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 I 

Summary 

Thanks to advances in artificial intelligence and robotics, robots, and especially social robots 

that can naturally interact with humans, are now found in more and more areas of our lives. At 

the same time, teams have been the norm in organizations for decades. To bring these two 

circumstances together, this dissertation addresses the use of social robots together with 

humans in teams, so-called human-robot teams (HRTs). 

This work aims to advance knowledge about HRTs and important underlying mechanisms in 

the establishment of such teams, thereby providing insights in two aspects. First, a structured 

and universal definition of HRTs is derived from the various perspectives of extant research, 

and based on a comprehensive literature overview, important characteristics and influencing 

factors of HRTs as well as research gaps in HRT research are identified. Second, insights into 

the underlying mechanisms of the establishment of human-robot teams are provided for settings 

with social robots in two different team roles: team assistant and lower-level (team) manager. 

For this purpose, this dissertation contains three research studies that cover the currently largely 

unexplored area of social robots' use in organizational teams at both the employee and lower-

level manager levels. The first study (conceptual study) provides a foundation for this 

dissertation and beyond by developing a structured and universal definition of HRTs. It also 

structures extant research on HRTs and proposes an agenda for future research on HRTs based 

on research gaps identified in a comprehensive literature review that includes 194 studies on 

HRTs. 

The second and third studies (empirical studies 1 and 2) use empirical online studies to address 

two of the research gaps identified in the conceptual study. They examine the underlying 

mechanisms in decisions for social robots in two different team roles: team assistant (empirical 

study 1) and team manager (empirical study 2). By looking at expectations and experiences of 

taskwork-/performance-related and teamwork-related/relational features of social robots using 

polynomial regressions and response surface analyses, these studies rely on expectation 

disconfirmation theory to provide a detailed investigation of the underlying mechanisms of 

organizational decisions for social robots. 

Empirical study 1 thereby shows that for teamwork, positive disconfirmation and high levels of 

experiences lead to higher acceptance of humanoid and android robotic team assistants, and 

similar results emerge for a humanoid robot’s taskwork skills. In contrast, for taskwork skills of 

android team assistants, high levels of positive disconfirmation lead to lower robot acceptance.  
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For robotic lower-level managers, empirical study 2 shows that there are discrepancies in the 

evaluation of performance-related usefulness and relational attitude. While for usefulness a 

slight overfulfilment of expectations leads to a positive impact on the readiness to work with, 

before evaluations decrease with greater overfulfillment, for attitude increasing positive 

experiences are associated with (decreasing) positive evaluations of readiness.  

In summary, this dissertation contributes to scientific research on HRTs by advancing the 

understanding of HRTs, providing a structured and universal definition of HRTs, and suggesting 

avenues for future research. The systematic investigation of underlying mechanisms for the 

selection of different types of social robots for different team roles provides a holistic view of 

this new form of organizational teams. In addition to the research contributions, this thesis also 

provides practical guidance for the successful establishment of HRTs in organizations. 
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Zusammenfassung 

Dank Fortschritten im Bereich der künstlichen Intelligenz und der Robotik sind Roboter, und 

insbesondere soziale Roboter, die auf natürliche Weise mit Menschen interagieren können, 

heute in immer mehr Bereichen unseres Lebens anzutreffen. Gleichzeitig setzen Unternehmen 

schon seit Jahrzehnten gezielt auf teambasierte Arbeitskonzepte. Um diese beiden 

Gegebenheiten nun zusammenzubringen, befasst sich diese Dissertation mit dem Einsatz von 

sozialen Robotern zusammen mit Menschen in Teams, sogenannten Mensch-Roboter-Teams 

(engl. Human-Robot Teams, HRTs). 

Diese Arbeit zielt darauf ab, das Wissen über HRTs und wichtige zugrundeliegende 

Mechanismen bei der Bildung solcher Teams zu erweitern und dadurch Erkenntnisse in 

zweierlei Hinsicht zu liefern. Erstens wird eine strukturierte und allgemeingültige Definition 

von HRTs aus den verschiedenen Perspektiven der bisherigen Forschung abgeleitet und auf 

Basis eines umfassenden Literaturüberblicks werden wichtige Merkmale und Einflussfaktoren 

von HRTs sowie Forschungslücken in der Forschung an HRTs aufgezeigt. Zweitens werden 

Einblicke in die zugrundeliegenden Mechanismen bei der Etablierung von Mensch-Roboter-

Teams für Szenarien mit sozialen Robotern in zwei verschiedenen Teamrollen - Teamassistent 

und Teammanager - gegeben. 

Zu diesem Zweck enthält diese Dissertation drei Forschungsstudien, die das derzeit weitgehend 

unerforschte Gebiet des Einsatzes sozialer Roboter in Organisationsteams sowohl auf der 

Mitarbeiter- als auch der Teammanagerebene abdecken. Die erste Forschungsstudie 

(konzeptionelle Studie) liefert eine Grundlage für diese Dissertation und darüber hinaus, indem 

sie eine strukturierte und universelle Definition von HRTs entwickelt. Weiterhin wird die 

bisherige Forschung zu HRTs strukturiert und eine Agenda für die künftige Forschung zu HRTs 

vorgeschlagen, die auf Forschungslücken beruht, die in einer umfassenden Literaturübersicht 

mit 194 Studien zu HRTs ermittelt wurden. 

Die zweite und dritte Forschungsstudie (empirische Studien 1 und 2) nutzen empirische Online-

Studien, um zwei der in der konzeptionellen Studie identifizierten Forschungslücken zu 

adressieren. Sie untersuchen die zugrundeliegenden Mechanismen bei Entscheidungen für 

soziale Roboter in zwei verschiedenen Teamrollen: Teamassistent (empirische Studie 1) und 

Teammanager (empirische Studie 2). Durch die Betrachtung von Erwartungen und 

Erfahrungen in Bezug auf aufgaben-/leistungsbezogene und teamarbeitsbezogene/relationale 

Merkmale von sozialen Robotern mittels polynomieller Regressionen und Response-Surface-

Analysen stützen sich diese Studien auf die Expectation Disconfirmation Theory, um eine 
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detaillierte Untersuchung der zugrunde liegenden Mechanismen von unternehmerischen 

Entscheidungen für soziale Roboter zu ermöglichen. 

Die empirische Studie 1 zeigt dabei, dass bei teamarbeitsbezogenen Merkmalen positive 

Diskonfirmation und ein hohes Niveau an Erfahrungen zu einer höheren Akzeptanz von 

humanoiden und androiden robotischen Teamassistenten führen, und dass ähnliche Ergebnisse 

für die aufgabenbezogenen Merkmale eines humanoiden Roboters zu beobachten sind. Im 

Gegensatz dazu führt ein hohes Maß an positiver Diskonfirmation bei den aufgabenbezogenen 

merkmalen von androiden Teamassistenten zu einer geringeren Roboterakzeptanz.  

Für robotische Teammanager zeigt die empirische Studie 2, dass es Diskrepanzen bei der 

Bewertung der leistungsbezogenen Nützlichkeit und der relationalen Einstellung gegenüber 

sozialen Robotern gibt. Während bei der Nützlichkeit eine leichte Übererfüllung der 

Erwartungen zu einem positiven Effekt auf die Bereitschaft zur Zusammenarbeit führt, bevor 

die Bewertungen bei größerer Übererfüllung abnehmen, sind bei der Einstelllung gegenüber 

sozialen Robotern zunehmende positive Erfahrungen mit (abnehmenden) positiven 

Bewertungen der Bereitschaft verbunden. 

Insgesamt trägt diese Dissertation zur Forschung an HRTs bei, indem sie das Verständnis von 

HRTs erweitert, eine strukturierte und universelle Definition von HRTs liefert und Wege für 

zukünftige Forschungen aufzeigt. Die systematische Untersuchung der zugrundeliegenden 

Mechanismen für die Auswahl verschiedener Typen von sozialen Robotern für unterschiedliche 

Teamrollen ermöglicht eine ganzheitliche Betrachtung dieser neuen Form von 

Organisationsteams. Neben den wissenschaftlichen Beiträgen liefert diese Arbeit auch 

praktische Anhaltspunkte für die erfolgreiche Implementierung von HRTs in Organisationen. 
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1. Introduction 1 

1 Introduction 

Current advancements in artificial intelligence are enabling this technology to be used in more 

and more application contexts (Maedche et al., 2019). AI is becoming an ubiquitous facet of 

our daily lives and, thanks to the advancements, is even able to become "human-aware" and 

interact with humans on an eye-level, for example in teams (Korteling et al., 2021; Seeber et 

al., 2020; Tewari, 2022; van den Bosch et al., 2019). 

At the same time, robots are increasingly penetrating multiple areas of our lives. They have 

been in the focus of research (Lasota et al., 2014; Lozano-Pérez, 1983; Mori, 1970; Z. Pan et 

al., 2012; Preising et al., 1991; Wolf & Stock-Homburg, 2020), media (Alvarez Satorre, 2017; 

Boffey, 1983; Ford, 2015; Stylianou et al., 2015), and popular culture (e.g., R2-D2, T-800, or 

WALL-E; I. Phillips, 2015) for years, even decades. They have made their way into our 

professional (International Federation of Robotics, 2021; Wood, 2021) and personal lives 

(2018; Sung et al., 2007; Weiss et al., 2009) and continue to be an advancing technology.  

Given this combination of recent promising developments, one might expect mixed human-

robot teams (HRTs), in which humans collaborate with robots (Wolf & Stock-Homburg, 2020), 

to be a natural next step. However, these teams are not yet a widespread reality in the 

occupational context and remain aspirations thanks to their potentials, for example, to increase 

efficiency of teams (Gombolay, Gutierrez, et al., 2015). This dissertation therefore aims to 

advance knowledge about HRTs and provide insights into the path to these teams of the future. 

 

1.1 Motivation and Research Questions 

In the professional organizational context – the focus of this dissertation – the emphasis has 

traditionally been on functional industrial robots, which are used in industrial automation 

applications, such as manufacturing (ISO 8373; International Organization for Standardization, 

2012), and are viewed more as tools than teammates (Tsai et al., 2022). In this context, a wide 

range of research has been conducted to better understand this type of robots and resulting 

implications of usage (Graetz & Michaels, 2018; Hoeniger, 1998; Ji & Wang, 2019). For 

instance, it has been shown that industrial robots help increase labor productivity (ABB, 2021; 

Dauth, 2017; Graetz & Michaels, 2018). 

In more recent years, another type of robots has emerged and gained prominence: social robots. 

Social robots have the ability to interact naturally with humans using speech, gestures, and 

facial expressions (Breazeal, 2003; Breazeal & Scassellati, 1999). In addition to using these 
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natural cues, social robots can also, for example, perceive and/or express emotions, establish 

social relationships, and communicate with interpretive dialogues (Fong et al., 2003; Stock-

Homburg, 2022). Social robots also tend to have a human-like appearance, for example with a 

head, arms, and legs (so-called humanoid robots; Mende et al., 2019), and sometimes even aim 

to be indistinguishable from humans (so-called android robots; MacDorman & Ishiguro, 2005). 

With advances and innovations in robotics and artificial intelligence (AI), the scope of social 

robots has expanded drastically over the last years (Hildesheim & Michelsen, 2021; Leite et al., 

2013; Leite et al., 2009). Thanks to this, today, social robots cover a wide range of applications 

in many aspects of our lives, from elder care (Kidd et al., 2006) to retail (C. Schmitt et al., 2017; 

Subero-Navarro et al., 2022), education (Belpaeme et al., 2018), and private households (Weiss 

et al., 2009).  

However, social robots enabled through AI, used widely in organizational teams to collaborate 

and interact with humans, are still the future and not the current reality in organizations. This 

is despite the fact that social robots have already been shown to increase the efficiency of HRTs 

in experimental laboratory settings (Breazeal et al., 2005; Hoffman & Breazeal, 2007) and thus 

could have a similar potential as industrial robots. 

The usage of social robots in organizations can further address another important issue: Driven 

by an aging workforce in many Western countries (OECD, 2019) and a skilled worker scarcity, 

in particular for technical skills (Bessen, 2014; Bughin et al., 2018; Smit et al., 2020), 

organizations are increasingly struggling with unfilled positions (Christian, 2022). The scale of 

these developments is significant: The European working-age population is likely to decrease 

by 13.5 million (about 4 percent) by 2030 due to demographic change (Smit et al., 2020). At 

the same time, more than half of the European workforce will face significant change: Some 94 

million workers are expected to require reskilling (Smit et al., 2020). Thanks to their expanding 

skill sets and thus potential areas of application, social robots could provide much-needed relief 

in this war for talent for companies that are currently unable to fill their vacancies.  

Finally, in addition to developments in robotics and the workforce, the working world in general 

is changing: General automation and digitization, and not least developments such as the 

COVID 19 pandemic, have drastically changed the way work is done in organizations (Gartner, 

2020). The trend is toward more flexible working models, new skills are needed in dealing with 

technologies, and a new awareness of safety is required (e.g., with regard to risks of infection 

in the workplace) (Carlsen, 2020; Kretchmer, 2020; World Economic Forum, 2020a; Zahidi, 

2020). Social robots could be beneficial in the face of these challenges by taking over tasks from 

human colleagues to support and thus helping companies become future-proof in the long run. 



 

1. Introduction 3 

While extensive research has been conducted on broader areas such as human-robot interaction 

(HRI) and human-robot collaboration (HRC), e.g., in customer contact (Merkle, 2021), research 

on HRTs remains an emerging field. A growing interest into the topic is evident through the 

significant increase in publications in recent years (see Figure 1-1). In contrast, research on all-

human work teams goes back almost a century (Mathieu et al., 2018). There are extensive 

studies and rich findings that help to understand how teams function and what, for example, 

their success factors are (R. Stock, 2004, 2005). For HRTs, however, this knowledge is currently 

lacking in many places: Existing research comes from a variety of backgrounds and has several 

research gaps due to the narrow focus on specific aspects of HRTs (Wolf & Stock-Homburg, 

2020). As a result, while there is a body of research on HRTs, it lacks consistency and structure. 

In particular, when considering HRTs in organizational contexts, there is a lack of a sound 

understanding of what constitutes these teams, how they are formed, and what important 

characteristics and influencing factors are.  

Figure 1-1. Number of Publications on Human-Robot Teams 1990 to 2022 (Source: Search on Google 

Scholar for Search Term "human-robot team") 

 

To help address the gaps in research on HRTs, the focus of this dissertation is on the inwards 

directed use of social robots enabled through AI in organizational teams (see Figure 1-2). The 

main goal is to advance knowledge about HRTs and provide insights into the path to these 

teams of the future. In doing so, the thesis raises three overarching research questions (RQs). 

Researchers studying HRTs come from a variety of disciplines and have different research foci 

(Wolf & Stock-Homburg, 2020). As a result, they take different perspectives, so there is no 

universal definition of HRTs and no structured understanding of fundamental characteristics, 

processes, and influencing factors of HRTs. Therefore, in order to avoid the jingle fallacy – 

according to which different things are understood by the same name (Marsh et al., 2019) – for 
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HRTs, obtain an overview of extant research on HRTs, and identify avenues for future research 

on HRTs, the first overarching research question of this dissertation is: 

1. How are human-robot teams (HRTs) defined and what are important characteristics and 

influencing factors? 

One aspect that is virtually completely missing from HRT research is the fact that robots do not 

magically appear in teams. Extant research tends to be either conceptual in nature or is 

concerned with pre-existing HRTs (Wolf & Stock-Homburg, 2022). The part of the research that 

deals with robot selection usually focuses on the selection of industrial robots (e.g., Ketipi et 

al., 2014; Koulouriotis & Ketipi, 2014). To my knowledge, there is only one study that considers 

an avatar selection scenario (Trainer et al., 2020). However, the focus of this study is not on an 

organizational context and it also focuses on virtual social avatars instead of physically 

embodied robots. 

Figure 1-2. Focus Area of the Use of Social Robots in This Dissertation 

 

Thus, the entire selection and decision-making process preceding the establishment of HRTs is 

largely neglected in research, although it plays an important role as a central prerequisite for 

the successful establishment of HRTs. This aspect also has a practical relevance, as employees 

need to be prepared and trained for the use of robots in their work teams analogous to the 

introduction of other new technologies, so that they are not overwhelmed (Kim, 2022).  

This thesis aims to gain more insights into the decision for robots in two different team roles - 

team assistant and lower-level (team) manager - in order to contribute to a better 

understanding of important factors in the establishment of HRTs in organizations. The two roles 

were chosen because they represent different levels of team members, both of which are 

important to teams: Team assistants are a defined employee-level role in teams that, like other 

team members, have influence over a team's processes and outcomes (Gladstein, 1984; R. 
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Stock, 2004). Team managers have institutionalized authority over the members of a team and 

supervise them in achieving their common goals (Anzengruber et al., 2017). In doing so, they 

support team decisions, assign team tasks, and evaluate team and individual performance 

(Anzengruber et al., 2017; Simonet & Tett, 2013) Social robots are considered suitable for these 

roles due to their computational and behavioral capabilities (Breazeal et al., 2005; Feng et al., 

2021; L. P. Robert et al., 2020). Thus, the second and third overarching research question of 

this dissertation are: 

2. What are underlying mechanisms of the decision for a robotic team assistant for a mixed 

HRT? 

3. What are underlying mechanisms of the decision for a robotic lower-level (team) manager 

for a mixed HRT? 

To answer these research questions, both a conceptual approach (literature review; to answer 

RQ 1) and an empirical approach (empirical online research studies; to answer RQ 2 and RQ 

3) were taken. The results are summarized in three research studies spanning the largely 

unexplored area of social robots’ inwards directed use in organizational teams at both the 

employee and team manager levels (Figure 1-3). The studies are included in separate chapters 

in this thesis. The structure of the thesis is explained within the next section. 

Figure 1-3. Classification of Research Studies Included in This Dissertation in the Research Landscape 

on Social Robots in Organizations 

 

1.2 Thesis Structure and Synopsis 

Guided by the three overarching research questions, this dissertation is divided into five 

chapters. Following the general motivation for the research in the introductory chapter, this 

thesis contains three research studies that aim to provide conceptual and empirical insights and 
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findings about HRTs. Chapters two through four each consist of one study in the order shown 

in Table 1-1, which provides an overview of how the studies fit into the chapter structure. 

Chapter two (conceptual study) provides a literature review of existing research on HRTs, 

including a structured and universal definition of these teams. The third and fourth chapters 

each contain studies that address the underlying mechanisms of decisions for social robots in 

HRTs in offices that have different roles: the team assistant role (chapter three, empirical study 

1) and the lower-level (team) manager role (chapter four, empirical study 2). Finally, chapter 

five concludes this thesis with a summary of contributions to research and practice, 

identification of limitations, and an outlook for future research.  

The contents of each study are briefly summarized below: 

Table 1-1. Overview Over Included Research Studies and Integration Into Chapter Structure 

Chapter Research Study 

Chapter 2 Conceptual study: Literature review on robots as team members  

Chapter 3 Empirical study 1: Decisions for robotic team assistants 

Chapter 4 Empirical study 2: Decisions for robotic lower-level (team) managers 

 

Artificial intelligence and robotic technologies have evolved significantly in recent years and 

have become increasingly sophisticated and comprehensive. Accordingly, research on mixed 

human-robot teams (HRTs) consisting of both robots and humans has also expanded and 

attracted the attention of researchers from various disciplines such as organizational behavior, 

human-robot interaction, cognitive science, and robotics. The conceptual study (chapter two) 

provides a foundation for this dissertation and beyond as it features a comprehensive literature 

review of 194 studies on HRTs. In doing so, this study introduces a robot and team typology to 

derive a structured, universal definition of HRTs. It then structures previous research on HRTs 

using the input-process-output (IPO) model of teams (Gladstein, 1984) and provides insights 

into key study characteristics and findings. In addition, comprehensive avenues for future 

research on HRTs are proposed to help fill current research gaps. 

Addressing one of the research gaps identified in the conceptual research study, empirical 

study 1 (chapter three) considers an empirical online study on decisions for social robots in the 

role of team assistants as a natural first step before their integration into organizations. Based 

on the IPO model of teams (Gladstein, 1984) to structure the research and the expectation-

disconfirmation paradigm (EDT; Oliver, 1980), this study focuses on humanoid robotic and 
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android robotic team assistants. Using response surface analysis (RSA) following an approach 

by S. A. Brown et al. (2014), we find that for robotic team assistants, for teamwork (social skills 

and team orientation), positive disconfirmation and high levels of experiences lead to higher 

acceptance, and similar results emerge for a humanoid robot’s taskwork (coordination skills 

and knowledge) skills. In contrast, for taskwork skills of android team assistants, high levels of 

positive disconfirmation lead to lower robot acceptance. The results of this study provides 

insights into considering diversely anthropomorphic robots and important aspects for 

implementing them in teams. 

Finally, in the same vein as empirical study 1, empirical study 2 (chapter four) takes a closer 

look at the mechanisms underlying decisions for robotic lower-level (team) manager 

candidates. By extending the TAM (Davis, 1989; Davis et al., 1989) and the expectation-

disconfirmation paradigm (EDT; Oliver, 1980) to HRT settings, this investigation uses an 

empirical online study to compare the relationship between expected and experienced 

usefulness and attitude and the readiness to work with an android or humanoid robotic lower-

level (team) manager. Results of a RSA (see S. A. Brown et al., 2014) show that there is a 

discrepancy between the evaluation of performance-related (usefulness) and relational 

(attitude) features of robotic lower-level managers. This study contributes to research on HRTs 

by providing insights into the implementation of social robots in the role of a lower-level (team) 

manager, thereby advancing the understanding of successful HRT implementation. 
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2 Conceptual Study: Literature Review on Robots as Team Members 1 

2.1 Introduction 

Humans partner with robots in many current work settings to accomplish tasks in various fields. 

Many of these robots can be classified as social robots, interacting with humans in natural ways 

that include speech, gestures, and facial expressions (Breazeal, 2003). In contrast to industrial 

robots, they work like unique, contributing members of organizations and so-called human-

robot teams (HRTs) (Hoffman & Breazeal, 2004). 

Such teams are growing in presence and use, especially in light of the various restrictions 

imposed by the COVID-19 pandemic (Scassellati & Vázquez, 2020). Already in 2018, an 

estimated 82% of business leaders already believed that HRTs would be a daily reality within 

five years (Dell Technologies, 2018); when we recently surveyed 596 U.S. employees2 (65% 

men, mean age = 36.92 years, SD = 10.85 years), we found that they could easily imagine 

working with a robot as teammate (39%), team assistant (50%), or even team leader (34%). 

Exemplary tasks of robots thereby include tracking of projects, performing real-time scheduling, 

and supporting complex organizational decision-making processes. 

However, even as these uses and potential applications expand, research on HRTs remains 

limited by disciplinary silos. That is, the concept is interdisciplinary, but we lack syntheses of 

existing knowledge or common definitions used in relation to HRT across disciplines. Nor do 

we have a sense of what factors or characteristics of team members influence the functioning 

and outcomes of such HRTs. With this review, we attempt to systematically synchronize existing 

definitions and detail previous research on HRTs according to their theoretical perspectives, 

empirical designs, and major findings. 

Our focus is on embodied robots, which we define as physical representations of AI in a physical 

world that can recognize and interact with their environment (Bradshaw et al., 2009; Fong et 

                                                
1 Based on Wolf and Stock-Homburg (2022) published in journal Group & Organization Management; updated to 

now include studies between 2020 and March 2023 to account for latest research in this field 

2 The survey participants were recruited via Amazon Mechanical Turk. We surveyed business leaders; they had an 

average of 6.99 (SD=6.431) years of leadership experience in various industries, including IT (23.2%), 

banking/ insurance (13.8%), and health care/social sectors (9.9%). They were responsible for teams (45.3%), 

departments (29.9%), business areas (11.1%), or the whole company (13.8%). The survey introduced social 

robots and their potential roles in organizations, and issued the prompt “I can imagine having a robot as an 

assistant/ colleague/supervisor,” which participants answered on a 5-point Likert scale (1=”not at all”, 

5=”absolutely”). 
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al., 2003; High-Level Expert Group on Artificial Intelligence, 2019).3 For the review, we 

conducted online searches using Google Scholar and EBSCO but also reviewed journals and 

conference proceedings related to human–robot interactions. As detailed in supplementary 

material A4 we searched 17 conferences and 40 journals. Most of them are from the fields of 

HRI, robotics, and computer science. We manually evaluated each study type, embodiment 

form, robot level, focus topic, and team size and applied various related exlusion criteria. 

Ultimately, we reviewed 194 relevant studies, published between 1990 and March 2023 (see 

Figure 2-1 and supplementary material A for more details on study selection). This review 

attempts to answer two questions: 

1. How are human–robot teams defined in prior literature? 

2. What intra-member characteristics, inter-member characteristics, and contingency 

factors influence input–process–output relationships in HRTs?  

 

2.2 Proposed Typologies, Definitions, and Review Framework 

2.2.1 Robot Typology 

In recent efforts to categorize robots, a large number of robot typologies have been developed 

(for an overview, see Onnasch & Roesler, 2020). We propose a business-oriented robot typology 

(Figure 2-2) that  depends on two main dimensions: social interaction intensity (Breazeal, 2003; 

Deng et al., 2019; Fong et al., 2003; Nass et al., 1994) and robot morphology (Onnasch & 

Roesler, 2020). In this context, we understand social interaction as the application of social 

models to interacting with a robot5. Across the two dimensions of our typology, we can identify 

four categories of robots that are particularly relevant to business contexts: 

 Machine-like robot with low social interaction: Robots such as the Roomba vacuum 

cleaner (Forlizzi & DiSalvo, 2006) or the NIFTi ground vehicle (Kruijff, Kruijff-

Korbayová, et al., 2014) are designed primarily with functionality in mind.  

                                                
3 Our focus explicitly is not on robot–robot teams, human–computer, or human–machine interactions. Disembodied 

agents limit communication channels, compared with embodied agents Deng et al. (2019), which in turn can 

limit the generalizability of findings. Furthermore, detailed considerations of the roles of agents in teams extend 

beyond the scope of this review.  
4 Supplementary materials A and B for this chapter are included in the Appendix section of this dissertation. 

5 In line with Breazeal (2003) and Fong et al. (2003) the low level of social interaction (see Figure 2-2) includes 

what Breazeal (2003, p. 169) calls “socially evocative” robots, which elicit social responses from humans 

without responding socially to them. 
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 Human-like robot with low social interaction: Robots such as Johnny 05 (SIM TU 

Darmstadt, n.d.), TIAGo (Pages et al., 2016), and Robonaut (Bluethmann et al., 2003) 

are humanoid robots with legs, arms, and heads. Despite this physical appearance, these 

robots are primarily designed to perform intended (work) tasks, not to engage in social 

interaction.  

 Machine-like robot with high social interaction: Robots in this category, such as the 

Sociable Trash Box (Yamaji et al., 2011) and the Care-O-Bot (Kittmann et al., 2015), 

lack a human physical appearance but can elicit social responses (C. Schmitt et al., 

2017). 

 Human-like robot with high social interaction: Robots such as Elenoide (R. Stock et al., 

2019) or Pepper (Pandey & Gelin, 2018) look very much like real humans and have 

strong social skills, including emotion recognition. 

 

 

Figure 2-1. Overview of Reviewed, Included, and Excluded Studies 

Note: 1) Please see supplementary material A for more details on the exclusion criteria. 2) In total we 

reviewed 194 studies in detail. Details on the 35 studies considering dyadic task teams can be 

found in supplementary material B. 

 



 

2. Conceptual Study: Literature Review on Robots as Team Members 11 

2.2.2 Team Typology 

2.2.2.1 All-Human Teams 

Extant research provides a common agreement on the definition of human teams as collectives 

of three or more people (R. Stock, 2003), “who (a) exist to perform organizationally relevant 

tasks, (b) share one or more common goals, (c) interact socially, (d) exhibit task 

interdependencies …, (e) maintain and manage boundaries, and (f) are embedded in an 

organizational context” (Kozlowski & Bell, 2003, p. 334). Their dynamics span three main levels 

(de Wit & Greer, 2008; DeChurch et al., 2013): “tasks (i.e., goals, ideas, and performance 

strategies), … relationships (i.e., personality clashes, interpersonal styles)” (DeChurch et al., 

2013, p. 560), and the processes used to manage or achieve teamwork (de Wit & Greer, 2008). 

 

Figure 2-2. Robot Typology with Selected Examples from Literature 

Note: Due to anthropomorphism, robots can be attributed more prominent human (social) 

characteristics than they originally were designed to include (see arrows). 

Picture sources: Sociable Trash Box, Pepper, Johnny, TIAGo, Robonaut: all from ABOT database 

(http://abotdatabase.info//); Care-o-bot: Fraunhofer IPA (https://www.care-o-bot.de/de/care-o-

bot-3/download/images.html); Roomba: iRobot (https://shop.irobot.de/roomba-

staubsstaubsaugerroboter-roomba-606/R606040.html); NIFTi ground vehicle: Kruijff et al., 

2014; Elenoide: leap in time GmbH Darmstadt 
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2.2.2.2 Technology Integration into Teams 

Our literature review reveals various studies of technology in teams, published in journals such 

as Journal of Strategic Information Systems, Journal of Management Information Systems, and 

Group & Organization Management. In these studies, researchers investigate different levels of 

technology integration, from technology-intense (Thamhain, 2009) over technology-supported 

(Alnuaimi et al., 2010) to virtual (Townsend et al., 1998) teams, as we illustrate in Figure 2-3. 

Technology-intense teams work in a technological environment, with technological products, as 

exemplified by teams that develop information systems (Thamhain, 2009). In investigating such 

teams, researchers address their compensation strategies and the influences on performance 

(Tremblay & Chênevert, 2008), determinants of project team success (Jetu & Riedl, 2012), and 

leadership issues (Thamhain, 2009). 

In technology-supported teams, some parts of processes are supported by information and 

communication technologies that are used “for storing, transmitting, and processing digital 

data” (Shen et al., 2015, p. 492). For example, during Merck’s regular “Internal Open 

Campaign,” all employees are encouraged to submit their innovative ideas to a central online 

platform, form teams, and refine their ideas in support of rapid innovation (Merck KGaA, 2018). 

Information and communication technologies provide important support for team operations 

(Alnuaimi et al., 2010; Maruping & Agarwal, 2004), social processes (Maruping & Agarwal, 

2004), and performance (McLeod, 1992). Motivation (Maruping & Magni, 2015) and 

leadership (D. M. Thomas & Bostrom, 2010) strategies to enable technology adaption or 

improve team performance (Kahai et al., 2004) also have been examined in this research area. 

Virtual teams comprise “groups of geographically and/or organizationally dispersed coworkers” 

(Townsend et al., 1998, p. 18) that collaborate and accomplish work tasks by relying on 

information and communication technology. Researchers consider team performance (Maynard 

& Gilson, 2014) and leadership (B. S. Bell & Kozlowski, 2002; Eseryel et al., 2020), as well as 

social aspects such as familiarity (Maynard et al., 2019), trust (Jarvenpaa et al., 1998; Peters & 

Karren, 2009), and individual expectations (Bosch-Sijtsema, 2007). Due to globalization, 

virtual teams have been adopted by more and more organizations (Maynard et al., 2019). 

A few management researchers also have gone a step further to examine HRTs (e.g., Gombolay, 

Gutierrez, et al., 2015; Gombolay, Huang, & Shah, 2015; Samani & Cheok, 2011), in which 

technology is more than a tool (Gervits et al., 2020). With artificial intelligence, robots can 

function as team members, in various roles, ranging from assistants or colleagues to team 

leaders (Ma et al., 2018). Finally, remote HRTs are geographically separated, with notable 
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existing applications in USAR (Kruijff, Kruijff-Korbayová, et al., 2014) and space exploration 

(Fong et al., 2005) contexts. We know of no managerial research in this area. 

 

Figure 2-3. Different Modes of Technology Integration into Teams 

Note: Sources for icons: top icons: own visualization; lower left icon: remote working by tulpahn; lower 

right icon: teamwork by Gerald Wildmoser, both from thenounproject.com 

 

2.2.2.3 Human-Robot Teams 

Although HRTs have been studies extensively—e.g., as “robot[s] as team member[s]” (HRI’07, 

2007) and “robots in groups and teams” (Jung et al., 2017)—, there is no universal definition 

that reflects and is accepted by the wide range of disciplines that feature research on related 

topics (Figure 2-4). Therefore, our first reseach question attempts to provide an understanding 

of what is meant when referring to this concept in order to avoid meaning different things under 

the same name (see, e.g., Kelley, 1927; Marsh et al., 2019).  

In particular, there is ongoing debate about whether the minimum required size of an HRT 

should be two or three members. Dyads with only two members represent very specific 

constellations and lack the dynamics that are of central interest for HRT research (Abrams & 

Rosenthal-von der Pütten, 2020). Nevertheless, we found many conceptual and empirical 

studies that claim to investigate HRTs by studying dyadic teams. Another dimension in which 

researchers differ is whether they focus on pure task interactions or on both task and social 

interactions within the team. Among the 121 reviewed studies that focus on multiple-member 

HRTs, we derive several elements related to the composition of HRTs; Table 2-1 (see appendix)6 

classifies the extant research on HRTs according to the team type and composition it considers, 

along with the definitions it offers. As it shows, many researchers investigate human-directed 

                                                
6 For better readability, the tables of this chapter are included in the appendix of the dissertation. 



 

 

 14 

robot teams (especially for USAR tasks) or autonomous mixed teams without clearly assigned 

leadership. Relatively few empirical studies address human- or robot-directed mixed HRTs, and 

we find no studies of robot-directed human teams. 

Four constellations of HRTs can be derived from these dimensions (Figure 2-4): (1) HRTs as 

multiple-member collaborative teams. That is, a mixed human–robot team (HRT) consists of at 

least three members (humans and robots) who perform common tasks interdependently and 

interact socially to achieve common goals. (2) Multiple-member task teams have more than two 

members who focus primarily on task interaction. These teams are found in space and USAR 

contexts, where robots work in teams with humans to increase efficiency and safety 

(Bluethmann et al., 2003). (3) Dyadic collaborative teams are human–robot dyads that interact 

interdependently, both socially and on a task level to achieve their common goals (Breazeal, 

Hoffman, & Lockerd, 2004). (4) Dyadic task teams engage only in task interaction to achieve 

their goals, e.g., in manufacturing a car (C. Liu & Tomizuka, 2014). 

Two perspectives on HRTs can be distinguished: a broad and a narrow perspective. From a 

broar perspective, HRTs fall into three categories: multiple-member task teams, dyadic 

collaborative teams, and dyadic task teams. These broader perspectives, however, go beyond 

our narrow understanding of HRTs, but rather aim to capture the different perspectives in 

existing robotics research (in this review we do not consider the dyadic task teams in depth, 

instead see supplementary material B). From a narrow perspective, combining the insights 

gleaned from all-human team definitions (e.g., R. Stock, 2004) and robotics research, we define 

HRTs as multiple-member collaborative teams7.  

 

                                                
7 Using our proposed definition, we can distinguish HRTs from related concepts, such as human–robot interaction 

(HRI) or human–robot collaboration (HRC). In particular, HRI is “the study of the humans, robots, and the 

ways they influence each other” Fong et al. (2001, p. 257), and HRC implies humans and robots “working 

jointly with others or together especially in an intellectual endeavor” S. A. Green et al. (2008, p. 1). Similar to 

HRTs, the involved parties (robots and humans) interact, such as by expressing or responding to emotions 

Kreijns et al. (2003). Yet HRC and HRTs are narrower than HRI, in that they pursue the achievement of joint 

goals (Bradshaw et al. (2009); Marge et al. (2009); You and Robert (2018c)). Uniquely in HRTs, team members 

work both interdependently and together (Bradshaw et al. (2009); Ma et al. (2018)). 
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Figure 2-4. Overview of HRT-Definitions 

Note: Definitions of HRTs include a narrow perspective of HRTs as multiple-member collaborative 

teams (1), and a broader perspective of HRTs as multiple-member task teams (2), dyadic 

collaborative teams (3), or dyadic task teams (4). The team types (1)-(3) are discussed in detail 

in this manuscript. Details on the dyadic task teams (4) can be found in supplementary material 

B. 

 

2.2.3 Proposed Framework 

In this overview, we rely on an input-process-output (IPO) model (Gladstein, 1984; You & 

Robert, 2018c; see Figure 2-5). Categories 1 and 2 focus on two important input factors: intra-

member team characteristics, such as the (physical) robot design, robot behavior, or human 

preferences and behavior (Category 1), and inter-member team characteristics, including team 

composition, autonomy, and leadership (Category 2). Category 3 includes studies of team 

processes (Barrick et al., 1998; Gladstein, 1984) such as (physical) coordination, 

communication, collaboration, and trust. Studies in these categories affect team outputs (Barrick 

et al., 1998) as “psychological and business-related outcomes produced by teams” (R. Stock, 

2004, p. 277). Studies in Category 4 examine moderating effects on input, process, and output. 

Finally, some studies depict causal chains (R. Stock, 2004) from the inputs through mediators 

to outputs (Category 5). The coding scheme used to classify studies is explained in detail in 

supplementary material A. 
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Figure 2-5. Proposed Framework (Adapted from Stock, 2004) 

 

2.3 Conceptual and Empirical Findings Related to Human-Robot Teams 

2.3.1 Category 1: Effects of Intra-Member Team Characteristics 

2.3.1.1 Focus Areas and Key Findings 

Table 2-2, Panels a-c (see appendix), summarizes the studies in this category in terms of the 

robot characteristics studied, the definition of HRT, samples, and key findings. Research on 

(physical) robot design for both dyadic HRTs and multiple-member HRTs tends to focus on robot 

hardware (e.g., degrees of freedom of components; Bluethmann et al., 2003), robot vitals for 

performance prediction (Ramesh et al., 2021), physical appearance in terms of 

anthropomorphism or robot size (Bartneck et al., 2006), or the use of gestures and facial 

expressions (Minato et al., 2004). The physical design of the robot is the explicit focus of 

conceptual and empirical studies of Robonaut, which was designed by NASA for use in space 

exploration HRTs (e.g., Bluethmann et al., 2003; Fong et al., 2005). These studies address the 

physical design features needed to perform its intended tasks (e.g., hands) and the requirements 

for controlling Robonaut in harsh conditions (Bluethmann et al., 2003). 

The second dimension, robot behavior, appears in both conceptual and empirical research on 

dyadic and multiple-member HRTs. Conceptual studies tend to focus on “inefficient” robots that 

are not designed to increase the efficiency of a HRT, but rather to exhibit social behavior to 

facilitate their integration into teams and society at large (Kelly & Watts, 2017). Empirical 
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studies of multiple-member HRTs relate to prosocial and positive behavior (Correia, 

Mascarenhas, et al., 2019; Rhim et al., 2019), fair resource allocation (Claure et al., 2020), 

social robot–robot and robot–human behavior (Fraune, Oisted, et al., 2020), vulnerable robot 

utterances (Traeger et al., 2020), and vulnerable robot behavior (Strohkorb Sebo et al., 2018). 

All of these features signal a robot’s apparent personality, consistent with the Computers are 

Social Actors (CASA) paradigm and its prediction that humans treat robots as social entities 

(Nass et al., 1994). Such behaviors have positive effects on robot or team perceptions or 

processes. Specifically, prosocial robotic behaviors improve users’ perceptions of and behaviors 

toward robots, lead to better social attribute ratings (Correia, Mascarenhas, et al., 2019), and 

result in increased human engagement (Strohkorb Sebo et al., 2018). Empirical studies of 

dyadic HRTs examining specific prosocial robot behaviors, such as explanations (Ezenyilimba 

et al., 2023; Hiatt et al., 2011; N. Wang et al., 2016a, 2016b; N. Wang et al., 2018) or, among 

others, apologies for errors (Natarajan & Gombolay, 2020), show positive effects of such 

behaviors on trust and team performance. Finally, robot touch appears to lead to better 

evaluations of a robot’s social performance, skills, and fairness (Arnold & Scheutz, 2018). 

However, perceptions of robot touch need to be considered in the context of the interaction; 

for example, gender effects may emerge and have important influences. 

The dimension of human preferences and behaviors has not been extensively studied in the 

context of HRT, possibly because is more often addressed in the context of HRI or HRC. We find 

one recent study of blame and credit attributions, using a multiple–member HRT (Lei & Rau, 

2020), which shows that human team members “attributed more credit and less blame to the 

robot member than to themselves” (p.1). Experience and workplace culture were also found to 

have an effect on team behavior (Cunningham et al., 2013). Another study looks at membership 

preferences in HRTs (Correia, Petisca, et al., 2019) and shows that people who are more 

competitive prefer a performance-driven robot over a learning-driven one.  

Finally, 4 studies of multiple–member or dyadic HRTs investigated the interplay among the 

three subcategories (Gombolay et al., 2017; Gombolay, Huang, & Shah, 2015; Law et al., 2021; 

Richert et al., 2016): Thus, different dimensions of intra-member team characteristics appear 

to be intertwined and important for understanding the role of robots in team contexts. 

 

2.3.1.2 Disciplines, Study Characteristics, and Underlying Theories 

We assign 27 studies to this category (18 of multiple–member HRTs, 9 of dyadic HRTs); most 

of them are based on cognitive science (8 studies), robotics (4), or space (3) foundations. Very 
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little research in HRI or management includes teams with at least three team members; 

however, 4 studies from HRI and 1 reflecting a management-related perspective take dyadic 

perspectives. Only 1 study shows a longitudinal approach with three sessions in direct 

succession (Correia, Petisca, et al., 2019). 21 of the 22 empirical studies are conducted online 

or in laboratory settings, one study is a case study in a real hospital setting. They feature 

humanoid and functional robots. Several studies do not report the type of robot used. Studies 

of multiple–member HRTs mostly focus on collaborative teams. Teams include autonomous 

mixed teams (7 studies), a human-directed robot team (1), human/robot-directed mixed teams 

(4), as well as one robot-directed human team. Studies of dyadic collaborative HRTs also 

consider autonomous human–robot pairings (4), human-directed robots (3), or do not report 

the team setup. About one-third of the studies indicate their theoretical underpinnings. They 

draw on theories, such as fairness theory and equity models (Adams, 1963, 1966), the theory 

of mind (Hiatt & Trafton, 2010), emotional intelligence (Salovey & Mayer, 1990), social role 

theory (Hentschel et al., 2019), and situational awareness (Endsley, 1995). Further, some 

researchers base their work on the CASA paradigm (Nass et al., 1994). 

 

2.3.1.3 Limitations 

Most of the studies are based on student samples, with cross-sectional laboratory designs, which 

limits the generalizability of their findings (Levitt & List, 2005). None of the studies in this 

category feature real-world settings. They also ignore dynamic developments in teams over time 

(S. T. Bell & Marentette, 2011) and instead take static perspectives, suggesting the need for 

longitudinal studies. Furthermore, only one of these studies examines a robot-directed 

human/mixed team (see Table 2-1). Finally, some studies provide a sound theoretical basis for 

their research, but it is important to extend these efforts and perhaps apply other behavioral 

theories, such as social identity theory (Tajfel, 1974). 

2.3.2 Category 2: Effects of Inter-Member Team Characteristics 

2.3.2.1 Focus Areas and Key Findings 

Table 2-3, Panels a-d (see appendix), provides an overview of the studies in this category. 

Conceptual studies of the roles of humans and robots in HRTs include discussions of the 

suitability of teams, robot integration, and task allocation, suggesting that robots should not 

replace humans but rather be treated as complements with individual strengths (Fusaro et al., 

2021; Groom & Nass, 2007; Hari et al., 2020; Makarius et al., 2020). Conceptual research on 
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dyadic HRTs discusses parallels between all-human teams and HRTs and the importance of 

shared mental models (M. Demir et al., 2020). Empirical research on multiple–member HRTs 

examines the ideal ratio of humans to robots (Burke & Murphy, 2004), how to include humans 

in HRTs (Strohkorb Sebo et al., 2020), the impact of the presence of robots on human decision 

making (Fuse & Tokumaru, 2020), the impact of robot reliability and positioning (Charisi et al., 

2021), and the optimal organizational structure (Ranzato & Vertesi, 2017). Findings from these 

studies suggest, inter alia, that loosely coupled teams are the most successful (Ranzato & 

Vertesi, 2017) and that specialized interaction roles may hinder the inclusion of human team 

members in HRTs (Strohkorb Sebo et al., 2020). For dyadic HRTs, empirical studies examine 

robot-led versus human-led teams and find that the latter are preferred (Abendschein et al., 

2021) and that intergroup bias also exists for such teams (Jong et al., 2021). 

Investigations of autonomy and control in both dyadic and multiple–member HRTs take either 

a general view on the effects on teamwork (Bradshaw et al., 2012) or a more specific focus on 

adjustable autonomy (Sierhuis et al., 2003), in both conceptual and empirical efforts (e.g., Dias 

et al., 2008; Gombolay, Gutierrez, et al., 2015; Goodrich et al., 2007; Sellner et al., 2006). 

Results suggest that somewhat autonomous robots and shared control can facilitate the work 

of human team members and make HRTs more efficient (e.g., P.-J. Lee et al., 2010; Lewis et 

al., 2010; Sellner et al., 2006). Researchers have also proposed an algorithm for predicting team 

performance, based on the robot’s performance in interaction with human team members or 

when it is autonomous (Crandall et al., 2003), as well as various control approaches for human-

directed robot teams (Musić & Hirche, 2018; Musić et al., 2019), a control framework for USAR 

(Yazdani et al., 2016), an “HRT planning-execution framework” (Manikonda et al., 2007, 

p. 92), and a simulation framework taimed at supporting the development of command and 

control architectures (Dudenhoeffer et al., 2001). 

