IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Load Balancing in Compute Clusters
With Delayed Feedback

Anam Tahir™, Bastian Alt™, Amr Rizk™, Senior Member, IEEE, and Heinz Koeppl

Abstract—Load balancing arises as a fundamental problem, underlying the dimensioning and operation of many computing and
communication systems, such as job routing in data center clusters, multipath communication, Big Data and queueing systems. In
essence, the decision-making agent maps each arriving job to one of the possibly heterogeneous servers while aiming at an
optimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal load balancing
policies here is that the agent only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of the
served jobs. In this paper, we provide a partially observable (PO) model that captures the load balancing decisions in parallel buffered
systems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a load
balancing policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policy
outperforms other limited information load balancing strategies such as variants of Join-the-Most-Observations and has comparable
performance to full information strategies like: Join-the-Shortest-Queue, Join-the-Shortest-Queue(d) and Shortest-Expected-Delay.
Finally, we show that our approach can optimise the real-time parallel processing by using network data provided by Kaggle.

Index Terms—Parallel systems, load balancing, partial observability

*

1 INTRODUCTION

AS the growth rate of single-machine computation speeds
started to stagnate in recent years, parallelism seemed
like an effective technique to aggregate the computation
speeds of multiple machines. Since then, parallelism has
become a main ingredient in compute cluster architec-
tures [1], [2] as it incurs less processing and storage cost on
any one individual server [3].

Beyond the aggregation of capacity, a major difficulty in
the operation of parallel servers is optimizing for low
latency and loss. The key to this optimization is the map-
ping of the input, that we denote as jobs, to the different and
possibly heterogeneous serving machines, denoted servers,
of time-varying capacity and finite memory (buffers). This
mapping of input to servers is carried out by a decision-
making agent we refer to as the load-balancer.

Classical results prove the optimality of the Join-the-
Shortest-Queue (JSQ) algorithm in terms of the expected job
delay[4], [5] when the servers are homogeneous, have infi-
nite buffer space and the job service times are independent,

o Anam Tahir, Bastian Alt, and Heinz Koeppl are with Self-Organizing Sys-
tems Lab (SOS), Department of Electrical Engineering and Information
Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Ger-
many. E-mail: {anam.tahir, bastian.alt, heinz koeppl}@tu-darmstadt.de.

o Amr Rizk is with Communication Networks and Systems Lab, Universitit
Duisburg Essen, 47057 Duisburg, Germany.

E-mail: amr.rizk@uni-due.de.

Manuscript received 15 February 2022; revised 6 September 2022, accepted 23
September 2022. Date of publication 19 October 2022; date of current version
10 May 2023.

This work was supported by the German Research Foundation (DFG) as part
of sub-projects C3 and B4 within the Collaborative Research Center (CRC)
1053 - MAKI.

(Corresponding author: Anam Tahir.)

Recommended for acceptance by E. Bini.

Digital Object Identifier no. 10.1109/TC.2022.3215907

identically (i.i.d) and exponentially distributed. For the case
when the service times are exponentially distributed but
with different service rates, Shortest-expected-delay (SED)
has been shown to minimize the mean response time of
jobs, especially in the case of heavy traffic limits [6], [7].

Note, however, that such types of algorithms assume that
the decision-making agent has accurate, timely and synchro-
nized information of all servers and their queues. In practice
this assumption does not hold, e.g., in data center clusters it can-
not be assumed that a load-balancer has timely and synchro-
nized information of all available servers but rather observes
some event or time-triggered server feedback.

The goal of this work is to model and optimize the load
balancing decision-making over parallel and heterogeneous
servers having finite buffers and each following first-in-
first-out (FIFO) order, where these servers provide ran-
domly delayed acknowledgements back to the load-bal-
ancer. These acknowledgments are sent by the servers to
inform the load-balancers of the number of jobs the servers
have processed in the last epoch. This model captures that
the load-balancer is only able to partially observe the server
states at the decision time points. The load-balancer does
not directly observe the server queues, rather it receives
acknowledgements for completed jobs that are randomly
delayed on the way back to it. Our contributions are:

e We present a model for controlled load balancing in
parallel buffered systems with randomly delayed
acknowledgements.

e We find a control law by optimizing a predefined
objective function subject to the stochastic dynamics
induced by the model.

e We present POL - a Partial Observability Load-Bal-
ancer, which maps incoming jobs to the parallel serv-
ers. POL estimates the unknown parameters of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5585-0948
https://orcid.org/0000-0002-5585-0948
https://orcid.org/0000-0002-5585-0948
https://orcid.org/0000-0002-5585-0948
https://orcid.org/0000-0002-5585-0948
https://orcid.org/0000-0002-1522-5400
https://orcid.org/0000-0002-1522-5400
https://orcid.org/0000-0002-1522-5400
https://orcid.org/0000-0002-1522-5400
https://orcid.org/0000-0002-1522-5400
https://orcid.org/0000-0002-9385-7729
https://orcid.org/0000-0002-9385-7729
https://orcid.org/0000-0002-9385-7729
https://orcid.org/0000-0002-9385-7729
https://orcid.org/0000-0002-9385-7729
mailto:anam.tahir@tu-darmstadt.de
mailto:bastian.alt@tu-darmstadt.de
mailto:heinz.koeppl@tu-darmstadt.de
mailto:amr.rizk@uni-due.de

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

parallel system at runtime and despite partial obser-
vations achieves a job drop rate and response time
comparable with full information load-balancers.
The performance evaluation is carried out in a simu-
lation environment. Note that POL can be used for
any number of servers and for any kind of inter-
arrival and service time distributions, and we have
tested a few of them.

e Lastly, we also show how POL can optimize parallel
processing in clusters by using real network data
provided by Kaggle [8], [9].

The rest of this paper is organized as follows: In Section 2
we first discuss the related work. Then, in Section 3 we out-
line the system model and give some background on the
key topics of this work. In Section 4, we give our contribu-
tions starting from the modelling of the partially observable
queueing system to our Monte Carlo approach for finding a
near-optimal load balancing policy. In Section 5, we give
our simulation results and discuss the inference of unob-
served system parameters in Section 4.5 along with an
experiment with real world data. And then we conclude the
paper in Section 6.

2 RELATED WORK

Dynamic load balancing for the performance optimization of
parallel systems has fueled numerous seminal algorithms
such as Join-the-shortest-queue (JSQ), and Shortest-expected-
delay (SED), and more generally Power-of-d policies [10],
[11], [12]. JSQ provides optimal decisions, for minimizing the
mean response time of a job, when the servers are homoge-
neous and the service times are independent and identically
exponentially distributed [4], [5]. A similar approach for het-
erogeneous servers is the SED algorithm, which implicitly
considers the server rates and maps an incoming job to the
server which provides the smallest expected response time
for the job at hand. SED is known to perform well for hetero-
geneous servers, especially in the case of heavy traffic [6], [7].

However, when the number of parallel systems N
becomes large, the assumption of knowing the state of the
entire system before every decision becomes too strong.
The state may be the queue length or the required cumula-
tive service times for the waiting jobs at each system.
Depending on the type of system this information, e.g., the
service times for servers of random varying capacity, is not
known in advance. Control theory and the recently attrac-
tive machine learning approaches have also been exten-
sively applied to stochastic queuing networks in order to
analyse their performance as self-adaptive software sys-
tems, see [13], [14] and references therein.

Power-of-d policies provide a remedy to the problem of
the decision-making agent not being able to know all system
states at decision time. Here, a number of servers, specifi-
cally d < N, is repeatedly polled at random at every deci-
sion instant and hence, JSQ(d) or SED(d) is performed on
this changing subset [15]. This policy is enhanced by a short
term memory that keeps knowledge of the least filled serv-
ers from the last decision instant [16], [17]. Hence, instead of
choosing d servers at random for every job, the decision is
based on a combination of new randomly chosen d servers
and the least filled servers known from the last decision.

1611

For our evaluation purposes we have chosen to compare
our algorithm with SED, JSQ and JSQ(d) since the compari-
son is with respect to the classes of full and limited informa-
tion at the load-balancers.

The strong assumption behind the different variants of JSQ,
SED and the Power-of-d policies is that at every decision instant
the load-balancer is aware of the current system state of all or some
of the servers. The main difference in this work is that we
hypothesize that this assumption of instant (and full) knowl-
edge is often not realistic, as due to the distributed nature of
the system the load-balancer may only observe the impact of
a decision that maps a job to a server after some non-deter-
ministic feedback time. This feedback time may arise, e.g.,
due to the propagation delay or simply because the decision-
making agent receives feedback only after the job has been
processed. The impact of this non-deterministic and hetero-
geneous feedback time on the decision-making process is
significant, as the consequence of a decision on performance
metrics such as job response times or job drop rates is only
partially observed at the decision instant.

