneficial, several methods have been developed to select which data to
annotate, in which order, and whom to assign instances for annotation.

Active Learning Active learning is a widely adopted approach to select instances for
annotation that are most beneficial to the performance of downstream trained machine
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learning models (Settles, 2012). From an annotated seed dataset, the target machine
learning model is trained. Then, from a large pool of unlabeled data, instances are
sampled by ranking them according to heuristics, e.g., uncertainty sampling (Lewis and
Catlett, 1994). There, instances are scored highest for which the model is most uncertain
when asked to classify them. These are then given for labeling to human annotators. The
model is then trained on the just annotated instances and is again used to rank instances.
This training, selection, and annotation loop is repeated until the model reaches sufficient
task performance or the annotation budget has been used up. Active learning has been
shown to reduce the number of annotated instances needed to reach a quality threshold
compared to random sampling, thereby saving costs and time (Fang et al., 2014).

Active learning is model-centric, aiming to obtain a well-performing machine-learning
model. This goal can negatively impact users, as the model potentially selects instances
that are uninteresting or irrelevant to users, too hard or too easy (Lee et al., 2020). Lowell
et al. (2019) find that the resulting dataset is tied to the model; training a different
model type on the same data often does not improve performance compared to random
sampling. Another issue can be that models tend to acquire instances that are then hard
to learn or even require external knowledge, thereby degrading the resulting dataset
quality (Karamcheti et al., 2021). Also, active learning does not guarantee that the
resulting dataset is representative; MacKay (1992); Dasgupta and Hsu (2008) show that
corpora annotated that way often do not follow the population distribution. Biased
datasets have many issues (Bender and Friedman, 2018); therefore, caution must be
exercised when using active learning in the settings targeted by this thesis.

Adversarial Dataset Construction A different approach to data selection but in
the same vein as active learning is adversarial dataset construction, which is most often
used for creating challenging datasets, especially suitable for benchmarks, requiring text
production, e.g., question answering. Instances are vetted by a machine learning model
trained in the loop on the annotated data. When users submit annotations, they are
given to the model to predict; if the model classifies them correctly, they are discarded
or given back to annotators to be altered. Examples of datasets created this way are,
among others, drop (Dua et al., 2019) or adversarialnli (Nie et al., 2020). However,
having a roadblock before submission might be exhausting for annotators as they need
to iterate on annotations instead of being allowed to go on. A model serving as the
gatekeeper helps increase efficiency because annotators are nudged to create difficult
annotations. Compared to the alternative of best-effort guidelines to enforce the creation
of tricky instances and manual filtering, adversarial dataset construction can save time
and effort.

Annotation Curricula It is not only important what to annotate, but it can also
have an impact at which point in the annotation process which annotations are given
out. An annotation process is stable if its output does not drift over time (see §3.1).
Instability can, for example, occur due to carelessness, distractions, tiredness, or even
learning through practice. In order to stabilize the annotation process and provide
implicit on-the-annotation-job training, in Lee, Klie et al. (2022), we propose Annotation
Curricula, which brings the ideas and methods of curriculum learning (Bengio et al., 2009)
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to the annotation process. A learning curriculum orders exercises to match a learner’s
proficiency level (Krahnke and Krashen, 1983), i.e., not stressing them too little or too
much, thereby giving a targeted, optimal learning stimulus. This is also called the zone of
proximal development (Vygotsky, 1980). Adapted to annotation, instances are ordered by
a heuristic, for example, annotation time as a proxy for difficulty. Thereby, annotators can
implicitly get used to the task and deal with edge cases as well as difficult instances later
once they are more experienced. In simulation and a user study, annotation curricula have
shown statistically significant reductions in annotation time while preserving annotation
quality.

5.1.4 Community Annotation

To reduce costs when creating new datasets, several works have relied on the community’s
generosity to annotate for free (Uzuner et al., 2010). In addition to the reduction in cost,
it also has the potential upside of attracting intrinsically (not only fiscally) motivated
volunteers. These are often skilled in the task and can provide high-quality annotations,
thus potentially combining the advantages of expert annotations and crowdsourcing.

However, relying on unpaid annotators also entails several issues. First, attracting
volunteers can be difficult and effortful; it is not guaranteed that a sufficient number
of annotators will participate. Second, there are ethical considerations that need to
be taken into account when working with volunteers for unpaid work (Resnik et al.,
2015; Rasmussen and Cooper, 2019). First, it is vital to consider an ethical deployment
that does not compromise the participants’ trust. This ensures that participants are
not exploited for <free labor=4in contrast to approaches like reCAPTCHA (von Ahn
et al., 2008), where humans are asked to solve a task in order to gain access to services.
Whereas CAPTCHAs were initially intended to block malicious bots, they are becoming
increasingly problematic due to their deployment and use by monopolizing companies,
which raises ethical concerns (Avanesi and Teurlings, 2022). Second, given increasing
concerns regarding the ownership and use of collected data (Arrieta-Ibarra et al., 2018),
one should grant participants full rights to access, change, delete, and share their personal
data (Jones and Tonetti, 2020). Third, community annotation is almost exclusively
applicable for creating research datasets and much less for industry applications.

There are two flavors of community annotation that we consider in this thesis, both of
which we briefly describe in the following.

Games with a Purpose A fun way to collect annotations from volunteers is games
with a purpose, i.e., devising a game in which participants annotate data (Chamberlain
et al., 2008; Venhuizen et al., 2013). It has been shown that if a task lends itself to
being gamified, it can attract a wide audience of participants and be used to create
large-scale datasets (von Ahn, 2006). Several works propose games for different purposes
and languages, for instance, anaphora annotation (PhraseDetectives, Poesio et al. 2013),
dependency syntax annotation (Zombilingo, Fort et al. 2014), or collecting idioms (Eryiğit
et al., 2022). Lyding et al. (2022) investigate games with a purpose in the context of
(second) language learning to crowdsource annotations from learners and simultaneously
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teachers. Another example is Substituto, a turn-based, teacher-moderated game for
learning verb-particle constructions (Araneta et al., 2020).

Citizen Science Citizen Science broadly describes the participation and collaboration
of the general public (the citizens) with researchers to conduct science (Haklay et al.,
2021). It is a popular alternative approach for dataset collection efforts and has been
successfully applied in cases of, for example, weather observation (Leeper et al., 2015),
counting butterflies (Holmes, 1991) or birds (National Audubon Society, 2020), classifying
images of galaxies (Lintott et al., 2008) or monitoring water quality (Addy et al., 2010).
Compared to crowdsourcing, citizen science participants are volunteers who do not work
for monetary gain. Instead, they are often motivated intrinsically. They may have a
personal interest in positively impacting the environment (West et al., 2021), or in
altruism (Rotman et al., 2012). Intrinsic motivation also has the potential of resulting in
higher-quality annotations compared to crowdsourcing. For instance, Lee et al. (2022)
find in their evaluation study with volunteers that their participants may have been
willing to take more time annotating for the sake of higher annotation accuracy. Tsueng
et al. (2016) directly compare crowdsourcing with citizen science and show that volunteers
can achieve similar performance in mining medical entities in scientific texts.

Newly emerging technologies and platforms further allow researchers to conduct in-
creasingly innovative citizen science projects, such as the prediction of influenza-like
outbreaks (Lee et al., 2021) or the classification of animals from the Serengeti National
Park (Swanson et al., 2015). For projects dealing with natural language, LanguageARC is
a citizen science platform for developing language resources (Fiumara et al., 2020). One
work using LanguageARC is by Fort et al. (2022), who collected resources to evaluate
bias in language models.

5.2 Contributions

Dataset creation is difficult, expensive, and time-consuming. Therefore, reducing anno-
tation time and supporting annotators throughout the process is highly beneficial and
desirable. This thesis contributes to improving annotation efficiency by providing the
following contributions:

• As part of Klie et al. (2018) (Chapter 6), we implemented recommender support
for the INCEpTION annotation platform. INCEpTION being a general purpose
annotation platform that is easily extensible allowed a smooth and simple integration.
There are two types of recommenders supported: internal and external. Internal
recommenders are directly integrated into the platform by implementing a Java
interface. External recommenders use a simple, HTTP-based protocol for which we
provide a Python library.1 Recommender support in INCEpTION has been used
extensively in other works, for example, by Schulz et al. (2019) or Beck et al. (2021).

1https://github.com/inception-project/inception-external-recommender
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In addition, the Python library cassis
2 has been developed to convert from and to

the INCEpTION internal data format, for instance, to facilitate pre-annotations.

• In Klie et al. (2020) (Chapter 9), we propose a novel, interactive approach to
entity linking for low-resourced domains. For this, we combine recommenders that
suggest potential concepts and adaptive candidate ranking, thereby speeding up
the overall annotation process and making it less tedious for users. To validate our
approach, we conducted a user study. There, annotation speed improves by up to
35% compared to annotating without interactive support; users report that they
strongly prefer our system.

• In Lee, Klie et al. (2022) (Chapter 10), as part of a joint work with Ji-Ung Lee, we
propose annotation curricula to implicitly teach the annotation task by smartly
ordering instances. We together developed the idea and formalization. The individual
contribution of this thesis toward annotation curricula is using machine learning
models to estimate annotation time as a proxy for difficulty. We show in simulation
that models can be trained interactively to estimate annotation time as a proxy
for difficulty based on the annotation time for annotations made so far. In a user
study, Ji-Ung showed that annotation curricula can significantly reduce annotation
time compared to a random ordering.

• In Klie et al. (2023b) (Chapter 11), we provide a systematic study on citizen science
for annotating natural language processing (NLP) datasets. For this, we re-annotate
parts of the perspectrum (Chen et al., 2019) dataset using citizen science and
compare these to the original, crowdsourced annotations. We provide guidelines
and recommendations on how to best conduct a citizen science project for NLP
annotation and discuss critical legal and ethical aspects. Our results show that using
citizen science for such annotation projects can result in high-quality annotations
but that attracting and motivating people is critical for its success, especially in
the long term. We thus conclude that citizen science projects have the potential to
be applied to NLP annotation if they are conceptualized well but are best suited
for creating smaller datasets.

2https://github.com/dkpro/dkpro-cassis
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Abstract

We introduce INCEpTION, a new annotation platform for tasks including interactive and seman-

tic annotation (e.g., concept linking, fact linking, knowledge base population, semantic frame

annotation). These tasks are very time consuming and demanding for annotators, especially

when knowledge bases are used. We address these issues by developing an annotation platform

that incorporates machine learning capabilities which actively assist and guide annotators. The

platform is both generic and modular. It targets a range of research domains in need of semantic

annotation, such as digital humanities, bioinformatics, or linguistics. INCEpTION is publicly

available as open-source software.1

1 Introduction

Due to the success of natural language processing (NLP), there is a large interest to apply NLP methods in

a wide range of new application domains, for instance to scale textual data analysis or to explore textual

data. This requires being able to quickly bootstrap new annotated corpora in these domains. As target

users, we consider for instance data scientists who train and evaluate machine learning algorithms as well

as researchers who to wish to cross-reference and disambiguate text collections for better exploration and

discovery. Furthermore, every application domain uses specific semantics and vocabularies which need to

be modeled, making entity linking one of the most important annotation tasks. Thus, we identify three

requirements that annotation tools must meet in order to address today’s demands:

Annotation assistance. Creating annotated corpora is challenging and requires experts who are highly

familiar with the annotation schemes in order to reach high inter-annotator agreement as well as high

quality annotations. For semantic annotations, it is even more difficult: tasks such as entity and fact

linking are very time intensive and often require an in-depth familiarity with the inventory of the resource.

To improve the efficiency of these tasks, it is necessary to create an environment in which the computer

can learn from the human and use this knowledge to support the human annotator.

Knowledge management. Semantic resources for new domains typically do not exist from the start.

Instead, they are constructed and expanded as part of the annotation task. Thus, while some annotation

tools already support entity linking against existing large-scale general knowledge bases (KB) such as

Wikidata or DBPedia, it is also necessary that domain specific knowledge can be collected and modeled

directly in the annotation tool.

Customizability and extensibility. Every annotation project has specific requirements that go beyond

the basic task requirements, e.g. due to the data formats, knowledge resources, or text genres involved.

Therefore, it is important that the tool can be customized, extended, and adapted to novel tasks.

INCEpTION addresses these requirements in several ways. To improve the efficiency of (semantic)

annotation tasks, so-called recommenders are implemented which provide users with suggestions for

possible labels. To navigate the annotation suggestions, an active learning mode can be enabled which

1https://inception-project.github.io ; software is licensed under the Apache License 2.0

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/



guides the annotator in an efficient and effective manner. Knowledge management is fully integrated;

knowledge bases can be created and edited, entity and fact linking is supported. The modular architecture

of INCEpTION enables users to augment their instance with custom machine learning algorithms, data

formats, knowledge bases, annotation types, visualizations and more.

2 Related Work

In recent years, several knowledge management and annotation tools have been developed, but none of

them offer an integrated environment addressing all of the mentioned requirements.

Several tools, e.g. GATE Teamware (Bontcheva et al., 2013) implement support for automatically

pre-annotating text. These are then corrected by the annotator in the next step. In contrast to that,

INCEpTION allows recommenders to give suggestions at any time during the annotation process and

learns from the user interactions (new annotations, rejections, etc.).

WebAnno (Yimam et al., 2014) integrates an automation mode in which the system can learn from

annotations made by the user and provide suggestions. However, retraining has to be triggered manually

by an administrator. Also, it uses a non-modular backend that provides only one machine learning

algorithm and does not support active learning. WebAnno presents the document to be annotated

and the recommended annotations separately in a split-screen mode which makes it tedious to relate

recommendations to already existing annotations.

The general approach described by Emanuele Pianta and Zanoli (2008) who integrate an active learning

process with an existing annotation tool and the ability to call out to different machine learning backends

for recommendations as well as Prodi.gy2 are similar to our approach. However, they focus strongly on

the active learning aspect and force the user to follow the lead of the active learning module, restricting the

user’s workflow. In INCEpTION, the active learning algorithm highlights a particular recommendation to

be judged by the user, but does not prevent the user from making other annotations.

The web-based tool AlvisAE (Papazian et al., 2012) supports both linking entity mentions to a

knowledge base and editing knowledge bases (with limitations), but it does not support recommendations

or active learning. Knowtator (Ogren, 2006) is another instance of a desktop application which ships as an

annotation plugin for an ontology building tool. However, single-user tools like the ones above do not

meet today’s demand for collaboration-oriented annotation tools.

3 INCEpTION – System Overview

INCEpTION offers a number of functionalities expected from a generic annotation platform: a versatile

and yet intuitive user interface, flexible configuration of the annotation schema, the ability to run multiple

annotation projects concurrently for multiple users and workflow-support with annotation and adjudication

stages, etc. With respect to these basic functionalities, we build on our previous work in the context of

WebAnno (Yimam et al., 2014) and UIMA (Ferrucci et al., 2009), and therefore refer the interested

readers to these projects.

In this paper, we focus specifically on INCEpTION’s unique features, in particular on annotation

assistance via recommenders and active learning, the knowledge management capabilities and its options

for customizations and extensions.

Annotation User Interface The annotation scheme used by INCEpTION organizes annotations into

layers which define the set of attributes that an annotation may carry. Users can define an arbitrary number

of layers that are each either spans or relations between spans. Each layer can have an arbitrary number of

features which can be strings, numbers booleans, concept references, or references to other annotations.

The annotation user interface (Figure 1) displays the document text in the central part 1 . Marking a

span of text here creates a new annotation on the layer that is selected in the right sidebar 2 (e.g. named

entity). Span annotations are displayed as bubbles above the text.

When an annotation is created or an existing annotation is selected, its features are shown in the right

sidebar and can be edited there 3 4 . Depending on the feature type, a specialized editor is shown. For

2https://prodi.gy
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Figure 1: INCEpTION annotation editor: 1 annotation area, 2 annotation layer selection, 3 entity

linking feature editor, 4 named entity linked to Wikidata, 5 entity mention suggestion, 6 active

learning sidebar, 7 fact linking editor, 8 annotated fact, 9 entity linking recommendations.

instance, the editor to assign concepts from a knowledge base is an auto-complete input field which shows

entities from the knowledge base that match the users’ input. The left sidebar provides access to further

functionalities, in particular to the active learning mode.

Recommenders To improve annotation efficiency, INCEpTION offers recommenders. These are algo-

rithms that make use of machine learning and/or knowledge resources to provide annotation suggestions;

they are displayed to the user alongside already made annotations in a different color 5 . The user may

accept a suggestion by clicking on it. This turns the suggestion into a proper annotation which can then be

further edited if desired. The user may also reject the suggestion by double-clicking on it.

The recommender subsystem is designed to continuously monitor the users’ actions, to update/retrain

the recommendation models, and to provide always up-to-date suggestions. Multiple recommenders can

be used simultaneously, e.g. high-precision/low-recall recommenders (e.g. using a dynamic dictionary)

which are useful during early annotation stages, and context sensitive recall-oriented classifiers (e.g.

sequence classifiers) for later stages. To avoid classifiers providing too many wrong suggestions during

bootstrapping, a quality threshold can be configured per recommender.

INCEpTION supports two types of recommenders: internal and external. Internal recommenders are

directly integrated into the platform by implementing a Java interface, while external recommenders

use a simple, HTTP-based protocol to exchange UIMA CAS XMI (a XML representation of UIMA

annotations). External recommenders allow users to leverage already existing and pre-trained machine

learning models or libraries from other programming languages.

Active learning The goal of active learning (AL) is to quickly reach a good quality of annotation

suggestions by soliciting feedback from the user that is expected to be most informative to the underlying

machine learning algorithm. Presently, we use the uncertainty sampling strategy (Lewis and Gale, 1994)

to drive the AL as it only requires that the recommenders produce a confidence score for each suggestion.

The AL mode 6 works for one layer at a time to avoid confusion. After the layer has been selected, the

system highlights the suggestion it seeks input for in the annotation area and displays its details in the

AL sidebar. The user can then accept, reject or skip the suggestion. Skipped suggestions are presented

again to the user when there are no more suggestions to accept or reject. The choices are stored in the

learning history where the user can review and undo them if necessary. When the AL mode is enabled, the

user can still deviate from its guidance and arbitrarily create and modify annotations. All changes made

through the AL sidebar or in the main editor are immediately picked up by the recommenders causing the

suggestions as well as the AL guidance to be updated.
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Knowledge Management For knowledge management, INCEpTION supports RDF-based knowledge

bases. While internal KBs can be used for small domain-specific knowledge, large external (remote)

knowledge bases can be accessed via SPARQL. A flexible configuration mechanism is used to support

different knowledge representations, such as Wikidata, DBPedia, OWL, CIDOC-CRM, SKOS, etc.

INCEpTION has notions of classes, instances, properties and qualifiers (for KBs using reification).

However, it does not aspire to offer full support for advanced features of schemes such as OWL.

Knowledge bases enable the user to perform knowledge-driven annotations, e.g. annotating mentions of

knowledge base entities in documents (entity linking 3 ) or creating new knowledge bases by annotating

subjects, predicates and objects in text (fact linking 7 8 ). Users can also explore and edit the knowledge

base contents within INCEpTION.

To facilitate the entity linking process, INCEpTION can optionally take into account the context of the

entity mention in order to provide the user with a ranked list of potential candidates. The same approach

is used to drive an entity linking recommender which displays high-ranking candidates as annotation

suggestions 9 in the annotation area where the user can accept them with a single click.

Customizability and extensibility There are two approaches to customize and extend INCEpTION:

Internal extensions. The dependency injection and event mechanisms of Spring Boot3 are used to

internally modularize INCEpTION. Extension points make it possible to register new types of annotation

properties, new editors or new internal recommenders. Modules can coordinate their tasks with each

other through events. As an example, the main annotation area issues an event when an annotation has

been created or changed. The recommenders and the AL mode react to this event in order to update

themselves. Functionality can thereby not only be added but also removed to create custom branded

versions of INCEpTION. The event-driven modular approach also enables the system to comprehensively

log user and system actions. This data can for instance be used by annotation project managers in order to

evaluate the performance of their annotators.

External extensions. Currently supported are external recommenders and knowledge bases. Benefits

of using external services include increased stability (failing services do not crash the entire platform),

scalability (deploy resource-hungry services on different machines) and the free choice of programming

language (e.g. most deep learning frameworks are not implemented in Java).

Additionally, INCEpTION uses (de-facto) standards such as UIMA for annotations and RDF, OWL and

SPARQL for knowledge bases to achieve a high level of interoperability with existing tools and resources.

4 Use cases

To ensure that INCEpTION remains generic, we collaborate with multiple use cases:

FAMULUS. Schulz et al. (2017) use INCEpTION to annotate medical case study reports with argument

components. These are used to train a machine learning model which evaluates the diagnostic competence

of aspiring doctors. A pre-trained deep learning model is integrated as an external recommender and

is used during annotation. The annotators that use INCEpTION in conjunction with the recommenders

report the usefulness and improvement in annotation speed and quality.

EDoHa. Stahlhut et al. (2018) have created a hypothesis validation tool using INCEpTION. It features

a hypothesis/evidence editor which allows users to create hypotheses and link evidence in the form of text

paragraphs to it.

Knowledge-driven rntity ranking. In order to support users during entity linking, the re-ranking

approach described in (Sorokin and Gurevych, 2018) was adapted and integrated into INCEpTION. It is

used as a recommender and in the auto-suggestion box for the named entity layer.

As part of the collaborations with the above use-cases, INCEpTION logs the users’ actions in order to

investigate for instance which assistive features (i.e. recommenders) work best for the respective tasks,

whether they introduce a bias in the annotator’s results, and how to improve the user interface for an

improved user experience.

3Spring Boot: https://projects.spring.io/spring-boot/
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5 Conclusion and Future Work

In this paper, we have presented INCEpTION which –to the best of our knowledge– is the first modular

annotation platform which seamlessly incorporates recommendations, active learning, entity linking and

knowledge management. Our approach provides a number of advantages over current state-of-the-art

annotation tools. Recommenders giving suggestions on-line allow users to annotate texts more quickly

and accurately. External recommenders can be added to leverage already existing machine learning

models and bootstrap the annotation for new domains. Knowledge management is directly integrated

which allows entity- and fact linking together with building the knowledge base on the fly. The modular

approach used by INCEpTION provides users with the possibility to tailor the platform according to their

needs, for instance by adding new machine learning algorithms, annotation editors or knowledge bases.

INCEpTION is publicly available as open source-software. We welcome early adopters and encourage

feedback for a continued alignment of the platform with the needs of the community. Several collaborations

are on the way to develop and improve features that are useful to researchers and annotators, e.g. corpus

search, recommenders that check the plausibility of annotations or fully custom user interfaces.
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Data quality is crucial for training accurate, unbiased, and trustworthy machine learning models

as well as for their correct evaluation. Recent works, however, have shown that even popular

datasets used to train and evaluate state-of-the-art models contain a non-negligible amount of

erroneous annotations, biases, or artifacts. While practices and guidelines regarding dataset

creation projects exist, to our knowledge, large-scale analysis has yet to be performed on how

quality management is conducted when creating natural language datasets and whether these

recommendations are followed. Therefore, we first survey and summarize recommended quality

management practices for dataset creation as described in the literature and provide suggestions

for applying them. Then, we compile a corpus of 591 scientific publications introducing text

datasets and annotate it for quality-related aspects, such as annotator management, agree-

ment, adjudication, or data validation. Using these annotations, we then analyze how quality

management is conducted in practice. A majority of the annotated publications apply good or

excellent quality management. However, we deem the effort of 30% of the works as only subpar.

Our analysis also shows common errors, especially when using inter-annotator agreement and

computing annotation error rates.

1. Introduction

Having large, high-quality annotated datasets available is essential for developing,
training, evaluating, and deploying reliable machine learning models (Sun et al. 2017;
Bender and Friedman 2018; Peters, Ruder, and Smith 2019; Gururangan et al. 2020; Sam-
basivan et al. 2021). Annotated datasets are also frequently used in linguistics (Hasel-
bach et al. 2012), language acquisition research (Behrens 2008), bioinformatics (Zeng
et al. 2015), healthcare (Suster, Tulkens, and Daelemans 2017), and the digital human-
ities (Schreibman, Siemens, and Unsworth 2004). Concerning machine learning, recent
work has shown, however, that even datasets widely used to train and evaluate state-of-
the-art models contain non-negligible proportions of questionable labels. For instance,
the CoNLL-2003 (Tjong Kim Sang and De Meulder 2003, named entity recognition)
test split has an estimated 6.1% wrongly labeled instances (Reiss et al. 2020; Wang

∗ Corresponding author



et al. 2019), ImageNet 5.8% (Vasudevan et al. 2022; Northcutt, Athalye, and Mueller
2021, image classification) and TACRED 23.9% incorrect instances (Stoica, Platanios,
and Poczos 2021, relation extraction). GoEmotions (Demszky et al. 2020, sentiment
classification) is estimated to contain even up to 30% wrong labels.1 Using these datasets
for machine learning can —among other issues— lead to inaccurate estimates of model
performance (Reiss et al. 2020; Vasudevan et al. 2022), generalization failure due to
data bias (McCoy, Pavlick, and Linzen 2019), or decreased task performance (Stoica,
Platanios, and Poczos 2021; Vădineanu et al. 2022).

Recently, conversational agents and search engines based on large language models
trained via instruction tuning have been widely adopted in science and society (Ouyang
et al. 2022; Wei et al. 2022). Hence, datasets used for fine-tuning must be factually
correct and contain as few biases as possible for the resulting models to be accurate and
trustworthy and not to cause misinformation or harm. Benchmark datasets to evaluate
their performance and rankings also need to be as accurate as possible to allow fair
comparisons.

Proper quality management must be conducted throughout the dataset creation
process (as depicted in § 3.1) to produce high-quality datasets. Dataset quality is not
only limited to label accuracy but also encompasses aspects such as the quality of the
underlying text, annotation scheme, adhering to established practices, or standards for a
task, and social or data bias. Quality management encompasses, among others, proper
data selection, choice of annotators and training, creating and improving annotation
schemes and guidelines as well as annotator agreement, data validation, and error
rate estimation (Hovy and Lavid 2010; Alex et al. 2010; Pustejovsky and Stubbs 2013;
Monarch 2021). Even though there exists an extensive body of work that discusses
quality management in theory (see § 2), we observe that this knowledge is difficult to
find and to consult, as it is scattered across many different sources and usually treated as
part of the general annotation process, hence often lacking depth. Also, to the best of our
knowledge, no work as of yet has analyzed whether and how these recommendations
are applied in practice. Disseminating and analyzing quality management is especially
relevant in the context of a growing number of datasets being created and released,
which can exhibit the aforementioned discussed dangers of low-quality data collection.

To better understand how quality management is actually performed in practice, we
first survey the literature to summarize good practices regarding quality management
for dataset creation. Based on Papers With Code2, we then collect and annotate a large set
of publications (591, of which 314 report human annotation or validation) that introduce
new text datasets, and analyze how often and how well the different quality manage-
ment methods are used. We also analyze the coverage of Papers With Code with regard to
the ACL anthology, LDC corpora and shared tasks to validate the representativeness of
our collected dataset. Finally, we summarize our findings and provide suggestions that
dataset creators can use to consult and improve their annotation process. To the best of
our knowledge, this newly annotated dataset and analysis of annotation good practices
is the most extensive and detailed to date. We answer the following research questions:

RQ 1 What are good practices for data annotation quality management as described in
the literature and derived from actual annotation projects?

RQ 2 Compared to the previously collected good practices, which methods are actually
used in practice?

1 https://archive.ph/jQbNM

2 https://paperswithcode.com/datasets
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RQ 3 Overall, how thorough is annotation quality management conducted in practice?

Our analysis shows that while many datasets are created according to good practices,
several widespread issues exist. When using inter-annotator agreement, there is a fre-
quent lack of actual interpretation of the agreement values. Also, sample sizes tend
to be too low to make statistically sound conclusions when computing agreement and
estimating the annotation error rate. Good practices suggested by the literature, like
annotator training, pilot studies, or an iterative annotation process, are only mentioned
rarely. Another interesting finding is that most of the time, adjudication is performed
via majority voting; we found only three datasets that reported using probabilistic ag-
gregation. Overall, we find a lack of proper reporting of how the annotation process was
planned and executed, who annotated, as well as which quality management methods
were used. These issues make it more difficult to gauge the quality of datasets and can
hinder reproducibility. In summary, our contributions are:

• We survey the literature and compile an extensive summary of quality manage-
ment methods.

• We analyze how quality management is done in practice compared to the good
practices we found and recommend and point out common mistakes.

• Based on our findings, we provide a list of recommendations that can be used
by future dataset creators to improve the quality of their datasets and to avoid
common pitfalls.

In order to foster further investigation into quality management for data annotation, we
will also release our code3 to collect and analyze the dataset as well as our annotations 4.
Our dataset can also be used as a reference to find papers that use specific quality
management methods and serve as an example of how to apply them.

2. Background

In the following section, we discuss the most relevant works dealing with the dataset
creation process in general and its quality management in particular. By quality man-
agement, we understand the overall process and measures taken to reach and maintain
a desirable level of quality. The quality management measures we found are described
in detail in § 3.

Dataset Creation. Dataset creation subsumes several activities, which can be coarsely
divided into three categories: annotation, production or evaluation (Shmueli et al. 2021).
Different quality management methods are applicable or should be used depending on
the task. Annotation or labeling means enriching data with additional information, e.g.,
tags for text classification. Production encompasses activities like writing the text for
question answering, paraphrasing, or summarizing. Evaluation means using humans
to compare or assess properties like quality of previously labeled or produced instances.
These can be manually or automatically created. While also touching on text production,
this article primarily discusses annotation quality management. We call participants in
a dataset creation process still annotators, even if they only perform production.

3 https://github.com/UKPLab/qanno ; GPL v3
4 https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3939 ; CC BY-NC 4.0
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Dataset Creation Good Practices. Several books and articles have been written discussing
dataset creation, especially concerning the annotation process itself. For instance, Ide
and Pustejovsky (2017) collected descriptions for a wide range of different annotation
projects. Pustejovsky and Stubbs (2013) describe the annotation process targeted to-
wards training a machine learning model. However, both focus mainly on setting up
the respective annotation projects, collecting data, as well as developing the annotation
scheme and guidelines. Quality management is mentioned, but – except for inter-
annotator agreement – not discussed in depth. Hovy and Lavid (2010) define good
practices concerning conducting linguistic annotation projects. They emphasize the
importance of proper annotator selection and training and how to evaluate the resulting
dataset quality using agreement. Monarch (2021) discusses quality management for
data annotation in the greatest detail. Their focus is predominantly on how to evaluate
the quality of annotated data, from simple agreement measures over comparison with
gold data to annotator-specific performance. Wynne (2005) describe good practices
when creating linguistic corpora but only mention quality as important, not how to
assure it. Similarly, Roh, Heo, and Whang (2021) survey the different ways to collect
data, for instance, via annotation, distant or self-supervision, but only bring up quality
management in a short paragraph.

Several large-scale projects were conducted to develop standards and recommen-
dations for creating language resources. These projects are, among others, the Expert
Advisory Group on Language Engineering Standards (EAGLES) funded by the European
Union (launched in 1993) or ISO/TC 37/SC 4, a technical subcommittee within the
International Organization for Standardization. The resulting standards are either rela-
tively challenging to find or require payment. While searching, we did not find explicit
mentions of quality management or related recommendations.

Quality Management in Crowdsourcing. Many works have shown that crowdworkers can
annotate or create datasets with similar quality compared to experts (Snow et al. 2008;
Hovy, Plank, and Søgaard 2014). Proper quality management is especially important
in crowdsourcing, where the risk of unreliable workers is usually higher (Hovy et al.
2013). An early work describing basic quality control measures to use with Amazon’s
Mechanical Turk is given by Callison-Burch and Dredze (2010). These include having
multiple annotators for each instance or using control instances to estimate annotator
quality. Daniel et al. (2019) define a taxonomy of quality for crowdsourcing and ex-
tensively describe related quality control measures. Their survey focuses on annotator
management and how it is implemented in annotation tools. Unlike our study, they
do not analyze if and how quality control measures are used in practice as reported
by dataset-introducing scientific publications. Lease (2011) note that the annotation
platform and tools can automate quality management in crowdsourcing to a certain
degree, but manual inspection is still needed.

Annotation Process Analysis. Sabou et al. (2014) analyze 13 datasets created by crowd-
sourcing concerning how they were collected and derive good practices from this
analysis. Amidei, Piwek, and Willis (2019) analyze inter-annotator agreement in the con-
text of natural language generation evaluation and annotate 135 publications for this.
Compared to these works, we go beyond analyzing only crowdsourced datasets, have
a more detailed annotation scheme, annotate as well as analyze far more publications,
and summarize quality management measures and good practices in greater detail.

60



Klie, Eckart de Castilho, Gurevych Dataset Annotation Quality Management

Dataset documentation checklists. In the past, it has been found that datasets were often
not adequately documented and were just published as-is. Therefore, several works
proposed checklists and templates that should be published alongside the dataset to
remedy this issue. These are, among others, datasheets for datasets (Gebru et al. 2021),
dataset nutrition labels (Holland et al. 2018), data statements for NLP (Bender and Fried-
man 2018), accountability frameworks (Hutchinson et al. 2021), or data cards (Pushkarna,
Zaldivar, and Kjartansson 2022). Similarly, more and more machine learning and natural
language processing (NLP) conferences have adopted and are adopting reproducibility
checklists for machine learning model training. The focus of these checklists is mostly on
bias, annotator background, intended use, general data statistics, data description, data
origin, or preprocessing. Kottner et al. (2011) propose a checklist that can be used when
using agreement values, which is a good start but very specific to only a single aspect
of quality management. It is designed for clinical trials and might require adaptation
for use in NLP. We did not find any checklist explicitly targeted towards overall quality
management.

To summarize, while a large body of work generally discusses the dataset creation
process, the parts discussing quality management are relatively scarce, quite scattered in
the literature, and not easy to find. Therefore, we summarize the literature and provide
an easily referenceable set of good practices and recommendations for the dataset-
creation practitioner. We additionally annotate a large set of dataset-introducing papers
for their quality management and conduct an extensive empirical evaluation of how it
is applied in practice. To the best of our knowledge, our analysis of quality management
in textual dataset publications is currently the largest and the first, while not limited to
a particular area like crowdsourcing.

Annotation Process

• Iterative Annotation
• Careful Data Selection
• Annotation Scheme
• Guideline Design
• Pilot Study
• Validation Step

Annotators

• Workforce Selection
• Qualification Test
• Annotator Training
• Annotator Debriefing
• Monetary Incentive

Quality Estimation

• Error Rate
• Control Questions
• Agreement

Quality Improvement

• Correction
• Updating Guidelines
• Filtering
• Annotator Feedback
• Annotator Deboarding

Adjudication

• Manual Curation
• Majority Voting
• Probabilistic Aggregation

Figure 1: Quality Management methods discussed in this work. We categorize methods
into annotation process, annotator management, quality estimation, quality improve-
ment, and adjudication.
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3. Dataset Creation Quality Management

To answer our first research question, in the following, we present the most relevant and
frequently used quality management methods for dataset creation. This list is derived
from good practices stated in previous works (§ 2) and the methods we found while
surveying the dataset papers (§ 4) themselves. We consider the following methods good
practices for two reasons. They are disseminated in well-acclaimed books or have been
adopted by the community and are thus commonly used and tested in practice. We
thus believe that the methods discussed in the following are well-suited for managing
quality. It has to be mentioned, however, that only a few works have thoroughly
investigated the exact impact of these methods on aspects like quality, time savings,
or agreement (see also § 5 and § 8).

Another important point to consider is to see quality management as a means
towards a goal and not as a goal in itself. Depending on the goal, for instance creating
datasets with low bias, high quality, or diversity, some methods might be preferred over
others. The choice of methods should thus be based on the purpose and usage goals.

Also, when applying the ensuing methods in practice, their use can be expensive.
Therefore, extensive quality management needs to be balanced against the annotation
costs itself when working on a limited budget; a healthy compromise between the two
needs to be found.

We propose a taxonomy that puts the methods into five groups related to the
annotation process, annotator management, quality estimation, quality improvement, and adju-
dication. While only briefly outlining the techniques here, we refer the interested reader
to each method for a more in-depth description. An overview of the discussed methods
is given in Fig. 1.

We differentiate between two types of tasks for dataset creation (see § 2), namely
annotation (e.g., named entities or text classification) and text production (e.g., writing
questions and answers for question answering, paraphrasing, sentence simplification).
This distinction is important because specific quality management methods may work
for one but not the other. For example, inter-annotator agreement and adjudication are
usually not applicable to text production tasks. Both expert annotation and crowdsourc-
ing are considered.

Our survey primarily focuses on annotation, especially label errors, but we also dis-
cuss annotation consistency, biases, and how to mitigate them. Regarding label errors,
while it is sometimes impossible to assign a single, true label due to inherent ambiguity,
especially in natural language processing, deciding whether a label is incorrect is often
much more straightforward.

Before describing quality management methods, we first define what dataset qual-
ity subsumes. Following Krippendorff (1980); Neuendorf (2016), we suggest targeting
at least the following quality aspects5:

Stability A dataset creation process is stable if its output does not drift over time.
Drift here means that similar phenomena are annotated similarly independent
of whether they are annotated earlier or later throughout the process. Instability
can, for instance, occur due to carelessness, distractions or tiredness, change in
annotation guidelines, or even learning through practice.

5 Note that dataset creation projects that run over a very long time and which might be subject to external
effects, such as general advances in the field or societal changes, may need other definitions for these
categories or incorporate specific approaches to deal with such external effects.

62



Klie, Eckart de Castilho, Gurevych Dataset Annotation Quality Management

Reproducibility A dataset creation process is reproducible if different annotators can
still deliver the same results given the same project documentation regarding
process, guidelines and scheme.

Accuracy Annotations and texts created during the process are accurate if they adhere
to the guidelines and the desired outcome.

Unbiasedness This describes the extent to which the created artifacts are free of sys-
tematic, nonrandom errors (bias).

Stability, reproducibility, and accuracy are also subsumed under the term reliability in
content analysis (Krippendorff 1980). Consistency is related to stability and reproducibility.
Reliability thus measures the differences that occur when repeatedly annotating the same
instances; it is empirical (Hardt and Recht 2022). It is required to infer validity, that is,
to show that the annotations capture the underlying phenomenon targeted (Artstein
and Poesio 2008), but not sufficient. Validity is latent and cannot be directly measured.
Therefore, proxy metrics targeting reliability, for example agreement, need to be used
instead.

3.1 Annotation Process

The following section describes the recommended annotation process. It is written
concerning annotation but can easily be adapted to text production as well.

We suggest that an annotation project should start with a planning phase. It can
encompass important preliminaries as setting the goal of data collection, making initial
choices for data and annotators, setting a budget, desired quality level or reviewing
the literature for similar datasets or relevant annotation practices. Ideally, these choices
are documented and become part of the dataset documentation once the dataset gets
released.

The annotation scheme is often developed during an annotation project and is a liv-
ing document. Also, as annotators only get familiar with the task during the annotation
process, issues are found just then, and the data or task needs to be adapted accordingly.
Therefore, it is recommended to structure an annotation project as a sequence of cycles
with iterative quality improvement actions (Hovy and Lavid 2010; Pustejovsky and
Stubbs 2013; Monarch 2021). This approach is also called agile corpus creation (Alex et al.
2010). In each cycle, only a slice of the data is annotated: a batch. After the batch is
annotated, it is evaluated, and quality-improving/rectifying measures are taken if needed.
These cycles repeat until an acceptable quality level for a sufficient number of batches
has been reached. Evaluation can be performed by inter-annotator agreement (§ 3.3.3),
comparing annotations to a known gold standard to estimate annotator proficiency,
or having experts or a different set of annotators inspect a subset or all instances and
marking errors (§ 3.3.1 and § 3.3.2).

The advantage of this iterative approach is that changes are introduced at defined
points during the process. Iterating, for example, mitigates the annotation scheme and
annotations running out-of-sync and improves the chance of producing high-quality
datasets. Our take on this annotation loop is depicted in Fig. 2. Pilot studies are the
initial iterations used to create and improve the annotation process until it is good
enough for the annotation of the dataset itself. Quality improvement measures can be,
among others, retraining annotators, adjusting/clarifying the annotation guidelines or
annotation scheme, onboarding or deboarding annotators, or giving back batches to
annotators for correction (cf. § 3.4). In later iterations of an annotation project, when
the setup has stabilized, the batch sizes can be increased, and quality control can be
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Figure 2: The recommended annotation process: After a batch of data is annotated, it
is evaluated. If the quality is sufficient, it can be adjudicated. If not, several corrective
measures can be taken, e.g., correcting the annotations in an additional step, annotator
training, or adjusting the annotation scheme or guidelines. This is similarly applicable
for text production workflows where usually no adjudication takes place.

performed less rigorously, e.g., reducing the fraction of samples inspected for quality
checking or the annotations collected per instance. When using an iterative approach,
stability of the annotation process needs to be taken into account, as changes to the
process can cause differences in subsequently annotated batches. Also, if the annotation
scheme or guidelines evolve too much, then re-annotation of previously annotated
material might be necessary.

Careful Corpus Building. Not only are the labels assigned by the annotators important,
but also the choice of texts that are annotated itself (Wynne 2005). Choosing texts
that only rarely or even never contain the phenomena to annotate can be ineffective.
Similarly, selecting texts that are of poor quality can be detrimental and cause issues in
later stages of the machine learning pipeline. In order to achieve the best downstream
task performance for trained machine learning models, texts should be representative of
the data encountered in the target domain. Hence, it is vital to check the data for errors
and unwanted aspects like non-representative content or biases, ideally before it reaches
the annotators. This can be achieved by, e.g., manual inspection (Bastan et al. 2020;
Govindarajan et al. 2020) (e.g., by the project manager or even as a separate preparatory
annotation project) and filtering via rules (Reddy, Chen, and Manning 2019; Ghosal et al.
2022) or using spell-checking and text cleaning tools (Horbach, Ding, and Zesch 2017;
Kim, Weiss, and Ravikumar 2022).

Annotation Scheme and Guideline Design. The annotation scheme defines the structure,
features, and tagsets of the task to annotate. Its form and granularity can significantly
impact the annotation process and the downstream machine-learning modeling. There-
fore, it must capture the information of interest. The annotation scheme defines the
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annotation labels; the guidelines describe how to decide when to apply which label (e.g.,
disambiguating between different labels). Properly written guidelines are essential for
annotator training to achieve consistency and reproducibility, e.g., when re-annotating,
extending, or creating a similar dataset on different text. The way that the guidelines are
written can by itself already introduce bias (Geva, Goldberg, and Berant 2019; Parmar
et al. 2023) and therefore, great care needs to be taken when creating them. Instead of
creating guidelines from scratch for every annotation project, existing guidelines can
be reused and adapted for similar settings. In many annotation projects, the guidelines
are revised several times as part of a pilot study before the actual annotation process
starts (Hovy and Lavid 2010).

Guidelines for more complex annotation projects are often quite detailed and span
many pages. They are usually very short in crowdsourcing and often fit into the anno-
tation screen. Examples of excellent, extensive annotation guidelines can be found in
Prasad et al. (2008) or Da San Martino et al. (2022). For crowdsourcing, good examples
are given by Singh et al. (2021) or Mostafazadeh et al. (2020).