Conceptual studies of leadership in HRTs cite potential stereotypes of robotic leaders (Gladden, 

2014) or explore the emotions evoked by, benefits of, and possible forms of robotic leadership 

(Samani & Cheok, 2011). These studies present robotic leadership as a future phenomenon, in 

some cases arguing that it will emerge naturally (Gladden, 2014). Empirical studies also 

introduce a scalable, generalizable mathematical framework for modeling leader and follower 

behavior in multiple–member HRTs and show that this framework enables robots to influence 

human teams (Kwon et al., 2019; Li et al., 2021). They further explore robots in supervisory 

roles, highlighting their potential positive effects (Lopes et al., 2021) and areas, such as 

feedback, that require careful consideration (Yam et al., 2022). 
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Finally, team perceptions can take the form of shared mental models, which have been predicted 

(e.g., Nikolaidis & Shah, 2012) and examined for their influence on team performance (Gervits 

et al., 2020), which appears to be positive. In addition, a conceptual framework of in-group 

identification, cohesion, and entativity draws parallels to the dynamics of all-human teams 

(Abrams & Rosenthal-von der Pütten, 2020), and researchers have discussed the potential of a 

human-robot psychological contract (Bankins & Formosa, 2020). Several studies examine 

robots as in-group members of multiple–member or dyadic HRTs and find positive effects on 

robot acceptance and anthropomorphization (e.g., Eyssel & Kuchenbrandt, 2012; Fraune, 2020; 

Fraune et al., 2017; Fraune, Šabanović, & Smith, 2020). Conversely, some studies suggest that 

the introduction of robots into teams may also have negative effects on in-group identification 

(Savela, Kaakinen, et al., 2021; Savela, Oksanen, et al., 2021). Researchers have also 

investigated perceptions of fairness and its antecedents in HRTs, finding a number of 

influencing aspects (Chang et al., 2020; Chang et al., 2021). Another related topic concerns the 

parallels between HRTs and human–animal teams, such as USAR teams that include rescue 

dogs (e.g., E. Phillips et al., 2016). Arguably, human–animal teams could provide models for 

the development of HRTs.  

 

2.3.2.2 Disciplines, Study Characteristics, and Underlying Theories 

Most of the 50 studies (42 of multiple–member HRTs, 8 of dyadic HRTs) in this category are 

rooted in cognitive science (13 studies) and HRI (12), along withUSAR (8), , management (6), 

military (5), robotics (5), and space (1) research fields. Although some studies reflect a 

management perspective and many studies have a cognitive science or an HRI foundation, we 

note the considerable number of studies with an USAR or military background. The 30 empirical 

studies are all cross-sectional, online or laboratory experiments, though one field study pertains 

to USAR (Burke & Murphy, 2004). The team setups are mostly autonomous mixed teams (12 

studies) or human-directed robot teams (9); two studies consider a human/robot-directed 

mixed team with a human and robotic co-lead and a human assistant (Gombolay, Gutierrez, et 

al., 2015) and a robot-directed human team (Yam et al., 2022).. 

In terms of theoretical foundations, several researchers use in-group identification theories 

(e.g., social identity theory (Tajfel, 1974)). Quite a few studies use the theory of (shared) 

mental models (Rouse & Morris, 1986) and further consider situational awareness (Endsley, 

1995). Finally, some researchers draw on sliding autonomy methodology (Sellner et al., 2006) 

for HRTs.  
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2.3.2.3 Limitations 

Some empirical studies have relied on small sample sizes of fewer than 30 participants (e.g., 

Gombolay, Gutierrez, et al., 2015; Ranzato & Vertesi, 2017), and many feature quite young 

participants. The limitations of laboratory and cross-sectional studiesdescribed for Category 1 

also apply to the studies in Category 2. We find slightly more variability in the team setups 

considered, but further research could expand the considered constellations. Most studies in 

this category, however, already make use of theoretical foundations. 

 

2.3.3 Category 3: Effects of Team Processes 

2.3.3.1 Focus Areas and Key Findings 

Studies of team processes and their effects account for most of the extant research on HRTs 

(see Table 2-4, Panels a-d; see appendix), perhaps because unlike HRI or HRC, HRTs tend to 

be long-term in nature, requiring careful consideration of relevant processes that are at least 

partially unique to each team (Abrams & Rosenthal-von der Pütten, 2020). In addition, HRTs 

have long been popular, especially in military and USAR settings that require sophisticated 

coordination to accomplish their missions.  

Researchers have identified several prerequisites for successful (physical) coordination in HRTs 

(Woods et al., 2004). In studying HRTs, researchers draw heavily on the concepts of 

coordination behavior in all-human dyads that seem promising (e.g., Bradshaw et al., 2009; T. 

Iqbal & Riek, 2017; Shah & Breazeal, 2010) or focus on indirect perceptions. Empirical studies 

on training (e.g., Nikolaidis et al., 2015; You & Robert, 2016), coordination strategies and 

frameworks (Aggravi et al., 2021; Aggravi et al., 2022; T. Iqbal et al., 2016; R. Liu et al., 2021; 

Shah et al., 2011; H. Wang et al., 2010), and automated cooperation (Gao et al., 2012; J. Wang 

et al., 2008) all find positive effects, such as on team fluency, perceived robot trustworthiness 

or team performance in HRTs.  

Research on communication in HRTs for multiple–member HRTs identifies information flows 

supported by sensor networks (Kantor et al., 2006), the use of “Human-Robot Interaction 

Operating Systems” (Fong et al., 2006), back-channeling (Jung et al., 2013), real versus 

simulated video (Canning et al., 2014), and conflict moderation by robots (Jung et al., 2015). 

For dyadic and multiple–member HRTs, verbal versus non-verbal communication (e.g., 

Breazeal et al., 2005; Ciocirlan et al., 2019; Nikolaidis et al., 2018; Williams et al., 2015), based 
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on partner knowledge and behavior (Lo et al., 2020) have been investigated. These studies 

mostly show positive effects of (extensive) communication in HRTs (Table 2-4). Another 

research path includes communication interfaces (Marge et al., 2009), communication models 

(e.g., Kruijff, Janíček, et al., 2014; Nakano & Goodrich, 2015), metrics for communication of 

proficiency (Norton et al., 2022), and the design/ implementation of HRTs for conversational 

HRI (Zheng et al., 2013).  

Research on collaboration in HRTs refers to linkages explicitly established in an HRT context, 

which should not be confused with the broader topic of HRC. Conceptual studies range in focus, 

including the optimal composition of “hybrid teams” with robots, virtual agents, and humans 

as team members (Schwartz et al., 2016), collaboration challenges (Fiore et al., 2011), 

collaborative tools (Bruemmer & Walton, 2003), the development of collaborative robot 

teammates (Hayes & Scassellati, 2014), dynamic peer-to-peer teaming (Tang & Parker, 2006), 

task-oriented collaboration with semantic-based path planning (Yi & Goodrich, 2014), decision 

making (Stewart et al., 2012), and mutual initiatives (Bruemmer et al., 2002). Researchers also 

examined collaboration frameworks (e.g., Gervasi et al., 2020; Hoffman & Breazeal, 2004; 

Marble et al., 2003) for dyadic HRTs and a joint action perception framework (T. Iqbal et al., 

2015) for multiple-member HRTs. Finally, for trust, four studies of dyadic HRTs discuss and 

examine the effects of appropriate trust (i.e., beneficial to team performance) (Ali et al., 2022; 

M. Chen et al., 2020; Ososky et al., 2013) and its measurement (Freedy et al., 2007). 

 

2.3.3.2 Disciplines, Study Characteristics, and Underlying Theories 

More than one-third of the 61 studies in this category (40 studies of multiple–member HRTs, 

20 of dyadic HRTs) are rooted in HRI (18 studies), USAR (13), or cognitive science (12), 

followed by robotics (10), military (7), and space (1) research. Most of the 35 empirical studies 

are cross-sectional or do not specify the time frame for their experiments. However, the 

longitudinal study by Burke and Murphy’s (2007) includes two runs over a two-day period. We 

find simulation studies (H. Wang et al., 2010), laboratory studies (You & Robert, 2016), and 

field experiments (Burke & Murphy, 2007). Studies of multiple–member HRTs mostly focus on 

task interactions, and the setups include human-directed robot teams (17) or autonomous 

mixed teams (9 studies) or else do not specify. For dyadic HRTs, researchers examine 

autonomous human-robot pairings (12), human-directed robots (4), or do not specify their 

setups (4).  
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In this category, almost half of the studies report theoretical considerations. These range from 

coordination theory (Malone & Crowston, 1990), to role theory (Braga, 1972), to social 

signaling and back-channeling (Dennis & Kinney, 1998). Again, several studies rely on shared 

mental models (Rouse & Morris, 1986). Another popular theory is situational awareness, which 

is the basis for various studies as detailed in Table 2-4, Panels a-d. 

2.3.3.3 Limitations 

Study samples tend to be small and young; many studies use laboratory settings to conduct 

cross-sectional experiments. Social robots are underrepresented, compared to functional robots, 

although they are specifically designed to interact with humans (Kirby et al., 2010), suggesting 

their particular suitability for HRTs. In terms of theoretical underpinnings, we see potential for 

studies to strengthen the theoretical soundness of the phenomena under investigation by 

integrating behavioral theories. 

 

2.3.4 Category 4: Moderating Effects 

2.3.4.1 Focus Areas and Key Findings 

Moderator variables influence the strength of the relationships between independent and 

dependent variables (Baron & Kenny, 1986). These effects are often due to environmental or 

situational factors (Baron & Kenny, 1986), leading researchers to examine moderating effects 

for multiple-member HRTs that reflect human capabilities (Claure et al., 2020), robot 

appearance (Fraune, 2020), team composition (Fraune, Šabanović, & Smith, 2020), curiosity 

and control (You & Robert, 2016), task complexity (Jung et al., 2013), or number of sessions 

(Correia, Petisca, et al., 2019). For dyadic HRTs, researchers also examine the effects of number 

of sessions (Marble et al., 2004) and experience with the remote system (Marble et al., 2003). 

Most of these proposed moderators appear to exert positive effects on the relationships between 

the studied independent and dependent variables, as shown in Table 2-5, Panels a-b (see 

appendix). For example, curiosity positively moderates the effect between training and 

individual performance (You & Robert, 2016), task complexity positively influences the 

relationship between backchanneling and team functioning (Jung et al., 2013), and target 

detection increases with the number of sessions (Marble et al., 2004). For more details on these 

studies, see the descriptions in their respective main categories. 
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2.3.4.2 Disciplines, Study Characteristics, and Underlying Theories 

The 9 studies (6 of multiple-member HRTs, 3 of dyadic HRTs) in this category come from 

cognitive science (4 studies), USAR (3), robotics (1), and management (1) research. 

Researchers use both functional and humanoid robots to conduct cross-sectional (4 studies) 

online or laboratory experiments. Two studies have longitudinal designs, with 3 or 4 sessions, 

respectively, but another study does not disclose its study setup. The teams represented by 

collaborative multiple-member HRTs are autonomous mixed teams (5 studies) or a human-led 

robot team (1 study). The dyadic HRTs involve human-directed robots engaged in both task 

and social interaction (2 studies). Five studies (Claure et al., 2020; Fraune, 2020; Fraune, 

Šabanović, & Smith, 2020; Jung et al., 2013; Marble et al., 2004) adopt theoretical foundations 

for their investigations, as described in the respective main categories. 

 

2.3.4.3 Limitations 

Relatively few studies in our sample consider moderating effects, and only two of them are 

longitudinal. It is unlikely that “one-size-fits-all” applies to HRTs (R. Stock, 2004), so 

moderators should be further investigated, especially in long-term studies of teams that include 

both humans and robots. 

 

2.3.5 Category 5: Integrative and Overarching Studies 

2.3.5.1 Focus Areas and Key Findings 

In this final category, we include studies that propose overarching frameworks, metrics, and 

HRT designs; publications that address ethics in HRTs; and investigations of the inputs, 

processes, and outputs of HRTs, with an integrative perspective (Table 2-6, Panels a-c; see 

appendix). The overarching frameworks, metrics, and HRT design studies include proposals for 

new metrics and taxonomies that go beyond existing ones focused on HRI or HRC (Burke et al., 

2008; Ma et al., 2022; Pina et al., 2008). They include components for assessing team 

performance (Pina et al., 2008; Visser et al., 2006). Ma et al. (2018) also consider general 

design concepts and Le et al. (2023) propose a framework for human-robot interdependence. 

As an emerging topic, ethics in HRTs appears in conceptual investigations of both dyadic and 

team interactions (Arnold & Scheutz, 2017; Smids et al., 2020; Tamburrini, 2009). Finally, 

integrative studies of mediated relationships in HRTs are relatively recent (e.g., Seeber et al., 

2020; You & Robert, 2018c, 2019a; You & Robert, 2022a, 2022b; Table 2-6, Panels a-c). Two 
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studies deserve special attention: Oleson et al. (2011) identify some antecedents of trust in 

HRTs (e.g., human, robot, and environmental characteristics). Then, with an input–mediator–

output–input (IMOI) approach, an extension of the established IPO framework for teams, You 

and Robert (2018c) offer a dynamic perspective on HRTs that could inform studies of long-term 

HRTs. 

 

2.3.5.2 Disciplines, Study Characteristics, and Underlying Theories 

The 22 studies in this category (20 of multiple-member HRTs, 2 of dyadic HRTs) are rooted in 

cognitive science (9 studies), HRI (7), management (3), ethics (2), and military (1) research. 

All 12 empirical studies are cross-sectional, but they include both laboratory and field 

experiments. Teams are complex, however, so the comparatively small number of studies that 

take an integrative perspective is surprising. These studies include both functional and 

humanoid robots, such as those adapted from Lego® Mindstorms® sets (You & Robert, 2018c, 

2019a, 2019b), but not any social robots. Multiple-member HRTs all reflect human-directed 

robot teams that are, in most cases, collaborative. Studies of dyadic HRTs also mostly consider 

dyadic collaborative teams and include human-directed robots or an autonomous human–robot 

pairing. 

Approximately half of the studies in this category specify their theoretical underpinnings, 

building on, for example, motivational theories of individual and team motivation (Kanfer et 

al., 2008). Other theories include media synchronicity (Dennis et al., 2008); the technology 

acceptance model (Davis, 1986) and the unified model of technology acceptance and use of 

technology (Venkatesh et al., 2003); social identity theory; the IPO model; notions of trust 

related to teamwork (Zaheer et al., 1998), technology (McKnight et al., 2011), and robots 

(Yagoda & Gillan, 2012); and social categorization and attraction theories (Hogg & Turner, 

1985). 

 

2.3.5.3 Limitations 

We note several limitations pertaining to integrative, overarching studies of HRTs, beginning 

with the lack of consideration of social robots, which are particularly relevant to HRTs and 

integrative investigations of them. Another important consideration is the time frame; many 

team processes evolve over time and should be studied with a dynamic approach to gain more 
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insights. Finally, HRT designs other than human-directed robot teams need to be studied from 

an integrative perspective.  

 

2.4 Discussion 

2.4.1 Summary of Findings of Existing Research 

Despite widely varying definitions of HRTs and different research foci, researchers from a 

variety of disciplines are all seeking insights into their aspects and related processes. In Figure 

2-6 we summarize the major categories and subcategories related to the IPO model of teams. 

Because so few studies examine moderating effects, we cannot identify additional 

subcategories. In addition, we find that the existing research has a dominant focus on HRT 

inputs and processes, so we do not further elaborate on the subcategories of team outputs. 

Intra-member team characteristics are considered less frequently than other topics and primarily 

in the context of team setups and processes, likely due to their interdependencies with HRI and 

HRC. Nevertheless, research on robot behavior is rooted in the HRT context and shows that 

positive robot behavior and transparency have positive effects on team processes and outcomes. 

Studies that examine both the physical and behavioral characteristics of robots also provide 

important hints for research directions, particularly in terms of holistic robot design. Human 

preferences and behaviors are also interesting topics to include in efforts to fully understand 

HRTs. 

Inter-member team characteristics have been studied more extensively, with autonomy, control, 

and leadership included in many studies. Vastly different definitions of HRTs, across a variety 

of team setups (e.g., leadership), confirm the logic of this central focus. However, we also note 

that all empirical studies on (sliding) autonomy and control in HRTs indicate that (partially) 

autonomous robots and shared control can facilitate the work of human team members and 

make HRTs more efficient. 

Compared to individual team members and team characteristics, team processes in HRTs and 

their effects have been studied very intensively. While physical coordination has been a topic 

for a long time, mainly with a focus on robotic aspects and the development of coordination 

concepts, but collaboration in HRTs has only recently attracted the attention of researchers. 

Interesting parallels are being drawn between HRTs and all-human teams in terms of the 

benefits of coordination or communication mechanisms. In general, studies indicate that well-

choreographed coordination and communication efforts are key success factors for HRTs. 
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The presence of moderating effects in HRTs is coming more into focus, and it remains an 

important consideration, because moderator variables exert effects on the relationships among 

team inputs, processes, and outputs. There is no one size that fits all HRTs, so further research 

should seek insights into relevant moderators and their effects. 

 

Figure 2-6. Overview of Main Categories and Subcategories Examined in the IPO Model of Teams 

 

Finally, integrative and overarching studies are lacking, despite their importance for gaining a 

holistic, in-depth understanding of the mechanisms at work in HRTs. In this regard, it should 

be noted that HRTs are complex systems that require intensive research, and the use of insights 

from all-human team research could help to clarify them, especially in real-world settings. For 

example, You and Robert (2018c) discuss a loop in the IPO model that may be conceptually 

plausible for HRTs. 

 

2.4.2 Summary of Limitations of Existing Research 

Overall, HRTs have received a great deal of research attention, but there is still a long way to 

go in this area to determine what constitutes successful and sustainable HRTs for society and 

business. Therefore, along with the key findings, we identify three overarching limitations of 

existing research on HRTs. First, the field of cognitive sciences is emerging, but most of the 

research still comes from USAR, space exploration, or robotics efforts, mainly involving 

functional robots. This one-sided view of HRTs needs to be broadened to include managerial 
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and cognitive perspectives too. Second, shared mental models and social identity theory provide 

good starting points, but the opportunities for applying behavioral theories, as addressed by 

research on all-human teams, are vast. Third, because it often involves student samples, small 

samples, laboratory studies, and cross-sectional investigations, existing HRT research leaves 

some considerable gaps that suggest a research agenda, as we discuss in the next section. 

 

2.4.3 Limitations of this Review 

This literature review has a number of limitations. First, there may be relevant publications that 

were not included in this review despite a thorough literature search and efforts to avoid 

selection bias. In addition, we focused on English-language publications for inclusion in our 

review. In this review, we focus on robots as team members, but we openly acknowledge the 

other forms of human–technology teams, beyond HRTs, such as teams with virtual assistants. 

These interactions may also be useful for HRTs. To the best of our knowledge, no studies have 

addressed teams with non-robotic but artificial team members in a business context. Therefore, 

another review could provide an overview of non-robotic artificial team members (e.g., virtual 

assistants) and compare the insights with our findings related to research on robotic team 

members. We also acknowledge the common risk of a publication bias for our study (Jager et 

al., 2020). Publication bias largely occurs before and during the scientific review process, 

limiting our ability to fully overcome it (see supplementary material A for information on our 

efforts to address potential biases ).  

 

2.4.4 Future Research Agenda 

Beyond these considerations related to our review, we note some unexplored areas, both 

conceptual and empirical, that highlight the vast opportunities for learning more about the 

design, theoretical concepts, and practical implications of HRTs. We group those opportunities 

into two broad categories: How and when can robots can be team members? 

How can robots be team members? It would greatly advance the field if research could explain 

the mechanisms underlying interaction in HRTs based on behavioral theories. Currently, there is 

no general theory for HRTs, which leads to an unstable theoretical foundation. In addition, 

most studies do not provide a solid theoretical rationale for their predictions (see, e.g. summary 

of limitations). An approach already being used by some researchers relies on studies of all-

human teams a basis for HRT research, which ensures a more theory-driven effort (Krämer et 
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al., 2012). In addition to social identity theory (Tajfel, 1974), shared mental models, and 

gender studies, leader–member exchange theory as applied to all-human teams (van Breukelen 

et al., 2006) might be an appropriate theoretical foundation for research on HRTs with social 

robots in particular. Another valuable effort might be to seek insights into how individuals, 

companies, and society can prepare for HRTs. Since all studies we found during our review are 

focusing on existing HRTs (see Tables 2-2 through 2-6), many open questions remain about 

how to prepare for HRTs. Researchers have a broader responsibility than core HRT topics; in 

particular, they should address the transition to HRTs and how individuals, companies, and 

society can engage in it beneficially. 

When can robots be team members? To address this broad question, we recommend research 

that makes two main comparisons and two examinations. First, we urge researchers to compare 

different types of HRTs in organizations. Traditional team research distinguishes between 

permanent and project-based teams, top management and work teams, and so on (for an 

overview, see Hollenbeck et al., 2012). Interaction modes, processes, and outcomes are likely 

to differ across these teams (Hollenbeck et al., 2012; LePine et al., 2008). However, according 

to our review, different types of HRTs tend to be studied in isolation (see Table 2-1), rather 

than compared for similarities and differences. Such insights could improve the management 

of HRTs in organizations and support human team members. Second, research comparisons 

could address different application scenarios of HRTs in organizations. Most HRT research 

addresses specific application scenarios, such as rescue robots in USAR (Kruijff-Korbayová et 

al., 2015) or robots working on the International Space Station (Fong et al., 2005). Insights on 

HRTs in organizations in an office environment are still scarce (see disciplines of studies in 

different categories). Through an online survey, we learned that acceptance of robots in work-

related HRTs has increased, especially during the COVID-19 pandemic. The results suggest four 

potential roles for robots in teams, differentiated according to their hierarchical level and task 

focus (Figure 2-7): (1) Robotic team assistant to support administrative and coordination work, 

(2) robotic knowledge expert to provide expertise in a specific field, (3) robotic scrum master 

(Scrum Alliance, n.d.) to work with the team and ensuring that the team adheres to agile values 

and principles, such as through coaching, (4) robotic team leader/manager with 

institutionalized authority over other team members. Third, researchers should study HRTs in 

real-life settings. The studies we reviewed are overwhelmingly conceptual or cross-sectional 

laboratory studies (see study characteristics in different categories), with limited ability to 

transfer the findings to real-life settings (Levitt & List, 2005). Particulary given current 

developments in the global economy and the increasing relevance of robots in everyday 
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contexts, further research should examine HRTs in real-life settings. Fourth, we hope that more 

studies will examine the long-term effects of HRTs. Cross-sectional studies (see study 

characteristics in different categories) cannot accurately portray longer-term relationships 

among team members, so further studies should seek to capture all consequences of 

implementation efforts for HRTs. To this end, appropriate methods for the long-term study of 

HRTs should be developed. 

Figure 2-7. Potential Roles of Robots in HRTs 

 

2.5 Conclusion 

Human–robot teams are an emerging phenomenon and part of the future of work and society. 

However, existing research lacks some important insights. With this review, we identify some 

unexplored areas of research, many of which relate to real-life, long-term considerations of HRT 

deployment. We offer six suggestions for further research, reflecting the strong relevance of the 

topic and taking into account current developments in the global economy. We hope that this 

review provides inspiration for ongoing HRT studies. 
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3 Empirical Study 1: Decisions for Robotic Team Assistants8 

3.1 Introduction 

Developments in robotics and artificial intelligence (AI)-based technologies are skyrocketing. 

For example, the launch of ChatGPT, an AI-based program by developer OpenAI that generates 

text based on prompts, has received much attention worldwide. ChatGPT is likely to be a game-

changer for many fields, such as education or science (Thorp, 2023; van Dis et al., 2023). Based 

on sophisticated technologies, tools like ChatGPT can also support workers in office 

environments, for example in assistive roles that perform tasks such as sorting and extracting 

documents, summarizing texts or meetings, and optimizing communication (Chui et al., 2022). 

But this is not the end of the story: The OpenAI Startup Fund recently invested $23.5 million 

in the Norwegian robotics company 1X (1X, 2023; Meyer, 2023). Tesla is working on its 

humanoid Tesla Bot and unveiled a new prototype of its Optimus robot at its Investor Day in 

March 2023 (Blain, 2023). And Figure, founded with the goal of extending human capabilities 

through advanced AI, plans to build a “feature-complete electromechanical humanoid” 

(FigureAI, 2023, Conclusion section) to be integrated into the workforce to help alleviate the 

severe labor shortages that currently exist (Ferguson, 2023). Consequently, integration of AI 

into robots can be considered the next step in this evolution. 

Robots, as physical representations of AI (Glikson & Woolley, 2020), are characterized by the 

peculiarity of an automated social presence in that humans feel as if they are interacting with 

a real social entity while interacting with them (Čaić et al., 2020). This means that in addition 

to a more task-related competence, they can have a strong relational effect on the humans they 

interact with (You & Robert, 2018a). In particular, social robots that interact with humans 

naturally and based on social cues, such as gestures or facial expressions (Breazeal, 2003), seem 

promising in this regard. In collaboration with humans, these robots form mixed human-robot 

teams (HRTs) characterized by joint task completion and social interaction to achieve work-

related goals (Wolf & Stock-Homburg, 2022). 

With developments in AI enabling the performance of office tasks and advances in social 

robotics, the potential applications of robots in teams of knowledge workers are vast. Social 

                                                
8 Based on the conceptual framework published by Heitlinger et al. (2022) (presented at HRI 2022, online), this 

study incorporates empirical data from a completely revised manuscript currently under review at the Journal 

of Service Research. Compared to the previous conference publication and version of this dissertation, this 

chapter contains an updated study based on reviewer comments (e.g., regarding sample size) to ensure high 

quality of research data and results. 
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robots are particularly suited to the role of team assistants, supporting their (human) colleagues 

in day-to-day administrative tasks (Horsley, 2021), for the following three reasons: First, in 

office environments, the strength of robots lies in tasks such as project monitoring, scheduling, 

and decision support. Given their technical capabilities, robots can outperform and surpass 

humans (Young & Cormier, 2014). Thus, robots help to stabilize high quality levels and increase 

work efficiency (Gombolay, Gutierrez, et al., 2015; You & Robert, 2019b). In doing so, they not 

only improve processes, but can also increase employee satisfaction (Snyder, 2019). By 

performing repetitive tasks, robotic team assistants help free up the time of their human 

teammates. 

Second, robots have the advantage of physical presence and are thus able to interact directly 

with the team members in their environment. Research has shown that co-location between 

robots and their human partners generally enhances the interaction (Bainbridge et al., 2011) 

and physical presence further increases trust perception (Y. Pan & Steed, 2016). In teams, co-

location of members fosters team communication and information sharing, supports the 

establishment of relationships at work (Lalani & Marshall, 2022), and can increase team 

effectiveness (Paoli & Ropo, 2015). 

Third, the physical embodiment of robots gives scope for the composition of design features 

that shape human-robot interactions. Personalization 0f (social) cues benefits social interactions 

(Chevalier et al., 2017) and helps to resemble face-to-face encounters (Tanaka et al., 2014). 

This enables social robots to transform from automated devices to highly autonomous social 

partners. This is particularly relevant as the majority of employees work on-site in their 

organizationsfor example, in August-September 2022, more than 70% of private sector 

organizations in the United States had primarily or exclusively on-site work (Sahadi, 2023). 

Thus, their unique skill set and physical presence allows social robots to contribute to teams not 

only on a task-related level, but also on a social-emotional level, making them appropriate and 

regular team members. To account for this duality, we draw on the well-established distinction 

between taskwork and teamwork in team-based processes (Crawford & LePine, 2013; Mathieu 

et al., 2008). 

Currently, little is known about how employees respond to highly-skilled robotic teammates. 

Previous research has shown that expectations play an important role in the acceptance of social 

robots (C. Edwards et al., 2016; Horstmann & Krämer, 2020; Lambert et al., 2020). From 

research on human-human interaction, we know that the fulfillment and overfulfillment of 

expectations by another party (e.g., leader, service provider) leads to high confidence with this 

party (R. M. Stock, 2011; R. M. Stock & Özbek-Potthoff, 2014). But robots may be different: 
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Opinions about AI-based technologies vary widely, with most people tending to be either 

positive or negative (Schepman & Rodway, 2020). While proponents of robots argue that they 

will revolutionize our work and greatly relieve human workers, especially in times of skilled 

labor shortages, opponents of robotic teammates fear that robots will steal people’s jobs 

(Harvard Business Review, 2021; Snyder, 2019; Stylianou et al., 2015). Therefore, considering 

linear effects of robot characteristics on employee acceptance may fall short, as “the more the 

better” may not hold here. 

Accordingly, this work goes beyond linear effects regarding the interplay between expectations 

and experiences toward taskwork and teamwork skills of robotic team assistants. In other 

words, we examine how (dis)confirmation of skill expectations and actual experiences affect 

robot acceptance. In line with research in information systems (cf. S. A. Brown et al., 2014; 

Venkatesh & Goyal, 2010) and research on all-human teams (Yang, 2014), we follow the 

expectation-disconfirmation approach to create a holistic picture of both teamwork and 

taskwork robot skill evaluations and their effects on robot acceptance. Thus, we establish an 

expectation-experience-based model for HRTs. In this model, we consider trust as a 

“cornerstone of sustainable relationships” (Ullman & Malle, 2018, p. 263), especially in work 

teams (Costa et al., 2018), and the intention to work with the robot following Venkatesh and 

Goyal . Consequently, we address taskwork and teamwork robotic team assistant skills in 

research question 1 (RQ1): How does the interplay between expected and experienced taskwork 

and teamwork robot skills affect trust and the intention to work with the robot? Skill evaluations 

may differ not only for different types of work performed in teams, but also for different types 

of robots. Varying levels of anthropomorphism and thus human-likeness of social robots can 

elicit individual responses from interaction partners (Hegel et al., 2008). Establishing when 

anthropomorphism is going too far is an important factor (Duffy, 2003). Our second research 

question (RQ2) addresses this issue: Do employee responses to taskwork and teamwork robot 

skills vary for different types of robot assistants? 

With our research, we take a closer look at the actual implementation of robots in business 

environments, more specifically in work teams, and add to research in this area in several ways. 

First, we take into account recent developments in AI-based technologies that make the 

integration of such tools in offices a realistic scenario (e.g., Chui et al., 2022). Here, we address 

the need for a holistic understanding of human-robot collaboration in work contexts (K. A. 

Demir et al., 2019). Second, we explore the capabilities of taskwork and teamwork to provide 

insights into these two important components in team settings (cf. Mathieu et al., 2008). Third, 

by establishing an expectation-experience-based model for HRTs, we also contribute to recent 
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research on a theoretical and methodological level. This approach allows for a more nuanced 

understanding of the topics studied (see also J. R. Edwards, 2002). Fourth, we also consider 

different types of human-like robots to assess different effects of anthropomorphism. For 

practitioners, we provide detailed and structured guidance on how to integrate social robots 

into HRTs. In particular, we show how employee acceptance evolves for different types of tasks 

and social robots. This helps organizations determine the potential impact of the interplay of 

expectations and experiences that shape human-robot collaboration. 

 

3.2 Literature Review 

With developments in robotics and AI, HRTs have gained a lot of traction in recent years. There 

are many papers on HRTs, conceptual (e.g., Abrams & Rosenthal-von der Pütten, 2020; Groom 

& Nass, 2007) and empirical (e.g., Gombolay, Huang, & Shah, 2015; You & Robert, 2022b) in 

nature (see, e.g., Sebo et al., 2020; Wolf & Stock-Homburg, 2022). A basic notion of conceptual 

papers on HRTs is that such teams are gaining importance in different domains, including the 

workplace, and humans will not be substituted but rather complemented by robots (Groom & 

Nass, 2007). 

In such HRTs, robots can take on different roles ranging from follower to peer to leader (Tsai 

et al., 2022). Focusing on robots in follower roles (e.g., team assistants) in HRTs, the literature 

can be structured between two ends of a scale for the type of assistance: taskwork assistance on 

one end and teamwork assistance on the other end. Taskwork assistance refers to intellectual or 

physical support for completion of team-specific tasks, e.g., support for knowledge or service 

work like task allocation or support for carrying heavy loads (cf. Crawford & LePine, 2013). 

Teamwork assistance, in contrast, refers to social aspects of assistance, e.g., social-emotional 

support or integration into the team (cf. Mathieu et al., 2008). Specifically, coordination skills 

and knowledge are elements of intellectual taskwork assistance. Coordination skills involve the 

ability to efficiently plan, organize, and manage tasks, processes and resources to achieve 

specific goals within a team (Marks et al., 2001). These skills are task-centered and focus on 

the mechanics of task performance. Kowledge associated with taskwork skills refers to the 

specialized expertise, information and competencies required to successfully perform specific 

tasks or fucntions relevant to the team’s goals (Cannon-Bowers & Salas, 1998; Dunham & Burt, 

2014). These skills and knowledge are considered taskwork skills because they are primarily 

focused on the successful completion of the actual work or tasks for which the team is 

responsible.  
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Teamwork assistance, in contrast, includes social skills and team orientation. Social skills 

encompass a range of interpersonal skills, including effective communication, active listening, 

conflict resolution, empathy, and relationship building (Klein et al., 2006). These skills facilitate 

harmonious interactions and communication among team members. Team orientation reflects 

an individual’s commitment to collective goals and willingness to collaborate within a team, 

prioritizing shared goals over personal interests (Coyle-Shapiro). Social skills and team 

orientation are categorized as teamwork skills because they are essential for building strong 

interpersonal relationships within the team and fostering a positive team environment. 

Traditionally, research on robotic assistance in HRTs focuses on (physical) taskwork assistance 

outside an office environment, especially in production or urban search and rescue (Wolf & 

Stock-Homburg, 2022). In such contexts robotic assistants support physical delivery (You & 

Robert, 2018a; You & Robert, 2022a, 2022b), production tasks (“place-and-drill task”, 

Nikolaidis & Shah, 2013), or help to find and retrieve victims (Burke & Murphy, 2004). In these 

constellations, team identification was found to lead to higher emotional attachment and better 

team performance (You & Robert, 2018a; You & Robert, 2022b). Human-robot cross training 

also was found to improve team performance (Nikolaidis & Shah, 2013). One study by 

Gombolay et al. (2017) found that increased robotic autonomy led to decreased situational 

awareness of human team members and that the consideration of human preferences led to a 

higher preference to work with the robotic assistant (Gombolay et al., 2017). Finally, one study 

by Abendschein and colleagues studied robotic teaching assistants in mixed human-robot 

teaching teams and found that human-led teams with a robotic assistant were preferred over 

robot-led teams (Abendschein et al., 2021).  

Despite the importance of social interaction in teams, teamwork assistance by robots is an 

emerging phenomenon in the context of HRTs and therefore less studied. Among the few 

studies focusing on teamwork assistance in HRTs, Kelly and Watts (2017) argue that robots 

should not only be efficient, but also “slow but likeable“ (Kelly & Watts, 2017, p. 1, p. 1) in 

order to be accepted as full team members. In empirical investigations, Strohkorb Sebo et al. 

(2018) and Traeger et al. (2020) found that robots’ social behavior in the form of vulnerable 

statements helps to improve not only human-robot, but also human-human interaction in HRTs, 

thus playing an important role in shaping interactions in these teams. Taken together, this 

shows that while the taskwork aspect of robotic assistance has been extensively researched, a 

focus on office environments is still lacking. Similarly, teamwork assistance is currently an 

understudied phenomenon, despite promising results from initial studies.  
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Another aspect of interest are expectations, experiences, and expectation-disconfirmation that 

have been in the focus of a number of investigations in the context of human-robot interaction. 

For example, Paepcke and Takayama (2010) examined expectation-setting tactics for robot 

capabilities and found that initial beliefs about a robot's capabilities are influenced by these 

tactics. Specifically, setting lower expectations led to less disappointment and more positive 

evaluations of the robot's competence. Horstmann and Krämer (2020) found that people's 

expectations about a social robot's future role, as either a competitor or assistant, influence 

perceptions of its sociability. Their research underscores that the robot's behavior has more 

impact on evaluations during real interactions than initial expectations or individual 

backgrounds. Similarly, in two studies C. Edwards et al. (2016) and A. Edwards et al. (2019) 

found that initial expectations and impressions about the conversational partner may influence 

subsequent interactions with social robots. Finally, E. Phillips et al. (2017) explored how robot 

appearances evoke expectations in human-robot interactions and categorized these 

expectations.  

Overall, as technological developments increasingly enable robots to take on social roles in 

teams and the furthe rintegration of social robots is anticipated, we see potential for further 

research to better understand team constellations in which different robotic assistants provide 

not only taskwork but also teamwork assistance for their teams. With our work, we want to step 

into this research gap in order to learn more about this promising field of application. 

 

3.3 Conceptual Background 

3.3.1 Input-Process-Output Model and Expectation-Disconfirmation Theory 

Our research framework (Figure 3-1) is inspired by the Input-Process-Output (IPO) Model 

which has been established in team research (e.g., Gladstein, 1984; Mathieu et al., 2008; 

McClough & Rogelberg, 2003). It also has attracted considerable attention in information 

systems research (e.g., Powell et al., 2004; Subiyakto & Ahlan, 2014). The IPO Model 

differentiates between team inputs, processes, and outputs. Inputs are comprised of team level 

or organizational/contextual factors (Driskell et al., 2018); they are considered antecedents for 

team member collaboration (Gladstein, 1984; Mathieu et al., 2008). Characteristics of 

individual team members are among these input factors (Driskell et al., 2018), for instance in 

the form of competencies (Mathieu et al., 2008). Team interaction processes are directed toward 

task completion as an overarching goal of work teams. They describe how inputs are 
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transformed into outputs (Driskell et al., 2018; Mathieu et al., 2008). These outputs include 

performance and affective reactions (Mathieu et al., 2008). IPO Models have been used before 

in HRT research (e.g., Esterwood & Robert, 2020; Wolf & Stock-Homburg, 2022). 

 

 

Expectation Disconfirmation Theory (EDT) proposes a framework to study outcome evaluations 

not only based on actual experiences of a product or service, but also in relation to prior 

expectations. These expectations create a frame of reference that build the basis for later 

judgements. If experiences do not meet expectations, a discrepancy is created: Experiences can 

either be worse than expected (negative disconfirmation) or better than expected (positive 

disconfirmation) (Oliver, 1980; Venkatesh & Goyal, 2010). In information systems research, 

EDT has been applied as a theoretical lens to study user acceptance (Venkatesh & Goyal, 2010) 

or trust in technology (N. K. Lankton et al., 2016). EDT in this context is primarily studied in 

combination with polynomial modeling and response surface analysis. With this method, the 

interplay between expectations and experiences is illustrated by means of models with varying 

complexity. S. A. Brown et al. (2014) for instance investigate linear (first-order), quadratic 

(second-order), and cubic (third-order) polynomial models in their work. 

Building on the IPO model (Mathieu et al., 2008) and EDT (Venkatesh & Goyal, 2010), we 

establish an expectation-experience-based model for HRTs. We first take team input variables 

into consideration and focus on team member characteristics (cf. Driskell et al., 2018) to answer 

Figure 3-1. Research Framework 
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RQ1. Taskwork in this regard is aimed at the accomplishment of team-specific tasks (Crawford 

& LePine, 2013), for instance through coordination activities (Fisher, 2014). Teamwork 

specifically focuses on team member interactions (Mathieu et al., 2008) and interpersonal 

processes (Fisher, 2014). In our research framework we follow this notion by investigating both 

robotic taskwork and teamwork skills. Taskwork team assistant skills are represented by 

coordination skills and knowledge. Teamwork team assistant skills, in contrast are comprised 

of social skills and team orientation. This allows for a nuanced investigation of robotic team 

assistant skills in office environments. Regarding the team process, we investigate expectation 

disconfirmation and focus on the relationships between taskwork and teamwork expectations 

and experiences. For team outputs, our dependent variables are also characterized by a duality 

in that we consider trust as soft factor of robot acceptance and the intention to work with the 

team assistant as hard factor in line with prior considerations on the IPO Model (cf. Mathieu et 

al., 2008). 

 

3.3.2 Hypotheses Development 

Team assistants can be considered facilitating agents that provide services to teams in order to 

improve team effectiveness (Beavers & Hexmoor, 2002). In traditional service contexts, the 

relationship between services and (customer) outcomes can be characterized by an inverted S-

shaped curve (R. M. Stock, 2011). Similar patterns have been observed in organizational 

contexts, for instance in subordinates’ identification with their leaders (R. M. Stock & Özbek-

Potthoff, 2014).  

Transferring this to our context, we propose that an inverted S-shaped curve is also observable 

in relationships between expectation and experiences of robotic team assistant skills in their 

role as team service providers. This would imply that the center of the surface is relatively flat, 

as we can find a zone of tolerance (Johnston, 1995) for small gaps between expectations and 

experiences. This is based on cognitive dissonance theory (Festinger, 1957) that postulates that 

individuals try to minimize the difference between their expectations and experiences to reach 

consonance, hence biasing their experiences towards their expectations. Thus, there should only 

be small effects on employees’ robot acceptance of the team assistants. 

Moving to the left part of the surface, a negative disconfirmation of expectations (i.e., 

underfulfilment) would cause the surface to increasingly “go down”. This implies lower levels 

of robot acceptance, due to cognitive dissonance (Festinger, 1957). Specifically, the relationship 

between negative disconfirmation and employees’ robot acceptance should show a concave 
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pattern. This expectation is consistent with disappointment theory (Loomes & Sugden, 1986). 

According to this theory, disappointment emerges in situations where the outcome of a decision 

falls short of initial expectations, while elation emerges when the outcome exceeds initial 

expectations (Homburg et al., 2004). In particular, “the intensity of disappointment and elation 

both increase at the margin” (Loomes & Sugden, 1986, p. 272), resulting in a concave trend 

towards negative disconfirmation. 

Conversely, on the right part of the surface, the opposite case of positive disconfirmation (i.e., 

overfulfilment of expectations) would, accordingto disappointment theory, result in a rising 

surface, i.e., higher robot acceptance. This right part of the surface would be characterized by 

a convex shape.  

Extant literature suggests that the above mentioned human theories can be applied to human-

computer and human-robot interaction (M. Demir et al., 2020; Krämer et al., 2012; Visser et 

al., 2018; Visser et al., 2020). Accordingly, we propose the following hypotheses: 

H1: There is an inverted S-shaped relationship between (a) android and (b) humanoid robot 

taskwork team assistant skills and robot acceptance by the employee. 

H2: There is an inverted S-shaped relationship between (a) android and (b) humanoid robot 

teamwork team assistant skills and robot acceptance by the employee. 

With our hypotheses, we also consider different agent types (RQ2): humanoid and android 

robotic team assistants. Humanoid and android robots are characterized by differing levels of 

human-likeness and evoke varying user responses. Humanoid robots “resemble people in form 

or behavior to some degree” (Fox & Gambino, 2021; p. 295) and are able to socially interact 

with humans (S. Zhao, 2006). Still, they are quite mechanical-looking (MacDorman & Ishiguro, 

2006). In contrast to this, android robots are designed to mimic human beings closely 

(MacDorman & Ishiguro, 2006). Due to their automated social presence (van Doorn et al., 

2017), both android and humanoid social robots make humans feel like being faced with a real 

social entity (Čaić et al., 2020). We therefore expect analogous relationships between expected 

and experienced taskwork and teamwork robot skills and employees’ acceptance of the robots. 

We evaluate individual trajectories for each agent for both taskwork and teamwork skills to 

gain a refined understanding of each robot type. 
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3.4 Method 

3.4.1 Online Experiment 

3.4.1.1 Experimental Design 

We conducted the experiment as an online study. Workers from the platform Amazon 

Mechanical Turk (MTurkers) were recruited as participants. For data quality purposes, we only 

admitted MTurkers with an acceptance rate of more than 95% to participate in the experiment. 

Upon successful completion of the experiment participants received financial compensation. 

Online studies are a common and proven research method also in HRI research (Bryant et al., 

2020; Feil-Seifer et al., 2021; Horstmann & Krämer, 2019; Leiner, 2019; Preusse et al., 2021; 

Reich-Stiebert et al., 2019), including the investigation of anthropomorphic robots (Knof et al., 

2022; Lohse et al., 2007; Ye et al., 2020). They have a number of advantages, including reduced 

experimenter influence, access to larger samples, and increased generalizability (Aguinis et al., 

2021; Reips, 2002). 

We conducted the experiment in the form of a virtual selection scenario as part of a corporate 

project. To assess individual ratings and differences between the humanoid and android robots, 

participants viewed each agent in random order in a within-subjects design. During the online 

experiment, the scenario was presented to the participants in the form of a vignette. Such a 

vignette-based approach is used to present contextual and explanatory facets (Atzmüller & 

Steiner, 2010) and has been used previously in robotics research (e.g., Lutz & Tamò-Larrieux, 

2021). Previous research has shown that vignettes are an appropriate method for studying 

teams, including their task-related and social-emotional levels(Dennis et al., 2012). In this 

study, the use of the vignette in particular allows for accurate creation of participants’ 

understanding of the selection scenario. In the vignette, participants were asked to assume the 

role of an employee who wanted to join a new project team. There were different teams to 

choose from. The only difference between the teams was the team assistant. Typical tasks of a 

team assistant (e.g., communicating with team members and coordinating appointments) were 

given as examples.  