Markov decision processes, MDP, have been used to
model queuing systems and achieve optimal control under
static and dynamic environments [18], [19]. In an MDP the
current feedback, delayed or not, is known to the agent [20].
The concept of transitions between mechanisms to achieve
better overall performance in a dynamic communication sys-
tem, modelled as an MDP, has recently been proposed in
[21]. The authors of [5] used an MDP formulation together
with a stochastic ordering argument to show that JSQ maxi-
mizes the discounted number of jobs to complete their ser-
vice for a homogeneous server setting. The authors of [22]
study the problem of allocating customers to parallel queues.
They model this problem as an MDP with the goal of mini-
mizing the sojourn time for each customer and produce a
’separable rule’, which is a generalization of JSQ, for queues
with heterogeneous servers (in rates and numbers). Note,
however, that it is assumed that the queue filling is known
and available without delay to the decision-making agent.

In [23] the authors assume that the decision-making
agent receives the exact queue length information but with
a delay of k steps. They formulate their system as a Markov
control model with perfect state information by augmenting
to the state space the last known state (exact queue length)
and all the actions taken until the next known state. In their
work, they solve the flow control problem by controlling the
arrival to a single server queue and show for k =1 that the
optimal policy is of threshold type and depends on the last
action. In [24], along with the single server flow control
problem with similar results as [23], they also showed that
when k=1, the optimal policy for minimizing the dis-
counted number of jobs in a system of two parallel queues
is join-the-shortest-expected-length. In [25], the decision-
making agent at time n, knows the number of jobs that were
present in each (infinite) queue at time n-1, such that it takes
decisions at a deterministic delay of one time slot. The state
space at any time n is augmented and contains the actual
queue filling at time n-1, the action taken at time n and if
there was an arrival at time 7.

In our work, we assume that not only is the information
received by the load-balancer randomly delayed, but it is
also not the state of the buffers, rather it is in the form of

1612

acknowledgements of the number of jobs processed. This
makes the system partially observable and complex to solve,
i.e., in the sense of a partially observable Markov decision
process (POMDP) model. Several online and offline algo-
rithms have been introduced to solve a POMDP [26], but
there is little work on optimizing queuing systems as a
POMDP. Standard solutions, for a POMDP, that do full-
width planning [27], like Value iteration and Policy itera-
tion, perform poorly when the state space grows too large.
This can easily be the case in queuing systems, due to the
curse of dimensionality and the curse of history [28], [29].
For such large state problems, the POMCP algorithm [30],
which uses the Monte Carlo tree search (MCTS) approach,
is a fast and scalable algorithm for solving a POMDP. Our
algorithm also makes use of the MCTS algorithm specifi-
cally designed to simulate a parallel queueing system with
finite buffers. In addition, we also designed a Sequential
Importance Resampling (SIR) particle filter to deal with the
delayed feedback acknowledgements in the queueing sys-
tem. We also use this MCTS approach for solving a Partially
observable semi Markov decision process (POSMDP) [31],
which is needed when the time between decision epochs is
no more exponential.

3 SysTEm MODEL

We consider a queuing system with N parallel servers each
having its own finite FIFO queue. The queue filling is
denoted b; € B;,i = 1,..., N, where B; = {0,...,b;} and b; is
the buffer space for the i-th queue. We define the vector of
queue sizes as b = [by, .. .,bN]T. In the following, we will
use boldface letters to denote column vectors.

We consider the general case of heterogeneous servers
where the service times, Vi(l)7 Vi(z) ..., of consecutive jobs at
the ith server’ are independent and identically distributed (i.
i.d) according to a probability density fy;. Homogeneous jobs
arrive to the load-balancer, as depicted in Fig. 1, according to
some renewal process described by the sequence (7)), _.,
where the job inter-arrival times UV) := TU+) — T0U) are
drawni.i.d from a distribution F'leading to an average arrival
rate A. Each arriving job is mapped by the load-balancer to
exactly one server, where the service rate for that job is ran-
dom and we denote the average service rate of the i-th server
as ;. A job that is mapped to a full buffer is lost. When a job
leaves the system, the server sends an acknowledgement
back to the load-balancer, to inform it of a slot getting free in
its associated queue. The load-balancer then uses this feed-
back acknowledgement from each server to calculate the cur-
rent buffer fillings, b;, of each queue.

A major challenge for deciding on the job routing arises
when the acknowledgments from the server are delayed.
Here, we incorporate three main delay components, i.e., (i)
the job waiting time in the queue it was assigned to, (ii) the
job processing time, and (iii) the propagation delay of the
acknowledgement back to the load-balancer. The third com-
ponent makes the decision problem particularly hard as a deci-
sion does not only impact the current state of the system but
also future states due to its delayed acknowledgement

1. We denote random variables by uppercase letters and their real-
izations as lowercase letters.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

1.l
T b

&

—————
B

———— e ———a

Fig. 1. A parallel queuing system with a load-balancer that maps jobs to
servers. The load-balancer observes the inter-arrival times « and the
feedback, i.e., the number of acknowledgements, from each server y;.
The load-balancer does not observe the queue states b;, the job service
times, or the delayed feedback z;, i.e., the number of acknowledgements
on the way back.

feedback. Note that the load-balancer makes the decision
based only on these observed acknowledgments, thus mak-
ing the system state partially observable (PO). We denote
by y; the number of acknowledgements from the i-th server
that are observed by the load-balancer in one inter-arrival
time. And we denote by x; the delayed feedback, which is
the number of acknowledgments that are on the way back
to the load-balancer but have not reached it yet. Since the
load-balancer is PO, it does not directly observe the (1)
queue states b;, (2) the job service times v;, or (3) the delayed
feedback z;. See Fig. 1 for further visualization.

Depending on the distribution type of the inter-arrival
times, U, and service times, V, we model the decision-mak-
ing process in this PO queuing system as a partially observ-
able Markov decision process, POMDP, or a partially observable
semi Markov decision process, POSMDP. A POMDP has an
underlying Markov decision process (MDP), where the
actual state of the system is not known to the agent, i.e., the
load-balancer in our case. This modelling can be used when
both U and V are exponentially distributed, keeping the sys-
tem Markovian. For non-exponential U and/or V, POSMDP
formulation can be used, where the underlying process is
now semi-Markov and the actual state of the system is still
not known to the load-balancer.

3.1 Markov Decision Process With Partial
Observability

An MDP [20] is defined as a tuple (S, A,7,R), where S
is the countable state space, A is the countable action
space, 7 : S x S x A — [0,1] is the transition function, R :
Sx8xA— R is the reward function. Throughout this
work we assume time homogeneity for the transition
function 7, observation function O and reward function R.
An MDP with partial observations is also a controlled Mar-
kov process, where the exact state of the process is latent. It
is in addition defined using; Z, the countable observation
space, and O : Z x § x A — [0, 1], the observation function.
Consider the case of discrete epochs at time points ¢ € Nj.
Note that the clock given by ¢ is an event clock and not a
wall-clock time. If the decision epochs ¢ are exponentially

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

distributed, then this PO process can be modelled as a
POMDRP [28]. However, if ¢ is not exponentially distributed
then under the condition that the decision-making is done
only at the epochs ¢, it can be modelled as a POSMDP [31].

We consider a latent process S) € S that can be con-
trolled by actions A®) € A. Since, the state is latent, only
observations Z(*) € Z are available. The transition function
T(s,5,a) := P(SHD = 5| SO =5, AD = 4) is the condi-
tional probability of moving from state s under action a to
a new state s’. The observation function O(z,s,a) :=
P(Z0HD = 2| 8¢+ = ¢, A® = @) denotes the conditional
probability of observing =z under the latent state s’ and action
a. An agent receives a reward R") =R(S(F) SV AW),
which it tries to maximize over time.

Since the current state is not directly accessible by the
agent, it has to rely on the action-observation history
sequence, H(") = {A) 7(O) A1) 7z(1), 1, up to the
current time point ¢. A pohcy m(a, h) = P(A®D = a|HY = h)
is the conditional probability of choosing action a under
action-observation history h. The solution then corresponds
to a policy which maximizes an objective over a prediction
horizon. The policy is defined as a function of the observa-
tion-action history of the agent, which makes it very challeng-
ing, since a naive planning algorithm requires to evaluate an
exponentially increasing number of histories in the length of
the considered time horizon. For this reason, different solu-
tion techniques are required.

