
B E Y O N D M I T I G AT I O N S:
Advancing Attack Surface Reduction and Analysis

Vom Fachbereich Informatik (FB 20)
an der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines Doktor-Ingenieurs
genehmigte Dissertation von:

MSc. Patrick Thomas Jauernig

Referenten:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (Erstreferent)

Prof. N. Asokan, Ph. D. (Zweitreferent)

Tag der Einreichung: 16. Oktober 2023

Tag der Disputation: 27. November 2023

System Security Lab
Fachbereich Informatik

Technische Universität Darmstadt

Hochschulkennziffer: D17

Darmstadt 2023

Patrick Thomas Jauernig:
Beyond Mitigations: Advancing Attack Surface Reduction and Analysis, © October 2023

Darmstadt, Technical University of Darmstadt
Day of dissertation defense: 27.11.2023

Dissertation publication at TUprints: 2024

URN of the dissertation: urn:nbn:de:tuda-tuprints-265292

doctoral referees:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (1st Doctoral Referee)
Prof. N. Asokan, Ph. D. (2nd Doctoral Referee)

further doctoral commission members:
Prof. Dr. Carsten Binnig
Prof. Dr. Sebastian Faust
Prof. Dr. Marco Zimmerling

Veröffentlichung unter CC-BY-NC-ND 4.0 International
Namensnennung, nicht kommerziell, keine Bearbeitung
https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

Erklärung gemäß §9 der Promotionsordnung

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter Ver-
wednung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, Germany, October 2023

Patrick Thomas Jauernig

Abstract

In recent decades, we have witnessed an arms race between software attacks and defenses.
This ongoing battle has seen modern computer systems incorporating a multitude
of defenses, working collaboratively to shield sensitive applications and data from
malicious attacks. Despite growing layers of security measures, vulnerabilities persist,
often circumventing the most advanced safeguards and putting entire systems at risk.
But how can we end this relentless cycle of attack and defense? One crucial aspect to
systematically tackle the problem at hand is attack surface reduction, i.e., reducing the
code that 1) is reachable by an attacker and 2) can also reach sensitive information.
Attack surface reduction is not only applicable to code within an application but also
extends to the broader software stack, including libraries and the operating system,
which are inherently trusted components, often referred to as the Trusted Computing Base
or TCB. Another crucial element is attack surface analysis, which assesses how vulnerable
a program is. This analysis plays a pivotal role in uncovering vulnerabilities across the
entire software stack, thereby bolstering the security of critical software components like
the Trusted Computing Base (TCB). Although attack surface analysis is a well-established
concept, recent advances, particularly in the realm of fuzzing, have begun to pave the
way for its gradual adoption by the industry. Nonetheless, numerous challenges within
this field still must be addressed to make it an integral part of the industry’s software
development process.

In this dissertation, we design, implement, and evaluate 1) novel attack surface reduction
architectures using in-process isolation and enclaves, 2) protocols using these architectures
as powerful primitives, and 3) an algorithmic improvement to fuzzing for attack surface
analysis.

Secure In-Process Compartments. In-process isolation is an important building block
for attack surface reduction within an application by segregating regular and sensitive
data. Previous approaches primarily focused on broadly applicable isolation primitives,
which allow developers to compartmentalize their applications at the cost of significant
hardware and performance overheads.
In IMIX, we propose an instruction set extension for in-process memory isolation that
allows high-frequency domain switching. IMIX is a minimally invasive approach to
reduce the attack surface for highly sensitive data such that this data can only be accessed
by the dedicated part of the application code. In contrast to state-of-the-art randomization
schemes, IMIX safeguards the run-time defenses’ metadata in a process deterministically.
We implemented a prototype of IMIX to protect the metadata of the Code Pointer In-
tegrity scheme with practical performance.

V

Flexible Enclaves for Application-driven Security. While in-process isolation can create
different security domains within an application, Trusted Execution Environments (TEEs)
allow the entire sensitive application to run within an isolated compartment (a so-called
enclave) without trusting the operating system or hypervisor. Traditionally, these enclave
architectures only provide a single enclave type per platform, which forces developers to
adapt the application to the enclave’s execution environment. This either increases the
attack surface unnecessarily or restricts the sensitive app’s functionality.
In CURE, we introduce the first TEE for flexible attack surface reduction based on the
requirements of the sensitive application. CURE leverages system bus filtering to create
different types of enclaves, enabling flexible per-enclave resource assignments for periph-
erals and even DMA devices. We prototype CURE for the open RISC-V architecture and
evaluate its performance overhead and the hardware area overhead on an FPGA- and
simulator-based setup.

Enclaves as Security Primitives in Protocols. While attack surface reduction with TEEs
is a cornerstone of modern software protection, TEEs can also be leveraged as a secu-
rity primitive to create powerful and efficient protocols. In this dissertation, we present
TEE-based protocols for off-chain smart contract execution, and machine learning model
protection.

Originally envisioned as the world computer, the smart contract ecosystem of Ethereum
and other blockchains still largely consists of simple token manager contracts. As
blockchain interactions are costly and rather slow, a crucial research area in this field is
speeding up smart contract execution by performing the computation off-chain. Pure
protocol-based works in this area only work for simple coin transfers, require frequent
blockchain interactions, depend on collateral, or only marginally improve execution
speed. TEEs proved to be a viable way to alleviate these shortcomings, as a single TEE
can already give correctness guarantees for smart contract execution. However, the miss-
ing availability guarantees of TEEs prevents prior approaches from guaranteeing the
complete execution of the smart contract. With POSE, we design a novel TEE-based
off-chain smart contract execution protocol that is the first to provide strong liveness
guarantees, while achieving private state without relying on collateral. We designed and
implemented a prototype for Ethereum based on Arm TrustZone. We show that POSE is
practical by evaluating numerous smart contracts, e.g., federated learning and Poker, and
by measuring the time to execute individual steps of the protocol.

Another megatrend in computing is machine learning, especially artificial intelligence
(AI), which is evolving quickly. As products increasingly rely on AI, machine learning
models have become a high-value intellectual property for companies. Meanwhile, on
the end-user device, privacy-sensitive user information is used to give personalized
answers. Still, previous approaches for secure inference only addressed one of these
aspects, incurred impractical requirements on the model, or had performance limitations.
In OMG, we design a TEE-based protocol to protect both the machine learning model and
the user’s privacy. OMG leverages user-space enclaves to prevent model stealing attacks
and protect sensitive user inputs. We implemented an offline wake word detection based
on the TensorFlow lite for microcontrollers framework and the SANCTUARY enclave

VI

architecture. We show that the machine learning inference protected within the strongly
isolated exhibits unchanged accuracy and native inference speed.

Attack Surface Analysis with Fuzzing. Protecting blockchain and machine learning
execution facilities with TEEs is effective and efficient. Yet, enclave code—same as regular
applications—may contain vulnerabilities. Also, other components of the TCB may con-
tain vulnerabilities. Hence, attack surface analysis is an essential cornerstone for modern
security. In recent years, dynamic testing in the form of fuzzing has become increasingly
popular. Fuzzers repeatedly execute a target, which can be software or even hardware,
with random inputs and monitor the target for misbehavior or crashes. Fuzzing, in
contrast to cumbersome manual approaches like unit testing, can test thousands of cases
per second—from randomly generated inputs up to highly structured inputs, e.g., based
on formal grammars. While initial research focused on technical advances to speed up
the process and make targets fuzzable, current work also aims to optimize the fuzzer’s
internal algorithms to increase efficiency.
Lastly, in our work DARWIN, we propose a novel mutation scheduler for mutational
fuzzing, designed for efficient and optimal selection of mutation operators with minimal
performance impact on the fuzzing process. Further, DARWIN is straightforward to
integrate into existing fuzzers and does not expose any target-dependent parameters.
Thus, DARWIN can be integrated into most modern fuzzers. We show that DARWIN
significantly improves time to coverage/bug while uncovering a completely novel bug in
the extensively tested objcopy, which persisted for more than two decades.

VII

Zusammenfassung

In den letzten Jahrzehnten haben wir ein Wettrüsten zwischen Software-Angriffen und
Abwehrmaßnahmen erlebt. Dieser ständige Kampf hat dazu geführt, dass moderne
Computersysteme eine Vielzahl von Schutzmaßnahmen enthalten, die zusammenarbeiten,
um sensible Anwendungen und Daten vor bösartigen Angriffen zu schützen. Trotz der
zunehmenden Zahl von Sicherheitsmaßnahmen gibt es nach wie vor Schwachstellen,
die oft auch die fortschrittlichsten Schutzmaßnahmen umgehen und ganze Systeme
gefährden.

Aber wie können wir diesen unerbittlichen Kreislauf von Angriff und Verteidigung
beenden? Ein entscheidender Aspekt, um das Problem systematisch anzugehen, ist die
Reduzierung der Angriffsfläche (Attack Surface Reduction), d. h. die Reduzierung des
Codes, der 1) für einen Angreifer erreichbar ist und 2) auch sensible Informationen
erreichen kann.

Die Reduzierung der Angriffsfläche gilt nicht nur für den Code innerhalb einer Anwen-
dung, sondern erstreckt sich auch auf den breiteren Software-Stack, einschließlich der
Bibliotheken und des Betriebssystems, bei denen es sich um inhärent vertrauenswürdige
Komponenten handelt, die oft als Trusted Computing Base (TCB) bezeichnet werden.
Ein weiteres wichtiges Element ist die Analyse der Angriffsoberfläche (Attack Surface
Analysis), mit der die Anfälligkeit eines Programms bewertet wird. Diese Analyse spielt
eine entscheidende Rolle bei der Aufdeckung von Schwachstellen im gesamten Software-
Stack, wodurch auch die Sicherheit kritischer Softwarekomponenten wie der TCB erhöht
wird. Obwohl die Analyse der Angriffsoberfläche ein etabliertes Konzept ist, haben
die jüngsten Fortschritte, insbesondere im Fuzzing-Bereich, den Weg für ihre allmäh-
liche Integration durch die Industrie geebnet. Nichtsdestotrotz müssen noch zahlreiche
Herausforderungen in diesem Bereich bewältigt werden, um sie zu einem integralen
Bestandteil des Softwareentwicklungsprozesses der Industrie zu machen.

In dieser Dissertation entwerfen, implementieren und evaluieren wir 1) neuartige Ar-
chitekturen zur Reduzierung der Angriffsfläche durch in-process Isolation und Enclaves,
2) Protokolle, die diese Architekturen als leistungsfähige Primitive nutzen, und 3) eine
algorithmische Verbesserung des Fuzzing zur Analyse der Angriffsfläche.

Secure In-Process Compartments. Die in-process Isolation ist ein wichtiger Baustein
für die Reduzierung der Angriffsfläche innerhalb einer Anwendung. Hierbei werden
reguläre und sensible Daten voneinander getrennt. Bisherige Ansätze konzentrierten sich

VIII

in erster Linie auf breit anwendbare Isolationsprimitiven, die es Entwicklern ermöglichen,
ihre Anwendungen auf Kosten eines erheblichen Hardware- und Leistungs-Overheads
zu isolieren.
In IMIX schlagen wir eine Befehlssatzerweiterung für die in-process Isolation vor, die ein
hochfrequentes Domain Switching ermöglicht. IMIX ist ein minimal-invasiver Ansatz
zur Reduzierung der Angriffsfläche für hochsensible Daten, so dass diese Daten nur
vom dedizierten Teil des Anwendungscodes abgerufen werden können. Im Gegensatz
zu modernen Randomization-Ansätzen sichert IMIX die Metadaten der Laufzeitverteidi-
gung in einem Prozess deterministisch ab. In unserer Arbeit haben wir einen Prototyp
von IMIX implementiert, um die Metadaten des Code Pointer Integrity Schemas mit
minimalem Performance-Overhead zu schützen.

Flexible Enclaves for Application-driven Security. Während die in-process Isolation
verschiedene Sicherheitsdomänen innerhalb einer Anwendung schaffen kann, ermöglicht
TEEs die Ausführung der gesamten sensiblen Anwendung innerhalb eines isolierten
Bereichs (einer so genannten Enclave), die dann weder Betriebssystem noch Hypervi-
sor vertrauen muss. Traditionell bieten diese Enclave-Architekturen nur einen einzigen
Enclave-Typ pro Plattform, was die Entwickler zwingt, die Anwendung an die Aus-
führungsumgebung der Enclave anzupassen. Dies vergrößert entweder die Angriffsfläche
unnötig oder schränkt die Funktionalität der sensiblen Anwendung ein.
In CURE stellen wir das erste TEE zur flexiblen Reduzierung der Angriffsfläche auf
der Grundlage der Anforderungen der sensiblen Anwendung vor. CURE nutzt ein
System-Bus-Filtering, um verschiedene Typen von Enclaves zu kreieren, die eine flex-
ible Ressourcenzuweisung pro Enclave für Peripheriegeräte und sogar DMA-Geräte
ermöglichen. Wir implementieren einen Prototyp von CURE für die offene RISC-V-
Architektur und evaluieren den Leistungs- und Hardwareflächen-Overhead auf einem
FPGA- und Simulator-basierten Setup.

Enclaves as Security Primitives in Protocols. Während die Reduzierung der Angriffs-
fläche mit TEEs ein Eckpfeiler des modernen Softwareschutzes ist, können TEEs auch
als Sicherheitsprimitiv genutzt werden, um leistungsstarke und effiziente Protokolle zu
erstellen. In dieser Dissertation stellen wir TEE-basierte Protokolle für die Ausführung
von Smart Contracts außerhalb der Blockchain und zum Schutz von Machine-Learning-
Modellen vor.

Ursprünglich als Weltcomputer konzipiert, besteht das Smart-Contract-Ökosystem von
Ethereum und anderen Blockchains immer noch weitgehend aus einfachen Token-
Manager-Contracts. Da Blockchain-Interaktionen kostspielig und eher langsam sind,
besteht ein wichtiger Forschungsbereich in diesem Bereich darin, die Ausführung von
Smart Contracts zu beschleunigen, indem die Berechnungen außerhalb der Blockchain
durchgeführt werden. Reine protokollbasierte Arbeiten in diesem Bereich funktionieren
nur für einfache Coin Transfers, erfordern häufige Blockchain-Interaktionen, sind von

IX

einem Collateral abhängig oder verbessern die Ausführungsgeschwindigkeit nur ger-
ingfügig. TEEs haben sich als praktikabler Weg erwiesen, diese Mängel zu beheben, da
ein einziges TEE bereits Korrektheitsgarantien für die Ausführung von Smart Contracts
geben kann. Allerdings verhindern die fehlenden Availability-Garantien von TEEs, dass
frühere Ansätze die vollständige Ausführung des Smart Contracts garantieren können.
Mit POSE entwerfen wir ein neuartiges, auf TEEs basierendes Protokoll zur Ausführung
von Smart Contracts außerhalb der Blockhain, das als erstes starke Liveness-Garantien
bietet und gleichzeitig Private State bietet, ohne sich auf ein Collateral zu verlassen. Wir
haben einen auf Arm TrustZone basierenden Prototyp für Ethereum entworfen und
implementiert. Mit diesem zeigen wir, dass POSE praktikabel ist, indem wir zahlreiche
Smart Contracts evaluieren, z. B. Federated Learning und Poker, und indem wir die Zeit
zur Ausführung einzelner Schritte des Protokolls messen.

Ein weiterer Megatrend im Bereich der Datenverarbeitung ist das maschinelle Lernen
(ML), insbesondere die künstliche Intelligenz (KI), die sich rasch weiterentwickelt. Da
sich Produkte zunehmend auf KI stützen, sind die Modelle des maschinellen Lernens
für die Unternehmen zu einem wertvollen geistigen Eigentum geworden. Gleichzeitig
werden auf den Nutzer-Geräten datenschutzrelevante Benutzerinformationen verwendet,
um personalisierte Antworten zu geben. Bisherige Ansätze für eine sichere Inference
befassten sich jedoch nur mit einem dieser Aspekte, stellten unpraktische Anforderungen
an das Modell oder wiesen Leistungseinschränkungen auf.
In OMG entwickeln wir ein TEE-basiertes Protokoll, das sowohl das ML Modell als auch
die Privatsphäre des Benutzers schützt. OMG nutzt User-Space Enclaves um Model-
Stealing-Angriffe zu verhindern und sensible Nutzereingaben zu schützen. Wir haben
eine Offline-Wakeword-Erkennung implementiert, die auf dem TensorFlow Lite for Mi-
crocontrollers Framework und der SANCTUARY Enclave Architektur basiert. Wir zeigen,
dass die ML Inference, die innerhalb der stark isolierten Enclave geschützt ist, eine
unveränderte Genauigkeit und native Inference-Geschwindigkeit aufweist.

Attack Surface Analysis with Fuzzing. Der Schutz von Blockchain- und Machine-
Learning-Ausführungsumgebungen mit TEEs ist effektiv und effizient. Dennoch kann
der Enclave-Ccode - ebenso wie reguläre Anwendungen - Schwachstellen enthalten. Auch
andere Komponenten der TCB können Schwachstellen enthalten. Daher ist die Analyse
der Angriffsoberfläche ein wesentlicher Eckpfeiler für moderne Sicherheit. In den letzten
Jahren wurde das dynamische Testen in Form von Fuzzing immer beliebter. Fuzzer
führen ein Target, bei dem es sich um Software oder sogar Hardware handeln kann,
wiederholt mit zufälligen Eingaben aus und überwachen das Target auf Fehlverhalten
oder Abstürze. Im Gegensatz zu mühsamen manuellen Ansätzen wie Unit-Tests, kann
Fuzzing Tausende von Fällen pro Sekunde testen - von zufällig generierten Eingaben bis
hin zu stark strukturierten Eingaben, z. B. auf der Grundlage formaler Grammatiken.
Während sich die anfängliche Forschung auf technische Fortschritte konzentrierte um
den Prozess zu beschleunigen und Ziele fuzzbar zu machen, zielen neuere Ansätze auch
darauf ab, die internen Algorithmen des Fuzzers zu optimieren, um die Effizienz zu

X

erhöhen.
Schließlich schlagen wir in unserer Arbeit, DARWIN, einen neuartigen Mutation-Scheduler
für Mutations-basiertes Fuzzing vor, der für eine effiziente und optimale Auswahl von
Mutationsoperatoren mit minimalen Leistungseinbußen auf den Fuzzing-Prozess en-
twickelt wurde. Darüber hinaus ist DARWIN einfach in bestehende Fuzzer zu integrieren
und führt keine neuen Target-abhängigen Parameter ein. Daher kann DARWIN in die
meisten modernen Fuzzern einfach integriert werden. Wir zeigen, dass DARWIN die Zeit
bis zur Entdeckung eines Bugs erheblich verkürzt und gleichzeitig einen völlig neuen
Bug in dem ausgiebig getesteten objcopy aufdeckt, der mehr als zwei Jahrzehnte lang
bestehen blieb.

XI

Contributions

This dissertation is based on five scientific publications, which are the result of excellent
collaboration with highly-experienced researchers and students, which I all thank for their
valuable contributions. In the following, I outline my contributions to each publication
included in this dissertation.

Chapter 2 is based on IMIX [70], a joint work with Tommaso Frassetto, Christopher
Liebchen, and Ahmad-Reza Sadeghi. For IMIX, the design was a collaboration between
Christopher Liebchen and me. I was the main author of the implementation, and inte-
grated our solution in existing code for a use case. I also performed the performance
evaluation. Tommaso contributed to the paper writing. This paper was developed in
parallel with my master thesis [99]. While the thesis targets a simplified memory cor-
ruption defense as a use case, we extend the implementation to target the Code Pointer
Integrity defense. Further, the paper contains newly implemented approximations for
related hardware primitives and a new security analysis.

Chapter 3 is based on CURE [13], a joint work with Raad Bahmani, Ferdinand Brasser,
Ghada Dessouky, Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Ghada
Dessouky, Emmanuel Stapf and myself contributed to the discussions on the design
and implementation that resulted in this publication. Emmanuel Stapf conceived the
main idea and led the work, and supervised the M.Sc. thesis of co-author Matthias
Klimmek whose work focused on the software stack implementation of the CURE
architecture and its evaluation. I focused on the implementation of CURE’s modifications
at the processor and the software stack evaluation. Ghada Dessouky focused on the
design, implementation, and evaluation of the cache partitioning for CURE. Emmanuel
Stapf focused on the design of CURE’s modifications at the processor, the design and
implementation of CURE’s access control mechanisms at the system bus, and led the
evaluation. Raad Bahmani and Ferdinand Brasser contributed to the paper writing.

Chapter 4 is based on a joint works with Tommaso Frassetto, David Koisser, David
Kretzler, Benjamin Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi, and with Se-
bastian P. Bayerl, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza Sadeghi,
Thomas Schneider, Emmanuel Stapf, and Christian Weinert. For POSE [68], David Koisser,
David Kretzler, Benjamin Schlosser, Tommaso Frassetto, and myself contributed to the
discussions on the design that resulted in this publication. In detail, David Koisser, David
Kretzler, and Benjamin Schlosser focused on the protocol, while I was responsible for
the design of the off-chain execution environment. David Kretzler implemented the

XIII

on-chain manager contract, David Koisser the blockchain interaction, and I focused on
the implementation of the system side of POSE and the corresponding evaluation of
the off-chain smart contract execution. Benjamin Schlosser and David Kretzler proved
the security properties of the protocol, while David Koisser and I analyzed the system’s
security guarantees. For OMG [17], Sebastian P. Bayerl, Tommaso Frassetto, Emmanuel
Stapf, Christian Weinert, and myself contributed to the discussions on the design and
implementation that resulted in this publication. I focused on the design of the com-
munication protocol used by the SANCTUARY enclave, the user and the vendor of the
machine learning model. Tommaso Frassetto focused on porting the TensorFlow Lite
machine learning framework to SANCTUARY. Sebastian P. Bayerl focused on preparing
the machine learning model and test data used during the evaluation of SANCTUARY.
Emmanuel Stapf focused on the implementation of the keyword recognition algorithm in
a SANCTUARY enclave and its evaluation. Christian Weinert contributed to the paper
writing.