 

3.4.1.2 Experimental Procedure and Manipulation 

As a first step in the experiment, we asked for demographic information about the participants. 

We also assessed previous experience with robots. In a next step, we assessed expectation 

disconfirmation for each team assistant separately: Participants were first asked to indicate their 
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expectations for each agent before watching a video of the agent in a team-based project 

scenario. This video was the basis for the evaluation of the agents and the selection results. 

During the video, the team assistant interacted with a project team with three additional 

members. The team assistants performed tasks that were part of that specific role within the 

team, so that the participants could get an idea of the skills and capabilities of the agent directly 

in the team setting. Specifically, the team assistants showed their taskwork and teamwork skills 

by communicating with team members, showing an overview over the meeting agenda, and 

coordinating an appointment. The videos used in the online experiment were produced at the 

conducting department. The android robot in the role as team assistant is pictured in Figure 

3-2b, the humanoid robotic team assistant in Figure 3-2a. As part of the setup, we mimicked a 

realistic project meeting environment in the videos, including a conference table and typical 

devices in the work environment. As the manipulation in our study, the team assistant changed 

for each video; all other aspects remained the same across the videos. After watching the video, 

participants were asked to indicate their experience with each agent. We also assessed intention 

to work with each agent and trust in the agents as indicators of agent acceptance. For the 

humanoid robot candidate (Figure 3-2a), we used a Pepper robot developed by SoftBanks 

Robotics. This type of robot has been used in a variety of contexts in human-robot interaction 

(Pandey & Gelin, 2018). For the android robot candidate (Figure 3-2b), we used a custom-built 

female android robot with an IBM Watson chatbot that closely mimics human appearance. 

 

a. Humanoid Robot b. Android Robot 

Figure 3-2. Robotic Agents in the Role as Team Assistants 

 

3.4.2 Sample Characteristics 

The sample of our online experiment originally consisted of 1,284 MTurk participants. Several 

participants were excluded due to the following criteria: 63 participants did not meet our 

employment requirements (employed or independent workers or company owners) and 19 
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were not from the United States. We further excluded 86 participants that failed more than two 

out of three attention checks. 12 participants were excluded due to speeding (Leiner, 2019). 

Moreover, 21 participants indicated video and audio issues and were thus excluded. Our final 

sample consisted of 1,083 MTurkers. The participants had a mean age of 35.65 years (𝑆𝐷𝑎𝑔𝑒 =

11.12). 48.7% of the participants identified as male, 51.2% as female and 0.1% as diverse. 

Regarding their professional status, 86.1% of the sample were employed workers, 10.1% 

independent workers and 3.8% company owners. Participants rated their project work 

experience high with a mean of 8.16 (𝑆𝐷𝑝𝑟𝑜𝑗𝑒𝑐𝑡 = 1.84) on a scale from 1 (I have no experience 

at all) to 10 (I have very much experience). To gain a better understanding of our sample, we 

asked participants to indicate their experiences with robots. These ratings were on moderately 

high levels: 𝑀𝑒𝑥𝑝 = 7.07 (𝑆𝐷 = 2.51) again on a scale from 1 (I have no experience at all) to 10 

(I have very much experience). 64.0% of participants experienced robots at work, while 39.5% 

had experiences with robots in their free time, 26.9% in a store, 20.5% in media, 16.3% in a 

hotel, and 14.7% in a museum; 4.0% of the sample chose other. We were also interested in the 

nature of their experiences: 67.0% of participants saw robots in films or online, 58.2% in real 

life, 37.7% had an actual interaction with a robot, 17.2% programmed robots, 12.7% worked 

together with robots, 7.9% owned a robot, and 1.3% chose other. Participants could select 

multiple options. 

 

3.4.3 Measures and Statistical Analyses 

With regards to our EDT-mechanism, we assessed the input variables before (expectations) and 

after the video-based interaction (experiences). For taskwork team assistant skills, we measured 

coordination skills and knowledge. The items for coordination skills were based on Song et al. 

(2019), a sample item for expected coordination skills is: “I expect this [agent] to ensure that 

within the team, related tasks are well coordinated”. For knowledge, we adapted our items from 

Dunham and Burt (2014), a sample item for expected knowledge is: “I expect this [agent] to 

have mastered the required tasks of his/her job”. Teamwork skills were comprised of social skills 

and team orientation. The social skills scale was adapted from Silvera et al. (2001). A sample 

item is: “I expect this [agent] to fit in easily in social situations”. For team orientation (Kilcullen 

et al., 2022) the following item illustrates the construct: “I expect this [agent] to be willing to 

put himself/herself out to help the work group”. To gather experiences, the corresponding parts 

of the items were adapted. As outcome variables, we relied on trust and the intention to work 

with the agent as indicators of robot acceptance. The items for trust were adapted from 
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McKnight et al. (2002). A sample item is: “The [agent] acts in my best interest”. For intention 

to work with the team assistant, we relied on Venkatesh and Goyal (2010), a sample item is: “I 

would intend to work with the [agent]”. As control variables for our analyses, we relied on 

affinity for technology interaction (Lezhnina & Kismihók, 2020) and prior experiences with 

robots as introduced in the sample characteristics. If not specified otherwise, all scales featured 

7-point Likert-type scales (1: totally/strongly disagree to 7: totally/strongly agree). 

Reliability analysis using Cronbach's α (Cronbach, 1951) shows that the measures exceed 0.7. 

Average variance extract values are also above the threshold of 0.5 and the Fornell-Larcker 

criterion (Fornell & Larcker, 1981) is overall fulfilled.  

For the statistical analyses, we relied on approaches by S. A. Brown et al. (2014) and Shanock 

et al. (2010, 2014) based on J. R. Edwards and Parry (1993) and Cohen et al. (2003) to conduct 

polynomial modeling and run tests of surface values as part of response surface analysis. Results 

of a hierarchical polynomial regression analysis up to third order were used to determine the 

best order of the used models based on significant increase of 𝑅2. For example, a third-order 

regression equation can be written as 𝑍 = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑌 + 𝑏3𝑋2 + 𝑏4𝑋𝑌 + 𝑏5𝑌2 + 𝑏6𝑋3 +

𝑏7𝑋2𝑌 + 𝑏8𝑋𝑌2 + 𝑏9𝑌3, where Z = dependent variable, X = experiences, Y = expectations, and 

regression coefficients 𝑏0, 𝑏1, … , 𝑏9 used as input for the response surface. We then relied on 

significance tests of various surface values calculated using the regression coefficients for the 

best order to evaluate characteristics of resulting response surfaces. For example, the regression 

analysis showed that a third-order model was the best fit. We then examined the response 

surface spanned by the associated regression coefficients in more detail and performed the tests 

of surface values mentioned above. These tests are partially based on previous literature (S. A. 

Brown et al., 2014; Shanock et al., 2010, 2014), we further developed additional tests following 

the approach by Cohen et al. (2003). 

 

3.5 Results 

With t-tests, we confirm that the manipulation worked as intended: As a t-test against the 

midpoint of the scale showed, participants could clearly identify the two agents as robots 

(𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 = 6.03, 𝑆𝐷 = 1.11, 𝑡(1082) = 60.39, 𝑝 < 0.01;  𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 = 5.86, 𝑆𝐷 =

1.19, 𝑡(1082) = 51.30, 𝑝 < 0.01). Another t-test comparing the evaluations of machine-likeness 

(1) vs. human-likeness (7) of the two robots confirmed that the humanoid robot was perceived 

(𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 = 4.47, 𝑆𝐷 = 2.09) as significantly (𝑡(2155.54) = 4.40, 𝑝 < 0.01) less humanlike 

than the android robot (𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 = 4.86, 𝑆𝐷 = 1.96). Participants further perceived both robots 
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similarly as teammates (𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 = 4.92, 𝑆𝐷 = 1.92; 𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 = 4.82, 𝑆𝐷 = 1.95; t-test against 

midpoint of the scale from tool (1) to teammate (7), n.s. differences between robots). Tests 

against the midpoint of the scale showed that participants perceived the scenario as realistic for 

both agents (𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 = 5.47, 𝑆𝐷 = 1.38, 𝑡(1082) = 34.91, 𝑝 < 0.01;  𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 = 5.47, 𝑆𝐷 =

1.37, 𝑡(1083) = 35.33, 𝑝 < 0.01). 

Results of hierarchical regression up to third order showed that for the humanoid robot, third-

order models are the best fit for outcome assessments of robot acceptance related to evaluations 

of taskwork robotic team assistant skills. Thus, the corresponding response surfaces also follow 

third-order models. Subsequent response surface analyses showed that the surfaces follow  an 

inverted S-shape with highest values for the greatest values of positive disconfirmation (right 

corner of the surface, see Figure 3-3a). Corresponding tests of the response surface (Table 3-1) 

specifically showed that the cubic slope along the line of perfect disconfirmation 𝑎𝑦,0
3  is positive 

and significant and the corresponding surface value for the linear slope of the surface on its far 

right corner with the highest positive disconfirmation, 𝑎𝑦,3, is positive and significant, 

supporting the wave-shape of the surface. The linear slope of the surface from its center along 

the line of perfect disconfirmation (𝑎𝑦,0) is not significantly different from zero in most cases, 

indicating the zone of tolerance in the middle of the surface. Higher absolute values of 

confirmation are associated with increasing outcome assessments, as indicated by 𝑎𝑥,0 being 

positive and significant. 

In contrast, for outcome assessments related to evaluations of taskwork robotic team assistant 

skills for the android robot mostly second-order models are most suitable. The response surfaces 

follow an inverted U-shaped surface (see Figure 3-3b) that is slightly skewed to the area of 

positive disconfirmation and has the highest values for high absolute values of confirmation. 

This shape was confirmed by surface value tests (Table 3-2): The linear slopes in the center of 

the surface along the line of perfect confirmation and the line of perfect disconfirmation, 𝑎𝑥,0 

and 𝑎𝑦,0, are positive and significant indicating the increase of outcome evaluations for higher 

absolute values of confirmation and slight positive disconfirmation. The quadratic slope of the 

surface along the line of perfect disconfirmation in its center (𝑎𝑦,0
2 ) is negative and mostly 

significant and the slope of the surface on its far right corner (𝑎𝑦,3) is significantly negative, 

indicating the inverted U-shape. 
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 a. Humanoid Robotic Team Assistant b. Android Robotic Team Assistant 

DV   \   IV Coordination Skills Knowledge Coordination Skills Knowledge 

Trust 

 

𝑇
= 4.186 + 0.486𝐶1
+ 0.428𝐶2
− 0.006𝐶1

2

− 0.055𝐶1𝐶2
− 0.019𝐶2

2

+ 0.016𝐶1
3

− 0.039 𝐶1
2𝐶2

+ 0.059𝐶1𝐶2
2

− 0.029𝐶2
3 

 

𝑇
= 4.050 + 0.584𝐾1
+ 0.270𝐾2
− 0.098𝐾1

2

+ 0.062𝐾1𝐾2
− 0.033𝐾2

2

+ 0.007𝐾1
3

− 0.026𝐾1
2𝐾2

+ 0.047𝐾1𝐾2
2

− 0.029𝐾2
3 

 

𝑇
= 4.148 + 0.616𝐶1
+  0.293 𝐶2
+ 0.017𝐶1

2

+ 0.113𝐶1𝐶2
− 0.180𝐶2

2 − 0.031
∗ 𝐶1

3 + 0.000𝐶1
2𝐶2

− 0.012𝐶1𝐶2
2

+ 0.041𝐶2
3 

 

𝑇
= 4.016
+ 0.721𝐾1
+ 0.150𝐾2
− 0.150𝐾1

2

+ 0.102𝐾1𝐾2
− 0.030𝐾2

2 

𝑅2 = .648, 
adjusted 𝑅2 = .644 

𝐹(11,1071) =
179.090, 𝑝 < 0.01  

𝑅2 = .631, 
adjusted 𝑅2 = .627 

𝐹(11,1071) =
166.428, 𝑝 < 0.01  

𝑅2 = .718, 
adjusted 𝑅2 = .715 

𝐹(11,1071) =
247.897, 𝑝 < 0.01  

𝑅2 = .646, 
adjusted 𝑅2 =
.644 

𝐹(7,1075) =
280.534, 𝑝 < 0.01  

Intention 

𝐼 

= 4.090 + 0.568𝐶1
+ 0.382𝐶2
− 0.009𝐶1

2

+ 0.091𝐶1𝐶2
− 0.120 𝐶2

2

+ 0.012𝐶1
3

− 0.063𝐶1
2𝐶2

+ 0.048𝐶1𝐶2
3  

− 0.006𝐶2
3  

 

𝐼
= 4.034 + 0.463𝐾1
+ 0 − 370𝐾2
− 0.099𝐾1

2

− 0.022𝐾1𝐾2
+ 0.025𝐾2

2

− 0.004𝐾1
3

+ 0.022𝐾1
2𝐾2

+ 0.033𝑘1𝐾2
2

− 0.045𝐾2
3 

 

𝐼
= 3.996 + 0.499𝐶1
+ 0.424𝐶2
+ 0.001𝐶1

2

+ 0.027𝐶1𝐶2
− 0.098𝐶2

2 

 

𝐼
=  4.059
+ 0.575𝐾1
+ 0.214𝐾2
− 0.200𝐾1

2

+ 0.251𝐾1𝐾2
− 0.155𝐾2

2 

𝑅2 = .577, 
adjusted 𝑅2 = .573 

𝐹(11,1071) =
132.920, 𝑝 < 0.01  

𝑅2 = .460, 
adjusted 𝑅2 = .455 

𝐹(11,1071)
= 83.054, 𝑝 < 0.01  

𝑅2 = .530, 
adjusted 𝑅2 = .527 

𝐹(7, 1075) =
173.014, 𝑝 < 0.01  

𝑅2 = .448, 
adjusted 𝑅2 =
.444 

𝐹(7,1075) =
124.582, 𝑝 < 0.01  

Figure 3-3. Response Surfaces for Outcome Assessments of Taskwork Robotic Team Assistant Skills for 

the Humanoid and Android Robotic Team Assistant 

Note: 𝐶1, 𝐾1, refer to perceived coordination skills / knowledge, 𝐶2, 𝐾2, refer to expected coordination 

skills / knowledge, 𝑇 refers to trust, 𝐼 refers to Intention 
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Figure 3-4. Response Surfaces for Outcome Assessments of Teamwork Robotic Team Assistant Skills for 

the Humanoid and Android Robotic Team 

Note: 𝑆1, 𝑂1, refer to perceived social skills / team orientation, 𝑆2, 𝑂2, refer to expected social skills / 

team orientation, 𝑇 refers to trust, 𝐼 refers to Intention 

 a. Humanoid Robotic Team Assistant b. Android Robotic Team Assistant 

DV   \   IV Social Skills Team Orientation Social Skills Team Orientation 

Trust 

 

𝑇
= 4.373
+ 0.466𝑆1
+ 0.173 𝑆2
+ 0.065
− 0.063𝑆1𝑆2  
+ 0.016𝑆2

2  

 

𝑇
= 4.534 + 0.376𝑂1
+ 0.215𝑂2 

 

𝑇
= 4.269 + 0.542𝑆1
+ 0.196𝑆2
− 0.030 𝑆1

2

+ 0.040𝑆1𝑆2
+ 0.029 𝑆2

2

− 0.030 𝑆1
3

+ 0.038𝑆1
2𝑆2

− 0.012𝑆1𝑆2
2

− 0.015𝑆2
3 

 

𝑇
= 4.405 + 0.402𝑂1
+ 0.192𝑂2
+ 0.000𝑂1

2

+ 0.018𝑂1𝑂2
+ 0.012𝑂2

2 

𝑅2 = .597, 
adjusted 𝑅2 =
.595 

𝐹(7, 1075) =
227.730, 𝑝 < 0.01  

𝑅2 = .563, 
adjusted 𝑅2 =
.561 

𝐹(4, 1078) =
346.906, 𝑝 < 0.01  

𝑅2 = .648, 
adjusted 𝑅2 = .644 

𝐹(11, 1071) =
179.141, 𝑝 < 0.01  

𝑅2 = .631, 
adjusted 𝑅2 = .628 

𝐹(7, 1075) =
262.169, 𝑝 < 0.01  

Intention 

 

𝐼
= 4.291
+ 0.581𝑆1
+ 0.198𝑆2
+ 0.088𝑆1

2

− 0.112𝑆1𝑆2
− 0.005𝑆2

2  

 

𝐼
= 4.413 + 0.540𝑂1
+ 0.187𝑂2 

 

𝐼
= 4.235 + 0.670𝑆1
+ 0.070𝑆2
− 0.072𝑆1

2

+ 0.058𝑆1𝑆2
− 0.027𝑆2

2 

 

𝐼
=  4.133 + 0.629𝑂1
+ 0.322𝑂2
+ 0.053𝑂1

2

− 0.030 𝑂1𝑂2
− 0.027𝑂2

2

− 0.033𝑂1
3

− 0.009𝑂1
2𝑂2

+ 0.047𝑂1𝑂2
2

− 0.033𝑂2
3  

𝑅2 = .577, 
adjusted 𝑅2 =
.574 

𝐹(7, 1075) =
209.326, 𝑝 < 0.01  

𝑅2 = .597, 
adjusted 𝑅2 =
.596 

𝐹(4, 1078) =
400.056, 𝑝 < 0.01  

𝑅2 = .563, 
adjusted 𝑅2 = .560 

𝐹(7, 1075) =
197.910, 𝑝 < 0.01  

𝑅2 = .596, 
adjusted 𝑅2 = .592 

𝐹(11, 1071) =
143.601 𝑝 < 0.01  
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Turning to outcome assessments of robot acceptance related to evaluations of teamwork robotic 

team assistant skills (social skills and team orientation), the regressions for the humanoid robot 

showed best fits for simple (first- and second-order) models. The corresponsing response  

surfaces follow shapes with highest outcome assessments for high absolute values of 

experiences (see Figure 3-4a). The test for the linear slope of the surface on its far right corner, 

𝑎𝑦,3, showed that it is positive and significant. Further, the linear slopes of the surfaces in its 

center along the line of perfect confirmation (𝑎𝑥,0) and along the line of perfect disconfirmation 

(𝑎𝑦,0) are positive and significant (Table 3-3). 

 

Table 3-1. Results of Tests of Surface values for Taskwork Robotic Team Assistant Skills of the 

Humanoid Robot 

 Tests Coordination Skills Knowledge 
Trust |𝑏6|, |𝑏7|, |𝑏8|, 𝑜𝑟 |𝑏9|

> 0 
Supported Supported 

𝑎𝑦,3 > 0 Supported Supported 
𝑎𝑦,0

3 > 0 Supported Supported 
𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 = 0 Supported Not supported 

Intention |𝑏6|, |𝑏7|, |𝑏8|, 𝑜𝑟 |𝑏9|
> 0 

Supported Supported 

𝑎𝑦,3 > 0 Supported Tends to be supported 
𝑎𝑦,0

3 > 0 Supported Tends to be supported 
𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 = 0 Supported Supported 

Note: Surface values indexed with 𝑥 refer to the line of perfect confirmation (i.e., experiences = 

expectations), surface values indexed with 𝑦 refer to the line of perfect disconfirmation (i.e., 

experiences =- expectations) 

 

Table 3-2. Results of Tests of Surface values for Taskwork Robotic Team Assistant Skills of the Android 

Robot 

 Test Coordination Skills Knowledge 
Trust |𝑏3|, |𝑏4|, 𝑜𝑟 |𝑏5| > 0  Supported Supported 

𝑎𝑦,3 < 0 Supported Supported 
𝑎𝑦,0

2 < 0 Supported Supported 
𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Supported Supported 

Intention |𝑏3|, |𝑏4|, 𝑜𝑟 |𝑏5| > 0  Supported Supported 
𝑎𝑦,3 < 0 Tends to be supported Supported 
𝑎𝑦,0

2 < 0 Tends to be supported Supported 
𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Tends to be supported Supported 

Note: Surface values indexed with 𝑥 refer to the line of perfect confirmation (i.e., experiences = 

expectations), surface values indexed with 𝑦 refer to the line of perfect disconfirmation (i.e., 

experiences =- expectations) 
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Table 3-3. Results of Tests of Surface Values for Teamwork Robotic Team Assistant Skills of the 

Humanoid Robot 

 Test Social Skills Team Orientation 
Trust 𝑎𝑦,3 > 0 Supported Supported 

𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Supported Supported 

Intention 𝑎𝑦,3 > 0 Supported Supported 
𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Supported Supported 

Note: Surface values indexed with 𝑥 refer to the line of perfect confirmation (i.e., experiences = 

expectations), surface values indexed with 𝑦 refer to the line of perfect disconfirmation (i.e., 

experiences =- expectations) 

 

Table 3-4. Results of Tests of Surface Values for Teamwork Robotic Team Assistant Skills of the 

Android Robot 

 Test Social Skills Team Orientation 
Trust 𝑎𝑦,3 = 0 Supported Supported 

𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Supported Supported 
𝑎𝑦,0

2 = 0 Supported Supported 
Intention 𝑎𝑦,3 = 0 Supported Not supported 

𝑎𝑥,0 > 0 Supported Supported 
𝑎𝑦,0 > 0 Supported Supported 
𝑎𝑦,0

2 = 0 Not supported Supported 
Note: Surface values indexed with 𝑥 refer to the line of perfect confirmation (i.e., experiences = 

expectations), surface values indexed with 𝑦 refer to the line of perfect disconfirmation (i.e., 

experiences =- expectations) 

 

For the teamwork robotic skills, overall, the outcome assessments for the android robot paint a 

mixed picture of second- and third-order regression models and corresponding response 

surfaces (Figure 3-4b). These surfaces mostly follow shapes with highest outcome assessments 

for high absolute values of confirmation. The response surface for team orientation and 

intention deviates from this in that highest outcome assessments are associated with highly 

positive disconfirmation. The linear slopes along the lines of interest in the center of the surface, 

𝑎𝑥,0 and 𝑎𝑦,0, are positive and significant for all surfaces. The quadratic slope of the surface 

along the line of perfect disconfirmation in its center (𝑎𝑦,0
2 ) is mostly not significant from zero, 

indicating no U- or inverted U-shape. The slope of the surface on its far right corner, 𝑎𝑦,3, is not 

statistically significant from zero for all combinations of independent and dependent variables 

except team orientation and intention, for which it is positive and significant (Table 3-4). 
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3.5.1 Supplementary Analyses 

To supplement our response surface analysis, we looked at preference indications for the robotic 

agents. This information was considered important to understand whether the robot acceptance 

based on the expectation-experience interplay matches the general preference to work with the 

robot. We included the following item in our questionnaire that allowed for a pairwise 

comparison: “Please indicate who you prefer as a team assistant.” Participants could choose 

between the humanoid and the android robot on a scale from 1 to 7. 1 would indicate an 

absolute preference for the humanoid and 7 absolute preference for the android robot. We 

tested the preferences with a t-test against the midpoint of the scale. With a mean of 4.46 and 

a standard deviation of 2.14, participants significantly preferred the android robot to the 

humanoid robot (𝑡(1082) = 7.03, 𝑝 < 0.01). The high standard deviation indicates that 

preferences varied greatly within the sample.  

Interestingly, 61.00% preferred the android robot as team assistant by choosing the values 5, 6 

or 7 on the scale. 35.40% indicated preferences for the humanoid robotic team assistant (values 

1, 2 or 3). Only 3.60% chose the midpoint of the scale. This means that participants in an 

employee role clearly preferred the android robot. However, considering our response surface 

analysis, high perceived taskwork skills of the android robot in combination with low 

expectations (positive disconfirmation) lead to rejection in terms of low robot acceptance.  

 

3.6 Discussion 

The departure point of this paper was the question of how to successfully integrate social robots 

as AI-based technologies into work teams. Especially a role as team assistant is considered 

appropriate in corresponding literature for the setup of HRTs (see for instance Wolf & Stock-

Homburg, 2022). In our research, we focus on taskwork and teamwork robotic assistant skills 

following this distinction in extant work (cf. Crawford & LePine, 2013). Our research is rooted 

in EDT (Oliver, 1980; Venkatesh & Goyal, 2010) which has a long-standing tradition in 

information systems research. We transfer this nuanced concept to HRTs in the form of an 

expectation-experience-based model that investigates interplays between taskwork skills, 

teamwork skills and robot acceptance in a comprehensive way. 
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3.6.1 Research Implications 

Teamwork robotic team assistant skills refer to social aspects of team member interactions 

(Mathieu et al., 2008). The results of the response surface analysis show that for the humanoid 

robot the highest levels of robot acceptance are reached for high levels of experiences. In order 

words, experiencing the robot as proficient in teamwork skills is the decisive factor for outcome 

evaluations. For the android robotic team assistant, the surfaces paint a mixed picture. 

Generally speaking, high levels of experiences (and additionally confirmation) also lead to high 

robot acceptance for most investigated relations. This result is similar to the implications drawn 

for the humanoid robot. However, the relationship between expected and experienced social 

skills and trust does not fit this picture for the android robot: high levels of positive 

disconfirmation lead to low trust while high levels of negative disconfirmation (i.e., 

expectations fall below experiences) also increase trust in the robot. Overall, the proposed 

inverted S-shaped relationship between teamwork robotic team assistant skills and robot 

acceptance was not confirmed. 

For taskwork robotic team assistant skills focusing on task accomplishment (Crawford & LePine, 

2013), the surfaces for the humanoid robotic assistant follow the proposed inverted S-shaped 

surfaces: robot acceptance is highest with the highest level of positive disconfirmation. Of 

interest for this shape is also the zone of tolerance (Johnston, 1995), showing that not only for 

perfect confirmation but also for small deviations of expectations and experiences robot 

acceptance remains relatively stable. This indicates that a small mismatch between skill 

expectations and experiences is tolerated by potential teammates. As such technologies are 

currently only emerging (Chui et al., 2022), employees seem to be rather open about them and 

overlook small imperfections. For the android robotic team assistant, we did not find the 

proposed inverted S-shaped curves, but rather inverted U-shaped surfaces: The highest levels 

of robot acceptance are mainly observable for a match between expectations and experiences 

and slight positive disconfirmation, i.e., experiences exceed expectations only to a small extent. 

For high levels of positive disconfirmation, where experiences considerably exceed prior 

expectations of the robotic assistant’s taskwork skills, the curve “drops”. This decline is 

associated with relatively low levels of robot acceptance despite high perceived skill levels, i.e., 

trust in and intention to work with the android robot significantly decrease. 

We consider this unexpected result a threat effect posed by high taskwork skills of the android 

robotic team assistant in the office context. Current media portrayals of job loss due to machines 

and automation emphasize a potential negative impact on employment. This may lead to job 
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insecurity and concerns across many industries (Alcover et al., 2021; Bhargava et al., 2021). 

Research shows that in the working world, the „human touch“ and soft skills are not perceived 

to be affected by the integration of technology (e.g., robots) to the same extent as routine office 

tasks (Bhargava et al., 2021; Chui et al., 2015). A likely response to a potential threat is 

reactance (Miron & Brehm, 2006; Taylor, 1983). Psychological reactance theory (Brehm, 1966) 

acts as a framework to explain why individuals express rejecting behaviors and may show a 

negative attitude in the face of a potential threat (Quick & Stephenson, 2008). A common 

reaction in this regard is the derogation of the threating source (Miller et al., 2007; Miron & 

Brehm, 2006; Worchel & Brehm, 1970) – which in our case is the high taskwork skill level of 

the android robotic team assistant.  

The concept of psychological reactance has been observed in human-agent (S. Liu et al., 2008) 

and human-robot interaction before (Aimi S. Ghazali et al., 2018; Aimi Shazwani Ghazali et al., 

2020). Interestingly, research has found that the stronger the social agency of the robot, the 

more pronounced are the effects of reactance, such as negative cognitions (Roubroeks et al., 

2011). Social agency is operationalized as the „degree to which a social agent is perceived as 

being capable of social behavior that resembles human-human interaction“ (Roubroeks et al., 

2011, p.157). This notion is supported by works from Aimi S. Ghazali et al. (2018) that 

demonstrate that social robots with rather minimal social cues evoke lower levels of reactance 

compared to agents with high levels of social cues. Android robots are characterized by a very 

high level of anthropomorphism in contrast to more mechanical-looking humanoid robots 

(MacDorman & Ishiguro, 2006). Additionally, android robots are seemingly more “perfect” by 

human standards (Duffy, 2003; Matsui et al., 2005) and thus may evoke fear and a sense of 

threat, especially in combination with high skill levels where humans can be outperformed. This 

difference between the robot types may explain why reactance only occurred for the android 

robot and not for the humanoid. After all, anthropomorphism can go too far (Duffy, 2003). 

Furthermore, the authors have been part of a research project investigating longitudinal 

developments in several HRTs. In this project, it became clear that the majority of the 12 

participants that worked with the robots during a period of eight weeks preferred to work with 

the android robot (also in the role of team assistant) and not with the humanoid robot. They 

also ascribed a higher level of social agency and social cues to the android robotic team 

assistant. However, when the android robot had too much knowledge it was perceived as too 

powerful and evoked feelings of scariness. Our supplementary analysis regarding team assistant 

preferences also shows that participants would choose the android robot to be part of their 

team. To sum up our findings, participants clearly prefer the android robot for the role as team 



 

 

 52 

assistant, but do not go the full way by derogating extremely high levels of positive 

disconfirmation, i.e., experiences greatly exceeding expectations. This relation may be 

described with the following phrase: Wash me, but don’t make me wet! – participants want the 

android robotic team assistant and it should perform and support them in their work but it 

should not have any negative implications for them. In light of this finding, it is especially 

relevant to overcome the negative evaluations for high android robotic taskwork skills and 

foster robot acceptance. 

This study establishes an expectation-experience-based model for HRTs, building upon the IPO 

model and EDT. This contributes to ongoing research both on a theoretical and methodological 

level. The utilized methodological approach using regression and response surface analysis 

allows for a nuanced understanding of the topics under investigation (see also J. R. Edwards, 

2002). By extending the central aspects of teamwork and taskwork from all-human teams to 

human-robot teams, we emphasize the relevance of social (human) psychology theories as a 

promising start in exploring the role of social robots in office work environments. 

 

3.6.2 Managerial Implications 

Our work supports practitioners in integrating sophisticated AI-based technologies into 

organizations. With our differentiation of taskwork and teamwork we create a holistic and 

realistic picture of aspects that need to be considered when implementing social robots into 

teams. The assessment of our expectation-experience-based models show that mostly, it is 

important to focus on optimal experiences of the robotic team assistant. Especially good levels 

of robot acceptance are achieved in the case of positive disconfirmation where the gap between 

(low) expectations and (high) experiences is highest. A potential strategy in this regard may be 

to undersell the robot’s capabilities to employees in order to create low expectations that may 

be exceeded later on. To best ensure this, this underselling should be coupled with efforts of 

stable programming and operation of the robotic team assistants. According to our 

investigations, this method would apply to teamwork skills for both robotic agents and to 

taskwork skills for the humanoid robotic team assistant. In contrast to this, for the highly 

anthropomorphic android, such a strategy would backfire as high levels of positive 

disconfirmation regarding taskwork leads to a threat effect resulting in downgrading of the 

agent. Here, a match between expectations and experiences would be preferable. 

We could further show that our participants prefer the android robot in direct comparison to 

the humanoid robot. When combining this finding with our response surface analysis, for high 
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taskwork skill levels, robot acceptance steeply declined. As described before, we consider this a 

threat effect resulting in reactance towards the android robotic team assistant. We observe such 

a threat effect not only in the light of robots that exhibit high levels of task-related skills in our 

experiment, but also towards other AI-based technologies. ChatGPT for instancea tool that is 

noted for its high levels of human-like language and considered a potential threat for jobshas 

been banned in Italy (McCallum, 2023), with Germany maybe following in their footsteps 

(Cuthbertson, 2023). Additionally, evaluations of AI-based systems appear to be rather extreme 

in either a very positive or negative direction (Park & Woo, 2022). A recent study by Schepman 

and Rodway (2020) that validated a scale capturing attitudes towards AI suggests that people 

hold mixed views of AI and tend to gravitate towards the extreme points of the scale. Our own 

data on preferences towards the robotic team assistants confirms this in that most participants 

expressed clear preferences with only a very small amount of responses ranging in the middle 

of the scale. Our experiment and corresponding research (e.g., Aimi S. Ghazali et al., 2018; 

Aimi Shazwani Ghazali et al., 2020) suggest, that the amount of social cues and the level of 

anthropomorphism may shape acceptance and reactions towards such technologies: Designing 

technologies with less social cues may be a strategy to counteract threat and reactance effects 

with regard to high taskwork skill levels. Strategies to increase acceptance of android robots 

may also be beneficial: Following de Graaf et al. (2016), equipping robot users with skills to 

effectively utilize the robot or directly addressing potential user concerns may increase 

acceptance of android robots. This is especially relevant when integrating the preferred android 

robotic team assistants with high skill levels in work teams. 

Taken together, organizations and practicioners should carefully consider the specific teamwork 

or taskwork focus of team assistance and weigh the pros and cons of different social robots and 

technologies. This assessment and decision should be coupled with initiatives to manage 

employee expectations and experiences, including trainings and informative communication for 

employees, as well as stable robot programming and operation. 

 

3.6.3 Limitations and Future Work 

Team-based contexts are generally characterized by high levels of complexity (Hagemann & 

Kluge, 2017). In our work, we focused on taskwork and teamwork robotic team assistant skills 

to create a comprehensive picture of team-based contexts. Specifically, we investigated the 

interplay between expectations and experiences in an expectation-experience-based model of 

HRTs. Future research could take into consideration other potentially relevant variables that 
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are influenced by the establishment of HRTs such as team effectiveness (cf. M. Demir et al., 

2020). A similar approach can be used for this purpose. As AI-based agents for the role of team 

assistants, we looked at android and humanoid robots to consider different levels of 

anthropomorphism (cf. Duffy, 2003). As we found differences in evaluation patterns between 

the office robots, future work can look at other types of intelligent agents that may be 

implemented in office contexts, such as avatars (Konecki et al., 2015). 

 

3.6.4 Conclusion 

With our research, we establish an expectation-experience-based model for the integration of 

social robots into HRTs. Specifically, we show that both taskwork and teamwork robotic team 

assistant skills shape robot acceptance in terms of trust and intention to work with the robot. 

For teamwork, our results point toward the conclusion that a positive disconfirmation 

(expectations exceed experiences) and high levels of experiences positively affect acceptance 

for humanoid and android robots. This relation also holds for taskwork team assistant skills for 

the humanoid robot. For the android robotic team assistant, a positive disconfirmation leads to 

less robot acceptance. We consider this downgrading effect in the face of high taskwork robotic 

skill levels as reactance response toward a threat. A potential mechanism that explains the 

differences between the two robotic agents are varying levels of anthropomorphism: the 

android robot expresses more social cues and human-likeness in comparison to the humanoid 

robotic team assistant. 

 

  



 

4. Empirical Study 2: Decisions for Robotic Team Managers 55 

4 Empirical Study 2: Decisions for Robotic Team Managers9 

4.1 Introduction 

An aging workforce and shortages of skilled workers are challenging many Western economies 

(McGrath, 2021). In the United States as of May 2023, organizations with 9.8 million job 

openings were competing to attract only 5.5 million job seekers (U.S. Bureau of Labor Statistics, 

2022, 2023). Certain sectors, such as professional and business services – including business 

management –, have particularly large surpluses of job openings relative to the number of 

unemployed. These trends, coupled with breakthrough developments in AI, have spurred the 

introduction of smart technologies, such as social robots, in various work environments 

(Bezrukova et al., 2023). Social robots are robots that interact with humans in natural ways, 

using speech, gestures, and facial expressions (Breazeal, 2003). In turn, they can work side-by-

side on complex tasks, like inventory management (Bogue, 2019), and support complex 

decision-making (Agostini et al., 2017). Accordingly, social robots can be “placed in [lower-

level] management-like positions” (Young & Cormier, 2014, para. 2).  

But when a social robot takes a lower-level management position in a human-only team: How 

do human team members respond? A team works interdependently on tasks and interacts 

socially to achieve common goals (Kozlowski & Bell, 2003). A lower-level manager has 

institutionalized authority over the members of a team and supervises them in achieving their 

common goals (Anzengruber et al., 2017) by supporting team decisions, assigning tasks, and 

evaluating team and individual performance (Simonet & Tett, 2013)10.  

In this paper, we argue that such tasks can be effectively performed by social robots, for sev-

eral reasons. First, even at lower organizational levels, managers often have to make complex 

decisions, spontaneously and under time pressure (J. Thomas & Mengel, 2008). Social robots 

can facilitate organizational decision-making by handling multiple tasks simultaneously, 

monitoring different decision criteria and options, and making complex decisions within 

seconds (Samani & Cheok, 2011).  

                                                
9 Based on the conceptual framework published by Wolf and Stock-Homburg (2021) (presented at ICIS 2021, Austin, 

TX), this study incorporates empirical data from a completely revised manuscript currently under review at the 

journal Group and Organization Management. Compared to the previous conference publication and version of 

this dissertation, this chapter contains an updated study based on reviewer comments (e.g., regarding sample 

size) to ensure high quality of research data and results. 

10 In contrast to managers, leaders are focused on motivating, inspiring and developing their followers (Kniffin et al. 

(2020)). While there is an overlap between management and leadership and they complement each other ( 

Kotter (1990)), they should still be considered separately (Kniffin et al. (2020); Northouse (2015)). 
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Second, managers need to make fair and effective decisions, even in the face of extreme 

uncertainty or stress (Finn et al., 2020). Social robots have been shown to make fairer and more 

effective decisions than humans (L. P. Robert et al., 2020), using their AI capabilities to take 

human preferences into account (Gombolay, Gutierrez, et al., 2015).  

Third, managers need to assess individual and team performance in order to oversee the 

achievement of goals (Simonet & Tett, 2013). Thanks to their connectedness with human team 

members (Breazeal, 2003) or organizational structures and systems (Dell Technologies, 2018), 

social robots can consider comprehensive input as basis for their assessment. Further, social 

robots have only artificial emotions (Stock-Homburg, 2022) and their observations and 

decisions are assumed to be unaffected by moods (Chamorro-Premuzic & Ahmetoglu, 2016). 

Through purposeful programming, robotic managers can evaluate team and individual perfor-

mance more predictably and transparently and thus more objectively than human managers 

(N. Wang et al., 2016b). Fourth, recent studies indicate increasing acceptance of robots as 

lower-level managers. Oracle (2019) found that 64% of 8,370 managers and employees 

surveyed would trust a robot more than their manager, about half would turn to a robot for 

advice, and 82% even believe robots can do things better than human managers.  

We recognize that many of these aspects still represent untapped potential and that it will be 

some time before they become an everyday reality. Surprisingly, despite growing importance 

of robots in work contexts and general agreement on the potential of robotic lower-level 

managers (Bankins & Formosa, 2020; Griep, 2022), little research has been conducted on the 

use of robots as managers (Sebo et al., 2020, see Literature Review). However, extant studies 

suggest that it is not far-fetched to see social robots take on this role. 

Current HRI research often takes a “the more the better” view of robot characteristics 

(Gombolay, Gutierrez, et al., 2015). This is a rather simplistic approach that overlooks the dual 

nature of advances in AI and robotics, bringing both opportunities and ethical challenges. An 

example of such a challenge is the potential for unwanted heteronomy. This highlights the risk 

of over-reliance on automated AI and robotic systems, which could undermine human 

autonomy and decision-making in critical scenarios (Dietvorst et al., 2018; R. Parasuraman et 

al., 2000). Human safety is another concern (Arkes et al., 2007). In a collaborative 

environment, ensur-ing that AI and robotic systems have fail-safes and are designed with safety-

first principles is vital to protect team members from physical or psychological harm. Finally, 

the issue of potential unfairness raises questions about the impartiality of AI and robotic 

decision-making (Bankins et al., 2022; B. Green & Chen, 2019; M. K. Lee, 2018). In a team 
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context, this could lead to biased task allocation, performance evaluation, and career 

progression opportunities. 

Although our research does not directly address the ethical implications for lower-level 

managers, it aims to take an initial step towards understanding human responses to robotic 

lower-level management. This understanding is crucial for facilitating the responsible 

integration of social robots within organizational structures.  

In our approach, we explicitly focus on embodied robots as physical representation of AI (Wolf 

& Stock-Homburg, 2022) for a number of reasons. First, the embodiment of robots allows to 

use multiple communication channels and enhance engagement with them (Deng et al., 2019; 

Groom et al., 2010). Second, robots’ physical presence and ability to move within the physical 

workspace allows for a more tangible and immersive collaboration (You & Robert, 2022a). 

Third, in contrast to computers or conversational agents, robots’ human-like appearance 

generates a so-called “social presence”, which in turn in-creases human acceptance of robotic 

managers (K. M. Lee et al., 2006). Our first research question is: What mechanisms underlie 

employees’ readiness to work with a robotic lower-level manager?  

Research on organizational teams in general (Brummelhuis et al., 2012)and human-robot 

teams (HRTs) in particular (Hoffman & Breazeal, 2004) recognizes that collaboration depends 

on performance-related and relational features. Performance-related features include overall 

contributions to team performance, such as the usefulness of a member’s contribution 

(Sonnentag & Frese, 2002) and in general require more mechanical skills (M. K. Lee, 2018). 

Relational features instead refer to social aspects, such as employees’ enjoyment of working 

together in a team (Gittell et al., 2006) and require “human” skills (M. K. Lee, 2018). Thus, our 

second question is: How do performance-related and relational features affect employees’ 

readiness to work with a robotic lower-level manager?  

We address these research questions through an experimental vignette online study in which 

participants were asked to put themselves in the role of an office worker and decide whether 

they wanted to work with robotic or a human manager in a project team based on videos. We 

examine whether and how nonlinear relationships emerge from the interplay between 

employees’ expectations of a robotic manager and their actual experiences. In particular, we 

examine how this interplay affects employees’ readiness to work with the robotic manager. We 

specifically investigate a human-only team in which a social humanoid or android robot takes 
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a lower-level management role.11 A humanoid robot has “a human-like morphology such as a 

face, arms, and legs” (Mende et al., 2019, p. 535) but is clearly distinct from humans. In 

contrast, an android robot is designed to be “indistinguishable from humans in its external 

appearance and behavior” ( MacDorman & Ishiguro, 2005, p. 289).  

We extend existing research in several important ways. First, we examine the previously 

unexplored issue of employees’ readiness to work with robotic lower-level managers in an office 

environment. Shedding light on this topic is important because firms are suffering from a huge 

shortage of skilled workers not only at the subordinate, but also at the lower manage-ment 

level. The use of robots at the lower management level could be at least one (out of several) 

steps for companies to solve this problem. Additionally, we provide insights into how employees’ 

readiness differs for different types of robots. Second, from a theoretical perspective, we provide 

insights into the design of HRTs by extending expectation–disconfirmation theory in the context 

of HRI, examining performance-related and relational features, as indicated by the robot 

acceptance model (Heerink et al., 2010). In addition, we compare fictional employee-robotic 

manager interactions with employee-human manager interactions. Third, from a 

methodological perspective, we extend previous research, which often relies on difference 

scores, by using polynomial regression analysis and response surface analysis (J. R. Edwards & 

Parry, 1993). This is important because difference scores cannot fully capture the interplay 

between employees’ expectations and experiences regarding a robotic lower-level manager. We 

also provide a new set of test criteria for examining surface scores that can be applied to general 

IS research, supporting the understanding of employees’ responses to over- and 

underfulfillment of their expectations by a robotic lower-level manager. Fourth, our findings 

provide a starting point for robot developers and practitioners seeking to integrate robots into 

work teams. In particular, in light of the European Commission’s recently published proposal 

for an Artificial Intelligence Act (Proposal for Regulation 2021/0106, 2021), our research 

provides valuable insights into the actual application of robots and AI for work in the future. 

 

4.2 Literature Review 

Research on HRTs addresses the topic of management in these teams in a number of papers 

(see Sebo et al., 2020; Tsai et al., 2022 for reviews). However it typically does not focus on 

robots in the role of managers (Smith & Green, 2018) or considers perspectives other than those 

                                                
11 In this study we explicitely focus on robotic lower-level managers. The focus is therefore on processes and 

operations and less on strategic actions. 
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of employees (Shanks et al., 2021). In our review, we explicitly include only studies with a 

team-internal focus in which robots take on the role of manager or leader in a HRT12 (see 

Appendix C for additional information). The reviewed literature is structured along two 

dimensions: management context and number of followers (Figure 4-1). For management 

context, we distinguish between studies set in a knowledge work context and those set in other 

contexts, such as USAR or manufacturing. Regarding the number of followers, we distinguish 

between studies of dyadic relationships, where the robot has a single follower, and studies of 

robotic managers interacting with multiple followers. 

Conceptual studies tend to be set across contexts. Gladden (2014) describes different 

archetypes of robotic leaders. Samani and Cheok (2011) conceptually argue that effective 

robotic leadership involves multitasking abilities, learning, collaboration, and adaptability. In 

addition, Samani et al. (2012) speculate about areas (e.g., stock trading, transportation) in 

which robotic managers or leaders leaders might outperform humans. Overall, these studies 

consistently predict that robotic managers and leaders will evolve naturally in the future. 

Studies set in USAR include a study by Kwon et al. (2019) in which the authors develop a 

mathematical framework to model the behavior of leaders and followers in HRTs. This was 

addressed and validated by (Li et al., 2021) showing that robots can successfully influence 

teams to achieve common goals. 

