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Abstract

In this work, we perform neutron star merger simulations with equation of state (EoS) models
containing nucleonic, hyperonic or deconfined quark matter. In particular, we focus on the differ-
ent behavior of hyperonic and deconfined quark matter phases at finite temperatures compared to
purely nucleonic neutron star material and explore the impact on the resulting gravitational-wave
(GW) signal. Both hyperons and deconfined quarks are hypothesized to be present at high densi-
ties in neutron stars. However, current observations and theoretical calculations are inconclusive.
Therefore, the true composition of neutron star cores remains unknown.

To investigate the impact of hyperons on neutron star mergers, we perform the first comprehen-
sive study with several different available hyperonic EoSs. At finite temperatures, more hyperons
are produced, therefore lowering the degeneracy pressure of nucleons. We find that this reduced
pressure in hot hyperonic material results in a characteristic increase of the dominant postmerger
GW frequency up to about 150 Hz compared to purely nucleonic matter. This frequency shift can
be directly linked to the presence of hyperons. Although the effect is weak, it could serve as an ob-
servational indication of hyperons in the future. Our finding is particularly relevant as mass-radius
relations of cold hyperonic stars may be indistinguishable from nucleonic stars.

When employing models with a transition to deconfined quark matter, so-called hybrid models,
we find that thermal effects can significantly influence the structure of the neutron star merger
remnant. For the hybrid EoS sample we consider, this can be attributed to the shift of the quark-
hadron phase boundaries at finite temperatures, which strongly reduces the pressure compared to
cold matter. We explicitly show that if this change of phase boundaries is not taken into account,
the dominant gravitational-wave frequencies can be underestimated by several hundred Hz.

Additionally, we devise an effective description to incorporate the effects of shifting phase bound-
aries to supplement cold EoSs with a Maxwell-type phase transition, i.e. two distinct phases
connected by a flat coexistence region. We validate our model by comparing results to our fully
temperature-dependent hybrid EoS sample and find very good agreement in the postmerger GW
frequencies. We then explore the impact varying phase boundaries have for a fixed, cold EoS. Our
findings suggest that for hybrid models, the shape of the phase boundaries can have a strong impact
on merger observables such as GW frequencies and the prompt collapse of the remnant to a black
hole. We also show explicitly that it is even possible for deconfined quark matter to only occur in
finite temperature systems like merger remnants but not in cold, isolated stars. This demonstrates
that postmerger GWs contain important information on the underlying EoS complementary to ob-
servations from individual NSs. Future detections of GWs from binary NS mergers hence have the
potential to shed light on the presence of hyperons and deconfined quark matter in neutron star
material and provide information on the phase diagram of quantum chromodynamics in addition
to constraints from terrestrial experiments.
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Zusammenfassung

In dieser Arbeit simulieren wir Verschmelzungen von Neutronensternen mit Zustandsgleichungs-
modellen, welche nukleonische, hyperonische oder freie Quarkmaterie enthalten. Insbesondere
legen wir den Fokus auf das unterschiedliche Verhalten von Materiephasen mit Hyperonen und
freien Quarks bei endlichen Temperaturen im Vergleich zu rein nukleonischer Neutronensternma-
terie und untersuchen den Einfluss auf die resultierenden Gravitationswellen. Sowohl Hyperonen
als auch freie Quarkmaterie tauchen möglicherweise bei hohen Dichten in Neutronensternen auf,
können allerdings durch aktuelle Beobachtungen und theoretische Berechnungen zur Zeit weder
bestätigt noch ausgeschlossen werden. Die tatsächliche Zusammensetzung von Neutronenstern-
kernen ist daher nach wie vor unbekannt.

Um den Einfluss von Hyperonen auf Neutronensternverschmelzungen zu erforschen, führen
wir die erste umfassende Untersuchung mit zahlreichen verfügbaren hyperonischen Zustandsglei-
chungsmodellen durch. Bei endlichen Temperaturen werden mehr Hyperonen produziert, was den
Entartungsdruck der Nukleonen senkt. Dieser reduzierte Druck in heißer, hyperonischer Materie
führt zu einem charakteristischen Anstieg der dominanten Gravitationswellenfrequenz nach der
Verschmelzung um bis zu 150 Hz im Vergleich zu rein nukleonischer Materie. Obwohl dieser Ef-
fekt klein ist, könnte er in Zukunft trotzdem als beobachtbarer Nachweis von Hyperonen dienen.
Unser Resultat ist insbesondere deswegen relevant, weil die Masse-Radius Beziehungen kalter, hy-
peronischer Neutronensterne möglicherweise ununterscheidbar von denen nukleonischer Sterne
sind.

Beim Verwenden von Modellen mit einem Übergang zu freier Quarkmaterie, sogenannten hy-
briden Modellen, finden wir einen erheblichen Einfluss thermischer Effekte auf die Struktur des
Überrests der Verschmelzung. In den von uns verwendeten, hybriden Zustandsgleichungsmodel-
len kann dies auf die Verschiebung der Quark-Hadron Phasengrenze bei endlichen Temperaturen
zurückgeführt werden, welche den Druck im Vergleich zu kalter Materie deutlich senkt. Wir zei-
gen explizit, dass die dominante Gravitationswellenfrequenz ummehrere Hundert Hz unterschätzt
werden kann, wenn diese Änderungen der Phasengrenzen nicht berücksichtigt werden.

Zusätzlich entwickeln wir eine effektive Beschreibung, um den Einfluss von temperaturabhän-
gigen Phasengrenzen für Zustandsgleichungen mit einer Maxwell-Phasenkonstruktion, also zwei
getrennten Phasen welche durch eine flache Koexistenzphase verbunden sind, zu berücksichtigen.
Wir validieren unser Modell, indem wir die Ergebnisse mit Resultaten aus temperaturabhängigen,
hybriden Zustandsgleichungsmodellen vergleichen. Dabei finden wir sehr gute Übereinstimmun-
gen der Gravitationswellenfrequenzen nach der Fusion der beiden Sterne. Anschließend untersu-
chen wir den Einfluss verschiedener Phasengrenzen für eine feste, kalte Zustandsgleichung. Unsere
Ergebnisse legen nahe, dass die Form der Phasengrenzen einen großen Einfluss auf beobachtbare
Größen von Neutronensternverschmelzungen wie Gravitationswellenfrequenzen oder den direkten
Kollaps des Überrests zu einem Schwarzen Loch hat. Wie wir explizit zeigen, besteht sogar dieMög-
lichkeit, dass freie Quarkmaterie nur bei endlichen Temperaturen in Systemen wie kollidierenden
Neutronensternen existiert, aber nicht in kalten, isolierten Sternen auftritt. Dies macht deutlich,
dass Gravitationswellen, welche nach einer Neutronensternverschmelzung emittiert werden, wich-
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tige Informationen über die zugrundeliegende Zustandsgleichung komplementär zu Beobachtun-
gen einzelner Neutronensterne beinhalten. Zukünftige Beobachtungen von Gravitationswellen aus
Neutronensternverschmelzungen haben daher das Potential, zusätzlich zu irdischen Experimenten
Aufschluss über das Vorkommen von Hyperonen und freier Quarkmaterie in Neutronensternmate-
rie und über das Phasendiagramm der Quantenchromodynamik zu geben.
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1. Introduction

1.1. Neutron stars and neutron star mergers

Neutron stars (NSs) are compact astrophysical objects that contain more mass than our sun in a
volume comparable to the extent of a mid-sized city. They form during the final evolution phase
of massive stars through the gravitational collapse of the stellar core [1]. As the densities in NSs
surpass even those of atomic nuclei, studying these objects provides insights into a phase of matter
which is currently not fully understood [2]. In particular, the composition of neutron star material
at densities above nuclear saturation density ρnuc = 2.7× 1014g/cm3 remains unknown due to our
incomplete knowledge of the relevant interactions [3, 4, 5]. At these densities, matter could be
composed of neutrons, protons, electrons and muons. However, more exotic phases may exist in
NS cores. These could include heavy baryons such has hyperons and ∆ baryons [6, 7, 8, 9], pion
or kaon condensations [10, 11, 12, 13] or even different states of deconfined quark matter [14,
15, 7, 16, 17].

Systems containing two neutron stars orbiting each other can form from massive stellar binaries
after both progenitors explode as supernovae provided the system is not disrupted [18, 19]. These
binary neutron star (BNS) systems perpetually lose energy and angular momentum through the
emission of gravitational waves (GWs) leading to a slow but continuous inspiral and eventually to
a violent collision of the two stars [20].

We show the main evolution stages of a BNS merger in Fig. 1.1. These snapshots depict the
density (top row) and the temperature (bottom row) in the equatorial plane from a simulation of
two colliding 1.4 M⊙ NSs conducted in this thesis. The general dynamics are in agreement with
results found in other works, see e.g. [21, 22, 23, 20, 24]. In the late inspiral phase (left column
in Fig. 1.1), the two star begin deforming each other through tidal effects. At this stage, the
temperatures in the system are still low. During the merger of two neutron stars (middle column
in Fig. 1.1), the densities in the system increase and can reach a few times nuclear saturation
density. Parts of the initially cold NS matter are heated up to several tens of MeV by shocks,
first at the collision interface and later in the merger remnant. Some material is also ejected in
the process [23, 24]. The further fate of the system then depends on its mass as well as on the
internal properties of dense matter [25]. A not too massive remnant, as the one shown in Fig. 1.1,
is temporarily stabilized against gravitational collapse through its rapid, differential rotation. In
these systems, the initially deformed and strongly oscillating remnant settles down into amore axial
axial-symmetric state on the timescale of milliseconds, as can be seen by comparing the middle and
the right column of Fig. 1.1. We also see that the temperature profile in the late evolution stage
shows a cold central core surrounded by a hot ring structure and spiral waves in the lower density
parts.

A more massive remnant on the other hand will directly form a black hole. The mass separating
the two potential outcomes is commonly referred to as the threshold mass for prompt collapse,
Mthres. Its exact value depends on the mass asymmetry of the system and, more importantly, on
the microphysical properties of dense matter [26, 27, 28, 29]. Hence,Mthres is an crucial quantity
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that contains valuable information on NS matter and also fundamentally impacts the dynamics in
the BNS postmerger phase.
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Figure 1.1.: Rest mass density (top row) and temperature (bottom row) in the equatorial plane at
different stages of a merger simulation including two 1.4 M⊙ neutron stars with the
SFHo model describing the internal pressure of dense matter [30, 31]. See Sect. 3.2.1
for details on the SFHo model and Sect. 2.1 for information on the simulation code.
Note the logarithmic scale of the density.

The recent progress in GW astronomy now allows us to observe BNS mergers [32, 33] and study
the properties of matter in these events. Following the evolution of the system, the BNS merger GW
signal can be divided into an inspiral part and a postmerger part [34]. At larger orbital separation,
the inspiral part resembles a signal of two point masses. In this regime, the GWs are mainly shaped
by the so-called chirp mass of the system, M = (m1m2)

3/5/(m1 +m2)
1/5, where mi denotes the

masses of the individual stars [35]. During the late inspiral phase, the tidal effects caused by the
two stars deforming each other leave an additional imprint on the GW signal [36, 37, 38, 39]. The
postmerger part depends on the fate of the remnant. In the case of a direct collapse, the GWsmerely
show a fast ring-down of the formed black hole [40, 41, 42]. A massive neutron star remnant on
the other hand, produces a more interesting signal shaped by oscillations and deformations of the
resulting object (see e.g. [43, 44, 45, 46, 47, 48, 49]).

An analysis of the complete GW signal from BNS mergers is particularly interesting for studying
the properties of extremely dense matter because it allows us to simultaneously probe the different
conditions present during the evolution of the system [50, 51]. In the late inspiral phase, the
material is cold and in weak equilibrium composition as the merging NSs are very old. The GWs
emitted after the merger on the other hand, can carry information on matter at higher densities
and temperatures as well as potentially different compositions compared to the inspiral signal. A
simultaneous detection of pre- and postmerger GWs can hence greatly increase our understanding
of neutron star matter [52, 50, 53, 54].
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1.1.1. Neutron star merger observations

Up to this day, GWs from two BNS mergers have been observed [32, 33]. In both cases, only the
inspiral parts were recorded.

The first detection was the famous GW170817 event detected by the Advanced LIGO [55] and
Advanced VIRGO detectors [56] on the 17th of August 2017 [32]. The GW signal was observed
for ∼100 s allowing for a precise inference of the systems’ chirp mass. The tidal effects from the
late inspiral were also constrained, enhancing our understanding of the properties of cold neutron
star matter [57]. No postmerger GW emission was detected, which was likely caused by the lower
sensitivity of the available detectors at higher frequencies [58].

The event was succeeded by a short gamma-ray burst 1.7 s after the GW signal detection [59,
60, 61, 62], confirming that BNS mergers are sources of these extremely luminous events.

An optical signal named AT2017gfo was identified about 11 h later in a region of space consistent
with the sky localization from the GW detectors [63, 64, 65], which rapidly evolved over the span of
a few days shifting from mainly blue to red and near infrared [66, 67, 68]. This so-called kilonova
is believed to be caused by the radioactive decay of heavy nuclei synthesized in the neutron rich
ejected material from the merger by the so-called rapid neutron capture process (r-process) [69,
70, 71, 72]. This process plays an important role for the creation of heavy elements in the universe
(see e.g. [73, 74, 75] for reviews). The main production site of the r-process is still subject to
ongoing research. The observations from AT2017gfo indicate that mergers involving neutron stars
contribute to the synthesis of r-process material in the universe [72, 76, 24] as was hypothesized
decades ago [77, 78].

A second, probable NS merger named GW190425 was recorded on the 25 of April 2019 by the
Advanced LIGO detector [33]. The inferred distance to the source was significantly larger than
for GW170817. An interesting feature of this event was its large system mass of roughly 3.4 M⊙,
which is still compatible with the progenitor being a BNS system but considerable higher than the
currently known galactic NS binaries [79]. No electromagnetic or postmerger GW signals were
found [80]. This may be attributed to the relatively poor sky localization in combination with the
large distance to the source. Furthermore, a binary this massive is expected to undergo prompt
black hole formation, which should also reduce the amount of ejecta making the resulting kilonova
dimmer [33, 81, 82].

Alongside these two BNS events, GWs from numerous binary black hole mergers have been ob-
served over the last few years [83, 84, 85, 86]. In addition, the GW detectors have so far found two
signals likely originating from coalescing neutron star-black hole systems [87]. These observations
clearly demonstrate the potential GW astronomy has for studying mergers of compact objects and
enhancing our understanding of their nature. In particular, the joint and follow-up electromagnetic
studies of GW170817 have provided valuable information on several topics such as the r-process,
the properties of neutron star matter and the origin of short gamma-ray bursts. Further areas of
research from GW astronomy also include constraints on alternative theories of gravity [88] and
an independent determination of the Hubble constant [89].

The most sensitive available gravitational-wave detector Advanced LIGO [55] is currently in the
fourth observation run, O4, the detectors Advanced Virgo [56] and KAGRA [90] are anticipated to
join this run in spring of 2024 1. A fifth period with further increased sensitivities is expected to
begin in 2027 [91] and an additional detector LIGO-India is planned [92].

In addition, third-generation detectors such as the Einstein Telescope [93] or Cosmic Explorer [94]
are expected to have about an order of magnitude better GW sensitivity compared to current detec-

1A schedule for the GW observation periods can be found on the webpage https://observing.docs.ligo.org/plan/
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tors [95]. Hence, more BNS mergers are expected to be observed in the next years. Owing to the
extremely small influence GWs have on their surroundings, distinguishing GW from background
noise is very challenging and requires matching of detector data to precomputed waveformmodels.
To correctly interpret future observations, reliable waveforms have to be developed [34] requiring
a good theoretical understanding of relevant effects in BNS mergers and how they impact the GW
signal. It is therefore crucial to employ accurate models for the properties of dense matter as well
as sophisticated numerical simulations of BNS mergers.

1.2. The dense matter equation of state

A crucial step to reliably describe NSs and dense matter is the correct modeling of the underlying
equation of state (EoS). The EoS provides the internal matter pressure as a function of density,
composition and temperature. For describing neutron stars, an EoS model must consider a wide
range of densities, where matter behaves quite differently. At lower densities in the crust of NSs,
matter clusters into heavy nuclei [7]. At intermediate densities, matter becomes homogeneous,
likely composed of superfluid neutrons, superconducting protons, electrons and muons [5], while
the composition at even larger densities is unknown.

In many astrophysical applications such as simulations of neutron star mergers or core-collapse
supernovae, matter can be hot and out of beta-equilibrium composition [96, 22, 97, 98, 20]. Hence,
an EoS model suitable for these applications has to also account for a wide range of temperatures
and high proton-neutron asymmetry. These types of models are usually referred to as 3D or general-
purpose EoSs (see e.g. [5, 3, 99] for reviews). Due to the additional complexity, the number of
general purpose EoS is limited and many more models are available as barotropic EoSs, i.e. at zero
temperature in beta-equilibrium composition. Overviews can be found in the provided reviews and
on repositories such as COMPOSE 2 [100, 3, 101].

In principle, the EoS of high-density matter could be derived from quantum chromodynamics
(QCD), the fundamental theory of the strong interaction (see e.g. [102, 103] for overviews on
QCD). However, from the point of QCD, a nucleon is a very complicated system composed of valence
quarks, sea quarks and gluons [104]. The interaction between only two nucleons is hence already
an interaction between two very complex objects. This makes a direct inference of the NS EoS from
QCD currently unachievable and effective models have to be employed.

Current models of the high density EoS are based on several different approaches (see e.g. [3,
105, 106, 5, 99], for overviews). These can broadly be grouped into two categories: phenomeno-
logical and ab-initio EoSs.

Phenomenological EoSs are based on effective interaction models containing parameters that are
typically fitted to reproduce properties of nuclei. Popular examples are relativistic mean-field mod-
els [107, 108] and non-relativistic Skyrme [109, 110, 111, 112] and Gogny [113, 114] interactions.
A disadvantage of these approaches is that they are gauged by finite nuclei in their ground state and
hence have to be extrapolated to higher densities and isospin asymmetries. These extrapolations
may not always be reliable [115, 5].

Ab-initio EoS on the other hand employ realistic two- and three-body nucleon interactions that
are based on scattering data and properties of light nuclei, e.g. [116, 117, 118, 119, 120, 121, 122].
With these interactions, one has to solve the many-body problem to determine the EoS. Many
different approaches exist for this task (see e.g. [123, 124, 125, 126, 127, 128] or EoS reviews
such as [3, 105, 106, 5, 99]).
2https://compose.obspm.fr
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A particular ab-initio approach is the so-called chiral effective field theory (χEFT). This is an effec-
tive description with nucleons as relevant degrees of freedom that allows for a systematic expansion
into higher order terms to obtain the nuclear forces. See e.g. [129, 130, 131] for reviews. With cer-
tain assumptions on the convergence behavior, this approach provides uncertainty estimates for the
resulting EoSs from the neglected terms [132]. However, χEFT calculations are currently limited to
densities and temperatures below roughly 2×ρnuc and 30 MeV, respectively [131]. For applications
to neutron stars, the results of χEFT must therefore be combined with other approaches.

A general downside of ab-initio EoSs is that they can only be employed for the description of
homogeneous matter [3, 5]. To obtain general purpose EoSs, they need to be supplemented with
an effective model for the NS crust.

In addition to phenomenological or ab-initio models, parametric EoSs such as piecewise poly-
tropic [133] or constant speed of sound descriptions [134] are commonly employed. These are
representations of the EoS using a specific functional form and do not include any microphysics.
Their appeal is their simplicity, i.e. that they can easily be adjusted in any desired way, which can
be useful for exploring the available parameter space.

With several different EoS models and approaches available, it is important to confront them
with observational and experimental constraints.

1.2.1. Current constraints on the equation of state

Besides basic requirements such as causality and thermodynamic stability, important current con-
straints on the high density EoSs come from astrophysical observations of NSs. Since NSs are in
hydrostatic equilibrium with the internal pressure balancing the gravitational attraction, the stel-
lar structure equations of general relativity (GR), the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [135, 136] (see Sect. 3.1), provide a unique mapping between an EoS model and the
mass-radius relation of neutron stars. For this, one typically assumes NSs to be cold and in weak
equilibrium composition. Hence, a combinedmeasurement of masses and radii of several NSs can in
principle reveal the EoS of cold high-density matter. While NS masses have been inferred with high
precision from observations of binary systems including pulsars [137, 138, 139, 140], radius mea-
surements are extremely challenging because NSs are very small, far away objects [141, 142, 2].

Recently, the NICER mission has provided two simultaneous mass- and radius-measurements of
the pulsars PSR J0030+0451 [143, 144] and PSR J0740+6620 [145, 146] using Bayesian param-
eter estimation. This inference relies on modeling the geometry of hot spots on the surface of the
star and and results can vary for different assumed hot spot shapes [147]. Additional assumptions
on e.g. the NS atmosphere or the background also need to be made.

A generic feature of solutions to the TOV equations is the existence of a maximum mass [148].
Any NS mass measurement hence already places constraints on the EoS as all models that fail
to reach an observed mass are immediately ruled out. Current observations of massive pulsars
indicate that the maximum NS mass is at least two solar masses [139, 140]. A very recent joint
reanalysis of different detections even suggests the maximum TOV mass is larger than 2.09M⊙ at
3σ confidence interval [149]. These observations show that the NS EoS has to be relatively stiff.

Additional astrophysical constraints come from limits on the tidal deformability Λ set by the
event GW170817 [32, 57, 150]. This parameter quantifies how easily a NS can be deformed by an
external tidal field (see Sect. 3.1 for a mathematical definition), which depends on its compactness.
Limits on the NSmaximummass and NS radii were also inferred from this event. These are (partly)
based on universal EoS-insensitive relations between different observables and the assumption that
the remnant did not immediately collapse to a black hole (see e.g. [151, 152, 153, 154, 155, 156,
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27, 157, 158, 159]).
Further astrophysical constraints can for example come from observing the cooling of NS [160,

161, 162, 163] or from measuring the gravitational redshift of the 511 keV line from electron-
positron annihilation at the surface [164].

In addition to astrophysical observations, the EoS can also be explored in nuclear physics and
heavy-ion collision experiments (see e.g. [165, 166, 167, 168, 169, 170, 171, 5, 172]) at current
and future facilities such as ALICE [173], HADES [174], CLAS [175], J-PARC [176], FAIR [177,
178, 179] or NICA [180, 181].

Recent works have also aimed to further constrain the EoS from the behavior of perturbative QCD
calculations at asymptotically large densities [182, 183, 184] or by employing statistical methods
to combine different measurements (e.g. [158, 185, 186, 187, 188, 159, 189, 190, 191, 149, 192,
193]).

1.2.2. Hyperons in neutron stars and the hyperon puzzle

An interesting possible feature in neutron stars is the occurrence of hyperons, i.e. heavy baryons
with strangeness, at high densities (see e.g. [6, 7, 194, 8, 9]). In terrestrial conditions these particles
are unstable and decay into nucleons. In neutron stars however, Pauli blocking could increase the
chemical potential enough to make the inverse reaction energetically favorable leading to stable
hyperonic matter. Once hyperons appear, they should reduce the Fermi pressure of the baryons
and hence soften the EoSs [195, 196]. On the other hand, current observations of heavy pulsars
indicate a maximum mass above 2 M⊙ or even higher [139, 140, 149] and require the EoS to
be stiff at high densities. The apparent tension between the energetically expected occurrence of
hyperons in NSs and the stiff EoS required by NS mass measurements is commonly referred to as
the hyperons puzzle [197].

Possible explanations to this puzzle could be sufficiently repulsive hyperon-hyperon (YY), hyperon-
nucleon (YN) or hyperon three-body interactions [198, 199]. See e.g. [169, 200, 201, 202, 203,
204, 205] for current theoretical models. These interactions could either increase the stiffness of
the hyperonic EoS or push the onset density of hyperons outside of the densities reached in NS
cores. In the latter case, NSs would remain purely nucleonic at all masses.

An increasing number of EoSs that include hyperons and allow for 2M⊙ NSs have become avail-
able (e.g. [206, 207, 208, 209, 210, 211, 212]). The resulting NS models from these EoSs however,
do not show distinct features compared to purely nucleonic EoSs. This suggests that even precise
observations of NSs or tidal deformability measurements may not be sufficient to infer the pres-
ence of hyperons (see Sec. 5.1). Additional constraints from different astrophysical observations
and terrestrial experiments will hence be needed to resolve the hyperon puzzle.

There are ongoing efforts to measure the YY and YN interactions from observing properties of
hypernuclei [213, 214, 215, 216, 217] and scattering experiments including hyperons [218, 219,
220, 221, 222]. These are however hampered by the short lifetime of hyperons and limited to
lower densities. Further information on hyperonic interactions come from the so-called femtoscopy
technique that measures correlations in momentum space for hyperons produced in collider exper-
iments [223, 224, 225, 226, 227, 227, 228, 229].

Astrophysical indications on the presence of hyperons can come from observations of NS shortly
after supernovae. If hyperons are present in NSs, the trapped neutrions in the newly born proto-
NS are expected to reduce the fraction of hyperons and stiffen the EoS. Once the star cools and
neutrinos eventually leave, more hyperons can be present and the EoS should become softer pos-
sibly leading to a gravitational collapse [230]. More information can be found for example in
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Refs. [231, 232, 233, 234, 197, 9]. Additionally, a surviving NS containing hyperons should cool
more rapidly via Urca processes than a purely nucleonic star as the presence of hyperons allows
for more weak reactions to take place. See e.g. [160, 161, 197, 235, 236, 237, 238, 239, 8, 9] for
details.

So far all constraints are inconclusive and the hyperon puzzle remains unsolved in the sense that
it is unknown whether hyperons are present in NS cores or not. In this work we will discuss the
possibility to identify hyperons with the help from GW observations of BNS mergers.

1.2.3. Deconfined quark matter in neutron stars

A second possible feature in neutron stars and also a potential solution to the hyperon problem is a
transition from hadronic to deconfined quark matter at high densities. Such a transition is expected
to occur at some density due to the asymptotic freedom of quarks and gluons as fundamental
degrees of freedom in QCD [15].

At zero baryon chemical potential, QCD predicts a smooth cross-over transition from hadronic
matter to the quark-gluon plasma [240]. This regime is accessible through theoretical lattice QCD
calculations and accelerator experiments [170, 240, 172]. At high densities and low tempera-
tures present in neutron stars, the transition is less understood. Here, no ab-initio calculations
of deconfined quark matter are available and only phenomenological models can be employed
(e.g. [241, 242, 243, 244, 245, 246]). As a result, key features of the quark-hadron phase transition
such as the onset density, the latent heat, the type of transition (smooth crossover or first-order),
the behavior of the phase boundaries at finite temperatures as well as properties of the deconfined
quark phase remain unknown [247, 248, 15, 7, 17, 16].

The possibility that NSs contain deconfined quark matter has been explored for a long time [14,
249]. See [15, 7, 17, 16] for recent reviews. Neutron stars containing a core of deconfined quark
matter surrounded by hadronic material are commonly referred to as hybrid stars and the under-
lying EoS as hybrid EoS. In contrast, strange stars entirely made out of deconfined up, down and
strange quark matter could also exist [249, 250, 251].