Chapter 6 is based on DARWIN [97], a joint work with Domagoj Jakobovic, Stjepan
Picek, Emmanuel Stapf, and Ahmad-Reza Sadeghi. For DARWIN, Domagoj Jakobovic,
Stjepan Picek, and myself contributed to the design of the mutation scheduler. I was
the lead author of the design. Domagoj Jakobovic and I implemented the mutation
scheduling algorithm, while I performed the evaluation of the prototype. Emmanuel
Stapf contributed to the paper writing.

XIV

Acknowledgements

This journey, now drawing to a close, has been shaped significantly by numerous people
to whom I owe my deepest gratitude.

Foremost among them is my advisor, Prof. Ahmad-Reza Sadeghi. His unwavering
commitment to excellence and his ability to inspire the best in me have been instrumental.
His guidance granted me the freedom to explore my research while equipping me with
the skills to present our findings in an understandable and concise way, not only in
academia but also in numerous industry projects.

I also owe a debt of gratitude to my colleagues, many of whom have become dear friends
over the years. Special thanks are due to Ferdinand and Emmanuel, who made my dream
of starting a company a reality. I am equally grateful to Tommaso and David, my constant
companions in both scientific and personal discussions.

My research projects would not have been possible without the collaboration and insights
of my co-authors. Thus, my thanks go to all my colleagues from the System Security Lab
and external collaborators. Additionally, I am thankful to Prof. Asokan for graciously
accepting the role of my second doctoral referee. My appreciation also goes to the rest of
the defense committee members – Prof. Carsten Binnig, Prof. Sebastian Faust, and Prof.
Marco Zimmerling – for their engaging and thought-provoking discussions during my
dissertation defense.

I must also extend my heartfelt gratitude to my friends, whose constant presence and
support played a crucial role in my journey. Their understanding and compassion
provided solace during the most challenging times, making this journey more bearable.

Last but certainly not least, I must express my heartfelt thanks to my family, whose
unwavering support made it possible for me to pursue this academic path. A special
thanks goes to Maren, who endured many missed evenings, weekends, and vacation
days to support my journey. Your sacrifice and support have been crucial in bringing this
chapter of my life to a successful conclusion.

XV

Contents

1 Introduction 1

1.1 Attack Surface Reduction . 2

1.2 Attack Surface Analysis . 4

1.3 Dissertation Outline . 5

2 Secure In-Process Compartments 7

2.1 Our Contributions . 8

2.2 Related Work . 10

3 Flexible Enclaves for Application-driven Security 13

3.1 Our Contributions . 14

3.2 Related Work . 17

4 Enclaves as Security Primitives in Protocols 21

4.1 Efficient Off-Chain Smart Contracts . 21

4.2 Private and Secure Offline Machine Learning 24

4.3 Related Work . 27

5 Attack Surface Analysis with Fuzzing 31

5.1 Our Contributions . 32

5.2 Related Work . 34

6 Conclusion & Outlook 37

6.1 Conclusion . 37

6.2 Outlook . 38

7 List of Own Publications 41

7.1 Peer-Reviewed Publications . 41

7.2 Invited Publications & Technical Reports 43

7.3 Magazine Articles & Books . 43

7.4 Posters . 44

Bibliography 45

Lists 68

Appendices 71

a IMIX: In-Process Memory Isolation EXtension 73

b CURE: A Security Architecture with CUstomizable and Resilient Enclaves 91

c POSE: Practical Off-chain Smart Contract Execution 111

XVII

XVIII contents

d OFFLINE MODEL GUARD: Secure and Private ML on Mobile Devices 131

e DARWIN: Survival of the Fittest Fuzzing Mutators 139

1

Introduction

Over the last decades, computers evolved from specialized experimental equipment to the
cornerstone of our digital society. New chip designs and vastly improved manufacturing
capabilities allowed computer systems to be integrated into every aspect of our lives. To
meet the demands of this widespread integration, software development has been in a
constant state of evolution, introducing new and complex features at an unprecedented
rate. Consequently, code bases have ballooned in size—the Linux kernel, for instance,
has roughly doubled its size over the last ten years [152, 113], and it now comprises
over 35 million lines of code [183]. However, application software like web browsers has
already overtaken Linux [92]. This rapid expansion in software features contributed to an
explosion of reported vulnerabilities [219], including catastrophic security flaws [134, 182]
that deeply shattered the trust in the computer software.

A significant contributor to today’s software security challenges is the prevalence of
historically grown, legacy code, often written in memory-unsafe languages such as
C and C++. These memory-unsafe languages put the security burden entirely on the
developer, as they 1) require active lifecycle management of objects in memory and 2)
allow the developer to manipulate references to memory (pointer arithmetic) liberally.
Unsurprisingly, these practices have led to a surge in memory-corruption vulnerabilities:
memory safety violations that can be exploited to hijack the control flow of an application.
Alarmingly, despite the availability of modern, memory-safe programming languages
like Rust [105], new memory-unsafe code continues to be written [175], sustaining the
cycle of vulnerability creation. Thus, programming errors that lead to memory-corruption
vulnerabilities remain a persistent and critical issue in the software landscape [133].

Fortunately, both academic research and industry have not been idle; they have developed
a plethora of defenses, commonly known as mitigations, aimed at curtailing the impact
of these vulnerabilities. Broadly, these mitigations can be classified into two categories:
integrity-based and randomization-based approaches. The former ensures the integrity
of the control flow, e.g., by comparing each control-flow transition against precomputed
ground truths [3, 31, 69], or by ensuring the integrity of high-value data like code
pointers and other program structures [112, 32, 216]. Recently, these mitigations have
been implemented as hardware primitives to be used by software [120, 122, 121, 168],
which further reduces the mitigations’ attack surface towards a software adversary.

1

2 introduction

However, these methods often hinge on dedicated metadata for ensuring data integrity,
e.g., to compare a potentially tampered code pointer to a backup in the metadata structure.
This creates a potential weak point: if this metadata is compromised, the mitigation can
be entirely subverted [36, 65, 112].

In contrast, randomization-based approaches leverage the high entropy of virtual address
spaces to shuffle the memory layout [23, 47, 27, 50]. Thus, to successfully exploit a vulner-
ability, an adversary needs to reverse this randomization to find the address of valuable
data, e.g., using an information leak [172]. Indeed, many deployed mitigations have been
bypassed [172, 46, 65, 166, 212, 12, 18, 45], making memory-corruption vulnerabilities
remain an important attack vector in practice.

To finally address the problem at hand systematically, two factors are critical: 1) clear
attack surface reduction, where a large proportion of the legacy software’s dependencies
(e.g., libraries or its execution environment) cannot affect the security of sensitive code
anymore, and 2) more advanced ways to analyze the attack surface to assess the remaining
risk for vulnerabilities within the code.

In this dissertation, we not only explore advances in attack surface reduction and analysis
techniques but also how attack surface reduction primitives can help to construct efficient
and powerful protocols.

SoC with Hardware-Assisted Security Primitives

App

Operating System

Firmware

Enclave

Sensitive App

Runtime

Security Monitor

App

Data

Sensitive Data

1

4

2

3

5

A
tt

ac
k

Su
rf

ac
e

A
n

al
ys

is

6

Figure 1: High-level overview of the complex software stack on a modern system.

1.1 Attack Surface Reduction

Attack surface refers to all the entry points that the software exposes which can potentially
be leveraged by an adversary to attack a target. However, knowing which part of
the software belongs to the attack surface is highly challenging as it requires a deep
understanding of the software architecture, design, and functionality. In addition, the
software, and hence, also the attack surface, is not static but can change over time due to
updates. Hence, defensive measures need to concentrate on the highly sensitive parts of

1.1 attack surface reduction 3

the software. Guarding these sensitive parts, such that an adversary cannot reach them,
is what compartmentalization and trusted execution environments address.

In-Process Compartmentalization

Memory corruption attacks remain a significant issue in computer security, despite the
use of various preventive measures such as safe programming languages, static and
dynamic analysis, and run-time defenses (also called mitigations). Especially the latter has
been subject to extensive research. These run-time defenses can be broadly classified into
randomization-based and integrity-based approaches. Randomization-based approaches
seek to obscure the location of critical code or data blocks in an application by randomly
rearranging or hiding them within the virtual address space of the application. While
this can be effective in some cases, it is ultimately a probabilistic defense that can be
bypassed with enough tries or if an attacker can discover information leaks that reveal
the location of these blocks [172].

Instead, integrity-based approaches aim to enforce an application’s correct behavior, e.g.,
by verifying the integrity of code pointers or checking for valid control-flow transitions.
These approaches are often more robust against information leaks, yet may require more
coarse-grained checks to maintain an acceptable performance overhead. However, most
integrity-based techniques rely on metadata to ensure the integrity of code or data blocks.
As memory-corruption adversaries are commonly assumed to have full read and write
access to the application’s memory (except code pages which are nowadays protected by
execute-only permissions), the metadata is also at risk. Once this metadata is corrupted,
the defense is broken entirely.

Protecting this metadata is challenging, as integrity-based approaches must frequently
access this data. While hiding the metadata in virtual memory is fast, information leaks
or brute-force attacks endanger the security of the integrity scheme [65]. As shown
in Figure 1, secure compartments 1 can prevent illegal access to this metadata de-
terministically (opposed to probabilistic protection of randomization), either as pure
software-based approaches [193, 167, 23, 108], or leveraging hardware primitives. Indeed,
several hardware-assisted compartments 2 are already available in practice, most no-
tably Intel MPX [144] for bounds checking, Arm Memory Domains [217] (not available
anymore in recent architectures) and Memory Protection Keys (MPK) [104] for creat-
ing memory domains with dedicated access rights. However, these approaches do not
support frequent switching between the different memory domains they create [108],
e.g., between regular code and mitigation code. Recently, Intel introduced Control-flow
Enforcement Technology (CET) [169], which aims to address this by adding hardware
support for indirect branch tracking (to implement CFI checks) and a shadow stack,
which adds hardware instructions to create and verify backups of the return addresses
on the stack. However, this mechanism is only designed for shadow stacks. Hence, CET
is not flexible enough to safeguard other mitigations.

4 introduction

Trusted Execution Environments

While in-process compartmentalization helps to better protect individual applications
from compromises, each application must be protected individually. If only one ap-
plication is compromised, the large attack surface of the operating system (OS) and
third-party device drivers create a significant risk for other applications. Further, e.g., in
cloud scenarios, customers might not trust the cloud vendor’s hypervisor and fear direct
attacks or side-channel leakage to other tenants.

To address this growing problem, sensitive applications’ attack surface must be re-
duced tremendously. One promising technology for achieving this is Trusted Execution
Environment (TEE), also called enclave architectures. TEEs provide strongly isolated
compartments 3 , known as enclaves, which protect sensitive applications, i.e., sensi-
tive parts of an application, from other applications and privileged software such as
the OS and the hypervisor. This isolation is enforced by hardware primitives 4 con-
figured by a small trusted software 5 , often called the security monitor. TEEs offer
a promising approach to enhance the security of sensitive applications by reducing
their attack surface and providing more robust protection against malicious attacks.
TEEs are available on many commercial CPUs already, e.g., Arm TrustZone-A [9] and
TrustZone-M [210], Arm Confidential Compute Architecture [128], Intel Software Guard
Extensions (SGX) [94, 48] and Trust Domain Extensions (TDX) [93], AMD Secure En-
crypted Virtualization (SEV) [102, 6, 103, 7], or IBM Protected Execution Facility [86].
However, most of these architectures were already bypassed to leak secrets from en-
claves [213, 190, 137, 191].

Enclave Applications. Enclaves are a simple and effective way to protect an application
from the large attack surface of a regular system. They have been used for this purpose in
various scenarios, such as databases, digital rights management, and software containers.
In addition to their use as single-purpose high-security vaults, enclaves also serve as
powerful security primitives that can be integrated into higher-level protocols to improve
security, performance, and scalability. However, TEEs are not a foolproof technology and
do neither guarantee availability for the service in an enclave, nor the confidentiality
or timeliness for communication between enclaves and external services (e.g., network
or filesystem). As a result, designing protocols for applications in scenarios such as
blockchain is highly challenging.

1.2 Attack Surface Analysis

Enhancing the security of sensitive applications often involves the use of isolation mecha-
nisms like enclaves to shield them from external threats. However, the isolation enforced
by the enclave’s enclave architecture is not a panacea; both the trusted software com-

1.3 dissertation outline 5

ponents of the enclave architecture and the sensitive applications it hosts could contain
vulnerabilities. Given these complexities, the dual strategies of attack surface reduction
and attack surface analysis become even more critical. Attack surface reduction serves to
minimize the avenues through which an adversary could compromise a system, thereby
reducing the risk profile of both enclaves and the applications they safeguard. Conversely,
attack surface analysis provides a vital complement by systematically identifying residual
vulnerabilities and potential entry points 3 , including those within the enclave-protected
applications themselves. Importantly, this exhaustive scrutiny needs to extend beyond
applications to encompass all layers of the computational stack: enclaves, operating
systems, hypervisors, firmware, security monitors, and even hardware.

While traditional approaches for attack surface analysis require extensive labor, e.g., in the
form of manual writing of unit tests, modern approaches can reduce the effort tremen-
dously by exhaustive automatic analysis. Automatic analysis has two main research
directions: static analysis and dynamic analysis. Static analysis extends the compilation
process to look for error-prone programming patterns or basic memory mismanagement.
However, static analysis does not scale well: it operates on a symbolic representation
of the code, requiring the evaluation of every branch under every possible value range
within the input domain. Dynamic analysis, in contrast, executes the program directly
to find bugs. Recently, fuzzing has emerged as a popular research direction in this area.
Fuzzing tests the target program by repeatedly running it with randomly generated
inputs. If the target program crashes, a bug has been found. While initially developed for
regular applications [74], fuzzing is now used within all software privilege layers and
even for testing hardware designs [188, 37].

1.3 Dissertation Outline

In the following, we give a brief outline of the remainder of this dissertation, whereby each
chapter presents the respective publication in more detail and situates the publication
within the broader context of relevant literature.

Chapter 2: We present IMIX, a novel lightweight intra-process isolation design where
memory pages are tagged as security-sensitive, while a specialized instruction in the
instruction set architecture (ISA) provides exclusive access to these pages. While IMIX can
protect arbitrary sensitive data, IMIX is designed to efficiently safeguard the metadata
associated with memory-corruption defenses.

Chapter 3: We introduce CURE, the first Trusted Execution Environment (TEE) architec-
ture designed that provides multiple types of enclaves at once, offering a level of flexibility
that allows adaptation to the unique requirements of sensitive applications. Additionally,
CURE introduces fine-grained resource management capabilities to ensure that enclave
resource demands are met without expanding the attack surface unnecessarily.

6 introduction

Chapter 4: We present POSE and OMG, protocols that harness the power of Trusted
Execution Environments (TEEs) to improve security guarantees and performance for
blockchain and AI applications. POSE, an off-chain smart contract execution protocol,
offers strong liveness guarantees while ensuring private state without collateral require-
ments. Furthermore, POSE accelerates smart contract execution, enabling modern use
cases such as machine learning integration.

Offline Model Guard (OMG), on the other hand, presents a secure and private machine
learning approach, even in offline scenarios. OMG leverages TEEs to establish strict
isolation between models and users, with additional support for hardware-based machine-
learning accelerators.

Chapter 5: We introduce DARWIN, a lightweight mutation scheduler for fuzzing based on
the Evolution Strategy algorithm. DARWIN optimizes the mutation-selection probability
distribution throughout the fuzzing process, utilizing coverage feedback as a fitness
function. In contrast to existing approaches, DARWIN improves coverage and bug-
finding capabilities while avoiding the introduction of new per-target parameters that
necessitate manual tuning.

2

Secure In-Process Compartments

As mentioned in Chapter 1, an adversary can exploit memory-corruption vulnerabilities
to gain arbitrary code execution within an application at run time (commonly referred to
as a process). This can be done by manipulating memory locations to either inject new
code, reuse existing code, or perform so-called data-only attacks. Code-injection attacks
add new, malicious code to the process, while code-reuse attacks recombine existing
code of the process to perform arbitrary computations. Data-only attacks try to steer the
control flow by modifying data variables, e.g., used to determine branches, within the
existing control-flow graph. Research has shown that even data-only attacks can perform
arbitrary computations [96].

Thus, code must be hardened against such attacks by integrating defenses to guard (con-
trol) data. The most straightforward attack, code injection, can effectively be prevented by
enforcing that a memory page can either be writable or executable, but not both (W ⊕ X).
This prevents injected code from being executed and is indeed used in practice since
2004 [178]. Yet, code-reuse and data-only attacks are still possible, and hence, countless
software defenses emerged to prevent these attacks, e.g., shadow stacks [32], Code Pointer
Integrity (CPI) [112], or various forms of Control-Flow Integrity (CFI) [3, 46, 31, 69]. How-
ever, these defenses can be the target of an adversary themselves, especially as they
need to store their own metadata in the same address space. This metadata is crucial
for a working mitigation, and an adversary can manipulate this data to bypass a mitiga-
tion [65, 32]. While storing the metadata in another process or privilege layer (e.g., in the
kernel) seems appealing, software defenses require frequent access to the metadata, e.g.,
for every code pointer load, and switching between these contexts is slow [108]. Hence,
this metadata is usually hidden in the process’s virtual address space by exploiting the
larger entropy of today’s 64-bit systems. Unfortunately, a single information leak (register
spilling, brute-force guessing) has been shown to be enough to break this approach
completely [172, 65].

Therefore, a deterministic isolation approach, as opposed to probabilistic randomization
schemes, is needed. One important primitive that emerged to secure such metadata is
intra-process isolation. Intra-process isolation creates an isolated compartment ("safe
region") within the process that can only be accessed when in a specific context, e.g.,
when a return address is stored to/loaded from the shadow stack.

7

8 secure in-process compartments

Intra-process isolation is a crucial building block for securing memory-corruption de-
fenses. Designing such a scheme is challenging due to the wide-ranging requirements,
namely, the approach must...

1. protect a safe region deterministically,

2. be easy to integrate into existing applications or memory-corruption defenses,
ideally without changing the source code,

3. induce very little performance overhead (as this is on top of the defenses’ perfor-
mance overhead),

4. leverage an isolation primitive that supports frequent invocations, e.g., for every
code pointer dereference.

2.1 Our Contributions

This thesis addresses these requirements on intra-process isolation with the following
publication, which can be found in Appendix A.

[70] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi.
IMIX: In-Process Memory Isolation EXtension. In 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 83–97. USENIX Association,
2018. CORE Rank A*. Appendix A.

With IMIX, we propose a novel lightweight intra-process isolation primitive that marks
memory pages as security sensitive, which can only be accessed with our newly added
instruction in the Instruction Set Architecture (ISA). This efficiently protects the meta-
data of memory-corruption defenses. Yet, the design of IMIX is not tailored towards a
specific memory-corruption defense or ISA. In the following, we provide a more detailed
summary of our approach.

IMIX. As shown in Figure 2, IMIX introduces a new permission bit to mark pages as
isolated, i.e., belonging to the safe region. This permission bit is similar to the bit flags
for read/write/execute. We further added support for IMIX in the kernel, which allows
developers to mark a safe region using existing memory management functionality. If an
application wants to leverage IMIX to guard a sensitive region, it first has to mark the
region as sensitive. On Linux, this would be done with the mmap system call.

2.1 our contributions 9

Software Hardware

Application

Application
Memory

Mitigation

smov rcx, s

Attacker

mov rcx, i

Setup

smov rcx, i

mov rcx, s

Normal
Memory

Sensitive
Metadata

MMU

Instruction &
Permission Check

Page Tables
Page IMIX Bit

1
0

Figure 2: High-level overview of IMIX

Further, IMIX adds a new instruction to the ISA, smov, which is a pendant to the regular
move instructions. This smov instruction encodes the security-sensitive context, such
that only smov instructions can access the safe regions (but not the remaining memory,
which prevents data-flow attacks on smov instructions originating from normal memory).
Analogously, regular mov instructions can access all normal memory except safe regions.
Hence, the application has to ensure that only code belonging to the sensitive region
uses the smov instruction, while all other code should use a regular mov instruction. To
simplify this, IMIX provides a compiler pass that can be leveraged by mitigations that
want to protect their metadata, or by application developers themselves.

Implementation. We implemented a prototype of IMIX for x86-64. For every memory
page, we maintain a flag in the Page Table Entry belonging to the page to indicate
whether it belongs to the safe region. We further extended the Memory Management
Unit of the CPU to check whether the current instruction accessing the memory was
a smov instruction, and if the flag in the Page Table Entry is set. We implemented
this CPU extension in the Windriver Simics simulation framework [1], which enables
instrumentation on off-the-shelf Intel CPU designs.

We further extended the Linux kernel to integrate the IMIX permission bits in the memory
management functions (e.g., mmap).

For application-side support, we implemented an LLVM-based compiler pass. The
compiler pass can emit smov instructions by directly invoking IMIX library functions
or by inserting source code annotations. We further implemented a use case based on
CPI [112] and modified the code to use smov instructions for storing/loading metadata.

10 secure in-process compartments

We evaluated CPI using the standard SPEC CPU2006 benchmark suite and compared
its performance to plain CPI with direct memory access and randomization-based CPI,
i.e., segment-offset-based access. The original memory-hiding-based CPI implementation
induced a 4.24% performance overhead (geometric mean), while the IMIX variant induces
a 3.99% performance overhead. We further implemented a CPI variant that uses an
approximation [108] of Intel’s MPK. This variant induced an overhead of 12.43%, showing
MPK’s shortcomings in high-frequency domain changes.