Pilot Study. When entering into an (iterative) annotation project, it is crucial to validate
the annotation process on a smaller scale, i.e., by conducting one or more pilot studies
with only a small annotator team (Pustejovsky and Stubbs 2013). Annotators in pilot
studies are often the project managers themselves or a selected group of experts. We rec-
ommend that experts or project managers conduct the initial pilot study iterations; the
annotation process should then be subsequently tested with the target annotators until
all questions and issues are solved. This study should include developing the initial
version of the annotation scheme and guidelines, configuring the respective annotation
tooling, and developing the data pre-processing and post-processing steps (Kummer-
feld et al. 2019). This way, issues can be spotted before investing too much effort into
a flawed setup. Ideally, the data used for pilot studies should be selected to contain as
many corner cases and difficult instances as possible. This reduces the chance that later,
during the main part of the annotation project, significant adjustments need to be made
that could cause costly re-annotation in case changes are not backward compatible. The
overall difficulty of the task can be gauged, and it can be tested whether experts are
needed or whether well-trained contractors or crowdworkers can achieve a desirable
quality level. The expected cost can also be estimated by measuring annotation time per
instance. The feedback annotators give during this phase is essential for a well-working
annotation project (Monarch 2021). It has to be noted, however, that if experts or project
managers conduct the initial pilot study, then they may use implicit knowledge that will
not transfer to more general annotators (Krippendorff 1980).

Validation. After an annotation step has been completed, a validation step can (and
should!) be added to check whether annotations are correct and of sufficient quality.
Validation steps can take different forms based on the task and setup, e.g., experts can
inspect a subset of annotations, or there can be a separate annotation phase asking for
binary correctness labels. While validation is important, it needs to be weighed against
spending on annotating more instances instead if the budget is limited.

It is also possible to design a more task-dependent validation step, for which we
give examples in the following. We call this flavor of validation indirect validation. It
is often applicable if the annotation task consists of different subtasks that depend on
each other and are hence annotated sequentially. For question answering, a first step
might be to write questions and answers. The validation step could then annotate which
answer best fits a given question (Mihaylov et al. 2018). For relation extraction, the first
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step can be marking spans and labeling their relation (Yao et al. 2019). The validation
step could be that annotators are given only the marked spans and are asked to label
the relation. Alternatively, the relation label could be given, and annotators are asked
to mark the spans with this relation. If annotations differ between subsequent steps,
then they are potentially incorrect. For natural language inference, the first task can
be defined as writing a premise and hypothesis, given a relation (entailment, neutral,
contradiction). In the second step, the task can be to label the relation between the two
given the premise and hypothesis. If the results in the first and second steps differ, these
instances require further treatment (Bowman et al. 2015).

Validation is also relevant for automatically created datasets, e.g., by crawling
external resources, distant or self-supervision. It should be performed after a batch of
annotations have been made and before they are adjudicated. Validation can be part of
quality estimation, which we discuss in more detail in § 3.3.1.

3.2 Annotator Management

Dataset creation projects stand or fall by the quality of the annotators; such a project
often is an exercise in people management (Monarch 2021). At every step, it is vital
to treat annotators fairly and respectfully. Here, we give a high-level overview of the
different aspects of annotator management. An in-depth survey of annotator manage-
ment focusing on crowdsourcing is also given in (Daniel et al. 2019; Monarch 2021). We
consider both “classic” expert annotation and crowdsourcing in this work and point out
when methods are more applicable for one or the other.

Workforce Selection. The type of workforce employed considerably impacts annotation
time, cost, and quality (Hovy, Plank, and Søgaard 2014). Which kind of annotators
to employ depends, among others, on the task difficulty, availability, target language,
and whether particular expertise is needed. If the annotation task is solvable by crowd-
workers, it is often an efficient way to annotate (Snow et al. 2008). For more involved
tasks, trained contractors can be an alternative to hiring domain experts (Chen et al.
2021). Contractors are a middle ground between crowdworkers and experts; they are
experienced in conducting annotation tasks but are not necessarily domain experts. It is
recommended to validate the workforce choice in one or more pilot studies.

Qualification Filter. As a common way to filter out crowdworkers that might produce
low-quality work, many crowdsourcing tools offer setting requirements for the worker.
These, for instance, can be requiring a certain percentage of accepted tasks or a certain
number of already completed tasks. Kummerfeld (2021) analyzes the impact of these
measures on quality and discusses the ethical aspects of requiring a minimum number
of tasks. They argue that it forces workers to accept a substantial amount of low-paying
tasks to overcome this hurdle. The conclusion is that there is no clear relation between
quality and filtering based on the percentage of accepted, previous tasks, and number
of completed tasks. They also note that in practice, limits are often set too high. Thus,
the paper recommends either running a pilot study to get estimates for the actual
requirement values or prefer qualification tests (see below) over simple filters.

Qualification Test. A more elaborate way to identify good annotators is to use (paid)
qualification tests (Kummerfeld 2021). Before an interested annotator can participate
in the primary annotation process, they must work on a small set of qualification
tasks. The answers are either compared against known answers or judged by experts.
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If the performance is acceptable, then the annotator is allowed to work on the actual
annotations themselves. The difficulty of the test can be varied based on how strictly the
test should filter. For instance, task examples from the guidelines can be handed out to
annotators to check whether they have been read and understood. A more challenging
test would be to use new, previously unseen tasks. Qualification tests can and should
not only be used for crowdsourcing but also when hiring contract annotators.

Annotator Training. Before involving new annotators in a project, it is often helpful to
train them in the annotation task at hand, to go through the guidelines with them, and
make sure that everything is clear (Neuendorf (2016, p. 133); Sabou et al. (2014)). Project
managers and annotators can give each other feedback that can then be worked into
the annotation scheme and guidelines. Feedback is especially important if annotators
find the guidelines difficult to understand or if they contain errors. Bayerl and Paul
(2011) conduct a meta-study and analyze, among other aspects, the effect of training
on agreement. They show that the better and more intensely annotators are trained, the
higher the agreement becomes. Also, they point out that training is beneficial not only
to crowdworkers but also to experts, as the latter might be familiar with the domain
but not with the project setup at hand. Training is also essential for annotation stability,
as early in the process, annotators are often unsure and unfamiliar with the annotation
process. This changes with more time spent annotating, rendering earlier annotations
potentially inconsistent with later ones.

Annotator Debriefing. During and after the run of an annotation project, it is often helpful
to ask one’s annotators for feedback about the annotation project (Neuendorf 2016, p.
134). This feedback can then be used to improve the guidelines, update the annotation
scheme, or alleviate issues that only became apparent while annotating. For instance,
usability issues of the annotation editor, ways to make annotation faster, or data quality
issues can be spotted and fixed before it is too late.

Monetary Incentive. Giving annotators additional monetary compensation in addition to
their base pay might be an option (Harris 2011; Ho et al. 2015). The amount, for instance,
can be based on their performance on control questions or after feedback rounds have
shown that they reach the target for a bonus. Another way is to pay annotators more for
sticking to a task (Parrish et al. 2021). If monetary incentives are used, it is essential to be
transparent about it, communicate the requirements beforehand, be fair, and not change
the rules post-hoc. Also, one needs to be careful that the targets for which monetary
incentives are promised are not gamed with detrimental effect towards annotation
quality. 6

3.3 Quality Estimation

After annotations have been made, their quality should be estimated and compared to
the desired quality level. In case it is insufficient, counter-measures should be taken to
improve it.

6 This is also known as Goodhart’s law: “When a measure becomes a target, it ceases to be a good
measure” (Goodhart 1984)
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3.3.1 Manual Inspection. In order to judge the quality of an instance dichotomously
as correct or incorrect, annotators (usually, they are different from the initial anno-
tators) or project managers can manually inspect and grade them (Pustejovsky and
Stubbs 2013). Validation can either be done on a subset of instances or as a complete
validation step. In addition, after the dataset has been completely annotated, its error
rate can be estimated and reported because even datasets considered gold often still
contain errors (Northcutt, Athalye, and Mueller 2021). The error rate is computed by
dividing the number of errors found by the number of instances inspected. Therefore,
we strongly recommend inspecting a subset of instances of the final dataset, labeling
their correctness, and thereby estimating the error rate. The notion of what is correct/of
sufficient quality or incorrect/insufficient depends on the task at hand. Hence, manual
inspection is not only applicable to annotation tasks but also to text production. There, it
can be determined whether the produced instance is of sufficient quality. For ambiguous
instances in annotation tasks, one would judge whether the label makes sense at all in
this context.

3.3.2 Control Instances. In order to gauge the performance of annotators, instances can
be injected into the annotation process for which the answer is known (Callison-Burch
and Dredze 2010). These gold instances are often obtained by having experts annotate a
subset beforehand. Another way is to compare a single annotator’s submissions to the
others’; the performance estimate is then the deviation from the majority vote (Hsueh,
Melville, and Sindhwani 2009) or the agreement (Monarch 2021). For example, the re-
sulting estimates can be used to retrain annotators if they annotated too many instances
incorrectly, send batches created by underperforming annotators back for re-annotation,
or remove annotators from the workforce. Well-performing annotators can also be
monetarily rewarded or given tasks requiring more expertise, such as task validation
or manual adjudication.

3.3.3 Agreement. A common way to quantify the reliability of annotations and annota-
tors is to compute their inter-annotator agreement (IAA) (Ebel 1951; Krippendorff 1980,
2004). For NLP, it has been increasingly adopted after Carletta (1996) introduced agree-
ment, coming from the field of content analysis, as an alternative to previously used ad-
hoc measures. Here, we briefly present the most popular and recommended agreement
measures. For a more in-depth treatment of agreement and how to apply it, we refer the
interested reader to the excellent works of Krippendorff (1980); Lombard, Snyder-Duch,
and Bracken (2002); Neuendorf (2016); Artstein and Poesio (2008); Monarch (2021).

Percent agreement. This is the most straightforward agreement measure. It considers
the percentage of coded units on which two annotators have agreed. This measure,
however, suffers from several issues (Krippendorff 1980, 2004; Artstein and Poesio
2008). First, it yields skewed results for imbalanced datasets, similar to accuracy when
evaluating classification. Second, it does not consider when annotators assign the same
label by chance, for instance, in case they randomly guess or spam. Third, percent
agreement is influenced by the size of the tagset. Therefore, it is difficult to compare
across annotation schemes. Finally, there are only two values of percent agreement that
are meaningful and intuitive, which are 0% and 100%. These issues together cause
percent agreement to be uninformative and difficult to interpret and compare when
estimating reliability. Therefore, the usage of percent agreement is discouraged and
should especially not be the only agreement measure reported.
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Cohen’s κ. In order to remedy the issues of percent agreement, Cohen (1960) proposes a
chance-corrected coefficient, normalized to [−1, 1], to measure the agreement between
two annotators. Negative values indicate disagreement, 0 the expected chance agree-
ment, and values greater than 0 indicate agreement. κ requires that the same number of
annotators annotate all instances; no entries may be missing. Also, annotations need to
be categorical. It is defined as

κC =
po − pe

1− pe

where po is the observed proportionate agreement and pe the chance agreement.

Fleiss’s κ. Fleiss (1971) extend Scott’s π (Scott 1955) to multiple annotators.7 Similarly
to Cohen’s κ, each instance needs to be labeled by the same number of annotators. In
addition, Fleiss’ κ assumes that annotators for each instance are sampled randomly, it is
not suitable for settings where all annotators annotate all instances (Fleiss, Levin, and
Paik 2003). It is defined as

κF =
P̄ − P̄e

1− P̄e

where P̄ measures observed agreement as the average agreement over annotator pairs
and Pe is the expected agreement by chance.

Krippendorff’s α. A different way to estimate agreement has been proposed by Krip-
pendorff (1980). It is based on the quotient of observed disagreement Do and chance
disagreement De:

α = 1−
Do

De

.

Compared to Fleiss’s κ, Krippendorff’s α is more powerful and versatile: it can deal
with missing annotations, supports more than two annotations per instance, and can be
generalized to handle even categorical, ordinal, hierarchical, or continuous data (Hayes
and Krippendorff 2007). For instance, span labeling tasks like named entity recognition
or relation extraction can be evaluated using a coefficient of the Krippendorff’s unitized
α (αu) family (Krippendorff et al. 2016).8 Unitizing means that annotators first divide
the instances into smaller units and only then assign labels (Lombard, Snyder-Duch,
and Bracken 2002, Chapter 4). In the context of named entity annotation, unitizing, for
instance, can be marking spans that contain entities or, for object detection, drawing
bounding boxes around objects of interest. Hence, Krippendorff’s α can also be applied

7 Fleiss’ κ is not an extension of Cohen’s κ, as it assumes similarly to Scott’s π that the labeling distributions
are the same for each annotator, which Cohen’s κ does not (Artstein and Poesio 2008).

8 The αu family currently consists of four different coefficients (Krippendorff et al. 2016). They differ in
how and whether ‘gaps’ (unannotated units) are take into consideration, whether labels or only units are
used, or whether only a subset of labels are used when computing agreement. αcu is the most applicable
choice of the four that ignores gaps and takes label values into account.
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to any task with a one-to-many relation between instances and annotations of different
sizes. The amount of overlap between annotations made by different annotators is also
considered by αu when computing agreement. While being flexible, α is also more
complicated to implement (especially in its unitizing form), has a higher runtime, and
is more challenging to interpret and to compute confidence intervals for (Artstein and
Poesio 2008).

Correlation. For specific tasks, annotation consists of assigning scores to instances on
a numerical, continuous, or discrete rating scale or a Likert scale. These tasks are,
among others, annotating sentiment (Socher et al. 2013), emotions (Demszky et al.
2020), or semantic textual similarity (Cer et al. 2017). Correlation measures like Pear-
son’s r (linear correlation), Spearman’s ρ (linear correlation of ranks), or Kendall’s τ

(correlation of concordant/discordant ranks) are often used to compute agreement.
However, using correlation coefficients as an agreement measure is controversial, as
they measure covariation, not agreement, i.e., they measure whether variables move
together, but not whether they really are similar (van Stralen et al. 2012; Ranganathan,
Pramesh, and Aggarwal 2017; Edwards, Allen, and Chamunyonga 2021). This means
that two annotators with different biases when assigning scores, e.g., one annotator
systematically gives overly large scores while the other systematically underscores,
would still have a high correlation but low agreement. A better alternative to the
aforementioned correlation coefficients is using Intraclass Correlation (ICC) (Fisher
1925), which is explicitly designed to measure agreement. Note that there are several
different formulations of ICC depending on the number of judgments per instance,
whether judgments are averaged before comparison, and whether there are missing
observations (Shrout and Fleiss 1979). A visual method to assess agreement between
continuous variables is the Bland–Altman plot (Bland and Altman 1986). A worked
example can be found in Appendix 3.

Classification Metrics. Especially for sequence labeling tasks like named entity recogni-
tion, classification metrics like accuracy, precision, recall, and F1 are often used between
two annotators to compute agreement (Brandsen et al. 2020). We could not find any
work formally analyzing the theoretical background and implications of using these
metrics as an agreement measure. However, they seem to suffer from several issues.
First, they are only applicable as pairwise agreement; having more annotators would
require averaging, which might cause information loss. Second, they are not chance-
corrected (Powers 2011). Third, using precision and recall for computing agreement
also has the downside of not being symmetric. Given two lists of labels a and b,
the precision value of a and b turns into the recall when swapping its arguments:
precision(a, b) = recall(b, a). Being symmetrical is essential for agreement metrics, as
one annotator should not be preferred over another. This differs from classification
metrics, where one input is from the gold data, and the other is usually from model
predictions.

Although it is often treated as such, agreement is no panacea; high agreement
does not automatically guarantee high-quality labels. Krippendorff (2004); Artstein
and Poesio (2008) emphasize that agreement only demonstrates a reliable annotation
process, which is necessary for high-quality labels but is by itself not sufficient. Further
quality management, especially manual inspection, should be applied. Agreement also
does not cover whether the annotation scheme and guidelines capture the desired
phenomena. Low agreement also does not automatically mean low-quality labels, as
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tasks can inherently be subjective (Aroyo and Welty 2015; Uma et al. 2021), i.e., there are
cases where no distinct gold label exists for an instance.

Using only a single agreement coefficient value to gauge quality is often insufficient
for a reliable estimate. Therefore, more in-depth analysis is recommended (Artstein and
Poesio 2008). This can be done by manually validating the annotations (cf. 3.3.1) to get
an intuition for the resulting labels and why annotators disagree. Disagreements can be
caused by differences in annotator skill, differences in the data or its difficulty (Jamison
and Gurevych 2015), or due to ambiguity. Other insights can be gained by computing
pairwise agreement between individual annotators or by computing agreement per
label (Monarch 2021). These statistics may identify poorly performing annotators or
particularly difficult-to-decide labels.

If the sample size is chosen too small, the resulting agreement value might have
only limited explanatory power (Allan 1999; Shoukri, Asyali, and Donner 2004; Sim and
Wright 2005). It is therefore recommended to have large parts of the dataset annotated
by multiple annotators for a representative agreement value (Passonneau and Carpenter
2014). Ideally, every instance should be annotated by at least two annotators to draw
reliable conclusions from agreement.

Several works propose value ranges for agreement coefficients and attach a seman-
tic meaning to them. For instance, Landis and Koch (1977) give labels for certain value
ranges of Cohen’s κ (κc), e.g., 0.01− 0.20 slight agreement, 0.21− 0.40 fair agreement,
0.41− 0.60 moderate agreement, 0.61− 0.80 substantial agreement, 0.81− 1.00 almost perfect
agreement. Similarly, Banerjee et al. (1999) say κc > 0.75 indicates excellent agreement,
between 0.40 and 0.75 as fair to good agreement, and lower indicates poor agreement.
Popping (1988) considers κc above 0.8 as reliable. Krippendorff (2004) considers their
α ≥ 0.8 as reliable (later, they stated that it is the absolute lower limit and should better
be 0.9) and 0.667 < α < 0.8 should only be used to draw tentative conclusions. An α

value below 0.667 is said to indicate that the underlying labels are unreliable.
However, it must be noted that those boundaries are arbitrary, have certain assump-

tions (for instance, Landis and Koch (1977) consider only binary classification) to the
task setup, and have no theoretical foundation. In general, choosing a target agreement
level that is considered good enough is very difficult; there is no universally acceptable
agreement level that is correct for every setting (Bakeman et al. 1997; Neuendorf 2016).
Lombard, Snyder-Duch, and Bracken (2002) find that values above 0.9 are nearly always
acceptable, greater than 0.8 acceptable in most situations and greater than 0.7 acceptable
for exploratory studies for some indices. Artstein and Poesio (2008) state that these
limits work well in their experience, and datasets reported with lower agreement values
tend to be unreliable. The threshold may also depend on the difficulty and subjectivity
of the annotation task. When stating agreement values, it is therefore essential to report
boundaries and justify their value. It is also recommended to compare agreement value
to other works that annotate similar phenomena and tasks if possible.

Finally, the different agreement methods have several idiosyncrasies related to how
they are computed and how they behave (Zhao, Liu, and Deng 2013; Checco et al.
2017). For instance, annotations with near-perfect percent agreement can have low
Cohen’s κ. When Krippendorf’s α is applied to a large number of instances, then its
computed chance agreement term increases while α reduces, thereby favoring smaller
samples. Agreement also decreases when having more annotators per instance, but this
does not indicate worse quality; fewer annotators often just do not annotate the whole
possible range (Bayerl and Paul 2011), and therefore, the agreement is an overestimate.
These characteristics can lead to non-intuitive behavior and render interpretation more
difficult.
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3.4 Quality Improvement

If the quality estimation shows that the annotation quality is insufficient, rectifying
measures must be taken to improve it.

Manual Correction. If the quality in a batch of annotations is too low, it can be returned
to the annotators for further improvement. Also, it can be routed to different, more
experienced annotators to resolve issues in case instances are too difficult for the original
annotators.

Updating Guidelines. It can happen that the annotation guidelines do not cover certain
phenomena in the underlying text, are ambiguous, or are difficult to understand. Then,
it might be appropriate to go back to the annotation scheme or guidelines and improve
them (Bareket and Tsarfaty 2021). Updating the guidelines may require discarding
previously created annotations or at least reviewing and updating them. If quality
estimation shows that similar categories have low agreement, then this can hint at
that annotators have issues discerning between them. One possible solution could
be updating the annotation schema so that these categories are collapsed to a single
label (Lindahl, Borin, and Rouces 2019).

Data Filtering. There are several scenarios in which already annotated instances should
be prevented from making it into the final dataset. Sometimes, certain instances are too
ambiguous for which annotators then strongly disagree on a single, correct label (Uma
et al. 2021). Occasionally, annotations can be of low quality and should be removed.
A simple solution is to filter out these instances and not process them further. The
filtering can, for instance, be based on expert judgment or if there is no majority
agreement (Bastan et al. 2020). Sometimes, measuring the time it takes for annotators
to process instances and filter out annotations with improbably high annotation times
might also be helpful (Ferracane et al. 2021).

Before filtering based on agreement, the source of disagreement should be under-
stood, and ideally, manual inspection of flagged instances should be performed. Dis-
agreements can for instance be visualized using confusion matrices. Filtering instances
has the potential disadvantage of reducing diversity, which should be considered.
Recent work also emphasizes that disagreement is inherent to natural language (Aroyo
and Welty 2015) and can, for instance, be used to create a hard dataset split or even
directly learn from them (Checco et al. 2017; Uma et al. 2021). Improving the annotation
guidelines to incorporate edge cases should therefore be preferred over filtering.

Annotator Training through Feedback. After annotators complete a batch, experts can
manually inspect the data and give annotators feedback. Thereby, common errors can
be pointed out, and aspects to improve can be discussed (Ghosal et al. 2022; Kirk
et al. 2022). More detailed and extensive feedback might be more feasible for smaller
annotator pools, e.g., contractors or expert annotators.

Annotator Deboarding. If certain annotators repeatedly deliver low-quality work, remov-
ing them from the annotator team might be desirable. One way to find these annota-
tors is via annotation noise (Hsueh, Melville, and Sindhwani 2009), which describes
the deviation of each annotator from the majority. Another is a manual inspection
by the dataset creators or more seasoned annotators. Spammers can also be detected
during adjudication (§ 3.5), for instance, by using MACE (Hovy et al. 2013, multi-
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annotator competence estimation). After deboarding annotators, it is recommended that
their annotations are marked to be redone. Even though some platforms like Amazon
Mechanical Turk make it possible to withhold payment, they should still be paid for
the work already done unless there is compelling evidence for excessive fraudulent
behavior.

Automatic Annotation Error Detection (and Correction). Instead of having human anno-
tators manually inspect instances and search for errors, automatic approaches can be
used. For some error types, it is possible to write checks that automatically find issues
and sometimes even correct them (Kvĕtoň and Oliva 2002; Qian et al. 2021). These
checks can be simple rules that define wrong surface form and label combinations and
are derived from the data. For noisy text like Twitter data or crawled forum texts, spell-
checking might improve the underlying text before it is given to annotators. A more
involved approach is annotation error detection, which leverages machine learning
models to automatically find error candidates, which can then be given to annotators
for manual inspection and an eventual correction (e.g., Dickinson and Meurers 2003;
Northcutt, Jiang, and Chuang 2021; Klie, Webber, and Gurevych 2023). Automatic
checks should always be validated by human annotators to not accidentally introduce
new errors.

3.5 Adjudication

In order to increase overall annotation reliability, oftentimes, more than one label per
instance is collected. These usually need to be adjudicated, that is, finding a consensus
to create the final dataset with one single label per instance (Hovy and Lavid 2010).
For reproducibility, it is suggested to not only publish the adjudicated corpus but also
raw annotations by the respective annotators. Learning from individual labels is also an
option, especially in tasks with considerable ambiguity and disagreement (Uma et al.
2021); then, no adjudication is used. While being an effective way to improve reliability,
collecting more than one label per instance needs to be weighed against annotating more
instances when working on a limited budget. The most common adjudication methods
are described in the following.

Manual Adjudication. To create a gold corpus, skilled annotators, often domain experts,
manually inspect and curate each instance to a single label (Bareket and Tsarfaty 2021).
While slow and expensive, this approach can yield high-quality data because ties can
be broken and errors corrected during this inspection procedure. Curation can be sped
up with automatic tooling, for instance, by automatically merging instances for which
there is no disagreement or where the disagreement is below a certain threshold.

Majority Voting. When using majority voting, given an instance rated by multiple anno-
tators, its resulting label is the one that has been chosen most often. Instances without
majority label can be discarded or given to an additional annotator to break the tie.
These are often experts but can also be (experienced) crowdworkers or contractors. In
some works, supermajority voting is used. It means that more than 50% of annotators
must agree, e.g., at most one differing label is allowed, or even a unanimous vote is
required. Majority voting is easy to implement and a strong baseline compared to the
more complex methods described in the following (Paun et al. 2018). But Lease (2011)
notes that using majority voting might drown out valid minority voices and can reduce
diversity, which should be taken into account.
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Probabilistic Aggregation. In majority voting, it is assumed that all annotators are equally
reliable as well as skilled and that errors are made uniformly at random. This assump-
tion does not always apply in real annotation settings, especially for crowdsourcing.
Annotators can be better or worse in certain aspects, might be biased, spamming, or
even adversarial (Passonneau and Carpenter 2014). To alleviate these issues, Dawid
and Skene (1979) propose a probabilistic graphical model (that is referred to as Dawid-
Skene, named after its inventors) that associates a confusion matrix over label classes for
each annotator, thereby modeling their proficiency and bias. The resulting aggregation
is then based on weighing labels with the respective annotator’s expertise for this label.
An alternative formulation called MACE that also models spammers is given by Hovy
et al. (2013).

It has been shown that using more sophisticated aggregation techniques can yield
higher-quality gold standards (Passonneau and Carpenter 2014; Paun et al. 2018; Simp-
son and Gurevych 2019), but majority voting is often a strong baseline. The works
mentioned above also discuss probabilistic aggregation in more detail.

4. Data Collection and Annotation

Figure 3: Annotation setup in INCEpTION. On the left, the annotation editors can
be seen; on the right, a PDF viewer shows the publication to annotate directly in the
browser.

To answer RQ 2 and RQ 3, that is, to analyze which quality management measures are
actually used when creating machine learning (research) datasets and how well works
adhere to these, we collected publications that introduced new datasets and annotated
them for quality aspects.
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4.1 Data Selection

To collect relevant papers, we first attempted to use full-text search in abstracts from
papers contained in the ACL anthology (Gildea et al. 2018) for keywords like dataset,
corpus, treebank or crowdsourcing. This was quickly shown to be infeasible, as
our search selected 13, 776 out of 36, 501 publications, showing low precision.

Instead, we chose to leverage Papers With Code9. This project – among other things
– curates a list of datasets used in machine learning research with references to the
publications that introduced them. We first selected all text datasets and matched the
publication title that introduced it against the ACL anthology. We only considered
papers published in top conferences as well as in their respective Findings for the
following reasons. First, as the annotation is expensive and the budget was limited, this
made the annotation more feasible by reducing the overall number of papers to read
and annotate. Second, as we are interested in collecting good practices, we hope that
these publications that also passed peer review are of higher quality. Publications from
the following conferences were considered:

• AACL
• ACL
• CL
• COLING
• CoNLL
• EMNLP

• EACL
• Findings
• LREC
• NAACL
• TACL

This yielded a total of 591 publications to annotate, of which 314 mentioned human
annotation or validation. More details about our data selection and the guidelines, in
particular the entire annotation scheme, including all the label values, can be found in
Appendix 1 and Appendix 2.

4.2 Annotation Scheme

We annotated the following aspects at document level:

Manual Annotation For our analysis, we are primarily interested in scientific publica-
tions introducing text datasets that use manual annotation in any form, which is
why we annotate this aspect. Manual annotation may serve, e.g., for creating the
labels or writing text. This also includes papers that only have human validation.

Task Type There are two task types we consider, annotation and text production, as
they require different methods for quality management. For instance, computing
agreement is only possible for the former. Text production also does not lend itself
to adjudication.

Number of Annotators The number of annotators per instance whose labels are later
adjudicated. This is only annotated for annotation datasets, as freeform text usually
is not adjudicated.

Mode of Employment We differentiate between volunteers, crowdworkers, contractors
and expert annotators (§ 3.2).

Quality Management Measures The measures mentioned in the publication to man-
age quality (§ 3).

9 https://paperswithcode.com/
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Adjudication The method of converting several annotations per instance into a single
ground truth (§ 3.5).

Agreement In case inter-annotator agreement was computed, we record the metric’s
name, the subset size if not computed on all the annotated data, and the actual
value. Note that a given dataset can have more than one agreement calculation
(§ 3.3.3).

Error rate In case the error rate was estimated, we record the actual value and the size
of the subset that was inspected (§ 3.3).

Overall We assign an overall rating to each publication having human annotators based
on their quality management conducted and reported. The grades are in three
categories:

Excellent Does most of the following: uses the iterative annotation process, trains
annotators, computes agreement and error rate, performs extensive valida-
tion, and does human inspection throughout.

Sufficient Uses some of the recommended techniques, but not as extensive as
excellent. Has at least some validation and manual inspection.

Subpar No agreement, validation, manual inspection, error rate, or other quality
management performed and reported. The data quality, at most, relies on
aggregating multiple annotations.

We discuss limitations due to the potential subjectivity of this rating in § 8.

A screenshot depicting the annotation editor using this annotation scheme can be found
in Fig. 3.

4.3 Bias

Using Papers With Code as the source of publications potentially introduces several forms
of bias, which we discuss in the following:

Quality As we only analyze publications from top NLP venues and for instance ex-
clude works published in workshops, we suspect that our analysis is biased
towards analyzing datasets of better quality.

Time When looking at the distribution over publication years, we see a bias towards
more recent publications.

Popularity Papers With Code requires volunteers to manually add datasets to the web-
site. Therefore, the resulting collection as well as our analysis might be biased
towards more popular and commonly used datasets.

Availability As we analyze annotation quality management by using the publication
that introduced it as their proxy, we first rely on that the dataset was described
in such a publication and that the publication was accepted in a top venue. Other
datasets might not have been published with such an accompanying publication
(this is often the case for LDC datasets), or it might have been rejected, making it
unavailable for our analysis.

Domain As we only analyze publications from general venues and not specialized
venues like workshops for narrower domains as legal or medical NLP, our collec-
tion might be biased to contain datasets that are of more general interest; particular
domains might be underrepresented.

In order to quantify the bias and to estimate how well Papers With Code (PwC) covers
the ACL anthology, we additionally annotated a random subset of 500 papers from
the years 2013 to 2022 for the datasets they use. 2013 as the minimal year is chosen
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as older datasets are for the most part not covered by PwC (see Fig. 4). 2022 as the
maximum year was chosen as our snapshot of PwC is from the 26th of November, 2022
(see Appendix 1). Again, we limited ourselves to the aforementioned top conferences
and sample 50 papers per year randomly, resulting in 500 papers total. We annotated
for two aspects: datasets used in the publication and whether a publication introduces
new datasets. Datasets were marked as not relevant if they do not contain dataset usage
or use any other modality than text. Subsequently, we deduplicated dataset mentions
and linked them to PwC in case they have an entry there. The coverage analysis can be
found in § 5.1.

4.4 Annotation Process

The annotation process we used was the same for both quality and coverage anno-
tations. It slightly deviates from our best practices due to limited time and money.
We downloaded the full-text PDFs of the selected paper and annotated them in
INCEpTION (Klie et al. 2018). This annotation tool was chosen because it is free to use
and supports annotating PDF documents out-of-the-box. The annotations were created
by the first author of this work, an experienced researcher in NLP with a strong data
annotation background.

We first conducted an initial pilot study to determine the aspects to annotate,
followed by the annotation itself. The tagset was iteratively extended during the an-
notation process. After all papers had been annotated once, we did a second round to
make the annotations more consistent with the now complete tagset. Finally, we did
another validation round and additionally used semi-automatic checking to improve
consistency and quality further. Thus, each publication was only annotated by a single
author but inspected several times to guarantee correctness and consistency. Due to the
intricate and complex annotation scheme with many aspects, the expertise needed, and
the exploratory nature of the annotations, we were only able to employ a single expert
annotator. Instead, we opted for repeated validation and correction. In total, annotation
alone took over 100 hours. While not ideal, this is a similar setup as used in previous
works surveying NLP publications (Sabou et al. 2014; Amidei, Piwek, and Willis 2019;
Dror et al. 2018; Shmueli et al. 2021).

5. Analysis

After having annotated a large corpus of dataset introducing data, we now use it to
investigate how annotation quality management is practiced quantitatively (RQ 2) and
qualitatively (RQ 3). An overview of the overall usage of each method can be found
in Table 1. Regarding recommended good practices, it must be noted that there is
no way of managing the dataset creation process that guarantees high-quality results.
Nevertheless, some methods have been shown to yield better quality than others Bayerl
and Paul (e.g., 2011); Monarch (e.g., 2021). These choices of how to manage quality
have to be looked at in the context of the task to annotate for and the constraints at
hand, for instance, concerning available budget, time constraints, annotator number,
and experience.

Our analysis is based on what is explicitly reported in the publication; if it was
not reported, we are unable consider it. While this might cause our analysis to be less
expressive and accurate, we see no simple way to study quality management in practice.
Also, this issue further emphasizes the importance of proper reporting, even if it is just
in an appendix or supplementary material.
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Category Method Name # %

Annotation Process

Agile Corpus Creation 68 22
Pilot Study 67 22
Validation Step 125 41
Data Filtering 46 15
None/Not specified 96 32

Annotator Management

Qualification Filter 80 26
Qualification Test 56 18
Annotator Training 55 18
Annotator Debriefing 18 6
Monetary Incentive 13 4
None/Not specified 157 52

Quality Estimation

Error Rate 54 18
Control Questions 28 9
Agreement 156 52
None/Not specified 102 34

Quality Improvement

Correction 68 22
Scheme and Guideline Refinement 31 10
Annotator Deboarding 39 13
Annotator Feedback 24 8
Agreement Filtering 29 9
Manual Filtering 16 5
Time Filtering 11 3
Automatic Checks 34 11
None/Not specified 135 45

Adjudication

Manual Curation 29 14
Majority Voting 68 34
Probabilistic Aggregation 2 1
Unknown 92 46
Other 5 2

Table 1: Overview of how often each quality management (see also Fig. 1) method was
used in absolute numbers (#) and relative to all works that used manual annotation (%).
For adjudication, the denominator is the number of publications for which adjudication
is applicable. Except for agreement, validation, and error rate, counts are directly com-
puted from the Quality Management Measures field of our dataset. For the other methods,
we count it for the respective metric if there is at least one usage mentioned. Note that
values are non-exclusive, as publications can make use of any combination of methods.

5.1 Dataset Statistics

Quality Statistics. In total, we selected and annotated 591 publications. These were
organized into three groups based on the amount of human involvement. 277 did not
report any human annotation for their dataset creation. In these cases, annotations were
crawled or obtained via distant supervision or other means. 16 relied on humans to
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Figure 4: Statistics over the dataset created by annotating text dataset introducing
publications obtained from Papers With Code.

validate their algorithmically created data. 298 had humans annotating or producing
the text. Of these 298 publications, 81 were introducing datasets that used annotators
only for text production, 161 for labeling and 56 for both. Datasets that leveraged both
text production and labeling were often created for tasks like natural language inference
or question answering. There, the surface forms were usually written by workers before
their relationships were annotated in a follow-up step.

The resulting dataset size exceeds Dror et al. (2018) who inspected 233 papers for
their analysis of statistical testing in NLP research, as well as Amidei, Piwek, and Willis
(2019) who inspected 135 publications for analyzing agreement in the context of natural
language generation evaluations. The distributions of publications per venue and over
time are depicted in Fig. 4. It can be seen that most were published in or after 2018.

Coverage Statistics. Papers With Code (PwC) only contains entries for a subset of dataset-
introducing publications. To analyze the coverage and to better understand the po-
tentially resulting bias (see § 4.3), we conducted another annotation of 500 papers
from the anthology from the years 2013− 2022 for their dataset usage. Based on these
annotations, we first of all can see that 430 of publications mention relevant dataset
usages.10 132 (30%) publications introduced new datasets of any kind.

In total, we found 993 mentions of 622 unique datasets, 495 datasets are only
mentioned once. Of the 622 unique datasets, 172 (27%) are also contained in our dump
of PwC. When taking our filtering of publication venues into account, we see that from
the papers that we annotated for quality management, 49 of all papers and 30 of relevant
papers are in the sample annotated for coverage as well as in the sample for quality. In
relation to our quality dataset, these make up 8% of all and 10% of relevant publications.

To better understand the popularity of the annotated datasets, we analyze their
mention frequency. We can see that on average, a dataset in the coverage sample
was mentioned 1.60 times. In the sample for quality annotations, this was 1.96 for all
publications and 2.13 for only the relevant ones. While not being a large difference, this

10 The following metrics are with respect to relevant publications only.
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still indicates that our sample based on PwC is slightly biased towards more popular
datasets.

Finally, we find that our dataset in particular does not cover most LDC corpora
or datasets introduced as part of shared tasks. These are, for instance CoNLL, WMT,
SemEval, or TAC.

Bias. We used PwC in order to reduce the effort of finding publications that introduce
new datasets in the first place. The aforementioned statistics indicate that our sampling
using PwC introduces biases towards more popular, more recent and on average,
higher quality dataset. While not ideal, we argue, however, that this is not necessarily a
disadvantage, as the datasets that we analyzed are actually frequently used in practice.
Thus, their quality has direct impact on the research community. Also, with being more
popular, we hope that their quality management also follows good practices compar-
atively more often. While having a seemingly low coverage overall, our sample size
nonetheless is much larger compared to previous work, still yields interesting insights,
and was already costly to annotate.

Bias in time, popularity or domain might be an issue, as there could be practices
from the past that are falling through our cracks that would be relevant and interesting
for the general public. We alleviated this issue by also surveying other literature like
books and by collecting and analyzing a large corpus of dataset-introducing publica-
tions.

Our analysis of annotation quality management it is still a valuable contribution,
especially in combination with our survey of good practices and a good start for
future work. Also, we are interested in finding issues and to offer solutions for their
alleviation, having unbiased counts is desirable but not crucial. We hence suspect that
the statistics derived overestimate quality compared to the general populace and that
our analysis are potentially too positive. The statistics that follow thus should be seen
as an optimistic estimate. Finally, it has to be noted that the the resulting dataset is a
side product of the survey and should be seen in this context. While we have taken
the utmost care during annotation, the dataset is not intended to be used in machine
learning or other areas where quality needs to be very high and absolute.

5.2 Overall

To better understand how well quality management is performed in practice (RQ 3), we
assigned each work an overall score. Their distribution is depicted in Fig. 5. It can be
seen that around 45% of publications perform well, and 25% employ excellent quality
management according to our annotation scheme and guidelines. However, we also
find that circa 30% only conduct subpar quality management. These often either did
not report the annotation process at all or just very briefly and did not mention that
they applied any quality management.

5.3 Annotation Process

In the following, we analyze the publications concerning their annotation process.

Annotation Scheme and Guidelines. Of the 298 publications having human annotators,
68 (22%) reported having an iterative refinement loop, which is our recommended
annotation process. This loop was mainly used for iteratively refining the annotation
guidelines after doing pilot studies (10%) or repeatedly correcting instances until they
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Figure 5: Distribution of percentage of papers over subjective quality management
quality. Mostly, quality management was good or excellent, but a large fraction is only
subpar.

reached sufficient quality (12%). 18 (6%) works reported that their annotators gave feed-
back on the task during annotation so that the annotation process could be improved.

60% of publications with manual annotation described their annotation scheme,
showed their annotation interface, or published their annotation guidelines together
with the dataset itself in some form. Not reporting annotation schemes and guidelines
causes several issues. First, these cannot be checked and reviewed, making it difficult
to assess their quality. Second, not making it available is a significant obstacle to repro-
ducibility or later extensions. In several cases, the reader was referred to supplementary
material or appendices, which we could not find in the publication or online.

Pilot Study. Overall, only 22% of the publications mentioned to have conducted a pilot
study. This value is relatively low, as pilot studies are an essential tool to dial in the
annotation scheme and guidelines and to get feedback from the annotators. As we
only rely on what is mentioned in publications, we cannot say whether the authors
considered this method common and thus did not see the need to mention that they
conducted a pilot study or that it is indeed not done often enough.

Validation. In many cases, annotations were validated as an additional step in the overall
process either by the annotators themselves or by having experts check them (41%).
For automatically annotated data, only 16 out of 293 reported that they employed
human validators. Not validating can be an issue; for example, datasets created solely
by distant supervision can contain many labeling errors (Mintz et al. 2009). 10 of these
publications also reported the resulting error rate, which ranges from 1.40% to 16.60%
with mean 8.93% and median 8.55%, showing the importance of validation. We found
25 publications that reported indirect validation (8%).

5.4 Annotator Management

The distribution over different annotator types is shown in Fig. 6. Overall, publications
mostly used crowdworkers or experts for their annotations. For validation, experts were
more commonly selected. In many cases, the kind of annotators used was also not
reported.
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(b) Absolute number of validators by type.

Figure 6: Distribution over annotator types. For annotation (a), crowdsourcing is used
the most; for validation (b), it is experts. Note that a publication, respectively dataset,
can leverage more than one annotation type.

We find that the preferred method to filter out annotators, especially crowdworkers,
is by requiring a certain number of previous successful tasks and a high acceptance rate
(26%). Qualification tests, recommended by Kummerfeld (2021) over filters, are also
often employed (18%). Annotators are given training only in 18% of cases, which we
find pretty low compared to the benefits it might give. Out of these cases, training
was overwhelmingly given to contractors and crowdworkers; only one publication
mentioned that experts were trained. We note, however, that even experts should be
given training, as being an expert does not automatically indicate familiarity with the
annotation setup and scheme at hand (Bayerl and Paul 2011). Only in a few cases (8%)
is it explicitly stated that annotators were given feedback on their work or that annota-
tors give feedback to improve the annotation process (6%). While not being reported,
we assume that training and feedback were given in many more cases, especially
for contractors. Better interaction between project leads and annotators is one reason
contractors are typically chosen over crowdworkers. 13 (4%) publications mention some
kind of additional monetary incentive.

5.5 Quality Estimation

The quality of the dataset created needs to be estimated during and after its creation
so that its quality can be guaranteed and countermeasures can be taken to improve
it if needed. Overall, we find that two main techniques were used for this, which are
agreement (52%) and error rate estimation (18%). We analyze these in more detail in
§ 5.8 and § 5.9, respectively. Control questions were used by 9% of the publications to
gauge annotator performance and task quality. Overall, 65% of works mention at least
one way of estimating quality.

5.6 Quality Improvement

Next, we analyze rectifying measures used to improve the data quality after it has been
estimated in a previous step and deemed insufficient. In most cases, incorrect or low-
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quality instances are corrected (22%) or filtered out (15%). Of the 46 publications that
mention filtering, 29 report filtering based on agreement, 16 after manual inspection,
and 11 based on unsound, improbably low annotation times. 11% of publications men-
tioned to have applied some kind of automatic checks to identify potential errors, such
as spell checking or hand-crafted rules. Sometimes, annotators were removed from the
workforce if they repeatedly delivered sub-par quality (13%). Rarely were they given
feedback by experts or the project managers (8%). This number increases to 22% when
excluding datasets only annotated by experts. Overall, we do not see much usage of
rectifying measures; only 41% of publications using human annotation report at least
one.