Since keeping a record of the entire history, b, is not feasi-
ble, one Way is to represent this history in terms of the belief
state, p) € Al¥l, where Al is an S dimensional probability
simplex, p) = [p(t>, ey ,o()]T and the components p{*) are

1 IS
the filtering distribution p() = P(S® = s|'H' = h). If the
state space is huge, this will be a very hlgh dimensional vec-
tor. So, in order to break the curses of history and dimension-
ality, a certain number of particles can be used to represent
the belief state p(*) of the system at time ¢, see [30] for further
details. These particles represent the belief state p(*) of the
system and are updated using Monte Carlo simulations
based on the action taken and observations received. This is
the approach that we build upon in this paper. We consider
an infinite horizon objective, where the optimal policy 7* is
found by maximizing the expected total discounted future
reward 7" = argmax, > o E.[y'R?], with y < 1. Note
that our work can easily be reformulated into finite horizon
objectives.

4 LoAD BALANCING IN PARALLEL QUEUING
SYSTEMS WITH DELAYED ACKNOWLEDGMENTS

In this section, we explain how we model our partially
observable (PO) system and then propose our solution.

4.1 Modelling Load Balancing in the Partially
Observable Queuing System

In order to model the load balancing decision in a system
with N parallel finite buffer servers (cf. Fig. 1), as a PO pro-
cess, we define the system state s € S, usings = [sq,...,s N] .
Here, s; is the augmented state of the i-th queue that is
defined as s; = [b;, ;, yi}T, where, b; € B; denotes the current
buffer filling at queue ¢, x; € B; denotes the number of
delayed acknowledgements for the jobs executed by the

1613

Fig. 2. Probabilistic graphical model of the partially observable queuing
system with delayed acknowledgements. Shown are three time slices,
where grey nodes depict observed quantities and diamond shaped
nodes denote deterministic functions.

server ¢ but not observed by the load-balancer in the current
epoch2, and y; € B; denotes the number of acknowledge-
ments actually observed by the load- balancer in the current
epoch. Hence, the state space is S C Ny* and an action a €
A, with |A| = N corresponds to sending a job to the a-th
server. An observation z € Z is the vector of observed
acknowledgements at the load-balancer, with the observa-
tion space being Z C N, ™.

4.2 The Dynamical Model

Next, we describe the dynamics of the underlying processes
of the PO model. The corresponding probabilistic graphical
model is depicted in Fig. 2. In case of the POMDP model,
the time ¢ in Fig. 2 is exponentially distributed, while for
POSMDP it can be random (non-exponential). As we are
using Monte Carlo simulations to solve the PO system, the
transition probabilities do not have to be defined explicitly.
Therefore, we define the transition function indirectly as a
generative process.

We consider a load-balancer (our decision-making agent)
that makes a mapping decision at each job arrival, where
the inter-arrival times U") are i.i.d. In order to characterize
the stochastic dynamics, we determine the random behav-
iour of the number of jobs ; that leave the i-th queue during
an inter-arrival time. Note that the number of jobs leaving
the queue is constrained by the current filling of the queue,
b;, of the ith server, hence we use k; = min(k;, b;), where k;
is the number of jobs that can be served, which is determined
by the inter-arrival time and the service times of the i-th
server. with maximum capacity, b;. Therefore, we define the
generative model for the queuing dynarmcs as:

b’ = min(max(b — k,0) + e,, b), 0

where b denotes the queue size vector of the queuing sys-
tem at some arrival time point and b’ is the queue size vec-
tor of the queuing system at the next epoch. By k we denote
the non-truncated vector of number of jobs that can be
served and e, is a vector of all zeros, except the a-th position
is set to one to indicate a mapping of the incoming job to the
a-th server. We use b as the vector of maximum buffer sizes,
and min(-,-) and max(-,-) denote the element-wise mini-
mum and maximum operation.

2. An epoch corresponds here to one inter-arrival time.

1614

As the load-balancer only observes the job acknowledgements,
we update the augmented state space, s (as defined in Sec-
tion 4.1), using the following stochastic update equation:

b’ min(max(b — k,0) + e,,b)
s=|x|= min(b, k) +x —1) (2)
y 1

where 1is the vector containing the number of jobs which are
observed by the load-balancer for each queue at the current
epoch. The number of unacknowledged jobs from the previ-
ous epoch is denoted x, which is updated by removing the
observed jobs 1 and adding the newly generated acknowl-
edgments given by min(b, k). The delay model according to
which 1is calculated is given next.

4.3 Delay Model

We assume that the number of jobs that can be served in one
inter-arrival time is distributed as K; ~ fg,(k;) and we
choose a delay model, where

L; | b, ki, x; ~ Bin (min(b;, k;) + i, pi). 3)

Here, min(b;, k;) is the number of jobs leaving the i-th queue
at the current epoch, z; is the number of jobs from the i-th
queue for which no acknowledgements have been previ-
ously observed by the load-balancer, p; is the probability
that an acknowledgement is received by the load-balancer
in the current epoch and L; is the distribution from which [;
is sampled for Eq. (2).

We have chosen the binomial distribution because it gener-
ally captures the fact that only a subset of the sent,
min(b;, k;) + z;, acknowledgements are successfully observed
at the load-balancer in the current epoch. At the cost of simpli-
fying the usually correlated delays of jobs, this model helps to
obtain tractable results. For example, p = 0.6 would mean
that out of all the acknowledgements sent, only 60% are
expected to be received by the load-balancer in that epoch
while 40% are expected to be delayed. Similarly, p; = 1 would
then represent the case of no delay. Note that any other distri-
bution describing the delay model can be numerically evalu-
ated. The number of acknowledgements from all servers that
are not observed in this epoch are accounted for in the next
epoch in x'. The previously introduced observations z are
essentially the received acknowledgements, ie., z=y =1
Since only the vector y’ of the state s’ (Eq. (2)) is observed by
POL, a partial observability is established. We note that one
limitation of this model is due to the delay independence
assumption that lies below the used Binomial distribution.

4.4 Job Acknowledgement Distribution

Next, we discuss how to quantify the distribution of the
number of jobs k; that can be served at the i-th queue in one
inter-arrival time. The marginal probability

Ir; (ki / I ju (ki |w) fu(u)du)
can be computed by noting [32]

frwlkalw) = P(VH <o) — (VD <u), @)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

with ‘7}1‘7’) = Zf;’l':l Vi(m>. For the POMDP model, with expo-
nentially distributed inter-arrival times U ~ Exp (\), with
rate parameter), and exponential service times for all serv-
ers V; ~ Exp (u;), with rate parameter u;, the distribution
fx;(k;) can be calculated in closed form. Since the service
process corresponds to a Poisson process, we find the condi-
tional distribution fg, |y (k; |u) as K; |u ~ Pois (u;u). Carry-
ing out the integral, in Eq. (4), we find the number of jobs
that can be served in one inter-arrival time follow a Geomet-
ric distribution K; ~ Geom (u AH) with =~ denoting suc-
cess probability, [32].

For the POSMDP model with general inter-arrival and
service time distributions closed form expressions for the
marginal probability above are often not available, since, this
would require closed form expressions for a k-fold convolu-
tion of the probability density function (pdf) of the service
times. Note that some corresponding general expressions
exist as Laplace transforms where the difficulty is passed
down to calculating the inverse transform. Therefore, in
such cases we will resort to a sampling based scheme for the
marginal distribution f, (k;),i.e.,

U~ fu(u)
VO (), m=1,2,...
J
K= {jGNo : ZVi(m) < U}
m=1
K; = max(K;). (6)

In this numerical solution, we draw a random inter-arrival
time U and count the number K; of service times that fitin the
inter-arrival interval. Note that the number of jobs K ") at time
t is not necessarily independent for the number of]obs K; (t+1)
in the next interval. The impact of this effect can be well dem-
onstrated when the service time distribution is, e.g., heavy
tailed. Also note that the exact modelling of this behaviour
would, in general, require an extended state space incorporat-
ing this memory effect. Therefore, the sampling scheme can
be seen as an approximation to the exact system behaviour.