Two studies consider dyadic HRTs in the manufacturing context. The results by Messeri et al. 

(2023) show that when a robot takes the lead in a tower-building task, the human is more 

productive but also experiences more physiological stress than when the human takes the lead. 

The study by Noormohammadi-Asl et al. (2022) examines a robot considering human following 

preferences in an object sorting task, which has been shown to improve team performance. The 

studies in these two categories show that robotic managers may be useful in various situations. 

Three empirical laboratory studies examine management in HRTs at the interface of 

manufacturing and knowledge work. Castro et al. (2017) found that automated scheduling by 

a robot in a dyadic HRT enhances team efficiency without compromising human comfort. 

Gombolay, Gutierrez, et al. (2015) study a human-robot co-led team assembling a LEGO kit, 

and reveal that participants prefer to assign control authority to the robot leader in task 

allocation which supports team efficiency. Despite use of the term “leadership”, a closer 

examination of the study design reveals that the robot has more of a lower-level management 

                                                
12 In the literature, the term robotic manager and robotic executive are often used interchangeably. Therefore, we 

review literature on both robotic managers and robotic leaders. 
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role, due to its task focus. Another study by Lopes et al. (2021) investigates transactional and 

transformational leadership styles, finding both to be suitable for robots for collaborative tasks. 

Finally, three studies are set in the knowledge work context. Yam et al. (2022) find that 

anthropomorphism can have negative effects for robots delivering negative feedback on a 

knowledge task. For creative tasks, Cichor et al. (2023) showed that transformational robotic 

leadership behaviors positively influence human perceptions and reactions. Lastly, Geiskkovitch 

et al. (2016) find that people tend to follow robotic orders to continue to work on repetitive 

tasks even when they may not desire to do so, underscoring the potential influence of robots in 

work contexts and raising important ethical considerations. 

Overall, the literature review shows that robots in the role of managers are on the rise. 

Furthermore, the studies show that both performance and relational aspects are important in 

HRTs with robotic managers. The valuable insights about robotic managers and leaders during 

ongoing teamwork from extant literature are informative, but at the same time reveal gaps 

regarding employees’ readiness to work with a robotic lower-level manager, which we address 

with our research. 

 

Figure 4-1. Categorization of Studies on Robotic Management Constellations 

Notes: 1. Including data base management and sports decision making; 2. Cross-context examination 
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4.3 Conceptual Background, Study Framework, and Hypotheses 

4.3.1 Expectation-Disconfirmation Theory 

Expectation–disconfirmation theory (EDT) addresses the interplay between prior expectations 

and actual experiences (Oliver, 1980; Venkatesh & Goyal, 2010). Expectations are a “set of pre-

exposure beliefs” (Venkatesh & Goyal, 2010, p. 283); experiences are actual perceptions and 

observations of an event (B. Schmitt & Zarantonello, 2013). Their interplay can lead to either 

confirmation, so that experiences match expectations, or disconfirmation, which reflects a 

“discrepancy between expectations and actual experiences” (Venkatesh & Goyal, 2010, p. 283).  

Expectations, experiences, and their interplay have been addressed in many laboratory studies 

focusing on HRI (Horstmann & Krämer, 2020; Paepcke & Takayama, 2010). However, we note 

a tendency to address either expectations or perceptions; in studies investigating their interplay, 

the reliance on difference scores introduces some shortcomings, including ambiguity (because 

of dimension reduction by calculating the difference of two scores to produce one score) and 

reliability issues (J. R. Edwards, 2002). These shortcomings are problematic, in that they leave 

an unexplained gap in how users react when a robot exceeds or fails to meet their expectations. 

Researchers therefore suggest a more fine-grained approach to consider expectations and 

experience separately using polynomial regression and response surface analysis (J. R. Edwards 

& Parry, 1993). In this way, models with different levels of complexity can be investigated (see 

Method section). 

 

4.3.2 Study Framework 

Figure 4-2 depicts our study framework, which includes two paths of performance-related and 

relational evaluation. Following Venkatesh and Goyal (2010), we combine the Technology 

Acceptance Model (TAM; Davis, 1989; Davis et al., 1989) and EDT (Oliver, 1980). We rely on 

the TAM to extract relevant features of the robotic lower-level manager for employees’ 

expectations and experiences, which we include as independent variables. The well-established 

TAM has been widely used (e.g., Hess et al., 2014), including in robotics research and as a basis 

for developing new HRI models (Heerink et al., 2010) or human–robot collaborations (Bröhl et 

al., 2019). Researchers also have empirically examined robot acceptance using the TAM as a 

theoretical foundation (e.g., You & Robert, 2018a). To evaluate the first independent variables 

of performance-related robotic features, we investigate employee expectations and experiences 

of the usefulness of robotic lower-level managers. Theoretically, our basic assumptions are 



 

 

 62 

rooted in met expectations hypothesis and equity theory (Adams, 1963; Porter & Steers, 1973; 

Path 1). Consistent with the TAM, we define the usefulness of a robotic lower-level manager as 

the extent to which employees believe that working with a robotic lower-level manager will 

improve their job performance (Davis et al., 1989). As our second independent variables, we 

examine the relational features of robotic managers. We conceptualize these features as social, 

not task-related aspects of teamwork, such as employees’ enjoyment of working with the robot 

in a team (Gittell et al., 2006). Specifically, we focus on employees’ expected and experienced 

attitudes toward robotic lower-level managers. Our conceptual basis is the theory of reasoned 

action (Fishbein & Ajzen, 1975; Path 2). Attitudes reflect employees’ positive or negative 

feelings or enjoyment of working with a robotic lower-level manager (Venkatesh & Goyal, 

2010).13 The expectation–disconfirmation outcomes of the expectation-experience comparison 

should determine employees’ readiness to work with a robotic lower-level manager. This 

readiness is our dependent variable for both pathways investigated (Figure 4-2). Readiness to 

work with a robotic lower-level manager refers to employees’ willingness to work with a robotic 

lower-level manager to achieve work goals (A. Parasuraman, 2000). It reflects acceptance of 

the robotic lower-level manager. We also include the behavioral variable of robot selection to 

assess robot acceptance. 

We expect some potential moderating effects that affect the relationship between the 

independent and dependent variables (Baron & Kenny, 1986). Thus, we examine two different 

types of robots in the lower-level management role: an android and a humanoid robot. We 

further control for human–human interactions by investigating a human lower-level manager 

and employees’ prior experiences with robots and technology affinity 

                                                
13 We exclude the TAM dimension of ease of use because it is unlikely that employees expect to avoid effort when 

working for a manager. Instead, they are likely to seek to exert substantial effort in the pursuit of common 

goals (Northouse (2015)). 
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Figure 4-2. Study Framework 

 

4.3.3 Hypotheses 

The first hypothesis concerns the interplay between expectations and experiences of the 

performance-related feature usefulness. The effects of this interplay on employees’ readiness to 

work with a robotic lower-level manager (path 1 of the study framework, see Figure 4-2) are 

predicted with a three-dimensional surface. 

We predict an inverted U-shaped model in which confirmation (experiences meeting 

expectations) leads to the highest readiness to work with a robotic manager (see S. A. Brown 

et al., 2014). This is consistent with the notion of the met expectations hypothesis (Porter & 

Steers, 1973). Specifically, met expectations (i.e., confirmation between expectations and 

experiences) are associated with the highest readiness to work with a robotic manager. This 

confirmation represents the center of the predicted surface (see Figure 4-2). 

At the center of the surface, readiness to work with a robotic manager increases with the level 

of confirmation, i.e., the absolute value of expectations and experiences, resulting in an 

ascending ridge. This is consistent with the social psychology literature, which predicts also the 

level of the independent variables is important (Humberg et al., 2020). In other words, when 

employees’ expectations are met at a low level, they are associated with a lower readiness to 

work with the robotic manager than when they are met at a high level. When expectations are 

not met by experiences, negative disconfirmation occurs. Employees’ readiness to work with a 

robotic manager is low. When expectations are exceeded by experiences, positive 
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disconfirmation occurs. According to equity theory (Adams, 1963), positive disconfirmation 

decreases em-ployees’ readiness to work with a robotic manager. This is because positive 

disconfirmation leads to psychological tension due to discrepancies between expectations and 

experiences. 

This effect is also plausible given the current discussion about robots in our society. On the one 

hand, employees want to work with robots that meet certain performance standards (i.e., meet 

expectations). However, if a robot is “too good,” employees may fear that the robot will not 

only excel at its own job, but also take their jobs. For example, prior literature shows that 

employees from different occupational backgrounds fear robots entering the workplace (Turja 

& Oksanen, 2019). 

In summary, we expect an inverted U-shaped curvilinear surface with the highest readiness to 

work with a robotic manager at the peak in the middle of the surface. As negative 

disconfirmation increases, the “surface goes down” and employees’ readiness to work with a 

robotic manager will decrease. Similarly, with positive disconfirmation the surface goes down 

again. Positive disconfirmation again leads to dissatisfaction, so employees’ readiness to work 

with the robotic manager decreases. We therefore hypothesize  

H1: For robotic lower-level managers, the relationship between expectations and 

experiences of the performance-related feature usefulness and employees’ readiness to 

work with the manager follows a curvilinear inverted U-shaped surface. 

In contrast, for the relational feature of employee attitudes (path 2 of the study framework, see 

Figure 4-2), due to the different nature of the interactions, we expect a three-dimensional 

surface that is strongly focused on experiences. In other words, the better the experiences, the 

higher employees’ readiness to work with a robotic manager. 

We argue that for relational features, experiences are the dominant source of employees’ 

readiness to work with a robotic manager for several reasons. First, relational features are more 

difficult to capture than performance-related features. Performance-related features focus on 

the handling and completion of a task, which is usually specified in advance. This allows for 

some “baseline” of expectations for these features. Relational features, in contrast, focus on 

feelings toward another entity with which an employee inter-acts. Social robots are not yet 

commonplace in organizations (World Economic Forum, 2020b) and robot presentations often 

focus on performance-related features. Therefore, expectations for relational features are less 

pronounced than expectations for performance-related features (Horstmann & Krämer, 2019).  
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Second, according to the theory of reasoned action (Fishbein & Ajzen, 1975), attitudes are 

determined by a person’s salient beliefs, which are in turn determined by experiences. Prior 

literature also confirms that attitudes based on direct experience strongly affect subsequent 

evaluations and behavior (Fazio et al., 1978).  

Third, given the current discussion about robots in our society, positive disconfirmation of 

relational features may lead to positive surprises in the form of unexpected “harmony”, 

acceptance and rapport during the human-robot interactions (Cao et al., 2021; Oracle, 2019; 

Stafford et al., 2014). 

Taken together, we expect that the interplay between employees’ expectations and experiences 

of attitudes toward a robotic manager and the effects on employees’ readiness to work with the 

manager will be experience-based. Specifically, increasing experience will be associated with 

greater readiness to work with the robotic manager. Thus, we hypothesize 

H2: The relationship between employees’ expectations and experiences of the relational 

feature attitude toward the robotic manager and employees’ readiness to work with the 

robot follows a linear experience-based surface. 

Hereby, experience have a greater impact on employees’ readiness to work with the robot than 

expectations. By testing these hypotheses, we aim to gain insight into the mechanisms 

underlying employees’ acceptance of robotic lower-level manager (RQ1) and whether 

differences emerge between evaluations of performance-related versus relational features 

(RQ2). 

 

4.4 Experimental Online Study 

4.4.1 Experimental Vignette and Setup 

Our online study, conducted using Amazon Mechanical Turk (MTurk), uses an experimental 

vignette methodology and questionnaire (Aguinis & Bradley, 2014; Atzmüller & Steiner, 2010; 

see Appendix D for the rationale). The vignette for our online study asked participants to 

imagine that they worked for an international company and had just finished their last work 

project. They were asked to imagine that they were looking for their next project to work on. 

They were also asked to chose between three project teams with either an android robot, a 

humanoid robot, or a human as team manager. The three teams were otherwise described in 

exactly the same way. The vignette provided basic information about the role and 

responsibilities of a team manager. These tasks include assigning of tasks to team members, 
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evaluating performance, and sharing information. The vignette also explained that the decision 

should be based on observations of a team discussion involving one of the robots or a human 

manager. We developed the vignette using publicly available job descriptions for lower-level 

managers and practical and scientific literature (Anzengruber et al., 2017; Simonet & Tett, 

2013) and pretested and discussed it with seven scientists for refinement. 

In the study, the participants were first asked about their expectations of working with a robotic 

leader before they watched short videos (duration of 39 resp. 44 seconds) of a team with a 

robotic or human lower-level manager as a proxy for actual interactions. After this, participants 

rated their post-experience perceptions. The team discussions shown in the video center around 

current tasks and deadlines, and the need to schedule a new meeting. Their presentations depict 

a conventional corporate office meeting room (see Figure 4-3), with a large conference table, 

laptops, documents, pens, coffee cups, and a flipchart.  

The android robot closely resembles a woman with light skin, blonde hair, and blue eyes; the 

humanoid robot is a Pepper model (SoftBank Robotics, 2020). Both were equipped with an AI-

based chatbot and followed the same script exhibiting the same competences. In the control 

condition, the human wore business attire similar to the android robot. To ensure comparability 

of the results, we used a within-subject design, such that each participant watched videos of 

both the robots and the human (in randomized order) and answered questions related to all 

three. 

 

a. Android Robot as lower-level manager

 

b. Humanoid robot as lower-level manager

 

Figure 4-3. Video Setups in the Online Study 

 

4.4.2 Measures 

Measurement scales for our main constructs were drawn from extant literature whenever 

possible. We measure expected and experienced usefulness (S. A. Brown et al., 2014) and 
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employees’ expected and experienced attitudes (Venkatesh & Goyal, 2010). The usefulness 

scale includes items related to improving the quality of work or making it easier to do one's job. 

Items in the attitude scale include, for example, whether it is fun to work with the manager 

agent or whether the agent makes work more interesting. To measure employees’ readiness to 

work with a robotic lower-level manager, we developed a new single-item scale. We meas-ured 

participants’ choice of the lower-level manager in two ways using pairwise comparisons and an 

absolute ranking. The measure for social categorization of the three agents to gain additional 

insights into their impressions is adapted from Homburg et al. (2009). Scales and items are 

listed in Table 4-1. 

A reliability analysis, using Cronbach’s alpha (Cronbach, 1951) shows that the measures exceed 

the threshold of 0.7. The average variance extracted values also attain the threshold value of 

0.5 and the Fornell-Larcker criterion (Fornell & Larcker, 1981) is met. A power analysis of the 

increase in the explained variance (𝑅2) as one of the main decision factors to determine the 

regression model used for the RSA using G*Power 3.1 (Faul et al., 2009) showed adequate 

power (Cohen, 1988). 

 

4.4.3 Sample 

We conducted the study in fall 2022 over a time period of ~ 4 weeks. The study invitation was 

sent to people currently working on Amazon MTurk who had achieved an approval rate of more 

than 95% (Peer et al., 2014) and were located in the United States. They received monetary 

compensation for their participation to compensate them for their time. Informed consent was 

obtained before beginning the study and study participation was volun-tary. A total of 8,764 

U.S. participants participated and completed the questionnaire. After exclusion of unfit 

participants, 7,061 valid participants remained (see Appendix E). Their average age was 35.62 

years (SD = 11.31) and 49.9% were male (49.8% female, 0.3% diverse). We collected 

information about the participants’ previous experience with robots, which indicated an average 

experience of 7.21 (SD = 2.52) on a 10-point scale. Participants’ technology affinity, as their 

propensity to actively engage in intensive interactions with technology (Lezhnina & Kismihók, 

2020) was rated an average 5.36 (SD = 1.04) on a 7-point scale. 

Using analysis of variance (ANOVA), with a least significant difference (LSD) post hoc analysis 

and t-tests, we confirm that the manipulation control worked as intended. Participants could 

clearly identify (p < 0.05) which agents were robotic lower-level managers (𝑀𝐴𝑅 (𝑎𝑛𝑑𝑟𝑜𝑖𝑑) =

5.85, 𝑆𝐷 = 1.21; 𝑀𝐻𝑅 (ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑) = 5.93, 𝑆𝐷 = 1.17;  𝑀𝐻𝑢 (ℎ𝑢𝑚𝑎𝑛) = 4.12, 𝑆𝐷 = 2.23). T-tests 
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relative to the midpoint of the scale also confirm that participants recognized that the agents 

had management responsibility (𝑀𝐴𝑅 = 5.65, 𝑆𝐷 = 1.19, ∆𝑀 = 1.65, 𝑡(7060) = 116.188, 𝑝 <

0.01; 𝑀𝐻𝑅 = 5.64, 𝑆𝐷 = 1.22, ∆𝑀 = 1.64, 𝑡(7060) = 113.134, 𝑝 < 0.01; 𝑀𝐻𝑢 = 5.83, 𝑆𝐷 =

1.12, ∆𝑀 = 1.83, 𝑡(7060) = 136.605, 𝑝 < 0.01). Participants further perceived the scenario as 

realistic for all agents (𝑀𝐴𝑅 = 5.29, 𝑆𝐷 = 1.61, ∆𝑀 = 1.29, 𝑡(7060) = 67.169, 𝑝 < 0.01; 𝑀𝐻𝑅 =

5.23, 𝑆𝐷 = 1.65, ∆𝑀 = 1.23, 𝑡(7060) = 62.545, 𝑝 < 0.01; 𝑀𝐻𝑢 = 5.89, 𝑆𝐷 = 1.13, ∆𝑀 = 1.89,

𝑡(7060) = 140.444, 𝑝 < 0.01), as confirmed by t-tests relative to the midpoint of the scale.. 

 

Table 4-1. Scales 

Manipulation Check and Control Variables 

Manipulation check for the type of the 

lower-level manager and its role 

(newly developed) 

In the video above, the <agent> at hand… 

 …is a robot. 

 …has management responsibility. 

Manipulation check for realism of the 

scenario (newly developed) 

Above scenario is… ((1) “…not realistic at all” to (7) 

“…as realistic as possible”) 

Control variable “previous experience 

with robots” (newly developed) 

Experience with robots ((1) “I have no experience at 

all” to (10) “I have very much experience”) 

Control variable “technology affinity” 

(adapted from Lezhnina and 

Kismihók (2020)), anchored by (1) 

“absolutely not” and (7) “absolutely” 

 

 I like to occupy myself in greater detail with 

technical systems. 

 I like testing the functions of new technical 

systems. 

 When I have a new technical system in front of 

me, I try it out intensively. 

 I enjoy spending time becoming acquainted with 

a new technical system. 

 I try to understand how a technical system 

exactly works. 
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 I try to make full use of the capabilities of a 

technical system. 

Independent Variables 

Usefulness expectations (adapted 

from Brown et al. (2014)) 

I expect that <agent> will … 

 … enable me to accomplish tasks more quickly. 

 … improve the quality of the work I do. 

 … make it easier to do my job. 

 … enhance my effectiveness on the job. 

 … give me greater control over my job. 

 … improve my productivity. 

Attitude expectations (adapted from 

Venkatesh and Goyal (2010)) 

 Using <agent> will be a good idea. 

 <Agent> will make work more interesting. 

 Working with <agent> will be fun. 

 I expect that I like working with <agent>. 

The experiences items parallel the expectations items but have been slightly reworded to 

reflect the past-oriented nature (after the video-based interaction) of these items. 

Dependent Variable 

Readiness to work with the robotic 

lower-level manager (newly 

developed) 

Readiness to work with <agent> ((0) “not at all” to 

(100) “absolutely sure”) 

Supplemental Analyses 

Pairwise comparison (newly 

developed) 

Please indicate who you prefer as a team manager for 

each pairing by dragging the slider to the respective 

robot/human that you prefer for each pairing below. 

(each pairwise comparison anchored by (1) <agent 

shown on left> to (7) <agent shown on right>) 

Absolute ranking (newly developed) Drag and drop the most preferred robot/human for the 

position of the team manager to the top, and the least 
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preferred robot/human for the position of the team 

manager to the bottom. (ranking positions (1) “most 

preferred” to (3) “least preferred”) 

Social categorization (adapted from 

Homburg et al. (2009)) 

 This <agent> is part of my social group. 

 I strongly identify with this <agent>. 

 I feel good to be working with this <agent>. 

 I would like to tell that I am working with this 

<agent>. 

 This <agent> fits well to me. 

 I feel attached to this <agent>. 

Note: All items were measured using a 7-point Likert scale, anchored by (1) “totally disagree” and (7) “totally agree”, 

unless noted otherwise. 

 

4.5 Data Analysis and Results 

4.5.1 Method and Data Preparation 

To test our hypotheses regarding the effects of (dis-)confirmed expectations about the 

performance-related robotic feature of usefulness and the relational robotic features of em-

ployees’ attitudes on readiness to work with robotic lower-level managers, we employ a poly-

nomial regression analysis and response surface analysis (RSA), as described by J. R. Edwards 

and Parry (1993) and adapted by S. A. Brown et al. (2014). This approach is superior to 

difference scores (J. R. Edwards, 2002) in several important ways (see Appendix F).  

To reduce multicollinearity, we center the independent variables, expected and experienced 

usefulness of the robotic lower-level manager and employees’ expected and experienced 

attitudes toward the robotic lower-level manager, around their scale center (J. R. Edwards, 

1994; J. R. Edwards & Parry, 1993). The results of the Durbin-Watson test (Durbin & Watson, 

1951) indicate that our data do not suffer from autocorrelation problems.  

We performed hierarchical regression analyses up to the third order to identify the best order 

for the regression model based on the central criterion that the next highest evaluated order 

does not provide a significant increase in explained variance (R2). After determining the best 

order, we analyzed the regression results of this order in more detail and performed an RSA of 
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the surface defined by the regression results. A detailed description of the methodological 

background can be found in Appendix F. 

 

4.5.2 Usefulness 

For the android robotic lower-level manager, we determine that a third-order regression model 

is most suitable (𝑅2 = .483, adjusted 𝑅2 = .483, ∆𝑅2 = .002, 𝑝 < 0.01; 𝐹(11,7049) = 599.476, 

𝑝 < 0.01). This model is represented by  

𝑍 =  55.923 + 13.874 𝑈1 + 1.317 𝑈2 − 0.953 𝑈1
2 + 0.212 𝑈1𝑈2 − 0.141 𝑈2

2 − 0.420 𝑈1
3 +

0.114 𝑈1
2𝑈2 − 0.128 𝑈1𝑈2

2 + 0.081 𝑈2
3, 

(1) 

with 𝑍 = readiness to work with the robotic lower-level manager, 𝑈1 = experienced usefulness, 

and 𝑈2 = expected usefulness. We find a high goodness-of-fit (Cohen, 1988).  

To test for the hypothesized curvilinear inverted U-shape of the surface, we performed the tests 

for the generalized-negativity model proposed by S. A. Brown et al. (2014), which follows a 

perfect and symmetrical inverted U-shape. The results of these tests, together with the ex-

amination of the response surface indicate that the tests are partially satisfied and the response 

surface follows a shifted, S-shaped curve (see Figure 4-4a and Table F2 in Appendix F): The 

highest local outcome values are not along the line of perfect confirmation (where 𝑈1 = 𝑈2), 

but shifted to the right into the area of positive disconfirmation (where 𝑈1 > 𝑈2). 

To allow the further investigation of the response surface, we define a new set of test criteria 

for the S-shaped curve (see Table 4-2 and details in Table F3 in Appendix F). These tests show 

that experience has a greater influence on the outcome than expectations (13.874 = 𝑏1 > 𝑏2 =

1.317, 𝑝 < 0.01) and that at least one cubic coefficient is significantly different from zero (|𝑏6| =

0.420, 𝑝 < 0.05). The surface has a positive linear slope along the line of perfect confirmation 

for 𝑈1 = 0 (𝑎𝑥,0 = 15.191, 𝑝 < 0.01), which is consistent with other models. The corresponding 

quadratic slope is significantly negative (𝑎𝑥,0
2 = −0.882, 𝑝 < 0.01). Along the line of perfect 

disconfirmation, the response surface has a positive slope for 𝑈1 = 0 (𝑎𝑦,0 = 12.556, 𝑝 < 0.01) 

and a (though statistically not significant) negative slope for 𝑈1 = 3 (𝑎𝑦,3 = −15.361, 𝑛. 𝑠.). The 

surface also has a negative quadratic (𝑎𝑦,0
2 = −1.306, 𝑝 < 0.05) and cubic (𝑎𝑦,0

3 = −0.744, 𝑝 <

0.05) slope along the line of perfect disconfirmation in 𝑈1 = 0 and the absolute value of the 

slope for negative disconfirmation (|ay,neg. disc.| = 9.778) is greater (𝑝 < 0.05) than the absolute 

value of the slope for positive disconfirmation (|ay,pos. disc.| = 1.945), defining its characteristic 

S-shape. 
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For the humanoid robotic lower-level manager, analogous to the android robotic manager, a 

third-order regression model with expected and experienced usefulness as independent 

variables is most appropriate (𝑅2 = .488, adjusted 𝑅2 = .487, ∆𝑅2 = .003, 𝑝 < 0.01; 

𝐹(11,7049) = 611.013 , 𝑝 < 0.01). The model is  

𝑍 = 55.366 + 13.589 𝑈1 + 2.350 𝑈2 − 1.127 𝑈1
2 + 1.461 𝑈1𝑈2 − 1.163 𝑈2

2 − 0.398 𝑈1
3 +

0.013 𝑈1
2𝑈2 − 0.162 𝑈1𝑈2

2 + 0.109 𝑈2
3, 

(2) 

with variables defined as in equation (1). 

 

Figure 4-4. Three-Dimensional Response Surfaces for Different Robotic Agents as Lower-Level 

Managers 

 

The tests of the proposed inverted U-shaped model and the investigation of the response surface 

again show that the tests of the generalized-negativity model are partially satisfied and the 

results follow a shifted, S-shaped surface with highest result values for positive disconfirmation 

(see Figure 4-4c and Table F2 in Appendix F). Using the test criteria for the S-shaped curve (see 

 Performance-related robotic 

feature (usefulness) 

Relational robotic feature 

(attitude) 

Android 

robotic lower-

level manager 

a.  

  

b.  

 

Humanoid 
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c.  

  

d.  
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Table 4-2 and in detail Table F3 in Appendix F), we can see that at least one cubic coefficient 

is significantly different from zero (|𝑏6| = 0.398, 𝑝 < 0.01). Experience has a greater influence 

on the outcome than expectations (13.589 = 𝑏1 > 𝑏2 = 2.350, 𝑝 < 0.01) and the surface has a 

positive linear slope along the line of perfect confirmation for 𝑈1 = 0 (𝑎𝑥,0 = 15.940, 𝑝 < 0.01). 

The corresponding quadratic slope is significantly negative (𝑎𝑥,0
2 = −0.828, 𝑝 < 0.01). The 

response surface has a positive slope for 𝑈1 = 0 (𝑎𝑦,0 = 11.239, 𝑝 < 0.01) and a negative slope 

for 𝑈1 = 3 (𝑎𝑦,3 = −29.666, 𝑝 < 0.01) along the line of perfect disconfirmation. The surface has 

a negative quadratic (𝑎𝑦,0
2 = −3.751, 𝑝 < 0.01) and cubic (𝑎𝑦,0

3 = −0.681, 𝑝 < 0.05) slope along 

the line of perfect disconfirmation in 𝑈1 = 0 and the absolute value of the slope for negative 

disconfirmation (|ay,neg. disc.| = 16.360) is greater (𝑝 < 0.05) than the absolute value of the 

slope for positive disconfirmation (|ay,pos. disc.| = 6.147). 

 

Table 4-2. Results of Test Criteria for S-curve 

Test criteria Results for android 

robot 

Results for humanoid 

robot 

1) 𝑏1 > 𝑏2 Supported Supported 

2) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0 Supported Supported 

3) |𝑏6|,  |𝑏7|,  |𝑏8|,  𝑜𝑟 |𝑏9| > 0 Supported Supported 

4) 𝑎𝑦,0
3 < 0 Supported Supported 

5) 𝑎𝑥,0
2 < 0 Supported Supported 

6) 𝑎𝑦,0
2 < 0 Supported Supported 

7) |ay,neg. disc.| > |ay,pos. disc.| Supported  Supported 

8) 𝑎𝑦,3 < 0 Tends to be supported Supported 

 

4.5.3 Attitude 

For the android robotic lower-level manager, the results of the regression analysis indicate that 

a third-order model is best suited for employees’ expected and experienced attitudes as 

independent variables (𝑅2 = .537, adjusted 𝑅2 = .536, ∆𝑅2 = .003, 𝑝 < 0.01; 𝐹(11, 7049) =

743.591, 𝑝 < 0.01). For this model, 
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𝑍 =  56.300 + 11.606 𝐴1 + 4.836 𝐴2 − 0.622 𝐴1
2 − 0.273𝐴1𝐴2 − 0.061 𝐴2

2 − 0.023 𝐴1
3 −

0.462 𝐴1
2𝐴2 − 0.101 𝐴1𝐴2

2 + 0.168 𝐴2
3, 

(3) 

with 𝑍 = readiness to work with the robotic lower-level manager, 𝐴1 = employees’ experienced 

attitude, and 𝐴2 = employees’ expected attitude, we find high goodness-of-fit (Cohen, 1988). 

In tests of the proposed linear surface focused on experience, consistent with the experiences-

only model proposed by (S. A. Brown et al., 2014), we find that the response surface only 

partially supports this hypothesized model and does not follow a linear shape (see Figure 4-4b 

and Table F4 in Appendix F). Instead, while the outcome is dominated by experiences, we find 

that the surface follows a curvilinear shape with degressive outcome values for increasing 

expectations and experiences. 

Thus, we define a new set of test criteria for examining the degressive response surface (see 

Table 4-3 and, for details, Table F5 in Appendix F). At least one cubic coefficient is significantly 

different from zero (|𝑏7| = 0.462, 𝑝 < 0.01). The linear slopes along both lines of interest are 

positive (𝑎𝑥,0 = 16.443, 𝑝 < 0.01; 𝑎𝑦,0 = 6.770 , 𝑝 < 0.01) and the slope along the line of perfect 

confirmation is greater than the slope along the line of perfect disconfirmation (𝑝 < 0.01). The 

surface also has a negative quadratic slope at 𝑈1 = 0 along the line of perfect confirmation 

(𝑎𝑥,0
2 = −0.956, 𝑝 < 0.01) and (although not statistically significant) along the line of perfect 

disconfirmation (𝑎𝑦,0
2 = −0.409, 𝑛. 𝑠.). The cubic slope along the line of perfect disconfirmation 

at 𝑈1 = 0 is not statistically significant (𝑎𝑦,0
3 = 0.170, 𝑛. 𝑠.). Finally, the slope for both maximum 

confirmation (𝑎𝑥,3 = −0.562, 𝑛. 𝑠.) and maximum disconfirmation (𝑎𝑦,3 = 8.893, 𝑛. 𝑠.) along the 

respective line of interest are not significantly different from zero, defining the degressive shape 

of the surface. 

In terms of employees’ expected and experienced attitudes toward the humanoid robotic 

manager, a third-order model is most appropriate (𝑅2 = .537, adjusted 𝑅2 = .536, ∆𝑅2 = .003, 

𝑝 < 0.01; 𝐹(11, 7049) = 742.044, 𝑝 < 0.01). This model is represented by 

Z = 55.759 + 11.349 A1 + 5.206 A2 − 0.587 𝐴1
2 − 0.017 𝐴1𝐴2 − 0.338 𝐴2

2 − 0.127 𝐴1
3 −

0.310 𝐴1
2𝐴2 + 0.017 𝐴1𝐴2

2 − 0.008 𝐴2
3, 

(4) 

and variables defined as in equation (3). It provides high goodness-of-fit (Cohen, 1988). 

The corresponding response surface partially supports the test criteria of the hypothesized 

experience-only model. While it is dominated by experience, it follows a curvilinear shape that 

has degressive outcome values for increasing expectations and experience (see Figure 4-4d and 

Table F4 in Appendix F). 
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Table 4-3. Results of Test Criteria for Degressive Curve 

Test criteria Results for android 

robot 

Results for humanoid 

robot 

1) 𝑎𝑥,0 > 𝑎𝑦,0 Supported Supported 

2) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0  Supported Supported 

3) |𝑏6|,  |𝑏7|,  |𝑏8|,  𝑜𝑟 |𝑏9| > 0 Supported Supported 

4) 𝑎𝑦,0
3 = 0 Supported Supported 

5) 𝑎𝑥,0
2 < 0 Supported Supported 

6) 𝑎𝑦,0
2 < 0 Tends to be supported Supported 

7) 𝑎𝑥,3 = 0 Supported Supported 

8) 𝑎𝑦,3 = 0 Supported Supported 

 

The test criteria for the degressive curve model (see Table 4-3 and, for details, Table F5 in 

Appendix F) again show that a cubic coefficient is significantly different from zero (|𝑏7| = 0.310, 

𝑝 < 0.05). The linear slopes along both lines of interest are positive (𝑎𝑥,0 = 16.555, 𝑝 <

0.01; 𝑎𝑦,0 = 6.143 , 𝑝 < 0.01). The slope along the line of perfect confirmation is greater than 

the slope along the line of perfect disconfirmation (𝑝 < 0.01). The surface has a negative 

quadratic slope in 𝑈1 = 0 along the line of perfect confirmation (𝑎𝑥,0
2 = −0.942, 𝑝 < 0.01) and 

along the line of perfect disconfirmation (𝑎𝑦,0
2 = −0.909, 𝑝 < 0.05). The cubic slope in 𝑈1 = 0 is 

not statistically significant along the line of perfect disconfirmation (𝑎𝑦,0
3 = 0.208, 𝑛. 𝑠.). Finally, 

the slope for both maximum confirmation (𝑎𝑥,3 = −0.648, 𝑛. 𝑠.) and maximum disconfirmation 

(𝑎𝑦,3 = 6.310, 𝑛. 𝑠.) along the respective line of interest are not significantly different from zero. 

 

4.5.4 Exploratory Supplemental Analyses: Overall Acceptance of Robotic Manager 

Complementing our main analyses, results for the human lower-level manager can be found in 

Appendix G. We further analyzed potential gender differences in participants’ readi-ness to 

work with robotic lower-level managers. Results showed that response surfaces for male and 

female participants follow the shapes of the response surfaces for the whole sample. A 

qualitative difference is observable for the performance-related feature of usefulness for the 

android robot. For this, the response surface for the female participants showed a less 
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pronounced decline for increasing positive disconfirmation as compared to the response surface 

for the male participants (see Appendix H for additional details). 

We further look into the social categorization of the different agents. An ANOVA with a LSD 

post hoc analysis shows that the android robotic lower-level manager (𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 4.76,

𝑆𝐷 = 1.64) and the humanoid robotic lower-level manager (𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 4.75, 𝑆𝐷 = 1.63) 

score the same (Δ𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡,ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.01, 𝑛. 𝑠.) when it comes to their social 

categorization. Compared with both robotic managers, the human lower-level manager 

(𝑀ℎ𝑢𝑚𝑎𝑛 =  5.46, 𝑆𝐷 = 1.05) scores significantly ( Δ𝑀ℎ𝑢𝑚𝑎𝑛,𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.69, 𝑝 <

0.01, Δ𝑀ℎ𝑢𝑚𝑎𝑛,ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.71, 𝑝 < 0.01) higher in terms of social categorization. 

We consider several different proxies for the acceptance of a robotic lower-level manager, 

relative to a human lower-level manager. A correlation analysis (see Figure 4-3) indicates a 

weak, positive correlation between employees’ readiness to work with the android or the 

humanoid robotic manager and their absolute ranking of the selection of this robot 

(𝑟𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 =  .29, 𝑝 < 0.01; 𝑟ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 =  .17, 𝑝 < 0.01). For the human manager, we 

find a weaker significant positive correlation (𝑟ℎ𝑢𝑚𝑎𝑛 =  .09, 𝑝 < 0.01). 

In a pairwise comparison, t-tests relative to the midpoint of the scale show that participants 

prefer the human lower-level manager over both robotic lower-level manager. Specifically, in 

the comparison between the humanoid robot (1) and the human (7), they provide a score of 

𝑀 = 5.33, 𝑆𝐷 = 1.89 (∆𝑀 = 1.33, 𝑡(7060) = 59.368, 𝑝 < 0.01), and for the comparison between 

the android robot (1) and human (7), 𝑀 = 5.32, 𝑆𝐷 = 1.89   (∆𝑀 = 1.32, 𝑡(7060) = 58.871, 𝑝 <

0.01). Participants also prefer the android robotic manager over the humanoid robotic manager, 

𝑀 = 4.66, 𝑆𝐷 = 2.06 (∆𝑀 = 0.466, 𝑡(7060) = 27.036, 𝑝 < 0.01). Thus, we identify a descending 

order of preference: human lower-level manager, then android robotic lower-level manager, 

and finally humanoid robotic lower-level manager. 

In the absolute ranking of the lower-level managers, participants ranked them in three 

positions, from (1) most preferred to (3) least preferred; we inverted the rankings so that a 

higher value corresponds to a better rank. Consistent with the pairwise comparison, an ANOVA 

with a LSD post hoc analysis shows that the human manager (𝑀ℎ𝑢𝑚𝑎𝑛 = 2.40, 𝑆𝐷 =  0.83) is 

preferred over the android robotic manager (𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 1.86, 𝑆𝐷 =

 0.70, ∆𝑀ℎ𝑢𝑚𝑎𝑛,𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.54, 𝑝 < 0.01) and the humanoid robotic manager 

(𝑀ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 1.75, 𝑆𝐷 =  0.76, ∆𝑀ℎ𝑢𝑚𝑎𝑛,ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.65, 𝑝 < 0.01); furthermore, 

the android robotic manager is preferred over the humanoid one 
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(∆𝑀𝑎𝑛𝑑𝑟𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡,ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑 𝑟𝑜𝑏𝑜𝑡 = 0.11, 𝑝 < 0.01). Thus, we get the same descending order of 

preference with the absolute ranking. 

 

4.6 Discussion 

4.6.1 Research Implications 

Starting point for this study was the question of the potential for robots to contribute to solving 

the shortage of skilled workers and lower-level managers in companies. Extant studies on 

human acceptance of robotic team assistants (for a review, see Wolf & Stock-Homburg, 2022) 

hint that people seem willing to integrate robots as assistants in their office environments. 

Moreover, the acceptance of robots has increased over time (Savela et al., 2018; Turja & 

Oksanen, 2019). However, to move beyond an initial understanding of human responses to 

robotic team assistants (Heerink et al., 2010), we advance to the next level of robotic 

integration: robots in supervisory roles, as lower-level managers who can assign tasks, facilitate 

organizational decisions, and so on (Simonet & Tett, 2013). By exploring the theoretically and 

practically relevant question of whether employees will accept social robots as lower-level 

managers, our study contributes to existing research in several ways. 

 

4.6.2 Research into Robots as Lower-level Managers 

To our knowledge, our study is among the first to examine robots as lower-level managers in 

an office environment. Our online experiment includes two types of robots, an android and a 

humanoid robot. We distinguish between the performance-related feature of employees’ 

expected and experienced usefulness of a robotic manager and the relational feature of 

expected and experienced attitudes toward a robotic manager. 

In terms of the performance-related feature of usefulness, the acceptance of the android and 

humanoid robotic lower-level manager follows an S-shaped pattern. We distinguish three parts 

of the surface to reflect differences in employees’ expectations and experiences with a robotic 

lower-level manager. Starting on the left side of the surface in the area of negative 

disconfirmation, where employees’ expectations are not met by their experiences, we find an 

increase in readiness to work with the manager as expectations and experiences increase. This 

increase continues through the middle of the surface, where experiences meet expectations, 

into positive disconfirmation, where experiences exceed employees’ expectations. Up to this 
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point, employees’ readiness to work with the robotic manager increases steadily with decreasing 

margins. The second part of the resulting response surface is a ridge in the area of positive 

disconfirmation. Beyond this ridge, however, in the third part of the surface, we observe a 

decrease in employees’ readiness to work with the robotic manager. These findings can be 

explained through prospect theory (Kahneman & Tversky, 1979) and the too-much-of-a-good-

thing effect (Pierce & Aguinis, 2013). Prospect theory postulates that negative effects of losses 

(in this study: negative disconfirmation) are stronger than positive effects of gains (in this study: 

positive disconfirmation). This explains the shape of the surface in its left part up to the ridge 

in the area of positive disconfirmation - for slightly exceeded expectations of the robot’s 

usefulness, there is still an increasing readiness to work with the robot. According to the too-

much-of-a-good-thing effect, an initially positive relationship can turn negative if the underlying 

antecedent “is taken too far, such that the overall relation becomes nonmonotonic” (Busse et 

al., 2016, p. 131). In our study, this explains the shape of the right part of the surface. If 

expectations of the robot’s usefulness are exceeded too much by experiences, readiness to work 

with the robot decreases. Thus, a slight positive disconfirmation is desirable, with respect to 

employees’ expectations and experiences of the usefulness of both an android and humanoid 

robotic manager. The robustness of these results was confirmed by stability tests conducted on 

a subset of the original sample. 

For the relational feature of employees’ attitudes toward the manager, employees’ readiness to 

work with the android and humanoid robotic lower-level manager follows a degressive curve-

shaped pattern. Starting from the left side of the surface, we find that although expectations 

play a significant role in employees’ readiness to work with the manager, experiences clearly 

dominate the relationship. Overall, outcome values are comparatively low on the left side of 

the surface, where experiences do not match prior expectations. The surface continues to rise 

through the middle, where experiences match expectations. It shows decreasing margins on the 

right side for high values of confirmation and positive disconfirmation. 

The dominance of experiences might be because of the fact that employees’ expectations are 

mainly based on observations of android and humanoid robots in the media, outside of real-

world interactions or a work context (Horstmann & Krämer, 2019). Such expectations may not 

be particularly strong, so they can easily be dominated by experiences, due to recency effects. 

This is the tendency to base judgments on more recent information; Baddeley & Hitch, 1993). 

Attitudes based on experience then in turn influence subsequent evaluations and behavior 

(Petty et al., 1997). This is also consistent with the theory of reasoned action (Fishbein & Ajzen, 

1975). Similar patterns of experience dominance also appear in studies of information systems 
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(S. A. Brown et al., 2008) and human resource management (Hom et al., 1999). Again, stability 

tests confirm the robustness of the findings. 

Accordingly, answering our second research question (RQ2), one size does not fit all; we find 

differences in how performance-related (usefulness) and relational (employee attitude) 

features affect employ-ees’ readiness to work with a robotic lower-level manager. We further 

found that android robots are overall preferred over humanoid robots in the role of lower-level 

managers. The results of our research suggest that robots as lower-level managers in the 

workplace are a possible future scenario. At the same time, we found that overly positive 

experiences of performance-related features can lead employees to feel threatened and fear for 

their jobs. These implications affirm research on ethical concerns regarding the use of this 

technology (B. Green & Chen, 2019) and suggest its potential transfer to human-robot team 

settings. 

Our study extends the TAM (Davis, 1989; Davis et al., 1989) to include EDT notions (Oliver, 

1980; Venkatesh & Goyal, 2010) in a human-robot interaction research setting. By combining 

these concepts, we extend the theory-driven consideration of expectations and experiences of 

the performance-related feature usefulness and the relational feature attitudes from the TAM 

to the specific setting of choosing a robotic lower-level manager. Previous research has applied 

TAM and EDT separately to robot-related interactions or team settings (e.g., Bröhl et al., 2019; 

Horstmann & Krämer, 2020; Turja & Oksanen, 2019), but we are not aware of any applications 

of expectations and experiences to robot-managed team settings. 

We further extend the application of EDT, as well as prospect theory, the too-much-of-a-good-

thing-effect, and the theory of reasoned action to settings with social robots in office work 

environments. These theories help to define the mechanisms that determine employees’ 

readiness to work with robotic lower-level managers. Thus, in reply to our first research 

question (RQ1), we affirm that theories from social (human) psychology can be a good starting 

point for investigating social robots in office work environments. 

We apply polynomial regression and RSA to investigate the underlying mechanisms by which 

performance-related and relational features affect readiness to work with robotic lower-level 

managers. Following a methodological approach proposed by J. R. Edwards and Parry (1993), 

we conduct a detailed investigation of the expectation-experience relationship, which provides 

fine-grained results regarding to the patterns that this relationship may take. In addition, we 

overcome the shortcomings of difference scores (J. R. Edwards, 2002). By examining different 

combinations of expectations and experiences of performance-related and relational features, 
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we gain a better understanding of the underlying mechanisms. To our knowledge, this study is 

the first to examine readiness to work with a robotic lower-level manager in a concrete 

application context with behavioral variables, which represents an important step in the field. 

In addition, we contribute to general information systems research by providing a new set of 

test criteria for studying surface values as key features of response surfaces. These criteria can 

be applied not only to the human-robot team setting of this study, but also to other HRI settings, 

more general information systems research settings, such as human-computer interaction 

studies, and management research. 

 

4.6.3 Limitations and Areas for Further Research 

Our study has several limitations. First, we sought to determine whether social robots would be 

accepted as lower-level managers, but because social robots are not yet a reality in most 

organizations, we had to rely on an online study with a vignette and short videos as proxies for 

actual interactions (Aguinis & Bradley, 2014). While research has shown that results from 

online studies are comparable to results from laboratory studies (Babel et al., 2022), further 

research should include in-person experiments in laboratory or field settings to validate our 

findings and to examine readiness to work with robotic lower-level managers in different 

contexts, including real teams in organizations. In this regard, next steps could include 

investigating different robot types as co-leaders alongside with human co-leaders in teams as 

an important intermediate step (Gombolay, Gutierrez, et al., 2015), as well as studying robotic 

middle-level managers and leaders responsible for larger and/or multiple teams (DeChurch et 

al., 2010). Another area for future research could be the examination of virtual agents as lower-

level managers to compare outcomes with those of robots and to link this research to broader 

human-computer interaction. 