5.7 Adjudication

Similarly to Sabou et al. (2014), we find that majority voting was most often used to
adjudicate labels (34%). In a few cases, publications reported that in addition to majority
voting, ties were broken by consulting additional workers or experts (8%). The second
most common way of adjudication was manual curation (14%). Overall, we find that in
46% of labeling datasets, adjudication methods were not reported clearly or at all. This
leaves the reader to guess, which is concerning.

We only found two publications that used Dawid-Skene (Dawid and Skene 1979) and
one that used MACE (Hovy et al. 2013). The latter was just used to filter out spammers
during annotation and not for adjudication itself. One publication mentioned trying
out probabilistic aggregation, yet they report that just using majority voting yielded
better results for them. Some works also mentioned aggregation based on annotator
confidence and skill, but no details were given describing the exact procedure used.

The fact that majority voting is by far the most frequently used method is inter-
esting, as aggregation is a quite well-researched topic in the crowdsourcing research
community (Sheshadri and Lease 2013). It has also been shown that using more intri-
cate methods can create higher-quality gold standards (Paun et al. 2018; Simpson and
Gurevych 2019).

5.8 Error Rate

While it is often assumed that (research) datasets represent a gold standard and do
not contain errors, this is often not the case (e.g., Northcutt, Athalye, and Mueller
2021; Klie, Webber, and Gurevych 2023). To estimate the overall correctness of the
dataset, its annotation error rate should be computed after adjudication is completed.
Computing the error rate is typically done by randomly sampling a subset and marking
instances as correct or incorrect. From our analysis, only a few publications (18% of all
having human annotation) estimated and reported an error rate. The average error rate
reported is 8.27%, and its median is 6.00%.

Sample Size. From the dataset we analyzed, 64 out of 80 error rates were computed by
inspecting only a subset of the data. The inspected subset needs to be of sufficient size
for the estimate to be reliable. If it is too small, the estimate has large error margins
and hence low statistical power, potentially leading to over-optimistic or incorrect
conclusions (Button et al. 2013; Passonneau and Carpenter 2014).

For instance, it was found that TACRED (Zhang et al. 2017), a dataset for relation
classification, contains a large fraction of incorrect labels. During the dataset creation,
25% of the annotations were validated by crowdworkers; after adjudication, the authors
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finally inspected a sample of 300 instances and estimated an error rate of around 6.7%.
It was then subsequently discovered that the dataset contains significantly more errors.
First, it was claimed to be around 50% by Alt, Gabryszak, and Hennig (2020), who
only analyzed a smaller and biased sample. Stoica, Platanios, and Poczos (2021) finally
inspected all samples and found an error rate of 23.9%. This shows the importance of
manual inspection of large enough sample sizes.

In the publications inspected, we did not find any work that based their choice of
sample size on a statistical footing or gave reasoning for selecting that specific value.
In most cases, pretty numbers were chosen without rationale (e.g., round numbers like
100 or 200 were picked often), or a percentage of the total size (e.g., 5%) was used. The
mean sample size is 1305.68, while its median is 200.00 (see Fig. 7).

We also analyze the impact the sample size has on the estimate’s reliability using
confidence intervals and their interval half-widths. The interval half-width measures
the margin of error associated with the confidence interval. It is computed as the largest
distance between the point estimate of the error rate and its endpoints. The confidence
interval for an estimated error rate r̂ is then given as [r̂ − h, r̂ + h]. If h is relatively large,
e.g., 0.05, then the error rate is with high probability within ± five percentage points.
This is quite a large margin, especially for error rates, as r̂ is usually small there and
(hopefully) close to zero.

To compute the margin of error, we model estimating the error rate as sampling
with replacement11 where annotators randomly inspect a subset of instances and mark
them as either correct or incorrect. For each mention of error rates in our analyzed pub-
lications, we then compute a 95% binomial exact confidence interval for each estimate
and its half-width h.

The half-widths for each estimate are plotted in Fig. 7. For almost all estimates, the
resulting confidence intervals are very wide, rendering a given point estimate statisti-
cally unreliable. When choosing a different sample to inspect and mark, the error would
fluctuate by a large margin and has thereby only limited explanatory power. We suggest
inspecting at least 500 instances12 or the whole dataset, whichever is smaller, for a more
sound estimate. Note that calculating the sample size that way is an optimistic estimate,
as it assumes independent and identically distributed instances, which is often not the
case. Also, giving a confidence interval when stating the error rate is recommended.
This can either be done by computing a binomial/hypergeometric confidence interval
or using techniques like bootstrapping. Otherwise, giving a point estimate implies
precision which it has not, especially when giving several decimal places.

5.9 Agreement

For every paper inspected, we annotated whether agreement measure usage was men-
tioned and recorded its type and value if it was. In most cases, agreement has been
used to demonstrate the dataset quality after the annotation was completed. Sometimes,
agreement has also been used to either remove annotators or remove annotations. We
observe that 52% of publications involving human annotators reported using at least
one form of agreement. Concerning the form of dataset creation, it is 48% for labeling

11 The sample size is usually much smaller than the dataset size, which is why we can approximate the
hypergeometric distribution (sampling without replacement) with the binomial distribution for
simplicity.

12 Assuming a binomial model with a true error rate of 5%, a sample size of 456 yields a 95% CI with
h ≈ 0.02
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and 31% for text production. In addition, we find that 7 publications that —while not
employing humans for the annotation itself— leverage agreement during validation
steps. The usage statistics are depicted in Fig. 8. Overall, Cohen’s and Fleiss’s κ, Krip-
pendorff’s α, and percent agreement were used the most, followed by F1. On average,
each publication used 1.33 agreement measures with median 1 (based on works that
actually used at least one). Percent agreement as the only measure was used in around
11% of all publications that use at least one method. Only using percent agreement
makes it difficult to estimate, interpret, and compare the dataset’s quality, and its usage
is therefore discouraged (Krippendorff 2004). In 10 cases, the used measures were not
clearly named but only referenced as e.g. κ or IAA (this is noted by a ’?’ in Fig. 8).

Regarding the usage and reporting of agreement as an indicator for reliability, we
found similar issues as described by Amidei, Piwek, and Willis (2019). Often, only the
agreement value was stated without any interpretation or comment (52%), which limits
its explanatory power. In many publications, the quality derived from the agreement
was described with a freeform explanation, e.g., high, fair, substantial (27%). These
frequently do not have a relation to the actual value, as, for example, values < 0.3 were
described as reasonable. Rarely was agreement compared to previous studies (5%) or an
interpretation based on a range given by the literature was cited (16%). This can partially
be explained by only some datasets having a suitable predecessor as a reference.

In all cases, these ranges’ limitations were not considered; for example, the ranges
defined by Landis and Koch (1977) are based on binary classification. In contrast,
several datasets introduced by the respective publications had more than two possible
labels. Also, several times, the stated ranges did not match the metric. For example,
the ranges from Landis and Koch (1977) that apply to Cohen’s κ were instead used for
Fleiss’ κ. Several times, publications used pairwise agreement measures for more than
two annotators and reported them pairwise. While that is valid in itself, additionally
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Figure 7: Number of inspected instances vs. the resulting confidence interval (CI) half-
width for a 95% CI. It can be seen that overall, too few instances are inspected to estimate
the error rate reliably, as they have a substantial margin of error. Four values above 1000
were filtered out to aid the visualization.
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using multi-user measures like Fleiss’ κ or α is recommended. We also found several
cases where the usage of Cohen’s κ was reported, but more than two annotations per
instance were obtained. It is also discouraged to use correlation metrics as a measure
of agreement. We found 7 (2%) of publications that still reported its usage. Last but not
least, κ or α was sometimes given in percent. This can confuse the reader as these values
are usually given as a value in [−1, 1], and percent agreement is a distinct metric on its
own.

Agreement values. We plot the agreement values for the most frequently used methods in
Fig. 9 together with the boundaries suggested by the literature (even though they are of-
ten subjective). For Krippendorff’s α, the values are rarely larger than 0.8, which would
indicate acceptable agreement according to Krippendorff (2004). Some are in the zone
(0.67 ≤ κ ≤ 0.8), which indicates that the resulting annotations should only be used to
draw tentative conclusions; the majority is even below that. Many agreement values are
on the lower side, hinting towards lower agreement or considerable ambiguity in the
underlying task.

Agreement for Sequence Labeling. For sequence labeling datasets (e.g., Named Entity
Recognition or Slot Filling), dataset creators either did not compute agreement or relied
on per-token κ, α, or classification metrics like precision, recall, and mainly F1. Brandsen
et al. (2020) argue that per-token agreement for sequence labeling comes with two
issues. First, annotators label sequences and not tokens, so the measure does not reflect
the task well. Second, the data is imbalanced, as most tokens are labeled O, indicating
no span. Excluding this would result in an underestimate of the agreement. They argue
for using F1 and averaging it between annotators. However, this is not chance-corrected
and can only be used to compute pairwise agreement; averaging might lead to a loss of
information. Only a single paper (Stab and Gurevych 2014) used Krippendorff’s uni-
tizing αu (Krippendorff 1995) to compute agreement for sequence labeling. αu in itself
can directly support sequence labeling and is an excellent way to compute agreement in
this setting. We hence agree with Meyer et al. (2014) that unitizing agreement measures
should be used if not as the only measure, then at least additionally. Our conjecture for
why unitizing measures are not used more often is that these are not very well-known,
and their complex implementation hinders adoption.

Sample Size. Dataset creators sometimes decided only to have one annotation per in-
stance for the majority of the dataset to save resources. Then, only a subset was anno-
tated multiple times to compute the agreement. Similar to Passonneau and Carpenter
(2014) and as described in § 5.8, we note that having too small sample sizes is an issue
as even a relatively relaxed 95% confidence interval spans quite a wide range of values.
A sample size that is too small can cause estimates to vary by a large margin. This might
lead to a different interpretation based on a pre-determined, targeted agreement level
or a range suggested by the literature.

Out of 288 papers that reported agreement values, 197 have had the complete
dataset annotated multiple times, 91 were computed from a subset. The mean sample
size for the latter was 1882 with median 200. 47 (51%) agreement values were computed
on 200 instances or less, 26 (28%) even on less or equal than 100.

It is therefore recommended to 1) have large sample sizes to compute agreement
on, ideally the complete dataset (which has the advantage of improved quality due to
aggregation) and compute a confidence interval for the agreement value, e.g., by boot-
strapping (Efron and Tibshirani 1986; Zapf et al. 2016). Computing the required sample
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Figure 8: Distribution over counts of the agreement measures used. We count each
method only once per publication, even if it has been used more than once. Overall,
agreement measures were used in 156 publications involving human annotators.
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Figure 9: Agreement values for the papers inspected. Also shown are the ranges often
used for interpreting these values.

size for a given precision and confidence level is not straightforward and depends on
the metric (Shoukri, Asyali, and Donner 2004). For Cohen’s κ, an approximation is
described by Donner and Eliasziw (1992); for α, it is given by Krippendorff (2011). As a
rule of thumb that works for both κ and α, given an expected/desired agreement value
of 0.8 with a precision of h± 0.05 and a confidence level of 95%, at least ≈ 500 instances
should be annotated.
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While this is highly desirable, we notice that this comes with costs and additional
effort. We did not find a single report of confidence intervals for agreement values in the
publications analyzed for this work. As we do not have access to the raw, unadjudicated
data used to compute the agreement value (which is needed for computing confidence
intervals), we cannot easily conduct an analysis similar to the one for error rates in § 5.8.

6. Recommendations

Based on our analysis of 591 papers published in top NLP conferences as well as on our
survey of the relevant literature, we derive the following recommendations and good
practices for dataset creation quality control. A case-by-case ranking of measures should
be done based on the circumstances of the project.

Annotation Process.

• Use an agile, iterative annotation process and annotate in batches (Alex et al. 2010;
Pustejovsky and Stubbs 2013).

• Conduct pilot studies to validate the annotation setup before starting the actual
annotation.

• Quality estimates after each batch should guide the improvement of guidelines
and the scheme.

• Rectifying measures like corrective annotation, annotator retraining, or data filter-
ing should be used to improve the overall data quality iteratively.

• Annotator feedback should be incorporated during a pilot study and annotation.

Annotator Management. Workforce selection and annotator management are crucial for a
successful annotation project. Different annotator types can be viable depending on the
task difficulty and the expertise or background knowledge required. Datasets these days
are most often annotated by crowdworkers. A feasible alternative (even for tasks that
usually require expert annotators) is hiring and training contractors via platforms like
Upwork or Prolific. This can open up better ways to collaborate while having similar
costs.

• The choice of annotator type (expert/contractor/crowdworkers, . . . ) should be
validated as part of a pilot study.

• Annotators should be paid properly and treated with respect.
• They should be trained before and during the annotation process for the best

results, even experts.
• Annotator feedback should be used to fine-tune the guidelines, annotation

scheme, or annotation editor and to spot errors or issues like low data quality.
• To select annotators, qualification tests are the recommended way; criteria like

completed tasks or acceptance rate can be an addition, but should be rather lower
than higher to not force workers into low-paying qualification jobs.

Quality Estimation. Precise quality estimation is essential to steer the annotation process
after each batch and before the final release of the dataset.

• Inter-annotator agreement can be used to determine whether the annotation pro-
cess is overall reliable.
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• In addition to agreement, manual inspection is recommended to validate annota-
tions and estimate accuracy. This can be done by either the annotators themselves
or experienced/expert annotators.

• Disagreements can be visualized using confusion matrices.
• An alternative to having annotators validate instances by marking them correct or

incorrect is to have an additional task after the annotation/instance creation itself.
• Control instances can be injected into the data to annotate for measuring individ-

ual annotator performance and batch quality.

Agreement. Agreement can be used to gauge how reliable the annotation process can be.
High agreement, however, does not automatically guarantee high-quality annotations
and should be used together with other quality estimating and improving measures,
like validation between annotation rounds or error rate estimation after adjudication.
Krippendorff’s α can be used in almost all circumstances, even for sequence tagging
in the form of unitized α (Krippendorff 1995), continuous judgments, or with varying
numbers of annotations per task and is therefore recommended. The agreement value
targeted should be chosen beforehand, either by pilot (expert) studies or previous anno-
tation studies annotating similar tasks. When the same number of annotators annotates
each instance, Cohen’s κ for two annotators or Fleiss’s κ for multiple annotators can
additionally be used, the latter only if annotators are randomly assigned to instances.
Percent agreement should rarely be used and never the only employed agreement
measure. Correlation coefficients like Pearson’s r, Spearman’s ρ, or Kendall’s τ should
not be used to assess reliability. Instead, Krippendorff’s α or intraclass correlation is
recommended as an alternative.

For a reliable estimate, agreement should be either computed on the whole dataset,
or a sufficiently large (⪆ 500 instances) subset should be annotated by multiple annota-
tors. Subset sample sizes should be statistically grounded, for instance, by computing
them based on confidence intervals. They should also be justified in the dataset descrip-
tion. When using agreement, its usage should be reported in detail. The documentation
should include which measures were used and why, how many judgments per instance
were obtained, the background of the annotators, and the sample size used. Agreement
values require interpretation and should not stand alone. This can be done by defining
a target agreement value, for instance, based on an expert study before the annotation
itself, using a sufficiently high value like 0.9, or comparing it to previous works. Using
thresholds from the literature like the ones from Landis and Koch (1977) is not recom-
mended, as these are arbitrary. Confidence intervals should be employed to gauge the
confidence of the agreement computation, whether they are reported as closed-form
solutions given by the coefficient or via bootstrap. More recommendations concerning
agreement usage can also be found in the conclusion of Lombard, Snyder-Duch, and
Bracken (2002).

Quality Improvement. Annotations are often not good enough at the beginning of an
annotation project. Therefore, estimating the quality and taking quality improvement
steps is essential. These can be, e.g., to correct low-quality instances or filter them out,
improve guidelines and the annotation scheme, or train annotators. Underperforming
or adversarial annotators can be removed from the annotation project if required.

Adjudication. Ideally, each instance should be annotated by multiple annotators in or-
der to compute agreement and increase reliability via adjudication. Majority voting
is a strong baseline for aggregation; using more sophisticated approaches like Dawid
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and Skene (1979) or MACE (Hovy et al. 2013) might be worth trying, especially in
settings where individual annotators are underperforming, or spammers are potentially
prevalent. Alternatively, expert curation or majority voting with experts breaking ties
can be used to create a high-quality gold standard. For reproducibility and better error
analysis, it is suggested to not only publish the adjudicated corpus but also annotations
by individual annotators. These can then also be used to study and learn from the
disagreement (Uma et al. 2021).

Error Rate Analysis. During and after the data has been annotated, it is crucial to have
experts check the actual percentage of errors. The sample size should be large enough to
reach a high confidence estimate, which usually requires at least 500 instances (see § 5.8)
to inspect. This sample size should be computed by considering the desired statistical
guarantees, for instance, confidence level and estimated precision.

Reporting. We urge authors to accurately report on the annotation process when creating
new datasets. This includes, among others, annotator type and background, number of
annotators, number of validators, dataset and subset sizes, agreement measures and
values, adjudication methodology, and error rates. In addition to that, we suggest aug-
menting the dataset documentation and reproducibility checklists (which are at the time
of writing mainly concerned with model training and have only a few, if any, sections
for dataset quality, see § 2), often required when submitting papers to conferences, with
a section that is targeted with questions towards quality management good practices.
The checklist from Kottner et al. (2011) can be a good start for checking and guiding
dataset creators toward the proper use of agreement.

7. Conclusion

High-quality datasets are essential for —among others— deducing new knowledge,
for policy making, and to suggest appropriate revisions to existing theories. They are
also crucial for training correct and unbiased machine learning models. If trained on
datasets containing errors, inference can lead to wrong or biased predictions, which
can cause material damage or even harm to other humans. These potential issues are
especially relevant with the recent, widespread adoption of conversational agents based
on instruction-finetuned large language models. Using datasets containing errors for
evaluation can lead to incorrect estimates of task performance and, thus, to wrong
conclusions when comparing models or approaches.

Quality management is an essential part of creating high-quality annotated
datasets. Therefore, we set out to better understand which methods exist (RQ 1), which
methods are actually applied in practice (RQ 2), and how thorough (RQ 3). For this,
we surveyed the literature and inspected 591 publications introducing new datasets
from which 314 reported human annotation or validation, which we annotated for their
quality management usage.

We answered our first research question by summarizing good practices for an-
notation quality management (§ 3). These are methods suggested in the literature
or commonly used during dataset creation. Then, we used the dataset of annotated
publications for their quality management to investigate which methods are used fre-
quently and which are not. Finally, we rated each publication for how well overall they
conducted their quality management. We found that, on the one hand, many works
implement good practices very well. On the other hand, there are still issues that need to
be improved on, for instance, better usage of agreement, annotator management, quality
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as well as error rate estimation, or reporting. To be more precise, many papers used
agreement without interpreting it, making it difficult to understand its implications.
Error rate and agreement were often computed on too small sample sizes, which renders
the value imprecise and less expressive. Frequently, annotation guidelines were not
published, hindering reproducibility.

We conclude that many widely applicable techniques should be used more often
or their use properly reported, especially iterative corpus creation as the annotation
process of choice, pilot studies, validation, annotator training, qualification tests, control
questions, annotation feedback, and debriefing, and maybe more complex adjudication.

We hope that our recommendations foster an adoption of good practices and an
increase in dataset quality in the future.

Future Work. In this paper, we analyzed 591 scientific publications introducing new
datasets and annotated them for their annotation quality management. We see several
ways to build on this work. First, while we already annotated a sizeable corpus of
publications, using Papers With Code introduced bias, limits analyzing quality manage-
ment to what is reported in the paper and only contains a subset of dataset-introducing
publications. Therefore, we see the next step in a larger scale effort, ideally by directly
asking authors to fill out a structured survey questioning them about their quality
management. While it might be difficult retroactively, it can be a good way for new
datasets, especially when it is done as part of the publication and peer review process
itself. Second, it would be interesting to graph how quality management evolves over
time and to analyze trends. For instance, Meyer et al. (2014) state that agreement was
not used very often in their small-scale analysis at the time, but we see that, on average,
it is now used quite frequently. Third, we only annotated which methods were used, but
not what their actual, quantifiable impact was. Hence, conducting such studies, similar
to Bayerl and Paul (2011) would be insightful, which analyze which factors contributed
to higher agreement. Fourth, as our work mainly focused on annotation and less on
text production, we would like to see an extension in that direction. Fifth, in this work,
we focused on analyzing scientific publications concerning their quality management.
We leave analyzing other aspects for future work, for instance, how well publications
adhere to aspects checked for in dataset documentation or reproducibility checklists.
Sixth, it would be compelling to annotate the dataset by introducing publications on a
large scale to alleviate the issues that our biased sampling might have caused. This can
then also be extended to other areas of machine learning, like computer vision. Finally,
we recommend that conference organizers and steering committees develop and adopt
a dataset quality management checklist similar to existing ones and cover aspects like
bias, intended use, or reproducibility.

8. Limitations

In this work, one of our goals was to analyze how quality management of annotated
datasets is done by inspecting and annotating the publications that describe their cre-
ation. Our analysis already yields several relevant findings and common issues. We
also were able to derive recommendations that future dataset creators can leverage for
their own annotation projects. However, we did not analyze the impact these practices
have on the resulting dataset quality. It is an interesting problem (but complex, as it
requires manually analyzing not only the publications but also the datasets themselves)
extension that we leave for future work.
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We chose Papers With Code as the source of publications to annotate. While our
collection approach introduces bias and does not find all publications presenting new
datasets, the papers annotated this way are for popular and frequently used datasets.
Otherwise, they would not be listed in Papers With Code. Our annotation still captures an
important slice of quality management directly impacting research and state-of-the-art
evaluation. However, a larger-scale annotation project would be the logical next step.

Our analysis relies on publications reporting their quality management. Hence,
there might be a non-negligible underestimate of the numbers presented here. New
publications are inspired by how established datasets conduct their annotation process;
therefore, even if good quality management is conducted, non-reporting is also an
important issue that needs to be pointed out.

Our study is limited to primarily academic datasets and may have a blind spot in
the industrial field, not only in terms of data but also in terms of methods. However,
this issue is difficult to alleviate, as industry datasets are often publicly unavailable.

The dataset is not intended to be used in machine learning, but is used to empiri-
cally underpin our survey. Due to limited resources and the difficulty of the annotation
task, each publication was only annotated by one annotator. The impact on quality and
consistency was reduced by repeatedly validating the annotations and using automatic
rules to clean and improve them. Ideally, more than one set of annotations would be
available to compute agreement, adjudicate, and find errors, which we recommend for
the next time.

For the overall rating, when conceiving the annotation guidelines and the scheme
and during annotation, we tried our best to make it as objective as possible. We still
admit that the distinction between excellent and sufficient is relatively fluid. However,
we argue that our definition is relatively objective for subpar quality management,
which is the most relevant category for this work. We were relatively lenient during
annotation and assigned a better rating in case of doubt. To further reduce the issue
of subjectivity, we thought of alternatives like assigning scores based on the number
of quality measures and their relative importance. However, we ultimately abandoned
this idea because not all works can use each measure, and we would have swapped one
kind of subjectivity with another.
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1. Data Collection

We use a snapshot of the Papers With Code13 data from the 26th of November, 2022. From
that, we select the text datasets and match them against the ACL Anthology14 with the
commit 3e0966ac. While the ACL Anthology also contains backlinks to Papers With
Code, they were still very few (≈100 datasets marked at the time of writing). Hence, we
opted to match them by title manually.

File Name md5

datasets.json.gz 57193271ad26d827da3666e54e3c59dc
papers-with-abstracts.json.gz 4531a8b4bfbe449d2a9b87cc6a4869b5
links-between-papers-and-code.json.gz 424f1b2530184d3336cc497db2f965b2

Table 2: File names and checksums for the Papers With Code data.

2. Guidelines

This annotation project aims to analyze how quality management is conducted in the
wild. In the following, we describe the different aspects we annotate.

2.1 Manual Annotation

We are mainly interested in analyzing works that use human annotators. Therefore, we
annotate whether a dataset involves humans as either annotators or validators.

2.2 Task Type

We see two broad categories of tasks that require different quality management meth-
ods.

Annotation This encompasses annotation projects where annotators provide labels, for
instance, text classification, named entity recognition, annotating entailment for
natural language inference, or selecting the right question from a given set for
question answering.

Text Production This encompasses annotation projects where annotators produce text.
This can be, for instance, when writing surface forms that are later annotated.
Other tasks include summarization, question answering, dialogues, and natural
language generation.

A dataset publication can use both task types, e.g., when creating questions and
selecting the correct answer from a predefined pool or for natural language inference,
where the clauses are first written and then labeled for their entailment.

13 https://github.com/paperswithcode/paperswithcode-data

14 https://github.com/acl-org/acl-anthology
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2.3 Annotators

Expert We consider an annotator an expert if they annotate due to their domain knowl-
edge or prior experience with the task.

Contractor We consider an annotator a contractor if they are hired individually, for
instance, student helpers or freelancers via platforms like Upwork or Prolific. The
project managers usually know them by name and can directly interact with them.
They can be managed on a more fine-grained level compared to crowdworkers.

Crowd Crowdworkers are annotators who participate via platforms like Crowdflower
or Amazon Mechanical Turk. Annotation is usually done in the form of micro-
tasks. The annotators are relatively anonymous. There are often tens or hundreds
of different annotators, each annotating only a small part of the overall data.

Volunteer Volunteers are annotators who help for free and are not required to do so.
This, for instance, excludes students who annotate as part of their coursework.

2.4 Quality Management Methods
2.4.1 Annotation Process.

Iterative Annotation Process Mentions that an iterative feedback loop is used as the
annotation process.

Pilot Study It is mentioned that one or more pilot studies have been performed.
Data Filtering Data is filtered before annotation via automatic or manual checks.
Validation Mentions an explicit validation step. See Appendix 2.9.
Indirect Annotation The annotation process has several steps, where the later ones

indirectly validate earlier ones.

2.4.2 Annotator Management.

Annotator Training Training of annotators is mentioned.
Qualification Filter It is mentioned that annotators are filtered out by criteria like

native language, geographic location, previous acceptance rates, number of previ-
ously completed tasks, etc.

Qualification Test It is mentioned that annotators had to take a qualification test before
being allowed to participate in the annotation process itself.

Monetary Incentive Give annotators additional payments if their quality is excep-
tional.

2.4.3 Quality Estimation.

Agreement Uses at least one agreement measure. This must have been used for the
annotation process or validation, not the pilot study. See Appendix 2.8.

Error Rate Computes the error rate for the final, adjudicated corpus. See Appendix 2.11.
Control Questions Injects control questions for which the answer is known to estimate

annotator and task performance.

2.4.4 Rectifying Measures.

Guideline Refinement Mentions that guidelines and annotation schemes are refined.
Correction Mentions that instances are improved and corrected.
Annotator Debriefing Annotators give feedback to improve the annotation process.
Give Annotators Feedback Annotators are given feedback to improve their annotation

quality.
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Agreement Filter Instances are filtered out if agreement is too low.
Annotator Deboarding Annotators are removed from the labor pool if their quality is

deemed insufficient.
Manual Filter Instances are filtered out manually if agreement is too low.
Time Filter Instances are filtered out if annotators annotate improbably quickly.
Automatic Checks Automatic checks are applied, for instance, spell checking or hand-

crafted rules.

2.5 Adjudication

Adjudication describes the process of merging multiple annotations per instance into a
single one.

Majority Voting The label assigned by at least half of the annotators is chosen. We also
count adjudication as majority voting if all annotators must agree in the analysis,
but label it as TotalAgreement.

Manual Tie Breaking A human annotator manually inspects instances without a ma-
jority and curates them. This adjudication method should be annotated together
with Majority Voting.

Dawid-Skene This is an aggregation model that uses probabilistic graphical models to
describe the expertise of the annotators.

MACE This is an aggregation model that uses probabilistic graphical models to de-
scribe the expertise and likeliness of being a spammer of the annotators.

Manual Curation A human annotator manually inspects and curates instances.
N/A If there is only one annotation per instance or the task type is text production.
? No mention of adjudication is found in the publication, but adjudication must have

happened, e.g., because the publication mentioned more than one annotation per
label.

If the task type is only text production, just enter N/A or leave the field empty; if
annotation + text production, enter ? or the mentioned one. If you encounter new or
different adjudication procedures, then please add them to the tagset.

2.6 Guidelines available

For reproducibility and to judge the quality of the annotation process, it is crucial that
the guidelines are available. We consider guidelines available either in the publication,
appendix, or supplementary material,

• a detailed annotation tagset/task/scheme description
• a screenshot of the annotation interface with a task description for the annotators
• or the guidelines itself

are given. We only check the external supplementary material if it is referred to in the
publication. In case the supplementary material is mentioned but not findable in the
ACL anthology, we consider guidelines not to be available.

2.7 Overall Judgement

We assign an overall rating to each publication having human annotators based on their
quality management conducted and reported. The grades are in three categories:
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Excellent Does most of the following: uses the iterative annotation process, trains
annotators, computes agreement and error rate, performs extensive validation,
and does continuous human inspection.

Sufficient Uses some of the recommended techniques, but not as extensive as excellent.
Has at least some validation and manual inspection.

Subpar No agreement, validation, manual inspection error rate, or other quality man-
agement performed and reported. The data quality, at most, relies on aggregation
of multiple annotations.

2.8 Agreement

For each agreement value that is reported, create a new agreement annotation. Agree-
ment used in pilot studies should not be entered; we are only interested in values
computed for the final dataset.

2.8.1 Measure Name. Enter the name of the measure. We are at least interested in the
following:

• Percent Agreement
• Cohen’s κ
• Fleiss’s κ
• Krippendorf’s α
• Krippendorf’s α unitized
• Pearson’s r
• Spearman’s ρ
• Kendall’s τ
• Intraclass correlation coefficient
• Precision
• Recall
• F1

Enter ? if it is unclear what the agreement measure is. If you encounter new,
different agreement measures, then please add them to the tagset.

2.8.2 Value. Enter the agreement value that is reported. If no value is reported, but the
use of agreement is, fill in as much as possible and enter −1.

2.8.3 Inspection Size. Enter the size of the subset that is used to compute agreement
and the overall dataset size. If the agreement is computed on the whole dataset, enter 0
for both sample and total sizes.

2.8.4 Interpretation. We annotate the interpretation that is given together with the
agreement value. We are at least interested in the following works that give ranges for
agreement measures and their interpretation.

Landis The Measurement of Observer Agreement for Categorical Data by J. Richard Landis
and Gary G. Koch, 1977.

Kripppendorf Validity in Content Analysis by Klaus Krippendorff, 1980.

If you encounter new, different works referenced that give interpretations, then
please add them to the tagset. We are also interested in
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Custom Interpretation States that their agreement shows a certain level of quality, for
instance, sufficient, high, good without referencing a work from the literature.

Compares To Previous Mentions a dataset that is similar to the one presented and
compares its agreement to its predecessor.

2.9 Validation

We are interested in whether validation is done and who did the validation, if any.

2.10 Validators

The labels for who is validating are the same as for annotators.

2.10.1 Inspection Size. Enter the size of the subset that is validated, as well as the overall
dataset size. If the complete dataset is validated, enter 0 for both sample and total sizes.

2.11 Error Rate

The error rate is the number of incorrect instances divided by the total number of
instances in the dataset. We annotate it if it is computed on the adjudicated dataset.
It is usually computed on a subset of instances.

2.11.1 Value. Enter the error rate value that is reported. If no value is reported, but the
error rate is used, fill in as much as possible and enter −1.

2.11.2 Inspection Size. Enter the size of the subset that is used to compute the error rate
as well as the overall dataset size. If the error rate is computed on the whole dataset,
enter 0 for both sample and total sizes.

3. Correlation

In the following, we give an example where correlation between ratings is high but
agreement is low. We assume two annotators rating four items on a scale in [1, 5]:

Item a b c d

Judge
A 1 2 3 4
B 3 4 5 5

The resulting correlation scores and are:

Pearson’s ρ Spearman’s ρ Kendall τ ICC1 ICC2 ICC3

0.944 0.949 0.913 0.204 0.418 0.903

It can be seen that standard correlation measures show very high correlation, while
Intraclass Correlation scores are comparatively low.
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Annotated data is an essential ingredient in natural language processing for training and

evaluating machine learning models. It is therefore very desirable for the annotations to be

of high quality. Recent work, however, has shown that several popular datasets contain a

surprising number of annotation errors or inconsistencies. To alleviate this issue, many meth-

ods for annotation error detection have been devised over the years. While researchers show

that their approaches work well on their newly introduced datasets, they rarely compare their

methods to previous work or on the same datasets. This raises strong concerns on methods’

general performance and makes it difficult to assess their strengths and weaknesses. We therefore

reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English

datasets for text classification as well as token and span labeling. In addition, we define a uniform

evaluation setup including a new formalization of the annotation error detection task, evaluation

protocol, and general best practices. To facilitate future research and reproducibility, we release

our datasets and implementations in an easy-to-use and open source software package.1

1. Introduction

Annotated corpora are an essential component in many scientific disciplines, including
natural language processing (NLP) (Gururangan et al. 2020; Peters, Ruder, and Smith
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2019), linguistics (Haselbach et al. 2012), language acquisition research (Behrens 2008),
and the digital humanities (Schreibman, Siemens, and Unsworth 2004). Corpora are
used to train and evaluate machine learning models, to deduce new knowledge, and to
suggest appropriate revisions to existing theories. Especially in machine learning, high-
quality datasets play a crucial role in advancing the field (Sun et al. 2017). It is often
taken for granted that gold standard corpora do not contain errors—but alas, this is
not always the case. Datasets are usually annotated by humans who can and do make
mistakes (Northcutt, Athalye, and Mueller 2021). Annotation errors can even be found
in corpora used for shared tasks such as CONLL-2003 (Tjong Kim Sang and De Meulder
2003). For instance, Durban is annotated there as PER (person) and S.AFRICA as MISC

(miscellaneous), but both should be annotated as LOC (location).
Gold standard annotation is also subject to inconsistency, where words or phrases

that are intended to refer to the same type of thing (and so should be labeled in the
same way) are nevertheless assigned different labels (see, e.g., Hollenstein, Schneider,
and Webber 2016). For example, in CONLL-2003, when Fiorentina was used to refer to
the local football club, it was annotated as ORG, but when Japan was used to refer to the
Japanese national football team, it was inconsistently annotated as LOC. One reason for
annotation inconsistencies is that tokens can be ambiguous, either because they have
multiple senses (e.g., the word club can refer to an organization or to a weapon), or
because metonymy allows something to be referred to by one of its parts or attributes
(e.g., the Scottish curling team being referred to as Scotland, as in Scotland beat Canada
in the final match). We further define errors as well as inconsistencies and also discuss
ambiguity in detail in § 3.1.

Such annotation errors or inconsistencies can negatively impact a model’s perfor-
mance or even lead to erroneous conclusions (Manning 2011; Northcutt, Athalye, and
Mueller 2021; Larson et al. 2020; Zhang et al. 2021). A deployed model that learned
errors during training can potentially cause harm, especially in critical applications like
medical or legal settings. High-quality labels are needed to evaluate machine learning
methods even if they themselves are robust to label noise (e.g., Song et al. 2020). Corpus
linguistics relies on correctly annotated data to develop and confirm new theories.
Learner corpora containing errors might be detrimental to the language learning expe-
rience and teach wrong lessons. Hence, it is imperative for datasets to have high-quality
labels.

Cleaning the labels by hand, however, is expensive and time consuming. Therefore,
many automatic methods for annotation error detection (AED) have been devised over
the years. These methods enable dataset creators and machine learning practitioners to
narrow down the instances that need manual inspection and—if necessary—correction.
This reduces the overall work needed to find and fix annotation errors (see, e.g., Reiss
et al. 2020). As an example, AED has been used to discover that widely used benchmark
datasets contain errors and inconsistencies (Northcutt, Athalye, and Mueller 2021).
Around 2% of the samples (sometimes even more than 5%) have been found incorrectly
annotated in datasets like Penn Treebank (Dickinson and Meurers 2003a), sentiment
analysis datasets like SST, Amazon Reviews, or IMDb (Barnes, Øvrelid, and Velldal
2019; Northcutt, Athalye, and Mueller 2021), CoNLL-2003 (Wang et al. 2019; Reiss
et al. 2020), or relation extraction in TACRED (Alt, Gabryszak, and Hennig 2020;
Stoica, Platanios, and Poczos 2021). AED has likewise been used to find ambiguous
instances, for example, for part-of-speech (POS) annotation (Dickinson and Meurers
2003a). Additionally, it has been shown that errors in automatically annotated (silver)
corpora can also be found and fixed with the help of AED (Rehbein 2014; Ménard and
Mougeot 2019).
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While AED methods have been applied successfully in the past (e.g., Reiss et al.
2020), there are several issues that hinder their widespread use. New approaches for
AED are often only evaluated on newly introduced datasets that are proprietary or
not otherwise available (e.g., Dligach and Palmer 2011; Amiri, Miller, and Savova 2018;
Larson et al. 2019). Also, they rarely compare newly introduced methods to previous
work or baselines. These issues make comparisons of AED methods very difficult. In
addition to that, there is neither agreement on how to evaluate AED methods, nor which
metrics to use during their development and application. As a result, it is often not clear
how well AED works in practice, especially which AED methods should be applied to
which kind of data and underlying tasks. To alleviate these issues, we define a unified
evaluation setup for AED, conduct a large-scale analysis of 18 AED methods, and apply
them to 9 datasets for text classification, token labeling, and span labeling. This work
focuses on errors and inconsistencies related to instance labels. We leave issues such
as boundary errors, sentence splitting, or tokenization for future work. The methods
presented in this article are particularly suited to the NLP community, but many of
them can also be adapted to other tasks (e.g., relation classification) and domains (like
computer vision). The research questions we answer are:

RQ1 Which methods work well across tasks and datasets?

RQ2 Does model calibration help to improve AED performance?

RQ3 To what extent are model and AED performance correlated?

RQ4 What (performance) impact does using cross-validation have?

The research reported in this article addresses the aforementioned issues by providing
the following contributions:

Evaluation Methodology To unify its findings and establish comparability, we first
define the task of AED and a standardized evaluation setup, including an improvement
for evaluating span labeling in this context (§ 3.1).

Easy to Use Reference Implementations We survey past work from the last 25 years
and implement the 18 most common and generally applicable AED methods (§ 3.2).
We publish our implementation in a Python package called NESSIE that is easy to use,
thoroughly tested, and extensible to new methods and tasks. We provide abstractions
for models, tasks, as well as helpers for cross validation to reduce the boilerplate code
needed to a minimum. In addition, we provide extensive documentation and code
examples. Our package makes it therefore significantly easier to get started with AED
for researchers and practitioners alike.

Benchmarking Datasets We identify, vet, and generate datasets for benchmarking AED
approaches, which results in 9 datasets for text classification, token labeling, and span
labeling (§ 4). We also publish the collected datasets to facilitate easy comparison and
reproducibility.

Evaluation and Analysis Using our implementation, we investigate several funda-
mental research questions regarding AED (§ 5). We specifically focus on how to
achieve the best AED performance for each task and dataset, taking model calibra-
tion, usage of cross-validation, as well as model selection into account. Based on our
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results, we provide recipes and give recommendations on how to best use AED in
practice (§ 6).

2. Related Work

This section provides a brief overview of annotation error detection and its related tasks.

Annotation Error Detection. In most works, AED is used as a means to improve the quality
of an annotated corpus. As such, the method used is treated as secondary and possible
methods are not compared. The work of Amiri, Miller, and Savova (2018) and Larson
et al. (2020) are the few instances that implement different methods and baselines, but
only use newly introduced datasets. In other cases, AED is just discussed as a minor
contribution and not thoroughly evaluated (e.g., Swayamdipta et al. 2020, Rodriguez
et al. 2021).

Therefore, to the best of our knowledge, no large-scale evaluation of AED methods
exists. Closest to the current study is the work of Dickinson (2015), a survey about
the history of annotation error detection. However, that survey does not reimplement,
compare, or evaluate existing methods quantitatively. Its focus is also limited to part-
of-speech and dependency annotations. Our work fills the aforementioned gaps by
reimplementing 18 methods for AED, evaluating the methods against 9 datasets, and
investigating the setups in which they perform best.

Annotation Error Correction. After potential errors have been detected, the next step is to
have them corrected to obtain gold labels. This is usually done by human annotators
who carefully examine those instances that have been detected. Some AED methods
can also both detect and correct labels. Only a few groups have studied correction so
far (e.g., Kvĕtoň and Oliva 2002; Loftsson 2009; Dickinson 2006; Angle, Mishra, and
Sharma 2018; Qian et al. 2021). In this study, we focus on detection and leave an in-
depth treatment of annotation error correction for future work.

Error Type Classification. Even if errors are not corrected automatically, it may still be
worth identifying the type of each error. For instance, Larson et al. (2020) investigate
the different errors for slot filling (e.g., incorrect span boundaries, incorrect labels,
or omissions). Alt, Gabryszak, and Hennig (2020) investigate error types for relation
classification. Yaghoub-Zadeh-Fard et al. (2019) collect tools and methods to find quality
errors in paraphrases used to train conversational agents. Barnes, Øvrelid, and Velldal
(2019) analyze the types of errors found in annotating for sentiment analysis. While
error type classification has not been explicitly addressed in the current study, such
classification requires good AED, so the results of the current study can contribute to
automate error type classification in the future.

Training with Label Noise. Related to AED is the task of training with noise: Given a
dataset that potentially contains label errors, train a model so that the performance
impact due to noisy labels is as low as possible (Song et al. 2020). The goal in this setting
is not to clean a dataset (labels are left as is), but to obtain a well-performing machine
learning model. An example application is learning directly from crowdsourced data
without adjudicating it (Rodrigues and Pereira 2018). Training with label noise and
AED have in common that they both enable models to be trained when only noisy
data is available. Evaluating these models still requires clean data, which AED can help
to produce.
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3. Annotation Error Detection

In this section we introduce AED and formalize the concept, then categorize state-of-
the-art approaches according to our formalization.

3.1 Task Definition

Given an adjudicated dataset with one label per annotated instance, the goal of AED
is to find those instances that are likely labeled incorrectly or inconsistently. These
candidate instances then can be given to human annotators for manual inspection or
used in annotation error correction methods. The definition of instance depends on the
task and defines the granularity on which errors or inconsistencies are detected. In this
article, we consider AED in text classification (where instances are sentences), in token
labeling (instances are tokens; e.g., POS tagging), and in span labeling (instances are
spans; e.g., named entity recognition [NER]). AED can and has been applied to many
domains and tasks, for instance, sentiment analysis (Barnes, Øvrelid, and Velldal 2019;
Northcutt, Athalye, and Mueller 2021), relation extraction (Alt, Gabryszak, and Hennig
2020), POS tagging (Dickinson and Meurers 2003a; Loftsson 2009), image classification
(Northcutt, Athalye, and Mueller 2021), NER (Wang et al. 2019; Reiss et al. 2020), slot
filling (Larson et al. 2020), or speech classification (Northcutt, Athalye, and Mueller
2021).

We consider a label to be incorrect if there is a unique, true label that should be
assigned but it differs from the label that has been assigned. For example, there is a
named entity span Durban in CONLL-2003 which has been labeled PER, whereas in
context, it refers to a city in South Africa, so the label should be LOC.