4.5 Inferring Arrivals and System Parameters

For POL to be deployed in an unknown environment, we
may require an estimate of the inter-arrival and/or service
rate densities. For this purpose, we will resort to a Bayesian
estimation approach to infer the densities fy(u) and fy; (v;).
We select a likelihood model f(D |9) for the data generation
process and a prior f(6), with model parameters ®. We
assume we have access to data D= {d",d?,..., d™},
where d\ is inter-arrival times between the j-th and j + 1-st
job arrival event that is observed by the load-balancer or the
service times for each server. For inference-based load
balancing in POL we use the inferred distribution of the
inter-arrival times as in the posterior predictive f(d*|D) =
J f(0|D)f(d*|6)ds, of a new data point d*, which is then
used in the sampling simulator, see Eq. (6). The same can be
done with the data for the service times. We will now
describe some models of different complexities for the data
generation. Since, most models do not admit a closed form
solution, we resort to a Monte Carlo sampling approach to
sample from the posterior predictive.

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

4.5.1 Inference for Exponential Inter-Arrival Times

Here, we briefly show the calculation for the posterior dis-
tribution and posterior predictive distribution for renewal
job arrivals with exponentially distributed inter-arrival
times. For the likelihood model we assume

DY |m~Exp(m), j=1,...,n,

where m is the rate parameter of the exponential distribu-
tion. We use a conjugate Gamma prior M ~ Gam (ao, fy).
Hence, the posterior distribution is

M| D ~ Gam (g + 1, By + > d9).
=1

And the posterior predictive distribution is found as

D' | D~ TP (ag +n, By + »_d7),
=1

j=

where TP («, 8) denotes the translated Pareto distribution.
4.5.2 Inference for Gamma Distributed Inter-Arrival
Times

In case of a gamma likelihood of the form

DY |a, B~ Gam (o,), j=1,...,n

we use independent Gamma priors for the shape and the
rate, with A ~ Gam («, 8y) and B ~ Gam (a4, ;). Finally,
we sample from the posterior predictive using Hamiltonian
Monte Carlo (HMC) [33], which can be implemented using a
probabilistic programming language, e.g. using PyMC3 [34].

4.5.3 Service Times Distributed as an Infinite Gamma
Mixture

Here, we present a framework to non-parametrically infer
the posterior distribution. We use an approximate Dirichlet
process mixture model which can be regarded as an infinite
mixture model [35]. We use a gamma distribution for the
observation model

B(d|6;) oc d¥ el)

with mixture parameters a; and b;. For the base measure G,
i.e., the prior distribution of the mixture parameters, we use
Gy = Fy, x Fp;,, with 4; ~ Gam (1,1) and B; ~ Gam(1,1).
The truncated stick-breaking approximation is then given by

M ~ Gam (1,1), B;|m ~Beta(l,m), i=1,...,c—1

Wo=p [[1=B), i=l.c—1
j=i—1
c—1

We=1-Y W, ©;,~G
=
D(-j)|w1,...,wc,91,...,96~Zw,;¢(d|9i)7 j=1...n,
i=1

which corresponds to a mixture of Gamma pdfs. Here too,
samples from the posterior predictive can be efficiently

1615

generated using HMC. For the truncation point, the number
of components c in the formula above can be assessed using

c=[2—E[M]log(e)] = [2 —log (€)], ®)

where € is an upper bound on the total variation distance
between the exact and truncated approximation. For exam-
ple, we can choose € = 1072, which corresponds to ¢ = 30
components.

Algorithm 1. POL Load-Balancer With Delayed Feedback

1: Input: N, A\, g ... un, G, 1, PO R, so, k0,6, T, Te, Qs

2: Output: R,,,, average reward for each time step 7,

3: Initialize R,,

4: fort=0,1,...,T,, do

5: Initialize u, v ... v(™) tree ¥y, R,, Q, > Q) is the real
world representation of the queuieng network.

6: fort=0,1,...,7. do

7: W,;41 = SimulateTree(¥;, G) >See the pseudocode given

in [30]
8: a1 — argmax,R(s,a)
9: 0141, 8141, T4l = Qs (ar41)

10: R, — R, Ui >Collect reward for each epoch

11: o) = UpdateBeliefand Tree(¥;41, 0141, as11, G)

12: end for

13: R, — R,+R.

14: end for

15: Ry = 522

16: Return R,

17: function UPDATEBELIEFANDTREEV, 0, a, G

18: Initialize K, = {}, W, == {} >Set of particles and their
weights

19: repeat

20: §,0, 7 ~ G(s,a),

21: ws =p(s'|d,a)

22: K, — K,Us' W, — W, Uuw,

23: until Timeout()

24: Generate particles from K, according to weights W, >SIR
particle filter

25: Update root and prune tree ¥

26: end Function

s ~ W(root)

4.6 Reward Function Design
A main difference of our approach to explicitly defining a load
balancing algorithm is that we provide the algorithm designer
with the flexibility to set different optimization objectives for
the load-balancer and correspondingly obtain the optimal
policy by solving the POMDP or the POSMDP. This is carried
out through the design of the reward function R as defined in
Section 3.1. The optimal policy 7n* maximizes the expected
discounted reward as 7* = argmax, Y ;o) E [y R¥)] where
R =R(SHD S® A®), with y < 1. In the following, we
discuss several reward functions R in the context of mapping
incoming jobs to the parallel finite queues, see Fig. 1.
Minimize queue lengths: A reward function which aims to
minimize the overall number of jobs waiting in the system.
This objective that can be formalized as

N
R(s',s,a) = —Zb; (9)
i1

1616

as it takes the sum of all queue fillings. Similarly, a polyno-
mial or an exponential reward function, such as

N
=2

i=1

R(s',s,a) (10)

For a fixed overall number of jobs in the system and x > 1,
this objective tends to balance queue lengths, e.g., if total
jobs in the system are 10 and N = 2 then an allocation of
[5,5] jobs will have much higher reward than [9,1] alloca-
tion. Using the variance amongst the current queue fillings
also balances the load on queues. The reward function is
then given as:
R(s',s,a) = Var(b;,...,b,) (11)
Note, however, that balancing queue lengths does not
necessarily lead to lower delays if the servers are heteroge-
neous. Hence, proportional allocation provides more reward
when jobs are mapped to the faster server as

R(s',s,a) = — (12)

Minimize loss events: To prevent job losses, we can also for-
mulate a reward function that penalizes actions that lead to
fully filled queues, i.e.,

N

Z]lb’fb

i=1

R(s',s,a) (13)

The indicator function evaluates to one only when the corre-
sponding queue is full.

Minimize idle events: One might also require that the par-
allel] system remains work-conserving, i.e.,, no server is
idling, as this essentially wastes capacity. Hence, in the sim-
plest case we can formulate a reward function of the form

ZM_O

Note that some of the reward functions above can be
combined, e.g., in a weighted form such as the following.

R(s',s,a) (14)

R(s',s,a) [Z b, 4kl (b, = b;)} (15)

where, b} is the buffer state after taking action a and the con-
stant weight x > 0 is used to scale the impact of the events
of job drops to the impact of the buffer filling on the reward.

4.7 Partial Observability Load-Balancer: A Monte
Carlo Approach for Delayed Acknowledgements
In this section, we outline our approach to solve the par-
tially observable system for the job routing problem in par-
allel queuing systems with delayed acknowledgements.
Our solution is an alternate technique to Dynamic Program-
ming and is based on a combination of the Monte Carlo
Tree Search (MCTS) algorithm [30] and Sequential Impor-
tance Resampling (SIR) particle filter.
The reason for choosing an MCTS algorithm is that load
balancing problems, like the one presented in this work, can

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

span to very large state spaces. In these scenarios, solution
methods based on dynamic programming [36] often break
due to the curse of dimensionality. MCTS solves this problem
by using a sampling based heuristic approach to construct a
search tree to represent different states of the system, the
possible actions in those states and the expected value of
taking each action. In recent years, these techniques have
been shown to yield exceptional results in solving very large
decision-making problems [37],[38].

One main contribution of the work at hand lies in the
design of a simulator®, G, which incorporates the properties
of the queuing model discussed above, into the algorithm.
The simulator G, provides the next state s+ the observa-
tion z")) and the reward R‘*!, when given the current
state s’ of the system and the taken action o' as input,

st 2D R st o ~ G(s, a). (16)
This simulator G, is used in the MCTS algorithm to rollout
simulations of different possible trajectories in the search
tree. Each trajectory is a path in the search tree starting from
the current belief state of the system and expanding (using
G) to a certain depth. While traversing through the search
tree, the trajectories (actions) are chosen using the Upper
Confidence bounds for Trees algorithm (UCT), which is an
improvement over the greedy-action selection [39]. In UCT
the upper confidence bounds guide the selection of the next
action by trading off between exploiting the actions with
the highest expected reward up till now and exploring the
actions with unknown rewards.