2.2 Related Work

Retrofitting Existing Isolation Features. Building an intra-process isolation primitive
out of existing hardware features is appealing, as they are available on off-the-shelf
hardware. However, approaches leveraging existing hardware functionality often need
to work around a caveat of that specific feature—either due to different performance
goals (e.g., not made for frequent domain switching) or due to non-optimal requirements
(e.g., privileges) of the primitive. This results in additional software components like
instruction filters or call gates that require protection themselves.

One research direction leverages the Memory Management Unit (MMU) to implement
different views on memory. Software-fault Isolation (SFI) techniques [193, 167, 55, 23]
reserve a part of the virtual address space for the safe region and apply offsets to
allowed instructions automatically. However, they reduce the available virtual address
space. Other SFI approaches leverage hardware-based bounds checking [35, 108] to avoid
virtual address space reduction, but do not support frequent switching [144, 108]. Another
approach is to use different virtual address spaces for different execution contexts (like
for safe regions) [124], however, these techniques do not protect from overflows into the
safe region [35]. IMIX checks permissions for mov and smov instructions such that neither
can overflow into the other respective region while keeping the whole virtual address
space available and enabling fast and frequent domain switching.

A different line of research uses protection keys for user space to design intra-process
isolation schemes [217, 108, 189, 83, 149, 165, 207, 53]. Protection Keys for Userspace
(PKU) are , e.g., available on recent Intel x86 processors, where the feature is called Intel
Memory Protection Keys (MPK). While we will focus on MPK as a representative of
general protection key schemes here, other implementations exist, e.g., on older Arm
processors [217, 40]. MPK enables developers to assign memory pages to a set of memory
domains. Subsequent memory accesses are only possible if the instruction executing is
in an allowed domain. Entering this domain is done by setting a dedicated user space
register. However, MPK is not designed for frequent switches: for each sensitive data
access, the code needs to read the domain register, change the domain register, perform
the access, and restore the domain register [108].

2.2 related work 11

In addition, all unprivileged code can tamper with page permissions in the MPK regis-
ter [189]. Hence, MPK instructions not originating from the intra-process isolation need
to be filtered out, as, e.g., proposed in ERIM [189] and HODOR [83]. This 1) is dangerous
as parsers are prone to memory-corruption errors themselves, 2) requires ensuring that
another process cannot indirectly tamper with the registers through the kernel interfaces,
and 3) requires that the filtering step is exhaustive as a single remaining MPK domain
change instruction could be used as a primitive by an adversary to break the scheme.
In fact, exhaustive filtering is nearly impossible on x86 due to unaligned instructions
and has been circumvented [45, 200]. Eliminating the filtering step is not possible for
MPK due to the direct user space register access. Further, these approaches need to
apply various optimizations to reduce the MPK invocations for a practical performance
overhead. Both problems hinder their adoption, especially in JIT engines (just-in-time
compilers). Donky [165] does not rely on MPK, and hence, avoids the user space access
problems but also has more PKU interactions than, e.g., ERIM. IMIX avoids all these
problems 1) by preventing permission changes to safe regions after they have been set up
and 2) by allowing fast, frequent domain switching.

Hardware-based Capability Systems. Capability systems [202, 58, 173] extend the
hardware to enable complex memory-access policies. This is commonly done by augment-
ing the memory resource (granularity can vary among the approaches) with dedicated
tag bits, similar to the domain concept in MPK. A particularly flexible approach is
CHERI [202], an ISA extension that adds a new hardware data type to support secure
pointer manipulation while providing fine-grained memory protection and access control.
The CHERI system relies on software policies to express the allowed memory resources
(bounds and permissions) referenced by each pointer. To fully realize the benefits of
CHERI, extensive software support is required at various levels, including the operat-
ing system, compiler, language runtime, and applications, as well as the underlying
microarchitecture for check enforcement.

Similarly, HDFI [173] augments the MMU with an additional tag table to realize fine-
grained memory access policies. However, this approach requires reading the tag table
for each memory read/write, and hence, needs additional hardware units (e.g., caches)
to reduce the performance impact.

Finally, PUMP [58] proposes another tag-based capability system but extends all data
units to fit the tag directly in the unit itself, avoiding the additional tag table read.
While PUMP is a promising approach for enforcing security policies, it also introduces a
significant hardware area overhead of around 110%.

However, these systems cannot easily support safe regions for mitigations, as their
complex access control prevents frequent domain switches [135], and, unlike IMIX, these
approaches are not fail-safe, i.e., uninstrumented code can bypass these policies [218].

12 secure in-process compartments

PHMon [54] is another approach that uses a programmable hardware monitor to enforce
rule-based security policies at run time. PHMon’s rules cover the entire predefined
architectural state of the processor, including the current instruction, used data, and
program counter. PHMon is directly connected to the processor pipeline and receives
traces of the processor’s architectural state, which are compared against the defined rules.
If a violation is detected, an interrupt is triggered.

Yet, PHMon is a reactive approach as it relies on the processor trace and can only detect
an attack after it has happened. In practice, this can be enough to escape the actual
monitored application and invoke unintended but benign-looking functionality. IMIX
already prevents the actual data reads, making it a proactive solution with minimal
hardware changes.

3

Flexible Enclaves for Application-driven Security

Today, the software stack of a computer system typically comprises an operating system
(OS), libraries, runtimes, and a plethora of different services and applications from
numerous vendors and open-source projects. A single vulnerability in one of these
software components could compromise highly sensitive applications like payment
wallets, digital rights management services, or even the whole system. As strong isolation
between all software components is not feasible due to their interaction, at least the
sensitive applications need to be protected from the rest of the system. This is a traditional
application for Trusted Execution Environments (TEEs), sometimes also referred to
as enclave architectures, where a security-sensitive application is protected from the
remaining software stack within a so-called enclave. While isolating a service with a
TEE appears to be a trivial solution for this problem, the diversity of today’s software
components creates a tremendous challenge. Each sensitive application has unique
requirements on features and resources, e.g., communicating with a peripheral securely
(like the fingerprint sensor in a phone), multi-process computation with inter-process
communication, or integrity- and confidentiality-protected file accesses. Enclaves can
leverage the regular operating system to fulfill these requirements, but this directly
contradicts the idea of not trusting the other software components on the system.

Fortunately, these unique requirements of sensitive applications have already been
studied extensively, and numerous enclave architectures have been proposed to handle
a particular type of service and its usual requirements—based on what the enclave
architecture designer deemed relevant.

In practice, three major types of enclaves can be used to protect a sensitive application,
but usually, only a single enclave type is provided by the TEE. User space enclaves isolate
individual user processes, which keeps the enclave’s attack surface small by omitting
unneeded software components like an operating system. However, this also prevents
the application from performing more complex tasks, e.g., accessing peripherals, as there
is simply no design feature to allow drivers to run within an enclave. Another type of
enclave architecture isolates not only a user process but an additional runtime or kernel
(which is then called a kernel-space enclave). While this enables a sensitive application to
interact with devices like machine-learning accelerators directly, having a kernel inside an
enclave creates a lot of security and management overhead for simple applications. Also,
other OS components are now part of the attack surface and need to be updated regularly.

13

14 flexible enclaves for application-driven security

Finally, virtual machine (VM) enclaves, the enclave type found in current-generation
commercial TEEs like AMD SEV, isolate whole virtual machines. However, these isolated
VMs then depend on services the untrusted hypervisor provides. Typically, these TEEs
cannot establish direct secure communication between an enclave and a peripheral.

While there are workarounds for each enclave architecture to emulate one of the other
enclave types to offer more enclave types on a single platform, these approaches retrofit
tremendous additional software (security) features [10, 170, 187]. This increases the com-
plexity and size of the sensitive application and also forces the developer to be aware of
these security features and the associated threat model. For instance, user space enclaves
can access the filesystems when leveraging workarounds like Scone [10]. However, then,
they rely on OS services, making them susceptible to side-channel/controlled-channel
attacks from the OS [145]. So as in the original case of the three basic enclave types, this
leaves the burden on the sensitive application developer—the sensitive application has to
be adapted to the TEE, not the TEE to the requirements of the sensitive application.

To address this problem holistically, an enclave architecture needs to address several
challenges, namely, the approach...

1. must be flexible, i.e., offer enclave types that meet the sensitive application’s
requirements,

2. must offer the secure use of peripheral devices to support modern use cases like
machine learning,

3. has to protect the sensitive application against sophisticated attacks,

4. while keeping the enclave runtime minimal.

3.1 Our Contributions

This thesis addresses these requirements on practical enclave architectures with the
following publication, which can be found in Appendix B.

[13] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek,
A. Sadeghi, and Emmanuel Stapf. CURE: A Security Architecture with CUstomizable and
Resilient Enclaves. In 30th USENIX Security Symposium (USENIX Security 21), 2021. CORE
Rank A*. Appendix B.

3.1 our contributions 15

CURE is a novel TEE architecture for high-performance RISC-V systems that is the first to
provide multiple types of enclaves. CURE offers strong and flexible isolation that adapts
to the sensitive application, not vice versa. Further, CURE enables fine-grained resource
management to meet enclave resource requirements without increasing the attack surface
unnecessarily. Finally, CURE protects against cache side channels and controlled-channel
attacks.

So
ft

w
ar

e
H

ar
d

w
ar

e

C
P

U

App EnclA

Operating System

Firmware

App EnclB

App

Runtime

Security Monitor

Core 0 - n
EID = 0

Core n - m
EID = 1

System Bus Filter Engine

Memory

EnclB

EnclA

SM

LL
Cache

EnclB

EnclA

SM

Peripheral

Figure 3: High-level overview of CURE. New or modified hardware components are shown in
blue, the software TCB is marked green.

CURE. The key idea of CURE, as depicted in Figure 3, is to control access directly on
the memory subsystem’s central part: the system bus. This is the central point where
memory transactions from the CPU or peripherals are routed toward the DRAM, other
MMIO-mapped peripherals, or DMA devices. CURE augments the system bus by adding
a Filter Engine, which comprises new access-control mechanisms for the system bus at its
arbiters and decoders (the ports to the respective child components). These access-control
mechanisms maintain permission tables indexed by the address range and the current
enclave ID. Every memory transaction is then augmented with an enclave ID such that
the Filter Engine can look up the individual permissions per transaction. This enclave
ID originates from a per-core CPU register indicating the current enclave execution
context. In addition, CURE introduces a new privileged software component, the Security
Monitor, to configure the enclave ID and manage the Filter Engine’s permission tables.

This unique hardware design enables CURE to support flexible but strongly isolated
enclaves. CURE can provide different types of enclaves based on the requirements of
the sensitive application: user space, kernel space, or sub-space enclaves. User space
enclaves are ideal for smaller workloads that do not need peripherals or rich standard

16 flexible enclaves for application-driven security

libraries to work, thus profiting from a small TCB. CURE also effectively mitigates page-
or interrupt-based controlled-channel attacks. While the OS still provides services to
the user-space enclave, CURE prevents controlled-channel attacks 1) by allowing the
enclave to register its own interrupt handler to detect attacks, and 2) by moving the
corresponding page tables inside enclave memory. For more complex workloads, kernel
space enclaves can be used. Kernel space enclaves comprise the sensitive application
itself and a runtime, e.g., a kernel. This allows kernel space enclaves to contain drivers
that can be used with peripherals. As CURE’s Filter Engine also manages permissions
for peripherals and Direct Memory Access (DMA) regions, CURE can enable direct
enclave-to-peripheral bindings without requiring any changes in the peripheral. This
allows kernel space enclaves to support modern workloads that, e.g., outsource machine
learning to dedicated hardware accelerators. Finally, CURE supports sub-space enclaves,
which isolate only a part of a sensitive application at the same privilege level. This
enclave can be used to create lightweight digital rights management solutions right in
the sensitive application. For CURE, a sub-space enclave is used to reduce the TEE by
separating the Security Monitor from the firmware.

Implementation. We implemented a prototype of the CURE hardware extension on
RISC-V using Rocket Chip, a state-of-the-art open-source RISC-V System-on-Chip (Soc)
design. We extended the TileLink A and C channels to include the enclave ID signal,
added a CSR register in the core, and added the Filter Engine in the system bus, where we
memory-mapped the permission tables to make them configurable from software. Finally,
we implemented a way-based partitioned last-level cache to prevent cache side-channel
attacks.

We further implemented CURE’s software part by 1) developing a Security Monitor to
control the hardware, 2) adding a kernel module to the Linux kernel to handle enclave
creation requests, and 3) creating a runtime for kernel space enclaves based on Linux.

The hardware overhead was evaluated by synthesizing our CURE hardware model on
a Virtex UltraScale FPGA and comparing CURE to the baseline Rocket Chip. Thus, the
hardware overhead is represented in lookup tables (LUTs) and registers. The TileLink
extension adds 0.4% more LUTs and registers, while the access-control mechanisms
add 8.6% LUTs and 3.8% registers for the main memory, 0.4% LUTs and registers for
an MMIO-based peripheral, and 0.2% LUTs and 0.3% registers for a DMA device. The
partitioning of the last-level cache adds another overhead of 1.7% LUTs and 1.8% registers.
In summary, the changes needed to implement the CURE hardware are minimal. We
further used Verilator, a cycle-accurate Verilog simulator, to ensure that our Filter Engine
is fully combinational logic, i.e., operates in the same cycle.

Then, we evaluated the software changes (the security monitor and additional kernel
functionality to interact with the security monitor) with microbenchmarks and mac-
robenchmarks based on the RISC-V ISA simulator SPIKE, and QEMU, which we both

3.2 related work 17

adjusted for the additional cache and TCB flushes that CURE imposes for security. These
simulators reach higher execution speeds than RTL (register-transfer level) simulators
that simulate the whole synthesized circuit, while not requiring the extensive engineering
work to implement, e.g., the frontend CPU to FPGA chip communication, for evalua-
tion directly on an FPGA. The microbenchmarks showed that user space enclaves are
significantly faster to set up than kernel space enclaves, even though dynamic memory
allocation is slower since the Security Monitor needs to verify the user-space enclave’s
page tables for every new entry. In the macrobenchmarks, user space enclaves impose
a geometric mean overhead of 19.70%, while kernel space enclaves only induce 15.33%
overhead (compared to a normal user-space process). The macrobenchmarks run notice-
ably longer (as they perform more complex tasks), hence, kernel space enclaves benefit
from faster dynamic memory allocations to make up for the costly enclave initialization.
We further tested kernel space enclaves with the stress-ng benchmark, showing that
multi-core kernel space enclaves scale almost the same as native multi-processing (geo-
metric mean overhead of 0.9% with two cores). In conclusion, our performance evaluation
shows that CURE is highly practical in terms of software performance overhead and
hardware area overhead.

3.2 Related Work

In the following, we summarize the related work in the field of Trusted Execution
Environments (TEEs). Further, given the recently introduced commercial TEEs and
academic works that followed, we put our work into perspective.

Commercial TEEs and Extensions

Nowadays, almost all major processor designers/manufacturers offer processors with
TEEs. Arm TrustZone [9, 210] was among the first modern TEE architectures. TrustZone
is a vital part of Arm processors, which are nowadays used in mobile devices, laptops,
servers, and gaming consoles. TrustZone protects against privileged software attackers
from the untrusted operating system or hypervisor, but neglects physical adversaries. The
core idea of TrustZone is to split the system into two worlds: a normal world and a secure
world. The normal world runs the untrusted OS, such as Linux, and all non-sensitive
apps, while the secure world runs a Trusted OS (TOS), which manages resources and
provides services to so-called Trusted Apps (TAs). These TAs contain sensitive functions
which can be invoked from the normal world. The TOS separates the TAs’ user-space
processes with basic inter-process isolation. Hence, the whole secure world is actually
only a single enclave, as a malicious TA could provoke a privilege escalation and corrupt
other TAs [63]. This endangers other TAs, most of which are provided by the vendor,
such as Google’s Widevine, which is why the deployment of TZ services is very restricted
nowadays. Apart from TrustZone, one of the most widely deployed solutions is Intel

18 flexible enclaves for application-driven security

SGX [94, 48]. SGX offers user space enclaves based on a traditional process model, where
the enclave is treated as a child process of the host application. SGX protects these
enclaves against a privileged software attacker, which can reside in user space, kernel
space, or hypervisor level, and even some hardware attackers, e.g., that try to snoop or
tamper with memory transactions on the bus. For this, SGX introduces additional CPU
microcode, small hardware changes at the Page Table Walker, and a Memory Encryption
Engine (MEE) to protect enclaves from DMA attacks. The MEE encrypts the enclaves’
memory and ensures its integrity, so encrypted pages cannot be rolled back or switched.
SGX explicitly excludes cache side-channel attacks from its adversary model, which still
can have dramatic consequences for approaches that put highly sensitive data in SGX
enclaves.

AMD Secure Encrypted Virtualization (SEV) [102, 103, 6, 7] is another TEE architecture for
AMD platforms. SEV leverages the AMD Secure Memory Encryption (SME) technology
to isolate VM enclaves from each other and the untrusted hypervisor. SEV uses a per-VM
key managed by the Platform Security Processor (a dedicated co-processor), which is
also responsible for attestation. There are already multiple versions of SEV, as the initial
SEV design did not encrypt the processor register state, which was then the target of
controlled-channel attacks. The second version, SEV-ES (Encrypted State) [103], covers
these, but there still was no integrity protection for VM enclaves’ pages. As a result,
various controlled-channel attacks on SEV were presented. Finally, to guarantee the
integrity of pages, SEV-SNP (Secure Nested Paging) [7] introduces an additional address
translation to determine page ownership, building on the newly introduced Reverse Map
Table. This mechanism allows only the page owner to modify a page.

Based on the high-level ideas of AMD SEV, the newly introduced Intel TDX [93] uses
per-VM encryption to isolate enclaves. In contrast to SEV, TDX uses an encryption scheme
that also ensures the integrity of the enclave memory.

Finally, Arm Confidential Compute Architecture (CCA) [128] was proposed, following
AMD and Intel’s trend of VM enclaves. CCA is a multi-enclave architecture that intro-
duces so-called realms. Each realm is its own VM enclave, completely isolated from other
enclaves and interfaced through a privileged realm manager. This realm manager, and
the enclaves, are also protected from the hypervisor. The isolation is enforced by a newly
added translation level in the MMU. CCA further introduces memory encryption to
protect enclaves against physical attacks.

Academic Approaches

In this section, we will give an overview of academic approaches on trusted execution.
A broad research direction is realizing lightweight security architectures on smaller
embedded systems, which provide security services such as attestation with minimal or
no hardware changes. An example of the early works in this area is Flicker [131], which

3.2 related work 19

combines a Trusted Platform Module (TPM) with a dynamic root of trust (in this case,
AMD Secure Virtual Machine) to isolate small pieces of code.

SMART [64] establishes a dynamic root of trust functionality by storing the attestation
code in read-only memory (ROM) and a securely stored key that can only be accessed
if the program counter is pointing to the ROM region. SPM [179] and its follow-up
works, such as Sancus [140, 141] extend the Memory Protection Unit with additional
permission checks to reduce the TCB to the hardware itself. TrustLite [106] introduces an
Execution-Aware Memory Protection Unit (EA-MPU) to define memory access policies
based on the position of the program counter, allowing TrustLite to generalize the concept
of SMART for independent regions. TyTAN [25] extends this approach with real-time
support, secure boot, and secure storage.

However, these approaches are limited in their ability to support modern computing
needs, such as multi-core setups, complex resource management, and secure peripheral
access. Therefore, there is also research on approaches for more powerful computer
systems that can handle more complex code.

Based on widely available virtualization extensions, a large body of work uses virtu-
alization as a primitive for shielding sensitive applications [208, 39, 117, 159, 130, 84].
However, in multi-enclave scenarios, the hypervisor must provide typical virtualization
features like para-virtualized device access (to allow all enclaves to access peripherals)
and serve as the security monitor. This concentrates a lot of responsibilities in a single
component, leading to a larger TCB [39, 208, 84]. Further, virtualization also slows down
the untrusted OS.

Another popular research direction is extending commercial TEEs for more versatility
and security. For TrustZone, most of these extensions aim to provide new types of
enclaves [77, 29]. In particular, TrustICE [180] proposes a TrustZone-based concept for
temporal isolation in the normal world. TrustICE suspends the regular OS for every
sensitive application execution and invokes the TrustZone secure world to reset the
normal world to a trusted state. After execution of the sensitive code, TrustICE cleans
up the execution environment and resumes regular OS execution. While TrustIce uses
only temporal isolation, SANCTUARY [29] adds spatial isolation to create deprivileged
enclaves in the normal world, and hence, does not have to suspend the OS for enclave
execution. SANCTUARY creates strongly isolated enclaves by using the TrustZone
Address-Space Controller (TZASC) to assign memory regions based on IDs. While
this feature is commonly used to DRM-protect media being transferred between CPU
and GPU, SANCTUARY assigns IDs to individual CPU cores for fine-grained memory
isolation. Other works harden TrustZone against new attack vectors, e.g., by encrypting
the secure world memory area to prevent physical attacks [214], or by moving the
secure world to a dedicated chip [215]. However, as these approaches cannot change the
underlying security primitive used to construct the TEE, efficient side-channel resilience,

20 flexible enclaves for application-driven security

and binding a peripheral directly to an enclave in multi-enclave settings remained an
open challenge [13].

In order to change the underlying primitive, more control over the hardware is necessary.
As such, RISC-V emerged as a promising foundation for academic TEE research. One of
the first TEEs on RISC-V was Sanctum [49], which extends the RISC-V architecture to
create user space enclaves similar to Intel SGX. Sanctum builds on dedicated page tables
per enclave and minor changes to the Page Table Walker to protect these page tables.
A modified page table walker (PTW) prevents address translation for virtual addresses
mapping to physical addresses used by other enclaves. Sanctum does not encrypt enclave
data but can restrict DMA accesses.