Second, a longitudinal study might include repeated exposures to robot lower-level managers 

to determine whether the outcomes might change over time (Leite et al., 2013). Longitudinal 

efforts are currently lacking in HRI and HRT research (Baraka et al., 2020; Diederich et al., 

2022). These efforts could turn to literature in the broader information science context that 

identifies differences between short- and long-term effects (Bhattacherjee & Premkumar G., 

2004; Vance et al., 2018; Venkatesh & Morris, 2000).  

Third, we focus on a rather specific area in investigating the interplay between expectations 

and experiences with robotic lower-level management. Further research could expand this view 
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to include contextual factors and other aspects. For example, researchers could investigate the 

antecedents of expectations of social robots, from both performance-related and relational 

perspectives, to learn how expectations of different types of social ro-bots are formed 

(MacDorman, 2019; MacDorman & Ishiguro, 2006). In addition, future research could continue 

to shed light on the broader implications of robots in organizations to address ethical concerns 

(B. Green & Chen, 2019) about the use of automated decision-making systems in the workplace.  

Fourth, the diversity of the robots and humans in the human-robot teams shown in our study 

is limited. Future research should therefore pay closer attention to this to get insights into 

potential biases (e.g., gender bias) arising from the choice of robot or team set-up and to 

support generalizability of findings. This includes the explicit consideration of different robot 

types and their implied personality (Esterwood et al., 2022), gender and ethnicity as well as 

the diversity of human team members. Such considerations are important design features for 

robots. Expanding the focus on robot leadership, aligning expectations of ideal leadership with 

explicit leader behaviors by manipulating the leadership style of robotic (lower-level) team 

leaders may be a promising approach. 

Fourth, we use employees’ readiness to work with a robotic lower-level manager as the 

dependent variable. In this way, we gain insight into participants’ behavioral intentions. Further 

research could use other proxies, such as the social integration of a robot, especially in real-

world research settings in organizations. 

 

4.6.4 Managerial Implications 

Social robots offer a promising answer to the skilled worker shortage and aging workforce in 

many Western economies. Moreover, social robots are on the verge of becoming a regular part 

of our daily lives. The practical implications of our research thus should therefore be relevant 

with regard to various aspects. 

First, our research shows that while the android and humanoid robotic lower-level manager are 

associated with high levels of acceptance, the human manager is preferred overall. Robots 

should therefore continue to be used as a fallback solution to address labor shortages and an 

aging workforce. At the same time, managers and executives should not ignore these 

developments and should start preparing today for the inevitable changes and challenges of the 

future of work. When making strategic decisions about adopting robotic managers, managers 
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and executives should favor android robots because they have higher acceptance than 

humanoid robots. 

Second, we note the relevance of both performance-related and relational features. 

Performance-related features include the robotic manager improving the quality of work or 

making it easier for employees to do their jobs. Relational features include that it is fun to work 

with a robotic manager, or that a robotic manager makes work more interesting. Although 

conventional views emphasize the performance-related, reliability, cost-effectiveness, or 

programming stability benefits of robots, we also emphasize the importance of relational 

features like fun to work with a robotic manager. Companies should not exclusively focus solely 

on performance-related features when introducing robots. Instead, they should also consider 

how people will interact with the robots on a relational level. 

Third, in line with current ethics discussions about robots in our society, our results show that 

for performance-related features, overly positive experiences can lead employees to feel 

threatened and fear for their jobs. In contrast, for relational features, positive experiences with 

these features increase employees’ readiness to work with a robotic manager. Organizations 

should actively address these findings to ensure the best possible implementation and 

acceptance of robots. For performance-related features, they should engage employees and 

reduce anxiety. Two specific tactics could be expectation management, which involves clearly 

communicating robotic capabilities, and employee training, which helps clarify the limits of 

robot use and supports employee-robot interactions. Relational features should leverage 

investments in positive experiences to make interactions as enjoyable as possible. 

 

4.7 Conclusion 

This study represents an important first step in filling some gaps in extant research on the 

acceptance of robotic lower-level managers in human-only teams (HRTs). As a result of the 

shortage of skilled workers and managers robots are becoming increasingly important. By 

investigating the mechanisms that determine employees’ readiness to work with android and 

humanoid robotic lower-level managers, we extend the understanding of HRT settings. By 

presenting a series of research and managerial implications, we hope this study serves as a 

starting point for ongoing investigations into the implementation and successful evolution of 

HRTs with robotic managers. 
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5 Thesis Conclusion and Contributions 

The starting point of this disseration was the ambition to advance knowledge about HRTs and 

provide insights into the path to these teams of the future. Since previous research on HRTs 

lacks a consistent understanding of HRTs and their important characteristics and influencing 

factors, and since the establishment of HRTs is not yet explored in research, this dissertation 

aims to answer three overarching research questions (see chapter 1.1): 

1. How are human-robot teams (HRTs) defined and what are important characteristics and 

influencing factors? 

2. What are underlying mechanisms of the decision for a robotic team assistant for a mixed 

HRT? 

3. What are underlying mechanisms of the decision for a robotic lower-level (team) manager 

for a mixed HRT? 

In line with these research questions, one conceptual and two empirical research studies provide 

a range of insights and findings about HRTs. The following sections present the major 

overarching research contributions and practical implications of this dissertation. I conclude 

with a discussion of limitations and opportunities for future research. 

 

5.1 Research Contributions 

In addition to the research contributions already outlined in the research studies, the main 

overarching content-related, theoretical, and methodological contributions of this dissertation are 

highlighted below. 

In terms of content-related contributions, the main contribution of the literature review (chapter 

2), which aims to answer overarching RQ 1, is the provision of a structured and universal 

definition of HRTs and the identification of an agenda for HRT research based on the 

characterization of extant research and its gaps. The developed definition of HRTs brings 

together different views of these teams and integrates them in terms of interaction types as well 

as number of interaction partners, drawing on all-human team research. This approach reflects 

a holistic view of HRTs in organizations. To guide future research, study structures extant 

research in a literature review of 194 studies and identifies success factors and research gaps. 

The study suggests avenues for future research in two areas: How can robots be team members, 
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and when? The resulting research agenda helps researchers structure their efforts to gain a 

holistic and comprehensive understanding of HRTs and address existing research gaps.  

Building on the foundations of the literature review in the conceptual study, empirical studies 

1 (chapter 3) and 2 (chapter 4) address two of the identified research gaps (see Figure 5-1). 

Their main content-related contribution lies in the consideration of the social robot selection 

that precedes the establishment of HRTs. 

In doing so, empirical study 1 provides detailed insights into the differences between humanoid 

robotic and android robotic team assistants, showing that for social robots in this role, for 

teamwork (social skills and team orientation), positive disconfirmation and high levels of 

experiences lead to higher acceptance, and similar results emerge for a humanoid robot’s 

taskwork (coordination skills and knowledge) skills. In contrast, for taskwork skills of android 

team assistants, high levels of positive disconfirmation lead to lower robot acceptance. 

Furthermore, the results show that android robotic team assistants are preferred over humanoid 

robotic team assistants. 

For robotic and human lower-level (team) managers, empirical study 2 finds that there is a 

discrepancy between the consideration of performance-related (usefulness) and relational 

(attitude toward the robot) features of robotic lower-leve (team) managers: The relationship 

between expectations and experiences of usefulness and the readiness to work with the robotic 

manager follows an S-shaped pattern. Thus, a slight overfulfillment of expectations is associated 

with the highest levels of readiness. In contrast, with respect to attitude toward the robot, the 

results instead follow a degressive curve for which actual experiences dominate the outcome. 

Increasing positive experiences are associated with decreasing positive evaluations of readiness. 

Taken together, the results of empirical studies 1 and 2 suggest that "one size does not fit all" 

when it comes to the different roles (team assistant, lower-level (team) manager) and features 

(taskwork-/performance-related, teamwork-related/relational) for robots for HRTs in an 

organizational context (see Table 5-1). Overall, the content of this thesis contributes to 

providing new insights into the foundations and initial steps of the establishment of HRTs. In 

addition, this dissertation points to avenues for future research in this area. 
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Table 5-1. Comparison of Findings Related to Integration Decisions for Social Robots in Empirical 

Studies 1 and 2 

 Empirical Study 1 Empirical Study 2 

Team role Robotic team assistant Robotic lower-level (team) 

manager 

Role of 

expectations and 

experiences 

Both expectations and experiences 

of usefulness and attitude play a 

role in decisions.  

Both expectations and experiences 

of usefulness and attitude play a 

role in decisions. 

Differences 

between 

evaluations of 

taskwork-

/performance-

related and 

teamwork-

related/relational 

features 

Differences can be observed: For 

taskwork-related features of 

android team assistants, high 

levels of positive disconfirmation 

lead to lower robot acceptance. In 

contrast, for a humanoid robot’s 

taskwork-related features positive 

disconfirmation and high levels of 

experiences lead to higher 

acceptance. Similar results emerge 

for teamwork-related features of 

humanoid and android robots.  

Differences can be observed: 

performance-related features, 

employees’ readiness to work with 

robot managers follows an S-

shaped pattern. A slight 

overfulfillment of expectations is 

associated with the highest levels 

of readiness. For relational 

features, the results instead follow 

a degressive curve. Increasing 

positive experiences are associated 

with decreasing positive 

evaluations of readiness. 

Differences to 

humans 

Not in the focus of this study. Decision models for performance-

related features are more complex 

for robotic managers than human 

managers. 

Decision models for relational 

features are similar for human and 

robotic managers  
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Figure 5-1. Relationship Between the Research Studies Included in This Dissertation, Their Focus, and 

Avenues for Future Research 

 

Extending the theoretical foundations behind the successful establishment of HRTs with social 

robots in different team roles is the main theoretical contribution of this dissertation. To this 

end, empirical studies 1 and 2, which thus address overarching RQs 2 and 3, respectively, utilize 

EDT (Oliver, 1980) to examine the interplay between expectations and experiences of taskwork-

/performance-related and teamwork-related /relational measures in decisions for social robots. 

This theory has already been used in general IS (e.g., S. A. Brown et al., 2014) and HRI (e.g., 

Horstmann & Krämer, 2020) research and is now applied to team contexts with social robots.  

Empirical study 1 further uses the IPO of teams (Gladstein, 1984) to structure the research and 

and establish an expectation-experience-based model of HRTs. Thereby, it builds on cognitive 

dissonance (Festinger, 1957), disappointment theory (D. E. Bell, 1985), and reactance theory 

(Brehm, 1966). In doing so, it shows that these theories can be applied to team contexts with 

social robots. For robotic and human lower-level (team) managers, empirical study 2 utilizes 

the TAM (Davis, 1989; Davis et al., 1989) and extends the theory of reasoned action (Fishbein 

& Ajzen, 1975) prospect theory (Kahneman & Tversky, 1979), and the too-much-of-a-good-

thing-effect (Pierce & Aguinis, 2013) to the differentiated consideration of expectations and 

experiences of both performance-related and relational features of social robots in office work 

environments. Table 5-2 provides an overview of the theories applied in the empirical studies 

included in this dissertation and their implications for the research. 
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Based on the findings for the different roles and measures, the results of this thesis indicate that 

theories from human-centered research fields such as social psychology or marketing research 

(e.g., expectation disconfirmation theory, disappointment theory, prospect theory) seem to be 

a suitable and promising starting point for a sound theoretical understanding of HRTs. 

The main methodological contribution of this dissertation is the application of the 

methodological approach based on polynomial regression and RSA proposed by S. A. Brown et 

al. (2014) to the HRT domain, which is taken up in empirical studies 1 and 2. This approach 

additionally is extended by providing a new set of test criteria for studying surface values as 

key features of response surfaces. By applying polynomial regression and RSA, fine-grained 

statements about the interplay between expectations and experiences of taskwork-

/performance-related measure and teamwork-related/relational features in the decision for 

social robots in HRTs are possible.  

This methodological approach is superior to the commonly used difference scores (J. R. 

Edwards, 2002) in several important aspects: First, by considering expectations and experiences 

separately, ambiguous results are avoided (J. R. Edwards, 2002) – in contrast to the various 

types of difference scores that create an artificial dimension reduction by calculating the 

algebraic, absolute, or squared difference between the values of two constructs (Shanock et al., 

2010). Second, this approach avoids imposing implicit constraints on the independent and 

dependent variables under consideration (J. R. Edwards, 2002). Finally, this approach avoids 

loss of information and oversimplification and allows for the capture of information about how 

the full range of differences between expectations and experiences affects the dependent 

variable (J. R. Edwards, 2002). 

In summary, this dissertation contributes to research by providing a better understanding of 

HRTs as well as fine-grained insights into the underlying mechanisms for the decision for robots 

in different team roles as central prerequisite for the successful establishment of HRTs.  
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Table 5-2. Overview of Applied Theories and Their Implications for the Research in This Dissertation 

Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

Expectation 

Disconfirmation 

Theory (EDT) 

Origin: 

marketing 

research 

Extensions: 

information 

systems 

research 

S. A. Brown et 

al., 2014; 

Oliver, 1980; 

Venkatesh & 

Goyal, 2010 

Satisfaction with a 

product and the 

resulting intention of 

repurchasing it are 

influenced by previous 

expectations and actual 

experiences.  

 Majority of studies on 

EDT utilize difference 

scores, not allowing for a 

detailed investigation of 

the interplay between 

expectations and 

experiences (S. A. Brown 

et al., 2014). 

 Original strong focus on 

expectations as 

determining factor of 

satisfaction is too 

simplistic, experiences 

also play a role 

(Venkatesh & Goyal, 

2010). 

1, 2  Theoretical basis for 

investigation of 

decisions for social 

robots in different 

team roles. 

 Prediction of positive 

evaluation of social 

robots in case 

expectations are (over-

) fulfilled. 
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Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

Input-Process-

Output (IPO) 

Model of teams 

Organizational 

psychology 

research 

Gladstein, 

1984; Ilgen et 

al., 2005; 

Mathieu et al., 

2008 

Teams receive various 

inputs, engage in 

specific processes such 

as communication and 

coordination, and 

produce outputs such as 

team performance and 

satisfaction. 

The model implies a linear 

path from input to output, 

which greatly simplifies 

teams (Ilgen et al., 2005). 

1 Provision of structure for 

research framework. 

Cognitive 

dissonance 

Cognitive 

social 

psychology 

research 

Festinger, 

1957; 

Harmon-Jones 

& Mills, 2019 

Individuals try to 

minimize the difference 

between their 

expectations and 

experiences to reach 

consonance. 

Does not not account for 

situational factors and 

individual differences 

(Harmon-Jones & Harmon-

Jones, 2007) 

1 Prediction of relatively 

stable evaluation of social 

robotic team assistants in 

case expectations are 

closely fulfilled. 

Disappointment 

theory 

Cognitive 

social 

psychology 

research 

D. E. Bell, 

1985; 

Homburg et 

al., 2004; 

Disappointment 

emerges in situations 

where the outcome of a 

decision falls short of 

initial expectations. 

Original theory is focused on 

lotteries with two outcomes 

(Loomes & Sugden, 1986) 

1 Prediction of positve 

(negative) evaluation of 

social robotic team 

assistants who exceed (do 

not meet) expectations. 
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Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

Loomes & 

Sugden, 1986 

Reactance 

theory 

Cognitive 

social 

psychology 

research 

Brehm, 1966; 

Quick & 

Stephenson, 

2008 

People have a strong 

need for freedom and 

autonomy. When that 

freedom is threatened, 

they will react 

emotionally and 

behaviorally to restore 

it. 

Does not consider reactance 

as a personality trait (Miller 

et al., 2007) 

1 Explanation of interplay 

between expectations and 

experiences of taskwork 

skills and robot 

acceptance of an android 

team assistant. 

Technology 

Acceptance 

Model (TAM) 

Information 

systems 

research 

Davis, 1989; 

Davis et al., 

1989; Y. Lee 

et al., 2003; 

Venkatesh & 

Bala, 2008 

Actual use of specific IS 

technology by users can 

be predicted based on 

three key variables: 

(perceived) usefulness, 

(perceived) ease of use, 

and attitudes. 

 Thereby, usefulness 

and ease of use 

 Focus on a limited 

number of variables to 

explain technology 

acceptance (Y. Lee et al., 

2003). 

 Insufficient “actionable 

guidance” (Venkatesh & 

Bala, 2008, p. 274) for 

practice. 

2 Identification of 

usefulness and attitudes 

as important drivers of 

robotic lower-level 

(team) manager 

(empirical study 2) 

acceptance. 
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Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

mediate the effects 

from external 

variables on 

behavioral intention.  

Met 

expectations 

hypothesis 

Organizational 

psychology 

research 

Porter & 

Steers, 1973; 

Wanous et al., 

1992 

Unmet expectations 

(i.e., experiences falling 

short of expectations) 

lead to dissatisfaction. 

 Only focuses on negative 

disconfirmation (Wanous 

et al., 1992) 

 Contrary to original 

interpretations, met 

expectations do not need 

to be associated with high 

satisfaction (Irving & 

Montes, 2009) 

2 Prediction of positive 

evaluation of social 

robotic managers in case 

expectations of 

performance-related 

features are fulfilled. 

Equity theory Social 

psychology 

research 

Adams, 1963; 

Wanous et al., 

1992 

Getting more or less of 

an outcome than one 

considers fair leads to 

dissatisfaction. People 

try to reduce this 

dissatisfaction. 

Positive and negative 

affirmations do not 

necessarily have to be 

perceived in exactly the 

same way (Pritchard, 1969) 

2 Prediction of decreasing 

evaluation of social 

robotic managers in case 

expectations of 

performance-related 

features are overfulfilled. 



 

 

 92 

Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

Theory of 

reasoned action 

Social 

psychology 

research 

Ajzen, 1985; 

Fishbein & 

Ajzen, 1975; 

Wilson et al., 

2000 

A person’s behavioral 

intention has a direct 

influence on behavioral 

performance and is 

influenced by attitudes 

and subjective norm. 

Attitudes are thereby 

determined by a 

person’s salient beliefs, 

which are in turn 

determined by 

experience.  

The original theory does not 

consider control over a 

situation and thus does not 

capture situations in which 

people do not have 

intentional control (Ajzen, 

2020) 

2 Prediction of influence of 

experiences on the 

evaluation of relational 

features of social roboic 

managerts. 

Prospect theory Behavioral 

economics 

research 

Kahneman & 

Tversky, 1979; 

N. Lankton & 

McKnight, 

2012 

Negative effects of 

losses are stronger than 

positive effects of gains. 

The reference point for 

losses and gains is difficult to 

determine (Pesendorfer, 

2006) 

2 Explanation of interplay 

between expectations and 

experiences of 

performance-related 

features and employees’ 

readiness to work with a 

robotic manager. 
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Name of 

Theory Field(s) 

Important 

Sources Basic Assumptions Critique 

Used in 

Empirical 

Research 

Study 

Implications for 

Research in This 

Dissertation 

Too-much-of-a-

good-thing-

effect 

Management 

reseach 

Busse et al., 

2016; Grant & 

Schwartz, 

2011; Pierce & 

Aguinis, 2013 

When an underlying 

positive antecedent is 

pushed too far, the 

relationship between 

that antecedent and an 

outcome variable can 

become negative. 

The effect may vary 

depending on contextual 

factors (Busse et al., 2016) 

2 Explanation of interplay 

between expectations and 

experiences of 

performance-related 

features and employees’ 

readiness to work with a 

robotic manager. 
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5.2 Practical Implications 

Besides the theoretical implications, this dissertation may also be useful for robot manufacturers 

and managers in organizations. With robots being established in organizations for decades and 

advanced AI and robotics continuing to grow, there is undoubtedly a movement towards more 

social robots in organizations (Noble et al., 2022; Wolf & Stock-Homburg, 2022), which offers 

robot manufacturers and managers the opportunity to shape the future of work.  

The findings from the different research studies included in this dissertation have a number of 

direct implications for robot manufacturers and managerial practice (see Table 5-3). Robot 

manufacturers should focus on developing reliable technologies for natural, error-free, and 

accurate interactions between social robots and humans, as communication is a key success 

factor for HRTs and interaction experiences play an important role in decisions for social robots.  

Managers should consider both expectations and experiences while finding the right balance 

between expectation management in advance of interactions and live experiences of social 

robots in mixed HRTs. This is important because “one size does not fit all” when it comes to 

different robotic team roles and criteria of interest. In particular, the results of the research in 

this dissertation show direct implications in threewo ways: 

On the one handFirst, since managers should actually use social robots in their organizations and 

encourage their employees to interact with them to create experiences that increase acceptance. 

At the same time, they should carefully consider different robots when making adoption 

decisions, depending on the individual situation. 

Second, managers should consider both expectations and experiences and engage in targeted 

and tailored expectation management in advance of interactions with social robots, taking into 

account the robot’s role in the team and the criterion of interest. Since “the more the better” 

does not always apply, targeted expectation management that undersells robotic teamwork 

capabilities and accurately communicates performance-related robotic features enables support 

for positive acceptance of social robtos. To do this, managers need to understand the needs and 

desires of their employees in terms of social robots in their teams and should seek appropriate 

dialogues.  
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Table 5-3. Selected Research Findings and Associated Practical Implications 

Research 

Study Research Findings Practical Implications 

Conceptual 

study 

Autonomous robots, coordination and 

communication are important success factors 

for HRTs. 

Robot manufacturers should develop 

social robots capable of natural 

communication and interactions with 

humans. 

Empirical 

study 1 

Detailed investigation using RSA shows that 

for humanoid and android social robotic team 

assistants it is important to focus both on 

expectations and optimal experiences of the 

robotic team assistant. For taskwork in case of 

the humanoid robotic team assistant and 

teamwork for both robots especially good 

levels of robot acceptance are achieved in the 

case of large positive disconfirmation.  

Managers should undersell robotic 

teamwork capabilities to achieve 

positive initial interactions. 

Managers should train their 

employees with skills to effectively 

utilize social robots and address user 

concerns to increase acceptance. 

Robot manufacturers should develop 

reliable technologies for interactions 

between humans and social robots. 

Empirical 

study 1 & 2 

Android robots are preferred over humanoid 

robots. For lower-level (team) managers, 

human managers are preferred overall. 

Managers should carefully consider 

different robots when making 

decisions about adopting them.  

Empirical 

study 2 

Detailed investigation using RSA shows that 

for performance-related characteristics a slight 

overfulfillment of expectations is associated 

with the highest levels of readiness. For 

relational characteristics, the results instead 

follow a degressive curve for which actual 

experiences dominate the outcome. 

Managers should use social robots in 

their organizations to create 

experiences that increase their 

acceptance.  

At the same time, they should 

consider both expectations and 

experiences of both performance-

related and relational features and 

engage in targeted and tailored 

expectation management prior to 

interactions with social robots. 

 

Third, employees should be actively prepared and trained to work with social robots. Ideally, 

these trainings should be a strategic and permanent part of the overarching field of HR 
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development (Kim, 2022) to ensure the successful establishment and adoption of HRTs in 

organizations. The trainings should take a differentiated approach that considers the specific 

situation, e.g., the role in which a social robot will be used, the team context into which the 

robot will be placed, or employees’ concerns towards the use of social robots. This is important 

to avoid overwhelming employees with this new technology. 

From these direct implications, a number of further implications can be derived for the 

managerial practice. In particular, expectation management has some consequences for the 

introduction of social robots in organizations. First, the decision to use social robots in teams 

and the reasoning behind it should be communicated transparently as early as possible to avoid 

major surprises for employees as much as possible. Furthermore, clear responsibilities and 

decision-making processes for the implementation of social robots in teams should be 

established. In particular, it should be clear who is responsible as a contact person and decision 

maker for questions and concerns. 

In summary, managers should be encouraged to seize the opportunity to take the leap into the 

future of work by deploying social robots in their organizations. A set of implications outlined 

above can help managers unlock the potential of these new technologies and future-proof their 

organizations for the long run. 

 

5.3 Limitations and Future Research 

This dissertation offers valuable insights for both researchers and practitioners. While the 

limitations of the individual studies have already been described in detail in the corresponding 

chapters, two overarching limitations should be mentioned here. At the same time, however, 

these limitations also provide avenues for future research, which is taken up in two additional 

points (see Figure 5-1). 

First, the two empirical research studies (chapter 3 and 4) in this dissertation methodologically 

rely on online studies using vignettes rather than real-life studies.14 Building on the research 

agenda outlined in the literature review (see chapter 2.4.4), future research could build on 

these insights and use real-life settings to gain a deeper understanding of the setup of HRTs.  

                                                
14 Due to restrictions during the COVID-19 pandemic (several lockdowns, the Technical University of Darmstadt was 

closed for experiments), real-life studies were not possible when the studies included in this dissertation were 

conducted. 
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Second, the empirical research studies 1 and 2 take a perspective that focuses on decisions for 

robots following typical human selection processes in a work context. In addition to this 

perspective, which originates from human resource management, researchers could extend the 

research on the successful setup of HRTs by also considering another perspective with a stronger 

focus on the technological aspects of robots. In doing so, they could expand research on robot 

selection, which to date has largely focused on the selection of industrial robots (e.g., Ketipi et 

al., 2014; Koulouriotis & Ketipi, 2014), to the selection of social robots for organizational HRTs. 

In this context, the entire selection and decision-making process preceding the establishment of 

HRTs could be examined and the question of responsibility for the setup and ongoing 

management of social robots in different team roles in HRTs could be investigated.  

Future research should also examine the preparation for HRTs in greater detail, as indicated in 

the literature review (chapter 2). Appropriate training and communication measures are likely 

to be a critical success factor for the establishment of HRTs in organizations. These trainings 

and measures depend on particular contingencies, including environmental factors, and should 

follow a situational and customized approach (Kim, 2022). 

Lastly, as also indicated in the literature review, research on existing HRTs still has a number 

of gaps. There are a number of promising avenues that future research could take to further 

advance the understanding of these teams of the future: For example, privacy and data 

protection are becoming increasingly important as humans increasingly interact with AI and 

robots in the work environment. Building on research in the context of people analytics and 

holistic data protection management (Holthaus et al., 2015), future research should explore 

this highly relevant topic. Further, trust and related privacy considerations in this context, which 

have already emerged in conjunction with other technologies such as AI (Mesbah et al., 2019) 

or HRI in the workplace (Stock-Homburg & Hannig, 2020), may be a promising area for future 

research on HRTs. Future research should moreover have a general focus on conducting studies 

with social robots in different team roles in real-world settings to obtain robust results and 

insights.  

To conclude, this dissertation has addressed the question of the definition and important 

characteristics and influencing factors of HRTs, and provided answers to which underlying 

mechanisms drive the decisions for robotic team members in the establishment of HRTs. With 

its findings, it has made an important contribution to research on HRTs and provided avenues 

for future research and management implications for this emerging topic. 
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Appendix for Chapter 2 

Tables 

Table 2-1. Overview of Different Team Compositions, Sample Definitions, and Related Research 

Team type Team com-
position 

Sample definition Related empirical research 

Human-
directed 
robot team 

 
 

“a single human operator can oversee and 
flexibly intervene in the operation of a 
team of largely autonomous robots” 
(Sellner et al., 2006, p. 1425). 

Management: Pina et al., 2008; Sellner et al., 2006 
Cognitive science: J. Wang et al., 2008; You & Robert, 2016, 2018a, 
2019a, 2019b 
HRI: Alboul et al., 2008; Crandall et al., 2003; Goodrich et al., 2007 
Military: S. Brown et al., 2005 
Robotics: Zheng et al., 2013 
(Urban) search and rescue: Burke & Murphy, 2004, 2007; Kantor et 
al., 2006; P.-J. Lee et al., 2010; Ranzato & Vertesi, 2017; H. Wang 
et al., 2010; Yazdani et al., 2016 

Human-
/Robot-
directed 
mixed team 

 
 

“human workers … perform physical 
tasks in coordination with robotic 
partners” and “human and robot co-
leaders [have] identical functions and 
capabilities, by restricting the human co-
leaders’ capabilities such that they were 
the same as those of the robot” 
(Gombolay, Gutierrez, et al., 2015, 
pp. 295–296) 

HRI: Law et al., 2021 
Management: Gombolay, Gutierrez, et al., 2015, referring to human 
and robotic co-leads, human assistants; Gombolay, Huang, & Shah, 
2015, referring to human leader, robotic and human assistants 

Robot-
directed 
human team 

 
 

“the partner [robot] … is instructing the 
primary human … on the task steps to 
complete. There are no shared decision 
making tasks” (Harriott et al., 2011, 
p. 46)a 

N/A; the only studies with such a team composition refer to robot-
directed dyadic task teams 
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Team type Team com-
position 

Sample definition Related empirical research 

Autonomous 
mixed team 

 
 

“humans and robots [work] together to 
accomplish complex team tasks” (Dias et 
al., 2008, p. 1) 

Cognitive science: Correia, Mascarenhas, et al., 2019; Jung et al., 
2015; Strohkorb Sebo et al., 2020; Traeger et al., 2020 
HRI: Gervits et al., 2020; Kwon et al., 2019; Tang & Parker, 2006 
Robotics: Claure et al., 2020; T. Iqbal & Riek, 2017; Marge et al., 
2009 
Space: Fong et al., 2005; Fong et al., 2006 
(Urban) search and rescue: Dias et al., 2008; Jung et al., 2013 

Note:      ⃝ = human, ▯ = robot. The studies (with team sizes of at least n = 3) are categorized according to a best fit approach, so they might feature aspects 

of more than one research discipline. Overview over related empirical research is not exhaustive. 

aHarriott et al. (2011) only consider a dyadic task team 
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Table 2-2a. Conceptual Studies on Multiple Member HRTs Related to Intra-member Team Characteristics and Their Effects 

Author / subcategory /discipline1) 
/ team interaction2) 

Major findings3), 4) 

Ambrose et al. (2000) / 
(physical) robot design / VI / T 

 Overview of the design of NASA’s Robonaut 

Bluethmann et al. (2003) / 
(physical) robot design / VI / T 

 Information on the design of NASA's Robonaut 

Fong et al. (2005) / (physical) 
robot design / VI / T 

 Proposal of interaction framework "Human-Robot Interaction Operating System" (HRI/OS) 

 Proposal of metrics for evaluation of HRTs 
Kelly and Watts (2017) / robot 
behavior / V / T+S 

 Position paper that suggests that task-related "inefficiency" in the form of social behavior should be 

considered when designing social robots 

Ramesh et al. (2021) / (physical) 
robot design / V / T 

 Proposal of set of robot vitals to quantify "the performance degradation experienced by a robot" (p. 

303) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) Team 

interaction: T = task interaction, T+S = task & social interaction; 3) None of the studies specified underlying theories. In part of the studies, the robot 

morphology, robot level, and type of embodiment are not specified. The two studies that provide information (Bluethmann et al., 2003; Fong et al., 

2005) use the physical, humanoid “Robonaut” robot on a lower or same level as humans; 4) In most of the studies, the team setup is not specified. 

Only Kelly and Watts (2017) specify that they focus on a human-directed robot team. 
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Table 2-2b. Empirical Studies on Multiple Member HRTs Related to Intra-member Team Characteristics and Their Effects 

Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Claure et 
al.(2020) / 
robot 
behavior / 
V 

n.i. / ↔ / n.i. T+S  n=282 / 156 f, 
124 m, 1 other, 1 
not disclosed; age: 
M=36 years 
(SD=11); mTurk; 
from the US / C 

Equity 
models, 
fairness 
theory 

 Robot fairness  User trust 

(+ / n.s.) 

 Perceived 
robot 

fairness 

(n.s.) 

 "Fairness of resource 

allocation has significant 

effect on user's trust in 

the system" (p. 299) 

Correia, 
Mascarenh
as, et al. 
(2019) / 
robot 
behavior / 
IV 

Humanoid 
(EMYS robotic 
head) / ↔ / 
Physical robot 

T+S  
 

n=70 / 32 f, 37 m, 
1 unknown; age: 
range 22-62 years 
(M=34.6, 
SD=11.557)/ C 

n.i.  Prosocial 

robot behavior 

 Perceived 

robot social 

attributes 

(+) 

 Prosocial robots are rated 

more positively in terms 

of their social attributes 

(p.143) 

 "The perception of 

competence, the 

responsibility attribution 
(blame/credit) and the 

preference for a future 

partner are only 

significantly different in 

the losing condition" 

(p.143) 
Correia, 
Petisca, et 
al. (2019) / 
human 
preferences 
and 
behavior / 
IV 

Humanoid("Em
ys", "Glin"; both 
identical 
physical 
appearance: 
EMYS) / ↔ / 
Physical robot 

T+S  n_1=30, n_2=61 / 
1: 17m, age: range 
19-42 years, 
M=23.03 
(SD=4.21), 
university students; 
2: 38 m, age: range 
17-32 years, 
M=23.66 

Learning 
goal theory 

 Robot goal 

orientation 

(performance-

driven vs. 

learning-

driven) 

 Competitiven

ess Index 

(higher for 

performance-

driven) 

 McGill 

Friendship 

Questionnair

e (higher for 

 "When a partner is chosen 

without previous 

partnering experience, 

people tend to prefer 

robots with relationship-

driven characteristics as 
their partners compared 

with competitive robots" 

(p. 1) 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(SD=3.24), 59 
university students, 
2 worker / C/L (3 
sessions in direct 
succession) 

learning-

driven) 

 Relationship 

Assessment 

Scale (higher 
for learning-

driven) 

 Godspeed 

Questionnair

e (n.s. 

/higher for 

learning-

driven) 

 "After some partnering 

experience has been 

gained, the choice 

becomes less clear and 

additional driving factors 
emerge: (2a) participants 

with higher levels of 

competitiveness (personal 

characteristics) tend to 

prefer Emys [the 

performance-driven 

robot], whereas those 

with lower levels prefer 

Glin [the learning-driven 

robot], and (2b) the 
choice of which robot to 

partner with also depends 

on team performance, 

with the winning team 

being the preferred 

choice." (p. 1) 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Cunningha
m et al. 
(2013) / 
human 
preferences 
and 
behavior / I 

Functional (da 
Vinci surgical 
system) / ↓ / 
Physical robot 

T / n.i. n=4 cases (2 in US, 
2 in FR) / US: 
experiences and 
novice users, FR: 
novice users (less 
than 5 procedures) 
/ C 

n.i.  Experience 

 Workplace 

culture 

 Workflow 

 Timeline 

 Roles 

 Communicati

on patterns 

 (see study 

for detailed 

observations) 

 Adapting to robotic 

technology can be 

challenging. Experience 

and workplace culture 

affect team behavior, with 
less experience leading to 

more preparation time 

and more verbal 

exchanges 

Fraune, 
Oisted, et 
al. (2020) / 
robot 
behavior / I 

Functional 
(Sociable Trash 
Box (STB)) / 
n.i. / 
Image/video of 
a robot, physical 
robot 

T+S  
 
1: 
nhuman 
= 0,…, 
“multip
le”; 
nrobot = 
1,…,3 
 
 
 
 
 

n_1=630, n_2=71 
/ 1: from USA 
(n=333, 47% f, age 
M=24.59, 
SD=9.59) and 
Japan (n=297, 7% 
f, age M=21.55, 
SD=3.35), 
recruited in 
universities; 2: from 
USA (42% f, age 
M=19.20, 
SD=1.30), 
recruited from 
university / C 

Social 
identity 
theory 

 Robot behavior 

toward robots 

(none, social, 

functional) 

 Robot behavior 

toward humans 

(social, 

functional) 

 Country (US, 

Japan) 

 Anthropomor

phism of 

robot 

(partially + 

for robot-

robot social, 

n.s. for other 

conditions)  

 Emotional 

and 
behavioral 

intention 

about robot 

(n.s.) 

 Entativity of 

robot (n.s.) 

 Social robot-robot 

behavior increases 

anthropomorphism, social 

robot-human behavior 

increases positive 

emotions and willingness 

for interactions (p.1) 

 Robots that are designed 

for positive human 

interaction resp. to be 
perceived intelligent 

should behave socially 

towards humans resp. also 

towards robots (p.1) 

… … 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Robot behavior 

toward robot 

(social, 

functional) 

 Robot behavior 

toward human 

(social, 

functional) 

 Cooperation 

(n.s.) 

 Anthropomor
phism of 

robot 

(partially + 

or - for 

robot-robot 

social) 

 Emotional 

and 

behavioral 

intention 
about robot 

(+ for robot-

human 

social) 

 Entativity of 

robot 

(partially +  

for robot-

human 

functional) 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Gombolay 
et al. 
(2017) / 
robotic 
behavior, 
human 
preference
s and 
behavior / 
I 

Functional 
(Willow Garage 
PR2 platform) 
/ ↓ / Physical 
robot 

T+S  n_1=17, n_2=18, 
n_3=20 / all: 
recruited form 
local university; 1: 
6 m, age: range 
18-25 years, 
M=19.5 
(SD=1.95); 2: 10 
m, age: range 19-
45 years, M=27 
(SD=7); 3: 10 m, 
age: range 18-30 
years, M=21 
(SD=3) / C 

Situational 
awareness 

 Degree of 

robotic 

autonomy in 

scheduling 

decisions 

 Situation 

awareness (-

) 

 "human participants’ 

awareness of their team’s 

actions decreased as the 

degree of robot 

autonomy increased" (p. 
614) 

 "participants preferred 

working with a robot 

that included their 

preferences when 

scheduling and ... 

preferred working with a 

robot that utilized them 

more frequently" (p. 
613) 

 Degree to 

which 

participant's 

preferences 

are respected 

by robotic 

teammate 

 Preference 

to work 

with robot 

(+) 

 Degree to 

which 

participant's 

preferences 
are respected 

by robotic 

teammate 

 Participant 

utilization 

 Preference 

to work 

with robot 

(+, +) 

Gombolay, 
Huang, 
and Shah 
(2015) / 

Functional 
(Willow Garage 
PR2 platform) 

T+S  n=17 / n.i. / C n.i.  Consideration 

of human 

preferences 

 Willingness 

to work (+) 

 Humans prefer working 

with a robotic team mate 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

robot 
behavior, 
human 
preference
s and 
behavior / 
II 

/ ↓ / Physical 
robot 

that considers their 

preferences 

 Team efficiency has to be 

kept in mind when 

allocating decision-
making authority (robot 

taking decisions can lead 

to decreased efficiency 

and belief that the robot 

is unaware of team 

goals) 
L. Jiang 
and Wang 
(2019) / 
robot 
behavior / 
V 

n.i. / n.i. / n.i. T+S n.i. / n.i. / n.i.  Regret 
theory 

 Robot decision 

making (regret-

decision 

model) 

 Teaming 

performance 

(+) 

 More human-like 

decision-making by 

robots can help to 

balance workload and 

performance in HRTs 

Law et al. 
(2021) / 
(physical) 
robot 
design, 
robot 
behavior / 
I 

Humanoid 
(Willow Garage 
PR2) / ↔ / 
Image/video of 
robots 

T+S  n_1=198, 
n_2=421 / 1: 95 f, 
1 other, age: range 
18-77 years 
(M=34.96, 
SD=11.47); 2: 162 
f, 3 other, age: 
range 18-81 years 
(M=36.52, 
SD=11.85); both: 
mTurk / C 

Emotional 
intelligenc
e, social 
role theory 

 Robot 

emotional 

intelligence 

(+) 

 Robot gender 

(+, male) 

 Vignette 

presentation 

(n.s.) 

 Trust in 

robot 

 Robotic EI influences 

trust in a robot (p. 1) 

 "Gender stereotypical 

expectations related to EI 

[are] transferred to trust" 

(p. 1) 

 Robot 

emotional 

… 

n_robots = 10 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

intelligence 

(+) 

 Robot gender 

(+, male) 

 Vignette 

presentation 

(+, text) 

 Participant 

gender (n.s.) 

 Participant 

age (-) 

 Robot 
trustworthines

s (n.s.) 

 Robot gender 

(n.s.) 

 Perceived 
robot EI 

 

 Robot 

trustworthines

s (+) 

 Robot gender 

(n.s.) 

 Vignette 

presentation 

(+, text) 

 Order of 

questionnaires 

(+, EI first, 

then trust) 

 Trust in 

robot 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Lei and 
Rau 
(2020) / 
human 
preference
s and 
behavior / 
IV 

Humanoid 
(Nao) / ↔ / 
Physical robot 

T+S  n=60 / 30 f; age: 
M=22.2 years 
(SD=2.29); 
(under-) graduate 
students 
(40%/60%)/ C 

CASA 
paradigm, 
common 
sense 
psychology
, gender 
studies 

 Task outcome 

(n.s.) 

 Human 
gender (-/+) 

 Attribution 

of blame to 

robot 

 Attribution 

of credit to 

robot 

 Gender effects play a 

role in the attribution of 

credit and blame to 

robot team members 

 "participants attributed 

more credit and less 

blame to the robot 

member than to 

themselves" (p. 1) 

 "the robot member was 

more blamed than the 

human member, 

whereas they received 
similar levels of credit" 

(p. 1) 
Rhim et al. 
(2019) / 
robot 
behavior / 
IV 

Humanoid 
(Pepper) / ↑ / 
Physical robot 

T /  n=78 (39 teams) / 
38% f / C 
(between-subject) 

n.i.  Robot 

behavior 

(positive vs. 

neutral) 

 Participant's 

mood 

 Creativeness 

of story 

 Robot's 

impression 

 Team 

collaboratio

n 

 (see paper 

for detailed 

results) 

 "Self-reported valence 

and arousal increased in 

human participants when 

interacting with the 

affective robot regardless 

of the robot’s perceived 

mood" (p. 1) 

 "Participants’ likeability 
of the robot increased 

when interacting with a 

positive robot, while 

likeability decreased 

when interacting with a 

neutral robot" (p. 1) 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Strohkorb 
Sebo et al. 
(2018) / 
robot 
behavior / 
IV 

Humanoid 
(Nao) / ↔ (not 
specified) / 
Physical robot 

T+S  n=105 (in 35 
teams) / 
experimental 
condition: 26/54 
m, age: M= 20.13 
years (SD=7.13); 
control condition: 
15/51 m, 
M=21.333 years 
(SD=11.00); 
recruited from 
university campus 
and surrounding 
town and summer 
program./ C 

Trust 
theories 

 Robot 

vulnerability 
 

 Team 

member 

interactions 

with robot 

(+) 

 Perceived 

psychologic

al safety 

(n.s.) 

 Team 

member 

interactions 

with other 
human team 

members 

(+) 

 Robots making 

vulnerable statements 

lead to increased 

engagement with the 

robot 

 In groups with robots 

making vulnerable 

statements, human 

teammates take more 

actions to reduce 

tension experienced by 

the team (e.g., explain 

failures, laugh together) 

Traeger et 
al. (2020) 
/ robot 
behavior / 
IV 

Humanoid 
(Nao) / ↔ / 
Physical robot 

T+S  n=153 (in 51 
groups of 3 each) / 
vulnerable 
condition: 28 f, 26 
m, age: M=20.13 
years (SD=7.13); 
neutral condition: 
36 f, 15 m, age: 
M=21.33 years 
(SD=11.01); silent 
condition: 31 f, 17 
m, age: M=23.94 
years (SD=7.36)/ 
C 

n.i.  Robot 

vulnerability 

 Team 

member 

interactions 

with other 

human team 

members 

(+) 

 Total talking 

time (+) 

 Team 

perception 

(+) 

 "people in groups with 

a robot making 

vulnerable statements 

converse substantially 

more with each other, 

distribute their 

conversation somewhat 

more equally, and 
perceive their groups 

more positively 

compared to control 

groups with a robot 

that either makes 
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Author / 
subcategor

y / 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
intera
ction4)

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Conversatio

n equality 

(+) 

neutral statements or 

no statements at the 

end of each round" (p. 

6370) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-2c. Empirical Studies on Dyadic HRTs Related to Intra-member Team Characteristics and Their Effects 

Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Arnold 
and 
Scheutz 
(2018) / 
robot 
behavior / 
I 

Humanoid / ↔ / 
Image/video of a 
robot 

T+S 
 

n=332 / 
135 f, age: 
44.43 years; 
mTurk; US 
citizens / C 

n.i.  Positive robot 

attitude 

 Robot touch 

 Perceived robot 

capability (+/ 

n.s.) 

 Confidence in 

robot skills (+) 

 Perceived robot 

qualification (+ 

/ n.s.) 

