
Towards Network-Accelerated
Databases

Lasse Beck Thostrup

Towards Network-Accelerated Databases

Doctoral thesis by
Lasse Beck Thostrup

submitted in fulfillment of the requirements for the
degree of Doctor rerum naturalium (Dr. rer. nat.)

Reviewers
Prof. Dr. rer. nat. Carsten Binnig

Prof. Tianzheng Wang, Ph.D.

Department of Computer Science
Technical University of Darmstadt

Darmstadt 2023

Lasse Beck Thostrup: Towards Network-Accelerated Databases

Day of the viva voce: 10.11.2023
Year published in TUprints: 2024
© In Copyright: https://rightsstatements.org/page/InC/1.0/

Darmstadt, Technical University of Darmstadt

https://rightsstatements.org/page/InC/1.0/

Erklärung laut
Promotionsordnung
§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schrift-
lichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertations-
thema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, September 25, 2023

Lasse Beck Thostrup

v

Abstract
Throughout the last years, data processing systems have seen substantial changes, notably
moving towards disaggregation of resources. This shift separates compute and storage
resources into distinct servers for better resource utilization, as they can now be scaled
independently based on demand. This development is crucial for cloud-native Database
Management Systems (DBMS), which mainly build on such disaggregated structures.

This thesis examines two significant hardware trends in disaggregated architectures
for DBMSs: modern networks and heterogeneous computing. Modern networks such
as Remote Direct Memory Access (RDMA) are critical for efficient, high-throughput,
low-latency data transfer, but present challenges for achieving optimal performance for
DBMSs. The reason for this is that RDMA comes with a low-level interface with a
plentitude of performance-critical aspects to consider. To address this challenge, this
thesis introduces a high-level programming interface, the Data Flow Interface, specifically
targeting the needs of data-intensive processing systems.

In addition, this thesis highlights the emerging trend toward programmable network
devices that offer data processing capabilities in the network. This trend is especially
interesting for distributed DBMSs as they have to transfer large amounts of data over
the network due to the disaggregated architecture, but also typical distributed data
processing operations such as joins have to shuffle data between compute nodes. In the
thesis, in-network processing devices are evaluated with typical DBMS operations to
investigate the benefits and potential shortcomings.

Another trend in the data center is the increasing heterogeneity of computing units
such as GPUs and FPGAs due to their fast processing capabilities. Incorporating these
heterogeneous devices into disaggregated architectures with fast networks has many
merits. The reason is that specialized compute units can be exposed as network-attached
disaggregated accelerator pools and thus provide flexible and scalable high-performance
data processing. This integration of heterogeneous compute units and fast RDMA-
capable networks is however non-trivial since networks like Remote Direct Memory
Access (RDMA) are typically not directly supported for devices besides CPUs and are

vii

as such non-trivial to integrate efficiently. The challenge of how to achieve efficient
communication between different types of compute devices is addressed by proposing a
network-driven communication scheme that leverages a programmable switch to carry
out the network communication on behalf of the compute devices.

viii

Zusammenfassung
In den letzten Jahren haben sich die Datenverarbeitungssysteme erheblich verändert,
insbesondere in Richtung Disaggregation von Ressourcen. Dabei werden Rechen- und
Speicherressourcen in verschiedene Server aufgeteilt, um eine bessere Ressourcennutzung
zu erreichen, da sie nun unabhängig voneinander je nach Bedarf skaliert werden können.
Diese Entwicklung ist entscheidend für Cloud-native Datenbankmanagementsysteme
(DBMS), die hauptsächlich auf solchen disaggregierten Strukturen aufbauen.

In dieser Arbeit werden zwei wichtige Hardware-Trends bei disaggregierten Architektu-
ren für DBMS untersucht: moderne Netzwerke und heterogenes Computing. Moderne
Netzwerke wie Remote Direct Memory Access (RDMA) sind für einen effizienten Da-
tentransfer mit hohem Durchsatz und geringer Latenz entscheidend, stellen jedoch eine
Herausforderung dar, wenn es darum geht, eine optimale Leistung für DBMS zu erzielen.
Der Grund dafür ist, dass RDMA über eine Low-Level-Schnittstelle verfügt, bei der eine
Vielzahl von leistungsrelevanten Aspekten zu berücksichtigen ist. Um dieser Herausfor-
derung zu begegnen, wird in dieser Arbeit eine High-Level-Programmierschnittstelle,
das Data Flow Interface, eingeführt, die speziell auf die Bedürfnisse datenintensiver
Verarbeitungssysteme ausgerichtet ist.

Darüber hinaus wird in dieser Arbeit der sich abzeichnende Trend zu programmierbaren
Netzwerkgeräten hervorgehoben, die Datenverarbeitungsfunktionen im Netzwerk bieten.
Dieser Trend ist vor allem für verteilte DBMS interessant, da diese aufgrund der disagg-
regierten Architektur große Datenmengen über das Netzwerk übertragen müssen, aber
auch typische verteilte Datenverarbeitungsoperationen wie Joins müssen Daten zwischen
Rechenknoten verschieben. In dieser Arbeit werden netzinterne Verarbeitungsgeräte mit
typischen DBMS-Operationen evaluiert, um die Vorteile und potenziellen Nachteile zu
untersuchen.

Ein weiterer Trend im Rechenzentrum ist die zunehmende Heterogenität von Rechenein-
heiten wie GPUs und FPGAs aufgrund ihrer schnellen Datenverarbeitungsmöglichkeiten.
Die Einbindung dieser heterogenen Geräte in disaggregierte Architekturen mit schnellen
Netzwerken hat viele Vorteile. Der Grund dafür ist, dass spezialisierte Recheneinheiten als
netzgebundene disaggregierte Beschleunigerpools eingesetzt werden können und so eine
flexible und skalierbare Hochleistungsdatenverarbeitung ermöglichen. Diese Integration
von heterogenen Recheneinheiten und schnellen RDMA-fähigen Netzwerken ist jedoch
nicht trivial, da Netzwerke wie RDMA typischerweise nicht direkt auf anderen Rechenein-
heiten als CPUs unterstützt werden und daher nicht einfach effizient zu integrieren sind.
Die Herausforderung, wie eine effiziente Kommunikation zwischen verschiedenen Arten

ix

von Recheneinheiten erreicht werden kann, wird durch den Vorschlag eines netzwerk-
gesteuerten Kommunikationsschemas angegangen, das einen programmierbaren Switch
nutzt, um die Netzwerkkommunikation an Stelle der Recheneinheiten durchzuführen.

x

Publications
[1] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten

Binnig. “DFI: The Data Flow Interface for High-Speed Networks.” In: SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava.
Best Paper Award. ACM, 2021, pp. 1825–1837. doi: 10.1145/3448016.3452816.
url: https://doi.org/10.1145/3448016.3452816.

[2] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten
Binnig. “DFI: The Data Flow Interface for High-Speed Networks.” In: SIGMOD
Rec. 51.1 (2022). Research Highlight Award, pp. 15–22. doi: 10.1145/3542700.

3542705. url: https://doi.org/10.1145/3542700.3542705.

[3] Lasse Thostrup, Daniel Failing, Tobias Ziegler, and Carsten Binnig. “A DBMS-
centric Evaluation of BlueField DPUs on Fast Networks.” In: International Work-
shop on Accelerating Analytics and Data Management Systems Using Modern Pro-
cessor and Storage Architectures, ADMS@VLDB 2022, Sydney, Australia, Septem-
ber 5, 2022. Ed. by Rajesh Bordawekar and Tirthankar Lahiri. 2022, pp. 1–10.
url: http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf.

[4] Jaco A. Hofmann, Lasse Thostrup, Tobias Ziegler, Carsten Binnig, and Andreas
Koch. “High-Performance In-Network Data Processing.” In: 10th International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@VLDB 2019, Los Angeles, California,
USA, August 26, 2019. Ed. by Rajesh Bordawekar and Tirthankar Lahiri. 2019,
pp. 64–73. url: http://www.adms-conf.org/2019-camera-ready/hofmann_

adms19.pdf.

[5] Lasse Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and Carsten Binnig.
“Distributed GPU Joins on Fast RDMA-capable Networks.” In: Proc. ACM Manag.
Data 1.1 (2023), 29:1–29:26. doi: 10.1145/3588709. url: https://doi.org/10.

1145/3588709.

xi

https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3542700.3542705
https://doi.org/10.1145/3542700.3542705
https://doi.org/10.1145/3542700.3542705
http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
https://doi.org/10.1145/3588709
https://doi.org/10.1145/3588709
https://doi.org/10.1145/3588709

[6] Matthias Jasny, Lasse Thostrup, and Carsten Binnig. “Zero-sided RDMA: Network-
driven Data Shuffling.” In: Proceedings of the 19th International Workshop on
Data Management on New Hardware, DaMoN 2023, Seattle, WA, USA, June
18-23, 2023. Ed. by Norman May and Nesime Tatbul. ACM, 2023, pp. 82–85.
doi: 10.1145/3592980.3595302. url: https://doi.org/10.1145/3592980.

3595302.

[7] Matthias Jasny, Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt István, and
Carsten Binnig. “Zero-sided RDMA: Network-driven Data Shuffling for Disag-
gregated Heterogeneous Cloud DBMSs.” In: Proc. ACM Manag. Data 2.1 (Mar.
2024). doi: 10.1145/3639291. url: https://doi.org/10.1145/3639291.

Due to the nature of the synopsis and for better readability, selected paragraphs
from these publications were transferred verbatim throughout the synopsis without
explicit labeling as suggested in the department regulations “Kumulative Dissertation
und Eigenzitate in Dissertationen” (21.09.2021) §1.

xii

https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3639291
https://doi.org/10.1145/3639291

Acknowledgments
I want to start by expressing my sincere thanks to Prof. Carsten Binnig for his outstanding
support and guidance throughout my Ph.D. journey. His mentorship went beyond just
academic matters. Prof. Carsten Binnig consistently showed genuine care for my personal
well-being, ensuring that I was not only progressing in my research but also thriving
personally.

I am also very thankful to Prof. Tianzheng Wang for taking the time to review this
dissertation.

I would like to express my gratitude to the Systems Group at TU Darmstadt, and
especially my colleagues Benjamin, Nils, Matthias, Tobi, and Muhammad. Their feedback
and help have been crucial, as well as the supportive and enjoyable office environment
they have provided.

A special thanks to Mona, who always keep a positive attitude and has been incredibly
helpful in handling all kinds of organizational matters.

Additionally, I want to thank my parents and siblings for their constant support
throughout this journey. Their encouragement has been indispensable.

Lastly, a heartfelt thank you to my wife, Florencia, and our daughter Luisa for their
unconditional love, support, and understanding. I am incredibly grateful for their presence
in my life.

xiii

Contents
I Synopsis 1

1 Introduction 3
1.1 Context & Motivation . 3
1.2 Problem Statement & Challenges . 4
1.3 Contributions . 7
1.4 Outline . 8

2 Addressing the Complexity of RDMA 9
2.1 RDMA Background . 10
2.2 The Data Flow Interface . 11

2.2.1 Key Design Principles . 11
2.2.2 Flow-based Programming Abstraction 12
2.2.3 DFI Flows Overview . 13
2.2.4 Realizing DFI Flows . 15

2.3 Evaluation & Methodology . 16
2.3.1 Shuffle Flows Evaluation . 16
2.3.2 Join Use Case . 17

2.4 Related Work . 19
2.5 Summary . 19

3 Evaluating In-network Processing for DBMSs 21
3.1 Evaluation of Programmable NICs for DBMSs 22

3.1.1 Background on Programmable NICs 23
3.1.2 Experiment Setup . 23
3.1.3 Use case 1: Remote B-Tree with RPC & One-sided RDMA 24
3.1.4 Use case 2: Remote Sequencer . 27
3.1.5 Conclusion . 28

xv

3.2 Distributed Join on a Programmable Switch 28
3.2.1 Join Processing with INP . 29
3.2.2 Query Compilation . 31
3.2.3 Evaluation . 31
3.2.4 Conclusion . 33

3.3 Summary . 33

4 Realizing Distributed Query Processing on GPUs 35
4.1 Overview . 37
4.2 Pipelined GPU Join Design . 39
4.3 Evaluation & Methodology . 40

4.3.1 Setup & Workloads . 40
4.3.2 Comparison with a Blocking GPU Baseline: 41
4.3.3 Complete SSB Query . 42

4.4 Related Work . 43
4.5 Summary . 43

5 Network-driven Communication for Accelerators 45
5.1 The Need for Network-driven Communication 46
5.2 Zero-sided RDMA Overview . 47
5.3 Realizing Zero-sided RDMA . 49
5.4 Zero-sided Communication Flows . 50
5.5 Evaluation & Methodology . 52
5.6 Related Work . 54
5.7 Summary . 55

6 Conclusion 57
6.1 Summary . 57
6.2 Future Research Directions . 59

6.2.1 Network-driven Communication . 59
6.2.2 The Future of RDMA . 60
6.2.3 Hardware Evolution . 60

II Peer-Reviewed Publications 63

7 DFI: The Data Flow Interface for High-Speed Networks 65
7.1 Introduction . 67

xvi

7.2 Existing Interfaces . 69
7.2.1 RDMA Verbs . 69
7.2.2 Message Passing Interface . 70
7.2.3 Shortcomings of MPI . 71

7.3 DFI Overview . 72
7.3.1 Key Design Principles . 72
7.3.2 Flow-based Programming Model 73
7.3.3 High-level Flow Execution . 74

7.4 Programming Model . 75
7.4.1 DFI Tuples . 75
7.4.2 DFI Flows . 76
7.4.3 Use Cases . 78

7.5 Flow Implementation . 81
7.5.1 Flow Execution . 81
7.5.2 Buffer Design . 83
7.5.3 Latency Optimization . 85
7.5.4 Other Flow Types . 85

7.6 Experimental Evaluation . 88
7.6.1 Experiment 1: Efficiency of DFI 89
7.6.2 Experiment 2: DFI vs. MPI . 93
7.6.3 Experiment 3: Use Cases . 95

7.7 Conclusions . 99
7.8 Acknowledgements . 100

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks 101
8.1 Introduction . 103
8.2 Background . 105

8.2.1 Remote Direct Memory Access (RDMA) 105
8.2.2 Data Processing Units . 105

8.3 Use Cases & Experimental Setup . 107
8.4 Use case 1: Remote B-Tree with RPC . 109

8.4.1 Throughput Characteristics . 110
8.4.2 B-tree Latency Characteristics . 114
8.4.3 Discussion . 118

8.5 Use case 1: Remote B-Tree with One-sided RDMA 118
8.5.1 Throughput Characteristics . 119

xvii

8.5.2 Latency Characteristics . 119
8.5.3 Discussion . 120

8.6 Use case 2: Remote Sequencer . 121
8.6.1 One-sided RDMA Atomics . 121
8.6.2 RPC with Local Atomics . 122
8.6.3 Discussion . 123

8.7 Conclusion and Future Work . 124
8.8 Acknowledgements . 124

9 High-Performance In-Network Data Processing 127
9.1 Introduction . 129
9.2 System Overview . 130
9.3 Query Processing . 132

9.3.1 Query Compilation . 133
9.3.2 Query Optimization . 134

9.4 Switch Design . 138
9.4.1 Hardware Platform . 138
9.4.2 Ethernet Packet Parsing On FPGA 139
9.4.3 Hash Table Generation . 140
9.4.4 Hash Table Probing . 142
9.4.5 Performance . 142

9.5 Initial Results . 142
9.5.1 Setup and Workload . 142
9.5.2 Experiment 1: Uniform Join Keys 143
9.5.3 Experiment 2: Skewed Join Keys 144
9.5.4 Experiment 3: Scaling Number of Joins 145

9.6 Conclusion & Future Work . 146
9.7 Acknowledgements . 147

10 Distributed GPU Joins on Fast RDMA-capable Networks 149
10.1 Introduction . 151
10.2 Overview of Distributed GPU Join . 155

10.2.1 Distributed GPU Join Scheme . 155
10.2.2 The Case for Pipelining . 155

10.3 Design Space for Pipelined GPU Join . 158
10.3.1 RDMA & GPUDirect . 158

xviii

10.3.2 Design Alternatives . 159
10.3.3 Design-Space Evaluation . 160

10.4 Pipelined GPU Join Algorithm . 163
10.4.1 Overview of Execution Steps . 163
10.4.2 Active GPU Kernel . 164
10.4.3 Successive Operations . 167
10.4.4 Streaming Shuffle . 169

10.5 Hybrid CPU/GPU Join Algorithm . 169
10.6 Experimental Evaluation . 171

10.6.1 Setup & Workloads . 171
10.6.2 Exp. 1 - Pipelined GPU Join . 173
10.6.3 Exp. 2 - Complete Queries . 176
10.6.4 Exp. 3 - Hybrid Join Execution . 180
10.6.5 Exp. 4 - Microbenchmarks . 182

10.7 Related Work . 185
10.8 Conclusion & Future Work . 186
10.9 Acknowledgements . 186

11 Zero-sided RDMA: Network-driven Data Shuffling 187
11.1 Introduction . 189
11.2 Zero-sided RDMA . 191
11.3 Initial Results . 192
11.4 Future Work . 194
11.5 Acknowledgements . 195

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Het-
erogeneous Cloud DBMSs 197
12.1 Introduction . 199
12.2 Background . 202

12.2.1 Remote Direct Memory Access (RDMA) 202
12.2.2 Programmable Switches . 204

12.3 Overview of Zero-sided RDMA . 205
12.3.1 Why Network-driven Communication? 205
12.3.2 How Does Zero-sided RDMA Work? 206
12.3.3 Integration into a DBMS . 208

12.4 Switch-driven Data Transfers . 209

xix

12.5 Complex Flows & Use Cases . 212
12.5.1 N:M Data Shuffling . 212
12.5.2 Advanced Flows & Features . 214
12.5.3 Use Cases . 216

12.6 Implementation Details . 216
12.6.1 Load Balancing and Replication 217
12.6.2 Further Challenges . 218
12.6.3 Discussion . 219

12.7 Experimental Evaluation . 221
12.7.1 Efficiency of Zero-sided RDMA . 222
12.7.2 Benefits of Switch-driven Data-transfers 227
12.7.3 Heterogeneous Communication . 231

12.8 Conclusions . 232
12.9 Acknowledgements . 232

xx

Acronyms
DB Database

DBMS Database Management System

ML Machine Learning

NUMA Non-Uniform Memory Access

OLAP Online Analytical Processing

OLTP Online Transaction Processing

RDMA Remote Direct Memory Access

NIC Network Interface Controller

ASIC Application-specific Integrated Circuit

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

DPU Data Processing Unit

xxi

Part I

Synopsis

1

1 Introduction

1.1 Context & Motivation

In the past decade, cloud computing and the landscape of data processing systems
have undergone a significant transformation. Notably, there has been a shift towards
disaggregation, separating compute and storage into distinct resources to offer improved
resource utilization, as each resource can be scaled independently based on demand [11,
28, 147, 150]. This trend has been transformative for cloud-native Database Management
Systems (DBMSs), which typically build on top of such disaggregated architectures [4,
23, 130]. When pairing this architectural trend with the innovation and shift in data
center hardware, we see that especially two hardware trends play an important role in
disaggregated architectures, namely modern networks and heterogeneous compute units.

Modern Networks - Fast & Programmable. In contrast to the traditional shared-
nothing DBMS architecture (shown in Figure 1.1a) where data storage and compute
are realized on the same physical servers, in disaggregated architectures (shown in
Figure 1.1b), data is stored separately from the compute nodes to enable efficient scaling
of resources. As such, one of the most important factors to performance is the rate at
which data can be transferred over the network and has therefore caused considerable
attention on developing fast network solutions. Remote Direct Memory Access (RDMA)
is one of these, which has already been widely adopted by the major cloud vendors as it
offers an efficient means of moving data from one server to another [5]. RDMA achieves
efficient networking by offloading parts of the networking stack to specialized Network
Interface Controllers (NICs) and completely bypassing the operating system. While
RDMA networks provide high throughput and low latency, it comes with a plentitude of
aspects to consider in order to achieve good performance for distributed data processing
systems. As such, blindly upgrading to faster networks does often not directly translate
into performance gains for DBMSs.

3

1 Introduction

Data center networks are not only becoming faster with technologies such as RDMA,
but they are also becoming programmable in the sense that networking devices such as
NICs and switches can be programmed for specific purposes beyond their fixed routing
and forwarding functionality. This opens up many new possibilities for realizing new
communication protocols and for disaggregated data processing systems to not only
process data at the end-hosts but also in the network while data is being transferred. A
concrete example is the possibility of pushing down whole database operators into the
network.
Heterogeneous Compute. Another important trend for data processing systems is that
compute devices are becoming increasingly heterogeneous due to the performance stag-
nation observed for CPUs. Heterogeneous compute devices such as Graphics Processing
Units (GPUs) or Field Programmable Gate Arrays (FPGAs) offer ample opportunities
for accelerating many processing jobs, and are as such seeing a lot of research inter-
est. This is especially the case for single-node hardware acceleration which has already
shown great potential for DBMSs [75, 120, 122]. Incorporating heterogeneous compute
units into disaggregated architectures with fast networks has many merits. The reason
is that specialized compute units can be exposed as network-attached disaggregated
accelerator pools, as illustrated in Figure 1.1c, and thus provide flexible and scalable
high-performance data processing. This integration of heterogeneous compute units and
fast RDMA-capable networks is however a rather unexplored avenue. The reason for
this is that networks like RDMA are typically not directly supported for devices besides
CPUs and are as such non-trivial to integrate efficiently.

1.2 Problem Statement & Challenges
While innovations in data center hardware bring a lot of promise for improvement, they
also bring new challenges and tradeoffs to consider. The challenges that arise from the
integration of modern networks and hardware are now iterated in order to set the context
for the thesis.
Challenge 1: Adoption of High-Speed Networks for DBMSs. RDMA has become
a crucial component in data center networking due to its unprecedented performance
and ability to remove network-related CPU overhead. With RDMA, an application can
leverage different communication primitives that can be categorized as one-sided (read
/ write) or two-sided (send / receive) operations, which refer to the involvement of the
sender and receiver in the communication. For one-sided operations, only the sender is

4

1.2 Problem Statement & Challenges

CPU
Compute

Storage

CPU
Compute

Storage

CPU
Compute

Storage

Network

...

(a) Shared-nothing architecture.

CPU
Compute

Storage

CPU
Compute

CPU
Compute

Storage

Fast Network

...

...

(b) Disaggregated architecture.

CPU
Compute

FPGA
Compute

GPU
Compute

Fast & Programmable Network

Storage Storage

...

...

(c) Disaggregated architecture with hetero-
geneous compute.

Figure 1.1: Overview of DBMS architectures for the cloud. In the shared-nothing ar-
chitecture (a), the network is avoided at all costs. In the disaggregated
architecture (b), resources can be scaled in or out separately by interconnect-
ing each resource with fast networks. In (c), heterogeneous compute units are
integrated in the disaggregated architecture to reap the benefits of accelerated
compute with the scaling properties of disaggregated resources.

actively involved, but as a consequence, the sender also has to decide where the data
should be placed on the remote node. With two-sided operations, the receiver is also
actively involved in the communication since it needs to issue receive requests before
send requests can be issued on the sender side. It can thus also decide where to place
data, simplifying remote memory management.

While one-sided operations have been shown to provide the best performance as they
help to remove remote CPU-overhead [28, 156], it introduces additional complexity as
all senders have to coordinate remote memory accesses. In addition to deciding which
RDMA operations to utilize, RDMA also has many low-level parameters such as transport
protocols, queue sizes, and additional communication flags.

As such, navigating these performance tradeoffs and design decisions is non-trivial and
hinders the adoption of RDMA for DBMSs.

5

1 Introduction

Challenge 2: Implications of In-network Processing. Data center networks are
evolving to be more active in the sense of providing the ability to process data as it
is transferred through the network. This change has fostered a lot of research as the
possibilities for distributed systems are many [60, 63, 79, 153]. Especially DBMSs can
benefit from in-network processing as they have to transfer large amounts of data over
the network both due to the disaggregated architecture, but also typical distributed data
processing operations such as joins have to shuffle data between compute nodes.

In-network processing is enabled by different networking devices such as switches and
NICs which are equipped with different processing units such as CPUs, FPGAs and
Application-specific Integrated Circuits (ASICs).

Due to the variety in devices, processing capabilities, and performance, it is difficult
to determine when DBMSs can benefit from in-network processing. As such, for future
DBMSs to build on and use in-network processing, it is important to first understand
and evaluate performance implications and potential benefits when offloading database
operators and data structures into the network.

Challenge 3: Distributed Heterogeneous Compute. Also for the compute units,
modern hardware is increasingly making its entry into the data center. While historically
the CPU has been the primary platform used for data processing, the challenges of
continuously scaling the processing power (typically referred to as the end of Moores
Law and Dennards Scaling), are causing increased interest in more specialized compute
devices. Examples of such devices are GPUs and FPGAs, which come with different
processing models as compared to traditional CPUs but in turn, can provide speedups
for a wide range of DBMS tasks in single-node setups [75, 120, 122, 127, 139].

However, many modern processing tasks require multiple interconnected compute
units to fulfill the processing needs due to high compute demands and dataset sizes. In
addition, the predominant disaggregated DBMS architecture builds on a shared storage
model where data is transferred from storage nodes to compute nodes. What this means
for compute accelerators is that it is essential for the overall device performance that
data can be transferred efficiently in and out of device memory. This is a major challenge,
as efficient networking stacks such as RDMA are rarely available for processing units
other than CPUs. For this reason, the networking control flow is handled by the CPU
which can in turn heavily affect the achieved processing performance as it increases
the synchronization and coordination overhead between the accelerator and the CPU.
Therefore, in order to integrate compute accelerators into disaggregated setups, it is
essential that the accelerators can communicate independently.

6

1.3 Contributions

Another challenge with the integration of compute accelerators is the need to redesign
and adapt existing database operators to take full advantage of the processing capabilities
such accelerators can offer. In a distributed setup, this means that networking has to be
incorporated directly into the operator design to efficiently make use of both resources
concurrently.

1.3 Contributions
This thesis aims to investigate the benefits, challenges, and suggest solutions to bring data
processing systems into the era of fast programmable networks and heterogeneous compute
devices. The thesis contains the following contributions that address the aforementioned
challenges:
Addressing the Complexity of RDMA. This contribution addresses Challenge
1 by simplifying the adoption and integration of RDMA in DBMSs. By providing
an abstraction, it aids system developers in navigating complex design decisions by
simplifying distributed memory management and performance trade-offs associated with
RDMA operations. The abstraction is centered around the requirements of distributed
DBMSs by providing a set of tailored networking primitives typically used in DBMSs.
As such, it facilitates the integration of RDMA, helping to remove the barriers hindering
its wider adoption in database systems.
Understanding and Evaluating In-network Processing. As data center networks
evolve, understanding and assessing the implications of in-network processing becomes
vital. This contribution addresses Challenge 2 by conducting an evaluation of in-network
processing in the context of DBMSs. The evaluation benchmarks various devices, pro-
cessing capabilities, and performance metrics. It establishes a foundation for future
DBMSs, outlining when and how they can benefit from in-network processing, thus
offering guidance for offloading database operators and data structures into the network.
Realizing a Distributed GPU Join Operator on Fast RDMA-capable Networks.
This contribution addresses Challenge 3 by presenting a novel distributed GPU join
operator that leverages RDMA-capable networks. A pipelined approach is introduced
to efficiently incorporate network communication into the join execution and by that
leverage both the limited GPU memory and the network optimally. By designing and
adapting existing database operators to harness the power of GPUs and high-speed RDMA
networks, significant improvements in processing performance are demonstrated. This

7

1 Introduction

work addresses the challenges of efficient data transfer, synchronization, and coordination
between accelerators.
Designing Network-driven Communication for Disaggregated Accelerators.
With modern hardware making its entry into data centers, enabling efficient networking
stacks like RDMA for heterogeneous processing units is a significant challenge. To further
address Challenge 3, this contribution introduces a network-driven communication scheme
designed explicitly for disaggregated accelerators. A key contribution is that offloading
and driving the network communication from the network, allows accelerators to do
efficient RDMA communication without having to implement the communication scheme
in the accelerators or CPUs.

Together, these contributions not only address the specific challenges brought by
innovations in data center hardware but also pave the way for new possibilities and
advancements in database systems. The ensuing chapters of this thesis will delve into
the methodologies, experiments, and results that underline these contributions.

1.4 Outline
In the following chapters, each of the main contributions are presented. In Chapter 2 an
interface is proposed which addresses the challenges of leveraging RDMA for DBMSs.
Chapter 3 takes a step further into the network by evaluating the effectiveness of in-
network processing for DBMS use cases. Subsequently in Chapter 4, a distributed GPU
join operator is presented that optimally integrates the network into join execution on
the GPUs. In Chapter 5, a network-driven communication scheme for integrating various
accelerators with fast and efficient networking is presented. The synopsis concludes with
a summary of the results and an outlook of future research directions in Chapter 6.

8

2 Addressing the Complexity
of RDMA

This chapter summarizes the work on addressing the complexities of RDMA through
an interface for DBMSs. The contributions are based on the following peer-reviewed
publications.1

• “DFI: The Data Flow Interface for High-Speed Networks” published in SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June 20-25,
2021. Best Paper Award. [125], (cf. Chapter 7).

Contributions of the authors: Lasse Beck Thostrup is the leading author and was
thus responsible for the implementation, benchmark design, and evaluation of the Data
Flow Interface, and the manuscript. The co-author Jan Skrzypczak contributed to the
implementation and evaluation of the distributed consensus (state machine replication)
use-case. The remaining authors Matthias Jasny, Tobias Ziegler, and Carsten Binnig
contributed invaluable feedback. All authors agree with the use of the publication for this
dissertation.

• “DFI: The Data Flow Interface for High-Speed Networks” published in SIGMOD
Rec. 51.1 (2022). Research Highlight Award. [126]2.

Contributions of the authors: Lasse Beck Thostrup is the leading author and was thus
responsible for adapting the manuscript of the original publication (“DFI: The Data Flow
Interface for High-Speed Networks” SIGMOD 2021) to the SIGMOD Record publication
format. The authors Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten Binnig
contributed invaluable feedback. All authors agree with the use of the publication for this
dissertation.

RDMA has been gaining in popularity, especially in the cloud due to its unprecedented
performance both in terms of low latency and high bandwidth. For disaggregated

1Several passages in this chapter were transferred verbatim from these publications.
2Publication is not included in Part II as it is a condensed version of the original SIGMOD 2021

publication (cf. Chapter 7).

9

2 Addressing the Complexity of RDMA

DBMSs, RDMA is particularly interesting as the network plays a crucial role in the
overall performance since data transfers are on the critical path. However, the performance
of RDMA comes at the cost of a complex and hard-to-use interface, with many low-level
knobs and parameters to tune in order to achieve the optimal performance.

In the following, the challenges of RDMA are addressed by proposing an abstraction
called The Data Flow Interface (DFI) which aims to make it easier for data processing
systems to exploit high-speed networks without the need to deal with the complexity of
RDMA.

2.1 RDMA Background
Before diving into the Data Flow Interface, a background on RDMA is first provided.

The InfiniBand RDMA verb interface is a low-level interface providing low latency and
high bandwidth communication. The interface exposes one-sided verbs (write, read &
atomics) and two-sided verbs (send & receive) which refer to the involvement of end-points
(i.e., one-sided verbs only involves the CPU of the sender). The high performance of
RDMA is in parts achieved by zero-copy functionality where data is transferred directly
from the application over the network to the receiver without any intermediate copies
which therefore avoids spending CPU resources on copying. In addition, RDMA has an
asynchronous nature making it possible to pipeline computation and communication
such that the CPU is not busy idling during network communication. RDMA requires
specialized network cards (RNICs) that implement a part of the networking stack directly
in hardware.

The RDMA verb interface is a userspace library, meaning all networking functionality is
executed directly in the application processes. To issue RDMA verbs (one- or two-sided),
the application has to register a memory region in which the RNIC can directly access
memory, leaving communication-related memory management to be a responsibility of
the application. RDMA can be set up with different kinds of transport types, such as
Reliable Connection or Unreliable Datagram. The most commonly used transport is the
Reliable Connection which requires stateful connections between any end-points. Since
reliability is a must for most applications and only the Reliable Connection supports
one-sided verbs, in this thesis, only Reliable Connection is used3.

3With one exception, that is for supporting native RDMA multicast, only Unreliable Datagram is
supported.

10

2.2 The Data Flow Interface

In summary, due to the RDMA verb interface’s very low abstraction level, it provides
a huge design space. This requires, that applications need carefully explore this design
space and optimally make use of the available low-level options [35, 69, 156, 157]. This is
however burdensome and requires a lot of engineering to realize.

2.2 The Data Flow Interface
To address the complexity of the RDMA interface, the Data Flow Interface (DFI) is
now introduced. In this section, the central design goals of DFI are first highlighted
before discussing the flow-based programming model, as well as the high-level idea of the
execution model behind flows.

2.2.1 Key Design Principles

The aim of DFI is to provide a high-level abstraction that provides efficient support for a
broad set of data processing systems. The key design principles of DFI to ideally support
the needs of these systems:

• (1) Pipelining: As many data-centric applications are often dominated by data
transfers (i.e., data shuffling), it has been shown to be crucial that computation
and communication can be overlapped in order to fully utilize both the network
and CPU at the same time [10].

• (2) Thread-centricity: Multi-threading is essential not only in achieving high degrees
of parallelism in modern data-centric architectures but also in saturating the network.
Hence, different from process-centric libraries (e.g., MPI), DFI should be designed
from the ground up to enable a thread-centric execution and communication model.

• (3) Low-overhead synchronization: Another important aspect that goes along with
thread-centricity is that DFI aims to provide low-overhead synchronization between
sender and receiver threads as well as between sender threads that target the same
receiver. By providing low-overhead synchronization, DFI should enable scalability
to a high number of sender and receiver threads.

• (4) Declarative optimization: A last important goal is that DFI exposes parameters
as a handle for applications to declare what optimizations are desired. Examples
of such optimizations are whether applications are bandwidth or latency-sensitive,

11

2 Addressing the Complexity of RDMA

but also other guarantees such as the global ordering of messages when data is sent
across flows (which is important, for example, for data replication protocols).

These design principles form the foundation of DFI and are realized through a flow
abstraction that offers applications a high-level interface to declare data movements
between processing nodes.

2.2.2 Flow-based Programming Abstraction

Central to the DFI abstraction are flows. These flows define data movement between
endpoints in distributed applications, presenting sources and targets as data entry and
exit points on a per-thread basis. This intuitive abstraction allows applications to
design various communication topologies, ranging from point-to-point to many-to-many
communications between worker threads across nodes. It’s versatile enough to compose
many different data processing scenarios, from bandwidth-intensive distributed join
algorithms to latency-sensitive consensus protocols, as later shown in Section 2.3.

The following is an example of a concrete many-to-many flow type in DFI, which is
one out of multiple other flow types. The most prevalent instance of many-to-many
communication in data processing systems is key-based data shuffling across multiple
sources and targets. Figure 2.1 depicts such a shuffle flow in DFI.

Setting up and using a flow in DFI works as follows:

• Initialization: To deploy a flow, one must first initialize it, specifying details like
a unique flow name identifier, the locations of source and target threads (which
are identified using node addresses and thread IDs under DFI_Nodes), and the
tuple schema. This also involves determining the key for tuple shuffling. While
applications can designate specific partition functions, by default, DFI uses a
key-based hash function for tuple partitioning.

• Metadata Registry: After initialization, the flow’s metadata is registered centrally,
typically on a master node in a distributed system. This centralization ensures other
nodes can access and participate in the flow, with information such as distributed
memory locations, tuple schema, and flow type. Before execution, sources and
targets fetch the flow metadata from the registry.

• Flow Source Execution: During execution, a thread pushes tuples into the source.
The push primitive is asynchronous and returns immediately after the tuple to be
transferred is copied into an internal send buffer. This allows for overlap of pipeline
computation and communication and thus uses both CPU and network resources
in parallel.

12

2.2 The Data Flow Interface

Source 1

Target 1

Target 2

sources targets shuffle key

Flow initialization

Flow execution

DFI_Nodes n({"192.168.0.1|0", ...});
DFI_Schema schema({"key", int},{"value", int});
DFI_Flow_init(name, {n[0]}, {n[1], n[2]}, schema, 0);

for(auto tuple : tuples)
 source.push(tuple);

target.consume(tuple); // {0,20}
target.consume(tuple); // {2,30}

target.consume(tuple); // {3,20}
target.consume(tuple); // {7,40}

Figure 2.1: DFI’s Programming and Execution Model. Example of flow initialization for
setting up a shuffle-based flow. The flow execution exemplifies the tuple-based
push and consumes primitives on DFI.

• Data Tranfers: Internally, DFI transfers tuples from sources to targets given the
distribution function. This is done with one-sided RDMA in configurable transfer
sizes depending on the declared optimization goal of the application.

• Flow Target Execution: At the target, tuples are internally detected by end-of-
message polling in a circular memory buffer, and directly handed over to the
application without intermediate copies.

Beyond the shuffle flows involving N senders and M receivers, DFI also supports other
flow types and topologies to accommodate various data processing applications, which is
covered next.

2.2.3 DFI Flows Overview

DFI introduces flows tailored to the diverse requirements of data processing systems. As
outlined in Table 2.1, DFI features three distinct flow types. Each type supports specific
communication topologies and is equipped with its own set of declarative flow options.

The strength of the flow abstraction is in its inherent flexibility. Different flow types
can be easily interchanged to achieve different communication patterns. For example, to
transform a symmetric re-partition join algorithm into a fragment-and-replicate join, it
is possible to simply switch from using a shuffle flow that directs tuples based on the

13

2 Addressing the Complexity of RDMA

Flow type Communication topology Flow options
Shuffle flow 1:1, N:1, 1:N, N:M Bandwidth/latency
Replicate flow 1:N, N:M Bandwidth/latency + ordering guar-

antees
Combiner flow N:1 Bandwidth/latency + various aggre-

gations

Table 2.1: DFI flow types for a wide range of data-centric applications. Communication
topologies and flow options further allow applications to adjust the behavior
of flows based on application requirements.

join key to a replicate flow that replicates the inner table. Achieving such modifications
in conventional systems utilizing the RDMA verb interface would typically demand a
substantial rewrite of communication-related components.

Below, the distinct flow types and their relevance to data processing systems are
iterated:

Shuffle Flow. The shuffle flow accommodates many communication patterns and
routing preferences. The communication pattern is indirectly defined by declaring the
participating sources and targets in the flow initialization, and can therefore follow 1:1,
N:1, 1:N, and N:M communication patterns between sending and receiving threads.

The routing of tuples in a shuffle flow can be determined in various ways, such as
by supplying a shuffle key or defining a routing function mapping tuples to target
destinations.

Replicate Flow. The replicate flow caters to data processing tasks involving data
duplication, for example, replicated state machines and fragment-and-replicate join
operations.

However, a straightforward replication approach using multiple RDMA operations can
be limited by the source node’s outgoing link speed. To address this, DFI utilizes RDMA
multicast. This ensures that messages are efficiently replicated within the network,
circumventing potential bottlenecks at the source’s outgoing link.

Combiner Flow. DFI’s third flow is the combiner flow, designed for many-to-one
communication patterns prevalent in aggregation scenarios like SQL aggregation or
distributed machine learning parameter servers [83]. While a basic approach might
conduct reduction at the target node, network-assisted acceleration is possible. For
instance, the SHARP protocol in InfiniBand [41] facilitates in-network aggregations
for fast InfiniBand networks, addressing potential bottlenecks at the receiver’s inbound
network.

14

2.2 The Data Flow Interface

Network

Target

Source 1

Source 2

RDMA Target-side
buffer

Flow
push

Flow
consume

Source-side
buffer

push (tuple)
 curSegment = sendRing.curSegment;
 curSegment.append(tuple)
 if (curSegment.isFull())
 curSegment.setConsumable();
 transferByRdmaWrite(curSegment); //async
 sendRing.advanceSegment();

consume (&tuples)
 while (!curSegment.isConsumable())
 curRing = nextRing();
 curSegment = curRing.curSegment;
 tuples = curSegment.payload;
 curRing.advanceSegment();

Figure 2.2: DFI flow implementation using ring buffers. In DFI flows, each source
allocates a private target-side ring buffer to minimize coordination overhead.

2.2.4 Realizing DFI Flows

The following covers a brief overview of how flows are internally realized and designed.

On a high level, to achieve the previously presented design goals for shuffle flows, DFI
uses a private send/receive buffer for each pair of source and target threads as illustrated
in Figure 2.2. The design of source- and target-side buffers follows a ring-based design
where each ring is composed of a configurable number of segments and is allocated as
one consecutive region in memory. The segment itself can be sized to contain a single
tuple up to a batch of tuples. Therefore, the segment size is a tuning parameter that
allows DFI to either optimize for bandwidth or latency independent of the tuple sizes
used by the application.

One key question is how such a segmented ring design enables pipelining of tuples
with low-overhead synchronization. In order to achieve pipelined data transfers between
buffers (i.e., a decoupling of senders and receivers), one-sided RDMA writes are used to
copy data asynchronously from sources to targets. To ensure that data is not overwritten
on the target side, synchronization is handled through a credit-based approach with the
target buffer such that only occasionally the state of the remote target buffer has to be
read.

15

2 Addressing the Complexity of RDMA

2.3 Evaluation & Methodology
In this section, DFI is evaluated by first benchmarking the shuffle flow, and subsequently,
the usability and performance are evaluated through a distributed join use case.
Evaluation Environment. All experiments were conducted on an 8-node cluster with
Intel Xeon Gold CPUs equipped with 100 Gbps ConnectX-5 InfiniBand NICs. DFI is
implemented with C++17 and compiled with gcc-7.3.0.4

2.3.1 Shuffle Flows Evaluation

In the following, shuffle flows are evaluated with bandwidth and latency optimization
and lastly, a scale-out experiment is presented.
Bandwidth-Optimized. The first experiment evaluates performance for the shuffle
flow from 1 server to 8 servers with varying tuple sizes. Further, the number of sources
(threads) pushing tuples into the flow is varied. The batch size for the bandwidth-
optimized version in the experiments is 8 KiB. A batch size of 8 KiB is chosen as this
offers a good tradeoff between network bandwidth and time until the batch is filled.

Figure 2.3a reports results for the bandwidth-optimized flow. As can be seen, in most
settings full network bandwidth is achieved. Only the single-threaded scenario shows
some overhead since batches must first be filled on the source side with individual tuples
before they can be transferred to the target. This overhead can, however, be amortized
by using more threads per server. Due to the efficient multi-threading support of DFI,
we see that from two source threads on, the bandwidth is limited by the speed of the
outgoing link (100 Gbps / 11,64 GiB/s - red line) for tuple sizes larger than 128 B.
Moreover, when using 4 threads the maximal bandwidth is achieved independent of tuple
sizes.
Latency-Optimized. Next, the shuffle flow with latency optimizations is evaluated.
Using two shuffle flows, the round-trip time between nodes is measured. In Figure 2.3b,
the latency is reported for different numbers of targets. The latency is compared with
ib_write_lat5, which is a standard tool for performance testing that uses low-level verbs
to implement the round-trip. Only a small latency overhead can be detected for bigger
tuple sizes due to the internal buffering in DFI. Multi-target latency in DFI is slightly
increased due to shuffle flow’s internal routing, whereas ib_write_lat supports only one
target.

4For a full description of the test environment see Section 7.6
5https://github.com/linux-rdma/perftest.

16

https://github.com/linux-rdma/perftest

2.3 Evaluation & Methodology

1 2 4
Source threads

0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s

Se
nd

er
B
W

64 B tuples
256 B tuples
1024 B tuples
Max. link speed

(a) Sender bandwidth (1:8)

16 B 64 B 256 B 1 KiB 4 KiB 16 KiB

Tuple size

2 µs
4 µs
6 µs
8 µs

10 µs
12 µs
14 µs
16 µs
18 µs

R
ou

nd
-t

rip
tim

e DFI - N=1 target
DFI - N=4 targets
DFI - N=8 targets
ib_write_lat - N=1 target

(b) Median latency (1:N)

2 3 4 5 6 7 8

Servers

0 B/s

16 GiB/s

32 GiB/s

48 GiB/s

64 GiB/s

80 GiB/s

96 GiB/s

A
gg

.
B
W

4 source & target threads per server
14 source & target threads per server

(c) Aggr. sender bandwidth (N:N)

Figure 2.3: Shuffle flow performance. DFI achieves max. bandwidth and low latency for
various scenarios.

Scale-out. A scale-out experiment for the shuffle flow was conducted, expanding the
number of servers. Utilizing 14 sources and targets per node resulted in 12,544 unique
connections for 8 servers. As shown in Figure 2.3c, DFI scales linearly with the number
of nodes (as indicated by the x-axis), effectively increasing the aggregated bandwidth
with the link speed of each added node.

2.3.2 Join Use Case

Distributed joins are crucial operators in OLAP due to large amounts of data having to
be transferred across the network, and therefore a good candidate to evaluate bandwidth-
optimized flows of DFI.
Distributed Radix Join. A distributed radix hash join was implemented using DFI
and compared against a state-of-the-art implementation [9] using the Message Passing
Interface (MPI) as an alternative high-level interface with RDMA capabilities. The DFI
join was realized with two shuffle flows to re-distribute each input table on the join key.

The DFI join achieves the best performance largely due to two DFI-centric design
decisions, as seen in Figure 2.4: (1) The DFI radix join does not need to first compute

17

2 Addressing the Complexity of RDMA

DFI radix joinMPI radix join
0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

R
un

tim
e

Join
Local Partition
Sync. Barrier

Network Shuffle & Partition
Histogram

Figure 2.4: Distributed radix join - 8
nodes, 64 threads (DFI)/64
processes (MPI) in total. 2.56
B ./ 2.56 B tuples.

MPI radix join DFI radix join DFI replicate join
0.0 s

0.2 s

0.5 s

0.8 s

1.0 s

1.2 s

R
un

tim
e

Join
Local Partition
Sync. Barrier

Network Replication
Network Shuffle & Partition
Histogram

Figure 2.5: Distributed joins - 8 nodes, 64
threads (DFI)/64 processes
(MPI) in total. 2.56 M ./ 2.56
B tuples.

a global histogram of the partition buckets. The MPI radix join in [9] makes use of
one-sided MPI_Put primitives. In order to achieve coordination-free writes, it thus has
to compute exclusive writing offsets for each partition using one additional pass. Different
from this, DFI encapsulates the memory management through the buffer design which
makes the additional pass superfluous. (2) The MPI join mandates a synchronization
after the network partition phase, ensuring all data is fully received before progressing to
a local partitioning step. This synchronization barrier can incur high overhead even for
uniformly distributed data. With DFI, this constraint is unnecessary, as incoming data
can be processed immediately upon arrival.

Join Adaptability. Flows in DFI offer a high-level abstraction that encapsulates the
data transfer of applications. As a result, it is trivial to adapt algorithms to use a
different communication pattern. To demonstrate this, we adapted the radix hash join
implementation to a fragment-and-replicate join variant which uses one replicate flow
that replicates the inner table on all nodes. Figure 2.5 shows the runtimes of the three
different join implementations with a smaller inner table (1000× smaller than the outer
table). The replication of the small inner table is comparably cheap compared to shuffling
the big outer table over the network. Overall, this setup helps to further reduce the
overall runtime by another 20%,

18

2.4 Related Work

2.4 Related Work
Before concluding with a summary of this chapter, the related work is first iterated.

Liu et al. [84] conclude that MPI is not a fitting RDMA interface for data processing
systems due to its processes-centric and synchronous behavior. To limit the number
of roundtrips needed for typical remote operations, the authors suggest an extension
of RDMA besides the read and write that are specifically targeting low-level DBMS
operations. Contrary to DFI, this work does not aim to raise the level of abstraction for
data processing systems, but instead to enrich the existing RDMA interface with new
primitives.

Along similar lines, Burke et al. [17], suggest an extension of the RDMA interface to
limit the number of roundtrips needed for, e.g., key-value stores, replicated storage, and
distributed transactions. The extension permits to chain remote operations together such
the latency is reduced due to fewer network round-trips.

Fent et al. [35] propose the communication library L5. While both DFI and L5 aim to
raise the abstraction for RDMA, L5 is built around simplifying the use of Shared Memory
and RDMA for external database communication (ODBC-like), whereas DFI targets
distributed data processing. As such, DFI provides various communication patterns for,
e.g., data shuffling and replication which L5 does not.

2.5 Summary
DFI presents data-centric systems with an easy-to-use interface for fast RDMA-capable
networks, without having to deal with the low-level and complex aspects of RDMA.
DFI provides a high-level interface that offers efficient means of shuffling, replication, or
combining data.

The design of DFI is centered around four design principles that offer efficient support
for a broad set of data-processing systems. With the implementation of DFI, it has
been shown that DFI adds only minor overhead compared to low-level abstractions such
as RDMA verbs. Moreover, the join use case demonstrated that DFI can efficiently
support data-centric applications at high performance while maintaining a high level of
abstraction.

19

3 Evaluating In-network
Processing for DBMSs

This chapter summarizes the work on evaluating in-network processing for DBMSs. The
contributions are based on the following peer-reviewed publications.1

• “A DBMS-centric Evaluation of BlueField DPUs on Fast Networks” published
inInternational Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures, ADMS@VLDB 2022, Sydney, Australia,
September 5, 2022 [124], (cf. Chapter 8).

Contributions of the authors: Lasse Beck Thostrup is the leading author and was
thus responsible for the implementation, benchmark design, evaluation, and manuscript.
The co-author Daniel Failing contributed to the initial benchmark implementation and
evaluation that was not included in the publication. The remaining authors Tobias Ziegler,
and Carsten Binnig contributed invaluable feedback. All authors agree with the use of the
publication for this dissertation.

• “High-Performance In-Network Data Processing” published in10th International
Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor
and Storage Architectures, ADMS@VLDB 2019, Los Angeles, California, USA, August 26,
2019 [50], (cf. Chapter 9).

Contributions of the authors: Lasse Beck Thostrup is the leading author and was
thus responsible for the implementation, benchmark design, evaluation, and manuscript.
The co-author Jaco A. Hofmann contributed to the switch FPGA implementation and
evaluation. The co-author Tobias Ziegler contributed to the initial system design as well as
the join cost models. The remaining authors Carsten Binnig, and Andreas Koch contributed
invaluable feedback. All authors agree with the use of the publication for this dissertation.

While RDMA facilitates high network bandwidth and low latency in database systems,
it is not the only option of modern network technologies that distributed data processing
systems can leverage. A recent trend in modern networks is that network components

1Several passages in this chapter were transferred verbatim from these publications.

21

3 Evaluating In-network Processing for DBMSs

such as switches and NICs become programmable by providing additional computation on
the device. Such devices thus enable processing or manipulation of data as it is traversing
the network. It, therefore, opens up many possibilities for tailoring the network stack to
data processing, ranging from opportunities such as in-network caching to the execution
of distributed SQL operations inside network components [12, 36, 60, 116, 153]. The
programmable networking devices that are available today span far in terms of compute
architectures, such as ASICs, FPGAs, and general CPU cores, and therefore come with
trade-offs in programmability and performance.

As such, it is non-trivial to decide in which areas and on which compute architectures
DBMSs can benefit from in-network processing. In the following, this challenge is
addressed by first evaluating how well programmable NICs equipped with CPU cores can
be integrated into typical DBMS workloads with RDMA, and subsequently in Section 3.2,
how a database join can be offloaded completely into the network onto a programmable
switch.

3.1 Evaluation of Programmable NICs for
DBMSs

A programmable NIC, also referred to as a Data Processing Unit (DPU), that has seen a
lot of attention is the BlueField Network Interface Card [102] since it provides RDMA
capabilities, flexible programmability due to its general-purpose ARM CPU cores along
with other embedded specialized ASICs for tasks such as data encryption and decryption.
While evaluations have shown that security-related tasks or tasks to provide tenant-
isolation in data centers [20] can be provided in an efficient manner, there is no previous
study that shows the offloading capabilities of DBMS tasks to such RDMA-enabled
DPUs.

In this work, a first systematic study is provided that evaluates the basic performance
characteristics of the BlueField network cards in the context of typical DBMS operations.
For the evaluation, the offload potential of using BlueField as an RDMA-enabled DPU for
two important use cases is analyzed: (1) a remote B-tree and (2) an end-host sequencer
(i.e., remote counter). The remote B-tree is chosen because it is a frequently used
data structure for DBMSs and it is also used in disaggregated architectures to avoid
transferring all data across the network [135, 157]. On the other hand, the end-host
sequencer is a commonly used building block for many distributed system tasks such as

22

3.1 Evaluation of Programmable NICs for DBMSs

global ordering [82], coordinating write access to shared memory [11], or implementing
optimistic concurrency control [146].

3.1.1 Background on Programmable NICs

Before diving into the evaluation, the relevant background on the Data Processing Units
(DPUs) is provided. Many of the major network hardware vendors are including DPUs
in their product offerings, with examples like the Intel IPU, Broadcom Stingray, AMD
Pensando, or the Nvidia BlueField. DPUs come with different compute architectures
ranging from P4 programmable ASICs to general-purpose CPU cores. This evaluation
focuses on the BlueField cards from Nvidia. The BlueField DPU cards are equipped with
general-purpose ARM cores which are capable of executing any program logic in contrast
to the more rigid ASIC architectures. The DPU runs its own OS (e.g., Ubuntu) and
as such resembles another independent server with an added set of networking features.
Internally, the DPU consists of the RDMA-capable networking component (ConnectX)
which provides hardware-offload of the network stack for more efficient (i.e., less CPU
intensive) networking. Moreover, the ARM cores which act as computational resources
on the DPU are equipped with DDR4 memory and are connected to the ConnectX over
an internal PCIe switch. The BlueField (from the second generation on) is additionally
equipped with hardware accelerators for compression/decompression, encryption, and
regex pattern matching.

3.1.2 Experiment Setup

In the experimental setup, a typical disaggregated storage and compute setup is used.
The storage node is equipped with a BlueField 2 card and runs with an Intel Xeon
Gold 6326 CPU, 512 GB DDR4 memory, and PCIe 4.0. The compute node uses a
non-programmable RDMA ConnectX-5 NIC and is equipped with an Intel Xeon Gold
5220 CPU with 512 GB DDR4 memory2. The servers are connected with RDMA over
Converged Ethernet (RoCE) v2. Note that the BlueField card used in this setup only
provides a maximum of 25 Gbps per network link. However, since the BlueField NIC is
equipped with two links, a total of 50 Gbps connection between the compute and storage
server can be used by splitting the traffic over the two links.

The BlueField card is configured in a so-called Embedded Mode where two virtual
interfaces are created which route to either the ARM subsystem or the host. The routing

2For a complete overview of the hardware used, see Table 8.2

23

3 Evaluating In-network Processing for DBMSs

is offloaded into the eSwitch and does therefore not introduce measurable overhead on
the ARM subsystem.

3.1.3 Use case 1: Remote B-Tree with RPC & One-sided RDMA

In the first experiment, the offloading potential of the BlueField-2 DPU is evaluated by
utilizing the DPU together with the host CPUs of the storage server. On both the DPU
and the host, all 8 CPU cores are used, which is fixed regardless of the partition sizes on
the host or DPU. To use both compute resources, a B-tree is range-partitioned between
the host memory and the DPU memory.

Different partition setups are used, ranging from 0-100% of the B-tree being stored on
the DPU. Moreover, the index requests are uniform in the whole key range such that the
relative partition sizes of the tree also match the workload generated to each device (i.e.,
the host CPU or the BlueField-2 DPU).

B-Tree with RPC. For the first experiment, the remote B-tree is accessed via RPC calls.
The RPC framework employs two-sided RDMA SEND/RECEIVE verbs, incorporating
existing optimizations like door-bell batching on both the client and server-side and
inlining to minimize PCIe overhead [67]. The B-tree adopts an OLC (optimistic lock-
coupling) synchronization protocol to ensure scalable reads [78]. Both keys and values
are represented by 8-byte integers, and the experiment contains both a balanced mix of
50/50 read-write or exclusively read-only workloads.

In Figure 3.1, we see the results when we gradually increase the range partition of
the B-tree on the DPU and decrease it on the host, indicated by the x-axis. With 0%
DPU offload, the host contains the full B-tree and as such all requests are handled by
the host and the DPU is not processing any requests. Instead, with 25% offload, 3/4 of
the B-tree is on the host and 1/4 is on the DPU. Overall, in Figure 3.1 we initially see a
steady increase in throughput as more requests are routed to the DPU up until around
25% whereas for the tree with 1M keys, the overall throughput increases by 47%. For
larger tree sizes, the observed throughput increase is slightly less, with around 30% for
the B-tree with 256 M keys.

However, offloading more than about 25% of the B-tree to the DPU is detrimental
to the throughput since the DPU is then overloaded and the performance degrades to
DPU-only throughput. This degradation of throughput is not surprising as both the
CPU on the DPU is weaker and the main memory is slower than that of the storage

24

3.1 Evaluation of Programmable NICs for DBMSs

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (M
Op

s)

(host-only) (DPU-only)

1M keys
16M keys
256M keys
Read-only
50/50 read-write

Figure 3.1: Remote B-tree with increasing offload on BlueField-2 for various B-tree sizes.
RPC requests with read-only or 50/50 read-write.

host.3 Moreover, the read-only and 50/50 read-write workload only differs slightly for
the higher throughput and smaller B-tree cases for the same reasons as discussed before.

These results indicate that while the BlueField-2 is not powerful enough to achieve high
throughput in comparison to the host, it yields a significant speedup by using the DPU
resources in addition to the host CPU. However, this imposes challenges for real-world
use cases, as the optimal partitioning of the B-tree is dependent on the workload (i.e.,
potential access skew) and the performance of the host server in relation to the DPU.
As such, more sophisticated adaptive solutions could come into play, which re-balances
and re-partitions the B-tree between the host and DPU based on utilization metrics, to
automatically adapt to the most optimal partitioning between the host and DPU.

B-Tree with One-sided RDMA. More and more designs are utilizing one-sided
RDMA to access remote data structures in disaggregated memory setups [2, 135, 157,
159]. The reason for this is that one-sided operations help to remove the load on the
(potentially weak) remote memory servers. The BlueField-2 struggled to achieve good
RPC performance due to the relatively slow memory and CPU cores, one-sided access is,
therefore, a promising use case as it does not incur any CPU overhead on the DPU.

3Full server specifications are reported in Table 8.1 and Table 8.2.

25

3 Evaluating In-network Processing for DBMSs

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0

5

10

15

20

25

30

M
ed

ia
n

La
te

nc
y

(
s)

(host-only) (DPU-only)

1M keys
16M keys
256M keys

512 B nodes
2048 B nodes

Figure 3.2: Remote B-tree latency with increasing offload on BlueField-2. Read-only
with one-sided RDMA.

In this experiment, a remote B-tree accessed only over one-sided RDMA read operations
is evaluated. The way a remote B-tree lookup works for one-sided operations is that
clients first issue a read on the root node and locally perform a binary search to determine
the next child node. This is repeated until the leaf level. As such, an RDMA read request
is issued for each level of the B-tree and since the reads are interdependent (i.e., the
location of one read depends on the previous) they cannot be overlapped.

Since the local DPU memory is in close proximity to the network, it can be expected
that one-sided network requests can be answered faster as compared to the host.

In Figure 3.2 B-tree lookups are executed with different partition sizes offloaded to
the DPU. A clear trend is shown here that the DPU provides faster lookups than the
host. For the different tree sizes and node sizes, the improvement is around 11-13%. The
difference in latency observed for the evaluated tree sizes and node sizes is due to the
different latency of the RDMA read and the depth of the tree. As an example, a node
size of 512 B has a fanout of 512B/16B = 32 (with 16 B used as key and child pointer),
so for a tree with 256 M keys, the depth will be dlog32(256M)e = 6, whereas a node size
of 2048 B only has a depth of 5 and therefore one less RDMA read. The experiment
shows that the lower latency of a 512 B read with respect to a 2048 B read does not
amortize the cost of an extra read in the B-tree.

26

3.1 Evaluation of Programmable NICs for DBMSs

2 4 6 8 10 12 14
Client Threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (M
Op

s)

0

2

4

6

8

10

12

M
ed

ia
n

La
te

nc
y

(
s)

Host
BlueField-2

Throughput (left axis)
Latency (right axis)

Figure 3.3: Throughput and latency of one-sided RDMA fetch-and-add on either the
storage host or the BlueField-2 DPU.

Discussion. In conclusion, since the relatively weak CPU cores of the BlueField-2
are not engaged with one-sided access, the DPU has better offloading potential. The
strongest benefit comes with lower access latency due to the co-location of the CPU cores
and the network on the same physical board.

Another interesting benefit given by offloading the one-sided accesses to the DPU is
that read or write pressure on the local main memory of the host is alleviated, which
might benefit concurrent memory-intensive applications. This is even more noticeable
with faster networks such as the BlueField-2 model with 200 Gbps.

3.1.4 Use case 2: Remote Sequencer

A common building block in distributed systems is global counters. They are among
others used for global timestamps, asserting message ordering or coordinating access
to shared memory [67]. In the next experiment, the performance of one-sided RDMA
atomic operations on the storage host and the BlueField-2 DPU is evaluated.