Instances can also be ambiguous, that is, there are at least two different labels that
are valid given the context. For instance, in the sentence They were visiting relatives,
visiting can either be a verb or an adjective. Ambiguous instances themselves are often
more difficult for machine learning models to learn from and predict. Choosing one
label over another is neither inherently correct nor incorrect. But ambiguous instances
can be annotated inconsistently. We consider a label inconsistent if there is more than
one potential label for an instance, but the choice of resolution was different for similar
instances. For example, in the sentence Stefan Edberg produced some of his vintage best
on Tuesday to extend his grand run at the Grand Slams by toppling Wimbledon champion
Richard Krajicek, the entity Wimbledon was annotated as LOC. But in the headline of this
article, Edberg extends Grand Slam run, topples Wimbledon champ, the entity Wimbledon
was annotated as MISC. We discuss the impact of ambiguity on AED further in § 3.1.
An instance that is neither incorrect nor inconsistent is correct. If not explicitly stated
otherwise, then we refer to both incorrect and inconsistent as incorrect or erroneous.

AED is typically used after a new dataset has been annotated and adjudicated. It
is assumed that no already cleaned data and no other data having the same annotation
scheme is available.

Flaggers vs. Scorers. We divide automatic methods for AED into two categories, which
we dub flaggers and scorers. Flagging means that methods cast a binary judgment
whether the label for an instance is correct or incorrect. Scoring methods give an esti-
mate on how likely it is that an annotation is incorrect. These correspond to classification
and ranking.

While flaggers are explicit as to whether they consider an annotation to be incorrect,
they do not indicate the likelihood of that decision. On the other hand, while scorers
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provide a likelihood, they require a threshold value to decide when an annotation is
considered an error—for example, those instances with a score above 80%. Those would
then be given to human evaluation. Scorers can also be used in settings similar to active
learning for error correction (Vlachos 2006).

This distinction between flaggers and scorers regarding AED has not been made in
previous work, as typically approaches of one type or the other have been proposed
per paper. But it is key to understanding why different metrics need to be used when
evaluating flaggers compared to scorers, similarly to unranked and ranked evaluation
from information retrieval (see § 5).

Ambiguity. In certain NLP tasks, there exists more than one valid label per instance
(Kehler et al. 2007; Plank, Hovy, and Søgaard 2014b; Aroyo and Welty 2015; Pavlick
and Kwiatkowski 2019; Basile et al. 2021). While this might reduce the usefulness of
AED at first glance, gold labels are not required by AED, as it is about uncovering
problems independent of their cause and not assigning a gold label. Instances detected
this way are then marked for further processing. They can be, for instance, inspected
for whether they are incorrectly or inconsistently annotated. Ambiguous or difficult
instances especially deserve additional scrutiny when creating a corpus; finding them
is therefore very useful. Once found, several alternatives are possible: (1) Ambiguous
cases can be corrected (e.g., Alt, Gabryszak, and Hennig 2020; Reiss et al. 2020); (2) they
can be removed (e.g., Jamison and Gurevych 2015); (3) their annotation guidelines can
be adjusted to reduce disagreement (e.g., Pustejovsky and Stubbs 2013); (4) the task can
eventually be redefined to use soft labels (Fornaciari et al. 2021) or used to learn from
disagreement (Paun et al. 2018). Finding such instances is hence very desirable and can
be achieved by AED. But similarly to past work on AED, we focus on detecting errors
and inconsistencies as a first step and leave evaluating ambiguity detection performance
for future work.

3.2 Survey of Existing AED Methods

Over the past three decades, several methods have been developed for AED. Here, we
group them by how they detect annotation errors and briefly describe each of them. In
this article, we focus on AED for natural language processing, but (as noted earlier in
§ 1), many of the presented methods can be and have been adjusted to different tasks
and modalities. An overview of the different methods is also given in Table 1.

3.2.1 Variation-based. Methods based on the variation principle leverage the observation
that similar surface forms are often annotated with only one or at most a few distinct
labels. If an instance is annotated with a different, rarer label, then it is possibly an
annotation error or an inconsistency. Variation-based methods are relatively easy to
implement and can be used in settings in which it is difficult to train a machine learning
model, such as low-resource scenarios or tasks that are difficult to train models for, for
example, detecting lexical semantic units (Hollenstein, Schneider, and Webber 2016).
The main disadvantage of variation-based methods is that they need similar surface
forms to perform well, which is not the case in settings like text classification or datasets
with diverse instances.

Variation n-grams. The most frequently used method of this kind is variation n-grams,
which has been initially developed for POS tagging (Dickinson and Meurers 2003a)
and later extended to discontinuous constituents (Dickinson and Meurers 2005),
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Table 1
Annotation error detection methods evaluated in this work. In most scorer methods, scorer
output and erroneous labels are positively correlated. Scorers marked with ∗ show negative
correlation.

Abbr. Method Name Tasks Proposed by

Text Token Span

Flagger methods
CL Confident Learning X X X Northcutt et al. (2021)
CS Curriculum Spotter X · · Amiri et al. (2018)
DE Diverse Ensemble X X X Loftsson (2009)
IRT Item Response Theory X X X Rodriguez et al. (2021)
LA Label Aggregation X X X Amiri et al. (2018)
LS Leitner Spotter X · · Amiri et al. (2018)
PE Projection Ensemble X X X Reiss et al. (2020)
RE Retag X X X van Halteren (2000)
VN Variation N-Grams · X X Dickinson and Meurers (2003a)

Scorer methods
BC Borda Count X X X Larson et al. (2020)
CU Classification Uncertainty X X X Hendrycks and Gimpel (2017)
DM∗ Data Map Confidence X · · Swayamdipta et al. (2020)
DU Dropout Uncertainty X X X Amiri et al. (2018)
KNN k-Nearest Neighbor Entropy X X X Grivas et al. (2020)
LE Label Entropy · X X Hollenstein et al. (2016)
MD Mean Distance X X X Larson et al. (2019)
PM∗ Prediction Margin X X X Dligach and Palmer (2011)
WD Weighted Discrepancy · X X Hollenstein et al. (2016)

predicate-argument structures (Dickinson and Lee 2008), dependency parsing (Boyd,
Dickinson, and Meurers 2008), or slot filling (Larson et al. 2020). For each instance,
n-gram contexts of different sizes are collected and compared to each other. It is con-
sidered incorrect if the label for an instance disagrees with labels from other instances
with the same n-gram context.

Label Entropy and Weighted Discrepancy. Hollenstein, Schneider, and Webber (2016) derive
metrics from the surface form and label counts that are then used as scorers. These are
the entropy over the label count distribution per surface form or the weighted difference
between most and least frequent labels. They apply their methods to find possible an-
notation errors in datasets for multi-word expressions and super-sense tagging, which
are then reviewed manually for tokens that are actual errors.

3.2.2 Model-based. Probabilistic classifiers trained on the to-be-corrected dataset can be
used to find annotation errors. Models in this context are usually trained via cross-
validation (CV) and the respective holdout set is used to detect errors. After all folds
have been used as holdout, the complete dataset is analyzed. Because some methods
described below directly use model probabilities, it is of interest whether these are
accurately describing the belief of the model. This is not always true, as models often
are overconfident (Guo et al. 2017). Therefore, we will evaluate whether calibration,
that is, tuning probabilities so that they are closer to the observed accuracy, can improve
performance (see § 5.2). Several ways have been devised for model-based AED, which
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are described below. Note that most model-based methods are agnostic to the task itself
and rely only on model predictions and confidences. This is why they can easily be used
with different tasks and modalities.

Re-tagging. A simple way to use a trained model for AED is to use model predictions
directly; when the predicted labels are different from the manually assigned ones,
instances are flagged as annotation errors (van Halteren 2000). Larson et al. (2020) apply
this using a conditional random field (CRF) tagger to find errors in crowdsourced slot-
filling annotations. Similarly, Amiri, Miller, and Savova (2018) use Retag for text clas-
sification. Yaghoub-Zadeh-Fard et al. (2019) train machine learning models to classify
whether paraphrases contain errors and if they do, what kind of error it is. To reduce
the need of annotating instances twice for higher quality, Dligach and Palmer (2011)
train a model on the labels given by an initial annotator. If the model disagrees with
the instance’s labeling, then it is flagged for re-annotation. For cleaning dependency
annotations in a Hindi treebank, Ambati et al. (2011) train a logistic regression classifier.
If the model’s label does not agree with the original annotation and the model confi-
dence is above a predefined threshold, then the annotation is considered to be incorrect.
CrossWeigh (Wang et al. 2019) is similar to Retag with repeated CV. During CV, entity
disjoint filtering is used to force more model errors: Instances are flagged as erroneous if
the probability of their having the correct label falls below the respective threshold. As
it is computationally much more expensive than Retag while being very similar, we did
not include it in our comparison.

Classification Uncertainty. Probabilistic classification models assign probabilities that are
typically higher for instances that are correctly labeled compared with erroneous ones
(Hendrycks and Gimpel 2017). Therefore, the class probabilities of the noisy labels
can be used to score these for being an annotation error. Using model uncertainty is
basically identical to using the network loss (as, e.g., used by Amiri, Miller, and Savova
2018) because the cross-entropy function used to compute the loss is monotonic. The
probability formulation, however, allows us to use calibration more easily later (see
§ 5.2), which is why we adapt the former instead of using the loss.

Prediction Margin. Inspired by active learning, Predictive Margin uses the probabilities
of the two highest scoring labels for an instance. The resulting score is simply their
difference (Dligach and Palmer 2011). The intuition behind this is that samples with a
smaller margin are more likely to be an annotation error, since the smaller the decision
margin is the more unsure the model was.

Confident Learning. This method estimates the joint distribution of noisy and true labels
(Northcutt, Jiang, and Chuang 2021). A threshold is then learned (the average self-
confidence) and instances whose computed probability of having the correct label is
below the respective threshold are flagged as erroneous.

Dropout Uncertainty. Amiri, Miller, and Savova (2018) use Monte Carlo dropout (Gal
and Ghahramani 2016) to estimate the uncertainty of an underlying model. There are
different acquisition methods to compute uncertainty from the stochastic passes. A
summary can be found in Shelmanov et al. (2021). The work of Amiri, Miller, and
Savova (2018) uses the probability variance averaged over classes.

114



Klie, Webber, and Gurevych Annotation Error Detection

Label Aggregation. Given T predictions obtained via Monte Carlo dropout, Amiri, Miller,
and Savova (2018) use MACE (Hovy et al. 2013), an aggregation technique from crowd-
sourcing to adjudicate the resulting repeated predictions.

3.2.3 Training Dynamics. Methods based on training dynamics use information derived
from how a model behaves during training and how predictions change over the course
of its training.

Curriculum and Leitner Spotter. Amiri, Miller, and Savova (2018) train a model via cur-
riculum learning, where the network trains on easier instances during earlier epochs
and is then gradually introduced to harder instances. Instances then are ranked by how
hard they were perceived during training. They also adapt the ideas of the Zettelkasten
(Ahrens 2017) and Leitner queue networks (Leitner 1974) to model training. There,
difficult instances are presented more often during training than easier ones. The as-
sumption behind both of these methods is that instances that are perceived harder or
misclassified more frequently are more often annotation errors than are easier ones.
These two methods require that the instances can be scheduled independently. This
is, for instance, not the case for sequence labeling, as the model trains on complete
sentences and not individual tokens or spans. Even if they have different difficulties,
they would end up in the same batch nonetheless.

Data Map Confidence. Swayamdipta et al. (2020) use the class probability for each in-
stance’s gold label across epochs as a measure of confidence. In their experiments, low
confidence correlates well with an item having an incorrect label.

3.2.4 Vector Space Proximity. Approaches of this kind leverage dense embeddings of
tokens, spans, and texts into a vector space and use their distribution therein. The
distance of an instance to semantically similar instances is expected to be smaller than
the distance to semantically different ones. Embeddings are typically obtained by using
BERT-type models for tokens and spans (Devlin et al. 2019) or S-BERT for sentences
(Reimers and Gurevych 2019).

Mean Distance. Larson et al. (2019) compute the centroid of each class by averaging
vector embeddings of the respective instances. Items are then scored by the distance
between their embedding vector to their centroid. The underlying assumption is that
semantically similar items should have the same label and be close together (and
thereby close to the centroid) in the vector space. In the original publication, this method
was only evaluated on detecting errors in sentence classification datasets, but we extend
it to also token and span classification.

k-Nearest-Neighbor Entropy. In the context of NER in clinical reports, Grivas et al. (2020)
leverage the work of Khandelwal et al. (2020) regarding nearest-neighbor language
models to find mislabeled named entities. First, all instances are embedded into a
vector space. Then, the k nearest neighbors of each instance according to their Euclidean
distance are retrieved. Their distances to the instance embedding vector are then used to
compute a distribution over labels by applying softmax. An instance’s score is then the
entropy of its distance distribution; if it is large, it indicates uncertainty, hinting at being
mislabeled. Grivas et al. (2020) only used this method qualitatively; we have turned
their qualitative approach into a method that can be used to score instances automati-
cally and evaluated it on detecting errors in both NER and sentence classification—the
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latter using S-BERT embeddings. This method was only evaluated on detecting errors
in NER datasets, but we apply it to sentence classification as well by using S-BERT
embeddings.

3.2.5 Ensembling. Ensemble methods combine the scores or predictions of several indi-
vidual flaggers or scorers to obtain better performance than the sum of their parts.

Diverse Ensemble. Instead of using a single prediction like Retag does, the predictions
of several, architecturally different models are aggregated. If most of them disagree on
the label for an instance, then it is likely to be an annotation error. Alt, Gabryszak, and
Hennig (2020) use an ensemble of 49 different models to find annotation errors in the
TACRED relation extraction corpus. In their setup, instances are ranked by how often
a model suggests a label different from the original one. Barnes, Øvrelid, and Velldal
(2019) use three models to analyze error types on several sentiment analysis datasets;
they flag instances for which all models disagree with the gold label. Loftsson (2009)
and Angle, Mishra, and Sharma (2018) use an ensemble of different taggers to correct
POS tags.

Projection Ensemble. In order to correct the CONLL-2003 named entity corpus, Reiss
et al. (2020) train 17 logistic regression models on different Gaussian projections of
BERT embeddings. The aggregated predictions that disagree with the dataset were then
corrected by hand.

Item Response Theory. Lord, Novick, and Birnbaum (1968) developed Item Response Theory
as a mathematical framework to model relationships between measured responses of
test subjects (e.g., answers to questions in an exam) for an underlying, latent trait (e.g.,
the overall grasp on the subject that is tested). It can also be used to estimate the
discriminative power of an item, namely, how well the response to a question can be
used to distinguish between subjects of different ability. In the context of AED, test
subjects are trained models, the observations are the predictions on the dataset, and
the latent trait is task performance. Rodriguez et al. (2021) have shown that items
that negatively discriminate (i.e., where a better response indicates being less skilled)
correlate with annotation errors.

Borda Count. Similarly to combining several flaggers into an ensemble, rankings ob-
tained from different scorers can be combined as well. For that, Dwork et al. (2001)
propose leveraging Borda counts, a voting scheme that assigns points based on their
ranking. For each scorer, given scores for N instances, the instance that is ranked the
highest is given N points, the second-highest N − 1, and so on (Szpiro 2010). The points
assigned by different scorers are then summed up for each instance and form the
aggregated ranking. Larson et al. (2019) use this to combine scores for runs of Mean
Distance with different embeddings and show that this improves overall performance
compared to only using individual scores.

3.2.6 Rule-based. Several studies leverage rules that describe which annotations are valid
and which are not. For example, to find errors in POS annotated corpora, Kvĕtoň and
Oliva (2002) developed a set of conditions that tags have to fulfill in order to be valid,
especially n-grams that are impossible based on the underlying lexical or morphological
information of their respective surface forms. Rule-based approaches for AED can be
very effective but are hand-tailored to the respective dataset, its domain, language, and
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task. Our focus in this article is to evaluate generally applicable methods that can be
used for many different tasks and settings. Therefore, we do not discuss rule-based
methods further in the current work.

4. Datasets and Tasks

In order to compare the performance of AED methods on a large scale, we need datasets
with parallel gold and noisy labels. But even with previous work on correcting noisy
corpora, such datasets are hard to find.

We consider three kinds of approaches to obtain datasets that can be used for
evaluating AED. First, existing datasets can be used whose labels are then randomly
perturbed. Second, there exist adjudicated gold corpora for which the annotations
of single annotators exist. Noisy labels are then the unadjucated annotations. These
kinds of corpora are mainly obtained from crowdsourcing experiments. Third, there
are manually corrected corpora whose both clean and noisy parts have been made
public. Because only a few such datasets are available for AED, we have derived several
datasets of the first two types from existing corpora.

When injecting random noise we use flipped label noise (Zheng, Awadallah, and
Dumais 2021) with a noise level of 5%, which is in a similar range to error rates in
previously examined datasets like PENN TREEBANK (Dickinson and Meurers 2003b) or
CONLL-2003 (Reiss et al. 2020). In our settings, for a random subset of 5% instances,
this kind of noise assigns uniformly a different label from the tagset without taking the
original label into account. While randomly injecting noise is simple and can be applied
to any existing gold corpus, errors in these datasets are often easy to spot (Larson et al.
2019). This is because errors typically made by human annotators vary with the actual
label, which is not true for random noise (Hedderich, Zhu, and Klakow 2021). Note that
evaluating AED methods does not require knowing true labels: All that is required are
potentially noisy labels and whether or not they are erroneous. It is only correction that
needs true labels as well as noisy ones.

As noted earlier, we will address AED in three broad NLP tasks: text classification,
token labeling, and span labeling. These have been the tasks most frequently evaluated
in AED and on which the majority of methods can be applied. Also, these tasks have
many different machine learning models available to solve them. This is crucial for
evaluating calibration (§ 5.2) and assessing whether well-performing models lead to
better task performance for model-based methods (§ 5.3). To foster reproducibility
and to obtain representative results, we then choose datasets that fulfill the following
requirements: (1) they are available openly and free of charge, (2) they are for common
and different NLP tasks, (3) they come from different domains, and (4) they have high
inter-annotator agreement and very few annotation errors. Based on these criteria, we
select 9 datasets. They are listed in Table 2 and are described in the following section.
We manually inspected and carefully analyzed the corpora to verify that the given gold
labels are of very high quality.

4.1 Text Classification

The goal of text classification is to assign a predefined category to a given text sequence
(here, a sentence, paragraph, or a document). Example applications are news catego-
rization, sentiment analysis, or intent detection. For text classification, each individual
sentence or document is considered its own instance.
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Table 2
Dataset statistics. We report the number of instances |I| and annotations |A| as well as the
number of mislabeled ones (|I

ε
| and |A

ε
|), their percentage, as well as the number of classes |C|.

For token and span labeling datasets, |A| counts the number of annotated tokens and spans,
respectively. Kind indicates whether the noisy part was created by randomly corrupting labels
(R), or by aggregation (A) from individual annotations like crowdsourcing, or whether the gold
labels stem from manual correction (M). Errors for span labeling are calculated via exact span
match. Source points to the work that introduced the dataset for use in AED if it was created via
manual correction and to the work proposing the initial dataset for aggregation or randomly
perturbed ones.

Name |I| |Iε|
|Iε|
|I|

% |A| |Aε|
|Aε|
|A|

% |C| Kind Source

Text classification
ATIS 4,978 238 4.78 4,978 238 4.78 22 R Hemphill et al. (1990)
IMDb 24,799 499 2.01 24,799 499 2.01 2 M Northcutt et al. (2021)
SST 8,544 420 4.92 8,544 420 4.92 2 R Socher et al. (2013)

Token labeling
GUM 7,397 3,920 52.99 137,605 6,835 4.97 18 R Zeldes (2017)
Plank 500 373 74.60 7,876 931 11.82 13 A Plank et al. (2014a)

Span labeling
CoNLL-2003 3,380 217 6.42 5,505 262 4.76 5 M Reiss et al. (2020)
SI Companies 500 224 44.80 1,365 325 23.81 11 M Larson et al. (2020)
SI Flights 500 43 8.60 1,196 49 4.10 7 M Larson et al. (2020)
SI Forex 520 63 12.12 1,263 98 7.76 4 M Larson et al. (2020)

ATIS contains transcripts of user interactions with travel inquiry systems, annotated
with intents and slots. For AED on intent classification, we have randomly per-
turbed the labels.

IMDb contains movie reviews labeled with sentiment. Northcutt, Athalye, and Mueller
(2021) discovered that it contains a non-negligible amount of annotation errors.
They applied Confident Learning to the test set and let crowdworkers check
whether the flags were genuine.

SST The STANFORD SENTIMENT TREEBANK is a dataset for sentiment analysis of movie
reviews from Rotten Tomatoes. We use it for binary sentiment classification and
randomly perturb the labels.

4.2 Token Labeling

The task of token labeling is to assign a label to each token. The most common task in
this category is POS tagging. As there are not many other tasks with easily obtainable
datasets, we only use two different POS tagging datasets. For token labeling, each
individual token is considered an instance.

GUM The GEORGETOWN UNIVERSITY MULTILAYER CORPUS is an open source corpus
annotated with several layers from the Universal Dependencies project (Nivre
et al. 2020). It has been collected by linguistics students at Georgetown University
as part of their course work. Here, the original labels have been perturbed with
random noise.
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Plank POS contains Twitter posts that were annotated by Gimpel et al. (2011). Plank,
Hovy, and Søgaard (2014a) mapped their labels to Universal POS tags and had
500 tweets reannotated by two new annotators. We flag an instance as erroneous
if its two annotations disagree.

4.3 Span Labeling

Span labeling assigns labels not to single tokens, but to spans of text. Common tasks that
can be modeled that way are NER, slot filling, or chunking. In this work, we assume that
spans have already been identified, focusing only on finding label errors and leaving
detecting boundary errors and related issues for future work. We use the following
datasets:

CoNLL-2003 is a widely used dataset for NER (Tjong Kim Sang and De Meulder 2003).
It consists of news wire articles from the Reuters Corpus annotated by experts.
Reiss et al. (2020) discovered several annotation errors in the English portion of
the dataset. They developed Projection Ensembles and then manually corrected
the instances flagged by it. While errors concerning tokenization and sentence
splitting were also corrected, we ignore them here as being out of scope of the
current study. Therefore, we report slightly fewer instances and errors overall in
Table 2. Wang et al. (2019) also corrected errors in CONLL-2003 and named the
resulting corpus CONLL++. As they only re-annotated the test set and found fewer
errors, we use the corrected version of Reiss et al. (2020).

Slot Inconsistencies is a dataset that was created by Larson et al. (2020) to investi-
gate and classify errors in slot filling annotations. It contains documents of three
domains (COMPANIES, FOREX, FLIGHTS) that were annotated via crowdsourcing.
Errors were then manually corrected by experts.

Span labeling is typically indicated using Begin-Inside-Out (BIO) tags.2 When labeling
a span as X, tokens outside the span are labeled O, the token at the beginning of the span
is labeled B-X, and tokens within the span are labeled I-X. Datasets for span labeling
are also usually represented in this format.

This raises the issues of (1) boundary differences and (2) split entities. First, for
model-based methods, models might predict different spans and span boundaries from
the original annotations. In many evaluation datasets, boundary issues were also cor-
rected and therefore boundaries for the same span in the clean and noisy data can be
different, which makes evaluation difficult. Second, for scorers it does not make much
sense to order BIO tagged tokens independently of their neighbors or to alter only parts
of a sequence to a different label. This can lead to corrections that split entities, which is
often undesirable. Therefore, directly using BIO tags as the granularity of detection and
correction for span labeling is problematic.

Hence, we suggest converting the BIO tagged sequences back to a span represen-
tation consisting of begin, end, and label. This first step solves the issue of entities
potentially being torn apart by detection and correction. Spans from the original data
and from the model predictions then need to be aligned for evaluation in order to reduce
boundary issues. This is depicted in Figure 1.

2 For simplicity, we describe the BIO tagging format. There are more advanced schemas like BIOES, but
our resulting task-specific evaluation is independent of the actual schema used.
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LOC

Harvard University  is located in the middle of Boston ,  Massachusetts .

A:

B:

Harvard University  is located in the middle of Boston ,  Massachusetts .

PER

LOC LOC

ORG

ORG

Figure 1
Alignment between original or corrected spans A and noisy or predicted spans B. The goal is to
find an alignment that maximizes overlap. Spans that are in A but find no match in B are given a
match with the same offsets but a special, unique label that is different from all other labels (e.g.,
Massachusetts). Spans that are in B but find no match in A are dropped (e.g., located). Spans from
A that have no overlapping span in B are considered different and cannot be aligned (e.g., Boston
in A and Massachusetts in B). Span colors here indicate their labels.

We require a good alignment to (1) maximize overlap between aligned spans so that
the most likely spans are aligned, (2) be deterministic, (3) not use additional information
like probabilities, and (4) not align spans that have no overlap to avoid aligning things
that should not be aligned. If these properties are not given, then the alignment and
resulting confidences or representations that are computed based on this can be subpar.
This kind of alignment is related to evaluation, for example, for NER in the style of
MUC-5 (Chinchor and Sundheim 1993), especially for partial matching. Their alignment
does not, however, satisfy (1) and (3) in the case of multiple predictions overlapping
with a single gold entity. For instance, if the gold entity is New York City and the
system predicted York and New York, then in most implementations, the first prediction
is chosen and other predictions that also could match are discarded. What prediction
is first depends on the order of predictions which is non-deterministic. This also does
not choose the optimal alignment with maximum span overlap, which requires a more
involved approach.

We thus adopt the following alignment procedure: Given a sequence of tokens, a set
of original spans A and predicted/noisy spans B, align both sets of spans and thereby
allow certain leeway of boundaries. The goal is to find an assignment that maximizes
overlap of spans in A and B; only spans of A that overlap in at least one token with
spans in B are considered. This can be formulated as a linear sum assignment problem:
Given two sets A, B of equal size and a function that assigns a cost to connect an element
of A with an element of B, find the assignment that minimizes the overall cost (Burkard,
Dell’Amico, and Martello 2012). It can happen that not all elements of A are assigned a
match in B and vice versa—we assign a special label that indicates missing alignment in
the first case and drop spans of B that have no overlap in A. For the latter, it is possible
to also assign a special label to indicate that a gold entity is missing; in this work, we
focus on correcting labels only and hence leave using this information to detect missing
spans for future work.

We are not aware of previous work that proposes a certain methodology for this.
While Larson et al. (2020) evaluate AED on slot filling, it is not clear on which granular-
ity they measure detection performance or whether and how they align. To the best of
our knowledge, we are the first to propose this span alignment approach for span-level
AED. Span alignment requires aggregating token probabilities into span probabilities,
which is described in § 1.1. This alignment approach can also be extended to other tasks
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like object classification or matching boxes for optical character recognition. In that case,
the metric to optimize is the Jaccard index.

5. Experiments

In this section we first define the general evaluation setup, metrics to be used, and
the models that are leveraged for model-based AED. Details on how each method was
implemented for this work can be found in Appendix A. In § 5.1 through § 5.4, we then
describe our results for the experiments we perform to answer the research questions
raised in § 1.

Metrics. As described in § 3.1, we differentiate between two kinds of annotation
error detectors, flaggers and scorers. These need different metrics during evaluation,
similar to unranked and ranked evaluation from information retrieval (Manning,
Raghavan, and Schütze 2008). Flagging is a binary classification task. Therefore, we use
the standard metrics for this task, which are precision, recall, and F1. We also record the
percentage of instances flagged (Larson et al. 2020). Scoring produces a ranking, as in
information retrieval. We use average precision3 (AP), Precision@10%, and Recall@10%,
similarly to Amiri, Miller, and Savova (2018) and Larson et al. (2019). There are reasons
why both precision and recall can be considered the more important metric of the two.
A low precision leads to increased cost because many more instances than necessary
need to be inspected manually after detection. Similarly, a low recall leads to problems
because there still can be errors left after the application of AED. As both arguments
have merit, we will mainly use the aggregated metrics F1 and AP. Precision and recall at
10% evaluate a scenario in which a scorer was applied and the first 10% with the highest
score—most likely to be incorrectly annotated—are manually corrected. We use the
PYTREC-EVAL toolkit to compute these ranking metrics.4 Recall relies on knowing the
exact number of correctly and incorrectly annotated instances. While this information
may be available when developing and evaluating AED methods, it is generally not
available when actually applying AED to clean real data. One solution to computing
recall then is to have experts carefully annotate a subset of the data and then use it to
estimate recall overall.

In contrast to previous work, we explicitly do not use ROC AUC and discourage
its use for AED, as it heavily overestimates performance when applied to imbalanced
datasets (Davis and Goadrich 2006; Saito and Rehmsmeier 2015). Datasets needing AED
are typically very imbalanced because there are far more correct labels than incorrect
ones.

Models. We use multiple different neural and non-neural model types per task for
model-based AED. These are used to investigate the relationship between model and
method performances, whether model calibration can improve method performances
and for creating diverse ensembles.

For text classification we use seven different models: logistic regression as well as
gradient boosting machines (Ke et al. 2017) with either bag-of-word or S-BERT features
(Reimers and Gurevych 2019), transformer based on DistilRoBERTa (Sanh et al. 2019),

3 Also known as Area Under the Precision-Recall Curve (AUPR/AUPRC). In AED, AP is also identical to
mean average precision (mAP) used in other works.

4 https://github.com/cvangysel/pytrec_eval.
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BiLSTM based on Flair (Akbik et al. 2019), and FastText (Joulin et al. 2017). For S-BERT,
we use all-mpnet-base-v2 as the underlying model, as it has been shown by their
creators to produce sentence embeddings of the highest quality overall.

For token and span labeling, we use four different models: CRFs with the hand-
crafted features as proposed by Gimpel et al. (2011), BiLSTM + CRF based on Flair
(Akbik et al. 2019), transformers with CRF based on DistilRoBERTa (Sanh et al. 2019),
and logistic regression (also called maximum entropy model). For the initialization of
Flair-based models we use a combination of GloVe (Pennington, Socher, and Manning
2014) as well as Byte-Pair Encoding embeddings (Heinzerling and Strube 2018) and a
hidden layer size of 256 for both text classification and sequence labeling. Note that
we do not perform extensive hyperparameter tuning for model selection because when
using AED in practice, no annotated in-domain data can be held out for tuning since all
data must be checked for errors. Also, when comparing models as we do here, it would
be prohibitively expensive to carry out hyperparameter tuning across all datasets and
model combinations. Instead, we use default configurations that have been shown to
work well on a wide range of tasks and datasets.

When using transformers for sequence labeling we use the probabilities of the first
subword token. We use 10-fold cross-validation to train each model and use the same
model weights for all methods evaluated on the same fold. Thereby, all methods applied
to the same fold use the predictions of the same model.

5.1 RQ1 – Which Methods Work Well across Tasks and Datasets?

We first report the scores resulting from the best setup as a reference to the upcoming
experiments. Then we describe the experiments and results that lead to this setup.
We do not apply calibration to any of the methods for the reported scores because it
only marginally improved performance (see § 5.2). For model-based methods, the best
performance for text classification and span labeling was achieved using transformers;
for token labeling, best performance was achieved using Flair (see § 5.3). Not using
cross-validation for model-based AED was found to substantially reduce recall for
model-based AED (see § 5.4), so we have used 10-fold cross-validation in comparing
model-based methods.

In Table 3, we present the overall performance in F1 and AP across all datasets and
tasks. Detailed results including scores for all metrics can be found in Appendix C.

First of all, it can be seen that in datasets with randomly injected noise (ATIS,
SST, and GUM), errors are easier to find than in aggregated or hand-corrected ones.
Especially in ATIS, many algorithms reach close-to-perfect scores, in particular scorer
(> 0.9 AP). We attribute this to the artificial noise injected. The more difficult datasets
have usually natural noise patterns that are often harder to solve (Amiri, Miller, and
Savova 2018; Larson et al. 2019; Hedderich, Zhu, and Klakow 2021). The three SLOT

INCONSISTENCIES datasets are also easy compared to CONLL-2003. On some datasets
with real errors—PLANK and SLOT INCONSISTENCIES—the performance of the best
methods is already quite good with F1 ≈ 0.5 and AP ≈ 0.4 for PLANK and F1, AP > 0.65
for SLOT INCONSISTENCIES.

Overall, methods that work well are Classification Uncertainty (CU), Confident Learn-
ing (CL), Curriculum Spotter (CS), Datamap Confidence (DM), Diverse Ensemble (DE), Label
Aggregation (LA), Leitner Spotter (LS), Projection Ensemble (PE), and Retag (RE). Aggre-
gating scorer judgments via Borda Count (BC) can improve performance and deliver the
second-best AP score based on the harmonic mean. The downside here is very high total
runtime (the sum of runtimes of individual scores aggregated), as it requires training
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Table 3
F1 and AP for all implemented flaggers as well as scorers evaluated with the best overall
setups. We also report the harmonic mean H computed across all datasets. Label Aggregation,
Retag, Diverse Ensemble, and Borda Count perform especially well across tasks and datasets.
Datasets created via injecting random noise (ATIS, SST, and GUM) are comparatively easier to
detect errors in.

Text Token Span

Method ATIS IMDb SST GUM Plank Comp. CoNLL Flights Forex H

Flagger
CL 0.35 0.33 0.34 0.80 0.37 0.50 0.24 0.42 0.57 0.39
DE 0.72 0.30 0.33 0.74 0.48 0.57 0.28 0.55 0.64 0.45
IRT 0.00 0.01 0.02 0.00 0.12 0.41 0.29 0.02 0.62 0.00
LA 0.83 0.33 0.35 0.68 0.49 0.59 0.30 0.66 0.70 0.48
PE 0.54 0.18 0.34 0.58 0.50 0.56 0.25 0.29 0.56 0.36
RE 0.81 0.33 0.34 0.69 0.49 0.64 0.32 0.67 0.70 0.49
VN · · · 0.55 0.30 0.11 0.02 0.29 0.14 0.08
Scorer
BC 0.98 0.35 0.50 0.92 0.38 0.68 0.14 0.49 0.54 0.41
CS 0.97 0.29 0.21 · · · · · · 0.33
CU 0.87 0.28 0.27 0.98 0.42 0.70 0.17 0.68 0.70 0.41
DM 0.98 0.25 0.49 0.95 0.27 0.66 0.14 0.35 0.61 0.36
DU 0.05 0.06 0.05 0.05 0.24 0.43 0.07 0.18 0.32 0.08
KNN 0.13 0.05 0.11 0.21 0.31 0.61 0.12 0.07 0.16 0.12
LE · · · 0.60 0.22 0.41 0.19 0.10 0.11 0.18
LS 0.91 0.31 0.46 · · · · · · 0.46
MD 0.14 0.03 0.08 0.12 0.16 0.54 0.06 0.07 0.14 0.08
PM 0.06 0.05 0.05 0.05 0.23 0.54 0.06 0.12 0.25 0.08
WD · · · 0.53 0.39 0.45 0.16 0.11 0.14 0.20

instances of all scorers beforehand, which already perform very well (HAP of Borda
Count is 0.41 and the best individual scorer has HAP of 0.46). While aggregating scores
requires well performing scorers (3 in our setup, see § 1.2) it is more stable across tasks
than using individual methods on their own. Most model-based methods (Classification
Uncertainty, Confident Learning, Diverse Ensemble, Label Aggregation, Retag) perform very
well overall, but methods based on training dynamics that do not need cross-validation
(Curriculum Spotter, Datamap Confidence, Leitner Spotter) are on par or better. In particular,
Datamap Confidence shows a very solid performance and can keep up with the closely
related Classification Uncertainty, sometimes even outperforming it while not needing
CV. Confident Learning specifically has high precision for token and span labeling.

Amiri, Miller, and Savova (2018) argue that prediction loss is not enough to detect
incorrect instances because easy ones still can have a large loss. Therefore, more intricate
methods like Leitner Spotter and Curriculum Spotter are needed. We do not observe a
large difference between Classifier Uncertainty and the two, though. Datamap Confidence,
as a more complicated sibling of Classification Uncertainty, however, outperforms these
from time to time, indicating that training dynamics offers an advantage over simply
using class probabilities.

Variation n-grams (VN) has high precision and tends to be conservative in flagging
items, that is, exhibit low false positives, especially for span classification. Weighted
Discrepancy works overall better than Label Entropy, but both methods almost always
perform worse than more intricate ones. When manually analyzing their scores, they
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mostly assign a score of 0.0 and rarely a different score (less than 10% from our ob-
servation, often even lower). This is because there are only very few instances with
both surface form overlap and different labels. While the scores for Prediction Margin
appear to be not good, the original paper (Dligach and Palmer 2011) reports a similarly
low performance while their implementation of Retag reaches scores that are around
two times higher (10% vs. 23% precision and 38% vs. 60% recall). This is similar to
our observations. One potential reason why Classification Uncertainty produces better
results than the related Prediction Margin is that the latter does not take the given label
into account; it always uses the difference between the two most probable classes.
Using a formulation of Projection Ensemble that uses the label did not improve results
significantly, though.

Methods based on vector proximity—k-Nearest Neighbor Entropy (KNN) and Mean
Distance (MD)—perform sub-par across tasks and datasets. We attribute this to issues
in distance calculation for high-dimensional data, as noted for instance by Cui Zhu,
Kitagawa, and Faloutsos (2005) in a related setting. In high-dimensional vector spaces,
everything can appear equidistant (curse of dimensionality). Another performance-
relevant issue is the embedding quality. In Grivas et al. (2020), KNN is used with
domain-specific embeddings for biomedical texts. These could have potentially im-
proved performance in their setting, but they do not report quantitative results, though,
which makes a comparison difficult. With regard to Mean Distance, we only achieve
H = 0.08. On real data for intent classification, Larson et al. (2019) achieve an average
precision of around 0.35. They report high recall and good average precision on datasets
with random labels but do not report precision on its own. Their datasets contain mainly
paraphrased intents, which makes it potentially easier to achieve good performance.
This is similar to how AED applied on our randomly perturbed ATIS dataset resulted
in high detection scores. Code and data used in their original publication are no longer
available. We were therefore not able to reproduce their reported performances with our
implementation and on our data.

Item Response Theory (IRT) does not perform well across datasets and tends to
overly flag instances. Therefore, it is preferable to use the model predictions in a Di-
verse Ensemble, which yields much better performance. IRT is also relatively slow for
larger corpora as it is optimized via variational inference and needs many iterations to
converge. Our hypothesis is that Item Response Theory needs more subjects (in our case
models) to better estimate discriminability. Compared to our very few subjects (seven
for text classification and four for token and span labeling), Rodriguez et al. (2021) used
predictions of the SQuAD leaderboard with 161 development and 115 test subjects. To
validate this hypothesis, we rerun Item Response Theory on the unaggregated predictions
of Projected Ensemble. While this leads to slightly better performance, it still does not
work as well as using predictions in Diverse Ensemble or Projected Ensemble directly. As it
is often unfeasible to have that many models providing predictions, we see Item Response
Theory only useful in very specific scenarios.

Regarding Dropout Uncertainty, after extensive debugging with different models,
datasets, and formulations of the method, we were not able to achieve comparably
good results with other AED methods evaluated in this work. On real data, Amiri,
Miller, and Savova (2018) also report relatively low performances similar to ours. Our
implementation delivers results similar to Shelmanov et al. (2021) on misclassification
detection. In their paper, the reported scores appear to be very high. But we consider
their reported scores an overestimate, as they use ROC AUC (which is overconfident
for imbalanced datasets) and not AP to evaluate their experiments. Even when applying
the method on debug datasets with the most advantageous conditions that are solvable
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by other methods with perfect scores, Dropout Uncertainty only achieves AP values of
around 0.2. The main reason we see for the overall low scores for Dropout Uncertainty
is that the different repeated prediction probabilities are highly correlated and do not
differ much overall. This is similar to the observations of Shelmanov et al. (2021).

Qualitative Analysis. To better understand for which kinds of errors methods work well
or fail, we manually analyze the instances in CONLL-2003. It is our dataset of choice
for three reasons: (1) span labeling datasets potentially contain many different errors,
(2) it is annotated and corrected by humans, and (3) it is quite difficult for AED to find
errors in it, based on our previous evaluation (see Table 3). For spans whose noisy labels
disagree with the correction, we annotate them as either being inconsistent, a true error,
an incorrect correction, or a hallucinated entity. Descriptions and examples for each type
of error are given in the following.

True errors are labels that are unambiguously incorrect, for instance, in the sentence
NATO military chiefs to visit Iberia, the entity Iberia was annotated as ORG but
should be LOC, as it refers to the Iberian peninsula.

Inconsistencies are instances that were assigned different labels in similar contexts. In
CONLL-2003, these are mostly from sports teams that were sometimes annotated
as LOC and sometimes as ORG.

Incorrect correction In very few cases, the correction introduced a new error, for exam-
ple, United Nations was incorrectly corrected from ORG to LOC.

Hallucinated entity are spans that were labeled to contain an entity, but they should
not have been annotated at all. For example, in the sentence Returns on treasuries
were also in negative territory, treasuries was annotated as MISC but does not contain
a named entity. Sometimes, entities that should consist of one span were annotated
originally as two entities. This results in one unmatched entity after alignment. We
consider this a hallucinated entity as well.

CONLL-2003 was corrected manually by Reiss et al. (2020). After aligning (see § 4.3),
we find that there are in total 293 errors. We group them by difficulty based on how
often methods were able to detect them. For scorers, we consider the instances with
the highest 10% scores as flagged, similarly to how we evaluate precision and recall.
For span labeling, we implemented a total of 16 methods. The errors detected at least
by half of the methods (50%) are considered easy, the ones detected by at least four
methods (25%) are considered medium, and the rest, hard (25%). This results in 50 easy,
78 medium, and 165 hard instances. The distribution of error types across difficulty
levels is visualized in Figure 2. It can be seen that true errors are easier to detect
than inconsistencies by a significant margin: The easy partition consists only of 50%
inconsistencies, whereas in the hard partition, it consists of around 75% inconsistent
instances. This can be intuitively explained by the fact that the inconsistencies are not
rare, but make up a large fraction of all corrections. It is therefore difficult for a method
to learn that it should be flagged when it is only given noisy labels.

We further analyze how each method can deal with the different types of errors
across difficulty levels. The percentage of correctly detected errors per type and method
is depicted in Table 4. It again can be seen that true errors are easier for methods to detect
than inconsistencies; inconsistencies of hard difficulty were almost never detected.
Interestingly, scorers that are not model-based (k-Nearest Neighbor Entropy (KNN), Label
Entropy (LE), and Weighted Discrepancy (WD)) are able to better detect inconsistencies of
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Figure 2
Error counts per difficulty level in CONLL-2003. It can be seen that the number of inconsistencies
increases with the difficulty. This indicates that “real” annotation errors are easier to detect than
inconsistencies.

Table 4
Percent of errors and inconsistencies detected on CONLL-2003 across methods and difficulty for
flaggers and scorers grouped by error types. It can be seen that real errors (E) are more
often detected than inconsistencies (I). Some methods not relying on models (KNN, LE, WD) are
sometimes better in spotting inconsistencies than errors, whereas for model-based method it is
the opposite. Note that errors concerning incorrect corrections (IC) and hallucinated entities
(HE) are quite rare and not reliable to draw conclusions from.