 Perceived robot 

fairness (+) 

 Robot touch leads to 

better rating of the 

social performance, 

skills, fairness of a 

robot 

 However, gender 

effects from survey 

responses show that 

robot touch has to be 

considered with 

caution as the context 

and expectations from 

society can lead to a 

significantly varying 
perception of robot 

touch 
Bartneck 
et al. 
(2006) / 
(physical) 
robot 
design / I 

Android (Tron-X, 
PKD), animal-like 
(AIBO) / ↔ / 
Image/video of a 
robot 

T+S 
 

n=12 / age: 
range 21-54 
years 
(M=29.9); 
Masters's 
and Ph.D. 
students in 
Psychology 
or 
Engineering 
/ within 
subject 
design, C 

CASA 
paradigm, 
Uncanny 
valley 
paradigm 

 Human-

/animal-

likeness of 

robot 

 Praise (+) 

 Punishment (-) 

 The study results lead 

to the conclusion that 

the CASA paradigm 

holds true for 

computers 

 Robots on the other 

hand were treated 

differently depending 
on their physical 

appearance: very 

human-like or animal-

like robots were 
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Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

praised more and 

punished less than 

computer and human, 

machine-like robots 

were treated like 

computer and human 
Ezenyilim
ba et al. 
(2023) / 
robot 
behaior / 
VII 

n.i. / n.i. / 
Simulation/ 
virtual robot 

T+S / n.i. n=48 / 
university 
members / 
C (2 
missions; 
between-
subject) 

Situation 
awareness 

 Explanation 

(limited vs. 

full) 

 Transparency 

(static vs. 

dynamic) 

 Situation 

awareness 

(lowest for 

[limited/static], 

n.s. between 

others) 

 Trust in robot 

(lower for all 

conditions in 

2nd mission) 

 Trust in team 

(lowest for 

[limited/static], 

n.s. between 

others; 

decrease 

between 

missions) 

 Workload 

(highest for 

[limited/static] 

and 

[full/static], 

 "By implementing 

robot transparency 

and robot 

explanations, we 

found that the driving 

factors for effective 

HRTs rely on robot 

explanations that are 

context-driven and 

are readily available 

to the human 
teammate." (p. 75) 
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Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

n.s. between 

others; increase 

between 

missions) 

Hiatt et al. 
(2011) / 
robot 
behavior / 
IV 

Humanoid 
(Mobile, 
Dexterous, Social 
(MDS) robot) / 
↔ / Image/video 
of a robot 

T+S  n=35 / n.i. 
/ n.i. 

Theory of 
mind 

 Robot 

explanation 

 Perceived robot 

naturalness (+) 

 Perceived robot 
intelligence (+) 

 A robot that uses a 

theory of mind (ToM) 

approach and offers 

explanations is 

perceived both more 
intelligent and 

natural than a robot 

that either shows only 

simple correction or 

blindly follows a 

human (p. 2066) 

 To utilize the ToM-

approach, the robot 

analyzes different 
models of human 

partners and, in case 

it finds a likely cause 

of unexpected 

behavior, articulates 

his findings (p. 2071) 
Natarajan 
and 
Gombolay 
(2020) / 
robot 

Functional 
(Sawyer), 
humanoid (Kuri, 
Pepper, Nao) / 
n.i. / Physical 

T+S  n=75 / 
51.47% f; 
age: range 
18-58 
(M=25.298, 

n.i.  Perceived 

anthropomorp

hism (+) 

 Trust  "Behavior and 

anthropomorphism of 

the agent are the 

most significant 
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Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

behavior / 
I 

robot, 
video/image of a 
robot (as 
condition of 
experiment) 

SD=8.457); 
from 
university / 
C (4x4x2x2; 
between- 
and within-
subject) 

 Robot 

behavior (+) 

 Robot 
presence 

(n.s.) 

 Coalition 

building 

preface (n.s.) 

factors in predicting 

the trust and 

compliance with the 

robot" (p. 33) 

Richert et 
al. (2016) 
/ 
(physical) 
robot 
design, 
robot 
behavior / 
II 

Functional, 
humanoid / n.i. / 
Simulation/ 
virtual robot 

T+S  / n.i. n.i. / n.i. / 
n.i. 

CASA 
paradigm, 
embodimen
t theories 

 Personal 

characteristics 

 Robot 

characteristics 

 Task 

performance 

(not reported) 

 Proposal of 

experiments to gain 

insights into 

cooperation between 

humans and robots 
based on robot 

appearance and robot 

accuracy 

N. Wang 
et al. 
(2016a) / 
robot 
behavior / 
III 

Functional / n.i. 
/ 
Simulation/virtu
al robot 

T+S  n=220 / 
mTurk, USA 
/ C 

n.i.  Robot 

explanations 

 Transparency 

(+) 

 Trust (+) 

 Performance 

(+) 

 A better 

understanding of 

decision-making 

processes of a robot 

can help improve 

trust 

 Explanations based 

on POMDP (Partially 

Observable Markov 

Decision Processes) 

can be a way to 

achieve this goal 
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Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

N. Wang 
et al. 
(2016b) / 
robot 
behavior / 
III 

Functional / n.i. 
/ 
Simulation/virtu
al robot 

T+S  n=220 / 
mTurk, USA 
/ C 
(between-
subject) 

n.i.  Robot 

explanations 

 Transparency 

(+) 

 Trust (+) 

 Performance 

(+) 

 A better 

understanding of 

decision-making 

processes of a robot 

can help improve 
trust in HRTs (similar 

experiment as in "The 

impact of POMDP-

generated 

explanations on trust 

and performance in 

human-robot teams") 
N. Wang 
et al. 
(2018) / 
robot 
behavior / 
IV 

Animal-like, 
functional / ↓ / 
Simulation/virtu
al robot (online 
HRI test bed) 

T+S  n=61 /  14 
f; age: range 
18-23 
(M=19.2); 
years 
higher-
education 
military 
school in the 
US, 
participants 
received 
extra course 
credit for 
participation 
/ C (2 
sessions, 
120 mins 

n.i.  Embodiment 

(n.s.) 

 Communicati
on strategy in 

case of error 

(n.s.) 

 Explanations 

(+) 

 Trust 

 Transparency 

 Transparency 

test score 

 Compliance 

 No. of correct 

decisions made 

 Explanations by 

robots (even if they 

don't indicate which 

components of a 
robot are faulty) have 

significant effects on 

transparency and self-

reported trust of 

participants and 

result in better 

decision-making of a 

human team mate 

 Robot embodiment 

and 
acknowledgement of 

mistakes only have a 

marginally or no 
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Author / 
subcategor

y / 
discipline1

) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4

) / team 
setup5) 

Data basis / 
participants6

) / time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

total, 8 
missions) 

significant impact on 

self-reported trust, 

transparency or 

correct decisions 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-3a. Conceptual Studies on Multiple Member HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / subcategory / 
discipline1) / team 

interaction2) 

Underlying theories Major findings3), 4) 

Abrams and Rosenthal-von 
der Pütten (2020) / team 
perceptions / IV / T+S 

In-group identification (e.g., 
social identity theory); 
cohesion theories (e.g., group 
development theory); 
entativity theory (e.g., 
formation of perceived 
entativity) 

 In-group identification, cohesion, and entitativity (I-C-E) framework can 

be used as a theoretical basis for research on human-robot groups 

 Multi-agent groups are similar but not the same as all-human groups 

 Dyads have unique processes that differ from group and team processes 

Bradshaw et al. (2012) / 
autonomy and control / III 
/ T 

n.i.  Autonomy and coordination in human-agent-robot teamwork should be 

in the focus of future research to solve current problems 

Dudenhoeffer et al. (2001) 
/ autonomy and control / 
III / T+S 

Shared mental models, 
situational awareness 

 Simulations are widely used in HRT and HRI research and can help to 

gain insights into this field, esp. when many robots are involved 

Fusaro et al. (2021) / roles 
of humans and robots / V / 
T 

n.i.  Proposal and validation of integrated method for task allocation and 

planning in mixed HRTs that treats individual jobs as sets of "different 

tasks with temporal and logic constraints" (p. 534) thus working with 

simplified sub-problems that are optimized 
Gladden (2014) / leaderhip 
/ I / T+S 

French and Raven’s bases of 
power 

 Charismatic robotic leaders (w/ charismatic authority being a 

manifestation of referent power) will probably emerge naturally 

 Introduction of three possible ways of charismatic robotic leaders 
Groom and Nass (2007) / 
roles of humans and robots 
/ III / T+S 

Shared mental models  Robots should be evaluated as complements to human team members 

(rather than duplicates) to take advantage of individual abilities of 

humans and robots 
Hari et al. (2020) / roles of 
humans and robots / III / T 

n.i.  Proposal of algorithm for task allocation, sequencing and scheduling 

problem 

Makarius et al. (2020) / 
roles of humans and robots 
/ II / T+S 

Socio-technical systems theory  Proposal of model of AI (and robot integration) 

Manikonda et al. (2007) / 
autonomy and control/ V / 
T 

n.i.  Proposal of framework for communication and collaboration in HRTs 
(strong technical focus) 
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Author / subcategory / 
discipline1) / team 

interaction2) 

Underlying theories Major findings3), 4) 

Musić and Hirche (2018) / 
autonomy and control / V / 
T 

n.i.  Proposal of control approach for robot teams 

Nikolaidis and Shah (2012) 
/ team perceptions / IV / T 

Shared mental models  Proposal to use shared mental models also for HRTs 

E. Phillips et al. (2012) / 
team perceptions / III / 
T+S 

Shared mental models  "relevant human–animal team capabilities (…) can inform and guide the 

design of next-generation human–robot teams" (p. 1553) 

E. Phillips et al. (2016) / 
team perceptions / I / T+S 

Shared mental models, 
interdependence theory 

 Human-animal teams can be used as analogous examples for the 

development/set-up of effective HRTs 
Samani and Cheok (2011) / 
leadership / II / T+S 

n.i.  Ideas on emotion-laden robotic leadership, advantages of robotic leaders, 

modes of robotic leadership 
Scheutz et al. (2017) / 
team perceptions / IV / 
T+S 

Shared mental models  Proposal of formal and computational framework for development and 

usage of shared mental models in HRTs based on all-human teams 

Sierhuis et al. (2003) / 
autonomy and control / VI 
/ T 

n.i.  Discussion of perspective on teamwork and sliding autonomy 

Talamadupula et al. (2014) 
/ team perceptions / V / T 

Shared mental models  Proposal of "automated planning problem instance" (p. 2957) 

Yazdani et al. (2016) / 
autonomy and control / VII 
/ T 

n.i.  Proposal of cognition-enabled robot-control framework to foster a more 

natural communication between humans and robots 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) Team 

interaction: T = task interaction, T+S = task & social interaction; 3) In most of the studies, the robot morphology, robot level, and type of 

embodiment are not specified. The six studies that provide information (Abrams & Rosenthal-von der Pütten, 2020; Dudenhoeffer et al., 2001; 

Gladden, 2014; Manikonda et al., 2007; Talamadupula et al., 2014; Yazdani et al., 2016) focus on functional robots (e.g., Growbot (Dudenhoeffer et 

al., 2001), Pioneer P3-AT (Talamadupula et al., 2014)) and indicate different robot levels (lower/same and higher level) and embodiments (physical 

robot; simulation); 4) In most of the studies, the team setup is not specified. The two studies that provide information focus on human-directed robot 

teams (Musić & Hirche, 2018; Yazdani et al., 2016). 
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Table 2-3b. Conceptual Studies on Dyadic HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / subcategory 
/ discipline1) / team 

interaction2) 

Underlying theories Major findings3) 

Bankins and Formosa 
(2020) / team 
perceptions / IV / 
T+S 

Psychological contract theory, 
social exchange theory, reciprocity 

 Bankins and Formosa see a potential for human-robot psychological 

contracts that can also influence how humans work together 

M. Demir et al. (2020) 
/ roles of humans and 
robots / VII / n.i. 

Shared mental models  “results indicate that effective team interaction and shared cognition play 

an important role in human-robot dyadic teaming performance." (p. 1) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i.= no information provided by author(s); 3) Robot morphology, robot level, and 

type of embodiment as well as team setup are not specified.   
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Table 2-3c. Empirical Studies on Multiple Member HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Burke and 
Murphy 
(2004) / 
roles of 
humans 
and robots 
/ VII 

Functional / ↓ 
(Inuktun Micro 
Variable 
Geometry 
Tracked Vehicle 
(n=32), 
Inuktun 
Microtracs 
robot (n=1)) / 
Physical robot 

T n=33 (two 
field studies) / 
experienced 
firefighters 
seeking USAR 
certification / 
C 

Shared 
mental 
models, 
situational 
awareness 

 Operator 

situational 

awareness 

(+) 

 Goal-oriented 

team 

communicatio

n (+) 

 Task 

performance 
 "a minimum 2:1 

human-to-robot ratio is 

required for effective 

robot-assisted technical 

search in USAR" (p. 
307)  

 Goal-oriented team 

communication and a 

shared mental model of 

the search space and 

the task lead to better 

task performance 
Chang et al. 
(2021) / 
team 
perceptions 
/ I 

Humanoid / 
n.i. / 
Simulation/virt
ual robot 

T / n.i. n=95 / 30 f; 
age: M=38.55 
(SD=12.25) / 
C (online user 
study, 2x2 
between-
subject) 

Fairness  Equality of 

capability 

(balanced vs. 
unbalanced) 

 Equality of 

time 

(balanced vs. 

unbalanced) 

 Equality of 

workload  

 Equality of 

time 

 Equality of 

capability 

 Perspective-

taking 

(see major 

findings and 

study for 

detailed results 

and interaction 

effects) 

 Proposal and validation 

of metrics for people's 

perception of fairness in 
HRTs 

 "There are bleed-over 

effects in people’s 

assessment of fairness. 

When asked to rate 

fairness based on the 

amount of time that the 

robot spends working 

with each person, 
participants used two 

factors (fairness based 

on the robot’s time and 

… 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

teammates’ 

capabilities)" (p. 905) 

Charisi et 
al. (2021) / 
roles of 
humans 
and robots 
/ IV 

Neither 
zoomorphic nor 
humanoid 
(Haru robot) / 
↔ / Physical 
robot 

T /  n=84 / 34 f; 
age: range 5-8 
years 
(M=6.71, 
SD=0.99); no 
previous 
experience 
with chosen 
task and any 
robotic 
platform / C 
(2X2 
repeated-
measures 
between-
subjects with 4 
sessions) 

n.i.  Cognitive 

reliability 

(sub-optimal 

vs. optimal 

 Socia 
positioning 

(neutral vs. 

expressive) 

 Team-role of 

the robot 

(turn-taking 

vs. voluntary) 

 Task 

performance 

 Social 

interaction 

 Help-seeking 

behavior 

 Pre-

intervention 

trust-belief 

(see study for 

detailed 

results) 

 "Children who 

interacted with the 

reliable robot had a 

better task performance 

but children who 

interacted with the 
unreliable robot 

exhibited more task-

related social 

interactions." (p. 9439) 

Crandall et 
al. (2003) / 
autonomy 
and control 
/ I 

n.i. / ↓ / n.i. T n_1=13, 
n_2=23 / n.i. 
/ C (six 5-
minute 
sessions each) 

n.i.  n.i.  n.i.  Proposal of 

performance prediction 

algorithm for HRTs 

Dias et al. 
(2008) / 
autonomy 
and control 
/ VII 

Functional 
(Pioneer, 
Segway ER1) / 
↓, ↔ / Physical 
robot 

T n.i. / n.i. /  C 
(15 minutes 
run) 

Sliding 
autonomy 
methodolo
gy 

 Sliding 

autonomy 
 Performance 

(+) 
 Challenges of enabling 

sliding autonomy in 

HRTs can be overcome 

by the presence of six 

key capabilities 

(requesting help, 

maintaining 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

coordination, 

situational awareness, 

granularity, 

prioritization, learning) 
Fraune et 
al. (2017) / 
team 
perceptions 
/ IV 

Functional 
(Mugbot) / ↔ / 
Physical robot 

T+S n = 48 / 21 f / 
C 

Group 
theory, 
social 
identity 

 Group 

(ingroup, 
outgroup) 

 Agent (human, 

robot) 

 Liking 

(higher for 
in-group and 

humans in 

most cases) 

 Anthropomor

phism (higher 

for ingroup in 

all cases) 

 "participants favored the 

ingroup over the 
outgroup, and humans 

over robots. Group had a 

greater effect than 

Agent, so participants 

preferred ingroup robots 

to outgroup humans." 

(p. 1432) 

Fraune 
(2020) / 
team 
perceptions 
/ IV 

Humanoid 
(Nao), 
functional 
(iRobot Creates) 
/ ↔ / Physical 
robot 

T+S /  n=81 / age: 
M=19.15 / C 
(2 × 2 × 2 
mixed-design) 

Group 
theory, 
social 
identity 

 Group 

membership 

(ingroup vs. 

outgroup; + 
for ingroup) 

 Agent type 

(human vs. 

robot; + for 

human) 

 Moral 

behavior 

(measured 

via noise 
blast volume) 

 "Participants favored the 

ingroup over the 

outgroup and humans 

over robots—to the 
extent that they favored 

ingroup robots over 

outgroup humans" (p. 1) 

 Results further indicate 

"that patterns of res-

ponses toward humans 

were more closely 

mirrored by anthropo-

morphic than mechano-
morphic robots" (p. 1) 

competing 

teams 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(Fraune, 
Šabanović, & 
Smith, 
2020) / 
team 
perceptions 
/ IV 

Functional 
(Mugbot) / ↔ / 
Physical robot 

T+S /  n=102 / 
recruited at 
university / C 
(2x2x3 mixed 
design) 

Group 
theory, 
social 
identity 

 Group 

membership 

(ingroup vs. 

outgroup) 

 Agent type 

(human vs. 

robot) 

 Moral 

behavior 

(measured 

via noise 

blast volume) 

 "Participants favored the 

ingroup over the 

outgroup and humans 

over robots - to the 

extent that they favored 
ingroup robots over 

outgroup humans. 

Interestingly, people 

differentiated more 

between ingroup than 

outgroup humans and 

robots" (p. 303) 
Fuse and 
Tokumaru 
(2020) / 
roles of 
humans and 
robots / IV 

Humanoid 
(RoBoHoN) / 
n.i. / Physical 
robot 

T+S n=14 / 
Japanese 
university 
students / C (5 
rounds) 

n.i.  Presence of 

robot 

considering 

group norms 
(vs. no robot) 

 Change in 

answers given 

(+ for change 

between 
round 1 and 

2, for others 

n.s.) 

 "robots attempt to 

comply with a group 

norm affects human’s 

decision-making" (p. 
56081) 

Gervits et 
al. (2020) 
/team 
perceptions 
/ I 

Humanoid 
(PR2 by Willow 
Garage) / ↔ / 
Simulation/virt
ual robot 

T n=26 (from 
36 originally 
recruited) / 19 
m; age: 
M=24.9 years 
(SD=8.6); 
from 
University 
campus / C 

Shared 
mental 
models 

 Robot shared 

mental models 
 Performance 

(+) 
 Shared mental models 

help to improve 

performance and 

efficiency of HRTs 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Gombolay, 
Gutierrez, 
et al. 
(2015) / 
autonomy 
and control 
/ II 

Functional / 
↔,↑ / Physical 
robot 

T+S n=24 / 14 m, 
10 f; age: 
range 20-42 
(mean age of 
27±7 years ); 
recruited via 
email and 
around a 
university 
campus / C 

n.i.  Presence of 

robot 

 Robot 
decision-

making 

authority 

 Team 

efficiency 

(+/ +) 

 Perceived 

likeability, 

appreciation, 

and 

understandin

g of co-

leader (-/+) 

 “an autonomous robot 

can outperform a 

human worker in the 

allocation of part of or 

all tasks that have to be 
completed” (p. 293) 

 People prefer to give 

control authority to the 

robot 

 "People value human 

teammates more than 

robotic teammates, 

however, providing 
robots authority over 

team coordination more 

strongly improves their 

perceived value 

compared to giving 

similar authority to a 

human team mate" (p. 

293) 

 People tend to "assign a 

disproportionate 
amount of work to 

themselves when 

working with a robot 

(...) rather than human 

team mates only" 

(p.293) 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Goodrich et 
al. (2007) / 
autonomy 
and control 
/ I 

n.i. / ↓ / 
Simulation/virt
ual robot; 
physical robot 

T /  n=80 (in four 
experiments 
with 16, 23, 
11, 30 
participants 
resp.) / n.a. / 
C 

n.i.  Attention 

management 

aids (+) 

 Adaptive 

autonomy (+) 

 Information 

abstraction 

(+) 

 Individual 

and team 

autonomy 

 Individual and team 

autonomy benefit from 

adjustable and adaptive 

autonomy 

 Adjusting autonomy 

should also allow for 

shifting between 

management styles 

Kwon et al. 
(2019) / 
leadership / 
I 

n.i. / ↔, ↓, ↑ / 
No 
embodiment 

T n.i. / n.i. / n.i. Adaptive 
leadership 
theory 

 Robot 

intervention 

(use of leader-

follower 

graph) 

 Leadership 

scores (+) 

 Task 

execution 
time (+) 

 Success rate 

(+) 

 Leader-follower graphs 

enable robots to 

influence human teams 

through “redirect[ion 

of] a leader-follower 
relationship, 

distract[ion of the] 

team, or lead[ing of] a 

team towards the 

optimal goal” (p. 2) 
P.-J. Lee et 
al. (2010) / 
autonomy 
and control 
/ VII 

Functional 
(Pioneer P2-AT 
robots) / ↓ / 
Simulation/virt
ual robot 
(USARSim 
robotic 
simulation) 

T n=120 (in 60 
teams) / 
University of 
Pittsburgh 
community, 
paid, no 
previous 
experience 
with robot 
control / C 

n.i.  Robot 

autonomy (+) 

 Team 

organization 

(+/-) 

 System 

performance  
 "Automating path 

planning improved 

system performance. 

Effects of team 

organization were 

equivocal." (p. 438) 

Lewis et al. 
(2010) / 

Functional 
(Pioneer P2-

T n=120 (in 60 
teams) / 

n.i.  Robot 

autonomy (+) 
 System 

performance 
 Automation of path 

planning in USAR HRTs 

… 
n_robots=2

4 

… 
n_robots=24 

… 

n_humans 

= {3,…,6} 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

autonomy 
and control 
/ VII 

AT) / ↓ / 
Simulation 

University of 
Pittsburgh 
community, 
paid, no 
previous 
experience 
with robot 
control / C 

 Shared team 

authority (+) 

helps to improve 

performance 

 "effects of team 

organization favored 

operator teams who 
shared authority for the 

pool of robots" (p. 

1617) 
Li et al. 
(2021) / 
leadership / 
I 

n.i. / ↔, ↓, ↑ / 
No 
embodiment 

T / n.i. / n.i. / n.i. Adaptive 
leadership 
theory 

1&2 

 Robot 

intervention 

(use of leader-

follower 

graph) 

1: 

 Leadership 

scores (+) 

 Task 

execution 

time (+) 

 Success rate 

(+) 
2: 

 Collision 

time (+) 

 Proposal and validation 

of framework for 

leaders & followers in 

HRTs 

 Leader-follower graphs 

enable "better planning 

and an optimization for 
robot actions" (p. 970) 

Lopes et al. 
(2021) / 
leadership / 
II 

Humanoid 
(EMYS) / ↑ / 
Physical robot 

T /  n=108 
(divided into 
36 teams of 3 
each) / 52.8% 
f; age: 
M=37.40 
(SD=11.09) / 
C 

n.i.  Robotic 

leadership 

style 

(transformatio

nal vs. 

transactional) 

 Team 

productivity 

(+ for 

transactional

) 

 Team 

engagement 

(+ for 

transformati

onal) 

 "Both [transformational 

and transactional] 

leadership styles can 

have positive impacts in 

organizational 

outcomes, although in 

different aspects" (p. 
258) 

… 

n_humans 
= {3,…,6} 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Role 

ambiguity 

(n.s.) 

 Human-

robot trust  

(n.s.) 
Musić et al. 
(2019) / 
autonomy 
and 
control/ V 

Functional 
(KUKA LWR 
4+) / ↔, ↓ / 
Physical robot 

T n=48 / 12 f / 
C (experiment 
was 
performed 10 
times/particip
ant) 

n.i.  Type of 

feedback (no 

vs. binary vs. 

relative) 

 Task 

performance 

(n.s. / +) 

 Proposal of control 

architecture for HRTs 

 Feedback through 

wearable fingertip 

devices helps to 

increase performance 
Ranzato 
and Vertesi 
(2017) / 
roles of 
humans 
and robots 
/ VII 

Functional / ↓ / 
Physical robot 
(remote!) 

T+S n=30 (6 
teams of 5 
each with 3:2 
gender ratio) / 
n.i. / C 

n.i.  Team 

organizational 
structure 

(loose) 

 Efficiency 

(+) 

 Communicat

ion (+) 

 Teammate 

trust (+) 

 Loosely coupled teams 

were found to be the 
most successful 

compared to tightly 

coupled hierarchical 

and consensus groups 

Savela, 
Kaakinen, 
et al. 
(2021) / 
team 
perceptions 
/ II 

n.i. / ↔  / n.i. n.i. / 
setups 
ranging 
from 1H4R 
to 4H1R 
(study 1) / 
2H3R (2) 
to 5H 

n_1=1003, 
n_2=969 / 1: 
51.11% f; age: 
M=37.36 
(SD=11.80); 
2: 51.15% f; 
age: M=37.15 
(SD=11.35); 
both: Amazon 
Mechanical 
turk / C 

Social 
identity 
theory 

 1 & 2: 

Experimental 

group (1H4R, 

2H3R, 5H; 1: - 
for more 

robots on 

team, 2: n.s.) 

1 & 2:  

 In-group 

identification 

 "Having a robot on the 

work team had a nega-

tive impact on in-group 

identification." (p. 1) 

 "The results suggest 

that when humans are 

members of minority 

subgroup within a work 

team, their subgroup 

… 

n_human = ? 



 

 

 CLXII 

Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(between 
subject) 

identity is threatened." 

(p. 1) 

 These results "indicate 

that introducing a robot 

as a teammate may 
affect in-group identifi-

cation process negati-

vely with some indivi-

dual differences." (p. 1) 
Savela, 
Oksanen, et 
al. (2021) / 
team 
perceptions 
/ II 

n.i. / ↔  / n.i. n.i. / 
setups 
ranging 
from 1H4R 
(study 1 & 
2 & 3) to 
4H1R (1) 
to 2H3R 
(2) to 5H 
(1 & 2 & 3) 

n_1=1003, 
n_2=969, 
n_3=1059 / 
1: 48.16% m; 
age: M=37.36 
(SD=11.80); 
2: 48.08% m; 
age: M=37.15 
(SD=11.35); 
3: 48.29% m; 
age: M=37.97 
(SD=11.75); 
all: Amazon 
mechanical 
Turk / C 
(between-
subject) 

Theories of 
prejudice 

1 & 2: 

 Experimental 

group (see 

team setup; 1: 

- for more 

robots on 

team, 2: n.s.) 
3: 

 Experimental 

group 

(framing as 

teammates vs. 

coworkers; - 

for R 

teammates (as 

compared to 

H 

teammates); 

n.s. for 
pairwise 

1 & 2 & 3:  

 Sentiments 

of written 

social media 

posts 

 "People are less 

enthusiastic about 

working with robots 

than with humans"(p. 

1) 

 Further, the  "results 
suggest these more 

negative reactions stem 

from feelings of oddity 

in an unusual situation 

and the lack of social 

interaction" (p.1 ) 

 "The same robot 

product could be 

received differently 
depending on the social 

status and group 

membership it is given" 

(p. 12) 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

comparison of 

all groups) 

Sellner et 
al. (2006) / 
autonomy 
and control 
/ I 

Functional 
(Roving Eye, 
Mobile 
Manipulator, 
Crane) /  ↓ / 
Physical robot 

T n_1=2, 
n_2=32 /1: 
expert users of 
the robotic 
system; 2: n.i. 
/ C 

Situational 
awareness, 
concept of 
sliding 
autonomy 

 Autonomy 

 
 Time to 

completion 

(-) 

 Success rate 

(+) 

 Human 

workload (-) 

 Robots purposefully 

asking for help result in 

more efficient and 

robust systems and 

enable human operators 

to gain situational 
awareness 

 Autonomy 

 Extent of 

information 

provision 

 Average 

response 

time (-/+) 

Strohkorb 
Sebo et al. 
(2020) / 
roles of 
humans 
and robots 
/ I 

Humanoid 
(Jibo) / ↔ (not 
specified) / 
Physical robot 

T+S / 
Round 1: 
 
 
 
Round 2:  
 

n=78 (in 26 
teams) / 38 f; 
age: M=16.82 
years 
(SD=0.72); 
from high 
school 
program held 
at Yale 
University / C 

Social 
identity 
theory 

 Specialized 

robot liaison 

(-) 

 Robot 

supportive 

utterances (+ 

/ n.s.) 

 Human 

inclusion 
 "specialized roles may 

hinder human team 

member inclusion, 

whereas supportive 
robot utterances show 

promise in encouraging 

contributions from 

individuals who feel 

excluded." (p. 309) 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 
time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Yam et al. 
(2022) / 
leadership / 
IV 

Functional/hu
manoid / ↑ / 
Physical robot 

T+S /  n_1=179; 
n_2=164 / 1: 
51.4% f; age: 
M=21.08 
(SD=2.01); 2: 
51.2% f; age: 
M=20.20 
(SD=1.62); 
both: 
undergraduate 
students from 
large 
university in 
China / C 
(laboratory) 

Ming 
perception 
theory 

 Robot 

supervisor 

anthropomorp

hism (+) 

 Supervisor-

directed 

retaliation 

 In the context of 

delivering negative 

feedback to an 

employee through a 

robotic supervisor, 
anthropomorphism 

leads to higher 

supervisor-directed 

retaliation 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-3d. Empirical Studies on Dyadic HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / 
subcatego

ry / 
discipline1

) 

Robot 
morphology

2) / robot 
level43 / 
type of 

embodimen
t 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Abendsch
ein et al. 
(2021) / 
roles of 
humans 
and 
robots / 
IV 

n.i. / all 
configuratio
ns: ↑, ↔, ↓ 
/ 
Image/vide
o of robot 

T+S n = 215 / 134 
f, 77m; age: 
range 18-69 
years (M = 
24, SD = 
8.67) / C 

n.i.  Team roles 

(human lead, 

robotic 

assistant; 

robotic lead, 
human 

assistant; co-

teaching) (+ 

for all DVs in 

human-led 

teaching team) 

 Credibility 

 Task and 

social 
attraction 

 Social 

presence 

 Affective 

learning 

 "Students rated the human-

led team as more appealing 

and having more credibility 

than the robot-led team" (p. 

123) 

 "The current findings are 

unique in that they compare 

the individual roles and 

power structures of human-

robot teams leading a 

course" (p. 123) 
Chang et 
al. (2020) 
/ team 
perceptio
ns / I 

Functional / 
↔ / 
Physical 
robot 

T+S /  n=30 / 9f; 
university 
students / C 
(2x2 within-
subject) 

Fairness  Fluency 

(absent vs. 

present) 

 Effort (absent 

vs. present) 

 Objective 

measures: 

total task 

time, ratio of 
total tasks, 

ratio of math 

tasks, ratio of 

pickup tasks, 

ratio of 

strength tasks 

 Participant's 

perception of 

fairness 

(see major 

findings and 

 "Effort and fluency help 

improve fairness without 

making a trade-off with 

efficiency" (p. 1251) 

 Proposal of "three notions 

of fairness for effective 

human-robot teamwork: 

equality of workload, 

equality of apability, 

equality of task type" 

(p.1251) 
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Author / 
subcatego

ry / 
discipline1

) 

Robot 
morphology

2) / robot 
level43 / 
type of 

embodimen
t 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

study for 

detailed results 

and interaction 

effects) 
Eyssel 
and 
Kuchenbr
andt 
(2012) / 
team 
perceptio
ns / I 

Humanoid / 
↔ / 
Video/imag
e of robot 

T+S / n.i. n=78 / 
German 
university 
students, 37 
m, 40 f; age: 
M=23.27 
(SD=3.29) / C 

Social 
identity 
theory 

 Robot in in-

group (vs. out-

group) 

 Warmth (+) 

 Mind 

attribution 

(+) 

 Psychological 

closeness (+) 

 Contact 

intentions 

(+) 

 Design 

preference 
(+) 

 Participants "rated the in-

group robot more 

favourably … [and] also 

anthropomorphized it more 

strongly than the out-group 
robot" (p. 724) 

Jong et al. 
(2021) / 
roles of 
humans 
and 
robots / 
IV 

Functional 
(Cozmo), 
humanoid 
(Nao) / ↔ / 
Image/vide
o of a robot 

T+S /  n_1=81, 
n_2=37 
(without 
robots); 
n_3=87, 
n_4=93 / 3: 
52% f, 46% m, 
age: M=35.52 
(SD=12.42); 
4: age: 
M=29.11 
(SD=9.32) / C 

Social 
identity 
theory 

3 & 4: 

 Results (+) 

 Group 

membership 

(+) 

 Agent type 

(n.s.) 

3 & 4: 

 Intergroup 

empathy 

 Intergroup 

schadenfreud

e 

 "People felt more empathy 

towards ingroup members 

than outgroup members 

and more schadenfreude 

towards outgroup members. 

The existence of an 

intergroup bias did not 

depend on the nature of the 

agent:" (p. 1) 

 “Similar empathy and 

schadenfreude biases were 
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Author / 
subcatego

ry / 
discipline1

) 

Robot 
morphology

2) / robot 
level43 / 
type of 

embodimen
t 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(2 (results) x 2 
(group 
membership) x 
2 (agent type) 
within design) 

observed for both 

humanoid and mechanoid 

robots" (p. 1) 

Kuchenbr
andt et al. 
(2013) / 
team 
perceptio
ns / IV 

Humanoid 
(Nao) / n.i. 
/ Physical 
robot 

T+S / n.i. n=45 / 25 m, 
18 f, age: 
M=24.81  
years 
(SD=5.00), 
German 
university 
students / C 

Social 
identity 

 Robot in in-

group (vs. out-

group) 

 Implicit 

anthropomorp

hization of 

robot (+) 

 Explicit 
anthropomorp

hization of 

robot (+) 

 Acceptance of 

robot (+) 

 General 

willingness to 

interact with 
robot (+) 

 "Perceived in-group 

membership with the robot 

resulted in a greater extent 

of anthropomorphic 

inferences about the robot 

and more positive 
evaluations." (p. 409) 

 Additionally, participants 

with the robot in their in-

group "showed greater 

willingness to interact with 

robots in general." (p. 409) 

Marble et 
al. (2004) 
/ 
autonomy 
and 
control / 
VII 

Functional / 
↓ / Physical 
robot 

T+S n=11 /1 f, 10 
m; 4 expert 
users, 7 no or 
some prior 
experience;  
INEEL 
employees / L 
(4 sessions in 

n.i.  Dynamic robot 

autonomy 

 Target 

detection (+) 
Situation 
awareness (+) 

 Autonomy of a robot 

should be adjustable to 

allow for situation 

awareness and task 

completion 

 Participants varied greatly 

in their ability to trust a 

robot (i.e., allow 

autonomy) 
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Author / 
subcatego

ry / 
discipline1

) 

Robot 
morphology

2) / robot 
level43 / 
type of 

embodimen
t 

Team 
interaction

4) / team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

direct 
succession) 

 Performance benefits from 

practice  

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-4a. Conceptual Studies on Multiple Member HRTs Related to Team Processes and Their Effects 

Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) / 
team setup5) 

Underlying theories Major findings 

Alboul et al. 
(2008) / 
(physical) 
coordination / 
I 

n.i. / ↓ / 
Physical robot 

T n.i.  Proposal of theoretical framework for navigation in HRTs 

Bradshaw et al. 
(2009) / 
(physical) 
coordination / 
I 

n.i. / n.i. / n.i. T+S / n.i. Coordination theory  Coordination in human-agent-robot teams as an essential 

ingredient of joint activities: Fulfillment of teamwork 

model & resulting expectations towards communication 

(towards leader and colleagues) will allow robots to be 

seen as team mates 
S. Brown et al. 
(2005) / 
(physical) 
coordination / 
III 

n.i. / ↓ / n.i. T n.i.  Proposal of reference framework for HRTs 

Bruemmer et 
al. (2002) / 
collaboration / 
III 

Functional 
(augmented 
ATRVJR) / ↓, 
(↔, ↑) / 
Physical robot 

T / n.i. Role theory, shared 
mental models  

 Proposal of a framework for mutual-initiative in HRTs 

Bruemmer and 
Walton (2003) 
/ collaboration 
/ III 

Functional 
(augmented 
ATRVJR) /  n.i. 
/ n.i. 

T / n.i. Shared mental models  Discussion of approach for control architecture for human-

robot teams in a military context 

Fiore et al. 
(2011) / 
collaboration / 
III 

n.i. / n.i. / n.i. T+S / n.i. n.i.  Successful interactions in HRTs are based on organizational 

(and corresponding roles), social, and cultural models 

 Research has to work on gaining insights into how robots 

fit into such models and how they can understand 

organizational, social, and cultural factors 

… 
… 

… 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) / 
team setup5) 

Underlying theories Major findings 

Gervasi et al. 
(2020) / 
collaboration / 
I 

n.i. / ↑, ↔, ↓ / 
n.i. 

T+S / n.i. n.i.  Proposal of conceptual framework for the evaluation of 

collaboration in HRTs 

Hayes and 
Scassellati 
(2014) / 
collaboration / 
I 

n.i. / n.i. / n.i. T+S / n.i. n.i.  Proposal of four research questions on collaboration in 

HRTs 

Kruijff, Janíček, 
et al. (2014) / 
communication 
/ VII 

Functional 
("Generaal", P3-
AT; NIFTi UGV 
andUAV) / ↓ / 
Physical robot 

T+S Situational awareness  Proposal and validation of "user-centric design methodology 

in developing systems for human-robot teaming in Urban 

Search and Rescue" (p. 1) 

 Robot acceptance is important 

Kruijff et al. 
(2012) / 
communication 
/III 

Functional / ↓ / 
Physical robot 

T Situational awareness  Proposal of experience and communication model to 

support shares human-robot activities 

Kruijff-
Korbayová et 
al. (2015) / 
communication 
/IV 

Functional 
(NIFTi UGV and 
UAV) / ↓ / 
Physical robot 

T Situational awareness  Description of the project "TRADR: long-term human-robot 
teaming for robot assisted disaster response" (p. 193) and 

the user centric design approach that is used 

Nakano and 
Goodrich 
(2015) / 
communication 
/ V 

n.i. / n.i. / n.i. n.i. / n.i. n.i.  Proposal of "new interface concept, a Graphical Narrative 

Interface (GNI)" (p. 634) 

 "We hypothesize that the GNI allows users to search and 

analyze spatiotemporal information more easily and 

quickly than a typical GUI." (p. 634) 
Nourbakhsh et 
al. (2005) / 

n.i. / n.i. / n.i. T / n.i. n.i.  Proposal of an agent-based "architecture for Urban Search 

and Rescue and a methodology for mixing real-world and 

simulation-based testing" (p. 72) 

… n_human = ? 

… 
… n_humans = ? 

n_robots = 4 

remote 

remote 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) / 
team setup5) 

Underlying theories Major findings 

communicatin 
/ VII 
Norton et al. 
(2022) / 
communication 
/ I 

Functional / ↓ / 
n.i. 

T / n.i. Situation awareness,   Proposal of metrics for proficiency-based HRI 

Schwartz et al. 
(2016) / 
collaboration / 
I 

Humanoid 
(Aila), 
functional 
(Artemis, 
Compi) / n.i. / 
n.i. 

n.i. / n.i. n.i.  Discussion of setup of teams with robots, virtual agents and 

humans as team members ("hybrid teams") 

Stewart et al. 
(2012) / 
collaboration / 
IV 

n.i. / n.i. / n.i. n.i. / n.i. Decision theory  Proposal of decision-making model for HRTs 

Tang and 
Parker (2006) 
/ collaboration 
/ I 

n.i. / ↔ / n.i. T / n.i. Information invariance 
theory, schema theory 

 Proposal of human-robot teaming approach ASyMTRe, 
dealing "with the issue of how to organize robots into 

subgroups to accomplish tasks collectively based upon their 

individual capabilities" (p. 27) 
Woods et al. 
(2004) / 
(physical) 
coordination / 
III 

n.i. / n.i. / n.i. T / n.i. n.i.  Exploration of issues with human-robot coordination 

Yi and 
Goodrich 
(2014) / 
collaboration / 
V 

n.i. / ↓ / n.i. T Shared mental models  Proposal of collaboration model using shared mental 

models 
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Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot  
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Table 2-4b. Conceptual Studies on Dyadic HRTs Related to Team Processes and Their Effects 

Author / 
subcategory 
/ discipline1) 

Robot morphology2) 
/ robot level3) / type 

of embodiment 

Team 
interaction4) / 
team setup5) 

Underlying theories Major findings 

Breazeal, 
Brooks, et al. 
(2004) / 
collaboration 
/ I 

Humanoid 
(Leonardo) / ↔ / 
Physical robot 

T+S Collaborative discourse 
theory, joint intention 
theory 

 The authors follow a perspective "of a balanced 

partnership where the human and robot maintain 

and work together on shared task goals" (p. 270) 

 Paper gives an overview of the different robotic 

features of the robot 
Breazeal, 
Hoffman, 
and Lockerd 
(2004) / 
collaboration 
/ I 

Humanoid 
(Leonardo) / ↔ / 
Physical robot 

T+S Collaborative discourse 
theory, joint intention 
theory 

 Presentation of approach for collaborative human-

robot teamwork 

Oh et al. 
(2015) / 
(physical) 
coordination 
/ V 

n.i. / n.i. / n.i. (no 
robot involved in 
experiments) 

T+S / n.i. n.i.  Proposal and validation of  model for indirect 
perception in HRTs 

Ososky et al. 
(2013) / 
trust / IV 

n.i. / ↔ / Physical 
robot 

T+S Shared mental models  Trust in HRTs should not simply be maximized, the 

goal should be to have appropriate trust (both in 
intention and ability) 

Shah and 
Breazeal 
(2010) / 
(physical) 
coordination 
/ IV 

n.i. / n.i. / n.i. (no 
robot involved in 
experiments) 

T+S / n.i. Shared mental models  Implicit and explicit communication in HHT give 

insights into how robots in HRTs could act 

 "a robot should respond to communications 

differently, depending on whether they are implicit, 

explicit, verbal only, nonverbal only (gesture), or 

combined." (p. 244) 
Visser et 
al.(2020) / 
trust / IV 

n.i. / ↔ / n.i. T+S / n.i.  Theory of mind, trust 
theories 

 Proposal of Human-robot team trust model that has 

a longitudinal perspective on the development and 

calibration of trust in HRTs 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 
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no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot 
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Table 2-4c. Empirical Studies on Multiple Member HRTs Related to Team Processes and Their Effects 

Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Aggravi et 
al. (2021) / 
(physical) 
coordination 
/ VII 

Functional / ↓ 
/ 
Simulation/vir
tual robot 

T /  n = 12 / 1 f; 
age: range 23–
32 years / C (16 
trials per user) 

Concept of 
decentralize
d control 

 Haptic 

feedback (vs. 

visual) 

 Separate 

information 

provision (vs. 

joint) 

 Avg task 

completion 

time (- / -) 

 Avg length 

(- / -) 

 Linear 

velocity of 

simulated 

human 

agent (- / -) 

 Avg 

connectivity 
force 

commanded 

to human 

operator (- / 

n.s.) 

 Avg 

connectivity 

level of 

whole 
formation (- 

/n.s.) 

 Proposal and validation of 

"decentralized haptic-

enabled connectivity-

maintenance control 

framework" (p. 4843) for 
HRTs 

 "Providing haptic feedback 

showed increased 

performance w.r.t. 

providing visual 

information only" (p. 4843) 

Aggravi et 
al. (2022) / 
(physical) 
coordination
) / VII 

Functional / ↓ 
/ 
Simulation/vir
tual robot 

T /  
 

n_1=15, n_2 = 
16, n_3=1 / 1: 
2f, age: range 
23-29 years, 
naive 

Concept of 
decentralize
d control 

 1: Feedback 

modality (no 

feedback vs. 

vibrotactile 

feedback vs. 

1&2: 
Performance 

 Avg task 

completion 

time 

 Proposal and validation of 

"decentralized connectivity-

maintenance control 

framework" (p. 3109) for 

HRTs 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(third 
experim
ent 
without 
remote 
expert) 

participants; 2: 
2f, age: range 
23-29 years, 
naive 
participants; 3: 
1m, age: 30 
years, expert / C 
(within-subject) 

auditory 

feedback) 

 2: Feedback 

modality 

(vibrotactile 
feedback vs. 

auditory 

feedback) 

 3: n.i. 

 (see paper for 

detailed 

results) 

 Avg 

connectivity 

force 

commanded 

to human 
operator 

 Avg total 

force 

commanded 

to robots 

 Max. total 

force 

commanded 
to robots  

 Number of 

targets 

reached 

 User's 

experience 

 User's 
perceived 

effectiveness 

 3: n.i. 

 "Providing either haptic or 

audio feedback for 

conveying information 

about the team connectivity 

significantly improves the 
performance of the 

considered tasks, although 

users significantly preferred 

receiving haptic stimuli 

w.r.t. the audio ones" (p. 

3109) 

Burke and 
Murphy 
(2007) / 
collaboratio
n / VII 

Functional 
(Inuktun Micro 
Variable 
Geometry 
Tracked 
Vehicle 
(VGTV) robot) 

T n=62 / 90% m; 
majority 
between 35-54 
years; NASA 
USAR task-force 
personnel / L 
(two runs á 20 

Shared 
mental 
models, 
situational 
awareness 

 Remote 

shared visual 

presence (+) 

 Visual contact 

(n.s.) 