At every decision epoch POL starts with a certain belief on
the state of the system, p(*), see Section 3.1 for a formal defini-
tion, which is represented with particles and also used as the
root of the search tree. Starting from the root, i.e., the current
belief, the search tree uses UCT to simulate the system for a
given depth (fixed here to tree depth of 10), after which the
action a with has the highest expected reward is chosen. The
trajectories for all other actions are then pruned from
the search tree since they are no longer possible. This is done
to avoid letting the tree grow infinitely large.

Once the action a is taken and the job is allocated to a cer-
tain queue, the load-balancer receives real observations, z =
I, from the system. These observations are the randomly
delayed acknowledgements from the servers. The load-bal-
ancer then uses the received observations as an input to the
SIR particle filter, in order to update its belief of the state the
system is in now. The weights given to each particle (state),
w(s;) = p(zi|s;), while resampling in this SIR particle filter
were designed to incorporate our queuing system and its
delay model, Eq. (3). After applying the SIR filter, we will
have the new set of particles representing the current belief
state of the system, p!*). These particles are then used to sam-
ple the states for simulating the search tree and finding the
optimal action at the next epoch. * It is shown in Theorem 1
of [30] for a POMDP and in Theorem 2 of [40] for a POSMDP,
that the MCTS converges to an optimal policy.

3. https:/ /github.com/AnamTahir7 /Partially-Observable-Load-
Balancer

4. Note that in POL receiving observations, action selection and
belief update all happen at each decision epoch, which is why it is pos-
sible to model the system as a POSMDP [31] as well.

https://github.com/AnamTahir7/Partially-Observable-Load-Balancer
https://github.com/AnamTahir7/Partially-Observable-Load-Balancer

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

To summarize, at every job arrival, POL simulates the
tree from the root. The root contains the current set of belief
particles. POL then acts on the real environment using the
action which maximizes the expected value at the root. On
taking the action, POL gets a real observation. This observa-
tion is the acknowledgement that is subject to delays. Using
this observation and an SIR particle filter, POL updates its
set of particles (belief state) of the system for the next
arrival. The pseudocode of the working of POL is given in
Algorithm 1.

5 SIMULATION RESULTS

In the following, we show numerical evaluation results for
the proposed Partial Observability Load-Balancer (POL),
under randomly delayed acknowledgements. Recall that if
the acknowledgement is not observed in the current inter-
arrival time, it is not accumulated into the future observa-
tions. In order to evaluate the impact of delayed observa-
tions, we consider in our simulations a probability of
pi = 0.6 Vi in Eq. (3), if not stated otherwise. This means that
an acknowledgement is delayed until the next epochs with
probability: 1 — p; = 0.4. We set the buffer size, b;, for all
queues to 10 jobs. This value for b; was chosen arbitrarily,
and any other value can be used. Further, if not explicitly
given, we use the combined reward function given in Eq. (15)
with « = 100, since we aim to avoid job drops in the system.
We consider the system depicted in Fig. 1 for both cases of
heterogeneous and homogeneous servers. In particular, we
show numerical results comparing POL to different variants
of load balancing strategies (with and without full system
information) with respect to:

e the log complementary cumulative distribution
function (CCDF) of the empirical job response time
(measured from the time a job enters the queue until
it completes service and leaves, lower is better). This
is done only for the jobs which are not dropped,

e the empirical distribution of the job drop rate (mea-
sured over all simulation runs where for each run
we track the number of jobs dropped out of all jobs
received per run, lower is better),

e and the cumulative reward (higher is better).

The evaluation box plots are based on 7},, = 100 indepen-
dent runs of T, =5-10° jobs with whiskers at [0.5,0.95]
percentiles. For every independent run, a new set of inter-
arrival and service times are sampled based on the chosen
distributions. These sampled times are then used by all
load-balancing policies in that run in order to do variance
reduction, according to the Common Random Numbers
(CRN) technique [41]. The plotted results are an average of
100 such Monte carlo simulations.

The chosen inter-arrival and service time distributions
are mentioned with the figures, with unit of measurement
req/sec. The offered load ratio (n:= X/, u;) is used to
describe the ratio between arrival rate and the combined
service rate. The higher the value of 7, the higher is the job
load on the system.

5.1 Overview of Compared Load-Balancers
We compare POL to the following load balancing strategies:

1617

5.1.1 Full Information (Fl) Strategies

These strategies have access to the exact buffer length of
queues at the time of each job arrival, and also know the
arrival rate and the service rates of the servers.

e JSQ-FI: Join-the-Shortest-Queue assigns the incom-
ing job to the server with the smallest buffer filling.

e DJSQ-FI: Join the shortest out of d randomly selected
queues. If not stated otherwise, d = 2 has been used
for our experiments.

e SED-FI: Shortest-Expected-Delay assigns the incom-
ing job to the server with the minimum fraction of
the current buffer filling divided by the average ser-
vice rate.

5.1.2 Limited Information (L) Strategies

These strategies, similar to POL, only have access to the ran-
domly delayed acknowledgements.

e JMO: Join-the-Most-Observations maps an incoming
job to the server that has generated the most observa-
tions, i.e., received acknowledgements, in the last
inter-arrival epoch. This might lead to servers becom-
ing and remaining idle (stale).

e JMO-E (with Exploration): with probability 0.2 ran-
domly chooses an idle server and with probability
0.8 performs JMO.

For all strategies, ties are broken randomly.

5.2 Numerical Results
We first consider a system with N = 2 heterogeneous serv-
ers with exponentially distributed service times with rates
w1 =4 and py = 2. The inter-arrival times are also exponen-
tially distributed with rate A = 5. Fig. 3 shows the numerical
comparison of POL with other load-balancers. Observe that,
even though POL does not have access to the exact state of
parallel systems and also the acknowledgements from the
different systems are randomly delayed, it still achieves
comparable results to full information strategies, while it out-
performs the other [limited information strategies. This is
because in the other limited information strategies, the initially
chosen queues play a key role. Since the queue to which
more jobs are sent, will also give back more observations
(acknowledgements), and JMO and JMO-E will keep send-
ing to those queues, resulting in job drops. The overlap in
response time indicates the similarity of the policies of the
strategies, especially for high offered load when most of the
finite queues will be full. The heatmap in, Fig. 3d, represents
the policy of POL at each buffer filling state. It can be seen
that higher priority is given to the faster server, i, having
buffer filling b;. The light(dark) regions in the heatmap cor-
responds to the state where jobs are allocated to server 1(2).
This heatmap shows that for very possible state of the two queues
s = {b1,ba}, even with limited and delayed information, POL is
able to allocate more jobs to the queue with lower filling or faster
servers, similar to |SQ and SED. Hence, it is able to perform
almost as good as the FI strategies.

Fig. 4 shows the performance of POL for N = 50 hetero-
geneous servers. The service and arrivals rates of this setup
are kept that the offered load is (n ~ 1). This experiment

1618

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

o

—~
=2

=

(2)

== POL
IMO
JMO-
E

|
)

SED-
FI

!
L
|

15Q-
FI

DISQ-
FI

Cumulative reward x10%

roL | (©) Lixfnitcd | Fufll)

e i 0,100 4 mformation Information s
JMO- =

B 3

cop. | £ 0.075 4 L6
FI &

ISQ- 5 0.050 A)
o g 1.4
DISQ-

P 20,025

0.000 1 % ‘%‘ E%'!