Keystone [114] instead provides kernel space enclaves using the RISC-V Physical Memory
Protection (PMP) to create isolated memory regions per enclave. Keystone offers a small
runtime for driver access directly from enclaves, yet, does not support a direct enclave-
to-peripheral binding. Further, Keystone does not isolate its security monitor from the
firmware, creating a larger attack surface.

Another work, SERVAS [176], leverages authenticated encryption based on MEMSEC [201]
to isolate memory. SERVAS can also protect against physical rollback/replacement at-
tacks by ensuring authentication. In contrast to CURE, SERVAS only supports user
space enclaves, does not offer enclave-to-peripheral bindings, and cannot protect against
interrupt-based controlled-channel attacks.

Finally, Penglai [66] is one of the most recent RISC-V TEE architectures. Penglai combines
page-table-based isolation with memory encryption (with a scheme that also provides
integrity) and cache partitioning to provide user space enclaves. In comparison to other
RISC-V TEEs like KeyStone, Penglai uses a safeguarded page table to isolate the memory:
1) the page table is moved to a dedicated memory section, 2) the PMP is configured to
protect this table, and all memory accesses to this region are trapped by the security
monitor, 3) the page table walker (PTW) is extended to only allow page table walks
within the protected memory area. This high-level concept is quite similar to Sanctum’s
memory isolation. In contrast to CURE, Penglai only supports user space enclaves and
has no support for enclave-to-peripheral binding.

4

Enclaves as Security Primitives in Protocols

In the preceding chapters, the focus was on attack-surface reduction techniques that
utilize isolation to protect highly-sensitive software. However, these techniques can also
serve as a fast and efficient security primitive within complex protocols. For instance,
homomorphic encryption is a powerful cryptographic solution, but its computational cost
is high. Trusted Execution Environments (TEEs) can significantly accelerate homomorphic
encryption in protocols [61, 197, 138].

Similarly, TEEs can speed up multi-party computation (MPC) [194, 142, 204], another
cryptographic protocol known for its computational complexity.

Furthermore, TEEs offer the ability to perform remote attestation, a cryptographic method
for verifying the correct setup of a sensitive application. The combination of isolated
execution and remote attestation allows TEEs to further simplify protocols and reduce
their complexity.

In this chapter, we will explore two additional areas that stand to benefit from the
implementation of TEEs: an off-chain smart contract execution facility for blockchains
and a secure offline machine-learning inference protocol. These areas highlight the
versatility and usefulness of TEEs as a security primitive in complex protocols.

4.1 Efficient Off-Chain Smart Contracts

Since Bitcoin was introduced in 2009, the blockchain ecosystem has evolved continuously.
Nowadays, a plethora of different blockchain-based services exist, ranging from payment
systems, over ownership certificates in the form of non-fungible tokens (NFTs), to
permissioned blockchains used in corporate settings. One crucial cornerstone in this
ecosystem is Ethereum, a blockchain that allows the execution of so-called smart contracts,
computer programs that can trigger actions, e.g. payment transactions. Ethereum aimed
to become a decentralized world computer [151], however, after a decade of improvements
to the blockchain ecosystem, typical smart contracts on Ethereum are still surprisingly
simple. In fact, most deployed contracts are simple token managers [146].
The underlying reason is that Ethereum and many other blockchains have scaling issues

21

22 enclaves as security primitives in protocols

due to 1) contract execution being replicated on multiple miners, 2) high execution fees,
and 3) slow confirmation of transactions.

Hence, off-chain smart contract execution emerged as a key research direction to address
this problem. These approaches move smart contract execution off-chain to minimize
costly interactions with the blockchain.

The most prominent areas in this research direction are second-layer solutions. One
of them is state channels [132, 62], which allow users to lock funds, communicate off-
chain for money transfers, and split the locked funds based on the communication
outcome. This is very efficient in the optimistic case but requires costly on-chain conflict
resolution in case of a dispute. Another approach is Plasma [155], which creates a
separate blockchain anchored to the main chain to speed up transaction processing.
However, Plasma does support smart contracts. Similarly, Rollups [184] also process
transactions off-chain but publish their results on-chain. A significant disadvantage of
rollups is that centralized rollup operators can influence transaction ordering. Others
use a quorum of execution agents to approve the results of contract executions, yet,
they either do not support private state or require on-chain communication for every
contract invocation [206]. Finally, some approaches leverage TEEs to secure the off-chain
computation [41, 52]. These approaches suffer from a classic trusted computing problem:
isolated enclaves are perfectly capable of protecting a program, but an enclave might just
never be scheduled (again) by the regular OS to actually run it. Hence, smart contracts
are not guaranteed to finish execution; hence, existing enclave-based approaches cannot
guarantee liveness.

TEEs are, due to their native computation speeds, a compelling building block for off-
chain computation. Yet, an off-chain approach based on TEEs needs to address several
challenges, namely, the approach must...

1. not require parties to lock a large collateral,

2. avoid frequent blockchain interactions,

3. offer entering and leaving the instance,

4. tolerate flexible contract lifetimes,

5. while keeping the contract state private.

Our Contributions

This thesis addresses these requirements on TEE-based off-chain execution with the
following publication, which can be found in Appendix C.

4.1 efficient off-chain smart contracts 23

[68] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler, Benjamin Schlosser,
Sebastian Faust, and Ahmad-Reza Sadeghi. POSE: Practical Off-chain Smart Contract
Execution. In 30th Annual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 24-27, 2023, 2023. CORE Rank A*. Appendix C.

POSE is a novel off-chain smart contract execution protocol with strong liveness guaran-
tees and private state without relying on collateral. Further, POSE offers native computa-
tion speeds for smart contracts, bringing the ever-envisioned world computer closer by
enabling modern use cases such as machine learning in smart contracts.

B
lo

ck
ch

ai
n

O
ff

-C
h

ai
n

Manager

Creator Enclave
Pool Setup

Operator Pool

Watchdog
Enclave

Watchdog
EnclaveExecutor

Enclave

User

C
re

at
e

In
st

an
ce

Creation
Request

Finalize Creation

Call Contract

Sync

1

2

4

3

5

6

Figure 4: High-level overview of POSE

POSE. POSE leverages a TEE-based execution pool, consisting of an executor enclave
and multiple watchdog enclaves, to take over the execution on the failure of the executor
and ensure execution of the smart contract while maintaining private state. As shown
in Figure 4, to set up a POSE contract, 1 a set of enclaves is first registered with the
on-chain POSE manager contract. An enclave provider signs a confirmed block header
to prove sufficient synchronization with the blockchain. Then, 2 a user can create a
contract instance with the manager’s help. For such a request, the manager chooses an
enclave out of the set, which is the creator enclave. Next, 3 the creator enclave sets up
an execution pool for the contract, consisting of randomly selected enclaves from the
set: one executor enclave to execute the contract and multiple watchdog enclaves that
can replace the executor to ensure availability. POSE’s manager contract assigns a pool
of enclaves to a smart contract instance. Now, 4 the creator enclave submits finalized
contract information to the manager (identities of the selected pool enclaves and their
roles) such that 5 the user can send inputs to the executor. Finally, 6 the executor
performs the user’s contract call and distributes the resulting state to the watchdogs,
which acknowledge the update (without re-executing the contract call on their side).
Unresponsive executor operators can be challenged over the blockchain. If the operator
fails to respond, the operator is dropped from the pool and a watchdog takes over.

24 enclaves as security primitives in protocols

Implementation. We implemented a prototype of POSE consisting of an Ethereum
smart contract for the manager, Arm TrustZone [9] to realize the smart contract ex-
ecution facility, and Lua as the smart contract programming language. The manager
is implemented as an Ethereum smart contract written in Solidity. The manager does
bookkeeping of the pools and contracts, while also offering functions to register an
enclave, create a new contract instance, deposit or withdraw funds, and challenge an
enclave on-chain. The enclaves are implemented using Arm TrustZone. Arm TrustZone
is a Trusted Execution Environment that supports two execution modes: in the so-called
normal world, the regular OS with its applications is running, while the Trusted OS
and its Trusted Applications reside in the so-called secure world, which is only used
for security-sensitive applications (e.g., the fingerprint reader service on a smartphone).
Both worlds can communicate over shared memory. As such, we implemented POSE as a
Trusted Application in secure world using OP-TEE [123] as the Trusted OS. We chose
Lua as a smart contract programming language as the Lua interpreter is relatively simple
and only has standard library dependencies. We ported the interpreter to TrustZone
by stripping out unsupported operations, e.g., filesystem accesses. During the setup
phase of the enclave, the Lua interpreter is initialized with the contract. Then, OP-TEE
is used to generate an attestation report as a confirmation to the creator enclave. At
run time, the TA exposes a get_input() function to Lua—when called, the TA creates a
snapshot of the Lua state, returns to normal world to receive the input via the network,
switches back to secure world, restores the Lua state, and injects the new input. To
interact with the manager contract, the TA utilizes an Ethereum wallet designed for
embedded devices [8].

4.2 Private and Secure Offline Machine Learning

Another area that is benefiting from TEEs is machine learning. Every aspect of our mobile
device experience is slowly enhanced by machine learning (ML): the keyboard predicts
the next words, the app launcher suggests suitable apps based on previous user behavior,
or powerful voice assistants that aid the user. All these ML-based services are increasingly
turning to core technologies, e.g., Google’s camera improvements in phones can largely
be attributed to advances in AI-based image enhancers [22].

Still, many of these services require frequent cloud interaction. For instance, voice
assistants often parse the query locally but look up the actual result online to provide a
result. Another example is the keyboard sending feedback on the word prediction feature
to the cloud to improve the general prediction model [209]. This is a tremendous privacy
risk for users, as it is not transparent which data gets transmitted at which time.

Counterintuitively, offering AI-based offline services also poses risks for the vendors. ML
algorithms are nowadays running on the device itself, using dedicated hardware-based

4.2 private and secure offline machine learning 25

accelerators. This guarantees fast response times for the user and reduces the load for
the cloud infrastructure.

However, when the model is directly stored on the device, this also exposes the machine-
learning model to model-stealing attacks. As explained previously, the ML model is
nowadays often at the core of a service offering, the model is precious intellectual property
to the vendor. Hence, model stealing attacks can have grave consequences.

A security mechanism is needed to protect the vendor’s assets, but also to prevent user
data from leaving the device without consent.

While cryptographic approaches like homomorphic encryption [147, 73, 19] have been
used in previous works, they are inherently limited in performance [150] or require
the model to be adjusted [160]. Further, existing approaches using Trusted Execution
Environments [26, 90] 1) only either protect the vendor’s asset or the user data, not
both, 2) are designed for cloud environments, and 3) do not end-to-end protect the user
input.

Therefore, a high-performance approach is needed to protect the machine-learning model
and the user data while ideally still supporting hardware accelerators for machine
learning. This is highly challenging, as the approach needs to...

1. maintain a two-way isolation between the machine-learning model and the user’s
data and applications

2. provide a secure binding between the machine-learning model and accelerator
hardware

3. ensure that the vendor can always control access to its model, i.e., prevent access,
e.g., when a license is revoked.

Our Contributions

This thesis addresses these requirements on secure and private machine learning with
the following publication, which can be found in Appendix D.

[17] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-
Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert. Offline Model
Guard: Secure and Private ML on Mobile Devices. In 2020 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020, pages 460–465.
IEEE, 2020. https://ieeexplore.ieee.org/document/9116560. CORE Rank B. Appendix D.

26 enclaves as security primitives in protocols

OMG is a novel secure and private machine learning approach even in offline scenarios.
OMG leverages SANCTUARY [29], a Trusted Execution Environment, to guarantee two-
way isolation between model and user. Further, OMG utilizes SANCTUARY’s peripheral
binding to allow hardware-based machine-learning accelerators to be used for inference.
Finally, OMG features a model manager that loads the vendor’s model and manages
access rights for the model and the input devices used to generate inputs for the model.

Secure World

H
ar

d
w

ar
e

Normal World

App

Operating System

App

Storage

So
ft

w
ar

e

ML Vendor

Enclave

ML App

Sanctuary Runtime
1

2
3 5

46

7

Security
Primitives

Normal World

Figure 5: High-level overview of OMG

OMG. OMG is a TEE-based protocol for secure and private machine learning. As
depicted in Figure 5, OMG’s protocol consists of three phases: preparation, initialization,
and operation. In the preparation phase, 1 the enclave runtime is loaded and 2 its correct
setup is attested towards the user and the vendor using the TEE’s remote attestation
functionality. Only then, 3 the vendor deploys the encrypted ML model to the enclave
(which 4 can be stored in persistent storage by the enclave to allow offline use). In the
initialization phase, 5 the vendor can (based on previously exchanged keys) provide
the decryption key to the enclave. This key changes with every major release of the ML
model to allow for digital rights management. Finally, in the operation phase, 6 the
user can provide input data, e.g., voice, to the enclave. As peripherals can be bound to
an enclave with SANCTUARY, the user can securely send microphone input over the
Security Primitives to the enclave. Subsequently, 7 the enclave provides the output of
the ML model, e.g., text, to the user.

Implementation. We implemented a prototype of OMG based on TensorFlow Lite for
Microcontrollers [2] on the Hikey 960 development board, an 8-core ARMv8 System on
Chip with 3GB of RAM, and TrustZone support. We set up SANCTUARY accordingly to
provide normal-world enclaves with peripheral bindings. We further implemented an
offline keyword recognition application to classify input audio based on pre-set trigger
words. The ML model comprises a 2D convolutional layer, a rectified linear unit (ReLU)
activation, and a regular mapping layer. Model training is performed beforehand based
on 105,000 WAVE audio files (voice samples of 30 different commands) [199]; the resulting
model is 49KB. For our performance evaluation, we measured the time needed for a

4.3 related work 27

single keyword interference in a SANCTUARY enclave versus an interference outside
of the enclave. Setting up the SANCTUARY enclave (until the start of the runtime)
takes around 300ms (exact measurements can be found in [29]), while during inference,
SANCTUARY imposes only around 2% performance overhead over native execution due
to the switch to the secure world to fetch input data. Inference accuracy remains identical.
Our prototype implementation and performance evaluation demonstrate that OMG can
provide machine learning with strong security and privacy guarantees for the user and
the machine-learning model vendor at negligible performance costs on mobile devices.

4.3 Related Work

In the following, we summarize research related to POSE and OMG, and put our work
into perspective. For POSE, we discuss off-chain execution proposals leveraging MPC,
VMs, second-layer approaches, or Trusted Execution Environments (TEEs). For OMG,
we discuss cryptographic and TEE-based approaches for secure and private machine
learning.

Off-Chain Smart Contract Execution

The research on efficient smart contract execution leverages various techniques to improve
performance and security guarantees: multi-party computation (MPC), state channels
(and other second-layer solutions), virtual machines, or TEEs.

While some approaches use MPC to build a quorum of smart contract executors to
ensure confidentiality [110, 109, 111], MPC is known for its significant overhead in
communication and performance. Further, these approaches all require collateral. Hence,
we will focus on second-layer and TEE-based approaches here.

Second-layer Approaches. Second-layer approaches [132, 155, 62, 184], as mentioned
before, enable parties to lock funds on the blockchain such that the funds can be redis-
tributed off-chain. When the off-chain communication is finalized, the locked funds are
distributed accordingly. This reduces the number of transactions needed but is costly in
case of a dispute (which has to be solved on-chain). Further, second-layer approaches
primarily focus on optimizing monetary transactions, hence, most second-layer protocols
do not support smart contracts.

VM-based approaches treat a smart contract as a virtual machine that is executed by a
quorum. Arbitrum [101] requires that all managers agree on the outcome—the result can
then be signed and posted on-chain. ACE [206] and Bitcontracts [205] improve on this by
reducing the needed confirmation to a subset of the quorum; however, they all do not

28 enclaves as security primitives in protocols

support private state (quorum members have full access to the VM’s data) and require
frequent blockchain interactions.

TEE-based Approaches. Two promising methods for leveraging Trusted Execution
Environments (TEEs) to enhance smart contract performance are 1) improving the speed
of the blockchain’s underlying consensus mechanism with the use of TEEs [126, 78,
195], and 2) offloading the actual execution of smart contracts to TEEs, as done in
POSE. In contrast to consensus improvements, TEE-based offloading further allows for
compatibility with existing, legacy blockchains, while enriching smart contracts with
native computation capabilities. Here, we focus on offloading techniques, as they are
more related to POSE.

Ekiden (and its successor, the Oasis Network [67]) leverages multiple TEE-based compute
nodes that execute the smart contract and manage cryptographic keys. However, Ekiden
requires the (encrypted) state updates to be sent to the blockchain after every function call.
This makes Ekiden off-chain executions very costly. Avalon [91], an industry proposal
similar to Ekiden features the same shortcomings. FastKitten [52] tackles off-chain
execution using an incentive-driven protocol against rational adversaries, i.e., financially
motivated. In FastKitten, a single operator uses a TEE to execute the smart contract,
incentivized by a deposit to execute the complete smart contract. However, this deposit
must be as high as all participant’s deposits combined. Further, only a fixed set of
participants and a limited contract lifespan is possible in Fastkitten.

POSE overcomes these limitations. Its strong liveness guarantees prevent frequent
blockchain interactions while also avoiding any collateral at all in the general case.
In addition, POSE supports long-lived contracts with dynamic sets of participants and
protects against a stronger adversary than FastKitten.

Secure and Private Machine Learning

A machine-learning model can be protected by various means, either by keeping it on a
remote server (and ensuring the privacy of inputs) or by protecting the model on-device
to classify inputs locally without leaking the model. Both aspects have been the subject
of extensive research.

Cryptographic Approaches. Cryptographic approaches typically leverage homomor-
phic encryption, two-party computation, or (secure-)multi-party computation. Homo-
morphic encryption (HE) is a relatively recent addition to the numerous cryptographic
primitives. HE can apply an operation directly to encrypted data without leaking in-
formation from the data. While this powerful primitive has been leveraged in several
approaches [147, 73, 19], HE is a highly computationally intense primitive, preventing

4.3 related work 29

these approaches from scaling to bigger models [150]. Multi-party computation (MPC)
is another existing approach to secure machine-learning models [162, 14]. A subset of
MPC, two-party computation, has proven to be more efficient and has been more widely
used [136, 125, 161, 100, 160]. However, these approaches need the model to be adjusted
based on the security primitive used, and hence, require tedious manual tweaks by
experts.

In contrast, OMG supports unchanged machine-learning models without any additional
requirements on the model such as its size.

Enclave-based Approaches. In contrast to cryptographic approaches, TEE-based ap-
proaches can maintain the performance characteristics of the machine-learning model
while providing additional security guarantees [185]. One of the first TEE-based ap-
proaches was proposed by Ohrimenko et al. [143] based on Intel SGX. Ohrimenko et
al. aggregate encrypted data from multiple data providers on a single server to train a
machine-learning model. To prevent information leakage during the training—the only
time the data is unencrypted—they propose to perform the aggregation and training in
an Intel SGX enclave. As SGX enclaves have been shown to be vulnerable against side
channels based on data-dependent access patterns [27], the authors present data-oblivious
variants of prominent ML algorithms. Similarly, Myelin [90] creates a privacy-preserving
model graph that is then trained in a server-side SGX enclave. Privado [76] also protects
against side channels based on memory access patterns. Another work, Chiron [88],
extends the underlying concept of these works by allowing the machine-learning-as-
a-service provider to freely select, configure, and train ML models. SecureTF shares
the same goal but provides a more general ML framework based on Scone [10], while
Occlumency [115] aims to speed up interference in SGX enclaves. Another approach,
Prϵϵch [5], combines the security of SGX enclaves with differential privacy—at the cost
of lower accuracy. VoiceGuard [26] focuses on privacy-friendly inference using an SGX
enclave. User data from smart home devices is s sent to a service provider where ML
models process the data. By keeping the model in an enclave at all times, model stealing
attacks are prevented efficiently. At the same time, VoiceGuard ensures that the user
data is not used for purposes other than inference. MLCapsule [80] has the same goal,
but brings the service provider functionality directly on the user’s device, and hence,
supports offline scenarios. Other works used Arm TrustZone as a TEE [127, 181], however,
this increases the attack surface of the system TCB significantly, especially as drivers for
hardware accelerators would need to reside in the secure world.

Naturally, forcing ML models to run on CPUs is quite restricting, as modern models are
huge and performance-hungry. Therefore, another research direction is to leverage GPUs
securely for ML models. Slalom [185] and eNNclave [163] both split the ML computations
into sensitive and non-sensitive parts, where only the non-sensitive parts are outsourced
to the GPU. Telekine [87] uses a GPU-based TEE (cf. Graviton [192]) and provides data-

30 enclaves as security primitives in protocols

oblivious encrypted data streams for communicating with the GPU. In Visor [154], only
the inference is moved to the GPU TEE, while user input processing is done in SGX.

All these approaches either rely on SGX [185, 163], and therefore, cannot offer secure
peripheral access (e.g., to the microphone), increase the TCB significantly or require a
GPU TEE [87, 154], which makes them impractical for mobile devices. In comparison,
OMG leverages SANCTUARY, which does not require any hardware changes and can be
implemented on current Arm architectures. Further, OMG can protect ML applications
from controlled- and side-channel attacks without modifying the ML algorithms. Finally,
OMG can directly and securely receive user input from a sensor thanks to SANCTUARY’s
TrustZone support.