To model hybrid EoS, a two-phase approach is typically employed. In this scheme, two individual
EoSs for the hadronic and the deconfined quark matter phase are formulated. These are then joined
by a phase construction. A common choice is the so-called Maxwell construction with a density
jump between the two separate phases occurring at equal pressure and chemical potential for a
fixed temperature. Other choices allow for coexisting individually charged phases or a smooth
transition from one phase to the other. See [252, 253, 254, 255] for details. A number of hybrid
EoS models with different constructions are available at zero temperature, see e.g. [241, 250,
256, 257, 258, 259, 260, 244, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273]
or EoS repositories such as COMPOSE [100, 3, 101]. Finite-temperature hybrid EoSs also exist
(e.g. [274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286]), their number is however
still somewhat limited.

Constraints on deconfined quark matter can in principle come from heavy-ion collision experi-
ments (see e.g. for a review [287]). However, these experiments are currently somewhat difficult
to interpret due to their very complex nature and generally probe the EoS at higher temperatures
than those present in NSs.

Astrophysical constraints on the hadron-quark phase transition can mainly be provided by ob-
servations of core-collapse supernovae [288, 274, 276, 289, 290, 291, 292], where the presence of
deconfined quarks is expected to influence the overall dynamics and the neutrino signal, as well as
by observations of NSs (see e.g. [293, 294, 295, 296, 297, 298, 299]). A strong phase transition,
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followed by a stable hybrid star branch will result in a kink in the neutron star mass-radius and
mass-Λ curves as the associated large density jump leads to more compact stars [300, 293]. Such
kinks could potentially be observable by very precise measurements over a wide span of neutron
star masses. A second possibility is that the onset of the hadron-quark transition no longer permits
stable NSs. This would result in a sudden end of the mass-radius curve and could in principle also
be detectable (see discussion in Sect. 4.4.4). On the other hand, the transition may also be more
continuous. In this case, the mass-radius relation of hybrid stars could be more similar to that of
nucleonic or hyperonic EoSs and even several very precise measurements would not reveal the pres-
ence of quark matter. This ambiguity is commonly referred to as the masquerade problem [261].

In general, available constraints on the QCD phase transition are sparse and the question if de-
confined quark matter appears in NSs remains open. A promising new window to address this
question is offered through studying neutron star mergers.

1.3. Modeling thermal effects and exotic matter phases in neutron star
mergers

So far, no postmerger GW signals from BNS mergers have been detected. Our current understand-
ing of this evolution phase therefore relies on sophisticated numerical simulations. Since NS are
extremely compact objects, these simulations need to be carried out in the framework of numer-
ical, general relativistic hydrodynamics. Several different approaches have been employed over
the past years, see e.g. [301, 302, 303, 304, 305, 306, 307, 308, 309] for overviews on numerical
methods and employed codes. Although numerically stable formulations of the Einstein equations
are available [310, 311, 312, 313, 314, 315, 316], these are computationally expensive. There-
fore, approximations to general relativity are also used. In this work we will employ the conformal
flatness condition (CFC) [317, 318], which greatly simplifies the equations while still keeping the
essential features of general relativity (see Sect. 2.1 for details).

In addition to the hydrodynamic equations and gravity, BNS merger simulations require an EoS
model to evolve the system. Owing to the current ambiguity on the EoS of dense matter, the gen-
eral approach taken in simulations is to employ many different EoS models (somewhat) compatible
with current constraints. The goal is to link different results to special EoS features or find uni-
versal relations between observables valid for all EoS models. This will help interpreting future
observations and narrow down the EoS model space by ruling out incompatible EoSs.

Because matter is heated up during the postmerger phase and may be out of weak equilibrium
composition, general purpose EoS models are desirable for BNS merger simulations. Since the
number of 3D EoSs is limited, many works (e.g. [45, 47, 52, 319, 320, 321, 322, 323, 53, 324,
29, 325, 326, 327, 328, 329, 330, 331, 332]) also employ zero-temperature EoSs (microphysical
or parametric) in combination with approximate thermal treatments. A popular choice is the so-
called ideal-gas approach [333], which assumes an ideal-gas like thermal behavior at all densities
and temperatures (see Sect. 2.2 for details). For nucleonic EoSs, it generally reproduces simulation
results from general purpose models well [22]. Recently, Ref. [334] presented a more sophisticated
scheme allowing for an approximate extension of a barotropic EoS to arbitrary electron fractions
and temperatures under the assumption that matter is composed of protons, neutron, electrons
and photons.

A general feature of all currently available BNS merger simulations with no direct black hole
formation is the emergence of a dominant peak in the postmerger gravitational-wave spectrum.
This peak is related to the fundamental quadrupolar oscillation mode of the merger remnant [43].
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Its frequency fpeak depends on the mass configuration of the system as well as on the employed
EoS model [45, 335, 49]. It has been shown to correlate with the remnant size and properties
of resulting cold NS such as radii or tidal deformabilities [45, 44, 47, 48, 336, 51, 337]. A future
detection of a postmerger signal and ameasurement of fpeak will hence place immediate constraints
on the cold matter EoSs.

Hyperonic EoSs have been employed in merger simulations (e.g. in [338, 44, 46, 47, 339, 340,
341, 52, 322, 337, 29, 53, 330, 342]) using general purpose models as well as barotropic EoS
supplemented with the thermal ideal-gas approximation. However, few works have put the focus
on the specific impact of hyperons. Refs. [343, 344] respectively compare results employing a
specific nucleonic EoS with and without the additional inclusion of hyperons. Both works find
increased postmerger GW frequencies and earlier collapses to a black holes of the systems with
hyperons. A goal of this thesis is to perform a similar comparison but to employ two representative
sets of general purpose EoS, one containing hyperonic and one with purely nucleonic EoSs, to find
systematic differences that can be attributed to the presence of hyperons. Such a systematic study
on EoSs including hyperons has not been performed so far.

Deconfined quark matter has also been studied in merger simulations. As the number of general
purpose hybrid models, i.e. models featuring a transition to deconfined quark matter, is currently
limited, few merger studies have been carried out employing these EoSs [345, 346, 52, 53, 28,
324, 29, 285, 347, 348]. Additionally, zero temperature hybrid EoS (microphysical or paramet-
ric) have also been employed together with the thermal ideal-gas approximation [319, 322, 321,
325, 327, 328, 329, 330, 349, 331, 332]. Since a strong phase transition softens the EoS, studies
employing models with such a feature generally show larger postmerger frequencies and in some
cases earlier collapses and reduced threshold masses. Several works have focused on ways to iden-
tifying and study a strong phase transition in BNS mergers [345, 52, 319, 53, 350, 351], partly
by combining pre- and postmerger GW observables and comparing results to hadronic EoSs. On
the other hand, if the transition to deconfined quark matter is more continuous and the EoS does
not feature sudden density jumps, an unambiguous identification of the phase transition becomes
more challenging [330, 327, 328, 350].

It is important to remark that postmerger observables of BNS mergers such as fpeak are also
influenced by the finite-temperature EoS since parts of the merger remnant are heated up during
the coalescence of the stars and the further evolution of the system. While the dependence of fpeak
on properties of the cold EoS has beenwidely studied, the influence of the finite-temperature EoS on
fpeak has received little attention. Only a few works have focused on explicitly employing different
EoS descriptions at finite temperatures for a fixed cold EoS [22, 352, 353, 354, 355]. These were
also limited to purely nucleonic models. So far, a systematic study on the influence thermal effects
in exotic phases of matter have on GW signals from BNS mergers has not been performed.

In EoSs containing hyperons or deconfined quarks, the finite-temperature part is expected to
be different from nucleonic EoS as other degrees of freedom are available. In current hyperonic
models, the onset density as well as the abundances of different hyperon species vary with temper-
ature (see e.g. [207, 208, 210, 211, 212, 209]). For the QCD phase diagram, the temperature-
dependence of the phase boundaries is an inherent and characteristic property (see e.g. [356, 357,
247, 248, 245, 358, 246, 172]). Hence, the finite-temperature behavior of hyperonic or hybrid EoS
should be more complex than for typical nucleonic models. Applying the ideal-gas approximation,
as has often been done in previous works, may therefore not always be reliable. This motivates an
exploration of thermal effects in merging systems containing exotic matter, which we will perform
in this thesis. A good understanding of the thermal EoS is crucial to correctly interpret future ob-
servations from BNS mergers and to connect results from heavy-ion collision experiments, which

13



probe the phase diagram at larger temperatures [359, 287].

1.4. Goals and outline of this thesis

The goal of this thesis is to explore the effect of hyperon and deconfined quark matter phases at
finite temperatures on neutron star merger observables. In particular, we focus on how the thermal
parts of these exotic matter phases impact the GW signal compared to a typical “nucleonic” thermal
behavior. We aim to find potential signals that can help identifying the presence of hyperons and
deconfined quark matter, once postmerger GWs from BNS mergers are observed.

To investigate thermal properties of hybrid EoSs, we devise an extension of the commonly used
ideal-gas approach [333] to include temperature-dependent phase boundaries. With this scheme,
we then explore the effect of varying phase boundaries for a fixed cold EoS in different scenarios.
We additionally employ EoS models studied in the literature to investigate how previous findings
are influenced by finite-temperature effects.

We also perform the first comprehensive study of available general purpose EoS containing hy-
peronic degrees of freedom that are roughly compatible with current constraints. We compare the
results to simulations using only the cold hyperonic EoS part and assuming a thermal behavior typ-
ical of nucleons. In addition, we perform several simulations employing different purely nucleonic
models. Our aim is to quantify how much the postmerger frequencies are shifted under the influ-
ence of hyperons at finite temperatures across all EoSs in our sample. Our results for hyperonic
EoSs are presented in [360] and the findings for hybrid EoS are published in [361].

The outline of the thesis is the following: In chapter 2, we give an overview of the simulation
code we use for BNS merger simulations and discuss the ideal-gas approach. Chapter 3 contains in-
formation on all employed nucleonic, hyperonic and hybrid EoSs as well as the necessary equations
to calculate neutron star properties from an EoS model. We present our extension of the ideal-gas
approach and the impact of varying phase boundaries for a fixed, zero-temperature, hybrid EoSs
in chapter 4. Here, we also discuss a toy model to construct some phase boundaries we employ in
our analysis. In chapter 5, we show the results from our hyperonic EoS study. We summarize and
discuss our findings in chapter 6 and outline potential future extensions. Additionally, Appendix A
presents some improvements to the merger code that were implemented over the course of this
thesis.

1.5. Conventions

Throughout this work, we use geometric units with c = G = 1 unless explicit units are provided,
where c is the vacuum speed of light andG the gravitational constant. Masses are given in units of a
solar massM⊙. We include gravity with the framework of general relativity and adopt the signature
convention (-,+,+,+) for the metric. Greek indices refer to both space and time coordinates and
run from 0 to 3 while Latin indices range from 1 to 3 and refer exclusively to spatial coordinates.
Unless stated otherwise, we employ the Einstein summation rule. Differential operators ∆ and ∂i
refer to spatial derivatives with respect to the flat three metric. In asymmetric binary neutron star
systems, we define the mass ratio of the system as q =M2/M1 with q < 1. M1,2 refer to the masses
of the individual stars.
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2. Numeric models

This chapter provides an overview on the physical and numerical models used in this work to
simulate binary neutron star mergers. Due to neutron stars being extremely compact objects,
the simulations have to be performed within the framework of general relativity. We discuss the
simulation code in Sect. 2.1 and the ideal-gas approach to approximate thermal effects in Sect. 2.2.

2.1. Simulation code

All simulations in this thesis are preformed using a general relativistic, smoothed particle hydrody-
namics (SPH) code. Detailed information on this simulation tool can be found in [362, 21].

The SPH method is a well-established procedure to numerically solve the equations of fluid dy-
namics. It was originally introduced in Refs. [363, 364] for simulating stars, but has been used
extensively since then for modeling several physical systems. See e.g. [365, 366, 306] for reviews.

The main idea of SPH is to model a continuous fluid with an ensemble of particles with fixed
masses. All physical quantities (such as pressure, density, etc.) are evaluated at the positions of
these particles, i.e. comoving with the fluid. An additional so-called kernel functionW (r⃗ − r⃗a, ha)
is then used to smooth out physical properties over a spatial domain. This function is typically
spherically symmetric, differentiable and features a maximum at the particle position r⃗a with a
monotonic decrease at increasing distance |r⃗ − r⃗a| from the particle a. The spatial extent of the
kernel function is characterized by the smoothing length ha. Many different kernel functions are
available in the literature (see e.g. [306] for an overview). The code used in this work employs a
cubic spline kernel

W (r⃗ − r⃗a, ha) =
1

πh3a

⎧⎪⎨⎪⎩
1− 3

2d
2 + 3

4d
3 for 0 ≤ d ≤ 1

1
4(2− d)3 for 1 ≤ d ≤ 2 ,

0 for d > 2

(2.1)

with d = |r⃗ − r⃗a|/ha.
For a given kernel function, a physical quantity A can be evaluated at any point in space r⃗ using

the smoothing operator (see e.g. [367, 368, 369, 306])

⟨A(r⃗)⟩ =
∫︂
A(r⃗′)W (|r⃗ − r⃗′|, h)d3r′ . (2.2)

For a finite number of particles, this integral can be approximated by a sum, i.e.

⟨A(r⃗)⟩ ≈
∑︂
a

VaA(r⃗a)W (r⃗ − r⃗a, ha) , (2.3)

where Va represents a volume associated with the particle at r⃗a. Clearly, only particles with a
non-zero kernel function at the position r⃗ contribute to this sum.
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A main advantage of the SPH approach is that by using integration by parts in Eq. (2.2), spatial
derivatives can be expressed as derivatives of the kernel function. For example, gradients can be
evaluated with

∇A(r⃗) =
∑︂
a

VaA(r⃗a)∇W (r⃗ − r⃗a, ha) . (2.4)

Since the kernel function is known and differentiable, these expressions can be evaluated directly
without the need of finite differentiating techniques.

Using the SPH method, the code solves the equations of general relativistic hydrodynamics.
These are based on the Valencia formulation [370, 303] with so-called conserved quantities, namely
the conserved rest-mass density ρ∗, the conserved specific momentum ûi, and the conserved en-
ergy density τ . These conserved quantities are related to the primitive variables rest-mass density
ρ, coordinate velocity vi, and specific internal energy ϵ via

ρ∗ = ραu0ψ6, (2.5)
ûi = hui = h(vi + βi)ψ4u0, (2.6)

τ = hW − P

ρW
− ω, (2.7)

with ω =
√︂
1 +

ûiûjδij

ψ4 , the Lorentz factor W = αu0 = (1 + γijuiuj)
1/2, the relativistic enthalpy

h = 1 + ϵ + P
ρ (not to be confused with the smoothing length of a particle ha) and the pressure

P . α, βi and ψ are metric potentials introduced below in Eqs. (2.12) and (2.13), γij = ψ4δij is
the spatial part of the spacetime metric and δij refers to the Kronecker delta. With these conserved
quantities, the volume associated with each particle can be approximated as Va = ma/ρ

∗
a, where

ma is the rest-mass of particle a.
The term “conserved quantity” stems from the structure of the hydrodynamic equations taking

the form of a continuity equation,

∂tU +∇F (U) = S , (2.8)

with a state vector of conserved variables U , a flux vector F (U) and a source vector S. The main
advantage of formulating the equations in this way is that if a solution exists, the system will
converge towards this solution even if discontinuities are present in the system, i.e. in the presence
of shocks [305].

For the set of chosen conserved quantities, the evolution equations comoving with the fluid are
given by [371, 362, 21, 372]

dρ∗

dt
=− ρ∗∂iv

i, (2.9)

dûi
dt

=− αψ6∂iP

ρ∗
− αû0∂iα+ uĵ∂iβ

j +
2ûkûk∂iψ

ψ5û0
, (2.10)

dτ

dt
=− ψ6(vi + βi)

ρ∗

(︃
1− wW

ω

)︃
(∂iP )−

ψ6P∂i(v
i + βi)

ρ∗

− 6ψ5P (vi + βi)

ρ∗
(∂iψ)−

ûi
ψ4

(︃
1− wW

ω

)︃
(∂iα)

− 1

ψ4

(︃
1

ω
− 1

wW

)︃(︃
ûiûj∂jβ

i − 1

3
ûiûi∂jβ

j

)︃
, (2.11)
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with d
dt = ∂t + vi∂i. Note that Eq. (2.11) slightly differs from the form given in the references

[362] and [21]. However, this formulation is mathematically equivalent and the set of equations
presented here shows improved numerical stability [372]. Neutrinos and magnetic fields are not
included.

By employing the SPH scheme, all spatial derivatives of Eqs. (2.9)-(2.11) can be directly evalu-
ated using the kernel function as described earlier. This reduces the evolution equations for ρ∗, ûi
and τ to explicit, ordinary differential equations. These are then integrated in time employing a
fourth-order Runge-Kuttamethodwith an adaptive time step size to obey the Courant–Friedrichs–Lewy
condition [373]. Note that for a given set of primitive variables, the conserved variables can be
calculated directly using Eqs. (2.5)-(2.7). The reverse however, cannot be done analytically. To
recover the primitive variables, Eqs. (2.5)-(2.7) have to be inverted numerically with a root-finding
algorithm during the simulation. For this we employ a fixed point iteration method.

Additionally, to close the system, an equation of state (EoS) P (ρ, ϵ, Ye) has to be provided. The
code supports fully temperature- and composition-dependent three dimensional EoSs tables. Non-
tabulated values are inferred using linear interpolation from neighboring points. The electron
fraction Ye of each SPH particle is determined from cold, neutrinoless beta-equilibrium during the
initial setup. The values are then advected in the merger simulation, hence the dynamic timescales
of the simulation are assumed to be short compared to the timescales of weak processes.

The code also supports the usage of barotropic EoSs tables, i.e. EoSs at zero temperature in
neutrinoless beta-equilibrium composition where the pressure only depends on density. In this
case, thermal pressure is added via the approximate ideal-gas treatment (see Sect. 2.2 for details).
When barotropic EoSs are used, Ye of each particle is set to the respective value of beta-equilibrium
composition depending on the density.

To include shocks, an additional time-dependent artificial viscosity scheme is employed when
two particles approach each other by treating them as two sides of a one-dimensional Riemann
problem [374, 375]. This results in additional contributions to the conserved specific momentum
and the conserved energy density equations. Details can be found in Ref. [21]. We use this scheme
together with the approach proposed in Ref. [376] to reduce the viscosity in pure shear flows with
no compression.

In addition to evolving the conserved quantities, the effects of gravity need to be included.
In contrast to Newtonian gravity, general relativity cannot be treated within the SPH formalism.
Therefore, the simulation code solves the Einstein field equations separately. These equations are
expressed in the so-called Arnowitt-Deser-Misner (ADM) formalism [377], which is the standard
formulation used in numerical relativity today, see e.g. [301, 302, 304, 305] for more information
on this method and the derivation of equations. The main idea is to foliate the four-dimensional
spacetime into spacelike, non-interacting, 3-dimensional hypersurfaces parameterized by a global
time coordinate. Having a global time coordinate is essential for numerical simulations as it al-
lows to evolve the entire system simultaneously in the time. With this approach, the Einstein field
equations split up into a set of constraint and evolution equations.

The line element within this formalism is then given by,

ds2 = (−α2 + βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj , (2.12)

with the lapse function α, the shift vector βi and the three dimensional spatial metric part γij .
Additionally, we employ the so-called conformal flatness condition (CFC) [317, 318] assuming that
γij can be expressed as

γij = ψ4δij . (2.13)
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The potential ψ is called the conformal factor. The CFC approximation greatly simplifies the task
of solving the Einstein equations while still keeping the essential features of general relativity.
Defining two additional potentials Bi and χ via

βi = Bi − 1

4
∂iχ , (2.14)

the field equations take the following form of coupled, Poisson-like, elliptical partial differential
equations with non-compact source terms

∆ψ = −2πψ5E − ψ5KijK
ij

8
, (2.15)

∆(αψ) = 2παψ5(E + 2S) +
7αψ5KijK

ij

8
, (2.16)

∆Bi = 16παρWuî + 2ψ10Kij∂j

(︃
α

ψ6

)︃
, (2.17)

∆χ = ∂iB
i, (2.18)

with E = ρwW 2 − P and S = ρw(W 2 − 1) + 3P . The extrinsic curvature of a hypersurface Kij is
given by

Kij =
ψ4

2α

(︃
δij∂jβ

l + δjl∂iβ
l − 2δij∂kβ

k

3

)︃
. (2.19)

Note that both α and βi entirely depend on the chosen gauge condition. For the derivation of
Eqs. (2.15)-(2.18), the so-called maximal slicing gauge condition tr(Kij) = 0 was used. See
e.g. [378] for details.

These equations determine the metric potentials at a fixed time coordinate for given matter
source terms. In each timestep, the matter distribution is mapped from the particles onto a three-
dimensional cubic grid covering the binary. On this grid, the field equations are discretized and
solved with a full multigrid method (see e.g. [379]). Then, the metric potentials are mapped back
onto the particles and the system is evolved in time by solving the hydrodynamic equations. A
multipole expansion in spherical harmonics is used to calculate the boundary conditions on the
metric grid, as well as the values of the metric potentials for particles that have moved outside the
grid. This means that the evolution of the system is exclusively calculated on the SPH particle level
and the metric is determined by repeatedly solving an effective initial value problem.

A downside of using the CFC approximation is that its structure of the metric does not include
gravitational waves (GWs) by construction. Therefore, an additional backreaction scheme to mimic
the effects of gravitational radiation on the systems and to extract the GW signal is needed. This is
done following ideas from [380, 381] by adding a small, non-conformally flat contribution to the
metric leading to the following three additional elliptic equations that need to be solved simulta-
neously with the CFC equations

∆U5 = −4πσ , (2.20)

∆R = −4πI
[3]
ij x

i∂jσ , (2.21)

∆U7 = −4πρ∗(I
[3]
ij x

i∂jU5 −R) . (2.22)
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The additional terms to the metric then read

h00 = −4

5
(1− 2U5)(I

[3]
ij x

i∂jU5 −R)− 8

5
U7 , (2.23)

hij = −4

5
I
[3]
ij , (2.24)

with σ = T 00 + T ii. Tµν is the energy-momentum tensor and the quadrupole Iij is given by [380]

Iij =

∫︂
ρ∗

[︄
xixj

(︃
1 +

vivi

2
− U + ϵ

)︃
+

11

21
xixjvivj − 4

7
xixkvjvk

+
4

21
vivixixj +

11

21
xixjxi∂jU − 17

21
xixjxk∂kU

]︄
.

(2.25)

Here, U is the Newtonian gravitational potential.
The first time derivative I [1]ij is calculated analytically, where the total time derivatives of U , ∂iU

and vivi are neglected. The second and third time derivative are then calculated numerically on
the fly with a finite difference approach. The backreaction scheme can also be turned off and back
on again at any time during the simulation. Generally, this combination of CFC and approximate
GW treatment reproduces results from fully general relativistic simulations well (see e.g [44, 382,
383, 384]).

The initial setup is provided by solving the TOV equations with the barotropic EoS slice. The stars
are then placed on spherical orbits. Hence, the simulation starts with cold, irrotational stars in beta-
equilibrium composition. In all simulations in this work, an initial center-to-center separation of
26 (≈38 km) is chosen if not specified otherwise. The systems is then relaxed for a short amount of
time without the backreaction scheme but with an additional damping force to move SPH particle
distribution towards an equilibrium configuration. The angular velocity of the system is constantly
adjusted to keep the stars on a spherical orbit during the relaxation. If the distance between the
stars grows, the angular is reduced and if the stars approach each other the angular velocity is
increased. Over the course of this thesis some adjustments where made to this initial relaxation
phase. These are presented in Appendix. A.

The simulation code is written in the programming language Fortran and parallelized with
OpenMP. Additional reduction clauses are used to make results reproducible when running on
the same CPU with the a constant number of threads.

2.2. Approximate thermal treatments, the ideal gas approach

As outlined in Sect. 1.2, many EoSs only exist as barotropic EoSs, i.e. at zero temperature and beta-
equilibrium composition. This applies to microphysical models, but is especially true for parametric
EoS descriptions such as piecewise polytropic [133] or constant speed of sound models [134].
When performing neutron star merger simulations, thermal effects are important as temperatures
can reach several tens of MeVs. Therefore, approximate treatments to capture these effects need
to be employed for barotropic EoSs. A commonly used effective scheme is the so-called ideal-gas
approach from Ref. [333]. Here, the specific internal energy ϵ and the pressure P are split into a
cold and a thermal contribution.

P = Pcold(ρ) + Pth (2.26)
ϵ = ϵcold(ρ) + ϵth (2.27)

19



Pcold and ϵcold are assumed to only depend on the density ρ and are given by the EoS model.
The total specific internal energy ϵ is inferred by evolving the hydrodynamic equations, therefore
directly providing ϵth. Then, for the thermal pressure contribution, an ideal-gas like behavior is
assumed,

Pth = (Γth − 1)ρϵth , (2.28)

where Γth is called the ideal-gas index. Hence, this treatment is also referred to as “Γth approach”.
We stress again that this approach uses ϵth and not the temperature of the system as ϵth is the
quantity directly inferred from the hydrodynamic equations.

For available general purpose EoSs, Γth can vary between roughly 4/3 and 8/3 [385] and depends
on temperature and density. Despite this variation, Γth is usually assumed to be constant when
employing this approach in merger simulations. Comparisons with available fully temperature and
composition-dependent nucleonic EoSs have shown that values of Γth ≈ 1.75 are able to reproduce
general features of mergers with sufficient accuracy [22]. Therefore, this thermal treatment has
been employed in several merger simulations (e.g. [45, 47, 52, 319, 320, 321, 323, 53, 324, 29,
325, 327, 326]).

When we employ the ideal-gas approach in this thesis, we do not consider the evolution of the
electron fraction Ye. This means that we effectively assume matter to be in cold beta-equilibrium
composition at all densities and temperatures. Any composition effects on the finite temperature
EoS are neglected.
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3. Neutron star matter equation of state models

As discussed in the introduction, the equation of state (EoS) is a key ingredient for the physics of
neutron stars (NSs) and neutron star mergers. Since the exact conditions in the cores of NSs are
currently not easily accessible through terrestrial experiments, our knowledge on the EoS remains
somewhat limited. While different theoretical, experimental and observational constraints exist
(see Sect. 1.2.1 for details), there remains some ambiguity on the true EoS of dense matter. In this
section, we provide an overview on the different EoS models we employ in this thesis to resemble
this ambiguity.

We start by introducing the necessary equations to calculate NS properties for an EoS model,
namely the mass-radius curve and the tidal deformability. Then we discuss three different EoS sam-
ples, models containing nucleonic matter, models with nucleons and hyperons and hybrid models
featuring a first-order phase transition from nucleonic to deconfined quark matter. All models we
present in this section are general purpose EoSs also including leptons and photons and covering
a wide range of densities, temperatures and electron fractions.