4000 0 2 4 6
Response time [s]

0 1000 2000 3000
Total number of jobs

10 POL JMO JMO- SED- JSQ- DJSQ-
E FI FI FI

Queue Filling 1 (by)

Fig. 3. N = 2 heterogeneous servers with exponential service rates i, = 4, u, = 2. Job inter arrival times are exponentially distributed with rate \ =
5. POL outperforms the algorithms with limited information, JMO and JMO-E, in terms of (a) cumulative reward (higher is better), (b) response time
(lower is better), and (c) job drops (lower is better). Although POL only observes the randomly delayed job acknowledgements, while SED-FI, DJSQ-
FI and JSQ-FI know the exact buffer fillings and service times / rates, POL still has comparable performance. The heatmap (d) shows the allocation
preference of POL based on how filled the queue is b, (b2), i.e., the label bar 1.0(2.0) denotes the allocation to queue 1(2), respectively.

shows that our load-balancer POL is scalable to perform
well for large number of queues. Next, we remain with the
case of N = 50 heterogeneous servers, however with inter-
arrival times that are gamma distributed while the service
times follow a heavy tailed Pareto distribution, with
the offered load (n ~ 1). Fig. 5 shows that here too, POL is
able to outperform both the LI strategies and the FI strate-
gies, DJSQ-F. The other two FI strategies have better perfor-
mance because they always have timely and exact
information of the queues, which is unrealistic. Note that as
we consider heavy-tailed distributions in this example the
prediction of job acknowledgments by POL suffers, because
of reasons discussed at the end of Section 4.4.

5.3 Sensitivity Analysis

Next, we discuss the impact of the limited observations on
POL under different acknowledgement delays, p;. Recall,
that POL is not able to observe the buffer fillings, but rather
receives the randomly delayed acknowledgements of the
served jobs. These delayed acknowledgements are used by
the SIR filter of POL to keeps its belief of the state of the
environment updated. Fig. 6 depicts sample runs showing
the actual evolution of the job queue states (red solid line)
and the belief (in shaded region) that POL has on each
queue state at each time step, under different acknowledge-
ment delays. Observe that increasing delays (i.e., lower p;)
increases the uncertainty in belief of each state. However,
POL is still able to track the system state for different delays
for each server, which shows the efficiency of the SIR parti-
cle filter and also justifies the performance of POL to be as good
as FI strategies. Having different delays in acknowledge-
ments from each server reflects a distributed system, where
network conditions may be different for each server and
may lead to different delays in acknowledgements from

(a)n 1004 Limited Full — TOL
. Informatio Information \ IMO
< \ IMO-
£ 0.075 1 [, 107 \ s
2 0.050 b \ 150-
[=] o
. o
= 0.025 ‘l —_— Q-
0000t i = 21 19 — ‘ ‘
POL JMO JMO- SED- JSQ- DJSQ- 0 50 100 150
E FI FI FI

Response time [s]

Fig. 4. N =50 heterogeneous servers with job inter-arrival times and
service times described by an exponential distribution, with the offered
load (n =~ 1). POL outperforms the other algorithms with limited informa-
tion, JMO and JMO-E, in terms of both (a) job drops and (b) response
time. And has comparable performance to the full information strategies,
SED-FI, DJSQ-FI and JSQ-FI.

different servers. Fig. 7 visualizes the belief of POL on the
state of each queue after 1000 epochs, for different delays in
acknowledgements in each queue.

In Fig. 8 we analyse the performance of POL under vary-
ing offered loads ranging from n = 0.2 to n = 1.2. It can be
seen that POL has almost no job losses up to a load of = 1.
Note the qualitative change of the response time distribu-
tion as the offered load reaches = 1 and beyond. For lower
offered load, the response time distribution resembles an
exponentially tailed distribution which changes with n =1
and beyond. In Fig. 9 we show the performance comparison
of different LI and FI strategies for the high offered load
case of n = 1.2. This is done to show that even though POL
has high job drops and response times, it outperforms the
LI strategies and has comparable performance to the FI
strategy, especially DJSQ-FIL.

For the sake of completeness, Fig. 10 compares the per-
formance of POL using different reward functions from Sec-
tion 4.6, while keeping all the other parameters the same.

Time Analysis of POL: POL consists of two main compo-
nents: (i) Tree simulator for action evaluation and (ii) SIR
particle filter for belief update. Both steps need to be done at
every decision epoch, i.e. on every job arrival. Since we
assume no queue at the load-balancer, POL needs to allocate
the incoming job to one of the queues, before the next arrival.
Note that MCTS is a very successful online algorithm. Hence,
POL first takes a portion of the time between arrivals to simu-
late the tree and take a decision for the current arrival. Then
takes that action on the real environment and based on the
received delayed acknowledgement performs the belief
update using the SIR particle filter, until the next job arrives.
As can be seen from the simulation results, POL is scalable in
terms of number of servers and is able to handle high offered
loads, n. Note that the code used to run POL here in the
system simulation is the same that would be used in a

(a)()_ma— Limited % Full . POL

o Information Information \s IMO

< 0.100 4 o \ A IMO-

= 10714 E

Z = \ SED-

20.075 1 g%: a \ o

a © \ JSQ-
0.050 1 O el N\ &

% \ e DISQ-

= 0.025 1 ' FI
0.000 = —— i ———— % 10 IR Frb

POL JMO JMO- SED- JSQ- DJSQ- 0 200 400 600 800
B FI FI FI

Response time [s]

Fig. 5. N = 50 heterogeneous servers with gamma arrivals and Pareto
service times, with offered load (n ~ 1). The effect of the heavy tailed
Pareto distribution can be seen in the response plot (b). In terms of job
drops, POL outperforms limited information (LI) strategies as well as FI
strategy, DJSQ-FI.

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

1.0

s
L

Queue 4, p=0.5

L

orNwWAULAN®E©O

5
L

Queue 9, p=1.0

Ly

i

orNWRUON®O

S
L

Queue 2, p=0.3

r 0.5

PN

3

Queue Buffer Size
crNwAVAuD O

crNwWRUON®OS

Queue 8, p=0.9

L

!

ocrNwEUONw®mLE

Queue 3, p=0.4

T T
0 10 20 30 40 50
Time steps

Fig. 6. N =10 homogenous servers from which 5 were chosen at ran-
dom to see their sample run for 50 time steps. The delay p for the
acknowledgements from each of the server was also allocated randomly,
ranging from 0.1 to 1.0. In each subplot is given the queue number and
its delay, p. The solid red line trajectory is the true sample path for each
queue (not known to POL), while the shaded region around it is the belief
probability that POL has for each state at each time step. Exponentially
distributed inter-arrival and service times were used, with the offered
load n = 1. POL, with the help of SIR particle filter, is able to track the
real state of the system, as long as the delay is not too high, which is
why it is able to perform as good as FI strategies.

Queue Buffer Size

] T
|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Delay, p, for each queue

Fig. 7. Visualization of belief state, based on the particles, of N =10
queues after 1000 epochs. The x-axis gives the delay probability of each
queue, ranging from p = 0.1 (worse delay) to p = 1.0 (no delay). The
solid red line trajectory is the true state of each queue (not known to
POL), while the shaded region around it is the belief probability that POL
has for each queues’ state after 1000 time steps. It can be seen that as
the acknowledgements become less delayed (going from p =0.1 to
p = 1.0)), the belief of POL gets closer to the true state of the queue.
Exponentially distributed inter-arrival and service times were used, with
the offered load, n ~ 1.

deployment scenario. Next, we investigate the impact on the
inter-arrival time between jobs on the load balancer perfor-
mance as the inter-arrival time needs to be sufficient for POL
to perform the above two steps at every job arrival.

1619

(a)0.10 5 1® i — 02
: .\ 0.4
> 0.08 i:ILi 1 \ o6
107" 4 -8
i 3
0.06 A
&) —_—12
. o 10-2 4
= 0.02 \
000{— — — -o 103

02 04 06 08 10 12 0 100 150 200 250
Arrival Rate Respon%@ time [s]

rop Rate

D
=3
2

Job

Fig. 8. Varying offered load for a setup as in Fig. 4. As long as the offered
loadis n < 1, POL has no job losses. For loads > 1 we observe a load
dependent exponential tail of the response time distribution.

@ T Limited Full b — o
. 0.15 1 Information Information ! IMO
= . }{:MO»

Z B 1 SED-
201071 o ° ° a = ¥l

a © JSQ-
o © -2 \ FI

S 0.05 1 _ DISQ-
) FI

0-00 1073 : : . : T

POL JMO JMO- SED- JSQ- DJSQ- 0 50 100 150 200 250 300
E FI FI FI

Response time [s]

Fig. 9. For the setup from Fig. 8 with an offered load n = 1.2: POL shows
a comparable performance to full information (Fl) strategies, while out-
performing other limited information (LI) ones.

(a) o] (b) s Exponential
0.03 &, s
z * Linear
z 10-14 RN Reward
£ 0.02 4 3 N Variance
=] =)) N Reward
é—’ @) N . Proportional
i == Allocatio
2 o0 O o2 \ N7 Revard
S o} 5
= N\
0.00 4——— — ‘\
T T T T 10-* T T T
Exponential Linear Variance Proportional 0 50 100 150 200

Reward ~ Reward Reward Allocation

Reward Response time [s]

Fig. 10. Comparison of different reward functions for 50 homogeneous
servers, with exponentially distributed inter-arrival and service times and
offered load n = 1.