5

Attack Surface Analysis with Fuzzing

As outlined in the introduction, memory-corruption vulnerabilities remain a major threat
to applications. In the previous chapters, we introduced enclaves as a method to protect
sensitive applications from such attacks. While enclaves reduce the attack surface of a
sensitive application, the sensitive application can still contain vulnerabilities itself [43].
Such vulnerabilities remain reachable by adversaries outside of the enclave, as the
sensitive application usually exposes an interface to interact with other services. Further,
depending on the enclave architecture, privilege escalation attacks can endanger the
whole system [51, 71, 177, 156]. While mitigations within enclaves can significantly reduce
the probability of a successful attack, they also come with a significant performance
overhead [27].

Therefore, the primary objective in ensuring the security of a sensitive application should
continue to be the avoidance of deploying software with vulnerabilities. A promising
approach to do this at scale is fuzzing. Fuzzing is a dynamic analysis approach to find
bugs by repeatedly executing the target (the software or hardware under test) with
randomly generated inputs (testcases). These testcases originate from a so-called seed
corpus, an initial set of inputs (seeds), e.g., based on previously existing unit tests.
Fuzzing became an essential cornerstone of modern software testing [59] and is a broad
research area. Fuzzing research has focused on making new targets fuzzable, improving
integration with existing tooling, or increasing the efficiency of the fuzzing process.
Especially important is the latter, as advances in efficiency reduce the time to find the
same bug across targets. While technical improvements like better coverage tracing took
the stage in early fuzzing research, there is a strong focus on algorithmic advances.

A recently emerging researcg area is mutation scheduling. In mutation-based fuzzers,
biology-inspired mutation operators are applied to mutate testcases. These mutation
operators, e.g., delete or add a random byte in the testcase, or negate a bit. There
are already various approaches that determine the time that should be spent on a
testcase [171, 211], as well as where to apply a mutation for a given testcase [119,
72]. However, the problem of choosing the adequate mutation operator over time, i.e.,
scheduling a mutation, is still part of active research.

MOPT [129], the most promising existing work, proposed to use a variant of Particle
Swarm Optimization (PSO) to optimize the mutation operator probability distribution.

31

32 attack surface analysis with fuzzing

However, PSO has local and global best solutions. This requires costly adaptions to reach
the global optimum at any time. Further, MOPT exposes various user-facing parameters
that require expert knowledge to adapt the approach to the current fuzzing target.

Hence, the problem is still highly challenging. A successful approach for mutation
scheduling must...

1. determine whether the problem at hand is only target-dependent or changing over
the time of fuzzing,

2. balance improving the quality of selection and execution speed, especially as the
latter is vital for fuzzing,

3. integrate well with the fuzzer, i.e., an optimal representation of the solution and a
balance between exploration and intensification needs to be found,

4. be agnostic to the concrete target without adding additional parameters for users.
If not, this would counteract the wide applicability of algorithmic improvements.

5.1 Our Contributions

This thesis addresses the aforementioned requirements on optimized mutation scheduling
for fuzzing with the following publication, which can be found in Appendix E.

[97] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-Reza
Sadeghi. DARWIN: Survival of the Fittest Fuzzing Mutators. In 30th Annual Network and
Distributed System Security Symposium, NDSS 2023, San Diego, California, USA, February 24-27,
2023, 2023. CORE Rank A*. Appendix E.

With DARWIN, we present a novel mutation scheduler for fuzzing based on the Evolution
Strategy (ES) algorithm. DARWIN optimizes the mutation-selection probability distri-
bution during the fuzzing process using the coverage feedback as a fitness function. In
contrast to existing works, DARWIN only has a minor impact on execution speed and
does not introduce new per-target parameters that require manual tuning.

DARWIN. DARWIN optimizes the mutation-selection probability distribution by
leveraging the Evolution Strategy [79], a simple and efficient optimization approach. As
depicted in Figure 6, in a typical fuzzing pipeline, the fuzzing loop starts with taking a
testcase from the queue, a structure holding the seed corpus or derived testcases. This
testcase is then mutated by randomly selecting multiple mutation operators. This mutated

5.1 our contributions 33

testcase is then used as an input for the target while monitoring the coverage generated by
this testcase. DARWIN utilizes this coverage information as a fitness function, to optimize
the selection of mutation operators. Specifically, DARWIN uses Evolution Strategy to
dynamically optimize the probability distribution of the mutation operators such that
the selection of operators is not uniform anymore, but adapts to the target and the
exploration within the target.

The ES in DARWIN uses an initial set of random parent solutions (solutions represent
concrete probability distributions), which are then perturbated (mutated) to generate
child solutions. The best-performing child in terms of newly found unique paths is then
the new parent in the next iteration. DARWIN is transparent to the user, so no parameters
have to be adjusted for a new target application, while fuzzer developers only have to
adjust two parameters of ES that steer exploration and exploitation based on the set of
mutations.

Fuzzer

Bitflip

…

…

Overwrite Bytes

Target

Havoc Stage

F
e

e
d

b
a

c
k

New Probability Distribution

8%

S
e

le
c
t
M

u
ta

ti
o

n

1%

0%

9%

DARWIN

Mutation Scheduler

Testcase

Fitness

determines

next parent

Figure 6: High-level overview of DARWIN

Implementation. We implemented a prototype of DARWIN on the popular mutation-
based AFL fuzzer (version 2.54b) [74] in C. We selected AFL, as many works use it as a
baseline, as it does not leverage additional optimization algorithms that might interfere
with DARWIN. Our prototype adds around 300 lines of code and exposes three interface
functions to the fuzzer: initialization, retrieving the next mutation operator, and reporting
feedback to DARWIN. In addition, we implemented a version of AFL that can load
statically set mutation selection probabilities (optimized probability vectors from regular
DARWIN experiments) to evaluate whether dynamic adaption of probabilities leads to
better results. The evaluation of DARWIN and its variant with a static, pre-optimized

34 attack surface analysis with fuzzing

probability distribution shows that the problem of mutation scheduling is indeed dy-
namic, i.e., the optimal probability distribution changes over time. Further, DARWIN
outperforms baseline and related work in coverage, the time needed to achieve the same
coverage, and the time needed to reach known bugs. In addition, we implemented a
version based on EcoFuzz [211] to show orthogonality to seed scheduling algorithms.
Finally, DARWIN uncovered 15 out of 21 bugs fastest in the MAGMA [82] benchmark,
and found a new bug in GNU binutils that persisted for ten years1.

5.2 Related Work

Fuzzing is a broad research area, ranging from technical advances like resetting the state
efficiently, to algorithmic improvements within the fuzzing process. Here we restrict the
overview to the latter, as this is also the focus of the work.

Mutation Strategies

There are two factors in mutation selection: when to apply which mutation and where in
the testcase the mutation should mutate a byte. In the following, we will give an overview
of both areas.

Mutation Scheduling. Initially, Drozd et al.[60] as well as Boettinger et al. [33] lever-
aged reinforcement learning to mutation scheduling, however, they failed to demonstrate
coverage improvements. MOPT [129] was the first approach to claim actual improvements
in coverage and bug-finding capabilities. MOPT uses Particle Swarm Optimization (PSO)
to optimize the probability distribution of the mutation scheduler. PSO in its original
variant is prone to converging towards local optima (so globally sub-optimal solutions),
hence, the integration of the algorithm in MOPT is more complex. Consequently, MOPT
requires the fine-tuning of various user-defined per-target parameters, making it harder
to use in practice. In addition, the complexity of the algorithm leads to a significantly
reduced execution speed, which negatively impacts achieved coverage over time. In
contrast to MOPT, DARWIN’s Evolution Strategy is a simpler but faster algorithm that
exceeds MOPT’s and the baseline’s coverage as well as bug-finding capabilities without
any user-facing parameters.

A parallel work by Wu et al. [203] proposes a two-layered Multi-armed Bandit (MAB)
approach for mutation selection. First, a MAB is used to optimize the stacking size, i.e.,
how often the mutation should be applied to the testcase during the actual scheduling.
Second, another MAB optimizes mutations of which group (unit- or chunk-based) should
be selected uniformly. However, 1) the operator selection optimization is very coarse-

1 https://sourceware.org/bugzilla/show_bug.cgi?id=29233

https://sourceware.org/bugzilla/show_bug.cgi?id=29233

5.2 related work 35

grained (with DARWIN we show that fine-grained optimization leads to simultaneous
high shares for operators from both groups), and 2) both MABs are not evaluated
independently.

Location Optimization. Even in a setting where the ideal probability distribution of
the mutation operators is known, many fuzzing iterations are needed to determine which
bytes of the testcase the mutation operators should be applied to. A straightforward way
to address this issue is taint tracking, i.e., choosing an interesting block in the application
code and inferring which bytes need to be manipulated to drive the control flow to
this block. However, due to the complexity of control flow in real-world programs, it
is computationally expensive to track all related variables and input bytes [119, 72].
Instead, FairFuzz [116] uses a preliminary deterministic combination of mutations to find
byte locations that lead to low-frequency paths when mutated, while Rajpal et al. [157]
propose a neural network to identify interesting bytes in a testcase. Steelix [118] extracts
comparisons in the program code statically to identify corresponding bytes in the testcase.
In future research, these approaches could be studied in combination with DARWIN to
optimize both the byte location and the set of mutators to apply.

Seed-selection Algorithms

In contrast to mutation-strategy optimizations, seed-selection algorithms aim to reduce
the number of seed cases to an optimal subset with respect to a specific optimization goal
(e.g., to target low-frequency paths or remove redundancy). For instance, MoonShine [148]
analyzes system call traces of real-world programs to reduce redundancy and waste
less fuzzing iterations on highly similar testcases. Similarly, Nichols et al. [139] train a
GAN (Generative Adversarial Network), a neural network, with the initial corpus to
produce higher-quality seeds. Another research direction optimizes the order in which
seeds are used to fuzz. EcoFuzz [211] divides seeds into exploration and exploitation
classes to ensure that newly found paths can be exploited optimally—and fully exploited
paths lead to a period of explorative search. AFLFast [21] uses a Markov model to
prefer seeds leading to low-frequency paths, while AFLGo [20] prioritizes seeds that are
close to a target location. Another work, VUzzer [158], finds hard-to-reach paths while
avoiding error-handling code by prioritzing testcases using an evolutionary algorithm,
while NeuFuzz [198] uses a neural network to focus on error-prone paths. Leveraging
the previously mentioned taint-tracking techniques, Angora [38] prefers inputs leading
to unexplored branches. Finally, to also increase the probability of semantically correct
testcases, AFLSmart [153] leverages a structural representation of seeds. Compared to
DARWIN, seed-selection algorithms optimize a very early step in the fuzzing workflow. It
is not clear whether later stages, especially mutation schedulers, could tend to counteract
the desired optimization goal.

6
Conclusion & Outlook

In this chapter, we summarize the contributions of this dissertation to the field of isolated
compartments and dynamic software analysis and give an outlook on future research
directions.

6.1 Conclusion

This dissertation significantly contributes to the research field of attack surface reduction
by proposing approaches ranging from data compartments within an application to
safeguarding whole virtual machines. We further use these attack surface reduction
techniques to construct powerful protocols in other research fields. This dissertation
further contributes to the research field of attack surface analysis by algorithmically
improving dynamic software analysis, specifically fuzzing, to uncover programming
errors leading to vulnerabilities throughout the software stack. In the following, we
summarize the contributions of this dissertation in detail.

Secure In-Process Compartments. We presented IMIX [70, Appendix A], an in-process
memory isolation technique supporting high-frequency domain switches to protect
modern software defenses. We implemented a prototype to protect the metadata of Code
Pointer Integrity using Intel Wind River Simics, an x86 full system simulator. In contrast
to previous approaches, IMIX has a minimally invasive design, offers deterministic
protection of memory regions, and achieves a negligible performance overhead.

Flexible Enclaves for Application-driven Security. We presented CURE [13, Ap-
pendix B], a flexible enclave architecture for RISC-V that supports different types of
enclaves on a single platform. CURE offers intra-privilege level, user-space, and kernel-
space enclaves. We implemented a prototype of CURE on the open Rocket Chip and
showed its practicality by evaluating hardware and performance overhead. In contrast
to other enclave architectures, CURE adapts to the sensitive application, not the other
way around. Further, CURE introduces a novel system bus filtering component, enabling
secure bindings between enclaves and peripherals.

37

38 conclusion & outlook

Enclaves as Security Primitives in Protocols. We presented two protocols, POSE and
OMG, that leverage enclaves as a security primitive. POSE [68, Appendix C] is a novel
off-chain protocol for smart contracts that features private state and strong liveness
guarantees. We implemented a prototype of POSE for Arm TrustZone and evaluated
smart contracts ranging from rock paper scissors to federated machine learning with
431,080 weights. Compared to previous works, POSE can ensure correct behavior without
collateral thanks to its liveness guarantees. OMG [17, Appendix D] is an enclave-based
protocol to protect machine-learning models and the user’s privacy simultaneously. OMG
leverages SANCTUARY [29], a normal-world enclave architecture for Arm platforms,
to prevent model stealing attacks and manage access permissions to the model. We
implemented an offline wake-word detection service by shielding the TensorFlow lite for
microcontrollers framework inside a SANCTUARY enclave. Contrary to existing work
in this area, OMG provides native machine-learning inference performance without
changing the model.

Attack Surface Analysis with Fuzzing. We presented DARWIN [97, Appendix E], an
efficient mutation scheduler for mutation-based fuzzers. DARWIN uses Evolutionary
Strategy to optimize the probability distribution of the mutation operators iteratively
throughout the fuzzing process. We implemented a prototype based on AFL and evalu-
ated execution speed, efficiency characteristics, coverage, and bug-finding capabilities.
Unlike previous approaches, DARWIN’s optimization algorithm is significantly simpler
and does not expose any user-facing parameters that hinder adoption.

6.2 Outlook

We have shown different approaches to attack surface reduction and analysis that can
form the basis for next-generation, secure-by-design compute architectures. However,
having an end-to-end secure computing architecture is far in the future. We currently see
the first steps of porting existing software to capability architectures [75], which adapt
capability systems directly in the instruction set. While previous works on run-time
defenses often relied on exploiting hardware features in unintended ways, these next-
generation primitives will be more flexible, allowing more holistic defenses. Building
efficient high-level defense primitives out of these hardware features, potentially also
an enclave architecture, will be crucial in the future. However, having these strong but
flexible primitives is only part of the solution, as they do not guarantee the absence of
security issues [24].

Further, these primitives, as well as the rest of the hardware, need to be a solid foundation
for system security, and hence, must be secured. Attack surface reduction and analysis
for hardware is still an emerging research field. Yet, there are promising developments in
these research fields. For attack surface reduction, new flexible hardware elements, e.g.,

6.2 outlook 39

based on Intel’s eASIC [95] will emerge, that will offer security services by interacting
with the execution pipeline. For instance, a customizable instrumentation to implement
heuristic, maybe even AI-based, memory corruption defenses. For attack surface analysis,
hardware fuzzing is an emerging, but important field of research, as trust in software
cannot go without trust in hardware that performs the computation. While basic hardware
fuzzing is already available [188, 186, 89], future research will likely follow the path of
traditional software fuzzing by incorporating static and symbolic approaches to examine
more complex parts of hardware. Chen et. al [37] took a first step in this direction,
but better integration with existing analysis tools for hardware is needed. For software
fuzzing, future work should focus on how the different stages in the fuzzing process
interact and how they can be optimized in combination.

Together, these building blocks will coin future computer systems. Yet, there are also
short-term developments that will be equally important.

The introduction of modern, flexible TEEs, will increase their adoption in the cloud and
embedded markets. Intel TDX and Arm CCA will inspire a variety of research focusing
on evaluating the security guarantees of these architectures and developing higher-level
security primitives for use in protocols. However, developers will also need tools to create
secure enclave code. While approaches for Intel SGX [44, 43] and Arm TrustZone [81, 85]
exist, these newer TEE generations enable developers to create much more complex
enclaves.

Further, building more efficient protocols, not only for off-chain computation in blockchains
or machine-learning inference, will be crucial to increase adoption. For blockchains, we
will see more complex smart contracts and potentially academic research on securely
using peripheral devices (smart oracles) with a TEE. For machine learning, it will be
essential to support federated learning within a heterogeneous cluster of TEEs (e.g., the
TEEs on mobile devices and TEEs on servers).

In addition to these topics, microarchitectural attacks remain a persistent threat, even to
memory-corruption defenses [34]. In the future, we will likely see more comprehensive
defenses that span from the architectural to the microarchitectural level. These defenses
must also be more flexible, as microarchitectural mitigations can degrade performance
significantly while the risk of being the target of such attacks might be tolerable in certain
scenarios, e.g., when ensuring that a physical core on a machine is never shared with
another tenant in a cloud setup. As a result, the ability to configure defenses based on
high-level, per-case security policies will be necessary.

7

List of Own Publications

7.1 Peer-Reviewed Publications

Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-Reza Sadeghi.
DARWIN: Survival of the Fittest Fuzzing Mutators. In 30th Annual Network and Distributed System
Security Symposium, NDSS 2023, San Diego, California, USA, February 24-27, 2023, 2023. CORE Rank
A*. Distinguished Paper Award.

Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler, Benjamin Schlosser, Sebastian
Faust, and Ahmad-Reza Sadeghi. POSE: Practical Off-chain Smart Contract Execution. In 30th
Annual Network and Distributed System Security Symposium, NDSS 2023, San Diego, California, USA,
February 24-27, 2023, 2023. CORE Rank A*.

Jianqiang Wang, Pouya Mahmoody, Ferdinand Brasser, Patrick Jauernig, Ahmad-Reza Sadeghi,
Donghui Yu, Dahan Pan, and Yuanyuan Zhang. Virtee: A Full Backward-Compatible TEE with
Native Live Migration and Secure I/O. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, DAC ’22, pages 241–246, New York, NY, USA, August 2022. Association for Computing
Machinery. CORE Rank A.

Tobias Cloosters, David Paaßen, Jianqiang Wang, Oussama Draissi, Patrick Jauernig, Emmanuel
Stapf, Lucas Davi, and Ahmad-Reza Sadeghi. Riscyrop: Automated Return-Oriented Program-
ming Attacks on RISC-V and Arm64. In Proceedings of the 25th International Symposium on Research
in Attacks, Intrusions and Defenses, RAID ’22, pages 30–42, New York, NY, USA, October 2022.
Association for Computing Machinery. CORE Rank A.

David Koisser, Patrick Jauernig, Gene Tsudik, and Ahmad-Reza Sadeghi. V’CER: Efficient
certificate validation in constrained networks. In 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA, August 2022. USENIX Association. CORE Rank A*.

Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi. CFInsight: A
comprehensive metric for CFI policies. In Proceedings 2022 Network and Distributed System Security
Symposium. Internet Society, 2022. CORE Rank A*.

Martin Schonstedt, Ferdinand Brasser, Patrick Jauernig, Emmanuel Stapf, and Ahmad-Reza
Sadeghi. SafeTEE: Combining safety and security on ARM-based microcontrollers. In 2022 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2022. IEEE, March 2022. CORE Rank B.

41

42 list of own publications

Aakash Tyagi, Addison Crump, Ahmad-Reza Sadeghi, Garrett Persyn, Jeyavijayan Rajendran,
Patrick Jauernig, and Rahul Kande. TheHuzz: Instruction fuzzing of processors using Golden-
Reference models for finding Software-Exploitable vulnerabilities. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, August 2022. USENIX Association. CORE Rank A*.

Tigist Abera, Ferdinand Brasser, Lachlan J. Gunn, Patrick Jauernig, David Koisser, and Ahmad-
Reza Sadeghi. Granddetauto: Detecting Malicious Nodes in Large-Scale Autonomous Networks.
In Leyla Bilge and Tudor Dumitras, editors, RAID ’21: 24th International Symposium on Research in
Attacks, Intrusions and Defenses, San Sebastian, Spain, October 6-8, 2021, pages 220–234. ACM, 2021.
CORE Rank A.

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek,
A. Sadeghi, and Emmanuel Stapf. CURE: A Security Architecture with CUstomizable and
Resilient Enclaves. In 30th USENIX Security Symposium (USENIX Security 21), 2021. CORE Rank
A*.

Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert. Offline Model Guard:
Secure and Private ML on Mobile Devices. In 2020 Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020, pages 460–465. IEEE, 2020.
https://ieeexplore.ieee.org/document/9116560. CORE Rank B.

P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust, and A. Sadeghi.
Fastkitten: Practical Smart Contracts on Bitcoin. In Nadia Heninger and Patrick Traynor, editors,
28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
pages 801–818. USENIX Association, 2019. CORE Rank A*.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
SANCTUARY: ARMing TrustZone with User-space Enclaves. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019. CORE Rank A*. Top Picks in Hardware and Embedded Security, 2021.
Patent registered.

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza
Sadeghi, and Daniel Teuchert. NAUTILUS: Fishing for Deep Bugs with Grammars. In 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019. CORE Rank A*.

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi. IMIX:
In-Process Memory Isolation EXtension. In 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, pages 83–97. USENIX Association, 2018. CORE
Rank A*.

7.2 invited publications & technical reports 43

7.2 Invited Publications & Technical Reports

Ferdinand Brasser, Patrick Jauernig, Frederik Pustelnik, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. Trusted Container Extensions for Container-Based Confidential Computing. arXiv e-prints,
page arXiv:2205.05747, May 2022.

Emmanuel Stapf, Patrick Jauernig, Ferdinand Brasser, and Ahmad-Reza Sadeghi. In Hardware
We Trust? From TPM to Enclave Computing on RISC-V. In 29th IFIP/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2021, Singapore, Singapore, October 4-7, 2021, pages 1–6.
IEEE, 2021.

Ghada Dessouky, Patrick Jauernig, Nele Mentens, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
INVITED: AI utopia or dystopia - on securing AI platforms. In 57th ACM/IEEE Design Automation
Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE, 2020.

Lejla Batina, Patrick Jauernig, Nele Mentens, Ahmad-Reza Sadeghi, and Emmanuel Stapf. In
Hardware We Trust: Gains and Pains of Hardware-Assisted Security. In Proceedings of the 56th
Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019, page 44.
ACM, 2019.