3.1. Calculating neutron star properties from the equation of state

For a given EoS, properties of NSs need to be calculated within the framework of general relativity
(GR). The resulting stellar structure equations assuming spherically symmetric stars in hydrostatic
equilibrium are the so-called Tolman-Oppenheimer-Volkoff equations [135, 136]

dm

dr
= 4πr2e (3.1)

dP

dr
= −me

r2

(︃
1 +

P

e

)︃(︃
1 +

4πr3P

m

)︃(︃
1− 2m

r

)︃−1

. (3.2)

The derivation of these equations can be found in any standard general relativity textbook, e.g. [386].
Here, r is the radial coordinate,m is the gravitational mass contained in a sphere of radius r, P the
internal pressure of matter and e the total energy density. Together with the EoS (P (e)) the TOV
equations can be solved by picking a central density and integrating outwards until the pressure
drops to zero. The corresponding radial coordinate R is the circumferential eigen radius of the NS
and the mass contained within this radius is the gravitational NS massM . Throughout this thesis,
we will refer to R as the neutron star radius and M as the neutron star mass. By solving the TOV
equations for several different central densities, one obtains the mass-radius (MR) curve of NSs. A
simultaneous measurement of mass and radius of a NS can hence provide direct constraints on the
EoS (see Sect. 1.2.1).

Additional constraints on the EoS can be inferred by studying the response of neutron stars in
external gravitational fields, e.g. tidal fields from companions. To linear order, the quadrupole Qij
induced by an external tidal field Eij is given by

Qij = −λEij , (3.3)
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with the so-called tidal deformability λ

λ =
2

3
k2R

5 , (3.4)

where k2 is the tidal love number [36, 37]. A commonly used related quantity is the dimensionless
tidal deformability

Λ =
2

3
k2
R5

M5
=

2

3
k2C

−5 (3.5)

with the stellar compactness C =M/R. Throughout this thesis, we will refer to the dimensionless
quantity Λ as the tidal deformability.

The tidal love number can be calculated for a given EoS model by solving the differential equa-
tions (see [36, 37, 38] for details)

dH(r)

dr
= β(r) , (3.6)

dβ(r)
dr

= 2
(︂
1− 2

m

r

)︂−1
H(r)

[︃
−2π

(︃
5e+ 9p+

e+ p

dp/de

)︃
+

3

r2
+ 2

(︂
1− 2

m

r

)︂−1 (︂m
r2

+ 4πrp
)︂2]︃

+
2β(r)

r

(︂
1− 2

m

r

)︂−1 [︂m
r

+ 2πr2(e− p)− 1
]︂
.

(3.7)

These equations forH(r) and β(r) can be integrated outwards alongside the TOV equations starting
just outside the center withH(r) = a0r

2 and β(r) = 2a0r. Here, a0 is a constant that can be chosen
freely as it cancels for determining k2. With the definition

y =
Rβ(R)

H(R)
, (3.8)

k2 is given by [38]

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]

{︃
2C[6− 3y + 3C(5y − 8)]

+ 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)] + 3(1− 2C)2[2− y + 2C(y − 1)] ln(1− 2C)

}︃−1

.

(3.9)

Solving Eqs. (3.5)-(3.9) for different central densities yields an M − Λ curve for a given EoS
model. Inferring Λ and M simultaneously, e.g. from an inspiral gravitational-wave (GW) signal
of a neutron star binary [32, 57, 150], provides information on the NS EoS complementary to the
mass-radius measurements. Note that in GW detections, the inferred parameter is the so-called
combined tidal deformability Λ̃ of the entire system

Λ̃ =
13

16

(M1 + 12M2)M
4
1Λ1 + (M2 + 12M1)M

4
2Λ2

(M1 +M2)5
(3.10)

where the subscript indicates the masses and tidal deformabilities of the individual stars. For equal
mass binaries Λ̃ is identical to the tidal deformabilities of the individual stars, i.e. Λ1 = Λ2 = Λ̃.
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3.2. Nucleonic EoS sample

In this section, we present all EoSmodels employed in this work that consider protons, neutrons and
nuclei as relevant degrees of freedom. Electrons and photons are also included, generally on the
levels of ideal Fermi- and Bosegases, respectively. We include EoSs based on both phenomenological
and ab-initio approaches.

3.2.1. Phenomenological models

A commonly employed, phenomenological scheme in modeling baryon interactions is the so-called
relativistic mean-field (RMF) approach [107, 108]. It is based on an effective Lagrangian density,
where the interactions between baryons are described by meson exchange. From this Lagrangian,
the field equations for nucleons andmesons are derived. Thermodynamic quantities can be inferred
from Fermi-Dirac distribution functions. The couplings of mesons to baryons are chosen by fitting
overall properties of nuclear matter, e.g. the saturation density as well as masses and radii of nu-
clei. Within the RMF framework, we consider two different types of RMF interactions, models with
constant and approaches with density-dependent baryon-meson couplings. We employ the EoSs
FSU2R [387], SFHo [30, 31], SFHx [30, 31], TM1 [388, 389] and TMA [390, 389], which assume
constant meson-baryons couplings. These models generally differ in interaction terms included
in the Lagrangian density, details can be found in the provided references. Additionally, we in-
clude the EoSs DD2 [391, 30], DD2F [391, 392] and GS2 [393], which employ density-dependent
couplings [394].

In the EoSs DD2, DD2F, SFHo, SFHx, TM1 and TMA, the respective nucleon-nucleon interactions
are employed with the extended nuclear statistical equilibrium approach of Ref. [30]. At low den-
sities, this scheme includes an ensemble of light and heavy nuclei and a gas of unbound nucleons.
The nuclei are treated as an ideal Boltzmann gas. Interactions between nuclei and free nucleons
are mimicked using the excluded volume correction. The change in nuclear binding energies due
to the coulomb screening by the electron gas is also accounted for by using so-called Wigner-Seitz
cells [395]. To model the transition from the inhomogeneous matter in the neutron star crust to
homogeneous matter in the core, matching pressure with local charge neutrality and equal pro-
ton fractions in both phases is required. The GS2 model employs a virial expansion of the grand
canonical partition function at low densities assuming a non-ideal gas of neutrons, protons, alpha
particles and heavy nuclei (see [396] for details). This is then smoothly connected to the high
density RMF calculations of [397]. For the FSU2R model, the EoS is matched to the low density
part of the DD2 EoS using linear interpolation of thermodynamic quantities between 0.03 fm−3 and
0.10 fm−3.

Further popular phenomenological approaches in EoS calculations are models based on Skyrme
interactions [109, 110, 111, 112] between nucleons. These are non-relativistic models based on
effective density-dependent contact interactions that are fitted to reproduce properties of nuclei.
Thermodynamic quantities are then determined from the minimized free energy of the system. We
employ the skyrme-basedmodels LS220, LS375 from [398] and the SLy4 EoS of [399] in this thesis.
Additionally, we include the skyrme-based EoSs “Fiducial”, “Large Mmax”, “Large SL”, “Large R”,
“Small SL” and “Smaller R” from Ref. [400], we refer to these models as DHS F, DHS LM, DHS LSL,
DHS LR, DHS SSL and DHS SR, respectively.

The two models LS220 and LS375 employ the so-called single nucleus approximation (SNA) for
inhomogeneous matter which considers alpha particles and a representative heavy nucleus instead
of a full distribution of nuclei alongside the free nucleons. This single nucleus is treated within
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Table 3.1.: Properties of cold stars for the sample of purely nucleonic EoSs considered in this
work. Second to fifth column provide the maximum mass Mmax, the radius R1.4 and
tidal deformability Λ1.4 of a 1.4 M⊙ neutron star and the tidal deformability Λ1.75 of a
1.75M⊙ neutron star. Table adapted from Ref. [360].

EoS Mmax R1.4 Λ1.4 Λ1.75 Ref.
[M⊙] [km]

APR 2.20 11.57 267.6 54.5 [401, 402]
DD2 2.42 13.22 698.8 178.5 [391, 30]
DD2F 2.08 12.40 425.5 79.3 [391, 392]
DSH F 2.17 11.73 296.3 61.8 [400]
DSH LM 2.22 12.65 513.9 119.9 [400]
DSH LSL 2.16 11.76 271.5 55.9 [400]
DSH LR 2.13 12.44 437.6 87.3 [400]
DSH SSL 2.18 11.70 335.8 70.3 [400]
DSH SR 2.14 11.29 233.1 48.8 [400]
FSU2R 2.06 12.87 640.8 143.5 [387]
FTNS 2.22 11.46 304.8 65.3 [403, 404]
GS2 2.09 13.60 721.3 160.6 [393]
LPB 2.10 12.37 429.9 79.9 [405, 406]
LS220 2.04 12.96 541.9 94.2 [398]
LS375 2.71 13.95 960.1 257.7 [398]
SFHo 2.06 11.89 333.5 63.5 [30, 31]
SFHx 2.13 11.98 395.1 86.7 [30, 31]
SLy4 2.05 11.72 303.7 54.7 [407, 399]
TM1 2.21 14.47 1149.0 257.7 [408, 409]
TMA 2.01 13.79 929.1 184.1 [390, 30]

a finite-temperature liquid drop model and interactions between unbound nucleons and nuclei
are mimicked with the excluded volume correction. The free energy density of alpha particles is
calculated using a Maxwell-Boltzmann expression of a classical ideal gas. A Maxwell construction
models the transition from homogeneous to inhomogeneous matter.

The SRO scheme of Ref. [399] uses a similar approach as [398] employing the SNA with some
improvements such as more accurate values of alpha particle binding energies. In this approach,
the transition from inhomogeneous to homogeneous matter is performed at a density where both
phases have equal free energies. The SRO scheme was designed to be employed with Skyrme
interactions. In this work, we use the EoS table calculated with the SLy4 parameterization of [407].

The parametric EoS framework of [400] aims to quantify how uncertainties in nucleon-nucleon
interactions propagate throughout the EoS. Different tables can be calculated by choosing different
sets of parameters. For this, the Skyrme interactions of [410] are employed, which are fitted to
current calculations from chiral effective field theory and binding energies of nuclei. As for several
of our RMF based EoSs, these interactions are employed within the framework of [30] to describe
matter at low densities. The tables we employ in this thesis are pre-computed and provided in the
online repository 1.

1https://neutronstars.utk.edu/code/eos/
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3.2.2. Ab-initio models

Besides phenomenological approaches, we also employ ab-initio models. These are based on bare
two- and three-nucleon interactions that reproduce results from nucleon-nucleon scattering ex-
periments and properties of light nuclei. An example is the APR [401] EoS, which starts from a
Hamiltonian employing the Argonne V18 two body-potential [119], the Urbana IX three nucleon-
interaction [118, 120] and the relativistic boost interaction δν [401, 11, 411]. In [401] the EoS
is then calculated using a variational approach for the ground state energy at zero temperature in
beta-equilibrium composition. An interesting result from this calculation is that the EoS features
a neutral pion condensate at supranuclear densities. In this work, we employ the APR version of
Ref. [402]. Here, the original APR EoS was extended to finite temperatures and different proton
fractions using the aforementioned SRO scheme of Ref. [399]. This scheme was modified in [402]
to employ the APR potentials instead of a Skyrme parameterization to construct a general purpose
APR version.

Another ab-initio model is the FTNS EoS [404]. This model also starts from a non-relativistic
Hamiltonian including the Argonne V18 two body-interaction [119] as well as the Urbana IX three
nucleon-potential [118, 120]. The EoS is calculated using the cluster variational method of [126].
In Ref. [404], non-uniform matter was treated with the SNA, the EoS we employ however uses the
approach of Ref. [403], which accounts for a wide distribution of heavy and light nuclei. Heavy
nuclei are treated within a liquid drop approximation with several corrections such as electron
screening as well as phenomenological temperature- and density-dependent corrections to surface
and shell energies. For light nuclei, binding energies are explicitly computed from experimental
data with phenomenological terms accounting for interactions with unbound nucleons, Coulomb
screening by the electron gas and Pauli energy shifts. These phenomenological corrections allow
for a smooth transition between the inhomogeneous and homogeneous phase of matter.

The final ab-initio EoS we use in this work is the LPBmodel of Ref. [406], which is an extension of
the cold EoS of Ref. [405] to finite temperatures. The nucleon interactions are taken directly from
recent chiral effective field theory (χEFT) calculations. The two-body interaction is determined at
next-to-next-to-next-to-leading order expansion in [412] and the three-body potential is inferred at
next-to-next-to-leading order in [413]. The EoS is calculated in Ref. [406] within the Brueckner-
Bethe-Goldstone many body theory [414, 123, 124] using the so-called Brueckner-Hartree-Fock
approximation to calculate the free energy of the system. At low densities, the EoS is matched to
the TM1 EoS. All thermodynamic quantities are linearly interpolated between the high and low
density EoSs in the density range from 0.05 fm−3 to 0.08 fm−3.

In Fig. 3.1, we plot the mass-radius curves of all EoSs in the nucleonic sample. We see that that
our sample includes stiff as well as soft models and covers a broad range of radii between roughly
10 km and 15 km. We summarize different properties of resulting NSs for thesemodels in Table. 3.1.
We remark, that the models GS2, LS375, TM1 and TMA are in tension with the symmetric 90%
confidence intervals on the tidal deformability observation from GW170817 [32, 57] assuming low
spin priors. All EoSs in the nucleonic sample reach maximummasses of two solar masses or more as
required by current observations of heavy pulsars [139, 140]. However, the models DD2F, FSU2R,
LS220, SFHo, and Sly4 are incompatible with the results of Ref. [149] suggesting the maximum
TOV mass is larger than 2.09M⊙ at 3σ confidence interval. We still include all the EoSs conflicting
with the aforementioned constraints to have a larger nucleonic EoS sample.
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Figure 3.1.: Mass-radius curves of neutron stars for all equation of state models in the purely nu-
cleonic sample.

3.3. Hyperonic EoSs

In this section, we present EoS models accounting for the presence of hyperons in neutron star
matter. We include the models BHBΛΦ [207], DD2Y [208], DNS [415], FSU2H* [211], QMC-
A [210], R(DD2YDelta)1.1-1.1 [212], R(DD2YDelta)1.2-1.1 [212], R(DD2YDelta)1.2-1.3 [212]
and SFHoY [209]. All of these EoSs are based on the phenomenological relativistic-mean field ap-
proach (see Sec. 3.2.1), which now also includes strangeness. The hyperon content in all models
is density- and temperature-dependent and the transition from nucleonic to hyperonic matter is
smooth. Apart from BHBΛΦ, which only considers Λ baryons, all hyperonic EoSs in our sample
consider the baryon octet of Λ, Σ and Ξ baryons. The three R(DD2YDelta) EoSs additionally ac-
count for the appearance of ∆-baryons. Note that the R(DD2YDelta)1.2-1.3 EoS is very similar to
DD2Y at zero temperature.

The models BHBΛΦ, DD2Y as well as the three R(DD2YDelta) EoSs are based on the DD2 frame-
work and employ the same treatment as this EoS for purely nucleonic matter. Similarly, the SFHoY
models is based on the nucleonic SFHo EoS. For the FSU2H* EoS we additionally consider two
alternative descriptions from [416] referred to as FSU2H*L and FSU2H*U with a lower/higher
onset density of hyperons compared to FSU2H*. These are based on the same RMF approach as
FSU2H*, but employ different values of the hyperonic potentials to effectively quantify how current
uncertainties propagate to the EoS. See Ref. [416] for details.

The DNS EoS is based on the CMFmodel of Ref. [417]. The interactions in this model are inferred
with a non-linear realization of the sigma model and restore chiral symmetry at high densities
and/or temperatures. See [417, 415] for details. The QMC-A model differs from the other RMF
EoSs presented so far as it relates the internal quark structure of hadrons to the RMFs of nuclear
matter. For this, the interactions are considered self-consistently between valence quarks, which
are confined in non-overlapping baryons andmesons. The couplings are chosen such that the model
reproduces properties of symmetric nuclear matter. The dynamics of the quarks inside a baryon are
used to model the effects of dense medium surrounding on the interaction. The confined quarks
themselves are described with a bag model [210]. In this approach, the appearance of hyperons
emerges naturally from the inclusion of strange quarks and requires no additional terms. For the

26



10 11 12 13 14
R [km]

0.5

1.0

1.5

2.0

M
[M
�]

BHBΛΦ

DD2Y

DNS

FSU2H*

FSU2H*L

FSU2H*U

QMC-A

R(DD2Y∆)
1.1-1.1

R(DD2Y∆)
1.2-1.1

R(DD2Y∆)
1.2-1.3

SFHoY

Figure 3.2.: Mass-radius curves of neutron stars for all equation of statemodels we employ in this
thesis containing hyperons.

DNS, QMC-A and the three FSU2H* EoSs the low density part is modeled with the DD2 EoS. The low
and high density matter descriptions are matched by using linear interpolation of thermodynamic
quantities between 0.03 fm−3 and 0.10 fm−3.

We show the mass-radius curves of all EoSs in the hyperonic sample in Fig. 3.2. We find consid-
erable variation in NS radii within our sample. All models apart from FSU2H*L reach a maximum
mass around 2 M⊙. However, the maximum masses are generally smaller than those of the nu-
cleonic sample (compare Fig. 3.1), which can be explained by the additional softening introduced
by the hyperons. Only the models BHBΛΦ and DNS are compatible with the lower limit on the
maximum mass of 2.09M⊙ set by Ref. [149] at the 3σ limit.

We summarize different properties of resulting NSs for hyperonic models in Table. 3.2. In partic-
ular, we provide the onset density of hyperons ρonset at zero temperature and in β-equilibrium com-
position and lowest NSmass containing hyperons for eachmodel. Note that the tidal deformabilities
resulting from the models DNS, FSU2H*, FSU2H*U and FSU2H*L are not compatible with the sym-
metric 90% confidence intervals on the tidal deformability observation from GW170817 [32, 57]
assuming low spin priors. We still employ these models in this work to have a representative sample
of different general purpose EoS with hyperons.

3.4. Hybrid EoS sample

In this work we use 7 relativistic-mean field, hybrid EoSs featuring a two-phase construction with
first-order phase transition from hadronic to deconfined quark matter from Ref. [283]. We follow
the labeling of Refs. [52, 53, 361] and refer to these EoSs as DD2F-SF-n with n ∈{1,2,3,4,5,6,7}.
The hadronic phase of all DD2F-SF models is given by the DD2F EoS (see Sect. 3.2). The quark
phase is based on the phenomenological string-flip (SF) approach of Ref. [418]. In this scheme,
quark confinement of up- and down-quarks is modeled with a density-dependent scalar self energy
contribution to the effective quark masses leading to divergent effective masses at zero-densities.
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Table 3.2.: Properties of cold stars for the sample of EoSs considered in this work which include
hyperonic degrees of freedom. Second to fifth column provide the maximum mass
Mmax, the radiusR1.4 and tidal deformability Λ1.4 of a 1.4M⊙ neutron star and the tidal
deformability Λ1.75 of a 1.75M⊙ neutron star. ρonset is the onset rest-mass density for
the occurrence of hyperons in the T = 0, beta-equilibrium EoS slice and Monset the
lowest NS mass containing hyperons. Table adapted from Ref. [360].
EoS Mmax R1.4 Λ1.4 Λ1.75 ρonset Mon Ref.

[M⊙] [km] [ρnuc] [M⊙]
BHBΛφ 2.10 13.21 695.2 160.1 2.11 1.31 [207]
DD2Y 2.03 13.21 694.8 150.9 2.11 1.30 [208]
DNS 2.09 14.04 957.7 208.3 2.90 1.82 [415]
FSU2H* 2.01 13.18 778.8 192.1 2.14 1.45 [211]
FSU2H*L 1.91 13.16 784.4 177.6 2.11 1.44 [211, 416]
FSU2H*U 2.06 13.17 784.4 205.7 2.18 1.55 [211, 416]
QMC-A 1.99 12.89 574.8 126.0 3.50 1.86 [210]
R(DD2Y∆) 2.04 12.96 586.8 114.0 1.73 0.86 [212]
1.1-1.1
R(DD2Y∆) 2.05 12.27 397.3 85.4 1.39 0.50 [212]
1.2-1.1
R(DD2Y∆) 2.03 13.21 696.1 150.8 2.11 1.29 [212]
1.2-1.3
SFHoY 1.99 11.89 333.6 61.9 3.65 1.59 [209]

Deconfinement is treated with a Gaussian functional resulting in a medium-dependent reduction
of the string tension between quarks. Higher-order repulsive vector fields are included in the pure
deconfined quark phase to provide the necessary stiffness allowing for a maximum neutron star
mass above 2M⊙. See [418, 283] for details.

The phase transition is modeled with aMaxwell construction bymatching the pressure and chem-
ical potential in both phases at fixed temperatures. Note that electrons are added to the EoS after
the phase construction making the transition a property of strongly interacting matter only.

Within the SF model, different parameterizations can be chosen. This changes the properties of
the deconfined quark phase as well as the onset density and density jump of the phase transition.
The employed SF parameters of each EoS can be found in Refs [52, 283].

In Fig. 3.3(a), we plot the high-density part of all DD2F-SF EoS as well as the nucleonic DD2F
model. We see that below the respective onset densities, the hybrid models are identical with the
DD2F EoS. The only exception is the DD2F-SF-2 model, which employs slightly different parameters
within the excluded volume correction (see [283]). The phase transition in each model can be
clearly seen as a region of almost constant pressure, where both phases coexist. Our sample covers
a range of onset densities between roughly 2− 4× ρnuc and different sizes of the density jump.

Fig. 3.3(b) shows the resulting mass-radius curves of the EoSs. The onset of the phase transition
leads to a visible kink in all curves bending them towards lower radii compared to the nucleonic
DD2F EoS. Here, hybrid stars are more compact that nucleonic stars. At larger masses, the different
parameterizations behave differently covering a range of hybrid star masses-radius configurations.
Some models feature lower maximum masses and smaller radii than DD2F, but others allow for
larger maximum masses and radii. We provide the maximum masses as well as the boundaries of
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Figure 3.3.: (a): Pressure as a function of density for the nucleonic DD2F EoS (black) and all hybrid
DD2F-SFmodels we employ in this work (colored). (b): Mass-radius curves of neutron
stars for the EoS shown in (a). Both figures adapted from Ref. [52].

Table 3.3.: Properties of cold stars for the hybrid DD2F-SF EoSs sample. We provide themaximum
massMmax, the smallest mass with deconfined quarkmatter present in the coreMonset
and the phase boundaries ρon,0 and ρfin,0 in the T = 0, beta-equilibrium EoS slice.

EoS Mmax Mon ρon,0 ρfin,0
[M⊙] [M⊙] [ρnuc] [ρnuc]

DD2F-SF-1 2.14 1.57 3.30 4.00
DD2F-SF-2 2.16 1.37 2.76 3.25
DD2F-SF-3 2.03 1.58 3.35 3.94
DD2F-SF-4 2.03 1.68 3.61 4.13
DD2F-SF-5 2.04 1.48 3.10 3.77
DD2F-SF-6 2.01 1.60 3.41 4.16
DD2F-SF-7 2.12 1.62 3.51 3.69

the coexistence phase and the lightest hybrid star for each model in Table 3.3.
All DD2F-SF EoS reach maximum masses of at least 2M⊙ and are compatible with current con-

straints on the tidal deformability from GW170817 [32, 57]. However, only the parameterizations
DD2F-SF-1, DD2F-SF-2 and DD2F-SF-7 reach maximum masses in agreement with the suggested
lower limit of 2.09M⊙ at 3σ confidence interval from Ref. [149].

The phase boundaries of all DD2F-SF models separating the nucleonic, the coexistence and the
pure quark matter phase are temperature-dependent. In Fig. 3.4(a), we show how the onset of
quark deconfinement (dashed lines) and the beginning of the pure quark matter phase (solid lines)
vary with temperature. The Ye values match those of cold beta-equilibrium composition at all den-
sities. We see that with increasing temperature the coexistence region of all models is shifted to-
wards lower densities and is also enlarged as the dashed lines generally show a larger temperature-
dependence compared to the solid lines. Models with lower phase boundaries at T = 0 also tend
to have lower boundaries at finite temperature. However, some lines cross in Fig. 3.4(a). In the
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Figure 3.4.: (a): Phase boundaries of the DD2F-SF-n EoSs [283] in the density-temperature plane.
Different colors refer to different EoS models. The dashed lines display the onset of
the coexisting phases whereas the solid lines mark the beginning of the pure quark
matter regime for each hybrid model. (b): Same as (a) but in the density-ϵth plane,
where ϵth is the specific thermal energy. Figure adapted from Ref. [361].

temperature range relevant for mergers (up to around 40 MeV to 60 MeV), the change of the phase
boundaries is significant and the onset density can become as low as nuclear saturation density.
This means that in a neutron star merger deconfined quark matter can be present at lower densities
than in cold, isolated neutron star due to thermal effects.

As explained in Sect. 2.2, the specific thermal energy ϵth rather than the temperature is the
relevant hydrodynamic quantity characterizing thermal effects in the neutron star simulations.
Therefore, we also show the phase boundaries of all DD2F-SF EoS in the ρ−ϵth plane in Fig. 3.4(b).
Generally, the qualitative behavior of the boundaries is similar to the density-temperature plane
although the exact shape of the curves is somewhat different.
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4. Results: Impact of thermal effects in neutron
star mergers for hybrid EoSs

In this chapter, we investigate the impact of finite temperature effects in neutron star mergers for
hybrid EoSs, i.e. models that feature a first-order phase transition from hadronic to deconfined
quark matter. We start by visualizing the effect the earlier onset of quark deconfinement has on
the EoS model and demonstrate how this behavior is completely neglected by the commonly used
ideal-gas approach. We then develop an extension of this scheme to correctly capture the effects
of temperature-dependent phase boundaries. We test this new method and apply it to different
hybrid EoS scenarios in neutron star merger simulations. The content of this chapter is based on
the results published in Ref. [361].

4.1. Phase boundaries of hybrid EoSs at finite temperatures

One of the main assumptions of the approximate ideal-gas treatment for thermal effects discussed
in Sect. 2.2 is that the thermal behavior of the EoSs is the same at all densities and temperatures.
For EoSs featuring a phase transition to deconfined quark matter, this assumption breaks down as
a sudden change in EoS properties is precisely the feature of a hybrid model. In particular, the
two phases are expected to show different thermal behavior. Additionally, since a first-order phase
transition is constructed by balancing pressure P and chemical potential µ of both phases at fixed
temperatures and compositions

PH(ρon, T, Ye) = PQ(ρfin, T, Ye) , (4.1)
µH(ρon, T, Ye) = µQ(ρfin, T, Ye) , (4.2)

a shift in phase boundaries at finite temperatures is plausible due to the different thermal properties
of nucleonic and deconfined quark matter. Here, ρon and ρfin mark the beginning and the end of
the coexistence phase, respectively.

For the fully temperature- and composition-dependent DD2F-SFmodels we introduce in Sect. 3.4,
such a shift does indeed occur. These models employ a two-phase description for the hadronic and
the deconfined quark phases that are connected by aMaxwell construction. Fig. 4.1 shows the phase
diagram of the DD2F-SF-1 EoSs in the density-temperature plane as a representative example. The
different phases are highlighted with different colors and the dashed (solid) line mark the onset
(end) of the coexistence phase. It is clear that at finite temperatures, the appearance of deconfined
quark matter is shifted to lower densities. This is indicated in particular by the red color visualizing
the enlargement of the pure deconfined quark matter phase at finite temperatures compared to the
zero temperature case. Note that in this figure, the Ye values match those of cold beta-equilibrium
at every density and temperature.