One-sided RDMA Atomics. Atomic operations are already provided in the collection
of RDMA primitives such that multiple clients can perform fetch-and-add or compare-and-
swap operations over the network without any additional coordination. In general, this
can facilitate one-sided access to remote data structures without any locking. For this use

27

3 Evaluating In-network Processing for DBMSs

case, a remote counter (i.e., sequencer) is accessed with one-sided RDMA fetch-and-add
operations.

In Figure 3.3 the throughput and latency are reported with an increasing number
of client threads on the compute node accessing the same counter. In this use case a
substantial benefit of the DPU in terms of achieved throughput can be seen. Placing
the atomic counter on the DPU achieves an almost 50% throughput speedup. This is
also reflected in the number of clients needed to saturate the remote server where the
throughput of the DPU is saturated by around 8 clients whereas the storage host only
can scale up to around 6 clients.

The latency is almost identical with a slight benefit on the DPU. Beyond the saturation
point, the latencies increase linearly with more clients added as contention is created and
requests are increasingly queued.

3.1.5 Conclusion

In conclusion, it was evaluated how well the BlueField-2 DPU performs with respect to
typical DBMS tasks such as remote B-trees or a global sequencer. The main findings
are that an acceleration potential exists for one-sided accesses both in terms of latency
and throughput whereas two-sided accesses easily overload the DPU. However, using
the DPU in combination with the host CPU of the storage server can yield promising
performance benefits provided that the workload is carefully distributed with regard to
the relative performance difference.

3.2 Distributed Join on a Programmable
Switch

Besides programmable NICs, modern networks also include the possibility to program
network switches. This new type of hardware is especially interesting for distributed
DBMSs as many operations require shuffling huge amounts of data over the network.
With programmable switches, it opens up many interesting possibilities of offloading and
redesigning database operations, especially, since the switch is centrally placed in the
network and therefore sees the traffic for many connected nodes.

However, for current available programmable switches such as Intel Tofino switches
[54], a major weakness is that the memory capacity is severely limited. This limits the
applicability of data-intensive operations which require stateful data structures exceeding

28

3.2 Distributed Join on a Programmable Switch

just tens of megabytes. One example here is the common database hash join which uses a
hash table built on one of the two tables. As the size of database tables easily go beyond
the available switch memory, in this line of work, a custom switch approach is taken to
be able to offload a database join to the network.

An FPGA-based switch design is derived which provides a larger amount of DDR3 main
memory capable of supporting more memory-intensive operations. In the following, it is
outlined how distributed join processing can integrate and make use of a programmable
switch, and subsequently, the switch design is outlined before presenting the evaluation.

3.2.1 Join Processing with INP

To illustrate the main idea of distributed query processing that utilizes a programmable
switch, classical distributed join execution is first reviewed, and subsequently, a new
execution scheme for INP is discussed. A typical setup of a shared-nothing database
consists of one master and several compute nodes, as well as one switch connecting the
nodes. As an example query, consider the execution plan in Figure 3.4 that could result
from the SQL statement SELECT * FROM A JOIN B JOIN C.

In the classical distributed query processing, A and B are first shuffled according to the
join key. Then, each node builds a hash table over B (assuming B is the smaller table) and
uses tuples from A to probe in that hash table. For the subsequent join, the intermediate
result of A ./ B as well as relation C need to be shuffled again, such that the joins can be
executed by building and probing into the hash table of C. Thus, each join (if data is not
co-partitioned) typically requires one expensive shuffle operation for each input table.

The equivalent query plan for INP execution is shown on Figure 3.5. As can be seen in
the two figures, the classical (Figure 3.4) and the INP-based plan (Figure 3.5) consist of
two types of pipelines (probe-pipelines and build-pipelines), the INP-based plan splits the
plan into multiple pipelines that can be placed on worker nodes or the switch respectively.
As a consequence, different from the traditional plan, many of the Shuffle operators
can be completely avoided since the probe steps are executed all in the switch. In the
following, the implications of these differences are discussed in more detail.
Discussion. As mentioned before, the main conceptual difference of the INP-scheme is
the elimination of shuffling, and in particular the re-shuffling of intermediate join results.
This is beneficial since shuffling comes with several challenges.

First, shuffling operations are so-called pipeline breakers, since the streaming of tuples
through an operator pipeline is stopped (i.e., the shuffle operation only starts once the
previous intermediate result has been materialized completely). This, however, limits the

29

3 Evaluating In-network Processing for DBMSs

A B
Shuffle Shuffle

Build HTProbe HT

Shuffle

C
Shuffle

Build HT

Probe HT

⋈

⋈

Classical Execution

Figure 3.4: Example of Query Plan
for Classical Execution.

A B
Send Send

Build HTProbe HT

Probe HT

C
Send

Build HT

⋈

⋈ Switch

Workers

INP Execution

Figure 3.5: Example of Query Plan for INP Ex-
ecution with Operator Placement.

degree of parallelism of the execution since the following phases of a query need to wait
for the completion of previous ones. For instance, the second join of the example query
can not be computed until the result of the first join has been materialized.

Second, shuffling usually means that significant amounts of data need to be transferred
via the network since also the intermediate results need to be partitioned and sent to all
workers. The cost of shuffling intermediate results is even higher in a data warehouse
setup. This is because, in a star schema with one very big fact table and multiple smaller
dimension tables that need to be joined, the cost of shuffling the fact table and the
resulting intermediate results dominates the overall query execution cost. Considering
the example query plan shown in Figure 3.4, the fact table could be represented by
relation A and the dimension tables by B and C.

Third, by processing the join in the network, it is less sensitive to skew, since with
skew present in classical join execution, one node receives more data than the others. As
such, when relatively more data is sent to one node than the rest, the network link of
the skewed node gets congested and slows down overall execution (also known as incast
problem). This is avoided with INP, as each node has its own link connected to the
switch (for ToR switches) and as such independent of the key distribution can send with
full bandwidth to the switch.

Finally, the INP join scheme accommodates the disaggregated DBMS architecture well.
The reason for this is that tables can also be streamed directly from storage nodes through

30

3.2 Distributed Join on a Programmable Switch

the switch without the need for first performing the shuffle operation on worker/compute
nodes.

3.2.2 Query Compilation

The query compilation resembles a physical execution plan for a given query. One
important decision in distributed systems during optimization is where to execute pipelines
optimally. Consequently, the adapted query compilation takes the FPGA switch as a
processing unit into account. When employing an FPGA for query processing, it is not
feasible to synthesize a complete configuration (a so-called bitstream, i.e., the executable
logic on the FPGA) on a query-to-query basis, as bitstream generation can take multiple
hours. However, once the bitstream is generated and installed on the switch FPGA,
re-configuring the switch to use a different pre-installed bitstream only takes a few
milliseconds. Hence, the system allows to install a set of bitstreams for pre-generated
pipelines to execute multiple different queries efficiently.

As shown in Figure 3.5 for the example query, each worker is only responsible for
sending its part of the relation to the switch, which executes the main query pipelines,
i.e., building and probing pipelines for executing joins. To support generic queries inside
the switch, the pre-generated pipelines provide different signatures. For instance, the
intermediate hash table for table B needs to store keys and values of 8 Bytes, whereas
table C needs 4-byte keys and 10-byte values.

The master node in a distributed DBMS thus tries to choose the best-fitting signature,
if there is no exact match it takes the next larger one. This clearly induces memory
overhead, e.g., if the relation has a 64 Byte value, then the master chooses the 128 Byte
pipelines. However, this should not be a common case, since optimal signatures can be
generated as soon as the workload is known.

3.2.3 Evaluation

In the following, the initial results of the new switch design in a distributed database is
presented.
Setup and Workload. The experiments were executed on a five-node cluster - one
master node and four compute nodes. Each server has an Intel Xeon Gold 5120 CPU
processor and 384GB RAM, running Ubuntu 18.04. The four compute nodes are
connected to a Zyxel XS3700 switch (without INP) and an FPGA-based switch (with
INP capabilities).

31

3 Evaluating In-network Processing for DBMSs

107 108 109

A relation size (tuples)

0

25

50

75

100

125

150
E

xe
cu

ti
on

ti
m

e
(s

)
NetJoin

Baseline

Figure 3.6: Four nodes joining ranging A
relation sizes (5e06 to 5e09 tu-
ples) with fixed B, C & D re-
lations (5e07 tuples). Link
speed on each node at 5Gbps.

107 108 109

A relation size (tuples)

0

100

200

300

400

500

E
xe

cu
ti

on
ti

m
e

(s
)

NetJoin

Baseline

Figure 3.7: Shuffle skew on four nodes join-
ing ranging A relation sizes
(5e06 to 5e09 tuples) with
fixed B, C & D relations size
(5e07 tuples). Link speed on
each node at 5Gbps.

Based on this setup, multiple experiments were conducted to demonstrate the perfor-
mance of the proposed architecture (referred to as NetJoin) over a baseline without INP.
The experiment represents a shuffle-heavy scenario. A table A is joined together with
three other tables B, C & D. The join shows similarity to a data warehouse setup with A

being the fact table with foreign keys to the dimension tables B, C & D.

In the setup, all tables are pre-partitioned such that no join partners can be found
locally without transferring one of the tuples over the network.

Uniform keys. The first experiment shown in Figure 3.6 scales the size of the A relation
in comparison to relations B, C & D. The left graph (a) shows the runtime of the distributed
hash join over the varying sizes of the A relation. The B, C & D relations sizes are 5e07
tuples, and with the A relation ranging from 5e06 to 5e09 tuples. Since the join keys are
uniform, each of the four nodes receives the same amount of tuples when shuffling the
relations.

The results show that as the A relation size is small, the NetJoin does not perform
better than the baseline since reshuffling the intermediate results is inexpensive due to
A’s small size. As the A relation size grows, the NetJoin outperforms the baseline. Even
though the nodes in the NetJoin have to completely send their local partitions of all
relations to the switch, the reduced cost of reshuffling compensates for this. For the
largest table workload, NetJoin outperforms the baseline with over 2×.

32

3.3 Summary

Skewed keys. As previously mentioned, NetJoin is more resilient against skew as in-cast
congestion is avoided. To evaluate this, this experiment uses a workload with skewed
join keys. The skew is such that when shuffling the relations on four nodes, 80% of all
tuples go to Node 1, 13% to Node 2, 5% to Node 3, and the remaining 2% to Node 4.

As shown in Figure 3.7 such a skewed shuffling scenario heavily affects the performance
of a distributed join, not only because the compute intensity and memory consumption
are not equally distributed, but also because of incast congestion in the network switch.
Since Node 2, 3 & 4 all need to send 80% of their local relation to Node 1, the in-going
link is acting as a bottleneck and other nodes throttle down their sending rate.

However, with our NetJoin, skew on the join key does not play a role since no network
shuffling is taking place. Figure 9.9a shows an identical runtime of the NetJoin, but with
the baseline performance severely suffering in comparison to Figure 9.8a. The speedup
shown on Figure 9.9b reports a speedup of 7× for the largest A relation size.

3.2.4 Conclusion

This work is motivated by the observation that existing programmable switches cannot
process memory-intensive operations due to their limited memory and thus are not suited
for distributed query processing.

The main idea is to avoid expensive shuffling operations by offloading more complex
query pipelines to the switch. It was shown that the proposed execution scheme can
speed up query processing for left-deep join plans by up to 7×.

3.3 Summary
With the presented work on evaluating SmartNICs and offloading join execution to
a programmable switch, it was shown that INP has great potential. INP allows for
revisiting existing distributed DBMS data structures and algorithms in a new light since
it provides a novel way to process data that was previously exclusively possible at the
end hosts.
Discussion of In-network Processing for DBMSs. INP for DBMSs is still in its
infant years with several open questions and challenges that limit the adoption. These
entail:

• Fault tolerance: DBMSs have undergone a lot of research to ensure that high
availability and durability can still be achieved in the case of failures. With the

33

3 Evaluating In-network Processing for DBMSs

advent of programmable devices in the network, ensuring fault tolerance is further
complicated as these devices typically carry state and are responsible for potentially
critical processing. As such, proper failover mechanisms must be devised that allow
failures to happen without violating, e.g., any of the ACID properties.

• System complexity: Adding heterogeneity in the form of programmable networking
devices often comes with the cost of higher system complexity. This is because such
devices are typically programmed differently and even have completely different
processing schemes to consider than traditional compute units like CPUs. To
address this, good abstractions are needed that manage to hide the complexity
from the DBMS but still provide the benefits of INP.

• Cloud offerings: Leveraging INP in the cloud is often not possible as networking
devices are typically not exposed to the cloud users. There are however exceptions
such as Microsoft Catapult [36] which exposes FPGA-based SmartNICs. With
more and more cloud-native DBMSs, limited access to INP platforms means that
such DBMSs are not able to integrate INP into their systems.

• Multi-tenancy: In the cloud, multi-tenancy is desired for the cloud provider in
order to maximize resource utilization. With, e.g., programmable ToR switches
connecting many nodes in a rack serving multiple users, multi-tenancy becomes
crucial. However, challenges such as performance isolation, virtualization, and
resource partitioning make it a non-trivial problem [109].

These challenges are instrumental for full-scale adoption of INP for DBMSs and form
the foundation for future research directions.

34

4 Realizing Distributed Query
Processing on GPUs

This chapter summarizes the work on designing a distributed GPU join operator for fast
RDMA-capable networks. The contributions are based on the following peer-reviewed
publication.1

• “Distributed GPU Joins on Fast RDMA-capable Networks” published in Proc.
ACM Manag. Data 1.1 (2023) [123], (cf. Chapter 10).

Contributions of the authors: Lasse Beck Thostrup is the leading author and was
thus responsible for the implementation, benchmark design, evaluation, and manuscript.
The co-author Gloria Doci contributed to the blocking GPU baseline implementation.
The remaining authors Nils Boeschen, Manisha Luthra, and Carsten Binnig contributed
invaluable feedback. All authors agree with the use of the publication for this dissertation.

As explored in the previous chapter, the network is becoming increasingly heterogeneous
with the advent of networking devices offering processing capabilities. The same trend can
be observed for compute units, where different devices than CPUs have seen increasing
focus. The reason behind this trend is that CPUs are experiencing performance stagnation
due to the challenge of continuously scaling the processing power by fitting in more
transistors (typically described as the end of Moore’s Law and Dennard Scaling). This
performance stagnation is however different for other compute architectures such as
GPUs and FPGAs. This work therefore looks into the potential of GPUs as a means of
speeding up distributed query processing given their high amount of processing power
and internal memory bandwidth. As will later be shown, distributed query processing
with GPUs is especially interesting in combination with fast RDMA-capable networks as
the data transfer to and from devices can be realized very efficiently.

Before diving into the deep end of distributed query processing on GPUs, single-node
GPU acceleration is first discussed. In the context of DBMS workloads, most previous

1Several passages in this chapter were transferred verbatim from this publication.

35

4 Realizing Distributed Query Processing on GPUs

CPU → CPU CPU → GPU
0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s

N
et

w
or

k
B

an
d

w
id

th

Figure 4.1: Network communication to remote CPUs and GPUs share the same charac-
teristics (reported by ib_write_bw).

work on the integration of GPUs as accelerators has focused on the acceleration of OLAP
workloads for single-node DBMSs [14, 15, 40, 122, 141, 144]. This is because OLAP
queries map inherently well to the vectorized execution model of GPUs and hence are
clearly an interesting workload for being accelerated by a GPU. This way, the DBMS
is able to execute query operators such as joins or aggregations in a massively parallel
manner on a single-node DBMS. However, how to scale GPU joins and accelerate join
queries in the context of distributed DBMSs is rather unexplored.

This line of work aims to show the potential of GPUs as accelerators in distributed
DBMSs on clusters with fast RDMA-capable networks. Here, an important aspect is that
using high-speed network cards with GPUDirect RDMA [97, 101], data shuffling over
the network has the same cost independent of whether the target of the data transfer is
remote CPU memory or remote GPU memory as shown in Figure 4.1. This is the case
since with GPUDirect, the network card is able to read and write RDMA data directly
into the memory of the GPU without having to relay it through the main memory. As
such, in a distributed DBMS where data anyways need to be shuffled for executing the
join operators, the higher speed of GPU joins compared to CPU joins can be leveraged
without paying any higher cost for transferring data to the GPU.

However, when leveraging GPUs in a distributed setting, the traditional execution
scheme is suboptimal for the following reasons. In a typical execution scheme for join
operators in distributed DBMSs the data first needs to be shuffled across the network
before the operator itself can be executed. For example, in a partitioned join, the data of

36

4.1 Overview

CPU1

GPU1

R1 S1

#

#

#

#

#

#

#

#

CPU2

GPU2

RDMA

...

Time

Shuffle R Shuffle S Probe HTsBuild HTs

RDMA

...

(a) Naive Blocking Execution Model

CPU1

CPU2

GPU2

Shuffle R & build
HTs pipelined

GPU1

RDMA

...

RDMA

R1

Shuffle S & probe
HTs pipelined

S1

...

#

#

#

#

#

#

#

#

Time

(b) Pipelined Execution Model

Figure 4.2: Two execution schemes: (a) a naive blocking execution where the building
and probing phases are distinct from network shuffling of R and S versus
(b) a pipelined execution where the GPU execution is overlapped with the
network shuffling.

the tables to be joined is first shuffled on the join keys over the network before the join
is then executed in parallel on the resulting partitions. A key observation is that using
the traditional sequential scheme, the GPUs remain idle when the CPU cores execute
the shuffle operation. For the distributed partitioned join, this opens up an opportunity
to better utilize GPUs during the shuffle operation in a pipelined manner by overlapping
data transfer and actual join computation on the GPUs.

4.1 Overview
Before looking at the execution scheme of the join, it is important to first clarify the
DBMS setup that this work targets. As for typical in-memory distributed DBMS, the
database tables are partitioned across the CPU memory of the different nodes. As such,
the input tables for the join are located in CPU memory and have to first be transferred
to the GPUs for join execution.

This scheme provides benefits over a scheme that stores data to be joined in just GPU
memory for the following reasons: First, storing data in CPU memory allows to support
joins over input tables (and intermediate results) that are larger than GPU memory.
Second, distributed joins typically need to first shuffle the input tables based on the join
key. Since GPUDirect RDMA allows data to be shuffled as fast from a CPU as well as
from a GPU, the location of input tables does play a large effect on the performance as
long as the tables are not pre-partitioned on their join keys.

37

4 Realizing Distributed Query Processing on GPUs

The Case for Pipelining. The join execution follows a partitioned hash-join where
each GPU executes a build and a probe phase over the partitions resulting from shuffling.
The main novelty is that the shuffling and join execution is pipelined, which has many
benefits, such as support for much larger input tables and even arbitrarily large probe-side
tables, together with overlapping of materialization of the join result back to local CPU
memory.

This effect is illustrated in Figure 4.2b and contrasted to the blocking execution, as
shown in Figure 4.2a. In the following, blocking vs. our pipelining approach is discussed.
Naive Blocking GPU Join. Naively mapping the blocking execution scheme of the
state-of-the-art distributed hash join approach [9] to a distributed GPU-accelerated join
(as illustrated in Figure 4.2a) does not only come with severe limitations, but it also does
not leverage the GPUs in the most optimal manner.

The main reason why a blocking execution scheme of the distributed join is not ideal
for GPUs is that the GPU cores would stay idle until the network shuffling phase is
finished. The same is true for the building and probing phases where the GPU would
be active while the CPU cores would stay idle, resulting in an overall higher runtime
as illustrated in Figure 4.2a (i.e., no work is executed on the CPUs in the build and
probe phases of the GPU). Hence, this line of work takes the approach of pipelining the
execution such that the CPU-driven network shuffling is overlapped with the GPU join
processing.

Moreover, another significant limitation of a blocking scheme for GPUs is that only
tables of a certain limited size can be processed. The reason is that when executing the
phases of a distributed join non-overlapped on the GPU, the GPUs need to be able to
hold all intermediate data, e.g., the output of shuffling the build and probe tables in
GPU memory. As such, when using a blocking model for executing a GPU-based join in
distributed DBMSs, only joins where the input table sizes and intermediate data size
do not exceed the aggregated memory of all available GPUs can be supported. In the
following, it is presented how the pipelined join approach overcomes these challenges.
Pipelined GPU Join. The pipelined GPU join approach overlaps the execution of the
shuffling of input tables with the building and probing on the GPUs. The conceptual
reason why the pipelined scheme is more efficient is that such a scheme, as shown in
Figure 4.2b, helps to efficiently hide the join processing on the GPUs under the data
transfer by making use of CPU and GPU cores concurrently. Moreover, such a pipelined
scheme clearly reduces the GPU memory consumption since only a chunk of data, instead
of a full partition resulting from shuffling, needs to be stored in GPU memory. For
the probe phase, this means that arbitrarily large probe inputs can be supported and

38

4.2 Pipelined GPU Join Design

streamed through the GPUs. For the build phase, the pipelined model also has benefits
since more GPU memory is available for the hash tables, effectively supporting larger
build input tables.

Lastly, the pipelining approach allows to overlap not only the probing of the hash
tables but also to hide additional processing given the efficient vectorized execution of
GPUs by chaining multiple operations (e.g., multiple joins). Such chained processing can
be used for typical OLAP queries with several joins between dimensions and the same
fact table where small (replicated) dimension tables are cached on the GPUs.

4.2 Pipelined GPU Join Design
After having established the best fitting execution scheme for distributed GPUs, the next
question is how to design such a pipelined GPU join best. The design options can be
categorized into two dimensions: (a) how to use the GPUDirect RDMA communication
primitives for implementing the data flow for shuffling data over the network from CPU
to GPU memory and (b) the control flow of how the GPU kernel execution is triggered
to consume incoming data for building hash tables and probing into them.

For (a), to make use of RDMA on GPUs, GPUDirect RDMA provides a means of
transferring data directly over the network from and to the GPU memory using the same
RDMA primitives for one- or two-sided communication (RDMA background presented in
Section 2.1). However, there are some important differences. Using one-sided primitives
with GPUDirect works the same as for CPUs since GPUDirect allows CPUs of the
sending nodes can write in the remote GPU memory without involving the remote GPUs.
When using two-sided operations instead, it is important to note that the RECEIVE
requests are driven by the CPU (and not the GPU) in GPUDirect, since the CUDA
library does not support calls to RDMA functions. Hence, in a two-sided communication,
the remote CPU is always involved in the data flow even though the GPU is the target.

The other aspect (b) is whether the CPU or the GPU is driving the control flow, i.e.,
detecting when new data has arrived (on the GPU) and triggering the execution on
the GPU for building/probing into the hash tables. With these two design dimensions
(one- or two-sided RDMA and CPU- vs. GPU-driven execution) two approaches can be
contrasted: CPU-driven execution with two-sided RDMA and GPU-driven execution
with one-sided RDMA.

(i) In a CPU-driven approach with two-sided RDMA, the CPU actively detects that
a new chunk of tuples has arrived (by polling for so-called RDMA completion events).

39

4 Realizing Distributed Query Processing on GPUs

Afterward, the CPU then instructs the GPU for subsequent processing by launching a
GPU kernel. Important to note with this approach is that a GPU kernel is executed
on each batch of arriving tuples. This in turn introduces synchronization overhead for
kernel launches and additionally takes up CPU resources.

(ii) In the GPU-driven approach with one-sided RDMA, the kernel launch overhead
is removed by using persistent kernels where the GPU instead actively detects new
incoming data by polling on a particular memory region for newly arrived data. With
persistent kernels, the GPU kernel is only called initially for processing each of the
build and probe tables. Polling for new data directly in memory is also often applied in
traditional CPU-based RDMA communication as memory polling has a smaller overhead
in comparison to polling after RDMA completion events [28, 156].
Summary. Based on these observations the GPU-driven approach with one-sided RDMA
is superior due to the fact that it avoids CPU overhead and GPU kernel synchronization.
In an experimental evaluation of the two designs, the GPU-driven design can better
parallelize and utilize the many cores of the GPUs due to the reduced synchronization.
In the following evaluation, the GPU-driven approach with one-sided RDMA is used.

4.3 Evaluation & Methodology
In this evaluation, the GPU-acceleration potential is analyzed along with comparing the
pipelined approach to a blocking GPU join. Last, a complete Star-Schema-Benchmark
(SSB) query with multiple joins is evaluated.

4.3.1 Setup & Workloads

Setup. All experiments were conducted on a 5-node cluster, each node equipped with
two Intel(R) Xeon(R) Gold 5120 CPUs (14 cores) and 512 GB main memory split between
both sockets. Each node has two Mellanox ConnectX-5 NICs (100 Gbps) and two Nvidia
Tesla V100 GPUs with 16 GB memory, supporting GPUDirect RDMA.
Join Variants. In the evaluation, the following join implementations are used:

• CRJ - CPU Radix Join: A state-of-the-art implementation of a CPU baseline
(distributed radix hash join [125]).

• GPJ-B - GPU Partitioned Blocking Join: This is a distributed variant of the
state-of-the-art single-node GPU partitioned join [122]. The shuffle phase (i.e.,
histogram creation & data shuffling from [9]) and the GPU execution phase are

40

4.3 Evaluation & Methodology

0.0 s

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s
R

u
n

ti
m

e

GPJ-B GPJ-B GPJ
w/o

GPUDirect
w/

GPUDirect
w/

GPUDirect

(a) Both tables fit in GPUs

0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

N/A

GPJ-B GPJ-B GPJ
w/o

GPUDirect
w/

GPUDirect
w/

GPUDirect

(b) Build table fits in GPUs

GPU Join

GPU Copy + Join

Network Sync.

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 4.3: Blocking (GPJ-B) vs. pipelined (GPJ) GPU join with build-side of 600 × 106

tuples and probe-side of (a) 1.2 × 109 tuples and (b) 4 × 109 tuples. GPJ
provides a speedup of approx. 2× while supporting arbitrarily sized tables.

executed subsequently. Data shuffling is either realized with GPUDirect or without
GPUDirect.

• GPJ - GPU Partitioned Pipelined Join: The GPU-accelerated distributed join that
supports pipelining of the network shuffling and the GPU join phases.

4.3.2 Comparison with a Blocking GPU Baseline:

First, the benefits of the proposed pipelining model are evaluated by comparing it to a
distributed blocking GPU join (GPJ-B). The blocking join takes a sequential approach
where the two tables are only joined on the GPU once all data has been shuffled.

In this experiment, the input tables are partitioned across 4 nodes such that no two
tuples can be joined locally. The tables have randomized tuple order with 16-byte tuples.

GPJ-B is executed both with and without GPUDirect to better show the effect of
the direct data path. As shown in Figure 4.3a, using GPUDirect greatly improves
the acceleration potential of the GPU. Moreover, we see that the pipelined GPU join,
which also uses GPUDirect, can further improve over the blocking GPU join since with
pipelining the join phases can be overlapped with data transfers.

Another significant advantage of the pipelined GPU join over the blocking GPU join
is that it does not need to accumulate the shuffled tables in GPU memory and as such
can support larger joins. In Figure 4.3b, this effect is shown by increasing the probe-side
table such that only the build-side table fits on the GPUs. Here, the blocking GPU

41

4 Realizing Distributed Query Processing on GPUs

join is only supported without GPUDirect, whereas the pipelined GPU join can support
arbitrary probe-side table sizes and, as such, provides a speedup of approximately 2×.

4.3.3 Complete SSB Query

In this experiment, the benefit of the pipelined join is shown for a full query with multiple
operations. When running full queries, multiple joins can be chained together (e.g., to
chain multiple probe steps for a multi-way join in one pipeline on the GPU). The main
intuition why chaining on GPUs is beneficial is that GPUs typically have an abundance
of processing power in comparison to their i/o speeds. In fact, when executing a single
join, as in the previous experiment, there are still untapped computational resources left
for chaining multiple operators together.

To show these effects of chaining, in this experiment, 3.1 of the Star-Schema-Benchmark
(SSB) is used. Query 3.1 involves three hash joins and an aggregation. For comparison,
two implementations of the queries are realized: one using only the pipelined join GPJ
(referred to as GPJ-SSB) with the aggregation also on the GPU, and one that runs
completely on CPUs using CRJ (CRJ-SSB). For both GPJ-SSB and CRJ-SSB, the same
execution strategy is used where first the hash tables are built on the dimensions tables
and then chain together the probing of the LINEORDER tuples into these hash tables,
followed by a final aggregation.2

To test the impact of the size of the probe pipeline and as such the amount of processing
needed during the probing stage of the LINEORDER table, the number of joins in the
query is varied. The experiment is based on SSB query 3.1 as shown in Figure 4.4b,
but with a varied number of joins in the query (pipeline length) and without any filters
on the dimension tables. For instance, a probe pipeline length of 2 will join together
the LINEORDER with CUSTOMER and SUPPLIER and a length of 4 contains the
complete query. As can be seen in Figure 4.4a, the GPU-accelerated query execution
(GPJ-SSB) is not affected by the query size since the additional probing is all hidden
under the network shuffling. This is in contrast to the CPU-only approach (CRJ-SSB)
where more joins result in a higher runtime. For the full query without dimension table
filters, a speedup of 6.8× can be observed over CRJ-SSB.

2PART and CUSTOMER are partitioned while DATE and SUPPLIER are replicated to enable chaining.

42

4.4 Related Work

1 2 3 4

Probe pipeline length

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

45 s

R
un

ti
m

e

CRJ-SSB

GPJ-SSB

(a) Query Runtime

 GROUPBY

SUPPLIER

 HASH-JOIN

 HASH-JOIN

 HASH-JOIN

Table size: 2M

sum(lo_revenue)
keys: c_nation,

Partition: replicated
lo_custkey = c_custkey

lo_suppkey = s_suppkey

lo_orderdate = d_datekey

Pipeline: 1

Pipeline: 2
(2x)

Pipeline: 3
(3x)

Pipeline: 4
(3x + 1x)

(1x)

LINEORDER CUSTOMER

Table size: 30M Table size: 6B
Partition: round-robin Partition: round-robin

DATE

Table size: 2555
Partition: replicated

s_nation, d_year

(b) SSB Query 3.1 Plan w/o Filters

Figure 4.4: Execution (a) with a different number of joins of SSB Query 3.1 (b) with SF
1000, on 4 nodes. Probe-side joining is chained together both in CRJ-SSB and
GPJ-SSB. With longer probe pipelines, the runtime of GPJ-SSB is unaffected
due to its pipelined design resulting in a reduction in runtime by up to 6.8×
against CRJ-SSB.

4.4 Related Work
In the context of high-speed networks, join processing for scale-out distributed DBMSs
has been studied by a few works [9, 10, 38, 39]. Barthels et al. [10] implemented a
distributed radix hash join over RDMA networks by utilizing efficient one-sided RDMA
primitives. While the authors do not explore GPU acceleration, many findings of their
work are still applicable, such as the efficiency and use of one-sided RDMA.

The approach by Guo et al. [43] is closest to this line of work, which also explores
distributed GPU joins over RDMA. However, they cover only more naive blocking GPU
joins and assume a fundamentally different setup where database tables are already
stored in GPU memory.

4.5 Summary
Accelerators such as GPUs have the potential to redesign existing database operators
to overcome previous bottlenecks. This work showed the possibility of leveraging the

43

4 Realizing Distributed Query Processing on GPUs

high processing power of GPUs for distributed operators in connection with fast RDMA
networks. The main finding is that accelerators are especially beneficial when they can
be used without having to pay an additional transfer cost compared to the traditional
execution plan. This finding is unique to distributed query processing as with fast RDMA-
capable networks, data can be moved in and out of GPUs with the same throughput as
for main memory.

However, while GPUs are arguably the most common type of accelerator, this work
leaves the challenge of query processing over more heterogeneous hardware as an open
problem. This challenge is addressed in the next chapter by introducing a network-
driven approach to achieving RDMA communication between various different types of
accelerators.

44

5 Network-driven
Communication for
Accelerators

This chapter summarizes the work on realizing a network-driven communication scheme
for heterogeneous accelerators. The contributions are based on the following peer-reviewed
publication and paper currently under review.1

• “Zero-sided RDMA: Network-driven Data Shuffling” published in Proceedings of
the 19th International Workshop on Data Management on New Hardware, DaMoN 2023,
Seattle, WA, USA, June 18-23, 2023 [58], (cf. Chapter 11).

Contributions of the authors: Lasse Beck Thostrup and Matthias Jasny are both
the leading authors and contributed equally to the implementation, benchmark design,
evaluation and manuscript. The remaining author Carsten Binnig contributed invaluable
feedback. All authors agree with the use of the publication for this dissertation.

• “Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Hetero-
geneous Cloud DBMSs” published in Proc. ACM Manag. Data 2.1 (Mar. 2024) [59],
(cf. Chapter 12)

Contributions of the authors: Lasse Beck Thostrup and Matthias Jasny are both
the leading authors and contributed equally to the implementation, benchmark design,
evaluation and manuscript. Sajjad Tamimi contributed to realizing zero-sided RDMA
communication to an FPGA. The remaining authors Andreas Koch, Zsolt István, and
Carsten Binnig contributed invaluable feedback. All authors agree with the use of the
publication for this dissertation.

1Several passages in this chapter were transferred verbatim from these publications.

45

5 Network-driven Communication for Accelerators

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

1 CPU 4 CPUs 0 CPUs

D
a
ta

 b
a
n
d
w

id
th

CPU-driven RDMA Zero-sided RDMA

Figure 5.1: GPU to GPU network transfers, driven by either the CPU or the network
(zero-sided RDMA).

5.1 The Need for Network-driven
Communication

A significant trend seen in the cloud data centers is that, in response to the performance
stagnation of CPUs, heterogeneous accelerators are becoming commonplace as an alter-
native to CPU-based compute resources [95]. Accelerators have been shown to provide
significant speed-ups for DBMS workloads as demonstrated in the previous chapter.
However, looking ahead, a major question for future cloud DBMSs is how to efficiently
use disaggregated heterogeneous compute resources such as GPUs or FPGAs. Similar to
disaggregated CPU-based compute resources, these accelerators should be deployed as
network-attached accelerator pools, but today this is not the case. Accelerators depend
on the presence of a host CPU for executing the control flow of moving data in and out
of the accelerator. This strong coupling, however, both introduces CPU overhead, but
also limits the acceleration potential of accelerators due to the increased coordination.
To overcome this, a zero-sided RDMA communication scheme is proposed to remove the
CPU from the critical path and enable efficient accelerator-to-accelerator data movement
powered by a programmable switch.

The pitfalls of RDMA for accelerators. As already covered in Section 2.1, RDMA
provides different primitives where the READ and WRITE operations only involve the
initiator CPU of the communication channel. This already helps to integrate accelerators
on the target side as shown in Chapter 4, because the target side communication channel
can be realized with only memory operations. However, if we want to fully utilize

46

5.2 Zero-sided RDMA Overview

accelerators in the cloud, the involvement of CPUs, even if just on the initiator side, will
lead to bottlenecks. As seen in Figure 5.1, multiple CPU cores need to be dedicated to
coordinating data transfers on behalf of the GPU.

Accelerator-driven RDMA as an alternative? One way to remove the CPU would
be to implement RDMA-based operations directly on the accelerators. Even though this is
technically possible [73], it is challenging for the following reasons: (1) RDMA primitives,
such as one-sided RDMA verbs, might not be available for a given accelerator, requiring
a full RDMA stack to be implemented per accelerator type. Beyond the engineering cost,
the additional problem is that executing communication logic on specialized hardware
devices consumes compute resources that could otherwise be utilized for processing. (2)
Implementing advanced RDMA-based communication schemes, such as many-to-many
data shuffling or multicast, on top of the RDMA stack on each accelerator type requires
re-implementing features and has different challenges and limitations on each hardware
type.

The case for network-driven RDMA. To remove the CPU from the critical path
and to reduce the engineering effort in disaggregated accelerators, in this work, a novel
network-driven scheme is proposed where neither a CPU co-located with an accelerator is
actively needed nor a custom RDMA implementation on the accelerator. The approach
fully offloads the RDMA stack and the RDMA-based communication logic between devices
to the network, particularly to a programmable switch. The main idea of offloading
the communication logic to the network is that the switch acts as a coordinator of data
transfers; i.e., it issues an RDMA READ to a sender and rewrites the read response into
an RDMA WRITE for the receiver using the programmable data plane of the switch.
Since this does not involve the sender or receiver actively, this communication scheme is
termed zero-sided RDMA.

In this work, a programmable off-the-shelf Tofino switch is used in contrast to the
FPGA-based switch used in the previous Section 3.2. The reason is that, as will later be
explained, realizing zero-sided RDMA does not require a lot of state but instead relies
on fast line-rate processing which is guaranteed by the ASIC-based pipelined execution
model of Tofino switches.

5.2 Zero-sided RDMA Overview
Zero-sided RDMA builds on the ability of the centralized programmable switch to initiate
and direct data traffic directly in the data-plane at the aggregated line rate of all connected

47

5 Network-driven Communication for Accelerators

4. Process Write-ACK
→Increment Consumer Head

& Producer Tail

RDMA
READ

Smart Switch

Tail

Head

Head

Tail

Consumer QueueProducer Queue

RDMA
WRITE

2. Convert Read Response
to Write Request

1. Read
new Item

3. Write
new Item

GPU FPGA

Figure 5.2: In zero-sided RDMA, producers & consumers interact only with their buffers
in local memory. The switch reads items from the sender buffer (step 1) and
moves them to the receiver buffer (step 3) by converting RDMA READS
into WRITES (step 2). The switch coordinates the communication using
head/tail pointers (step 4).

accelerators — referred to as programming units (PUs). By placing the communication
scheme in the switch data-plane, the switch can initiate one-sided RDMA operations
(READ & WRITE) to PUs. At the same time, the PUs are completely oblivious to the
network communication scheme, which not only has the benefit that the PUs do not have
to issue communication primitives actively but also removes the distributed coordination
for communication flows such as data shuffling or even replication.

Communication abstractions. On the side of the PUs (i.e., accelerators), a circular
buffer is the core abstraction to participate in zero-sided RDMA data transfers. The
design goal of the buffer is to allow PUs to push and pop items with only simple local
memory operations while the switch transfers data fully asynchronously without any
sender/receiver PU involvement. The coordination between the switch and PU is handled
with two pointers to the buffer, a head and tail pointer. The head pointer indicates where
the next data item can be written, and the tail pointer indicates where the next data
item can be read.

Flow of data transfers. The overall flow of transferring a data item between one
producer and one consumer using zero-sided RDMA is illustrated in Figure 5.2. The
switch mirrors the state of the producer and consumer buffers (head and tail pointers) to
know when a producer has an item to send and whether the consumer has free space.
To transfer an item, (1) the switch first issues an RDMA READ on a data item in the
producer buffer. (2) The READ response is then converted on the switch into an RDMA
WRITE and (3) written into the next free slot at the consumer. When converting a
READ response into a WRITE request, the switch does not need to buffer or modify
the data payload, only the header of the network packets. (4) After the remote NIC
acknowledges the RDMA WRITE, the head pointer of the consumer is incremented to

48

5.3 Realizing Zero-sided RDMA

indicate the new item. The tail pointer is incremented on the producer, which frees up
the item in the buffer for reuse.

Hardware requirements. Finally, the aim of zero-sided RDMA is to be able to
integrate many different heterogeneous devices, as such only a few requirements must
hold for participating in zero-sided RDMA: (1) the device must have memory in which
to store the buffer data structure, (2) the memory must be accessible by an off-the-shelf
RDMA-enabled NIC, e.g., with PeerDirect2 and (3) the memory consistency model
must ensure that a write to an item and the subsequent update to the head pointer is
executed in order. In the case of weaker memory consistency models, this behavior is
most commonly achievable through memory fence primitives.

5.3 Realizing Zero-sided RDMA
To realize zero-sided RDMA where no active involvement is required for producers or
consumers, the communication scheme has to be offloaded to a programmable switch. In
the following, the core challenges are summarized and afterwards, three aspects of the
design are discussed.

Core challenges of realizing zero-sided RDMA. A programmable Tofino switch
follows a pipelined execution model with only a limited set of instructions and memory
per stage. In a switch-driven scheme, all connected PUs are not directly connected to each
other but are connected to the switch. As such, the switch must implement and adhere
to the exact protocol to be compliant with off-the-shelf RDMA NICs. This challenge
includes managing stateful RDMA connections with reliability and correctly propagating
congestion- and flow-control information from the consumers to the producers within the
switch’s data-plane to guarantee execution at line-rate.

RDMA switch state. In order to make the switch able to initiate and steer RDMA
traffic, it must store and maintain the necessary state. The state can be grouped into the
static connection state which does not change during communication and the dynamically
changing state. For RDMA, the static connection state includes a remote key and
destination queue-pair number to identify the remote RDMA queue-pair, along with its
IP and MAC addresses. Since none of these header fields change during communication,
it is stored on the switch upon connection setup. However, for the dynamically changing
state, such as packet sequence numbers (PSNs) and virtual remote addresses, these need
updating on a per-packet basis and therefore need to be stored directly in registers on

2https://enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed

49

https://enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed

5 Network-driven Communication for Accelerators

the data-plane. Since the switch is in the middle of the communication channel between
the PUs, the switch must maintain PSNs and addresses for all connected end-points. In
addition to the RDMA-specific state, also the PU buffers’ head and tail pointer values
are stored in switch registers.

Initiating data transfers. As a first step before reading the first item (step 1. in
Figure 5.2), the switch evaluates whether it is possible to initiate the data transfer.

In the switch pipeline, it is checked whether the producer has items in the buffer to
send and whether the consumer has space. This is realized by passing through a network
packet in the pipeline stages which evaluates these statements based on the head and
tail pointers. If neither the producer has data nor the consumer has space available,
this packet is recirculated to the beginning of the pipeline. Recirculating the packet is
necessary because while-loops are not supported in the pipelined processing model. If
these checks pass, the packet is forwarded through the pipeline, where necessary header
fields are set to create an RDMA READ request to the producer which adheres to the
RDMA protocol.

Data payload transfer. In the second step (2. in Figure 5.2), the read response
containing the data payload to transfer to the consumer is streamed through the switch.
Here the switch rewrites the response of the RDMA READ into an RDMA WRITE.
Rewriting the RDMA type entails updating the relevant header fields to change the
operation type and to make it adhere to the correct packet sequence numbers and virtual
address expected by the consumer. This step does not require the switch to buffer any
packets but will be forwarded at line-rate.

The read response from the producer might be fragmented into several packets. The
challenge here is that the network might reorder these packets such that naively assigning
new packet sequence numbers (PSNs) to the RDMA WRITE packets in the order they
arrive might produce incorrectly written data on the consumer. Instead, an offset is
calculated on the fly between the producer-side and consumer-side sequence numbers
such that if two packets are reordered, the assigned PSNs on the consumer-side will reflect
this, allowing the target consumer-side NIC to assert the right order for the memory
write.

5.4 Zero-sided Communication Flows
Switch-driven data transfers can provide more advanced flows than the 1:1 connection
illustrated in Figure 5.2. In fact, with zero-sided RDMA, many producers can be

50

5.4 Zero-sided Communication Flows

connected to many consumers in a flow. In addition, different flow features are supported
such as load balancing, replication, or fine-grained quality of service guarantees. In the
following, the load balancing and replication features are presented.

Load balancing. Distributing work evenly across processing units in a distributed
DBMS is non-trivial, given unforeseen network congestion or processing contention.
Multiple schemes have been devised to overcome this [31, 77, 155], which require additional
coordination overhead, e.g., through work-stealing or a centralized server-side dispatcher.

With zero-sided RDMA, a communication flow between N producers and M consumers
can automatically provide load balancing across all consumers. This flow is realized
without any form of producer- or consumer-side coordination since the switch will
transparently initiate the data transfers between producers and consumers.

The key to achieving this communication flow is by introducing consumer-specific
thread-like processing on the switch, where it is evaluated when a data transfer can be
initiated from any of the producers, essentially adapting the data transfer rate from all
producers to each consumer independently.

Replication with global ordering. Lastly, zero-sided RDMA also provides a
replication-based communication flow in which items from each producer are multicasted
out to all consumers.

Multicast has many applications in distributed DBMSs, such as replicated joins
[126], or state replication [51, 82] for providing availability. While RDMA already has
multicast capabilities, it is only supported through the Unreliable Transport and two-sided
verbs. As such, it comes with the cost of higher CPU overhead at the communication
endpoints due to the two-sided communication and the cost of ensuring reliability. With
zero-sided RDMA, data replication can be realized reliably without any coordination
or computational involvement on the processing units by initializing, steering, and
multicasting the data directly in the data-plane of the switch.

Traditionally, effects like reordering of packets in the network can cause the received
data at each consumer to observe a different order. However, as the zero-sided approach
transfers data sequentially with separate acknowledgments from each consumer, it can
be ensured that data transfers to all consumers are globally ordered without introducing
any overhead at the processing units.

51

5 Network-driven Communication for Accelerators

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

1 Node 2 Node 3 Node 4 Node

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

DFI w/ ordering DFI w/o ordering Zero-sided

Figure 5.3: 1:N zero-sided replication compared to DFI [126] with or without global
ordering. Zero-sided replication always ensures a global order observed by all
consumers.

5.5 Evaluation & Methodology
In the following section, zero-sided RDMA is first evaluated in a replication scenario and
subsequently, the benefit of switch-driven data transfers is investigated in the context of
analytical distributed database systems.

Setup and implementation. Zero-sided RDMA is evaluated in a cluster of 4
nodes running Ubuntu 18.04 LTS with Linux kernel 4.15.0. Each node is equipped with
an Intel(R) Xeon(R) Gold 5120 2.2GHz CPU, an Nvidia V100 GPU, and a Mellanox
ConnectX-5 MT27800 that is connected to an Intel Tofino switch (BF2556X-1T) [93] via
100G RoCEv2. In addition, one node is equipped with a Xilinx Alveo U55C FPGA. The
code is written in C++20 is compiled with gcc-12 and CUDA-12. The switch’s control-
plane logic is implemented in C++, and the switch’s data-plane logic is implemented in
P4 and compiled using Intel SDE-9.11.0 [53].

Replication with ordering. The first experiment centers on the effectiveness of
zero-sided RDMA replication which by design ensures global ordering for each consumer.
For the baseline, the replication flow of the Data Flow Interface (DFI) [126] (presented in
Chapter 2) is used. The DFI replication flow enables replication using RDMA multicast

52

5.5 Evaluation & Methodology

P
ro

d
.

0

G
P

U

C
P

U

F
P

G
A

P
ro

d
.

1

S
ta

tic P
a

rtitio
n

in
g

Optimal Utilization
across different PUs!

P
ro

d
.

0

G
P

U
C

P
U

F
P

G
A

P
ro

d
.

1

L
o

a
d

 B
a

la
n

cin
g

0.0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s
Runtime

Figure 5.4: Static partitioning vs. load balancing for TPC-H Query 1 with SF 100
executed on CPU, GPU and FPGA.

with two-sided SEND/RECEIVE operations. The results for DFI are presented both
with and without software-based ordering. For the experiment, CPUs are used as PUs.

The results in Figure 5.3 show the aggregated data bandwidth of all consumers for a
different number of nodes that receive data from a single producer. Across all scenarios,
zero-sided replication with ordering consistently demonstrates superior performance,
nearly saturating the link bandwidth at each consumer node. In addition, zero-sided
replication does not infer any overhead at the PUs. In stark contrast to native RDMA mul-
ticast that only supports two-sided SEND/RECEIVE operations and, as such, introduces
communication overhead at not only the sender but also the receiver.

Load balancing on heterogeneous devices.

Scheduling processing jobs across a wide range of heterogeneous processing devices with
different and varying throughputs is a challenging task that requires careful coordination
between all participants. Therefore in this section, the load-balancing communication
flow is evaluated in a setup that mimics a cloud data center with disaggregated storage
and heterogeneous compute resources that consist of CPU, GPU, and FPGA.

To enable zero-sided RDMA on an FPGA, the FPGA local memory is exposed through
the PCIe bar register which allows the RDMA NIC to issue DMA operations to it.

53

5 Network-driven Communication for Accelerators

Important to note is that no RDMA stack needs to be implemented for the FPGA but
only the PCIe bar memory mapping.

In this experiment, depicted in Figure 5.4, data producers on the storage are spread out
on 2 (CPU) nodes. The workload is based on TPC-H Query 1. The system’s performance
is assessed under two distinct scenarios: static partitioning and load balancing.

The input TPC-H table lineorder is partitioned into two equal sizes at both producer
nodes. In the scenario with static partitioning (Figure 5.4, upper part), the producers
send the data in equal portions to three consumers: an FPGA, a GPU, and a CPU. The
results show that the GPU completes its tasks more rapidly than the CPU, which is
faster than the FPGA as the slowest device. Overall, the FPGA takes a total of 3.2
seconds, which dominates the end-to-end latency of the query.

In contrast, with load balancing (Figure 5.4, lower part), the lineorder table is dy-
namically distributed to each consumer based on each device’s processing speed. This
arrangement enables the CPU, FPGA, and GPU to finish their tasks simultaneously, thus
reducing the total runtime of the query to 2.1 seconds and ensuring optimal utilization
with no idle time for either processing unit.

These results underscore the potential of load balancing in zero-sided RDMA: it
allows for optimal utilization of different processing units without the need for complex
partitioning or work-stealing schemes, leading to more simple query execution code.

5.6 Related Work
Addressing a similar problem as this line of work is Lynx [128] and FpgaNIC [136]. These
systems, however, take a different approach in that they rely on SmartNICs for driving
the communication on behalf of the accelerator (in these cases, GPUs).

However, such a decentralized SmartNIC-driven approach has several downsides. First,
realizing one-sided RDMA communication schemes is highly complex due to the dis-
tributed coordination for remote memory accesses. Adding to the fact that typical
CPU-based SmartNICs are too weak to saturate line-rate throughput for many scenarios
properly as seen in Chapter 3, SmartNIC-driven communication schemes are best realized
on more performance-efficient compute architectures such as FPGAs. This, in turn
further adds to the complexity when considering decentralized one-sided communication
schemes. Second, since a dedicated SmartNIC is needed per server, the hardware cost is
directly proportional to the number of servers. As the cost of a SmartNIC can be up to

54

5.7 Summary

10× more expensive than a normal RDMA-enabled NIC for the same link speeds, the
added cost for a decentralized solution is non-negligible.

5.7 Summary
In this work, zero-sided RDMA was introduced as a way to enable direct RDMA-based
accelerator-to-accelerator communication, which does not require CPUs to coordinate
the communication because the communication scheme is executed by the network.
Moreover, zero-sided RDMA facilitates data shuffling between heterogeneous hardware
devices without the need to implement a complete RDMA stack on each heterogeneous
device. The evaluation showed that zero-sided RDMA flows provide useful and efficient
features such as replication and load balancing that do not introduce any complexity at
the processing units.

55

6 Conclusion
In this thesis, multiple contributions were presented that aim to accelerate distributed
databases by bringing the benefits of modern networks within reach. In the following,
the thesis is summarized and reflected upon, and subsequently, an outlook on future
research directions is presented.

6.1 Summary
The goal of this thesis is to bridge the gap between databases and modern networks
in terms of understanding performance traits, proposing new accelerated distributed
operators, and suggesting abstractions to allow fast and efficient networking without
low-level complexities.

In Chapter 2, an interface was proposed that aimed to bring the benefits of fast networks
and RDMA to data processing systems by abstracting away the low-level details and
complexities of RDMA. The objective of the interface is to raise the level of abstraction
without trading off the achievable network performance. Four key design principles were
identified that are important for data processing systems, such as exposing declarative
optimization goals to the application for adapting to the needs of various application
demands, be it latency-sensitive or bandwidth-demanding workloads. The evaluation
showed that the interface can achieve comparable performance to a low-level RDMA API
while being able to heavily simplify the implementation of a distributed join use case.

Chapter 3 takes a step further into the network by evaluating the effectiveness of
in-network processing for DBMS use cases. The goal of this chapter is to achieve a deeper
understanding of where and when DBMSs can benefit from offloading processing into
the network. The first half of the chapter evaluates the performance of a CPU-based
SmartNIC in two DBMS-centric use cases; a remote B-tree and a remote sequencer. The
findings show that the embedded CPU is substantially weaker than traditional server
CPUs and as such two-sided RDMA degrades the overall system performance when

57

6 Conclusion

too much workload is offloaded to the SmartNIC. However, in unison with the server,
speedups can be detected which underlines the fact that hardware characteristics must
be taken into close consideration when designing new in-network processing systems. In
one-sided RDMA workloads, the SmartNIC achieves a lower latency compared to the
main memory of the host which is due to its close proximity to the network. In the
second half of the chapter, a distributed database join is realized on an FPGA-based
switch to evaluate the potential performance benefits of memory-intensive operations in
the network.

Subsequently, in Chapter 4, fast RDMA-capable networks are combined with GPU
acceleration by implementing a distributed database join. An important discovery in this
work is that the high processing power of GPUs can be leveraged without any additional
data transfer cost as compared to CPU-based processing for data that already has to be
sent over the network. This is enabled by GPUDirect RDMA, by allowing the NIC to do
DMA directly to the GPU, and thus does not require relaying the network data over the
main memory. A pipelined execution scheme is derived as it avoids fully persisting the
database tables in the limited GPU memory and in addition reduces overall runtime by
processing the join during network shuffling. The evaluation showed that a performance
speedup can especially be seen for full queries where multiple operators can be pipelined
and executed on the GPU, essentially hiding the processing cost under the unavoidable
network shuffling.

Lastly, Chapter 5 suggests a network-driven communication scheme for various different
accelerators. The work is motivated by the challenges of achieving direct accelerator-to-
accelerator communication in heterogeneous systems without having to pay the cost of
interleaving the CPU as a central part of the control-flow. By offloading the communica-
tion scheme into the network on a programmable switch, accelerators can be passive in the
network communication since they do not have to rely on an RDMA-stack or implement
the communication scheme directly on the device. The intuition behind this contribution
is that by initiating one-sided RDMA from the switch, the accelerators are only on the
target side of the one-sided communication and as such are oblivious to the network
communication. Since both accelerator end-points of a network-driven communication
channel are passive, this communication scheme is termed zero-sided RDMA. In addition
to removing the communication burden from the accelerators, zero-sided RDMA also
provides a set of features for many-to-many connection flows. These features entail
replication, load balancing, and fine-grained quality of service which all are realized
without introducing any complexity or overhead on the accelerators. The key takeaway
is that by letting accelerators solely do data processing and driving the communication

58

6.2 Future Research Directions

from the network, a separation of concerns can be achieved which both allows realizing
novel communication flows but also simplify the processing on accelerators.

6.2 Future Research Directions
In the following, the future research directions are discussed. First, the immediate future
directions for network-driven communication are presented, and afterward a general
discussion of modern networks.

6.2.1 Network-driven Communication

As a continuation of the work presented for network-driven communication, a future
direction is to build a full system capable of dynamically processing on different network-
attached accelerators. To achieve this, managing the complexity of realizing efficient
processing on many different types of compute devices is essential. Therefore, abstractions
for heterogeneous processing are needed which target typical data processing use cases.
An example of existing work is Tensor Query Processing [47] which leverages advances
in tensor processing on modern hardware from the ML community for analytical query
processing. In addition, Jungmair et al. [64] have proposed to break down data processing
operators into a set of unified sub-operators that can be compiled and optimized to
modern hardware. Therefore, a future direction is the integration of query processing
on heterogeneous modern hardware with network-driven communication to achieve the
vision of a distributed data processing system over heterogeneous hardware without
inefficient reliance on CPUs.

Another future direction is to conduct experiments on a larger scale that goes beyond a
single-rack with multiple programmable switches. Here, interesting challenges may arise
such as the effects of increased latency between the switch and connected accelerators
or the impact of network congestion. By incorporating multiple switches in network-
driven communication there exist also new opportunities such as the ability to provide
higher availability with a fail-over scheme in case of switch failures. This is possible
as the programmable switch driving the communication only duplicates the state from
the accelerator buffers. As such, when instructed, a new switch can take over the
responsibility of driving the communication flow.

59

6 Conclusion

6.2.2 The Future of RDMA

As already stated, RDMA is on the rise in the cloud due to its many benefits such as
zero-copy, kernel by-pass, and very low CPU overhead [5]. RDMA is however mainly
only used by cloud providers for internal systems and is only exposed as a service in a
lesser regard, typically in the form of expensive HPC instances. An open question for the
future of RDMA networks in the cloud is in which capacity cloud tenant systems will be
able to leverage RDMA. Related to this question, there exist a few current issues with
InifiniBand-based RDMA (RoCE & InfiniBand) which might hinder the wider exposure
of RDMA in the cloud. An example is in the domain of security where it has been
shown that RDMA has several vulnerabilities [113]. In addition, Hoefler et al. argue
that RDMA over Ethernet inhibits scalability problems due to simple assumptions made
for load balancing, congestion control, and error handling [49].

To this end, other RDMA protocols have been developed to overcome some of the
challenges inherent to InifiniBand-based RDMA. Examples are 1RDMA [121] and EFA
[118] which both trade off ordering guarantees to support more flexible routing and only
provide a reduced set of primitives. For example, no atomic operations or RDMA writes
are supported directly by 1RDMA or EFA.

Whether a whole new high-performance networking technology is introduced or the
issues of RDMA are addressed, the demand for fast and efficient networking in the cloud
will only grow.

6.2.3 Hardware Evolution

The evolution of hardware continues to reshape the architecture and functionality of
DBMSs. This thesis already delved into the integration and optimization of DBMSs with
SmartNICs, programmable switches, GPUs, and FPGAs. However, as we look ahead, it
is crucial to consider the potential advancements of hardware and the transformative
influence they might have on DBMSs.
The Future of Networking Hardware. Networking hardware is consistently advanc-
ing, presenting opportunities for faster data transfers and optimized communication.
With the current interconnect speeds of 400 Gbps and 800 Gbps around the corner, a
major future challenge lies in designing networked systems. The goal is to fully utilize and
take full advantage of these high-speed networks. This is, however, already a challenge
with even 100 Gbps for many systems, e.g., CPU-driven data shuffling [85]. The reason
behind this is that when computation and communication are overlapped, it becomes
increasingly hard to issue data transfer requests at a rate fast enough to saturate the

60

6.2 Future Research Directions

network. As such, moving forward, extra emphasis must be put on how to efficiently
make use of the ever-increasing network speeds.

In addition, this thesis explored the opportunities for leveraging programmable net-
working devices for DBMS tasks and data structures. This field is still very young and
there exist many open questions on how and where to best integrate modern networks for
DBMSs. As we strive to remove existing network-related bottlenecks, benchmarking and
new architectures will be integral to utilizing the full potential of the future’s networking
hardware.
The Role of the CPU in Future DBMSs. Traditionally, the CPU has been the heart
of computation. But as specialized hardware units like GPUs and FPGAs demonstrate
strong performance benefits, it raises a fundamental question: What is the future role of
the CPU in the DBMS landscape?

The current development of CPUs is going in the direction of embedding accelerator-
type processing capabilities into the CPU. We already see vectorized processing features
such as SIMD (Single Instruction, Multiple Data) embedded into CPUs, but Intel aims to
take this even further by introducing even more specialized accelerator components such
as Intel IAA (In-Memory Analytics Accelerator) [52] and Intel DSA (Data Streaming
Accelerator) [55]. With so many accelerators embedded into CPUs, it begs the question of
whether the CPU can continue to be competitive against a set of interconnected discrete
accelerators.

Recent research papers present another vision with entirely CPU-less servers [95, 129].
A radical approach that reimagines the roles and responsibilities of server hardware.
While the feasibility of such designs remains to be seen, they undeniably present an
interesting direction for future research.

In conclusion, the evolution of hardware promises transformative changes for DBMSs.
This introduces many interesting future research directions for DBMSs for reinventing the
traditional system design to pave the way for optimized, efficient, and versatile DBMS
architectures.

61

Part II

Peer-Reviewed Publications

63

7 DFI: The Data Flow
Interface for High-Speed
Networks

Abstract
In this paper, we propose the Data Flow Interface (DFI) as a way to make it easier for
data processing systems to exploit high-speed networks without the need to deal with
the complexity of RDMA. By lifting the level of abstraction, DFI factors out much of the
complexity of network communication and makes it easier for developers to declaratively
express how data should be efficiently routed to accomplish a given distributed data
processing task. As we show in our experiments, DFI is able to support a wide variety of
data-centric applications with high performance at a low complexity for the applications.

Bibliographic Information
The content of this chapter was previously published in the peer-reviewed work: Lasse
Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten Binnig. “DFI:
The Data Flow Interface for High-Speed Networks.” In: SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021. Ed. by
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava. Best Paper Award.
ACM, 2021, pp. 1825–1837. doi: 10.1145/3448016.3452816. url: https://doi.org/

10.1145/3448016.3452816.

65

https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816

7 DFI: The Data Flow Interface for High-Speed Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. © 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for personal use in
this thesis. Not for redistribution. The definitive version of the record was published in
the SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, https://doi.org/10.1145/3448016.3452816.

66

https://doi.org/10.1145/3448016.3452816

7.1 Introduction

7.1 Introduction
Motivation. Scale-out data processing systems are the typical architecture used today
by many systems to process large data volumes since they allow applications to increase
compute and memory capacities by simply adding further processing nodes. However, a
typical bottleneck in scale-out systems is the network which often slows down the speed
of data processing if communication is in the critical path. For distributed in-memory
systems this might lead to degraded performance when adding more nodes [110].

However, this changed with the advent of high-speed networks such as InfiniBand.
Network bandwidth increased almost up to the speed of main memory and latencies
dropped by orders of magnitude [11], making scale-out solutions more competitive.
However, blindly upgrading to faster networks does often not directly translate into
performance gains, as there is a plenitude of aspects to consider to achieve a good
performance for distributed data processing systems.