 Team 

performance 
 Remote shared visual 

presence may help remote 

USAR HRTs "to perform as 

effectively as collocated 

teams" (p. 161) 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

/ ↓ / Physical 
robot 

minutes over 2-
day period; final 
n=50 (# teams 
completing both 
runs)) 

Canning et 
al. (2014) / 
communicati
on / I 

Humanoid & 
Functional 
(Xitone Design 
MDS, Willow 
Garage PR2, 
VGo, iRobot 
Create) / ↓/ 
Simulation/virt
ual robot, 
Video/image of 
robot 

T / 1: 
 
 
2 & 3: 

n_1= 24, 
n_2=137, 
n_3=183 / 
mTurk; 1: 12 f, 
age: range 18-31 
years, M=20.88  
(SD=2.59), all 
right-handed, 
fluent in English; 
2: 48 f, age: 
range: 18-60 
years, 
median=31, US 
residents; 3: 91 
f, age: range: 18-
60 years, 
median=31, US 
residents / C 

n.i.  Video feed 

type (real vs. 

simulated) 

 Task 

performance 

(n.s.) 

 Perceived 

collaboration 
(+ for real 

video) 

 Perceived 

utility (+ for 

real video) 

 Examination of robot 

perceptions in remote team 

settings 

 "realism of the [video]feed 

becomes important when 
the human teammate knows 

about the robot’s 

appearance and they work 

together on a task" (p. 

4361) 

 See study for details on 

results and interaction 

effects of study 3 

 Video feed 

type (real vs. 

simulated) 

 Introduction 
of robot 

 Task 

performance 

(n.s.) 

 Perceived 
collaboration 

(n.s.) 

 Perceived 

utility (n.s.) 

 Perceived 

competence 

(n.s.) 

 Perceived 

warmth 

(n.s.) 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Fong et al. 
(2006) / 
communicat
ion / VI 

Functional, 
humanoid 
(K10 rover, 
Robonaut) / ↓, 
↔ / Physical 
robot 

T n.i. / n.i. / C n.i.  Reliability of 

robots 

(independenc

e, as a result 

of 
understandin

g of 

communicatio

n) 

 Productivity 

(amount of 

useful work, 

exposure 

time in 
space) (+) 

 Software frameworks are 

being developed (e.g., 

HRI/OS) to allow for 

effective work of humans 

and robots 

Gao et al. 
(2012) / 
(physical) 
coordination 
/ VII 

n.i. / ↓ / 
Simulation/virt
ual robot 
(USARsim) 

T n=48 / 19 f; 
age: range 19-47 
years, M=26.6 
(SD=5.5); 33 of 
them students / 
C 

n.i.  Team 

structure 

(pooled, 

sector) 

 Search 

guidance (no, 
suggestion, 

enforced) 

 Task 

performance 

(n.s.) 

 Task 

completion 

time (- for 
suggested 

guidance in 

sector teams; 

n.s. for other 

conditions) 

 Subjective 

workload (- 

for pooled 

teams) 

 Automated search guidance 

neither increased nor 

decreased performance" (p. 

81) 

 Search guidance decreased 

average task completion 
time in Sector teams" (p. 

81) 

 "pooled teams experienced 

lower subjective workload 

than sector teams" (p. 81) 

T. Iqbal et 
al. (2015) / 
collaboratio
n / V 

Functional 
(Turtlebot) / 
↔ / Physical 
robot 

T n=2 / n.i. / n.i. n.i.  n.i.  n.i.  Proposal of an event-based 
model to enable robotic 

action perception in HRTs 

remote support 

… 

n_robots=24 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

T. Iqbal et 
al. (2016) / 
(physical) 
coordination 
/ V 

Functional 
(turtlebot) / ↔ 
/ Physical 
robot 

T / pilot: 
 
 
main: 

n_pilot=7, 
n_main=27 (in 9 
groups) / pilot: 3 
f; main: 14 f, 
age: M=22.93 
(SD=3.98), 
mainly students 
/ C 

n.i.  Robot 

movement 

based on 

synchronizatio

n-index based 
anticipation 

(vs. based on 

event cluster-

based 

anticipation) 

 Synchronizat

ion (+) 

 Robot 
Timing 

Appropriaten

ess (+) 

 Proposal and validation of 

"approach to enable robots 

to perceive human group 

motion in real time to 

anticipate future actions 
and synthesize their own 

motion accordingly " (p. 

909) 

 * "the robot performs better 

when it has an 

understanding of high-level 

group behavior than when it 

does not" (p. 909) 
T. Iqbal and 
Riek (2017) 
/ (physical) 
coordination 
/ V 

Functional 
(Turtlebot) / 
↔ / Physical 
robot 

T n= 18 (in 6 
groups) / 11 f; 
age: M=24.7 
years (SD=4.5); 
undergrad and 
grad students / 
C 

n.i.  n.i.  n.i.  "results might suggest that 

an addition of a robot with 
heterogeneous behavior to 

a group significantly 

reduces the overall group 

coordination, and might be 

an important indicator of 

human-robot group 

dynamics." (p. 1716) 
Jung et al. 
(2013) / 
communicat
ion / VII 

Humanoid 
(Maddox and 
Nexi), 
functional 
(UAV, not 
specified) / ↔ 
/ Physical 
robot 

T+S n=73 / age: 
range 18-40 
years (M=25.0, 
SD=6.19); from 
university 
community / C 

Back-
channeling, 
social 
signaling 

 Back-

channeling 
 Team 

functioning 

(+) 

 Perceived 

robot 

engagement 

( +) 

 "subtle backchanneling by 

robots in human-robot 

teams helped team 

functioning (lower stress, 
lower cognitive load) and 

perceived engagement of 

the robots, especially when 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Perceived 

robot 

competence 

(-) 

the task was complex, but 

at the same time lead to 

robots being seen as less 

competent." (p. 1563) 

 "the biggest benefits from 
backchanneling in human-

robot teams may be seen 

when tasks are demanding 

and complex." (p. 1563) 
Jung et al. 
(2015) / 
communicat
ion / IV 

Functional 
(Pioneer 3 
robot base + 
OWI robot arm 
+ arm-control 
board + 
speaker) / ↔ / 
Physical robot 

T+S n=106  (in 53 
teams)/ 55 m; 
age: range 18-65 
years (M=24.5, 
SD=8.0); 
recruited from 
university / C 

n.i.  Robot 

intervention 
 Awareness 

of conflict 

(+) 

 Affect 

(+/n.s.) 

 Perceptions 

of team 

members’ 

contribution

s (n.s.) 

 Team 

performance 

(n.s.) 

 "we found that the robot’s 

repair interventions 

increased the groups’ 

awareness of conflict after 

the occurrence of a 

personal attack thereby 

acting against the groups’ 
tendency to suppress the 

conflict." (p. 229)s 

Kantor et al. 
(2006) / 
communicat
ion / VII 

Functional / ↓ 
/ Physical 
robot 

T n.i. / n.i. / C n.i.  n.i.  n.i.  Sensor networks can be 

used by robots and humans 
to extend their joint 

capabilities 
Kruijff, 
Kruijff-
Korbayová, 

Functional 
(NIFTi UGV 

T n.i. / n.i. / n.i. Situational 
awareness 

 n.i.  n.i.  Description of the 

experiences in designing, 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

et al. (2014) 
/ 
communicat
ion / VII 

and UAV) / ↓ / 
Physical robot 

developing and deploying 

systems for USAR 

R. Liu et al. 
(2021) / 
(physical) 
coordination 
/ I 

Functional 
(Sawyer) / ↓ / 
Physical robot 

T /  n=90 / 34% f, 
46% m; age: 
M=23 / C (5 
completed 
repetitions per 
participant) 

n.i.  Scheduling 

approach 

(exploitation, 

explore-

exploit, 

annealed 
explore-

exploit) 

 Makespan 

improvemen

t 

 Subject skill 

 Subject idle 

time 

 Robot trust 

 Human-

robot 

working 

alliance 

 Perceived 

team 

competence 

 Perceived 

robot 

performanc 

(see study for 

detailed 

results) 

 Proposal and validation of 

coordination algorithm 

 "Human-robot working 

alliance […] and human 

performance […] are 
maximized when the robot 

dedicates more time to 

exploring the capabilities of 

human teammates" (p. 1) 

Marge et al. 
(2009) / 
communicat
ion / V 

Functional 
(Pioneer P2-
DX, Segway 
Robotic 
Mobility 
Platform 

T+S n.i. / n.i. / n.i. n.i.  n.i.  n.i.  Description of the human-

robot interface TeamTalk 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

(RMP)) / ↔ / 
Simulation/vir
tual robot 

Nevatia et 
al. (2008) / 
/ 
collaboratio
n / VII 

Functional / ↓ 
/  
Simulation/virt
ual robot 

T n.i. / n.i. / n.i. n.i.  n.i.  n.i.  Proposal and validation of 

an "integrated system for 

semiautonomous 

cooperative exploration, 

augmented by an intuitive 

user interface for efficient 
human supervision and 

control" (p. 2103) 

 "having a human in the loop 

improves task performance, 

especially with larger 

numbers of robots" (p.2103) 
H. Wang et 
al. (2010) / 
(physical) 
coordination 
/ VII 

Functional 
(Pioneer P2-
AT) / ↓ / 
Simulation/vir
tual robot 
(USARSim 
robotic 
simulation) 

T n=60 
participants 
(acting in teams 
of 2 -> 30 
teams) / 
University of 
Pittsburgh, paid, 
no previous 
experience with 
robot control / C 

Situational 
awareness 

 Automated 

path planning 

(+) 

 Team 

organization 

(shared 

authority for 

robots) (+) 

 System 

performance 
 For USAR tasks, automated 

path planning helps to 

improve team accuracy and 

performance 

 Sharing authority for robots 

during team organization 

also helps to improve 

performance (re/ accuracy 

and finding) 
J. Wang et 
al. (2008) / 
(physical) 

Functional 
(P2DX robots, 
Zergs) / ↓ / 

T n=19 / age: 
range 19-33 
years, from 

Crandall’s 
neglect 
tolerance 

 Needed 

physical 

proximity 

 Team 

performance 

(-) 

 "Automating cooperation 

[by using subteams] 

reduced CD [coordination 

… 

n_robots=24 

… 

n_robots = 

{2, 3, 4, 5} 

..

.
n_robots = 6 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

coordination 
/ IV 

Simulation/vir
tual robot 

Pittsburgh 
university / C 

model , 
situational 
awareness 

 Coordination 

demands 

(n.s.) 

demands] and improved 

performance." (p. 9) 

 Automation of 

cooperation 

 Team 

performance 
(+) 

 Coordination 

demands 

(+) 
Williams et 
al. (2015) / 
communicati
on / IV 

Functional 
(VGo, Roompi) 
/ ↓ / Physical 
robot 

T n_1=28, n_2 = 
28 / 1&2: 14 f, 
age: range 18-
65, mostly 
students / C 

n.i.  Robot-robot 

communicatio

n (verbal, 

silent) 

 Perceived 

creepiness of 

the robot (1: 

n.s.; 2: + for 

silent 

communicati
on) 

 Perceived 

trustworthin

ess of the 

robot (1 & 2: 

n.s.) 

 Perceived 

efficiency of 

the robot (1 
& 2: n.s.) 

 Perceived 

cooperativity 

 "silent communication of 

task-dependent, human-

understandable information 

among robots is perceived 

as creepy by cooperative, 

co-located human 
teammates" (p. 24) 

 "increased natural language 

interaction with a robot 

enhances humans’ general 

perceptions of that robot" 

(p. 38) 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interacti

on4) / 
team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

of the robot 

(1 & 2: n.s.) 
You and 
Robert 
(2016) / 
(physical) 
coordination 
/ IV 

Functional/hu
manoid 
(adapted from 
the LEGO® 
Mindstorms® 
EV3 sets) / ↓ / 
Physical robot 

T n=60 / 36 f; 
age: M=22.86 
years 
(SD=4.51); 
from university 
in US / C 

n.i.  Training  Individual 

performance 

(+/n.s.) 

 Team 

performance 

(+/n.s.) 

 "training minimized the 

negative impacts of 

curiosity and heightened 

the positive impacts of 
control on task involving 

the use of a robot." (p.449) 

Zheng et al. 
(2013) / 
communicat
ion / V 

Humanoid 
(Robovie-II) / 
↔ / customer 
& operator: 
n.a.; 
simulation: 
simulation/virt
ual robot; case 
study: physical 
robot 

T n_customer=15, 
n_operator=16; 
n_simulation=1
5; n_case 
study=n.i. / 
customer: 8 f, 
age: M=22 
years; operator: 
7 f, age: M=21 
years; 
simulation: 6 f, 
age: M=20 
years; case 
study: n.i.; all: 
Japanese 
undergrad 
students / C 

n.i.  n.i.  n.i.  Introduction of simulation 

tool for "models for 

operation timing, customer 

satisfaction and customer–

robot interaction" (p. 843), 

and "techniques for 
managing interaction flow 

and operator task 

assignment" (p. 843) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot; 6) 

f=female, m=male; 7) C = cross-sectional, L = longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant  

… 
n_robots = 1,3 
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Table 2-4d. Empirical Studies on Dyadic HRTs Related to Team Processes and Their Effects 

Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Ali et al. 
(2022) / 
trust / I 

n.i. / n.i. / No 
embodiment 

T+S /  n.i. / n.i. / n.i. n.i.  n.i.  n.i.  Proposal and 

validation of "task 

allocation method 

for heterogeneous 

human–robot teams 
based on artificial 

trust from a robot 

that can learn agent 

capabilities over 

time and allocate 

both existing and 

novel task. Tasks 

are allocated to the 

agent that 

maximizes the 
expected total 

reward. The 

expected total 

reward 

incorporates trust 

in the agent to 

successfully execute 

the task as well as 

the task reward and 

cost associated with 

using that agent for 
that task." (p. 

15304) 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

Bozcuoglu et 
al. (2015) / 
communicati
on / VII 

Functional 
(Quadcopter) / 
↓, ↔ / 
Simulation/virt
ual robot 

T+S n.i. / n.i. / n.i. n.i.  n.i.  n.i.  Transparency on 

robotic behavior 

and reactions 

through 

communication 
helps to increase 

the success of HRTs 
Breazeal et 
al. (2005) / 
communicati
n / I 

Humanoid 
("Leo(nardo)")/ 
↓, ↔ / Physical 
robot 

T+S  n=21 / 10m; 
age: range 20-
40; local 
campus, no 
interaction 
with robot 
before / C 

Shared 
mental 
models 

 Non-verbal 

social cues 

and behavior 

 Task performance 

(understandabilit

y of the robot, 

efficiency of task 

performance, 

robustness to 

errors that arise 

from 

miscommunicatio
n) (+) 

 Non-verbal 

communication 

plays an important 

role also in the 

effectiveness of 

HRTs 

M. Chen et 
al. (2020) / 
trust / V 

Functional / 
n.i. / 
Simulation/virt
ual robot, 
Physical robot 

T+S  n_1=201 
(simulation), 
n_2=20 (real 
robot) / 1: 
age: range 18-
65 years, 
mTurk, from 
the US, 2: age: 
range 21-65 
years, from 
University / C 

n.i.   Trust   Team 

performance (+/-

; appropriate 

level of trust 

needed for best 

performance) 

 Proposal of 

computational 

model to integrate 

trust into robotic 

behavior 

 "maximizing trust 

alone does not 

always lead to the 

best performance" 
(p. 9:1) 

Ciocirlan et 
al. (2019) / 

Humanoid 
(TIAGo) / n.i. / 

T+S / n.i. n=71 / 40 m, 
30 f; age: 

Trust 
theories 

 communicati

on (no 

 trust (+ for task 

communication) 

 "the decrease in 

trust when the 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

communicati
on / IV 

Simulation/virt
ual robot 

range 14-53 
years, M=24 
years (SD=6) 
/ C 

communicati

on, text and 

verbal task 

communicati

on, text and 

verbal 
informal 

communicati

on) 

robot fails to 

perform the task is 

lower when [there] 

is text and verbal 

interaction between 

the robot and the 
participant" (p. 7) 

 "trust at the end of 

the experiment was 

higher than the 

initial trust when 

the participants had 

a text and verbal 

interaction 

communication 
related to the task" 

(p. 7) 
Freedy et al. 
(2007) / 
trust / III 

Functional 
(unmanned 
ground vehicle) 
/ ↓ / 
Simulation/virt
ual robot 

T+S  n=12 / 4 f; 
age: range 18-
25 years, most 
with several 
years of 
gaming 

Collaborati
ve 
performan
ce model 

 Robot 

competency 

 Time to complete 

mission (-) 

 Operator 

intervention (-) 

 Workload (-) 

 Introduction of an 

objective measure 

of trust dependent 

on the number of 

operator 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

experience, 1.5 
hours of 
training / L 
(15 
trials/participa
nt, 5 trials of 3 
competency 
levels in firing 
behavior each) 

 Trust  Human 

intervention (- 

/+-; appropriate 

level of trust 

needed) 

overrides/interventi

ons 

 Knowledge about 

robot competencies 

and characteristics 
(e.g., level of 

performance) can 

help to foster trust 

Hoffman and 
Breazeal 
(2004) / 
collaboration 
/ I 

Humanoid 
("Leo")/ ↓, ↔ / 
Physical robot 

T+S  n.i. / n.i. / C Dialog 
theory, 
joint 
intention 
theory 

 n.i.  n.i.  Proposal of a 

framework for 

dynamic 

collaboration 

 To establish 
successful HRTs, 

robots and humans 

have to share the 

same goals, 

communicate with 

each other and 

show commitment 

to jointly reach 

their goals 
Hoffman and 
Breazeal 
(2007) / 
collaboration 
/I 

Functional 
(Symon, 
forklift-like) / 
↔ / 
Simulation/virt
ual robot 

T+S  n=32 / 15 f; 
MIT 
community, 
laboratory / C 

n.i.  Robot 

anticipatory 

action 

 Task efficiency 

(+/n.s.) 

 Perceived robot 

contribution to 

team fluency (+) 

 Anticipatory action 

of a robotic 

teammate helps to 
increase task 

efficiency and 

improves "the 

perceived 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Perceived robot 

contribution to 

team success (+) 

 Perceived robot 

commitment (+) 

commitment of the 

robot to the team 

and its contribution 

to team's fluency 

and success" (p. 1) 

Koppula et 
al. (2016) 
/collaboratio
n / I 

Functional / ↓ / 
Physical robot 
(Kodiak (PR2)) 
/ 
simulation/virt
ual robot 

T+S  n=5 / n.i. / 
n.i. 

n.i.  Anticipatory 

planning 

 Perceived robot 

collaboration (+) 

 Perceived robot 

timing (+) 

 Satisfaction with 

robot (+) 

 Willingness to 

work with the 

robot (+) 

 Time savings (+ 

/ not stated 

explicitly) 

 Proposal of 

graphical model to 

anticipate human 

actions 

Lo et al. 
(2020) / 
communicati
on / V 

Functional /  ↔ 
/ Physical robot 

T+S  n=16 / 8 f, 
visitors or 
students at the 
campus / C 

n.i.  Robot motion 

planning 

approach 

(nested 
inference for 

corroborative 

acts (NICA) 

vs. legible 

motion) 

 Perceived clarity 

of intent (+) 

 Motion 
predictability and 

naturalness (+) 

 Perceived social 

appropriateness  

(+) 

 Perceived safety, 

intelligence, 

capabilities, 

 Proposal of model 

for multi-agent 

planning based on 

partner’s 
knowledge and 

behavior (NICA) 

 Experiment shows 

that NICA "is 

perceived as 

significantly more 

natural, socially 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

thoughtfulness, 

and fluency to 

team with of the 

robot (n.s. / +) 

appropriate, and 

fluent to team with, 

while being both 

more predictable 

and intent-clear" 

(p. 326) 
Marble et al. 
(2003) / 
collaboration 
/VII 

Functional 
(ATRVJr) / ↓ / 
Physical robot 

T+S  n=11 / 1 f, 10 
m; 4 expert 
users, 7 no or 
some prior 
experience; 
INEEL 
employees / C 

n.i.  Mixed-

initiative 

interaction 

 Adaptation to 

autonomy (not 

reported) 

 Perceived ease to 

predict outcome 

of control (not 

reported) 

 Utilization of robot 

autonomous 

capabilities 

depends on 

previous robotic 

experience of users 

(inexperienced 

users utilize 

autonomy more 

willingly) 

 Control challenges 

should be 

considered 
Nikolaidis et 
al. (2015) / 
(physical) 
coordination 
/ IV 

Functional / ↓ / 
Simulation/virt
ual robot, 
Physical robot 

T+S  n_1=36, 
n_2=24 / 1: 
recruited from 
MIT; 2: n.i. / C 

Shared 
mental 
models 

 team training 

(human-robot 

cross-training) 

 mental 

model 

convergence 

(+) 

 robot 

trustworthin

ess (+) 

 team fluency 

(+) 

 "cross-training 

yields statistically 

significant 

improvements in 

quantitative team 

performance 

measures, as well 

as significant 
differences in 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 team training 

(human-robot 

cross-training) 

without learning 

component in 
algorithm 

 objective 

and 

subjective 

measures of 

team fluency 
and 

participant's 

satisfaction 

(n.s. 

perceived robot 

performance and 

human trust" 

(p.1711) 

 "This study 
supports the 

hypothesis that the 

effective and fluent 

teaming ofa human 

and a robot may 

best be achieved by 

modeling known, 

effective human 

teamwork 

practices." (p. 
1711) 

Nikolaidis 
and Shah 
(2013) / 
(physical) 
coordination 
/ IV 

Functional / ↓, 
↔ / Physical 
robot 

T+S  n=36 / 
recruited from 
MIT / C 

Shared 
mental 
models 

 Team 

training 

(human-

robot cross-

training) 

 Mental model 

convergence (+) 

 Mental model 

similarity (+) 

 Team fluency 

(concurrent 

motion, idle 

time) (+) 

 Perceived robot 

performance (+) 

 Human trust (+) 

 A good way to 

achieve effective 

and fluent human-

robot teaming may 

be to model 

effective practices 

for human 

teamwork (p. 33) 

 Human-robot cross-

training  leads to 
"statistically 

significant 

improvements in 
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Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

quantitative team 

performance 

measures" (p. 33) 

(compared to 

standard 

reinforcement 
learning 

techniques) 
Nikolaidis et 
al. (2018) / 
communicati
on / I 

Humanoid 
(HERB) / ↔ / 
Video/image of 
a robot (video 
playback) 

T+S  n_1=151 
(from initial 
200-
exclusions) / 
1: 60% female, 
age: M=35 
years, from 
US, mTurk / C 

Game 
theory 

 Robot 

communicati

on 

 Trust in the robot 

(+ / n.s.) 

 Adaption to robot 

(+ / n.s.) 

 "enabling the robot 

to issue verbal 

commands is the 

most effective form 

of communicating 

objectives, while 

retaining user trust 

in the robot." (p. 

22:1) 
Shah et al. 
(2011) / 
(physical) 
collaboration 
/ I 

Humanoid 
(Nexi, a 
Mobile-
Dexterous-
Social (MDS) 
robot) / ↔ / 
Physical robot 

T+S  n=16 subjects 
/ 10 m; age: 
M=29.4 years 
(SD = 16.1), 
recruited from 
the MIT and 
Greater Boston 
area / C 

n.i.  Usage of 
robot plan 

execution 

system 

Chaski 

 Human idle time 
(-) 

 Time to complete 

task (n.s.) 

 Robot 

trustworthiness 

(+) 

 Team fluency 
(n.s.) 

 Perceived robot 

performance 

(n.s.) 

 Chaski (task-level 
executive for 

robots) is able to 

reduce human idle 

time significantly 

and by this 

supports the 

hypothesis that it 

can help to increase 

team performance 



 

Appendix            CXCIII 

Author / 
subcategory 
/ discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interactio
n4) / team 

setup5) 

Data basis / 
participants6) / 

time frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Major findings 

 Sharing of 

common goals 

(n.s.) 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot; 6) 

f=female, m=male; 7) C = cross-sectional, L = longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-5a. Studies Related to Moderating Effects in Multiple Member HRTs 

Author / 
Discipline1

) / Main 
Category 

Independent 
variable(s)2) 

Dependent 
variable(s)2) 

Moderator 
variable(s) 

Moderating 
effect2) 

Claure et 
al. (2020) 
/ V / Cat. 
1 

 Robot 

fairness 

 User trust 

 Perceived robot 

fairness 

 Human 

capabilities 

 (+ for weak 

performers; n.s. 

otherwise) 

Correia, 
Petisca, et 
al. (2019) 
/ IV / Cat. 
1 

 Robot goal 

orientation 

(performance

-driven vs. 

learning-

driven) 

 Competitivenes

s Index  

 McGill 

Friendship 

Questionnaire  

 Relationship 

Assessment 

Scale  

 Godspeed 

Questionnaire  

 Session number  Mixed results, 

see study for 

details 

Fraune 
(2020) / 
IV / Cat. 2 

 Group 

membership 

(ingroup vs. 

outgroup) 

 Agent type 

(human vs. 

robot) 

 Moral behavior 

(measured via 

noise blast 

volume) 

 Robot 

appearance 

(anthropomorphi

c vs. 
mechanomorphic

) 

 Anthropomorphi

c robots were 

treated more 

similarly to 
humans 

Fraune, 
Šabanović
, and 
Smith 
(2020) / 
IV / Cat. 2 

 Group 

membership 

(ingroup vs. 

outgroup) 

 Agent type 

(human vs. 
robot) 

 Moral behavior 

(measured via 

noise blast 

volume) 

 Team 

composition 

(1H3R vs. 2H3R 

vs. 3H1R) 

 Softer noise 

blasts are given 

to ingroup (than 

outgroup) 

members 

Jung et al. 
(2013) / 
VII / Cat. 
3 

 Back-

channeling 

 Team 

functioning 

 Perceived robot 

engagement 

 Perceived robot 

competence 

 Task complexity  (+) 

 (+) 

 (n.s.) 

You and 
Robert 
(2016) / 
IV / Cat. 3 

 Training  Individual 

performance 

 Team 

performance  

 Curiosity 

 Control 

 (+ /n.s.) 

 (n.s. /-) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI 

= space, VII = (urban) search and rescue, VIII = ethics; Studies are categorized based on a “best 

fit”-approach and might comprise aspects of more than one considered research discipline; 2) (-) 

= negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-5b. Empirical Studies Related to Moderating Effects in Dyadic HRTs 

Author / 
Discipline1) / 

Main 
Category 

Independent 
variable(s)2) 

Dependent 
variable(s)2) 

Moderator variable(s) Moderating 
effect2) 

Marble et al. 
(2004) / VII / 
2 (dyad) 

 Dynamic 

robot 

autonomy 

 Target 

detection 

 Situation 
awareness 

 Session number  (+) 

 (+) 

Marble et al. 
(2003) / VII / 
3 (dyad) 

 Mixed-

initiative 

interaction 

 Adaptation to 

autonomy 

 Perceived ease 

to predict 

outcome of 

control 

 Remote system 

experience 

 n.s 

 (-) 

Richert et al. 
(2016) / II / 
1 

 Personal 

characteristics 

 Robot 
characteristics 

 Task 

performance 

 Subjective behavior: 

o Stress 

o Cooperation 

 Not 

reported 

Notes: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, 

VI = space, VII = (urban) search and rescue, VIII = ethics; Studies are categorized based on a 

“best fit”-approach and might comprise aspects of more than one considered research discipline; 

2) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table 2-6a. Conceptual Integrative and Overarching Studies on Multiple Member HRTs 

Author / 
subcategory 
/ discipline2) 

/ team 
interaction2) 

Underlying 
theories 

Research framework3) Major findings4) 

Arnold and 
Scheutz 
(2017) / 
ethics / VIII 
/ T+S 

n.i. n.i.  There are many ethical questions currently 

unsolved in HRI 

 "Robots do not have to be teammates to work 
with a team, especially given the ethical and 

empirical question of how the whole range of 

physical presence with a robot can affect 

others." (p. 449) 
Le et al. 
(2023) 
integrative 
study / II / 
T+S 

Interdependence 
theory 

 

 Proposal of a framework for frontline 

employee-robot interdependence with a focus 

on customer perspective 

Ma et al. 
(2018) / 
HRT design 
/ I / T+S 

n.i. n.i.  Overview of important considerations for the 

design of HRTs, including team and teamwork 
components 

Ma et al. 
(2022) / 
metrics/HRT 
design / I / 
T+S 

n.i. n.i.  Proposal of metrics for HRTs that combines 

traditional HRI and new teamwork metrics 

Oleson et al. 
(2011) / 
integrative 

n.i.  
 
 
 

 Inappropriate levels of trust can lead to disuse 

and/or misuse of robots 

 Proposal of a framework for human-robot trust 
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Author / 
subcategory 
/ discipline2) 

/ team 
interaction2) 

Underlying 
theories 

Research framework3) Major findings4) 

study / IV / 
T+S 

 
L. P. Robert, 
Jr. (2018) / 
integrative 
study / IV / 
T+S 

Motivational 
theories of 
individual and 
team motivation 

n.i.  Proposal of "Motivational Theory of Human‒
Robot Teamwork" based on: emotional 

stability, extraversion, openness to experience, 

agreeableness, conscientiousness of a robot 

Seeber et al. 
(2020) / 
integrative 
study / I / 
T+S 

n.i. n.i.  Proposal of "research agenda for exploring the 

potential risks and benefits of machines 

[including (social) robots] as teammates" 

Smids et al. 
(2020) / 
ethics / IV / 
T+S 

Theories of 
meaningfulness 
in life and work 

n.i.  "Robotization of the workplace can have both 

significant negative and positive effects on 

meaningful work" (p. 503) 

 Thereby, meaningful work includes five key 

aspects: "pursuing a purpose, social 

relationships, exercising skills ald self-

development, self-esteem and recognition, and 

autonomy" (p. 503) 
Tamburrini 
(2009) / 
ethics / VIII 
/ T+S 

n.i. n.i.  Robot ethics is a growing field that gains 

importance with the developments of new 

robots and technology 
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Author / 
subcategory 
/ discipline2) 

/ team 
interaction2) 

Underlying 
theories 

Research framework3) Major findings4) 

You and 
Robert 
(2018c) / 
integrative 
study / I / 
T+S 

IPO model, trust 
theories 

n.i.  Proposal of working framework for HRTs 

based on IMOI (inputs-mediators-outputs-

inputs) framework 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2: Team 

interaction: T = task interaction, T+S = task & social interaction;  3)            = positive effect,              = negative effect,              = not significant,             

= effect not reported; 4) None of the studies provide information on robot morphology, robot level, or type of embodiment. Only two studies provide 

information on team setup, focusing on autonomous mixed teams (Ma et al., 2018) and human-directed robot teams (You & Robert, 2018c), 

respectively. 
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Table 2-6b. Empirical Integrative and Overarching Studies on Multiple Member HRTs 

Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

Burke et 
al. (2008) 
/ metrics / 
I 

Functional 
(Telemax UGV, 
Matilda UGV, 
Dragonrunner UV, 
AirRobot UAV) / ↓ / 
Physical robot 

T n=31 / 
participant
s from 
FEMA 
USAR 
teams in 
the US / C 
(in 2 
phases) 

n.i. n.i.  Proposal and 

validation of 

measurement 

instruments for 

assessment of 
usability (team 

member), incidents 

(observer) and 

team processes 

(observer) in HRTs 
Giachetti 
et al. 
(2013) / 
integrative 
study / III 

n.i. / n.i. / 
Simulation/virtual 
robot 

T / 
Combination
s of 
n_robot={2,
4} & 
n_team={6,
12} 

n.i. / n.i. / 
n.i. 

Shared 
mental 
models 

 Number of 

robots 

(2,4) 

 Team size 

(6,12) 

 Team 

centralizati

on (low, 

high) 

 Danger 

level (30%, 

70%) 

 Robot 

reliability 

(6, 10 

hours) 

 Performanc

e 

 Effectivene

ss 
(see major 
findings and 
study for 
detailed 
results and 
interaction 
effects) 

 Proposal and 

validation of agent-

based simulation 

model for the 

examination of 

team designs 

 "there are limits to 

the number of 

robots that a team 

can effectively 

manage" (p. 25) 

 "larger teams have 

more robust 

performance over 
the noise [i.e., not 

controllable] 

factors" (p. 15) 

… 
… 
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Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

 "robot reliability is 

critical to the 

formation of 

human-robot 

teams" (p. 15) 

 "high centralization 

of decision-making 

authority created 

communication 

bottlenecks at the 

commander in large 

teams" (p. 15) 
Paluch et 
al. (2022) 
/ 
integrative 
study / II 

n.i. / n.i. / n.i. T+S / n.i. n=36 / 
58% f, 
age: 24-61 
years, 
experience 
with 
service 
robots, 
working in 
service 
industry / 
C 
(qualitativ
e 
interviews
) 

Appraisal 
theory 

 

 Proposal of a 

framework on the 

willingness to work 
with robots to 

better understand 

employee-robot 

interactions, 

identifying 

attributes and 

employee personas 

that shape the 

appraisal of service 

robots in service 

contexts 



 

Appendix        CCI 

Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

Pina et al. 
(2008) / 
metrics / I 

n.i. /  ↓ / n.i. T+S n=16 / 
age: range 
19-49 
years / C 
(four 8-
minute 
sessions 
with 
different 
robotic 
team 
sizes) 

n.i. n.i.  Proposal of 

generalizable 

metric classes for 

the evaluation of 

HRTs and 
illustration of need 

for these with case 

study 

L. P. 
Robert, Jr. 
and You 
(2015) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S n=30 (15 
teams) / 
14 f; age: 
M=24.7 
(SD=7.48
); from 
large 
university 
in US / C 
(laborator
y) 

n.i. n.i.  "subgroups formed 

between humans 

and their robots 

were negatively 

correlated with 

various team 
outcomes" (p. 1) 

You and 
Robert 
(2018a) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S n=114 (in 
57 teams) 
/ 51 m; 
age: 
M=23 
years 
(SD=5.3); 
from 
online 

Media 
richness 
(channel 
expansion 
theory, 
cognitive 
model of 
media 
choice, 

 

 Emotional 

attachment of 

teams to robots 

leads to better 

performance 

 "Both robot and 

team identification 
increased a team's 

… 

n_robot
s = {2, 
4, 6, 8} 
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Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

subject 
pool at a 
Midwester
n 
university 
in US / C 
(duration 
with 
robots 
approx. 
25-30 
minutes) 
(between-
subjects) 

media 
synchronicity
), technology 
acceptance 
model, 
unified 
model of 
technology 
acceptance 
and use of 
technology, 
social 
identity 
theory 

emotional 

attachment to its 

robots" (p. 377) 

You and 
Robert 
(2019b) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S n=108 
(54 teams) 
/ 54 men; 
age: 
M=24 
years; 
from 
subject 
pool at a 
Midwester
n 
university 
in US / C 
(duration 
approx. 
25-30 
minutes)  

Social 
categorizatio
n and 
attraction 
theories, 
trust theories 

 
 
 
 
 

 "robot identification 

increased trust in 

robots and team 

identification 

increases trust in 

one’s teammates" 
(p. 244) 

 "Trust in robots 

increases team 

performance while 

trust in teammates 

increases 

satisfaction" (p. 

244) 
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Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

You and 
Robert 
(2019a) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S n=88 (44 
teams) / 
42 f; age: 
M=23.6 
(SD=4.1); 
from large 
university 
in US / C 
(duration 
approx. 
25-30 
minutes)  

Social 
identity 
theory, trust 
theories 

 

 Subgroups can form 

in HRTs (when 

humans identify 

with their robots) 

 "Robot 

identification and 

team identification 

moderate … 

negative effects of 

subgroup formation 

on teamwork 

quality and 

subsequent team 

performance" (p. 1) 
You and 
Robert 
(2022a) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S /  n_1=88 
(44 
teams), 
n_2=112 
/ 1: 42 f; 
age: 
M=23.6 
(SD=4.1); 
from large 
university 
in US; 2: 
44f; age: 
M=41.2 
(SD=11.5
); 
experience
d in 

n.i. 1:  
 
 
 
 
 
 
 
 
2: Qualitative online study 

 "As physically 
embodied AI, robots 

are able to elicit 

strong emotional 

bonds from 

humans, leading to 

subgroups in 

human– robot 

teams." (p. 14) 
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Author / 
subcategor

y / 
discipline2) 

Robot morphology2) 
/ robot level3) / 

type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis 
/ 

participant
s6) / time 
frame7) 

Underlying 
theories 

Research framework8) Major findings 

working 
with 
robots / C 
(laborator
y, 
between-
subjects; 
survey) 

You and 
Robert 
(2022b) / 
integrative 
study / IV 

Functional/humano
id (adapted from 
the LEGO® 
Mindstorms® EV3 
sets) / ↓ / Physical 
robot 

T+S /  n=60 (30 
teams) / 
32 f, age: 
M=24 
years 
(SD= 5.88 
years) / C 
(laborator
y, 
between-
subject) 

Team 
identification 
theory 

 

 Proposal and 

validation of 

theoretical 

framework of team 

robot identification 

theory (TRIT) 

 Team identification 

in HRTs leads to 

better performance 

and team viability 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8)              = positive effect,              = negative effect,              = not significant,             = effect not reported  
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Table 2-6c. Empirical Integrative and Overarching Studies on Dyadic HRTs 

Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) 

/ robot 
level3) / type 

of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Research framework8) Major findings9) 

Visser et al. 
(2006) / 
metrics / 
I/III 

 n.i. / ↓ / n.i. T+S n=12 / 4 f, 
age: range 
18-25 years 
/ C (3x5x6 
mixed 
factorial 
design (2 
within, 1 
between)) 

n.i.   Proposal and 

validation of 

measurement 

methodology for 

team 
performance of 

HRTs 

You and 
Robert 
(2018b) / 
integrative 
study / II 

Functional 
(PR2) /  ↓ / 
Image/video 
of robot 

T+S n=200 / 77 
m, age: 
range 18-68 
years (M= 
36.5, SD= 
10.77), 
mTurk, US / 
C  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Human-robot 

(work-style) 

similarity helps to 

increase trust in a 

robot, leading to 

willingness to 
work with robots 

and ultimately to 

preference for 

robotic co-worker 

rather than 

human co-worker 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8)              = positive effect,              = negative effect,              = not significant,             = effect not reported ; 9) None of the studies 

indicated underlying theories 
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Supplementary Material A 

This supplementary material details the literature review and coding process, including 

information on  

(1) Search terms and publication organs reviewed.  

(2) Exclusion criteria. 

(3) Efforts to address potential biases. 

(4) Coding scheme. 

 

Search terms and reviewed publication organs 

As mentioned in the introduction (chapter 2.1), we conducted online searches through Google 

and EBSCO using the search terms listed below. Further, we searched HRI, robotics, and 

computer science conferences and journals for relevant studies. We also conducted forward and 

backward searches in any manuscripts initially identified in the search. 

 

Search Terms on Google and EBSCO 

“human-robot team AND collaboration” 

“human-robot team AND cooperation” 

“human-robot team AND communication” 

“human-robot team collaboration” 

“human-robot team cooperation” 

“human-robot team communication“ 

“human-robot team performance” 

“human-robot team” 

“robot AND collaboration” 

“robot AND group” 

“robot AND team” 
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Reviewed Conferences 

AAAI Fall Symposia 

AAAI Spring Symposia 

ACM/IEEE International Conference on Human-Robot Interaction (HRI) 

IEEE International Conference on Robotics and Automation (ICRA) 

IEEE International Conference on Systems, Man and Cybernetics 

IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness 

and Decision Support (CogSIMA) 

IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) 

IEEE International Workshop on Safety, Security and Rescue Robotics 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 

IEEE-RAS International Conference on Humanoid Robots (Humanoids) 

International Conference on Automation Science and Engineering (CASE) 

International Conference on Autonomous and Intelligent Systems (AIS) 

International Conference on Autonomous Robots and Agents 

International Conference on Control Automation Robotics & Vision 

International Conference on Robot and Human Interactive Communication (RO-MAN) 

International Symposium on Collaborative Technologies and Systems 

RO-MAN 

Reviewed Journals 

ACM Computing Surveys 

ACM Transactions on Human-Robot 

Interaction 

ACM Transactions on Human-Robot 

Interaction 

ACM Transactions on Intelligent Systems and 

Technology 

ACM Transactions on Interactive Intelligent 

Systems 

Advances in Human-Computer Interaction 

Artificial Intelligence Review 

Autonomous Robots 

Cognition, Technology and Work 

Cognitive Systems Research 
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Computer Speech and Language 

Computers in Human Behavior 

Engineering Applications of Artificial 

Intelligence 

Group & Organization Management 

IEEE Access 

IEEE Intelligent Systems 

IEEE Robotics and Automation Letters 

IEEE Sensors Journal 

IEEE Transactions on Automation Science 

and Engineering 

IEEE Transactions on Control Systems 

Technology 

IEEE Transactions on Cybernetics 

IEEE Transactions on Haptics 

IEEE Transactions on Human-Machine 

Systems 

IEEE Transactions on Industrial Electronics 

IEEE Transactions on Robotics 

IEEE Transactions on Systems, Man, and 

Cybernetics  

Intelligent Service Robotics 

International Journal of Computer Vision 

International Journal of Human-Computer 

Studies 

International Journal of Humanoid Robotics 

International Journal of Robotics Research 

International Journal of Social Robotics 

Journal of Artificial Intelligence Research 

Journal of Field Robotics 

Journal of Intelligent and Robotic Systems 

Journal of Management Information Systems 

Journal of Strategic Information Systems 

Proceedings of the ACM on Human-Computer 

Interaction 

Proceedings of the IEEE 

Robotics and Autonomous Systems

Exclusion Criteria 

For the selection of studies (see chapter 2.1 and Figure 2-1), manuscripts were excluded 

according to the following criteria: 

I. Type of Study 

a. Workshop proposal/extended abstract: These papers tend to present little to no 

empirical research and instead provide an overview or brief introduction to a 

topic. Due to their brevity and specific focus, we exclude them. 

b. Reviews/surveys: Excluding these publications helps ensure that we focus 

directly on conceptual and empirical studies of human-robot teams (HRTs). 
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c. Books/dissertations: Many books and dissertations do not undergo rigorous peer 

review, so we excluded them. 

d. Press/praxis articles: In order to focus the literature review on scholarly 

contributions, we excluded press/praxis articles. 

II. Embodiment of Robots 

a. Studies of conversational agents: We limit our review to studies that investigate 

embodied robots, rather than conversational agents. Disembodied agents have 

limited communication channels compared to embodied agents (Deng et al., 

2019), which in turn may limit the generalizability of results. However, in our 

review we include physical robots as well as simulations/virtual robots and 

videos/images of robots, which are often used in online studies.  

b. Studies of intelligent machines or computers: We exclude studies of intelligent 

machines or computers, in order to focus our review on HRTs with both human 

and robotic team members. 

III. Focus Areas 

a. Studies of human–robot interaction and human–robot collaboration: As we 

explain in chapter 2.2.2.3 , significant differences mark HRI, human-robot 

collaboration (HRC), and HRTs. With our focus on HRTs, we exclude studies of 

HRI or HRC. 

b. Studies of robot–robot teams: In order to focus on studies of teams that include 

both human and robot members, we exclude studies that include teams of robots 

only. 

IV. Team Size & Interaction Focus 

Some aspects of task interdependence may arise in dyadic task teams, in which 

one robot and one human interact to achieve their goals, but they represent the 

broader field of HRC, so we do not consider studies of dyadic task teams in depth. 

Details of these studies can be found in supplementary material B. 

These exclusion criteria left us with studies in the following categories: 

 Conceptual articles of multiple member HRTs, including articles on 

measurement/taxonomy development. 
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 Conceptual articles on dyadic collaborative HRTs, including articles on 

measurement/taxonomy development. 

 Experimental studies with functional, humanoid, or android robots engaged in multiple-

member HRTs. 

 Experimental studies with functional, humanoid, or android robots engaged in dyadic 

collaborative HRTs. 

 

Considerations of Biases 

During our literature review we considered a number of biases (selection bias, data extraction 

bias, publication bias) in an effort to minimize them (see chapter 2.4.3). Detailed considerations 

are presented below. 

Selection bias 

To minimize selection bias, which is related to including only major studies in a domain or 

studies that are most consistent with a researcher’s views (Nightingale, 2009), we established 

specific search, exclusion, and inclusion criteria, as detailed above, and reviewed all studies that 

explicitly mentioned human–robot teams, as detailed in the “Human–Robot Teams” section, 

providing an overview of the different viewpoints identified in previous research. The first 

search step was thus independent of our derived definition of human–robot teams. 

Data extraction bias 

Data extraction bias “can arise during the process of the review when data are extracted from 

included studies” (Nightingale, 2009, p. 382). The author team carefully discussed and 

compared individual findings from the studies during the process of writing the overview. 

Publication bias 

Publication bias results from an unbalanced, unrepresentative inclusion of published studies, 

relative to all studies conducted, which can often impose a bias toward studies with significant 

results (Rothstein et al., 2006). It is difficult to avoid completely (Jager et al., 2020), but 

because conferences publish more preliminary research and even non-significant results, we 

expect a less pronounced publication bias among these submissions and explicitly include 

conference publications in our review (see the list of reviewed conferences). However, as 

publication bias occurs before and during the scientific review process, we acknowledge the 

continued possibility that our review suffers from a publication bias. 
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Coding Scheme 

We coded the studies and papers we found in our literature research according to the IPO 

framework. As a first step, we used a keyword search of the IPO framework subcategories in 

the abstract and main bodies of the papers and reviewed the papers in order to assign them to 

the framework elements (see Figure 2-5). It was possible for papers to be assigned to more than 

one element of the framework. In this case, coding results were discussed until a concensus was 

reached. 

Subsequent analogous keyword searches were used to identify disciplines (cognitive science, 

ethics, HRI, management, military, robotics, space, (urban) search and rescue), robot 

morphology (functional, humanoid, android, animal-like), and type of embodiment (physical 

robot, simulation/virtual robot (interaction), image/video of robot (observation), no 

embodiment). 