The effects of these shifting phase boundaries are demonstrated in Fig. 4.2. The blue line shows
the EoS slice at T = 0while the red line depicts this EoS at T = 30MeV. Both models have the same
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Figure 4.1.: Phase diagramof the DD2F-SF-1 EoS in the density-temperature plane. Different colors
highlight different phases ofmatter. Black lines indicate the boundaries between these
phases. The red colored region illustrates the increase of the pure quark phase at
finite temperatures. At all densities and temperatures we pick the Ye values of the
barotropic EoS, i.e. those corresponding to cold, neutrinoless beta-equilibrium. Figure
adapted from Ref. [361].

Ye values at all densities. One can clearly see that in the finite temperature case the coexistence
phase, visible as a region of almost constant pressure, has moved to lower densities and is also
enlarged compared to the zero temperature case. This means that deconfined quark matter is
already present at lower densities. The result is a significant reduction in pressure and a regime
of effectively negative Pth (as defined by Eq. (2.26)) since the pressure at finite temperature P
becomes lower than Pcold.

The dashed green line shows the pressure one would infer using the ideal-gas approach with
Γth = 1.75 at all densities. It is apparent that this approach cannot capture the correct behavior
of the DD2F-SF-1 EoS at finite temperatures. A large density region between roughly 2.57 × ρnuc
and 4.00 × ρnuc exists, where the ideal-gas scheme significantly overestimates the pressure. We
indicated this region by the red shading in Fig. 4.2.

At densities below the onset density at T=30 MeV, we find that the red line is approximated
very well by the green curve. In this regime, the hot EoS remains in the hadronic phase where
the ideal-gas approach is a good estimate. At large densities beyond 4.00 × ρnuc, the green line
also approximates the red line reasonably well, however the agreement is not as good as at lower
densities. Here, the pressure is systematically slightly overestimated by the ideal-gas approach.
At such high densities cold matter is already present at T = 0, hence there is no crossing into
a different phase with increasing temperature. However, the deconfined quark matter behaves
more similarly to an ultrarelativistic ideal Fermigas, where the thermal index is Γth = 4/3. Picking
Γth = 1.75 thus results in slightly too large thermal pressures.

To conclude, for hybrid EoSs an increase in temperature at fixed density can lead to a change in
phase, i.e. to a sudden shift of the thermal behavior. As the ideal-gas approach assumes a uniform
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Figure 4.2.: Pressure as a function of density for the DD2F-SF-1 EoS at T = 0 (blue line) and
T = 30 MeV (red line). The dashed green line indicates the pressure we would obtain
by inferring the thermal pressure with the commonly used thermal ideal-gas approach
of Eq. (2.28) with Γth = 1.75 and thermal energies corresponding to T = 30 MeV. The
highlighted region illustrates the density range where the ideal-gas approach signifi-
cantly overestimates the pressure of the hot EoS. Figure adapted from Ref. [361]

thermal behavior across all densities and temperatures, it cannot correctly approximate the finite
temperature part for hybrid EoSs. Also note that simply picking a different value of Γth in different
density ranges is not sufficient, since this still effectively assumes constant phase boundaries with
temperature. As the phase boundaries continuously vary with temperature, a fully density- and
temperature-dependent extension of Γth is necessary to make this scheme viable for hybrid EoS
models. We present such an extension in the next section.

4.2. Extending the ideal-gas approach to hybrid EoSs

In this section, we present an extension of the ideal-gas approach suitable for thermal effects of
two-phase hybrid EoS models. We will refer to this scheme as effective phase transition (effPT)
scheme.

As for the traditional approach, we calculate the thermal pressure from the specific thermal
energy ϵth rather than the temperature T since ϵth is directly inferred from solving the hydrodynamic
equations. The main idea is to use different descriptions for the thermal pressure at different
densities depending on which phase of matter is present at ϵth = 0 and ϵth > 0. This requires
knowledge of the phase boundaries ρon and ρfin as a function of ϵth in addition to the boundaries
ρon,0 and ρfin,0 at zero temperature. The task is to provide a reasonable approximation for the
pressure at ϵth > 0 starting from a given cold EoS and knowledge of ρon and ρfin for the requested
ϵth.

To illustrate the approach Fig. 4.3(a) shows the DD2F-SF-1 EoS at slices of constant ϵth. The blue
line shows ϵth = 0 and the red line ϵth = 0.03. Additionally, the blue and red crosses mark the
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Figure 4.3.: (a): Pressure as a function of density for the DD2F-SF-1 EoS at ϵth = 0 (blue line) and at
ϵth = 0.03 (red line). The purple, dashed line illustrates a linear interpolation between
the phase boundaries at ϵth = 0.03. The green, dashed line displays the pressure we
would obtain using the ideal-gas approach of Eq. (2.28) for ϵth = 0.03. (b): Phase
diagram of the DD2F-SF-1 EoS in the density-ϵth plane. In both panels, we highlight
the different regimes as in Fig. 4.1. Each regime requires a different treatment by
our effective procedure to include thermal effects. Blue and red crosses refer to the
phase boundaries at ϵth = 0 and ϵth = 0.03, respectively. Arrows indicate how these
boundaries change with ϵth. Both figures are adapted from Ref. [361].

boundaries of the coexistence phase for both cases, respectively.
Note that while ϵth = 0 is equivalent to T = 0 at all densities, ϵth = 0.03 corresponds to different

temperatures at each density covering the range between roughly 40 MeV to 30 MeV for densities
between 2× ρnuc and 4× ρnuc. Hence, for a constant ϵth = 0.03 the coexistence phase is no longer
a flat region of constant pressure but an almost linear function. For comparison, the dashed purple
line shows the linear pressure-density relation between ρon and ρfin.

The dashed green line illustrates the pressure we would obtain using Eq. (2.28) and ϵth = 0.03.
Similar to Fig. 4.2 there is a large density range where this approach greatly overestimates the
pressure. We identify four different regimes in Figure 4.3(a) that each require different treatments
for the thermal pressure. We mark them in different colors and label them with roman numerals I-
IV.

Regime I corresponds to densities below ρon, where matter remains in the hadronic phase at
ϵth = 0.03. Regime II contains matter in the coexistence phase at finite ϵth = 0.03, i.e. between
ρon and ρfin. In Regime III at densities between ρfin and ρfin,0, matter changes from the coexistence
phase at ϵ = 0 to the pure deconfined quark phase at ϵth = 0.03. Finally, regime IV contains matter
above ρfin,0, where pure deconfined quark matter is already present at ϵth = 0. The origin of these
regimes is further illustrated in Fig. 4.3(b). Here, we plot the corresponding EoS phase diagram in
the ρ− ϵth plane. As in Fig. 4.1, the dashed line displays the onset of quark deconfinement ϵth,on(ρ)
and the solid line the beginning of the pure quark phase ϵth,fin(ρ).

The four regimes as well as the phase boundaries at ϵth = 0.03 and ϵth = 0 are highlighted in
the same way as in Fig 4.3(a). Note that the borders between regime I and II as well as between
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regime II and III depend on the value of ϵth and move along the phase boundaries as indicated by
the arrows in Fig. 4.3(a) and Fig. 4.3(b). However, since ρfin,0 is fixed by the cold EoS the boundary
between regime III and IV does not depend on ϵth.

The identification of these four regimes is the critical new input to the effPT procedure. For
given values of ρ and ϵth, we need to determine in which regime matter with these thermodynamic
properties is located by comparing to the phase boundaries ϵth,on(ρ) and ϵth,fin(ρ). We will assume
that these are known functions. In practice, this can either mean assuming an explicit analytic
form or providing tables and interpolating to non-tabulated values. By inverting these functions,
the densities ρon and ρfin can be inferred for a fixed ϵth. In the following subsections, we will present
the procedure to infer the total pressure P at finite ϵth in the four different regimes.

4.2.1. Regime I

If ϵth < ϵth,on(ρ) then matter remains in the hadronic phase. This case is effectively equivalent to
any purely hadronic EoS, where the traditional ideal-gas approach has been shown to work well.
This is also indicated by Fig. 4.3(a), in which the red and the green line almost coincide in regime I.
Therefore, in this regime we determine P using Eq. (2.26) and Eq. (2.28) with Γth = 1.75.

4.2.2. Regime II

For ϵth,on(ρ) ≤ ϵth < ϵth,fin(ρ), matter lies between ρon and ρfin, i.e. in the coexistence region.
As discussed before, in this regime the pressure at finite ϵth may be lower than Pcold of the cold
barotropic EoS. Therefore, this regime has to be treated with some care.

The procedure we develop to approximate P is sketched in Fig. 4.4. Here, the blue line is a
hypothetical cold hybrid EoS model and the red line shows the EoS we construct with our effPT
procedure at constant ϵth > 0 from the blue line and our knowledge of ρon and ρfin. We recall that
we explicitly assume ρon and ρfin to be known for a given ϵth. Note that this figure only serves to
explain the effPT procedure and does not show any microphysical EoS model.

Based on the observation from Fig. 4.3(a) that the pressure in the coexistence phase can be
approximated by a linear function, the main idea to infer P is to estimate the pressures Pon and
Pfin at the densities ρon and ρfin highlighted by red crosses in Fig. 4.4 and then to interpolate at the
density ρ.

As Pon is located at the onset of quark deconfinement, it should still be well approximated by
the traditional ideal-gas approach. Therefore, Pon can be estimated by inferring Pcold at ρon from
the cold EoS and calculating Pth using Eq. (2.28) and Γth = 1.75. This is indicated by the blue and
black arrows on the left side of Fig. 4.4. Pfin cannot be obtained in the same way because of the
problems of the ideal-gas approach we outlined before. Instead, the idea is to estimate the pressure
at two densities above ρfin,0 and to extrapolate downwards to ρfin.

As discussed earlier, at densities above ρfin Pth can be approximated with the ideal-gas approach
using Γth = 4/3. Together with the values from the cold EoS, we then determine P at two densities
above ρfin,0 and use the slope dP

dρ to extrapolate the pressure Pfin at ρfin. This is indicated by the two
rightmost arrows, the red dots and the black arrow in Fig. 4.3(a). Now that we have the pressures
Pon and Pfin, we infer P at the density ρ through linear interpolation.

In rare cases the extrapolated pressure Pfin can be smaller than Pon. This would result in an
unphysical drop of the pressure with increasing density. To avoid such a behavior, we instead use
the slope of the cold EoS in the coexistence phase m = (Pcold(ρfin,0)− Pcold(ρon,0))/(ρfin,0 − ρon,0)
and extrapolate linearly from Pon and ρon to ρ, if this case occurs.
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Figure 4.4.: Sketch of our effective procedure to estimate the pressure for ϵth > 0. The blue line
depicts a barotropic, hybrid EoS, whichwe assume to be given. The red line represents
the same EoS at constant ϵth > 0. For a given ϵth, we determine the densities ρon
and ρfin from the phase boundaries, which have to be provided. For the pressure Pon,
we estimate Pth with Eq. (2.28) using Γth = 1.75. For Pfin, we consider two points
above ρfin,0 and infer Pth at these points with Eq. (2.28) and Γth = 4/3. From these
two points, we obtain the slope dP

dρ and use it to extrapolate Pfin at ρfin. For densities
between ρon and ρfin, we estimate P through linear interpolation between ρon and ρfin.
Figure adapted from Ref. [361].

.

4.2.3. Regime III

For ϵth,fin ≤ ϵth and ρ < ρfin,0, matter is in the pure deconfined quark phase but cold matter at the
same density is in the coexistence phase. We see from Fig. 4.3(a) that P may still be lower than
Pcold in this regime.

In Fig. 4.4, this case occurs in the density range from the red cross at Pfin to the red dot at ρfin,0.
Hence, the pressure can be inferred in the same way as Pfin in the previous section. We estimate
the pressure at two points above ρfin,0, determine the slope dP

dρ and then extrapolate down to ρ.
We then perform an additional consistency check. We determine the pressure Pon as for regime II.

Then we extrapolate linearly to the density ρ using the slope of the cold EoSs in the coexistence
phase m = (Pcold(ρfin,0) − Pcold(ρon,0))/(ρfin,0 − ρon,0) to obtain a new pressure P ∗. To avoid an
unphysical drop in pressure with density, we pick the larger value of P and P ∗ as our approximated
pressure in this regime.

4.2.4. Regime IV

If we have ρ > ρfin,0 matter is in the pure deconfined quark phase at all densities. Here, the ideal
gas approach can provide a reasonable approximation since no further transition takes place in
this regime. However, as discussed before, Γth = 1.75 slightly overestimates the pressure in the
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deconfined quark matter phase and Γth = 4/3 should provide a better description. Hence, we will
use the ideal-gas approach with Γth = 4/3 to infer P at densities above ρon,0. The cold pressure at
this density can be directly inferred from the tabulated EoS.

4.2.5. Choices of Γth

We briefly motivate the values of Γth we picked in the different regimes of the effPT scheme. For
this, we determine the total pressure P at fixed ϵth and cold, beta-equilibrium Ye for all DD2F-SF
EoSs as a function of density from the respective 3D table. We then infer Pcold at each density from
the 1D EoS table and obtain Pth from Eq. (2.27). By inverting Eq. (2.28) we calculate Γth(ρ).

We show the calculated values of Γth(ρ) for the DD2F-SF-1 model in Fig. 4.5(a). Different colors
refer to different ϵth.
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Figure 4.5.: (a): Thermal ideal-gas index as function of density for the DD2F-SF-1 EoS at different
ϵth. The dashed line marks Γth = 4/3, which is expected for an ultra-relativistic Fermi
gas. (b): Same as (a) but for the DD2F-SF-2 EoS.

We see that at low densities (below ≈ 2× ρnuc) Γth is in the range of Γth ≈ 1.6− 1.85 with larger
ϵth leading to smaller Γth. Here, matter remains in the hadronic phase. Hence, Γth = 1.75 is a
reasonable choice for regime I.

At higher densities, we observe a sharp drop of Γth quickly leading to Γth < 1 corresponding to
negative Pth (as defined by Eq. (2.28)). Larger ϵth feature this drop at lower densities. This behavior
is caused by the “earlier” onset of the phase transition resulting in lower pressures at ϵth > 0 than
at ϵth = 0 (see Fig. 4.3).

At densities around 4× ρnuc, Γth steeply rises and reaches values around Γth = 1.4, irrespective
of eth. Here, matter at ϵth = 0 enters the pure quark phase. With increasing density, Γth approaches
4/3 as indicated by the horizontal dashed line. This value is expected for an ultra-relativistic Fermi
gas. Recall that we have picked Γth = 4/3 in our effPT scheme at all densities in the pure decon-
fined quark phase, i.e. at ρ ≥ ρfin,0. In particular, we use this value to extrapolate the pressures in
regime III as well as infer the value of Pfin for constructing the pressures in regime II. When approx-
imating this model, we hence expect to slightly underestimate the pressure in these two regimes
as well as in the low density part of regime IV. Note however, that these errors are comparable to
those induced by picking a constant Γth throughout the hadronic phase.
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We find similar results for other DD2F-SF EoSs. In particular, we always find Γth ≈ 1.4 around
ρfin,0 followed by an asymptotic decay to Γth = 4/3 with increasing density. As an example, we
show Γth(ρ) for the DD2F-SF-2 EoS in Fig. 4.5(b). In comparison to the DD2F-SF-1 EoS, we see that
the onset of the phase transition is shifted to lower densities, but the overall behavior of the curves
remains very similar.

Note that the onset of quark deconfinement and especially the EoS of pure deconfined quark
matter are very uncertain. Therefore, it is not clear whether the trend of Γth is a general behavior
of hybrid EoS models or simply a feature of the SF approach since all DD2F-SF EoS share this
phenomenological model. We continue to use Γth = 4/3 for the pure deconfined quark phase
throughout this work, as this value is physically motivated by assuming deconfined quark matter
behaves like an ideal, ultra-relativistic Fermi gas.

4.3. Testing the effPT scheme

In this section, we test the performance of the effPT approach by comparing results from this
scheme to results using the fully temperature- and composition-dependent DD2F-SF EoS set. First,
we attempt to reconstruct the DD2F-SF models in a wide density and temperature range. Addition-
ally, we perform merger simulations and compare the inferred dominant postmerger gravitational-
wave (GW) frequencies when employing the effPT scheme to results from simulations with the full
EoS tables. Our findings demonstrate that the effPT approach closely resembles a fully consistent
treatment of the temperature-dependent phase boundaries. We also compare the results with the
effPT scheme to the performance of the traditional ideal-gas approach and find that neglecting the
shift of quark deconfinment at finite temperatures can induce significant deviations in the EoS and
GW frequencies.

4.3.1. Reconstructing the DD2F-SF EoSs

To show the importance of correctly accounting for changing transition densities at finite temper-
atures, we estimate the pressure of the DD2F-SF models in a range of densities and temperatures
with both the effPT scheme and the traditional ideal-gas approach. For evaluating the performance,
we consider the relative residuals, which we define as |Ptrue −Papprox|/Ptrue. Papprox is the pressure
approximated by either of the two effective schemes and Ptrue is the pressure inferred from the
respective 3D EoS table. For both effective treatments, we reconstruct the pressure using the tabu-
lated values of ϵth. Additionally, we employ the true phase boundaries of the DD2F-SF models (see
Fig. 3.4) in the effPT approach. All quantities from the EoS tables are inferred at Ye corresponding
to cold beta-equilibrium composition. In the traditional idea-gas approach, we pick different values
of Γth depending on the phase present in the zero-temperature EoSs. With this we aim to at least
somewhat account for the different thermal behavior of the hadronic and the deconfined quark
phase. We set Γth = 1.75 for ρ ≤ ρon,0, Γth = 1.4 for ρon,0 < ρ < ρon,0 and Γth = 4/3 for ρ ≥ ρfin,0.
We remark that this choice of Γth leads to a drop in pressure at the densities ρon,0 and ρfin,0 for a
fixed value of ϵth.

We then average the reconstructed values over the tabulated temperatures between T = 5 MeV
and T = 80 MeV, as this is the relevant temperature range for many astrophysical scenarios such
as neutron star mergers and core collapse supernovae. Since the tables have more tabulated points
a low temperatures, we keep a separation of at least 5 MeV between two considered points to not
over-represent the low temperatures range.
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Figure 4.6.: (a): Density dependence of the mean relative residuals for the total pressure from the
thermal ideal-gas approach and our effective treatment of thermal effects in hybrid
models compared to the actual DD2F-SF-1 EoS. At each density, we average over the
residuals in the temperature range between T = 5 MeV and T = 80 MeV. Figure
adapted from Ref. [361]. (b): Same as (a) but for the DD2F-SF-2 EoS.

We plot the averaged relative residuals from the effPT and the traditional ideal-gas approach
for the DD2F-SF-1 EoS for different densities in Fig. 4.6(a) with a purple and a dashed green line,
respectively. Note the logarithmic scale of the y-axis.

We see that at very low and very high densities the residuals from both schemes are identical.
This is because at these densities no phase transition occurs in the considered temperature range.
Matter either remains purely hadronic or pure deconfined quark matter is already present at T = 0.
Since we chose Γth = 1.75 for the hadronic phase and Γth = 4/3 for the deconfined quark phase in
both approaches, the results are identical if no transition sets in with increasing temperature.

On the other hand, in the intermediate density range, namely between roughly 0.6×ρnuc and 4×
ρnuc, the effPT scheme reproduces the DD2F-SF-1 with much greater accuracy than the traditional
approach. Especially for densities between about 2×ρnuc and 3.5×ρnuc, the temperature-averaged
relative residuals from the ideal-gas approach become larger than 1 implying a more than 100%
error for the estimated pressure. This occurs despite the adjustments on Γth in the ideal-gas scheme.
In this density range, the relative residuals from the effPT scheme are about an order of magnitude
smaller.

Around 4 × ρnuc there appears to be a small region, where the traditional ideal-gas scheme sig-
nificantly outperforms the effPT scheme (even though the relative residual of the effPT scheme is
still smaller than 10%). This feature is caused by a single tabulated density point located right at
the border between the coexistence phase and the pure deconfined quark phase at T = 0. Hence,
at this density pure deconfined quark matter is present at practically all finite temperatures, the
traditional scheme however still assumes Γth = 1.4 here. As demonstrated in Sec. 4.2.5, the DD2F-
SF model features Γth of around 1.4 in this density range, only dropping to Γth = 4/3 at higher
densities. Since the effPT scheme uses Γth = 4/3 to extrapolate from the quark phase, it slightly
underestimates the thermal pressure at this point leading to a larger relative residual compared to
the ideal-gas approach.
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Table 4.1.: Mean relative residuals of the total pressure calculated by the traditional ideal-gas ap-
proach and our effPTschemecompared to the actual EoS for all DD2F-SFmodels (com-
pare Fig. 4.6). We average the residuals over all points tabulated in the respective EoS
file in the temperature range of 5 MeV to 80 MeV and the density range of 0.5× ρnuc to
5× ρnuc. Table adapted from Ref. [361].

EoS traditional approach effective scheme
DD2F-SF-1 1.179 0.146
DD2F-SF-2 1.429 0.149
DD2F-SF-3 1.209 0.117
DD2F-SF-4 1.111 0.089
DD2F-SF-5 1.294 0.094
DD2F-SF-6 1.139 0.090
DD2F-SF-7 1.294 0.278

In Fig. 4.6(b), we show the relative residuals for the DD2F-SF-2 EoS. We find qualitatively very
similar results as for the DD2F-SF-1 model. A noticeable difference is that compared to Fig. 4.6(a),
the region of larger deviations for both approaches is shifted towards lower densities due to the
lower onset densities of the DD2F-SF-2 EoS. We obtain similar results for the other DD2F-SF models.
To quantify the performance of both schemes in reconstructing the EoSs, we further average the
temperature-averaged relative residuals over all tabulated densities in the range between 0.5×ρnuc
and 5 × ρnuc. We provide these averaged residuals for all DD2F-SF EoSs in Table 4.1. Generally,
the effPT scheme performs well and produces average relative residuals of around 10%-15%. The
only exception is the DD2F-SF-7 EoS where the error is somewhat larger with about 28%.

On the other hand, the traditional scheme produces errors about an order of magnitude larger
than the effPT approach in the chosen density and temperature range. For this treatment, we
observe relative residuals of around 110%-140%. As this EoS range is most relevant for neutron
star mergers, these results demonstrate the importance of properly accounting for the temperature-
dependent phase boundaries. We conclude that employing the traditional approach, i.e. assuming
constant phase boundaries, leads to average pressure differences of more than 100% even with
different choices of Γth depending on the phase of the cold EoS.

4.3.2. Merger simulations at a fixed system mass

We further validate the effPT scheme by performing several NSmerger simulations with all 7 DD2F-
SF EoSs. For each EoS, we perform 3 simulations. One using the full 3D EoS table, one with the
1D table and the effPT approach and one with the 1D table and the traditional ideal-gas treatment.
We refer to these simulations as 3D framework, effPT framework and Γth framework, respectively.
For the effPT framework, we use the phase boundaries, i.e. ρon and ρfin, of every DD2F-SF model
as a function of the specific thermal energy ϵth. We extract these boundaries before the simulation
from the respective 3D table by interpolating to the Ye of cold, beta-equilibrium at each density
and provide them to the simulation code in tabulated form. For the Γth framework, we use the
same values of Γth in different density ranges as described in Sect. 4.3.1 to somewhat mimic the
different thermal properties of deconfined quark matter. All simulations evolve symmetric binaries
with a total system mass of 2.7M⊙ at infinite separation and do not employ the procedure outlined
in Appendix A to enforce an initial radial velocity at the beginning of the simulation. We recall
that in the 3D framework each SPH particle has a Ye value assigned during the setup. This is then
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advected with the particle during the simulation. In the other two frameworks Ye is always adjusted
to the value of cold, beta-equilibrium as the density of a particle evolves. This different treatment
of composition effects will additionally introduce differences between the 3D framework compared
the other frameworks.

Fig. 4.7(a) shows the time evolution of the maximum rest-mass density ρmax from all simulations
with the DD2F-SF-1. The results from the three different frameworks are displayed with different
colors. The horizontal lines mark the phase boundaries of this model at zero temperature, the
vertical line highlights the merging time. In order to increase the visibility, we slightly smoothed
the simulation output of ρmax in plots throughout this chapter as the SPH method features some
small amount of noise when physical quantities are directly evaluated on the particles.
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Figure 4.7.: Evolution of the maximum rest-mass density for the merger of two 1.35M⊙ NSs us-
ing the DD2F-SF-1 EoS and the different frameworks outlined in the text to model the
finite-temperature regime of the EoS. The horizontal dashed lines show the phase
boundaries of this EoS at zero temperature. The vertical line marks the merging time.
(b): Gravitational-wave spectrum of the cross polarization at a distance of 20 Mpc
along the polar axis from the same simulations as in (a). Both figures adapted from
Ref. [361].

We see that prior to the merger, the maximum densities in all three frameworks are almost
identical. This is plausible since at this stage of the evolution, the densities are below ρon,0 =
3.30 × ρnuc and the stars are cold. After the merger, we observe that in the Γth framework ρmax
exhibits strong oscillations bouncing in and out of the quark phase. At later times, around 6 ms
after the merger, some material settles permanently into the pure deconfined quark matter phase.
In the 3D framework, ρmax shows a different behavior. In this simulation matter at the highest
densities enters the pure, deconfined quark phase on the first contraction of the merger remnant
and remains in this state throughout almost the entire postmerger evolution. We clearly see the
larger overall densities and smaller oscillations compared to the results from the Γth framework.

From this observation, we conclude that the different density evolution in the Γth framework is an
artifact of the ideal-gas scheme not considering the shifting phase boundaries at finite temperatures.
As apparent from Fig. 4.2 and Fig. 4.3, this leads to an overestimation of the pressure in the merger
remnant resulting in lower overall densities. Additionally, we see in Fig. 4.3 that the Γth framework
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also induces an incorrect EoS shape. Since the phase boundaries change with temperature at fixed
ϵth, the transition region smears out and becomes a more smooth function of density. On the other
hand, the ideal-gas approach more closely resembles the shape of the cold EoS, namely a steeper
increase of pressure followed by a almost flat plateau. Both effects lead to the stronger oscillations
and the overall lower values of ρmax in the Γth framework compared to the 3D framework.

The effPT framework does correctly consider the thermal shift of the phase boundaries. As we see
in Fig. 4.7(a), it performs significantly better than the Γth framework at reproducing the maximum
density evolution of the 3D framework. In particular, matter at the highest density in this simulation
also enters the pure quark phase on the first contraction and remains in this phase throughout the
postmerger evolution. However, we also see that the effPT approach slightly overestimates the
densities in the merger remnant during the entire postmerger evolution. This may be caused by
the minor underestimation of the pressure in the regimes II and III we discussed in Sect. 4.2.5.
Additionally, the effPT scheme does not include isospin-dependence and matter is assumed to be
in cold, beta-equilibrium composition at all times. This approximation will also contribute to the
small differences between the 3D and the effPT framework we observe.

In three of our simulations (using the DD2F-SF-4,6,7 EoSs), we observe a delayed transition
taking place in the merger remnant when employing the ideal-gas approach. In these systems,
no quark matter is present after the initial density increase. As the remnant further evolves, it
continues to contract and the phase transition sets in after a few milliseconds. This results in a
sudden increase of the maximum density.