Flagger Scorer

Error CL DE IRT LA PE RE VN BC CU DM DU KNN LE MD WD PM

Easy
E 66 96 100 100 100 100 3 92 100 66 25 40 29 14 29 25
I 72 100 100 88 94 94 11 94 100 55 27 61 55 11 55 27
HE 25 100 100 100 100 100 0 100 100 100 100 0 0 50 0 100
IC 0 100 100 100 100 100 0 100 100 100 0 0 0 100 0 0

Medium
E 40 51 54 88 82 82 0 31 94 31 34 22 0 11 0 25
I 13 26 31 26 52 31 0 15 36 23 21 44 63 15 63 13
HE 0 75 75 25 75 100 0 75 50 75 25 0 0 0 0 50
IC 100 100 100 100 100 100 0 0 100 0 0 0 0 0 0 0

Hard
E 0 17 13 0 65 0 0 0 0 17 0 17 0 17 0 13
I 0 0 0 0 9 0 0 3 0 5 4 14 4 1 4 4
HE 0 13 13 0 53 6 0 0 0 0 6 0 0 6 0 0
IC 0 20 20 20 20 0 0 0 0 0 20 0 0 20 0 0

medium and sometimes hard difficulty but fail at detecting most errors. We explain this
for KNN by the fact that it relies on semantic vector space embeddings that do not rely
on the noisy label but on the semantics of its surface form in its context. As neighbors
in the space have the same meaning, it is possible to detect errors even though the label
is inconsistent in many cases. The same can be said about WD and LE, which rely only
on the surface form and how often it is annotated differently. If the correct label is the
majority, then it can still detect inconsistencies even if they are quite frequent. But both
still do not perform as well as other methods on easier instances; they only find 50%
of errors and inconsistencies whereas Classification Uncertainty or Retag detects almost
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all (but again fail to find inconsistencies on medium difficulty). Variation n-grams (VN),
however, do not work well even for easy cases because they rely on contexts around
annotations that need to match exactly, which is very rare in this dataset. To summarize,
the methods that worked best overall across tasks and datasets are Borda Count (BC),
Diverse Ensemble (DE), Label Aggregation (LA), and Retag (RE). Inconsistencies appear to
be more difficult to detect for most methods, especially for model-based ones. Methods
that do not rely on the noisy labels like k-Nearest Neighbor Entropy, Label Entropy, and
Weighted Discrepancy were better in finding inconsistencies on more difficult instances
when manually analyzing CONLL-2003.

5.2 RQ2 – Does Model Calibration Improve Model-based Method Performance?

Several model-based AED methods, for instance, Classification Uncertainty, directly
leverage probability estimates provided by a machine learning model (§ 3.2.2). There-
fore, it is of interest whether models output class probability distributions that are
accurate. For instance, if a model predicts 100 instances and states for all 80% confi-
dence, then the accuracy should be around 0.8. If this is the case for a model, then it
is called calibrated. Previous studies have shown that models are often not calibrated
very well, especially neural networks (Guo et al. 2017). To alleviate this issue, a number
of calibration algorithms have been developed. The most common approaches are
post hoc, which means that they are applied after the model has already been trained.

Probabilities that are an under- or overestimate can lead to non-optimal AED re-
sults. The question arises whether model-based AED methods can benefit from calibra-
tion and, if so, to what extent. We are only aware of one study mentioning calibration
in the context of annotation error detection. Northcutt, Jiang, and Chuang (2021) claim
that their approach does not require calibration to work well, but they did not evaluate
it in detail. We only evaluate whether calibration helps for approaches that directly use
probabilities and can leverage CV, as calibration needs to be trained on a holdout set.
This, for instance, excludes Curriculum Spotter, Leitner Spotter, and Datamap Confidence.
Methods that can benefit are Confident Learning, Classifier Uncertainty, Dropout Uncer-
tainty, and Prediction Margin.

There are two groups of approaches for post hoc calibration: parametric (e.g., Platt
Scaling/Logistic Calibration [Platt 1999] or Temperature Scaling [Guo et al. 2017]) or
non-parametric (e.g., Histogram Binning [Zadrozny and Elkan 2001], Isotonic Regression
[Zadrozny and Elkan 2002], or Bayesian Binning into Quantiles [Naeini, Cooper, and
Hauskrecht 2015]). On a holdout corpus we evaluate several calibration methods to
determine which calibration method to use (see Appendix B). As a result, we apply the
best—Platt Scaling—for all experiments that leverage calibration.

Calibration is normally trained on a holdout set. As we already perform cross-
validation, we use the holdout set both for training the calibration and for predicting
annotation errors. While this would not be optimal if we are interested in generalizing
calibrated probabilities to unseen data, we are more interested in downstream task per-
formance. Using an additional fold per round would be theoretically more sound. But
our preliminary experiments show that it has the issue of reducing the available training
data and thereby hurts the error detection performance more than the calibration helps.
Using the same fold for both calibration and applying AED, however, improves overall
task performance, which is what matters in our special task setting. We do not leak the
values for the downstream tasks (whether an instance is labeled incorrectly or not) but
only the labels for the primary task.
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To evaluate whether calibration helps model-based methods that leverage probabil-
ities, we train models with cross-validation and then evaluate each applicable method
with and without calibration. The same model and therefore the same initial probabili-
ties are used for both. We measure the relative and total improvement in F1 (for flaggers)
and AP (for scorers), which are our main metrics. The results are depicted in Figure 3.
It can be seen that calibration has the potential of improving the performance of certain
methods by quite a large margin. For Confident Learning, the absolute gain is up to 3
percentage points (pp) F1 on text classification, 5 pp for token labeling, and up to 10
pp for span labeling. On the latter two tasks, though, there are also many cases with
performance reductions. A similar pattern can be seen for Classification Uncertainty with
up to 2 pp, no impact, and up to 8 pp, respectively. Dropout Uncertainty and Prediction
Margin do not perform well to begin with. But after calibration, they gain 5 to 10 pp AP,
especially for span and in some instances for token labeling. In most cases on median,
calibration does not hurt the overall performance.

In order to check whether the improvement using calibration is statistically signifi-
cant, we also use statistical testing. We choose the Wilcoxon signed-rank test (Wilcoxon
1945) because the data is not normally distributed, which is required by the more
powerful paired t-test. The alternative hypothesis is that calibration improves method
performance, resulting in a one-sided test.

We do not perform a multiple-comparison correction as each experiment works
on different data. The p-values can be seen in Table 5. We can see that calibration
can improve performance significantly overall in two task and method combinations
(text classification + Confident Learning and span labeling + Classification Uncertainty).
For text classification and token labeling, the absolute gain is relatively small. For span
labeling, Classification Uncertainty benefits the most. The gains for Dropout Uncertainty
and Prediction Margins appear large, but these methods do not perform well in the first
place. Hence, our conclusion is that calibration can help model-based AED performance
but it is very task- and dataset-specific.

We do not see a clear tendency for which models or datasets benefit the most from
calibration. More investigation is needed regarding which calibrator works best for
which model and task. We chose the one that reduces the calibration error the most,
which is not necessarily the best choice for each setting.

5.3 RQ3 – To What Extent Are Model and Detection Performance Correlated?

Several AED methods directly use model predictions or probabilities to detect potential
annotation errors. This raises the question of how model performance impacts AED
performance. Reiss et al. (2020) state that they deliberately use simpler models to
find more potential errors in CONLL-2003 and therefore developed Projection Ensemble,
an ensemble of logistic regression classifiers that use BERT embeddings reduced by
different Gaussian projections. Their motivation is to obtain a diverse collection of
predictions to have disagreements. They conjecture that using very well-performing
models might be detrimental to AED performance as their predictions potentially
would not differ that much from the noisy labels as the models learned predicting
the noise. In contrast to that, Barnes, Øvrelid, and Velldal (2019) use state-of-the-art
models to find annotation errors in different sentiment datasets. But neither Reiss et al.
(2020) nor Barnes, Øvrelid, and Velldal (2019) directly evaluate AED performance—
rather, they use AED to clean noisy datasets for which the gold labels are unknown.
Therefore, the question of how much model and detection performance are correlated
has not yet been thoroughly evaluated.
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Figure 3
Relative and total improvement of model-based AED methods over different corpora, methods,
and models when calibrating probabilities. It can be seen that calibration can lead to good
improvements, while on median mostly not hurting performance. This plot is best viewed in the
electronic version of this paper. Not displayed are extreme (positive) outlier points.
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Table 5
p-values forWilcoxon signed-rank test.We check whether calibration improves AED
performance on a statistically significant level. Underlined values are significant with p < 0.05.

Method Text Token Span

Confident Learning (CL) 0.021 0.230 0.665
Classification Uncertainty (CU) 0.121 0.320 0.003
Dropout Uncertainty (DU) 0.750 0.188 0.320
Prediction Margin (PM) 0.064 0.273 0.628

For answering this question, we leverage the fact that we implemented several
models of varying performance for each task. We use two complementary approaches
to analyze this question. First, we measure the correlation between model and task
performances for the overall score, precision, and recall. Then, we analyze which models
lead to the best AED performance.

Throughout this section, scores for flaggers and scorers are coalesced; overall score
corresponds to F1 and AP, precision to precision and precision@10%, recall to recall
and recall@10%. For reference, model performances are shown in Figure C.1. We choose
micro aggregation for measuring model performance, as we are interested in the overall
scores and not the scores per class. Using macro aggregation yields qualitatively similar
but less significant results.

Correlation. In order to determine whether there exists a positive or negative relationship
between model and method performances, we compute Kendall’s τ coefficient (Kendall
1938) for each method and dataset. The results are depicted in Table 6. We see that
when the test is significant with p < 0.05, then there is almost always a moderate to
strong monotonic relationship.5 τ is zero or positive for classification and token labeling,
hinting that there is either no relationship or a positive one. For span labeling we
observe negative correlation for precision and overall. It is significant in one case only.

One issue with this test is its statistical power. In our setting, it is quite low due
to the few samples available per method and task. It is therefore likely that the null
hypothesis—in our case, the assumption that there is no relationship between model
and method performances—is not rejected even if it should have been. Hence, we
next perform additional analysis to see which models overall lead to the best model
performances.

Which Models Lead to the Best Method Performances. In order to further analyze the rela-
tionship between model and AED performances, we look at which model leads to the
best performance on a given dataset. In Figure 4 we show the results differentiated
by overall, precision, and recall scores. We observe that in the most cases, the best
or second best models lead to the best method performances. It is especially clear
for token labeling, where using Flair leads to the best performance in all cases if we
look at the overall and precision score. Interestingly, Flair has better performance than
transformers for span labeling but the latter is preferred by most methods. Flair only
leads to best method performances for most of CONLL-2003 and parts of FLIGHTS.
Besides the fact that better models on average lead to better AED performance, we do

5 |τ| > 0.07 indicates a weak, |τ| > 0.21 a moderate, |τ| > 0.35 indicates a strong monotonic relation.
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Table 6
Kendall’s τ coefficient grouped by task and method measured across datasets. For p, the null
hypothesis is τ = 0 and the alternative hypotheses is τ 6= 0. Underlined are significant p-values
with p < 0.05. Positive correlation is highlighted , negative correlation is highlighted .

Overall Precision Recall

Method τ p τ p τ p

Text
CL +0.495 0.002 +0.657 0.000 −0.373 0.018
CU +0.486 0.002 +0.396 0.013 +0.705 0.000
DU +0.333 0.602 +0.333 0.602 +0.333 0.602
LA +0.333 0.602 +1.000 0.117 +0.333 0.602
PM +0.143 0.365 +0.211 0.184 +0.230 0.147
RE +0.571 0.000 +0.600 0.000 +0.412 0.011

Token
CL +0.929 0.001 +0.929 0.001 +0.214 0.458
CU +0.714 0.013 +0.786 0.006 +0.714 0.013
DU −0.333 0.497 −0.333 0.497 +0.333 0.497
LA +1.000 0.042 +0.667 0.174 +0.667 0.174
PM +0.000 1.000 +0.000 1.000 +0.000 1.000
RE +0.857 0.003 +0.714 0.013 +0.357 0.216

Span
CL −0.033 0.857 −0.183 0.322 +0.101 0.588
CU +0.017 0.928 −0.250 0.177 +0.300 0.105
DU −0.429 0.138 −0.429 0.138 +0.286 0.322
LA −0.357 0.216 −0.643 0.026 +0.143 0.621
PM −0.317 0.087 −0.319 0.086 +0.202 0.279
RE −0.167 0.368 −0.217 0.242 −0.109 0.558

not see a consistent pattern that certain methods prefer certain models. A special case,
however, is the recall of Retag. We indeed observe the assumption of Reiss et al. (2020)
that the model with the lowest recall often leads to the highest AED recall (see Figure 4).
This is especially pronounced for token and span labeling. For these tasks, Retag can
use a low-recall model to flag a large fraction of tokens because the model disagrees at
many positions with the input labels. This improves recall while being detrimental to
precision.

To summarize, overall we see positive correlation between model and AED perfor-
mances. Using a well-performing model is a good choice for most model-based AED
approaches. Neural models perform especially well, although they are more expensive
to train. We therefore use transformers for text classification as well as span labeling
and Flair for token labeling. Using a low-recall model for Retag leads to higher recall for
token and span labeling, as conjectured by Reiss et al. (2020). This, however, concurs
with lower precision and excessive flagging and thus more annotations need to be
inspected.

5.4 RQ4 – What Performance Impact Does Using (or not Using)
Cross-validation Have?

Model-based AED approaches are typically used together with CV (e.g., Amiri, Miller,
and Savova 2018, Larson et al. 2020, Reiss et al. 2020). Northcutt, Jiang, and Chuang
(2021) explicitly state that Confident Learning should only be applied to out-of-sample
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(c) Span labeling

Figure 4
Model-based methods and how often which model type leads to the best method performance
with respect to overall, precision, and recall score. A connection from left to right between a
method and a model indicates that using that method with outputs from that model leads to the
best task performance. The color of the connection indicates the chosen model, for instance, Flair
is , Transformer . The model axis is presented in descending order by model performance,
aggregated by Borda Count across datasets. This figure is best viewed in color.

predicted probabilities. Amiri, Miller, and Savova (2018) do not mention that they used
CV for Dropout Uncertainty, Label Aggregation, or Classification Uncertainty.

When using AED with CV, models are trained on k − 1 splits and then detection is
done on the remaining k-th set. After all unique folds are processed, all instances are
checked. CV is often used in supervised learning where the goal is to find a model
configuration as well as hyperparameters that generalize on unseen data. The goal
of AED, however, is to find errors in the data at hand. Resulting models are just an
instrument and not used afterwards. They therefore will not be applied to unseen data
and need not generalize to data other than the one to clean. Hence, the question arises
whether CV is really necessary for AED, which has not been analyzed as of yet. Not
using CV has the advantage of being much faster and using less energy, since using
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Table 7
Performance delta of model-based methods when training models with and without CV.
Negative values indicate that not using CV performs worse than using it, positive values
the opposite. It can be seen that overall recall is strongly impacted when not using CV but
precision can improve. Flagger and scorer results are separated by a gap.

Text Token Span

Method ATIS IMDb SST GUM Plank Comp. CoNLL Flights Forex

∆ Precision
CL +0.51 +0.77 −0.22 +0.16 +0.27 +0.02 +0.61 +0.08 +0.27
DE +0.41 +0.11 +0.21 +0.26 +0.23 +0.34 −0.26 +0.59 +0.36
IRT +0.02 +0.38 +0.03 +0.00 +0.04 +0.07 −0.27 +0.03 −0.41
LA +0.26 +0.06 +0.28 −0.00 +0.23 +0.01 −0.05 +0.29 +0.32
PE +0.05 +0.00 +0.01 +0.01 +0.04 +0.14 +0.01 +0.22 +0.11
RE +0.29 +0.78 +0.19 +0.15 +0.17 −0.03 −0.10 +0.19 +0.29
CU −0.03 −0.12 −0.20 −0.00 −0.05 −0.05 −0.13 −0.08 −0.29
DU +0.34 −0.01 +0.12 +0.04 +0.14 +0.00 −0.03 +0.07 +0.14
PM +0.34 −0.05 +0.05 +0.03 +0.14 −0.17 −0.02 +0.05 +0.07

∆ Recall
CL −0.04 −0.63 −0.82 −0.07 −0.25 −0.18 −0.17 −0.24 −0.46
DE −0.29 −0.25 −0.41 −0.10 −0.34 −0.31 −0.30 −0.39 −0.37
IRT +0.44 +0.06 +0.63 +0.09 +0.37 +0.26 −0.31 +0.76 −0.11
LA −0.27 −0.64 −0.83 −0.00 −0.30 −0.18 −0.27 −0.34 −0.49
PE +0.00 +0.00 −0.00 −0.00 −0.14 −0.13 −0.06 +0.00 −0.11
RE −0.32 −0.64 −0.82 −0.00 −0.35 −0.17 −0.30 −0.44 −0.55
CU −0.07 −0.62 −0.40 −0.00 −0.04 −0.01 −0.24 −0.22 −0.28
DU +0.71 −0.05 +0.25 +0.09 +0.12 +0.00 −0.06 +0.17 +0.14
PM +0.71 −0.23 +0.09 +0.06 +0.12 −0.04 −0.04 +0.12 +0.07

∆ % Flagged
CL −0.02 −0.06 −0.19 −0.02 −0.07 −0.09 −0.02 −0.01 −0.06
DE −0.05 −0.05 −0.15 −0.03 −0.10 −0.31 −0.06 −0.06 −0.11
IRT +0.06 −0.91 +0.16 +0.03 +0.13 +0.15 −0.06 +0.07 +0.79
LA −0.03 −0.06 −0.19 +0.00 −0.10 −0.10 −0.05 −0.03 −0.09
PE −0.01 −0.00 −0.01 −0.00 −0.04 −0.15 −0.03 −0.08 −0.05
RE −0.04 −0.06 −0.19 −0.02 −0.10 −0.08 −0.05 −0.03 −0.09

CV increases training time linearly with the number of folds. In the typical setup with
10-fold CV, this means an increase of training time by 10×.

To answer this question we train a single model on all instances and then predict
on the very same data. Then we use the resulting outputs to rerun methods that used
CV before, which are Classification Uncertainty, Confident Learning, Diverse Ensemble,
Dropout Uncertainty, Item Response Theory, Label Aggregation, Prediction Margin, Projection
Ensemble, and Retag. The results are listed in Table 7. Overall, it can be seen that not
using CV massively degrades recall for model-based methods while the precision im-
proves. This can be intuitively explained by the fact that if the underlying models have
already seen all the data, then they overfit to it and hence can re-predict it well. Due
to the positive relationship between model and method performances (see § 5.3) this is
also reflected downstream; fewer instances are predicted differently than the original
labels. This reduces recall and thereby the chance of making errors, thus increasing
precision. This can be seen by the reduction in the percentage of flagged instances for
flaggers. Interestingly, Dropout Uncertainty and Prediction Margin are not impacted as
much and sometimes even improve when not using CV across all scores, especially for
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easier datasets. Recall of Item Response Theory also improves at the cost of more flagged
items and a reduction in precision. Prediction Ensemble for text classification is relatively
unaffected and for token and span labeling, the performance difference is around ±0.10
pp. Therefore, it might be a good tradeoff to not use CV with this method as it is already
expensive due to its ensembling.

To summarize, not using CV can negatively impact performance—in particular,
degrading recall. We therefore recommend the use of CV, even though it increases
runtime by the number of folds (in our case, by a factor of ten). In settings where this is
an issue, we recommend using methods that inherently do not need CV. These include
most heuristics and well-performing approaches like Datamap Confidence, Leitner Spotter,
or Curriculum Spotter. If precision is more important than recall, then not using CV might
be taken into consideration.

6. Takeaways and Recommendations

This article has probed several questions related to annotation error detection. Our
findings show that it is usually better to use well-performing models for model-based
methods as they yield better detection performance on average. Using a worse model
for Retag improves recall at the cost of lower precision. For detection, these models
should be trained via cross-validation, otherwise the recall of downstream methods is
heavily degraded (while the precision improves). Calibration can improve these model-
based annotation error detection methods, but more research is needed to determine
when exactly it can be useful. Some model-method combinations achieved relatively
large gains after calibration while others did not improve.

Methods that are used frequently in practice—Retag and Classification Uncertainty—
performed well in our experiments. Others did not perform particularly well, especially
Dropout Uncertainty, Item Response Theory, k-Nearest Neighbor Entropy, Mean Distance, and
Prediction Margin. For Mean Distance in particular, Larson et al. (2019) reported AP of
> 0.6 and recall > 0.8 on corpora with artificial noise, which we could not reproduce.
Experiments with Dropout Uncertainty disseminated in Amiri, Miller, and Savova (2018)
reached similar high scores as using Curriculum Spotter, Leitner Spotter, or Classification
Uncertainty, but we were not able to make Dropout Uncertainty reach similar high
scores as the others. Label Aggregation, though, which uses the same inputs, performs
exceedingly well. For the others, either no scores were reported or they were similarly
low as in our experiments.

Experiments on actual corpora have shown that AED methods still have room for
improvement. While looking promising on artificial corpora, there is a large perfor-
mance drop when applying them in practice. Overall, the methods that worked best
are Classification Uncertainty, Confident Learning, Curriculum Spotter, Datamap Confidence,
Diverse Ensemble, Label Aggregation, Leitner Spotter, Projection Ensemble, and Retag. More
complicated methods are not necessarily better. For instance, Classification Uncertainty
and Retag perform well across tasks and datasets while being easy to implement. Model-
based methods require k-fold cross-validation. Therefore, if runtime is a concern, then
Datamap Confidence is a good alternative. It performs well while only needing to train
one model instead of k. In case the data or its corresponding task to correct is not
suitable for machine learning, methods like Label Entropy, K-Nearest-Neighbor Entropy,
or Variation n-grams still can be applied. As the latter usually has high precision it is
often worthwhile to apply it whenever the data is suitable for it; that is, if the data has
sufficient surface form overlap. Individual scorer scores can be aggregated via Borda
Count but it tremendously increases runtime. While not yielding significantly better
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results in our experiments, results aggregated that way were much more stable across
datasets and tasks while individual scorers sometimes had performance drops in certain
settings.

Manual analysis of CONLL-2003 showed that finding inconsistencies is often more
difficult than finding annotation errors. While model-based methods were often quite
good in the latter, they performed poorly when detecting inconsistencies. Methods that
do not rely on the noisy labels but on the surface form or semantics like k-Nearest
Neighbor Entropy, Label Entropy, and Weighted Discrepancy have shown the opposite
behavior. They each have their own strengths and it can be worth combining both types
of methods.

7. Conclusion

Having annotated corpora with high-quality labels is imperative for many branches
of science and for the training of well-performing and generalizing models. Previous
work has shown that even commonly used benchmark corpora contain non-negligible
numbers of annotation errors. In order to assist human annotators with detecting and
correcting these errors, many different methods for annotation error detection have
been developed. To date, however, methods have not been compared, so it has been
unclear what method to choose under what circumstances. To close this gap, we sur-
veyed the field of annotation error detection, reimplemented 18 methods, collected
and generated 9 datasets for text classification, token labeling, and span labeling, and
evaluated method performance in different settings. Our results show that AED can
already be useful in real use cases to support data cleaning efforts. But especially for
more difficult datasets, the performance ceiling is far from reached yet.

In the past, the focus of most works researching or using AED was to clean data and
not to develop a method. The method was only a means to achieve a cleaned corpus
and not the target itself. Also, several studies proposed algorithms for different use
cases and AED was one application to it just mentioned briefly at the end without in-
depth evaluation, rendering it unclear how well the method performs. We therefore
strongly encourage authors who introduce new AED methods to compare their method
to previous work and on the same corpora to foster reproducibility and to bring the per-
formance of new methods into context. This article surveys, standardizes, and answers
several fundamental questions regarding AED so that future work has a stable footing
for research. For this, we also make our implementation and datasets publicly available.

Limitations and Future Work. While we thoroughly investigated many available methods
on different datasets and tasks, there are some limitations to our work. First, the datasets
that we used were only in English. Therefore, it would be interesting to investigate
AED on different languages. One first step could be the work by Hedderich, Zhu, and
Klakow (2021), who created a corpus for NER in Estonian with natural noise patterns.
Hand-curated datasets with explicitly annotated errors are rare. We therefore also used
existing, clean datasets and injected random noise, similarly to previous works. These
datasets with artificial errors have been shown to overestimate the ability of AED
methods, but are still a good estimator for the maximal performance of methods. The
next step is to create benchmark corpora that are designed from the ground up for the
evaluation of annotation error detection. As creating these requires effort and is costly, a
cheaper way is to aggregate raw crowdsourcing data. This is often not published along
with adjudicated corpora, so we urge researchers to also publish these alongside the
final corpus.
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AED was evaluated on three different tasks with nine NLP datasets. The tasks
were chosen based on the number of datasets and model types available to answer our
research questions. Most AED methods are task-agnostic; previous work, for instance,
investigated question answering (Amiri, Miller, and Savova 2018) or relation classifica-
tion (Alt, Gabryszak, and Hennig 2020; Stoica, Platanios, and Poczos 2021). Hence, AED
can and has been applied in different fields like computer vision (Northcutt, Athalye,
and Mueller 2021). But these works are plagued by the same issues that most previous
AED works have (e.g., only limited comparison to other works and quantitative anal-
ysis, code and data not available). Having several fundamental questions answered in
this article, future work can now readily apply and investigate AED on many different
tasks, domains, and in many different settings, while leveraging our findings (which are
summarized in § 6). It would especially be interesting to evaluate and apply AED on
more hierarchical and difficult tasks, such as semantic role labeling or natural language
inference.

While we investigated many relevant research questions, these were mostly about
model-based methods as well as flaggers. To date, scorers have been treated as a black
box, so it would be worth investigating what makes a good scorer—for example, what
makes Classification Uncertainty better than Prediction Margin. Also, leveraging scorers
as uncertainty estimates for correction is a promising application, similar to the works
of Dligach and Palmer (2011) or Angle, Mishra, and Sharma (2018).

This work also only focuses on errors, inconsistencies, and ambiguities related to
instance labels. Some datasets also benefit from finding errors concerning tokenization,
sentence splitting, or missing entities (e.g., Reiss et al. 2020). We also did not investigate
the specific kinds of errors made. This can be useful information and could be leveraged
by human annotators during manual corrections. It would be especially interesting to
investigate the kinds of errors certain models and configurations were able to correct—
for instance, whether using no cross-validation finds more obvious errors but with a
higher precision. We leave detection of errors other than incorrect labels or error kind
detection for future work because we did not find a generic way to do it across the wide
range of evaluated datasets and tasks used in this article.

Finally, we implemented each method as described and performed only basic hy-
perparameter tuning. We did not tune them further due to the prohibitive costs for our
large-scale setup. This is especially true for the considered machine learning models,
where we kept the parameters mostly default for all regardless of the dataset and
domain. We are sure that one can certainly improve scores for each method, but our
implementations should still serve as a lower bound. However, we do not expect large
gains from further optimization and no large shifts in ranking between the methods.

Appendix A. Hyperparameter Tuning and Implementation Details

In this section we briefly describe implementation details for the different AED methods
used throughout this article. As the tuning data we select one corpus for each task type.
For text classification we subsample 5,000 instances from the training split of AG NEWS

(Zhang, Zhao, and LeCun 2015); the number of samples is chosen as it is around the
same data size as our other datasets. As the corpus for token labeling we choose the
English part of PARTUT (Sanguinetti and Bosco 2015) and their POS annotations and
inject 5% random noise. For span labeling we use CONLL-2003 (Reiss et al. 2020) to
which we apply 5% flipped label noise.
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A.1 Aggregating Probabilities and Embeddings for Span Labeling

When converting BIO-tagged sequences to spans for alignment (see § 4.3) consisting
only of start and end position as well as its label, the probabilities assigned to each BIO-
tag representing the span need to be aggregated. The same needs to be done for creating
span embeddings from token embeddings. As an example, consider NER for persons
and locations with a tagset of B-PER, I-PER, B-LOC, I-LOC. It has to be aggregated so
that spans have labels PER or LOC. Look at a span of two tokens that has been tagged as
B-PER, I-PER. Then the probability for PER needs to be aggregated from the B-PER and
I-PER tags. We evaluate our CONLL-2003 tuning data. We use a Maxent sequence tagger
to evaluate Confident Learning with 10-fold cross-validation for this hyperparameter
selection. In addition, for k-Nearest-Neighbor Entropy we evaluate aggregation schemes to
create span embeddings from individual token embeddings. Overall, we do not observe
a large difference between max, mean, or median aggregation. The results can be seen
in Table A.1. We choose aggregating via arithmetic mean because it is slightly better in
terms of F1 and AP than the other methods.

A.2 Method Details

In the following we describe the choices we made when implementing the various AED
methods evaluated in this article.

Diverse Ensemble Our diverse ensemble uses the predictions of all different model
types trained for the task and dataset, similarly to Loftsson (2009), Alt, Gabryszak, and
Hennig (2020), and Barnes, Øvrelid, and Velldal (2019).

Spotter and Datamap Confidence The implementations of Datamap Confidence as well
as Curriculum Spotter and Leitner Spotter require callbacks or a similar functionality to
obtain predictions for every epoch which only HuggingFace Transformers provide. That
is why we only evaluate these methods in combination with a transformer.

Dropout Uncertainty In our implementation we use mean entropy, which we observed
in preliminary experiments to perform slightly better overall than the other version
evaluated by Shelmanov et al. (2021).

Variation n-grams We follow Wisniewski (2018) for our implementation and use gen-
eralized suffix trees to find repetitions. If there are repetitions of length more than one
in the surface forms that are tagged differently, we look up the respective tag sequence
that occurs most often in the corpus and flag the positions of all other repetitions where

Table A.1
Impact of different aggregation functions for span alignment and embeddings.

CL KNN

Aggregation P R F1 AP P@10% R@10%

min 0.149 0.594 0.238 0.307 0.325 0.326
max 0.761 0.881 0.817 0.308 0.325 0.326
mean 0.766 0.878 0.818 0.318 0.331 0.333
median 0.765 0.876 0.817 0.316 0.330 0.332
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they disagree with the majority tags. We convert tokens and sentences to lower case to
slightly increase recall while slightly reducing precision. We do not flag an instance if
its label is the most common label. This yields far better results as the most common
label is most often correct and should not be flagged. When using Variation n-grams for
span labeling, we use a context of one token to the left and right of the span, similarly
to Larson et al. (2020).

Projection Ensemble In our implementation we flag an instance if the majority label of
the ensemble disagrees with the given one.

Label Aggregation In the original work that evaluated using Label Aggregation for AED
(Amiri, Miller, and Savova 2018), MACE (Hovy et al. 2013) was used. We use Dawid-
Skene (Dawid and Skene 1979), which has similar performance as MACE (Paun et al.
2018) but many more available implementations (we use Ustalov et al. (2021)). The
difference between the two (MACE modeling annotator spam) is not relevant here.

Mean Distance We compare different embedding methods and metrics for Mean Dis-
tance. For that we use the Sentence Transformers6 library and evaluate S-BERT embed-
dings (Reimers and Gurevych 2019), Universal Sentence Encoder (Cer et al. 2018), and
average GloVe embeddings (Pennington, Socher, and Manning 2014). We evaluate on
our AG NEWS tuning data. As our Universal Sentence Encoder implementation we use
distiluse-base-multilingual-cased-v1 from Sentence Transformers. The Universal
Sentence Encoder embeddings as used in the original implementation of Mean Distance
(Larson et al. 2019) overall perform not better than all S-BERT embeddings. lof refers
to Local Outlier Factor, a clustering metric proposed by Breunig et al. (2000). Using
all-mpnet-base-v2 together with Euclidean distance works best here and we use this
throughout our experiments.

Item Response Theory We use the setup from Rodriguez et al. (2021), that is, a 2P IRT
model that is optimized via variational inference and the original code of the authors.
We optimize for 10,000 iterations. Item Response Theory uses the collected predictions of
all models for the respective task, similarly to Diverse Ensemble.

Label Entropy and Weighted Discrepancy We implement equations (2) and (3) in
Hollenstein, Schneider, and Webber (2016) but assign the minimum score (meaning no
error) if the current label is the most common label. This yields far better results because
the most common label is most often correct and should not be downranked.

K-Nearest-Neighbor Entropy To evaluate which embedding aggregation over trans-
former layers works best for k-Nearest-Neighbor Entropy, we evaluate several different
configurations on our PARTUT tuning data. We chose this task and not span labeling
as span labeling requires an additional aggregation step to combine token embeddings
to span embeddings (see § 1.1). The transformer of choice is RoBERTa (Liu et al. 2019),
as it has better performance than BERT while still being fast enough. We also compare
with several non-transformer embeddings: GloVe 6B (Pennington, Socher, and Manning
2014), Byte-Pair Encoding (Heinzerling and Strube 2018), and a concatenation of both.
We follow Devlin et al. (2019) regarding which configurations to try. The results can
be seen in Table A.2. The best scoring embedder is RoBERTa, using only the last layer
that will be the configuration used throughout this work for obtaining token and span

6 https://www.sbert.net/.
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Table A.2
The performance impact of using different embedding types and configurations for KNN
entropy on UD ParTUT.

Embedder AP P@10% R@10%

Last Hidden 0.265 0.255 0.256
Sum All Layers 0.237 0.254 0.254
First Hidden 0.230 0.269 0.270
Sum Last 4 Hidden 0.227 0.246 0.246
Second-to-Last Hidden 0.224 0.244 0.244
Concat Last 4 Hidden 0.149 0.193 0.194
Glove 0.148 0.169 0.169
Glove + BPE 0.148 0.175 0.175
BPE 0.147 0.170 0.170

Table A.3
Evaluation of scorers and their aggregation via Borda Count for text classification and span
labeling. Highlighted in gray are the runs of Borda Count aggregation.

Method AP P@10% R@10%

BCtop3 0.848 0.460 0.947
BCtop2 0.824 0.456 0.938
DM 0.819 0.448 0.922
BCtop5 0.794 0.454 0.934
LS 0.706 0.448 0.922
CU 0.521 0.426 0.877
MD 0.422 0.344 0.708
CS 0.296 0.390 0.802
BCall 0.268 0.244 0.502
KNN 0.055 0.062 0.128
DU 0.055 0.062 0.128
PM 0.050 0.046 0.095

(a) Text

Method AP P@10% R@10%

DM 0.963 0.932 0.934
BCtop3 0.897 0.863 0.865
CU 0.881 0.837 0.839
BCtop2 0.881 0.837 0.839
BCtop5 0.716 0.625 0.626
WD 0.665 0.632 0.633
LE 0.567 0.579 0.580
BCall 0.350 0.378 0.379
MD 0.206 0.231 0.232
DU 0.103 0.104 0.104
PM 0.102 0.104 0.104
KNN 0.100 0.101 0.101

(b) Span

embeddings. For sentence embeddings we will use all-mpnet-base-v2 (see § 1.2). To
compute the KNN entropy, we use the code of the original authors.

Borda Count In order to evaluate which scores to aggregate via Borda Count we eval-
uate three settings on our AG NEWS tuning data. We either aggregate the five best,
three best, or all scorer outputs. As the underlying model for model-based methods we
use transformers, because we need repeated probabilities for Dropout Uncertainty. The
results are listed in Table A.3. It can be seen that aggregating only the three best scores
leads to far superior performance. Hence, we choose this setting when evaluating Borda
Count aggregation during our experiments.

Appendix B. Calibration

From the most common calibration methods we select the best method by calibrating
probabilities for models trained on our AG NEWS tuning data. We use 10-fold cross-
validation where eight parts are used for training models, one for calibrating and one
for evaluating the calibration. The results can be seen in Figure B.1. We follow Guo et al.

139



Computational Linguistics Volume 49, Number 1

(2017) and use the Expected Calibration Error (ECE) (Naeini, Cooper, and Hauskrecht
2015) as the metric for calibration quality. We decide to use one method for all task types
and finally choose Logistic Calibration (also known as Platt Scaling), which performs well
across tasks. We use the implementations of Küppers et al. (2020).
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Appendix C. Best Scores
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Figure C.1
Model performances across tasks and datasets. The model axis is ordered in descending order by
the respective models’ overall performance via Borda Count.
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Figure C.2
AED results achieved with using the respective best models across all flaggers and scorers
for text classification, span, and token labeling.
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Abstract

Entity linking (EL) is concerned with disam-

biguating entity mentions in a text against

knowledge bases (KB). It is crucial in a consid-

erable number of fields like humanities, tech-

nical writing and biomedical sciences to en-

rich texts with semantics and discover more

knowledge. The use of EL in such domains

requires handling noisy texts, low resource set-

tings and domain-specific KBs. Existing ap-

proaches are mostly inappropriate for this, as

they depend on training data. However, in the

above scenario, there exists hardly annotated

data, and it needs to be created from scratch.

We therefore present a novel domain-agnostic

Human-In-The-Loop annotation approach: we

use recommenders that suggest potential con-

cepts and adaptive candidate ranking, thereby

speeding up the overall annotation process and

making it less tedious for users. We evaluate

our ranking approach in a simulation on diffi-

cult texts and show that it greatly outperforms

a strong baseline in ranking accuracy. In a user

study, the annotation speed improves by 35

% compared to annotating without interactive

support; users report that they strongly prefer

our system. An open-source and ready-to-use

implementation based on the text annotation

platform INCEpTION1 is made available2.

1 Introduction

Entity linking (EL) describes the task of disam-

biguating entity mentions in a text by linking them

to a knowledge base (KB), e.g. the text span Earl

of Orrery can be linked to the KB entry John Boyle,

5. Earl of Cork, thereby disambiguating it. EL

is highly beneficial in many fields like digital hu-

manities, classics, technical writing or biomedical

sciences for applications like search (Meij et al.,

1https://inception-project.github.io
2https://github.com/UKPLab/

acl2020-interactive-entity-linking

Figure 1: Difficult entity mentions with their linked en-

tities: 1) Name variations, 2) Spelling Variation, 3) Am-

biguity

2014), semantic enrichment (Schlögl and Lejtovicz,

2017) or information extraction (Nooralahzadeh

and Øvrelid, 2018). These are overwhelmingly

low-resource settings: often, no data annotated ex-

ists; coverage of open-domain knowledge bases

like Wikipedia or DBPedia is low. Therefore, en-

tity linking is frequently performed against domain-

specific knowledge bases (Munnelly and Lawless,

2018a; Bartsch, 2004).

In these scenarios, the first crucial step is to ob-

tain annotated data. This data can then be either

directly used by researchers for their downstream

task or to train machine learning models for au-

tomatic annotation. For this initial data creation

step, we developed a novel Human-In-The-Loop

(HITL) annotation approach. Manual annotation

is laborious and often prohibitively expensive. To

improve annotation speed and quality, we there-

fore add interactive machine learning annotation

support that helps the user find entities in the text

and select the correct knowledge base entries for

them. The more entities are annotated, the better

the annotation support will be.

Throughout this work, we focus on texts from

digital humanities, to be more precise, texts written

in Early Modern English texts, including poems,

biographies, novels as well as legal documents. In



this domain, texts are noisy as they were written

in times where orthography was rather incidental

or due to OCR and transcription errors (see Fig. 1).

Tools like named entity recognizers are unavailable

or perform poorly (Erdmann et al., 2019).

We demonstrate the effectiveness of our ap-

proach with extensive simulation as well as a user

study on different, challenging datasets. We imple-

ment our approach based on the open-source anno-

tation platform INCEpTION (Klie et al., 2018) and

publish all datasets and code. Our contributions are

the following:

1. We present a generic, KB-agnostic annotation

approach for low-resource settings and pro-

vide a ready-to-use implementation so that

researchers can easily annotate data for their

use cases. We validate our approach exten-

sively in a simulation and in a user study.

2. We show that statistical machine learning

models can be used in an interactive entity

linking setting to improve annotation speed

by over 35%.

2 Related work

In the following, we give a broad overview of exist-

ing EL approaches, annotation support and Human-

In-The-Loop annotation.

Entity Linking describes the task of disam-

biguating mentions in a text against a knowl-

edge base. It is typically approached in three

steps: 1) mention detection, 2) candidate gener-

ation and 3) candidate ranking (Shen et al., 2015)

(Fig. 2). Mention detection most often relies either

on gazetteers or pretrained named entity recogniz-

ers. Candidate generation either uses precompiled

candidate lists derived from labeled data or uses

full-text search. Candidate ranking assigns each

candidate a score, then the candidate with the high-

est score is returned as the final prediction. Existing

systems rely on the availability of certain resources

like a large Wikipedia as well as software tools

and often are restricted in the knowledge base they

can link to. Off-the-shelf systems like Dexter

(Ceccarelli et al., 2013), DBPedia Spotlight

(Daiber et al., 2013) and TagMe (Ferragina and

Scaiella, 2010) most often can only link against

Wikipedia or a related knowledge base like Wiki-

data or DBPedia. They require good Wikipedia

coverage for computing frequency statistics like

popularity, view count or PageRank (Guo et al.,

2013). These features work very well for stan-

dard datasets due to their Zipfian distribution of

entities, leading to high reported scores on state-

of-the art datasets (Ilievski et al., 2018; Milne and

Witten, 2008). However, these systems are rarely

applied out-of-domain such as in digital humanities

or classical studies. Compared to state-of-the-art

approaches, only a limited amount of research has

been performed on entity linking against domain-

specific knowledge bases. AGDISTIS (Usbeck

et al., 2014) developed a knowledge-base-agnostic

approach based on the HITS algorithm. The men-

tion detection relies on gazetteers compiled from re-

sources like Wikipedia and thereby performs string

matching. Brando et al. (2016) propose REDEN, an

approach based on graph centrality to link French

authors to literary criticism texts. It requires addi-

tional linked data that is aligned with the custom

knowledge base–they use DBPedia. As we work in

a domain-specific low resource setting, access to

large corpora which can be used to compute pop-

ularity priors is limited. We do not have suitable

named entity linking tools, gazetteers or a sufficient

amount of labeled training data. Therefore, it is

challenging to use state of the art systems.

Human-in-the-loop annotation HITL machine

learning describes an interactive scenario where a

machine learning (ML) system and a human work

together to improve their performance. The ML

system gives predictions, and the human corrects

if they are wrong and helps to spot things that

have been overlooked by the machine. The sys-

tem uses this feedback to improve, leading to bet-

ter predictions and thereby reducing the effort of

the human. In natural language processing, it has

been applied in scenarios like interactive text sum-

marization (Gao et al., 2018), parsing (He et al.,

2016) or data generation (Wallace et al., 2019).

Regarding machine-learning assisted annotation,

Yimam et al. (2014) propose an annotation editor

that during annotation, interactively trains a model

using annotations made by the user. They use string

matching and MIRA (Crammer and Singer, 2003)

as recommenders, evaluate on POS and NER anno-

tation and show improvement in annotation speed.

TASTY (Arnold et al., 2016) is a system that is

able to perform EL against Wikipedia on the fly

while typing a document. A pretrained neural se-

quence tagger is being used that performs mention

detection. Candidates are precomputed and the

candidate is chosen that has the highest text sim-
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Figure 2: Entity linking pipeline: First, mentions of entities in the text need to be found. Then, given a mention,

candidate entities are generated. Finally, entities are ranked and the top entity is chosen.

ilarity. The system updates its suggestions after

interactions such as writing, rephrasing, removing

or correcting suggested entity links. Corrections

are used as training data for the neural model. How-

ever, due to the following reasons, it is not yet suit-

able for our scenario. In order to overcome the

cold start problem, it needs annotated training data

in addition to a precomputed index for candidate

generation. It also only links against Wikipedia.

3 Architecture

The following section describes the three com-

ponents of our annotation framework, following

the standard entity linking pipeline (see Fig. 2).