7.3 Magazine Articles & Books

Ferdinand Brasser, Anrin Chakraborti, Reza Curtmola, Patrick Jauernig, Jonathan Katz, Jason
Nieh, Ahmad-Reza Sadeghi, Radu Sion, Emmanuel Stapf, and Yinqian Zhang. Cloud Computing
Security: Foundations and Research Directions. now, 2022.

Ghada Dessouky, Tommaso Frassetto, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. With Great Complexity Comes Great Vulnerability: From Stand-Alone Fixes to Reconfig-
urable Security. IEEE Secur. Priv., 18(5):57–66, 2020.

Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted Execution Environments:
Properties, Applications, and Challenges. IEEE Secur. Priv., 18(2):56–60, 2020.

44 list of own publications

7.4 Posters

Sebastian P. Bayerl, Ferdinand Brasser, Christoph Busch, Tommaso Frassetto, Patrick Jauernig,
Jascha Kolberg, Andreas Nautsch, Korbinian Riedhammer, Ahmad-Reza Sadeghi, and Thomas
Schneider. Privacy-Preserving Speech Processing Via STPC and TEEs. ACM CCS Workshop
onPrivacy Preserving Machine Learning (PPML), 2019.

Bibliography

[1] Daniel Aarno and Jakob Engblom. Software and System Development Using Virtual
Platforms: Full-System Simulation with Wind River Simics. Morgan Kaufmann, 2014.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, et al. Tensorflow: A System for Large-Scale
Machine Learning. In USENIX OSDI, pages 265–283, 2016.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow In-
tegrity Principles, Implementations, and Applications. ACM Transactions on Infor-
mation and System Security, 13(1):1–40, November 2009.

[4] Tigist Abera, Ferdinand Brasser, Lachlan J. Gunn, Patrick Jauernig, David Koisser,
and Ahmad-Reza Sadeghi. Granddetauto: Detecting Malicious Nodes in Large-
Scale Autonomous Networks. In Leyla Bilge and Tudor Dumitras, editors, RAID
’21: 24th International Symposium on Research in Attacks, Intrusions and Defenses, San
Sebastian, Spain, October 6-8, 2021, pages 220–234. ACM, 2021.

[5] Shimaa Ahmed, Amrita Roy Chowdhury, Kassem Fawaz, and Parmesh Ra-
manathan. Preech: A System for Privacy-Preserving Speech Transcription. In
Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 2703–2720. USENIX Association,
2020.

[6] AMD. AMD Secure Encrypted Virtualization (SEV).

[7] AMD. Strengthening Vm Isolation with Integrity Protection and More. White Paper,
January, 2020.

[8] Anyl. Anyledger-Wallet. GitHub, 2019.

[9] ARM Limited. Security Technology: Building a Secure System Using TrustZone
Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf, 2008.

[10] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L Still-
well, et al. {SCONE}: Secure Linux containers with Intel {SGX}. In 12th USENIX

45

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

46 bibliography

Symposium on Operating Systems Design and Implementation (OSDI 16), volume 16,
pages 689–703, 2016.

[11] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. NAUTILUS: Fishing for Deep Bugs
with Grammars. In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[12] Brandon Azad. Project Zero: Examining Pointer Authentication on the iPhone XS,
February 2019.

[13] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, A. Sadeghi, and Emmanuel Stapf. CURE: A Security Architecture with
CUstomizable and Resilient Enclaves. In 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[14] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Privacy-Preserving ECG Classification With Branching Pro-
grams and Neural Networks. IEEE Transactions on Information Forensics and Security,
6(2):452–468, June 2011.

[15] Lejla Batina, Patrick Jauernig, Nele Mentens, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. In Hardware We Trust: Gains and Pains of Hardware-Assisted Security. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, Las
Vegas, NV, USA, June 02-06, 2019, page 44. ACM, 2019.

[16] Sebastian P. Bayerl, Ferdinand Brasser, Christoph Busch, Tommaso Frassetto, Patrick
Jauernig, Jascha Kolberg, Andreas Nautsch, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, and Thomas Schneider. Privacy-Preserving Speech Processing Via STPC
and TEEs. ACM CCS Workshop onPrivacy Preserving Machine Learning (PPML), 2019.

[17] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Chris-
tian Weinert. Offline Model Guard: Secure and Private ML on Mobile De-
vices. In 2020 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2020, Grenoble, France, March 9-13, 2020, pages 460–465. IEEE, 2020.
https://ieeexplore.ieee.org/document/9116560.

[18] Chong Xu Bing Sun, Jin Liu. How to Survive the Hardware Assisted Control-Flow
Integrity Enforcement (Black Hat Asia 2019) - InfoconDB. Black Hat Asia.

[19] Kyle Bittner, Martine De Cock, and Rafael Dowsley. Private Speech Classifi-
cation with Secure Multiparty Computation. CoRR, abs/2007.00253, July 2020.

bibliography 47

arXiv:2007.00253 [cs] type: article.

[20] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–2344, 2017.

[21] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-Based
Greybox Fuzzing As Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1032–1043, 2016.

[22] Andy Boxall. Google Pixel 5 Review: Google’s Best in a Compact Package, October
2020.

[23] Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Leakage-Resilient Layout Randomization
for Mobile Devices. In Proceedings 2016 Network and Distributed System Security
Symposium. Internet Society, 2016.

[24] Jacob Bramley, Dejice Jacob, Andrei Lascu, Jeremy Singer, and Laurence Tratt.
Picking a CHERI Allocator: Security and Performance Considerations.

[25] F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl. Tytan: Tiny
Trust Anchor for Tiny Devices. In DAC, pages 1–6. IEEE, 2015.

[26] F. Brasser, T. Frassetto, K. Riedhammer, A. Sadeghi, T. Schneider, and C. Weinert.
Voiceguard: Secure and Private Speech Processing. In B. Yegnanarayana, editor,
Interspeech, pages 1303–1307. ISCA, 2018.

[27] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari
Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: automated and adjustable side-
channel protection for SGX using data location randomization. In David Balenson,
editor, Proceedings of the 35th Annual Computer Security Applications Conference,
ACSAC 2019, San Juan, PR, USA, December 09-13, 2019, pages 788–800. ACM, 2019.

[28] Ferdinand Brasser, Anrin Chakraborti, Reza Curtmola, Patrick Jauernig, Jonathan
Katz, Jason Nieh, Ahmad-Reza Sadeghi, Radu Sion, Emmanuel Stapf, and Yinqian
Zhang. Cloud Computing Security: Foundations and Research Directions. now, 2022.

[29] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. SANCTUARY: ARMing TrustZone with User-space Enclaves. In
26th Annual Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Internet Society, 2019.

48 bibliography

[30] Ferdinand Brasser, Patrick Jauernig, Frederik Pustelnik, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. Trusted Container Extensions for Container-Based Confidential
Computing. arXiv e-prints, page arXiv:2205.05747, May 2022.

[31] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. Control-Flow Integrity: Precision, Security, and
Performance. ACM Computing Surveys, 50(1):1–33, April 2017.

[32] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining Light on Shadow
Stacks. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019, pages 985–999. IEEE, 2019.

[33] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. Deep Reinforcement
Fuzzing. In IEEE Symposium on Security and Privacy (SP), pages 116–122, San
Francisco, CA, USA, 2018. IEEE. Literaturangaben.

[34] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
Fallout: Leaking Data on Meltdown-Resistant CPUs. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 769–784, 2019.

[35] Scott A. Carr and Mathias Payer. Datashield: Configurable Data Confidentiality
and Integrity. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and
Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6,
2017, pages 193–204. ACM, 2017.

[36] Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by Enforcing Data-
Flow Integrity. In Brian N. Bershad and Jeffrey C. Mogul, editors, 7th Symposium
on Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle,
WA, USA, pages 147–160. USENIX Association, 2006.

[37] Chen Chen, Rahul Kande, Nathan Nyugen, Flemming Andersen, Aakash Tyagi,
Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. HyPFuzz: Formal-Assisted
Processor Fuzzing. arXiv, April 2023. arXiv:2304.02485 [cs] type: article.

[38] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled Search. In 2018
IEEE Symposium on Security and Privacy (SP), pages 711–725. IEEE, 2018.

[39] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey S. Dwoskin, and Dan R. K. Ports. Overshadow:
A Virtualization-Based Approach to Retrofitting Protection in Commodity Oper-
ating Systems. In Susan J. Eggers and James R. Larus, editors, Proceedings of the
13th International Conference on Architectural Support for Programming Languages and

bibliography 49

Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008, ASPLOS XIII,
pages 2–13, New York, NY, USA, March 2008. ACM.

[40] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. Shreds:
Fine-Grained Execution Units with Private Memory. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 56–71, May 2016. ISSN: 2375-1207.

[41] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A Platform for
Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P), pages 185–200, Stock-
holm, Sweden, jun 2019. IEEE. Literaturangaben.

[42] Tobias Cloosters, David Paaßen, Jianqiang Wang, Oussama Draissi, Patrick Jauernig,
Emmanuel Stapf, Lucas Davi, and Ahmad-Reza Sadeghi. Riscyrop: Automated
Return-Oriented Programming Attacks on RISC-V and Arm64. In Proceedings of the
25th International Symposium on Research in Attacks, Intrusions and Defenses, RAID
’22, pages 30–42, New York, NY, USA, October 2022. Association for Computing
Machinery.

[43] Tobias Cloosters, Michael Rodler, and Lucas Davi. TEErex: Discovery and exploita-
tion of memory corruption vulnerabilities in SGX enclaves. In Proceedings of the
29th USENIX Conference on Security Symposium, pages 841–858, 2020.

[44] Tobias Cloosters, Johannes Willbold, Thorsten Holz, and Lucas Davi. {SGXFuzz}:
Efficiently Synthesizing Nested Structures for {SGX} Enclave Fuzzing. In 31st
USENIX Security Symposium (USENIX Security 22), pages 3147–3164, 2022.

[45] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. PKU
Pitfalls: Attacks on PKU-Based Memory Isolation Systems. In Proceedings of the 29th
USENIX Conference on Security Symposium, pages 1409–1426, USA, August 2020.
USENIX Association. Literaturangaben.

[46] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro,
Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing
Control: On the Effectiveness of Control-Flow Integrity under Stack Attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 952–963, New York, NY, USA, October 2015. Association
for Computing Machinery.

[47] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Koppen,
Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi. Selfrando:
Securing the Tor Browser against De-Anonymization Exploits. Proceedings on Privacy
Enhancing Technologies, 2016(4):454–469, jul 2016.

50 bibliography

[48] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive,
2016.

[49] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016, pages 857–874. USENIX Association, 2016.

[50] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure, May 2015.

[51] Dan Rosenberg. Reflections on Trusting TrustZone. https://www.blackhat.com/
docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-

TrustZone.pdf, 2014.

[52] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust, and
A. Sadeghi. Fastkitten: Practical Smart Contracts on Bitcoin. In Nadia Heninger
and Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages 801–818. USENIX Association,
2019.

[53] Leila Delshadtehrani, Sadullah Canakci, Manuel Egele, and Ajay Joshi. SealPK:
Sealable Protection Keys for RISC-V. In 2021 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1278–1281, February 2021. ISSN: 1558-1101.

[54] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi,
and Manuel Egele. Phmon: A Programmable Hardware Monitor and Its Security
Use Cases. In Proceedings of the 29th USENIX Conference on Security Symposium,
pages 807–824, 2020.

[55] Liang Deng, Qingkai Zeng, and Yao Liu. Isboxing: An Instruction Substitution
Based Data Sandboxing for x86 Untrusted Libraries. In Hannes Federrath and
Dieter Gollmann, editors, ICT Systems Security and Privacy Protection - 30th IFIP TC 11
International Conference, SEC 2015, Hamburg, Germany, May 26-28, 2015, Proceedings,
volume 455 of IFIP Advances in Information and Communication Technology, pages
386–400. Springer, 2015.

[56] Ghada Dessouky, Tommaso Frassetto, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. With Great Complexity Comes Great Vulnerability: From
Stand-Alone Fixes to Reconfigurable Security. IEEE Secur. Priv., 18(5):57–66, 2020.

[57] Ghada Dessouky, Patrick Jauernig, Nele Mentens, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. INVITED: AI utopia or dystopia - on securing AI platforms. In

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf

bibliography 51

57th ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA, USA,
July 20-24, 2020, pages 1–6. IEEE, 2020.

[58] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight Jr., Benjamin C. Pierce, and André DeHon.
Architectural Support for Software-Defined Metadata Processing. In Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015,
pages 487–502. ACM, 2015.

[59] Zhen Yu Ding and Claire Le Goues. An Empirical Study of Oss-Fuzz Bugs. In 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pages
131–142. IEEE, 2021.

[60] William Drozd and Michael D. Wagner. Fuzzergym: A Competitive Framework for
Fuzzing and Learning. arXiv e-prints, page arXiv:1807.07490, July 2018.

[61] Nir Drucker and Shay Gueron. Combining Homomorphic Encryption with Trusted
Execution Environment: A Demonstration with Paillier Encryption and SGX. In
Proceedings of the 2017 international workshop on managing insider security threats,
pages 85–88, 2017.

[62] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual Payment Hubs Over Cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106–123. IEEE, 2019.

[63] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. The Untapped Potential of
Trusted Execution Environments on Mobile Devices. IEEE Secur. Priv., 12(4):29–37,
2014.

[64] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. SMART:
secure and minimal architecture for (establishing dynamic) root of trust. In 19th
Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego,
California, USA, February 5-8, 2012. The Internet Society, 2012.

[65] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.
Missing the Point(er): On the Effectiveness of Code Pointer Integrity. In 2015 IEEE
Symposium on Security and Privacy, pages 781–796. IEEE, May 2015. ISSN: 2375-1207.

[66] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. Scalable Memory Protection in the PENGLAI Enclave.
In Angela Demke Brown and Jay R. Lorch, editors, 15th USENIX Symposium on

52 bibliography

Operating Systems Design and Implementation, OSDI 2021, July 14-16, 2021, pages
275–294. USENIX Association, 2021.

[67] Oasis Protocol Foundation. Oasis Network.

[68] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler, Benjamin
Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. POSE: Practical Off-chain
Smart Contract Execution. In 30th Annual Network and Distributed System Security
Symposium, NDSS 2023, San Diego, California, USA, February 24-27, 2023, 2023.

[69] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi.
CFInsight: A comprehensive metric for CFI policies. In Proceedings 2022 Network
and Distributed System Security Symposium. Internet Society, 2022.

[70] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. IMIX: In-Process Memory Isolation EXtension. In 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages
83–97. USENIX Association, 2018.

[71] Gal Beniamini. Qsee Privilege Escalation Vulnerabilitiy. http://bits-

please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html,
2015.

[72] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. Greyone: Data Flow Sensitive Fuzzing. In USENIX Security
Symposium, pages 2577–2594, 2020.

[73] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 201–210. JMLR.org, 2016.

[74] Google. Afl - American Fuzzy Lop, April 2023. original-date: 2019-07-25T16:50:06Z.

[75] Richard Grisenthwaite. Arm Morello Evaluation Platform-Validating CHERI-Based
Security in a High-Performance System. In 2022 IEEE Hot Chips 34 Symposium
(HCS), pages 1–22. IEEE Computer Society, 2022.

[76] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and Ramachandran
Ramjee. Privado: Practical and Secure DNN Inference with Enclaves. CoRR,
abs/1810.00602, September 2019. arXiv:1810.00602 [cs] type: article.

http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html

bibliography 53

[77] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. TrustShadow: Secure execution of unmodified applications with
ARM TrustZone. In Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’17, pages 488–501, New York, NY, USA,
June 2017. ACM.

[78] Lachlan J. Gunn, Jian Liu, Bruno Vavala, and N. Asokan. Making Speculative BFT
Resilient with Trusted Monotonic Counters. In 2019 38th Symposium on Reliable
Distributed Systems (SRDS). IEEE, October 2019.

[79] Nikolaus Hansen, Dirk V Arnold, and Anne Auger. Evolution Strategies. Springer
handbook of computational intelligence, pages 871–898, 2015.

[80] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin,
Michael Backes, and Mario Fritz. MLCapsule: Guarded Offline Deployment of
Machine Learning as a Service. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 3295–3304, Nashville, TN, USA,
jun 2021. IEEE.

[81] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, and Michael
Grace. Partemu: Enabling Dynamic Analysis of Real-World TrustZone Software
Using Emulation. In Proceedings of the 29th USENIX Conference on Security Symposium,
pages 789–806, 2020.

[82] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-truth
fuzzing benchmark. In Longbo Huang, Anshul Gandhi, Negar Kiyavash, and Jia
Wang, editors, SIGMETRICS ’21: ACM SIGMETRICS / International Conference on
Measurement and Modeling of Computer Systems, Virtual Event, China, June 14-18, 2021,
pages 81–82. ACM, 2021.

[83] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L.
Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 489–504. USENIX
Association, 2019.

[84] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. Inktag: Secure
Applications on an Untrusted Operating System. In Vivek Sarkar and Rastislav
Bodík, editors, Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems - ASPLOS '13, pages 265–278.
ACM, 2013.

[85] Chenlin Huang, Yusong Tan, Guoyun Duan, Zhiwen Chen, Boyang Zhang, Peiyao
Deng, Qianxiang Zhang, Jianhua Sun, Hao Chen, Guoqing Xiao, et al. A Coverage-

54 bibliography

Guided Fuzzing Framework for Trusted Execution Environments. In 2021 IEEE
23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data
Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor,
Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pages
775–782. IEEE, 2021.

[86] Guerney Hunt, Richard (Rick) Boivie, Eric Hall, Elaine Palmer, Dimitrios Pen-
darakis, and Enriquillo (Ray) Valdez. Supporting Protected Computing on IBM
Power Architecture.

[87] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J.
Rossbach, and Emmett Witchel. Telekine: Secure Computing with Cloud Gpus. In
Ranjita Bhagwan and George Porter, editors, 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 817–833. USENIX Association, 2020.

[88] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel.
Chiron: Privacy-Preserving Machine Learning As a Service. CoRR, abs/1803.05961,
2018.

[89] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and By-
oungyoung Lee. DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1286–1303. IEEE, IEEE, may
2021.

[90] Nick Hynes, Raymond Cheng, and Dawn Song. Efficient Deep Learning on Multi-
Source Private Data. CoRR, abs/1807.06689, 2018.

[91] Hyperledger Foundation. Hyperledger Avalon.

[92] Synopsys Inc. Chromium (google Chrome), August 2019.

[93] Intel. Intel® Trust Domain Extensions.

[94] Intel. Intel Software Guard Extensions Programming Reference. https:

//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf,
2014.

[95] Intel. Intel® eASIC™ Devices, 2023.

[96] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. Block
Oriented Programming: Automating Data-Only Attacks. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

bibliography 55

SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 1868–1882. ACM, 2018.

[97] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-
Reza Sadeghi. DARWIN: Survival of the Fittest Fuzzing Mutators. In 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San Diego, California,
USA, February 24-27, 2023, 2023.

[98] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted Execution
Environments: Properties, Applications, and Challenges. IEEE Secur. Priv., 18(2):56–
60, 2020.

[99] Patrick Thomas Jauernig. SMOV: Lighweight In-Process Memory Isolation. Mas-
ter’s thesis, Darmstadt, November 2017.

[100] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. GAZELLE:
A low latency framework for secure neural network inference. In William Enck
and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1651–1669. USENIX
Association, 2018.

[101] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. Arbitrum: Scalable, Private Smart Contracts. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1353–1370, 2018.

[102] D. Kaplan, J. Powell, and T. Woller. AMD memory en-
cryption. https://developer.amd.com/wordpress/media/2013/12/

AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, 2016.

[103] David Kaplan. Protecting Vm Register State with SEV-ES. White paper, 2017.

[104] The kernel development community. Memory Protection Keys.

[105] Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press,
2023.

[106] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan. Trustlite: A Security
Architecture for Tiny Embedded Devices. In EuroSys, page 10. ACM, 2014.

[107] David Koisser, Patrick Jauernig, Gene Tsudik, and Ahmad-Reza Sadeghi. V’CER:
Efficient certificate validation in constrained networks. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, August 2022. USENIX Association.

[108] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopoulos.
No Need to Hide: Protecting Safe Regions on Commodity Hardware. In Proceedings

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

56 bibliography

of the Twelfth European Conference on Computer Systems, EuroSys ’17, pages 437–452,
New York, NY, USA, April 2017. ACM.

[109] Ranjit Kumaresan and Iddo Bentov. Amortizing Secure Computation with Penalties.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 418–429, 2016.

[110] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to Use Bitcoin to Play
Decentralized Poker. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 195–206, 2015.

[111] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to Secure Computation with Penalties. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 406–417, 2016.

[112] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. Code-Pointer Integrity. In Per Larsen and Ahmad-Reza Sadeghi,
editors, The Continuing Arms Race: Code-Reuse Attacks and Defenses, pages 81–116.
ACM / Morgan & Claypool, March 2018.

[113] Michael Larabel. Linux 5.12 Coming In At Around 28.8 Million Lines, AMDGPU
Driver Closing In On 3 Million, 2021.

[114] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.
Keystone: An open framework for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1–16,
2020.

[115] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. Occlumency: Privacy-
Preserving Remote Deep-Learning Inference Using SGX. In The 25th Annual
International Conference on Mobile Computing and Networking, MobiCom ’19, pages
1–17, New York, NY, USA, October 2019. Association for Computing Machinery.

[116] Caroline Lemieux and Koushik Sen. Fairfuzz: A Targeted Mutation Strategy for
Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 475–485, 2018.

[117] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry. Minibox: A
Two-Way Sandbox for x86 Native Code. In Garth Gibson and Nickolai Zeldovich,
editors, USENIX ATC, pages 409–420. USENIX Association, 2014.