One particular important aspect to efficiently use high-speed networks is to redesign
data processing systems to leverage remote direct memory access (RDMA) as a low
overhead communication protocol. RDMA provides kernel bypass and zero-copy making
data transfers less expensive than classical network stacks such as TCP/IP [37]. In
recent years, industry and academia have thus started to adapt scale-out data processing
systems in order to make use of RDMA. As a result, significant speed-ups have been
shown for a wide range of data processing systems ranging from key-value stores [69, 80,
91], over distributed DBMSs (for OLTP and OLAP) [11, 68, 138, 143, 147, 148] to Big
Data systems and Distributed Machine Learning [62, 87, 142].

However, using RDMA is complicated because it provides only low-level abstractions
(called RDMA verbs) for data processing [27]. Hence, redesigning data processing systems
for RDMA often requires significant efforts to take care of many low-level detail choices
[10, 11, 66, 68, 157] regarding remote memory and connection management as well as
other decisions such as which RDMA verbs to use for which type of workload.
Contribution. In this paper, we propose the Data Flow Interface (DFI) as a way to make
it easier for data processing systems to exploit high-speed networks. Accordingly, DFI
defines abstractions and interfaces suited to a broad class of data-intensive applications,
yet simple enough for practical implementation with predictable performance and low
overhead relative to “hand-tuned”, ad hoc alternatives. In designing a high-level interface
tailored to data processing, we adopt the approach taken by the high-performance
community for MPI [42] to provide a simple yet effective interface for high-speed networks.
However, since MPI has been designed for computation-intensive workloads such as large-

67

7 DFI: The Data Flow Interface for High-Speed Networks

scale simulations, it comes with many design choices that are not optimal for data-intensive
workloads [70]. Consequently, MPI has seen only very limited adoption for data processing
systems [9].

In brief, the main idea of DFI is that data movements are represented as flows. DFI
flows are an abstraction providing primitives for efficient network communication. These
primitives are intended to be used as a foundation for building data-intensive systems and
provide many benefits over MPI (e.g., thread-centricity, pipelined communication). By
lifting the level of abstraction, DFI flows not only hide much of the low-level complexity
of network communication but also allow developers to declaratively express how data
should be efficiently routed to accomplish a given distributed data processing task.
Moreover, DFI flows allow developers to specify optimization hints; e.g., to maximize
bandwidth-utilization or minimize network latency of transfers. By using flows as the
main abstraction, DFI supports a wide variety of data-centric applications ranging
from bandwidth-sensitive distributed OLAP to more latency-sensitive workloads such as
distributed OLTP or replication with consensus protocols.

Recently, the need for better interfaces to high-speed networks has also been discussed
in a vision paper [3]. We, however, are the first paper that provide a concrete suggestion
and a full implementation for an interface that can enable a broad class of data-centric
applications to make efficient use of modern networks. Moreover, there have also been
several other attempts to build libraries for data processing over high-speed networks [18,
28, 35]. For example, FaRM [28] and GAM [18] provide a programming model based on a
shared address space which focuses on supporting latency-sensitive workloads (e.g., such
as distributed transactions). Another example is L5 [35], which target the communication
between clients and servers to replace traditional client-centric communication libraries
such as ODBC. Different from those libraries, as mentioned before, DFI flows aim to
be a much more general abstraction that can support a broader class of data-centric
applications.

Finally, like MPI and different from the approaches mentioned before (such as FaRM,
GAM and L5), DFI only defines an interface for communication. Hence, different vendors
can provide an efficient implementation of DFI for their network technology. As a result,
this increases the compatibility and portability of data processing systems across different
networking technologies including RDMA-capable networks (such as InfiniBand as well
as RoCE).

In summary, this paper makes the following contributions:

68

7.2 Existing Interfaces

• First, we present the design of DFI based on the general abstraction of flows that
allow developers to declaratively specify the communication behavior of distributed
systems by defining its topology (1:1, N:1, 1:N and N:M) as well as providing other
properties for execution.

• Second, we provide a first implementation of DFI1 for an InfiniBand-based net-
working stack and discuss how the high-level abstractions of DFI are being mapped
to the low-level implementations using RDMA.

• Third, we provide an exhaustive evaluation of our DFI implementation and demon-
strate that DFI does not only provide many benefits over MPI for data processing
but also showcase that DFI can provide high performance for different data-centric
applications.

Outline. The remainder of this paper is structured as follows: In Section 7.2, we
first give an overview of two existing interfaces, RDMA verbs and MPI. Moreover, we
analyze MPI as the direction taken by the high-performance community to provide a
simple yet effective interface for high-speed networks and discuss the limitations of MPI
for distributed data processing. Afterwards, in Section 7.3 we present an overview of
DFI before we discuss details of the programming model in Section 7.4 as well as our
implementation for InfiniBand in Section 7.5. Finally, we conclude with our evaluation
in Section 7.6 and a summary in Section 7.7.

7.2 Existing Interfaces
In this section we aim to give an overview of existing interfaces namely the standard
RDMA verbs interface native to the InfiniBand network stack and the Message Passing
Interface (MPI), the de facto standard in the HPC community.

7.2.1 RDMA Verbs

The InfiniBand RDMA verb interface is a low-level interface providing low latency and
high bandwidth communication. The interface exposes one-sided verbs (write, read &
atomics) and two-sided verbs (send & receive) which refer to the involvement of end-points
(i.e., one-sided verbs only involves the CPU of the sender). The high performance of
RDMA is in general achieved by the asynchronous nature of RDMA, making it possible
to pipeline computation and communication such that the CPU is not busy idling during

1https://github.com/DataManagementLab/DFI-public

69

https://github.com/DataManagementLab/DFI-public

7 DFI: The Data Flow Interface for High-Speed Networks

network communication. To issue RDMA verbs (one- or two-sided), the application has
to register a memory region in which the RNIC can directly access memory, leaving
communication related memory-management a responsibility of the application. Moreover,
due to the RDMA verb interface’s very low abstraction level it provides also a huge
design space. This requires, however, that applications need to carefully explore this
design space and to optimally make use the available low-level options [35, 69, 156, 157].

7.2.2 Message Passing Interface

The Message Passing Interface (MPI) is widely used by the HPC community as a high-
level abstraction for high-speed networks, and has through many years of development
reached a mature and industrial-strength quality. One could now argue that MPI is
already good enough for data-centric applications as well. In the following, we first aim
to provide a better understanding of the programming and execution model of MPI and
next we discuss the shortcomings of MPI for data-centric applications.
Programming Model. For programming distributed applications, MPI provides
different primitives. These primitives can be categorized into point-to-point and collective
communication.

• Point-to-point communication: The MPI point-to-point primitives provide communi-
cation operations to exchange data between a sender and a receiver. Point-to-point
primitives, similar to native RDMA verbs, support two-sided communication with
send and receive, as well as one-sided primitives with put and get. For the two-sided
primitives, the send request has to be matched with a receive request, whereas
the one-sided primitives transfer data without involving the remote side into the
communication. While the point-to-point primitives offer high flexibly in how data
is exchanged between two nodes, they still leave many low-level details to the
application and thus only raise the level of abstraction minimally compared to
native RDMA verbs (RDMA read/write or RDMA send/receive). For example,
the remote memory management for the one-sided MPI primitives (put and get) is
still up to the application to handle, which in a setup with many writers, involves
considerable amounts of engineering efforts to coordinate the concurrent memory
accesses as shown in [9].

• Collective communication: Different from the point-to-point primitives, the so-
called MPI collectives targets many-to-many communication between multiple
(sender and receiver) nodes and provide a higher-level abstraction to exchange data
between nodes. Examples of MPI collectives are scatter, gather, broadcast or reduce

70

7.2 Existing Interfaces

and all to all that transfer bulks of data (i.e., vectors of elements) between multiple
nodes. Hence, collectives seem to be a perfect candidate for many data processing
tasks such as data shuffling or even to implement replication protocols. However,
while the collectives provide a convenient way to exchange data between multiple
nodes, all these primitives use a bulk synchronous (i.e., blocking) communication
model where all data needs to be available on the sender side before the collective
is being executed. This limits the efficiency of MPI collectives for data processing
[70] since it hinders overlapping of compute and communication.

Execution Model. MPI programs follow a process-centric execution model, where
parallelism is achieved by running the multiple processes of the same program in parallel
on multiple nodes. A new MPI program is started by running mpirun which launches
the same program on all specified processes spread across the specified cluster nodes.
Again, this process-centric parallelization model is not ideal for data processing systems
as we discuss next.

7.2.3 Shortcomings of MPI

In the following, we give a brief overview of the main limitations of MPI for distributed data
processing systems. Many of these shortcomings are evaluated further in Section 7.6.2.
Compute- and not Data-centric. MPI was designed towards supporting compute-
intensive applications such as distributed simulations. However, the communication
behavior in these types of distributed applications is very different from the needs of data-
intensive applications. While distributed simulations exchange data in a bulk synchronous
manner (i.e., after every iteration of a simulation), many data-centric applications are
often dominated by data transfers (i.e., data shuffling).

Hence, for many data-centric applications it is important that applications can overlap
computation and communication efficiently such that compute resources do not get idle
[10]. This also holds for more latency sensitive operations such as distributed transactions.
As shown in [137], overlapping does not only help to increase the overall throughput but
it also reduces the end-to-end latency of distributed transactions.

Therefore, various types of data-centric applications would benefit from a pipelined (i.e.,
overlapping) communication model that provides a more loose coupling between senders
and receivers. While a pipelined communication model is available for MPI’s point-to-
point primitives such as non-blocking send or one-sided put and get primitives, using
these primitives in a non-blocking manner often results in more complex application code
similar to using RDMA verbs directly [9]. In addition to point-to-point primitives, MPI

71

7 DFI: The Data Flow Interface for High-Speed Networks

collectives provide a higher-level of abstraction for communication between multiple nodes.
However, as mentioned before, MPI collectives use a bulk-synchronous communication
model. Extensions of MPI collectives to support pipelining [140] have unfortunately not
made their way into today’s MPI distributions. Hence collectives as they are available
today do not only lack the the support for overlapping of computation and communication
but also are thus sensitive to stragglers and skew which can both limit the performance
in data processing systems significantly [21, 133].
Process-centric and not Thread-centric. As mentioned before, MPI has been
designed for process-level parallelism. As such, the communication primitives of MPI
(point-to-point and collectives) were designed for single-threaded usage; i.e., only one
dedicated communication thread of an MPI process can call the communicating primitives.
This, however, is very different from designs of modern data-centric systems for high-speed
networks where multiple worker threads are often required to saturate the network [11,
147].

While recent papers [9] have shown that multi-process parallelism can be used in
MPI to saturate the network, it comes with other downsides.For example, when using
multi-process parallelism within a node, global data structures (e.g., an aggregation hash
table) need to be accessed by different processes through shared memory.

Finally, in the recent years, many MPI distributions have added multi-threading
support. However, as multi-threading support was only added as an afterthought, it
lacks an efficient implementation in MPI as we show in our evaluation.

7.3 DFI Overview
In this section, we first highlight the central design goals of DFI before we discuss the
flow-based programming model, as well as the high-level idea of the execution model
behind flows.

7.3.1 Key Design Principles

The aim of DFI is to provide a high-level abstraction that provides efficient support
for a broad set of data processing systems. In the following, we present the key design
principles of DFI to ideally support the needs of these systems:

(1) Pipelining: Different from MPI, which targets compute-centric applications such
as distributed simulations, many data-centric applications are often dominated by data

72

7.3 DFI Overview

transfers (i.e., data shuffling). For this reason, it is shown to be crucial that computation
and communication can be overlapped [10].

(2) Thread-centricity: Multi-threading is essential not only in achieving high degrees
of parallelism in modern data-centric architectures but also to saturate the network as
mentioned before. Hence, different from MPI, DFI should be designed from ground up
to enable a thread-centric execution and communication model.

(3) Low-overhead synchronization: Another important aspect that goes along with
thread-centricity is that DFI aims to provide low-overhead synchronization between
sender and receiver threads as well as between sender threads that target the same
receiver. By providing low-overhead synchronization, DFI thus should enable scalability
to a high number of sender and receiver threads.

(4) Declarative optimization: A last important goal is that DFI exposes parameters as
a handle for applications to declare what optimizations are desired. Examples of such
optimizations are whether applications are bandwidth or latency sensitive, but also other
guarantees such as global ordering of messages when data is send across flows (which is
important, for example, for data replication protocols).

7.3.2 Flow-based Programming Model

At the center of the abstraction are DFI’s flows. Flows encapsulate the movement of data
between end-points in a distributed application, by exposing sources and targets as data
entry and exit points on a per thread-level. This simple abstraction allows applications
to compose potentially complex communication topologies, including both point-to-point,
one-to-many, many-to-one and many-to-many communications between worker threads of
multiple nodes. As we show later in this section, the flow abstraction is powerful enough
to support a wide range of data processing use-cases such as distributed join algorithms,
but also consensus protocols.

In the following, we provide an example of a concrete many-to-many flow type in DFI,
which is one out of multiple other flow types as we discuss later. The most common
many-to-many communication in data processing systems is arguably key-based shuffling
of data across multiple sources and targets. An example of such a shuffle flow in DFI is
illustrated in Figure 7.1.

As we see in the example, before a flow can be used it first has to be initialized by
specifying a unique flow name identifier, location of source and target threads identified
with the node address and a thread ID in DFI_Nodes, the schema of tuples that are
transferred and on which key the tuples should be shuffled (see upper part of Figure 7.1).

73

7 DFI: The Data Flow Interface for High-Speed Networks

Source 1

Target 1

Target 2

sources targets shuffle key

Flow initialization

Flow execution

DFI_Nodes n({"192.168.0.1|0", ...});
DFI_Schema schema({"key", int},{"value", int});
DFI_Flow_init(name, {n[0]}, {n[1], n[2]}, schema, 0);

for(auto tuple : tuples)
 source.push(tuple);

target.consume(tuple); // {0,20}
target.consume(tuple); // {2,30}

target.consume(tuple); // {3,20}
target.consume(tuple); // {7,40}

Figure 7.1: DFI’s Programming and Execution Model. Example of flow initialization for
setting up a shuffle based flow. The flow execution exemplifies the tuple-based
push and consume primitives on DFI.

Note, it is also possible for applications to specify application-specific partition functions,
but as default a simple key-based hash function is used to partition the tuples across
receivers.

To make the flow available for other nodes, its metadata is published in a central
registry upon initialization (e.g., a master node in a distributed system). For using a
flow, sources and targets first need to retrieve the flow metadata from the central registry.
The source nodes can then use a flow by pushing tuples into the flow and the target to
consume tuples out of the flow by pulling from the flow (see lower part of Figure 7.1).

In addition to shuffle flows between N senders and M receivers, DFI provides many
other flow types (i.e., a combiner and a replicate flow) and topologies (i.e., 1:1, N:1, 1:N
and N:M) to support various data processing applications. More details about the full
programming model of DFI will be explained in Section 7.4.

7.3.3 High-level Flow Execution

Key to the execution model of DFI’s flows are the design principles discussed above. We
achieve these design principles by implementing an execution model where each thread

74

7.4 Programming Model

with a source or target has a private send/receive buffer that not only decouples sender
from receiver threads but also uses a new memory layout for remote data transfer between
sender/receiver threads with only minimal synchronization overhead as we discuss next.

In the following, we present the high level execution of flows by following the example
of shuffling tuples shown in Figure 7.1. The push primitive on sources is asynchronous
and returns immediately after the tuple to be transferred is copied into the internal send
buffer. This non-blocking behavior allows applications to interleave the computation and
communication, i.e., pipeline, and thus utilize both CPU and network resources. Moreover,
internally the flow execution heavily uses the available one-sided RDMA primitives to
reduce the CPU involvement of the targets, and thus decouples the sources and targets
as much as possible. To enable one-sided network communication, as mentioned before,
a receive buffer must be in place in which the tuples of one or multiple sending threads
are written to. Details about the buffer design and their low-overhead synchronization
model are discussed further in Section 7.5.

Once a tuple has been pushed into the flow, a routing decision will be made by the
flow based on the provided shuffling key. Depending on the chosen optimization goal
(bandwidth or latency), the execution of the flow will transport tuples across the network.
For bandwidth optimization, flows batch tuples together destined for the same target in
order to achieve a better bandwidth utilization through larger messages. On the other
hand if a latency optimization is chosen, the flow execution will prioritize transferring
the tuple as soon as possible. The details of these optimizations are discussed further in
Section 7.5 as well.

7.4 Programming Model
In the following, we present a more detailed view on the programming model of DFI and
its main abstractions by detailing the opportunities for setting up various communication
flow types. In addition, the programming model will be demonstrated through a set of
concrete use cases.

7.4.1 DFI Tuples

To allow processing of application-specific tuples between different end-points (i.e.,
threads) of DFI flows, DFI receives the tuple types through the passed schema on flow
initialization. The schema can be constructed of various data types, that each mirrors
the size of C++ types, specifically the LP64 data model (default data model in most

75

7 DFI: The Data Flow Interface for High-Speed Networks

Flow type Communication topology Flow options
Shuffle flow 1:1, N:1, 1:N, N:M Bandwidth/latency
Replicate flow 1:N, N:M Bandwidth/latency + ordering guar-

antees
Combiner flow N:1 Bandwidth/latency + various aggre-

gations

Table 7.1: DFI flow types for a wide range of data-centric applications. Communication
topologies and flow options further allow applications to adjust the behavior
of flows based on application requirements.

Unix-based systems). The types, however, can be extended by the application to meet
the need for other user-defined types.

DFI’s type system enables efficient data processing: (1) Avoiding any type interpretation
overhead is key to high-speed networks since every additional overhead can significantly
reduce bandwidth or increase latency of the overall distributed algorithm [37, 112].
Tuple types are parameters of flows that are defined at flow initialization; i.e., no type
interpretation happens at flow execution. Instead, efficient offset computation can be
used to access attributes of a tuple (e.g., to make routing decisions). (2) The type
system of DFI also allows applications to push down the processing to devices in the
network, such that the interface is extensible towards leveraging the future generations
of SmartNICs and programmable switches. For example, data aggregation of a DFI
combiner flow (which is another DFI flow type) could be pushed into InfiniBand switches
as we discuss below.

7.4.2 DFI Flows

So far we have only presented a concrete example of constructing a flow for shuffling tuples
between a set of source and target threads. However, DFI defines flows with different
characteristics to support the wide demands of data processing systems. Table 7.1 shows
the three flow types in DFI, the communication topologies supported by the corresponding
flows, as well as their declarative flow options.

The flow abstraction also offers easy adaptability of application algorithms, since
different types of flows can be trivially exchanged to offer different behaviors. For
instance, to change a symmetric re-partition join algorithm into a fragment-and-replicate
join, instead of using a shuffle flow that routes tuples based on the join key, use a
replicate flow to replicate the inner table. Performing such algorithmic changes on typical
solutions leveraging the RDMA verb interface would infer a significant rewrite of the
communication relevant parts of the solution.

76

7.4 Programming Model

In the following, we discuss the different flow types and their potential use in data
processing systems.

7.4.2.1 Shuffle Flow:

The shuffle flow is a central abstraction of DFI, where various different communication
patterns and routing options can be specified. The communication pattern is indirectly
defined by declaring the participating sources and targets in the flow initialization, and
can therefore follow 1:1, N:1, 1:N and N:M communication patterns between sending and
receiving threads.

The routing of tuples from sources to targets can be defined in three ways in a shuffle
flow: (1) The application specifies the shuffle key and let DFI handle the routing. (2)
A routing function can be supplied for more control, e.g., to realize different partition
functions such as range-partitioning or radix hash partitioning. (3) Lastly, it is also
possible to directly specify the node identifier of a target thread on each push into the
flow.

7.4.2.2 Replicate Flow:

Another flow type that DFI provides is a so called replicate flow, which targets data
processing tasks involving data duplication, such as replicated state machines, fragment-
and-replicate join operators or data duplication for stream processing.

The performance of a naive replication of tuples which uses multiple RDMA operations
(i.e., one for each target), will quickly become limited by the outgoing link-speed of the
source node; e.g., a replicate flow with 1 source and 8 targets, will have to divide the
available network bandwidth at the source, if messages are replicated to all 8 targets
on the source node. In DFI, we instead make use of RDMA multicast such that when
enabled, messages are replicated in the network as to prevent the outgoing link of the
source(s) from becoming a bottleneck.

For some applications using replication, ordering of messages plays an important role.
An example of this is state machine replication, where the correctness depends on all
replicas processing the incoming operations in the same order. Since many networks
(including InfiniBand) do not provide this guarantee if multiple receivers are involved
[82] (even not for simple networks with only one switch), replicate flows can be initialized
to provide global ordering guarantees, such that all targets consume tuples out of the
flow in the same order. Details on how global ordering is implemented for replicate flows
in DFI are explained in Section 7.5.

77

7 DFI: The Data Flow Interface for High-Speed Networks

Inner relation

worker worker worker worker

N:M Shuffle Flow (f1)

Part 1 Part 2 Part 3 Part 4 Part N...

N:M Shuffle Flow (f2)

Outer relation

Network Partition

Network Partition

Build and Probe

worker worker worker worker

while(f2_target.consume(tuple) != FLOW_END)
 hashTable.probe(tuple);

for(auto tuple : relation)
 f1_source.push(tuple);

while(f1_target.consume(tuple) != FLOW_END)
 hashTable.insert(tuple);

for(auto tuple : relation)
 f2_source.push(tuple);

Figure 7.2: Distributed Radix Hash Join with DFI flows. Two shuffle flows are used to
partition tuples across network, one for each relation.

7.4.2.3 Combiner Flow:

The third flow type supported by DFI is the combiner flow. The focus of the combiner flow
is many-to-one communication patterns which is typically used in aggregation scenarios,
such as a SQL aggregation or a parameter server [83] for distributed machine learning.
The combiner flow supports various different aggregations (e.g., SUM, COUNT, MIN,
MAX) to be performed on the tuples.

Again while a naive implementation would implement the reduction at the target node,
the network can be used to accelerate the reduction. For example, InfiniBand offers the
SHARP protocol [41], that enables in-network aggregations for high-speed InfiniBand
networks and thus could help to mitigate when the in-bound network of the receiver
becomes a bottleneck.

7.4.3 Use Cases

In the following we present two distributed data processing use cases and how they are
realized through DFI: First, we discuss distributed joins for OLAP where the aim is to
reduce the runtime by making efficient use of the available network bandwidth. Second,
we present a distributed consensus use case where the performance criteria is low latency
and high message throughput.

78

7.4 Programming Model

7.4.3.1 Distributed Radix Join:

The distributed radix hash join is a popular join operator due to its dominating perfor-
mance [9, 10]. The idea behind the radix hash join is to partition the input relations into
such small partitions that the resulting hash tables fit into the CPU caches to reduce
cache-misses.

In its original form the distributed radix join has a high level of complexity since multiple
sender and receiver threads need to coordinate. For example, in [9, 10], histograms of
buckets are pre-computed in a first pass on each input table to allocate private memory
buffers for each thread on the receiver node and then use coordination-free one-sided
communication in a second pass to shuffle the data of each input table.

We argue that with DFI, the design of a distributed radix join is simpler while the
performance is on par (and sometimes even better) with the latest distributed radix join
implementations (as will be shown in Section 7.6.3). To realize the join with DFI, two
bandwidth optimized shuffle flows are used as shown in Figure 7.2, one for shuffling each
relation. Figure 7.2 also shows the pseudo-code how tuples can be pushed into the flows
during network partitioning, and consumed at the target (i.e., receiver node) out of the
flows for the relations to either build the hash table (for the inner relation) or probe the
hash table (for the outer relation).

The shuffle flows for the join are initialized with one source per sender thread and
one target per output partition. That way the flow can used for achieving the desired
partition fan-out. The routing of tuples to the partition-specific targets is done on a per
thread level by passing a radix hash function to DFI as the routing function. This also
leads to a noticeable reduction of complexity of the DFI join compared to the original
RDMA-based distributed radix join since the histogram computation can be completely
omitted. Moreover, the memory management of local and remote buffers is handled in
DFI.

7.4.3.2 Distributed Consensus:

Consensus in a distributed system describes the agreement of multiple (often asyn-
chronous) participants on a single value, or a sequence of values, while tolerating the
presence of faulty participants. It is a fundamental primitive in distributed computing
which is needed, for example, for the reliable implementation of replicated state machines,
leader election, or system reconfiguration.

Classical consensus protocols [74, 105] are centered around a centralized coordinator,
called leader. The leader orders concurrently arriving requests of participants (i.e., clients)

79

7 DFI: The Data Flow Interface for High-Speed Networks

Client Client Client Client

N:1 Shuffle Flow (f1)

submit
request

auto tuple = newRequest();
f1_source.push(tuple);

while(f1_target.consume(tuple) != FLOW_END)
 auto tuple2 = constructProposal(tuple)
 f2_source.push(tuple2);

Leaderpropose
request

Replicate Flow (f2)

Follower Follower Follower

N:1 Shuffle Flow (f3)

while(f2_target.consume(tuple) != FLOW_END)
 appendToLog(tuple);
 f3_source.push({tuple.reqid, ACK});

......

Leader

vote for
request

execute request
on vote majority

1:N Shuffle Flow (f4)

Client Client Client Client

while(f3_target.consume(tuple) != FLOW_END)
 votes[tuple.reqid]++;
 if(votes[tuple.reqid] == majority())
 executeRequest(tuple);
 f4_source.push({tuple.reqid, ACK});

Figure 7.3: Leader-based consensus with DFI flows. Four flows are used to realize
consensus between replicas.

and forwards them to a set of so called followers. The followers vote for requests that they
receive from the leader. Once the leader has received a majority of votes (itself included),
the leader can notify the corresponding client that its request was agreed-upon. The
high-level message flow of a leader-based consensus implementation using DFI can be
modeled directly with the flows provided by DFI and is depicted in Figure 7.3. Figure 7.3
additionally shows pseudo-code of how these flows are used for the communication which
we explain in the following.

Clients initially send their vote with an N:1 shuffle flow to the leader. The replicate
flow is ideal to handle the communication from the leader to its followers, as all followers
receive identical messages. The use of the RDMA multicast verbs built into DFI alleviates
load placed on the leader compared to the naive replication of messages. This is an
interesting optimization, as the leader is typically a major bottleneck in consensus-based
systems. Once followers received the request and voted for a result, they send the outcome
back to the leader, again using a shuffle flow. In a last step the leader distributes the
consensus-outcome to the client using the client IDs as the shuffle key.

An interesting optimization that DFI provides is to use the optimization option for
global ordered multicast (also referred to as ordered unreliable multicast - OUM). In
particular, Li et al. [82] propose a single round-trip consensus protocol based on OUM.

80

7.5 Flow Implementation

Network

Target

Source 1

Source 2

RDMA Target-side
buffer

Flow
push

Flow
consume

Source-side
buffer

push (tuple)
 curSegment = sendRing.curSegment;
 curSegment.append(tuple)
 if (curSegment.isFull())
 curSegment.setConsumable();
 transferByRdmaWrite(curSegment); //async
 sendRing.advanceSegment();

consume (&tuples)
 while (!curSegment.isConsumable())
 curRing = nextRing();
 curSegment = curRing.curSegment;
 tuples = curSegment.payload;
 curRing.advanceSegment();

Figure 7.4: DFI flow implementation using ring buffers. In DFI flows, each source
allocates a private target-side ring buffer to minimize coordination overhead.

While this work focuses on Ethernet-based systems, to our knowledge, DFI is the first
system that can provide these semantics in the context of InfiniBand.

As we show in Section 7.6.3.2, using the ordered multicast significantly improves both
throughput and latency compared to conventional consensus protocol designs using native
RDMA that follow more classical consensus designs.

7.5 Flow Implementation
In this section, we discuss our implementation of DFI for a recent RDMA-capable
InfiniBand EDR hardware stack to showcase the design choices of how to enable the key
design principles discussed in Section 7.3. In future, we envision that different vendors
can provide an efficient implementation of DFI for their network technology.

7.5.1 Flow Execution

The key design principles listed in Section 7.3 impose challenges for how the data
transfer between the sources and targets is realized which are pivotal for distributed data

81

7 DFI: The Data Flow Interface for High-Speed Networks

processing. In the following, we give an overview of the flow execution (Section 7.5.1) and
the buffer design (Section 7.5.2) for bandwidth optimized shuffle flows. Optimizations for
latency-optimized flows and other flow types will be discussed at the end of this section.

On a high-level, to achieve the design goals listed in Section 7.3 for shuffle flows, DFI
uses a private send/receive buffer for each pair of source and target threads as illustrated
in Figure 7.4. The design of source- and target-side buffers follows a ring-based design
where each ring is composed of a configurable number of segments and is allocated as
one consecutive region in memory. The segment itself can be sized to contain a single
tuple up to a batch of tuples. Therefore, the segment size is a tuning parameter that
allows DFI to either optimize for bandwidth or latency independent of the tuple sizes
used by the application.

One key question is how such a segmented ring design enables pipelining of tuples
with low-overhead synchronization. In order to achieve pipelined data transfer between
buffers (i.e., a decoupling of senders and receivers), one-sided RDMA writes are used to
copy data asynchronously from sources to targets. This asynchronous data transfer using
RDMA writes is implemented by the transferByRdmaWrite call in Figure 7.4. This
method also implements the synchronization with the target buffer to not overwrite any
segments that has not been consumed yet. The synchronization is based on the metadata
of each segment as we discuss next in Section 7.5.2. For latency-optimized flows (see
Section 7.5.3), we instead use a credit-based approach to further reduce the overhead.

In setups with a very high number of sources and targets, a design with private buffers
for each source / target combination can by first sight lead to high memory consumption.
In DFI, however, applications can effectively reduce the memory consumption by reducing
the number of segments per ring, since only a few segments are needed to achieve good
pipelining and source / target decoupling. As we show in our evaluation, this can
efficiently reduce the memory overhead while only affecting performance minimally.

Other approaches also employ a circular buffer for communication over RDMA, e.g.,
such as FaRM [28, 29]. While our buffer design shares some similarities with the buffer
design of FaRM (e.g., using one-sided writes for data transfer), there are noticeable
differences: (1) The aim of the FaRM design is only latency sensitive message-passing and
hence does not provide a bandwidth optimized communication primitive. (2) The buffer
design of FaRM targets only shuffle flows but no other flow types such as replication flows
or combiner flows, which require additional optimizations as we discuss in Section 7.5.4.

82

7.5 Flow Implementation

Seg. 2 Tuple1, Tuple2, ...

Payload
counter flags Seg. 4

Footer
Memory Layout

Segment Ring

Seg. 6

Se
g.

 5

Seg
. 2Se

g.
 1

Seg. 3

Seg. 4

Seg. 7

Consume
next

Write
next

Figure 7.5: Target-side buffer structure. The segment ring data structure is a densely
allocated memory region split up into segments. Segments are appended with
small footers to handle coordination and fill grade of each segment.

7.5.2 Buffer Design

In the following we present further details of the buffer design for the bandwidth optimized
setting. We first explain the design of the outgoing buffer on the source side before we
then discuss the design of target-side buffers.
Source-side Buffer. The main difference is that source-side buffers use much fewer
segments than target-side buffers to reduce the memory overhead of buffers. Smaller
send buffers do not violate our goal to decouple sources and targets since data is sent
directly once it is available. However, since data out of source buffers is transferred
asynchronously we need more than one segment. For this reason, we need to ensure that
an RDMA write of a segment has been carried out before the segment can be reused to
avoid data loss. For achieving this, the source-side buffers use signaled RDMA writes,
a technique to check if the asynchronous transfer is completed. However, in order to
reduce the number of these checks, as they are quite expensive, the source only issues a
signaled write once it wraps around the buffer.
Target-side Buffer. Target-side buffers use a slightly different design since sources and
targets need to synchronize; i.e., targets need to decide which segments are ready to be
read while sources must decide whether a remote segment was consumed already and
thus can be reused by the source. For the synchronization each segment defines a footer
which holds metadata about the segment as shown in Figure 7.5. The flags in the footer
indicate whether a segment is writable or consumable. In a writeable state, a segment
is free to be written by the source and consumable state indicates that the target can
consume the tuples stored in the segment.

83

7 DFI: The Data Flow Interface for High-Speed Networks

Unfortunately, an RDMA write of one segment is not guaranteed to be persisted
atomically into remote memory since the segment might be split into multiple DMAs
by the remote NIC. In order to avoid a checksum per segment, we make use of the fact
that DMAs of the remote NIC are guaranteed to be written in an increasing memory
order [28, 86]. Therefore, DFI places the metadata which indicates the state whether
the segment is consumable or not after the payload of the segment. This ensures that
when the target has detected a change of segment state, the payload of the segment is
completely written.

From a target perspective, the footer is read when the target thread calls the consume
function, which returns a pointer to the payload if the state is consumable and sets
the state to writable on subsequent consume calls. Thereby allowing the application to
process the returned tuples directly without memory copy. To write new segments to the
target-side buffer the source first needs to verify if the current target segment is free and
ready to reuse. Therefore, the source reads the footer of the remote target segment with
RDMA reads to check if the state is writeable.

To efficiently read the remote segment states we pipeline the write of the current
segment with the read of the footer of the next segment. In other words, while we transfer
a source-side segment to the target-segment n we immediately read the footer of the
target segment n + 1. Therefore, upon the next push call on the source, if the remote
segment is detected to be writeable, the RDMA write can be executed directly without
waiting. The RDMA write of the source includes the update of the footer for the target
(i.e., setting its state back to consumable). If the remote segment is detected to be not
writeable, the source periodically polls the segment footer that should be written next
with a small random backoff, to avoid overloading the network with read requests.

Optimizations. For the buffer design, we use various optimizations for efficient RDMA.
For instance, our design increases the chance to exploit DDIO which allows DMA data to
be directly written to CPU caches. Additionally, we use common RDMA optimizations
like inlining small messages and selective signaling. Moreover, in both buffers (source- and
target-side), we additionally enable two performance-relevant settings in the InfiniBand
stack: (1) We disable expensive spin locks in the RDMA library when using private
buffers. (2) We use huge-pages for RDMA to avoid the high costs of TLB misses in the
RDMA NIC.

84

7.5 Flow Implementation

7.5.3 Latency Optimization

The previously presented flow implementation is centered around maximizing bandwidth
utilization. However, for some classes of distributed data processing systems (e.g., for
OLTP or consensus) achieving low latency for data transfer is crucial. Hence DFI provides
an optimization option for latency. This requires several changes in the buffer design and
the overall execution flow.

A naive way to support low latency would be to simply reduce the segment size of
buffers to the size of an individual tuple and rely on the same synchronization protocol
between sources and targets. However, this implies that sources would need to check
the footer of the next segment before every RDMA write to make sure that the segment
is writable. In contrast to the bandwidth optimized version in which the cost of the
additional read is amortized by the batch of tuples an additional read for each tuple
transferred incurs high overhead. Hence, we use a different design to support low-latency
data transfer with low overhead.

While the footer is still used by the target to decide if a segment is consumable,
we use a credit system to decide how many segments a source can write without any
synchronization. Therefore, a credit counter on the target side is used which is initialized
to the number of segments in the ring, to reflect the number of tuples a source can write
without overwriting tuples that haven’t been consumed by the target yet. The credit
counter is incremented by the target each time a tuple is consumed. The source thread
holds a copy of the remote credit counter which is decremented on every RDMA write of
a segment. Moreover, the remote credit is read once the local credit counter reaches a
certain threshold.

7.5.4 Other Flow Types

The replicate and combiner flows employ similar buffer structures as the shuffle flow but
introduce important optimizations.
Replicate Flow (no ordering). The replicate flow sends a tuple to a group of targets.
In order to avoid that the outgoing network link of the source becomes a bottleneck,
we exploit RDMA multicast which replicates tuples in the switch. However, RDMA
multicast relies on two-sided communication over unreliable transport, which leads to
changes in the buffer design and the control flow. Instead of detecting incoming messages
on the target side by polling directly in main-memory, for two-sided RDMA primitives
the target has to poll a completion queue. To avoid high overhead of coordinating for
each RDMA send, we implemented a credit score for sources (similar as the one we used

85

7 DFI: The Data Flow Interface for High-Speed Networks

Init

Rrecv_head R R R

next_head ∅

1. Consume() call

3recv_head 1 R R

next_head ∅

1recv_head R R

3next_head

Rrecv_head R

1 3next_head

Rrecv_head R R

3next_head

return 1

2. Consume() call

2recv_head R R

next_head

Rrecv_head R

2 3next_head

Rrecv_head R R

3next_head

return 2

3

3. Consume() call

Rrecv_head R R

next_head

Rrecv_head R R R

next_head

return 3

3

∅

receive list
next list

Ex
ec

ut
io

n

Figure 7.6: Ordering example for replicate flows: Receive requests (R) are initially posted
and stored in the receive list. Subsequent consume calls detect incoming
segments and insert segments into the next list in order. Messages are returned
in order from next list.

for latency-sensitive flows) to know for all targets of a replicate flow, how many messages
can be sent without coordination. For this, we initially pre-populate the receive queues
on the target sides with as many receive requests as given by the credit score and as soon
as a segment has been written into the target-side buffer a new receive request will be
added to the receive queue once the consume call on the target-side buffer has returned
the payload.

For coordinating credits at the source side we employ a back-flow from targets to
source. This back-flow is used by targets to inform sources how many messages have been
received which allows the sender to increase its credit score accordingly. Moreover, we
add a sequence number to each segment such that targets can report missing segments to
sources together with the credit back-flow. Lost segments are requested if a configurable
timeout is reached. One important issue is that segments might arrive late (which were
reported as lost by the target). In DFI this is handled by the target which filters out
duplicate segments.
Replicate Flows (globally-ordered).

DFI can also provide global ordering guarantees on replicate flows. Global ordering is a
common primitive for distributed systems which, however, often needs to be implemented

86

7.5 Flow Implementation

1 2 4
Source threads

0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s

Se
nd

er
B
W

64 B tuples
256 B tuples
1024 B tuples
Max. link speed

(a) Sender bandwidth (1:8)

16 B 64 B 256 B 1 KiB 4 KiB 16 KiB

Tuple size

2 µs
4 µs
6 µs
8 µs

10 µs
12 µs
14 µs
16 µs
18 µs

R
ou

nd
-t

rip
tim

e DFI - N=1 target
DFI - N=4 targets
DFI - N=8 targets
ib_write_lat - N=1 target

(b) Median latency (1:N)

2 3 4 5 6 7 8

Servers

0 B/s

16 GiB/s

32 GiB/s

48 GiB/s

64 GiB/s

80 GiB/s

96 GiB/s

A
gg

.
B
W

4 source & target threads per server
14 source & target threads per server

(c) Aggr. sender bandwidth (N:N)

Figure 7.7: Shuffle flow performance. DFI achieves max. bandwidth and low latency for
various scenarios.

on the application layer. For instance, distributed consensus requires a global ordering
as described in Section 7.4.3.2. DFI guarantees global ordering by implementing a
so-called tuple sequencer, in which sources append sequence numbers to segments using
an RDMA fetch-and-add on a global counter. With the advent of programmable switches,
a tuple sequencer can instead be implemented in the network as shown in [82] to avoid
the additional round-trip for the RDMA fetch-and-add. However, as we see in our
experiments in Section 7.6.3, already the naive solution with a global counter can provide
benefits for consensus over solutions which rely on flows without ordering guarantees.

While a tuple sequencer adds global sequence numbers to segments, they can still
arrive out-of-order at the different targets. On the target-side we thus have to ensure
that segments arrive in the same order by reordering the incoming potential out-of-order
segments. Figure 7.6 exemplifies how reordering is implemented on the target side. For
reordering, two linked lists are used: a receive list for storing incoming segments in the
arrival order and a next list for ensuring ordering.

In the example in Figure 7.6, on the first consume call, segments with sequence number
3 and 1 have been received. The head of the receive list (i.e., 3) is "moved" to the next

87

7 DFI: The Data Flow Interface for High-Speed Networks

list which involves no data copy but only pointer updates and the segment with number
1 is returned. For the second consume call, in the example, the segment with number 2
has arrived and is directly returned while the segment 3 is kept in the next list which is
then returned for the last consume call. Losses in this protocol are detected (as before)
through gaps in sequence numbers (in case a configurable timeout is reached). Optionally,
we only notify the application on a consume call of gaps and its left up to the application
to handle re-transmission (which is a feature we use for our consensus implementation).
Combiner Flows. A last flow type supported in DFI is the combiner flow. The flow
directly follows the design of a shuffle flow (using a N:1 topology) but adds functionality to
aggregate tuples in the target buffer using an aggregate function/ group-by specification
as explained in Section 7.4. An interesting optimization is to use in-network-processing
capabilities such as the SHARP protocol that enables in-network-aggregation in a switch
to avoid incast congestion on the in-going link to the target of a combiner flow. However,
implementing this is an interesting avenue of future work.

7.6 Experimental Evaluation
We evaluated DFI on three different levels. First we look at the efficiency of DFI in terms
of how well the high-level interface utilizes the network compared to low-level RDMA
verbs. Next, we provide a detailed comparison of DFI and MPI and argue that MPI
is the wrong abstraction for data processing systems. Lastly, we evaluate DFI for two
typical use cases in data processing systems and compare the implementations to existing
state-of-the-art solutions.

In all experiments we use the notation (N:M) to indicate the number of servers
involved in a flow topology. The number of threads per server is reported separately per
experiment.
Evaluation Environment. All experiments were conducted on an 8 node cluster where
6 of the nodes are equipped with two Intel(R) Xeon(R) Gold 5120 CPUs (14 cores) and
512 GB main-memory, and 2 nodes equipped with two Intel(R) Xeon(R) Gold 5220 CPUs
(18 cores). Hyper-threading is disabled for all nodes. Each node is equipped with two
Mellanox ConnectX-5 MT27800 NICs (InfiniBand EDR 4x NICs, 100 Gbps), connected
to one SB7890 InfiniBand switch. The operating system is Ubuntu 18.04.1 LTS, with
Linux 4.15.0-47 kernel on all nodes. DFI is implemented with C++17 and compiled with
gcc-7.3.0.

88

7.6 Experimental Evaluation

7.6.1 Experiment 1: Efficiency of DFI

The first experiment shows the efficiency of DFI compared to low-level RDMA verbs.

7.6.1.1 Shuffle Flows:

In the following, shuffle flows are evaluated with bandwidth and latency optimization
and lastly, a scale-out experiment is presented.
Bandwidth-Optimized. Our first experiment evaluates performance for the shuffle
flow from 1 server to 8 servers with varying tuple sizes. Further, we vary the number
of sources (threads) pushing tuples into the flow. The batch size for the bandwidth
optimized version in our experiments is 8 KiB. We choose a batch size of 8 KiB as this
offers a good tradeoff between network bandwidth and time until the batch is filled.

Figure 7.7a reports results for the bandwidth-optimized flow. As we see, in most
settings we achieve the full network bandwidth. Only, the single-threaded scenario
shows some overhead since batches must first be filled on the source side with individual
tuples before they can be transferred to the target. This overhead can, however, be
amortized by using more threads per server as shown in Figure 7.7a. Due to the efficient
multi-threading support of DFI, we see that from two source threads on, the bandwidth
is limited by the speed of the outgoing link (100 Gbps / 11,64 GiB/s - red line) for
tuple sizes larger than 128 B. Moreover, when using 4 threads the maximal bandwidth is
achieved independent of tuple sizes.
Latency-Optimized. We additionally evaluated the shuffle flow that implements latency
optimizations. For measuring latency, two shuffle flows are used to implement a request
and response pattern to measure the round-trip time between two nodes. To show that
DFI’s buffer design only adds minimal latency overhead, we compare the latency of DFI
to ib_write_lat2 which is a standard tool for performance testing that uses low-level
verbs to implement a round-trip between a sender and a receiver node. For DFI, we
additionally used a varying number of receiving servers (1, 4, and 8) to observe the effect
on latency when shuffling to various destinations.

As we see in Figure 7.7b, the median latency of DFI for one full round-trip only adds
minimal overhead when compared to ib_write_lat which is due to buffer. Moreover, keep
in mind that DFI provides a high-level abstraction and thus not only reduces application
complexity but also provides several optimizations to applications. This includes an
efficient overlapping of compute and communication as well as many other optimizations
such as efficient replication and ordering guarantees. As we show in Section 7.6.3, this

2https://github.com/linux-rdma/perftest.

89

https://github.com/linux-rdma/perftest

7 DFI: The Data Flow Interface for High-Speed Networks

1 2 4
Source threads

0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s
A
gg

.
re

ce
iv

er
B
W

64 B tuples
256 B tuples
1024 B tuples
Max. link speed

(a) Aggregated receiver bandwidth
(naive one-sided, 1:8)

1 2 4
Source threads

0 B/s
8 GiB/s

16 GiB/s
24 GiB/s
32 GiB/s
40 GiB/s
48 GiB/s
56 GiB/s
64 GiB/s

A
gg

.
re

ce
iv

er
B
W

64 B tuples
256 B tuples
1024 B tuples

(b) Aggregated receiver bandwidth
(multicast, 1:8)

16 B 64 B 256 B 1 KiB 4 KiB

Tuple size

2 µs

4 µs

6 µs

8 µs

10 µs

R
ou

nd
-t

rip
tim

e

N=1 targets
N=8 targets

N=1 targets - Multicast
N=8 targets - Multicast

(c) Median latency
(all targets, 1:N)

Figure 7.8: Replicate flow performance. DFI achieves max. bandwidth and low latency
for various scenarios.

enables DFI to provide superior performance in different use cases when compared to
existing approaches that are using other interfaces (low-level RDMA verbs or MPI).

Moreover, the advantage of DFI compared to plain RDMA is the encapsulated memory
management, which allows applications to use RDMA transparently without hand-tuned
memory management while still achieving optimal performance. The experiment shows
that this abstraction hardly incurs any overhead compared to ib_write_lat. For multiple
targets the latency of DFI is only slightly higher due to the internal routing in the shuffle
flow. Multiple targets are not supported by ib_write_lat though (i.e., ib_write_lat uses
only one target in this experiment).

Scale-out. Since data processing systems often need to scale out to many nodes, we
conducted a scale-out experiment for the shuffle flow, increasing the number of source
and target servers. Moreover, we use 14 sources and targets on all nodes which in total
gives 12544 unique source/target connections for the maximal number of nodes used.
As shown in Figure 7.7c, DFI scales linearly with the number of nodes (as indicated by

90

7.6 Experimental Evaluation

the x-axis), effectively increasing the aggregated bandwidth with the link-speed of each
added node.

7.6.1.2 Replicate Flows:

Next we benchmarked the replicate flow in terms of achievable bandwidth, with and
without multicast and finally the latency behavior.
Bandwidth and Multicast Optimization. We tested the replicate flow bandwidth
for two optimization settings, naive one-sided replication and multicast. The evaluation
was conducted by replicating data from 1 node to 8 nodes. In Figure 7.8a, the reported
bandwidth already achieves the practical network limit of the sender with 1 thread and
tuples bigger than 64 B. In comparison to the shuffle flow bandwidth in Figure 7.7a, the
replicate performance reaches max. bandwidth earlier due to network messages being
replicated with one-sided writes that are issued in parallel by the NIC, reducing the
per-tuple overhead.

As we see in Figure 7.8a, the naive replication is limited by the network speed of the
sender. However, the replicate flow also provides a multicast optimization that replicates
messages in the switch. With the multicast optimization (Figure 7.8b) the bandwidth
goes beyond the 100 Gbps (11,64 GiB/s) limit of the outgoing sender link and reaches
up to 64 GiB/s. Using more source-threads on the sender node, however, does not yield
better performance as the NIC inhibits bad multi-thread scalability within same multicast
group.
Latency Optimization. For evaluating the latency for the replicate flow, we conducted
an experiment where a source replicates a request to 8 targets and measures the time
for it to get replies from all. The reported latency for naive and multicast replication is
shown in Figure 7.8c. The naive (one-sided) replication achieves the lowest latency with
only 1 target, but increases with more targets. For multicast, though, the increase in
latency from 1 to 8 targets is much smaller and outperforms the naive implementation.

7.6.1.3 Combiner Flows:

The last flow evaluated in this experiment is the combiner flow. Figure 7.9 reports the
aggregated sender bandwidth for a combiner flow with a sum aggregation. As seen for 2
and 4 threads, the bandwidth becomes limited by the in-going link to the target node.
As an avenue of future work, the advent of in-network processing such as SHARP [41]
could be used to further speed up the aggregation beyond the limits of the in-going link.

91

7 DFI: The Data Flow Interface for High-Speed Networks

1 2 4
Target threads

0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s

A
gg

.
se

nd
er

B
W

64 B tuples
256 B tuples
1024 B tuples
Max. link speed

Figure 7.9: Combiner flow with sum aggregation (8:1). Aggregated sender bandwidth for
various scenarios.

7.6.1.4 Memory Consumption:

In order to provide insight to the degree of memory consumed through DFI, we observed
the memory allocated in the scale-out experiment of the shuffle flow in Figure 7.7c. This
setup is the most memory consuming one since each pair of source/target threads uses a
private send/receive buffer.

For the smallest setup with only 4 source and 4 target threads per node in a cluster
with two nodes in total, DFI consumes just 16 MiB per node3. Moreover, when increasing
the setup to 8 nodes where each node has again 4 source and 4 target threads, the
memory consumption grows only to 64 MiB. For the largest setup in Figure 7.7c (14
source & target threads and 8 servers in total) DFI consumes 785.5 MiB in total on each
node.

However, as discussed in our experiments before, 4 source/target threads per node
are sufficient at the moment to saturate the high bandwidth provided by the InfiniBand
network in our setup. Moreover, the size of buffers in DFI are configurable. Hence, even
smaller memory footprints can be achieved. As an example reducing the number of
segments to 50% (i.e., 16 per buffer) the performance on 8 nodes just decreases by 2.7%,
and further reducing the size to 25% (i.e., 8 per buffer) decreases performance by 8%.

Key Insights (Exp. 1): Our results show, that DFI flows can provide a high-level
abstraction with no or only negligible overhead compared to low-level RDMA verbs.

3In DFI, each buffer uses 32 segments each having a 8 KiB size in its default configuration.

92

7.6 Experimental Evaluation

16 B 64 B 256 B 1 KiB 4 KiB 16 KiB
Tuple size

0 s

100 s

200 s

300 s

R
un

tim
e

DFI - Bandwidth optimized
DFI - Latency optimized
MPI Send Recv

(a) Single-threaded

1 2 4 8
Sender threads

0 s

50 s

100 s

150 s

R
un

tim
e

DFI - Bandwidth optimized
DFI - Latency optimized
MPI Send Recv - Multi-process
MPI Send Recv - Multi-threaded

(b) Multi-threaded - 64 B tuples

Figure 7.10: MPI vs. DFI - point-to-point runtime

7.6.2 Experiment 2: DFI vs. MPI

In the following experiment we evaluate the performance of MPI and DFI in various
settings. First we will show point-to-point performance for single-threaded and multi-
threaded setups. Next we look at the collective functions provided by MPI and compare
their usage for a typical shuffle scenario. For MPI we use the latest version (4.0.3rc4)
shipped with HPC-X (2.6.0) for our InfiniBand hardware. MPI is therefore highly
optimized to make use of the RDMA primitives offered by the network.

7.6.2.1 Point-to-Point Primitives:

As described in Section 7.2, MPI is process-centric, meaning it achieves parallelism by
executing parts of the program in multiple processes on the same server. We therefore first
compare MPI and DFI in a single-threaded setup before we then study the multi-threaded
extensions provided by the MPI version of our InfiniBand deployment.
Single-threaded. Figure 7.10a reports the runtime for transferring a fixed table size (16
GiB). The MPI_Send and MPI_Recv primitives are used for sending the various tuple
sizes, thereby using both MPI and DFI on a tuple-basis. Since MPI does not support
any bandwidth/batching optimizations, the runtime is high for lower tuple-sizes since
the network is inefficiently used. The bandwidth optimization for DFI makes efficient
use of the network and therefore achieves a small runtime already for small tuple sizes.
Multi-threaded. Data processing systems typically use multi-threading (and not multi-
process) to achieve parallelism while being able to share data between threads within

93

7 DFI: The Data Flow Interface for High-Speed Networks

16 B 64 B 256 B 1 KiB 4 KiB 16 KiB
Tuple size

0 s

200 s

400 s

600 s

800 s

1000 s

1200 s

R
un

tim
e

0 B/s

1 GiB/s

2 GiB/s

3 GiB/s

4 GiB/s

5 GiB/s

6 GiB/s

B
an

dw
id

th

DFI Shuffle flow
MPI All to all

Bandwidth
Runtime

Figure 7.11: MPI vs DFI - collective shuffling (8:8)

the same virtual memory space. As such we evaluate the multi-threaded performance
for DFI and MPI (using MPI_THREAD_MULTIPLE where multiple threads may call
MPI primitives at once with no restrictions).

Figure 7.10b reports the runtime with an increasing number of threads. While DFI
scales with the number of threads, the performance for multi-threaded MPI gets worse
(red line). We analyzed this behavior and found that for data-heavy transfers (which
MPI was not designed for), even a few threads lead to high internal contention on latches
of MPI which causes the significant drop in performance.

The alternative in MPI for achieving parallelism per node is to use multiple processes
instead of multiple threads per server. As we show in Figure 7.10b (green line) this leads
to a better scalability than the multi-threaded MPI. However, multi-process solutions
come at the cost that common data structures need to be accessed via (more expensive)
shared memory.

7.6.2.2 Collective Primitives:

MPI also offers primitives that encapsulates communication between multiple nodes.
Since MPI provides a rich library of collectives and we cannot provide an analysis in
this paper which covers all collectives, we focus on the MPI_Alltoall collective since it
resembles in a closest manner the semantics of an N:M shuffle flow of DFI.
Shuffle (Pipelined). We first look at the shuffle performance when using MPI in a
streaming-based manner (i.e., we shuffle data in mini-batches with a size of 8 tuples
- on average one tuple per target). In this experiment, only one thread per node is
used (for MPI and DFI) which scans a table and shuffles the tuples based on their keys.

94

7.6 Experimental Evaluation

Multi-threading in MPI does not provide any benefit as we have seen before. For shuffling,
we are using MPI_Alltoall (position-based) which uses a send buffer of the size of all
nodes. As Figure 7.11 shows, the runtime of MPI for smaller tuple sizes is very high since
the network is not utilized efficiently. However, as the tuple size increases, the bandwidth
approximates that of DFI.
Shuffle (Batched).

To increase the network efficiency for MPI, we locally pre-shuffle the table on the shuffle
key and invoke a MPI_Alltoall function for the complete batch. While this improves the
bandwidth, collective functions are then susceptible to straggling behavior.

We evaluated the performance impact of MPI and DFI with one straggling node. To
simulate a straggler, we decrease the CPU frequency of one of the nodes. The result is
shown in Figure 7.12, where both the table sizes and straggling are varied. The increase of
runtime for MPI with a straggling node (i.e., s = 0.5) comes from the fact that collective
functions are blocking until all data is ready to be sent, and therefore limits the pipelining
possibilities.

This is different for DFI. While DFI is also affected by straggling, it can constantly
send data while the MPI implementation only starts the transfer once all data is available.
Hence, DFI better overlaps the communication with the computation and therefore the
straggling effect is less severe.
Key Insights (Exp. 2): In this experiment, we compared DFI to MPI. The experiments
confirmed our speculations: (1) MPI neither provides efficient multi-threading, (2) nor
does MPI allow to efficiently overlap compute and computation and hence support
efficient pipelining.

7.6.3 Experiment 3: Use Cases

In the last experiments we evaluate DFI by implementing the two use cases we discussed
in Section 7.4.3.

7.6.3.1 Distributed Joins:

Distributed joins are crucial operators in OLAP due to large amounts of data having to
be transferred across the network, and therefore a good candidate to evaluate bandwidth-
optimized flows of DFI.
Radix Join. We implemented a distributed radix hash join on DFI and compared
its performance to a state-of-the-art implementation for RDMA using MPI [9]. Both
implementations employ the same optimizations (e.g., write-combine buffer in partitioning

95

7 DFI: The Data Flow Interface for High-Speed Networks

s = 0.5
T = 2 GiB

s = 1
T = 2 GiB

s = 0.5
T = 8 GiB

s = 1
T = 8 GiB

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

R
un

tim
e

1.19

3.17

0.71
1.89

4.65

12.53

3.36

7.57

DFI
MPI

Figure 7.12: MPI vs DFI - collective shuffling (8:8) - One node straggling - s: straggling
(s ∗ CPU freq.) - T: table size

DFI radix joinMPI radix join
0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

R
un

tim
e

Join
Local Partition
Sync. Barrier

Network Shuffle & Partition
Histogram

Figure 7.13: Distributed radix join - 8 nodes, 64 threads (DFI)/64 processes (MPI)
in total. 2.56 B ./ 2.56 B tuples.

96

7.6 Experimental Evaluation

MPI radix join DFI radix join DFI replicate join
0.0 s

0.2 s

0.5 s

0.8 s

1.0 s

1.2 s

R
un

tim
e

Join
Local Partition
Sync. Barrier

Network Replication
Network Shuffle & Partition
Histogram

Figure 7.14: Distributed joins - 8 nodes, 64 threads (DFI)/64 processes (MPI) in total.
2.56 M ./ 2.56 B tuples.

0 500,000 1,000,000 1,500,000 2,000,000
Requests per second

0 µs

5 µs

10 µs

15 µs

20 µs

25 µs

La
te

nc
y

DFI NOPaxos Median
DFI NOPaxos 95pct
DARE 95pct

DFI Paxos 95pct
DFI Paxos Median
DARE Median

Figure 7.15: Performance comparison of DARE [108] with DFI-based implementations of
Multi-Paxos and NOPaxos

97

7 DFI: The Data Flow Interface for High-Speed Networks

phase and tuple compression). However, the MPI join of [9] uses multi-process parallelism
while our join uses multi-threading instead. Figure 7.13 shows the average runtime of
the two joins for all 8 nodes.

The DFI radix join achieves the best runtime mainly due to two design choices of DFI.
At first, the DFI radix join does not need to first compute a global histogram of the
partition buckets. The MPI radix join in [9] makes use of one-sided MPI_Put primitives.
In order to achieve coordination free writes, it thus has to compute exclusive writing
offsets for each partition using one additional pass. Different from this, DFI encapsulates
the memory management through our buffer design which makes the additional pass
superfluous.

The other reason for the runtime gap is due to the synchronization barrier needed in
the MPI radix join after the network partition phase. Here, the join algorithm needs to
make sure that all data has arrived before starting to process the local partitioning. While
the data in this experiment is uniformly distributed, some runtime variance between
multiple parallel workers still exists and is more pronounced in high-speed networks. This
synchronization is not needed with DFI, since incoming tuples can already be processed
when they arrive in a streaming-wise fashion.
Join Adaptability. Flows in DFI offer a high-level abstraction which encapsulates
the data transfer of applications. As a result, it is trivial to adapt algorithms to use
a different communication pattern. To demonstrate this, we adapted our radix hash
join implementation to a fragment-and-replicate join variant which uses one replicate
flow that replicates the inner table on all nodes. Figure 7.14 shows the runtimes of the
three different join implementations with a smaller inner table (1000× smaller than the
outer table). The replication of the small inner table is comparably cheap compared to
shuffling the big outer table over the network. Overall, for this setup this helps to further
reduce the overall runtime by another 20%,

7.6.3.2 State Machine Replication:

In this experiment, we implemented a simple key-value store that replicates data using
a consensus protocol. For the experiment, we used two different consensus protocols,
classical Multi-Paxos [74] and NOPaxos [82]. We modeled the normal, failure-free
operation of Multi-Paxos as depicted in Figure 7.3. For NOPaxos, we implemented its
normal operation protocol, which relies on the OUM primitive that can be provided by
DFI’s replicate flow, as well as its gap agreement protocol to detect lost messages. We
compare both implementations with DARE [108], a state-of-the-art replicated key-value

98

7.7 Conclusions

store that is based on a hand-crafted consensus protocol and heavily relies on one-sided
RDMA.

We deployed all approaches with five replicas (a leader and four followers). Load was
generated by six clients distributed across three separate nodes. Clients submitted 64
byte sized requests using YCSB’s read-dominated workload [22] (95% reads and 5%
writes). The results are shown in Figure 7.15.

The two DFI-based implementations consistently outperform DARE in our settings
in both achieved throughput and latency. This is caused mainly by DARE’s sequential
design. First, each DARE client cannot submit a new request until it has received the
result from its previous request, which limits its achievable throughput.

Second, DARE’s write protocol serializes requests. While this limitation is mitigated
by separately batching reads and writes, a mix of both request types frequently interrupts
batches [134]. This is confirmed by DARE’s own evaluation [108].

Our Multi-Paxos and NOPaxos implementation exhibit near-identical response latencies
as long as they are not saturated. This appears counter-intuitive at first, as Multi-Paxos
requires four message delays to respond to a client, whereas two messages delays suffices
for NOPaxos as long as no messages are lost. However, fetching a global sequence number
from the tuple sequencer of the ordered replicate flow incurs an additional two message
delays.