Throughout this work, we will mainly focus on

the candidate Ranking step. We call the text span

which contains an entity the mention and the sen-

tence the mention is in the context. Each candidate

from the knowledge base is assumed to have a la-

bel and a description. For instance, in Fig. 2, one

mention is Dublin, the context is Dublin is the cap-

ital of Ireland, the label of the the first candidate

is Trinity College and its description is constituent

college of the University of Dublin in Ireland.

Mention Detection In the annotation setting, we

rely on users to mark text spans that contain annota-

tions. As support, we provide suggestions given by

different recommender models: similar to Yimam

et al. (2014), we use a string matcher suggesting an-

notations for mentions which have been annotated

before. We also propose a new Levenshtein string

matcher based on Levenshtein automata (Schulz

and Mihov, 2002). In contrast to the string matcher,

it suggests annotations for spans within a Leven-

shtein distance of 1 or 2. Preliminary experiments

with ML models for mention detection like using

a Conditional Random Field and handcrafted fea-

tures did not perform well and yielded noisy sug-

gestions, requiring further investigation.

Candidate Generation We index the knowledge

base and use full text search to retrieve candidates

based on the surface form of the annotated men-

tion. Besides, users can query this index during

annotation. We use fuzzy search to help in cases

where the mention and the knowledge base label

are almost the same but not identical (e.g. Dublin

vs. Dublyn). In the interactive setting, the user can

also search the knowledge base during annotation,

e.g. in cases when the gold entity is not ranked high

enough or when the surface form and knowledge

base label are not the same (Zeus vs. Jupiter).

Candidate Ranking We follow Zheng et al.

(2010) and model candidate ranking as a learning-

to-rank problem: given a mention and a list of can-

didates, sort the candidates so that the most relevant

candidate is at the top. For training, we guarantee

that the gold candidate is present in the candidate

list. For evaluation, the gold candidate can be ab-

sent from the candidate list if the candidate search

failed to find it.

This interaction is the core Human-in-the-loop

in our approach. For training, we rephrase the task

as preference learning: By selecting an entity label

from the candidate list, users express that the se-

lected one was preferred over all other candidates.

These preferences are used to train state-of-the-art

pairwise learning-to-rank models from the litera-

ture: the gradient boosted trees variant LightGBM

(Ke et al., 2017), RankSVM (Joachims, 2002) and

RankNet (Burges et al., 2005). Models are re-

trained in the background when new annotations

are made, thus improving over time with an in-

creasing number of annotations. We use a set of

generic handcrafted features which are described

in Table 1. These models were chosen as they can

work with low data, train quickly and allow intro-

spection. Using deep models or word embeddings

as input features showed to be too slow to be inter-
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active. We also leverage pretrained Sentence-BERT

embeddings (Reimers and Gurevych, 2019) trained

on Natural Language Inference data written in sim-

ple English. These are not fine-tuned by us during

training. Although they come from a different do-

main, we conjecture that the WordPiece tokeniza-

tion of BERT helps with the spelling variance of

our texts in contrast to traditional word embeddings

which would have many out-of-vocabulary words.

For specific tasks, custom features can easily be

incorporated e.g. entity type information, time in-

formation for diachronic entity linking, location

information or distance for annotating geographi-

cal entities.

• Mention exactly matches label
• Label is prefix/postfix of mention
• Mention is prefix/postfix of label
• Label is substring of mention and vice versa

• Levenshtein distance between mention and label
• Levenshtein distance between context and description
• Jaro-Winkler distance between mention and label
• Jaro-Winkler distance between context and description
• Sørensen-Dice index between context and description
• Jaccard coefficient between context and description

• Exact match of Soundex encoding of mention and label
• Phonetic Match Rating of mention and label

• Cosine distance between SBERT Embeddings of context
and description (Reimers and Gurevych, 2019)

• Query length

* Query exactly matches label

* Query is prefix/postfix of label/mention

* Query is substring of mention/label

* Levenshtein distance between query and label
• Levenshtein distance between query and mention
• Jaro-Winkler distance between query and label
• Jaro-Winkler distance between query and mention

Table 1: Features used for candidate ranking. Starred

features were also used by Zheng et al. (2010)

4 Datasets

There are very few datasets available that can be

used for EL against domain-specific knowledge

bases, further stressing our point that we need more

of these, thereby requiring approaches like ours to

create them. We use three datasets: AIDA-YAGO,

Women Writers Online (WWO) and 1641 Deposi-

tions. AIDA consists of Reuters news stories. To the

best of our knowledge, WWO has not been consid-

ered for automatic EL so far. The 1641 Depositions

have been used in automatic EL, but only when

linking against DBPedia which has a very low en-

tity coverage (Munnelly and Lawless, 2018b). We

preprocess the data, split it in sentences, tokenize

and reduce noise. For WWO, we derive a RDF KB

from their personography, for 1641 we derive a

knowledge base from the annotations. The exact

processing steps as well as example texts are de-

scribed in the appendix. The resulting data sets for

WWO and 1641 Depositions are also made available

in the accompanying code repository.

AIDA-YAGO: For validating our approach,

we evaluate on the AIDA-YAGO state-of-the art

dataset introduced by Hoffart et al. (2011). Orig-

inally, this dataset is linked against YAGO and

Wikipedia. We map the Wikipedia URLs to Wiki-

data and link against this KB, as Wikidata is avail-

able in RDF and the official Wikidata SPARQL

endpoint offers full text search: it does not offer

fuzzy search though.

Women Writers Online: Women Writers On-

line3 is a collection of texts by pre-Victorian

women writers. It includes texts on a wide range

of topics and from various genres including poems,

plays, and novels. They represent different states

of the English language between 1400 and 1850.

A subset of documents has been annotated with

named entities (persons, works, places) (Melson

and Flanders, 2010). Persons have also been linked

to create a personography, a structured represen-

tation of persons’ biographies containing names,

titles, time and place of birth and death. The texts

are challenging to disambiguate due to spelling

variance, ciphering of names and a lack of stan-

dardized orthography. Sometimes, people are not

referred to by name but by rank or function, e.g. the

king. This dataset is interesting, as it contains doc-

uments with heterogeneous topics and text genres,

causing low redundancy.

1641 Depositions: The 1641 Depositions4 con-

tain legal texts in form of court witness statements

recorded after the Irish Rebellion of 1641. In

this conflict, Irish and English Catholics revolted

against English and Scottish Protestants and their

colonization of Ireland. It lasted over 10 years and

ended with the Irish Catholics’ defeat and the for-

eign rule of Ireland. The depositions have been

transcribed from 17
th century handwriting, keep-

ing the old language and orthography. These doc-

uments have been used to analyze the rebellion,

perform cold case reviews of the atrocities commit-

ted and to gain insights into contemporary life of

this era. Part of the documents have been annotated

3https://www.wwp.northeastern.edu/wwo
4http://1641.tcd.ie/

154



Table 2: Data statistics of the three used datasets: Total number of Documents, Tokens, Entities, average number

of Entities per Sentence, % of entities that are not linked. We also report the average number of entities linked to a

mention, the average number of candidates when searching for a mention in the KB and the Gini coefficient which

measures how balanced the entity distribution is.

Corpus #D #T #E #E/S %NIL Avg. Amb. Avg. #Cand. Gini

AIDA 1393 301,418 34,929 1.59 20.37 1.08 6.98 0.73

WWO 74 1,461,401 14,651 0.34 7.42 1.08 16.66 0.56

1641 16 11,895 480 2.40 0.0 1.01 36.29 0.44

with named entities that are linked to DBPedia

(Munnelly and Lawless, 2018b). As the coverage

of DBPedia was not sufficient (only around 20%

of the entities are in DBPedia), we manually cre-

ated a domain specific knowledge base for this data

set containing places and people mentioned. To

increase difficulty and reduce overfitting, we added

additional related entities from DBPedia. The num-

ber of persons increases thereby by tenfold (130

³ 1383) and the number of places by twentyfold

(99³ 2119). Details for that can be found in Ap-

pendix A.1. While generating a KB from gold data

is not ideal, creating or completing a knowledge

base during annotation is not uncommon (see e.g.

Wolfe et al., 2015). The texts are difficult to disam-

biguate due to the same reasons as for WWO. The

depositions are interesting, as they contain docu-

ments from the same domain (witness reports), but

feature many different actors and events.

Table 2 contains several statistics regarding the

three datasets. AIDA and 1641 contain on aver-

age at least one entity per sentence, whereas WWO,

while larger, is only sparsely annotated. In con-

trast to the other two, 1641 contains no entities

linked to NIL. This is caused by the fact that we

created the KB for 1641 from the gold annota-

tions and for entities previously NIL, new entities

were created by hand ; before that, the original

corpus linking to DBPedia had 77% NIL annota-

tions. The average ambiguity, that is, how many

different entities were linked to mentions with the

same surface form is quite high for AIDA and WWO

and quite low for 1641. We explain the latter by

the extreme variance in surface form, as even men-

tions of the same name are often written differently

(e.g. Castlekevyn vs. Castlekevin). Also, 1641

contains many hapax legomena (mentions that only

occur once). The average number of candidates

is comparatively larger for WWO and 1641 as we

use fuzzy search for these. Finally, the distribu-

tions of assigned entities in WWO and 1641 are

also more balanced, expressed by a lower Gini co-

efficient (Dodge, 2008). These last two aspects

together with noisy texts and low resources causes

entity linking to be much more difficult compared

to state-of-the-art datasets like AIDA.

5 Experiments

To validate our approach, we first evaluate recom-

mender performance. Then, non-interactive rank-

ing performance is evaluated similarly to state-of-

the-art EL. Afterwards, we simulate a user annotat-

ing corpora with our Human-In-The-Loop ranker.

Finally, we conduct a user study to test it in a re-

alistic setting. Similar to other work on EL, our

main metric for ranking is accuracy. We also mea-

sure Accuracy@5, as our experiments showed that

users can quickly scan and select the right entity

from a list of five elements. In our annotation edi-

tor, the candidate list shows the first five elements

without scrolling. As a baseline, we use the Most-

Frequently Linked Entity baseline (MFLEB). It

assigns, given a mention, the entity that was most

often linked to it in the training data.

5.1 Automatic suggestion performance

We evaluate the performance of our Levenshtein-

based recommender that suggests potential annota-

tions to users (Table 3). We filter out suggestions

consisting of f 3 characters as these introduce

too much noise. For annotation suggestions, we

focus on recall: where low precision implies rec-

ommendations that are not useful, no recall results

in no recommendations at all. It can be seen that

for AIDA and WWO, the performance of all three

recommenders is quite good (recall is about 60%

and 40%) while for 1641, it is only around 20%.

The Levenshtein recommender increases recall and

reduces precision. The impact is most pronounced

for 1641, where it improves recall upon the string

matching recommender by around 50%. In sum-

mary, we suggest using the string matching rec-
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Dataset Model P R F1

AIDA

String 0.43 0.60 0.50

Leven@1 0.31 0.55 0.40

Leven@2 0.19 0.57 0.28

WWO

String 0.17 0.38 0.23

Leven@1 0.11 0.40 0.16

Leven@2 0.04 0.42 0.07

1641

String 0.12 0.14 0.13

Leven@1 0.16 0.19 0.17

Leven@2 0.12 0.22 0.15

Table 3: Recommender performance in Precision,

Recall and F1 score for String matching recommender

and Levenshtein recommender with distance 1 and 2.

For AIDA, we evaluate on the test set, for the other

datasets, we use 10-fold cross validation.

ommender for domains where texts are clean and

exhibit low spelling variance. We consider the

Levenshtein recommender to be more suitable for

domains with noisy texts.

5.2 Candidate ranking performance

We evaluate EL candidate ranking in a non-

interactive setting first to estimate the upper bound

ranking performance. As we are the first to per-

form EL on our version of WWO and 1641, it also

serves as a difficulty comparison between AIDA as

the state-of-the-art dataset and datasets from our

domain-specific setting. For AIDA, we use the ex-

isting train, development and test split; for the other

two corpora, we perform 10-fold cross validation

as we observed high variance in score when us-

ing different train-test splits. Features related to

user queries are not used in this experiment. We

assume that the gold candidate always exists in

training and evaluation data. The results of this

experiment are depicted in Table 4. It can be seen

that for AIDA, the MFLE baseline is particularly

strong, being better than all trained models. For the

other datasets, the baseline is weaker than all, show-

ing that popularity is a weak feature in our setting.

For AIDA, LightGBM performs best, for WWO

and 1641, the RankNet is best closely followed

by the RankSVM. The accuracy@5 is compara-

tively high as there are cases where the candidate

list is relatively short. Regarding training times,

LightGBM trains extremely fast with RankSVM

being a close second. They are fast enough to re-

train after each user annotation. The RankNet

trains two to four times slower than both.

Data Model A@1 A@5 |C| t

AIDA

MFLEB 0.56 0.71

31
LightGBM 0.44 0.72 9

RankSVM 0.37 0.69 56

RankNet 0.42 0.70 190

WWO

MFLEB 0.32 0.77

19
LightGBM 0.37 0.83 2

RankSVM 0.46 0.86 15

RankNet 0.52 0.87 37

1641

MFLEB 0.28 0.75

38
LightGBM 0.35 0.77 1

RankSVM 0.48 0.80 1

RankNet 0.55 0.83 2

Table 4: Ranking scores when using all the data. We

report Accuracy@1 (Gold Candidate was ranked high-

est, Accuracy@5 (Gold Candidate was in top 5 predic-

tions of the ranker)). |C| denotes the average number

of candidates found for each mention. For AIDA, we

evaluate on the test set, for the other datasets, we use

10-fold cross validation. We also measure the training

time t in seconds averaged over 10 runs.

Feature importance The models we chose for

ranking are white-box; they allow us to introspect

the importance they give to each feature, thereby

explaining their scoring choice. For the RankSVM,

we follow Guyon et al. (2002) and use the square

of the model weights as importance. For Light-

GBM, we use the number of times a feature is

used to make a split in a decision tree. We train

RankSVM and LightGBM models on all data and

report the most important and least important fea-

tures in Fig. 3. We normalize the weights by the

L1-norm. It can be seen that both models rely on

Levenshtein distance between mention and label as

well as Sentence-BERT. The other text similarity

features are, while sparingly, also used. Simple fea-

tures like exact match, contains or prefix

and postfix seem to not have a large impact.

In general, LightGBM uses more features than

the RankSVM. Even though Sentence-BERT was

trained on Natural Language Inference (NLI) data

which contains only relatively simple sentences, it

still is relied on by both models for all datasets. The

high importance of Levenshtein distance between

mention and label for 1641 is expected and can

be explained by the fact that the knowledge base

labels often were derived from the mentions in the

text when creating a domain-specific knowledge
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base for this dataset. When trained on AIDA, the

RankSVM assigns a high importance to the Jac-

card distance between context and description. We

attribute this to the fact that entity descriptions in

Wikidata are quite short; if they are similar to the

context then it is very likely a match.

Figure 3: Feature importance of the respective models

for different datasets. For the RankSVM, we use the

squared weights; for LightGBM, we use the number

of times a feature is used for splitting. Both are normal-

ized to sum up to 1. ML stands for Mention-Label, CD

for Context-Description.

5.3 Simulation

We simulate the Human-In-The-Loop setting by

modeling a user annotating an unannotated corpus

linearly. In the beginning, they annotate an ini-

tial seed of 10 entities without annotation support

which are then used to bootstrap the ranker. At

every step, the user annotates several entities where

the ranker is used as assistance. After an anno-

tation batch is finished, this new data is added to

the training set, the ranker is retrained and evalu-

ated. Only LightGBM and RankSVM are used as

the RankNet turned out to be too slow. We do

not evaluate on a holdout set. Instead, we follow

Erdmann et al. (2019) and simulate annotating the

complete corpus and evaluate on the very same

data as we are interested in how an annotated sub-

set helps to annotate the rest of the data, not how

well the model generalizes. We assume that users

annotate mention spans perfectly, i.e. we use gold

spans. The candidate generation is simulated in

three phases. It relies on the fact that the gold en-

tity is given by the dataset: First, search for the

mention only. If it was not found, search for the

first word of the mention only. If this does not

return the gold entity, search for the gold entity

label. All candidates retrieved by these searches

for a mention are used as training data. We also

experimented with using only candidates for that

the ranker assigned a higher score than the gold

one. This, however, did not affect the performance.

Therefore, we use all negative candidates.

Fig. 4 depicts the simulation results. All mod-

els outperform the MFLE baseline over most of

the annotation process. It can be seen that both of

our used models achieve high performance even

if trained on very few annotations. The RankSVM

handles low data better than LightGBM, but

quickly reaches its peak performance due to it be-

ing a linear model with limited learning capacity.

The LightGBM does not plateau that early. This

potentially allows to first use a RankSVM for the

cold start and when enough annotations are made,

LightGBM, thereby combining the best of both

models. Comparing the performance on the three

datasets, we notice that the performance for AIDA

is much higher. Also, the baseline rises much more

steeply, hinting again that AIDA is easier and pop-

ularity there is a very strong feature. For 1641,

the curve continue to rise, hinting that more data is

needed to reach maximum performance.

Dataset Phase 1 Phase 2 Phase 3

AIDA 0.20 0.00 0.80

WWO 0.26 0.27 0.47

1641 0.55 0.06 0.39

Table 5: Percentage of times the simulated user found

the gold entity in the candidate list by searching for the

mention (Phase 1), for the first word of the mention

(Phase 2) or for the gold label (Phase 3).

Table 5 shows how the simulated user searched

for the gold entities. We see that for WWO and

1641, the user often does not need to spend much

effort in searching for the gold label, using the

mention is in around 50% of the cases enough. We

attribute this to the fuzzy search which the official

Wikidata endpoint does not offer.
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Figure 4: Human-in-the-loop simulation results for our three datasets and models. We can see that we get good

Accuracy@5 with only a few annotations, especially for the RankSVM. This shows that the system is useful even

at the beginning of the annotation process, alleviating the cold start problem.

5.4 User Study

In order to validate the viability of our approach

in a realistic scenario, we conduct a user study.

For that, we augmented the already existing anno-

tation tool INCEpTION5 (Klie et al., 2018) with

our Human-In-The-Loop entity ranking and auto-

matic suggestions. Fig. 5 shows a screenshot of the

annotation editor itself. We let five users reanno-

tate parts of the 1641 corpus. It was chosen as it

has a high density of entity mentions while being

small enough to be annotated in under one hour.

Users stem from various academic backgrounds,

e.g. natural language processing, computer science

and digital humanities. Roughly half of them have

previous experience with annotating. We compare

two configurations: one uses our ranking and Lev-

enshtein recommender, one uses the ranking of the

full text search with the string matching recom-

mender. We randomly selected eight documents

which we split in two sets of four documents. To

reduce bias, we assign users in four groups based

on which part and which ranking they use first.

Users are given detailed instructions and a warm-

up document that is not used in the evaluation to

get used to the annotation process. We measure

annotation time, number of suggestions used and

search queries performed. After the annotation is

finished, we ask users to fill out a survey asking

which system they prefer, how they experienced

the annotation process and what suggestions they

have to improve it. The evaluation of the user study

5https://inception-project.github.io

shows that using our approach, users on average

annotated 35% faster and needed 15% less search

queries. Users positively commented on the rank-

ing performance and the annotation suggestions

for both systems. For our ranking, users reported

that the gold entity often ranked first or close to

top; they rarely observed that gold candidates were

sorted close to the end of the candidate list.

We conduct a paired sample t-test to estimate the

significance of our user study. Our null-hypothesis

is that the reranking system does not improve the

average annotation time. Conducting the test yields

the following: t = 3.332, p = 0.029. We therefore

reject the null hypothesis with p = 0.029 < 0.05,

meaning that we have ample evidence that our

reranking speeds up annotation time.

Recommender suggestions made up around 30%

of annotations. We did not measure a significant

difference between string and Levenshtein recom-

mender. About the latter, users liked that it can

suggest annotations for inexact matches. How-

ever, they criticized the noisier suggestions, espe-

cially for shorter mentions (e.g. annotating joabe

(a name) yielded suggestions for to be). In the

future, we will address this issue by filtering out

more potentially unhelpful suggestions and using

annotation rejections as a blacklist.

6 Conclusion

We presented a domain-agnostic annotation ap-

proach for annotating entity linking for low-

resource domains. It consists of two main com-
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Figure 5: For our user study, we extend the INCEpTION annotation framework: 1© entity linking search field,

2© candidate list, 3© linked named entity, 4© entity linking recommendation.

ponents: recommenders that are algorithms that

suggest potential annotations to users and a ranker

that, given a mention span, ranks potential entity

candidates so that they show up higher in the can-

didate list, making it easier to find for users. Both

systems are retrained whenever new annotations

are made, forming the Human-In-The-Loop.

Our approach does not require the existence

of external resources like labeled data, tools like

named entity recognizers or large-scale resources

like Wikipedia. It can be applied to any domain,

only requiring a knowledge base whose entities

have a label and a description. In this paper, we

evaluate on three datasets: AIDA, which is often

used to validate state-of-the-art entity linking sys-

tems as well as WWO and 1641 from the humanities.

We show that in simulation, only a very small sub-

set needs to be annotated (fewer than 100) for the

ranker to reach high accuracy. In a user study, re-

sults show that users prefer our approach compared

to the typical annotation process; annotation speed

improves by around 35% when using our system

relative to using no reranking support.

In the future, we want to investigate more power-

ful recommenders, combine interactive entity link-

ing with knowledge base completion and use online

learning to leverage deep models, despite their long

training time.
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A Appendices

A.1 Dataset creation

The following section describes how we preprocess

the raw texts from WWO and 1641. Example texts

can be found in Table 6. The respective code and

datasets will be made available on acceptance.

A.1.1 Women Writers Online

We use the following checkout of the WWO data,

which was graciously provided by the Women Writ-

ers Project6.

Revision: 36425

Last Changed Rev: 36341

Last Changed Date: 2019-02-19

6https://www.wwp.northeastern.edu/

The texts itself are provided as TEI7. We use

DKPro Core8 to read in the TEI, split the

raw text into sentences and tokenize it with the

JTokSegmenter. When an annotation is spread

over two sentences, we merge these sentences. This

is mostly caused by a too eager sentence splitter.

We covert the personographie which is in XML to

RDF, including all properties that were encoded in

there.

A.1.2 1641 Depositions

We use a subset of the 1641 depositions provided

by Gary Munnelly. The raw data can be found on

Github9. The texts itself are provided as NIF10.

We use DKPro Core11 to read in the NIF, split

the raw text into sentences and tokenize it with the

JTokSegmenter. When an annotation is spread

over two sentences, we merge these sentences. This

is mostly caused by a too eager sentence splitter.

We use the knowledge base that comes with the

NIF and create entities for all mentions that were

NIL. We carefully deduplicate entities, e.g. Luke

Toole and Colonel Toole are mapped to the

same entity. In order to increase the difficulty of

this dataset, we add additional entities from DB-

Pedia: all Irish people, Irish cities and buildings

in Ireland; all popes; royalities born between 1550

and 1650.

For that, we execute SPARQL

queries against DBPedia for instances

of dbc:Popes, dbc:Royality,

dbc:17th-century Irish people and

keep entries with a birth date before 1650

and a death date between 1600 and 1700.

For the places, we search for dbo:Castle,

dbo:HistoricPlace, dbo:Building,

dbc:17th-century Irish people that

are located in Ireland. The follwing table shows

how many entities were in the original KB and

how many were added:

Persons in gold data 130

Places in gold data 99

Persons added from DBPedia 1253

Places added from DBPedia 2020

7https://tei-c.org/
8https://dkpro.github.io/dkpro-core/
9https://github.com/munnellg/

1641DepositionsCorpus
10https://persistence.uni-leipzig.org/

nlp2rdf/
11https://dkpro.github.io/dkpro-core/
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The following Lines occasion’d by the Marriage

of Edward Herbert Esquire, and Mrs. Eliza-

beth Herbert. Cupid one day ask’d his Mother

, When she meant that he shou’d Wed? You’re

too Young, my Boy, she said: Nor has Nature

made another Fit to match with Cupid’s Bed.

Finch, Anne: Miscellany poems, on several occasions,
1713

Joseph Joice of Kisnebrasney in the kings

County gentleman sworne and examined de-

poseth and saith That after the Rebellion was

begun in the County aforesaid vizt about the

xxth of November 1641 This deponent for saffty

fled to the Castle of knocknamease in the same

County

Deposition of Joseph Joice, 164312

Table 6: Example sentences from these corpora.

Linked Named entities are highlighted in yellow.

A.2 Experiments

A.2.1 Full text search

For AIDA and Wikidata, we use the official

SPARQL endpoint and the Mediawiki API

Query Service13. It does not support fuzzy

search. For WWO and 1641, we host the created

RDF in a Fuseki14 instance and use the builtin func-

tionality to index via Lucene.

A.2.2 Timing

Timing was performed on a Desktop PC with

Ryzen 3600 and a GeForce RTX 2060.

13https://www.mediawiki.org/wiki/

Wikidata_Query_Service/User_Manual/MWAPI
14https://jena.apache.org/

documentation/fuseki2/
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Annotation studies often require annotators to familiarize themselves with the task, its annota-

tion scheme, and the data domain. This can be overwhelming in the beginning, mentally taxing,

and induce errors into the resulting annotations; especially in citizen science or crowdsourcing

scenarios where domain expertise is not required. To alleviate these issues, this work proposes

annotation curricula, a novel approach to implicitly train annotators. The goal is to gradually

introduce annotators into the task by ordering instances to be annotated according to a learning

curriculum. To do so, this work formalizes annotation curricula for sentence- and paragraph-

level annotation tasks, defines an ordering strategy, and identifies well-performing heuristics

and interactively trained models on three existing English datasets. Finally, we provide a

proof of concept for annotation curricula in a carefully designed user study with 40 voluntary

participants who are asked to identify the most fitting misconception for English tweets about

the Covid-19 pandemic. The results indicate that using a simple heuristic to order instances can

already significantly reduce the total annotation time while preserving a high annotation quality.

Annotation curricula thus can be a promising research direction to improve data collection. To

facilitate future research—for instance, to adapt annotation curricula to specific tasks and expert

annotation scenarios—all code and data from the user study consisting of 2,400 annotations is

made available.1
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1. Introduction

Supervised learning and, consequently, annotated corpora are crucial for many down-
stream tasks to train and develop well-performing models. Despite improvements of
models trained in a semi- or unsupervised fashion (Peters et al. 2018; Devlin et al.
2019), they still substantially benefit from labeled data (Peters, Ruder, and Smith 2019;
Gururangan et al. 2020). However, labels are costly to obtain and require domain experts
or a large crowd of non-expert annotators (Snow et al. 2008).

Past research has mainly investigated two approaches to reduce annotation cost
and effort (often approximated by annotation time); namely, active learning and label
suggestions. Active learning assumes that resources for annotating data are limited
and aims to reduce the number of labeled instances by only annotating those that
contribute most to model training (Lewis and Gale 1994; Settles 2012). This often
results in sampled instances that are more difficult to annotate, putting an increased
cognitive load on annotators, and potentially leading to a lower agreement or an
increased annotation time (Settles, Craven, and Friedland 2008). Label suggestions di-
rectly target annotators by providing them with suggestions from a pre-trained model.
Although they are capable of effectively reducing the annotation time (Schulz et al.
2019; Klie, Eckart de Castilho, and Gurevych 2020; Beck et al. 2021, they bear the
risk of biasing annotators toward the (possibly erroneous) suggested label (Fort and
Sagot 2010). Both these shortcomings render existing approaches better suited for
domain-expert annotators who are less burdened by difficult annotation instances
and are less prone to receiving erroneous label suggestions than non-expert anno-
tators. Overall, we can identify a lack of approaches that (1) are less distracting or
biased than label suggestions and (2) can also ease the annotation process for non-
expert annotators. Especially, the increasing popularity of large-scale, crowdsourced
datasets (Bowman et al. 2015; Sakaguchi et al. 2021) further amplifies the need
for training methods that can also be applied in non-expert annotator scenarios
(Geva, Goldberg, and Berant 2019; Nie et al. 2020; Rogers 2021).

One key element that has so far not been investigated in annotation studies
is the use of a curriculum to implicitly teach the task to annotators during anno-
tation. The learning curriculum is a fundamental concept in educational research
that proposes to order exercises to match a learner’s proficiency (Vygotsky 1978;
Krashen 1982) and has even motivated training strategies for machine learning models
(Bengio et al. 2009). Moreover, Kelly (2009) showed that such learning curric-
ula can also be used to teach learners implicitly. Similarly, the goal of anno-
tation curricula (AC) is to provide an ordering of instances during annotation
that is optimized for learning the task. We conjecture that a good annotation
curriculum can implicitly teach the task to annotators—for instance, by show-
ing easier annotation instances before more difficult ones—consequently reduc-
ing the cognitive strain and improving annotation speed and quality. In contrast
to active learning, which may result in only sampling instances that are diffi-
cult to annotate, they explicitly emphasize the needs of a human annotator and
gradually familiarize them with the annotation task. Compared to label sug-
gestions, they are less distracting as they do not bear the risk of providing
erroneous suggestions from imperfect models, making them well-suited for non-
expert annotation scenarios. Furthermore, AC do not require study conductors to
adapt existing annotator training processes or annotation guidelines and hence,
can complement their annotation project. To provide a first assessment for the
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viability of such annotation curricula, we investigate the following three research
questions:

RQ1. Does the order in which instances are annotated impact the annotations in
terms of annotation time and quality?

RQ2. Do traditional heuristics and recent methods for assessing the reading
difficulty already suffice to generate curricula that improve annotation
time or quality?

RQ3. Can the generation of annotation curricula be further alleviated by
interactively trained models?

We first identify and formalize two essential parts to deploy AC: (1) a “strategy”
that defines how instances should be ordered (e.g., by annotation difficulty) and (2) an
“estimator” that ranks them accordingly. We instantiate AC with an “easy-instances-
first” strategy and evaluate heuristic and interactively trained estimators on three
English datasets that provide annotation time which we use as an approximation of
the annotation difficulty for evaluation. Finally, we apply our strategy and its best
estimators in a carefully designed user study with 40 participants for annotating English
tweets about the Covid-19 pandemic. The study results show that the ordering in which
instances are annotated can have a statistically significant impact on the outcome. We
furthermore find that annotators who receive the same instances in an optimized order
require significantly less annotation time while retaining a high annotation quality. Our
contributions are:

C1. A novel approach for training non-expert annotators that is easy to
implement and is complementary to existing annotator training
approaches.

C2. A formalization of AC for sentence- and paragraph-labeling tasks with a
strategy that orders instances from easy to difficult, and an evaluation for
three heuristics and three interactively trained estimators.

C3. A first evaluation of AC in a carefully designed user study that controls for
external influences including:
a) An implementation of our evaluated annotation curriculum

strategies and 2,400 annotations collected during our human
evaluation study.

b) A production-ready implementation of interactive AC in the
annotation framework INCEpTION (Klie et al. 2018) that can be
readily deployed.

Our evaluation of different heuristics and interactively trained models further re-
veals additional factors—such as the data domain and the annotation task—that can
influence their aptitude for AC. We thus appeal to study conductors to publish the
annotation order and annotation times along with their data to allow future studies
to better investigate and develop task- and domain-specific AC.
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2. Related Work

Most existing approaches that help with data collection focus on either active learning
or label suggestions. Other researchers also investigate tackling annotation task within
the context of gamification and introduce different levels of difficulty.

Active Learning. Active learning has widely been researched in terms of model-
oriented approaches (Lewis and Gale 1994), Roy and McCallum 2001; Gal, Islam, and
Ghahramani 2017; Siddhant and Lipton 2018; Kirsch, van Amersfoort, and Gal 2019),
data-oriented approaches (Nguyen and Smeulders 2004; Zhu et al. 2008; Huang, Jin,
and Zhou 2010; Wang et al. 2017), or combinations of both (Ash et al. 2020; Yuan, Lin,
and Boyd-Graber 2020). Although several works investigate annotator proficiency—
which is especially important for crowdsourcing—their main concern is to identify
noisy labels or erroneous annotators (Laws, Scheible, and Schütze 2011; Fang et al.
2012; Zhang and Chaudhuri 2015) or distribute tasks between workers of different
proficiency (Fang, Yin, and Tao 2014; Yang et al. 2019). Despite the large amount of
research in active learning, only a few studies have considered annotation time as an
additional cost variable in active learning (Settles, Craven, and Friedland 2008) and even
found that active learning can negatively impact annotation time (Martı́nez Alonso et al.
2015). Other practical difficulties for deploying active learning in real annotation studies
stem from additional hyperparameters that are introduced, but seldom investigated
(Lowell, Lipton, and Wallace 2019). In contrast, AC also work well with simple heuris-
tics, allowing researchers to pre-compute the order of annotated instances.

Label Suggestions. Label suggestions have been considered for various annotation tasks
in NLP, such as in part-of-speech tagging for low-resource languages (Yimam et al.
2014), interactive entity-linking (Klie, Eckart de Castilho, and Gurevych 2020), or iden-
tifying evidence in diagnostic reasoning (Schulz et al. 2019). Especially for tasks that
require domain-specific knowledge such as in the medical domain, label suggestions
can substantially reduce the burden on the annotator (Lingren et al. 2014). However,
they also inherently pose the risk of amplifying annotation biases due to the anchoring
effect (Turner and Schley 2016). Whereas domain experts may be able to reliably identify
wrong suggestions and provide appropriate corrections (Fort and Sagot 2010), this
cannot be assumed for non-experts. This renders label suggestions a less viable solution
to ease annotations in non-expert studies where incorrect label suggestions may even
distract annotators from the task. In contrast, changing the ordering in which instances
are annotated by using AC is not distracting at all.

Annotation Difficulty. Although difficulty estimation is crucial in human language learn-
ing, for instance, in essay scoring (Mayfield and Black 2020) or text completion ex-
ercises (Beinborn, Zesch, and Gurevych 2014; Loukina et al. 2016; Lee, Schwan, and
Meyer 2019), it is difficult to achieve in annotation scenarios due to the lack of ground
truth, commonly resulting in a post-annotation analysis for model training (Beigman
Klebanov and Beigman 2014; Paun et al. 2018). To consider the difficulty of annotated
instances, a concept that has recently been explored for (annotation) games with a
purpose, is progression. It allows annotators to progress through the annotation study
similar to a game—by acquiring specific skills that are required to progress to the next
level (Sweetser and Wyeth 2005). Although several works have shown the efficiency
of progression in games with a purpose (Madge et al. 2019; Kicikoglu et al. 2020) and
even in crowdsourcing (Tauchmann, Daxenberger, and Mieskes 2020), this does not
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necessarily benefit individual workers, as less-skilled workers are either filtered out
or asked to “train” on additional instances. Moreover, implementing progression poses
a substantial burden on researchers due to the inclusion of game-like elements (e.g.,
skills and levels), or at minimum, the separation of the data according to difficulty and,
furthermore, a repeated evaluation and reassignment of workers. In contrast, reordering
instances of a single set according to a given curriculum can already be achieved with
low effort and can even be implemented complementary to progression.

3. Annotation Curriculum

We first specify the type of annotation tasks investigated in this work, and then for-
malize AC with the essential components that are required for generating appropriate
annotation curricula. Finally, we instantiate an easy-instances-first strategy and define
the estimators that we use to generate a respective curriculum.

3.1 Annotation Task

In this work, we focus on sentence- and paragraph-level annotation tasks that do not
require any deep domain-expertise and hence are often conducted with non-expert
annotators.2 Such annotation tasks often use a simple annotation scheme limited to a
small set of labels, and have been used to create datasets across various research areas,
for instance, in sentiment analysis (Pak and Paroubek 2010), natural language inference
(Bowman et al. 2015), and argument mining (Stab et al. 2018).

Task Formalization. We define an annotation task as being composed of a set of unlabeled
instances x ∈ U that are to be annotated with their respective labels y ∈ Y . We focus on
instances x that are either a sentence or a paragraph and fully annotated by an annotator
a. Note that for sequence labeling tasks such as named entity recognition, y is not a
single label but a vector composed of the respective token-level labels. However, in
such tasks, annotations are still often collected for a complete sentence or paragraph at
once to provide annotators with the necessary context (Tomanek and Hahn 2009).

3.2 Approach

Figure 1 provides a general overview of AC. Given a set of unlabeled instances x ∈ U ,
we define a strategy S that determines the ordering in which annotated instances should
be presented (easy-instances-first). We then specify “adaptive” and “non-adaptive”
estimators f (·) that approximate the true annotation difficulty. In this work, we focus on
task-agnostic estimators that can easily be applied across a wide range of tasks and leave
the investigation on task-specific estimators—which may have higher performance but
also require more implementation effort from study conductors—for future work.3

Depending on the estimator, we then order the annotated instances either beforehand
(non-adaptive), or select them iteratively at each step based on the predictions of an
interactively trained model (adaptive).

2 We discuss AC strategies that may be better suited for domain experts in Section 6.
3 We discuss some ideas for task-specific estimators in Section 6.

169



Computational Linguistics Volume 48, Number 2
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Figure 1
Annotation curricula. First, we define a strategy for ordering instances by annotation difficulty
(i.e., easy-first). We then implement estimators that perform the ordering. Estimators can either
be non-adaptive (e.g., heuristics) or adaptive (trained models). Finally, annotators receive
instances according to the resulting curriculum.

Formalization. Ideally, an annotation curriculum that optimally introduces annotators
to the task would minimize (1) annotation effort and (2) error rate (i.e., maximize
annotation quality). As the annotation error can only be obtained post-study, we can
only use annotation effort, approximated by annotation time, for our formalization;
however, we conjecture that minimizing annotation time may also have a positive
impact on annotation quality (given that the annotators remain motivated throughout
their work). To further reduce noise factors during evaluation, we focus on annota-
tion studies that involve a limited number of instances (in contrast to active learning
scenarios that assume an abundance of unlabeled data). We thus formalize annotation
curriculum as the task of finding the optimal curriculum C∗ out of all possible curricula
C (i.e., permutations of U ) for a finite set of unlabeled instances U that minimizes the
total annotation time T ; namely, the sum of individual annotation times ti ∈ R

+ for all
instances xi ∈ U with i denoting the i-th annotated instance:

C∗ = arg min
C

|U|∑

i=1

ai(xi|x0 . . . xi−1) (1)

where ai : U → T describes the annotator after annotating i − 1 instances.

Strategy. Due to the large number of n! possible curricula C resulting from n = |U |
instances, solving Equation 1 is intractable for large n even if a(·) was known. We can
furthermore only assess the true effectiveness of a curriculum C post-study, making it
impossible to find the optimal curriculum C∗ beforehand. We hence require a strategy
S ∼ C∗ that specifies how instances of U should be ordered optimally. Similar to educa-
tional approaches, we rely on estimating the “difficulty” of an instance to generate our
curriculum (Taylor 1953; Beinborn, Zesch, and Gurevych 2014; Lee, Schwan, and Meyer
2019). In this work, we investigate an easy-instances-first strategy that has been shown
to be a reasonable strategy in previous work (Tauchmann, Daxenberger, and Mieskes
2020); thereby sorting instances in ascending order according to their difficulty. Our C∗

is thus approximated by the ordered set S = {x1, . . . , xn|∀x1≤i≤n ∈ S : f (xi) ≤ f (xi+1)}
with f (·) being the difficulty estimator.
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Non-adaptive Estimators. We define non-adaptive estimators as heuristics or pre-trained
models that are not updated interactively. The respective annotation curriculum can
thus be pre-computed and does not impose any additional changes to the underlying
annotation platform. To estimate the annotation difficulty, non-adaptive estimators
define a scoring function fā : U → R. In this work, we evaluate non-adaptive estimators
that are commonly used in readability assessment to score the reading difficulty of a text
(Xia, Kochmar, and Briscoe 2016; Deutsch, Jasbi, and Shieber 2020). Although they are
not capable of capturing any task-specific difficulties, they have the advantage of being
applicable to a wide range of tasks with low effort for study conductors. The following
heuristics and pre-trained models are investigated to obtain difficulty estimations for
the easy-instances-first curriculum:

Sentence Length (sen) The number of tokens in a sentence averaged across the
whole document (i.e., the number of tokens for single sentence instances).

Flesch-Kincaid (FK) A readability score based on the number of words, sylla-
bles, and sentences (Kincaid et al. 1975).

Masked Language Modeling Loss (mlm) As shown in recent work, the losses
of a masked language model may be used to obtain an assessment of
text complexity (Felice and Buttery 2019). We use the implementation of
Salazar et al. (2020).

Adaptive Estimators. While simple heuristics or annotator-unaware models allow us to
pre-compute annotation curricula, they do not consider any user-specific aspect that
may influence the difficulty estimation (Lee, Meyer, and Gurevych 2020). Consequently,
the resulting curriculum may not provide the optimal ordering for a specific annotator.
To select the instance with the most appropriate difficulty for an annotator ai(·) at the
i-th iteration, we use a model θi(·) ∼ ai(·) that is updated with an increasing number of
annotated instances. We conjecture that using θ(·) to predict the relative difficulty—in
contrast to non-adaptive estimators that provide an absolute difficulty estimation—may
be more robust to task-specific influences as they are inherited in all instances annotated
by a(·). When training adaptive estimators, we use annotation time to approximate the
difficulty of a specific instance due to its availability in any annotation scenario. At itera-
tion i, we thus train the model θi : L → T ⊆ R

+ to predict the annotation times t ∈ T for
all labeled instances x̂ ∈ L. Similar to active learning, we now encounter a decreasing
number of unlabeled instances and an increasing number of labeled instances. The
resulting model is then used to estimate the annotation time for all unlabeled instances
x ∈ U . The resulting scoring function is now defined as fa : θi,U → R

+. Finally, we select
instance x∗ ∈ U with the minimal rank according to fa.

x∗ = arg min
fa

θi(x) (2)

Following our strategy S , this results in selecting instances for annotation that have the
lowest predicted annotation time. We specifically focus on regression models that can
be trained efficiently in-between annotation and work robustly in low-data scenarios.
We choose Ridge Regression, Gaussian Process Regression, and GBM Regression.
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4. Evaluation with Existing Datasets

To identify well-performing non-adaptive and adaptive estimators, we first evaluate AC
on existing datasets in an offline setting. We focus on datasets that provide annotation
time which is used to approximate the annotation difficulty during evaluation (to
address the lack of gold labels in actual annotation scenarios). Following Settles, Craven,
and Friedland (2008), we conjecture that instances with a higher difficulty require
more time to annotate. For comparison, we then compute the correlations between
different orderings generated according to our easy-instances-first strategy using text
difficulty heuristics (non-adaptive) and interactively trained models (adaptive) with
the annotation time (approximated annotation difficulty). We evaluate our estimators
in two setups:

Full We evaluate how well adaptive and non-adaptive estimators trained on
the whole training set correlate with the annotation time of the respective
test set (upper bound).

Adaptive We evaluate the performance of adaptive estimators in an interactive
learning scenario with simulated annotators and an increasing number of
training instances.

4.1 Datasets

Overall, we identify three NLP datasets that provide accurate annotation time for
individual instances along with their labels:

Muc7T Tomanek and Hahn (2009) extended the MUC7 corpus that consists of
annotated named entities in English Newswire articles. They reannotated
the data with two annotators A and B while measuring their annotation
time per sentence.

SigIE is a collection of email signatures that was tagged by Settles, Craven, and
Friedland (2008) with twelve named entity types typical for email signatures
such as phone number, name, and job title.