[118] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. Steelix: Program-State Based Binary Fuzzing. In Proceedings of the

bibliography 57

2017 11th Joint Meeting on Foundations of Software Engineering, pages 627–637, 2017.

[119] Guangcheng Liang, Lejian Liao, Xin Xu, Jianguang Du, Guoqiang Li, and Heng-
long Zhao. Effective Fuzzing Based on Dynamic Taint Analysis. In 2013 Ninth
International Conference on Computational Intelligence and Security, pages 615–619.
IEEE, 2013.

[120] Hans Liljestrand, Thomas Nyman, Jan-Erik Ekberg, and N. Asokan. Authenticated
Call Stack. In Proceedings of the 56th Annual Design Automation Conference 2019,
DAC ’19, pages 1–2, New York, NY, USA, June 2019. Association for Computing
Machinery.

[121] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg, and
N. Asokan. PACStack: An authenticated call stack. In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 357–374. USENIX Association, 2021.

[122] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg,
and N. Asokan. PAC it up: Towards pointer integrity using ARM pointer authen-
tication. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security
Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages
177–194. USENIX Association, 2019.

[123] Linaro. OP-TEE. https://www.op-tee.org/.

[124] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. Light-Weight Contexts: An OS Abstraction for
Safety and Performance. In Kimberly Keeton and Timothy Roscoe, editors, 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 49–64. USENIX Association, 2016.

[125] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural Network Predictions
Via Minionn Transformations. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 619–631, New York, NY,
USA, October 2017. Association for Computing Machinery.

[126] Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scalable Byzantine
Consensus Via Hardware-Assisted Secret Sharing. IEEE Transactions on Computers,
68(1):139–151, January 2019.

[127] Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani B. Srivastava. Secdeep:
Secure and Performant On-Device Deep Learning Inference Framework for Mobile
and Iot Devices. In IoTDI ’21: International Conference on Internet-of-Things Design

https://www.op-tee.org/

58 bibliography

and Implementation, Virtual Event / Charlottesville, VA, USA, May 18-21, 2021, pages
67–79. ACM, 2021.

[128] Arm Ltd. Arm Confidential Compute Architecture.

[129] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. MOPT: Optimized Mutation Scheduling for Fuzzers. In USENIX
Security Symposium, pages 1949–1966, 2019.

[130] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil D.
Gligor, and Adrian Perrig. Trustvisor: Efficient TCB Reduction and Attestation. In
31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oak-
land, California, USA, pages 143–158, Oakland, CA, USA, 2010. IEEE Computer
Society.

[131] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. Flicker: An execution infrastructure for TCB minimization. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pages
315–328, 2008.

[132] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:
Payment Channels That Go Faster Than Lightning. CoRR, abs/1702.05812, 2017.

[133] Matt Miller. Trends, Challenge, and Shifts in Software Vulnerability Mitigation,
January 2019. original-date: 2017-07-06T21:55:08Z.

[134] MITRE. Log4shell Cve Details.

[135] Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn. Microstache: A
Lightweight Execution Context for In-Process Safe Region Isolation. In Research in
Attacks, Intrusions, and Defenses - 21st International Symposium, RAID 2018, Heraklion,
Crete, Greece, September 10-12, 2018, Proceedings, volume 11050 of Lecture Notes in
Computer Science, pages 359–379. Springer, 2018.

[136] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 19–38, San Jose, CA, USA, may 2017. IEEE. Literaturangaben.

[137] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. SEVered: Subverting AMD’s
virtual machine encryption. In EuroSec. ACM, 2018.

[138] Deepika Natarajan, Andrew Loveless, Wei Dai, and Ronald Dreslinski. Chex-Mix:
Combining Homomorphic Encryption with Trusted Execution Environments for

bibliography 59

Oblivious Inference in the Cloud. In 2023 IEEE 8th European Symposium on Security
and Privacy (EuroS&P). IEEE, July 2023.

[139] Nicole Nichols, Mark Raugas, Robert Jasper, and Nathan Hilliard. Faster Fuzzing:
Reinitialization with Deep Neural Models. arXiv preprint arXiv:1711.02807, 2017.

[140] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, and F. Piessens. Sancus: Low-Cost Trustworthy Ex-
tensible Networked Devices with a Zero-Software Trusted Computing Base. In
USENIX Security, 2013.

[141] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Ver-
bauwhede, J. Götzfried, T. Müller, and F. Freiling. Sancus 2.0: A Low-Cost Security
Architecture for Iot Devices. TOPS, 20(3):7, 2017.

[142] Satsuya Ohata. Recent Advances in Practical Secure Multi-Party Computation.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 103(10):1134–1141, 2020.

[143] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin,
Kapil Vaswani, and Manuel Costa. Oblivious Multi-Party Machine Learning on
Trusted Processors. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages
619–636. USENIX Association, 2016.

[144] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. Intel MPX Explained: A Cross-Layer Analysis of the Intel MPX System
Stack. Proceedings of the ACM on Measurement and Analysis of Computing Systems,
2(2):28:1–28:30, June 2018.

[145] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. Varys: Protecting {SGX} Enclaves from Practical Side-Channel Attacks. In
2018 {Usenix} Annual Technical Conference ({USENIX}{ATC} 18), pages 227–240,
2018.

[146] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang. An Exploratory
Study of Smart Contracts in the Ethereum Blockchain Platform. Empirical Software
Engineering, 2020.

[147] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious Neural Network
Computing Via Homomorphic Encryption. EURASIP J. Inf. Secur., 2007, 2007.

[148] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Optimizing Os
Fuzzer Seed Selection with Trace Distillation. In William Enck and Adrienne Porter

60 bibliography

Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, pages 729–743. USENIX Association, 2018.

[149] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. Libmpk:
Software Abstraction for Intel Memory Protection Keys (intel MPK). In 2019
USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July
10-12, 2019, pages 241–254. USENIX Association, 2019.

[150] Manas A. Pathak, Bhiksha Raj, Shantanu D. Rane, and Paris Smaragdis. Privacy-
Preserving Speech Processing: Cryptographic and String-Matching Frameworks
Show Promise. IEEE Signal Processing Magazine, 30(2):62–74, March 2013.

[151] Travis Patron. What’s the Big Idea behind Ethereum’s World Computer. https:

//www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/.

[152] Douglas Perry. Linux Kernel Grows Past 15 Million Lines of Code, January 2012.

[153] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa, Alexandru Răzvan Căciulescu,
and Abhik Roychoudhury. Smart Greybox Fuzzing. IEEE Transactions on Software
Engineering, 47(9):1980–1997, 2019.

[154] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. Visor: Privacy-Preserving Video Analytics As a Cloud Service.
In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 1039–1056. USENIX Association,
2020.

[155] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart Contracts.
White paper, pages 1–47, 2017.

[156] Project Zero. Trust Issues: Exploiting TrustZone TEEs. https:

//googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-

trustzone-tees.html, 2017.

[157] Mohit Rajpal, William Blum, and Rishabh Singh. Not All Bytes Are Equal: Neural
Byte Sieve for Fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[158] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. Vuzzer: Application-Aware Evolutionary Fuzzing. In NDSS,
volume 17, pages 1–14, 2017.

[159] J. Ren, Y. Qi, Y. Dai, X. Wang, and Y. Shi. Appsec: A Safe Execution Environment
for Security Sensitive Applications. In Ada Gavrilovska, Angela Demke Brown,
and Bjarne Steensgaard, editors, Proceedings of the 11th ACM SIGPLAN/SIGOPS

https://www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/
https://www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

bibliography 61

International Conference on Virtual Execution Environments, pages 187–199. ACM,
March 2015.

[160] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. XONN: xnor-based oblivious deep neural network in-
ference. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security
Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages
1501–1518. USENIX Association, 2019.

[161] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A Hybrid Secure Compu-
tation Framework for Machine Learning Applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, ASIACCS ’18, pages
707–721, New York, NY, USA, May 2018. Association for Computing Machinery.

[162] Ahmad-Reza Sadeghi and Thomas Schneider. Generalized Universal Circuits for
Secure Evaluation of Private Functions with Application to Data Classification. In
Information Security and Cryptology – ICISC 2008, volume 2008, page 453. Springer
Berlin Heidelberg, December 2008.

[163] Alexander Schlögl and Rainer Böhme. Ennclave: Offline Inference with Model
Confidentiality. In Jay Ligatti and Xinming Ou, editors, AISec@CCS 2020: Proceedings
of the 13th ACM Workshop on Artificial Intelligence and Security, Virtual Event, USA, 13
November 2020, pages 93–104. ACM, 2020.

[164] Martin Schonstedt, Ferdinand Brasser, Patrick Jauernig, Emmanuel Stapf, and
Ahmad-Reza Sadeghi. SafeTEE: Combining safety and security on ARM-based
microcontrollers. In 2022 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2022. IEEE, March 2022.

[165] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruß. Donky: Domain Keys – Efficient
In-Process Isolation for RISC-V and x86: 29th USENIX Security Symposium. In 29th
USENIX Security Symposium (USENIX Security 20), Proceedings of the 29th USENIX
Security Symposium, pages 1677–1694. USENIX Association, August 2020.

[166] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. Counterfeit Object-Oriented Programming: On the
Difficulty of Preventing Code Reuse Attacks in C++ Applications, May 2015.

[167] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. Adapting Software Fault Isolation to Contemporary
CPU Architectures. In 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 1–12. USENIX Association, 2010.

62 bibliography

[168] Gabriele Serra, Pietro Fara, Giorgiomaria Cicero, Francesco Restuccia, and Alessan-
dro Biondi. PAC-Pl: Enabling control-flow integrity with pointer authentication in
FPGA SoC platforms, 2022.

[169] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. Security Analysis of Proces-
sor Instruction Set Architecture for Enforcing Control-Flow Integrity. In Proceedings
of the 8th International Workshop on Hardware and Architectural Support for Security
and Privacy, pages 1–11. ACM, June 2019.

[170] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply: Low-TCB
Linux Applications with SGX Enclaves. In NDSS, 2017.

[171] Lingyun Situ, Linzhang Wang, Xuandong Li, Le Guan, Wenhui Zhang, and Peng
Liu. Energy Distribution Matters in Greybox Fuzzing. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 270–271. IEEE, 2019.

[172] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi.
Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space
Layout Randomization, 2013.

[173] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. HDFI:
Hardware-Assisted Data-Flow Isolation. In S&P, pages 1–17. IEEE, IEEE, May 2016.

[174] Emmanuel Stapf, Patrick Jauernig, Ferdinand Brasser, and Ahmad-Reza Sadeghi.
In Hardware We Trust? From TPM to Enclave Computing on RISC-V. In 29th
IFIP/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2021,
Singapore, Singapore, October 4-7, 2021, pages 1–6. IEEE, 2021.

[175] Statista. Most Used Languages among Software Developers Globally 2022.

[176] Stefan Steinegger, David Schrammel, Samuel Weiser, Pascal Nasahl, and Stefan
Mangard. Servas! Secure Enclaves Via RISC-V Authenticryption Shield. In Elisa
Bertino, Haya Shulman, and Michael Waidner, editors, Computer Security - ESORICS
2021 - 26th European Symposium on Research in Computer Security, Darmstadt, Germany,
October 4-8, 2021, Proceedings, Part II, volume 12973 of Lecture Notes in Computer
Science, pages 370–391. Springer, 2021.

[177] Nick Stephens. Behind the Pwn of a TrustZone. https://www.slideshare.net/

GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose,
2016.

[178] Nenad Stojanovski, Marjan Gusev, Danilo Gligoroski, and Svein J Knapskog. By-
passing Data Execution Prevention on Microsoftwindows Xp Sp2. In The Second

https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose

bibliography 63

International Conference on Availability, Reliability and Security (ARES’07), pages 1222–
1226. IEEE, 2007.

[179] Raoul Strackx, Frank Piessens, and Bart Preneel. Efficient Isolation of Trusted
Subsystems in Embedded Systems, 2010.

[180] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. TrustICE: Hardware-
assisted isolated computing environments on mobile devices. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, June
2015.

[181] Zhichuang Sun, Ruimin Sun, Long Lu, and Somesh Jha. Shadownet: A Secure and
Efficient System for On-Device Model Inference. CoRR, abs/2011.05905, 2020.

[182] Synopsys. Heartbleed, 2022.

[183] The Linux Foundation [@linuxfoundation]. The Kernel Right Now Is about 35

Million Lines of Code, June 2020.

[184] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain
Scaling Using Rollups: A Comprehensive Survey. IEEE Access, 2022.

[185] Florian Tramèr and Dan Boneh. Slalom: Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[186] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic Rizzo,
and Matthew Hicks. Fuzzing Hardware like Software. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3237–3254, 2022.

[187] C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A Practical Library Os for
Unmodified Applications on SGX. In USENIX ATC, pages 645–658, 2017.

[188] Aakash Tyagi, Addison Crump, Ahmad-Reza Sadeghi, Garrett Persyn, Jeyavijayan
Rajendran, Patrick Jauernig, and Rahul Kande. TheHuzz: Instruction fuzzing
of processors using Golden-Reference models for finding Software-Exploitable
vulnerabilities. In 31st USENIX Security Symposium (USENIX Security 22), Boston,
MA, August 2022. USENIX Association.

[189] Anjo Vahldiek-Oberwagner, Eslam Elnikety, N. Duarte, Michael Sammler, P. Dr-
uschel, and D. Garg. ERIM: Secure, Efficient In-process Isolation with Protection
Keys (MPK). In USENIX Security Symposium, 2019.

64 bibliography

[190] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-Of-
Order Execution. In 27th USENIX Security Symposium (USENIX Security 18), pages
991–1008, 2018.

[191] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe:
How SGX fails in practice. https://sgaxeattack.com/, 2020.

[192] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted Execution
Environments on Gpus. In USENIX OSDI 18, pages 681–696, Carlsbad, CA, October
2018. USENIX Association.

[193] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. In Andrew P. Black and Barbara Liskov, editors,
Proceedings of the Fourteenth ACM Symposium on Operating System Principles, SOSP
1993, The Grove Park Inn and Country Club, Asheville, North Carolina, USA, December
5-8, 1993, pages 203–216. ACM, 1993.

[194] DanChen Wang, Xiaosong Zhang, Yang Xu, and Haiquan Song. A Secure Multi-
Party Computing System Based on SGX Technology for Trusted Data Circulation.
In 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engi-
neering (ISKE), pages 90–95. IEEE, 2019.

[195] Gang Wang and Mark Nixon. Sok: X-Assisted Bft Consensus Protocols. In Blockchain
– ICBC 2023, pages 54–71. Springer Nature Switzerland, 2023.

[196] Jianqiang Wang, Pouya Mahmoody, Ferdinand Brasser, Patrick Jauernig, Ahmad-
Reza Sadeghi, Donghui Yu, Dahan Pan, and Yuanyuan Zhang. Virtee: A Full
Backward-Compatible TEE with Native Live Migration and Secure I/O. In Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, DAC ’22, pages 241–246,
New York, NY, USA, August 2022. Association for Computing Machinery.

[197] Wenhao Wang, Yichen Jiang, Qintao Shen, Weihao Huang, Hao Chen, Shuang Wang,
XiaoFeng Wang, Haixu Tang, Kai Chen, Kristin Lauter, et al. Toward Scalable Fully
Homomorphic Encryption through Light Trusted Computing Assistance. arXiv
preprint arXiv:1905.07766, 2019.

[198] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz: Efficient
Fuzzing with Deep Neural Network. IEEE Access, 7:36340–36352, 2019.

[199] Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-
nition. arXiv preprint arXiv:1804.03209, 2018.

https://sgaxeattack.com/

bibliography 65

[200] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. Differentiating Code from Data in x86 Binaries. In Dimitrios
Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors,
Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer
Science, pages 522–536, Berlin, Heidelberg, 2011. Springer.

[201] Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffenrath, and
Stefan Mangard. Transparent Memory Encryption and Authentication. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL), pages 1–6,
Ghent, Belgium, sep 2017. IEEE.

[202] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The CHERI Capability Model: Revisiting RISC in an Age of Risk.
In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pages 457–468. IEEE, IEEE, June 2014.

[203] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. One Fuzzing Strategy to Rule Them All. In Proceedings
of the 44th International Conference on Software Engineering. ACM, May 2022.

[204] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing Wang, and Ee-Chien Chang.
Hybrid Trust Multi-Party Computation with Trusted Execution Environment. In
Proceedings 2022 Network and Distributed System Security Symposium. Internet Society,
2022.

[205] Karl Wüst, Loris Diana, Kari Kostiainen, Ghassan Karame, Sinisa Matetic, and
Srdjan Capkun. Bitcontracts: Adding Expressive Smart Contracts to Legacy Cryp-
tocurrencies. IACR Cryptol. ePrint Arch., 2019:857, 2019.

[206] Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan Capkun. Ace:
Asynchronous and Concurrent Execution of Complex Smart Contracts. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 587–600, 2020.

[207] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. Hardware-Based
Domain Virtualization for Intra-Process Isolation of Persistent Memory Objects.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 680–692, May 2020.

[208] Jisoo Yang and Kang G. Shin. Using Hypervisor to Provide Data Secrecy for User
Applications on a Per-Page Basis. In David Gregg, Vikram S. Adve, and Brian N.
Bershad, editors, Proceedings of the 4th International Conference on Virtual Execution
Environments, VEE 2008, Seattle, WA, USA, March 5-7, 2008, pages 71–80. ACM, 2008.

66 bibliography

[209] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. Applied Federated Learning:
Improving Google Keyboard Query Suggestions. arXiv preprint arXiv:1812.02903,
2018.

[210] Joseph Yiu. ARMv8-m architecture technical overview. ARM white paper, 2015.

[211] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
Ecofuzz: Adaptive Energy-Saving Greybox Fuzzing As a Variant of the Adversarial
Multi-Armed Bandit. In Proceedings of the 29th USENIX Conference on Security
Symposium, pages 2307–2324, 2020.

[212] Google Projekt Zero. Xnu: Copy-On-Write Behavior Bypass Via Mount of User-
Owned Filesystem Image. https://developer.amd.com/wordpress/media/2013/

12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, 2018.

[213] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. Truspy: Cache Side-Channel
Information Leakage from the Secure World on Arm Devices. IACR Cryptology
ePrint Archive, 2016:980, 2016.

[214] Ning Zhang, Kun Sun, Wenjing Lou, and Y. Thomas Hou. Case: Cache-Assisted
Secure Execution on Arm Processors, 2016.

[215] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. SecTEE: A
Software-Based Approach to Secure Enclave Architecture Using TEE. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security. ACM,
November 2019.

[216] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J. Walls.
Silhouette: Efficient Protected Shadow Stacks for Embedded Systems. In 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages
1219–1236. USENIX Association, 2020.

[217] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. Armlock: Hardware-Based
Fault Isolation for ARM. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,
pages 558–569. ACM, 2014.

[218] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan Piersma,
and Simha Sethumadhavan. No-Fat: Architectural Support for Low Overhead
Memory Safety Checks. In 48th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2021, Valencia, Spain, June 14-18, 2021, pages 916–929.
IEEE, 2021.

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

bibliography 67

[219] Serkan Özkan. Browse Vulnerabilities by Date, 2022.

List of Figures

Figure 1 High-level overview of the complex software stack on a modern
system. 2

Figure 2 High-level overview of IMIX . 9

Figure 3 High-level overview of CURE. New or modified hardware com-
ponents are shown in blue, the software TCB is marked green. . . 15

Figure 4 High-level overview of POSE . 23

Figure 5 High-level overview of OMG . 26

Figure 6 High-level overview of DARWIN 33

Acronyms

CCA Confidential Compute Architecture

CET Control-flow Enforcement Technology

CFI Control-Flow Integrity

CPI Code Pointer Integrity

DMA Direct Memory Access

ES Evolution Strategy

FPGA Field Programmable Gate Array

ISA Instruction Set Architecture

MMU Memory Management Unit

68

bibliography 69

MPX Memory Protection Extensions

MPK Memory Protection Keys

PKU Protection Keys for Userspace

PSO Particle Swarm Optimization

SEV Secure Encrypted Virtualization

SFI Software-fault Isolation

SGX Software Guard Extensions

TCB Trusted Computing Base

TDX Trust Domain Extensions

TEE Trusted Execution Environment

A P P E N D I C E S

A
IMIX: In-Process Memory Isolation EXtension
(USENIX Sec’18)

[70] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi.
IMIX: In-Process Memory Isolation EXtension. In 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 83–97. USENIX Association,
2018. CORE Rank A*. Chapter 2.

73

Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

IMIX: In-Process Memory Isolation EXtension
Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen,
and Ahmad-Reza Sadeghi, Technische Universität Darmstadt

https://www.usenix.org/conference/usenixsecurity18/presentation/frassetto

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5

IMIX: In-Process Memory Isolation EXtension

Tommaso Frassetto Patrick Jauernig Christopher Liebchen Ahmad-Reza Sadeghi
Technische Universität Darmstadt, Germany

{tommaso.frassetto, patrick.jauernig, christopher.liebchen, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

Memory-corruption attacks have been subject to exten-
sive research in the latest decades. Researchers demon-
strated sophisticated attack techniques, such as (just-in-
time/blind) return-oriented programming and counterfeit
object-oriented programming, which enable the attacker
to execute arbitrary code and data-oriented attacks that
are commonly used for privilege escalation. At the same
time, the research community proposed a number of ef-
fective defense techniques. In particular, control-flow
integrity (CFI), code-pointer integrity (CPI), and fine-
grained code randomization are effective mitigation tech-
niques against code-reuse attacks. All of these tech-
niques require strong memory isolation. For example,
CFI’s shadow stack, CPI’s safe-region, and the random-
ization secret must be protected from adversaries able to
perform arbitrary read-write accesses.
In this paper we propose IMIX, a lightweight, in-
process memory isolation extension for the Intel-based
x86 CPUs. Our solution extends the x86 ISA with a
new memory-access permission to mark memory pages
as security sensitive. These memory pages can then only
be accessed with a newly introduced instruction. Unlike
previous work, IMIX is not tailored towards a specific
defense (technique) but can be leveraged as a primitive to
protect the data of a wide variety of memory-corruption
defenses. We provide a proof of concept of IMIX us-
ing Intel’s Simulation and Analysis Engine. We extend
Clang/LLVM to include our new instruction, and en-
hance CPI by protecting CPI’s safe region using IMIX.