For a load higher than 700k requests/s, we see benefits of our NOPaxos over our Multi-
Paxos implementation. Under this load, the leader in Multi-Paxos becomes saturated as
it has to repeatedly collect responses from a majority of replicas. In contrast, in NOPaxos
the clients themselves collect these responses. This alleviates the burden placed on the
leader in Multi-Paxos, which leads to stable response latencies in DFI’s NOPaxos up to
even higher request rates of almost 1.5M (95th percentile).
Key Insights (Exp. 3): In summary, DFI does not only achieve a better performance
for distributed joins and consensus than state-of-the-art, but also offers an ease-of-use
high-level abstraction to implement efficient solutions with a low code complexity.

7.7 Conclusions
In this paper, we presented DFI, a new data-centric interface for fast networks. With
our implementation for InfiniBand we have shown that DFI adds only minor overhead
compared to low-level abstractions such as RDMA verbs. Moreover, by implementing

99

7 DFI: The Data Flow Interface for High-Speed Networks

two use cases, we demonstrated that DFI can efficiently support data-centric applications
with different requirements (high-bandwidth vs. low-latency) at high performance.

In future, we plan to integrate further useful extensions into DFI flows such as fault-
tolerance as well as elasticity of flows to add/remove nodes at runtime. Furthermore,
by open-sourcing our implementation, we hope to stimulate not only follow-up research
but also allow that commercial vendors will provide a DFI implementation also for other
high-speed network stacks.

7.8 Acknowledgements
This work was partially funded by the German Research Foundation (DFG) under the
grants BI2011/1 & BI2011/2 (DFG priority program 2037), the DFG Collaborative
Research Center 1053 (MAKI) as well as gifts from Mellanox and Huawei.

100

8 A DBMS-centric Evaluation
of BlueField DPUs on Fast
Networks

Abstract
Modern networks have evolved significantly in the last years. First, network speed has
increased considerably and thus the use of low-overhead techniques such as RDMA has
become more and more important to design efficient distributed DBMSs. Second, a recent
trend in modern networks is that in addition to high-speed data transfer using RDMA,
network components such as switches and NICs become programmable by providing
additional computation on the device, such as DPUs (Data Processing Units). Such
devices enable processing or manipulation of data as it is traversing the network and that
way allow distributed systems to offload computation. While for the recent generation
of RDMA-based DPU cards, there is no study that shows the offloading capabilities of
DBMS tasks to such RDMA-enabled DPUs.

Therefore, in this paper, we aim to provide a first systematic study to evaluate the
basic performance characteristics of the BlueField network cards in the context of typical
DBMS operations. For the evaluation, we analyze the offload potential of using BlueField
as a RDMA-enabled DPU for two important use cases: (1) a remote B-tree and (2) an end-
host sequencer (i.e., remote counter). We chose these two use cases since they represent
core tasks where RDMA has shown benefits. As a result, in our evaluation, we show
that the recent generation of RDMA-based Bluefield DPUs can provide several benefits
and can not only reduce access latencies but also improve the throughput. However,
offloading computation to the DPU needs a careful design and naively offloading all
computation to the DPU often leads to performance degradation.

101

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

Bibliographic Information
The content of this chapter was previously published in the peer-reviewed work: Lasse
Thostrup, Daniel Failing, Tobias Ziegler, and Carsten Binnig. “A DBMS-centric Eval-
uation of BlueField DPUs on Fast Networks.” In: International Workshop on Acceler-
ating Analytics and Data Management Systems Using Modern Processor and Storage
Architectures, ADMS@VLDB 2022, Sydney, Australia, September 5, 2022. Ed. by Ra-
jesh Bordawekar and Tirthankar Lahiri. 2022, pp. 1–10. url: http://www.adms-

conf.org/2022-camera-ready/ADMS22_thostrup.pdf.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License.
Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this
license. For any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). To Appear in the 13th
Workshop on Accelerating Analytics and Data Management (ADMS’22), September
2022, Sydney, Australia.
This is the author’s version of the work. It is posted here for personal use in this thesis.
Not for redistribution. The definitive version of the record was published in the Interna-
tional Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@VLDB 2022, Sydney, Australia, September
5, 2022, https://adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf.

102

http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf
http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf

8.1 Introduction

8.1 Introduction
Motivation. In-memory DBMSs have become ubiquitous in academia and industry and
many commercial offers are available today [13, 32, 34]. This is not surprising as the
performance they offer is still unmatched compared to disk-based systems. However, a
major challenge of in-memory DBMSs is that large data sets often do not fit into the
memory of a single machine or the processing capabilities of one machine are insufficient.
To that end, scale-out DBMSs are becoming the predominant solution to handle ever-
increasing data set sizes and leverage more processing by utilizing more networked
machines. Especially, DBMSs which are purpose-built for the cloud and can scale out or
in on-demand are highly requested. As a core architecture for modern scale-out cloud
DBMSs, disaggregated architectures have been crystallized which separate compute and
storage. A prominent example of this architecture is Snowflake [24] but there are also
other DBMS such as FoundationDB which take a more radical approach to separate not
only storage and compute but also other database components in the pursuit to scale
them independently [152].

However, with such disaggregated solutions, the network is increasingly on the hot
path since data more often has to be fetched over the network. To keep up with this
paradigm shift, networks are becoming faster with link speeds in the hundreds of gigabits,
but also bringing rise to more powerful low-overhead networking technologies such as
RDMA (Remote Direct Memory Access) which has influenced DBMS developments in
academia and industry alike [69, 80, 87, 91]. The key driver for RDMA’s success is that
it offers low latencies in the single digit microsecond range as well as high throughput
and thus has shown major gains for very different DBMS workloads.

A recent trend in modern networks is that in addition to high-speed data transfer
using RDMA, network components such as switches and NICs become programmable
by providing additional computation on the device, such as DPUs (Data Processing
Units). Such devices thus enable processing or manipulation of data as it is traversing the
network and that way allow distributed systems to offload computation [36, 60, 153]. The
DPUs that are available today span far in terms of compute architectures, such as ASICs,
FPGAs and general CPU cores, and therefore come with trade-offs in programmability
and performance.

For the recent generation of RDMA-based network cards, DPUs are also becoming
available. One of these devices which can be combined with RDMA is the BlueField
Network Interface Card [102]. The BlueField card provides very flexible programmability
due to its general-purpose ARM CPU cores that are available as compute resources on the

103

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

DPU. Moreover, specialized ASICs for tasks such as data encryption and decryption are
available. While evaluations have shown that security-related tasks or tasks to provide
tenant-isolation in data centers [20] can be provided in an efficient manner, there is
no study that shows the offloading capabilities of DBMS tasks to such RDMA-enabled
DPUs.
Contributions. Therefore, in this paper we aim to provide a first systematic study
to evaluate the basic performance characteristics of the BlueField network cards in
the context of typical DBMS operations. For the evaluation, we analyze the offload
potential of using BlueField as an RDMA-enabled DPU for two important use cases: (1)
a remote B-tree and (2) end-host sequencer (i.e., remote counter). We chose the remote
B-tree because it is a frequently used data structure for DBMSs and it is also used in
disaggregated architectures to avoid transferring all data across the network [135, 157].
On the other hand, the end-host sequencer is a commonly used building block for many
distributed system tasks such as global ordering [82], for coordinating write access to
shared memory [11], or to implement optimistic concurrency control [146].

For these two scenarios, we compare baselines that rely on existing one-sided and
two-sided RDMA primitives with a solution that can use the DPU as an offload engine.
For example, for an RDMA-based B-tree such as [157], the DPU could implement the
tree traversal natively on the DPU. As such B-tree operations can be implemented in
one round-trip from the compute layer to the storage layer without involving the CPU of
the storage nodes. Moreover, in addition to compute resources DPUs often come with
their own memory which allows them to store the B-tree in the DPU instead of using
the CPU memory. Based on these observations, we thus aim to analyze whether a better
performance can be observed for the two use cases above.

As a result, in our evaluation, we show that the recent generation of RDMA-based
BlueField DPUs can provide several benefits. First, we show that we can reduce the
network latency by avoiding the PCIe path from the NIC to the host which adds a
non-negligible overhead to the overall latency [94]. Second, if DPUs are used as additional
compute resources to the remote CPUs, we show that also overall gains in throughput
can be achieved. However, offloading computation to the DPU needs a careful design and
naively offloading all computation to the DPU often leads to performance degradations
since the computational resources on the DPUs are often less powerful than the CPU in
the remote host.
Outline. We first cover the background of the BlueField DPU and RDMA in Section 8.2
and next provide an overview of the experimental setup in Section 8.3. We then present
the benchmarking of the before-mentioned use cases in Sections 8.4 to 8.6. Finally, we

104

8.2 Background

then present our conclusion on the evaluation to outline the pros and cons of offloading
typical DBMS tasks to the BlueField DPU.

8.2 Background
In this section, we provide the relevant background on RDMA and the BlueField DPU.

8.2.1 Remote Direct Memory Access (RDMA)

RDMA has come to be an established state-of-the-art communication method for dis-
tributed data-processing systems [11, 68, 138, 146, 148, 157], since it overcomes the
overhead of traditional kernel-space network stacks such as TCP/IP. To leverage RDMA,
an application can make use of different communication schemes that can be categorized
as one-sided (READ / WRITE) or two-sided (SEND / RECEIVE) operations, which
refers to the involvement of the sender- & receiver-CPU in the communication. For
one-sided operations, only the sender-CPU is actively involved, but as a consequence,
the sender also has to decide where on the remote node the data should be written
or read. With two-sided operations, the receiver-CPU is also actively involved in the
communication since it needs to issue RECEIVE requests before SEND requests can be
issued on the sender side, and it can thus also decide where to place data which simplifies
the remote memory management.

Especially the one-sided RDMA operations have seen high adoption in distributed data
processing systems since they allow sender nodes to write into remote memory directly
without involving additional CPU cores of the receiving nodes. In a distributed DBMS,
this reduces the overall CPU resources involved in data transfer and can thus lead to less
resource consumption as well as overall lower latencies in many cases [35, 156]. Moreover,
one-sided RDMA is thus, in particular, beneficial for disaggregated DBMS architectures
in which the storage servers have limited or sometimes even near-zero computational
resources [135, 149, 151]. On the other hand, the applications of two-sided RDMA
is typically within RPC-style applications where the receiver node has to be actively
involved in the communication.

8.2.2 Data Processing Units

We next provide the relevant background on the Data Processing Units (DPUs) that we
use for our evaluation. Many of the major network hardware vendors are including DPUs

105

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

Pa
ck

et
 L

ay
er

eS
w

itc
h

R
D

M
A

PC
Ie

 S
w

itc
hPort 0

Port 1

ConnectX

Security Functions

ARM Subsystem

Network Protocols

vSwitch (OVS)

PCIe x16

PCIe x8

Host

BlueField

D
D

R
4

M
em

or
y

Figure 8.1: Functional diagram of the BlueField DPU [96].

to their product offerings, with examples like the Intel IPU, Broadcom Stingray, AMD
Pensando or the Nvidia BlueField. DPUs come with different compute architectures
ranging from P4 programmable ASICs to general-purpose CPU cores. In our evaluation,
we focus on the BlueField cards from Nvidia. The BlueField cards are equipped with
general-purpose ARM cores which are capable of executing any program logic in contrast
to the more rigid ASIC architectures. The DPU runs its own OS (e.g., Ubuntu) and
as such resembles another independent server with an added set of networking features.
Internally, as illustrated in Figure 8.1, the DPU consists of the networking component
(ConnectX) which provides hardware-offload of the network stack for more efficient (i.e.,
less CPU intensive) networking. Moreover, the ARM cores which act as computational
resources on the DPU are equipped with DDR4 memory and are connected to the
ConnectX over an internal PCIe switch. The BlueField (from the second generation
on) is additionally equipped with hardware accelerators for compression/decompression,
encryption and regex pattern matching.

The BlueField DPUs themselves are attached to the host CPU via PCIe. For controlling
and routing the network traffic to the host, the DPUs have different modes of operation.
There is a Separated Host mode, where the ARM subsystem will appear as an additional
computer on the network. When the remote machine uses this setup, a client can decide
where data should be transferred to, either the ARM subsystem or the host. Another
mode is the Embedded Mode, where the ARM subsystem manages the network on behalf
of the host and controls the physical ports of the network card. With that, the traffic

106

8.3 Use Cases & Experimental Setup

from or to the host always goes through the ARM subsystem. The Embedded Mode can
be further specialized, such that the host does not have access to the DPU directly. This
mode allows cloud providers to provide isolation and offloading of cloud management
tasks to the DPU.

To control the network communication in the Embedded Mode and forward traffic with
low latency, the ConnectX subsystem of the BlueField offers a component called eSwitch.
While the DPU controls the physical network ports in the Embedded Mode, the host as
well as the DPU can have additional virtual interfaces which are then available in the
DPU for further network flow control. By default, an OpenVSwitch process is running on
the BlueField, which controls the communication between physical and virtual network
ports. Flow rules controlling the flow of packets will be configured in the OpenVSwitch,
and, if possible, offloaded to the eSwitch. In a typical network flow for RoCE (RDMA
over Converged Ethernet), the network packets are processed by the eSwitch, which
forwards the packet to the host or DPU based on the MAC addresses. However, the
eSwitch is limited to specific network headers, like MAC or IP addresses, VLAN tags or
TCP/UDP ports. As a result, processing or manipulation of RDMA packet headers is
not possible in the eSwitch. Controlling traffic unsupported by the eSwitch means that
the packets need to be processed by the BlueField’s ARM cores.

Overall, the host CPUs, the BlueField DPU and the ConnectX subsystem are connected
by a PCIe switch. In contrast to other vendors, BlueField DPUs do not have a dedicated
DMA engine to access the memory of the host. However, RDMA operations can be used
for the communication between DPU and host CPU. The RDMA API then generates
normal requests through the ConnectX subsystem, which can then access both the host’s
as well as the DPU’s memory. In this way, not only can the DPU make DMA requests
to the host’s memory, but the host can also access the DPU’s memory.

8.3 Use Cases & Experimental Setup
Use Cases. As mentioned before, in our evaluation we consider two use cases to evaluate
the performance of the BlueField cards. In the first use case, we focus on a remote
B-tree, which has already been studied in the context of RDMA in previous work [157].
We choose to evaluate and implement two remote B-tree strategies, either with RPC
over two-sided RDMA in Section 8.4 or completely one-sided RDMA (i.e., no RPC) in
Section 8.5. In the last use case we evaluate an end-host sequencer, which is a common
building block in distributed systems, to e.g., assert a global order or coordinate access to

107

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

BlueField-1
BF1M332A

BlueField-2
BF2H332A

CPU 8× ARMv8 A-72
model 0 @ 800MHz

8× ARMv8 A-72
model 3 @ 2.5GHz

Memory 1× 16 GB DDR4-2400 1× 16GB DDR4-3200

Caches
L1: 32 KB / core
L2: 1 MB / 2 cores
L3: 12 MB (shared)

L1: 32 KB / core
L2: 1 MB / 2 cores
L3: 6 MB (shared)

Network ConnectX-5 ConnectX-6
Interfaces 2× 25 Gbps 2× 25Gbps
PCIe Host PCIe 4.0 ×8 PCIe 4.0 ×8
PCIe ARM PCIe 4.0 ×16 PCIe 4.0 ×16
OS Ubuntu 18.04 Ubuntu 20.04

Table 8.1: Comparison of BlueField-1 and BlueField-2.

shared memory [11, 67]. We take a look at a sequencer implemented only with one-sided
RDMA or with RPC two-sided RDMA.

Experiment Setup. We evaluate both available generations of the BlueField DPUs —
the BlueField 1 and BlueField 2 — which mostly differ in their processing power; i.e.,
the BlueField 1 only runs at a clock frequency of 800 MHz whereas the BlueField 2 runs
at 2.5 GHz (details outlined in Table 8.1). In our experimental setup, we are mirroring a
typical disaggregated storage and compute setup. The storage node is equipped with
a BlueField 1 as well as BlueField 2 card to compare both DPUs. The storage server
is running with 2× Intel Xeon Gold 6326 CPUs, 512 GB DDR4 memory and PCIe 4.0.
The compute node uses a non-programmable RDMA ConnectX-5 NIC and is equipped
with 2× Intel Xeon Gold 5220 CPUs with 512 GB DDR4 memory (Table 8.2). For both
servers, we only use one NUMA socket so as to not involve any cross-NUMA traffic
effects. Both servers are connected with RDMA over Converged Ethernet (RoCE) v2.
Note that the BlueField cards used in our setup only provide maximum 25 Gbps per
network link. However, since the BlueFields NICs are equipped with two links, we can in
total use a 50 Gbps connection between the compute and storage server by splitting the
traffic over the two links.

We configure the BlueField cards in the Embedded Mode, and configure two virtual
interfaces which route to either the ARM subsystem or the host. The routing is offloaded
into the eSwitch and does therefore not introduce measurable overhead on the ARM
subsystem.

108

8.4 Use case 1: Remote B-Tree with RPC

Storage node Compute node

CPU 2× Intel Xeon Gold
6326 @ 2.9 - 3.5 GHz

2× Intel Xeon Gold
5220 @ 2.2 - 3.9 GHz

Caches
L1: 48 KB / core
L2: 1.25 MB / core
L3: 24 MB (shared)

L1: 32 KB / core
L2: 1 MB / core
L3: 24.75 MB (shared)

Network BlueField-1
BlueField-2 ConnectX-5

Memory 16× 32GB DDR4-3200 8× 64GB DDR4-2666
OS Ubuntu 20.04 Ubuntu 18.04

Table 8.2: Server nodes used in the experimental setup.

8.4 Use case 1: Remote B-Tree with RPC

For the first use case we use a remote B-tree which is accessed via RPC calls. To realize
the RPC framework, we use two-sided RDMA SEND/RECEIVE verbs with existing
optimization such as door-bell batching on both client- and server-side and inlining for
reducing PCIe overhead [67]. For our B-tree, we use an OLC (optimistic lock-coupling)
synchronization protocol to allow scalable reads [78]. For keys and values, we use 8 byte
integers. We use either a mix of 50/50 read-write or read-only workloads as evaluation.

For all experiments in this use case (unless otherwise stated) we use 8 threads (maximum
number) on the BlueFields and on the CPUs of the storage server respectively to achieve
a comparable setup. This is important for Section 8.4.1.2 when we show the offload
potential by varying the percentage of requests handled by the NIC. Additionally, using
8 threads on the storage better reflects a typical storage node with weaker CPUs than
compute nodes [151, 159]. On the compute server, we use 16 threads to attribute to the
fact that compute servers are typically equipped with more computational resources and
thus be able to generate sufficient workload in our evaluation.

The evaluation of this use case is structured as follows: we first report the throughput
characteristics by first contrasting the two BlueField generations and next dive further
into using the BlueField-2 in union with the host server. Subsequently, we evaluate the
latency characteristics to determine whether any latency benefits can be observed for the
BlueField DPU.

109

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

1M 16M 256M
B-tree sizes (# keys)

0

1

2

3

4

5
Th

ro
ug

hp
ut

 (M
Op

s)
DPUs
BlueField-1
BlueField-2

(a) Read-only

1M 16M 256M
B-tree sizes (# keys)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

Op
s)

DPUs
BlueField-1
BlueField-2

(b) 50/50 read-write

Figure 8.2: Remote B-tree on BlueField-1 or BlueField-2 with RPC.

8.4.1 Throughput Characteristics

8.4.1.1 BlueField-1 vs BlueField-2

The BlueField-1 was already launched in 2017, and has in recent years been preceded
by the BlueField-2. We first aim to evaluate the performance improvement between
the two generations and their individual ability to handle B-tree RPC requests. We
initialize B-trees of different sizes in the local memory of either the BlueField-1 or 2. Due
to the very low clock frequency of the BlueField-1 ARM cores (over 3× less than the
BlueField-2) and the fact that the RPC handling is typically very CPU intensive, we
expect to see a significant performance difference between the two generations.

In Figure 8.2 we observe the achieved throughput for a (a) read-only or (b) 50/50
read-write workload. For the smallest tree with 1 million (M) keys (tree size between 16
& 32 MB), the BlueField-2 outperforms the first generation by 2.4× for 50/50 read-write
which can be attributed to the difference in clock frequency (800 MHz & 2.5 GHz).
Coupled with the fact that most of the tree can reside in the CPU caches, this indicates
they are both CPU bound. However, with larger tree sizes, the BlueField-2 becomes
increasingly memory bound and the relative performance difference is decreasing.

Between the two workloads (read-only and 50/50) we can only observe a slight difference
in performance for the small tree with 1 M keys. The reason why barely any difference in
performance is observed for 16 M and 256 M is due to more sparse reads and writes, and
the reduction in throughput (i.e., a read has a smaller chance of conflicting with a write).

110

8.4 Use case 1: Remote B-Tree with RPC

2 3 4 5 6 7 8
Server RPC threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

Op
s)

DPUs
BlueField-1
BlueField-2

Figure 8.3: No-Op RPC BlueField-1 vs BlueField-2.

To isolate the performance difference between the two BlueField generations further,
we now take a look at the pure RPC handling capabilities. We issue RPC calls from
the compute node which does not contain any operation to be performed, i.e., a No-Op.
In Figure 8.3 we scale the number of threads on the BlueFields that handle the RPC
requests. We observe that the BlueField-2 has very good scalability, i.e., almost linear,
whereas the BlueField-1 only increases the throughput with 1.9× from 2 to 8 threads.
Note, since we use both available interfaces of the BlueFields, we run with a minimum of
2 threads.

Based on these findings it is clear that the second BlueField generation already provides
a substantial performance boost over the first generation. The suboptimal performance of
the BlueField-1 renders it hard to integrate into any performance-critical data-intensive
use cases. We argue that the performance difference mainly stems from the very low
clock frequency of the BlueField-1 ARM cores, as this is the main differentiator. In the
remainder of the paper, we thus focus on the performance of the BlueField-2.

111

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (M
Op

s)

(host-only) (DPU-only)

1M keys
16M keys
256M keys
Read-only
50/50 read-write

Figure 8.4: Remote B-tree with increasing offload on BlueField-2 for various B-tree sizes.
RPC requests with read-only or 50/50 read-write.

8.4.1.2 BlueField-2 Offloading

We now evaluate the offloading potential of the BlueField-2 DPU by utilizing the DPU
together with the host CPUs of the storage server. We use all 8 CPU cores on the DPU
and also use 8 CPU cores of the host, which we keep fixed regardless of the partition sizes
to the host or DPU. To use both compute resources, we range-partition the B-tree between
the host memory and the DPU memory and observe the achieved overall throughput.
For partitioning, we use different setups ranging from 0-100% of the B-tree being stored
on the DPU. Moreover, we create the index requests uniformly in the whole key range
such that the relative partition sizes of the tree also match the workload generated to
each compute device (i.e., the host CPU or the BlueField-2 DPU).

In Figure 8.4, we see the results when we gradually increase the range partition of
the B-tree on the DPU and decrease it on the host, indicated by the x-axis. With 0%
DPU offload, the host contains the full B-tree and as such all requests are handled by
the host and the DPU is not processing any requests. Instead, with 25% offload, 3/4 of
the B-tree is on the host and 1/4 is on the DPU. Overall, in Figure 8.4 we initially see a
steady increase in throughput as more requests are routed to the DPU up until around

112

8.4 Use case 1: Remote B-Tree with RPC

25% whereas for the tree with 1M keys, the overall throughput increases by 47%. For
larger tree sizes, the observed throughput increase is slightly less, with around 30% for
the B-tree with 256 M keys.

However, offloading more than about 25% of the B-tree to the DPU is detrimental
to the throughput since the DPU is then overloaded and the performance degrades to
DPU-only throughput as reported in Figure 8.2 already. This degradation of throughput
is not surprising as both the CPU on the DPU is weaker and the main-memory is slower
than that of the storage host as reported in Table 8.1 and Table 8.2. Moreover, the
read-only and 50/50 read-write workload only differs slightly for the higher throughput
and smaller B-tree cases for the same reasons as discussed before.

These results indicate that while the BlueField-2 is not powerful enough to achieve high
throughput in comparison to the host, it yields a significant speedup by using the DPU
resources in addition to the host CPU. However, this imposes challenges for real-world
use cases, as the optimal partitioning of the B-tree is dependent on the workload (i.e.,
potential access skew) and the performance of the host server in relation to the DPU.
As such, more sophisticated adaptive solutions could come into play, which re-balances
and re-partitions the B-tree between host and DPU based on utilization metrics, to
automatically adapt to the most optimal partitioning between the host and DPU. Such a
design is, however, out of scope of this paper.

8.4.1.3 Local B-tree - Throughput

To compare the achieved performance for the remote B-tree with RPC, we locally execute
lookup and update operations on the B-tree on either the storage host or BlueField-2,
ultimately determining whether the RPC-handling or the B-tree is the bottleneck.

In Figure 8.5 we execute local updates (a) or lookups (b) on different sized trees. If we
compare the lookup performance to the 100% offloaded B-tree scenario in Figure 8.4, for
the smallest tree the RPC lookup (read-only) throughput is 4.7 MOps and 9.9 MOps for
the local B-tree. This indicates that half of the throughput is lost to RPC networking
overhead for the smaller tree. For the largest tree of 256M keys, the difference is much
less pronounced where the RPC lookup throughput on the DPU is 2 MOps and 2.5
MOps without RPC overhead. The reason behind this is that for the largest tree, the
bottleneck is increasingly the cache misses going to the main-memory. The CPU cache
and instruction overhead introduced by the RPC handling does therefore not affect the
performance as much relative to the smaller tree. The same trend is also observed for
the host.

113

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

1M 4M 16M 64M 256M
keys

0

10

20

30

40

50
Th

ro
ug

hp
ut

 (M
Op

s)
Host
BlueField-2

(a) Updates

1M 4M 16M 64M 256M
keys

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

Op
s)

Host
BlueField-2

(b) Lookups

Figure 8.5: Throughput of local B-tree update and lookup operations on 8 threads.

Overall, these findings also confirm our previous results in Figure 8.4 since the benefits
of the offloading stem from the lookup requests that the DPU can provide additionally
to the host CPUs.

8.4.2 B-tree Latency Characteristics

We now evaluate the latency characteristics of the B-tree with RPC.

8.4.2.1 BlueField-2 Offloading

Since the CPU cores of the DPU are co-located with the ConnectX networking chip
on the same device, we want to evaluate whether any latency improvements can be
observed by using the DPU in contrast to the host. We again evaluate the performance
by offloading different partition sizes of the B-tree to the DPU. To not overload the host
or DPU we let only 1 client thread on the compute node issue requests.

In Figure 8.6 we report the median latency for read-only RPC requests. We observe
that the best latency is achieved with the complete B-tree located on the host (i.e., 0%
offload). The latency increases slightly (between 14 and 20%) with more RPC requests
being routed to the DPU. This is in contrast to our initial expectations, as having the
CPU cores and memory situated on the same device should result in lower network
latency. However, two factors might be at play here which render the achieved latency
of the BlueField-2 DPU worse than the host; (a) since the DPU CPU cores are in fact

114

8.4 Use case 1: Remote B-Tree with RPC

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0

2

4

6

8

M
ed

ia
n

La
te

nc
y

(µ
s)

(host-only) (DPU-only)

Tree size
1M keys
16M keys
256M keys

Figure 8.6: Remote B-tree latency with increasing offload on BlueField-2. RPC requests
with read-only.

also separated from the networking hardware (ConnectX) over PCIe, this potentially
diminishes the latency benefit and (b) memory access latencies might be worse on the
DPU for B-tree lookup in comparison to the host.

In the following, we evaluate these two aspects independently to account for the latency
increase observed in Figure 8.6.

8.4.2.2 RDMA Send Latency

To isolate the latency characteristics of the network we execute the PerfTest1, which is a
standard RDMA benchmarking tool.

In this experiment, the compute server issues SEND requests to either the storage host
or the BlueField-2 DPU using PerfTest’s ib_send_lat. It is important to note that the
ib_send_lat test from PerfTest implements a ping-pong and reports half of the round-trip
as latency. In this benchmark, the SEND performance of the storage server’s host CPU
or DPU is therefore also included. We execute the benchmark both with and without
data inlining. If the payload of an RDMA send operation is less than the maximum

1https://github.com/linux-rdma/perftest

115

https://github.com/linux-rdma/perftest

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

8 B 16 B 32 B 64 B 128 B 256 B 512 B 1 KiB
Message sizes

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6
La

te
nc

y
(

s)
Host - inlining enabled
Host - inlining disabled
BlueField-2 - inlining enabled
BlueField-2 - inlining disabled

Figure 8.7: RDMA Send latency measured with ib_send_lat from the compute server to
the storage server (host) or BlueField-2, with or without inlining of data up
to 236 B.

possible inlinable size, a PCIe round-trip to the NIC can be saved. The inlining size limit
for our hardware is 236 bytes and enabled by default.

Running the ib_send_lat benchmark for different message sizes in Figure 8.7 shows
that with inlining enabled (up to 237 bytes), the latency is almost the same. However,
without inlining (dotted lines or above 237 bytes) we see a latency improvement for
the DPU around 0.4 µs. The experiment shows that while there can be a real latency
improvement for the DPU, for small message sizes (e.g., 32 bytes as used in our RPC
framework), inlining reduces the additional PCIe overhead present for the host versus
the DPU.

8.4.2.3 Local Memory Latency

As such, we next speculate that the reason why the observed RPC B-tree latency is not
lower on the DPU versus the storage host might be due to worse memory access latency.
We test this by measuring the latency for random memory access over different memory
block sizes. With smaller memory sizes, the CPU will be able to cache most requests,
but with larger sizes, more cache-misses will occur. We compare the latencies of the

116

8.4 Use case 1: Remote B-Tree with RPC

128 KiB 512 KiB 2 MiB 8 MiB 32 MiB 128 MiB 512 MiB
Memory block size

0

50

100

150

200

250

300

350
La

te
nc

y
(n

s)
Host w/o huge-pages
Host w/ huge-pages
BlueField-2 w/o huge-pages
BlueField-2 w/ huge-pages

Figure 8.8: Memory read latencies for increasing memory block sizes. Data obtained
through tinymembench2.

storage host and the DPU to evaluate both their ability to cache reads and the cost of
cache-misses.

In Figure 8.8, we report the local memory access latency for the host and BlueField-2.
Already at around 1 MiB, the BlueField-2 memory accesses become relatively more
expensive which can be attributed to the smaller cache sizes for the DPU. As the last-
level cache of the BlueField-2 is only 6 MiB, the data spills out of the caches and memory
accesses can to a smaller degree be cached. In comparison to the host with 48 MiB
last-level cache, access latencies are much smaller and stable. We also report the effect of
huge-pages where the increasing cost of TLB-misses already gets visible for the BlueField
at around 64 MiB. For the B-tree RPC experiments, we do not utilize huge-pages.

Overall, the memory access latency is substantially higher on the DPU which contributes
to the fact that we do not experience any latency benefit for the RPC B-tree use case.

2https://github.com/ssvb/tinymembench

117

https://github.com/ssvb/tinymembench

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

8.4.3 Discussion

We now summarize the main findings for evaluating the BlueFields in a remote RPC
B-tree use case. In conclusion, there is both potential for integrating the DPU, but also
downsides.

A goal of our evaluation of the BlueField is to test whether any latency improvements
can be observed. While there is in fact a detectable latency increase for networking
messages on the BlueField, several factors render the remote B-tree access slightly slower
than the host. These factors are slow local memory, smaller caches and smaller benefit of
inlining small message sizes.

The CPU cores and the local memory on the DPU are substantially slower than a
typical server-grade machine and as such blindly offloading data-intensive operations onto
the DPU severely impacts the achievable performance. We instead argue that the DPU
must be carefully integrated such that the workload offloaded to the DPU corresponds
to the processing capabilities.

8.5 Use case 1: Remote B-Tree with
One-sided RDMA

More and more designs are utilizing one-sided RDMA to access remote data structures
in disaggregated memory setups [2, 135, 157, 159]. The reason for this is that one-sided
operations help to remove the load on the (potentially weak) remote memory servers.
Since we already saw that the BlueField-2 struggles to achieve good RPC performance
due to the relatively slow memory and CPU cores, one-sided access is a promising use
case as it does not incur any CPU overhead on the DPU.

In this use case, we therefore evaluate a remote B-tree accessed only over one-sided
RDMA read operations. The way a remote B-tree lookup works for one-sided operations
is that clients are first issuing a read on the root node and locally performing a binary
search to determine the next child node. This is repeated until the leaf level. As such,
an RDMA read request is issued for each level of the B-tree and since the reads are
interdependent (i.e., the location of one read depends on the previous) they cannot be
overlapped.

We first evaluate the throughput characteristics and subsequently look at the latency.
Last, we discuss the findings holistically.

118

8.5 Use case 1: Remote B-Tree with One-sided RDMA

8.5.1 Throughput Characteristics

One-sided remote data structures often come with a lower throughput than their RPC
counterparts since a network round-trip is necessary for each data-dependent read.
However, a unique possibility with one-sided accesses is that the data structure can
easily be distributed out on multiple storage nodes to spread out load and achieve higher
throughput [135, 157]. This is possible since each read is anyway a remote access and
can therefore be directed to any storage server.

In our B-tree benchmark, we however focus on just one storage server and compare the
throughput while gradually offloading the B-tree to the DPU. We see in Figure 8.9 that
the throughput stays stable with more of the B-tree being partitioned to the DPU. As
such, there is no real difference in terms of throughput performance whether the B-tree
is offloaded to the DPU or not. The DPU is therefore a good candidate for offloading
one-sided accesses since it alleviates load on the main-memory of the host system of the
storage server.

We also evaluate the impact on different node sizes of the tree, i.e., the size of each
RDMA read, and observe that for the tested tree sizes, 2048 B node sizes provide the
best throughput at 0.8 MOps. The reason behind this is that even though an RDMA
read of 2048 B is more expensive in terms of throughput and latency than 512 B, larger
nodes result in a bigger fanout and a shallower tree requiring fewer network round-trips.
As previously mentioned, while the absolute throughput is much lower compared to an
RPC solution, the contention on the remote NIC can be spread out to achieve higher
throughput.

8.5.2 Latency Characteristics

While we did not see any latency improvement for offloading RPC B-tree lookups to the
DPU due to the smaller caches and slower CPU, these factors are not as influential for
one-sided accesses. We, therefore, expect to see a reduced latency as more lookups are
offloaded to the DPU, due to the close proximity of the DPU cores to the network. In
Figure 8.10 we execute the B-tree lookups with different partition sizes offloaded to the
DPU. A clear trend is shown here that the DPU provides faster lookups than the host.
For the different tree sizes and node sizes, the improvement is around 11-13%.

The difference in latency observed for the evaluated tree sizes and node sizes is due
to the different latency of the RDMA read and the depth of the tree. As an example,
a node size of 512 B has a fanout of 512B/16B = 32 (with 16 B used as key and child
pointer), so for a tree with 256 M keys, the depth will be dlog32(256M)e = 6, whereas

119

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Th

ro
ug

hp
ut

 (M
Op

s)

(host-only) (DPU-only)

1M keys
16M keys
256M keys

512 B nodes
2048 B nodes

Figure 8.9: Remote B-tree throughput with increasing offload on BlueField-2. Read-only
with one-sided RDMA.

a node size of 2048 B only has a depth of 5 and therefore one less RDMA read. The
experiment shows that the lower latency of a 512 B read with respect to a 2048 B read
does not amortize the cost of an extra read in the B-tree.

8.5.3 Discussion

In conclusion, since the relatively weak CPU cores of the BlueField-2 are not engaged
with one-sided access, the DPU has better offloading potential. The strongest benefit
comes with lower access latency due to the co-location of the CPU cores and the network
on the same physical board.

Another interesting benefit given by offloading the one-sided accesses to the DPU is
that read or write pressure on the local main-memory of the host is alleviated, which
might benefit concurrent memory-intensive applications. This is even more noticeable
with faster networks such as the BlueField-2 model with 200 Gbps.

120

8.6 Use case 2: Remote Sequencer

0 % 20 % 40 % 60 % 80 % 100 %
DPU Offload

0

5

10

15

20

25

30
M

ed
ia

n
La

te
nc

y
(

s)

(host-only) (DPU-only)

1M keys
16M keys
256M keys

512 B nodes
2048 B nodes

Figure 8.10: Remote B-tree latency with increasing offload on BlueField-2. Read-only
with one-sided RDMA.

8.6 Use case 2: Remote Sequencer
A common building block in distributed systems is global counters. They are among
others used for global timestamps, asserting message ordering or coordinating access
to shared memory [67]. There has already been work that incorporates counters in the
network such as a programmable switch [82] or directly in the SRAM of an RDMA-NIC
[135], we, however, aim to evaluate the more traditional setup of placing a counter in
remote DRAM main-memory. We evaluate the performance differences between the
storage host and the BlueField-2 DPU with both one-sided RDMA atomic operations
and with RPC with local atomic operations.

8.6.1 One-sided RDMA Atomics

Atomic operations are already provided in the collection of RDMA primitives such that
multiple clients can perform fetch-and-add or compare-and-swap operations over the
network without any additional coordination. In general, this can facilitate one-sided
access to remote data structures without any locking. For this use case, we evaluate a
remote counter (i.e., sequencer) accessed with one-sided RDMA fetch-and-add operations.

121

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

2 4 6 8 10 12 14
Client Threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (M
Op

s)

0

2

4

6

8

10

12

M
ed

ia
n

La
te

nc
y

(
s)

Host
BlueField-2

Throughput (left axis)
Latency (right axis)

Figure 8.11: Throughput and latency of one-sided RDMA fetch-and-add on either the
storage host or the BlueField-2 DPU.

In Figure 8.11 we report the throughput and latency with an increasing number of
client threads on the compute node accessing the same counter. In this use case we see
a substantial benefit of the DPU in terms of achieved throughput. Placing the atomic
counter on the DPU achieves an almost 50% throughput speedup. This is also reflected
in the number of clients needed to saturate the remote server where the throughput of
the DPU is saturated by around 8 clients whereas the storage host only can scale up to
around 6 clients.

The latency is almost identical with a slight benefit on the DPU. Beyond the saturation
point, the latencies increase linearly with more clients added as contention is created and
requests are increasingly queued.

8.6.2 RPC with Local Atomics

The alternative to realizing a global sequencer with one-sided primitives is to use a two-
sided approach with RPC requests which access the counter with local atomic operations.
Such a design involves the remote side and therefore the CPU and memory resources have
a bigger impact on the performance as already established previously. For completeness
and point-of-comparison we include the achieved performance with a global sequencer
realized on either the host CPU or the DPU.

122

8.6 Use case 2: Remote Sequencer

2 4 6 8 10 12 14
Client Threads

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Th
ro

ug
hp

ut
 (M

Op
s)

Host
BlueField-2

Figure 8.12: Throughput of RPC sequencer on either the storage host or the BlueField-2
DPU.

In Figure 8.12 we report the achieved throughput with an RPC implementation. Similar
behavior as the B-tree RPC experiment can also be observed here, namely the relatively
powerful CPU of the host results in substantially higher throughput than the DPU. The
performance difference is however only up to 2× in this use case versus roughly 3× in
the B-tree. The reason for this is that the counter is less memory-intensive and despite
the smaller caches, the DPU can cache the atomic counter.

8.6.3 Discussion

Based on our experiments, the sequencer shows itself as an interesting use case to offload
to the DPU, especially when utilizing one-sided atomic accesses. The closer proximity
of the memory of the DPU to the network in comparison to the host results in a 50%
throughput increase. While one-sided accesses achieve worse throughput than an RPC
implementation, they are still often applied due to the fact that no CPU load is introduced
on the storage server and that a throughput of 2 MOps is sufficient for many use cases
[124].

123

8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

8.7 Conclusion and Future Work
We now conclude our findings by summarizing in which scenarios the BlueField DPUs
show an acceleration potential and in which scenarios they do not. Moreover, we discuss
some avenues for future work.
Summary. The BlueField-2 DPU is naturally no replacement for a general server-grade
CPU and memory. It is instead marketed as an accelerator for networking-related
tasks, due to its set of network-oriented hardware accelerators. The majority of these
accelerators are however not applicable to our evaluated use cases as they are mostly
concerned with security tasks or virtualization.

In conclusion, we evaluated the BlueField DPUs with respect to typical DBMS tasks
such as remote B-trees or a global sequencer. The main findings are that an acceleration
potential exists for one-sided accesses both in terms of latency and throughput whereas
two-sided accesses easily overload the DPU. However, using the DPU in combination with
the host CPU of the storage server can yield promising performance benefits provided that
the workload is carefully distributed with regard to the relative performance difference.
Future Work. We see that BlueField DPUs are under active development with a new
generation BlueField-3 around the corner which shows even more and faster CPU cores
and memory. We speculate that the BlueField-3 is therefore a promising platform for
also accelerating two-sided data-intensive tasks.

Moreover, we did not cover tasks where BlueField cards provide ASIC-based accelerators
such as engines for compression/decompression, encryption/decryption, regex pattern
matching and NVMe. While we did not cover such engines in our evaluation, they are
also interesting for DBMS workloads and are thus worth to be studied in future work.

Finally, while B-trees and global sequencers are important and interesting use cases
for DBMS, there are many other use cases that are worth studying in the future. For
example, if the DPUs become more powerful, we can think of implementing a full storage
engine on the DPU including a concurrency scheme implementation that allows clients
to access and modify data concurrently while coordinating these accesses.

8.8 Acknowledgements
We thank the reviewers for their feedback. This work was partially funded by the German
Research Foundation (DFG) under the grants BI2011/1 & BI2011/2 (DFG priority

124

8.8 Acknowledgements

program 2037) and the DFG Collaborative Research Center 1053 (MAKI). Finally, we
want to thank hessian.AI at TU Darmstadt as well as DFKI Darmstadt for the support.

125

9 High-Performance
In-Network Data Processing

Abstract
Recent research has shown the potential for using programmable network components
such as switches for distributed data processing. Opportunities include in-network caching
and the execution of distributed SQL operations such as joins or aggregations. However, a
major weakness of the current generation of programmable switches is that the hardware
still has many limitations not only with regard to what type of operations are supported
in a switch (e.g., no loops), but also that the switches can often not sustain processing at
line-rate.

As a first contribution of this paper, we propose a new switch architecture that can be
employed as an in-network co-processor for analytical SQL workloads. Different from
existing commercial switches, our switch architecture is based on an FPGA design and
supports complex operations at line-rate. As a second contribution, we discuss how a
typical distributed database architecture has to be changed to efficiently leverage the
new switch architecture. In our evaluation we show that our new switch architecture can
significantly speed-up distributed query processing by up to 7× compared to traditional
shuffle-based approaches without in-network processing capabilities.

Bibliographic Information
The content of this chapter was previously published in the peer-reviewed work: Jaco A.
Hofmann, Lasse Thostrup, Tobias Ziegler, Carsten Binnig, and Andreas Koch. “High-
Performance In-Network Data Processing.” In: 10th International Workshop on Accel-
erating Analytics and Data Management Systems Using Modern Processor and Storage

127

9 High-Performance In-Network Data Processing

Architectures, ADMS@VLDB 2019, Los Angeles, California, USA, August 26, 2019. Ed.
by Rajesh Bordawekar and Tirthankar Lahiri. 2019, pp. 64–73. url: http://www.adms-

conf.org/2019-camera-ready/hofmann_adms19.pdf.

This article is published under a Creative Commons Attribution License http://
creativecommons.org/licenses/by/3.0/, which distribution and reproduction in
any medium as well allowing derivative works, provided that you attribute the original
work to the author(s) and ADMS 2019. 10th International Workshop on Accelerating
Analytics and Data Management Systems (ADMS’19), August 26, 2019, Los Angeles,
California, CA, USA.
This is the author’s version of the work. It is posted here for personal use in this thesis.
Not for redistribution. The definitive version of the record was published in the 10th
International Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures, ADMS@VLDB 2019, Los Angeles,
California, USA, August 26, 2019, http://www.adms-conf.org/2019-camera-ready/
hofmann_adms19.pdf.

128

http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf

9.1 Introduction

9.1 Introduction
Motivation. Scalable database systems for analytical workloads such as Terradata,
Microsoft Parallel Data Warehouse, or Amazon’s Redshift are being used today for
analyzing massive amounts of data in distributed setups. These systems exploit the sheer
amount of nodes to leverage data parallelism by shuffling data back and forth. While this
paradigm is quite successful, recent papers [111, 112] have shown that data parallelism
in a distributed setup does not necessarily lead to improved performance especially in
modern main memory databases due to high communication costs or inefficient utilization
of the network.

Therefore, many recent papers have suggested to improve the performance of distributed
databases by optimizing their network usage with the help of high-speed networks and
RDMA [147, 155]. While RDMA allows to leverage high network bandwidth and low
latency in database systems, it is not the only option of modern network technologies
that can be leveraged by distributed data processing systems. An interesting direction is
that network components such as switches are becoming programmable and thus allow
to offload processing into the network itself.

This opens up many possibilities for tailoring the network stack to data processing,
ranging from opportunities such as in-network caching to the execution of distributed
SQL operations inside network components, i.e., in-network processing (INP) [12, 36, 116].
However, especially for in-network processing, a major weakness of the current generation
of programmable switches is that the hardware still cannot sustain processing on line-rate
and is not capable of many memory intensive operations, such as the computation of
SQL joins or aggregations [12, 79] which need to keep an intermediate state.

Contribution. In order to address this challenge, we make the following contributions.
First, we propose a new switch architecture that can be used as an in-network co-processor
for analytical SQL workloads. The switch architecture relies on a system on a chip (SoC)
design that leverages an FPGA and provides larger amount of DDR3 main memory in
the switch to execute query pipelines, i.e., sequences of multiple SQL operators. By using
this architecture we thus cannot only process data at line-rate, but also support more
memory intensive operations inside the switch, such as hash-table building and probing.

Second, we show how a typical distributed database architecture can be adopted to
efficiently use our new switch architecture. The main idea is that the database comes
with a set of pre-compiled query pipelines that are installed in the FPGA. During
query compilation the appropriate pipeline is chosen. Furthermore, the query optimizer

129

9 High-Performance In-Network Data Processing

Master

Workers

1. Compilation

Query

FPGA Switch
2. Pipeline placement

2. Pipeline placement

Figure 9.1: Overview of our Processing Scheme.

is extended to determine the best execution strategy of leveraging the in-network co-
processor.

Finally, in our experimental evaluation we show that our optimized query processing
scheme which utilizes the new switch architecture significantly speeds-up distributed join
processing by up to 7×, compared to a traditional shuffle-based approach without INP.
In contrast to traditional query processing, our INP-enabled scheme can eliminate the
overhead of shuffling intermediate results and thus reduces the communication between
nodes in a distributed database.
Outline. The remainder of this paper is structured as follows. In Section 9.2 we first give
an overview of our in-network processing (INP) architecture for analytical SQL workloads
and how it can be integrated into a distributed database. Afterwards, we present how
query processing and optimization has to change to push SQL operations into the switch
and then discuss the design details of our switch architecture in Section 9.4. Finally, we
report initial experimental results in Section 9.5 and conclude with the limitations of our
current prototype and a discussion of future directions in Section 9.6.

9.2 System Overview
This section provides an overview of our proposed INP-based query processing scheme
and discusses its main differences compared to traditional distributed query processing.
Query Processing. To illustrate the main idea of our distributed query processing that
utilizes our proposed switch design, we first review classical distributed query execution

130

9.2 System Overview

and then discuss the changes compared to our scheme. A typical setup of a shared-
nothing database consists of one master and several compute nodes, as well as one switch
connecting the nodes. As an example query, consider the execution plan in Figure 9.2
that could result from the SQL statement SELECT * FROM A JOIN B JOIN C.

In the classical distributed query processing, A and B are first shuffled according to the
join key. Then, each node builds a hash table over B (assuming B is the smaller table) and
uses tuples from A to probe in that hash table. For the subsequent join, the intermediate
result of A ./ B as well as relation C need to be shuffled again, such that the joins can be
executed by building and probing into the hash table of C. Thus, each join (if data is not
co-partitioned) typically requires one expensive shuffle operation.

In order to avoid the repeated shuffling of data, we propose a new execution scheme
that utilizes our proposed switch for in-network processing. Figure 9.1 shows the two
main steps of our scheme. As a first step, the master node determines and compiles an
optimal execution plan when a new SQL query arrives (Figure 9.1 1©). Next, the master
node places the different steps of the plan on the worker nodes as well as the switch
(Figure 9.1 2©). How an optimal execution plan for our switch architecture is created
and how the pipeline placement is performed will be described in more detail in the next
section.

The equivalent query plan for INP execution is shown on Figure 9.3. For now, assume
that the plan is the optimal one for our example query. As can be seen in the two figures,
the classical - Figure 9.2 and the INP-based plan Figure 9.3 consist of two types of
pipelines (probe-pipelines and build-pipelines), the INP-based plan splits the plan into
multiple pipelines that can be placed on worker nodes or the switch respectively. As a
consequence, different from the traditional plan many of the Shuffle operators can be
completely avoided since the probe steps are executed all in the switch. In the following
we will discuss the implications of the differences in more detail.

Discussion. As mentioned before, the main conceptual difference of our scheme is the
elimination of shuffling, and in particular the re-shuffling of intermediate join results.
This is beneficial, since shuffling comes with several challenges.

First, shuffling operations are so called pipeline breakers, since the streaming of tuples
through an operator pipeline is stopped (i.e., the shuffle operation only starts once the
previous intermediate result has been materialized completely). This however, limits the
degree of parallelism of the execution since following phases of a query need to wait for
the completion of previous ones. For instance, the second join of our example query can
not be computed until the result of the first join has been materialized.

131

9 High-Performance In-Network Data Processing

A B
Shuffle Shuffle

Build HTProbe HT

Shuffle

C
Shuffle

Build HT

Probe HT

⋈

⋈

Classical Execution

Figure 9.2: Example of Query Plan for Classical Execution.

Second, shuffling usually means that significant amounts of data need to be transferred
via the network, since also the intermediate results need to be partitioned and sent to all
workers. The cost of shuffling intermediate results is even higher in a data warehouse
setup. This is because, in a star schema with one very big fact table and multiple smaller
dimension tables that need to be joined, the cost of shuffling the fact table and the
resulting intermediate results is dominating the overall query execution cost. Considering
the example query plan shown in Figure 9.2, the fact table could be represented by
relation A and the dimension tables by B and C.

Finally, we are less sensitive to skew, since typically one node receives more data than
the others. When multiple nodes send to a single node, the network link of the node gets
congested and slows down overall execution (also known as incast problem).

9.3 Query Processing
In this section we describe how the database architecture can be adapted to leverage the
FPGA-based switch.

132

9.3 Query Processing

A B
Send Send

Build HTProbe HT

Probe HT

C
Send

Build HT

⋈

⋈ Switch

Workers

INP Execution

Figure 9.3: Example of Query Plan for INP Execution with Operator Placement.

9.3.1 Query Compilation

The query compilation resembles a physical execution plan for a given query. One
important decision in distributed systems during optimization is where to execute pipelines
optimally. Consequently, our adapted query compilation takes the FPGA switch as a
processing unit into account. When employing an FPGA for query processing, it is not
feasible to synthesize a complete configuration (a so called bitstream, i.e., the executable
logic on the FPGA) on a query-to-query basis, as bitstream generation can take multiple
hours. However, once the bitstream is generated and installed on the switch FPGA,
re-configuring the switch to use a different pre-installed bitstream only takes a few
milliseconds. Hence, our system allows to install a set of bitstreams for pre-generated
pipelines to execute multiple different queries efficiently.

Figure 9.3 shows a physical operator plan for our example query. As shown, each
worker is only responsible to send its part of the relation to the switch, which executes
the main query pipelines, i.e., building and probing pipelines for executing joins. To
support generic queries inside the switch, the pre-generated pipelines provide different
signatures. For instance, the intermediate hash table for table B needs to store keys and
values of 8 Bytes, whereas table C needs 4 Byte keys and 10 Byte values.

133

9 High-Performance In-Network Data Processing

The master node thus tries to choose the best fitting signature, if there is no exact
match it takes the next larger one. This clearly induces memory overhead, e.g., if the
relation has a 64 Byte value, then the master chooses the 128 Byte pipelines. However,
this should not be a common case, since optimal signatures can be generated as soon as
the workload is known.

9.3.2 Query Optimization

In a traditional database system, the optimizer is responsible for finding the best plan.
INP has a slightly different execution model and mandates an extension to the existing
cost-based optimization. We therefore propose the following optimization objective: The
optimizer should reduce the number of re-shuffle operations by offloading computation
to the switch. These pipeline-breaking operations are especially expensive, since they
require synchronization until the query execution proceeds. Moreover, the limited memory
of the switch has to be taken into account. Therefore INP should be applied for the
most beneficial joins and the optimization problem is in fact a constrained optimization
problem.

In our prototypical implementation we only consider left-deep join trees with primary-
foreign relations as in Figure 9.2 for INP, since this is a common join structure in
analytical workloads.

In the following, we first explain our notation and then derive our cost model. We are
considering a left-deep plan which consists of a left-deepest relation L (L might be an
input relation or an intermediate result) and a set of tables Ti which are joined with L.
The number of workers is defined by N . |R| denotes the cardinality of any relation R

and ts(R) the size of a tuple in R. The subset of tables indexed by I which are qualified
for INP is defined as L

⋃I
i=1 Ti. For instance the query plan shown in Figure 9.2 consists

of the tables A, B, C. However, due to high memory requirements, or lower costs of a
shuffle-based join, the optimizer could define I such that only A and C are joined with
INP. Consequently, the intermediate result of A ./ C would be joined with B with the
shuffle-based approach.

Cost Model for Classical Model. Based on the network cost of one relation, we
describe the network cost for the classical approach used in distributed databases which
is based on data shuffling. Later, we derive a new cost model for our INP-based query
processing scheme. The following equation describes the cost for sending the qualifying
tuples of one relation over the network:

134

9.3 Query Processing

crel(R) = |R| ∗ ts(R) (9.1)

In the classical cost model, the cost to create an intermediate join of the tables indexed
by I is thus given by the following equation:

cshuffle(I) = N − 1
N

(
crel(A) + crel(A ./ Ti1) + . . .

+crel(A ./ Ti1 .// Tim−1) +
∑
i∈I

crel(Ti)
) (9.2)

To explain the above equation we calculate the cost for the plan shown in Figure 9.2,
with four workers, and the following parameters.

Relation Size (|R|) Tuple Size (ts(R)) crel(R)

A 100000 32 3200000
B 10000 10 100000
C 10000 10 100000
AB 100000 32 3200000

We consider the complete plan in our example - the intermediate result consists of
A, B, C, therefore the costs of A, B, C can be included in the Equation (9.3). These
describe the cost for shuffling A, B, C. Besides these input relations, we also shuffle the
intermediate result of A ./ B. Hence, we include those costs as well, resulting in:

cshuffle(I) = N − 1
N

(3.2e06 + 3.2e06 + 1e05 + 1e05) (9.3)

Finally, we assume that only 3
4 of the data is shuffled in the uniform case w/o skew

and 1
4 is kept locally. Consequently, the network cost for the given plan is 3

4 ∗ 6.6e06.
Cost Model for INP. Now, the INP cost model can be derived from the classical model.
The major change is to avoid re-shuffling of intermediates and thus they are removed
from the equation. Hence, the following equation holds:

cINP(I) =
(

crel(L) +
∑
i∈I

crel(Ti))
)

(9.4)

As shown in the equation, the network cost of the INP approach is determined only by
the tables and tuples sizes and not by the intermediate results. We again apply this cost
function to the example above.

135

9 High-Performance In-Network Data Processing

cINP(I) = (3.2e06 + 1e05 + 1e05) (9.5)

This gives the following network costs for the INP approach 3.40e06.
Hence, the cost improvement of the classical approach vs. the INP based approach is

cINP(I) − cshuffle(I) depending on the set of tables used to apply INP. The optimization
problem is now to choose I ⊂ {1, 2, . . . , n} such that this improvement is maximized
while the memory constraint in the switch

∑
i∈I |Ti| ≤ CRAM is satisfied. Note that also

I = ∅ is considered in this optimization problem, i.e. INP is not applied at all.
Theoretical Analysis:. This paragraph discusses the previously introduced cost-models
and elaborates when INP is beneficial. Note, however INP is not a complete replacement
of the traditional approach, but rather an optimization which can be used for some cases.
We first show the effect of the network cost crel(A) from A in relation to the other tables
Ti. Based on Equation (9.1) the cardinality and the size of the tuples have an impact
on the network cost of A. To analyze the effect of increasing costs of the left deepest
relation we again use our query plan from Figure 9.2 with four workers.

Figure 9.4 shows on the x-axis the network cost of crel(A) in relation to B, C, i.e., 0.1
means that the cost of the relation A is only 10 percent of B, C. To show the effect in
isolation we thus fix B, C to the same size. The y-axis shows the outcome of the cost
functions for cshuffle(A, B, C) and cINP(A, B, C).

The plot shows that if the costs for A is smaller than the cost for B, C, the classical
approach is more suitable. Since the intermediate results will be cheaper, shuffling only a
fraction of our relation (N−1

N) is cheaper than sending everything to the switch. However,
INP is more efficient if the cost of A exceeds B, C, thus we avoid expensive reshuffling
on intermediate results.

The best performing strategy is not only determined by the costs of A, B, C. The
number of joins also influences the decision. Therefore, the next plot analyzes the effect
of the number of joins when A and Ti have equal costs. Figure 9.5 shows on the x-axis
the number of joins and the y-axis shows again the costs of the two strategies.

By avoiding the intermediate shuffle, the INP approach is clearly beneficial if the
number of joins increases. In conclusion we have shown that the INP approach is
beneficial if the cost of A is high compared to the other relations and further if the
number of joins is high. Both of these circumstances are often met in data warehouse
scenarios.
Cost-Model Extensions. This paragraph extends the proposed cost-model to support
selections, co-partitioning, and skew. Selections can be modeled by multiplying crel(R)

136

9.3 Query Processing

10−1 100 101 102

crel(A) in comparison to crel(B) & crel(C)

0

25

50

75

100

125

150
C

os
t

INP

Classical

Figure 9.4: Cost analysis for different table ratios. With bigger relation A in comparison
to B & C, the INP approach greatly reduces cost.

1 2 3 4 5 6

Number of joins

2

4

6

8

C
os

t

INP

Classical

Figure 9.5: Cost Analysis for varying number of joins. Relation costs (crel) are kept the
same for all joined relations.

137

9 High-Performance In-Network Data Processing

Packet
ParserEthernet

Packet
Parser

Packet
Parser

Packet
Parser Probe Requests

Hash Requests

Arbiter

Arbiter

Probe Units

Hash Units

DDR3 MIG 0

DDR3 MIG 1

Arbiter

Figure 9.6: Overview of the proposed architecture on the NetFPGA SUME board. Data
is processed as a stream of 64 bit words provided by the Xilinx 10G Ethernet
Subsystem. The Ethernet packets are parsed using a Bluespec-generated
packet parser. The extracted hashing and probing requests are forwarded to
the hashing and probing infrastructure.

with the selectivity. This not only allows to support selection predicates but other types
of joins as well. Co-partitioning is only relevant to the classical approach and is modeled
trivially by removing the relations from the equation. Assuming that A, B are co-located
in our example query, they can be joined locally and there is no need to shuffle A, B.
However, it is still necessary to shuffle A ./ B and C. In the INP approach, all tables
need to be sent to the switch, and consequently co-partitioning has no effect on the
costs. Skew is modeled by applying a write amplification factor to the costs of cshuffle(I).
Furthermore, skew often leads to the incast problem; i.e., the ingoing link on the worker
receiving the large amount of skewed data becomes congested and acts as a bottleneck.
Hence, the write-amplification factor models that skew since it increases the shuffle cost.
In contrast, the INP approach is not affected by skew since in the best case data does
not need to be shuffled at all.

9.4 Switch Design
In the following, we describe the design of our switch architecture that can be optimally
used as an in-network co-processor for typical analytical SQL workloads. We first explain
the hardware platform our switch is based on before we explain how different query
pipelines for hash table building and probing are supported inside our switch architecture.

9.4.1 Hardware Platform

The platform chosen for the demonstrator is the NetFPGA SUME [158], based around
a Xilinx Virtex 7 FPGA, 8GB of DDR3-SDRAM memory and four SFP+ connectors.
Those connectors can be used to interface the FPGA with off-the-shelf SFP+ solutions

138

9.4 Switch Design

common in data centers, either via fiber optics or direct-attached cables. The bandwidth
of all ports is 10Gbps.

The switching hardware itself is described in Bluespec SystemVerilog, a Hardware
Description Language (HDL) that combines high-level features of functional programming
languages with the performance of hand-crafted low-level HDLs such as SystemVerilog or
VHDL.

This section describes the different stages of packet processing in the proposed archi-
tecture: (1) Packet Parsing, (2) Hash Table Generation, and (3) Hash Table Probing.

For designing our switch architecture we leverage the TaPaSCo [72] tool chain. The
tool chain provides all necessary steps to bring hardware acceleration to a variety of
platforms, in many cases avoiding the need for explicit hardware development knowledge.
The tools assist with all necessary steps such as bitstream generation, bitstream loading
and interfacing to a host computer for control and monitoring tasks. TaPaSCo assists
the designer finding the optimal working conditions for a given architecture. Further-
more, TaPaSCo has already been employed succesfully in other in-network-processing
applications [25].

9.4.2 Ethernet Packet Parsing On FPGA

The interface to the SFP+ connectors is provided by Xilinx through their 10 Gigabit
Ethernet Subsystem IP core. The packets received over SFP+ are provided by the core
as a stream of 64 bit words at 156.25MHz.