SPEC The same authors (Settles, Craven, and Friedland 2008) further anno-
tated sentences from 100 English PubMed abstracts according to their
used language (speculative or definite) with three annotators.

Table 1
Annotation task (ST for sequence tagging, Cl for classification) and the number of instances per
dataset and split. µ|D| denotes the average instance length in characters and µt the average
annotation time. σ|D| and σt denotes the standard deviation, respectively. Across all datasets,
annotation time is reported for annotating the whole instance (i.e., not for individual entities).

Name Task |D| |Dtrain| |Ddev| |Dtest| µ|D| σ|D| µt σt

Muc7T A ST 3,113 2,179 467 467 133.7 70.8 5.4 3.9
Muc7T B ST 3,113 2,179 467 467 133.7 70.8 5.2 4.2
SigIE ST 251 200 – 51 226.4 114.8 27.0 14.7
SPEC Cl 850 680 – 170 160.4 64.2 22.7 12.4
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Table 1 provides an overview of the used datasets. It can be seen that Muc7T is the
largest corpus (|D|); however, it is also the one that consists of the shortest instances
on average (µ|D|). Furthermore, Muc7T also has the lowest annotation times (µt) and
a low standard deviation (σt). Comparing the number of entities per instance between
Muc7T (news articles) and SigIE (email signatures) shows their differences with respect
to their domains with an average number of 1.3 entities (σ = 1.4) in Muc7T and 5.3
entities (σ = 3.0) in SigIE. Moreover, we find that the SigIE corpus has a higher ratio of
entity tokens (40.5%) than Muc7T (8.4%), which may explain the long annotation time.
Interestingly, the binary sentence classification task SPEC (“speculative” or “definite”)
also displays a substantially longer annotation time compared to Muc7T (on average,
more than four times), which may also indicate a higher task difficulty or less profi-
ciency of the involved annotators.

Data splits. For Muc7T, we focus on the annotations of the first annotator Muc7T A; using
Muc7T B yields similar results. For SPEC, we use ALL.DAT for our experiments. None
of the aforementioned datasets provide default splits. We hence create 80-20 train-test
splits of SPEC and SigIE for our experiments. To identify the best hyperparameters of
our adaptive estimators, we split the largest corpus (Muc7T) into 70-15-15 train-dev-test
splits. All splits are published along with the code and data.

4.2 Experimental Setup

Our goal is to evaluate how well the ordering generated by an estimator correlates with
the annotation time provided in the respective datasets.

Evaluation Metrics. We evaluate all estimators by measuring Spearman’s ρ between the
true and generated orderings of all instances in the test data. We obtain the generated
ordering by sorting instances according to the predicted annotation time. For our adap-
tive estimators that explicitly learn to predict the annotation time, we further report the
mean absolute error (MAE), the rooted mean squared error (RMSE), and the coefficient
of determination (R2).

Models and Features. For an effective deployment in interactive annotation scenarios,
we require models that are capable of fast training and inference. We additionally
consider the amount of computational resources that a model requires as these pose
further limitations for the underlying annotation platform. Consequently, fine-tuning
large language models such as BERT is infeasible as they require long training times
and a large amount of computational resources.4 Instead, we utilize a combination
of neural embeddings obtained from a large pre-trained language model combined
with an efficient statistical model. As our goal is to predict the total time an annotator
requires to annotate an instance (i.e., a sentence or a paragraph), we further require
a means to aggregate token- or subtoken-level embeddings that are used in recent
language models (Sennrich, Haddow, and Birch 2016). One such solution is S-BERT
(Reimers and Gurevych 2019), which has shown high performance across various tasks.
Moreover, Reimers and Gurevych (2019) provide S-BERT for a variety of BERT-based
models, allowing future study conductors to easily extend our setup to other languages

4 Note that using such models would require an annotation platform to either deploy its own GPU or buy
additional computational resources from external providers.
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Table 2
Hyperparameter tuning for adaptive estimators. We train on Muc7T A and evaluate on its
development set. t denotes the total time for training and prediction on the whole dataset. Best
parameters are marked by * and the best scores are highlighted in bold. We report the mean
absolute error (MAE), the rooted mean squared error (RMSE), Spearman’s ρ, and the coefficient
of determination (R2).

Name Features MAE RMSE R2 ρ t

RR(α = 0.5 ) BOW 1.85 2.96 0.47 0.73 0.42
RR(α = 0.5 ) S-BERT 1.92 2.84 0.51 0.79 0.04
RR(α = 1 ) BOW 1.80 2.91 0.49 0.74 0.41
RR(α = 1 ) * S-BERT 1.89 2.82 0.52 0.79 0.04
GP(kernel=Dot + White) BOW 1.82 2.93 0.48 0.74 257.67
GP(kernel=Dot + White) * S-BERT 1.80 2.76 0.54 0.81 14.35
GP(kernel=RBF(1.0) BOW 5.33 6.71 −1.73 −0.12 300.38
GP(kernel=RBF(1.0) S-BERT 5.33 6.71 −1.73 −0.12 32.66
GBM BOW 2.07 3.26 0.36 0.68 0.25
GBM * S-BERT 1.83 2.83 0.52 0.79 2.98

and specific tasks. For computational efficiency, we use the paraphrase-distilroberta-base-
v1 model, which utilizes a smaller, distilled RoBERTa model (Sanh et al. 2019). As a
comparison to S-BERT, we further evaluate bag-of-words (BOW) features for all three
models (cf. Table 2). For the Ridge Regression (RR), Gaussian Process Regression (GP),
and GBM Regression (GBM) models, we use the implementations of Pedregosa et al.
(2011) and Ke et al. (2017).

Hyperparameter Tuning. We use the full experimental setup to identify the best perform-
ing parameters for our experiments using simulated annotators. We evaluate different
values for regularization strength (α) for RR and we evaluate different kernel functions
for GP. To ensure that the required training of our adaptive estimators does not neg-
atively affect the annotations due to increased loading times and can be realistically
performed during annotation, we further measure the overall training time (in seconds).
We use the development split of Muc7T A to tune our hyperparameters for all models
used across all datasets. Considering the small number of training instances in both
datasets, we do not tune SigIE- or SPEC-specific hyperparameters. All experiments were
conducted using an AMD Ryzen 5 3600. Table 2 shows the results of our hyperparameter
tuning experiments. Overall, we find that S-BERT consistently outperforms BOW in
terms of Spearman’s ρ. As the result of the hyperparameter tuning, we use S-BERT
embeddings as input features and evaluate GP with a combined dot- and white-noise
kernel and RR with α = 1 in our adaptive experiments.

4.3 Experimental Results

We first report our experimental results for the full and adaptive setup. For conducting
our experiments with simulated annotators, we use the best performing models from
our hyperparameter tuning of the respective models on the Muc7T dataset and report
the results of the best performing models.
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Table 3
Performance of the best performing adaptive estimators on the four datasets (Muc7T provides
annotation times from two different annotators A and B) trained on the respective train and
evaluated on their test splits. We report the mean absolute error (MAE), the rooted mean
squared error (RMSE), the coefficient of determination (R2), and Spearman’s ρ.

Name Model MAE RMSE R2 ρ t

RR 1.87 2.68 0.56 0.80 0.15
Muc7T A GP 1.79 2.66 0.57 0.82 7.23

GBM 1.95 2.97 0.47 0.75 3.40
RR 2.19 3.42 0.44 0.79 0.02

Muc7T B GP 2.08 3.37 0.46 0.81 8.85
LGBM 2.13 3.50 0.41 0.75 2.90
RR 7.96 9.50 0.46 0.73 0.00

SigIE GP 7.62 9.60 0.44 0.70 0.08
GBM 8.22 10.84 0.29 0.55 0.14
RR 9.63 13.86 −0.14 0.50 0.03

SPEC GP 7.63 12.07 0.14 0.51 0.73
GBM 8.05 12.50 0.07 0.35 1.70

Full Results. Table 4 shows the results for the heuristic estimators and regression models
evaluated on the test split of each dataset. We find that heuristics that mainly consider
length-based features (sen and FK) are not suited for the SigIE data that consist of email
signatures. One reason for this may be the different text type of email signatures in
comparison to Newswire articles and PubMed abstracts. More specifically, analyzing
the ratio between non-alphabetical or numeric characters (excluding @ and . ) and other
characters shows that SigIE contains a substantial number of characters that are used
for visually enhancing the signature (some are even used in text art). Overall, 29.9% of
the characters in SigIE are non-alphabetical or numeric, in contrast to 16.7% in SPEC
and 19.9% in Muc7T.5 Considering that only 1.7% of them appear within named entities
in SigIE (such as + in phone numbers) most of them rather introduce noise especially
for length-based features such as sen and FK. On Muc7T and SPEC, all three heuristics
produce an ordering that correlates with annotation time to some extent. On average,
mlm is the best performing and most robust heuristic across all three datasets. For our
adaptive estimators, RR and GP both similarly outperform GBM in terms of Spearman’s
ρ. However, we can find that GP consistently outperforms RR and GBM in terms of
MAE and RMSE, as well as in terms of R2 on Muc7T and SPEC. We report the extensive
results in Table 3.

Adaptive Results. To evaluate the performance of adaptive estimators with increasing
numbers of annotated instances, we perform experiments with simulated annotators.
At each iteration, we use a model trained on the already-annotated data to select the
instance with the lowest predicted annotation time (randomly in the first iteration).
The simulated annotator then provides the respective gold annotation time, which is
then added to the training set. Finally, the model is re-trained and evaluated on the
test data. These steps are repeated until all instances are annotated. Figure 2 shows the
Spearman’s ρ performance of all three models after each iteration across all datasets. We

5 The Twitter data we introduce in Section 5 consist of 20.7% non-alphabetical or numeric characters.
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Figure 2
Experimental results of our adaptive estimators with simulated annotators. Horizontal
lines show the performance of the respective non-adaptive estimators.
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can observe that all models display a rather steep learning curve after training on only a
few examples, despite suffering from a cold start in early iterations. Moreover, we find
that GP and RR are capable of outperforming mlm consistently after 100–500 instances.
GBM shows the weakest performance and is consistently outperformed by the other
models for Muc7T and SPEC while being rather noisy. Although we find that non-
adaptive estimators can suffice, especially in early iterations, our experiments also show
the potential of adaptive estimators with an increasing number of annotations. This
indicates that hybrid approaches that combine non-adaptive and adaptive estimators
could be an interesting direction for future work. For instance, one may consider using
non-adaptive estimators in early stages until a sufficient number of annotated instances
are available to train more reliable adaptive estimators. Another approach could be to
combine the rankings of different estimators, for instance, via Borda count (Szpiro 2010)
or learn a weighting of the individual estimators.

5. Human Evaluation

To evaluate the effectiveness of our easy-instances-first AC with real annotators, we
conduct a user study on a classification task for English tweets and analyze the resulting
annotations in terms of annotation time and annotation quality. We design the study to not
require domain-expertise and conduct it with citizen science volunteers.6

Hypothesis. We investigate the following hypothesis: Annotators who are presented
with easy instances first and then with instances that gradually increase in terms of
annotation difficulty require less annotation time or have improved annotation quality
compared with annotators who receive the same instances in a random order.

5.1 Study Design

A careful task and data selection are essential to evaluate AC, as our goal is to measure
differences that solely result from a different ordering of annotated instances. We also
require instances with varying difficulty, further restricting our study design in terms
of task and data.

Data Source. To avoid compromising the study results due to noisy data, we use an
existing corpus that has been carefully curated and provides gold labels for evaluat-
ing the annotation quality. To involve non-expert annotators, we further require data
that do not target narrow domains or require expert knowledge. As such, tasks such
as identifying part-of-speech tags would substantially reduce the number of possible
study participants due to the required linguistic knowledge. We identify COVIDLies
(Hossain et al. 2020) as a suitable corpus due to the current relevance and the high
media-coverage of the Covid-19 pandemic; ensuring a sufficient number of participants
who are well-versed with the topic. The corpus consists of English tweets that have
been annotated by medical experts with one out of 86 common misconceptions about
the Covid-19 pandemic. Each instance consists of a tweet-misconception pair and if the
tweet “agrees,” “disagrees,” or has “no stance” toward the presented misconception.

6 We provide a statement regarding the conduct of ethical research after the conclusion.
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Annotation Task. Using the COVIDLies corpus as our basis, we define a similar task that
is better suited for lay people and that allows us to explicitly control the annotation dif-
ficulty. We restrict the task to identifying the most appropriate misconception out of six
possible choices. Furthermore, we only include tweets that agree with a misconception
(i.e., we do not ask for a stance annotation) to avoid interdependencies between stance
and misconception annotations that may introduce additional noise to the results and
put an unnecessary burden on the participants.7 To exclude further sources of noise
for our study, we manually check all tweets and remove all duplicates (possibly due to
retweets) and hyperlinks to increase readability and avoid distractions. We also remove
all tweets that were malformed (i.e., ungrammatical or containing several line breaks) or
linked to misconceptions with less than five semantically similar candidates that could
serve as distractors.8 For the final selection, we choose the 60 shortest tweets.

Distractor Selection. The goal of the study is to observe effects that solely result from
the ordering of instances with varying annotation difficulty. Hence, we need to ensure
that annotated instances correspond to specific difficulties and are balanced equally for
each participant. To control the annotation difficulty, we construct five possible sets of
misconceptions for each instance that are presented to the annotator; each correspond-
ing to a respective difficulty-level ranging from “very easy” to “very difficult.” Each set
consists of the expert-selected misconception and five additional misconceptions that
serve as distractors which are commonly used in cloze-tests (Taylor 1953). Following
existing research on automated cloze-test generation, we focus on semantic similarity
to generate distractor subsets (Agarwal and Mannem 2011; Mostow and Jang 2012;
Yeung, Lee, and Tsou 2019) and manually create one set of five semantically dissimilar
and one set of five semantically similar misconceptions for each misconception.9 As
semantically dissimilar distractors are much easier to identify than semantically similar
ones (Mostow and Jang 2012), we can manipulate annotation difficulty by adapting the
number of semantically similar distractors; that is, starting from the set of dissimilar
(very easy) misconceptions, we can gradually increase the difficulty by replacing a
dissimilar misconception with a similar one until only the set of similar (very difficult)
misconceptions remains. Figure 3 shows a tweet from our user study with its respective
easy and difficult misconception sets. As can be seen, the difficult misconception set
consists of two more semantically similar misconceptions. Especially notable is the
third misconception, which states the opposite of the tweet’s misconception but with
a similar wording.

5.2 Study Setup

We set up our evaluation study as a self-hosted Web application that is only accessible
during the study (one week). Participants can anonymously participate with a self-
chosen, unique study key that allows them to request the deletion of their provided
data at a later point. Upon registration, they are informed about the data presented and

7 We experimented with including stance annotations (positive, negative, or neutral) during early stages of
our study setup but removed them due to a substantially increased overall annotation difficulty.

8 The sets of similar misconceptions were manually created as explained in the next paragraph.
9 Initially, we also investigated the use of recent automated approaches to create those subsets (Gao,

Gimpel, and Jensson 2020). However, the resulting subsets rather targeted syntactic instead of semantic
similarity. One reason for this may be that approaches to generate cloze-tests consider only single-token
gaps whereas the misconceptions consist of several words that form a descriptive statement.

178



Lee, Klie, Gurevych Annotation Curricula

(a) Easy Example

(b) Difficult Example

Figure 3
Example tweet from the user study with an easy misconception set (used in the study) and a
difficult misconception set.

collected in the study, its further use, and the purpose of the study. Before collecting any
data, participants are explicitly asked for their informed consent. Overall, we recruited
40 volunteers who provided their informed consent to participate in our study and
annotated 60 instances each.

Participants. Our volunteers come from a variety of university majors, native languages,
English proficiency, and annotation experience backgrounds. All participants provided
a rather high self-assessment of English proficiency, with the lowest proficiency being
intermediate (B1) provided by only one participant. Seventy percent of the participants
stated an English proficiency-level of advanced (C1) or proficient (C2). Most partici-
pants have a higher level of education and are university graduates with either a Bach-
elor’s or Master’s degree; however, none of them have a medical background, which
may have given them an advantage during the annotation study. Upon completing the
annotations, all participants received a questionnaire including general questions about
their previous annotation experience and perceived difficulty of the task (cf. Section 5.5).

179



Computational Linguistics Volume 48, Number 2

Table 4
Spearman’s ρ between test data and the orderings generated by the evaluated heuristics and
adaptive models.

Dataset sen FK mlm RR GP GBM

Muc7T A 0.60 0.37 0.57 0.80 0.82 0.75
Muc7T B 0.60 0.38 0.55 0.79 0.81 0.75
SigIE 0.08 0.01 0.59 0.73 0.70 0.55
SPEC 0.63 0.38 0.32 0.50 0.51 0.35

Average 0.48 0.29 0.52 0.71 0.71 0.60

Ordering Strategy. All participants are randomly assigned to one out of four groups
(ten participants per group), each corresponding to a strategy that leads to a different
ordering of annotated instances. We investigate the following strategies:

Random is the control group that consists of randomly ordered instances.
ACmlm uses the masked language modeling loss. It is a pre-computed, heuristic

estimator and had (on average) the highest and most stable correlation to
annotation time in our experiments with simulated annotators.

ACGP uses a Gaussian Process that showed the highest performance on the
sentence-labeling task (SPEC) in our simulated annotator experiments (cf.
Table 4). It is trained interactively to predict the annotation time. We train a
personalized model for each annotator using S-BERT embeddings of the pre-
sented tweet.

ACgold consists of instances explicitly ordered from very easy to very difficult
using the pre-defined distractor sets. Although such annotation difficulties
are unavailable in real-world annotation studies, it provides an upper-
bound for the study.

Control Instances. To provide a fair comparison between different groups, we further
require participants to annotate instances that quantify the difference with respect to
prior knowledge and annotation proficiency. For this, we select the first ten instances
and present them in the same order for all annotators. To avoid interdependency effects
between the control instances and the instances used to evaluate AC{∗}, we selected
instances that have disjoint sets of misconceptions.

Balancing Annotation Difficulty. We generate instances of different annotation difficulties
using the sets of semantically similar and dissimilar misconceptions that serve as our
distractors. We randomly assign an equal number of tweet-misconception pairs to each
difficulty-level ranging from very easy to very difficult. The resulting 50 instances for
our final study span similar ranges in terms of length, as shown in Table 5, which is
crucial to minimize the influence of reading time on our results. Overall, each of the
five difficulty-levels consists of ten (two for the control instances) unique tweets that
are annotated by all participants in different order.

Study Process. The final study consists of 50 instances that are ordered corresponding
to the group a participant has been assigned to. Each instance consists of a tweet and
six possible misconceptions (one expert-annotated and five distractors) from which the
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Table 5
Average number of characters per tweet (T) and tweet and misconception (T & MC) across all
difficulty-levels of annotated items.

# Chars very easy easy medium difficult very difficult

T 219 211 183 217 194
T & MC 638 603 599 586 593

Table 6
Mean, standard deviation, and 25%, 50%, and 75% percentiles of annotation (in seconds). Σt

denotes the total annotation time an annotator of the respective group requires to finish the
study (on average).

Σt µt σt 25% 50% 75%

Random 1,852.9 27.3 27.2 12.9 18.2 29.5
ACmlm 1,273.4 23.2 19.4 11.7 18.6 27.4
ACGP 1,324.3 26.4 19.0 14.9 20.7 30.8
ACgold 1,059.6 21.2 12.8 12.6 18.0 26.5

participants are asked to select the most appropriate one. The lists of the six presented
misconceptions are ordered randomly to prevent that participants learn to annotate
a specific position. Finally, we ask each participant to answer a questionnaire that
measures the perceived difficulty of the annotated instances.

5.3 General Results

In total, each of the 40 participants has provided 60 annotations, resulting in 400 an-
notations for the ten control instances (100 per group) and 2,000 annotations for the 50
final study instances (500 per group). In terms of annotation difficulty, each of the five
difficulty-levels consists of 80 annotations for the control instances and 400 annotations
for the final study. To assess the validity of AC{∗}, we require two criteria to be fulfilled:

H1 The participant groups do not significantly differ in terms of annotation
time or annotation quality for the control instances.

H2 AC{∗} shows a significant difference in annotation time or annotation
quality compared to Random or each other.

Outliers. Across all 2,400 annotations, we identify only two cases where participants
required more than ten minutes for annotation and are apparent outliers. To avoid
removing annotations for evaluation, we compute the mean and standard deviation
of the annotation time across all annotations (excluding the two outliers) and set the
maximum value to tmax = µ+ 5σ = 156.39 seconds. This results in ten annotations that
are set to tmax for Random, three for ACmlm, one for ACGP, and zero for ACgold. Note
that this mainly favors the random control group that serves as our baseline.

Annotation Time. Table 6 shows the results of the final study in terms of annotation
time per group. Overall, annotators of ACgold required on average the least amount of
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Table 7
Mean, standard deviation, and 25%, 50%, and 75% percentiles of annotation quality (in percent
accuracy).

µacc σacc 25% 50% 75%

Random 84.7 4.22 82.0 86.0 88.0
ACmlm 83.6 5.32 80.0 84.0 86.0
ACGP 83.6 2.95 82.0 86.0 86.0
ACgold 85.6 3.01 84.0 84.0 88.0

time per instance and had the lowest standard deviation. We also observe a substantial
decrease in the maximum annotation time, as shown in the 75th percentile for ACgold.
Conducting a Kruskal–Wallis test (Kruskal and Wallis 1952) on the control instances
across all participant groups results in a p-value of p = 0.200 > 0.05.10 Hence, we
cannot reject the null-hypothesis for the control instances, and conclude that all groups
initially do not show statistically significant differences in terms of annotation time for
the control instances, thereby satisfying H1. Next, we conduct the same test on the
evaluation instances and observe a statistically significant p-value of p = 4.53−6 < 0.05.
For a more specific comparison, we further conduct pairwise Welch’s t-test (Welch 1951)
for each strategy with a Bonferroni-corrected p-value of p = 0.05

6 = 0.0083 to account
for multiple comparisons (Bonferroni 1936). Overall, ACgold performs best, satisfying

H2 with statistically significant improvements over Random (p = 7.28−6) and ACGP

(p = 3.79−7). Although the difference to ACmlm is substantial, it is not statistically sig-
nificant (p = 0.0502). The best performing estimator is ACmlm, which performs signifi-
cantly better than Random (p = 0.0069) and substantially better than ACGP (p = 0.0084).
Between ACGP and Random, we cannot observe any statistically significant differences
(p = 0.5694).

Annotation Quality. We evaluate annotation quality by computing the accuracy for each
participant, that is, the percentage of misconceptions that they were able to correctly
identify out of the six presented ones. Table 7 shows our results in terms of accuracy.
Although ACgold has the highest mean accuracy, the most differences lie within the
range of 2% accuracy, which is equivalent to only a single wrongly annotated instance.
Conducting Kruskal–Wallis tests for the control instances shows that the difference in
terms of accuracy is not statistically significant (p = 0.881), satisfying H1. However, the
same test shows no statistically significant difference for the final study (p = 0.723). One
reason for this may be our decision to conduct the study with voluntary participants
and their higher intrinsic motivation to focus on annotation quality over annotation
time (Chau et al. 2020). In contrast to crowdsourcing scenarios where annotators are
mainly motivated by monetary gain—trying to reduce the amount of time they spend
on their annotation at the cost of quality—voluntary annotators are more motivated to
invest additional time to provide correct annotations; even more so in a setup with a
low number of 60 instances.

10 In general, ANOVA (analysis of variance) is a more expressive test that does not require pairwise
comparisons that are necessary for the less expressive Kruskal–Wallis test. However, we cannot apply
ANOVA in our case due to violated conditions on normality and homoscedasticity of the collected data.
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Accuracy per annotator grouped by difficulty
level.

Figure 6
The p-values for time (in seconds) and accuracy between different difficulty levels.

Difficulty Evaluation. To validate our generation approach with distractors, we further
evaluate all annotation instances in terms of their annotation difficulty. As Figures 4
and 5 show, one can observe non-negligible differences in terms of annotation time as
well as accuracy across instances of different difficulties. Conducting pairwise Welch’s
t-tests with a Bonferroni corrected p-value of p = 0.05

10 = 0.005 shows that in terms of
accuracy, only very easy and easy instances do not express a statistically significant
difference (p = 0.25), showing that participants had more trouble in identifying the
correct misconception for difficult instances.11 For all other instances, we observe p-
values smaller than 1e−6, as shown in Figure 6. In terms of annotation time, the dif-
ferences are not as apparent as in annotation accuracy. We find statistically significant
differences in only four out of ten cases showing that the annotation difficulty does not
necessarily impact the annotation time. Overall, we still observe that instances express

11 Overall, we require n(n−1)
2 pairwise comparisons, resulting in 10 comparisons with n = 5.
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significant differences in terms of either annotation time or quality (or both), showing
that our approach using distractor sets to control the annotation difficulty worked well.

5.4 Error Analysis

Model Performance. While ACmlm and ACgold both outperform the random baseline
significantly, ACGP does not. To analyze how well the used GP model performs for indi-
vidual annotators, we perform leave-one-user-out cross validation experiments across
all 40 participants. Table 8 shows the MAE, RMSE, the coefficient of determination (R2),
and Spearman’s ρ of our experiments. Overall, we find a low correlation between the
predicted and true annotation time and high standard deviations across both errors.
Further analyzing the performance of ACGP for interactively predicting the annotation
time (cf. Figure 7) shows that the model adapts rather slowly to additional data. As
can be observed, the low performance of the model (MAE between 10 and 20 seconds)
results in a high variation in the annotation time of the selected instances between
subsequent iterations; further experiments strongly suggest this is due to the model
suffering from a cold start and the small amount of available training data as also
discussed below.

Correlation with ACgold. A second shortcoming of ACGP becomes apparent when ob-
serving the difficulty of the sampled instances across all iterations, shown in Figure 8.
We observe a low Spearman’s ρ correlation to ACgold of 0.005, in contrast to ACmlm

(ρ = 0.22). Only Random has a lower correlation, of ρ = −0.15. This shows that model
adaptivity plays an important role, especially in low-data scenarios such as in early

Table 8
Leave-one-out cross validation results on annotation times, grouped by user and averaged.

µt σt 25% 50% 75%

MAE 12.4 6.1 8.5 10.4 14.3
RMSE 17.2 9.1 11.1 13.9 20.3
R2 0.0 0.0 −0.1 0.0 0.0
ρ −0.1 0.2 −0.3 −0.1 0.1
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Table 9
Spearman’s ρ correlation analysis for three potential confounding factors.

CEFR Annotator Conductor
ρ p-value ρ p-value ρ p-value

Time −0.307 0.054 −0.134 0.409 0.085 0.600
Accuracy 0.319 0.044 −0.060 0.711 −0.211 0.191

stages during annotation studies. We plan to tackle this issue in future work using
more sophisticated models and combined approaches that initially utilize heuristics and
switch to interactively trained models with the availability of sufficient training data.

5.5 Participant Questionnaire

After completing the annotation study, each participant answered a questionnaire
quantifying their language proficiency, previous annotation experience, and perceived
difficulty of the annotation task.

Language Proficiency. In addition to their CEFR language proficiency (Council of Europe.
2001), we further asked participants to provide optional information about their first
language and the number of years they have been actively speaking English. On av-
erage, our participants have been actively speaking English for more than 10 years.
Overall, they stated a language proficiency of: B1 (1), B2 (11), C1 (17), and C2 (11).
Most of our participants stated German as their first language (30). Other first languages
include Vietnamese (4), Chinese (3), Russian (1), and Czech (1).12

Annotation Experience. We further collected data from our participants regarding their
previous experience as study participants as well as study conductors. In general, about
50% of our participants (18) had not participated in annotation studies before. Nineteen
had participated in a few (one to three) studies, and only three in more than three
studies. Even more participants had not previously conducted a study (24) or only a few
(12). In total, four participants stated that they had set up more than three annotation
studies.

Confounding Factors. We identify the language proficiency and previous experience with
annotation studies as potential confounding factors (VanderWeele and Shpitser 2013).
Confounding factors are variables that are difficult to control for, but have an influence
on the whole study and can lead to a misinterpretation of the results. Especially in
studies that include a randomized setup such as in ours—due to the random assignment
of our participants into the four groups—it is crucial to investigate the influence of
potential confounding factors. In our analysis, we focus on variables for which all
participants provided an answer, namely, their CEFR level and their experience as
participants in and conductors of annotation studies (some of our participants were
researchers). Table 9 shows the results of a Spearman’s ρ correlation analysis for all
three variables against annotation time and accuracy. As we can see, the participants’

12 One participant decided not to disclose any additional information except English proficiency.
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Accumulated perceived difficulty answers across all groups.

experiences as annotators (Annotator) or study conductors (Conductor) only yields
a low, non-significant correlation with time and accuracy and, consequently, can be
excluded as confounding factors. The influence of their language proficiency (CEFR) is
more interesting, as it shows a small negative correlation for annotation time and a small
positive correlation for annotation accuracy with p-values around 0.05, meaning that
participants with a lower CEFR level required less time, but also had a lower accuracy.
To investigate the influence of a participant’s language proficiency on our results, we
conduct a Kruskal–Wallis test for the distribution of different language proficiency
levels across the four groups and find that they do not differ significantly with a p-value
of p = 0.961. Nonetheless, we find that the CEFR level is an important confounding
factor that needs to be considered in future study setups.

Perceived Difficulty. To quantify if there exists any difference between the actual difficulty
and the perceived difficulty, we further asked our participants the following questions:

PQ1: How difficult did you find the overall annotation task?

PQ2: Did you notice any differences in difficulty between individual tweets?

PQ3: Would you have preferred a different ordering of the items?

Figure 9 shows the distribution of answers (from very easy to very difficult) to
PQ1 across all four groups. Interestingly, whereas participants of the ACmlm group did
require less time during their annotation compared with ACGP, more people rated the
study as of medium difficulty than participants of ACGP. This may be an indicator
that ACGP may—although not measurable in terms of annotation time—alleviate the
perceived difficulty for participants, hence, still reducing the cognitive burden. We will
investigate this in further studies that also include an item specific difficulty annotation,
that is, by explicitly asking annotators for the perceived difficulty.13 Overall, only four
out of 40 participants (two for ACGP and one for ACmlm and ACgold each) did state to not
have noticed any differences in terms of difficulty between different instances; showing
that the selected distractors resulted in instances of noticeably different annotation

13 We excluded this additional annotation in the study as one pass already required ∼ 45–60 minutes.

186



Lee, Klie, Gurevych Annotation Curricula

difficulty (PQ2). For PQ3, we find that 33 participants did not wish for a different
ordering of instances (but were still allowed to provide suggestions), four would have
preferred an “easy-first,” one a “difficult-first,” and two an entirely different ordering
strategy. From the 14 free-text answers and feedback via other channels, we identify
three general suggestions that may be interesting for future research:

S1: Grouping by word rarity.

S2: Grouping instances by token overlap.

S3: Grouping instances by topic (tweet or alternatively, misconception)
similarity.

Further analyzing the free-text answers together with the pre-defined answers (“no,”
“easy-first,” “difficult-first,” and “other”) shows that the participants disagree on the
preferred ordering strategy. For instance, the participants that suggested S3, disagreed
if instances should be grouped by topic similarity to reduce the number of context
switches or be as diverse as possible to provide some variety during annotation. An-
other five participants (two from Random and one from the other groups each) even
explicitly supported a random ordering in the free-text answer. The disagreement upon
the ordering strategy shows the importance of interactively trained estimators that are
capable of providing personalized annotation curricula.

6. Limitations and Future Work

We evaluated AC with an easy-instances-first strategy in simulations as well as in a
highly controlled setup using a finite, pre-annotated data set and task-agnostic esti-
mators to minimize possible noise factors. To demonstrate the viability of AC with a
sufficient number of voluntary annotators, we further chose a dataset that covers a
widely discussed topic and manually controlled the annotation difficulty to make it
accessible for non-experts. To evaluate AC with more generalizable results in a real-
world scenario, we discuss existing limitations that should be considered beforehand
that can also serve as promising research directions for future work.

Difficulty Estimators. Due to novelty of the proposed approach and the lack of well-
established baselines, we focused on task-agnostic annotation difficulty estimators such
as reading difficulty and annotation time, which can easily be applied to a wide range of
tasks. Although our study results show that they work to some extent, our evaluation
with existing datasets also shows that especially non-adaptive estimators, which ap-
proximate the absolute task-difficulty, are sensitive to the data domain and annotation
task (cf. the low performance of length-based estimators on the SigIE data in Section 4).
Such issues could be addressed by implementing estimators that are more task-specific.
For named entity annotations, a general improvement may be achieved by considering
the number of nouns within a sentence that can be obtained from a pre-trained part-of-
speech tagger. One may even consider domain-specific word frequency lists to provide
a difficulty estimate for entities. For instance, among the annotated named entities in
Muc7T, “U.S.” (occurs 72 times) may be easier to annotate than “Morningstar” (occurs
only once); simply based on a word frequency analysis. Other, more sophisticated
approaches from educational research such as item response theory (Baker 2001) and
scaffolding (Jackson et al. 2020) may also lead to better task-agnostic estimators. Such
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approaches and combinations of task-agnostic with task-specific estimators remain to
be investigated in future work.

Annotation Strategies. In this work, we focused on developing and evaluating a strategy
for our non-expert annotation scenario. Although it proved to be effective in our user
study, we also find that our annotators disagree in their preferences with respect to
the ordering of instances—which indicates that investigating annotator-specific strategies
could be a promising line for future work. Another shortcoming of the evaluated
strategy is that it does not consider an annotator’s boredom or frustration (Vygotsky
1978). Especially when considering larger annotation studies, motivation may become
an increasingly important factor with non-expert annotators as they further progress
in a task and become more proficient. Such a strategy may also be better suited for
annotation scenarios that involve domain experts to retain a high motivation by avoid-
ing boredom—for instance, by presenting them with subsequent instances of varying
difficulty or different topics. Domain experts who do not require a task-specific training
may also benefit from strategies that focus on familiarizing them with the data domain
early on to provide them with a good idea of what kind of instances they can expect
throughout their annotations. To implement strategies that consider annotator-specific
factors such as motivation and perceived difficulty, adaptive estimators may have an
advantage over non-adaptive ones as they can incorporate an annotator’s preference on
the fly. We will investigate more sophisticated adaptive estimators (also coupled with
non-adaptive ones) and strategies in future work and also plan to evaluate AC with
domain expert annotators.

Larger Datasets. While using a finite set of annotated instances was necessary in our
user study to ensure a proper comparability, AC is not limited to annotation scenarios
with finite sets. However, deploying AC in scenarios that involve a large number of
unlabeled instances requires additional consideration besides an annotator’s motiva-
tion. In scenarios that only annotate a subset of the unlabeled data (similar to pool-
based active learning), an easy-instances-first strategy may lead to a dataset that is
imbalanced toward instances that are easy to annotate. This can hurt data diversity and
consequently result in models that do not generalize well to more difficult instances. To
create more diverse datasets, one may consider introducing a stopping criterion (e.g., a
fixed threshold) for the annotator training phase and moving on to a different sampling
strategy from active learning. Other, more sophisticated approaches would be to utilize
adaptive estimators with a pacing function (Kumar, Packer, and Koller 2010) or sam-
pling objectives that jointly consider annotator training and data diversity (Lee, Meyer,
and Gurevych 2020). Such approaches are capable of monitoring the study progress and
can react accordingly, which may result in more diverse datasets. However, they also
face additional limitations in terms of the computational overhead that may require
researchers to consider an asynchronous model training in their setup.

Implementation Overhead. Finally, to apply AC in real-world annotation studies, one
needs to consider the additional effort for study conductors to implement it. Whereas
the task-agnostic estimators we provide can be integrated with minimal effort, devel-
oping task- and annotator-specific estimators may not be a trivial task and requires a
profound knowledge about the task, data, and annotators. Another open question is
how well the time saving of approximately 8–13 minutes per annotator in our study
translates to large-scale annotation studies. If so, then AC could also be helpful in
annotation studies with domain experts by resulting in more annotated instances within
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a fixed amount of time—however, if not, this would simply lead to a trade-off between
the time investment of the study conductor and annotators. Overall, we find that de-
veloping and evaluating further strategies and estimators to provide study conductors
with a wide range of choices to consider for their annotation study will be an interesting
task for the research community.

7. Conclusion

With annotation curricula, we have introduced a novel approach for implicitly training
annotators. We provided a formalization for an easy-instances-first strategy that orders
instances from easy to difficult by approximating the annotation difficulty with task-
agnostic heuristics and annotation time. In our experiments with three English datasets,
we identified well-performing heuristics and interactively trained models and find that
the data domain and the annotation task can play an important role when creating an
annotation curriculum. Finally, we evaluate the best performing heuristic and adaptive
model in a user study with 40 voluntary participants who classified English tweets
about the Covid-19 pandemic and show that leveraging AC can lead to a significant
reduction in annotation time while preserving annotation quality.

With respect to our initial research questions (cf. Section 1), our results show that
the order in which instances are annotated can have a statistically significant impact in
terms of annotation time (RQ1) and that recent language models can provide a strong
baseline to pre-compute a well-performing ordering (RQ2). We further find that our
interactively trained regression models lack adaptivity (RQ3), as they perform well
on existing datasets with hundreds or more training instances, but fall behind non-
adaptive estimators in the user study.

We conclude that annotation curricula provide a promising way for more efficient
data acquisition in various annotation scenarios—but that they also need further in-
vestigation with respect to task-specific estimators for annotation difficulty, annotator-
specific preferences, and applicability on larger datasets. Our analysis of existing work
shows that, unfortunately, the annotation ordering as well as annotation times are
seldomly reported. In the face of the increasing use of AI models in high-stake do-
mains (Sambasivan et al. 2021) and the potentially harmful impact of biased data
(Papakyriakopoulos et al. 2020), we ask dataset creators to consider including individ-
ual annotation times and orderings along with a datasheet (Gebru et al. 2021) when
publishing their dataset. To facilitate future research, we share all code and data and
provide a ready-to-use and extensible implementation of AC in the INCEpTION anno-
tation platform.14
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Édouard Duchesnay. 2011. Scikit-learn:
Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

Peters, Matthew E., Mark Neumann, Mohit
Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018.
Deep contextualized word representations.
In Proceedings of the 2018 Conference of the

North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers),
pages 2227–2237.

Peters, Matthew E., Sebastian Ruder, and
Noah A. Smith. 2019. To tune or not to
tune? Adapting pretrained representations
to diverse tasks. In Proceedings of the 4th
Workshop on Representation Learning
for NLP (RepL4NLP-2019), pages 7–14.
https://doi.org/10.18653/v1/W19
-4302

Reimers, Nils and Iryna Gurevych. 2019.
Sentence-BERT: Sentence embeddings
using Siamese BERT-networks. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 3982–3992. https://doi.org/10
.18653/v1/D19-1410

Rogers, Anna. 2021. Changing the world by
changing the data. In Proceedings of the 59th
Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 2182–2194. https://doi.org
/10.18653/v1/2021.acl-long.170

Roy, Nicholas and Andrew McCallum. 2001.
Toward optimal active learning through
sampling estimation of error reduction. In
Proceedings of the Eighteenth International
Conference on Machine Learning,
pages 441–448.

Sakaguchi, Keisuke, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2021.
WinoGrande: An adversarial Winograd
Schema Challenge at scale. Communications
of ACM, 64(9):99–106. https://doi
.org/10.1145/3474381

Salazar, Julian, Davis Liang, Toan Q.
Nguyen, and Katrin Kirchhoff. 2020.
Masked language model scoring. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 2699–2712. https://doi.org/10
.18653/v1/2020.acl-main.240

Sambasivan, Nithya, Shivani Kapania,
Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M. Aroyo. 2021.
“Everyone wants to do the model work,
not the data work”: Data cascades in
high-stakes AI. In Proceedings of the 2021
CHI Conference on Human Factors in
Computing Systems, CHI ’21, pages 1–15.
https://doi.org/10.1145/3411764
.3445518

193



Computational Linguistics Volume 48, Number 2

Sanh, Victor, Lysandre Debut, Julien
Chaumond, and Thomas Wolf. 2019.
DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Schulz, Claudia, Christian M. Meyer,
Jan Kiesewetter, Michael Sailer,
Elisabeth Bauer, Martin R. Fischer,
Frank Fischer, and Iryna Gurevych. 2019.
Analysis of automatic annotation
suggestions for hard discourse-level
tasks in expert domains. In Proceedings
of the 57th Annual Meeting of the
Association for Computational Linguistics,
pages 2761–2772. https://doi.org/10
.18653/v1/P19-1265

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016. Neural machine
translation of rare words with subword
units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1715–1725. https://doi.org/10
.18653/v1/P16-1162

Settles, Burr. 2012. Active learning. Synthesis
Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114. https://doi.org
/10.2200/S00429ED1V01Y201207AIM018

Settles, Burr, Mark Craven, and Lewis
Friedland. 2008. Active learning with real
annotation costs. In Proceedings of the NIPS
Workshop on Cost-Sensitive Learning,
pages 1–10.

Siddhant, Aditya and Zachary C. Lipton.
2018. Deep Bayesian active learning
for natural language processing:
Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2904–2909.
https://doi.org/10.18653/v1/D18
-1318

Snow, Rion, Brendan O’Connor, Daniel
Jurafsky, and Andrew Ng. 2008. Cheap
and fast – but is it good? Evaluating
non-expert annotations for natural
language tasks. In Proceedings of the 2008
Conference on Empirical Methods in Natural
Language Processing, pages 254–263.
https://doi.org/10.3115/1613715
.1613751

Stab, Christian, Johannes Daxenberger, Chris
Stahlhut, Tristan Miller, Benjamin Schiller,
Christopher Tauchmann, Steffen Eger, and
Iryna Gurevych. 2018. ArgumenText:
Searching for arguments in heterogeneous
sources. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:

Demonstrations, pages 21–25. https://doi
.org/10.18653/v1/N18-5005

Sweetser, Penelope and Peta Wyeth. 2005.
GameFlow: A model for evaluating player
enjoyment in games. Computers in
Entertainment, 3(3):3. https://doi
.org/10.1145/1077246.1077253

Szpiro, George. 2010. Numbers Rule: The
Vexing Mathematics of Democracy, from
Plato to the Present. Princeton University
Press. https://doi.org/10.1515
/9781400834440

Tauchmann, Christopher, Johannes
Daxenberger, and Margot Mieskes. 2020.
The influence of input data complexity on
crowdsourcing quality. In Proceedings of the
25th International Conference on Intelligent
User Interfaces Companion, pages 71–72.
https://doi.org/10.1145/3379336
.3381499

Taylor, Wilson L. 1953. “Cloze procedure”:
A new tool for measuring readability.
Journalism & Mass Communication
Quarterly, 30(4):415–433. https://doi.org
/10.1177/107769905303000401

Tomanek, Katrin and Udo Hahn. 2009.
Timed annotations: Enhancing MUC7
metadata by the time it takes to annotate
named entities. In Proceedings of the Third
Linguistic Annotation Workshop,
pages 112–115. https://doi.org/10
.3115/1698381.1698399

Turner, Brandon M. and Dan R. Schley. 2016.
The anchor integration model: A
descriptive model of anchoring effects.
Cognitive Psychology, 90:1–47. https://doi
.org/10.1016/j.cogpsych.2016.07.003,
PubMed: 27567237

VanderWeele, Tyler J. and Ilya Shpitser. 2013.
On the definition of a confounder. Annals
of Statistics, 41(1):196–220. https://doi
.org/10.1214/12-AOS1058, PubMed:
25544784

Vygotsky, Lev. 1978. Mind in Society: The
Development of Higher Psychological
Processes. Harvard University Press.