When using the 3D EoS tables or the effPT scheme, this feature does not occur for the binarymass
configurations we consider in this work. In these frameworks, deconfined quark matter is always
present in the postmerger remnant due to the “earlier” onset of quark deconfinement at finite
temperatures. Especially, we observe that in these systems the maximum densities are already
larger than ρon,0 right after the merger and no sudden increase at later time takes place. The
delayed onset of quark deconfinement in the systems simulated with the Γth framework is hence
likely an artifact of this approach not accounting for the temperature-dependent phase boundaries.
This indicates a delayed phase transition in the merger remnant may be a less common feature.
We will further explore this issue in Sect 4.4.3.

Next, we will discuss the GW signals from the simulations using the three different frameworks.
Figure 4.7(b) shows the spectra of the cross polarization at a distance of 20Mpc along the polar axis
for the DD2F-SF-1 EoS from all three frameworks. The color scheme is the same as in Fig. 4.7(a).

We see that the low frequency part (roughly below 1.7 kHz) of all three spectra is virtually identi-
cal. This is plausible, as this part of the GW spectrum is produced during the inspiral where the stars
remain cold and no differences between the three frameworks are present. The higher frequency
range is formed from postmerger remnant oscillations and hence more affected by thermal effects.
Here, greater differences between the three spectra are present. We clearly see the dominant peak
fpeak caused by the fundamental quadrupole fluid mode of the remnant, as explained in Sect. 1.3,
for all three simulations.

From the 3D framework, we derive an fpeak of abut 3.61 Hz. However, for the Γth framework we
find a value around 500 Hz smaller at only 3.12 kHz. Such a difference is substantial and will be
measurable with future GW detectors. The reason for this huge discrepancy, as we have discussed
before, is that the Γth framework assumes a stiffer EoS at finite temperatures (see Fig. 4.3(a)),
which results in less compact remnants with lower densities and fewer amounts of quark matter.

The spectrum of the effPT framework in Fig. 4.7(b) is in much better agreement with the spec-
trum of the 3D EoS table. We infer an fpeak of around 3.57 kHz from this spectrum, i.e. around
40 Hz smaller than from the 3D framework. This is somewhat surprising as our earlier discus-
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Table 4.2.: Dominant postmerger GW frequency fpeak in kHz for our sample of DD2F-SF EoS mod-
els inferred from simulations. The different columns correspond to the different frame-
works modeling the finite-temperature regimes as outlined in the text.

EoS Γth 3D effPT
DD2F-SF-1 3.12 3.61 3.57
DD2F-SF-2 3.25 3.58 3.62
DD2F-SF-3 3.12 3.50 3.52
DD2F-SF-4 3.16 3.33 3.44
DD2F-SF-5 3.22, 3.42 3.54, 3.81 3.60, 3.85
DD2F-SF-6 3.14 3.64 3.67
DD2F-SF-7 3.13 3.37 3.41

sion suggested the effPT scheme tends to slightly overestimate the remnant densities. Hence, we
would also expect a somewhat larger fpeak. A closer look at the spectrum shows that overall the
high frequency part does indeed seem to be shifted towards larger frequencies compared to the 3D
framework. Only the highest peak is narrowly smaller. However, there is a second peak in the effPT
spectrum at larger frequencies of about 3.78 kHz. Such a split in fpeak is typically attributed to a
frequency drift during the postmerger phase [49]. As the merger remnant evolves, the dominant
oscillation mode changes with time. The exact shape of the peak around fpeak is hence affected by
the remnant dynamics.

Generally, we still observe that the effPT scheme is able to reproduce the overall shape of the
GW spectrum significantly better than the traditional ideal-gas approach. This also applies to the
secondary peak at around 2.5 kHz.

We find similar results for the other DD2F-SF models. In Tab. 4.2 we provide the obtained fpeak
frequencies from the entire DD2F-SF EoS sample from all three frameworks. We consistently find
that the Γth framework greatly underestimates the frequencies compared the 3D framework with
differences reaching up to 500 Hz. Additionally, we see that the frequencies inferred with the
ideal-gas approach are relatively similar for all 7 models and close to the fpeak produced by the
purely hadronic DD2F EoS of 3.10 kHz (see Fig. 4.9). This indicates that in the Γth framework, the
phase transition only weakly influences the overall remnant structure and hence the corresponding
postmerger GW signal. In particular, we find that the appearance of a delayed transition in the
remnant shortly after the merger does not have a visible impact on the GW spectrum as the remnant
has already mostly settled down and further GW emission is very weak.

On the other hand, we find good agreement between the effPT and the 3D framework with max-
imum deviations of fpeak of 110 Hz. This demonstrates that the temperature-dependence of the
phase boundaries needs to be considered properly as it has a large impact on the whole remnant
structure. This is understandable, since the “earlier” onset of the phase transition at finite temper-
atures leads to more deconfined quark matter in these systems compared to simulations with the
Γth framework.

As a second example, we plot the evolution of the maximum density and the GW spectra from
the simulations with the DD2F-SF-5 EoS in Fig. 4.8. We find similar results for ρmax as for the DD2F-
SF-1 model in Fig. 4.7(a). The Γth scheme produces strong oscillations in and out of the deconfined
quark phase at early times while in the 3D as well as in the effPT scheme pure deconfined matter
is present at all times after the initial density increase at merging. For the GW spectra, we observe
that all three frameworks produce two distinct dominant peaks at high frequencies. While the two
peaks from the effPT and the 3D framework agree within 60 Hz, the peaks from the Γth framework
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Figure 4.8.: Evolution of themaximum rest-mass density for themerger of two 1.35M⊙ NSs using
theDD2F-SF-5 EoS and the different frameworks outlined in the text tomodel the finite-
temperature regime of the EoS. The horizontal dashed lines show the phase bound-
aries of this EoS at zero temperature. The vertical line marks the merging time. (b):
Gravitational-wave spectrum of the cross polarization at a distance of 20 Mpc along
the polar axis from the same simulations as in (a).

appear at frequencies about 300 Hz to 400 Hz lower compared to the other two approaches. For
this EoS we hence provide both values of fpeak for each framework can in Tab. 4.2.

From our results, we conclude that for the DD2F-SF EoS sample the shifting of the phase bound-
aries at finite thermal energies is the main process affecting the remnant structure enough to reveal
the phase transition through the GW signal. As the traditional ideal-gas approach neglects these
shifts, it fails to reproduce the correct values of fpeak and differences up to 500 Hz compared to
employing the full 3D EoS table emerge. The effPT scheme on the other hand, does consider
the changing phase boundaries at finite temperatures. Hence, it is able to properly capture the
transition to deconfined quark matter at all ϵth and reproduce the results from the 3D framework
with much higher accuracy. This implies that the effPT scheme is also able to replicate features
indicating the appearance of deconfined quark matter in neutron star merger remnants such as a
characteristic shift of fpeak compared to the tidal deformability ([52, 53]). Simulations employing
the traditional ideal-gas index on the other hand, may not reliably describe such features as demon-
strated by the significant underestimation of postmerger GW frequencies. We therefore advertise
caution when employing this scheme for hybrid EoSs.

We also find that for the DD2F-SF models, the dependence of fpeak on Ye is relatively weak. Recall
that both the effPT and the Γth scheme do not include composition effects and always assume cold,
neutrinoless beta-equilibrium composition. Since the phase boundaries only weakly change with
Ye, the effPT scheme is still able to reproduce fpeak with good accuracy. In principle, a stronger de-
pendence of the transition densities on Ye may occur, which would require additional modifications
to the effPT scheme.
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4.3.3. Merger simulations at different binary masses

So far, we have only tested the effPT scheme at a fixed binary massMtot of 2.7M⊙. When varying
Mtot, changes in fpeak as well as in the strength of the shift between a hybrid EoS and the corre-
sponding purely hadronic EoS are expected (see Ref. [53]). At very low Mtot, the densities and
temperatures in the system are too low to produce significant amounts of deconfined quark matter
to noticeably impact the structure of the merger remnant. Hence, no or at most small differences in
fpeak between hybrid and hadronic EoS are seen. With increasing Mtot, larger amounts of matter
transition into the deconfined quark phase shifting fpeak more strongly.

To provide a more stringent test, we explore whether the effPT scheme can qualitatively and
quantitatively capture the dependence of fpeak on Mtot for a hybrid EoS. For this, we perform
additional merger simulations with the nucleonic DD2F EoS and the hybrid DD2F-SF-6 model. For
both EoSs, we simulate symmetric binaries with masses of 2.4 M⊙, 2.5 M⊙, 2.611 M⊙, 2.65 M⊙,
2.7 M⊙ and , 2.78 M⊙, which are the masses used in Ref. [53]. For the simulations with the
DD2F model, we use the full 3D EoS table, for the DD2-SF-6 EoS we employ the effPT and the 3D
framework.
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Figure 4.9.: Dominant postmerger GW frequency fpeak as a function of the total binarymass for the
purely nucleonic DD2Fmodel (black) and the hybrid DD2F-SF-6 EoS (colored). Crosses
show simulation data, between these points linear interpolation is used. The two dif-
ferent colors refer to different approaches to model the finite-temperature regime of
the DD2F-SF-6 EoS as outlined in the text. Figure adapted from Ref. [361].

The resulting fpeak frequencies are plotted in Fig. 4.9 as a function ofMtot. We see that the effPT
scheme is able to reproduce fpeak from the 3D framework very well in the whole mass range. In
particular, we find that the range, where the results from the hybrid model begin to deviate from
those produced by the hadronic EoS, agrees well. Also, the stronger shift of fpeak at high and the
almost coinciding values at lower masses are reproduced accurately.

We also see that the effPT scheme constantly yields slightly larger frequencies than the 3D frame-
work, which we as also observe in the previous section. However, we find that the differences are
minor and the overall behavior is captured very well.
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4.4. Impact of different finite-temperature phase boundaries

So far, we have tested the effPT scheme and showed that it is able to reproduce results from
fully temperature- and composition-dependent hybrid EoSs well when used with the correct phase
boundaries at finite thermal energies. In this section, we will explore the impact different assumed
phase boundaries at finite ϵth can have in mergers for a given cold EoS. For this, we will consider
different barotropic EoSs and perform simulations for a fixed, cold EoS and employ varying phase
boundaries at finite temperature with our effPT scheme. We then compare the differences we find
to directly probe finite-temperature effects.

4.4.1. Simple thermal EoS model

We begin by introducing a simple, yet thermodynamically consistent toy model to demonstrate
that the cold, barotropic EoS does not completely determine the EoS at finite temperatures. In the
case of two-phase hybrid models, different thermal treatments of both phases can thus result in a
different temperature dependence of the phase boundaries. The scheme was developed by Stefan
Typel and first presented in Ref. [361].

In a system in thermodynamic equilibrium with properties determined by the temperature T ,
the particle number N and the volume V , the relevant thermodynamic potential is the free energy

F (T, V,N) = −PV + µN , (4.3)

with the pressure P and the chemical potential µ defined as

P = − ∂F

∂V

⃓⃓⃓⃓
T,N

, µ =
∂F

∂N

⃓⃓⃓⃓
T,V

. (4.4)

The internal energy of the system E is given by

E(S, V,N) = F + TS , (4.5)

where S is the entropy of the system defined as

S = − ∂F

∂T

⃓⃓⃓⃓
V,N

. (4.6)

When considering neutron star EoS models, it is useful to introduce densities

n =
N

V
, f =

F

V
, e =

E

V
, s =

S

V
(4.7)

removing N and V as explicit variables. With this we have

f = −P + µn, P = n2
∂(f/n)

∂n

⃓⃓⃓⃓
T

, µ =
∂f

∂n

⃓⃓⃓⃓
T

,

s = − ∂f

∂T

⃓⃓⃓⃓
n

, e = f + Ts = Ts− P + µn

(4.8)
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If we split the energy density into a cold part ec and a thermal part eth, we see that the free
energy also naturally splits into a thermal fth and a cold part fc

f = ec + eth − Ts ≡ fc + fth (4.9)
(4.10)

with

fc = ec, fth = eth − Ts . (4.11)

With this, we can write eth as

eth = fth + Ts = fth − T
∂(fc + fth)

∂T

⃓⃓⃓⃓
n

= fth − T
∂fth
∂T

⃓⃓⃓⃓
n

, (4.12)

as fc does not depend on T . For the pressure, we have

P = n2
∂((fc + fth)/n)

∂n

⃓⃓⃓⃓
T

= n
∂fc
∂n

⃓⃓⃓⃓
T

− fc + n
∂fth
∂n

⃓⃓⃓⃓
T

− fth ≡ Pc + Pth , (4.13)

with the thermal pressure Pth

Pth = n
∂fth
∂n

⃓⃓⃓⃓
T

− fth . (4.14)

The definition of the thermal entropy density sth and the thermal chemical potential is analogous
and straightforward. We get

sth = − ∂fth
∂T

⃓⃓⃓⃓
n

, µth =
∂fth
∂n

⃓⃓⃓⃓
T

. (4.15)

If we assume that the ideal-gas relation Pth = (Γth− 1)eth with a constant Γth holds at all densities,
we get

Γth =
Pth
eth

+ 1 =
n ∂fth

∂n

⃓⃓⃓
T
− fth

fth − T ∂fth
∂n

⃓⃓⃓
n

+ 1 =
n ∂fth

∂n

⃓⃓⃓
T
− T ∂fth

∂T

⃓⃓⃓
n

fth − T ∂fth
∂n

⃓⃓⃓
n

. (4.16)

This expression can be rewritten into a partial differential equation for fth

Γthfth = n
∂fth
∂n

⃓⃓⃓⃓
T

− (1− Γth)T
∂fth
∂T

⃓⃓⃓⃓
n

. (4.17)

We will discuss two solutions of this equation.

First solution

A particular solution to Eq. (4.17) is given by

fth = Tn

(︃
a ln

n

n0
− b ln

T

T0
+ c

)︃
, (4.18)
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where a, b, c are dimensionless free parameters and n0 and T0 are scaling variables to guarantee
correct units in the arguments of the logarithmic functions. This solution is similar to the free
energy density of a classical ideal gas (without the rest-mass contribution)

fid = Tn[ln(nλ3)− 1] , (4.19)

where λ is the thermal wave length

λ =

√︄
2πh̄2

mT
(4.20)

depending on the temperature and the mass of the particles. Using Eq. (4.18) and the definitions
in Eq. (4.12), Eq. (4.14) and Eq. (4.15), we get

µth = T

(︃
a ln

n

n0
− b ln

T

T0
+ a+ c

)︃
, Pth = aTn,

eth = bTn, sth = −n
(︃
a ln

n

n0
− b ln

T

T0
− b+ c

)︃
.

(4.21)

In order to have positive thermal pressure and energy we require a > 0 and b > 0. Additionally,
we have the condition

Γth = 1 +
a

b
. (4.22)

A specific choice of Γth, a and c hence completely determines the finite temperature EoS. For a
classical ideal gas we have a = 1, Γ = 5/3 and

c = ln

(︄
n0

√︃
2π

mT0

3
)︄

− 1 . (4.23)

We can set

a =

√︃
3

2
(Γth − 1), b =

√︄
3

2(Γth − 1)
(4.24)

to recover this ideal gas limit.

Second solution

A second possible solution to Eq. (4.17) is

fth = aT bnc (4.25)

with dimensionless constant parameters a, b and c. With Eq. (4.18), Eq. (4.12), Eq. (4.14) and
Eq. (4.15), we get

µth = acT bnc−1, Pth = a(c− 1)T bnc, eth = a(1− b)T bnc, sth = −abT b−1nc. (4.26)

Requiring sth > 0, Pth > 0 and eth > 0 at finite temperature and sth = 0, Pth = 0 and eth = 0 at
T = 0 leads to the conditions a < 0, b > 1 and 0 < c < 1. For Γth, we get

Γth =
c− b

1− b
. (4.27)

Similarly to the first solution, the finite temperature EoS is completely determined by a specific
choice of a, b and Γth.
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Phase transition

We now consider a system featuring two separated phases connected by a transition with a region
of coexisting phases. We label quantities of the two phases with h and q, respectively and employ
a Maxwell construction for the phase transition. In this approach, the pressure is assumed to be
constant in the coexistence region between the densities nh(T ) and nq(T ) at a given temperature
T . Starting from the Maxwell relation

∂P

∂n

⃓⃓⃓⃓
T

= n
∂µ

∂n

⃓⃓⃓⃓
T

, (4.28)

we get

µh(T )− µq(T ) =

∫︂ nq(T )

nh(T )

1

n

∂P

∂n

⃓⃓⃓⃓
T

dn . (4.29)

Assuming a constant pressure Ppt(T ) for nh(T ) ≤ n ≤ nq(T ) implies ∂P
∂n

⃓⃓
T
= 0 and hence µh(T ) =

µq(T ), i.e. a constant chemical potential µpt(T ) in the coexistence region for a given T . Note that
in general µh and µq depend on density and temperature and different values of T will therefore
result in different phase boundaries nh(T ) and nq(T ). If we split the free energies in both phases
into a cold and a thermal part

fh = ehc + fhth, f q = eqc + f qth (4.30)

and use the parametric solution from Eq. (4.18) for the thermal contributions, we obtain the equa-
tions

Ppt(T ) =Pc(nh(T )) + ahTnh(T )

=Pc(nq(T )) + aqTnq(T ) ,
(4.31)

µpt(T ) =µc(nh(T )) + T (ah ln(nh/n0)−
bh ln(T/T0) + ah + ch)

=µc(nq(T )) + T (aq ln(nq/n0)−
bq ln(T/T0) + aq + cq) ,

(4.32)

where Pc and µc refer to the contribution of pressure and chemical potential from the respective
cold EoS.

These two equations fix the phase boundaries nh(T ) and nq(T ) at each temperature T . The
energy densities at the edges of the coexistence phase are given by

e(T, nh(T )) = ec,h(nh(T )) + bhTnh(T ) , (4.33)
e(T, nq(T )) = ec,q(nq(T )) + bqTnq(T ) . (4.34)

Here, ec,h and ec,q are the energy densities of both phases at T = 0. Hence, the transition boundaries
at finite temperatures are completely determined by the EoSs of both phases at zero temperature
and a specific choice of the parameters ah, bh, ch, aq, bq and cq. Varying the thermal parameters
will result in different nh(T ) and nq(T ) at T > 0, but not change the coexistence region at T = 0.

If we employ Eq. (4.25) as a solution for fth, we obtain the following equations for Ppt(T ), µpt(T )
e(T, nh(T )) and e(T, nq(T ))
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Ppt(T ) =Pc(nh(T )) + ah(ch − 1)T bhnchh (T )

=Pc(nq(T )) + aq(cq − 1)T bqn
cq
q (T ) ,

(4.35)

µpt(T ) =µc(nh(T )) + ahchT
bhnch−1(T )

=µc(nq(T )) + aqcqT
bqncq−1(T ) ,

(4.36)

e(T, nh(T )) =ec,h(nh(T )) + ah(1− bh)T
bhnch(T ) (4.37)

e(T, nq(T )) =ec,q(nq(T )) + aq(1− bq)T
bqncq(T ) . (4.38)

Example phase boundaries

As demonstrated in the previous sections, the thermal EoS part is not completely determined by the
cold EoS. For hybrid EoSs this means that a single, cold EoS can have different transition regions
at finite temperature depending on the employed thermal model.

As an example, we will consider the following simple two-phase model. For both cold phases,
we assume a polytropic EoS, where pressure and chemical potential are given by

pc = KnΓ (4.39)

µc =
KΓ

Γ− 1
nΓ−1 + E0 . (4.40)

For the phase present at low densities, we pick Γ = 1.8 and for the high density phase we choose
Γ = 2.5. Additionally, we require the transition region to lie between non = 0.3 fm−3 and nfin =
0.5 fm−3 with a chemical potential of µpt = 1005 MeV and a pressure of ppt = 21 MeV/fm3. This
fixes the parameters E0 and K in both cold phases.

For the finite temperature EoS, we use the first solution of Sec. 4.4.1. Hence, we construct the
phase boundaries using Eq. (4.31) and Eq. (4.32). We set Γth = 1.75 and Γth = 4/3 for the low and
high density phase, respectively, employing typical values for a nucleonic and a deconfined quark
matter phase. In both phases, we determine the parameter c using Eq. (4.23) withm = 931.49MeV
and set the scaling variables to n0 = 1 fm−3 and T0 = 1 MeV. For the low density phase, we
use Eq. (4.24) to calculate the parameters ah and bh. In the high density phase, we vary aq and
determine the parameter bq from the relation Γth = 1 + a/b keeping Γth = 4/3. We compare
this simple thermal model to tabulated pressure values of the DD2F-SF EoS sample in the density
range between 3.5 × ρnuc and 7 × ρnuc for temperatures from 10 MeV to 50 MeV. We find that
the parameter a roughly varies between 0.1 − 0.85. We therefore construct four different phase
boundaries choosing values from this interval.

The resulting boundaries are plotted in Fig. 4.10 in the n − T plane. Different colors represent
results for different values of aq. We see that within this model, it is possible to produce a variety
of different phase boundaries with qualitatively different behaviors at T > 0. As an example, for
aq = 0.389 the coexistence phase and the onset of the high density phase move towards larger
densities with increasing temperature. On the other hand, for aq = 0.707 the curves are strongly
shifted towards lower densities at finite temperatures. Recall that the zero temperature EoS is
constant for all cases. Hence, as the temperature approaches zero, all boundaries converge towards
the same ρon,0 and ρon,0.

The results in Fig. 4.10 clearly demonstrate that the knowledge of the cold EoS does not uniquely
fix the transition densities at finite temperatures. We also stress that assuming an ideal-gas like
relation between the thermal pressure and energy (Eq. (2.28)) with a constant Γth for both phases
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Figure 4.10.: Phase boundaries in the n-T -plane determined with the simple phase transition
model for different choices of Γth in the high density phase for a single cold EoS.
Different colors refer to different phase boundaries. Dashed lines mark the begin-
ning of the coexisting phases and solid lines display the onset of the high density
phases. Figure adapted from Ref. [361]

does also not completely determine the finite-temperature phase boundaries. All shown examples
in Fig. 4.10 have Γth = 1.75 in the low and Γth = 4/3 in the high density phase and qualitatively
very different shapes are still possible.

4.4.2. Example 1: DD2F-SF based models

After establishing amotivation to consider different finite-temperature phase boundaries for a fixed,
cold EoS, we test the potential impact these variations can have in neutron star mergers. We start
by considering the cold, beta-equilibrium composition slice of the DD2F-SF-7 EoS (see Sect. 3.4),
which has coexisting phases between ρon,0 = 3.5 × ρnuc and ρfin,0 = 3.7 × ρnuc. For this model, a
finite-temperature description exists. We can hence compare results from different phase bound-
aries to those calculated with the true boundaries inferred from by the model.

We remark, that all phase boundaries of the DD2F-SF models are constructed by fulfilling the
Gibbs condition, i.e. matching the pressure P , the baryon chemical potential µb and the charge
chemical potential µc at a given temperature T , P1(µb, µc, T ) = P2(µb, µc, T ). Within the DD2F-SF-
7 model, this condition is only satisfied at the true boundaries. There are two points to be made
here: Firstly, we stress that the effPT scheme describes the phase as functions of the specific thermal
energy ϵth. A phase transition on the other hand, is constructed at finite temperature. Within
different microphysical EoSs (also hadronic models), there can be substantial variation in ϵth at a
given temperature and density. Secondly, as stressed before, we point out that the knowledge of the
cold EoS does not entirely determine the EoS at finite temperatures. In principle, different models
can lead to very similar cold EoS and still vary significantly at finite temperatures. For hybrid EoSs,
this can lead to different phase boundaries at ϵth > 0 even if the onset of quark deconfinement is
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similar at ϵth = 0.

Phase boundary model

To generate new phase boundaries for the DD2F-SF-7 EoS, we employ the thermal toy model we
presented in Sect. 4.4.1. We recall that this model provides a simple, parametric approach to extend
a barotropic EoS to finite temperatures while obeying basic thermodynamic relations. As we have
demonstrated, this approach is capable of generating qualitatively different phase boundaries at
finite temperatures for a fixed, cold EoSs.

In order to construct the phase transition at T > 0, the total pressure and chemical potential of
both phases need to be matched. For this, an analytic description of the cold EoS part is beneficial.
We find that in the density range relevant for the phase transition between 0.1×ρnuc and 3.5×ρnuc,
the DD2F EoS can be well approximated by a two segment piecewise polytropic model. In this
approach, the pressure, chemical potential and energy density of each segment is given by

P = Kin
Γi , (4.41)

µ =
KiΓi
Γi − 1

nΓi−1 + E0,i , (4.42)

e =
Ki

Γi − 1
nΓi + E0,in , (4.43)

with i = 1, 2. To determine the optimal parameters, we perform a least squares fit to the tabulated,
pressure of the barotropic DD2F EoS. We only treat the parameters Γ1,2 and the density n1, where
the two segments are joined, as free parameters. K2 and E0,2 are constantly adjusted during the
fitting process to recover P and µ of the DD2F model at n = 3.5×ρnuc. This ensures that we recover
the true onset density of the DD2F-SF-7 EoS at zero temperature. Finally, the parameters K1 and
E0,1 are fixed by requiring continuous pressure and energy density.

For the cold quark phase, we find that a piecewise polytropic approach is not suited well since
the pressure of pure quark matter is expected to become negative at low densities due to quark
deconfinement. Therefore, we describe the cold quark phase using the bag model of Ref. [261]. In
this approach, the grandcanonical potential density Ω is given by

Ω = −
(︃

3

4π2
a4µ

4
q +

3

4π2
a2µ

2
q +Beff

)︃
1

(h̄c)3
. (4.44)

From this we infer

Pq =

(︃
3

4π2
a4µ

4
q −

3

4π2
a2µ

2
q −Beff

)︃
1

(h̄c)3
, (4.45)

nq =

(︃
3

π2
a4µ

3
q −

3

2π2
a2µq

)︃
1

(h̄c)3
, (4.46)

eq =

(︃
9

4π2
a4µ

4
q −

3

4π2
a2µ

2
q +Beff

)︃
1

(h̄c)3
. (4.47)

Here, µq and nq refer to the quark chemical potential and number density, respectively. We assume
3µq = µ and nq = 3n. We fit this model to the tabulated DD2F-SF-7 EoS in the density range
between 3.7× ρnuc and 15× ρnuc. To recover the correct ρfin at n = 3.7× nnuc, P and µ have to be
fixed to the values of the tabulated DD2F-SF-7 EoS at this density. We achieve this by only treating
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Figure 4.11.: Newly constructed phase boundaries in the n-ϵth-plane with our simple thermal EoS
model (see Sect. 4.4.1) for the DD2F-SF-7 EoS. Different colors refer to different phase
boundaries. Dashed linesmark the beginning of the coexisting phases and solid lines
display the onset of pure deconfined quarkmatter. The nomenclature corresponds to
the merger results shown in Fig. 4.12. Model true refers to the original phase bound-
aries of the DD2F-SF-7. Figure adapted from Ref. [361].

a4 as a free parameter during the fitting and constantly updating a2 and Beff depending on the
current value of a4.

For the finite temperature part, we employ the first solution from our thermal toymodel discussed
in Sect. 4.4.1. We pick Γth = 1.75 for the hadronic phase and Γth = 4/3 for the deconfined quark
phase. For a specific choice of the parameter a in each phase, the condition Γth = 1+a/b then fixes
the value of b.