The streams of all four interfaces are collected in their corresponding packet parser
infrastructure in the proposed architecture, as shown in Figure 9.6. These packet parser
units can operate at line rate and are completely independent from each other. The
packet stream is parsed using a custom parsing state machine generator. Common
functionality such as dropping packets for the wrong destination MAC address or with
the wrong protocol is done on the fly as soon as the relevant data is available.

Requests, in our case the probe or hashing modes, are immediately forwarded out of
the parsing module for further processing. These taps into the parsing pipeline can occur
at any processing step and provide very flexible protocol handling. Previous parts of
the packet can also be examined in later steps by explicitly marking certain parts of the
packet as relevant for later processing.

The extracted requests are then stored in FIFO buffers to be collected by the hashing
and probing infrastructure for actual processing.

139

9 High-Performance In-Network Data Processing

9.4.3 Hash Table Generation

The example application demands very high hashing performance from the system. Each
of the 10Gb ports results in over 3.76e07 hash table inserts per second. The architecture
should support this throughput for all pipelines in parallel. Latency, on the other hand,
is not important as an insert does not result in any feedback to the sender. Accordingly,
the sender will simply send out the pipelines without waiting for ACK signals or similar.
The hash table generation architecture supports only insert operations, as deletes are not
required, and probes are handled by a different part of the design.

Key Value Stores on FPGA are a well-researched field [127, 139]. These approaches
usually differ from CPU based hash table implementations as FPGAs have different
strength and weaknesses. For example, the FPGA can process wider words, such as 512
bit whereas a CPU based implementation has to consider the caching infrastructure of
the given processor.

The design proposed here works in the following way:

1. Hash the key provided in the request by the parsing stage to calculate a bucket.

2. Retrieve the corresponding bucket from the main memory. All buckets are 512 bit
in size, which corresponds to the data path width of the DDR3 controllers.

3. Place the key and value tuple in the first free position in the bucket and write the
bucket back to main memory.

All of these stages are pipelined and multiple requests are processed at any time.
The pipelining might result in Read-after-write hazards which are dealt with by the
look-ahead buffers. These buffers inject the answer read from the memory, including the
newly added tuple, whenever a succeeding insert request hashes to the same bucket.

To spread the hashing load over memory as much as possible an interleaved approach
is used. Each of the hashing units uses all of the available memory but only every third
entry belongs to a certain unit. For example address 0 stores bucket zero of hash table
zero, address 64 stores bucket zero of hash table one and address 128 stores bucket zero
of hash table two. This scheme allows for much better utilization of all the available
memory resources compared to a simple block-wise arrangement.

The performance of this architecture is completely determined by the random access
Read/Write performance of the DDR3 controllers and is typically around 5.63e07 inserts
per second per memory controller. Higher performance can be reached by utilizing newer
devices with memories such as HBM having higher random access speed.

140

9.4 Switch Design

Figure 9.7: Setup used to evaluate the proposed architecture. Four nodes with Xeon 5120
CPUs are connected via 10Gbps links to a central Zyxel XS3700 switch. The
NetFPGA SUME-based switch is connected with two SFP+ Fiber and two
Direct Attached cables. The FPGA is installed in a host PC for simplified
monitoring via PCIe. The host only performs management tasks, and thus
does not process any packets on its own.

141

9 High-Performance In-Network Data Processing

9.4.4 Hash Table Probing

Compared to the table generation, probing has to meet even higher performance require-
ments. For every probing request, all stored hash tables have to be probed in parallel.
For one 10Gbps link and three hash tables this combines to about 1.20e08 requests per
second in total.

The architecture itself closely resembles the design of the insert units but without the
write-back part. Every lookup requires three steps:

1. Hash the key provided in the request by the parsing stage to calculate a bucket.

2. Retrieve the corresponding bucket from the main memory.

3. Return the key contained in the bucket, or an invalid flag if the key is not found.

Again the performance is completely determined by the performance of the DDR3
controller. Considering that only reads, and no writes, are necessary the performance is
about 75 % better at around 9.84e07 probes per second per memory controller.

The results of the probes are forwarded to a combination unit which is responsible for
answering the probe requests.

The retrieved tuples are combined with the original request and forwarded to the SFP+
parsing units which in turn send out the completed requests to their destination.

9.4.5 Performance

The architecture is shown to be able to handle packet processing at line rate and even
multiple channels in parallel. The hashing mechanism is able to handle around 29.9Gbps

of traffic and is only limited by the available random access performance of the memory
controllers. The probe units are able to process up to 1.97e08 tuples per second using
two DDR3 controllers.

9.5 Initial Results
In the following, we show the initial results of our new switch design in a distributed
database.

9.5.1 Setup and Workload

Our experiments were executed on a five node cluster – one master node and four compute
nodes. Each server has an Intel(R) Xeon(R) Gold 5120 CPU @ 2,20GHz processor and

142

9.5 Initial Results

384GB RAM, running Ubuntu 18.04. All machines were equipped with a 10Gbps NIC.
The four compute nodes are connected via CAT 6 RJ45 Ethernet Cables to a Zyxel
XS3700 switch (without INP) and our FPGA-based switch (with INP capabilities). The
FPGA switch is attached to our compute nodes using two SFP+ DAC cables from Digitus
and two SFP+ fiber transceivers by FLEXOPTIC. A picture of our experimental setup
is shown in Figure 9.7.

Based on this setup, multiple experiments were conducted to demonstrate the perfor-
mance of our proposed architecture (referred to as NetJoin) over a baseline without INP.
The experiment represents a shuffle-heavy scenario like described in Section 9.2. A table
A is joined together with three other tables B, C & D. The join shows similarity to a data
warehouse setup with A being the fact table with foreign keys to the dimension tables B,
C & D.

In our setup, all tables are pre-partitioned such that no join partners can be found locally
without the need of sending one of the tuples over the network. In data warehousing,
typically one of the dimensional tables in a star schema can be co-partitioned with
the fact table and thus shuffling can be avoided for the first join in a plan where the
co-partitioned dimension table is joined. However, this optimization can be applied for
both processing schemes; the traditional shuffle-based and our INP-based scheme and
both would benefit equally. In our experiments, we thus show the performance of both
schemes without this optimization.

Finally, a last important fact is that the NetJoin makes use of raw Ethernet frames,
such that higher level protocols do not split up packets and no performance overhead is
introduced. In our paper (as well as other INP papers such as [79]), we do not yet handle
dropped frames. Instead, throughout the experiments we made sure that the amount
of dropped tuples are monitored and limited to at most 2%. For providing reliability, a
light protocol could be implemented on top of raw Ethernet which does not introduce a
significant performance penalty.

9.5.2 Experiment 1: Uniform Join Keys

The first experiment shown in Figure 9.8 scales the size of the A relation in comparison
to relations B, C & D. The left graph (a) shows the runtime of the distributed hash join
over the varying sizes of the A relation. The B, C & D relations sizes are 5e07 tuples, and
with the A relation ranging from 5e06 to 5e09 tuples. Since the join keys are uniform,
each of the four nodes receive the same amount of tuples when shuffling the relations.

143

9 High-Performance In-Network Data Processing

107 108 109

A relation size (tuples)

0

25

50

75

100

125

150
E

xe
cu

ti
on

ti
m

e
(s

)
NetJoin

Baseline

(a) Join runtime.

107 108 109

A relation size (tuples)

1.0

1.2

1.4

1.6

1.8

2.0

S
p

ee
d

u
p

(b) Speedup of NetJoin over baseline.

Figure 9.8: Experiment 1. Four nodes joining ranging A relation sizes (5e06 to 5e09
tuples) with fixed B, C & D relations (5e07 tuples). Link speed on each node
at 5Gbps. For small sizes of A, the shuffling overhead is too small to make a
significant impact on runtime. Larger sizes of A, compared to relations B, C
& D, result in increased overhead due to the required shuffling. Accordingly,
NetJoin is increasingly faster compared to the baseline as it does not need to
shuffle the tables.

The results show that as the A relation size is small, the NetJoin does not perform
better than the baseline since reshuffling the intermediate results is inexpensive due to
A’s small size. As the A relation size grows, the NetJoin outperforms the baseline. Even
though the nodes in the NetJoin have to completely send their local partitions of all
relations to the switch, the reduced cost of reshuffling compensates for this. The speedup
as shown in Figure 9.8b shows an over 2× performance gain against the baseline with
the A relation 100× bigger than B, C & D.

9.5.3 Experiment 2: Skewed Join Keys

To show that our in-network execution scheme is more resilient against skew compared
to a traditional query processing, we generated skewed join keys. The skew was such
that when shuffling the relations on four nodes, 80% of all tuples go to Node 1, 13% to
Node 2, 5% to Node 3 and the remaining 2% to Node 4.

Since the initial prototype only uses raw Ethernet frames, conducting this experiment
for the baseline meant that Node 2, 3 & 4 needed to throttle the speed of outgoing packets
to Node 1. This ensured packets were not being dropped due to congested in-going link
to Node 1.

144

9.5 Initial Results

107 108 109

A relation size (tuples)

0

100

200

300

400

500

E
xe

cu
ti

on
ti

m
e

(s
)

NetJoin

Baseline

(a) Join runtime.

107 108 109

A relation size (tuples)

1

2

3

4

5

6

7

S
p

ee
d

u
p

(b) Speedup of NetJoin over baseline.

Figure 9.9: Experiment 2. Shuffle skew on four nodes joining ranging A relation sizes (5e06
to 5e09 tuples) with fixed B, C & D relations size (5e07 tuples). Link speed
on each node at 5Gbps. NetJoin executes with same runtimes as compared
to the unskewed scenario shown in Figure 9.8a. The baseline however is
impacted by the bottleneck resulting from the non-uniformly distributed join
keys.

As shown in Figure 9.9a such skewed shuffling scenario heavily affects the performance
of a distributed join, not only because the compute intensity and memory consumption
are not equally distributed, but also because of incast congestion in the network switch.
Since Node 2, 3 & 4 all need to send 80% of their local relation to Node 1, the in-going
link is acting as a bottleneck and other nodes throttle down their sending rate.

However, with our NetJoin, skew on the join key does not play a role since no network
shuffling is taking place. Figure 9.9a shows an identical runtime of the NetJoin, but with
the baseline performance severely suffering in comparison to Figure 9.8a. The speedup
shown on Figure 9.9b reports a speedup of 7× for the largest A relation size.

9.5.4 Experiment 3: Scaling Number of Joins

As discussed in Section 9.3, not only the relation size of the left deepest relation, but also
the number of joined relations has an impact on the query runtime. In this experiment
we show that our proposed approach is superior to the classical query processing when
the number of joins increases. This is also true for the sub-optimal case when the size of
the left deepest relation is not larger than the other relations (i.e., the fact table and
dimension tables have the same sizes).

The experiment is executed by fixing all relation sizes to 5e07 tuples. Figure 9.10a
shows the runtime of queries with 1 to 4 joins. As already shown in the cost analysis

145

9 High-Performance In-Network Data Processing

1 2 3 4

Number of joins

1

2

3

4

R
u

n
ti

m
e

(s
)

NetJoin

Baseline

(a) Join runtime.

1 2 3 4

Number of joins

0.8

0.9

1.0

1.1

1.2

S
p

ee
d

u
p

(b) Speedup of NetJoin over baseline.

Figure 9.10: Experiment 3. Scaling number of executed joins in query from 1 to 4. All
relation sizes are fixed to 5e07 tuples. NetJoin is slower for 1 join since the
complete relations are sent to switch. With more joins NetJoin outperform
the baseline through not having to shuffle intermediate joined relations.
With relation A bigger than joined relations, the speedup increases further
as demonstrated in Experiment 1.

in Section 9.3 (Figure 9.5), the baseline cost increase with a higher gradient than the
cost of NetJoin (INP). Moreover, we can see that only after two joins the INP-based
approach outperforms the classical approach.

Additionally, we also conducted an experiment where the fact table is larger than the
dimension tables. In this case, the INP-based approach again outperforms the classical
shuffle-based approach by a higher factor.

9.6 Conclusion & Future Work
This work is motivated by the observation that existing programmable switches cannot
process memory intensive operations and thus are not suited for distributed query
processing.

To overcome this issue, we proposed a new FPGA-based switch architecture. By using
an FPGA-based design we are flexible to process different incoming queries at line-rate.
The high-level FPGA programming paradigm used here provides considerably more
flexibility than existing solutions, such as P4’s match+action stages.

Furthermore, we also discuss initial directions where to adapt distributed query pro-
cessing to leverage the capabilities of INP. The main idea is to avoid expensive shuffling

146

9.7 Acknowledgements

operations by offloading more complex query pipelines to the switch. We show that our
proposed execution scheme can thus speed up query processing for left-deep join plans
by up to 7×.

However, our prototype has also shown some limitations that we could not yet address.
We leave these limitations for future work. One of the limitation of the current design is
that the output of a probing pipeline cannot be larger than its input due to congestion. By
using a more recent FPGA board to realize the switch, up to 256 GB of DDR4-SDRAM
plus 8 GB of very fast HBM will be available, thus allowing the implementation of a
better caching scheme. This cache could allow us to better control the congestion of the
outgoing link by buffering/stalling some tuples before sending out.

Finally, while the initial results of our prototype are promising, there are many other
open routes for future work that we have not been able to address yet. For example,
in a real data-center setup multiple switches are involved. To that end, we could use
parallelism in the network by using multiple of these switches. Furthermore, another
direction would be fault-tolerance or isolation of multiple queries which are all not yet
handled in our current design.

9.7 Acknowledgements
This work was partially funded by the German Research Foundation (DFG) under the
grants BI2011/1 (DFG priority program 2037) as well as the DFG Collaborative Research
Center 1053 (MAKI).

147

9 High-Performance In-Network Data Processing

148

10 Distributed GPU Joins on
Fast RDMA-capable
Networks

Abstract
In this paper, we present a novel pipelined GPU join that accelerates the performance of
distributed DBMSs by leveraging GPU resources on fast networks. A key insight is that
we enable pipelined join execution by overlapping the network shuffling with the build
and probe phases, thereby significantly reducing the GPU idle time. To demonstrate
this, we propose novel algorithms for distributed pipelined GPU joins with RDMA and
GPUDirect for both arbitrarily large probe- and build-side tables. In our evaluation, we
show our pipelined distributed GPU join can reduce the overall runtime of a full query
by up to 6× against a state-of-the-art CPU-only join.

Bibliographic Information
The content of this chapter was previously published in the peer-reviewed work: Lasse
Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and Carsten Binnig. “Distributed
GPU Joins on Fast RDMA-capable Networks.” In: Proc. ACM Manag. Data 1.1 (2023),
29:1–29:26. doi: 10.1145/3588709. url: https://doi.org/10.1145/3588709.

149

https://doi.org/10.1145/3588709
https://doi.org/10.1145/3588709

10 Distributed GPU Joins on Fast RDMA-capable Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. © 2023 Copyright held by
the owner/author(s). Publication rights licensed to ACM. This is the author’s version
of the work. It is posted here for personal use in this thesis. Not for redistribution.
The definitive version of the record was published in the Proc. ACM Manag. Data 1.1
(2023), https://doi.org/10.1145/3588709.

150

https://doi.org/10.1145/3588709

10.1 Introduction

CPU → CPU CPU → GPU
0 B/s

2 GiB/s

4 GiB/s

6 GiB/s

8 GiB/s

10 GiB/s

12 GiB/s

N
et

w
or

k
B

an
d

w
id

th

(a) Network bandwidth

Local CPU join Local GPU join
0

2000

4000

6000

8000

M
tu

p
le

s/
s

(b) Join throughput

Figure 10.1: GPUs represent an interesting accelerator for distributed joins in scale-
out DBMSs because of the following reasons. (a) Network communication
to remote CPUs and GPUs share the same characteristics (reported by
ib_write_bw). (b) With the same overhead for data transfers, GPU joins
can significantly outperform CPU joins based on their higher processing
power.2

10.1 Introduction
Motivation. GPUs have turned into more general-purpose processing units beyond
their use for just conventional graphics processing. In contrast to CPUs, GPUs provide
a tremendous amount of processing power and often come with thousands of cores in
a single unit of compute that can access GPU-internal memory with high bandwidth.
As a result, GPUs have risen in popularity not only in graphics processing and machine
learning but for a variety of different workloads. Moreover, with its wider use, GPUs
have become a commodity and are today not only available in typical on-premise clusters
but also in the cloud, where the GPU-equipped machines are only slightly more expensive
compared to CPU-only machines.1

In the context of DBMS workload, most previous work on the integration of GPUs as
accelerators has focused on the acceleration of OLAP workloads for single-node DBMSs
[14, 15, 40, 122, 141, 144]. This is because OLAP queries map inherently well to the
vectorized execution model of GPUs and hence are clearly an interesting workload for
being accelerated by a GPU. This way, the DBMS is able to execute query operators
such as joins or aggregations in a massively parallel manner on a single-node DBMS.

1E.g., the Azure cloud with the RDMA-capable instance Standard_NC24r with 4 K80 GPUs (with
GPUDirect RDMA) is 10-25% more expensive in comparison to RDMA-capable CPU-only instances
(Standard_HB60-15rs & Standard_HC44-16rs).

151

10 Distributed GPU Joins on Fast RDMA-capable Networks

However, how to scale GPU joins and accelerate join queries in the context of distributed
DBMSs is rather unexplored.

Hence, in this paper, we aim to show the potential of GPUs as accelerators in distributed
DBMSs on clusters with fast RDMA-capable networks. Here, an important aspect is that
using high-speed network cards with GPUDirect RDMA [97, 101], data shuffling over
the network has the same cost independent of whether the target of the data transfer is
remote CPU memory or remote GPU memory. To be more precise, a database node of a
scale-out cluster can directly write data to the remote GPU memory (and also read data
from the GPU) without the need to first write data to the remote host CPU memory and
then copy it to the GPU memory. To bring this into perspective empirically, as shown in
Figure 10.1a, RDMA writes with GPUDirect to remote GPU memory have the same
network bandwidth as writing to the remote memory of a CPU. As such, in a distributed
DBMS where data anyways need to be shuffled for executing the join operators, the
higher speed of GPU joins compared to CPU joins, as shown in Figure 10.1b, can be
leveraged without paying any higher cost for transferring data to the GPU.

However, when leveraging GPUs in a distributed setting, we argue that GPU joins
need to be redesigned to work efficiently. To better understand why we first discuss the
anatomy of a distributed join operator. A typical scheme for executing join operators
in distributed DBMSs is that they first need to shuffle data across the network before
the operator itself can be executed. For example, in a partitioned join, the data of the
tables to be joined is first shuffled on the join keys over the network before the join is
then executed in parallel on the resulting partitions. A key observation of this paper
is that using the traditional sequential scheme described above, the GPUs remain idle
when the CPU cores execute the shuffle operation. For the distributed partitioned join,
this opens up an opportunity to better utilize GPUs during the shuffle operation in a
pipelined manner by overlapping data transfer and actual join computation on the GPUs.

Contributions. In this paper, we thus propose a novel pipelined execution scheme for
distributed query execution on GPUs to show the potential of using GPUs as accelerators
in distributed DBMSs. We mainly focus on the effects of pipelining for distributed joins
that are typically the most expensive operations when executing OLAP queries [30],
particularly for large distributed DBMS. As a concrete contribution, we present two novel
GPU-accelerated distributed join algorithms where the data partitions that result from
shuffling are processed either in a GPU-only or in a hybrid GPU/CPU manner.

2Comparison of GPU join [122] on Tesla V100 without data-transfer overhead vs. CPU join [8] on 4
socket Intel Xeon 8268 (150M on 300M - 8-byte tuples in random order).

152

10.2 Overview of Distributed GPU Join

The first join algorithm (GPU-only) introduces a pipelining execution scheme in a
partitioned hash-join by using so-called active GPU kernels, which allow overlapping the
network shuffling with the building and probing phases of the join. Moreover, it removes
the need for materializing the data of the probing phase and can thus support arbitrarily
large probe table inputs. As a second join algorithm, we present the hybrid GPU/CPU
join that leverages both GPU and CPU for the join execution. That way, in contrast
to the GPU-only join, the hybrid join can support building input tables larger than the
aggregated GPU memory by materializing parts of the shuffled tables in CPU memory.
In our evaluation, we show that these pipelined GPU joins can reduce the overall runtime
by up to 6.8× over the state-of-the-art CPU baseline [125].

In summary, the main contributions of this paper are:

• A discussion and evaluation of the design space for integrating our novel pipelined
GPU execution model into distributed DBMSs based on high-speed networks and
GPUDirect over RDMA.

• A novel distributed GPU-accelerated join that can efficiently handle probe input
tables larger than the available aggregated GPU memory.

• A hybrid GPU/CPU join that supports arbitrarily sized tables for both the build and
probe inputs by transparently partitioning tuples across CPU and GPU memory.

• An extensive evaluation investigating acceleration potential over a range of different
workloads as well as different settings such as available GPU memory capacities
and in the context of complete queries.

Outline. In the remainder of this paper, we first give an overview of our GPU join
algorithms. Next, we iterate over the design space for implementing a GPU-accelerated
pipelined distributed join in Section 10.3. In Section 10.4, we present our detailed design
of the GPU-accelerated pipelined join algorithm, followed by the hybrid algorithm in
Section 10.5, which contains our solution for handling build-side tables larger than the
collective GPU memory. Finally, we present our evaluation in Section 10.6, followed by
related work in Section 10.7, and in the end, a conclusion in Section 10.8.

153

10 Distributed GPU Joins on Fast RDMA-capable Networks

CPU

CPU

GPU

GPU

RDMA

GPUDirect

Materialize

Node 1

Node 2

Tables

Tables

R
1 S 1

S 2R
2

Figure 10.2: Distributed Join scheme of our Distributed GPU Joins where tables are
stored in CPU memory and are shuffled to GPUs for join processing.

CPU1

GPU1

R1 S1

#

#

#

#

#

#

#

#

CPU2

GPU2

RDMA

...

Time

Shuffle R Shuffle S Probe HTsBuild HTs

RDMA

...

(a) Naive Blocking Execution Model

CPU1

CPU2

GPU2

Shuffle R & build
HTs pipelined

GPU1

RDMA

...

RDMA

R1

Shuffle S & probe
HTs pipelined

S1

...

#

#

#

#

#

#

#

#

Time

(b) Pipelined Execution Model

Figure 10.3: For execution, we contrast two models: (a) a naive blocking execution where
the building and probing phases are distinct from network shuffling of R
and S versus (b) a pipelined execution where we overlap the GPU execution
with the network shuffling.

154

10.2 Overview of Distributed GPU Join

10.2 Overview of Distributed GPU Join
In the following, we present an overview of our distributed GPU-accelerated join. We
first discuss the overall scheme of the join before subsequently making a case for our
pipelined join approach by contrasting it to a blocking variant.

10.2.1 Distributed GPU Join Scheme

In this paper, we target a scheme for the distributed GPU join where the input tables for
the join are stored partitioned across the CPU memory of the different nodes, as shown
in Figure 10.2.

We argue that this scheme provides significant benefits over a scheme that stores data
to be joined in just GPU memory: First, storing data in CPU memory allows us to
support joins over input tables (and intermediate results) that are larger than GPU
memory. Second, distributed joins typically need to first shuffle the input tables based
on the join key. Since GPUDirect RDMA allows data to be shuffled as fast from a CPU
as well as from a GPU, the location of input tables does not have any effect on the
performance as long as the tables are not pre-partitioned on their join keys. Finally,
the scheme allows for several optimizations, such as chaining multiple joins on the GPU
by caching small intermediates, as we discuss later, which helps to further improve the
runtime.

For the join execution, we apply a partitioned hash-join where each GPU executes a
build and a probe phase over the partitions resulting from shuffling. The main novelty
is that the shuffling and join execution is pipelined, which has many benefits, such as
support for much larger input tables and even arbitrarily large probe-side tables, together
with overlapping of materialization of the join result back to local CPU memory.

10.2.2 The Case for Pipelining

As we discussed before, the core idea of our approach is to overlap and pipeline the
execution of the shuffling phase (which is driven by the CPUs) with the build and probe
phases of the join (executed on the GPUs). Overall, this allows us to avoid that GPU
resources are idle during shuffling and, as such, reduces the runtime of the overall join
execution. We illustrate this effect in Figure 10.3b in contrast to the blocking execution,
as shown in Figure 10.3a. In the following, we contrast the details of blocking vs. our
pipelining approach.

155

10 Distributed GPU Joins on Fast RDMA-capable Networks

Naive Blocking GPU Join. Naively mapping the blocking execution scheme of the
state-of-the-art distributed hash join approach [9] to a distributed GPU-accelerated join
(as illustrated in Figure 10.3a) does not only come with severe limitations, but it also
does not leverage the GPUs in the most optimal manner.

The main reason why a blocking execution scheme of the distributed join is not ideal
for GPUs is that the GPU cores would stay idle until the network shuffling phase is
finished. The same is true for the building and probing phases where the GPU would
be active while the CPU cores would stay idle, resulting in an overall higher runtime
as illustrated in Figure 10.3a (i.e., no work is executed on the CPUs in the build and
probe phases of the GPU). Hence, in this paper, we argue for a pipelined execution that
overlaps the CPU-driven network shuffling with the GPU join processing.

Moreover, another significant limitation of a blocking scheme for GPUs is that only
tables of a certain limited size can be processed. The reason is that when executing the
phases of a distributed join non-overlapped on the GPU, the GPUs need to be able to
hold all intermediate data, e.g., the output of shuffling the build and probe tables in
GPU memory. While recent generations, such as the Nvidia A100, has 40 GB or even
80 GB of internal GPU memory, the GPU memory sizes are still limited and cannot be
extended as for CPUs. As such, when using a blocking model for executing a GPU-based
join in distributed DBMSs, only joins where the input table sizes and intermediate data
size do not exceed the aggregated memory of all available GPUs can be supported. In the
following, we cover how we overcome these challenges with the pipelined join approach.
Pipelined GPU Join. The pipelined GPU join approach overlaps the execution of the
shuffling of input tables with the building and probing on the GPUs. The conceptual
reason why the pipelined scheme is more efficient is that such a scheme, as shown in
Figure 10.3b, helps to efficiently hide the join processing on the GPUs under the data
transfer by making use of CPU and GPU cores concurrently. Moreover, such a pipelined
scheme clearly reduces the GPU memory consumption since only a chunk of data, instead
of a full partition resulting from shuffling, need to be stored in GPU memory. For
the probe phase, this means that arbitrarily large probe inputs can be supported and
streamed through the GPUs. For the build phase, the pipelined model also has the same
benefits since more GPU memory is available for the hash tables, effectively supporting
larger build input tables.

However, clearly, the fixed size of GPU memory poses a strong limitation on the size
of hash tables that can be kept in GPU memory. To mitigate this limitation and support
input tables for the build phase larger than the aggregated GPU memory, in this paper,
we propose a hybrid scheme (called hybrid GPU/CPU join) of our pipelined join that uses

156

10.2 Overview of Distributed GPU Join

GPU memory along with CPU memory (and the CPU cores) to execute a distributed join.
The details of these two join algorithms: pipelined and hybrid schemes, are presented in
Section 10.4 and Section 10.5, respectively.

Lastly, the pipelining approach allows to overlap not only the probing of the hash
tables but also to hide additional processing given the efficient vectorized execution of
GPUs by chaining multiple operations (e.g., multiple joins). Such chained processing can
be used for typical OLAP queries with several joins between dimensions and the same
fact table where we cache small (replicated) dimension tables on the GPU. We show
in Section 10.6.3 how the pipelined approach can speed up a full query from the SSB
benchmark with 4 joins up to 6.8× against a non-accelerated CPU query implementation.

Discussion. One might now argue that the pipelined scheme can also be used to overlap
network shuffling and join execution to accelerate a distributed CPU join. A key aspect,
however, of why pipelining for a distributed CPU join will not yield significant benefits
is based on the anatomy of the distributed CPU join, which is very different from the
GPU join. While for the CPU join, shuffling data over the network and executing the
join by building or probing into a hash table utilizes the same resources, the GPU join
can use distinct resources; i.e., when the CPU shuffles the data, the GPU is responsible
for consuming the incoming data and building/probing hash tables.

As such, in the distributed GPU join, the GPU would remain idle if not overlapped
with the CPU-driven shuffling. In a distributed CPU join, in contrast, this is different
since the CPU resources need to be shared between shuffling and join execution if the
two phases are overlapped. Moreover, with modern high-speed networks to saturate
their high bandwidth, the CPU cores are already highly utilized by shuffling the data,
which involves scanning the input tables of the join, partitioning the data for shuffling
and sending the data [10]. In fact, for the hardware used in our experiments, all CPU
cores are fully utilized during shuffling and thus, reserving dedicated CPU resources for
joining would slow down the network shuffle, which anyway dominates the overall CPU
join runtime.

Another aspect of GPU join is that GPUs provide additional memory resources for the
read/write operations of building and probing hash tables. In contrast, for a CPU join,
read/write operations of building and probing hash tables compete with the read/write
operations of shuffling on the same memory resources, which hence limits the benefits of
overlapping the shuffling with the join execution in the CPU-based join.

157

10 Distributed GPU Joins on Fast RDMA-capable Networks

10.3 Design Space for Pipelined GPU Join
Designing a pipelined GPU join over fast RDMA-enabled networks is non-trivial and
involves many design decisions. In the following, we thus first present the relevant
background on RDMA and GPUDirect to enable the pipelined join and then discuss the
design options for the join.

10.3.1 RDMA & GPUDirect

While RDMA has been used for distributed data-processing systems [9–11, 68, 110,
146, 157] over high-speed networks, there are some important aspects that need to be
considered to directly transfer data from and to the GPUs.

In general, to leverage RDMA, an application can make use of different communication
schemes that can be categorized as one-sided (READ / WRITE) or two-sided (SEND /
RECEIVE) operations, which refers to the involvement of the sender- & receiver-CPU in
the communication. For one-sided operations, only the sender node is actively involved,
which typically brings along performance benefits since it avoids any additional overhead
on the receiver. For two-sided operations, the receiver must actively be involved by
posting RECEIVE requests to steer the placement of data.

To make use of RDMA on GPUs, GPUDirect RDMA provides a means of transferring
data directly over the network from and to the GPU memory using the same RDMA
primitives for one- or two-sided communication. With GPUDirect RDMA, data can be
copied over the network at the same speed from and to the GPU memory as it can be
copied from and to the CPU memory. Furthermore, data can be copied from the sender
memory directly to the remote GPU memory without first being copied to the main
memory of the remote CPU. This is enabled by exposing the virtual to physical address
mapping of the GPU to third-party PCIe devices such as the NIC, thereby allowing the
NIC to directly read and write to and from the GPU memory.

However, using GPUDirect RDMA (for distributed DBMSs) is not straightforward
and comes with a few important challenges, in particular for implementing a pipelined
execution on the GPU. First, for combining the data flow via RDMA and the GPU kernel
execution, different design options exist compared to a pure CPU-based solution. Second,
another challenge is that GPUs can potentially observe inconsistent data of incoming
RDMA writes, such as partially written data or data that is not written sequentially
(i.e., from lowest memory address to highest) or even observe RDMA writes arriving
out-of-order. As such, we need to carefully design a pipelined execution scheme of a
distributed join, as we discuss next.

158

10.3 Design Space for Pipelined GPU Join

10.3.2 Design Alternatives

In the following, we discuss the different design options for our pipelined GPU join.
We categorize the design options into two dimensions: (i) how to use the RDMA
communication primitives for implementing the data flow for shuffling data over the
network from CPU to GPU memory and (ii) the control flow of how the GPU kernel
execution is triggered to consume incoming data for building hash tables and probing
into them.
One- vs. Two-sided Data Flow. As previously mentioned, one-sided and two-sided
RDMA operations exist to implement the data flow between machines. While these
primitives work similarly for GPUs using GPUDirect as for CPUs, there are some
important differences. Using one-sided primitives with GPUDirect works the same as for
CPUs since GPUDirect allows that CPUs of the sending nodes can write in the remote
GPU memory without involving the remote GPUs. When using two-sided operations
instead, it is important to note that the RECEIVE requests are driven by the CPU (and
not the GPU) in GPUDirect, since the CUDA library does not support calls to RDMA
functions. Hence, in a two-sided communication, the CPU is always involved in the data
flow even though the GPU is the target.
CPU- vs. GPU-driven Control Flow. Another aspect is whether the CPU or the
GPU is driving the control flow, i.e., detecting when new data has arrived (on the GPU)
and triggering the execution on the GPU for building/probing into the hash tables. In
the following, we discuss two design options for the control flow: a CPU-driven approach
and a GPU-driven approach.

(i) In a CPU-driven approach, the CPU actively detects that a new chunk of tuples
has arrived (by polling for so-called RDMA completion events). Afterwards, the CPU
then instructs the GPU for subsequent processing by launching a GPU kernel. Launching
a GPU kernel after the write of a new chunk has been detected on the CPU ensures
consistency and therefore overcomes the aforementioned challenge of inconsistent data
with GPUDirect. However, the CPU-driven approach also introduces additional overhead
and latencies for the pipelined join since, for each incoming batch of tuples, the GPU
kernel needs to be called.

(ii) In the GPU-driven approach, the kernel launch overhead is removed by using
persistent kernels where the GPU instead actively detects new incoming data by polling on
a particular memory region for newly arrived data. This technique is also often applied in
traditional CPU-based RDMA communication as memory polling has a smaller overhead
in comparison to polling after RDMA completion events [28, 156]. However, having such

159

10 Distributed GPU Joins on Fast RDMA-capable Networks

CPU

GPU

NIC

CQ

4) Launch
passive kernel on

arriving data

Two-sided
RDMA

2) Completion
event

1) Data
transfer

3) Poll CQ

(a) CPU-driven Join / Two-sided RDMA

One-sided
RDMA

CPU

GPU

NIC 1) Launch active
persistent kernel

2) Data
transfer

2) Poll for data

(b) GPU-driven Join / One-sided RDMA

Figure 10.4: Two design alternatives for implementing a pipelined GPU join over RDMA
where either (a) the CPU is central in the control flow with two-sided RDMA
or (b) the GPU controls when a new chunk of tuples can be processed without
CPU involvement.

an active GPU kernel running concurrently with RDMA writes poses challenges to the
consistency of the incoming data, which we later discuss how to overcome with minimal
overhead in Section 10.4.2.
Join Design Space. By pairing the dimensions of the control flow and the data
flow, different designs can be derived to enable a pipelined GPU join, as shown in
Figure 10.4. The first design is a CPU-driven design that makes use of two-sided RDMA
as illustrated in Figure 10.4a and GPU-driven with one-sided RDMA in Figure 10.4b.
In the CPU-driven design (Figure 10.4a), the CPU is polling for completion events for
incoming RDMA data and can subsequently launch a GPU kernel for the next chunk of
incoming tuples to process the data written directly to the GPU. On the other hand,
as a second design, a completely GPU-driven design (Figure 10.4b) can be used where
a persistent GPU kernel is launched (once) initially, which itself actively detects and
polls for incoming data. As can be seen, these two designs differ both in CPU overhead,
the overall communication pattern, and how they ensure data consistency of incoming
data to the GPU. Therefore, we next take a closer look at the performance of these two
variants to find the best candidate for realizing the pipelined GPU join design.

10.3.3 Design-Space Evaluation

To guide the decision of which of the two alternatives has the most potential for a
pipelined GPU join processing, we now evaluate the two designs (i.e., CPU-driven with
two-sided RDMA vs. GPU-driven with one-sided RDMA).

160

10.3 Design Space for Pipelined GPU Join

16 KiB 64 KiB 256 KiB

(a) Build-side

2 GB/s

4 GB/s

6 GB/s

8 GB/s

10 GB/s

12 GB/s
B

an
d

w
id

th

16 KiB 64 KiB 256 KiB

(b) Probe-side

GPU-driven - 1 partition

GPU-driven - 2 partitions

GPU-driven - 8 partitions

CPU-driven - 1 partition

CPU-driven - 2 partitions

CPU-driven - 8 partitions

Message sizes

Figure 10.5: CPU-driven two-sided RDMA vs. GPU-driven one-sided RDMA for different
degrees of partitions and message sizes on a 4 node cluster (1 GPU per
node) using 2B on 8B 16-byte tuples. The GPU-driven approach achieves a
higher network utilization with more partitions, whereas CPU-driven does
not scale with more partitions.

A key question that determines the overall performance of a distributed join is which
design can better saturate the network bandwidth during shuffling, which is the limiting
factor of a distributed join. We thus examine the designs by their ability to saturate
the shuffling speed with different degrees of partition parallelism. Moreover, since the
join is pipelined, it is paramount that the GPU kernel that executes the join steps (i.e.,
building or probing) can ingest the incoming data at the speed of the sender CPU cores.
Otherwise, the GPU kernel for the join execution would slow down the join resulting in a
reduced shuffling speed from senders since they can only send data at the speed at which
the GPU can ingest the data.

For the design space evaluation, as shown in Figure 10.5, we hence execute a shuffling
operation with a pipelined GPU kernel for building (a) and probing (b) hash tables that
are the core components of our GPU join. We evaluate for varying message sizes, i.e.,
the size of each chunk of tuples we transfer during the shuffling phase from CPUs to the
GPUs, against different number of partitions per GPU or CPU, as seen in the legend. A
first observation is that using a higher number of partitions for the CPU-driven approach
results in sub-optimal performance due to the CUDA library internally sequentializing
the GPU kernel calls, even though a separate CUDA stream is used for each partition.
Also, since each node is both sending and receiving (all-to-all shuffling), a higher partition
fan-out results in fewer CPU resources available for sender threads in the CPU-driven
approach since more receiver threads must be reserved for RDMA control flow and calling

161

10 Distributed GPU Joins on Fast RDMA-capable Networks

Tables
Node 1

CPU GPU

pr
ob

e

bu
ild 1 #

#

Tables

pr
ob

e

bu
ild #

#

CPU GPU

Node 2

Streaming Shuffle
Active GPU-kernel

Streaming Materialization

part1

part2

part3

part4

2

3

1

2

3

4 5 6

4 5 6

4 5 6

4 5 6

Figure 10.6: Pipelined GPU Join where tables are shuffled from CPU to (remote) GPU
memory using a streaming shuffle operator that leverages GPUDirect RDMA.
Hash tables are built and probed on the GPUs in a pipelined manner using
active GPU kernels.

GPU kernels. This becomes visible for 8 partitions (brown line) where the performance
plateaus at 64 KiB.

On the other hand, the GPU-driven approach does not inhibit the same limitation
and thus scales better with the partition parallelism. For example, with 8 partitions per
receiver node, the GPU-driven design can efficiently saturate the sender and network
throughput. The reason is that the GPU kernels are not launched from the CPU on a
per-message basis, as is the case for the CPU-driven approach. Instead, the GPU kernel
is started once (at the beginning of the shuffling phase), and then the kernel actively
polls in the GPU-local memory for new incoming data. As a result, the kernel launch
contention of the CPU-driven approach where multiple CPU threads are launching GPU
kernels in parallel is avoided. This allows the GPU-driven design to achieve a higher
GPU utilization and thus higher processing speed through partition parallelism.

Summary. Based on these observations, the GPU-driven approach clearly dominates
over the CPU-driven approach since it can better use partition parallelism and thus
better utilize the network for a pipelined GPU join. In the remainder, we thus use the
one-sided GPU-driven design for realizing our pipelined join.

162

10.4 Pipelined GPU Join Algorithm

10.4 Pipelined GPU Join Algorithm

In the following, we first give an overview of the one-sided GPU-driven design before we
then explain the details of each step.

10.4.1 Overview of Execution Steps

In our pipelined GPU join, we aim to execute the shuffling of tuples for the join operation
in a concurrent manner with the build and probe phase using so-called active GPU
kernels. To better understand the overall execution phases on the CPU and GPU, we
discuss the general steps for a two-node setup as shown in Figure 10.6:

Steps on CPUs (Sender-side). The CPUs on the sender-side are responsible for
executing the data shuffling. For this, 1© the CPUs first build the histograms in parallel
on the build- and probe-side input tables that are to be joined. Afterwards 2©, the
CPUs exchange the local histograms (per database node) to compute a global histogram
that allows all nodes to compute the total size per resulting partition before actually
executing the shuffling. This global histogram is used by our pipelined GPU join to
reserve adequate GPU resources and, in case of insufficient GPU memory, decide which
of the partitions to place in GPU memory and which in CPU memory (as later discussed
in Section 10.5). Once the global histograms are computed, the streaming network shuffle
phase 3© starts that executes the re-partitioning based on join keys by transferring small
chunks of data from the sender CPUs to the different GPUs.

Steps on GPUs (Receiver-side). The GPUs in our join are responsible for detecting
incoming data and for executing the build and probe steps of the join, as shown in
Figure 10.6 (right side). A novel aspect of our GPU join is that it executes the GPU
steps 4©– 6© in an overlapped mode with the streaming shuffling using active GPU kernels.
An active GPU kernel is started once at the beginning of a shuffle phase. Once started,
an active kernel then polls for new incoming data chunks in GPU memory — first for
the building and then for the probing phase. A challenge for the GPU-side execution
with active kernels is to ensure data consistency as well as synchronization between CPU
sender and GPU receivers. We accomplish this by proposing a parallelization strategy
that aims to optimally map partitions resulting from shuffling to the vectorized execution
model of the GPU. Details of this strategy, along with details about all the steps on the
GPU, are discussed next.

163

10 Distributed GPU Joins on Fast RDMA-capable Networks

10.4.2 Active GPU Kernel

Active GPU kernels not only poll for incoming data, but a core aspect is that they allow
us to efficiently parallelize the join, which is composed of the consistency check step
4©, build and probe steps 5© and successive operations 6© such as result materialization

(illustrated in Figure 10.6). In the following, we focus on two aspects regarding the
parallelization strategy of the active kernel: (i) how to determine the partition fan-out
during shuffling and hence to determine the parallelism for an efficient GPU execution,
and (ii) how to determine the amount of GPU resources for the different (potentially
unequal sized) partitions. Moreover, we also briefly explain how we deal with data
consistency for incoming RDMA writes as well as some relevant implementation details
for the build and probe steps.

Parallelization Strategy. To answer the two aforementioned questions regarding the
main aspects of parallelizing the join, we first need to explain some background on
the vectorized execution model of GPUs. GPUs follow the SIMT (single instruction,
multiple threads) execution model and typically come with thousands of threads; and
thus, parallelizing the join processing on a GPU is very different from a CPU-based
execution. The threads are grouped into a two-level hierarchy: thread blocks forming
a group of threads and a grid comprising thread blocks. While all threads in a thread
block are scheduled on a so-called Streaming Multiprocessor simultaneously, different
thread blocks in a grid can be scheduled independently. We next discuss how the two
aspects of the parallelization strategy work as discussed above.

(i) Determine Partition Fan-Out. First, we now look into the aspect of how to
determine the partition fan-out during shuffling. For this, we use a scheme that over-
partitions the data on the receiver GPUs, i.e., we use more partitions than the number of
GPUs. As already shown in Section 10.3.3, this enables more efficient GPU join execution
as each partition can be processed independently on the GPU without synchronization as
the data arrives. When considering one partition, the maximum degree of parallelization
for this partition depends on the size of the incoming message (chunks of tuples). For
example, for a message size of 128 KiB with 16 B tuples, the maximum number of threads
we can utilize is 128 KiB / 16 B = 8192 threads (since each tuple is processed by max.
one thread). However, 8192 threads in this example might not be enough to saturate the
message throughput considering high-speed networks, and as such more partitions might
be required.

Yet, naively increasing the partition fan-out will negatively impact the speed at which
the sender CPU threads can partition (and potentially could also exceed the TLB-cache

164

10.4 Pipelined GPU Join Algorithm

1 2 4 8 16 32

Partitions per GPU

15

20

25

30

35

40

45

A
gg

.
S

hu
ffl

e
T

hr
ou

gh
pu

t
(G

B
/s

)
64 KiB message sizes

128 KiB message sizes

256 KiB message sizes

Figure 10.7: Aggregated network throughput on 4 nodes for the GPU-driven approach.
From 4 partitions per GPU, the network is becoming saturated for the
different message sizes.

[8]). Therefore, the optimal partition fan-out is achieved when the GPUs are able to
saturate the tuple throughput, which in turn depends on CPU-processing speed and
network throughput. For this reason, selecting the partition fan-out also highly depends
on the specific GPU and CPU architecture and the network speed. So instead of fixing
this parameter for our GPU join, we expose the degree of partition parallelism as a
parameter one can configure.

In Figure 10.7, we show the effects of this parameter in a micro-benchmark. From 4
partitions per GPU, the network is becoming saturated for the different message sizes.
While choosing a higher partition fan-out does not increase the aggregated network
throughput, we empirically found that a fan-out of 16 partitions per GPU yields the
most robust performance as more GPU resources can be allocated. Thus, in all our
experiments, we are using a partition fan-out to get 16 partitions per GPU, which has
shown to provide the best performance across all workloads we used in our evaluation.

(ii) GPU Resource Allocation. The second aspect of parallelizing the GPU join is how
to determine the amount of GPU resources for the different (potentially unequal-sized)
partitions. For this, we first discuss how we assign multiple thread blocks (grid) to each
partition. Using multiple thread blocks per partition instead of limiting it to only a
single thread block provides more flexibility in terms of allocating the necessary amount
of resources needed to process each partition. However, this scheme raises a challenge of
coordination across thread blocks when processing each chunk of tuples. We deal with
this using so-called cooperative groups primitives of CUDA that enable us to provide
synchronization across all threads assigned to process a specific partition.

165

10 Distributed GPU Joins on Fast RDMA-capable Networks

Furthermore, for resource allocation, we need to decide how many threads (i.e., thread
blocks) we assign to each partition. As the GPU join processing is pipelined, the size of
each partition translates into an estimate of how frequently each partition will receive
a chunk of tuples, assuming that the tuples of each partition are roughly spread out
over the tables. Thus, an important question is how to determine the amount of GPU
resources (threads) for the different partitions. One naive option is to assign a static
number of thread blocks to each partition. While this performs well for uniformly sized
partitions, this might result in suboptimal performance for unequally sized partitions
as a fixed number of thread blocks might not be sufficient for the different partition
sizes. Another option is to always allocate the maximum number of threads possible
for each partition, but this, in turn, might exceed the number of threads available or
result in wasted GPU resources and potentially block other kernels from running. To
deal with this problem, we dynamically decide the size of the grids (i.e., the number of
thread blocks) depending on the relative size of the partition that can be deduced from
the histogram. As an example, for a fan-out of just two partitions, if one partition is
twice the size, it will also get allocated twice the threads in comparison to the smaller
partition. Deciding on the total amount of threads used on each GPU is dependent on
the available hardware resources the join is running on. We show the ability to handle
skewed workloads in Section 10.6.5.
Ensure Consistency. Another challenge we handle in implementing the GPU-driven/one-
sided RDMA join is the issue of the GPU kernel observing potentially inconsistent data
during concurrent incoming RDMA writes, as discussed in Section 10.3. These inconsis-
tencies can come in the form of partially written data, data not written sequentially (i.e.,
from lowest memory address to highest), or out-of-order messages. While the general
observations made in existing literature also apply to GPUs (such as the benefits of using
one-sided over two-sided RDMA, inlining or door-bell batching), many techniques that
are used to implement efficient RDMA-based communication schemes such as mailboxes
or end-of-message polling [28, 35] cannot be directly applied. The reason for this is that
all these techniques rely on the ordering guarantees between individual RDMA messages
as well as a fixed write-order within one RDMA message, which is not guaranteed on the
GPU.

Hence, a solution here is that the GPU kernel performs additional consistency checks on
the incoming data chunks by appending a checksum per chunk of data (4© in Figure 10.6).
In case data is only partially written on the GPU, the checksum verification that is
executed by the GPU kernel in every iteration during busy polling will fail, and the GPU
kernel can retry reading the data chunk and comparing the checksum in its next iteration.

166

10.4 Pipelined GPU Join Algorithm

As the type of error detection needed does not involve bit-flips, transmission errors,
or data written to a wrong memory location (due to the underlying reliable network
transport), we use the sum complement checksum that has a very small overhead while
still being able to detect when the data has not fully been written.

We hope that NVIDIA will eventually provide memory fence primitives for RDMA,
which would render the need for consistency checks obsolete.
Build and Probe Steps. After ensuring the consistency of the chunk of tuples,
the tuples are inserted or probed into a partition-specific concurrent hash table (5©
in Figure 10.6). For building the hash table, we use a custom design that leverages
CUDA atomics to realize a lock-free hash table for our distributed GPU join algorithm.
Logically, our custom hash table uses a chained hash table design. However, to avoid
costly allocation and lock operations during the build phase, we use a design with two
arrays — one array to implement the hash table and another dense array (called the
chain array) that stores the chains for all hash buckets to handle collisions. Since we
know the total number of tuples that we need to insert into the hash table from the
histograms created during the shuffle phase, both arrays are pre-allocated to not incur
any overhead for runtime memory allocations.

In the build phase, a batch of tuples for a given partition is then inserted in the hash
table using these two arrays as follows: first, a GPU thread stores the new tuple into the
chain array by atomically incrementing an offset into the chain array. Afterwards, this
offset is written to the hash table array. To handle hash collisions, an atomic exchange
operation is used. Specifically, the thread which inserts a new tuple will see the previous
offset and use this to connect the tuples in the chain array accordingly. For linking the
tuples in a chain, no atomic operation is needed. Finally, during the probing phase,
the join key of each tuple is hashed and the chain of potentially colliding join tuples is
traversed in the chain array. Contrary to the build phase, the probing does not incur
any atomic operations since the hash table is static during probing. In summary, the
hash table design is a good fit for the vectorized GPU execution as it does not incur any
memory allocations, locking and only a few atomic operations for building.

10.4.3 Successive Operations

After finishing the probing, our join provides several options for successive operations
in a query plan. One option is naturally to simply materialize the join result back to
CPU memory (6© in Figure 10.6), as we discuss below. However, as analytical queries
typically perform multiple joins and aggregate the join result, we designed the active

167

10 Distributed GPU Joins on Fast RDMA-capable Networks

GPU kernel to be easily extendable to chain multiple GPU-local computations on the
distributed join result before materializing results to the CPU. For example, instead of
doing only a single probe, we could chain multiple probes that are still executed in a
pipelined manner on the GPU. This chained scheme maps especially well to the typical
abundance of processing power on the GPU and the pipelined execution model since
it allows to hide even more computation under the network cost. We demonstrate this
ability to chain multiple operations in our pipelined join to accelerate also complete
queries in Section 10.6.3.

For materializing the result of the join either for subsequent operations on the CPU
or delivering the result to the client, we take a streaming materialization approach
which asynchronously writes data to the CPU memory, which nicely integrates with our
pipelined execution model. This gives us several benefits over naively materializing the
join result on the GPU and subsequently transferring the result back to the CPU. First,
the GPU memory is limited, and thus avoiding result materialization on the GPU frees
up resources to store hash tables of the join. Second, streaming the result directly to
the CPU means that it comes with only a negligible overhead since the transfer can be
overlapped with the pipelined execution of shuffling and GPU execution.

For realizing the streaming data transfer from the GPU to the CPU memory, there exists
a range of transfer methods in CUDA: asynchronous memory copy, UM (Unified Memory)
and zero-copy through UVA (Unified Virtual Addressing). The CUDA asynchronous
memory copy from GPU to CPU memory can only be called from the CPU and, as such,
is not applicable to our execution model with active GPU kernels where the CPU is
not involved in the execution. Different from this, UM and zero-copy allow the GPU
to directly access (read and write) CPU memory, where the CUDA abstraction takes
care of utilizing the DMA hardware on the GPU to copy the data to CPU memory.
We base our approach on UVA since we found that UM cannot fully pipeline the data
migration of memory pages with the GPU processing. For leveraging UVA for pipelined
materialization, we allocate the result relation using UVA in CPU memory. On the GPU,
we first store the output tuples in intermediate output buffers and only copy a buffer
(through CUDA memory copy device-to-device) to the result relation in UVA whenever
the output buffer is full. To interleave GPU processing with the transfer to CPU memory,
we use two output buffers per partition on the GPU.

168

10.5 Hybrid CPU/GPU Join Algorithm

10.4.4 Streaming Shuffle

Finally, we present how we realized efficient pipelined data transfers in the network
shuffling phase (3© in Figure 10.6). To implement the streaming shuffling, we built our
solution on top of the Data Flow Interface (DFI) [125], which is a high-level abstraction
for fast networks that leverages one-sided RDMA communications for data transfers.
The core abstraction of DFI is so-called flows that allow senders to push data into a flow
and receivers to pull data out of the data flow. In a nutshell, flows support asynchronous
communication between senders and receivers, which therefore allows for overlapping
computation and communication.

However, DFI in its original design only supports CPU-to-CPU communication and
does not come with GPU support. To realize the streaming shuffle operator with support
for GPUs, we extended the flow abstraction of the original DFI code. As the main
extension, we enabled the end-points of flows (called targets in DFI) to be located on
GPUs by extending the buffer design and memory polling operations to allow the GPU
to consume tuples out of the DFI flows. Additionally, we enabled GPUDirect RDMA by
allocating the GPU-side DFI buffers through CUDA and then registering the memory
region to the NIC.

Moreover, as previously mentioned, the GPU has a relaxed memory model that can
result in memory inconsistencies when running a kernel concurrently with incoming
RDMA data. For this, we extended DFI on the sender-side to compute a checksum over
a batch of tuples if the target of a flow is on a GPU. On the target-side, when consuming
this batch of tuples out of the DFI flow, we then re-compute the checksum in DFI and
compare it with the appended checksum of the batch as discussed before in Section 10.4.2.
Since the data is guaranteed to be eventually written consistently on the GPU [99], on
the target side of a flow, we simply re-compute the checksum for the next batch until the
checksum is correct and then hand the block to the active GPU kernel for either building
or probing the hash tables.

10.5 Hybrid CPU/GPU Join Algorithm
In this section, we present our hybrid CPU/GPU join for supporting joins with arbitrary-
sized build-side tables. One way to solve this problem is to pre-partition the build and
probe input tables such that they fit in the GPU memory and use multiple rounds of the
pipelined GPU approach presented before. However, the performance of this approach
would significantly degrade since the pre-partitioning cannot be pipelined with network

169

10 Distributed GPU Joins on Fast RDMA-capable Networks

Tables

CPU

pr
ob

e

bu
ild

CPU

#
#
#
#

Hybrid shuffle

1

2

3

#

#

part1

part2

4 5 6

4 5 6

7 8
9

7 8
9

part3

part4

GPU

Figure 10.8: Overview of Hybrid Join. Tables reside in CPU memory and are shuffled
to both GPUs and CPUs. Partitions going to CPUs are executed as a
traditional radix hash join.

shuffling or GPU processing. As such, the goal of our hybrid pipelined join is to handle
this scenario elegantly without, in the worst case, de-accelerating the join compared to a
state-of-the-art CPU baseline.

The intuition behind our approach is to partition the input tables in the partitioning
phase across remote GPU and CPU memory. While doing so, we leverage the GPU
memory as a primary location for the partitions and only use the CPU memory for the
remainder of the partitions that do not fit on the GPU. Figure 10.8 shows the idea of
a hybrid join where a sender CPU is shuffling to both a GPU and CPU. For executing
the join on the partitions shuffled to CPU memory, we make use of a state-of-the-art
(blocking) CPU join implementation [9, 125]. This design comes with the benefit that
its lower performance-bound is the performance of the CPU join algorithm, where any
amount of available GPU memory can help to speed up the CPU baseline by using the
additional GPU pipelined join. For implementing the hybrid join, we introduce a new
hybrid shuffle operator that, in the shuffling step, over-partitions the input tables to a
degree where we can maximize the benefit of the GPU pipelining by fully utilizing the
available memory.

In order to determine the number of partitions that need to be created by the hybrid
shuffling, we aim to place a fixed but configurable number of partitions on the GPU
(we use 16 for our setup, as discussed before). However, as the build-side table exceeds
the available collective GPU memory, setting the number of partitions to 16 per GPU
would result in much fewer partitions actually assigned to the GPUs. We instead increase
the fan-out such that the average size of 16 partitions roughly matches the available

170

10.6 Experimental Evaluation

GPU memory. Consider the following example: assume the build-side table has a size
of 40 GB, and we can only store 32 GB when using two GPUs (with 16 GB per GPU).
With 32 GB of GPU memory, the average partition size would be 1 GB. To decide the
fan-out for a table with 40 GB, ideally, we would therefore create 40/1 = 40 partitions.
However, as the partitioning is done with radix-hashing, only the power of two partitions
is applicable (2n partitions for n bits), yielding 64 partitions. The average partition size
for 64 partitions is 40/64 = 0.625 GB and we can thus place b32/0.625c = 51 partitions
on the GPUs (assuming a uniform distribution).

Moreover, often the resulting partitions after shuffling are not equally sized. To decide
which partitions to allocate to the GPU, we thus draw on the knowledge of the histograms
created in 1© and 2© as in the pipelined join (cf. Figure 10.8, left). Based on the global
histograms, we can decide where to place each partition before starting the shuffling phase
3© to ideally allocate partitions to GPUs such that we leverage the full available GPU
memory resources to store hash tables of the build phase. A naive random allocation
instead would need to join unnecessarily many tuples on the CPU (which introduces
additional runtime overhead) since GPU memory, and thus the computational resources
are not fully utilized.

Finally, for the partitions assigned to the GPUs, steps 4©– 6© are executed pipelined on
the GPU as earlier described in Section 10.4. For processing the partitions assigned to a
CPU, we execute these steps in a sequential manner based on a CPU-based join (7© to
9©) after the shuffling phase finishes. Therefore, we fully materialize the intermediate
partitions for the CPU as the pipelined execution model does not map well to the
CPU-based execution as discussed in Section 10.2.2.

10.6 Experimental Evaluation
In our evaluation, we analyze the GPU-acceleration potential using our distributed GPU
join algorithms for different workloads and hardware resources. In the following, we first
explain the setup before we discuss the results of the different experiments where we
compare against various baselines.

10.6.1 Setup & Workloads

Setup. All experiments were conducted on a 5 node cluster, each node equipped with two
Intel(R) Xeon(R) Gold 5120 CPUs (14 cores) and 512 GB main-memory split between
both sockets. Each node has two Mellanox ConnectX-5 MT27800 NICs (InfiniBand

171

10 Distributed GPU Joins on Fast RDMA-capable Networks

EDR 4x, 100 Gbps) and two Nvidia Tesla V100 GPUs with 16 GB memory, supporting
GPUDirect RDMA. The operating system is Ubuntu 18.04.1 LTS with Linux 4.15.0
kernel on all nodes. All joins are implemented with C++17 and compiled with gcc-10.1.0
and nvcc-11.3 (CUDA 11.3).

Workloads. The workloads used in experiments 1 and 3 − 4 follow the previous work
on distributed CPU joins [9], where input tables are partitioned across the distributed
nodes. The tables have randomized tuple order, and unless otherwise stated by selected
experiments, the joins are evaluated with 16-byte tuples and without materialization
of the join result for neither CPU baseline nor GPU-accelerated joins. In the second
experiment, we evaluate two full queries comprising several joins and aggregation from
the Star-Schema-Benchmark (SSB).

Join Variants.
In the evaluation, we compare the performance of the following join implementations:

• CRJ - CPU Radix Join: As a CPU baseline, we use state-of-the-art implementation
of the distributed radix hash join [125].

• GPJ-B - GPU Partitioned Blocking Join: This is a distributed variant of the state-
of-the-art single-node GPU partitioned join [122]. The shuffle phase (i.e., histogram
creation & data shuffling from [9]) and the GPU execution phase are executed
subsequently. Hence, we term this join blocking. Data shuffling is either realized
with GPUDirect or without GPUDirect.

• GPJ - GPU Partitioned Pipelined Join: Our novel GPU-accelerated distributed join
that supports pipelining of the network shuffling and the GPU join phases, as earlier
explained in Section 10.4. This join already allows arbitrary-sized probe-side tables.

• GPJ-H - GPU Partitioned Hybrid Join: This is our hybrid algorithm where both
GPU and CPU are used for join execution. This join allows arbitrary-sized build-side
tables that go beyond the aggregated memory capacities of all GPUs, as earlier
explained in Section 10.5.

All joins make use of established optimizations for efficient partitioning, such as software
write combine buffers (SWWCBs), non-temporal streaming hints [6, 117], and one-sided
RDMA writes [10].

172

10.6 Experimental Evaluation

0.0 s

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s
R

u
n

ti
m

e

GPJ-B GPJ-B GPJ
w/o

GPUDirect
w/

GPUDirect
w/

GPUDirect

(a) Both tables fit in GPUs

0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

N/A

GPJ-B GPJ-B GPJ
w/o

GPUDirect
w/

GPUDirect
w/

GPUDirect

(b) Build table fits in GPUs

GPU Join

GPU Copy + Join

Network Sync.

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 10.9: Blocking (GPJ-B) vs. pipelined (GPJ) GPU join with build-side of 600 ×
106 tuples and probe-side of (a) 1.2 × 109 tuples and (b) 4 × 109 tuples.
Our approach (GPJ) provides a speedup of approx. 2× while supporting
arbitrarily sized tables.

10.6.2 Exp. 1 - Pipelined GPU Join

10.6.2.1 Comparison with a Blocking GPU Baseline:

In this section, we look at the benefits of the proposed pipelining model in comparison to
a distributed blocking GPU join (GPJ-B). The blocking join takes a sequential approach
where the two tables are only joined on the GPU once all data has been shuffled. We use
the state-of-the-art single-node GPU join [122] to realize the blocking join on each node.
The histograms and shuffling (re-partitioning) of the tables are based on [9] with minor
modifications for enabling shuffling with GPUDirect, as we discuss next.