Wang, Min, Fan Min, Zhi-Heng Zhang,
and Yan-Xue Wu. 2017. Active learning
through density clustering. Expert
Systems with Applications, 85:305–317.
https://doi.org/10.1016/j.eswa
.2017.05.046

Welch, Bernard Lewis. 1951. On the
comparison of several mean values: An
alternative approach. Biometrika,
38(3/4):330–336. https://doi.org
/10.1093/biomet/38.3-4.330

Xia, Menglin, Ekaterina Kochmar, and Ted
Briscoe. 2016. “Text readability assessment

194



Lee, Klie, Gurevych Annotation Curricula

for second language learners.” In
Proceedings of the 11th Workshop on
Innovative Use of NLP for Building
Educational Applications, pages 12–22.
https://doi.org/10.18653/v1
/W16-0502

Yang, Yinfei, Oshin Agarwal, Chris Tar,
Byron C. Wallace, and Ani Nenkova. 2019.
Predicting annotation difficulty to improve
task routing and model performance for
biomedical information extraction. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 1471–1480. https://doi
.org/10.18653/v1/N19-1150

Yeung, Chak Yan, John Lee, and Benjamin
Tsou. 2019. Difficulty-aware distractor
generation for gap-fill items. In Proceedings
of the 17th Annual Workshop of the
Australasian Language Technology
Association, pages 159–164.

Yimam, Seid Muhie, Chris Biemann, Richard
Eckart de Castilho, and Iryna Gurevych.
2014. Automatic annotation suggestions
and custom annotation layers in

WebAnno. In Proceedings of 52nd Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations,
pages 91–96. https://doi.org/10.3115
/v1/P14-5016

Yuan, Michelle, Hsuan-Tien Lin, and
Jordan Boyd-Graber. 2020. Cold-start
active learning through self-supervised
language modeling. In Proceedings of the
2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP),
pages 7935–7948. https://doi.org
/10.18653/v1/2020.emnlp-main.637

Zhang, Chicheng and Kamalika Chaudhuri.
2015. Active learning from weak and
strong labelers. In Advances in Neural
Information Processing Systems,
pages 703–711.

Zhu, Jingbo, Huizhen Wang, Tianshun Yao,
and Benjamin K. Tsou. 2008. Active
learning with sampling by uncertainty and
density for word sense disambiguation
and text classification. In Proceedings of the
22nd International Conference on
Computational Linguistics (Coling 2008),
pages 1137–1144. https://doi.org
/10.3115/1599081.1599224

195



196



Chapter 11

Lessons Learned from a Citizen Science

Project for Natural Language Processing



198



Lessons Learned from a Citizen Science
Project for Natural Language Processing

Jan-Christoph Klie1 Ji-Ung Lee1 Kevin Stowe1,2 Gözde Gül Şahin1,3
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Abstract

Many Natural Language Processing (NLP) sys-

tems use annotated corpora for training and

evaluation. However, labeled data is often

costly to obtain and scaling annotation projects

is difficult, which is why annotation tasks are

often outsourced to paid crowdworkers. Citi-

zen Science is an alternative to crowdsourcing

that is relatively unexplored in the context of

NLP. To investigate whether and how well Citi-

zen Science can be applied in this setting, we

conduct an exploratory study into engaging dif-

ferent groups of volunteers in Citizen Science

for NLP by re-annotating parts of a pre-existing

crowdsourced dataset. Our results show that

this can yield high-quality annotations and at-

tract motivated volunteers, but also requires

considering factors such as scalability, partic-

ipation over time, and legal and ethical issues.

We summarize lessons learned in the form of

guidelines and provide our code and data to aid

future work on Citizen Science.1

1 Introduction

Data labeling or annotation is often a difficult, time-

consuming, and therefore expensive task. Anno-

tations are typically drawn from domain experts

or are crowdsourced. While experts can produce

high-quality annotated data, they are expensive

and do not scale well due to their relatively low

number (Sorokin and Forsyth, 2008). In contrast,

crowdsourcing can be relatively cheap, fast, and

scalable, but is potentially less suited for more com-

plicated annotation tasks (Drutsa et al., 2020). An-

other approach is using Citizen Science, which

1https://github.com/UKPLab/

eacl2023-citizen-science-lessons-learned

describes the participation and collaboration of vol-

unteers from the general public with researchers

to conduct science (Haklay et al., 2021). Over the

past decade, Citizen Science platforms, which rely

on unpaid volunteers to solve scientific problems,

have been used for a wide variety of tasks requir-

ing human annotation (Hand, 2010), e.g., classify-

ing images of galaxies (Lintott et al., 2008) or for

weather observation (Leeper et al., 2015).

While Citizen Science has been shown to pro-

duce high-quality annotations in ecological or en-

vironmental projects (Kosmala et al., 2016), its po-

tential has so far not been investigated in depth for

Natural Language Processing (NLP). Our goal in

this work is to assess the practicality of undertaking

annotation campaigns for NLP via Citizen Science.

We analyze whether volunteers actually react to

our calls and participate, how the resulting quality

is compared to crowdsourcing, what the benefits

and shortcomings are and what needs to be taken

into account when conducting such a project. We

especially are interested in differences between an-

notators recruited via different channels, which we

investigate by advertising to different social media

platforms, NLP-related mailing lists, and univer-

sity courses. To explore this possibility, we use the

PERSPECTRUM dataset (Chen et al., 2019, CC-BY-

SA) that focuses on the task of stance detection and

can be motivated by fighting misinformation and

promoting accurate debate in internet discussions.

We replicated a portion of the annotations in this

dataset using citizen scientists instead of crowd-

workers. To accomplish this goal, we designed an

annotation workflow that is suitable for Citizen Sci-

ence and allows us to recruit volunteers across a

variety of platforms.



Figure 1: We advertised our project via various social media, mailing lists and university courses. Volunteers then

are onboarded via the landing page and donated annotations via INCEpTION.

Our contributions are the following:

1. We provide a systematic study on Citizen Sci-

ence across different channels and analyze

turnout and quality. For this, we re-annotate

parts of the PERSPECTRUM dataset using Citi-

zen Science and compare these to the original,

crowdsourced annotations.

2. We provide guidelines and recommendations

on how to successfully conduct a Citizen Sci-

ence project for NLP annotation and discuss

critical legal and ethical aspects.

3. We provide a platform for future Citizen Sci-

ence projects that handles onboarding, anony-

mous access, work assignment and the anno-

tating itself.

Our results show that using Citizen Science for

linguistic annotation can result in high-quality an-

notations, but that attracting and motivating people

is critical for its success, especially in the long-

term. We were able to attract 98 volunteers when

conducting our Citizen Science project which re-

sulted in 1,481 annotations over 2 months, thereby

re-annotating around 10% of the original dataset.

We find that annotations obtained through mailing

lists and university students were of high quality

when comparing them to the original, adjudicated

crowdsourced data. We thus conclude that Citizen

Science projects have the potential to be applied

to NLP annotation if they are conceptualized well,

but are best suited for creating smaller datasets.

2 Background

Prior work has developed various means and strate-

gies for annotating large datasets. So far, anno-

tation studies in NLP mainly use domain-experts

or crowdworkers, or a mix of both (Nguyen et al.,

2015). Crowdsourcing in particular has received

increasing attention over the past decade (Wang

et al., 2013).

Paid Experts Recruiting domain experts (e.g.,

linguists) for annotation studies has been a widely

accepted method to generate linguistically anno-

tated corpora. Famous examples are the Brown

Corpus (Francis and Kucera, 1979) or the Penn

Treebank (Marcus et al., 1993). While the resulting

datasets are of the highest quality, domain experts

are often few, and such annotation studies tend

to be slow and expensive (Sorokin and Forsyth,

2008). Although many researchers moved on to

annotation studies that recruit crowdworkers, ex-

pert annotations are still necessary in various fields,

e.g., biomedical annotations (Hobbs et al., 2021).

Crowdsourcing To accelerate the annotation pro-

cess and reduce costs, researchers have utilized

crowdsourcing as a means to annotate large cor-

pora (Snow et al., 2008). The main idea be-

hind crowdsourcing is that annotation tasks that

do not require expert knowledge can be assigned

to a large group of paid non-expert annotators.

This is commonly done via crowdsourcing plat-

forms such as Amazon Mechanical Turk (AMT)

or Upwork and has been successfully used to an-

notate various datasets across different tasks and

200



domains (Derczynski et al., 2016; Habernal and

Gurevych, 2017). Previous work compared the

quality between crowdsourcing and expert anno-

tations, showing that many tasks can be given to

crowdworkers without major impact on the quality

of annotation (Snow et al., 2008; Hovy et al., 2014;

De Kuthy et al., 2016).

Although crowdworkers can substantially accel-

erate annotation, crowdsourcing requires careful

task design and is not always guaranteed to result

in high quality data (Daniel et al., 2018). More-

over, as annotators are compensated not by the time

they spend but rather by the number of annotated

instances, they are compelled to work fast to max-

imize their monetary gain—which can negatively

affect annotation quality (Drutsa et al., 2020) or

even result in spamming (Hovy et al., 2013). It can

also be difficult to find crowdworkers for the task

at hand, for instance due to small worker pools for

languages other than English (Pavlick et al., 2014;

Frommherz and Zarcone, 2021) or because the task

requires special qualifications (Tauchmann et al.,

2020). Finally, the deployment of crowdsourcing

remains ethically questionable due to undervalued

payment (Fort et al., 2011; Cohen et al., 2016),

privacy breaches, or even psychological harm on

crowdworkers (Shmueli et al., 2021).

Games with a Purpose A related but differ-

ent way to collect annotations from volunteers

is games with a purpose, i.e., devising a game

in which participants annotate data (Chamberlain

et al., 2008; Venhuizen et al., 2013). Works pro-

pose games for different purposes and languages.

For instance, anaphora annotation (PhraseDetec-

tives, Poesio et al. 2013), dependency syntax anno-

tation (Zombilingo, Fort et al. 2014), or collecting

idioms (Eryiğit et al., 2022). It has been shown

that if a task lends itself to being gamified, then

it can attract a wide audience of participants and

can be used to create large-scale datasets (von Ahn,

2006). Finally, Lyding et al. (2022) investigate

games with a purpose in the context of (second)

language learning to simultaneously crowdsource

annotaions from learners as well as teachers. One

such example is Substituto, a turn-based, teacher-

moderated game for learning verb-particle con-

structions (Araneta et al., 2020). We do not con-

sider gamification in this work, as enriching tasks

with game-like elements requires considerable ef-

fort and cannot be applied to every task.

Citizen Science Citizen Science broadly de-

scribes participation and collaboration of the gen-

eral public (the citizens) with researchers to con-

duct science (Haklay et al., 2021). Citizen Science

is a popular alternative approach for dataset collec-

tion efforts, and has been successfully applied in

cases of weather observation (Leeper et al., 2015),

counting butterflies (Holmes, 1991) or birds (Na-

tional Audubon Society, 2020), classifying im-

ages of galaxies (Lintott et al., 2008) or moni-

toring water quality (Addy et al., 2010). Newly-

emerging technologies and platforms further allow

researchers to conduct increasingly innovative Cit-

izen Science projects, such as the prediction of

influenza-like outbreaks (Lee et al., 2021) or the

classification of animals from the Serengeti Na-

tional Park (Swanson et al., 2015). LanguageARC

is a Citizen Science platform for developing lan-

guage resources (Fiumara et al., 2020). It is how-

ever not open yet to the public to create projects and

does not easily allow conducting a Citizen Science

meta-study as we do in this work. One work using

LanguageARC is by Fort et al. (2022) (LD) who

collected resources to evaluate bias in language

models. They did not investigate the impact of

using different recruitment channels which we do.

Other projects using LanguageARC are still run-

ning and it is too early to derive recommendations

from.

Compared to crowdsourcing, Citizen Science

participants are volunteers that do not work for

monetary gain. Instead, they are often motivated

intrinsically. For instance, they may have a per-

sonal interest on positively impacting the environ-

ment (West et al., 2021), or in altruism (Rotman

et al., 2012). Asking for unpaid work also entails

various issues like finding good ways of how to at-

tract volunteers, and ethical considerations (Resnik

et al., 2015; Rasmussen and Cooper, 2019) that

need to be addressed (cf. §5). Intrinsic motivation

also has the potential of resulting in higher-quality

annotations compared to crowdsourcing. For in-

stance, Lee et al. (2022) find in their evaluation

study with citizen scientists that their participants

may have been willing to take more time anno-

tating for the sake of higher annotation accuracy.

However, as their main goal was to conduct an eval-

uation study for their specific setup, this finding

cannot be generalized to other Citizen Science sce-

narios. So far, only Tsueng et al. (2016) provide a

direct comparison between crowdsourcing and Cit-
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Figure 2: Assigning a label to an instance in the INCEpTION text annotation platform.

izen Science and show that volunteers can achieve

similar performance in mining medical entities in

scientific texts. They recruit participants through

different channels such as newspapers, Twitter, etc.,

but do not compute channel-specific performance,

making it difficult to assess whether the quality

of the resulting annotation depends on the recur-

rent channel. In contrast, in the present work, we

explicitly consider the recruitment channel in our

evaluation and furthermore provide a discussion

and guidelines for future Citizen Science practition-

ers. Also, it attracts intrinsically (not only fiscally)

motivated volunteers that are often skilled in the

task and can provide high-quality annotations, thus

potentially combining the advantages of expert an-

notations and crowdsourcing. Relying on unpaid

annotators entails several issues, including attract-

ing volunteers and ethical considerations (Resnik

et al., 2015; Rasmussen and Cooper, 2019) that

need to be taken into account (see §5).

3 Study Design

To study the feasibility of Citizen Science for NLP

annotation, we asked volunteers recruited via var-

ious channels to re-annotate an existing, crowd-

sourced dataset. The general setup is described in

Fig. 1. To conduct a systematic study, we identified

the following four necessary steps: 1) Identifying a

suitable dataset (§3.1); 2) Selecting suitable recruit-

ment channels to advertise our project on (§3.2);

3) Building a landing page for onboarding partici-

pants that asks for informed consent and the chan-

nel from which they originated (§3.3); 4) Setting

up the annotation editor to which participants are

forwarded after the onboarding (§3.4).

3.1 Dataset selection

We first conducted a literature review of relevant

crowdsourced NLP datasets to identify the ones

that could be accurately reproduced via Citizen

Science. We assessed datasets for the following

two criteria: 1) Availability: the dataset must be

publicly available to make proper comparisons in

terms of annotator agreement; 2) Reproducibility:

the annotation setup including annotation guide-

lines needs to be reproducible to ensure similar

conditions between citizen scientists and crowd-

workers. We focused on datasets that are targeted

towards contributing to social good to encourage

volunteers to participate. Unfortunately, many in-

spected datasets did not fulfill both of these require-

ments. Overall, we identified two main issues while

screening over 20 candidate datasets. First, many

datasets used Tweets which impacted reproducibil-

ity as Twitter only allows researchers to publish

the tweet identifiers. This leads to irrecoverable in-

stances when tweets were deleted. Second was the

lack of precise guidelines. For instance, many con-

sidered datasets about societal biases lack explicit

descriptions of what is considered a stereotype. As

such biases are often also impacted by the respec-

tive cultural background of annotators, they are

difficult to reproduce without specific guidelines.

In the end, we decided on the stance detection

task of the PERSPECTRUM dataset (Chen et al.,

2019). The task provides clear instructions, pub-

licly available data, and is motivated by social good

(fighting misinformation/promoting accurate de-

bate in internet discussions). Each instance con-

sists of a claim–perspective pair (cf. Fig. 2) and

annotators are asked if the claim supports, opposes,

mildly-supports, mildly-opposes, or is not a valid
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Figure 3: Participants, annotations and annotations grouped by the channel via they were recruited. It can be seen

that overall, most participants and annotations were contributed by annotators recruited via mailing lists. Annotators

from mailing lists and courses yielded the volunteers who contributed the most individually.

perspective. Following the original work, we also

evaluated the annotations on a coarser tagset that

only contains the categories for support, oppose

and not a valid perspective. Overall, the dataset

consists of 907 claims and 8, 370 different perspec-

tives which yield 11, 805 annotated instances. In

preliminary studies, we received further feedback

that forcing annotators to provide an explicit la-

bel for each instance could lead to increasing frus-

tration, especially for ambiguous or complicated

instances. To lessen the burden for our voluntary

annotators and keep them motivated in the annota-

tion task, we allowed them to skip instances (Don’t

know/skip) which was not present in the original

annotation editor for PERSPECTRUM.

3.2 Recruitment channels

To recruit annotators, we advertised our project

on three social media platforms, namely, Twitter,

LinkedIn and Facebook. Unfortunately, after cre-

ating the Facebook organization and advertising

the project, the account was banned due to “violat-

ing their community standards” and has so far re-

mained banned. One of our team members then pro-

moted our annotation study on their personal Face-

book to attract participation from this social media

platform. In addition, the team members adver-

tised the work on Twitter and in relevant LinkedIn

groups such as COMPUTATIONAL LINGUISTICS

and MACHINE LEARNING AND DATA SCIENCE.

We further promoted the study via two exter-

nal mailing lists (i.e., CORPORA-LIST, ML-NEWS).

Late in the project, we received interest from other

faculty to advertise the task in their courses—an

offer that we gladly accepted. For this, partici-

pation was completely voluntary and anonymous,

students’ grades were not affected by participation,

and authors were not among the instructors. To

evaluate different recruitment channels separately,

we asked participants on the landing page to an-

swer the question: “Where did you hear from this

study?”. We also allowed volunteers to not disclose

how they found out about the study, this is referred

to as “Other” or “Undisclosed” in this paper. Fi-

nal participation counts are given in Fig. 3. We

deliberately limited our outreach, e.g. we did not

use university social media accounts or colleagues

with large follower bases. Also, we made sure to

not exhaust channels by posting too many calls for

participation.

3.3 Landing page

We implemented a customizable landing page web

application catering to the needs of Citizen Sci-

ence projects. The link to such a landing page was

shared via the respective recruitment channels. The

landing page contained information about the study

itself, its purpose, its organizers, which data we

collected, and its intended use. This landing page

toolbox is designed so that it can easily be adapted

to future Citizen Science projects. To allow project

creators to use an annotation editor of their choice,

we designed the toolbox to act as an intermediary

that collects a participant’s consent for the actual

annotation study. This ensures that only partici-

pants that have been properly informed and have

explicitly provided their consent are given access to

the study. For future Citizen Science projects, the

tool further assists organizers through the landing

page creation process to foster an ethical collection

of data by asking several questions, that are listed

in the appendix.
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3.4 Annotation editor

INCEpTION (Klie et al., 2018) offers a config-

urable, web-based platform for annotating text doc-

uments at span, relation and document levels. To

make it usable in Citizen Science scenarios, we

extended the platform with three features, namely,

(1) the ability to join a project through a link, (2)

support for anonymous guest annotators, and (3)

a dynamic workload manager. Allowing citizen

scientists to participate in the project anonymously

as guests without any sign-up process substantially

reduced the entry barrier and made it easier for

us to satisfy data protection policies. The same

is true for the ability of joining a project through

an invite link. Upon opening the link, annotators

were greeted with the annotation guidelines and

were directly able to start annotating. Finally, we

implemented a dynamic workload manager that

takes as input the desired number of annotators per

document and then automatically forwards anno-

tators directly to the document instances requiring

annotation. Upon finishing annotating an instance,

INCEpTION was configured to automatically load

and display the next instance for annotation, sim-

ilar to popular crowdsourcing platforms. We also

included rules for handling other issues that may

occur with voluntary annotations such as recover-

ing instances that annotators have started to work

on but then abandoned. Additionally, we modified

the existing user interface to improve the annota-

tion workflow. This mainly included implementing

a dedicated labeling interface that allows users to

select a single label for an instance via a radio but-

ton group. Annotation of an instance thus required

two user actions: first, selecting the document la-

bel, and second, confirming the annotation, thereby

moving on to the next document.

4 Results

We conducted our study between January and

March 2022 and promoted the task in successive

rounds across all recruitment channels. In total, we

were able to recruit 98 participants who provided

1481 annotations resulting in 906 fully annotated

instances. Each instance with at least one anno-

tation has received on average 1.63 annotations.

Detailed statistics are provided in the appendix.

Participation To identify promising channels for

future Citizen Science studies, we report the num-

ber of annotators per channel, the total number of

annotations per channel and per user (cf. Fig. 3).

Overall, we find that the most effective channel for

public outreach are mailing lists (55 participants).

Asking students in university courses to participate

was the second most effective with 14 participants.

Facebook, LinkedIn, and Twitter only yielded three,

four, and eight participants respectively. We further

find a highly skewed distribution of annotations per

user, as many annotators only provide a few anno-

tations while a few annotators provide many anno-

tations. For instance, the most active annotators

were two students who provided ∼80 annotations

as well as six participants from mailing lists who

provided ∼60–80 annotations each. For Twitter

and “undisclosed”, only a single annotator made

over 60 annotations. We also find that on aver-

age, participants from university courses provided

the most annotations per person. When looking

at participation over time (see Fig. 5), we observe

increased activity in annotations made after the call

for participation has been posted to the respective

channel. For many channels, the count quickly flat-

tens. Interestingly, Twitter sees a second spike long

after the post was made. We attribute it to people

sharing the post in our community quite a while

after the initial release. We did not track whether

individual volunteers came back for another round

of annotations after their initial participation.

Coverage Overall, our 98 volunteers have pro-

vided 1,481 annotations to 906 unique instances

(approximately 8% of the original dataset) over

two months. This is comparable to other Citizen

Science projects like Fort et al. (2022), which had

102 participants in total. They annotated three tasks

and collected 2347, 2904 and 220 submissions over

eight months. Table 1 shows the resulting cover-

age of our Citizen Science annotation study. While

this still leaves room for improvement, the num-

ber of annotations collected nonetheless shows that

Citizen Science can be viable in real life settings

and is a promising direction to investigate in fur-

ther studies, especially for creating focused and

smaller-scale resources.

Quality In terms of annotation quality, we find

that most channels yield annotations that highly

agree with the gold labels (cf. Table 2), even though

our annotations are not adjudicated yet. We further

find that volunteers from university courses and

mailing list show the highest accuracy, followed by

Twitter and “undisclosed”. Only LinkedIn yields
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lower accuracy than 70% on the coarse label set.

For the majority of channels (with the exception

of Facebook and LinkedIn), we only see a skip

percentage of ∼10% (cf. Fig. 4). This indicates our

volunteers are actually willing to spend time and

effort to solve the task at hand, as adding a “Don’t

know/skip” option in crowdsourcing usually is an

invitation for workers to speed through the tasks

and not provide useful annotations. The exception

is Facebook, where we find that a majority of the

annotations from Facebook were labeled as I don’t

know/skip (3 out of 5). Further analysis of the label

distribution grouped by channel (cf. Fig. 4) shows

that all channels except for Facebook display a

similar distribution in terms of annotated labels.

This indicates that we can expect a rather stable

annotation performance across citizen scientists

recruited from different channels.

5 Discussion and Takeaways

Here we present lessons learned, discuss legal chal-

lenges and ethical considerations, as well as pro-

vide guidelines for future Citizen Science projects.

Table 1: Claims, claim clusters, and individual claim-

perspective pairs that have been annotated at least once.

We call the set of a claim and a perspective together

with its paraphrases a claim cluster.

Name # Annotated # Total % Annotated

Claims 388 907 42.78

Clusters 739 5092 14.51

Total 906 11805 7.67

Table 2: Annotation accuracy compared to the crowd-

sourced and adjudicated data from PERSPECTRUM. The

five annotations from Facebook (three of them were

skipped) and Don’t know/skip annotations are omitted.

Channel Coarse Fine

University 0.92 0.82

LinkedIn 0.69 0.62

Mailing Lists 0.90 0.82

Undisclosed 0.84 0.75

Twitter 0.85 0.73

Channel-dependent differences Our results

clearly differ across recruiting channels. We find

that overall, Facebook and LinkedIn have the low-

est turnout and accuracy when compared to the

gold labels, followed by Twitter. Our assumption

for the overall low participation is that our net-

work for these channels was not large enough. Ad-

vertising our study to NLP-related and university-

internal mailing lists and university courses yielded

the highest number of participants who also pro-

vided the most and best-quality annotations. Al-

though our results show that students may outper-

form participants from other channels, we also ac-

knowledge that this may not always be a viable

option to recruit citizen scientists. Overall, our

findings indicate that it is important to address the

respective target groups that may be interested in

a specific study. However, we also note that con-

tinuously advertising Citizen Science studies to the

same channels may have a negative impact, as it can

cause participation fatigue and lead to fewer vol-

unteers participating. One possible solution could

be the use of LanguageARC (Fiumara et al., 2020)
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from the LDC and centralize calls for participation.

Motivating volunteers In contrast to crowd-

sourcing, there is no monetary or other extrinsic

motivation that could be used to attract Citizen

Science annotators. Thus, annotator motivation

is a crucial question for Citizen Science studies.

As Fig. 5 shows, citizen scientists can be quickly

motivated to participate, but can also quickly lose

interest in a given annotation study. This can be-

come an issue with a low number of participants,

yet our results also indicate that we were able to

find highly-motivated participants (8 out of 98 in

our results).

Compared to other groups, university students

in particular provided a high amount of quality

annotations. Considering the findings by Phillips

et al. (2018), who do not find statistical differences

in terms of quality between students participating

for course credit vs. no extrinsic reward—asking

students to participate in such projects as part of

their coursework might be another good option,

but needs to ensure an ethical data collection. For

instance, such an approach has been used to an-

notate the Georgetown University Multilayer Cor-

pus (Zeldes, 2017). Nonetheless, one remaining

question is how to keep participants motivated and

participate in several sessions as our results indi-

cate that a vast majority of our volunteers only par-

ticipated in a single session and that participation

quickly stops shortly after a call has been posted to

the respective channel.

Finally, we want to emphasize the inclusion of

a Don’t know/skip option for Citizen Science an-

notators. Whereas in crowdsourcing studies, anno-

tators may exploit such an option to increase their

gain (Hovy et al., 2013), from the feedback we got

during our pilot study, it is crucial to keep volun-

teers motivated for Citizen Science. For this work,

we did not provide a survey that asks about the

motivation, as we thought that this might deter po-

tential participants We however suggest that future

studies provide such a survey that is as unintrusive

as possible to further analyze why participants take

part in the respective annotation project.

Legal challenges One substantial challenge in

implementing Citizen Science studies is the po-

tentially wide outreach they can have and, conse-

quently, the varying kinds of data protection regula-

tions they have to oblige. To preempt any potential

issues that can arise—especially when data that

can be used to identify a person (personal data, e.g.

obtained during a survey or login credentials) is

involved—we recommend researchers who plan

to implement a Citizen Science study consider the

most strict regulations that are widely accepted.

For the GDPR (European Parliament, 2016), cur-

rently one of the strictest data protection regula-

tions, we recommend researchers to explicitly ask

voluntary participants for their informed consent

when collecting personal information. This in-

cludes informing participants beforehand about (1)

the purpose of the data collection, (2) the kind of

personal and non-personal data collected, (3) the

planned use of the data, (4) any planned anonymiza-

tion processes for publication, and finally, (5) how

participants can request access, change, and dele-

tion of the data. We further recommend assign-

ing one specific contact person for any questions

and requests for access, change, or deletion of the

data. This may seem like additional work when

compared to crowdsourcing, but transparent and

open communication is one of the key factors to

build trust—which is necessary for voluntary par-

ticipants to consider such studies and provide high-

quality annotations. Finally, participants should

be informed and agree to the annotations donated

being published under a permissive license.

Ethical and economical considerations Al-

though Citizen Science can substantially reduce

annotation costs, we emphasize the importance of

considering an ethical deployment that does not

compromise the trust of the participants. Moreover,

given increasing concerns regarding the owner-

ship and use of collected data (Arrieta-Ibarra et al.,

2018), one should grant participants full rights to

access, change, delete, and share their own per-

sonal data (Jones and Tonetti, 2020). This ensures

that participants are not exploited for “free labor”—

in contrast to approaches like reCAPTCHA (von

Ahn et al., 2008), where humans are asked to

solve a task in order to gain access to services.

Whereas CAPTCHAs were initially intended to

block malicious bots, they are becoming increas-

ingly problematic due to their deployment and use

by monopolizing companies which raises ethical

concerns (Avanesi and Teurlings, 2022) . It is es-

pecially important to take the data itself into con-

sideration; exposing volunteers to toxic, hateful,

or otherwise sensitive speech should be avoided if

they are not informed about it beforehand.
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Recommendations Overall, we derive the fol-

lowing recommendations for future Citizen Science

studies. 1) our call for annotations resonated the

most with the target group that is likely to benefit

the most from contributing to it: NLP researchers

coming from mailing lists and university students.

Therefore, the target audience should be carefully

selected, for instance by identifying topic-specific

mailing lists or respective university courses. This

further means that the purpose of data collection

should be made clear and that the results should be

made publicly available. 2) the research question of

the study should conform to the respective ethical

and legal guidelines of the potential target group

which should clearly be communicated to make

the project accountable. 3) participation should be

easy with clearly formulated annotation guidelines

and, moreover, the annotation itself should be thor-

oughly tested beforehand to ensure that participants

do not get frustrated due to design errors or choices.

For instance, in our preliminary study, we got the

feedback that some instances are frustrating to an-

notate and hence added an option to skip. 4) ana-

lyzing participation over time shows that a Citizen

Science project has to be continuously advertised

in order to stay relevant and achieve high participa-

tion. Otherwise, it will be forgotten quickly. This

can be done by sharing status updates or creating

preliminary results. Fifth, we recommend asking

about user motivation before, during or after the

annotation with a survey to better understand the

participants and their demographics.

6 Conclusion

In this work, we presented an exploratory annota-

tion study for utilizing Citizen Science for NLP

annotation. We developed an onboarding pro-

cess that can easily be adapted to similar projects

and evaluated Citizen Science annotations for re-

annotating an existing dataset. Furthermore, we

extended the INCEpTION platform, a well-known

open-source semantic annotation platform, with

a dynamic workload manager and functionality

for granting access to external users without reg-

istration. This enables its usage for Citizen Sci-

ence projects. We advertised the study via Twitter,

Facebook, LinkedIn, mailing lists, and university

courses and found that participants from mailing

lists and university courses are especially capable

of providing high-quality annotations. We further

discuss legal and ethical challenges that need to

be addressed when conducting Citizen Science

projects and provide general guidelines for con-

ducting future projects that we would like to have

known before starting. Overall, we conclude that

Citizen Science can be a viable and affordable al-

ternative to crowdsourcing, but is limited by suc-

cessfully keeping annotators motivated. We will

make our code and data publicly available to fos-

ter more research on Citizen Science for NLP and

other disciplines.

Future Work We see the following directions for

further research and evaluation to better understand

in which settings Citizen Science can be applicable

and how to use it best. Here, we used PERSPEC-

TRUM as the dataset to annotate and mentioned

in the participation calls that it benefits the social

good. Therefore, it would be interesting to conduct

more projects and see which datasets are suitable

as well as whether volunteers participate, even if

there is no extrinsic motivation. Then, it can also

be tested how annotator retention develops, espe-

cially when project are running longer. The call for

participation itself could also be investigated for

the impact it has on turnout, motivation and quality.

7 Limitations

Throughout this article, we analyzed whether Cit-

izen Science applies to linguistic annotation and

showed that we can attract volunteers that donate a

sizeable number of high-quality annotations. This

work, however, comes with limitations that should

be taken into account and tackled in future work.

First, we based our analysis on a single annota-

tion campaign and dataset that we advertised as

being relevant for the social good. Therefore we

suggest conducting more such annotation projects,

also with different kinds of tasks. Second, we did

not perform a user survey that for instance asked

for user motivation. This is why we can only spec-

ulate about the motivation of our participants and

suggest future works to explicitly prepare such a

survey. Third, using Facebook as a channel might

be viable, but we were not able to properly analyze

it, as our account was blocked shortly after cre-

ation and never was reinstantiated. Finally, based

on participation and annotation numbers, we see

Citizen Science as more of an option for annotating

smaller datasets, or longer-term projects that are

more actively advertised than in our study which

took place over two months and for which we de-

liberately limited the outreach.
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Appendix C Questions to keep in mind for a citizen science project

• What is the purpose of the study?

• What kind of personal and non-personal data will be collected?2

• If there is a questionnaire involved, what questions will it involve?

• How will the data be used?

• Is a publication of the data planned and if so, which data will be published and will it be anonymized?

• How can participants request access, change, or deletion of their data?

Appendix D Project Statistics

D.1 Number of participants

In addition to the plots visualizing the number of participants (c.f. Fig. 3), we also list the raw numbers in

Table 3.

Channel Participants

Courses 14

Facebook 3

LinkedIn 4

Lists 55

Twitter 8

Undisclosed 17

Table 3: Number of participants per channel.

D.2 Annotation statistics

In addition to the plots visualizing the annotation counts and label distribution (c.f. Fig. 4), we also list the

raw numbers in Table 4.

Table 4: Label distribution grouped by channel. Labels are supports (++), mildly-supports (+), mildly-opposes (-),

opposes (--), not a valid perspective (I) and Skip (S).

Channel Total Counts Percentage

+ ++ - -- I S + ++ - -- I S

Courses 307 18 108 24 104 28 25 5.86 35.18 7.82 33.88 9.12 8.14

Facebook 5 2 0 0 0 0 3 40.00 0.00 0.00 0.00 0.00 60.00

LinkedIn 21 1 5 1 7 3 4 4.76 23.81 4.76 33.33 14.29 19.05

Lists 830 98 264 48 222 92 106 11.81 31.81 5.78 26.75 11.08 12.77

Twitter 131 14 42 12 39 13 11 10.69 32.06 9.16 29.77 9.92 8.40

Undisclosed 187 18 53 15 52 27 22 9.63 28.34 8.02 27.81 14.44 11.76

2We provided some pre-defined suggestions such as Name or IP for personal data and Label for non-personal data with the
possibility to add more in our landingpage module.
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Chapter 12

Conclusion And Future Work

12.1 Conclusion

High-quality, annotated datasets are a crucial resource for many fields of science and
downstream applications. Especially for machine learning, new large-scale datasets have
enabled and fueled the rise of deep learning. The availability of annotated data is often
a major roadblock as well as a limiting factor in performance. Creating datasets via
annotation, however, requires tremendous manual effort and is expensive and time-
consuming.

To alleviate these issues, with this thesis, we set out to improve two aspects of natural
language dataset creation: annotation quality and annotation efficiency.

To approach this, we first introduced a novel annotation tool INCEpTION (Chapter 6). It
an extensible, configurable, annotation tool that incorporates all the related tasks coming
up during annotation projects into a joint web-based platform. Thus, it can provide a solid
foundation for future annotation efficiency and quality experiments without re-inventing
the wheel, thereby saving time and letting project creators focus on the annotations itself
instead of first building an annotation editor. INCEpTION has been extensively used as
the base for most of the publications that make up this thesis.

When training and evaluating machine learning models, the annotations must be of
the highest quality to achieve reliable and accurate results. Recent work, however, has
found that even frequently used state-of-the-art datasets still contain a non-negligible
percentage of annotation errors and artifacts. Thus, as part of Chapter 7, we summarized
best practices of quality management and analyzed how annotation quality management
is conducted in practice. We derived best practices and recommendations for future
dataset creation projects from these, for instance how to best structure the annotation
process, how to select and manage annotators or how to estimate annotation quality.

Many algorithms for automatic annotation error detection have been devised over the years
to reduce costs for finding annotation errors. Nevertheless, we found that methods were
rarely evaluated on the same datasets and authors often used different metrics and task
definitions, making comparisons difficult. To improve the situation, as part of Chapter 8,
we formalized the task of automatic annotation error detection, re-implemented the most
popular methods, and evaluated them on various tasks and datasets. Experiments on
actual corpora have shown that AED methods still have room for improvement. While
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looking promising on artificial corpora, there is a large performance drop when applying
them in practice.

Improving annotation efficiency, that is, reducing annotation time or cost, can enable
dataset creators to either save effort or create larger datasets for the same effort. For this
thesis, we proposed several ways to improve annotation efficiency, including human-in-
the-loop label suggestions, interactive annotator training, and community annotation.

In Chapter 9, we proposed a novel method to reduce annotation time for entity linking
in low-resource domains by leveraging human-in-the-loop label suggestions and adaptive
re-ranking. Entity Linking, which means disambiguating entity mentions in a text against
knowledge bases, is a complex and often tedious annotation task, especially for low-
resource domains with noisy texts. In simulation and a user study, we significantly reduced
annotation time when using our novel annotation support.

Dataset creation projects often require annotators to familiarize themselves with the
task, its annotation scheme, and the data domain on the fly. This can be overwhelming
initially, mentally taxing, and induce errors in the resulting annotations. In Chapter 10,
we developed annotation curricula to train annotators implicitly while annotating. The
core idea is ordering instances to be annotated according to a learning curriculum, for
example, by perceived difficulty or estimated annotation time. In simulation and a user
study, we showed that annotation time can be reduced compared to a random ordering
without negatively impacting annotation quality.

Citizen science, the collaboration of volunteers from the general public with researchers
to conduct science, is frequently used for data collection in fields like environmental
science or astronomy. We adapted citizen science to natural language annotation as part
of Chapter 11. By asking the community to re-annotate parts of an already existing,
crowdsourced dataset, we showed that citizen science can, within limits, be a viable way
for collecting annotations.

Through surveying the literature, re-implementing and evaluating existing methods, as
well as introducing new methods, we were able to answer our research questions asking
how annotation quality and efficiency can actually be improved. While being only a first
step, this thesis already provides a solid foundation for many aspects of annotation quality
and efficiency. For the future, we see the demand for high-quality datasets only rising,
especially for expert annotated and narrow-domain, specialized datasets, highlighting
the relevance of this thesis and the importance of future work on annotation quality and
efficiency.

12.2 Future Work

We end this work by discussing interesting future research directions that can extend our
work.

When analyzing annotation quality management in Chapter 7, we aimed to analyze how
quality management of datasets was done in practice. Our analysis already yielded several
interesting findings and common issues. We also were able to derive recommendations
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that future dataset creators can leverage for their own annotation campaigns. However,
we did not analyze the impact these best practices have on the resulting dataset quality.
Therefore, an interesting future research direction is to investigate not only what methods
were used for quality management but also to quantify their impact on the resulting
dataset quality. Our focus was also primarily on annotation; extending a similar analysis
to text production and evaluation would certainly yield new insights and more targeted
recommendations.

Label suggestions, as described in §5.1.2 and applied in Chapter 9, have been widely used
to provide annotation support and thus reducing annotation time and effort. Interactive
recommenders have been shown to be advantageous compared to static suggestions or
pre-annotations. They are, however, limited as they usually retrain from scratch, which
is expensive and time-consuming, thereby limiting responsiveness and adaptability. Using
specialized continual learning or online learning methods for the task, which update
recommenders instead of retraining, might provide additional benefits. The implicit
feedback given by annotators using recommenders is also often unused; models are just
retrained on the annotations made so far but ignore acceptance and rejection events.
Another possible research direction would be learning from these events, for example, by
negatively reinforcing models.

While automatic annotation error detection has already been used to find errors in noisy
datasets, we see the following ways to extend their usefulness. When surveying the field
as part of Chapter 8, we found that in practice, overwhelmingly flagger methods are used
for finding errors. Flaggers give a dichotomous judgment of whether an instance is correct
or not; their output does not require profound interpretation and gives a finite set of
instances to inspect. For several reasons, scorers are only rarely leveraged. Scorers judge
how likely an instance is wrong. When using scorers, it is unclear when to stop inspecting,
as there is no natural stopping point. Often, a fixed percentage of the instances with
the highest likeliness of being wrong are selected. Coming up with a stopping criterion
similar to optimal stopping from statistics would be highly desirable. This criterion, for
instance, could be based on the inspection history. If too many instances are shown to be
correct once the inspection has progressed, then the error density might be too low now,
and one should stop the round.

With Chapter 11, we have shown that citizen science is a potential way of creating
datasets for (almost) free, but our conclusions were based on a single, relatively small
study. We see the following directions for further research and evaluation to understand
better which settings citizen science can be applicable and how to use it best. It would
be interesting to conduct more projects and see which datasets are suitable as well as
whether volunteers participate, even if there is no extrinsic motivation. Then, it can
also be tested on how annotator retention develops, especially when projects run longer.
The call for participation itself could also be investigated for its impact on turnout,
motivation, and quality.

Finally, we find that despite the critical importance of high quality datasets, research
addressing this topic is surprisingly scarce. As machine learning and data-driven ap-
proaches continue to gain prominence, ensuring the accuracy and reliability of annotations
becomes increasingly crucial. Future work should prioritize investigating methods to
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enhance annotation quality, exploring innovative techniques, and establishing robust
evaluation frameworks. The importance of annotation quality should also be further
disseminated, for instance by organizing related workshops or talks. We hope that this
thesis is one step in this direction. Therefore, we recommend that conference organizers
and steering committees develop and adopt dataset quality management checklists to
promote best practices and to better document a dataset’s creation process.
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Annette Rios, Isabel Papadimitriou, Salomey Osei, Pedro Ortiz Suarez, Iroro Orife,
Kelechi Ogueji, Andre Niyongabo Rubungo, Toan Q. Nguyen, Mathias Müller, André
Müller, Shamsuddeen Hassan Muhammad, Nanda Muhammad, Ayanda Mnyakeni,
Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin Leong, Nze Lawson, Sneha
Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure F. P. Dossou,
Sakhile Dlamini, Nisansa De Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia
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Appendix

A Data Handling

In accordance with the Deutsche Forschungsgemeinschaft’s (German Research Foundation)
<Principles for the Handling of Research Data=1, we ensured the long-term preservation
of research data and/or experimental software that has been developed as part of this
dissertation. We made this data openly accessible when possible. The following software
has been made available for the scientific community (see the repositories for licensing
details):

• Chapter 6: https://github.com/inception-project/inception

• Chapter 7: https://github.com/UKPLab/qanno

• Chapter 8: https://github.com/UKPLab/nessie

• Chapter 9: https://github.com/UKPLab/acl2020-interactive-entity-linking

• Chapter 10: https://github.com/UKPLab/cl2022-annotation-curriculum

• Chapter 11: https://github.com/UKPLab/eacl2023-citizen-science-lessons-learned

Our dataset files are distributed and archived via TUdatalib, TU Darmstadt’s research
data repository under permissive licenses:

• Chapter 7: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3939

• Chapter 8: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3943

• Chapter 9: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2316

• Chapter 10: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2783

• Chapter 11: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3942

All publications related to this thesis are publicly available on the ACL Anthology or on
arXiv:

• Chapter 6: https://aclanthology.org/C18-2002/

• Chapter 7: https://arxiv.org/abs/2307.08153

• Chapter 8: https://aclanthology.org/2023.cl-1.4/

1https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/forschungsdaten/

leitlinien_forschungsdaten.pdf
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• Chapter 9: https://aclanthology.org/2020.acl-main.624/

• Chapter 10: https://aclanthology.org/2022.cl-2.4/

• Chapter 11: https://aclanthology.org/2023.eacl-main.261/

Moreover, all research results of the aforementioned publications are documented in the
present thesis, which is archived by the Universitäts- und Landesbibliothek Darmstadt.
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