To infer reasonable values for the parameters a and c in both phases, we determine values of
these parameters from the EoS tables of the hadronic DD2F and the hybrid DD2F-SF models using
the pressures and the chemical potentials. Considering the temperature range from 10 MeV to
50 MeV, we find values of a from 0.1 to 1.5 and values of c from 0.4 to 20 for the DD2F EoS in
the density interval from 0.1 × ρnuc to 3.5 × ρnuc. In the DD2F-SF sample, we observe that a lies
between 0.1 to 0.85 and c between 0.9 and 11 in density interval from 3.5× ρnuc to 7.0× ρnuc and
same temperature range.

Motivated by these observations, we pick two different sets of parameters leading to two different
phase boundaries. For the first, set we choose ah = 1.060 and ch = 8.456 and aq = 0.707 and
cq = 6.256. For the second parameterizations, we set ah = 1.167 and ch = 7.356 and aq = 0.658
and cq = 7.356.

With these descriptions of the cold and the thermal parts of our two EoS phases, we construct
the phase boundaries at finite temperatures using Eq. (4.35) and Eq. (4.36). To also determine the
boundaries in the ϵth − n plane, we calculate the energies at the phase boundaries with Eq. (4.37)
and Eq. (4.38).

We plot the two newly constructed and the original boundaries in the ϵth-n-plane in Fig. 4.11 in
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blue, red and black, respectively. Dashed (solid) lines mark the beginning (end) of the coexistence
phase. For comparisons, we refer to the boundaries from the original DD2F-SF-7 EoS as “model
true”.

We see that our first parameterization produces boundaries that shift the coexistence region to
lower densities compared to model true, hence we refer to this model as “model low”. This behavior
mimics an “earlier” onset of quark deconfinement compared to the original EoS. As an example, at
ϵ = 0.04 we find ρon = 0.50× ρnuc and ρfin = 2.92× ρnuc, whereas model true has ρon = 1.64× ρnuc
and ρfin = 3.25× ρnuc.

The second parameterization moves the onset of quark deconfinement at finite thermal energies
to larger densities, while keeping the onset of pure quark matter almost identical to the original
boundaries. This model hence describes a “later” deconfinement onset at finite temperature. We
will refer to this result as “model high”. At ϵ = 0.04, we have ρon = 2.31×ρnuc and ρfin = 3.25×ρnuc.

We also remark that, as desired, all three sets of boundaries approach each other at small ϵth and
thus result in identical ρon,0 and ρfin,0.

Merger simulations

We now perform neutron star simulations employing the two newly constructed sets of finite-
temperature phase boundaries (models low and high) together with the barotropic DD2F-SF-7 EoS
slice. As before, we simulate symmetric binaries with total system masses of 2.7 M⊙. We plot re-
sults from these two simulations together with the results from “model true”, i.e. when using the
true phase boundaries of the DD2F-SF-7 EoS in our effPT scheme, in Fig. 4.12.
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Figure 4.12.: (a): Evolution of the maximum rest-mass density for the merger of two 1.35M⊙ NSs
using the DD2F-SF-7 EoS. Different colors represent the different assumed shapes
of the phase boundaries at finite temperature as shown in Fig. 4.11. The EoS at zero
temperature is identical for all three cases. (b): Gravitational-wave spectrum of the
cross polarization at a distance of 20 Mpc along the polar axis for the same simula-
tions as in (a). Both figures adapted from Ref. [361].

Fig. 4.12(a) shows the time evolution of the maximum densities during the simulations. We
see that in the inspiral phase the densities in all three models are identical. This is plausible, as
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the systems remains cold in this stage of the simulations. After the merger, the densities begin to
deviate from each other.

As expected, we find that the model low leads to larger and model high to smaller postmerger
densities compared to model true due to the “earlier”/“later” onset of quark deconfinement at
finite temperatures. Figure 4.12(b) depicts the corresponding gravitational-wave spectra for all
three simulations. We see that the differences in remnant structure clearly manifest themselves in
the gravitational-wave signals. While the low frequency inspiral parts (roughly below 1.5 kHz) of
the spectra are almost identical, strong differences emerge at higher frequencies caused by post-
merger emission. Namely, we find that fpeak of model low is about 650 kHz larger than of model
true. Conversely, the value of model high is about 220 kHz smaller than the fpeak of model true
making it comparable to the result from the ideal-gas scheme (compare Table 4.2). These shifts are
considerably larger than finite temperature effects reported in works considering purely nucleonic
models, see e.g. [22, 352, 353, 354, 355].

Our results demonstrate that the exact behavior of a first-order phase transition at finite temper-
atures can potentially have a large impact on postmerger observables such as fpeak. Therefore, the
shape of the phase boundaries should be regarded as a crucial degree of freedom in neutron star
mergers, as can be very important to correctly link merger observations to the microphysical EoS.

4.4.3. Example 2: piecewise polytropic models with low onset densities

We now consider EoSmodels from the literature, as our effPT approach provides the flexibility to be
used alongside any cold, hybridmodel. This means that we can equipmodels studied in other works
with potentially more realistic finite-temperature phase boundaries than simply assuming constant
onset densities and fixed density jumps at all temperatures. As we have already established, the
behavior of the hadron-quark phase transition can have a considerable impact on the postmerger
dynamics in neutron star mergers. It is therefore interesting to study how the findings from other
works change, when different phase boundary shapes are assumed.

We start by considering the EoS from Ref. [319]. In this work, the authors construct a piecewise-
polytropic model to represent a hybrid EoS with a relatively low onset density of 2.085 ρnuc followed
by a large, soft coexisting phase and a stiff pure quark phase beginning at 4.072 ρnuc. The hadronic
phase below the coexistence region is described by a piecewise polytropic representation of the
relativistic mean field model FSU2H [419, 387]. Thermal effects were included with the ideal-gas
approach using a constant Γth = 1.75 at all densities.

With this model, the authors observe a so-called delayed phase transition scenario in a small mass
range. In these systems, the phase transition occurs in the remnant a few milliseconds after the
merger resulting in a rapid density increase. This delayed transition produced a sudden increase
in the dominant postmerger GW frequency leading to two distinct peaks in the spectrum. Such
a strong shift could serve as a clear, observational indication to identify a phase transition in the
remnant complementary to ideas from [52, 53] based on combining observations from pre- and
postmerger GWs.

Since we also observe such a delayed transition in Sect. 4.3.2 for some DD2F-SF models when
employing the ideal-gas approach, but not when using the 3D EoS table or the effPT scheme, we
investigate the impact of different phase boundaries on this model with our effPT scheme.
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Phase boundary model

Since this EoS only exists as a piecewise polytropic model, no microphysical finite temperature
description and hence no true phase boundaries of this model are available. Furthermore, the
phase transition was not constructed in a consistent way, i.e. matching pressure and chemical
potential of both phases. We find a difference of about 80 MeV in the chemical potential at the
borders of the coexistence phase. Because of these inconsistent chemical potentials, we cannot
employ our thermal toy model to construct phase boundaries as these would not converge to the
given boundaries at zero temperature. Instead, we pick a functional form somewhat similar to the
form of the DD2F-SF boundaries. For the onset of quark deconfinement, we pick a hyperbola

ϵon(ρ) =
1

aonρ+ bon
+ con ∀ρ < ρon , (4.48)

where ρ refers to the rest-mass density. As in the previous section, we test two different sets of
parameters for the phase boundaries. For the first set of parameters we choose aon = 10065.12,
bon = 3.420353 and con = −0.083468, we refer to this set as “effPTlow”.
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Figure 4.13.: Twonewly developed phase boundaries in then-ϵth-plane for the piecewise polytropic
EoS of Ref. [319]. See text for details on the functional form. Different colors refer
to different phase boundaries. Dashed lines mark the beginning of the coexisting
phases and solid lines display the onset of pure deconfined quark matter. The thin
black lines show the boundaries of the DD2F-SF EoSs for comparison.

For the second set of parameters we pick aon = 4065.12, bon = 1.420353 and con = −0.205015.
This results in a weaker bending of the phase boundaries towards lower densities with increasing ϵth
compared to our first choice. We refer to these boundaries as “effPThigh”. Both choices reproduce
the correct onset density of the cold EoS ρon,0 = 2.085× ρnuc.

Recall that the effPT scheme uses linear interpolation to construct the pressure in the coexistence
phase at finite ϵth (see Sect. 4.2.2). When picking the phase boundaries by hand, this can easily
result in a negative slope of the EoS at finite ϵth. We therefore construct the boundary of the pure
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deconfined quark matter phase by setting the slope of this linear interpolation at every ϵth equal to
the slope of the EoS in the coexisting phases at T = 0, i.e.

Pfin(ϵth)− Pon(ϵth)

ρfin(ϵth)− ρon(ϵth)
=
Pfin,0 − Pon,0

ρfin,0 − ρon,0
∀ϵth . (4.49)

This ensures that for a fixed ϵth the pressures constructed by the effPT scheme never decrease with
density.

We plot the two resulting phase boundaries in the ρ− ϵth plane with different colors in Fig. 4.13.
For comparison, we also show the boundaries of all DD2F-SF models with thin, dashed lines. As
indicated before, the effPTlow set leads to a stronger shift of the boundaries towards lower densities
compared to the effPThigh set. As an example, at ϵth = 0.03 we infer ρon = 1.24 × ρnuc and
ρfin = 3.51× ρnuc for the effPTlow boundaries and ρon = 1.62× ρnuc and ρfin = 3.63× ρnuc for the
effPThigh boundaries. We also see that although the model of Ref. [319] has a lower onset density
and a larger coexistence region at T = 0 than the DD2F-SF EoSs, the phase boundaries we have
chosen follow the general trend of the DD2F-SF boundaries at ϵth > 0 relatively well.

Merger simulations

We perform two simulations with the EoS from Ref. [319] and our effPT approach using the two
boundaries effPTlow and effPThigh presented in the previous subsection. We refer to these simu-
lations as effPTLow and effPTHigh simulations, respectively.

Additionally, we perform one simulation with the ideal-gas scheme, where we employ three
different values of Γth according to the phase of the cold EoS at the considered density (as in
Sect. 4.3.1). We refer to this simulation as Γth simulation. As before, we simulate symmetric
binaries with total system masses of 2.7M⊙ in all three simulations.

We plot the results from the three simulations in Fig. 4.14 with different colors. The lower panel
of Fig. 4.14(a) shows the time evolution of the maximum density in all cases. Dashed horizontal
lines mark the edges of the coexistence phase at zero temperature. As expected, we see that the
densities are virtually identical during the inspiral, while differences emerge after themerger. Using
the Γth framework, we see a similar trend as the authors of Ref [319]. Around 3 milliseconds after
the initial density increase at the merger, a delayed phase transition occurs in the remnant indicated
by the strong density increase crossing the value of ρon,0. For the effPTLow simulation, we observe
a different behavior. Here, matter enters the pure deconfined quark phase right after the merger.
The densities in this simulation are also larger than in the Γth simulation. This finding is similar to
our observations in Fig. 4.7(a) with the DD2F-SF-7 EoS. For the effPThigh simulation, we also see
a delayed transition in the remnant, however, in this model the time between the merger and the
appearance of quark matter in the remnant is shorter compared to the Γth simulation.

These differences in the postmerger remnant behavior alsomanifest themselves in the gravitational-
wave signal. We show the spectra of all three simulations in Fig. 4.14(b). The Γth simulation pro-
duces a large peak at 2.65 kHz and several smaller peaks at larger frequencies up to 3.68 kHz.
For the effPThigh simulation, we observe a similar spectrum as the authors of Ref [319]. We find
two distinct peaks, where one peak sits at a frequency of 2.72 kHz and is hence very close to the
peak in the spectrum of the Γth simulation. The second peak is at significantly higher frequencies
of 4.08 kHz. For the effPThigh simulation, where matter enters the quark phase right after the
merger, we find that the high frequency part of the spectrum is significantly shifted towards larger
frequencies compared to the Γth simulation. In contrast to the effPThigh simulation, we do not
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Figure 4.14.: (a): Top: Instantaneous gravitational-wave frequency for the merger of two 1.35M⊙
NSs using the piecewise polytropic EoS model of [319]. Different colors represent
the different frameworks outlined in the text to model the finite-temperature EoS
regime. Bottom: Corresponding evolution of the maximum rest-mass density. (b):
Gravitational-wave spectrum of the cross polarization at a distance of 20 Mpc along
the polar axis from the same simulations as in (a). Both Figures adapted from
Ref. [361].

find two distinct peaks. Instead, we observe a split peak structure at 4.24 kHz and 4.03 kHz, which
is close to the high frequency peak from the effPTlow simulation. These frequencies are roughly
1.6 kHz larger than fpeak of the Γth simulation. This is much greater shift than the differences we
found for the DD2F-SF models when employing the effPT and the Γth framework. The reason for
this larger increase could be related to the properties of this model, in particular the larger extend
of the mixed phase, or to our choice of phase boundaries.

In addition to the delayed phase transition, Refs. [420, 421] report that the oscillations observed
in the maximum density are correlated with the instantaneous GW frequency fGW. To see how
this correlation may be affected by the finite-temperature phase boundaries, we calculate fGW =
1
2π

d(φ(t))
dt with φ(t) = arctan(h×(t)/h+(t)), where h× and h+ are the cross and the plus polarized

components of the GW signal for all three cases. The upper panel of Fig. 4.14(a) shows the results.
We do see similarities in the general trends of fGW and ρmax and find that some peaks in fGW
coincide with local maxima of the density. However, the overall correlation between fGW and ρmax
is not too strong, in particular for the effPTlow simulation. Reference [421] also noted that the
detailed behavior of ρmax is very sensitive to numerical details.

The results from this section clearly show that the occurrence and timescale of a delayed phase
transition in the merger remnant as well its impact on the GW signal critically depend on the phase
boundaries at finite ϵth. Hence, simulations with hybrid models that do not account for finite-
temperature effects beyond the ideal-gas approach are potentially neglecting important physics,
which cannot be captured with this simplified treatment.
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4.4.4. Example 3: Models with high onset densities and unstable hybrid branch

So far, we have considered EoS models allowing for stable hybrid stars. We demonstrated that
the finite-temperature behavior of the phase boundaries can significantly affect the dynamics and
observables of a neutron star merger such as fpeak. In this section, we consider the EoS of Ref. [327]
where the onset of the phase transition occurs at very high densities and no stable hybrid stars exist.
This model is a piecewise polytropic EoS with a large density jump mimicking a first-order phase
transition. The parameters of the hadronic and the deconfined quark phase are chosen to agree with
current constraints from perturbative QCD and nuclear physics constrains. The phase transition is
modeled by requiring equal pressure in the deconfined quark and the hadronic phase at a pressure
of 0.5 GeV/fm3 and assuming a constant pressure in the coexistence region. The onset of quark
deconfinement occurs at relatively large densities (ρon,0 = 5.36 × ρnuc), which corresponds to the
central density of a 2.29M⊙ NS.
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Figure 4.15.: Mass-radius relations for the piecewise polytropic model of Ref. [327] (lower onset)
mimicking a strong first-order phase transition to deconfined quark matter that ends
themass-radius curve. In addition, we showamodified version of this EoSwith higher
onset of quark deconfinement (higher onset), where the phase transition sets in just
after themaximummass is reached. See text for details. Dashed linesmark unstable
configurations. Figure adapted from Ref. [361].

Based on this model, we create an additional EoS by shifting the onset density to ρon,0 = 6.22×
ρnuc. By matching the pressure of the hadronic part at this density to the pressure of the deconfined
quark phase we find ρfin,0 = 11.99× ρnuc.

We refer to this modified model as “higher onset” and to the original EoS from Ref. [327] as
“lower onset”. Fig. 4.15 shows the mass-radius curves of both EoSs, unstable stars are marked by
dashed lines and stable stars by solid lines. We find that for the lower onset EoS, the beginning
of the phase transition ends the mass-radius curve due to the sudden strong softening of the EoS.
Since no stable hybrid stars exist for this EoS, the mass-radius relation of stable stars does not
reach the typical high-mass regime where dM

dR smoothly approaches zero (compare e.g. Fig. 3.1).
Such a sudden end of stable, non-rotating NSs could in principle be measured and hence reveal
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the presence of deconfined quark matter. However, this would require very precise mass-radius
measurements in a very narrow mass range, which will pose a serious challenge.

On the other hand, for the higher onset model we see that the mass-radius curve does approach
the maximum mass with dM

dR smoothly going to zero. In this case, no observations of isolated
neutron star could reveal the onset density of the quark hadron phase transition.

The general expectation for models with no stable quark branch is that the merger remnant
should collapse once the onset densities are reached. The authors of Ref. [327] find no impact of the
phase transition in their simulations, as the onset densities are not reached in the system. We will
now explore this scenario for the case of strongly shifting phase boundaries at finite temperatures.

Phase boundary model

As in our second example (Sect.4.4.3), the two models we consider only exist as a barotropic,
piecewise polytropic EoSs and hence no true phase boundaries are available. The phase transitions
were also not constructed by matching pressure and chemical potential. Therefore, we use same
procedure as in Sect.4.4.3 to calculate the finite-ϵth phase boundaries for these models. For the
lower onset model, we pick the parameters aon = 10065.12, bon = 3.420353 and con = −0.037540
for Eq. (4.48) to ensure the correct ρon,0 = 5.36×ρnuc and ρfin,0 = 8.91×ρnuc. For the higher onset
EoS, we set aon = 10065.12, bon = 3.420353 and con = −0.032931 reproducing ρon,0 = 6.22 × ρnuc
and ρfin,0 = 11.99× ρnuc as ϵth → 0.
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Figure 4.16.: Two newly constructed phase boundaries in the n-ϵth-plane for the piecewise poly-
tropic EoS of Ref. [327] (lower onset) and amodified versionwith higher onset density
(higher onset). See text for details on the construction. Dashed lines mark the be-
ginning of the coexisting phases and solid lines display the onset of pure deconfined
quark matter. The thin dashed lines show the boundaries of the DD2F-SF EoSs for
comparison.

Weplot the resulting phase boundaries with different colors in the ρ-ϵth plane in Fig. 4.16. Dashed
lines mark the onset of quark deconfinement and solid lines the beginning of the pure quark phase.
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For comparison, we also plot the boundaries of the DD2F-SF EoSs. We see that our parameterization
strongly shifts the phase boundaries to lower densities at finite ϵth and reduces the size of the
coexistence phase. For example, at ϵth = 0.03 we find ρon = 2.63 × ρnuc and ρfin = 3.57 × ρnuc for
the lower onset model and ρon = 2.88× ρnuc and ρfin = 4.91× ρnuc for the higher onset model. At
larger ϵth, the boundaries somewhat approach those of the DD2F-SF models.

Merger simulations

To explore the high onset scenario with strongly shifted phase boundaries, we perform three ad-
ditional simulations. In the first simulation, we employ the traditional Γth approach with the EoS
from Ref. [327], i.e. the lower onset model. However, as in the previous sections we pick Γth = 1.75,
Γth = 1.4 and Γth = 4/3 at densities corresponding to the hadronic, the coexistence and the decon-
fined quark phase. Hence, in this simulations we do not account for temperature-dependent onset
densities. We omit to simulate the higher onset model with the Γth approach as ρon,0 would not be
reached in this scheme. In the two other simulations, we employ the lower and the higher onset
density model with our effPT scheme using the phase boundaries we calculated in the previous
subsection for each EoS. We simulate 1.4-1.4M⊙ NSs mergers in all simulations.
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Figure 4.17.: (a): Top: Evolution of the maximum rest-mass density for the merger of two 1.4M⊙
NSs using the piecewise polytropic EoS model of [327] (lower onset) and a modified
version with higher onset density using the effPT approach for modeling the finite
temperature effects. The employed finite-temperature phase boundaries are shown
in Fig. 4.16. Horizontal, dashed linesmark the onset densities of both EoSs at ϵth = 0.
Additionally, we plot a results from a simulation employing the Γth framework. In
this approach, no differences between the two EoS emerge. (b): Gravitational-wave
spectrum of the cross polarization at a distance of 20 Mpc along the polar axis from
the same simulations as in (a).

In Fig. 4.17(a), we show themaximum densities in the systems as a function of time. Additionally,
we mark the onset densities at ϵth = 0 with horizontal dashed lines. As in previous sections, we
find that prior to the merger the densities are identical as different finite temperature treatments
are inconsequential in this evolution stage. After the merger, the curves start to deviate from each
other. For the simulations employing the Γth, we see that the densities stay well below ρon,0 of
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the EoS models. Since the two EoS models are identical at densities below ρ = 5.36× ρnuc in this
framework and these densities are not reached in the system, the results from both simulations
with the Γth approach would be identical.

For the simulations with the effPT scheme, we see a strong density increase at the merger. This
increase is significantly larger than for the Γth simulation. We find that the higher onset EoS leads to
larger densities than the lower onset EoS. Both simulations also show more pronounced oscillation
in the maximum density than the Γth approach.

Fig. 4.17(b) shows the gravitational-wave spectra of all three simulations. As expected, we find
that the low frequency parts are very similar, but differences emerge in the high frequency part
namely in the dominant postmerger frequency. For the Γth simulation, we infer fpeak = 3.02 kHz,
for the effPT lower onset model we get fpeak = 3.32 kHz and for the effPT higher onset system, we
obtain fpeak = 3.19 kHz.

The increased postmerger densities and postmerger GW frequencies when employing the effPT
scheme compared to the Γth approach clearly indicate that deconfined quarkmatter is present in the
remnants of the effPT simulations for both EoSs. This is interesting, as both models do not permit
stable cold, non-rotating NSs containing deconfined quark matter. The reason for this behavior is
the strong decrease in the onset density caused by our phase boundaries and hence the “earlier”
onset of quark deconfinement. Our finding is especially intriguing for the higher onset EoS as it
demonstrates that even if the quark hadron phase transition takes place at densities not present
in stable NSs at T = 0, it could still be accessible in NS mergers. The requirement is that the
onset densities are lowered significantly at the temperatures reached in merger remnants. Again,
these results demonstrate the relevance of finite temperature effects of the QCD phase diagram for
interpreting GW signals from NS mergers.

To further corroborate our finding, we perform two additional simulations with symmetric bi-
naries employing the higher onset EoS at a slightly larger binary mass of 2.86 M⊙ using the
effPT and the Γth scheme, respectively. Here we find fpeak = 3.06 kHz in the Γth simulation and
fpeak = 3.42 kHz in the effPT simulation, i.e. the difference in dominant postmerger frequency is
even more pronounced than at a binary mass of 2.8M⊙.

Threshold mass for prompt collapse

In addition to comparing dominant gravitational-wave frequencies with and without temperature-
dependent phase boundaries, we also determine the threshold mass Mthres for direct black hole
formation at merger for both EoSs with the effPT and the Γth approach, respectively. A prompt
collapse of the remnant is characterized by a continuous decrease of the lapse function after the
two stars collide with no oscillatory behavior. For the lower onset EoS, we get Mthres = 3.07 M⊙
with the Γth approach andMthres = 2.97M⊙ with the effPT scheme. For the higher onset EoS, we
findMthres = 3.07M⊙ with the ideal-gas approach andMthres = 3.01M⊙ with the effPT framework.
We see that in both cases Mthres is slightly reduced in the effPT simulations compared to the Γth
simulations. Also note that Mthres is identical for both EoSs when employing the traditional Γth
treatment. In these simulations, we find that no stable remnants with quark matter exist and the
maximum densities in systems not directly collapsing are too low to reveal differences between the
lower and higher onset model.

In a next step, we compare the inferred threshold masses with the bilinear fits of Ref. [29]. These
fits relate Mthres to different quantities of nonrotating star such as NS radii, tidal deformabilities
and the maximum mass Mmax. We consider the fits from a set of purely hadronic EoS compatible
with current observations (set “b” in Ref. [29]) to search for deviations that could be indicative of
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Figure 4.18.: Deviations ofMthres from different bilinear fitsMthres,fit(X,Y )withX beingMmax and
Y being either R1.6, Rmax, Λ1.4 or Λthres. Fits are taken from [29]. The gray bands
indicate the respective maximum residual of the fit for purely hadronic EoS models
(see [29] for details). The respective pair of independent variables (X,Y ) is given on
the x-axis. Black symbols display the differences for the EoS from Ref. [327] (lower
onset), red symbols refer to the modified version with higher onset density. Crosses
indicate the calculations with the Γth approach. Results with the effPT scheme,
i.e. with temperature-dependent phase boundaries, are displayed by plus signs. Fig-
ure adapted from Ref. [361].

the presence of deconfined quark matter in the systems.
We plot the differences between Mthres we infer from our simulations and the value predicted

by the 4 different bilinear relations from Ref. [29] for the higher and lower onset EoS with both
the Γth and the effPT scheme, respectively, in Fig. 4.18. Additionally, we mark the maximum
residuals of each fit given in Ref. [29] to quantify the range of threshold masses hadronic EoS are
expected to provide. We see that when employing the Γth scheme, i.e. not accounting for different
onset densities at finite temperatures,Mthres generally agrees well with the values predicted by the
bilinear relations for both EoSs. In this case, the presence of deconfined quarks in the EoSs could
not be inferred from a measurement of the threshold mass. This is understandable, as in these
systems no deconfined quark matter is present prior to the onset of collapse.

When using the effPT approach together with our choice of phase boundaries, we find thatMthres
is systematically reduced compared to what one would expect for purely hadronic EoS. A precise
measurement of Mthres in combination with properties of cold, isolated neutron stars could hence
reveal the presence of deconfined quark matter in merger remnants even in cases of a high on-
set density of quark deconfinement. This is particularly interesting since signatures of deconfined
quark matter would be very difficult or even impossible to detect from the observation of isolated
NSs. This would, however, require a relatively strong shift of the onset densities at finite tempera-
tures.

These findings demonstrate that postmerger features such as fpeak andMthres enlarge the param-
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eter range where deconfined quark matter may be detectable. We remark that similar effects are
expected in a less extreme scenario, where a small, but stable hybrid branch of neutron stars exist.
In this case, the most massive NSs will contain a quark matter core, however, clear signatures of
deconfined quark matter would likely still be challenging to detect. Also, such massive stars are not
expected to be very common. One can anticipate that in this case temperature-dependent phase
boundaries will have a similar impact on merger remnants and hence affect the postmerger GW
signal in a similar way.
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5. Results: Impact of thermal effects in neutron
star mergers for hyperonic EoS

In this chapter, we perform a comprehensive study on the effect of hyperons in neutron star merg-
ers. In particular, we focus on the differences at finite temperatures compared to purely nucleonic
models. Based on our findings, we will discuss potential observable signatures which can be di-
rectly linked to the presence of hyperons in merger remnants. This is of particular interest, as the
hyperon puzzle (see Sect. 1.2.2) is still unresolved in the sense that it is still not know whether hy-
perons occur in neutron stars (NSs). The content of this chapter is based on the results presented
in Ref. [360].

5.1. Mass-radius curves of hyperonic and nucleonic EoSs

In Fig. 5.1(a), we plot the mass-radius MR curves of all equations of state (EoSs) from the purely
nucleonic sample introduced in Sect. 3.2 and the hyperonic sample presented in Sect. 3.3 with
black and green lines, respectively.
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Figure 5.1.: (a): Mass-radius relations for all EoSs from the nucleonic sample (Sect. 3.2) in black
and the hyperonic sample (Sect. 3.3) in green. Figure adapted from Ref. [360] (b):
Same as (a) but for a selection of models from both samples with similar curves.