We execute GPJ-B both with and without GPUDirect to better show the effect of fast
networks. As shown in Figure 10.9a, using GPUDirect greatly improves the acceleration
potential of the GPU since we can leverage it without additional transfer costs. Moreover,
we see that our pipelined GPU join, which also uses GPUDirect, can further improve
over the blocking GPU join since with our pipelined join, we can overlap the join phases
with data transfers.

Another significant advantage of our pipelined GPU join over the blocking GPU join
is that for the blocking GPU join (GPJ-B), GPUDirect can only be used if both tables
fit in the GPUs, as all input data must be accumulated before executing the join. In
Figure 10.9b, we show this effect by increasing the probe-side table such that only the
build-side table fits on the GPUs. As we can see, only GPJ-B without GPUDirect is
supported in this case, whereas our pipelined GPU join can support arbitrary probe-side

173

10 Distributed GPU Joins on Fast RDMA-capable Networks

2 ∗ 109 4 ∗ 109 6 ∗ 109 8 ∗ 109

Probe-side table size (tuples)

0 s

2 s

4 s

6 s

8 s

R
un

ti
m

e

CRJ GPJ CRJ GPJ CRJ GPJ CRJ GPJ

CPU Build & probe

CPU Local partitioning

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 10.10: Varying probe-side table
size and a fixed build-side
table size of 2 × 109 tu-
ples on 4 nodes. Our ap-
proach of GPU-accelerated
pipelined join (GPJ) outper-
forms CPU radix join (CRJ)
in all cases.

8 B 16 B 32 B 64 B

Tuple width

0.0 s

1.0 s

2.0 s

3.0 s

4.0 s

5.0 s

R
un

ti
m

e

CRJ GPJ CRJ GPJ CRJ GPJ CRJ GPJ

CPU Build & probe

CPU Local partitioning

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 10.11: Our approach (GPJ) also
outperforms CRJ for vary-
ing tuple widths. Build &
probe tables are fixed at 16
GB & 64 GB respectively.

table sizes and, as such, provides a speedup of approximately 2×. Additionally, since
GPJ-B performs multi-pass partitioning on the GPU to facilitate a faster join, it incurs
a higher memory overhead, which further limits the table sizes that can be stored on the
GPUs. In fact, for the workload in Figure 10.9b, GPJ-B consumes the complete GPU
memory while GPJ only takes up half.

10.6.2.2 Comparison with CPU Baseline:

We now evaluate our pipelined GPU join (GPJ) against a non-accelerated CPU baseline
(CRJ). Both joins share the execution steps performed on the CPUs and therefore
highlighting the benefits of GPU acceleration and pipelining.

Varying Table Sizes (Probe-side). As both joins can support arbitrarily sized probe-
side tables, we first compare both joins using a fixed-sized build input table that is joined
with a probe-side table of different sizes. More precisely, we used a workload with a
build-side table of 32 GB (2 × 109 tuples with 16 bytes), fitting into the 4 GPUs and with
probe-side tables up to 128 GB (8 × 109 tuples), thereby exceeding the total collective

174

10.6 Experimental Evaluation

GPU memory that is 64 GB (disregarding the hash tables). Over the different probe-side
table sizes, GPJ is up to 1.7× faster than CRJ.

The result can be seen in Figure 10.10, where we report the time each phase of the
joins takes. As we can see, the GPU-accelerated join outperforms the CPU join in all
cases. For the GPU-accelerated join, we do not report the time for the network shuffling,
and GPU join execution separately due to the GPU pipelining; i.e., both phases are
overlapped in this join. Interestingly, we can see that for GPJ, the shuffling and joining
phases are shorter than only the shuffling phase of CRJ. The reason is that the RDMA
writes performed by the sender CPU (one-sided) are going to the remote GPU and thus
relieve pressure on the main memory. This is different for CRJ, where the CPU cores
and the NIC are both writing to the main-memory during the shuffling phase.

Varying Tuple Width. Next, we evaluate the GPJ and CRJ join using the same
table sizes but with varying tuple widths ranging from 8 to 64 byte tuples. For this
experiment, we fixed the table sizes to 16 GB and 64 GB for the build- and probe-side
tables, respectively. Our motivation for this experiment is to show the effect of different
tuple widths since CPUs and GPUs use different execution and memory models and thus
potentially affect the runtime differently.

The results of this experiment are shown in Figure 10.11. Similar to the above
experiment, GPJ clearly outperforms the CPU join (CRJ) in all tuple widths, essentially
due to the pipelining. Moreover, both join algorithms inhibit similar behavior with a
small decrease in runtime for wider tuples. The reason is that as the tables with wider
tuples contain fewer tuples, the overall per-tuple overhead decreases, which leads to a
decrease in runtime.

Scalability of Joins. Finally, we show how the proposed pipelined GPU-accelerated
join scales against the CPU baseline over an increasing number of database nodes. To
show this, we simulate a cluster of up to 10 virtual nodes using 5 physical nodes where
we use each of the two NUMA regions. Those regions are each equipped with their own
GPU and RDMA NIC and therefore function as independent database nodes as all data
shuffled between the logical nodes is transferred over the InfiniBand network (and not
the cross-NUMA interconnect). For the workload, we used a build-side table of 300 × 106

tuples and a probe-side table of 1.2 × 109 tuples per node. As an example, for 10 nodes,
a total of 48 GB on 192 GB tables are joined.

Figure 10.12 shows the results with the tuple throughput as the main metric. As we
can see, both joins have linear scalability up to the tested 10 nodes. For both cases, we
see a performance increase of about 4.4× from 2 to 10 nodes.

175

10 Distributed GPU Joins on Fast RDMA-capable Networks

2 3 4 5 6 7 8 9 10

Nodes

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t

(M
tu

pl
es

/s
) CRJ

GPJ

Figure 10.12: Scale out experiment (GPJ vs. CRJ) with build-side table of 300 × 106

and probe-side table of 1.2 × 109 tuples per node. Performance increase of
∼ 4.4× is observed when nr. of nodes increases from 2-10.

Why not pipelining a CPU Join?. Finally, we want to make the case why pipelining
the network shuffling phase with the subsequent join is not an optimization to apply to a
distributed CPU join as well. First, the nature of the shuffling operation is very memory
intensive. Thus, all the CPU cores are reading the table and writing out the tuples to
partitions, while the NIC is also reading the data to send over the network and writing
incoming data from other nodes. As such, first, any additional memory operations (as in
our pipelining approach) will further slow down the shuffling and thus the overall join
execution since, as reported before, the shuffling is the limiting factor. Second, profiling
the shuffling phase of CRJ supports this claim and reports not only over 10% of DRAM
memory assesses are stalling but also 100% CPU core utilization which indicates that no
idle (free) CPU resources would be available for a pipelined (overlapped) execution.

10.6.3 Exp. 2 - Complete Queries

In this experiment, we show the benefit of our pipelined join for a full query with multiple
operations. As we explained before in Section 10.4.3, when running full queries, we allow
multiple joins to be chained together (e.g., to chain multiple probe steps for a multi-way
join in one pipeline on the GPU). The main intuition why chaining on GPUs is beneficial
is that GPUs typically have an abundance of processing power in comparison to their i/o

176

10.6 Experimental Evaluation

0 s

5 s

10 s

15 s

20 s

25 s

R
un

ti
m

e

CRJ
SSB

GPJ
SSB

CRJ
SSB

GPJ
SSB

CRJ
SSB

GPJ
SSB

PART &
SUPP.

(low sel.)

only
PART

(med. sel.)

no
filters

(high sel.)

CPU joins pipeline

Pipelined shuffle
& GPU joins

Network shuffle

Histogram

(a) Query Runtime w/
Different Filters

LINEORDER PART

SUPPLIER

 HASH-JOIN

 HASH-JOIN

s_region = 'AMERICA'

p_category = 'MFGR#12'

 HASH-JOIN

Table size: 2M
Table size: 6B

Table size: 2M

 GROUPBY
sum(lo_revenue)

keys: d_year, p_brand

Partition: replicated

Partition: round-robin Partition: round-robin

lo_partkey = p_partkey

lo_suppkey = s_suppkey

lo_orderdate = d_datekey

DATE

Table size: 2555
Partition: replicated

(b) SSB Query 2.1 Plan

Figure 10.13: Execution (a) of SSB Query 2.1 (b) with SF 1000 on 4 nodes with different
intermediate result sizes stemming from different dimension table filters.
Probing of all hash tables and aggregation (blue edges) are chained both
in CRJ-SSB and GPJ-SSB. Larger intermediate sizes incur extra runtime
overhead for CRJ-SSB, while GPJ-SSB is unaffected due to pipelining on
the GPU.

speeds. In fact, when executing a single join, as in the previous experiments, there are
still untapped computational resources left for chaining multiple operators together.

To show these effects of chaining, in this experiment, we use query 2.1 and 3.1 of the
Star-Schema-Benchmark (SSB) that both involve three hash-joins and an aggregation.
For comparison, we run two variants of the queries: one using only the pipelined join
GPJ (GPJ-SSB) with the aggregation also on the GPU, and one that runs completely
on CPUs using CRJ (CRJ-SSB). For both GPJ-SSB and CRJ-SSB, we use the same
execution strategy, where we first build the hash tables on the dimensions tables and then
chain together the probing of the LINEORDER tuples into these hash tables, followed
by a final aggregation.3

Effect of Selectivities. We first execute the SSB query 2.1 with 3 different filter
settings, which results in different intermediate result sizes. The query plan is shown in
Figure 10.13b, along with which filters (marked with red) are changed to generate different

3PART and CUSTOMER are partitioned while DATE and SUPPLIER are replicated to enable chaining.

177

10 Distributed GPU Joins on Fast RDMA-capable Networks

1 2 3 4

Probe pipeline length

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

45 s

R
un

ti
m

e

CRJ-SSB

GPJ-SSB

(a) Query Runtime

 GROUPBY

SUPPLIER

 HASH-JOIN

 HASH-JOIN

 HASH-JOIN

Table size: 2M

sum(lo_revenue)
keys: c_nation,

Partition: replicated
lo_custkey = c_custkey

lo_suppkey = s_suppkey

lo_orderdate = d_datekey

Pipeline: 1

Pipeline: 2
(2x)

Pipeline: 3
(3x)

Pipeline: 4
(3x + 1x)

(1x)

LINEORDER CUSTOMER

Table size: 30M Table size: 6B
Partition: round-robin Partition: round-robin

DATE

Table size: 2555
Partition: replicated

s_nation, d_year

(b) SSB Query 3.1 Plan w/o Filters

Figure 10.14: Execution (a) with a different number of joins of SSB Query 3.1 (b) with SF
1000, on 4 nodes. Probe-side joining is chained together both in CRJ-SSB
and GPJ-SSB. With longer probe pipelines, the runtime of GPJ-SSB is
unaffected due to its pipelined design resulting in a reduction in runtime
by up to 6.8× against CRJ-SSB.

join selectivities and therefore different intermediate result sizes. We show the runtimes
in Figure 10.13a. Here an interesting observation is that for our approach GPJ-SSB, a
higher number of intermediate tuples does not introduce any runtime overhead due to the
parallel execution and the higher processing power of the GPU, which completely hides
the additional execution time under the network shuffle phase. Contrarily, we see for
CRJ-SSB that larger intermediate sizes introduce higher runtime due to the sequential
execution. For the largest intermediate results (i.e., no filters), our approach (GPJ-SSB)
is, in fact, 5× faster than the non-accelerated CPU query execution.
Effect of Number of Joins. Next, we evaluate the influence of the length of the
(chained) probe pipeline, i.e., the number of joins in the query on the runtime. Similar
to the effect of different intermediate sizes, the number of joins also varies the amount
of processing needed during the probing stage of the LINEORDER table. We base the
experiment on SSB query 3.1 as shown in Figure 10.14b, but vary the number of joins in
the query (pipeline length). For instance, a probe pipeline length of 2 will join together
the LINEORDER with CUSTOMER and SUPPLIER and a length of 4 contains the
complete query. As can be seen in Figure 10.14a, the GPU-accelerated query execution
(GPJ-SSB) is not affected by the query size since the additional probing is all hidden

178

10.6 Experimental Evaluation

Table 10.1: Cost-comparable clusters w/ and w/o GPUs: In both setups (small, large)
the hardware costs are comparable. For example, a 4-node cluster with
CPUs-only costs as much as 2 nodes with GPUs.

Small setup Large setup

GPU-accel (GPJ) 2× nodes 5× nodes
w/ 2× GPUs w/ 5× GPUs

CPU-only (CRJ) 4× CPU nodes 10× CPU nodes

0 s

5 s

10 s

15 s

20 s

25 s

30 s

R
un

ti
m

e

PART, SUPP
(low sel.)

PART
(med. sel.)

NO FILTERS
(high sel.)

CRJ-SSB

GPJ-SSB

Small setup

Large setup

(a) SSB Query 2.1 Runtime
w/ Different Filters

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

45 s

R
un

ti
m

e

CUST,SUPP,DATE
(low sel.)

SUPP,DATE
(med. sel.)

NO FILTERS
(high sel.)

CRJ-SSB

GPJ-SSB

Small setup

Large setup

(b) SSB Query 3.1 Runtime
w/ Different Filters

Figure 10.15: Query runtime with clusters that cause comparable cost as outlined in
Table 10.1 for (a) SSB Query 2.1 and (b) SSB Query 3.1 (SF 1000). The
advantages of the GPU join (GPJ) becomes more pronounced with larger
intermediate results (i.e., higher selectivity).

under the network shuffling. This is in contrast to the CPU-only approach (CRJ-SSB)
where more joins result in a higher runtime. For the full query without dimension table
filters, a speedup of 6.8× can be observed over CRJ-SSB.

Comparable Resources. Choosing to accelerate a query on GPUs begs the question
of whether the observed speedup outweighs the added cost of the GPUs. We thus now
evaluate the same SSB queries as before using two hardware setups (with and without
GPUs) that have approximately the same hardware cost. For our hardware, as detailed in
Section 10.6.1, a machine with a GPU costs twice as much as the same machine without

179

10 Distributed GPU Joins on Fast RDMA-capable Networks

a GPU. To be more precise, the cost of one Tesla V100 GPU equals that of a server
(including the CPU, memory, NIC as well as chassis without the GPU).4

In this experiment we hence use two different cost-balanced hardware configurations,
as shown in Table 10.1, that reflects the aforementioned relationship in cost; i.e., for the
cluster without GPUs, we use twice as many machines as for a cluster with GPUs. To be
more precise, we use a small setup that uses 4 CPU machines (w/o GPUs) and compare
it to a cluster of 2 machines w/ GPUs. For the large setup, we use 10 CPU machines
(w/o GPUs) vs. 5 machines w/ GPUs. The results of running the SSB queries 2.1 and
3.1 on these two cluster setups (small and large) with a comparable set of resources can
be seen in Figure 10.15.

Interestingly, even though the CPU-only cluster (for both the small and larger setups)
can make use of twice as many nodes as the cost-comparable cluster with GPUs, we
observe that the GPU join (GPJ-SSB) can still outperform the CPU join (CRJ-SSB)
(or is at least competitive). Clearly, compared to Figure 10.13a, where the GPJ-SSB
can use the same number of nodes as the CRJ-SSB, the benefits are less pronounced.
For example, the runtime of using only 2 GPU-nodes in Figure 10.15a for query 2.1 is
double as high compared to the GPJ-SSB in Figure 10.13a, which uses 4 GPU-nodes.
However, we can still see in Figure 10.15a that the runtime of the CPU-only query
(CRJ-SSB) linearly increases with larger intermediates while the GPJ-SSB can almost
provide constant runtime since the GPU can make efficient use of its high degree of
parallelism for larger intermediates. As such, for increasing intermediates the GPJ-SSB
provides a significant speedup over the CRJ-SSB of up to 4× for Query 3.1 (no filters)
even though GPJ-SSB is executed on a cluster with only half the nodes.

10.6.4 Exp. 3 - Hybrid Join Execution

In this experiment, we evaluate our hybrid GPU/CPU join algorithm (GPJ-H) on the
effect of supporting arbitrarily larger tables than the GPU memory. With GPJ-H,
different from GPJ, build-side tables that exceed the collective memory of the GPUs are
supported by distributing the partitions across GPU and CPU memory.
Varying Table Sizes (Build & Probe-side). In this experiment, we increase the
build- and probe-side tables from 32 GB to 128 GB. While using only 4 nodes with 1
GPU per node, this setup provides a total of 4 × 16 GB = 64 GB of GPU memory. With

4As hardware prices fluctuate, this experiment serves only as a rough comparison on balanced resources.
Moreover, note that we use high-end Tesla V100 GPUs for the cost comparison and thus the ratio of
CPU to GPU machines would be even more in favor of the GPU cluster in case we use less expensive
GPU hardware.

180

10.6 Experimental Evaluation

2 ∗ 109 4 ∗ 109 6 ∗ 109 8 ∗ 109

Build- & probe-side table size (tuples)

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

R
un

ti
m

e

CRJ GPJ-H CRJ GPJ-H CRJ GPJ-H CRJ GPJ-H

CPU Build & probe

CPU Local partitioning

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 10.16: GPJ-H vs. CRJ when scal-
ing input tables on 4 nodes.
With larger build-side ta-
bles, more data spills out
on CPUs.

0 GB 2 GB 4 GB 6 GB 8 GB 10 GB 12 GB

Available GPU memory

0.0 s

1.0 s

2.0 s

3.0 s

4.0 s

R
un

ti
m

e

CPU Build & probe

CPU Local partitioning

Pipelined shuffle & GPU join

Network shuffle

Histogram

Figure 10.17: Hybrid join (GPU-H)
adapts to increase in
available per-GPU mem-
ory allowing reduction in
runtime.

the smallest table size, the hash-tables for build-side tables can be fully stored in GPU
memory, and thus GPJ-H is effectively the same as the GPJ.

Figure 10.16 shows the results of this experiment. With increasing table sizes, the
runtime of both joins increases. For our hybrid join (GPJ-H), we see that with the
increasing table sizes, more partitions will be assigned to CPUs resulting in an increased
CPU runtime for GPJ-H as the partitions do not fit the GPU memory anymore. Still,
with the hybrid execution, even for the largest tables size of 128 GB, we see a runtime
benefit of around 2s in comparison to the CPU counterpart (CRJ). This is because, for
the largest tables size, roughly a quarter of all tuples are joined on the GPUs and the rest
on the CPUs. Thus, with the increasing table size and more partitions being assigned to
CPUs, the benefit of pipelining diminishes, resulting in an increase in the runtime.
Varying GPU Memory. The hybrid execution of GPJ-H also allows a GPU-accelerated
DBMS to adapt to different GPU memory sizes (and thus adapt to different available
hardware). In this experiment, we analyze the effect of varying GPU memory sizes on
the join runtime. As workload, we use fixed-size build- and probe-side tables of 2 × 109

tuples with 16 bytes and scale the available GPU memory from 0 B (pure CPU join) to
the point where the hash tables (for the given workload) of the whole build-side table fit
on the GPUs.

Figure 10.17 shows the result of this experiment of the GPJ-H over different GPU
memory sizes. The main takeaway is that GPJ-H is able to efficiently adapt to different

181

10 Distributed GPU Joins on Fast RDMA-capable Networks

1 ∗ 109 2 ∗ 109 4 ∗ 109

Probe-side table size (tuples)

0 s

1 s

2 s

3 s

4 s

5 s

R
un

ti
m

e
GPJ CRJ GPJ CRJ GPJ CRJ

Materialize

Aggregate

Figure 10.18: Cost of materialization on 4 nodes with a build-side table size of 1 × 109

tuples and 100% join selectivity.

GPU memory sizes and speed up the performance with the increasing available GPU
memory. Moreover, even with a small amount of available GPU memory, the hybrid join
is able to utilize the GPUs, and hence reduce the join runtime.

10.6.5 Exp. 4 - Microbenchmarks

In the following, we show the results of three microbenchmarks.
Streaming Materialization. In this experiment, we compare the runtime of GPJ
and CRJ with and without materialization enabled. As a setup, we used 4 nodes and 4
GPUs with a build-side table size of 1 × 109 tuples of 16 bytes. In case materialization is
used, CRJ writes the result directly to the main memory, while GPJ uses the streamed
materialization from GPU to CPU memory as described in Section 10.4.3. In case no
materialization is used, we execute a COUNT aggregation on the join result.

Figure 10.18 shows the results. What can be seen is that with materialization, the
runtime increases slightly both for GPJ and CRJ, which stems from the added write-load
on the CPU memory in both cases. Importantly, for GPJ we see that materialization of
the result into CPU memory only has minimal overhead, which is in a similar range as
for CRJ.
Multiple Concurrent Joins. For OLAP queries, it is common to schedule multiple
queries at once on the same cluster. Thus, in this experiment, we evaluate whether there
is any inherent disadvantage to accelerating the join with GPUs versus the traditional
CPU-only execution when executing multiple joins concurrently. As workload, we execute

182

10.6 Experimental Evaluation

1 2 3 4

Concurrent joins

0 s

2 s

4 s

6 s

8 s

R
u

n
ti

m
e

CRJ

GPJ

Figure 10.19: Runtime of concurrent joins on 4 nodes using 200 × 106 and 2 × 109 tuples
for build- and probe-side tables.

0.0 1.0 2.0 3.0

Zipf Skew

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

16 s

P
ro

b
e-

si
d

e
R

u
n

ti
m

e Static

Adaptive

Optimal

Figure 10.20: Runtime for probe-side shuffling with skew on 4 nodes with 6.4 × 109 tuples
with adaptive or static grid sizes.

183

10 Distributed GPU Joins on Fast RDMA-capable Networks

the same join operator using 200 × 106 and 2 × 109 tuples for build- and probe-side tables
concurrently on a cluster of 4 nodes. Moreover, for each join, we allocate dedicated
threads (of CPU or GPU cores); i.e., we split the resources depending on the number of
concurrent queries that is a common scheme for OLAP queries.

As we can see in Figure 10.19, when increasing the number of concurrent joins, almost
the same relative increase of runtime can be observed for CRJ and GPJ. However, since
the absolute runtime of the GPJ is lower compared to the CRJ, as we already showed in
the previous experiments, the gap in total gains increases with more concurrent queries
(w.r.t. the elapsed runtime for all concurrent joins). For example, for 4 concurrent joins,
the elapsed runtime is approx. 4 seconds for the GPJ, while the CRJ requires almost
8 seconds. As such, the total benefits of the GPJ are also significant under concurrent
query execution and there is no strategic disadvantage for the GPU when running queries
concurrently.

Effect of Skew. Skewness is often occurring in datasets and especially in the form of
foreign-key skew where the probe-side table has many tuples which joins with a small
subset of tuples from the build-side table. This skew can sometimes be beneficial since
it increases the locality for the heavy-hitters and allows for better caching. However,
in the context of a partitioned join, it will result in uneven-sized partitions, and for
our pipelined execution algorithm, it means that the bigger partitions on the GPU will
receive tuples at a faster rate than others. As discussed in Section 10.4.2, we handle
this by adaptively sizing the allocated resources (grid-sizes) for each partition in relation
to the size of the partition, such that the processing speed of the big partitions can be
adapted with respect to their sizes.

To show this effect, we plot the observed probe-side runtimes for different skew factors
in Figure 10.20. For a skew of range 0 to 1.0, the runtime is unaffected since we distribute
the partitions in a round-robin manner to nodes by the size of the partitions to even out
the network skew. Even when using statically allocated GPU resources, the GPUs have
enough processing power to handle this level of skew. From zipf 1.0 and up, however, the
static approach severely slows down the GPU join execution as the processing of the heavy
partitions leads to a straggling behavior. However, with our adaptive optimization, the
processing at each GPU can be done approximately at line rate (for the given distribution).
The efficiency of our approach can be also seen when comparing the adaptive runtime
to the dashed red line, which shows the theoretical optimal runtime given the overall
network skew resulting from some nodes receiving more tuples than others. With high
enough skew, the size of the largest partition dominates (i.e., it is larger than the uniform

184

10.7 Related Work

share per node) and thus the theoretical optimal runtime also increases since the skew
cannot be mitigated completely.

10.7 Related Work
Single-node Joins: .

Acceleration of single-node joins with GPUs has been a well-studied topic over the
last decade [45, 46, 48, 65, 88, 89, 114, 115]. Sioulas et al. [122] investigated how to
best utilize the GPU hardware for a single-node join by implementing and evaluating a
range of different joins while considering different scenarios for tables larger than GPU
memory. However, when tables do not fit on the GPU, the slow PCIe interconnect limits
the performance when compared to a CPU-only baseline.

More recent work evaluated larger-than-memory single-node joins on multi-GPU
setups [114]. Lutz et al. [88, 89] evaluated the transfer bottleneck of GPU-accelerated
single-node joins against the faster interconnect NVLink 2.0. They found that such
interconnects can greatly increase the performance of the GPUs as co-processors both
for joins smaller and larger than GPU memory. An interesting future route would be to
combine GPUDirect and NVLink. However, currently RDMA NICs are only available
with PCIe, and GPUDirect cannot be combined with Nvidia’s interconnect NVLink.

Another approach by Shanbhag et al. [119] aims to remove the transfer overhead to the
GPU by instead using the GPU as the main processor by storing the working set directly
on the GPU. In this setup, analytical processing on the GPU greatly outperforms the
CPU but still restricts the total working set sizes for main-memory DBMSs. Targeting a
similar setup with GPUs as the main processor, Paul et al. [107] focuses on optimizing
the communication paths of transfers between multiple GPUs through their multi-hop
algorithm to maximize the cross-sectional bandwidth between GPUs.
Distributed Joins: . In the context of high-speed networks, join processing for scale-out
distributed DBMSs has been studied by a few works [9, 10, 38, 39]. Barthels et al. [10]
implemented a distributed radix hash join over RDMA networks by utilizing efficient
one-sided RDMA primitives. While the authors do not explore GPU-acceleration, many
findings of their work are still applicable, such as the efficiency of one-sided RDMA.

The approach by Guo et al. [43] is closest to our work, which also explores distributed
GPU joins over RDMA. However, they cover only more naive blocking GPU joins.
Moreover, they argue that remote transfer via GPUDirect from and to GPUs is less
efficient than using RDMA with CPUs. Our findings are, however, different. Initially,

185

10 Distributed GPU Joins on Fast RDMA-capable Networks

we observed the same unbalanced bandwidth characteristics for RDMA between GPUs
and CPUs. The reason for this is that when the NIC and GPU are not placed under the
same PCIe switch, a suboptimal performance can be observed as also reported in [44].

10.8 Conclusion & Future Work
In this paper, we present two novel join algorithms for accelerating distributed joins on
high-speed networks with GPUDirect RDMA. We show how our pipelined GPU join
can speed up distributed joins up to 2× over a state-of-the-art CPU-based join while
supporting arbitrary large probe-side tables. To accelerate joins with build-side tables
larger than the collective GPU memory, we present a hybrid join that transparently
leverages both GPUs and CPUs for joining the tables. In the context of complete queries,
we show that pipelining and the support of successive operations in our distributed GPU
join algorithm can additionally speed up the overall execution by up to 6× against a
non-accelerated CPU-only version.

In the future, we aim to explore the combination of also involving SSDs for very
data-heavy operations such as out-of-memory joins through GPUDirect Storage [97]
which allows the GPU to directly access storage without relying on the main-memory.

10.9 Acknowledgements
This work was partially funded by the German Research Foundation (DFG) under the
grants BI2011/1 & BI2011/2 (DFG priority program 2037), the DFG Collaborative
Research Center 1053 (MAKI) as well as hessian.AI, 3AI and gifts from Mellanox. In
addition, we gratefully acknowledge support from the Federal Ministry of Education and
Research (BMBF) under Grant No. 01IS22091.

186

11 Zero-sided RDMA:
Network-driven Data
Shuffling

Abstract
In this paper, we present a novel communication scheme called zero-sided RDMA,
enabling data exchange as a native network service using a programmable switch. In
contrast to one- or two-sided RDMA, in zero-sided RDMA, neither the sender nor the
receiver is actively involved in data exchange. Zero-sided RDMA thus enables efficient
RDMA-based data shuffling between heterogeneous hardware devices in a disaggregated
setup. In our initial evaluation, we show that zero-sided RDMA can outperform existing
one-sided RDMA-based schemes due to offloading the coordination to the network and
new optimizations that are only possible by coordinating the data exchange on the switch.

Bibliographic Information
The content of this chapter was previously published in the peer-reviewed work: Matthias
Jasny, Lasse Thostrup, and Carsten Binnig. “Zero-sided RDMA: Network-driven Data
Shuffling.” In: Proceedings of the 19th International Workshop on Data Management on
New Hardware, DaMoN 2023, Seattle, WA, USA, June 18-23, 2023. Ed. by Norman May
and Nesime Tatbul. ACM, 2023, pp. 82–85. doi: 10.1145/3592980.3595302. url:
https://doi.org/10.1145/3592980.3595302.

187

https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3592980.3595302

11 Zero-sided RDMA: Network-driven Data Shuffling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. DaMoN ’23, June 18–23,
2023, Seattle, WA, USA © 2023 Copyright held by the owner/author(s). Publication
rights licensed to ACM.
This is the author’s version of the work. It is posted here for personal use in this
thesis. Not for redistribution. The definitive version of the record was published in
the Proceedings of the 19th International Workshop on Data Management on New
Hardware, DaMoN 2023, Seattle, WA, USA, June 18-23, 2023, https://doi.org/10.
1145/3448016.3452816.

188

https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816

11.1 Introduction

4. Process Write-ACK
→Increment Consumer Head

& Producer Tail

RDMA
READ

Smart Switch

Tail

Head

Head

Tail

Consumer QueueProducer Queue

RDMA
WRITE

2. Convert Read Response
to Write Request

1. Read
new Item

3. Write
new Item

GPU FPGA

Figure 11.1: Zero-sided RDMA. The switch transfers items using RDMA from the pro-
ducer to the consumer queue. Producers/consumers interact with their
queues via local memory, without the need for any communication primi-
tives.

11.1 Introduction

In the past decade, the landscape of DBMSs has undergone significant transformation.
Notably, there has been a shift towards disaggregation, separating different resources
such as compute and storage or accelerator pools from traditional compute [11, 28, 81,
131]. This approach offers improved resource utilization, as each resource can be scaled
independently based on demand. However, it also means that the network has become
more critical for data access, which has led to a significant focus on reducing the cost
of data transfers. To this end, there has been considerable attention on developing fast
network and kernel bypass libraries.

A technology that is thus often used in cloud data center networks is Remote Direct
Memory Access (RDMA). RDMA has been shown to provide state-of-the-art performance
for many different database components such as operators [10, 126], concurrency control
[28] and storage layer [154]. One advantage of RDMA is the availability of one-sided
primitives, namely READ and WRITE operations. These primitives solely involve the
CPU of the initiator node, rather than the target node. As a result, nodes can read from
and write to remote memory locations without requiring the remote CPU to be actively
involved, as the remote NIC handles the read and write operations. This offloading of
network overhead to the NIC enables efficient scaling and improved performance [156].

A prominent development in the field of databases is the incorporation of heterogeneous
hardware accelerators such as GPUs [88] and FPGAs [75]. This trend is a response to the
performance stagnation of CPUs due to the end of Moore’s Law and Dennard Scaling. It

189

11 Zero-sided RDMA: Network-driven Data Shuffling

is anticipated that CPUs will eventually be unsuitable for data processing as specialized
hardware can provide superior performance and power efficiency [95].

Today, in distributed setups, accelerators such as GPUs and FPGAs typically need to be
coupled with a CPU which is responsible for the control and communication over RDMA.
This approach, however, limits the acceleration potential due to the CPU involvement in
the control flow which can lead to under-utilized devices and sub-optimal performance
[128]. Moreover, coupling CPUs and accelerators can also lead to underutilized CPUs if
they only need to handle communication between devices.

However, moving the control flow and providing efficient communication between
specialized hardware devices without involving the CPU as an intermediate step for the
control path is a non-trivial task for two reasons: (1) The availability of the communication
primitives (e.g., one-sided RDMA) might not be available for the given hardware, and
(2) implementing the complete communication logic is intricate and likely varies for each
hardware type. Moreover, this consumes compute resources that could otherwise be
utilized for processing.

We argue that devices will continue to grow increasingly heterogeneous in the future,
and the demand for device disaggregation and interconnection will increase. In this
paper, we thus address the resulting challenge of enabling efficient communication between
diverse specialized hardware devices without the complexity that arises from implementing
RDMA communication schemes on these devices for a wide range of architectures. Instead,
our approach fully offloads the communication logic to the network, making it unnecessary
to port communication primitives to each specialized hardware device.

The main idea of offloading the communication logic to the network is that the switch
acts as a coordinator of data transfers; i.e., it issues RDMA READs to a sender and
rewrites the read response into an RDMA WRITE for the receiver using the programmable
data plane of the switch. Since this does not incur any involvement of neither the sender
nor receiver, we term this communication scheme zero-sided RDMA. A programmable
switch presents an excellent choice for implementing a zero-sided communication scheme
due to its central placement which allows it to optimally schedule data transfers. In
addition, switches are able to process at the aggregated line-rate of all connected devices
and thus provide a scalable solution to zero-sided RDMA, as we show in our evaluation.

190

11.2 Zero-sided RDMA

11.2 Zero-sided RDMA
The overall flow of transferring a data item using zero-sided RDMA is illustrated in Fig-
ure 11.1. The core abstraction of zero-sided RDMA is a circular queue buffer implemented
on both the producer- and consumer-side of a unidirectional communication channel. The
design goal of the queues is to allow processing units (PUs) to push and pop items with
only simple local memory operations while the switch transfers data fully asynchronously
without any sender/receiver PU involvement. By handling communication centrally
on the switch, communication patterns can be realized efficiently without coordination
between PUs.
Communication Scheme & Adaptive Batching. For communication, we mirror
the state of the producer and consumer queues (head and tail pointers) as state on the
switch to know when a producer has an item to send and whether the consumer has free
space. To transfer an item, (1) the switch first issues an RDMA READ on the producer.
(2) The READ response is then converted on the switch into an RDMA WRITE and (3)
written into the next free slot at the consumer. When converting a READ response into
a WRITE request, the switch does not need to buffer or modify the data payload but
changes the RDMA header on-the-fly in the data plane. (4) After the RDMA WRITE
is acknowledged by the remote NIC, the head and tail pointers of the producer and
consumer queues are updated accordingly. For transferring data, the switch polls the
state of the producer and consumer queues at configurable intervals to detect whenever
a producer has new items or the consumer has consumed items. Since the producer
might have written multiple items to its queue between the reads to the head-pointer
by the switch, we apply adaptive batching such that all available items that fit into the
consumer queue are transferred in one big RDMA READ in step (1).
Reliable Transport & Congestion Control. An advantage of offloading the zero-
sided communication scheme entirely into the switch’s data plane is that the switch can
handle line-rate data transfers between connected devices in a scalable manner [60, 61].
For coordination, the packet processing pipeline of the switch maintains the state in
registers. We store the necessary state to adhere to the RDMA protocol and the state
required to manage the queues of the PUs. During the initialization of the communication
channel, the switch sets up reliable RDMA connections to each PU.

For ensuring reliable transport, RDMA uses sequence numbers and acknowledges each
request to ensure the reliability of the transport and to be resilient to drops in the
network. If a drop occurs, the switch detects it through a configurable timeout or gaps in
the sequence numbers and subsequently reissues the data-transfer request (i.e., RDMA

191

11 Zero-sided RDMA: Network-driven Data Shuffling

READ on the producer device). However, if the drop happened in the last step (step 4 in
Figure 11.1), the previously successful data transfer is not reissued and only the RDMA
WRITEs of head and tail pointers are resent.

Furthermore, to handle incast scenarios (e.g. two senders with 2x bandwidth and
a receiver with 1x bandwidth), we integrate congestion control into our zero-sided
communication scheme on the switch. The switch emits explicit congestion notifications
whenever a link becomes congested, similar to RoCEv2 [104]. When the NIC of the
producer receives the congestion notification, it throttles down the rate of outgoing
packets.
Hardware Requirements. Finally, zero-sided RDMA can easily be used by many
heterogeneous devices since only a few requirements must hold for participating in
zero-sided RDMA: (1) the device must have memory in which to store the queue data
structure, (2) the memory must be accessible by an off-the-shelf RDMA-enabled NIC
and (3) the memory consistency model must ensure that a write to an item and the
subsequent update to the head pointer is executed in order (which is commonly the case).

Contrary to technologies like NVLink that are used for GPU communication, zero-sided
RDMA communication can stretch across a variety of different processing units and is
not limited to a vendor specific extension.
Integration with the DBMS. The DBMS query scheduler and optimizer are responsible
for devising an execution plan and mapping the plan to different PUs. This entails sending
the parameters of each queue, along with lists of producers and consumers, to the switch.
The switch establishes direct RDMA connections with all producers and consumers. As
soon as all connections are set up, the switch will initiate the data transfers.

When a producer completes its tasks, it tears down the RDMA connection. After the
tear down of all producer connections for a given flow, the switch cleans up and tears
down the consumer-side connection.

11.3 Initial Results
We evaluate our zero-sided RDMA communication scheme in a cluster of 4 nodes, each
with an Nvidia V100 GPU and connected to an Intel Tofino 1 switch via 100G ConnectX-5
NICs with RoCEv2.

In Figure 11.2a, we compare the bandwidth of zero-sided data transfers directly from
one GPU to another with a CPU-driven scheme where the CPU drives the commu-
nication between the GPUs using one-sided RDMA. This baseline is a common GPU

192

11.3 Initial Results

Max. Link BW

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

12GiB/s

16B 256B 4KiB 64KiB 1MiB
Item size

D
a
ta

 b
a
n
d
w

id
th

Baseline
Zero-sided

1 Queue
4 Queues
16 Queues

(a) 1:1 Communication

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

1 Node
2 Nodes

3 Nodes

4 Nodes

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

Zero-sided GPU Shuffle

(b) N:N Shuffle

Figure 11.2: (a) GPU to GPU Shuffling. Zero-sided RDMA compared to a CPU-driven
scheme. (b) Many-to-many Shuffling between N GPU nodes using zero-sided
RDMA.

communication scheme where a CPU launches GPU kernels and subsequently initiates
data transfers directly from local to remote GPU memory using GPUDirect [98]. To
show the scalability of both setups, we increase the number of concurrent RDMA queues
on the sender/receiver. We see that zero-sided RDMA is superior in performance. This
is due to two factors: The producer GPU can process data without CPU involvement or
synchronization. Secondly, our zero-sided scheme applies adaptive batching of multiple
items into larger data transfers. Moreover, with additional queues, the zero-sided design
achieves maximum performance earlier since the switch does not limit the scalability
due to its processing model, unlike CPU-driven designs. In contrast, kernel launch and
synchronization overhead limit the baseline’s performance.

In Figure 11.2b, we report the data bandwidth for a GPU-to-GPU shuffle scenario
while scaling out across multiple nodes. We use item sizes of 512KiB and execute 2 GPU
kernels for producers and 2 for consumers on each GPU node. The producers shuffle data
to all consumers on all nodes using zero-sided RDMA. After launching the GPU kernel no
additional CPU or GPU cycles of the host system are spent on executing communication
primitives. A benefit of the zero-sided approach is that each PU connects directly to the
switch. This way, connection complexity is reduced because consumers can receive data
from multiple producers through a single in-going connection (i.e., one RDMA queue)
instead of separate ones. The observed bandwidth increases near-linearly for each added
node because the switch handles all data transfers for each queue independently.

193

11 Zero-sided RDMA: Network-driven Data Shuffling

For shuffle scenarios with more queue end-points, our prototype implemented on the
Intel Tofino 1 switch can handle thousands of queues in parallel due to its pipeline
processing model without compromising performance.

11.4 Future Work
We envision a range of different extensions to our zero-sided communication scheme for
supporting and offloading typical use cases. With the centralized position of the switch,
a set of ample opportunities for DBMSs exist which we iterate next.
Load Balancing & Elasticity. Distributing work evenly across processing units in
a distributed DBMS is non-trivial given unforeseen network congestion or processing
contention. Multiple schemes have been devised to overcome this [31, 77, 155], which
require additional coordination overhead, e.g., through work-stealing or a centralized
server-side dispatcher. However, we envision directly supporting zero-sided load balancing
by letting the switch initiate data transfers from multiple producers to multiple consumers,
where each consumer processes and consumes items at its own speed without any need
for coordination.

A natural extension to load balancing is elasticity, allowing to adjust computational
resources by modifying the number of producers or consumers during runtime, thereby
enabling the system to scale up or down as per demand. In zero-sided RDMA, the switch
assumes the sole responsibility of driving data transfers with the capability to add or
remove producers or consumers as needed without additional synchronization between
the participants.
Quality of Service. Ensuring a certain quality of service or prioritization of parts
of the network traffic (e.g., for a time-critical query) is hard as Priority-based Flow
Control (PFC) requires network reconfiguration and only provides a means of prioritizing
different classes of traffic. As such, PFC does not allow setting fine-grained prioritization
(e.g., for each sending queue) and adapting these settings at runtime. Therefore, we
envision extending our zero-sided communication scheme with fine-grained (per-queue)
configurations to be able to ensure that a queue gets a certain slice of the network
bandwidth. Specifically, we can achieve this by using explicit congestion notifications1 in
the switch to control the share of the network given to each flow.
Zero-sided Multicast. Multicast has multiple applications in distributed DBMS such
as replicated joins [126] or state replication [51, 82] for providing availability. Our aim

1These notifications are supported e.g. by RoCEv2.

194

11.5 Acknowledgements

is to integrate zero-sided multicast capabilities, such that in a flow between multiple
producers and consumers, all consumers will receive the same data generated by the
producers. This approach would greatly improve on the existing capabilities of RDMA
multicast which is only supported through unreliable transport and two-sided verbs which
comes with the cost of higher CPU overhead at the communication endpoints due to the
two-sided communication and the cost of ensuring reliability.

With the centralized switch approach, the switch can not only support multicast by
replicating packets in the egress pipeline but also ensure that the data items replicated
to all consumers will be globally ordered. Traditionally, effects like reordering of packets
in the network can cause the received data at each consumer to observe a different
order. However, as our zero-sided approach transfers data sequentially with separate
acknowledgments, we are able to ensure globally ordered data transfers to all consumers
without introducing any compute or coordination overhead on the producer or consumer
side.
Integration of Heterogeneous Devices. Ultimately, we plan to build a CPU-less
DBMS that uses zero-sided RDMA to span across diverse heterogeneous devices, showing
the benefit of network-driven communication. As such, we aim to demonstrate the
benefits of zero-sided communication with other hardware accelerators such as FPGAs.
While existing RDMA libraries already exist for FPGA-based SmartNICs, the benefit of
zero-sided RDMA communication is that only a small subset of the RDMA stack needs
to be supported by the FPGA. In fact, if combining an FPGA with an RDMA-NIC,
the RDMA stack can be completely avoided when using zero-sided RDMA. In addition,
the communication and coordination logic is offloaded from the device which frees up
valuable FPGA resources and significantly reduces engineering effort.

11.5 Acknowledgements
This work was partially funded by the German Research Foundation (DFG) under the
grants BI2011/1 & BI2011/2 (DFG priority program 2037) and the DFG Collaborative
Research Center 1053 (MAKI). We thank Intel for their valuable technical support.

195

11 Zero-sided RDMA: Network-driven Data Shuffling

196

12 Zero-sided RDMA:
Network-driven Data
Shuffling for Disaggregated
Heterogeneous Cloud
DBMSs

Abstract

In this paper, we present a novel communication scheme called zero-sided RDMA, enabling
data exchange as a native network service using a programmable switch. In contrast to
one- or two-sided RDMA, in zero-sided RDMA, neither the sender nor the receiver is
actively involved in data exchange. Zero-sided RDMA thus enables efficient RDMA-based
data shuffling between heterogeneous hardware devices in a disaggregated setup without
the need to implement a complete RDMA stack on each heterogeneous device or the
need for a CPU that is co-located with the accelerator to coordinate the data transfer.
As such, we think that zero-sided RDMA is a major building block to make efficient
use of heterogeneous accelerators in future cloud DBMSs. In our evaluation, we show
that zero-sided RDMA can outperform existing one-sided RDMA-based schemes for
accelerator-to-accelerator communication and thus speed up typical distributed database
operations such as joins.

197

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

Bibliographic Information
The content of this chapter was published in the peer-reviewed work: Matthias Jasny,
Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt István, and Carsten Binnig. “Zero-
sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous Cloud
DBMSs.” In: Proc. ACM Manag. Data 2.1 (Mar. 2024). doi: 10.1145/3639291. url:
https://doi.org/10.1145/3639291.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. © 2024 Copyright held by
the owner/author(s). Publication rights licensed to ACM. This is the author’s version
of the work. It is posted here for personal use in this thesis. Not for redistribution.
The definitive version of the record was published in the Proc. ACM Manag. Data 2.1
(Mar. 2024), https://doi.org/10.1145/3639291.

198

https://doi.org/10.1145/3639291
https://doi.org/10.1145/3639291
https://doi.org/10.1145/3639291

12.1 Introduction

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

1 CPU 4 CPUs 0 CPUs

D
a
ta

 b
a
n
d
w

id
th

CPU-driven RDMA Zero-sided RDMA

(a) GPU-to-GPU transfers, CPU-driven vs.
network-driven transfers.

0s

1s

2s

3s

W/o Load-bal. W Load-bal.

R
u
n
tim

e

Naive Execution Zero-sided RDMA

(b) Perfect utilization in heterogeneous exe-
cution environments.

Figure 12.1: Motivating examples of using zero-sided RDMA for a GPU-to-GPU shuffle of
4KiB data items. (a) Zero-sided RDMA provides equal or better performance
than traditional CPU-based schemes without the need of co-locating a CPU
per accelerator. (b) Zero-sided RDMA enables seamless load balancing of
data transfers in case accelerators consume data at different speeds.

12.1 Introduction
Disaggregation and the need for RDMA. In the past decade, cloud computing and
the landscape of database systems have undergone a significant transformation. Notably,
there has been a shift towards disaggregation, separating compute and storage or even
accelerator pools from traditional compute [11, 28, 81, 131] because disaggregation offers
improved resource utilization, as each resource can be scaled independently based on
demand. This trend has been transformative for cloud-native DBMSs, which all build
on top of such disaggregated architectures. Since, in disaggregated architectures, the
rate at which data can be moved across nodes is one of the most important factors to
performance, there has been considerable attention on developing fast network solutions.
Remote Direct Memory Access (RDMA) is deployed by major cloud vendors to enable
efficient resource disaggregation [5, 118]. In database use cases, RDMA has successfully
improved the performance for distributed join operators [10, 126], reduced the cost of
concurrency control [28], and made storage access [154] possible at unprecedented speeds.

The need for heterogeneous compute. Another significant trend in cloud data
centers is that, in response to the performance stagnation of CPUs due to the end of
Moore’s Law and Dennard Scaling, heterogeneous accelerators are becoming common-
place as an alternative to CPU-based compute resources [95]. Accelerators have been
shown to provide significant speed-ups for DBMS workloads [75, 88]. However, looking
ahead, a major question for future cloud DBMSs is how to efficiently use disaggregated

199

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

heterogeneous compute resources such as GPUs or FPGAs. Similar to disaggregated
CPU-based compute resources, these accelerators should be deployed as network-attached
accelerator pools, but today this is not the case. Accelerators depend on the presence of
a host CPU for both control and moving data in and out of the accelerator. As we show
in this work, if we continue to keep the CPU on the critical path of data movement, we
will not be able to take advantage of fast networks and RDMA-based communication.
Instead, we propose zero-sided RDMA as a solution to remove the CPU from the critical
path and enable efficient accelerator-to-accelerator data movement powered by a smart
switch.

The pitfalls of RDMA today for accelerators. To explain how zero-sided RDMA
works, it is important to see how RDMA involves CPUs today. In addition to two-sided
operation, where the CPUs of both the sender and receiver nodes are involved, it already
offers one-sided primitives, namely READ and WRITE operations. These primitives
solely involve the CPU of the initiator node rather than the target node. As a result,
nodes can read from and write to remote memory locations without requiring the remote
CPU to be actively involved, as the remote NIC handles the read and write operations.
This offloading of network overhead to the NIC enables efficient scaling and improved
performance [156]. However, if we want to fully utilize accelerators in the cloud, the
involvement of CPUs, even if just on the sender side, will lead to bottlenecks (as seen in
Figure 12.1a, multiple CPU cores need to be dedicated to coordinating data transfers).

Accelerator-driven RDMA as an alternative? One way to remove the CPU would
be to implement RDMA-based operations directly on the accelerators. Even though this is
technically possible [73], it is challenging for the following reasons: (1) RDMA primitives,
such as one-sided RDMA verbs, might not be available for a given accelerator, requiring
a full RDMA stack to be implemented per accelerator type. Beyond the engineering cost,
the additional problem is that executing communication logic on specialized hardware
devices consumes compute resources that could otherwise be utilized for processing. (2)
Implementing advanced RDMA-based communication schemes, such as many-to-many
data shuffling or multicast, on top of the RDMA stack on each accelerator type requires
re-implementing features and has different challenges and limitations on each hardware
type.

The case for network-driven RDMA. To remove the CPU from the critical path
of performance and to reduce the engineering effort in disaggregated accelerators, in this
work, we propose a novel network-driven scheme where neither a CPU co-located with an
accelerator is actively needed nor the GPU/FPGA has to implement the RDMA stack.
Our approach fully offloads the RDMA stack and the RDMA-based communication

200

12.1 Introduction

logic between devices to the network, particularly to a programmable switch. The main
idea of offloading the communication logic to the network is that the switch acts as a
coordinator of data transfers; i.e., it issues an RDMA READ to a sender and rewrites
the read response into an RDMA WRITE for the receiver using the programmable data
plane of the switch. Since this does not involve the sender or receiver actively, we term
this communication scheme zero-sided RDMA.

Why use a programmable switch? To implement zero-sided RDMA, a pro-
grammable switch presents an excellent choice due to its placement as an intermediate
in the network, which allows it to support complex data transfer operations, such as
distributed data shuffling used in databases, and optimally schedule data transfers. Impor-
tant is that zero-sided RDMA is not limited to point-to-point communication (1:1) and,
as we show later in this paper, we can support various communication flows for common
distributed data management use cases, namely N:M shuffles, as well as complex dis-
tributed operations such as network-driven reliable multicast or seamless load-balancing.
From a complexity perspective, this is much more efficient than implementing the RDMA
stack and shuffling logic in each instance of an accelerator (i.e., FPGA, GPU). Finally,
switches can process at the aggregated line-rate of all connected devices [60] and thus
provide a scalable solution to zero-sided RDMA, as we show in our evaluation.

Motivating examples. Figure 12.1 shows the main benefits of our novel switch-driven
scheme that uses zero-sided RDMA for data transfers. First, compared to the CPU-driven
scheme (Figure 12.1a), zero-sided RDMA can achieve close to the maximum network
bandwidth without requiring a co-located CPU per accelerator. In fact, the CPU-driven
scheme requires multiple CPU cores to achieve the same bandwidth for transferring
messages. Moreover, zero-sided RDMA provides many other benefits, such as seamless
load-balancing (Figure 12.1b). Load-balancing is important if multiple (heterogenous)
receivers consume data while one of the receivers is slower than the others. As we later
discuss, our switch-driven scheme can detect such cases by monitoring the progress of a
data shuffle and seamlessly redistributing data.

Relevance for DBMSs & contributions. The database community continuously
seeks ways to adapt to the complexities of disaggregation and the integration of RDMA
with diverse accelerators. In this context, zero-sided RDMA presents a practical solution
by enabling network-driven data transfers between heterogeneous accelerators in DBMSs.
We evaluate our idea on specific DBMS use cases focusing on OLAP scenarios, including
data shuffling (i.e., 1:1, N:M), a core task in distributed query processing. In addition to
the chosen shuffle scenarios, zero-sided RDMA can be applied to many more, including
data replication or efficient data transfers in disaggregated databases to and from compute.

201

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

As our experimental results on latency indicate, it will be possible in the future to extend
zero-sided RDMA to also support latency-critical distributed workloads beyond OLAP,
such as OLTP or data streaming.

In summary, our work on zero-sided RDMA brings the following contributions: (1) First,
we introduce our novel network-driven communication scheme — zero-sided RDMA —
which allows efficient accelerator-to-accelerator communication without CPU involvement.
(2) We use zero-sided RDMA to implement a network-driven data shuffling operator for
distributed DBMS use cases. We demonstrate that it achieves line-rate performance for
different communication patterns (i.e., 1:1, N:M shuffles). (3) We showcase how complex
communications schemes, such as globally-ordered replication and load-balancing for
multi-producer to multi-consumer, can be implemented efficiently in zero-sided RDMA.
(4) Finally, we evaluate zero-sided RDMA through a set of DBMS-centric scenarios, such
as a distributed TPC-H query, shuffling, and a distributed join, as well as using zero-sided
RDMA for two different types of accelerators: GPUs and FPGAs.

12.2 Background
12.2.1 Remote Direct Memory Access (RDMA)

RDMA has become the state-of-the-art communication method for distributed data-
processing systems over high-speed networks [11, 138, 147, 148, 157]. Its main benefit is
that it removes the overhead of traditional kernel-space network stacks such as TCP/IP.
Major cloud vendors have already adopted RDMA in their pursuit of faster networking
with little CPU overhead. An example of this is Microsoft Azure which reports that
already around 70% of internal ToR traffic is RDMA [5].

Communication schemes in RDMA can be categorized as one-sided (READ / WRITE)
or two-sided (SEND / RECEIVE) operations, which refer to the involvement of the sender
and receiver in the communication. For one-sided operations, only the sender is actively
involved and thus has to decide where the data should be placed on the remote node.
With two-sided operations, also the receiver is actively involved in the communication
and decides where to place data by issuing RECEIVE requests before SEND requests
can be issued on the sender side. This simplifies remote memory management.

Especially the one-sided RDMA operations have seen high adoption in distributed data
processing systems since they allow sender nodes to write into remote memory directly
fully bypassing CPU cores of the receiving nodes [10, 156]. However, even with one-sided

202

12.2 Background

CPU RDMA

Switch

CPU RDMA

GPU FPGA RDMA

Switch

RDMAGPU

CPUCPU

FPGA

RDMA

GPU

CPUCPU

Smart Switch1 2 3

FPGA

+ Low complexity
- Bad performance
- CPU overhead

+ Good performance
- High complexity
- Different RDMA stack for

each device

+ Low complexity
+ Good performance
+ Integrates well with

accelerators

(a) CPU- vs. Accelerator- vs. Network-driven (zero-sided RDMA).

4. Process Write-ACK
→Increment Consumer Head

& Producer Tail

RDMA
READ

Smart Switch

Tail

Head

Head

Tail

Consumer BufferProducer Buffer

RDMA
WRITE

2. Convert Read Response
to Write Request

1. Read
new Item

3. Write
new Item

GPU FPGA

(b) 1:1 Flow with zero-sided RDMA.

Figure 12.2: Network-driven communication with zero-sided RDMA vs. alternative
communication schemes. (a) In a CPU-driven scheme 1©, the CPU is
responsible for carrying out the communication. In the accelerator-driven
scheme 2©, the RDMA stack is realized directly on the accelerator. With
zero-sided RDMA 3©, the RDMA stack and communication scheme are
fully offloaded into the network, removing the need for CPUs, while only
one RDMA stack (e.g., on the switch) is needed. (b) In zero-sided RDMA,
producers/consumers interact only with their buffers in local memory. The
switch reads items from the sender buffer (step 1) and moves them to the
receiver buffer (step 3) by converting RDMA READS into WRITES (step 2).
The switch coordinates the communication using head/tail pointers (step 4).

203

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

RDMA, achieving direct accelerator-to-accelerator communication is often not possible or
infeasible. As such, the communication control flow must be relayed over the CPU [128].

Finally, to understand our zero-sided RDMA contribution, which directly processes
RDMA traffic in the network layer, we want to mention that RDMA communication can
run over different transport types, such as Reliable Connection or Unreliable Datagram.
The most commonly used transport is the Reliable Connection which requires stateful
connections between any end-points. The reliability is provided through acknowledg-
ments and re-transmissions. While Unreliable Datagram has the lowest complexity
and overhead, most systems require reliable data transfers and need to implement it
manually in the application with added CPU overhead [66, 68]. In addition, Unreliable
Datagram only supports two-sided operations. In this paper, we exclusively use Reliable
RDMA Connections, as one-sided operations are essential to achieving network-initiated
communication, and reliability is vital for most systems.

12.2.2 Programmable Switches

Programmable switches have gained traction in data centers for many years. Unlike tradi-
tional fixed-function switches, they offer flexible, line-rate packet processing capabilities of
up to billions of packets per second. These are primarily attributed to the programmable
packet processing pipeline. In networking, the control plane and data plane are two
fundamental components that handle different responsibilities. The control plane, usually
running on a CPU, is the brain of the network device, making decisions about where
traffic should be directed. In contrast, the data plane is responsible for to carry out
actual operations on network packets and routing traffic to different destinations.

The programmability of the data plane is given by utilizing a reconfigurable architecture
based on match-action tables, extending the utility of switches beyond data routing
to include the offloading of application logic via customized match-action rules. The
programming of this data plane predominantly employs P4 (Programming Protocol-
Independent Packet Processors) [16], a high-level language that allows users to draft
match-action rules to define packet processing in the data plane. Initially conceived for
programmable network switches, P4 is now applicable to numerous systems that process
packets, including SmartNICs and FPGAs. P4 programs, in general, manipulate packet
headers and specify their rewriting while adopting a C-like syntax without allowing
complex constructs such as pointers, floating-point numbers, or loops for line-rate
processing. Besides these constraints, however, many new opportunities can be used
when engineering new algorithms for this platform. The most important thing to note is

204

12.3 Overview of Zero-sided RDMA

that every compiled P4 program can run at line-rate in the switch, which is an important
aspect of implementing zero-sided RDMA in the switch.

12.3 Overview of Zero-sided RDMA
12.3.1 Why Network-driven Communication?

Hardware accelerators are increasingly used for data-intensive processing tasks as they
provide very high processing power compared to the stagnating performance of CPUs.
As such, a lot of work is put into incorporating accelerators such as GPUs and FPGAs
into DBMS [33, 119, 123]. However, when considering the trend of disaggregation and
the adoption of fast RDMA-capable networks in data centers, the challenge of bringing
these two trends together is of growing importance.

CPU-driven data shuffling. When looking at how distributed accelerator com-
munication is typically done today, we see that it is predominantly CPU-driven. We
illustrate this in 1© in Figure 12.2a. Here, the CPU handles communication control flow
while processing tasks are offloaded to the accelerators. This design makes sense because
accelerators are typically built with specific processing tasks in mind and do not cope well
with the control-flow-heavy type of communication handling, and in addition, the RDMA
library stack is readily available and built for the CPU. However, this configuration
causes a tighter coupling between the CPU and accelerator, which can hinder accelerator
utilization due to stalling and CPU-to-accelerator communication overhead. At the
same time, it increases the CPU load, which can be substantial considering the task of
saturating fast networks and accelerator processing.

Accelerator-driven data shuffling. A common solution in related work to overcome
the limitation of design 1© is to implement the RDMA stack (i.e., libibverbs library)
directly in the accelerators as illustrated in 2© in Figure 12.2a. This allows the accelerators
to directly execute RDMA and communicate over the network without CPU involvement
[1, 26, 73]. While this approach has strong merits as it removes the strong coupling
between the CPU and accelerator, we argue that in many cases, such a configuration might
be suboptimal or even impossible for the following reasons: (1) As previously mentioned,
accelerators are built with a specific processing architecture, e.g., the massively parallel
SIMT execution model by GPUs. Therefore, they might perform very poorly on the
control-heavy and often non-parallelizable task of coordinating the communication. (2)
In many cases, the RDMA stack might not even be available for a particular type of
accelerator. Developing a new RDMA stack requires high efforts that not only slow down

205

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

the adoption of accelerators in data centers but might also consume a significant fraction
of the available hardware resources on accelerators. This is in particular problematic
for FPGAs since this limits how much resources are available for the actual application.
(3) Realizing distributed operations, such as shuffling, with one-sided RDMA on an
accelerator is non-trivial and requires the re-implementation of the same logic for each
accelerator type leading to increased system complexity.

Network-driven data shuffling. For these reasons, it is a highly complex task to
develop a communication system that relies on implementing the communication logic
directly in the heterogeneous accelerators. We take a different approach by separating the
data processing and communication logic by offloading the whole communication scheme
into the network. This overcomes the challenges mentioned above by taking away the
burden on the accelerator side and providing a clean separation of concerns. Moreover,
with programmability in the network, CPUs can be removed from the critical path of
communication between accelerators. Programmable network components typically come
in the form of SmartNICs or programmable switches. While both types can be used
to drive communication on behalf of the accelerator, a programmable switch has many
benefits over SmartNICs. Among these reasons is guaranteed line-rate processing for all
connected nodes and the possibility of realizing coordination-free communication schemes
due to the centralized position of the switch. We further discuss this in Section 12.6.3.