For the robot level (robot on lower level, robot on same level, robot on higher level), team 

interaction (task interaction, task & social interaction), team setup, and study time frame (cross-

sectional, longitudinal), study designs described in the papers were reviewed. 
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Supplementary Material B 

This supplementary material includes details on the reviewed studies that claim to be on the topic of HRTs but only consider dyadic task teams 

(see definition in chapter 2.2.2.3). As described in chapter 2.2.2.3 and in supplementary material A, while some aspects of task interdependence 

might be present in these dyads, they overall fall into the broader field of general human-robot collaboration and are therefore excluded from 

our review. Since some researchers consider such dyadic task teams to be HRTs, we nonetheless wanted to provide interested readers with the 

study details. The structure of this supplementary material follows the proposed framework from our manuscript (see chapter 2.2.3). 
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Table B1. Empirical Studies on Dyadic Task Teams Related to Intra-member Team Characteristics and Their Effects 

Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key findings 

S. D. Jiang 
(2019) / 
robot 
behavior / 
VII 

Functional 
(simulated 
Pioneer 3-AT 
robot) / ↓ / 
Simulation/virtual 
robot 

T n=35 / 16 f, 
age: range 
18-36, 
mostly 
students / C 

Regret 
theory 

 Human-robot 

teaming 

strategy 

(guarded-

teleop, mixed 
-initiative) 

 Task 

performance 

(+ for 

mixed-

initiative) 

 Operator's 

interaction 

with robot 

(+ / n.s. for 

mixed-

initiative) 

 "search performance of 

the human-robot team 

was improved when the 

robot is allowed to seize 

initiative from the 
human operator" (p. 

355) 

 "robot interventions 

were not seen as 

interference, and 

majority of the 

participants commented 

robot interventions were 

“useful”" (p. 355) 
Singh and 
Heard 
(2022) / 
robot 
behavior, 
human 
preferences 
and 
behavior / 
V 

n.i. / n.i. / n.i. n.i. / n.i. n=9 (2 
excluded in 
final results) 
/ 4f; age: 
M=26.3 / C 
(15 min 
training + 
52.5 min 
trial + 5 min 
break + 
52.5 min 
trial; mixed 
design) 

n.i.  Workload 
(underload, 

normal load, 

overload; only 

used to test 

the system 

architecture, 

not connected 

to DV) 

 Reinforcement 
learning agent 

type (task + 

interaction , 

task + 

 NASA-TLX 
(highest for 

task + 

interaction 

+ human 

workload) 

 Comfort 

(n.s. 

difference 

between 
agents) 

 Trust (n.s. 

difference 

 Proposal and validation 
of human-aware system 

architecture using 

reinforcement learning 

that "incorporates 

human states into the 

robot's decision-making 

process to achieve more 

fluid human-robot team 

dynamics and improve 

the overall team 

performance" (p. 268) 
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Author / 
subcategory 

/ 
discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Underlying 
theories 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key findings 

interaction + 

human 

workload) 

between 

agents) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant 
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Table B2a. Conceptual Studies on Dyadic HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / subcategory 
/ discipline1) 

Robot morphology2) / robot 
level3) / type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Key findings6) 

Noormohammadi-Asl 
et al. (2022) / roles 
of humans and 
robots, leadership / II 

n.i. / n.i. / n.i. T / n.i.  Proposal and validation of "a task selection and planning algorithm 

that enables the robot to consider the human’s preference to lead, 

as well as the team and the human’s performance, and adapts itself 

accordingly by taking or giving the lead" (p. 1244) 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot; 6) None 

of the studies indicated underlying theories 
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Table B2b. Empirical Studies on Dyadic HRTs Related to Inter-member Team Characteristics and Their Effects 

Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level43 / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key findings9) 

Hoeniger 
(1998)  / 
roles of 
humans and 
robots, 
autonomy 
and control / 
V 

Functional / ↓ / 
n.i. 

T n.i. / n.i. / 
n.i. 

 n.i.  n.i.  Proposal of robot control 

scheme to find the optimal mix 

between robot autonomy and 

HRI 

Howard and 
Cruz (2006) / 
leadership / II 

n.i. / ↓ / 
Simulation/virtual 
robot 

T n unknown / 
n.i. / C 

 Directive 

leadership 

 Task 

execution time 

(-) 

 Human 

workload (+) 

 To determine appropriate 

leadership styles and robot 

behavior in HRTs, human 

leadership approaches based 

on the situational context can 

be used as a basis 
Schermerhorn 
and Scheutz 
(2009) / 
autonomy 
and control / 
I 

Functional 
(Pioneer P3AT) / 
↓ / 
Simulation/virtual 
robot 

T n=10 / 
undergrad 
students/ C 
(within-
subject 
design) 

 Autonomy of 
robot (based on 

independent 

decision making 

and acting) 

 Task 
performance 

(+) 

 "humans not only accept robot 
autonomy in the interest of the 

team, but also view the robot 

more as a team member and 

find it easier to interact with, 

despite a very minimalist 

graphical/speech interface. 

Moreover, we find evidence 

that dynamic autonomy 

reduces human cognitive load." 

(p. 63) 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level43 / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key findings9) 

Shanks et al. 
(2021) / roles 
of humans 
and robots / 
II 

Humanoid (Nao) 
/ ↑, ↔, ↓ / Pre: 
Physical robot, 1, 
2, 3: Image/video 
of robot 

T /  n_pre=13, 
n_1=97, 
n_2=200, 
n_3=120  / 
pre: 100% f, 
age: 
M=83.62; 1: 
45% f, age: 
M=20.78; 2: 
48% f, age: 
M=34.80; 3: 
57% f, age: 
M=35.02 / 
C (pre: 
survey; 1: 
lab 
experiment,  
2,3: online 
experiment) 

 Pre: Presence of 

robot 

 Pre: 

Favorability (-

) 

 Behavioral 

response (-) 

 Dyadic medical HRTs with 

robotic assistants are preferred 

over such teams with a robotic 

leader. Customers further are 

willing to pay more to upgrade 
from a robot-led team to a 

human-led team when their 

first interaction is with a robot-

led team. 

 1: Leader 

(human vs. 

robot) 

 1: Behavioral 

intentions (- 

for robot) 

 Power relative 

to assistant (- 

for robot) 

 2: Leader 

(human vs. 

robot) 

 2: Behavioral 

intentions (+ 

for human) 

 3: Leader 

(human vs. 

robot) 

 3: Behavioral 

intention 

(switch to 

different 

team) (+ for 

robot) 

J. Wang and 
Lewis (2007) 
/ autonomy 
and control / 
VII 

Functional (P2DX 
robots) / ↓ / 
Simulation/virtual 
robot 

T n=14 / age: 
range 19-35, 
recruited 
from 
University of 
Pittsburgh 
community, 
none with 
prior 

 Mixed initiative 

(+) 

 Human 

interaction (+) 

 Performance  Mixed initiative teams of 

robots are able to perform 

better (w.r.t. search radius and 
identified victims) than teams 

in which an operator controls 

robots individually 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level43 / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) 

/ time 
frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key findings9) 

experience 
with robot 
control / C 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant; 9) None of the studies indicated underlying theories  
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Table B3a. Conceptual Studies on Dyadic HRTs Related to Team Processes and Their Effects 

Author / subcategory 
/ discipline1) 

Robot morphology2) / robot 
level3) / type of embodiment 

Team 
interaction4) 

/ team 
setup5) 

Key findings6) 

Angleraud et al. 
(2019) / (physical) 
coordination / V 

Functional / ↔ /n.i. T  Proposal and first tests of model for action plan generation and 

dynamic adaption 

DelPreto and Rus 
(2019) / (physical) 
coordination, 
collaboration / V 

Functional / ↔ / Physical 
robot 

T  Proposal and validation of a control system to support lifting tasks 

in HRTs 

Hoeniger et al. 
(1997) / (physical) 
coordination / V 

 Functional / ↓ / n.i. T  HRTs are seen as “solution for meeting future requirements in 

highly flexible manufacturing systems” (p. 899) 

T. Iqbal et al. (2018) 
/ collaboration / V 

n.i. / ↓ / n.i. T  Presentation of a "supervised activity segmentation algorithm that 

can detect the start and end time of activities" (p. 1) 

Laengle et al. (1997) 
/ collaboration / I 

n.i. / ↓, ↔ / Physical robot T  Concept of human-robot teams 

 Four key issues to be analyzed: communication, interpretation of 

transmitted data, coordination, cooperation 
C. Liu and Tomizuka 
(2014) / (physical) 
coordination / V 

Functional / ↔ / Simulation T  Combination of human flexibility and robotic productivity in 

manufacturing is promising. A challenge to be solved is the safety 

of an environment. (p. 1386) 

 Proposal of a two-layer interaction model as basis for the modeling 
and controller design method of cooperative robots (p. 1391) 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot; 6) None 

of the studies indicated underlying theories 
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Table B3b. Empirical Studies on Dyadic HRTs Related to Team Processes and Their Effects 

Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Anima et al. 
(2019) / 
collaboration / I 

Humanoid 
(Baxter) / ↔ / 
Physical robot 

T / n.i. n.i. / n.i. / n.i.  n.i.  n.i.  Proposal and 

validation of 

human-robot 

collaborative 

architecture that 
enables dynamic 

task allocation 
Chan et al. 
(2022) / 
collaboration / V 

Chan et al. (2022) 
/ collaboration / 
V 

T /  n=26 / 7f / C  Interaction 

method 

(human-only vs. 

joystick-

predefined vs. 

AR-predefined 

vs. joystick-

unspecified s. 

AR-unspecified) 

 Task 

completion 

time (- for AR-

unspecified) 

 Robot 

utilization (+ 

for AR-

unspecified) 

 NASA-TLX  (- 

for AR-

unspecified) 

 System 

Usability Scale 

(+ for AR-

unspecified) 

 User 

Experience 

Questionnaire 

(+ for both 

AR-conditions) 

 Proposal and 

validation of a 

"wearable 

augmented reality 

(AR) system" (p. 1) 

 Findings indicate 

that "subjectively, 

the AR interface 
feels more novel 

and a standard 

joystick interface 

feels more 

dependable to 

users. However, the 

AR interface was 

found to reduce 

physical demand 

and task completion 

time, while 
increasing robot 

utilization." (p. 1) 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Guznov et al. 
(2020) / 
communication / 
IV/VII 

Guznov et al. 
(2020) / 
communication / 
IV/VII 

T /  n=88 / 50f, age: 
M=27.61 
(SD=9.49) / C (2 
(transparency) x 2 
(team orientation) 
mixed design) 

 Transparency 

 Team 

orientation 

 Participants' 

supervisory 

performance 

(+,n.s.) 

 State trust 

(n.s., -) 

 Perceived 

accuracy (n.s., 

n.s.) 

 Situation 

awareness 

(n.s., -) 

 Workload (+,-) 

 Increased 

transparency can 

have both benefits 

and limitations and 

should thus be 
implemented 

carefully 

 "Team orientation 

manipulation 

showed to be 

ineffective (and 

potentially 

detrimental)" (p. 

650) 
Harriott et al. 
(2011) / 
collaboration / III 

Functional 
(Pioneer 3-DX 
robot teammate) 
/ ↑ / Physical 
robot 

T n=28 / 14 m, age: 
M=25.2 years 
(range 18-57); at 
least college 
education, 
recruited by flyers 
around Vanderbilt 
area, average 
robotic experience: 
2.7 (scale 1-9) / C 
(90 minutes) 

 Team 
constellation 

(HHT vs. HRT) 

 Correctness of 
responses to 

the secondary 

task questions 

(n.s.) 

 Workload 

ratings (-) 

 Post-

experimental 
NASA-TLX 

responses (n.s.) 

 Physiological 

data (-) 

 Working in a HRT 
was able to reduce 

the workload 

compared to a 

human team  

 Human 

Performance 

Moderator 

Functions (HPMFs) 

might be used also 
for HRTs 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Harriott et al. 
(2013) / 
collaboration / I 

Functional 
(Pioneer 3-DX) / 
↔ / Physical 
robot 

T n_1=28, n_2=36 / 
1: 14m, age: range 
18-57 years; H-H 
condition: M=24.2 
(SD=10.3),H-R 
condition: 26.2 
(SD=7.8); 2: 19 m, 
age: range 18-56 
years; H-H 
condition: M=27.4 
(SD=8.4),H-R 
condition: 24.1 
(SD=4.6) / C 
(mixed-design) 

 Presence of 

robot 

 Objective 

workload 

measurement 

(+) 

 Subjective 

workload 

measurement  

(-) 

 Participants 

perceived the 

physical workload 

in human-human 

teams as higher 
than in human-

robot teams 

 Physilogically 

measured physical 

workload was 

higher for human-

robot teams than 

for human-human 

teams 
Kennedy et al. 
(2007) / 
collaboration /III 

Functional 
(iRobot B21r) / 
↔ / Physical 
robot 

T n.i. / n.i. / n.i.  n.i  n.i  Proposal of model 
using spatial 

information for 

collaboration 

between humans 

and robots 
Kwon et al. 
(2020) / 
collaboration / I 

Functional (Fetch, 
Fetch Robotics) / 
↔ / Image/video 
of robot; physical 
robot 

T n_online=50, 
n_lab=10 / online: 
32% f; age: 
median=33 years, 
participants from 
Stamford and 
mTurk; lab: 2 f; 
age: range 20-36 
years, participants 
from Stamford / C 

 Risk-aware 

human model 

 Safety of 

collaboration 

(+) 

 Efficiency of 

collaboration 
(+) 

 A risk-aware model 

helps to predict 

suboptimal human 

behavior and "to 

improve safety and 

efficiency during 
collaboration" (p. 8) 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Ramakrishnan et 
al. (2017) / 
(physical) 
coordination / V 

Functional (PR2) 
/ ↔ / 
Simulation/virtual 
robot, Physical 
robot 

T n=48 / recruited 
from university / C 

 adaptive 

perturbation 

training 

(AdaPT) 

 Performance 

(+) 

 "perturbation-

trained teams using 

AdaPT 

outperformed 

perturbation-trained 
teams using Q-

learning with 

regard to both 

objective [...] and 

subjective measures 

of performance for 

multiple task 

variants" (p. 535) 
Reed and 
Peshkin (2008) / 
collaboration / I 

n.i. (probably 
functional based 
on descriptions) / 
↔ / Physical 
robot 

T n_1= 22, n_2=22 / 
1: 7 m, 1 left-
handed, age: range 
18-24 years, 2: 10 
m, 8 left-handed, 
age: range 18-24 
years; from 
Northwestern 
University's 
Psychology 
participant pool / C 

 Work with 

partner (human 

vs. robot) 

 Speed of task 

execution (- / 

n.s. for human 
/ robot) 

 Specialization (and 

resulting better 

performance) in 
human teams can 

be done through 

only haptic 

communication 

 Haptic interaction 

with robots did not 

lead to similarly 

good results 

(participants were 

slower and not as 
specialized) 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Riedelbauch and 
Henrich (2017) / 
(physical) 
coordination / V 

Functional (KUKA 
LWR IV) / ↔ / 
Physical robot 

T n.i. / n.i. / n.i.  n.i.  n.i.  Proposal of 

framework and 

system architecture 

for coordination in 

HRTs through local 
world state 

observation 
Scheggi et al. 
(2016) / 
(physical) 
coordination / V 

Functional 
(Pioneer LX 
robot) / ↑, ↔ / 
Physical robot 

T n=15 / 12 m; age: 
range 23-52 years, 
13 right-handed / C 

 n.i.  n.i.  Proposal of haptic 

navigation in HRTs 

with wearable 

haptic feedback 

devices for human 

partners 
Schoen et al. 
(2020) / 
collaboration / V 

Functional (UR5) 
/ ↔ / simulation 
/ physical robot 

T /  n_1=8, 22_2=8 / 
1: 3f; age: 
M=27.63 
(SD=21.61); 2: 2f; 
age: M=21 
(SD=0.93); both: 
holding/pursuing a 
degree in either 
industrial or 
mechanical 
engineering / C 

 n.i.  n.i.  Proposal and 

validation of an 

"end-to-end task 

authoring 
environment that 

assists […]in 

translating existing 

manual tasks into 

plans applicable for 

human-robot teams" 

(p. 1194) 
Talamadupula et 
al. (2010) / 
(physical) 
coordination / 
VII 

Functional 
(Pioneer P3-AT) / 
n.i. / n.i. 

T n.i. / n.i. / n.i.  n.i.  n.i.  Proposal and 

experimental 

validation of an 

open world planner 
for HRTs 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

Unhelkar et al. 
(2020) / 
communication / 
V 

Functional 
(Universal Robot 
10 with Robotiq 
gripper) / ↔ / 
Physical robot 

T n=15 / 5 m, age: 
median=26 years / 
C 

 Robot 

communication 

 Shared team 

reward (+) 

 Proposal of 

communication 

famework for roobts 

"to decide if, when, 

and what to 
communicate while 

performing 

sequential tasks 

with humans." (p. 

336) 

 Confirmation of 

framework 

capabilities in 

experiments 
van Zoelen, van 
den Bosch, and 
Neerincx (2021) 
/ collaboration / 
VII 

Functional / ↔ / 
Simulation/virtual 
robot 

T /  n=24 (of which 4 
were completely or 
partially excluded 
from final analyses) 
/ 17 f; age: 
M=24.8 
(SD=2.47); with 
university degree in 
STEM field; most 
with no to little 
experience with 
HRC / C (8 runs in 
total, mixed 
design) 

 n.i. (analysis of 
screen captures 

and notes for 

identification of 

interaction 

pattern) 

 n.i.  "More participant 
adaptation 

improved robot 

learning and thus 

team level learning" 

(p. 1) 

 "The identification 

of interaction 

patterns support 

awareness among 
team members, 

providing the 

foundation for 

human-robot 

communication 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

about the co-

adaptation" (p. 1) 
van Zoelen, van 
den Bosch, 
Rauterberg, et al. 
(2021) / 
(physical) 
coordination / 
VII 

Functional / ↑, ↔, 
↓ (all 
configurations 
occured during 
experiment) / 
Physical robot 

T /  n=18 / 9 f, age: 
M=23 (SD=2.9), 
students at 
university / C (four 
rounds per 
participant) 

 n.i. (video 

analysis for 

identification of 

interaction 
patterns) 

 n.i.  Call for 

development of a 

"language of 

interaction patterns 
that can be used to 

describe tacit co-

adaptation in 

human-robot 

collaborative 

contexts" (p. 1) in 

further studies 
Vats et al. (2022) 
/ collaboration / 
V 

Functional 
(Franka-Emika 
Panda robot) / 
n.i. / 
Simulation/virtual 
robot, Physical 
robot 

T / n.i. n.i. / n.i. / n.i.  n.i.  n.i.  Proposal and 

validation of 

classifier to help 

facilitate learning 

and task allocation 
in HRTs 

F. Zhao et al. 
(2020) / 
collaboration / I 

Functional (UR3e 
collaborative 
robot) / ↔ / 
Physical robot 

T /  n=31 / 6 f, age: 
range 18–21 years 
(M = 20.87 , SD = 
2.42), students 
with manufacturing 
experience or 
majoring in 
mechanical or 
industrial 
engineering / C 

 Level of task 

interdependence 

(pooled, 

sequential, 

reciprocal) 

 Human 

worker’s 

mental states 

(stress, - for 

reciprocal) 

 Task 

performance 

(+ for 

reciprocal) 

 "In teams with 

reciprocal 

interdependence, 

participants 

perceived the robot 

more as a teammate 

and completed the 
task more 

efficiently" (p. 

1149) 
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Author / 
subcategory / 

discipline1) 

Robot 
morphology2) / 
robot level3) / 

type of 
embodiment 

Team 
interaction4) 

/ team 
setup5) 

Data basis / 
participants6) / 

time frame7) 

Independent 
variable(s)8) 

Dependent 
variable(s)8) 

Key finding9) 

(laboratory, 
between-subject) 

 Perceptions of 

the robot 

(safety, n.s.) 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction, n.i. = no information provided by author(s); 5)     ⃝ = human, ▯ = robot; 6) 

f=female, m=male; 7) C = cross-sectional, L = longitudinal; 8) (-) = negative effect, (+) = positive effect, (n.s.) = not significant; 9) Most of the 

studies did not indicate underlying theories, only Kwon et al. (2020) indicate reliance on cumulative prospect theory, Ramakrishnan et al. (2017) on 

learning theory, and (Talamadupula et al., 2010) on decision theory. 
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Table B4. Empirical Studies Related to Moderating Effects in Dyadic HRTs 

Author / Discipline1) / 
Main Category 

Independent variable(s)2) Dependent variable(s)2) Moderator variable(s) Moderating 
effect2) 

Reed and Peshkin 
(2008) / I / 3 (dyad) 

 Work with partner 

(human vs. robot) 

 Speed of task execution  Presence of human confederate 

(not part of the active team) 

 (-) 

Shanks et al. (2021) / 
II / Cat. 2 (dyad) 

 2: Leader (human vs. 
robot) 

 2: Behavioral intentions 
(+ for human) 

 2: Power distance belief  (- for lower PDB 
levels) 

Notes: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) (-) = 

negative effect, (+) = positive effect, (n.s.) = not significant 
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Table B5a. Conceptual Integrative and Overarching Studies on Dyadic HRTs 

Author / subcategory 
/ discipline1) 

Robot morphology2) / robot 
level3) / type of embodiment 

Underlying theories4) Key findings5) 

Johnson et al. (2014) 
/ HRT design / VII 

Humanoid (Atlas) / ↓ / 
Simulation/virtual robot 

Joint activity theory, 
organizational theory 

 Proposal and validation of human-robot system 

model supporting interdependence through 

coactive design 
Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) The study did 

not specify the research framework; 5) While the study did not report a specific team setup, it is indicated that is focuses on dyadic task teams. 

  



 

 

 CCXXX 

Table B5b. Empirical Integrative and Overarching Studies on Dyadic HRTs 

Author / 
subcategory / 

discipline1) 

Robot morphology2) / robot 
level3) / type of embodiment 

Team 
interaction4) / 
team setup5) 

Data basis / 
participants6) / 

time frame7) 

Research 
framework8) 

Key findings9) 

Barnes et al. 
(2011) / HRT 
design / III 

Functional (unmanned 
vehicles) / ↓ / 
Simulation/virtual robot / 
physical robot 

T n.i. / n.i. / n.i. n.i.  Identification of empirical based 

guidelines on interface design, 

procedural issues, individual 

differences and training 

implications for HRI 
Wen et al. 
(2022) / ethics 
/ IV 

Humanoid / ↓ / 
Video/image of robot 

T /  n=120 / 56 f, 57 
m, 1 gender-
fluid, 5 non-
binary, 1 other, 
age: range 18-68 
years (M=35.21, 
SD=13.50), 
most with little 
to no experience 
with robots and 
AI / C (within-
subject) 

Independent 
variables: 

 Explanation 

type 

(action vs. 

contextual 

vs. role vs. 

contextual 

role; + for 

role and 

context) 
Relational 
role (friend 
vs. 
subordinate 
vs. teacher 
vs. 
teammate; + 
[see key 
findings]) 

Dependent variables: 

 Human trust (reliability, capability, 

ethicality, sincerity) 

 Understanding confidence 

 Perceived intelligence 

Note: 1) Disciplines: I = HRI, II = Management, III = military, IV = Cognitive science, V = robotics, VI = space, VII = (urban) search and rescue, VIII = 

ethics; Studies are categorized based on a “best fit”-approach and might comprise aspects of more than one considered research discipline; 2) n.i. = 

no information provided by author(s); 3) Robot level: ↓ = robot on lower level, ↔ = robot on same level, ↑ = robot on higher level; 4) Team 

interaction: T = task interaction, T+S = task & social interaction; 5)     ⃝ = human, ▯ = robot; 6) f=female, m=male; 7) C = cross-sectional, L = 

longitudinal; 8) The study did not specify its research framework; 9) The study did not indicate underlying theories 
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Appendix for Chapter 4 

Appendix C: Additional Information on Literature Review 

All items were measured using a 7-point Likert scale, anchored by (1) “totally disagree” and (7) 

“totally agree”, unless noted otherwise. 

Search Terms 

We conducted online searches using Google and EBSCO using the search terms listed below for 

our literature review. We also conducted forward and backward searches in any manuscripts 

initially identified during the search. 

Search Terms on Google and EBSCO 

 “human-robot team AND lead*” 

 “human-robot team AND manage*” 

 “robot AND team AND lead*” 

 “robot AND team AND manage*” 

 “robot leader AND acceptance” 

 “robot manager AND acceptance” 

 “robot manager AND readiness” 

 “robot leader AND readiness” 

 “robot manager AND performance” 

 “robot leader AND performance” 

 “robot manager AND relation*” 

 “robot leader AND relation*” 

 

Exclusion Criteria 

For the selection of studies, we screened keywords and abstracts of the manuscripts we found 

during the search. We excluded studies based on the following criteria 
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I. Role of robot: The studies in focus of our literature review all have robots in the the role 

of a manager or leader15, thus, we excluded studies that mentioned 

management/leadership but did not consider the robot(s) in this role. 

II. Team setting: We focus our literature review on studies of human-robot teams. We thus 

excluded studies set outside HRTs or a dyadic team context (e.g., only focused on 

groups of robots or HRI). 

III. Team-internal focus: We focus our literature review on studies with a team internal 

focus, i.e., employees interacting with robotic managers/leaders. We thus excluded 

studies with other foci, e.g., customer/patient perceptions or general firm-level 

considerations. 

IV. Type of study: We excluded extended abstracts and reviews from our literature review 

as these works either present very little empirical research or offer a broader overview 

over a topic. We rather mentioned the reviews and their foci at the beginning of our 

literature review. 

 

Appendix D: Online Study Setup Rationale and Script of Video Interaction 

Online Study Setup Rationale 

Our online study is based on a paper people study, using an experimental vignette methodology 

and questionnaire (Aguinis & Bradley, 2014). A vignette is “a short, carefully constructed 

description of a person, object, or situation, representing a systematic combination of 

characteristics” (Atzmüller & Steiner, 2010, p. 128). Specifically, we utilize a combination of a 

written vignette and videos as proxies for actual interactions. We use this method as, although 

social robots appear to be capable of taking on managerial positions (Young & Cormier, 2014), 

companies have hardly integrated robots as lower-level managers; that is, the scenarios we 

investigate are yet to be realized in the future working world at large. Compared to a traditional 

                                                
15 Extant literature often uses the term robotic manager and robotic interchangeably. Therefore, we review literature 

on both robotic managers and robotic leaders 
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survey that only includes a questionnaire, the use of the vignette allows for a more life-like 

guided scenario by providing explanations and contextual factors (Atzmüller & Steiner, 2010). 

Vignettes and specifically video vignettes further allow to capture perceptions and experiences 

(Aguinis & Bradley, 2014; N. Chen et al., 2022; Chita-Tegmark et al., 2019; Law et al., 2021; 

Nørskov et al., 2020). Online studies are also a well-established research method (Feil-Seifer et 

al., 2021; Leiner, 2019), with a number of advantages, including access to larger samples, 

reduced experimenter influences, and greater generalizability (Aguinis et al., 2021). Previous 

research has further found that results of online studies involving robots are comparable to 

analogous laboratory studies (Babel et al., 2022). 

As part of the online study participants received a monetary compensation to compensate them 

for their time. The results from the study did not have any influence on participants’ 

compensation. Studies have shown that compensation for work on Amazon MTurk does not 

have implications on results (Auer et al., 2021). 

We chose an international company as setting of our study to reflect the globalized nature of 

business operations and the diverse environments in which robotic managers could be 

implemented (Bannon, 2023; Dixon et al., 2019; Thrivikraman Nair, 2022). 

Script of Video Interaction 

CORPORATE MEETING ROOM 

Human-robot team with three human and one robotic member sits around a large 

conference table in a corporate office meeting room. On the table there are laptops, 

documents, pens, and coffee cups. In one corner of the room is a flipchart, in another 

one a plant. The human-team members are all looking in the direction of the robot 

ROBOT 

<name of team member 1>, you're still busy working on the design of the sales 

channels until Friday. 

Human team member 1 nods. 

ROBOT 

<name of human team member 2>, you're supposed to be preparing the 

presentation for the investors' meeting and budgeting for the project. 



 

 

 CCXXXIV 

Human team member 2 nods. They check their laptop in front of them. 

HUMAN TEAM MEMBER 2 

I'm already working on the presentation. When do you need the budget done? 

ROBOT 

It would be good if you could send me the budget by noon. 

Human team member 2 checks their laptop in front of them. 

HUMAN TEAM MEMBER 2 

I'm sorry, but I have a meeting from 11 to 1 pm. But I can send you the budget 

until 4 pm. Would that be all right with you and can you give me feedback on it 

later? 

ROBOT 

Oh, sorry, I forgot your meeting. Sure, yes, I will. 

Robot looks into direction of human team member 3. 

ROBOT 

<name of human team member 3>, can you set up a meeting for us? 

Team member 3 nods. 

FADE OUT. 

 

Appendix E: Additional Information on the Sample 

Online Study Setup Rationale 

A total of 8,764 participants participated and completed the questionnaire. We had to exclude 

1,703 participants (approximately 19.4%) for various reasons: 80 indicated that they were not 

located in the United States, 476 did not meet the employment criterion (employee, freelancer, 

or business owner). 853 failed at least two of the three attention check questions (instructed 

response items scattered throughout the questionnaire). 58 participants completed the survey 

too quickly (Leiner, 2019) and 236 experienced video or audio problems. This left us with 7,061 

valid paricipants for the analyses. 
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These participants worked in a wide range of industries, including IT services (29.5%), 

banking/finance/insurance (12.5%), healthcare (9.3%), retail (5.6%), and education (5.3%). 

In terms of occupational status, most were employed (86.6%) and self-employed (9.5%). 

Participants’ experiences with robots come mainly from seeing robots in movies or online 

(66.4%), in real life (56.2%), or interacting with them (40.1%). Few participants have 

programmed robots (18.6%), previously worked with them (15.1%), or owned them (8.3%) 

(multiple selections were possible). 

 

Appendix F: Response Surface Analysis – Applications, Implications, and Extensions for This 

Study 

Response Surface Analysis 

In this study, we adopt a polynomial regression analysis and response surface analysis (RSA), 

as described by J. R. Edwards and Parry (1993) and adapted by S. A. Brown et al. (2014). In 

this approach, the results of a polynomial regression analysis are used as input for a 

corresponding response surface, which is then analyzed.  

This approach is superior to difference scores (J. R. Edwards, 2002) in several important ways. 

First, by considering employees’ expectations and experiences separately we can avoid 

ambiguous results (J. R. Edwards, 2002). In contrast, difference scores produce an artificial 

reduction of dimensionality by calculating the algebraic, absolute, or squared difference 

between the values of two constructs (Shanock et al., 2010). Second, this approach avoids 

constraints such as the assumed relationship of regression coefficients that are implicitly 

imposed on the independent and dependent variables (J. R. Edwards, 2002). Third, a RSA 

prevents the loss of information and oversimplification found in difference scores due to 

considering only the difference (rather than capturing both values), while capturing the full 

range of differences between expectations and experiences and the effects on readiness to work 

with robotic lower-level manager (J. R. Edwards, 2002). 

With this approach, models with different levels of complexity can be investigated. First-order 

models assume linear relationships between expectations and experiences (i.e., the more 

[expectations/experiences], the better the outcome). The resulting three-dimensional surfaces 

in such models are planes. Different first-order models would produce differently sloped planes, 

depending on their assumptions about the interplay of expectations and experiences (S. A. 

Brown et al., 2014). Figure F1a shows an example. 
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a) First-order model 

  

b) Second-order model 

  

c) Third-order model 

  

Figure F1. Exemplary Response Surfaces for Models with Different Orders (S.A. Brown et al., 2014) 

 

Instead, second-order models predict that differences between expectations and experiences 

lead to symmetric outcomes. Specifically, a negative disconfirmation would be valued similarly 

to a positive disconfirmation. Second-order models, such as the generalized-negativity model 

proposed by S. A. Brown et al. (2014), are characterized by symmetric surfaces that follow an 

(inverted) U-shape along the line of perfect confirmation where expectations are equal to 

experiences (see Figure F1b).  

Finally, third-order models capture relationships that cannot be investigated with the simpler 

approaches (Humberg et al., 2020). These complex relationships include asymmetric and level-

dependent effects of the interplay between expectations and experiences on the outcome. For 

example, high levels of positive or negative disconfirmation have a stronger influence on 

outcomes than low levels of disconfirmation (S. A. Brown et al., 2014; see Figure F1c). 

As an example, a third-order regression equation can be written as 

𝑍 =  𝑏0 + 𝑏1𝑋 + 𝑏2𝑌 + 𝑏3𝑋2 + 𝑏4𝑋𝑌 + 𝑏5𝑌2 + 𝑏6𝑋3 + 𝑏7𝑋2𝑌 + 𝑏8𝑋𝑌2 + 𝑏9𝑌3, (F1) 

with Z = readiness to work with the agent, 𝑋 = experiences, 𝑌 = expectations, and regression 

coefficients 𝑏0, 𝑏1, … , 𝑏9  that are used as input for the response surface. 

According to J. R. Edwards and Parry (1993), there are three key features of response surfaces: 

First, stationary points, i.e., points where the slope of the surface is zero in all directions, are 

local or global minima or maxima of the response surface. Second, so-called principal axes 

which intersect at the stationary point and are perpendicular to each other. These axes “describe 

the orientation of the response surface with respect to the X,Y [in this study: 𝑈1, 𝑈2 for 

investigation of usefulness and 𝐴1, 𝐴2 for investigation of employees’ attitude as independent 

variable, respectively] plane” (J. R. Edwards, 2002, p. 378). Third, the slope of the surface along 

certain lines of interest on the surface. These lines include the line of perfect confirmation (𝑌 =
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𝑋-line, where experiences of the robot equal expectations towards it) and the line of perfect 

disconfirmation (𝑌 = −𝑋-line, where experiences assume opposite values of expectations). A 

number of surface values describing linear, quadratic, and cubic slopes of the surface along 

these lines are defined (J. R. Edwards, 2002; J. R. Edwards & Parry, 1993) based on the 

regression results (see Equation F1), see Table F1. 

To test our hypotheses, we focus on the latter and utilize the tests of the regression coefficients 

and response surface values for models of different complexities proposed by S. A. Brown et al. 

(2014). We adopt an approach offered by (Shanock et al., 2010, 2014) building on rules for 

linear combinatons of random variables (Cohen et al., 2003) to test the significance of the 

surface values and compare surface values with each other. 

We present the test results for all three lower-level managers (android robot, humanoid robot, 

human) and independent variables (usefulness, attitude), in the following tables.  

 

Table F1. Surface Values Along Lines of Interest 

Surface value Description 

𝑎𝑥,0 =  𝑏1 + 𝑏2  Slope of the response surface along the line Y=X at the point X=0 

𝑎𝑦,0 = 𝑏1 − 𝑏2  Slope of the response surface along the line Y=-X at the point X=0 

𝑎𝑥,0
2 = 𝑏3 + 𝑏4 + 𝑏5  Curvature of the response surface along the Y=X line at the point 

X=0 

𝑎𝑦,0
2 = 𝑏3 − 𝑏4 + 𝑏5  Curvature of the response surface along the Y=-X line at the point 

X=0 

𝑎𝑥,0
3 = 𝑏6 + 𝑏7 + 𝑏8 +

𝑏9  

Cubic slope of the response surfacec aong the Y=X line at the point 

X=0 

𝑎𝑦,0
3 = 𝑏6 − 𝑏7 + 𝑏8 −

𝑏9  

Cubic slope of the response surfacec aong the Y=X line at the point 

X=0 
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Usefulness 

We present the test results for the generalized-negativity model proposed by S. A. Brown et al. 

(2014), that follows a perfect and symmetrical inverted U-shape, for the robotic lower-level 

managers (android robot, humanoid robot) in Table F2. 

In order to test the S-shape of the response surface, we developed a new set of test criteria that 

are detailed in Table F3. The results for both robotic lower-level managers can be found in 

chapter 4.5. 

 

Table F2. Results of Test Criteria for Generalized-Negativity Model (Brown et al., 2014) 

Test Criteria Results for Android Robot Results for Humanoid Robot 

1) |𝑏3|, |𝑏4| , 𝑜𝑟 |𝑏5| > 0 Supported Supported 

2) 𝑏1 = 𝑏2 Not supported Not supported 

3) 𝑎𝑥,0 > 0, 𝑎𝑦,0 = 0 Partially supported Partially supported 

4) 𝑎𝑦,0
2 < 0 Supported Supported 

5) 𝑎𝑥,0
2 = 0 Not supported Not supported 

6) 𝑏3 < 0, 𝑏4 > 0, 𝑏5 < 0  Partially supported Supported 

 

Table F3. Details on Test Criteria for S-curve (Self-developed) 

Test Criteria Explanation 

1) 𝑏1 > 𝑏2 S-curve has an emphasis on experiences. Thus, experiences should 

have a higher impact on the outcome than expectations. 

2) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0 Higher values of confirmation and low positive disconfirmation 

should lead to higher outcome values. 

3) |𝑏6|,  |𝑏7|,  |𝑏8|,   

𝑜𝑟  |𝑏9| > 0 

The S-shape of the surface requires at least one cubic coefficient 

to be significantly different from zero and the cubic slope along 

the line of perfect disconfirmation to be significantly negative. 4) 𝑎𝑦,0
3 < 0 

5) 𝑎𝑥,0
2 < 0 S-curve requires a concave shape for both positive values of 

confirmation and positive disconfirmation. Thus, the quadratic 

slopes should be significantly negative. 
6) 𝑎𝑦,0

2 < 0 
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7) |ay,neg. disc.| >

|ay,pos. disc.| 

The absolute value of the linear slope of negative disconfirmation 

should be greater than the absolute value of the linear slope of 

positive disconfirmation. 

8) 𝑎𝑦,3 < 0 The linear slope for maximum positive disconfirmation along the 

line of perfect disconfirmation is required to be negative to achieve 

the S-shape. 

Note. ay, neg. disc. = (b1 − b2) − 3 ∗ (b3 − b4 + b5) + 9 ∗ (b6 − b7 + b8 − b9); ay, pos. disc. = (b1 −  b2) + 3 ∗
(b3 − b4 + b5) + 9 ∗ (b6 − b7 + b8 − b9);  ay,3 = (b1 − b2) + 6 ∗ (b3 − b4 + b5) + 27 ∗ (b6 − b7 + b8 − b9)  

 

Attitude 

Table F4 presents the test results for the robotic lower-level managers (android robot, 

humanoid robot) for the experienes-only model characterized by a linear surface focused on 

experiences proposed by S. A. Brown et al. (2014). 

To test the degressive shape of the response surface, we developed a new set of test criteria that 

are detailed in Table F5. The results for both robotic lower-level managers can be found in the 

main body of the manuscript. 

Table F4. Results of Test Criteria for Experiences-only Model (Brown et al., 2014) 

Test Criteria Results for Android Robot Results for Humanoid Robot 

1) 𝑏1 > 0 Supported Supported 

2) 𝑏2 = 0 Partially supported Not supported 

3) |𝑎𝑥,0| = | 𝑎𝑦,0| Not supported Not supported 

4) 𝑎𝑥,0 > 0, 𝑎𝑦,0 = 0 Supported Supported 

 

Table F5. Details on Test Criteria for Degressive Curve (Self-developed) 

Test Criteria Explanation 

1) 𝑎𝑥,0 > 𝑎𝑦,0 Experiences have bigger influence on outcome evaluations 

than expectations; at the same time there is an interaction 

between expectations and experiences. 

2) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0  Higher values of confirmation and low positive 

disconfirmation should lead to higher outcome values. 

3) |𝑏6|,  |𝑏7|,  |𝑏8|,  𝑜𝑟 |𝑏9| >

0 
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4) 𝑎𝑦,0
3 = 0 The shape of the surface requires at least one cubic coefficient 

to be significantly different from zero and the cubic slope 

along the line of perfect disconfirmation to be zero. 

5) 𝑎𝑥,0
2 < 0 Degressive curve requires concave shape along both the line 

of perfect confirmation and line of perfect disconfirmation. 

Thus, the quadratic slopes should be significantly negative. 
6) 𝑎𝑦,0

2 < 0 

7) 𝑎𝑥,3 = 0 The  slope for both maximum positive disconfirmation and 

maximum confirmation along the respective line of interest 

should be zero to achieve the degressive shape. 
8) 𝑎𝑦,3 = 0 

Note. ax,3 = (b1 + b2) + 6 ∗ (b3 + b4 + b5) + 27 ∗ (b6 + b7 + b8 + b9)  
 

 

Appendix G: Supplemental Analyses for Human Control Condition 

For the human lower-level manager, the usefulness regression analysis indicates that a first-

order model is most appropriate (𝑅2 = .073, adjusted 𝑅2 = .072; ∆𝑅2 = .062; 𝑝 < 0.01; 

𝐹 (4,7056) = 138.697, 𝑝 < 0.01). It is represented by the following equation: 

𝑍 =  77.352 + 5.094 𝑈1 + 0.907 𝑈2, (G1) 

with the same variable definitions as in equations (1) and (2) in the main body of the 

manuscript. Tests of regression coefficients and surface values for first-order models indicate 

that both experience and expectations play a significantly positive role (𝑏1 = 5.094, 𝑝 <

0.01; 𝑏2 = 0.907, 𝑝 < 0.05). At the same time, experiences have a significantly greater influence 

on employees’ readiness to work with the human lower-level manager than previous 

expectations (𝑝 < 0.01). The linear slopes along both lines of interest are positive (𝑎𝑥,0 =

6.001, 𝑝 < 0.01; 𝑎𝑦,0 = 4.187, 𝑝 < 0.01) and the slope along the line of perfect confirmation is 

greater than the slope along the line of perfect disconfirmation (𝑝 < 0.05) (see Figure G1a and 

Table G1). 

The regression analysis for expected and experienced attitudes identifies a third-order model 

as most appropriate (𝑅2 = .104, adjusted 𝑅2 = .102;∆𝑅2 = 0.001, 𝑝 < 0.05; 𝐹(11,7049) =

74.153, 𝑝 < 0.01). It is described by the equation:  

𝑍 =  74.411 + 5.887 𝐴1 + 1.919 𝐴2 − 1.354 𝐴1
2 + 0.232 𝐴1𝐴2 + 0.053 𝐴2

2 + 0.314 𝐴1
3 −

0.111 𝐴1
2𝐴2 + 0.069 𝐴1𝐴2

2 + 0.013 𝐴2
3, 

(G2) 
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with the same variable definitions as in equations (3) and (4) in the main body of the 

manuscript. Tests for the degressive curve model confirm that the response surface follows such 

a model imperfectly; not all tests are fully supported (see Figure G1b and Table G2). 

 

Figure G1. Three-Dimensional Response Surfaces for Human Lower-Level Managers 

 

Table G1. Results of Test Criteria for First-order Regression Coefficients and Response Surface Values 

Test Criteria Results for Human 

1) 𝑏1 > 0, 𝑏2 > 0 Supported 

2) 𝑏1 > 𝑏2 Supported 

3) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0 Supported 

4) 𝑎𝑥,0 > 𝑎𝑦,0 Supported 

 

Table G2. Results of Test Criteria for Degressive Curve (Self-developed) 

Test Criteria Results for Human 

1) 𝑎𝑥,0 > 𝑎𝑦,0 Supported 

2) 𝑎𝑥,0 > 0, 𝑎𝑦,0 > 0  Supported 

3) |𝑏6|,  |𝑏7|,  |𝑏8|,  𝑜𝑟 |𝑏9| > 0 Supported 

4) 𝑎𝑦,0
3 = 0 Supported 

5) 𝑎𝑥,0
2 < 0 Supported 

 Performance-related feature 

(usefulness) Relational feature (attitude) 

Human lower-

level manager 

(control 

condition) 

a.  

  

b.  
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6) 𝑎𝑦,0
2 < 0 Supported 

7) 𝑎𝑥,3 = 0 Not supported 

8) 𝑎𝑦,3 = 0 Supported 

 

 

Appendix H: Supplemental Analyses to Control for Gender Differences 

To control for gender differences, we separately considered sub-samples of only male and 

female participants. The sub-sample sizes were 𝑛 = 3523 for male participants and 𝑛 = 3517 

for female participants. Due to the small sub-sample size of 𝑛 = 21 for participants who 

indicated their gender as “diverse”, we did not calculate the response surfaces for this sub-

group. 

The response surfaces for male and female participants follow the shapes of the response 

surfaces for the whole sample (Figure H1). A qualitative difference is observeable for the 

android robot and the performance-related feature of usefulness. For this, the response surface 

for the female participants showed a less pronounced decline for increasing positive 

disconfirmation as compared to the response surface for the male participants (Figure H1a and 

H1c). 
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Figure H1. Three-Dimensional Response Surfaces for Different Robotic Agents as Lower-Level 

Managers, Sample Split by Participant Gender 

 Performance-related feature 

(usefulness) Relational feature (attitude) 

Android 

robotic lower-

level manager, 

male 

participants 

a.  

  

b.  

 

Android 

robotic lower-

level manager, 

female 

participants 

c.  

 

d.  

 

Humanoid 

robotic lower-

level manager, 

male 

participants 

e.  

 

f.  

g.  

Humanoid 

robotic lower-

level manager, 

female 

participants 

h.  

 

i.  

j.  
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