We see that based on the MR curves alone, it is very difficult to distinguish both samples. In
general, hyperonic EoSs tend to produce relatively large radii at lower masses and also have smaller
maximummasses, while some nucleonic models allow for considerably larger masses. Hence, there
is a region of the MR diagram not populated by current hyperonic models. On the other hand,
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several nucleonic models with very similar features as the EoSs in our hyperonic sample exist.
This becomes even clearer from Fig. 5.1(b), where we show a selection of similar EoSs from both
samples. Namely, here we plot the nucleonic models DD2F, DSH LR, FSU2R, GS2, SFHx and TMA
and the hyperonic EoSs DD2Y, DNS, FSU2H*, QMA, R(DD2YDelta) 1.2-1.1, R(DD2YDelta) 1.2-1.3
and SFHoY.

From our observations, we conclude that even with very precise mass-radius measurements of
NSs at several different masses, it will be not straightforward to tell if hyperons are present in some
or all NSs. As no direct information on thematter composition can be inferred from observing stellar
parameters, additional features are highly desirable to help solving the hyperon puzzle.

5.2. Hyperonic and nucleonic EoSs at finite temperatures

A possible approach to tell nucleonic and hyperonic EoSs apart may come from their different
behavior at finite temperatures. Similarly to the hybrid EoSs containing deconfined quark matter
discussed in Chapter 4, the onset density for the appearance of hyperons is temperature-dependent
with hyperons appearing at lower densities for higher temperatures. This reduces the thermal
pressure. In Fig. 5.2, we plot the effective ideal-gas index Γth (Eq. (2.28)) as a function of density for
the hyperonic models FSU2H* and DD2Y (dashed lines) and the nucleonic models FSU2R and DD2
at temperatures of 20 MeV (Fig. 5.2(a)) and 30 MeV (Fig. 5.2(b)). At each density, Ye corresponds
to the composition of cold matter in neutrinoless beta-equilibrium.
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Figure 5.2.: (a): Effective ideal-gas index as defined by Eq. (2.28) of two nucleonic and two hyper-
onic EoSs as a function of density for a fixed temperature of 20 MeV. At each density,
Ye corresponds to the respective value of the cold EoS in neutrinoless beta-equilibrium
composition. (b): Same as (a) but at a temperature of 30 MeV.

We see that at both temperatures, Γth increases at lower densities for all models reaching a
maximum of roughly Γth ≈ 1.8 − 1.9 at around ρ = 1.5 × ρnuc. For the nucleonic EoSs this is
followed by a gradual decrease towards Γth ≈ 1.5 at ρ = 6× ρnuc. For the hyperonic models on the
other hand, the local maximum in Γth is followed by a steep drop associated with the appearance
of hyperons and a local minimum at around ρ = 2×ρnuc. Hence, the hyperonic EoS are softer than
the nucleonic models at finite temperatures. Here, Γth is even below 1 meaning that the pressure
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is smaller at finite temperatures than at zero temperature. This is similar to our observations when
discussing deconfined quark models (compare Fig. 4.5) albeit the effect is not as pronounced as for
the hybrid EoSs discussed in Chapter 4. At higher densities, Γth rises again reaching similar values
as the nucleonic models for densities around ρ = 5× ρnuc. We also see that the drop in Γth sets in
at lower densities at T = 30 MeV than at T = 20 MeV, but is also less pronounced.

Motivated by the observed behavior of Γth, we investigate how this softening of hyperonic EoSs
compared to nucleonic models impacts observables of NS mergers as temperatures of several tens of
MeV can be reached in these systems. For this, we perform binary neutron star (BNS) merger sim-
ulations with every EoS from the nucleonic and the hyperonic sample using the fully temperature-
and Ye-dependent tables. Additionally, we perform simulations restricted to the cold EoS slice in
beta-equilibrium composition and the ideal-gas scheme (see Sect. 2.2) with Γth = 1.75. We will
refer to the simulations using the full EoS table as “3D” simulations and simulations using the
barotropic slice with the ideal-gas scheme as “Γth” simulations. In most cases, we consider sym-
metric binaries at total system masses of Mtot = 2.8 M⊙. We perform additional simulations with
both thermal schemes for the hyperonic models DD2Y and FSU2H* and the nucleonic EoSs DD2
and FSU2R with a total binary mass of 2.8M⊙ and a mass ratio of q = 0.8 to also test asymmetric
systems. We apply the additional radial velocity after the initial relaxation as described in App. A
to reduce the eccentricity during the inspiral in all simulations.

As noted in Chapter 4, assuming a constant Γth at all densities is insensitive to changes in the
EoS at finite temperatures. It is apparent from Fig. 5.2 that using the ideal-gas approach with
constant Γth = 1.75 will overestimate the thermal pressure for hyperonic EoSs. This should re-
sult in lower gravitational-wave frequencies compared to a consistent, microphysical inclusion of
finite-temperature effects. On the other hand, the ideal-gas approach as been shown to reproduce
GW frequencies from nucleonic EoSs very well. Differences seen between employing the two ap-
proaches for capturing thermal effects in hyperonic EoSs can therefore be linked to the different
thermal behavior compared to nucleonic EoS. Our goal is to quantify the strength of this effect us-
ing a representative sample of hyperonic models. In addition, we want to verify that the ideal-gas
approach with Γth = 1.75 remains a good approximation for nucleonic EoSs by testing it using our
entire nucleonic sample.

Our approach can also be understood in the following way: Since the ideal-gas approach with
Γth = 1.75 mimics the thermal behavior of a nucleonic model, equipping a cold, hyperonic EoS
with this scheme assumes that this cold EoS was actually produced by purely nucleonic matter.
This is motivated by our earlier observation that cold hyperonic EoS may not have any features
clearly distinguishing them from nucleonic models. By performing two sets of simulations with
and effectively without the thermal influence of hyperons, we investigate how much the different
thermal behavior of hyperons impacts neutron star merger observables and if hyperons can be
potentially be identified in future postmerger GW observations.

5.3. Simulation results

To demonstrate the different thermal behaviors of hyperonic EoSs compared to nucleonic EoSs in 3D
simulations, we calculate an average thermal index Γav

th for all systems. For this, we invert Eq. (2.28)
and determine the effective Γth,i for each fluid element i. We then average this quantity over all
SPH particles Γav

th =
∑︁
miΓth,i/

∑︁
mi, where we set Γth,i = 1 for particles at the lowest tabulated

temperature (typically 0.1 MeV). In Fig. 5.3(a), we show Γav
th from simulations with symmetric

binaries as a function of time for all EoS in the hyperonic set in different colors. Dashed lines
mark results from hyperonic EoS also containing ∆-Baryons. Additionally, we show Γav

th of two
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Figure 5.3.: (a): Time evolution of the mass-averaged ideal-gas index Γav
th in 1.4 − 1.4M⊙ merger

simulationswith the hyperonic EoS sample. Different EoSs are displayedwith different
colors, the dashed lines mark models also considering ∆-baryons. For comparison
the two black lines show the nucleonic models FSU2R and SFHo. (b): Time evolution
of the mass-averaged hyperon fraction Y av

hyp in 1.4− 1.4M⊙ merger simulations for all
EoSs in the hyperonic sample. Same coloring as in (a). In both panels t = 0 corre-
sponds to the time of merging.

simulations employing the nucleonic EoSs FSU2R and SFHo with black lines for comparison. Here,
FSU2R leads to larger Γav

th than SFHo.
The first observation we make is that values of Γav

th are already larger than 1 during the late
inspiral. This is mainly caused by small numeric heating meaning that in parts of the system
temperatures are already slightly (up to a few MeV) above the lowest temperatures in the EoS
tables prior to merging.

After the merger, we see that Γav
th increases for all EoSs as more matter in the system is heated

up. This is followed by an oscillatory behavior likely linked to the radial modes of the remnant and
a general decrease. While we find that the general trend of Γav

th is similar for all EoS, the values
are quite different. A few milliseconds after merger most hyperonic EoS have Γav

th between 1.0 and
1.4. The two nucleonic models on the other hand have values around 1.8 and 1.6, respectively,
which are higher than most hyperonic EoSs. An exception are DNS and QMC-A. These models
have relatively high onset densities at T = 0, which are not reached in our simulations. We find
average thermal indices of around 1.6 for both EoSs, which are similar to results from our nucleonic
sample. We also note that the three R(DD2YDelta) EoS have Γav

th values on the lower side of our
sample, but still within the range of models not including ∆ baryons.

From the EoS tables, we also infer the hyperon fraction Y av
hyp,i for each fluid element and calcu-

late a mass-averaged hyperon fraction of the remnant Y av
hyp analogously to Γav

th . In Fig. 5.3(b), we
show the time evolution of Y av

hyp for every hyperonic 3D simulation with symmetric binaries using
the same colors as in Fig. 5.3(a). We see that during the inspiral, most systems do not contain
hyperons as the densities and temperatures in the systems are too low. The only exception are the
R(DD2YDelta)1.1-1.1 and R(DD2YDelta)1.2-1.1 EoSs, where substantial amounts of hyperons are
present prior to the merger. At the collision, we find that Y av

hyp increases in all systems followed by
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Figure 5.4.: (a): Time evolution of the mass-averaged ideal-gas index Γav
th for two hyperonic and

two nucleonic EoSs in merger simulations with total system masses of 2.8M⊙. Solid
lines show results from symmetric binaries and dashed lines depict results from sys-
tems with a mass ratio of q = 0.8. (b): Time evolution of the mass-averaged hyperon
fraction Y av

hyp for the simulations with hyperonic EoSs shown in (a). In both panels
t = 0 corresponds to the time of merging.

an oscillatory behavior with an overall increasing trend. We also observe that all EoS lead to at
least some amount of hyperons present in the system. This includes DNS and QMC-A, despite the
maximum densities being lower than the onset density of hyperons at T = 0 for these two models.
This is caused by thermal effects lowering the threshold for hyperon production.

In Fig. 5.4(a), we compare the evolution of Γav
th in simulations of asymmetric systems with the

results from the same EoS in symmetric binaries. We find that generally Γav
th shows a very similar

behavior for q = 1 and q = 0.8. For the nucleonic DD2 and the hyperonic DD2Y models, Γav
th is

almost identical in both cases. For the nucleonic FSU2R and the hyperonic FSU2H* EoSs, Γav
th is

slightly decreased in the asymmetric system compared to the simulation with q = 1, the general
trend is however still similar. We also compare the time evolution of Y av

hyp in the symmetric and
the asymmetric systems for the DD2Y and the FSU2H* EoSs in Fig. 5.4(b). Here, we find a similar
increasing trend after the merger in both cases, however the asymmetric systems always contain
larger amounts of hyperons than systems with q = 1.

In a next step we directly compare simulations with the two different thermal treatments for a
fixed EoS model. Fig. 5.5(a) shows the time evolution of the maximum rest-mass density ρmax for
the FSU2H* EoS employing the 3D table and the Γth approach.

We see that prior to the merger, the densities in both simulations are practically identical, which
is understandable since the temperatures are low at this stage. After the merger, we find that the
Γth simulation leads to lower densities in the first and the third local maximum of ρmax. Once
the density oscillations have settled down, the two curves depart more clearly from each other
with the 3D simulation producing larger remnant densities. This finding corresponds to our earlier
observation that a constant Γth = 1.75 overestimates the thermal pressure in the remnant, as for
this EoS we observe Γav

th < 1.75.
We show the corresponding GW spectra of both simulations in Fig. 5.5(b). For the low frequency
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Figure 5.5.: (a): Evolution of the maximum rest-mass density for the merger of two 1.4 M⊙ NSs
using the hyperonic FSU2H* EoS with the full 3D EoS table (red) and the barotropic
EoS slice employing the ideal-gas approach with Γth = 1.75 (black) to include finite
temperature effects. (b): Gravitational-wave spectrum of the cross polarization at a
distance of 20 Mpc along the polar axis from the same simulations as in (a).

part from the inspiral, where the system is still at low temperatures, we find that the spectra are
matching almost exactly. In the postmerger range, we see that the 3D simulation leads to slightly
higher frequencies, namely for fpeak we find a difference of about 40 Hz. This corresponds to
our finding that including thermal effects of hyperons consistently leads to more compact merger
remnants.

We now perform the same comparison for the purely nucleonic FSU2R model. From Fig. 5.3(a),
we see that this EoS has Γav

th close to 1.75. Hence, we expect a better agreement than for FSU2H*.
The evolution of the maximum densities for the 3D and the Γth simulation are plotted in Fig. 5.6(a).
As anticipated, we generally see very good agreement of the two curves. The only major difference
is a second larger density spike shortly after the merger in the Γth simulation, which is absent
in the 3D simulation. Still, for this model the ideal-gas approach with Γth = 1.75 is a very good
approximation for the thermal EoS part. The corresponding GW spectra are shown in Fig. 5.6(b).
Again, we see good agreement between the two simulations. In particular, the fpeak coincide within
a few Hz.

We summarize simulation results for all models in the hyperonic and the nucleonic EoS sample
in Table 5.1 and Table 5.2, respectively. We present fpeak with both approaches for the thermal
EoSs as well as the maximum rest-mass density within the first 5 ms after the merger ρmax. For
the hyperonic sample, we also tabulate the maximum density at the beginning of the simulation
ρmax
init and underline values larger than the respective onset density of hyperons (see Table. 3.2),

i.e. systems containing hyperons before the merger. We also present the mass- and time-averaged
hyperon fraction Ȳ hyp, which we calculate by averaging Y av

hyp over 5 ms starting 2.5 ms after the
merger. Additionally, we calculate a mass- and time-averaged thermal index of the remnant Γ̄th for
both samples, which we obtain from Γav

th analogous to Ȳ hyp.
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Figure 5.6.: (a): Evolution of the maximum rest-mass density for the merger of two 1.4 M⊙ NSs
using the nucleonic FSU2R EoS with the full 3D EoS table (red) and the barotropic
EoS slice employing the ideal-gas approach with Γth = 1.75 (black) to include finite
temperature effects. (b): Gravitational-wave spectrum of the cross polarization at a
distance of 20 Mpc along the polar axis from the same simulations as in (a).

5.3.1. Systematic investigation of thermal effects

To systematically compare fpeak between our two sets of simulations using the full 3D EoS table
and the barotropic EoS with the ideal-gas approach for both EoS samples, we define the quantity
∆f ≡ f3Dpeak − f1.75peak, i.e. the difference in fpeak when using our two approaches for the thermal
effects. Hence,∆f quantifies howwell the finite-temperature behavior of a 3D EoS table is modeled
in a merger simulation using the ideal-gas scheme with Γth = 1.75. This can also be understood
as measuring how much a given model deviates from the prediction of an idealized “nucleonic”
thermal behavior. Note that ∆f itself is not an observable quantity, but has to be inferred with the
help of numerical simulations.

We plot ∆f as a function of f3Dpeak for all or hyperonic (colored) and nucleonic (black) models in
Fig. 5.7(a). While the absolute values of fpeak vary by about 1kHz between all considered EoSs,
we see that results from purely nucleonic EoSs scatter around ∆f = 0 with a maximum difference
of around 50 Hz. This confirms that the ideal-gas approach with Γth = 1.75 is a good choice for
nucleonic matter (but see discussion in Sec. 5.4). Note that this EoS sample also contains recently
published models for which the ideal-gas approach has not been tested previously.

For hyperonic models, we find that ∆f lies roughly between 40 Hz and 140 Hz for most models
meaning that the ideal-gas approach mimicking a nucleonic thermal behavior consistently slightly
underestimates fpeak compared to the simulations employing the full 3D table. Such a shift is small,
but may be possible to infer with future GW detectors (see discussion below). The only exception
are DNS and QMC-A, which have negative∆f , i.e. the ideal-gas approach somewhat overestimates
fpeak, and generally agree well with results from the nucleonic sample.

The coloring of the hyperonic results indicates the ratio between ρmax and ρonset. Note that
the coloring looks very similar if we directly indicate the hyperon content in the remnant or the
mass-averaged thermal ideal-gas index as these quantities are correlated with ρmax/ρonset (see
Fig. 5.8(b)).
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Table 5.1.: Simulation results for the sample of EoSs including hyperonic degrees of freedom. Sec-
ond and third column report the dominant postmerger GW frequency fpeak from sim-
ulations using either the full temperature-dependent EoS table or the barotropic EoS
table together with the ideal-gas approximation for thermal pressure and Γth = 1.75.
Γ̄th and Ȳ hyp refer to the mass- and time-averaged thermal ideal-gas index and hyperon
fraction of the remnant, respectively. ρmax

init is the maximum rest-mass density at the
beginning of the simulation and ρmax the maximum rest-mass density within the first
5 ms after merger. Underlined values of ρmax

init highlight systems with hyperons present
prior to merging. Table adapted from Ref. [360].

EoS f3Dpeak f1.75peak Γ̄th Ȳ hyp ρmax
init ρmax

[kHz] [kHz] [ρnuc] [ρnuc]
BHBΛφ 2.76 2.68 1.37 0.018 2.22 2.97
DD2Y 2.82 2.73 1.08 0.022 2.26 3.01
DD2Y(q=0.8) 2.76 2.63 1.04 0.050 2.56 3.76
DNS 2.51 2.54 1.69 0.003 2.07 2.48
FSU2H* 2.63 2.59 1.52 0.012 2.07 2.82
FSU2H*(q=0.8) 2.76 2.69 1.37 0.025 2.26 3.27
FSU2H*L 2.68 2.62 1.24 0.018 2.03 2.86
FSU2H*U 2.62 2.56 1.51 0.008 2.03 2.63
QMC-A 2.91 2.98 1.65 0.003 2.48 3.42
R(DD2Y∆) 3.03 2.93 1.08 0.083 2.60 3.58
1.1-1.1
R(DD2Y∆) 3.26 3.14 1.18 0.185 2.90 4.37
1.2-1.1
R(DD2Y∆) 2.82 2.72 0.99 0.029 2.26 3.16
1.2-1.3
SFHoY 3.60 3.46 1.38 0.015 3.20 5.80

From the coloring, we infer that the onset densities of hyperons at T = 0 are not reached in our
simulations for DNS and QMC-A, while they are for all other hyperonic EoSs. This is in agreement
with our findings from Fig. 5.3(a), where we noted that these two models have Γav

th more similar to
EoSs from the nucleonic sample and larger than in the hyperonic sample. It is hence understandable
that ∆f of these two EoS deviate from all other hyperonic models and are more comparable to
results from nucleonic EoSs. Note however, that despite ρmax being smaller than ρonset tiny amounts
of hyperons are still present in these systems after merger, as can be seen from Fig. 5.3(b). This is
due to finite temperature effects lowering the onset density of hyperon formation.

In Fig. 5.7(b), we show the shift in fpeak as a function of the mass- and time-averaged thermal
index of the remnant Γ̄th for all employed EoS models. We see that the hadronic EoSs have Γ̄th
in the range of roughly 1.5-1.8 with a cluster around 1.75 and a few results at lower values. This
demonstrates that Γth = 1.75 is a good choice to model the thermal behavior of nucleonic EoSs.
For these models, we do not observe a clear correlation between the shift in fpeak and Γ̄th.

For the hyperonic EoSs on the other hand, we see that Γ̄th is smaller and generally lies in the
range of 1.0-1.5 for models with ρmax > ρonset (compare Fig. 5.3(a)). Here, we observe that models
with smaller Γ̄th, i.e. lower thermal pressure, also tend to produce larger frequency shifts. However,
this correlation is not very strong. In particular, we find that the SFHoY EoS, which produces the

72



Table 5.2.: Simulation results for the sample of purely nucleonic EoSs. Second and third column
report the dominant postmerger GW frequency fpeak from simulations using either the
full temperature-dependent EoS table or the barotropic EoS table together with the
ideal-gas approximation for thermal pressure with Γth = 1.75. Γ̄th refers to the mass-
and time-averaged thermal ideal-gas index of the remnant. ρmax is the maximum rest-
mass density within the first 5 ms after merger. Table adapted from Ref. [360].

EoS f3Dpeak f1.75peak Γ̄th ρmax

[kHz] [kHz] [ρnuc]
APR 3.51 3.46 1.74 5.31
DD2 2.64 2.68 1.78 2.67
DD2(q=0.8) 2.68 2.69 1.74 2.75
DD2F 3.30 3.30 1.66 4.22
DSH F 3.44 3.40 1.77 4.82
DSH LM 2.93 2.91 1.79 3.20
DSH LSL 3.51 3.46 1.52 5.19
DSH LR 3.16 3.18 1.72 4.06
DSH SSL 3.31 3.33 1.76 4.55
DSH SR 3.62 3.60 1.72 6.25
FSU2R 2.80 2.81 1.81 3.12
FSU2R(q=0.8) 2.69 2.70 1.76 3.43
FTNS 3.34 3.40 1.73 4.74
GS2 2.73 2.70 1.76 2.75
LPB 3.23 3.23 1.68 3.80
LS220 3.09 3.06 1.54 3.76
LS375 2.44 2.44 1.63 2.22
SFHo 3.43 3.45 1.62 5.34
SFHx 3.16 3.18 1.82 4.10
SLy4 3.51 3.50 1.78 5.38
TM1 2.38 2.40 1.82 2.07
TMA 2.58 2.57 1.74 2.48

largest shift (140 Hz), has a moderate Γ̄th = 1.38. We remark that the results from asymmetric
systems agree well with the findings from symmetric binaries.

We further investigate the behavior of ∆f for hyperonic models in Fig. 5.8. Here, we plot ∆f as
a function of the ratio ρmax/ρonset (Fig. 5.8(a)) and the mass and time-averaged hyperon fraction
Ȳ hyp of the system (Fig. 5.8(b)). Both values are taken from the simulations with the 3D EoS tables.

We see that at low ratios ρmax/ρonset (up to about 1.5) ∆f rises very rapidly reaching values of
just above 100 Hz. For higher densities, this effect saturates and we find no further correlation of
∆f with ρmax/ρonset. Again, we find similar results for asymmetric systems. The dependence of∆f
on Ȳ hyp looks analogous. For low hyperon fractions in the system, the frequency shift between the
two thermal methods increases strongly but this effect quickly levels out at around 100 Hz. On the
one hand, this implies that a small amount of hyperons in the merger remnant could already be
sufficient to leave a noticeable imprint on the GW signal. The densities in the system do not have to
exceed the onset density of hyperons by much to allow for an inference of hyperons. Considering
that Refs. [52, 53] demonstrated a tight correlation of fpeak with the maximum densities reached
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Figure 5.7.: (a): Difference ∆f = f3Dpeak − f1.75peak between dominant postmerger GW frequency of
simulations with fully temperature-dependent EoSs and calculations with same EoS
models restricted to zero temperature and supplemented with an ideal-gas treatment
of thermal effects, which mimics the behavior of purely nucleonic EoSs by choosing
a thermal ideal-gas index of Γth = 1.75. Shown as function of f3Dpeak. Black symbols
depict purely nucleonic models. Crosses display hyperonic models, where the col-
oring indicates the ratio between the maximum rest-mass density in the postmerger
remnant and the onset rest-mass density of hyperon production at zero temperature.
Asterisks refer to models which additionally include ∆-baryons and circles to results
from asymmetric binaries. (b): ∆f as function ofmass- and time-averaged thermal in-
dex of themerger remnant in simulations employing the temperature-dependent EoSs.
Same symbols and color scheme as in (a). Both figures adapted from Ref. [360].

in merger remnants for hadronic EoSs, this could help constraining the onset density of hyperons.
On the other hand, our finding seems to suggest that this effect may not be significantly larger
when more hyperons are present in the system, e.g. at higher masses. Frequency shifts of only
about 100 Hz in fpeak are small compared to the variation of fpeak with the EoS and the FWHM
of the peaks. It will hence be very challenging to infer the presence of hyperons from the GW
signal. However, it may still be potentially sizable enough for a detection. Recent GW injection
studies (as e.g. [41, 422, 423, 424, 425, 426, 427, 54, 428, 429]) show that such a precision
is in principle achievable making the impact of hyperons detectable. This would also require a
sufficiently accurate determination of the cold EoS. Employing the empirical relation of Ref. [336]
which connects fpeak to the radius of cold, non-rotating NSs, we infer that a frequency shift of
100 Hz corresponds to a change in radius of about 250 m. This provides a coarse estimate on the
required precision needed for the cold EoS.

Additionally, reliable simulation tools are necessary to predict a reference value of f1.75peak a mea-
sured fpeak can then be compared to. Both prerequisites are not given currently, but may be achiev-
able in the future despite clearly posing great challenges.
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Figure 5.8.: (a): Difference ∆f = f3Dpeak − f1.75peak between the dominant postmerger GW frequency
of simulations with the fully temperature-dependent EoSs and calculations with same
EoS models restricted to zero temperature and supplemented with an ideal-gas treat-
ment of thermal effects with Γth = 1.75 as a function of the ratio between the max-
imum density shortly after merging and the onset density of hyperons at T = 0 for
the hyperonic EoS sample. Asterisks refer to models which additionally include ∆-
baryons and circles display results from asymmetric binaries. (b): ∆f as a function
of the mass- and time-averaged hyperon fraction Ȳ hyp.

5.3.2. Empirical relation

To further investigate the possibility of identifying hyperons, we consider relations between two
observable quantities, namely fpeak and the tidal deformability ΛM of a NS with mass M (see
Sect. 3.1 for the definition of Λ). As mentioned earlier, Λ is a quantity directly characterizing the
cold EoS that can be inferred from the GW signal emitted in the inspiral phase. Note that due to
higher detector sensitivity at lower frequencies, the combined tidal deformability Λ̃ of the system
will be measured with higher precision than fpeak in future detections.

As we mainly consider 1.4− 1.4M⊙ binaries, relating fpeak to the tidal deformability Λ1.4 would
be a natural choice. However, as pointed out by Ref. [430], when relating fpeak and ΛM, the mass
M at can in principle be chosen freely and the choice will affect the accuracy of the relation.
Similar to Ref. [430], we relate fpeak − ΛM at several different M and compare the scatter of the
different relations. For this, we fit a second-order polynomial to f3Dpeak of the nucleonic sample from
the symmetric binaries with a least-squares fit. In Fig. 5.9, we show the mean and the maximum
deviation of the data sample from the respective fit.

As expected, we see that the accuracy of the relation depends on M . The maximum deviation
has a minimum of only 55 Hz atM = 1.75M⊙ indicated by the dashed, vertical line. At this mass,
the average scatter of the relation is as low as 28 Hz. Hence, we compare results from the hyperonic
sample to the fpeal − Λ1.75 relation. Note that a variation of 55 Hz is comparable to the scatter we
find for ∆f using nucleonic EoSs.

In Fig. 5.10, we plot f3Dpeak as a function of Λ1.75 for all EoS in both samples. The black line is the
quadratic fit to the results from nucleonic models and the gray-shaded area visualizes the maximum
scatter of 55 Hz. We explicitly show the deviations of all f3Dpeak from this relation in Fig. 5.10(b)
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Figure 5.9.: Mean and maximum deviation of our data from symmetric binaries for purely nucle-
onic EoSs from quadratic fpeak−ΛM least-squares fits for different reference masses
M at which Λ is evaluated. The dashed vertical line indicates the minimum of the
maximum deviation atM = 1.75. Figure adapted from Ref. [360].

as a function of the mass- and time-averaged thermal index Γ̄th of the respective remnant. The
horizontal, dashed lines mark the maximum scatter of 55 Hz we infer for the nucleonic results.