12.3.2 How Does Zero-sided RDMA Work?

Our approach to achieving zero-sided RDMA builds on the ability of the centralized
programmable switch to initiate and direct data traffic directly in the data-plane at the
aggregated line rate of all connected accelerators — called processing units (PUs) in the
sequel. By placing the communication scheme in the switch data-plane, the switch can
initiate one-sided RDMA operations (READ & WRITE) to PUs. At the same time, the
PUs are completely oblivious to the network communication scheme, which not only has
the benefit that the PUs do not have to issue communication primitives actively but also
removes the distributed coordination for communication flows such as data shuffling or
even replication.

Communication abstractions. On the side of the PUs (i.e., accelerators), a circular
buffer is the core abstraction to participate in zero-sided RDMA data transfers. The
design goal of the buffer is to allow PUs to push and pop items with only simple local
memory operations while the switch transfers data fully asynchronously without any
sender/receiver PU involvement. The coordination between the switch and PU is handled

206

12.3 Overview of Zero-sided RDMA

(3 fragments) Write DataRDMA WRITE

Read Resp

ACK

Incr HeadRDMA WRITE

Switch ConsumerProducer
Read Data

RDMA READTail

Tail

ACK
Incr Tail

RDMA WRITE

ACK

Tail

Head

Head

Tail

Head

Head

psn: 0x100

psn: 0x200

psn: 0x100

psn: 0x102

psn: 0x202

psn: 0x202

psn: 0x203

psn: 0x203

psn: 0x103

psn: 0x103

1

2

3

4

5
(updated by producer)

Figure 12.3: Sequence of network packets for a switch-driven 1:1 data flow. The switch
transfers data by reading from the producer and converting the READ
response into a WRITE to persist the data in the consumer memory.

with two pointers to the buffer, a head and tail pointer. The head pointer indicates where
the next data item can be written, and the tail pointer indicates where the next data
item can be read.

Flow of data transfers. The overall flow of transferring a data item between one
producer and one consumer using zero-sided RDMA is illustrated in Figure 12.2b. The
switch mirrors the state of the producer and consumer buffers (head and tail pointers) to
know when a producer has an item to send and whether the consumer has free space. To
transfer an item, (1) the switch first issues an RDMA READ on data in the producer
buffer. (2) The READ response is then converted on the switch into an RDMA WRITE
and (3) written into the next free slot at the consumer. When converting a READ
response into a WRITE request, the switch does not need to buffer or modify the data
payload. (4) After the remote NIC acknowledges the RDMA WRITE, the head pointer
of the consumer is incremented to indicate the new item. The tail pointer is incremented
on the producer, which frees up the item in the buffer for reuse. We cover the detailed
design in Section 12.4 to enable zero-sided data transfers.

Hardware requirements. Zero-sided RDMA can easily be used by many hetero-
geneous devices since only a few requirements must hold for participating in zero-sided
RDMA: (1) the device must have memory in which to store the buffer data structure
(2x 4 bytes for head/tail pointers and memory for data items), (2) the memory must be
accessible by an off-the-shelf RDMA-enabled NIC and (3) the memory consistency model
must ensure that a write to an item and the subsequent update to the head pointer is

207

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

executed in order. In the case of weaker consistency models (like GPUs and ARM CPUs),
memory fences can be used to ensure the ordering of writes. (4) In addition, to avoid
stale reads, accelerators with caches must ensure that local reads and writes to the head
and tail pointers of the buffer are directed to the RDMA-registered memory. For Nvidia
GPUs this is achievable with the volatile keyword. We support accelerators with both
little and big endianness. The switch processing pipeline operates in big-endian and as
such to support little-endian systems, we perform endian conversion (if needed) on the
switch in order to process the head and tail pointer values.

Software requirements. In order to enable zero-sided RDMA from the software
side, it must be possible to register the accelerator memory of the zero-sided buffers to
the RDMA-enabled NIC and establish an RDMA connection between the switch and
PU. This is not a performance-critical task and only has to be done once in the setup
phase. Hence, a rather small CPU is sufficient to carry out these management-related
tasks. Important is that this CPU is not involved in the actual data transfers.

As an example, we discuss the details to enable zero-sided RDMA for an FPGA (or
any other PCIe device): The memory of an FPGA can be exposed through a PCIe bar
register and registered to the RDMA NIC. Registering external memory of PCIe devices
as RDMA-enabled memory is supported by the libibverbs library using PeerDirect
[100]. This requires a kernel driver that implements peer_memory_client [90] for the
given device. With that, the RDMA NIC can directly access the FPGA’s memory through
PCIe without the involvement of the CPU or operating system using peer-to-peer DMA.

12.3.3 Integration into a DBMS

We now cover the basic steps needed to integrate zero-sided RDMA into DBMSs. The
most important question is when a zero-sided communication flow between accelerators
is set up and torn down in a DBMS. Moreover, other important aspects of cloud DBMS
are the support for elasticity of flows as well as the use of zero-sided RDMA in different
DBMS architectures.

Setting up and tearing down zero-sided flows. Here, different variants are
possible. One variant is that the communication flows are instantiated when a DBMS
cluster is launched, and different buffers are reserved, allowing a cluster node to send
data to any other node. However, we also support variants where flows are instantiated
and deployed ad hoc. In such a scheme, before query execution, a coordinator node
(e.g., using a CPU) has to initialize the communication flow by setting up the buffers on
the processing units. Subsequently, it initializes the communication flow by sending the

208

12.4 Switch-driven Data Transfers

buffer locations to the switch. During execution, we stress that no involvement is needed
by the coordinator (i.e., no CPU is involved anymore). The switch handles the tear-down
of flows. Once it detects that all producers are finished, it propagates the information to
consumers and closes the RDMA connections.

Supporting elasticity in zero-sided flows. In order to support elasticity, we
additionally allow producers and consumers to seamlessly be added or removed anytime
from the communication flow during execution. We show an experiment for this in our
evaluation in Section 12.7. The benefit of switch-driven communication is that changes
to the communication flow will not incur any connection changes to already connected
processing units. In fact, in e.g., a load-balancing communication flow adding another
consumer at runtime will be completely oblivious to the producers.

Support for different DBMS architectures. Zero-sided RDMA integrates well
into common DBMS architectures such as shared-nothing and shared-storage. For shared-
nothing architectures, data is predominantly shuffled between nodes storing partitioned
tables. Zero-sided RDMA can effortlessly interconnect processing units through the
provided communication schemes while saving communication-related overhead and
complexity at the connected nodes. Shared-storage architectures are gaining traction in
the cloud due to their flexibility to scale in and out by placing tables on specific storage
devices. This architecture can also benefit a lot from zero-sided RDMA in the way that
it facilitates direct storage-to-accelerator communication.

12.4 Switch-driven Data Transfers

To realize zero-sided RDMA, we have to enable a switch-driven data transfer scheme
that transfers data from producers to consumers without their active involvement.

Core challenges of realizing zero-sided RDMA. A core challenge of realizing
zero-sided RDMA is to map the data transfer logic to the pipelined execution model of a
switch, which provides a limited set of instructions and memory per stage. In addition,
since all connected PUs are not directly connected to each other but are connected to the
switch, the switch must adhere to the exact protocol to be compliant with off-the-shelf
RDMA NICs. This includes managing stateful RDMA connections with reliability and
correctly propagating congestion- and flow-control information from the consumers to
the producers within the switch’s data-plane to guarantee execution at line-rate.

209

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

The following explains how zero-sided RDMA can be implemented on the switch for
a 1:1 data transfer. In subsequent sections, we will explain how to extend zero-sided
RDMA to more complex flows (e.g., N:M flows or load balancing).

Overview of a 1:1 flow. The overall sequence of network messages for a data
transfer from a single producer to a single consumer is depicted in Figure 12.3. The
switch logic can be grouped into five steps: in 1©, the switch evaluates whether it is
possible to initiate a data transfer, next 2©, the response of the read, which can be in
multiple fragments, is rewritten into an RDMA WRITE to the consumer, in 3© the ACK
from the data write triggers a new RDMA WRITE to increment the head pointer of
the consumer buffer. In 4©, the tail pointer of the producer is incremented, and the
subsequent ACK packet 5© is recirculated back to the head of the switch processing
pipeline to step 1©. With that, the switch continuously evaluates whether it is possible
to issue a data transfer for a given producer-consumer pair. Recirculation is a technique
that virtually connects an output port in the switch with an input port, such that packets
can pass through the pipeline multiple times. This resembles a looping construct. We
initiate this main control loop per flow upon successful completion of the connection
setup of the PUs. In the following, we present how we initialize the data transfer in step
1© and rewrite the RDMA READ into an RDMA WRITE in step 2©. Furthermore, we
discuss which state is needed on the switch for achieving RDMA communication.

1© Initiating data transfers. As a first step (1© in Figure 12.3), the switch evaluates
whether it is possible to initiate a data transfer. The control flow for this step is
illustrated in Figure 12.4. The switch uses a pipelined processing model which operates
on a per-packet basis and executes logic in a sequence of stages. By accessing registers
and applying simple match-action-rules (i.e., actions can be arithmetic operations in each
stage), we can express the logic needed to decide whether a data transfer can be initiated
by letting a packet traverse the pipeline.

In the ingress pipeline, the switch first checks whether the producer has items in the
buffer to send and whether the consumer has space. If neither the producer has data nor
the consumer space available, the packet is recirculated. Recirculating the packet back to
the ingress is necessary because while-loops are not supported in the pipelined processing
model. We use unique indexes for all producers and consumers to identify a connection
between a specific producer & consumer and to access their respective registers, e.g.,
pointer values and packet-sequence numbers (PSNs). PSNs are used to detect missing
or duplicate packets. With that information, we can construct communication schemes
between multiple producers and consumers. We apply adaptive batching such that if a
producer has generated multiple items that fit into the consumer, all the items will be

210

12.4 Switch-driven Data Transfers

Stage 0 Stage 1 Stage 2 Stage 3

Producer
Tail Pointer

Stage 4

Producer
Head Pointer

In
gr

es
s

P
ip

el
in

e
E

gr
es

s
P

ip
el

in
e

PSN of Prod.
 Pointer QP

PSN of Cons.
Pointer QP

PSN of Prod.
Data QP

PSN of Cons.
Data QP

Virtual Addr.
Offset Calc.

yes
Producer data

available? yes
Consumer space

available?

no no

Sw
itc

h
R

eg
is

te
rs

C
on

tr
ol

 F
lo

w

Egress pipelinerecirculate packet

Consumer
Tail Pointer

Consumer
Head Pointer

Send out RDMA READ

PSN

Cons. Index
Prod. Index

Batching size:
p_items > 0 c_space > 0 set PSN+Address

Ingress pipeline

min(p_items, c_space)

Figure 12.4: Switch state needed to initialize a data transfer using a pipelined execution
model in the switch. The steps of reading head/tail pointers of the producer
and consumer, deciding on the batch size of elements to transfer, and sending
the data need to be mapped to a sequence of stages in the switch. All steps
are executed sequentially.

transferred in one big RDMA READ. This optimization yields better efficiency as the
overhead from control messages is relatively reduced. If these checks pass, the packet
is forwarded to the egress pipeline, where necessary header fields are set to create an
RDMA READ request which adheres to the RDMA protocol.

2© Data payload rewrite. In the second step (2© in Figure 12.3), the read response,
containing the data payload to be transferred to the consumer, is streamed through
the switch. Here the switch rewrites the response of the RDMA READ into an RDMA
WRITE. Rewriting the RDMA operation type entails updating the relevant header
fields and making it adhere to the correct packet sequence numbers and virtual address
expected by the consumer. In terms of bandwidth consumption of the payload transfer
from the producer to the consumer, rewriting the RDMA READ into an RDMA WRITE
consumes the exact same bandwidth as a CPU-driven transfer would. Figure 12.3 step
2© shows this rewrite by the switch for three fragment transfers of a payload.

The read response might be fragmented into several packets if the payload exceeds 1024
bytes, as this is the default maximum payload size (MTU) for RoCEv2. The challenge
here is that each packet from the read response must be assigned a new packet sequence
number (PSN) according to the consumer connection. Instead of naively assigning new
PSNs to the RDMA WRITE packets in the order they arrive, we calculate an offset
between the producer-side and consumer-side sequence numbers such that our protocol is
resilient to any network reordering of fragments (e.g., a fragment with PSN 0x101 arrives
on the switch after fragment 0x102). As such, the assigned PSNs on the consumer side

211

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

will correctly map to the right fragments, allowing the target consumer-side NIC to assert
the right order for the memory write.

Memory requirements on the switch. The programmable switch in zero-sided
RDMA does not need to buffer data items in its memory. This is because data transfers
are only initiated when there is enough free space in the consumer buffer in step 1©. In
fact, the switch only rewrites the headers of incoming packets in a streaming manner (at
line rate) such that data items are immediately transferred to the consumer’s buffer.

To enable zero-sided RDMA on the switch, we need to maintain the necessary metadata
information in the switch. We can group the state needed on the switch into the static
connection state which does not change during communication and the dynamically
changing state. For RDMA, the static connection state includes a remote key and
destination queue-pair number to identify the remote RDMA queue-pair, along with its
IP and MAC addresses. Since none of these header fields change during the course of
communication, we store this information in the static switch tables upon connection
setup. However, for the dynamically changing state, such as packet sequence numbers
(PSNs) and virtual remote addresses, we need to change these values on a per-packet
basis, and they need to be stored directly in registers on the data-plane. Since the switch
is in the middle of the communication channel between the PUs, the switch must maintain
PSNs and addresses for all connected end-points. In addition to the RDMA-specific state,
we also store the buffers’ head and tail pointer values in switch registers. This sums up
to around 50 bytes in register memory and around 700 bytes of static table data for one
producer-consumer pair connection. Concretely, more than 1500 concurrent flows can fit
on the first-generation Tofino switch which is typically sufficient for most single-rack use
cases. We estimate that with more recent programmable switches with longer pipelines
and bigger state, the number of supported concurrent flows will be substantially higher.

12.5 Complex Flows & Use Cases
12.5.1 N:M Data Shuffling

Data shuffling between multiple senders and receivers (i.e., an N:M shuffle) is very
common in typical distributed DBMSs, due to the need for re-partitioning of tables in,
e.g., distributed joins. However, these types of communication flows can be challenging
due to the connection complexity of many sender/receiver combinations, which typically
can even result in RDMA queue-pair cache thrashing on the NIC [28].

212

12.5 Complex Flows & Use Cases

Switch
Consumer

Consumer

A A

B

B

D
C

Producer
Key A:

Key B:
C

D
Producer

Key A:

Key B:

Coordination and fairness for multi-
producer to single consumer.

(a) N:M Shuffle

Switch

A

B

C

Fast

Slow

Producer

A

Producer B

C

Consumer

Consumer

ConsumerPerformance scalability with # consumers.
Avoid race conditions for concurrent transfers.

(b) N:M Load Balancing

Producer

Switch
A

A

A

Producer
B

B

B

B

A

Consumer

Consumer

ConsumerAggregating min. available consumer space.
Atomic & consistent transfer for all consumers.

(c) N:M Replication with Global Order

Figure 12.5: Communication flows supported with zero-sided RDMA. All flows are com-
pletely switch-driven and require no processing or coordination by connected
processing units. The core challenges per flow are highlighted in the text
boxes.

213

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

With our centralized switch design, instead, we can reduce the connection complexity
significantly as each communication end-point is only connected to the switch. Specifically,
the switch can connect multiple producers to one consumer by handling the coordination
of multiple writers into the same consumer-side memory directly in the data-plane of the
switch. As such, at the consumer side, only one connection is needed for all incoming
data, which both reduces memory overhead and also has the benefit that the PU only
has to poll one memory location for incoming messages for multiple producers. In a
key-based shuffle flow with N producer end-points and M consumer end-points, where
each producer needs to send to multiple destinations based on, e.g., a join-key, we need
N × M producer-side buffers and connections. In contrast, on the consumer-side, only
M buffers are needed. The composition of client-side buffers and connections is shown in
Figure 12.5a.

To handle this coordination between multiple producers connected to one consumer, we
implement switch-side logic, which initiates data transfers for each producer separately in
a round-robin manner. While a round-robin scheme might seem inefficient at first glance,
the switch can iterate over a single producer in a matter of nanoseconds. As such, the
latency overhead of iterating each producer round-robin to detect when a data transfer
can be initiated is negligible, considering normal RDMA microsecond network latency.
Moreover, this scheme has the benefit that producers are treated fairly and ensures a fair
bandwidth share among producers.

12.5.2 Advanced Flows & Features

Switch-driven data transfers can also provide more advanced flows (i.e., load balancing,
replication) and features (i.e., fine-grained quality of service guarantees), which open up
interesting applications in cloud DBMSs.

Load balancing. Distributing work evenly across processing units in a distributed
DBMS is non-trivial, given unforeseen network congestion or processing contention.
Multiple schemes have been devised to overcome this [31, 77, 155], which require additional
coordination overhead, e.g., through work-stealing or a centralized server-side dispatcher.

With zero-sided RDMA, we provide a communication flow between N producers and
M consumers, providing automatic load balancing across all consumers. This flow is
realized without any form of producer- or consumer-side coordination since the switch will
transparently initiate the data transfers between producers and consumers. The overall
buffers and connections needed for this are only N + M as illustrated in Figure 12.5b.

214

12.5 Complex Flows & Use Cases

The key to achieving this communication flow is introducing consumer-specific thread-
like processing on the switch, where it is evaluated when a data transfer can be initiated
from any of the producers, essentially adapting the data transfer rate from all producers
to each consumer independently. We provide more details on how we realized this in
Section 12.6.1.

Replication with ordering. Lastly, zero-sided RDMA also provides a replication-
based communication flow in which items from each producer are multicasted out to all
consumers.

Multicast has many applications in distributed DBMSs, such as replicated joins [126],
or state replication [51, 82] for providing availability. While RDMA already has multicast
capabilities, it is only supported through the Unreliable Transport and two-sided verbs.
As such, it comes with the cost of higher CPU overhead at the communication endpoints
due to the two-sided communication and the cost of ensuring reliability. With zero-sided
RDMA, we realize replication without any coordination or computational involvement
on the processing units by initializing, steering, and multicasting the data directly in the
data-plane of the switch.

Traditionally, effects like reordering of packets in the network can cause the received
data at each consumer to observe a different order. However, as our zero-sided approach
transfers data sequentially with separate acknowledgments from each consumer, we can
ensure globally ordered data transfers to all consumers without introducing any overhead
at the processing units.

Fine-grained quality of service. Finally, another important aspect is that many
DBMSs wish to prioritize certain processing jobs or queries over unimportant background
jobs, e.g., to provide certain SLAs. However, ensuring a certain quality of service
(QoS) or prioritization of parts of the network traffic (e.g., for a time-critical query) is
hard to achieve as the available Priority-based Flow Control (PFC) requires network
reconfiguration and only provides a means of prioritizing different classes of traffic. As
such, PFC does not allow setting fine-grained prioritization (e.g., for each zero-sided
RDMA flow) and adapting these settings at runtime.

To address this, we allow systems to adjust the QoS on per-flow granularity. The
key to achieving this is to throttle down any zero-sided data transfers to a desired rate
through congestion control primitives native to RDMA over Converged Ethernet (RoCE).
With this feature, splitting up the available bandwidth for contending flows into any
ratio desired is trivial. We show the ability to do fine-grained flow prioritization later in
Section 12.7.2.

215

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

12.5.3 Use Cases

Zero-sided RDMA offers DBMSs with easy-to-use flow abstractions that integrate well
into typical DBMSs use cases. We iterate a set of common use cases that can be trivially
realized with zero-sided RDMA over various hardware accelerators.

Distributed joins (OLAP). In analytical data processing, distributed joins account
for a substantial amount of the runtime as they have to shuffle big tables over the network.
Due to their popularity, they have seen a lot of work to accelerate with hardware devices
such as GPUs and FPGAs in the last decade [19, 88, 123]. Through our key-based
shuffle communication flow, we simplify the join implementation by abstracting away
all communication complexity from the processing unit. As such, the only task for the
processing unit is to execute the actual join logic, as the producer and consumer buffer
abstraction only has a few simple reads and writes into local memory for pushing or
popping items.

Scan operators (OLAP). Table scans with filters are an interesting operator to
accelerate due to their computational simplicity but high bandwidth demands, making
them a great fit for specialized accelerators that meet these demands. In disaggregated
compute and storage setups, it is often desirable to push down the table scan as close to
the data to reduce the amount of data to ship over the network. We argue that zero-sided
RDMA fits this use case well since the CPU can be completely avoided on storage nodes,
making it possible to directly interface with Near Data Processing devices which carry
out the table scan on the storage servers [132].

Replication (OLTP & OLAP). Lastly, with the zero-sided replication flow, we
trivially support use cases involving data replication. These entail database replication
[71], state-machine replication [51, 76, 82, 134], or even joins that rely on replication of
tables.

12.6 Implementation Details

In this section, we take a closer look at how we realized the more complex communication
flows involving load balancing or replication in N:M scenarios. We conclude with advanced
challenges and a discussion of alternative zero-sided implementations.

216

12.6 Implementation Details

12.6.1 Load Balancing and Replication

In the following, we take a look at a set of unique technical challenges when realizing
load balancing and replication on the switch.

Many-to-many load-balancing. First, we present how we realize load-balancing
between multiple producers to multiple consumers. This communication design aims to
enable an even distribution of data to the consumers based on their individual processing
speeds, without requiring any additional coordination or overhead at the processing units.
We cannot simply extend the 1:1 scheme by alternating between different consumers
because a single data transfer done by a switch thread can only saturate the bandwidth
of a single consumer. Therefore we identify two challenges associated with this flow
from the switch’s perspective: (1) ensuring efficient scaling in line with the number of
processing units, and (2) preventing race conditions that could occur due to simultaneous
data transfers.

To provide efficient scaling, we extend the switch threading mechanism (i.e., con-
tinuous packet recirculation after data transfers) to not only transfer data between a
specific producer-consumer combination but instead we spawn a switch thread packet
per consumer which each iterate over all producers for the communication flow. With
this, we can concurrently issue data transfers for each consumer. However, as previously
mentioned, it comes with the challenge of avoiding race conditions in the producer-side
switch registers. The reason for this is that the switch threads per consumer might try
to issue a data transfer from the same producer at the same time, which would result in
a race condition and inconsistent register state. To avoid this, we introduce a lock per
producer such that only one switch thread can initiate a data transfer from a producer
at any given time. We introduce this lock in a register of the switch pipeline and let each
switch thread test-and-set the producer lock. If a switch thread fails, it will recirculate
and try the next producer. If it succeeds, the lock will be taken, and a data transfer will
be initiated for the producer and consumer pair.

By employing this design, each switch thread, specific to a consumer, will aim to read
from all producers in a round-robin fashion. This ensures a fair distribution of data from
all producers to each consumer. Additionally, it allows each consumer to process and
remove data from its buffer at its own pace, independent of the other consumers.

Many-to-many replication. For the replication communication flow, the goal is
to do switch-driven multicast to all consumers without any overhead or coordination at
the processing units. The challenge here is twofold: (1) how to accumulate the global
minimum space available at all consumers and (2) how to ensure atomic & consistent

217

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

transfer for all consumers. In our implementation, the replication of packets to be
multicasted happens between the ingress and egress of packets in the programmable
switch. Therefore any logic and state needed to modify packets specifically for each
consumer have to be placed in the stages of the egress pipeline.

Computing the global minimum buffer space available for all consumers cannot be
trivially implemented using a for-loop over the head and tail registers because a packet
can only access a specific register (e.g., all consumer head values) once per pipeline. To
work around this constraint, we recirculate a packet N − 1 times to accumulate the
minimum space over all consumers in the communication flow. The recirculating packet
contains a temporary header that stores the current consumer index and the minimum
space value between the pipeline passes. Once the head and tail values for the last
consumer have been read, the switch asserts that the current producer has something to
send and sends out the RDMA READ request. Each response fragment of the RDMA
READ is then multicasted N times (step 2© in Figure 12.3) and rewritten to RDMA
WRITEs that target the appropriate consumer buffer memory. These N write requests
generate N acknowledgments coming from each consumer connection. The switch then
counts all acknowledgments before it increases the consumer-heads. We accumulate all
acknowledgments to ensure that either all consumers see a new item or none of them in
case a drop occurred for a data transfer. Upon receiving the last ACK from write data,
the switch multicasts N times the Incr-Head RDMA WRITE to each consumer. After
receiving N acknowledgments as before, the switch increases the tail from the current
producer and starts the sequence again.

12.6.2 Further Challenges

The key to achieving zero-sided RDMA is that the PUs do not directly communicate;
instead, all communicate with the switch. This introduces unique challenges such as
handling of queue-pair state, ensuring reliability, and congestion control, which we will
address in this section.

Buffer-state updates. One challenge of zero-sided RDMA is how to propagate
the local buffer changes of PUs (i.e., when a producer pushes a new item or a consumer
frees an item) to the switch. The switch uses this information to determine when new
data transfers can be initiated. Here, there are two different mechanisms to consider:
poll-based or doorbell-based switch state updates. In the poll-based mechanism, the
switch polls the head and tail pointers of the PUs with RDMA READ operations issued
by the switch. This has the benefit that neither the producer nor the consumer has to

218

12.6 Implementation Details

execute any RDMA operations actively. However, it naturally comes with the downside
of added latency. To this end, we expose the polling interval as a configurable parameter
as it is very application specific what the requirements for latency or throughput are.
However, for PUs that already have the possibility of issuing RDMA WRITEs themselves
(e.g. a network-enabled FPGA or CPU), the doorbell-based mechanism allows PUs to
directly send out an update to the switch to indicate changes in their buffer state (i.e., new
items or free space). One could contend that now the PUs could potentially handle all
communication, taking charge of the communication scheme and data transfers. However,
doing so would negate the advantages of network-driven data transfers, which include
high-level communication flows such as load-balancing, replication, and the distinct
separation between control and data paths. While the introduction of an additional
doorbell mechanism might increase the complexity of the PUs it can significantly decrease
communication latency, as demonstrated in Section 12.7.1.

Ensuring reliability. While the RDMA Reliable Connection transport already
provides network reliability, since the switch is operating on the Data Link Layer (L2),
any packet can be dropped in the network, and it is up to the switch to adhere to
the RoCEv2 protocol [104] when this happens. In essence, any of the network packets
illustrated in Figure 12.3 can be dropped, which, without any further action, would
cause the data transfer to halt. If a drop occurs, the switch either detects it through a
configurable timeout or gaps in the sequence numbers. If the drop happened during data
transfers (i.e., step 2©), the switch reissues the data transfer request (i.e., RDMA READ
on the producer device). However, if the drop happened after receiving the ACK from
the data transfer from the consumer, the transfer was successful, and it only reissues the
subsequent RDMA WRITEs for the head and tail pointers.

Congestion control. Furthermore, to handle incast scenarios (e.g., two producer
nodes with 2x bandwidth and a consumer node with 1x bandwidth), we integrate
congestion control into our zero-sided communication scheme on the switch. The switch
emits explicit congestion notifications whenever a link becomes congested, similar to
RoCEv2. When the NIC of the producer receives the congestion notification, it throttles
down the rate of outgoing packets, removing the congestion bottleneck.

12.6.3 Discussion

Offloading the network communication from the hardware processing units can be realized
in different ways. We now discuss the centralized or decentralized approaches, compare

219

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

their strengths and weaknesses, and subsequently touch on the possibility and challenges
of single vs. multi-rack setups.

Decentralized SmartNIC-driven approach. Instead of using the main CPU
to carry out the communication, an approach is to use a SmartNIC to issue RDMA
operations on behalf of the accelerator, such as the CPU-based Nvidia BlueField or FPGA-
based Mellanox Innova SmartNICs, or even FPGA-based SmartNICs that implement the
RDMA stack directly in the FPGA [73, 136].

The benefit is that a specialized compute unit embedded in the NIC carries out the
communication instead of the main CPU. Concrete examples of this approach are Lynx
[128] and FpgaNIC [136]. Lynx and FpgaNIC aim to enable direct GPU communication
by letting the GPU communicate without any CPU involvement or need for RDMA
operations directly on the GPU.

However, a decentralized SmartNIC-driven approach has several downsides. First,
realizing one-sided RDMA communication schemes is highly complex due to the dis-
tributed coordination for remote memory accesses. Adding to the fact that typical
CPU-based SmartNICs are too weak to saturate line-rate throughput for many scenarios
properly [124], SmartNIC-driven communication schemes are best realized on more
performance-efficient compute architectures such as FPGAs. This, in turn further adds
to the complexity when considering decentralized one-sided communication schemes.
Second, since a dedicated SmartNIC is needed per server, the hardware cost is directly
proportional to the number of servers. As the cost of a SmartNIC can be up to 10×
more expensive than a normal RDMA-enabled NIC for the same link speeds, the added
cost for a disaggregated solution is non-negligible.

Centralized programmable switch-driven approach. We argue that a switch-
driven design of direct accelerator communication is preferable. The reasons for this are:
First, a programmable switch provides the unique possibility of doing line-rate processing
for all connected nodes. In terms of realizing a zero-sided RDMA communication scheme,
the switch can natively scale out to full link throughput for all connected devices without
hitting any performance bottlenecks. Switch-driven communication is different from,
e.g., CPU-driven communication, where with increasingly faster networks, saturating
the throughput of just one link becomes increasingly difficult. Second, the centralized
position of the switch in the network allows us to realize communication flows (as
covered in Section 12.5) without expensive distributed coordination. Lastly, offloading
the communication onto a programmable switch with many ports results in a cheaper
overall hardware cost for typical scale-out solutions compared to decentralized per-server
solutions.

220

12.7 Experimental Evaluation

Data center deployments. In many cloud deployments, the jobs for query
processing are scheduled on compute nodes within a single rack connected by a Top-
of-the-Rack (ToR) switch to increase locality [56, 145]. This is crucial for distributed
operators (e.g., joins) to have high all-to-all shuffle bandwidth.

In this paper we focus on a single-switch setup to mirror a typical rack setup but
cross-rack communication is supported by zero-sided RDMA out of the box. Regular
RDMA communication between end hosts (and initiated by end hosts) can be used
across racks, traversing multiple switches. This is the same for switch-initiated RDMA
traffic. Nontheless, there are several aspects left for future investigation: e.g., the added
latency between the switch and connected accelerator devices, asymmetric bandwidth,
and possible implications to congestion control. Moreover, with multi-switch setups, we
envision the possibility of graceful failover between switches in case of failures. This is
possible since the runtime state stored on each switch, e.g. fill-levels of the buffers and
connection state, can be recovered by reading them out from participating PUs.

Finally, a limiting factor for many in-network processing ideas is that data streams
are often encrypted in data centers, making payloads opaque to the processing element.
This is however not an issue for zero-sided RDMA: the switch does not need to read or
modify the payload of the transferred data items, but merely modifies the header and
forwards the packets.

12.7 Experimental Evaluation
With our zero-sided RDMA contribution, we mainly target distributed analytical work-
loads, which is the focus of the evaluation. We first evaluate the efficiency of zero-sided
RDMA through a set of microbenchmarks that vary in different performance-related
parameters. Subsequently, we investigate the benefit of switch-driven data transfers in
the context of distributed database systems by evaluating two DBMS use cases (i.e., a
distributed join and a full TPC-H query) using a disaggregated accelerator setup.

Setup and implementation. We evaluate our zero-sided RDMA communication
scheme in a cluster of 4 nodes running Ubuntu 18.04 LTS with Linux kernel 4.15.0. Each
node is equipped with an Intel(R) Xeon(R) Gold 5120 2.2GHz CPU, an Nvidia V100
GPU, and a Mellanox ConnectX-5 that is connected to an Intel Tofino switch [93] via
100G RoCEv2. Our code written in C++20 is compiled with gcc-12 and CUDA-12. The
switch’s control-plane logic is implemented in C++, and the switch’s data-plane logic is
implemented in P4 and compiled using Intel SDE-9.11.0 [53]. For all experiments, unless

221

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

4KiB Items 512KiB Items

1 2 4 1 2 4

0B/s
2GiB/s
4GiB/s
6GiB/s
8GiB/s

10GiB/s
12GiB/s

Concurrent flows

D
a
ta

 b
a
n
d
w

id
th

CPU-driven (1 CPU core)
CPU-driven (4 CPU cores)

Zero-sided (0 CPU cores)

Figure 12.6: GPU-to-GPU transfer: Zero-sided RDMA vs. a CPU-driven one-sided
RDMA baselines for 1:1 GPU data transfer with persistent GPU kernels.
The CPU-driven baselines use 1 or 4 CPU cores; our approach does not use
the CPU.

otherwise stated, the polling-based mechanism is used for detecting new data items on
producers and fill-grade on consumers. The source-code is available at [57].

12.7.1 Efficiency of Zero-sided RDMA

Zero-sided vs. CPU-driven transfer (GPU-to-GPU). In this experiment, we
focus on accelerator-to-accelerator communication across two nodes. As accelerators
in this experiment, we use a homogeneous setup (GPU-to-GPU) to provide the same
execution speeds on all senders and receivers. At the end of the evaluation, we also show
heterogeneous setups with GPUs and FPGAs.

The data transfers for all variants in this experiment (i.e., CPU-driven and zero-
sided RDMA data transfers) are all directly from GPU-to-GPU without intermediate
copies over the main memory. Moreover, in both the CPU-driven baseline and our
zero-sided communication, we execute the exact same GPU kernels and use the same
buffer abstraction on the GPUs. However, for the CPU-driven baseline, we let the CPU
detect new items in the buffer and issue the RDMA data transfers on behalf of the
GPU. The GPU kernels are executed as persistent kernels to minimize any kernel launch
overhead for both variants.

Figure 12.6 shows the bandwidth between CPU-driven and network-driven communi-
cation in our experiment. The CPU-driven baseline issues asynchronous RDMA data
transfers and utilizes persistent GPU kernels to reduce synchronization overhead between
the CPU and the GPU. We report the data bandwidth for varying item sizes. In addition,
we test with a different number of parallel producer and consumer communication flows
to evaluate different communication loads of realistic scenarios (e.g., multiple concurrent

222

12.7 Experimental Evaluation

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

12GiB/s

4KiB 64KiB 1MiB
Item-size

D
a
ta

 b
a
n
d
w

id
th

Max. Batch-Factor: 1x 4x 16x 64x

Figure 12.7: GPU-to-GPU transfer: 1:1 GPU data transfer with adaptive batching for
different tuple sizes. Bigger batch sizes yield more efficient data transfers.

queries running at the same time or one query using multiple flows for intra-query
parallelization).

For small item sizes (4 KiB), we can see that multiple CPU cores are necessary
to achieve comparable performance to the zero-sided approach when increasing the
concurrent flows. In fact, with small item sizes, one CPU core is not sufficient to handle
all flows (see the red bar in Figure 12.6, left-hand-side). This indicates that even for
persistent GPU kernels that overcome the GPU kernel launch overhead data transfers
are inherently CPU bound. In our zero-sided approach, the switch instead handles all
flows completely independently and as such scales perfectly with the number of flows
without the need to use a dedicated CPU per flow as in the CPU-driven scheme (red and
green bars). Moreover, for the CPU-driven scheme and zero-sided RDMA, another effect
is that the communication overhead is reduced for larger item sizes, which enables higher
transfer bandwidths with fewer concurrent transfers.

Adaptive batching. In the next experiment, the main objective is to understand how
adaptive batching implemented in the switch can improve the performance of zero-sided
RDMA. This optimization mitigates the overhead of smaller transfers by seamlessly
grouping multiple items into a single transfer. We measured throughput across a variety
of batching factors and three distinct item sizes: 4 KiB, 64 KiB, and 1 MiB. The results
are depicted in Figure 12.7 and show how the data bandwidth is influenced by item-size
and batch-size. The results reveal that the use of adaptive batching can minimize the
overhead of smaller transfers. However, the effect of batching becomes less pronounced
as the item-size increases. This is because a data transfer only with one large item is
enough to almost saturate the network. The performance still increases slightly with
larger batches as the overhead of buffer head and tail pointer updates are amortized
further. However, choosing a too-large batch size can have detrimental effects on data
transfer latency, especially in scenarios with network congestion. The reason for this is

223

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

2 Nodes

3 Nodes

4 Nodes

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

NVSHMEM™ Zero-sided RDMA

Figure 12.8: GPU-to-GPU shuffle: Comparison of zero-sided RDMA GPU-to-GPU shuffle
bandwidth with NVSHMEM [103], that only allows GPU-to-GPU communi-
cation and requires custom coordination.

that larger data transfers will consist of a higher number of fragments, increasing the
probability that one fragment is lost and the data transfer has to be reissued. We found
that a batching size no larger than 4 MiB can help to saturate the available network
bandwidth even for just one producer and consumer, but at the same time performs very
stable under congestion.

Comparison with CPU-less shuffling (GPU-to-GPU). Shuffling data between
nodes is crucial for many distributed database operators such as joins or aggregation. In
Figure 12.8, we report the data bandwidth for a GPU-to-GPU shuffle scenario where we
compare against NVSHMEM (version 4.0.2) [103]. NVSHMEM is the only commercial
library that supports GPU-initiated data transfers to remove the CPU from the control-
path and is as such a comparable baseline to zero-sided RDMA. For the experiment, we
use the non-blocking PUT primitive of NVSHMEM for efficient one-sided data transfers.
We use item sizes of 512KiB and execute 2 shuffle kernels on each GPU node. After
launching the GPU kernels, no CPU cycles of the host system are spent on communication
primitives for either zero-sided RDMA or NVSHMEM. Both setups use RDMA (RoCE).
For simplicity, we compare against NVSHMEM without any distributed coordination and
use a non-skewed workload and thus report the best-case bandwidth for NVSHMEM.

As can be seen in Figure 12.8, the reported bandwidth is almost equal since both NVSH-
MEM and zero-sided RDMA manage to fully utilize the link bandwidth. However, an
important difference between zero-sided RDMA and NVSHMEM is that while zero-sided
RDMA can integrate many different types of heterogeneous accelerators, NVSHMEM
works exclusively for GPU-to-GPU transfers. Furthermore using NVSHMEM requires
a decentralized protocol between GPUs to coordinate data transfers which is provided

224

12.7 Experimental Evaluation

0B/s

10GiB/s

20GiB/s

30GiB/s

40GiB/s

16B 256B 4KiB 64KiB 1MiB
Tuple size

D
a
ta

 b
a
n
d
w

id
th

DFI MPI Spark (UCX) Zero-sided RDMA

Figure 12.9: CPU-to-CPU shuffle: Comparison of RDMA-based data shuffling with zero-
sided RDMA vs. CPU baselines (DFI, MPI, Spark UCX) for various tuple
sizes.

in zero-sided RDMA by the switch along with other functions for load balancing not
available in NVSHMEM.

Comparison with existing CPU baselines (CPU-to-CPU). In this experiment,
we shift our attention from a GPU-to-GPU to a CPU-to-CPU shuffle (i.e., data resides
in CPU memory), in order to show that zero-sided RDMA can also be beneficial in
such a setting. In particular, we compare zero-sided RDMA against three CPU-based
baselines for CPU-to-CPU data shuffling: (1) Spark (UCX) [106] which is a baseline for
RDMA-based data shuffling in a production-ready system (Apache Spark v3.0 with UCX
Plugin), and two isolated CPU-based data shuffling baselines - (2) a DFI-based shuffle
[126] as well as (3) an MPI-based shuffle that uses MPI collectives (Nvidia HPC-X v2.17)
for shuffling [42, 92]. DFI and MPI are both state of the art open-source libraries that
enable data shuffling using RDMA. In this experiment, we report the bandwidth of a
data shuffle between 4 nodes for varying tuple sizes. On each node, we use four worker
threads (cores) as data producers/consumers for the shuffle for zero-sided RDMA and all
baselines.

As shown in Figure 12.9, zero-sided RDMA achieves constantly higher throughput than
the others. The reason for this is twofold: First, zero-sided RDMA frees up sender/receiver
threads from issuing RDMA primitives and thus CPUs can use their cycles solely for
producing/consuming data. Second, zero-sided RDMA applies adaptive batching on the
network level leading to transfers that are efficiently larger than the tuple sizes, which
further improves the bandwidth usage.

Ping-pong latency (polling vs. doorbell). Finally, in the last experiment of
this section, we focus on transfer latency. We first analyze on the impact of switch
polling intervals in the context of buffer updates (i.e., new items pushed or popped at
the PUs). As these updates are detected on the switch via polling the buffers at the

225

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

Polling: 25µs Polling: 100µs Polling: 150µs Polling: 200µs Doorbell

Doorbell: ~15µs

64B Items

3M 8M 13M 18M 23M

0

50

100

150

200

250

Items/sec

L
a
te

n
cy

 [
µ
s
]

1KiB Items

1.0M 3.0M 5.0M 7.0M 9.0M

0

50

100

150

200

250

Items/sec

L
a
te

n
cy

 [µ
s
]

Figure 12.10: One-way median latency over different throughput and polling intervals.
In "Doorbell" mode PUs actively signal the switch for available data.

PUs, the duration of polling intervals can potentially influence the transfer latency of
items. Understanding this relationship can assist in determining the optimal polling
intervals for various applications with different requirements for throughput and latency.
In the experimental setup, we report half round-trip time on the y-axis across various
polling intervals, denoted by different line symbols. We use two CPU nodes as PUs, each
with both a producer and consumer, which the switch connects to form a bi-directional
communication flow to measure the round-trip time.

Additionally, we analyze the effect of the doorbell mechanism in zero-sided RDMA.
Clearly, polling for state updates using the switch enables data transfers without any
involvement from the PUs. However, this potentially comes with the cost of increased
latency. Zero-sided RDMA thus also allows a PU to actively signal the switch when it
has data available for transfer, referred to as doorbell mode. To send out a doorbell
message, the PU simply sends out a network packet, containing the new buffer state,
signaling an update to the switch. If the PU lacks this capability, a small co-located
FPGA could also be used to perform this task.

The experimental results of our polling and the doorbell mechanism are illustrated
in Figure 12.10 for 64B and 1KiB item sizes. The transfer rate, specified in items per
second, is fixed to certain values denoted on the x-axis. As we see in Figure 12.10 for
the polling scheme, the median latency is slightly less than the polling interval. This is
because, on average, an update to the producer buffer is detected in half of the polling
interval plus the latency of the data transfer. Enabling the doorbell mechanism, the
median latency is reduced to ∼15µs since the producer can immediately signal the switch
that an item can be transferred. This optimization is, however, only possible on PUs
with RDMA capabilities as discussed before in Section 12.6.2.

226

12.7 Experimental Evaluation

Reprioritization Reprioritization Reprioritization

33%

33%

33%

40%

30%

30%

20%

40%

40%

45%

45%
10%

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

12GiB/s

0s 5s 10s 15s 20s
Runtime

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

Flow 0 Flow 1 Flow 2

Figure 12.11: QoS flow prioritization between two PUs with 3 concurrent flows. Prioriti-
zation changes every 5 seconds.

Important is that latency remains stable across various throughputs, demonstrating
consistency in performance irrespective of the transfer rate. For 64 B item sizes, the
throughput scales up to around 27 million items per second due to the adaptive batching
optimization. However, for the larger 1 KiB sizes, the latency stays stable up to around
10 million items per second which almost matches the link’s capacity resulting in full
buffers and high latency. Interestingly, for the slower polling intervals, e.g., 200µs, the
higher rate of pushing items to the producer buffer results in more items being batched
for each data transfer resulting in a slightly higher latency.

12.7.2 Benefits of Switch-driven Data-transfers

Utilizing network-driven data transfers from a centralized switch provides significant
advantages. Given its overarching view of all network traffic, the switch allows for
streamlined management of data transfers. In particular, we enable fine-grained Quality
of Service (QoS) via flow prioritization, facilitate load-balancing, and promote elasticity
for efficient resource scaling. These benefits, challenging to achieve in decentralized
data-flow solutions, underscore the value of centralized, network-driven data transfers.

Fine-grained flow prioritization. In this experiment, we investigate the fine-grained
(per flow) prioritization capabilities provided by our zero-sided communication scheme.
Figure 12.11 shows the individual data bandwidth for three active concurrent flows
between two nodes over 20 seconds, with the ratio altered every 5 seconds. Our system
demonstrates a swift and efficient response to changes in the prioritization of different
flows, with the processing units remaining oblivious to the adjustments. Centralized
initiated data transfers allow fine-grained prioritization of different flows, which is not
supported natively within RDMA.

227

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

1 Node 2 Node 3 Node 4 Node

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

DFI w/ ordering DFI w/o ordering Zero-sided

Figure 12.12: 1:N zero-sided replication compared to DFI [126] with or without global
ordering. Zero-sided replication always ensures a global order observed by
all consumers.

Replication with ordering. The subsequent experiment, presented in Figure 12.12,
centers on the effectiveness of zero-sided RDMA replication which by design ensures
global ordering for each consumer. For the baseline, we use the Data Flow Interface
(DFI) [126], a state-of-the-art library that enables replication using RDMA multicast
with two-sided SEND/RECEIVE operations. We present results for DFI both with and
without software-based ordering. For the experiment, we use CPUs as PUs to be able to
compare against the CPU-only DFI baseline.

The results show the aggregated data bandwidth of each consumer for a different
number of nodes that receive data from a single producer. Across all scenarios, zero-
sided replication with ordering consistently demonstrates superior performance, nearly
saturating the link bandwidth at each consumer node. In addition, zero-sided replication
does not infer any overhead at the PUs. In stark contrast to native RDMA multicast
that only supports two-sided SEND/RECEIVE operations and, as such, introduces
communication overhead at not only the sender but also the receiver.

Elasticity of flows (TPC-H Query 1). In this experiment, we demonstrate
the elasticity of our system. For this experiment, we execute TPC-H Query 1 in a
disaggregated setup. In particular, storage nodes (using CPUs) stream data to GPUs as
processing units in the compute layer. We scale up the compute layer from one to four
nodes (each having one GPU).

Figure 12.13 represents the aggregated bandwidth of each consumer in an area plot,
with each consumer distinguished by different colors. This experiment shows that the
processing capability can dynamically be scaled up from a single node to four nodes
and scaled down when required. Important is that the producer nodes (i.e., the storage)

228

12.7 Experimental Evaluation

Scale-up Scale-down

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

0s 2s 4s 6s 8s 10s
Runtime

A
g
g
r.
 D

a
ta

 b
a
n
d
w

id
th

BW-Share: Cons. 0 Cons. 1 Cons. 2 Cons. 3

Figure 12.13: Elasticity for 4:N Load balancing flow - TPC-H Query 1 with SF 100
executed on GPUs. Each producer PU is unaware of the elasticity.

1 Prod. 2 Prod. 3 Prod. 4 Prod.

P1 C1-4 P1-2 C1-4 P1-3 C1-4 P1-4 C1-4

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

D
a
ta

 b
a
n
d
w

id
th

Figure 12.14: Per producer & consumer bandwidth for multicast with an increasing
number of producers (from left-to-right) and four consumers (C1-4). P1-2
refers to a scenario with two producers.

remain completely unaware of the compute-layer elasticity. The entire coordination of
this scaling operation is managed by the switch. This experiment illustrates the ability
of our system to efficiently adjust and manage resource allocation dynamically, offering
significant potential for enhanced scalability and efficiency in distributed accelerator
environments.

Fairness between producers. In this next experiment, we explore the fairness of
bandwidth distribution among multiple producers, each producing data to the same
multicast flow. Producer fairness is crucial to ensure producers are given an equal share
of the consumer-side available link bandwidth. In Figure 12.14, we report the bandwidth
separately for producers and consumers. Important to see is that in every scenario (1-4
producers from left to right), all consumers receive a fair share of the bandwidth. When

229

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

0.0B

0.5B

1.0B

1.5B

2.0B

2.5B

0B/s

5GiB/s

10GiB/s

15GiB/s

20GiB/s

25GiB/s

30GiB/s

35GiB/s

40GiB/s

2 Nodes

3 Nodes

4 Nodes
T
u
p
le

s
/s

e
c

A
g
g
r. D

a
ta

 B
a
n
d
w

id
th

CPU-driven join (4 cores)
CPU-driven join (8 cores)

Zero-sided join (4 cores)

Figure 12.15: Distributed Join. Tables are shuffled from CPU-based storage nodes to
GPU nodes for joining. Zero-sided RDMA achieves better performance
with fewer CPU cores compared to [123].

more producers are added to the system, the bandwidth is divided evenly among them.
The barely noticeable error bars in the figure for the producers denote the low degree of
unfairness, emphasizing the fairness between multiple producers.

Distributed join. Distributed joins represent a fundamental and often performance-
critical operation in DBMSs. In light of this, we evaluate the performance of a distributed
join using zero-sided RDMA. We mirror a typical disaggregated setup, where tables are
residing on CPU-based storage nodes and are shuffled on the join key to GPUs for join
processing. As a baseline, we use a state-of-the-art pipelined GPU join implementation
where the shuffling is CPU-driven [123]. Both the zero-sided join and the baseline
implement the same optimizations for shuffling such as software write combine buffers
(SWWCBs) and non-temporal streaming hints [7, 117], We use two synthetic and uniformly
distributed relations with 16-byte tuples of sizes 10M and 10B for the workload.

We apply an N:N shuffle flow and measure the throughput in tuples/sec for configura-
tions with up to 4 nodes. The experiment includes both the build phase for the hash table
and the probe phase. Similar to the baseline implementation, we overlap the shuffling
with the building or probing such that the join is executed overlapped on the GPUs
[123]. For the zero-sided join, we use 4 producers and 4 consumers per node, totaling
up to 256 producer buffers and 16 consumer buffers for 4 nodes. Each producer pushes
tuples based on the join key into separate buffers from which they are transferred to the
corresponding consumer using zero-sided RDMA. In the CPU-driven GPU join baseline
we report numbers for 4 and 8 active CPU cores shuffling to 4 GPU buffers per node.

Our results in Figure 12.15 showcase a near-linear speed-up for the zero-sided RDMA
join as the number of nodes increases and performance that is on par with the baseline.

230

12.7 Experimental Evaluation

P
ro

d
.

0

G
P

U

C
P

U

F
P

G
A

P
ro

d
.

1

S
ta

tic P
a

rtitio
n

in
g

Optimal Utilization
across different PUs!

P
ro

d
.

0

G
P

U
C

P
U

F
P

G
A

P
ro

d
.

1

L
o

a
d

 B
a

la
n

cin
g

0.0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s
Runtime

Figure 12.16: Static partitioning vs. load balancing for TPC-H Query 1 with SF 100
executed on CPU, GPU and FPGA. The thickness of the lines indicates
the speed of the consumers.

As an important effect, we additionally see the benefit of offloading the communication
scheme into the network and thereby freeing up CPU resources by letting the CPU-based
storage nodes focus solely on table scanning and shuffling. This is apparent since the
zero-sided RDMA join only needs 4 CPU cores to achieve comparable performance to
the CPU-driven join baseline.

12.7.3 Heterogeneous Communication

Scheduling processing jobs across a wide range of heterogeneous processing devices with
different and varying throughputs is a challenging task that requires careful coordination
between all participants. Therefore in this section, we evaluate the load-balancing
communication flow in a setup that mimics a cloud data center with disaggregated
storage and heterogeneous compute resources that consist of CPU, GPU, and FPGA.

Load balancing (TPC-H Query 1). In this experiment, depicted in Figure 12.16,
we explore load-balancing for a disaggregated setup using a heterogeneous computing
environment comprising a CPU, a GPU, and an Xilinx Alveo U55C FPGA as consumers.
We expose the FPGA’s local HBM memory to the RDMA NIC through the PCIe bar
for peer-to-peer DMA (see Section 12.3.2). Data producers on the storage are spread
out on 2 (CPU) nodes. The workload is based on TPC-H Query 1, as in the elasticity
experiment before. The system’s performance is assessed under two distinct scenarios:
static partitioning and load balancing.

In the scenario with static partitioning, the input TPC-H table lineorder is partitioned
into two equal sizes at both producers which send the data in equal portions of the data to

231

12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous
Cloud DBMSs

three consumers: an FPGA, a GPU, and a CPU. Without load-balancing (Figure 12.16,
upper part) in the switch, the GPU completes its tasks more rapidly than the CPU,
which is faster than the FPGA as the slowest device. Overall, the FPGA takes in total
3.2 seconds, which dominates the end-to-end latency of the query.

In contrast, with load balancing (Figure 12.16, lower part), the lineorder table is
dynamically divided to each consumer based on each device’s processing speed. This
arrangement enables the CPU, FPGA, and GPU to finish their tasks simultaneously, thus
reducing the total runtime of the query to 2.1 seconds and ensuring optimal utilization
with no idle time for either processing unit.

These results underscore the potential of load balancing in zero-sided RDMA: it
allows for optimal utilization of different processing units without the need for complex
partitioning or work-stealing schemes, leading to more simple query execution code.

12.8 Conclusions
In this paper, we presented zero-sided RDMA as a way to enable direct RDMA-based
accelerator-to-accelerator communication, which does not require CPUs to coordinate
the communication because the communication scheme is driven from the network.
Moreover, with zero-sided RDMA, we enable efficient RDMA-based data shuffling between
heterogeneous hardware devices without the need to implement a complete RDMA stack
on each heterogeneous device. Our evaluation showed that zero-sided RDMA can
outperform CPU-driven one-sided RDMA schemes for accelerators and in addition,
provide a set of useful and efficient communication flows targeting disaggregated cloud
DBMSs.

12.9 Acknowledgements
This work was partially funded by the German Research Foundation (DFG) under the
grants BI2011/1 & BI2011/2 (DFG priority program 2037) and the DFG Collaborative
Research Center 1053 (MAKI). We also thank hessian.AI, 3AI, DFKI as well as Intel for
their support.

232

Bibliography
[1] Elena Agostini, Davide Rossetti, and Sreeram Potluri. “GPUDirect Async: Ex-

ploring GPU synchronous communication techniques for InfiniBand clusters.” In:
J. Parallel Distributed Comput. 114 (2018), pp. 28–45. doi: 10.1016/j.jpdc.

2017.12.007. url: https://doi.org/10.1016/j.jpdc.2017.12.007.

[2] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.
“Designing Far Memory Data Structures: Think Outside the Box.” In: Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019. ACM, 2019, pp. 120–126. doi: 10.1145/3317550.3321433.
url: https://doi.org/10.1145/3317550.3321433.

[3] Gustavo Alonso, Carsten Binnig, Ippokratis Pandis, Kenneth Salem, Jan Skrzypczak,
Ryan Stutsman, Lasse Thostrup, Tianzheng Wang, Zeke Wang, and Tobias Ziegler.
“DPI: The Data Processing Interface for Modern Networks.” In: 9th Biennial Con-
ference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA,
January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019. url: http :

//cidrdb.org/cidr2019/papers/p11-alonso-cidr19.pdf.

[4] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya
Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram
Wakade. “Socrates: The New SQL Server in the Cloud.” In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. Ed. by Peter A. Boncz,
Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska. ACM,
2019, pp. 1743–1756. doi: 10.1145/3299869.3314047. url: https://doi.org/

10.1145/3299869.3314047.

[5] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,

233

https://doi.org/10.1016/j.jpdc.2017.12.007
https://doi.org/10.1016/j.jpdc.2017.12.007
https://doi.org/10.1016/j.jpdc.2017.12.007
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3317550.3321433
http://cidrdb.org/cidr2019/papers/p11-alonso-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p11-alonso-cidr19.pdf
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3299869.3314047

Bibliography

Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin, Daniel
Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert G.
Greenberg, Manish Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader,
Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit
Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu,
Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power,
Suraj Puri, Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali
Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,
Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce
Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. “Empowering Azure Storage
with RDMA.” In: 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. Ed. by Mahesh
Balakrishnan and Manya Ghobadi. USENIX Association, 2023, pp. 49–67. url:
https://www.usenix.org/conference/nsdi23/presentation/bai.

[6] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. “Multi-Core,
Main-Memory Joins: Sort vs. Hash Revisited.” In: Proc. VLDB Endow. 7.1 (2013),
pp. 85–96. doi: 10.14778/2732219.2732227. url: http://www.vldb.org/

pvldb/vol7/p85-balkesen.pdf.

[7] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. “Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited.” In: Proc. VLDB Endow. 7.1
(Sept. 2013), pp. 85–96. issn: 2150-8097. doi: 10.14778/2732219.2732227. url:
https://doi.org/10.14778/2732219.2732227.

[8] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. “Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.” In:
29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013. Ed. by Christian S. Jensen, Christopher M. Jermaine,
and Xiaofang Zhou. IEEE Computer Society, 2013, pp. 362–373. doi: 10.1109/

ICDE.2013.6544839. url: https://doi.org/10.1109/ICDE.2013.6544839.

[9] Claude Barthels, Gustavo Alonso, Torsten Hoefler, Timo Schneider, and Ingo
Müller. “Distributed Join Algorithms on Thousands of Cores.” In: Proc. VLDB
Endow. 10.5 (2017), pp. 517–528. doi: 10.14778/3055540.3055545. url: http:

//www.vldb.org/pvldb/vol10/p517-barthels.pdf.

234

https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.14778/2732219.2732227
http://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
http://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.14778/3055540.3055545
http://www.vldb.org/pvldb/vol10/p517-barthels.pdf
http://www.vldb.org/pvldb/vol10/p517-barthels.pdf

Bibliography

[10] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. “Rack-
Scale In-Memory Join Processing using RDMA.” In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives. ACM, 2015, pp. 1463–1475. doi: 10.1145/2723372.2750547.
url: https://doi.org/10.1145/2723372.2750547.

[11] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
“The End of Slow Networks: It’s Time for a Redesign.” In: Proc. VLDB Endow.
9.7 (2016), pp. 528–539. doi: 10.14778/2904483.2904485. url: http://www.

vldb.org/pvldb/vol9/p528-binnig.pdf.

[12] Marcel Blöcher, Tobias Ziegler, Carsten Binnig, and Patrick Eugster. “Boosting
scalable data analytics with modern programmable networks.” In: Proceedings
of the 14th International Workshop on Data Management on New Hardware,
Houston, TX, USA, June 11, 2018. Ed. by Wolfgang Lehner and Kenneth Salem.
ACM, 2018, 1:1–1:3. doi: 10.1145/3211922.3211923. url: https://doi.org/

10.1145/3211922.3211923.

[13] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Breaking the memory
wall in MonetDB.” In: Commun. ACM 51.12 (2008), pp. 77–85. doi: 10.1145/

1409360.1409380. url: https://doi.org/10.1145/1409360.1409380.

[14] Sebastian Breß. “Why it is time for a HyPE: A Hybrid Query Processing Engine
for Efficient GPU Coprocessing in DBMS.” In: Proc. VLDB Endow. 6.12 (2013),
pp. 1398–1403. doi: 10.14778/2536274.2536325. url: http://www.vldb.org/

pvldb/vol6/p1398-bress.pdf.

[15] Sebastian Breß, Henning Funke, and Jens Teubner. “Robust Query Processing in
Co-Processor-accelerated Databases.” In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and
Sam Madden. ACM, 2016, pp. 1891–1906. doi: 10.1145/2882903.2882936. url:
https://doi.org/10.1145/2882903.2882936.

[16] Mihai Budiu and Chris Dodd. “The P416 Programming Language.” In: ACM
SIGOPS Oper. Syst. Rev. 51.1 (2017), pp. 5–14. doi: 10.1145/3139645.3139648.
url: https://doi.org/10.1145/3139645.3139648.

235

https://doi.org/10.1145/2723372.2750547
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.14778/2904483.2904485
http://www.vldb.org/pvldb/vol9/p528-binnig.pdf
http://www.vldb.org/pvldb/vol9/p528-binnig.pdf
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.14778/2536274.2536325
http://www.vldb.org/pvldb/vol6/p1398-bress.pdf
http://www.vldb.org/pvldb/vol6/p1398-bress.pdf
https://doi.org/10.1145/2882903.2882936
https://doi.org/10.1145/2882903.2882936
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1145/3139645.3139648

Bibliography

[17] Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana Szekeres,
Jacob Nelson, Irene Zhang, and Dan R. K. Ports. “PRISM: Rethinking the RDMA
Interface for Distributed Systems.” In: SOSP ’21: ACM SIGOPS 28th Symposium
on Operating Systems Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021. Ed. by Robbert van Renesse and Nickolai Zeldovich. ACM, 2021,
pp. 228–242. doi: 10.1145/3477132.3483587. url: https://doi.org/10.1145/

3477132.3483587.

[18] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng
Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. “Efficient Distributed
Memory Management with RDMA and Caching.” In: Proc. VLDB Endow. 11.11
(2018), pp. 1604–1617. doi: 10.14778/3236187.3236209. url: http://www.

vldb.org/pvldb/vol11/p1604-cai.pdf.

[19] Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He, Weng-Fai Wong,
and Deming Chen. “Is FPGA Useful for Hash Joins?” In: 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. url: http :

//cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf.

[20] Scott Ciccone and John F. Kim. NVIDIA Introduces BlueField DPU as a Platform
for Zero Trust Security with DOCA 1.2. NVIDIA. June 2022. url: https://

developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-

platform-for-zero-trust-security-with-doca-1-2/.

[21] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, Garth
Gibson, Kimberly Keeton, and Eric P. Xing. “Solving the Straggler Problem
with Bounded Staleness.” In: 14th Workshop on Hot Topics in Operating Systems,
HotOS XIV, Santa Ana Pueblo, New Mexico, USA, May 13-15, 2013. Ed. by
Petros Maniatis. USENIX Association, 2013. url: https://www.usenix.org/

conference/hotos13/session/cipar.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. “Benchmarking cloud serving systems with YCSB.” In: Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010. Ed. by Joseph M. Hellerstein, Surajit Chaudhuri, and
Mendel Rosenblum. ACM, 2010, pp. 143–154. doi: 10.1145/1807128.1807152.
url: https://doi.org/10.1145/1807128.1807152.