In Fig. 11, the number of homogeneous servers N was
increased from 10 to 90, while keeping the offered load
fixed, i.e., n = 0.99. The average service rate u; of the servers
is kept fixed in all experiments, i.e. the increase in N results
in an increase in the sum of service rates, ZZ ;. Hence, to
keep the offered load fixed with scale the job arrival rate
accordingly. Firstly, this experiment demonstrates the scal-
ability of POL in terms of number of servers. Although the
state space of the system increases with the number of serv-
ers, hence, queues, POL manages to deal well with the
increased state space. In POL we use MCTS adapted from
POMCP [30], so instead of considering the entire state space
we have a fixed set of particles to represent the state based
on our belief of the state, thus tapering the curse of
dimensionality and space complexity. As the inter-arrival
time is the decision epoch we observe that the time given to
POL to simulate the tree and do the belief update reduces,
the effect of which can be seen as the slight decrease in per-
formance as N increases. It can be seen in Fig. 12, that for
N =90, lowering the load again, i.e. giving POL more time
to decide, improves the performance of the system. This
shows the trade-off between the load balancing perfor-
mance, e.g. in terms of the response time and drop rate vs.
the load which directly impacts the time provided to POL
to make a decision.

We believe this to be the current limitation of POL, how-
ever in future, step (i) can be further optimized using MCTS

1620

a (b) 10
0.03 1 K\ 30
% o . \ 0
= .02 4 e 107 SN -
a =) Y, 90
2 O \\
2 0.01 O o2 DA\
2 2 NE
000 — — — %’ NN
T T T T T 10-3 T T y N
10 30 50 70 90 0 20 40 60 80 100

Number of servers Response time M

Fig. 11. Homogeneous servers with exponentially distributed inter-arrival
and service times. The number of servers are increased in intervals of
20 servers, while keeping the offered load always n = 0.99. With a higher
number of servers, less time is available for POL to simulate the tree and
do belief update, resulting in a slight deterioration in the performance.

(@) 0.05 (b) ~ 0
o] N 0.6
2 0.041 ‘ NN o
£ 107" 4 \ N\ 05
~ 0.03 1 5 A SN 0o
S . \
A 0.021 S NN 10
< 1072 4 \ "N
= 001 . \
2 & N
Rl I B —] ! ‘ 1072 ;) N\
0.5 0.6 0.7 0.8 0.9 1.0 0 20 40 60 80 100

Offered load, n Response time [s]

Fig. 12. Performance of POL for N = 90 homogeneous servers for differ-
ent loads.

30 A

— 20 A

fulu

10 4

0

T T T T
—0.25 0.00 0.25 0.50 0.75 1.00

Inter arrival time uls]

Fig. 13. The density estimate of the job inter-arrival times indicates that it
is exponentially distributed.

parallelization [42]. Note that the computational resources
used also have a strong impact on the performance of POL.
Here, we use a dedicated machine with an Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz for all our experiments.

In the next section, we discuss the scenario when some
system parameters are not known and need to be inferred
from the available data.

5.4 Experiments With Trace Data

For the results of this section, we make use of Labeled Network
Traffic Flow data, provided by Kaggle in 2019 [8], [9]. We
used the frameworks given in Section 4.5 to infer the under-
lying distributions of the inter-arrival and service times pro-
vided in this data set. The inferred distribution based on
data of the inter-arrival times of the chosen source is given in
Fig. 13, it can be seen to follow an exponential distribution
with high arrival rate. We then selected 20 heterogeneous
servers from the available data such that they all followed
the Gamma Mixture distribution. Gamma Mixture was
selected to show the performance of POL with yet another
type of service time distributions. The empirical distribution
as a histogram as well as the posterior mean estimate for
some of these selected servers is given in Fig. 14. The hyper-
parameters used are: ¢ = 3, a;,b; = 1, m = 1. POL makes use
of the samples generated using the posterior predictions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

1.25
0.08 4
1.00
= 0.06 o
Y B3
0.04 0.50
0.02 0.25
0.00 T T T 00 T y T T T
0 100 200 300 0 5 10 15 20 25
Service time v 5] Service time v [s]
1254}
0.6 4 =
1.00
2044 = 0.75
= =
0.50 1
0.2 1
0.25
0.0 y T T 0.00 T y T
0 10 20 30 40 0 5 10 15
Service time v [s] Service time v [s]
0.5
15
0.4
— 10 — 0.3
= =02 i
0.5
0.1
0.0 = T T T 0.0 T T T T
0 5 10 15 0 10 20 30 10
Service time v [s] Service time v [s]

Fig. 14. The density estimate of the job service times using a Gamma
Mixture Likelihood model indicates that the servers are heterogeneous
with high service times.

2804 en
)
E| -
+ -
% 60 .
3
2404 ® POL
o JMO
[® JMO-E
&0 90 A ¢ SED-FI
3] * JSQ-FI
j: # DJSQ-FI
0 T T
0.60 0.65 0.70 0.75

Average job drops

Fig. 15. Tradeoff between response time and job drop: In terms of job
drops, POL has comparable performance to DJSQ-FI, while it outper-
forms the other Fl and all LI strategies. The additionally allocated jobs
increase the overall average response time.

We assume that the servers have a finite buffer of size
B =10 (arbitarily chosen) and a delay in acknowledge-
ments of p = 0.6. Fig. 15 shows that even with limited infor-
mation, POL has the lowest average job drops. However,
due to the limited information available to POL and the
reward function it is using, its average response time is as
high as the full information strategy DJSQ-FI. POL is able to
allocate more jobs to the servers (due to fewer drops), which
can come at a cost of higher response time for some jobs,
which will be allocated to the slower servers. Note that the
reward function we used, (15), focuses on avoiding job drops
and not on minimizing the response time.

6 DiscusSION & CONCLUSION

In this work, we analyzed online algorithms for mapping
incoming jobs to parallel and heterogeneous processing sys-
tems under partial observability constraints. This partial
observability is rooted in the assumption that the entity con-
trolling this mapping, denoted load-balancer, takes decisions

TAHIR ET AL.: LOAD BALANCING IN COMPUTE CLUSTERS WITH DELAYED FEEDBACK

only based on randomly delayed feedback of the parallel sys-
tems. Unlike classical models that assume full knowledge of
the parallel systems, e.g., knowing the queue lengths (Join-
the-Shortest Queue - JSQ) or additionally the job service
times (Shortest Expected Delay - SED) this model is particu-
larly suited for large distributed processing systems that
only provide an acknowledgement-based feedback.

In addition to presenting a partially observable (semi-)
Markov decision process model that captures the load bal-
ancing decisions in this parallel queuing system under
delayed acknowledgements, we provide a Partial Observ-
able Load-Balancer (POL) - to find near-optimal solutions
online. A particular strength of POL is that it allows to define
the objectives of the system and lets it find the appropriate load
balancing policy instead of manually defining a fixed one. It can
also be used for any kinds of inter-arrival and service time
distributions and is scalable to a large number of queues.
We numerically show that the POL load balancing policies
obtained under partial observability are comparable to fixed
policies such as JSQ, JSQ(d) and SED which have full infor-
mation. This is the case even though POL receives less, and
in addition randomly delayed, informative feedback.

One future direction is to parallelize the tree search part of
POL to enable more trajectory simulations in a limited time.
Use of GPUs can also be tested to investigate the system per-
formance for a higher number of queues. Another direction
for extending this work is to include the memory effect of the
last served job in the model simulator, e.g., through state
space extension. Heterogeneous and batch jobs can also
be considered. This work can also be extended to more than
one load-balancer, working in parallel in a multi-agent manner.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008.

[2] I Polato, R. Ré, A. Goldman, and F. Kon, “A comprehensive view
of Hadoop research—A systematic literature review,” . Netw.
Comput. Appl., vol. 46, pp. 1-25, 2014.

[3]1 A. Fox et al., “Above the clouds: A berkeley view of cloud
computing,” Dept. Electrical Eng. Comput. Sciences, Univ. Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS, 2009.

[4] A. Hordijk and G. Koole, “On the optimality of the generalized
shortest queue policy,” Probability Eng. Inf. Sci., vol. 4, no. 4,
pp. 477-487,1990.