We see that results from hyperonic models (colored symbols) are slightly increased and lie mostly
above the maximum scatter of the results from nucleonic EoSs. This suggests that at least in princi-
ple the presence of hyperons could be deduced by an increased postmerger GW frequency compared
to Λ1.75 which no nucleonic model can reach. As before, results from the DNS and QMC-A EoSs
agree very well with the nucleonic sample due to the very low amount of hyperons present in these
systems. For the two simulations employing nucleonic EoSs in asymmetric binaries, we find a some-
what larger scatter from the relation. This could imply that fpeak − Λ relations may simply be not
as tight in the case of asymmetric binaries or that a different reference mass should be used for
these systems. This finding should be further investigated in future work.

We remark that in this relation some models containing fairly large amounts of hyperons and
the three EoSs containing ∆-baryons do not stand out clearly from models with a smaller hyperon
fraction. Especially, we see that in contrast to Fig. 5.7(b) there is no apparent correlation of the
deviation hyperonic models show from the fpeal − Λ1.75 relation and Γ̄th. From Fig. 5.7(a), we see
that these models do in fact result in a sizable frequency shift ∆f caused by the softening induced
by hyperons at finite temperatures. However, employing the ideal-gas approach with these models
leads to frequencies on the lower edge of the gray band, as can be inferred from Fig. 5.7(a). Hence,
the frequency shift only compensates this effect. The location of hyperonic models with respect to
the fit in Fig. 5.10 is therefore not directly linked to the total amount of hyperons in the system. It
is instead a superposition of the thermal effects of hyperons and the properties of the cold EoS not
directly captured by Λ1.75.

Generally, the frequency increase of fpeak with respect to the fpeak−Λ1.75 relation is small and only
marginally larger than the intrinsic scatter of this relation. To improve the prospects of inferring
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Figure 5.10.: (a): Dominant postmerger GW frequency of 2.8 M⊙ mergers using the 3D EoS ta-
bles as function of tidal deformability of a 1.75 M⊙ NS. Symbols and color scheme
as in Fig. 5.7(a). Black curve shows least-squares fit to symmetric binaries with
purely nucleonicmodels. Grey band indicatesmaximum residual of symmetric purely
nucleonic models from the fit. (b): Difference between the dominant postmerger
GW frequency of 2.8 M⊙ mergers and the frequency given by the least-squares fit
of fpeak(Λ1.75) for purely nucleonic models (see Fig. 5.10) as function of the mass-
and time averaged thermal ideal-gas index of the remnant. Same symbols and color
scheme as in Fig. 5.7(a). Dashed lines indicate maximum residual of the fit to purely
nucleonic EoSs. Both figures adapted from Ref. [360].

the presence of hyperons, it is hence important to further explore such empirical relation and gain
a better understanding of the scatter.

5.4. χEFT-inspired toy model

Recent calculations based on chiral effective field theory (χEFT) suggest that a drop in the thermal
index with increasing density could also be present in purely nucleonic matter [431, 432]. In these
state-of-the art nuclear matter calculations, the strong three body force within χEFT increases the
effective nucleon mass reducing the thermal index (see Eq. (41) in [431]) and hence the pressure
at finite temperatures. Current calculations with χEFT are however limited to densities below
roughly 2 × ρnuc and temperatures smaller than 30 MeV [131]. The resulting EoS is hence not
directly applicable in neutron star merger simulations and it is not clear, in which density and
temperature range this effect is present. Additionally, exotic degrees of freedom such as hyperons
are not included in the χEFT framework of Refs. [431, 432]. A drop in Γth as seen in these χEFT
calculations could in principle mimic the effects we observed for hyperonic matter in this chapter.
Especially, if this result turns out to be a generic feature within a larger density range, it may
be difficult to disentangle our findings on hyperonic EoSs from properties of nucleonic matter.
Therefore, we apply a toy model to explore how the additional appearance of hyperons would affect
an EoS inwhich the nucleonic part already shows a drop in Γth as suggested by theχEFT calculations
of [431, 432]. This model was developed by Hristijan Kochankovski during the collaborative work
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Figure 5.11.: The thermal index for nucleonic (solid lines) and hyperonic matter (dashed lines) at
two different temperatures, T = 20 MeV (blue lines) and T = 30 MeV (red lines) for
a toy model inspired by recent χEFT calculations. See text for details. The results
shown in this plot were provided by Hristijan Kochankovski. Figure adapted from
Ref. [360].

on this project.
We set up this toy model within the relativistic mean field framework with the DDME2 interac-

tion [433]. Hyperons are included using the density-dependent couplings as defined in Ref. [434].
To achieve a drop in the thermal index, we modify the functional density dependence of the σ-
meson coupling for the nucleons. This leads to minimum of their effective mass close to saturation
density. The other meson couplings remain unchanged. It is important to note that the EoS we
construct this way is incompatible with current constraints from the properties of nuclear matter
and nuclei, heavy ion collisions at high energies and astrophysical constraints (see Sect.1.2.1). This
approach should therefore be regarded as a toy model with the sole purpose of analyzing thermal
effects when additionally adding hyperons to a nucleonic EoS already featuring a thermal index
Γth < 4/3. This is meant to resemble the results from the aforementioned χEFT calculations with
the inclusion of hyperons.

In Fig. 5.11, we plot Γth of our toy model in beta-equilibrium composition as a function of density
with and without including hyperons at temperatures of 20 MeV and 30 MeV. For purely nucleonic
matter, we clearly see the anticipated decrease in Γth for densities larger than roughly 0.2 fm−3

reaching minimum values of around 1. In matter additionally containing hyperons, the drop in Γth
is significantly larger even reaching minimum values below zero. This is also a more significant
impact on Γth than in the microphysical hyperonic EoSs employed in our study (compare Fig. 5.2).
As in these models, the additional softening of the thermal EoS can be attributed to the loss of
degeneracy pressure as hyperons appear. Our toy model suggests that this effect could also be
present if the nucleonic interactions already permit a decreasing Γth. The findings from our study
would in principle still hold in this case, as hyperonic models would still be distinguishable from
nucleonic models through their different thermal behavior.
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However, we remark a few caveats. As already discussed, our toy model is incompatible with cur-
rent astrophysical observations and nuclear matter properties. The impact of a decreasing thermal
index in nuclear matter on EoSs containing hyperons should hence be further investigated in the
future with more realistic approaches. We also remark that in the relativistic mean field approach
of our toy model, the effective masses of hyperons and nucleons are correlated as the coupling
constants for both species are related by symmetry relations. This results in the same functional
dependence of the effective masses for hyperons and nucleons, which is not necessarily the case
in a more realistic model and may influence on the size of the additional drop of Γth caused by
hyperons.

The further investigation of these caveats is beyond the scope of this work. Hence, we conclude
at the moment that one can expect the main findings regarding the influence of hyperons on GW
signals from BNS mergers to hold in a scenario suggested by current χEFT calculations where
nucleonic matter permits a substantial drop in Γth. However, the issues we mentioned should be
addressed in future work with more realistic models to further analyze the behavior of the thermal
index with density in NS matter with and without hyperons.
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6. Summary, discussion and outlook

In this thesis, we explore the finite-temperature behavior of matter phases containing hyperons
or deconfined quarks in the context of neutron star (NS) mergers. For this, we perform general-
relativistic hydrodynamics simulations with a comprehensive equation of state (EoS) sample fea-
turing hyperonic degrees of freedom in Chapter 5 as well as hybrid models with a first-order phase
transition to deconfined quark matter in Chapter 4. The main goal is to disentangle the impact of
the finite-temperature EoS on the postmerger gravitational-wave (GW) signal from the influence
coming from the cold EoS part. We highlight the differences caused by these more exotic phases of
matter at finite temperatures by comparing our findings to results from different purely nucleonic
EoSs.

6.1. Thermal effects in hybrid equations of state

First, we investigate thermal effects of deconfined quark matter in NS mergers for hybrid EoSs with
a Maxwell-type behavior, i.e. EoSs with a hadronic and deconfined quark matter phase connected
by a coexistence region with almost constant pressure. As the transition density to quark matter is
expected to be temperature-dependent, we show with the microphysical DD2F-SF EoS sample that
this can lead to a reduced pressure at finite temperatures compared to the pressure of cold matter.
The reduction in pressure is caused by the “earlier” onset of quark deconfinement and the abrupt
change of the EoS once the phase transition sets in. Hence, hybrid EoSs are more complex to model
than purely hadronic models as not only a thermal component but also the phase boundaries have
to be considered. A more thorough study of this effect is currently not straightforward due to the
sparse number of hybrid EoS consistently including finite-temperature treatments.

Because of this limited availability, barotropic, hybrid EoS in combination with the approximate
ideal-gas thermal scheme are still commonly used in astrophysical simulations. However, as we
clearly show, this treatment cannot reproduce the decrease of the thermal pressure in hybrid mod-
els we observe in the DD2F-SF models. The reason is that this approach does not account for
shifting phase boundaries at finite temperatures, which results in qualitatively different thermal
EoS features.

We then present an extension of the ideal-gas approach to supplement a barotropic, hybrid EoS.
This new effective phase transition scheme (effPT) requires a quantitative description of the phase
boundaries as a function of specific thermal energy density ϵth that needs to be provided. The
main idea is then to interpolate the coexistence region using the boundaries of this phase and two
different values of the ideal-gas index Γth for both phases ofmatter. In pure deconfined quarkmatter
this value is expected to be lower than in the hadronic phase and close to 4/3. We demonstrate that
the effPT scheme is able to capture general EoS features at non-zero temperatures very well. By
direct comparison, we show that when reconstructing the DD2F-SF models at various temperatures
and densities from a barotropic EoS slice, the effPT performs significantly better than the traditional
ideal-gas approach with the mean relative errors in the pressure being about an order of magnitude
smaller.
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In a second step, we further validate our novel effPT approach by simulating NS mergers with
all seven DD2F-SF models and comparing the results to simulations employing the traditional idea-
gas approach and simulations with the fully temperature- and composition-dependent EoS tables.
We find that the evolution of the merger remnant is strongly influenced by the EoS changes at
finite temperature. In particular, we observe that the dominant postmerger GW frequencies fpeak
are consistently underestimated by several hundred Hz with the traditional ideal-gas scheme, i.e.
when the temperature dependence of the phase boundaries is not considered. We also find that
this approach does not reproduce the remnant evolution correctly. For instance, in some simu-
lations we find a delayed transition to quark matter in the remnant and a corresponding shift of
fpeak several milliseconds after the merger. These features are absent in simulations employing the
full EoS tables. We hence caution the usage of the traditional ideal-gas scheme for hybrid EoSs
in astrophysical simulations. Employing this approach implicitly makes the assumptions that the
phase boundaries do not vary with temperature and that the thermal nucleonic and quark phases
behave the same.

On the other hand, we find that the novel effPT scheme captures the effects of the shifting phase
boundaries well, i.e. a lower onset of quark deconfinement at finite thermal energies. We find good
agreement in the GW frequencies and the overall remnant dynamics compared to the simulations
employing the full EoS tables. As a more rigorous test, we also simulate mergers with different
system masses covering a range of regimes from systems with no or hardly any deconfined quark
matter to systems close to prompt black hole formation. We find that the effPT scheme performs
well in all cases. These tests demonstrate that the effPT scheme is well suited to incorporate thermal
effects of hybrid models.

After validating our novel scheme, we employ it to test the impact varying phase boundaries at
finite temperatures can potentially have in NS mergers for a fixed barotropic EoS. As our effPT
approach requires knowledge of the phase boundaries, we use the parametric model presented
in Sect. 4.4.1 to add a thermal component to both phases and model the phase transition with a
Maxwell construction. A specific choice of parameters then completely determines the transition
at finite ϵth. This also demonstrates that the knowledge of the cold EoS does not definitively fix
the EoS at finite temperatures and varying onset densities are still possible in this regime. We pick
the barotropic slice of the DD2F-SF-7 model [52, 283] and supplement it with two different finite-
temperature phase boundaries. We find that this has a considerable impact on the overall remnant
structure and the resulting GW signal. In particular, we observe changes up to roughly 650 Hz in
fpeak between the two sets of phase boundaries. We stress again that these shifts fully emerge from
the differences at finite temperatures as the cold EoS is identical in these models.

We then employ our effPT scheme to investigate EoSs from the literature. First, we consider
the piecewise-polytropic model of Ref. [319]. In this work, the authors report a delayed onset
of the phase transition in the remnant shortly after the merger which results in a characteristic
frequency shift of the GW signal. We show that different shapes of the phase boundary can influence
the timescale of the delayed transition or even remove this feature entirely in the sense that the
formation of the quark core occurs directly after merger. We also find that even moderate shifts
of the finite-temperature phase boundaries can drastically alter the inferred GW frequencies. We
observe differences in fpeak of about 1600 Hz when comparing the Γth and the effPT scheme with
the phase boundaries we have assumed.

We then explore a scenario where no stable hybrid stars exist meaning that the onset density of
quark deconfinement at T = 0 has to be very large. We find that even in this case, deconfined quark
matter could still be present in temporarily stable merger remnants and result in a characteristic
increase of the postmerger GW frequencies compared to nucleonic EoSs. The requirement for such
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an outcome is that the phase boundaries are strongly shifted to lower densities at temperatures
reached in NS mergers. We consider two different scenarios here. In the first, the onset of quark
deconfinement abruptly ends the mass-radius curve. This implies that very precise measurements
of several high mass neutron stars in the future could still have the potential to reveal the transition
providing complementary constraints. In the second case we consider, the unstable mass branch
already begins before the onset density of quark matter is reached. Here, no observation of isolated
neutron stars can reveal information on the QCD phase transition. Our results show that even in the
second scenario, deconfined quark matter could still be present in NS merger remnants and proto-
NSs. We also find that if this is the case, the threshold mass for prompt black hole formation may be
characteristically reduced. Given current relations for nucleonic EoS and precise measurements of
NS properties, this reduction inMthres could be observable and would hence indicate the presence
of deconfined quark matter in BNS merger remnants.

All these findings show that thermal effects in hybrid EoS are more important and complex than
in purely hadronic EoS. The variations of the phase boundaries at finite temperatures can qual-
itatively change the EoS and hence the merger observables such as fpeak. This explicitly shows
the importance of GW frequencies to infer properties of the QCD phase diagram at finite tempera-
tures complementary to the cold EoS, which can be inferred during the late inspiral phase. On the
other hand, these findings also highlight the importance of heavy-ion collision experiment such as
HADES [174] and future at facilities like FAIR [177, 179, 178] and NICA [180, 181] in providing
complementary information on the QCD phase diagram to help interpreting observations from NS
mergers. For example, the exclusion of deconfinement in a certain regime can provide important
constraints for our approach.

Our effPT scheme provides the flexibility to combine any barotropic cold EoS with different
phase boundaries at finite temperatures. In particular, this includes parametric EoS like piecewise
polytropic models or constant speed of sound parameterizations. Therefore, the effPT scheme
will be useful for systematic explorations of quark matter in NS mergers, as a large set of cold
hybrid EoS can easily be constructed. Such a systematic study can help interpreting future merger
observations to provide constraints on the zero- and finite-temperature region of the QCD phase
diagram.

We recall that the effPT scheme explicitly assumes aMaxwell-type phase transition behavior with
a flat coexistence phase. Alternative constructions for the phase transition only requiring global
charge conservation and allowing for charged, coexisting phases with a more complex pressure
behavior also exist [252, 254, 255]. Crossover scenarios with a continuous transition from one
phase to the other are another possibility. More consistent general-purpose EoSs of these scenarios
are required to study their behavior at finite temperatures. Once available, the ideal-gas approach
may be extended to these kinds of transitions. This may for example help solving the masquerade
problem [261], i.e. a scenario where deconfined quark matter is present in cold stars, but does not
exhibit any features distinct from purely hadronic stars.

Currently, we do not consider the effect of different Ye on the EoS. As we have demonstrated,
for the microphysical DD2F-SF EoS neglecting Ye effects does not have a large impact as it still
reproduces results from fully 3D tables well. However, the impact of Ye on the onset densities may
be underestimated by the DD2F-SF models, hence an extension of the effPT scheme to also include
different electron fractions is desirable.

Future work should also include performing simulations including magnetic fields as these may
influence the overall dynamics [435, 436]. A more sophisticated treatment of composition effects
out of weak equilibrium and the inclusion of neutrinos can also be studied in this context. As
we have focused solely on the changes the thermal EoS has on the GW signal, it will also prove
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interesting to explore how other merger properties such as the ejected mass and hence the resulting
kilonova may be influenced by the “earlier” onset of quark deconfinement. This could also have
implications for our understanding of r-process nucleosynthesis sites.

6.2. Thermal effects in equations of state containing hyperons

In the second part of this thesis, we provide the first comprehensive study to single out the differ-
ences between hyperonic and nucleonic EoS at finite temperatures and the corresponding impact
on NS mergers. For this, we perform simulations with several hyperonic and purely nucleonic
models employing fully temperature- and composition-dependent EoS tables as well as simulations
using the ideal-gas approach with Γth = 1.75 together with the respective cold EoS slice in beta-
equilibrium composition. The second approach equips a cold EoS with an approximate thermal
treatment suited for nucleonic models. We find that for all nucleonic models in our sample, the
ideal-gas approach reproduces the dominant postmerger GW frequencies fpeak of the simulations
employing the 3D table with good accuracy (within about 60 Hz). This finding demonstrates that
the ideal-gas scheme remains a good approximation for currently available nucleonic EoSs.

For hyperonic models on the other hand, we find that this thermal approximation consistently
overestimates fpeak by 50 Hz to 100 Hz if a non-negligible hyperon fraction is present in the sys-
tems. This difference can be attributed to the softening of hyperonic EoS at finite temperatures
compared to nucleonic models. As the frequency shift is relatively small, the identification of hy-
perons from their thermal behavior will be very challenging and require precise measurements of
postmerger frequencies only achievable with next-generation GW detectors such as the Einstein
Telescope [93] or Cosmic Explorer [94]. Since the presence or absence of hyperons in neutron star
is an important question for our understanding of the dense matter EoS, this illustrates the demand
for new, enhanced GW observation techniques. We have also performed simulations with a mass
ratio of q = 0.8 for two nucleonic and two hyperonic models. The results from these systems are
in agreement with our finding from symmetric binaries.

Additionally, we explore how the results from hyperonic EoSs differ from an empirical relation
between the tidal deformability of a 1.75 M⊙ NS and fpeak for purely nucleonic EoSs. Again, we
find that results from models with hyperons show slightly larger deviations than nucleonic models.
It is however not straightforward to relate these differences to properties of the hyperonic EoSs as
they are influenced both the hyperon and the nucleon interactions within the model.

We also show that the frequency shift correlates with the amount of hyperons present in the
merger remnant. This amount depends on the mass of the system and also on the onset density
of hyperon production. Very small admixtures of hyperons, i.e. high onset densities, do not lead
to changes compared to purely nucleonic models and hyperons remain undetected. However, we
demonstrate that in our hyperonic EoS sample relatively small hyperon fractions in the remnant
Ȳ hyp < 5% are sufficient to produce a larger shift∆f than all our nucleonic EoSs. This implies that
the threshold of hyperon production does not need to be exceeded by much to result in observ-
able signatures of hyperons. For larger Ȳ hyp, we observe a saturation in the GW frequency shifts
attributed to hyperons. This could indicate that even for systems at higher masses or lower onset
densities, which would contain substantial amounts of hyperons, the effect on the GW signal may
not be significantly more pronounced than in our study.

We recall that the frequency shifts we observe are not directly observable quantities themselves.
Since only one true neutron star EoS exists, a specific binary configuration will only provide a
single value of fpeak. To infer shifts, an observed value has to be compared to models with different
thermal approaches. This requires accurate simulations, a good knowledge of the cold EoS and
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a sophisticated understanding of scatter in empirical relations. As we demonstrate, this effort is
motivated by the difficulties to infer the presence of hyperons from the cold EoS alone since their
impact on stellar structure may be hard to distinguish from a purely nucleonic model. Attempts to
detect the possible influence of hyperons from the observation of isolated neutron star may thus
require similar or even higher precision. Any observational feature that can be linked to hyperons
is therefore highly desirable.

To quantify the impact of hyperons on the thermal EoS behavior, we assume that the cold EoS
does not allow for any conclusions on the presence of hyperons at all. This is of course a very
conservative and actually incorrect assumption. Any further constraints on the EoS at zero tem-
perature will help narrowing down the model space, which will increase our knowledge on which
scenarios including or excluding hyperons are still compatible with observations.

Such constraints will also come from advances on experimental determination of interactions in-
volving nucleons and hyperons at CLAS [219], LHC [224, 225, 226, 227, 228, 229], J-PARC [220,
221, 222] or the future FAIR facility [177, 178, 179] and further progress on theoretical mod-
els [4, 202, 205] and can be included in upcoming analyses. Also ab-initio calculations considering
hyperons as relevant degrees of freedom [200, 201, 203, 204] and other astronomical observations
like cooling neutron stars [160, 162, 163, 197, 235, 237, 236, 238, 239, 8, 9] or core-collapse su-
pernovae [231, 232, 233, 234] may provide further insights.

As we limit ourselves to a fixed system mass and mostly symmetric binaries, a straightforward
extension to our study would be to investigate different masses and mass ratios. Additionally, one
could explore the impact hyperons have on other observable quantities apart from fpeak such as
secondary GW peaks or the threshold mass to prompt black hole formation. It will also be advanta-
geous to compare our findings to other simulations codes employing different numerical treatments
to test the robustness of our results. In particular, these should include neutrino treatments as hy-
peronic EoSs allow for more weak reactions to take place than nucleonic EoSs. Recent works have
also shown the importance of weak processes for NS mergers in the context of varying bulk vis-
cosity [437, 438, 439], as this can influence the temperatures in the remnant and hence the GW
frequencies. Future work can also extend these analyses to hyperonic EoSs, as changes in the bulk
viscosity are expected in this case [440].

We also remark that a frequency shift incompatible with purely nucleonic matter is a general
indication of additional degrees of freedom that do not necessarily have to be hyperons. As we
discuss in Chapter 4, deconfined quark matter at zero and finite temperatures can also affect the
GW frequencies. In the examples we consider in this work, the shifts in fpeak are more significant
than those caused by hyperons. It may hence be possible to disentangle the effects of hyperons
and a strong phase transition to deconfined quark matter as the latter case would produce shifts
incompatible with both nucleons and hyperons. For other cases with a more continuous transition
or a crossover scenario, this is likely not so straightforward. As hyperons appear smoothly one may
even speculate that the impact of a crossover scenario to deconfined quark matter could result in
similar effects as we found in this work. Likewise pions could affect the EoS as recently shown in
[441]. To help discriminating these possibilities, a combination of lab experiments, astronomical
observations, numerical simulations and theoretical calculations will be needed.

Lastly, we address our findings in the light of recent state-of-the-art calculations from chiral ef-
fective field theory (χEFT). These calculations suggest that purely nucleonic matter could also have
Γth significantly lower than 1.75, potentially even below 1, which would result in negative thermal
pressure [431, 432]. As χEFT only produces reliable results up to around two times saturation den-
sity, the resulting EoS currently cannot be used in merger simulations. To explore this scenario, we
develop a toy model that mimics the suggested behavior of Γth in nuclear matter and additionally
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includes hyperons. We find that hyperons produce an additional EoS softening at finite tempera-
tures. Hence, a similar frequency shift relative to the nuclear model is likely to occur. From this, we
conclude that the findings of this work should still hold in the case where nuclear matter already
features a reduction in thermal pressure. We also remark that phenomenological models developed
to extrapolate the EoS from χEFT calculations suggest Γth may rise again at higher densities [442].
This could potentially result in an average thermal index in the remnant not too different from the
values we find in our nucleonic EoS sample. This topic also needs to be further explored with more
realistic microscopical calculation in future work.
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A. Improved inspiral

During the work on this thesis, the initial conditions at the start if the simulation were modified. As
described in Sect. 2.1, in the original code version the angular velocities of the stars are adjusted
during the initial relaxation phase in such a way to maintain circular orbits. As the backreaction
scheme mimicking gravitational-wave emission is switched off at this stage, the stars have zero
radial velocity at the beginning of the simulation phase. Only once the backreaction is turned on,
the stars begin to approach each other. We find that this scheme leads to eccentric orbits during
the inspiral.
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Figure A.1.: Evolution of the coordinate separation (center-to-center) from two inspiraling neutron
stars. Different panels show results from different system mass configurations and
equations of state. t = 0 corresponds to the end of the relaxation phase. Dashed
lines show results from simulations with purely tangetial velocities of the stars after
the end of the relaxation and solid lines depict inspirals with the new scheme applying
an initial radial velocity. See text for details.
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To reduce this eccentricity, we follow the ideas of [443] and add an additional radial velocity to
the system at the end of the initial relaxation phase to provide a more realistic system configuration
We find that the empirical linear expression

dr
dt

= −0.00628M + 0.01134 + 3.839× 10−5(r − 26) , (A.1)

with M = M1 +M2 works well for most EoS models and system configurations. Here, r is the
binary coordinate separation (center-to-center) and M1,2 are the gravitational masses of the two
stars at infinite orbital separation. The second terms slightly adjusts the radial velocity if larger
initial separations are chosen.
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Figure A.2.: Same as Fig. A.1, but at a larger initial binary separation.

We add these radial velocity by switching on the backreaction scheme and applying a damping
force to each particle to move the system to the desired velocity. After each time step, we manually
set the system back onto the circular orbit. At this stage we also need to enforce an angular velocity.
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For this, we use the post-Newtonian expression from Ref. [444] assuming zero spins for both stars

Ω =
M1/2

r3/2
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(A.2)

In this expression, Ω is the primitive angular coordinate velocity q = M2/M1 < 1 is the binary
mass ratio. Both velocities are applied such that the coordinate center of mass calculated with the
gravitational masses of the stars remains at zero velocity.

In Fig. A.1, we plot the center-to-center coordinate separation of the inspiraling stars from 1.3−
1.3 M⊙ and 1.4 − 1.4 M⊙ binary neutron star merger simulations with the two equation of state
(EoS) models DD2 and DD2F, respectively. In all cases, the initial separation of the two stars is
r = 26. Dashed lines show the results with the old code version and no initial radial velocities
while solid lines show results with new inpiral scheme. We clearly see the orbital eccentricity in
the inspiral from the old code version as oscillations in r. The new inspiral scheme on the other
hand generally shows smaller eccentricity. For the DD2F model, we see that our approach performs
slightly worse than for the DD2 EoS, but still better than the old code version.

We perform additional simulations with the same EoSs and system masses, but with a larger
initial center-to-center separation of r = 35. We plot the evolution of r in Fig. A.2. As before, we
find that our new approach reduces the eccentricity compared to simulations with no initial radial
velocity. However, at this separation we see some remaining oscillations in the 1.3−1.3M⊙ systems
for both EoSs. In order to allow for manual adjustments, hand-picked values of Ω and dr/dt can
also be set at the beginning of the simulation. If provided, these will be used instead of the formulas
in Eq. (A.1) and Eq. (A.2)
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