236

https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3477132.3483587
https://doi.org/10.14778/3236187.3236209
http://www.vldb.org/pvldb/vol11/p1604-cai.pdf
http://www.vldb.org/pvldb/vol11/p1604-cai.pdf
http://cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://www.usenix.org/conference/hotos13/session/cipar
https://www.usenix.org/conference/hotos13/session/cipar
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152

Bibliography

[23] Benoıt Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. “The
Snowflake Elastic Data Warehouse.” In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and
Sam Madden. ACM, 2016, pp. 215–226. doi: 10.1145/2882903.2903741. url:
https://doi.org/10.1145/2882903.2903741.

[24] Benoıt Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. “The
Snowflake Elastic Data Warehouse.” In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and
Sam Madden. ACM, 2016, pp. 215–226. doi: 10.1145/2882903.2903741. url:
https://doi.org/10.1145/2882903.2903741.

[25] Huynh Tu Dang, Jaco Hofmann, Yang Liu, Marjan Radi, Dejan Vucinic, Robert
Soulé, and Fernando Pedone. “Consensus for Non-volatile Main Memory.” In:
2018 IEEE 26th International Conference on Network Protocols, ICNP 2018,
Cambridge, UK, September 25-27, 2018. IEEE Computer Society, 2018, pp. 406–
411. doi: 10.1109/ICNP.2018.00056. url: https://doi.org/10.1109/ICNP.

2018.00056.

[26] Feras Daoud, Amir Wated, and Mark Silberstein. “GPUrdma: GPU-side library
for high performance networking from GPU kernels.” In: Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Supercomputers,
Kyoto, Japan, June 1, 2016. Ed. by Kamil Iskra and Torsten Hoefler. ACM, 2016,
6:1–6:8. doi: 10.1145/2931088.2931091. url: https://doi.org/10.1145/

2931088.2931091.

[27] Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. “RDMA Reads:
To Use or Not to Use?” In: IEEE Data Eng. Bull. 40.1 (2017), pp. 3–14. url:
http://sites.computer.org/debull/A17mar/p3.pdf.

[28] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
“FaRM: Fast Remote Memory.” In: Proceedings of the 11th USENIX Symposium

237

https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1109/ICNP.2018.00056
https://doi.org/10.1109/ICNP.2018.00056
https://doi.org/10.1109/ICNP.2018.00056
https://doi.org/10.1145/2931088.2931091
https://doi.org/10.1145/2931088.2931091
https://doi.org/10.1145/2931088.2931091
http://sites.computer.org/debull/A17mar/p3.pdf

Bibliography

on Networked Systems Design and Implementation, NSDI 2014, Seattle, WA, USA,
April 2-4, 2014. Ed. by Ratul Mahajan and Ion Stoica. USENIX Association, 2014,
pp. 401–414. url: https://www.usenix.org/conference/nsdi14/technical-

sessions/dragojevi%5C%5C%C4%5C%5C%87.

[29] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. “No compro-
mises: distributed transactions with consistency, availability, and performance.”
In: Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015. Ed. by Ethan L. Miller and Steven
Hand. ACM, 2015, pp. 54–70. doi: 10.1145/2815400.2815425. url: https:

//doi.org/10.1145/2815400.2815425.

[30] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. “Quan-
tifying TPC-H Choke Points and Their Optimizations.” In: Proc. VLDB En-
dow. 13.8 (2020), pp. 1206–1220. doi: 10.14778/3389133.3389138. url: http:

//www.vldb.org/pvldb/vol13/p1206-dreseler.pdf.

[31] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, Garret Swart, and Weiwei
Gong. “A Morsel-Driven Query Execution Engine for Heterogeneous Multi-Cores.”
In: Proc. VLDB Endow. 12.12 (2019), pp. 2218–2229. doi: 10.14778/3352063.

3352137. url: http://www.vldb.org/pvldb/vol12/p2218-dursun.pdf.

[32] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas
Neumann, and Andrew Pavlo. “Main Memory Database Systems.” In: Found.
Trends Databases 8.1-2 (2017), pp. 1–130. doi: 10.1561/1900000058. url: https:

//doi.org/10.1561/1900000058.

[33] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee.
“In-memory database acceleration on FPGAs: a survey.” In: VLDB J. 29.1 (2020),
pp. 33–59. doi: 10.1007/s00778-019-00581-w. url: https://doi.org/10.

1007/s00778-019-00581-w.

[34] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. “SAP HANA database: data management for modern
business applications.” In: SIGMOD Rec. 40.4 (2011), pp. 45–51. doi: 10.1145/

2094114.2094126. url: https://doi.org/10.1145/2094114.2094126.

[35] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “Low-Latency Communication for Fast DBMS Using RDMA
and Shared Memory.” In: 36th IEEE International Conference on Data Engineering,

238

https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%5C%5C%C4%5C%5C%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%5C%5C%C4%5C%5C%87
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.14778/3389133.3389138
http://www.vldb.org/pvldb/vol13/p1206-dreseler.pdf
http://www.vldb.org/pvldb/vol13/p1206-dreseler.pdf
https://doi.org/10.14778/3352063.3352137
https://doi.org/10.14778/3352063.3352137
http://www.vldb.org/pvldb/vol12/p2218-dursun.pdf
https://doi.org/10.1561/1900000058
https://doi.org/10.1561/1900000058
https://doi.org/10.1561/1900000058
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126

Bibliography

ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp. 1477–1488. doi:
10.1109/ICDE48307.2020.00131. url: https://doi.org/10.1109/ICDE48307.

2020.00131.

[36] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-
mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. “Azure Accel-
erated Networking: SmartNICs in the Public Cloud.” In: 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2018, Renton, WA,
USA, April 9-11, 2018. Ed. by Sujata Banerjee and Srinivasan Seshan. USENIX
Association, 2018, pp. 51–66. url: https://www.usenix.org/conference/

nsdi18/presentation/firestone.

[37] Philip Werner Frey and Gustavo Alonso. “Minimizing the Hidden Cost of RDMA.”
In: 29th IEEE International Conference on Distributed Computing Systems (ICDCS
2009), 22-26 June 2009, Montreal, Québec, Canada. IEEE Computer Society, 2009,
pp. 553–560. doi: 10.1109/ICDCS.2009.32. url: https://doi.org/10.1109/

ICDCS.2009.32.

[38] Philip Werner Frey, Romulo Goncalves, Martin L. Kersten, and Jens Teubner. “A
Spinning Join That Does Not Get Dizzy.” In: 2010 International Conference on
Distributed Computing Systems, ICDCS 2010, Genova, Italy, June 21-25, 2010.
IEEE Computer Society, 2010, pp. 283–292. doi: 10.1109/ICDCS.2010.23. url:
https://doi.org/10.1109/ICDCS.2010.23.

[39] Philip Werner Frey, Romulo Goncalves, Martin L. Kersten, and Jens Teubner.
“Spinning relations: high-speed networks for distributed join processing.” In: Pro-
ceedings of the Fifth International Workshop on Data Management on New Hard-
ware, DaMoN 2009, Providence, Rhode Island, USA, June 28, 2009. Ed. by Peter
A. Boncz and Kenneth A. Ross. ACM, 2009, pp. 27–33. doi: 10.1145/1565694.

1565701. url: https://doi.org/10.1145/1565694.1565701.

[40] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
“Pipelined Query Processing in Coprocessor Environments.” In: Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M.

239

https://doi.org/10.1109/ICDE48307.2020.00131
https://doi.org/10.1109/ICDE48307.2020.00131
https://doi.org/10.1109/ICDE48307.2020.00131
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/ICDCS.2009.32
https://doi.org/10.1109/ICDCS.2009.32
https://doi.org/10.1109/ICDCS.2009.32
https://doi.org/10.1109/ICDCS.2010.23
https://doi.org/10.1109/ICDCS.2010.23
https://doi.org/10.1145/1565694.1565701
https://doi.org/10.1145/1565694.1565701
https://doi.org/10.1145/1565694.1565701

Bibliography

Jermaine, and Philip A. Bernstein. ACM, 2018, pp. 1603–1618. doi: 10.1145/

3183713.3183734. url: https://doi.org/10.1145/3183713.3183734.

[41] Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer,
Gil Bloch, Dror Goldenberg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, Lion Levi, Alex Margolin, Tamir Ronen, Alexander Shpiner, Oded Wertheim,
and Eitan Zahavi. “Scalable Hierarchical Aggregation Protocol (SHArP): A Hard-
ware Architecture for Efficient Data Reduction.” In: First International Workshop
on Communication Optimizations in HPC, COMHPC@SC 2016, Salt Lake City,
UT, USA, November 18, 2016. IEEE, 2016, pp. 1–10. doi: 10.1109/COMHPC.2016.

006. url: https://doi.org/10.1109/COMHPC.2016.006.

[42] William Gropp et al. Using Advanced MPI: Modern Features of the Message-
Passing Interface. The MIT Press, 2014. isbn: 0262527634, 9780262527637.

[43] Chengxin Guo, Hong Chen, Feng Zhang, and Cuiping Li. “Distributed Join
Algorithms on Multi-CPU Clusters with GPUDirect RDMA.” In: Proceedings of the
48th International Conference on Parallel Processing, ICPP 2019, Kyoto, Japan,
August 05-08, 2019. ACM, 2019, 65:1–65:10. doi: 10.1145/3337821.3337862.
url: https://doi.org/10.1145/3337821.3337862.

[44] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari Subramoni,
Ching-Hsiang Chu, and Dhabaleswar K. Panda. “Exploiting GPUDirect RDMA in
Designing High Performance OpenSHMEM for NVIDIA GPU Clusters.” In: 2015
IEEE International Conference on Cluster Computing, CLUSTER 2015, Chicago,
IL, USA, September 8-11, 2015. IEEE Computer Society, 2015, pp. 78–87. doi:
10.1109/CLUSTER.2015.21. url: https://doi.org/10.1109/CLUSTER.2015.

21.

[45] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. “Relational query coprocessing on graphics processors.” In: ACM
Trans. Database Syst. 34.4 (2009), 21:1–21:39. doi: 10.1145/1620585.1620588.
url: https://doi.org/10.1145/1620585.1620588.

[46] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. “Relational joins on graphics processors.” In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008. Ed. by Jason Tsong-Li Wang.
ACM, 2008, pp. 511–524. doi: 10.1145/1376616.1376670. url: https://doi.

org/10.1145/1376616.1376670.

240

https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.1145/3337821.3337862
https://doi.org/10.1145/3337821.3337862
https://doi.org/10.1109/CLUSTER.2015.21
https://doi.org/10.1109/CLUSTER.2015.21
https://doi.org/10.1109/CLUSTER.2015.21
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.1145/1376616.1376670

Bibliography

[47] Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla
Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodrıguez, Konstantinos
Karanasos, and Matteo Interlandi. “Query Processing on Tensor Computation
Runtimes.” In: Proc. VLDB Endow. 15.11 (2022), pp. 2811–2825. url: https:

//www.vldb.org/pvldb/vol15/p2811-he.pdf.

[48] Jiong He, Mian Lu, and Bingsheng He. “Revisiting Co-Processing for Hash Joins
on the Coupled CPU-GPU Architecture.” In: Proc. VLDB Endow. 6.10 (2013),
pp. 889–900. doi: 10.14778/2536206.2536216. url: http://www.vldb.org/

pvldb/vol6/p889-he.pdf.

[49] Torsten Hoefler, Duncan Roweth, Keith D. Underwood, Bob Alverson, Mark
Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyuan Shen,
Abdul Kabbani, Moray McLaren, and Steve Scott. “Datacenter Ethernet and
RDMA: Issues at Hyperscale.” In: CoRR abs/2302.03337 (2023). doi: 10.48550/

arXiv.2302.03337. arXiv: 2302.03337. url: https://doi.org/10.48550/

arXiv.2302.03337.

[50] Jaco A. Hofmann, Lasse Thostrup, Tobias Ziegler, Carsten Binnig, and Andreas
Koch. “High-Performance In-Network Data Processing.” In: 10th International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@VLDB 2019, Los Angeles, California,
USA, August 26, 2019. Ed. by Rajesh Bordawekar and Tirthankar Lahiri. 2019,
pp. 64–73. url: http://www.adms-conf.org/2019-camera-ready/hofmann_

adms19.pdf.

[51] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. “The Performance
of Database Replication with Group Multicast.” In: Digest of Papers: FTCS-29,
The Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing,
Madison, Wisconsin, USA, June 15-18, 1999. IEEE Computer Society, 1999,
pp. 158–165. doi: 10.1109/FTCS.1999.781046. url: https://doi.org/10.

1109/FTCS.1999.781046.

[52] Intel. Intel In-Memory Analytics Accelerator Architecture Specification. https:

//www.intel.com/content/www/us/en/content-details/721858/intel-in-

memory-analytics-accelerator-architecture-specification.html. Intel,
Sept. 2023.

241

https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://doi.org/10.14778/2536206.2536216
http://www.vldb.org/pvldb/vol6/p889-he.pdf
http://www.vldb.org/pvldb/vol6/p889-he.pdf
https://doi.org/10.48550/arXiv.2302.03337
https://doi.org/10.48550/arXiv.2302.03337
https://arxiv.org/abs/2302.03337
https://doi.org/10.48550/arXiv.2302.03337
https://doi.org/10.48550/arXiv.2302.03337
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
http://www.adms-conf.org/2019-camera-ready/hofmann_adms19.pdf
https://doi.org/10.1109/FTCS.1999.781046
https://doi.org/10.1109/FTCS.1999.781046
https://doi.org/10.1109/FTCS.1999.781046
https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-specification.html

Bibliography

[53] Intel. Intel P4 Studio. https://www.intel.com/content/www/us/en/products/

details/network-io/intelligent-fabric-processors/p4-studio.html.
2023.

[54] Intel. Intel® Tofino™ Series. https://www.intel.com/content/www/us/en/

products/details/network-io/intelligent-fabric-processors/tofino.

html. 2023.

[55] Intel. Scalable I/O Between Accelerators and Host Processors. https://www.

intel.com/content/www/us/en/developer/articles/technical/scalable-

io-between-accelerators-host-processors.html. Intel, Sept. 2023.

[56] Virajith Jalaparti, Peter Bodık, Ishai Menache, Sriram Rao, Konstantin Makarychev,
and Matthew Caesar. “Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can.” In: Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015. Ed. by Steve Uhlig, Olaf Maennel, Brad Karp, and Jiten-
dra Padhye. ACM, 2015, pp. 407–420. doi: 10.1145/2785956.2787488. url:
https://doi.org/10.1145/2785956.2787488.

[57] Matthias Jasny and Lasse Thostrup. Zerosided RDMA Code. https://github.

com/DataManagementLab/zerosided_rdma. 2023.

[58] Matthias Jasny, Lasse Thostrup, and Carsten Binnig. “Zero-sided RDMA: Network-
driven Data Shuffling.” In: Proceedings of the 19th International Workshop on
Data Management on New Hardware, DaMoN 2023, Seattle, WA, USA, June
18-23, 2023. Ed. by Norman May and Nesime Tatbul. ACM, 2023, pp. 82–85.
doi: 10.1145/3592980.3595302. url: https://doi.org/10.1145/3592980.

3595302.

[59] Matthias Jasny, Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt István, and
Carsten Binnig. “Zero-sided RDMA: Network-driven Data Shuffling for Disag-
gregated Heterogeneous Cloud DBMSs.” In: Proc. ACM Manag. Data 2.1 (Mar.
2024). doi: 10.1145/3639291. url: https://doi.org/10.1145/3639291.

[60] Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig. “P4DB
- The Case for In-Network OLTP.” In: SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Ed. by
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi. ACM, 2022, pp. 1375–1389.
doi: 10.1145/3514221.3517825. url: https://doi.org/10.1145/3514221.

3517825.

242

https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-accelerators-host-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-accelerators-host-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-accelerators-host-processors.html
https://doi.org/10.1145/2785956.2787488
https://doi.org/10.1145/2785956.2787488
https://github.com/DataManagementLab/zerosided_rdma
https://github.com/DataManagementLab/zerosided_rdma
https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3592980.3595302
https://doi.org/10.1145/3639291
https://doi.org/10.1145/3639291
https://doi.org/10.1145/3514221.3517825
https://doi.org/10.1145/3514221.3517825
https://doi.org/10.1145/3514221.3517825

Bibliography

[61] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert
Soulé. “Life in the Fast Lane: A Line-Rate Linear Road.” In: Proceedings of the
Symposium on SDN Research, SOSR 2018, Los Angeles, CA, USA, March 28-
29, 2018. ACM, 2018, 10:1–10:7. doi: 10.1145/3185467.3185494. url: https:

//doi.org/10.1145/3185467.3185494.

[62] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. “Improving the Performance of Distributed TensorFlow with
RDMA.” In: Int. J. Parallel Program. 46.4 (2018), pp. 674–685. doi: 10.1007/

s10766-017-0520-3. url: https://doi.org/10.1007/s10766-017-0520-3.

[63] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. “NetChain: Scale-Free Sub-RTT Coordination.”
In: 15th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018. Ed. by Sujata Banerjee and
Srinivasan Seshan. USENIX Association, 2018, pp. 35–49. url: https://www.

usenix.org/conference/nsdi18/presentation/jin.

[64] Michael Jungmair and Jana Giceva. “Declarative Sub-Operators for Universal
Data Processing.” In: Proc. VLDB Endow. 16.11 (Aug. 2023), pp. 3461–3474.
issn: 2150-8097. doi: 10.14778/3611479.3611539. url: https://doi.org/10.

14778/3611479.3611539.

[65] Tim Kaldewey, Guy M. Lohman, René Müller, and Peter Benjamin Volk. “GPU
join processing revisited.” In: Proceedings of the Eighth International Workshop on
Data Management on New Hardware, DaMoN 2012, Scottsdale, AZ, USA, May
21, 2012. Ed. by Shimin Chen and Stavros Harizopoulos. ACM, 2012, pp. 55–62.
doi: 10.1145/2236584.2236592. url: https://doi.org/10.1145/2236584.

2236592.

[66] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Datacenter RPCs
Can Be General and Fast.” In: login Usenix Mag. 44.2 (2019). url: https :

//www.usenix.org/publications/login/summer2019/kalia.

[67] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Design Guidelines for
High Performance RDMA Systems.” In: login Usenix Mag. 41.3 (2016). url:
https://www.usenix.org/publications/login/fall2016/kalia.

[68] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.”
In: 12th USENIX Symposium on Operating Systems Design and Implementation,

243

https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1007/s10766-017-0520-3
https://doi.org/10.1007/s10766-017-0520-3
https://doi.org/10.1007/s10766-017-0520-3
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/2236584.2236592
https://www.usenix.org/publications/login/summer2019/kalia
https://www.usenix.org/publications/login/summer2019/kalia
https://www.usenix.org/publications/login/fall2016/kalia

Bibliography

OSDI 2016, Savannah, GA, USA, November 2-4, 2016. Ed. by Kimberly Keeton
and Timothy Roscoe. USENIX Association, 2016, pp. 185–201. url: https://www.

usenix.org/conference/osdi16/technical-sessions/presentation/kalia.

[69] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Using RDMA efficiently
for key-value services.” In: ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, IL, USA, August 17-22, 2014. Ed. by Fabián E. Bustamante, Y. Charlie
Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy. ACM, 2014, pp. 295–306.
doi: 10.1145/2619239.2626299. url: https://doi.org/10.1145/2619239.

2626299.

[70] Sol Ji Kang, Sang-Hoon Lee, and Keon-Myung Lee. “Performance Comparison of
OpenMP, MPI, and MapReduce in Practical Problems.” In: Adv. Multim. 2015
(2015), 575687:1–575687:9. doi: 10.1155/2015/575687. url: https://doi.org/

10.1155/2015/575687.

[71] Bettina Kemme and Gustavo Alonso. “Database Replication: a Tale of Research
across Communities.” In: Proc. VLDB Endow. 3.1 (2010), pp. 5–12. doi: 10.14778/

1920841.1920847. url: http://www.vldb.org/pvldb/vldb2010/pvldb%5C%

5C_vol3/TY02.pdf.

[72] Jens Korinth, Jaco A. Hofmann, Carsten Heinz, and Andreas Koch. “The TaPaSCo
Open-Source Toolflow for the Automated Composition of Task-Based Parallel
Reconfigurable Computing Systems.” In: Applied Reconfigurable Computing - 15th
International Symposium, ARC 2019, Darmstadt, Germany, April 9-11, 2019,
Proceedings. Ed. by Christian Hochberger, Brent Nelson, Andreas Koch, Roger F.
Woods, and Pedro C. Diniz. Vol. 11444. Lecture Notes in Computer Science.
Springer, 2019, pp. 214–229. doi: 10.1007/978-3-030-17227-5_16. url:
https://doi.org/10.1007/978-3-030-17227-5%5C%5C_16.

[73] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. “Do OS abstractions make
sense on FPGAs?” In: 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX
Association, 2020, pp. 991–1010. url: https://www.usenix.org/conference/

osdi20/presentation/roscoe.

[74] Leslie Lamport et al. “Paxos made simple.” In: ACM Sigact News 32.4 (2001),
pp. 18–25.

244

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1155/2015/575687
https://doi.org/10.1155/2015/575687
https://doi.org/10.1155/2015/575687
https://doi.org/10.14778/1920841.1920847
https://doi.org/10.14778/1920841.1920847
http://www.vldb.org/pvldb/vldb2010/pvldb%5C%5C_vol3/TY02.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C%5C_vol3/TY02.pdf
https://doi.org/10.1007/978-3-030-17227-5_16
https://doi.org/10.1007/978-3-030-17227-5%5C%5C_16
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe

Bibliography

[75] Robert Lasch, Mehdi Moghaddamfar, Norman May, Süleyman Sirri Demirsoy,
Christian Färber, and Kai-Uwe Sattler. “Bandwidth-optimal Relational Joins
on FPGAs.” In: Proceedings of the 25th International Conference on Extending
Database Technology, EDBT 2022, Edinburgh, UK, March 29 - April 1, 2022.
Ed. by Julia Stoyanovich, Jens Teubner, Paolo Guagliardo, Milos Nikolic, Andreas
Pieris, Jan Mühlig, Fatma Özcan, Sebastian Schelter, H. V. Jagadish, and Meihui
Zhang. OpenProceedings.org, 2022, 1:27–1:39. doi: 10.5441/002/edbt.2022.03.
url: https://doi.org/10.5441/002/edbt.2022.03.

[76] Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo R. Coelho, and Fernando Pedone.
“RamCast: RDMA-based atomic multicast.” In: Middleware ’21: 22nd International
Middleware Conference, Québec City, Canada, December 6 - 10, 2021. Ed. by
Kaiwen Zhang, Abdelouahed Gherbi, Nalini Venkatasubramanian, and Luıs Veiga.
ACM, 2021, pp. 172–184. doi: 10.1145/3464298.3493393. url: https://doi.

org/10.1145/3464298.3493393.

[77] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. “Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-core
age.” In: International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014. Ed. by Curtis E. Dyreson, Feifei Li, and
M. Tamer Özsu. ACM, 2014, pp. 743–754. doi: 10.1145/2588555.2610507. url:
https://doi.org/10.1145/2588555.2610507.

[78] Viktor Leis, Michael Haubenschild, and Thomas Neumann. “Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.”
In: IEEE Data Eng. Bull. 42.1 (2019), pp. 73–84. url: http://sites.computer.

org/debull/A19mar/p73.pdf.

[79] Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. “The Case for
Network Accelerated Query Processing.” In: 9th Biennial Conference on Innovative
Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings. www.cidrdb.org, 2019. url: http://cidrdb.org/cidr2019/

papers/p142-lerner-cidr19.pdf.

[80] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. “KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC.” In: Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31,
2017. ACM, 2017, pp. 137–152. doi: 10.1145/3132747.3132756. url: https:

//doi.org/10.1145/3132747.3132756.

245

https://doi.org/10.5441/002/edbt.2022.03
https://doi.org/10.5441/002/edbt.2022.03
https://doi.org/10.1145/3464298.3493393
https://doi.org/10.1145/3464298.3493393
https://doi.org/10.1145/3464298.3493393
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
http://sites.computer.org/debull/A19mar/p73.pdf
http://sites.computer.org/debull/A19mar/p73.pdf
http://cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756

Bibliography

[81] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. “Accelerating Re-
lational Databases by Leveraging Remote Memory and RDMA.” In: Proceedings of
the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016. Ed. by Fatma Özcan,
Georgia Koutrika, and Sam Madden. ACM, 2016, pp. 355–370. doi: 10.1145/

2882903.2882949. url: https://doi.org/10.1145/2882903.2882949.

[82] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
“Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering.”
In: 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016. Ed. by Kimberly Keeton
and Timothy Roscoe. USENIX Association, 2016, pp. 467–483. url: https://www.

usenix.org/conference/osdi16/technical-sessions/presentation/li.

[83] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. “Scaling Distributed
Machine Learning with the Parameter Server.” In: 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014. Ed. by Jason Flinn and Hank Levy. USENIX Association, 2014,
pp. 583–598. url: https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/li%5C%5C_mu.

[84] Feilong Liu, Claude Barthels, Spyros Blanas, Hideaki Kimura, and Garret Swart.
“Beyond MPI: New Communication Interfaces for Database Systems and Data-
Intensive Applications.” In: SIGMOD Rec. 49.4 (2020), pp. 12–17. doi: 10.1145/

3456859.3456862. url: https://doi.org/10.1145/3456859.3456862.

[85] Feilong Liu, Lingyan Yin, and Spyros Blanas. “Design and Evaluation of an
RDMA-aware Data Shuffling Operator for Parallel Database Systems.” In: ACM
Trans. Database Syst. 44.4 (2019), 17:1–17:45. doi: 10 . 1145 / 3360900. url:
https://doi.org/10.1145/3360900.

[86] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. “High Performance RDMA-
Based MPI Implementation over InfiniBand.” In: Int. J. Parallel Program. 32.3
(2004), pp. 167–198. doi: 10.1023/B:IJPP.0000029272.69895.c1. url: https:

//doi.org/10.1023/B:IJPP.0000029272.69895.c1.

[87] Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K. Panda. “High-
performance design of apache spark with RDMA and its benefits on various
workloads.” In: 2016 IEEE International Conference on Big Data (IEEE BigData

246

https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/2882903.2882949
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li%5C%5C_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li%5C%5C_mu
https://doi.org/10.1145/3456859.3456862
https://doi.org/10.1145/3456859.3456862
https://doi.org/10.1145/3456859.3456862
https://doi.org/10.1145/3360900
https://doi.org/10.1145/3360900
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1

Bibliography

2016), Washington DC, USA, December 5-8, 2016. Ed. by James Joshi, George
Karypis, Ling Liu, Xiaohua Hu, Ronay Ak, Yinglong Xia, Weijia Xu, Aki-Hiro Sato,
Sudarsan Rachuri, Lyle H. Ungar, Philip S. Yu, Rama Govindaraju, and Toyotaro
Suzumura. IEEE Computer Society, 2016, pp. 253–262. doi: 10.1109/BigData.

2016.7840611. url: https://doi.org/10.1109/BigData.2016.7840611.

[88] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
“Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects.”
In: Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo. ACM, 2020, pp. 1633–1649. doi: 10.

1145/3318464.3389705. url: https://doi.org/10.1145/3318464.3389705.

[89] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
“Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast Inter-
connects.” In: SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. Ed. by Zachary G. Ives, Angela
Bonifati, and Amr El Abbadi. ACM, 2022, pp. 1017–1032. doi: 10.1145/3514221.

3517911. url: https://doi.org/10.1145/3514221.3517911.

[90] Mailinglist. [RFC 6/7] IB/core: Peer memory client for IO memory. https:

//www.spinics.net/lists/linux-rdma/msg33298.html. 2023.

[91] Christopher Mitchell, Yifeng Geng, and Jinyang Li. “Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store.” In: 2013 USENIX Annual
Technical Conference, San Jose, CA, USA, June 26-28, 2013. Ed. by Andrew
Birrell and Emin Gün Sirer. USENIX Association, 2013, pp. 103–114. url: https:

//www.usenix.org/conference/atc13/technical-sessions/presentation/

mitchell.

[92] MPICH. Manpage: MPI Alltoall. https : / / www . mpich . org / static / docs /

latest/www3/MPI_Alltoall.html. 2023.

[93] APS Networks. Intel Tofino APS Networks BF2556X-1T-A1F. https://www.

opencompute.org/documents/210216-bf2556x-1t-switch-specifications-

v2-pdf-1. 2019.

[94] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. “Understanding PCIe performance for end
host networking.” In: Proceedings of the 2018 Conference of the ACM Special

247

https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3514221.3517911
https://doi.org/10.1145/3514221.3517911
https://doi.org/10.1145/3514221.3517911
https://www.spinics.net/lists/linux-rdma/msg33298.html
https://www.spinics.net/lists/linux-rdma/msg33298.html
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.mpich.org/static/docs/latest/www3/MPI_Alltoall.html
https://www.mpich.org/static/docs/latest/www3/MPI_Alltoall.html
https://www.opencompute.org/documents/210216-bf2556x-1t-switch-specifications-v2-pdf-1
https://www.opencompute.org/documents/210216-bf2556x-1t-switch-specifications-v2-pdf-1
https://www.opencompute.org/documents/210216-bf2556x-1t-switch-specifications-v2-pdf-1

Bibliography

Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018. Ed. by Sergey Gorinsky and János Tapolcai. ACM, 2018,
pp. 327–341. doi: 10.1145/3230543.3230560. url: https://doi.org/10.1145/

3230543.3230560.

[95] Joel Nider and Alexandra (Sasha) Fedorova. “The last CPU.” In: HotOS ’21:
Workshop on Hot Topics in Operating Systems, Ann Arbor, Michigan, USA, June,
1-3, 2021. Ed. by Sebastian Angel, Baris Kasikci, and Eddie Kohler. ACM, 2021,
pp. 1–8. doi: 10.1145/3458336.3465291. url: https://doi.org/10.1145/

3458336.3465291.

[96] NVIDIA. BlueField DPU OS - Functional Diagram. NVIDIA. July 2022. url:
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/

Functional+Diagram.

[97] NVIDIA. GPUDirect RDMA. NVIDIA. Mar. 2023. url: https://developer.

nvidia.com/gpudirect.

[98] NVIDIA. GPUDirect RDMA. NVIDIA, Mar. 2023. url: https://developer.

nvidia.com/gpudirect.

[99] NVIDIA. GPUDirect RDMA Design Considerations - Synchronization and Mem-
ory Ordering. NVIDIA. June 2021. url: https://docs.nvidia.com/cuda/

gpudirect-rdma/index.html%5C#sync-behavior.

[100] NVIDIA. HowTo Implement PeerDirect Client using MLNX OFED. https://

enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-

client-using-mlnx-ofed. 2023.

[101] NVIDIA. Mellanox OFED GPUDirect RDMA. NVIDIA. June 2021. url: https:

//www.mellanox.com/products/GPUDirect-RDMA.

[102] NVIDIA. NVIDIA BLUEFIELD DATA PROCESSING UNITS. NVIDIA. June
2022. url: https://www.nvidia.com/en-us/networking/products/data-

processing-unit/.

[103] NVIDIA. Nvidia NVSHMEM. https : / / developer . nvidia . com / nvshmem.
NVIDIA, 2023.

[104] NVIDIA. RDMA Over Converged Ethernet (RoCE). https://docs.nvidia.

com/networking/m/view-rendered-page.action?abstractPageId=56986516.
NVIDIA, Mar. 2023.

248

https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3458336.3465291
https://doi.org/10.1145/3458336.3465291
https://doi.org/10.1145/3458336.3465291
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/Functional+Diagram
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/Functional+Diagram
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html%5C#sync-behavior
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html%5C#sync-behavior
https://enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
https://enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
https://enterprise-support.nvidia.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
https://www.mellanox.com/products/GPUDirect-RDMA
https://www.mellanox.com/products/GPUDirect-RDMA
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://developer.nvidia.com/nvshmem
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=56986516
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=56986516

Bibliography

[105] Diego Ongaro and John K. Ousterhout. “In Search of an Understandable Consensus
Algorithm.” In: 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014. Ed. by Garth Gibson and Nickolai
Zeldovich. USENIX Association, 2014, pp. 305–319. url: https://www.usenix.

org/conference/atc14/technical-sessions/presentation/ongaro.

[106] OpenUCX. SparkUCX ShuffleManager Plugin. https://github.com/openucx/

sparkucx. 2023.

[107] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. “MG-Join: A
Scalable Join for Massively Parallel Multi-GPU Architectures.” In: SIGMOD
’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava. ACM, 2021, pp. 1413–1425. doi: 10.1145/3448016.3457254. url:
https://doi.org/10.1145/3448016.3457254.

[108] Marius Poke and Torsten Hoefler. “DARE: High-Performance State Machine
Replication on RDMA Networks.” In: Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC 2015,
Portland, OR, USA, June 15-19, 2015. Ed. by Thilo Kielmann, Dean Hildebrand,
and Michela Taufer. ACM, 2015, pp. 107–118. doi: 10.1145/2749246.2749267.
url: https://doi.org/10.1145/2749246.2749267.

[109] Dan R. K. Ports and Jacob Nelson. “When Should The Network Be The Com-
puter?” In: Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS 2019, Bertinoro, Italy, May 13-15, 2019. ACM, 2019, pp. 209–215. doi: 10.

1145/3317550.3321439. url: https://doi.org/10.1145/3317550.3321439.

[110] Wolf Rödiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. “Flow-Join:
Adaptive skew handling for distributed joins over high-speed networks.” In: 32nd
IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Fin-
land, May 16-20, 2016. IEEE Computer Society, 2016, pp. 1194–1205. doi:
10.1109/ICDE.2016.7498324. url: https://doi.org/10.1109/ICDE.2016.

7498324.

[111] Flow-Join: Adaptive skew handling for distributed joins over high-speed networks.
IEEE Computer Society, 2016, pp. 1194–1205. doi: 10.1109/ICDE.2016.7498324.
url: https://doi.org/10.1109/ICDE.2016.7498324.

249

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://github.com/openucx/sparkucx
https://github.com/openucx/sparkucx
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/3317550.3321439
https://doi.org/10.1145/3317550.3321439
https://doi.org/10.1145/3317550.3321439
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2016.7498324

Bibliography

[112] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann. “High-
Speed Query Processing over High-Speed Networks.” In: Proc. VLDB Endow. 9.4
(2015), pp. 228–239. doi: 10.14778/2856318.2856319. url: http://www.vldb.

org/pvldb/vol9/p228-roediger.pdf.

[113] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
“ReDMArk: Bypassing RDMA Security Mechanisms.” In: 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021. Ed. by Michael Bailey
and Rachel Greenstadt. USENIX Association, 2021, pp. 4277–4292. url: https:

//www.usenix.org/conference/usenixsecurity21/presentation/rothenber

ger.

[114] Ran Rui, Hao Li, and Yi-Cheng Tu. “Efficient Join Algorithms For Large Database
Tables in a Multi-GPU Environment.” In: Proc. VLDB Endow. 14.4 (2020), pp. 708–
720. doi: 10.14778/3436905.3436927. url: http://www.vldb.org/pvldb/

vol14/p708-rui.pdf.

[115] Ran Rui, Hao Li, and Yi-Cheng Tu. “Join algorithms on GPUs: A revisit after
seven years.” In: 2015 IEEE International Conference on Big Data (IEEE BigData
2015), Santa Clara, CA, USA, October 29 - November 1, 2015. IEEE Computer
Society, 2015, pp. 2541–2550. doi: 10.1109/BigData.2015.7364051. url: https:

//doi.org/10.1109/BigData.2015.7364051.

[116] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. “In-Network Computation is a Dumb Idea Whose Time Has Come.” In:
Proceedings of the 16th ACM Workshop on Hot Topics in Networks, Palo Alto, CA,
USA, HotNets 2017, November 30 - December 01, 2017. Ed. by Sujata Banerjee,
Brad Karp, and Michael Walfish. ACM, 2017, pp. 150–156. doi: 10.1145/3152434.

3152461. url: https://doi.org/10.1145/3152434.3152461.

[117] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor
W. Lee, Daehyun Kim, and Pradeep Dubey. “Fast sort on CPUs and GPUs: a
case for bandwidth oblivious SIMD sort.” In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010. Ed. by Ahmed K. Elmagarmid and Divyakant
Agrawal. ACM, 2010, pp. 351–362. doi: 10.1145/1807167.1807207. url: https:

//doi.org/10.1145/1807167.1807207.

[118] Amazon Web Services. Elastic Fabric Adapter. https://aws.amazon.com/hpc/

efa/. Amazon, Sept. 2023.

250

https://doi.org/10.14778/2856318.2856319
http://www.vldb.org/pvldb/vol9/p228-roediger.pdf
http://www.vldb.org/pvldb/vol9/p228-roediger.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://doi.org/10.14778/3436905.3436927
http://www.vldb.org/pvldb/vol14/p708-rui.pdf
http://www.vldb.org/pvldb/vol14/p708-rui.pdf
https://doi.org/10.1109/BigData.2015.7364051
https://doi.org/10.1109/BigData.2015.7364051
https://doi.org/10.1109/BigData.2015.7364051
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1145/1807167.1807207
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/

Bibliography

[119] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. “A Study of the Fundamen-
tal Performance Characteristics of GPUs and CPUs for Database Analytics.”
In: Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo. ACM, 2020, pp. 1617–1632. doi: 10.

1145/3318464.3380595. url: https://doi.org/10.1145/3318464.3380595.

[120] David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara, and Gustavo Alonso.
“doppioDB: A Hardware Accelerated Database.” In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017. Ed. by Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu. ACM, 2017, pp. 1659–1662. doi: 10.

1145/3035918.3058746. url: https://doi.org/10.1145/3035918.3058746.

[121] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-
Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra,
Rob Cauble, Hassan M. G. Wassel, Behnam Montazeri, Simon L. Sabato, Joel
Scherpelz, and Amin Vahdat. “1RMA: Re-envisioning Remote Memory Access for
Multi-tenant Datacenters.” In: SIGCOMM ’20: Proceedings of the 2020 Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
Virtual Event, USA, August 10-14, 2020. Ed. by Henning Schulzrinne and Vishal
Misra. ACM, 2020, pp. 708–721. doi: 10.1145/3387514.3405897. url: https:

//doi.org/10.1145/3387514.3405897.

[122] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy,
and Anastasia Ailamaki. “Hardware-Conscious Hash-Joins on GPUs.” In: 35th
IEEE International Conference on Data Engineering, ICDE 2019, Macao, China,
April 8-11, 2019. IEEE, 2019, pp. 698–709. doi: 10.1109/ICDE.2019.00068. url:
https://doi.org/10.1109/ICDE.2019.00068.

[123] Lasse Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and Carsten Binnig.
“Distributed GPU Joins on Fast RDMA-capable Networks.” In: Proc. ACM Manag.
Data 1.1 (2023), 29:1–29:26. doi: 10.1145/3588709. url: https://doi.org/10.

1145/3588709.

[124] Lasse Thostrup, Daniel Failing, Tobias Ziegler, and Carsten Binnig. “A DBMS-
centric Evaluation of BlueField DPUs on Fast Networks.” In: International Work-
shop on Accelerating Analytics and Data Management Systems Using Modern Pro-

251

https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3035918.3058746
https://doi.org/10.1145/3035918.3058746
https://doi.org/10.1145/3035918.3058746
https://doi.org/10.1145/3387514.3405897
https://doi.org/10.1145/3387514.3405897
https://doi.org/10.1145/3387514.3405897
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1145/3588709
https://doi.org/10.1145/3588709
https://doi.org/10.1145/3588709

Bibliography

cessor and Storage Architectures, ADMS@VLDB 2022, Sydney, Australia, Septem-
ber 5, 2022. Ed. by Rajesh Bordawekar and Tirthankar Lahiri. 2022, pp. 1–10.
url: http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf.

[125] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten
Binnig. “DFI: The Data Flow Interface for High-Speed Networks.” In: SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava.
Best Paper Award. ACM, 2021, pp. 1825–1837. doi: 10.1145/3448016.3452816.
url: https://doi.org/10.1145/3448016.3452816.

[126] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten
Binnig. “DFI: The Data Flow Interface for High-Speed Networks.” In: SIGMOD
Rec. 51.1 (2022). Research Highlight Award, pp. 15–22. doi: 10.1145/3542700.

3542705. url: https://doi.org/10.1145/3542700.3542705.

[127] Da Tong, Shijie Zhou, and Viktor K. Prasanna. “High-Throughput Online Hash
Table on FPGA.” In: 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015. IEEE
Computer Society, 2015, pp. 105–112. doi: 10.1109/IPDPSW.2015.149. url:
https://doi.org/10.1109/IPDPSW.2015.149.

[128] Maroun Tork, Lina Maudlej, and Mark Silberstein. “Lynx: A SmartNIC-driven
Accelerator-centric Architecture for Network Servers.” In: ASPLOS ’20: Archi-
tectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020. Ed. by James R. Larus, Luis Ceze, and Karin
Strauss. ACM, 2020, pp. 117–131. doi: 10.1145/3373376.3378528. url: https:

//doi.org/10.1145/3373376.3378528.

[129] Animesh Trivedi and Marco Spaziani Brunella. “CPU-free Computing: A Vision
with a Blueprint.” In: Proceedings of the 19th Workshop on Hot Topics in Operating
Systems, HOTOS 2023, Providence, RI, USA, June 22-24, 2023. Ed. by Malte
Schwarzkopf, Andrew Baumann, and Natacha Crooks. ACM, 2023, pp. 1–14.
doi: 10.1145/3593856.3595906. url: https://doi.org/10.1145/3593856.

3595906.

[130] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. “Amazon Aurora: Design Considerations for
High Throughput Cloud-Native Relational Databases.” In: Proceedings of the 2017

252

http://www.adms-conf.org/2022-camera-ready/ADMS22_thostrup.pdf
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3542700.3542705
https://doi.org/10.1145/3542700.3542705
https://doi.org/10.1145/3542700.3542705
https://doi.org/10.1109/IPDPSW.2015.149
https://doi.org/10.1109/IPDPSW.2015.149
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3593856.3595906
https://doi.org/10.1145/3593856.3595906
https://doi.org/10.1145/3593856.3595906

Bibliography

ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017. Ed. by Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu. ACM, 2017, pp. 1041–1052. doi: 10.

1145/3035918.3056101. url: https://doi.org/10.1145/3035918.3056101.

[131] Lluıs Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz, Matthias Hille, Nils
Asmussen, Michael Roitzsch, Hermann Härtig, and Mark Silberstein. “Slashing
the disaggregation tax in heterogeneous data centers with FractOS.” In: EuroSys
’22: Seventeenth European Conference on Computer Systems, Rennes, France,
April 5 - 8, 2022. Ed. by Yérom-David Bromberg, Anne-Marie Kermarrec, and
Christos Kozyrakis. ACM, 2022, pp. 352–367. doi: 10.1145/3492321.3519569.
url: https://doi.org/10.1145/3492321.3519569.

[132] Tobias Vinçon, Christian Knödler, Leonardo Solis-Vasquez, Arthur Bernhardt,
Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch, and Ilia Petrov.
“Near-Data Processing in Database Systems on Native Computational Storage
under HTAP Workloads.” In: Proc. VLDB Endow. 15.10 (2022), pp. 1991–2004.
url: https://www.vldb.org/pvldb/vol15/p1991-petrov.pdf.

[133] Christopher B. Walton, Alfred G. Dale, and Roy M. Jenevein. “A Taxonomy and
Performance Model of Data Skew Effects in Parallel Joins.” In: 17th International
Conference on Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia,
Spain, Proceedings. Ed. by Guy M. Lohman, Amılcar Sernadas, and Rafael Camps.
Morgan Kaufmann, 1991, pp. 537–548. url: http://www.vldb.org/conf/1991/

P537.PDF.

[134] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. “APUS:
fast and scalable paxos on RDMA.” In: Proceedings of the 2017 Symposium
on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27,
2017. ACM, 2017, pp. 94–107. doi: 10.1145/3127479.3128609. url: https:

//doi.org/10.1145/3127479.3128609.

[135] Qing Wang, Youyou Lu, and Jiwu Shu. “Sherman: A Write-Optimized Distributed
B+Tree Index on Disaggregated Memory.” In: SIGMOD ’22: International Confer-
ence on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Ed. by
Zachary Ives, Angela Bonifati, and Amr El Abbadi. ACM, 2022, pp. 1033–1048.
doi: 10.1145/3514221.3517824. url: https://doi.org/10.1145/3514221.

3517824.

253

https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1145/3492321.3519569
https://www.vldb.org/pvldb/vol15/p1991-petrov.pdf
http://www.vldb.org/conf/1991/P537.PDF
http://www.vldb.org/conf/1991/P537.PDF
https://doi.org/10.1145/3127479.3128609
https://doi.org/10.1145/3127479.3128609
https://doi.org/10.1145/3127479.3128609
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824

Bibliography

[136] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso. “FpgaNIC:
An FPGA-based Versatile 100Gb SmartNIC for GPUs.” In: 2022 USENIX Annual
Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022.
Ed. by Jiri Schindler and Noa Zilberman. USENIX Association, 2022, pp. 967–986.
url: https://www.usenix.org/conference/atc22/presentation/wang-zeke.

[137] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. “Deconstructing RDMA-
enabled Distributed Transactions: Hybrid is Better!” In: 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018. Ed. by Andrea C. Arpaci-Dusseau and Geoff Voelker.
USENIX Association, 2018, pp. 233–251. url: https : / / www . usenix . org /

conference/osdi18/presentation/wei.

[138] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. “Fast in-
memory transaction processing using RDMA and HTM.” In: Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015. Ed. by Ethan L. Miller and Steven Hand. ACM, 2015,
pp. 87–104. doi: 10.1145/2815400.2815419. url: https://doi.org/10.1145/

2815400.2815419.

[139] Wei Liang, Wenbo Yin, Ping Kang, and Lingli Wang. “Memory efficient and
high performance key-value store on FPGA using Cuckoo hashing.” In: 2016 26th
International Conference on Field Programmable Logic and Applications (FPL).
Aug. 2016, pp. 1–4. doi: 10.1109/FPL.2016.7577355.

[140] Joachim Worringen. “Pipelining and Overlapping for MPI Collective Operations.”
In: 28th Annual IEEE Conference on Local Computer Networks (LCN 2003), The
Conference on Leading Edge and Practical Computer Networking, 20-24 October
2003, Bonn/Königswinter, Germany, Proceedings. IEEE Computer Society, 2003,
pp. 548–557. doi: 10.1109/LCN.2003.1243181. url: https://doi.org/10.

1109/LCN.2003.1243181.

[141] Haicheng Wu, Gregory F. Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael
Garland, and Sudhakar Yalamanchili. “Red Fox: An Execution Environment for
Relational Query Processing on GPUs.” In: 12th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2014, Orlando, FL, USA,
February 15-19, 2014. Ed. by David R. Kaeli and Tipp Moseley. ACM, 2014, p. 44.
url: https://dl.acm.org/citation.cfm?id=2544166.

254

https://www.usenix.org/conference/atc22/presentation/wang-zeke
https://www.usenix.org/conference/osdi18/presentation/wei
https://www.usenix.org/conference/osdi18/presentation/wei
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1109/FPL.2016.7577355
https://doi.org/10.1109/LCN.2003.1243181
https://doi.org/10.1109/LCN.2003.1243181
https://doi.org/10.1109/LCN.2003.1243181
https://dl.acm.org/citation.cfm?id=2544166

Bibliography

[142] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. “Fast Distributed Deep Learning over RDMA.” In: Proceedings of the
Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019.
Ed. by George Candea, Robbert van Renesse, and Christof Fetzer. ACM, 2019,
44:1–44:14. doi: 10.1145/3302424.3303975. url: https://doi.org/10.1145/

3302424.3303975.

[143] Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. “Distributed Lock
Management with RDMA: Decentralization without Starvation.” In: Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein. ACM, 2018, pp. 1571–1586. doi: 10.1145/

3183713.3196890. url: https://doi.org/10.1145/3183713.3196890.

[144] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. “The Yin and Yang of Processing
Data Warehousing Queries on GPU Devices.” In: Proc. VLDB Endow. 6.10 (2013),
pp. 817–828. doi: 10.14778/2536206.2536210. url: http://www.vldb.org/

pvldb/vol6/p817-yuan.pdf.

[145] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling.” In: European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer systems, EuroSys 2010,
Paris, France, April 13-16, 2010. Ed. by Christine Morin and Gilles Muller. ACM,
2010, pp. 265–278. doi: 10.1145/1755913.1755940. url: https://doi.org/10.

1145/1755913.1755940.

[146] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. “The End of a
Myth: Distributed Transactions Can Scale.” In: Proc. VLDB Endow. 10.6 (Feb.
2017), pp. 685–696. issn: 2150-8097. doi: 10.14778/3055330.3055335. url:
https://doi.org/10.14778/3055330.3055335.

[147] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. “The End of a
Myth: Distributed Transaction Can Scale.” In: Proc. VLDB Endow. 10.6 (2017),
pp. 685–696. doi: 10.14778/3055330.3055335. url: http://www.vldb.org/

pvldb/vol10/p685-zamanian.pdf.

[148] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. “Chiller: Contention-
centric Transaction Execution and Data Partitioning for Modern Networks.” In:

255

https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.14778/2536206.2536210
http://www.vldb.org/pvldb/vol6/p817-yuan.pdf
http://www.vldb.org/pvldb/vol6/p817-yuan.pdf
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3055330.3055335
http://www.vldb.org/pvldb/vol10/p685-zamanian.pdf
http://www.vldb.org/pvldb/vol10/p685-zamanian.pdf

Bibliography

SIGMOD Rec. 50.1 (2021), pp. 15–22. doi: 10.1145/3471485.3471490. url:
https://doi.org/10.1145/3471485.3471490.

[149] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. “FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory.” In:
20th USENIX Conference on File and Storage Technologies, FAST 2022, Santa
Clara, CA, USA, February 22-24, 2022. Ed. by Dean Hildebrand and Donald E.
Porter. USENIX Association, 2022, pp. 51–68. url: https://www.usenix.org/

conference/fast22/presentation/zhang-ming.

[150] Qizhen Zhang, Yifan Cai, Sebastian Angel, Vincent Liu, Ang Chen, and Boon Thau
Loo. “Rethinking Data Management Systems for Disaggregated Data Centers.” In:
10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.
url: http://cidrdb.org/cidr2020/papers/p6-zhang-cidr20.pdf.

[151] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. “Optimizing Data-intensive
Systems in Disaggregated Data Centers with TELEPORT.” In: SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022. Ed. by Zachary G. Ives, Angela Bonifati, and Amr El Abbadi. ACM,
2022, pp. 1345–1359. doi: 10.1145/3514221.3517856. url: https://doi.org/

10.1145/3514221.3517856.

[152] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
“FoundationDB: A Distributed Unbundled Transactional Key Value Store.” In:
SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava. ACM, 2021, pp. 2653–2666. doi: 10.1145/3448016.3457559.
url: https://doi.org/10.1145/3448016.3457559.

[153] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica,
and Xin Jin. “Harmonia: Near-Linear Scalability for Replicated Storage with In-
Network Conflict Detection.” In: Proc. VLDB Endow. 13.3 (2019), pp. 376–389. doi:
10.14778/3368289.3368301. url: http://www.vldb.org/pvldb/vol13/p376-

zhu.pdf.

256

https://doi.org/10.1145/3471485.3471490
https://doi.org/10.1145/3471485.3471490
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
http://cidrdb.org/cidr2020/papers/p6-zhang-cidr20.pdf
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.14778/3368289.3368301
http://www.vldb.org/pvldb/vol13/p376-zhu.pdf
http://www.vldb.org/pvldb/vol13/p376-zhu.pdf

Bibliography

[154] Tobias Ziegler, Carsten Binnig, and Viktor Leis. “ScaleStore: A Fast and Cost-
Efficient Storage Engine using DRAM, NVMe, and RDMA.” In: SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022. Ed. by Zachary G. Ives, Angela Bonifati, and Amr El Abbadi. ACM,
2022, pp. 685–699. doi: 10.1145/3514221.3526187. url: https://doi.org/10.

1145/3514221.3526187.

[155] Tobias Ziegler, Carsten Binnig, and Uwe Röhm. “Skew-resilient Query Processing
for Fast Networks.” In: Datenbanksysteme für Business, Technologie und Web
(BTW 2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken und Information-
ssysteme" (DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband. Ed. by
Holger Meyer, Norbert Ritter, Andreas Thor, Daniela Nicklas, Andreas Heuer, and
Meike Klettke. Vol. P-290. LNI. Gesellschaft für Informatik, Bonn, 2019, pp. 81–85.
doi: 10.18420/btw2019-ws-06. url: https://doi.org/10.18420/btw2019-ws-

06.

[156] Tobias Ziegler, Viktor Leis, and Carsten Binnig. “RDMA Communciation Pat-
terns.” In: Datenbank-Spektrum 20.3 (2020), pp. 199–210. doi: 10.1007/s13222-

020-00355-7. url: https://doi.org/10.1007/s13222-020-00355-7.

[157] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. “Designing Distributed Tree-based Index Structures for Fast RDMA-
capable Networks.” In: Proceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019. Ed. by Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska. ACM, 2019, pp. 741–758. doi: 10.1145/

3299869.3300081. url: https://doi.org/10.1145/3299869.3300081.

[158] Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore.
“NetFPGA SUME: Toward 100 Gbps as Research Commodity.” In: IEEE Micro
34.5 (2014), pp. 32–41. doi: 10.1109/MM.2014.61. url: https://doi.org/10.

1109/MM.2014.61.

[159] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. “One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory.” In: 2021
USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021.
Ed. by Irina Calciu and Geoff Kuenning. USENIX Association, 2021, pp. 15–29.
url: https://www.usenix.org/conference/atc21/presentation/zuo.

257

https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3514221.3526187
https://doi.org/10.18420/btw2019-ws-06
https://doi.org/10.18420/btw2019-ws-06
https://doi.org/10.18420/btw2019-ws-06
https://doi.org/10.1007/s13222-020-00355-7
https://doi.org/10.1007/s13222-020-00355-7
https://doi.org/10.1007/s13222-020-00355-7
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1109/MM.2014.61
https://doi.org/10.1109/MM.2014.61
https://doi.org/10.1109/MM.2014.61
https://www.usenix.org/conference/atc21/presentation/zuo

	Abstract
	Abstract
	Publications
	Acknowledgments
	Contents
	Acronyms
	I Synopsis
	1 Introduction
	1.1 Context & Motivation
	1.2 Problem Statement & Challenges
	1.3 Contributions
	1.4 Outline

	2 Addressing the Complexity of RDMA
	2.1 RDMA Background
	2.2 The Data Flow Interface
	2.2.1 Key Design Principles
	2.2.2 Flow-based Programming Abstraction
	2.2.3 DFI Flows Overview
	2.2.4 Realizing DFI Flows

	2.3 Evaluation & Methodology
	2.3.1 Shuffle Flows Evaluation
	2.3.2 Join Use Case

	2.4 Related Work
	2.5 Summary

	3 Evaluating In-network Processing for DBMSs
	3.1 Evaluation of Programmable NICs for DBMSs
	3.1.1 Background on Programmable NICs
	3.1.2 Experiment Setup
	3.1.3 Use case 1: Remote B-Tree with RPC & One-sided RDMA
	3.1.4 Use case 2: Remote Sequencer
	3.1.5 Conclusion

	3.2 Distributed Join on a Programmable Switch
	3.2.1 Join Processing with INP
	3.2.2 Query Compilation
	3.2.3 Evaluation
	3.2.4 Conclusion

	3.3 Summary

	4 Realizing Distributed Query Processing on GPUs
	4.1 Overview
	4.2 Pipelined GPU Join Design
	4.3 Evaluation & Methodology
	4.3.1 Setup & Workloads
	4.3.2 Comparison with a Blocking GPU Baseline:
	4.3.3 Complete SSB Query

	4.4 Related Work
	4.5 Summary

	5 Network-driven Communication for Accelerators
	5.1 The Need for Network-driven Communication
	5.2 Zero-sided RDMA Overview
	5.3 Realizing Zero-sided RDMA
	5.4 Zero-sided Communication Flows
	5.5 Evaluation & Methodology
	5.6 Related Work
	5.7 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Research Directions
	6.2.1 Network-driven Communication
	6.2.2 The Future of RDMA
	6.2.3 Hardware Evolution

	II Peer-Reviewed Publications
	7 DFI: The Data Flow Interface for High-Speed Networks
	7.1 Introduction
	7.2 Existing Interfaces
	7.2.1 RDMA Verbs
	7.2.2 Message Passing Interface
	7.2.3 Shortcomings of MPI

	7.3 DFI Overview
	7.3.1 Key Design Principles
	7.3.2 Flow-based Programming Model
	7.3.3 High-level Flow Execution

	7.4 Programming Model
	7.4.1 DFI Tuples
	7.4.2 DFI Flows
	7.4.3 Use Cases

	7.5 Flow Implementation
	7.5.1 Flow Execution
	7.5.2 Buffer Design
	7.5.3 Latency Optimization
	7.5.4 Other Flow Types

	7.6 Experimental Evaluation
	7.6.1 Experiment 1: Efficiency of DFI
	7.6.2 Experiment 2: DFI vs. MPI
	7.6.3 Experiment 3: Use Cases

	7.7 Conclusions
	7.8 Acknowledgements

	8 A DBMS-centric Evaluation of BlueField DPUs on Fast Networks
	8.1 Introduction
	8.2 Background
	8.2.1 Remote Direct Memory Access (RDMA)
	8.2.2 Data Processing Units

	8.3 Use Cases & Experimental Setup
	8.4 Use case 1: Remote B-Tree with RPC
	8.4.1 Throughput Characteristics
	8.4.2 B-tree Latency Characteristics
	8.4.3 Discussion

	8.5 Use case 1: Remote B-Tree with One-sided RDMA
	8.5.1 Throughput Characteristics
	8.5.2 Latency Characteristics
	8.5.3 Discussion

	8.6 Use case 2: Remote Sequencer
	8.6.1 One-sided RDMA Atomics
	8.6.2 RPC with Local Atomics
	8.6.3 Discussion

	8.7 Conclusion and Future Work
	8.8 Acknowledgements

	9 High-Performance In-Network Data Processing
	9.1 Introduction
	9.2 System Overview
	9.3 Query Processing
	9.3.1 Query Compilation
	9.3.2 Query Optimization

	9.4 Switch Design
	9.4.1 Hardware Platform
	9.4.2 Ethernet Packet Parsing On FPGA
	9.4.3 Hash Table Generation
	9.4.4 Hash Table Probing
	9.4.5 Performance

	9.5 Initial Results
	9.5.1 Setup and Workload
	9.5.2 Experiment 1: Uniform Join Keys
	9.5.3 Experiment 2: Skewed Join Keys
	9.5.4 Experiment 3: Scaling Number of Joins

	9.6 Conclusion & Future Work
	9.7 Acknowledgements

	10 Distributed GPU Joins on Fast RDMA-capable Networks
	10.1 Introduction
	10.2 Overview of Distributed GPU Join
	10.2.1 Distributed GPU Join Scheme
	10.2.2 The Case for Pipelining

	10.3 Design Space for Pipelined GPU Join
	10.3.1 RDMA & GPUDirect
	10.3.2 Design Alternatives
	10.3.3 Design-Space Evaluation

	10.4 Pipelined GPU Join Algorithm
	10.4.1 Overview of Execution Steps
	10.4.2 Active GPU Kernel
	10.4.3 Successive Operations
	10.4.4 Streaming Shuffle

	10.5 Hybrid CPU/GPU Join Algorithm
	10.6 Experimental Evaluation
	10.6.1 Setup & Workloads
	10.6.2 Exp. 1 - Pipelined GPU Join
	10.6.3 Exp. 2 - Complete Queries
	10.6.4 Exp. 3 - Hybrid Join Execution
	10.6.5 Exp. 4 - Microbenchmarks

	10.7 Related Work
	10.8 Conclusion & Future Work
	10.9 Acknowledgements

	11 Zero-sided RDMA: Network-driven Data Shuffling
	11.1 Introduction
	11.2 Zero-sided RDMA
	11.3 Initial Results
	11.4 Future Work
	11.5 Acknowledgements

	12 Zero-sided RDMA: Network-driven Data Shuffling for Disaggregated Heterogeneous Cloud DBMSs
	12.1 Introduction
	12.2 Background
	12.2.1 Remote Direct Memory Access (RDMA)
	12.2.2 Programmable Switches

	12.3 Overview of Zero-sided RDMA
	12.3.1 Why Network-driven Communication?
	12.3.2 How Does Zero-sided RDMA Work?
	12.3.3 Integration into a DBMS

	12.4 Switch-driven Data Transfers
	12.5 Complex Flows & Use Cases
	12.5.1 N:M Data Shuffling
	12.5.2 Advanced Flows & Features
	12.5.3 Use Cases

	12.6 Implementation Details
	12.6.1 Load Balancing and Replication
	12.6.2 Further Challenges
	12.6.3 Discussion

	12.7 Experimental Evaluation
	12.7.1 Efficiency of Zero-sided RDMA
	12.7.2 Benefits of Switch-driven Data-transfers
	12.7.3 Heterogeneous Communication

	12.8 Conclusions
	12.9 Acknowledgements