[5] W. Winston, “Optimality of the shortest line discipline,” J. Appl.
Probability, vol. 14, no. 1, pp. 181-189, 1977.

[6] S. A. Banawan and J. Zahorjan, “Load sharing in heterogeneous
queueing systems,” in Proc. 8th Annu. Joint Conf. IEEE Comput.
Commun. Societies, 1989, pp. 731-732.

[71 . Selen, 1. Adan, S. Kapodistria, and J. van Leeuwaarden, “Steady-
state analysis of shortest expected delay routing,” Queueing Syst.,
vol. 84, no. 34, pp. 309-354, 2016.

[81 J. S. Rojas, “Labeled network traffic flows,” Accessed: Sep. 02,
2022. https://www kaggle.com/jsrojas/labeled-network-traffic-
flows-114-applications,

[91 J.S. Rojas, A. Pekar, A. Rendédn, and J. C. Corrales, “Smart user

consumption profiling: Incremental learning-based OTT service

degradation,” IEEE Access, vol. 8, pp. 207 426-207 442, 2020.

S. A. Banawan and N. M. Zeidat, “A comparative study of load

sharing in heterogeneous multicomputer systems,” in Proc. 25th

IEEE Annu. Simul. Symp., 1992, pp. 22-31.

M. van der Boor, S. C. Borst, J. S. van Leeuwaarden, and D.

Mukherjee, “Scalable load balancing in networked systems: A sur-

vey of recent advances,” 2018, arXiv:1806.05444.

W. Whitt, “Deciding which queue to join: Some counter-

examples,” Operations Res., vol. 34, no. 1, pp. 55-62, 1986.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]
[40]
[41]

[42]

1621

D. Arecelli, “Exploiting queuing networks to model and assess the
performance of self-adaptive software systems: A survey,” Proce-
dia Comput. Sci., vol. 170, pp. 498-505, 2020.

S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,”
IEEE Trans. Softw. Eng., vol. 44, no. 8, pp. 784-810, Aug. 2018.

M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp- 1094-1104, Oct. 2001.

D. Shah and B. Prabhakar, “The use of memory in randomized load
balancing,” in Proc. IEEE Int. Symp. Inf. Theory, 2002, Art. no. 125.

K. Psounis and B. Prabhakar, “Efficient randomized web-cache
replacement schemes using samples from past eviction times,”
IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 441-454, Aug. 2002.

B. Liu, Q. Xie, and E. Modiano, “Reinforcement learning for opti-
mal control of queueing systems,” in Proc. 57th Annu. Allerton
Conf. Commun. Control Comput., 2019, pp. 663—-670.

U. Ayesta, “Reinforcement learning in queues,” Queueing Syst.,
vol. 100, pp. 497499, 2022.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

B. Alt et al., “Transitions: A protocol-independent view of the
future internet,” Proc. IEEE, vol. 107, no. 4, pp. 835-846, Apr. 2019.
K. Krishnan, “Joining the right queue: A Markov decision-rule,”
in Proc. 26th IEEE Conf. Decis. Control, 1987, pp. 1863-1868.

E. Altman and P. Nain, “Closed-loop control with delayed
information,” ACM Sigmetrics Perform. Eval. Rev., vol. 20, no. 1,
pp. 193-204, 1992.

J. Kuri and A. Kumar, “Optimal control of arrivals to queues with
delayed queue length information,” IEEE Trans. Autom. Control,
vol. 40, no. 8, pp. 1444-1450, Aug. 1995.

D. Artiges, “Optimal routing into two heterogeneous service sta-
tions with delayed information,” in Proc. 32nd IEEE Conf. Decis.
Control, 1993, pp. 2737-2742.

I. Chades, L. V. Pascal, S. Nicol, C. S. Fletcher, and J. Ferrer-Mestres,
“A primer on partially observable markov decision processes
(POMDPs),” Methods Ecol. Evol., vol. 12, no. 11, pp. 2058-2072, 2021.
S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning
algorithms for POMDPs,” J. Artif. Intell. Res., vol. 32, pp. 663-704,
2008.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artif.
Intell., vol. 101, no. 1-2, pp. 99-134, 1998.

J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based
approximations for large POMDPs,”]. Artif. Intell. Res., vol. 27,
pp- 335-380, 2006.

D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,”
in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 2164-2172.

H. Yu et al., “Approximate solution methods for partially observ-
able Markov and semi-Markov decision processes,” Ph.D. disser-
tation, Massachusetts Inst. Technol., Cambridge, MA, USA, 2006.
S. M. Ross, Introduction to Probability Models. Cambridge, MA,
USA: Academic Press, 2014.

M. D. Hoffman and A. Gelman, “The No-U-Turn sampler: Adap-
tively setting path lengths in Hamiltonian Monte Carlo,” . Mach.
Learn. Res., vol. 15, no. 1, pp. 1593-1623, 2014.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic pro-
gramming in Python using PyMC3,” Peer] Comput. Sci., vol. 2,
2016, Art. no. e55.

S. Ghosal, and A. Van der Vaart, Fundamentals of Nonparametric
Bayesian Inference. Cambridge, U.K.: Cambridge Univ. Press, 2017.
R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp- 34-37, 1966.

D. Silveretal ., “Mastering the game of Go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484489,
2016.

D. Silveretal ., “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play,” Science, vol. 362,
no. 6419, pp. 1140-1144, 2018.

L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,”
in Proc. Eur. Conf. Mach. Learn., 2006, pp. 282-293.

N. A. Vien and M. Toussaint, “Hierarchical Monte-Carlo planning,”
in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 1-7.

P. L’Ecuyer, “Efficiency improvement and variance reduction,” in
Proc. IEEE Winter Simul. Conf., 1994, pp. 122-132.

G. M.-B. Chaslot, M. H. Winands, and H. Herik, “Parallel Monte-
Carlo tree search,” in Proc. Int. Conf. Comput. Games, 2008, pp. 60-71.

https://www.kaggle.com/jsrojas/labeled-network-traffic-flows-114-applications
https://www.kaggle.com/jsrojas/labeled-network-traffic-flows-114-applications

Anam Tahir received the BSc degree in electrical
engineering and information technology from the
National University of Science and Technology,
Pakistan, and the MSc degree in electrical engi-
neering and information technology from Techni-
sche Universitat Darmstadt, in 2018. Since
November 2018, she is working as a research
associate within the Self-Organizing Systems Lab,
Technische Universitat Darmstadt. She is inter-
ested in planning and performance analysis of
large queuing and other networked systems, par-
ticularly in uncertain environments.

Bastian Alt received the BSc and MSc degrees in
electrical engineering and information technology
from Technische Universitat Darmstadt, in Now.
2013 and Dec. 2016, respectively, and the doctoral
degree (Dr-Ing.) from the Department of Electrical
Engineering and Information Technology, Techni-
sche Universitat Darmstadt, in 2022. Since Janu-
ary 2017, he is working as a research associate
within the Self-Organizing Systems Lab, Techni-
sche Universitat Darmstadt. He is interested in the
modelling of network systems using tools from
machine learning, control and optimization.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Amr Rizk (Senior Member, IEEE) received the doc-
toral degree (Dr.-Ing.) from the Leibniz Universitat
Hannover, Germany, in 2013. After that he held
postdoctoral positions with the University of War-
wick, UMass Amherst, and the TU Darmstadt, Ger-
many. From 2019 to 2021 he was an assistant
professor with Ulm University, Germany. Since
2021 he is a professor with the Department for
Computer Science, University of Duisburg-Essen,
Germany. He is interested in performance evalua-
tion of communication networks, stochastic models
of networked systems and their applications.

Heinz Koeppl received the MSc degree in physics
from Karl-Franzens University Graz, in 2001, and
the PhD degree in electrical engineering from the
Graz University of Technology, Austria, in 2004.
After that he held postdoctoral positions with UC
Berkeley and Ecole Polytechnique Federalede Lau-
sanne (EPFL). From 2010to 2014 he was an assis-
tant professor with the ETH Zurich and part-time
group leader at IBM Research Zurich, Switzerland.
Since 2014 he is a full professor with the Depart-
ment of Electrical Engineering and Information
Technology, Technische Universitat Darmstadt, Germany. He received two
awards for his PhD thesis, the Erwin Schrodinger Fellow-ship, the SNSF
Professorship Award and currently holds an ERC consolidator grant. He is
interested in stochastic models and their inference in applications ranging
from communication networks to cell biology.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