1 Introduction

Memory-corruption attacks have been a major threat
against modern software for multiple decades. Attack-
ers leverage memory-corruption vulnerabilities to per-
form multiple malicious activities including taking con-
trol of systems and exfiltrating information. Memory-

corruption attacks can be roughly divided into the cat-
egories code-injection [3], code-reuse [50, 52, 54], and
data-only attacks [12, 28, 29]. While code-injection at-
tacks introduce new malicious code into the vulnerable
program, code-reuse attacks reuse the existing code in
an unintended way. Data-only attacks in turn aim to in-
fluence the program behavior by modifying crucial data
variables, e.g., used in branching conditions.
Defenses against memory-corruption typically reduce
the attack surface by preventing the adversary from cor-
rupting part of the application’s memory which is essen-
tial for a successful attack. Prominent examples include:
W⊕X [44, 48] which prevents data from being executed,
and hence, code-injection attacks; Control Flow Integrity
(CFI) [1] and Code-Pointer Integrity (CPI) [38] which
protect code pointers to prevent code-reuse attacks; and
Data Flow Integrity (DFI) [2, 10] mitigating data-only
attacks by restricting data access.
Some of these defenses can be implemented efficiently
using mechanisms that reside entirely outside the un-
derlying application process. For instance, the kernel
configures W⊕X and the hardware enforces it. Hence,
the adversary cannot tamper with this defense mecha-
nism when exploiting a memory-corruption vulnerabil-
ity in the application. However, using an external mech-
anism is not always feasible in practice due to high per-
formance overhead. For instance, CFI requires run-time
checks and a shadow stack [1, 9, 18], which is updated
every time a function is invoked or returns. CPI requires
run-time checks and a safe region, which contains meta-
data about the program’s variables. The required code for
these defenses can be efficiently protected when marked
as read-only, just like the application code. However,
as of today no architectural solution exists that protects
the data region of these defenses from unintended/ma-
licious accesses. This data cannot be stored outside of
the process, e.g., in kernel memory, because accessing it
would impose an impractical performance overhead due
to the time needed for a context switch. Hence, to pre-

USENIX Association 27th USENIX Security Symposium 83

vent the adversary from accessing the data some form
of in-process memory isolation is needed, i.e., a mech-
anism ensuring access only by the defense code while
denying access by the potentially vulnerable application
code. However, devising a memory isolation scheme for
current x86 processors is challenging.

Memory Isolation Approaches. A variety of mem-
ory isolation solutions have been proposed or deployed
both in software and/or hardware. Software solutions
use either access instrumentation [8, 61], or data hid-
ing [6, 38]. Instrumentation-based memory isolation in-
serts run-time checks before every memory access in the
untrusted code in order to prevent accesses to the pro-
tected region. However, it imposes a substantial perfor-
mance overhead, for instance, code instrumented using
Software Fault Isolation (SFI) incurs an overhead up to
43% [51]. Data hiding schemes typically allocate data at
secret random addresses. Modern processors have suffi-
ciently large virtual memory space (140 TB) to prevent
brute-force attacks. The randomized base address must
be kept secret and is usually stored in a CPU register.
However, ensuring that this secret is not leaked to the ad-
versary is challenging, especially if the program is very
complex. For instance, compilers sometimes save regis-
ters to the stack in order to make room for intermediate
results from some computation. This is known as regis-
ter spilling and can leak the randomization secret [14].
Moreover, even a large address space can successfully
be brute-forced as it was shown on an implementation
of CPI [22, 24]. Thus, current in-process memory iso-
lation either compromises performance or offers limited
security.
Memory protection based on hardware extensions is an-
other approach to achieve in-process isolation. For in-
stance, Intel has recently announced Control-flow En-
forcement Technology [33] and Memory Protection
Keys [34] (already available on other architectures, e.g.
memory domains on ARM32 [4]). However, these tech-
nologies either provide hardware support limited to a
specific mitigation, or cause unnecessary performance
overhead. We will discuss those technologies in a more
detailed way in Section 8.

Goals and Contributions. In this paper we present
IMIX, which enables lightweight in-process memory
isolation for memory-corruption defenses that target the
x86 architecture. IMIX enables isolated pages. Marked
with a special flag, isolated pages can only be accessed
using a single new instruction we introduce, called
smov. Just like defenses like W⊕X protect the code of
run-time defenses from unintended modifications, IMIX
protects the data of those defenses from unintended ac-
cess. In contrast to other recently proposed hardware-

based approaches we provide an agnostic ISA extension
that can be leveraged by a variety of defenses against
code-reuse attacks to increase performance and security.
To summarize, our main contributions are:

• Hardware primitive to isolate data memory. We
propose IMIX, a novel instruction set architecture
(ISA) extension to provide effective and efficient in-
process isolation that is fundamental for the security
of memory-corruption defenses (metadata protec-
tion). Therefore, IMIX introduces a new memory-
access permission to protect the isolated pages,
which prevents regular load and store instructions
from accessing this memory. Instead, the code part
of defense mechanisms needs to use our newly in-
troduced smov instruction to access the protected
data.

• Proof-of-concept implementation. We provide a
fully-fledged proof of concept of IMIX. In partic-
ular, we leverage Intel’s Simulation and Analysis
Engine [11] to extend the x86 ISA with our new
memory protection, and to add the smov instruc-
tion. Further, we extend the Linux kernel to support
our ISA extension and the LLVM compiler infras-
tructure to provide primitives for allocation of pro-
tected memory, and access to the former. Finally,
we demonstrate how defenses against memory-
corruption attacks benefit from using IMIX by port-
ing code-pointer integrity (CPI) [38] to leverage
IMIX to isolate its safe-region.

• Thorough evaluation. We evaluate the perfor-
mance by comparing our IMIX-enabled port of CPI
to the original x86-64 variant. Further, we compare
our solution to Intel’s Memory Protection Keys and
Intel’s Memory Protection Extensions [34] over-
head for CPI.

2 Background

In this section we provide the necessary technical back-
ground which is necessary for understanding the remain-
der of this paper. We first provide a brief summary of
memory corruption attacks and defenses, and then ex-
plain memory protection on the x86 architecture.

2.1 Memory Corruption
C and C++ are popular programming languages due
to their flexibility and efficiency. However, their re-
quirement for manual memory management places a
burden on developers, and mistakes easily result in
memory-corruption vulnerabilities which enable attack-
ers to change the behavior of a vulnerable application

84 27th USENIX Security Symposium USENIX Association

during run time. For example, a missing bounds check
during the access of a buffer can lead to a buffer over-
flow, which enables the attacker to manipulate adjacent
memory values. With a write primitive in hand the at-
tacker can achieve different levels of control of the tar-
get, such as changing data flows within the application,
or hijacking the control flow. When conducting a data-
flow attack [28, 29], the attacker manipulates data point-
ers and variables that are used in conditional statements
to disclose secrets like cryptographic keys. In contrast,
during a control-flow hijacking attack, the attacker over-
writes code pointers, which are later used as a target ad-
dress of an indirect branch, to change control flow to
execute injected code [3] or to conduct a code-reuse at-
tack [50, 52, 54].
There exist different approaches to mitigate these at-
tacks, however, they all have in common that they are
part of the same execution context as the vulnerable ap-
plication, and often make a tradeoff between practicality
and security.
For example, combining SoftBounds [46] and CETS [47]
guarantees memory safety for applications written in
C, and hence, prevent the exploitation of memory-
corruption vulnerabilities in the first place. Unfortu-
nately, these guarantees come with an impractical per-
formance overhead of more than 100%. To limit the per-
formance impact, other mitigation techniques focus on
mitigating certain attack techniques. To mitigate control-
flow hijacking attacks, these techniques prevent the cor-
ruption of code pointers [38], verify code pointers before
they are used [1], or ensure that the values of valid code
pointers are different for each execution [16].
Another common aspect of every memory-corruption
mitigation technique is that they reduce the attack sur-
face of a potentially vulnerable application to the miti-
gation itself. In other words, if the attacker is able to
manipulate the mitigation or memory on which the mit-
igation depends, she can undermine the security of the
mitigation. The protection mitigation’s memory is hard
because it is part of the memory which the attacker can
potentially access.
Next, we provide a short overview memory protection
techniques, which are available on the x86 architecture,
that can be leveraged to protect the application’s and mit-
igation’s memory.

2.2 Memory Isolation

The x86 architecture offers different mechanisms to en-
force memory protection. Segmentation and paging are
the most well-known ones. However, recently, Intel and
AMD proposed a number of additional features to protect
and isolate memory. As we argue in Section 8, IMIX
is most likely to be adapted for Intel-based x86 CPUs,

hence, we focus in this section on memory protection
features that are implemented or will be implemented
for Intel-based x86 CPUs. Note that in most cases AMD
provides a similar feature using different naming conven-
tion. Finally, we shortly discuss software-based memory
isolation.

Traditional Memory Isolation. Segmentation and
paging build a layer of indirection for memory accesses
that can be configured by the operating system, and the
CPU enforces access control while resolving the indirec-
tion.
Segmentation is a legacy feature that allows developers
to define segments that consists of a start address, size,
and an access permission. However, on modern 64-bit
systems access permissions are no longer enforced. Nev-
ertheless, many mitigations [6, 18, 38, 41] leverage seg-
mentation to implement information hiding by allocating
their data TCB at a random address, and ensure that it is
only accessed through segmentation.
On modern systems, paging creates an indirection that
maps virtual memory to physical memory. The map-
ping is configured by the operating system through a data
structure known as page tables, which contain the trans-
lation information and a variety of access permissions.
The paging permission system enables the operating sys-
tem to assign memory to either itself or to the user mode.
To isolate different processes from each other, the oper-
ating system ensures that each process uses its own page
table. Due to legacy reasons, paging does not differen-
tiate between the read and execute permission, which is
why modern systems feature the “non-executable” per-
mission. Further, paging allows to mark memory as
(non-)writable.

New Memory Protection Features. Recently intro-
duced or proposed features that enable memory isola-
tion on x86 are Extended Page Tables (EPT), Mem-
ory Protection Extensions (MPX), Software Guard Ex-
tensions (SGX), Memory Protection Keys (MPK) and
Control-flow Enforcement Technology (CET). We pro-
vide a comparison in Section 9.
The EPT facilitate memory virtualization and are con-
ceptually the same as regular page tables, except that
they are configured by the hypervisor, and allow to set the
read/write/execute permission individually. Hence, pre-
vious work leveraged the EPT to implement execute-only
memory [16, 58, 63]. MPX implements bounds check-
ing in hardware. Therefore, it provides new instructions
to configure a lower and upper bound for a pointer to a
buffer. Then, before a pointer is dereferenced, the de-
veloper can leverage another MPX instruction to quickly
check whether this address points into the buffers bound-
aries. SGX allows to create enclaves within a process

USENIX Association 27th USENIX Security Symposium 85

that are completely isolated from the rest of the system
at the cost of high overhead when switching the execu-
tion to the code within an enclave. MPK introduces a
new register, which contains a protection key, and en-
ables programmers to tag memory (the tag is stored in
the page table) such that it can only be accessed if the
protection key register contains a specific key. MPK can
be utilized to implement in-process isolation by tagging
the security critical data and loading the corresponding
key only when executing a benign access, and deleting it
after the access succeeded. Intel’s hardware support for
CFI, CET, provides similar memory isolation the shadow
stack as IMIX for security critical data in general. It in-
troduces a new access permission for the shadow stack,
and special instructions to access it. Unfortunately, CET
is tailored towards CFI and cannot be easily repurposed
for other mitigations.

Software-based Approaches. Software Fault Isola-
tion (SFI) [43, 51, 61] instruments every read, write, and
branch instruction to enable in-process isolation. How-
ever, this approach comes with a significant performance
overhead due to the additional instructions.
To summarize, none of the above listed memory protec-
tion features provides mitigation-agnostic security and
performance benefits at the same time.

3 Adversary Model

Throughout our work, we use the following standard
adversary model and assumptions, which are consistent
with prior work in this field of research [21, 38, 53, 54].

• Memory corruption. We assume the presence of a
memory-corruption vulnerability, which the adver-
sary can repeatedly exploit to read and write data
according to the memory access permissions.

• Sandboxed code execution. The adversary can ex-
ecute code in an isolated environment. However,
the executed code cannot interfere with the target
application by any means other than by using the
memory corruption vulnerability. In particular, this
means that the sandboxed code cannot execute the
smov instruction with controlled arguments. Arbi-
trary code execution is prevented by hardening the
target application with techniques such as CPI [38],
CFI [1], or code randomization [16]. However,
the attacker can target those defenses as well us-
ing the memory corruption vulnerability. We as-
sume memory-corruption mitigations cannot be by-
passed unless the attacker can corrupt the mitiga-
tion’s metadata.

Application

Protected Code Protected Data

IMIXW⊕X

Run-Time Defenses

1

2

Code Pointer Integrity

Safe
Region

IMIX

Protected
Code

W⊕X

Shadow Stack (CFI)

Shadow
Stack

IMIX

Protected
Code

W⊕X

IMIX Framework

Kernel support

New page
permissions

Hardware
supportsmov

instruction

Compiler
supportLLVM
Extension

3

4 5 6

Figure 1: Overview of IMIX.

• Immutable code. The adversary cannot inject new
code or modify existing code, which would allow
her to execute the smov instruction with controlled
arguments. This is enforced by hardening the target
application with the W⊕X memory policy [44, 48].

4 IMIX

As we mentioned in Section 1, application developers
protect their applications (1 in Figure 1) using run-time
defenses 2 . Like for applications, the correct func-
tionality of defenses relies on the integrity of their code
and data. A number of existing run-time defenses, like
CPI and CFI, require to keep their data within the pro-
cess of the vulnerable application to avoid a high per-
formance overhead. Thus, the attacker may leverage
a memory-corruption vulnerability in the application to
bypass those defenses [21]. Traditionally, defense de-
velopers enforce the integrity of the (static) code using
W⊕X or execute-only memory, while the integrity of the
data relies on some form in-process memory isolation.
However, existing memory isolation techniques, namely
instrumentation and data hiding, force the defense de-
velopers to choose between high performance overheads
and compromised security. IMIX 3 provides an effi-
cient, secure, hardware-enforced in-process memory iso-
lation mechanism. Data belonging to run-time mitiga-

86 27th USENIX Security Symposium USENIX Association

tions is allocated in isolated pages, which are marked
with a special access permission. We introduce a new
dedicated instruction, smov 4 , to access this data, while
normal code belonging to the potentially vulnerable ap-
plication is denied access to the isolated pages.
In addition to the smov instruction and the associated
access permissions, IMIX includes a kernel extension 5
and compiler support 6 . The kernel extension enables
protected memory allocation by supporting the special
access permission. IMIX’s compiler integration enables
applications as well as run-time defenses to leverage our
memory isolation through high-level and low-level con-
structs for protected memory allocation and access. This
makes it easy to adopt IMIX without detailed knowledge
of IMIX’s implementation.
In the following, we explain the individual building
blocks of our IMIX framework in detail.

Hardware. For IMIX, we extend two of the CPU’s
main responsibilities, instruction processing and mem-
ory management. We add our smov instruction to the in-
struction set, reusing the logic of regular memory access
instructions, so that the smov instruction has the same
operand types of regular memory-accessing mov instruc-
tions, mov instructions without a memory operand do not
need to be handled. The memory access logic is modified
so that it will generate a fault if 1) an instruction other
than smov is used to access a page protected by IMIX,
or if 2) an smov instruction is used to access a normal
page. Access by normal instructions to normal memory,
and by smov instructions to protected memory, are per-
mitted. If we allowed smov to access normal memory,
attacks on metadata would be possible, e.g., the attacker
could overwrite a pointer to CPI’s metadata with an ad-
dress pointing to an attacker-controlled buffer in normal
memory. Our design ensures instructions intended to op-
erate on secure data cannot receive insecure input.

Kernel. An operating system kernel controls the user-
space execution environment and hardware devices. The
kernel manages virtual memory using page tables that
map the address of each page to the physical page frame
that contains it. Each page is described by a page table
entry, which also contains some metadata, including the
access permissions for that page. A user-space program
can request a change in its access permissions to a page
through a system call.
We extend the kernel to support an additional access per-
mission, which identifies all pages protected by IMIX.
This enables protected memory allocation not only for
statically compiled binaries, but also for code generated
at run time, which has been an attractive target for recent
attacks [23].

Compiler. A compiler makes platform functionality
available as high-level constructs to developers. Its main
objective is to transform source code to executables for
a particular platform. We extend the compiler on both
ends. First, IMIX provides two high-level primitives:
one for allocating protected memory and one for access-
ing it. These memory-protection primitives can either
be used to build mitigations, or to protect sensitive data
directly. IMIX provides optimized interfaces for both
use cases. Mitigations like CPI are implemented as an
LLVM optimization pass that works at the intermediate
representation (IR) level. IMIX provides IR primitives
to use for IR modification. For application developers,
IMIX provides source code annotations: variables with
our annotation will be allocated in protected memory,
and all accesses will be through the smov instruction.

5 Implementation

Figure 2 provides an overview of the components of
IMIX. Developers can build programs with IMIX, using
our extended Clang compiler 1 , which supports annota-
tions for variables that should be allocated in protected
memory and new IR instructions to access the protected
memory. We also modified its back end to support smov
instructions. Programs protected by IMIX mark isolated
pages using the system call mprotect with a special
flag 2 . Therefore, we extended the kernel’s existing
page-level memory protection functionality to support
this flag and mark isolated pages appropriately 4 . User-
space programs access normal memory using regular in-
structions, e.g., mov, while accesses to protected mem-
ory must be performed using the instruction smov 3 .
To support IMIX, the CPU must be modified to support
the smov instruction 5 and must perform the appropri-
ate checks when accessing memory 6 . In the following
we explain each component in detail.

5.1 CPU Extension
As we mentioned in Section 4, every isolated page needs
to be marked with a special flag. The CPU already has
a data structure to store information about every page,
which is called a Page Table Entry (PTE). In addition to
the physical address of every virtual page, a PTE stores
other metadata about the page, including permissions
like writable and executable. Those flags are checked by
the Memory Management Unit (MMU) to prevent unin-
tended accesses. To implement our proof of concept, we
mapped the IMIX protection flag to an ignored bit in the
PTE; specifically, we chose bit 52, as it is the first bit not
reserved, and is normally ignored by the MMU [31].
To enforce hardware protection, the CPU needs to be up-
dated to enforce our access policy: non-smov can only

USENIX Association 27th USENIX Security Symposium 87

User Program OS Kernel

smov i, %rcx

mprotect(page,
PROT_IMIX) CPU

Memory

Page Tables

MMU

C/C++
Source

Clang

LLVM Extension

smov s, %rcx

Page permissions

IMIX bit

Protected Memory

s: 0x39404142

Normal Memory

i: 0x18192021

mov s, %rcx

smov
check

Core

smov

1

2

3

4

5 6
7

mov i, %rcx

Figure 2: Overview of IMIX.

access regular pages, while smov can only access iso-
lated pages. In other cases, the CPU must generate a
fault (7 in Figure 2). The implementation of this logic
requires the modification of the x86-64 ISA, which is
challenging without source code access. Thus, we used a
hardware simulator to show the feasibility of our design.
Next, we describe how we extend x86-64 with the help of
Intel’s SAE, and then discuss the necessary modification
to real hardware.

Simulated Hardware. We use Wind River Sim-
ics [64], a full system simulator, in order to simulate a
complete computer which supports IMIX. Yet, Simics
alone is too slow to boot the Linux kernel and test our
kernel extension. Therefore we use the complementary
Intel Simulation and Analysis Engine (SAE) add-on by
Chachmon et al. [11]. Below we will refer to the system
composed by Simics and SAE as simply SAE. SAE sup-
ports emulating an x86 system running a full operating
system with its processes, while allowing various archi-
tectural instrumentations, including the CPU, the mem-
ory, and related hardware such as the memory manage-
ment unit (MMU). This is done using extensions, called
ztools, that may be loaded and unloaded at any time dur-
ing emulation. They are implemented as shared libraries
written in C/C++.
To instrument a simulated system, ztools registers call-
backs for specific hooks either at initialization time or
dynamically. First, we make sure that our ztool is initial-
ized by registering a callback for the initialization hook.
Then, we register a callback that is executed when an
instruction is added to the CPU’s instruction cache. If
either a mov or smov instruction that accesses memory
is found, we register an instruction replacement callback.
Our registered callback handler can replace the instruc-

tion (using a provided C function), or execute the orig-
inal instruction. In this handler, we implement IMIX’s
access logic. First, we check the protection flag of the
memory accessed by the instruction. To identify pro-
tected memory, we look up the related PTE by combining
the virtual address and the base address of the page table
hierarchy linked from the CR3 register. Our ztool then
checks the IMIX page flag we introduced in the PTE.
If a regular instruction attempts to access regular mem-
ory, we execute the original instruction to avoid instruc-
tion cache changes. For smov instructions attempting
to access an isolated page, we first remove the instruc-
tion from the instruction cache, and then execute our
ztool implementation of this instruction. In the remain-
ing cases, namely smov attempting to access regular
memory, and regular instructions attempting to access
isolated pages, we raise a fault.

Real Hardware. Adding IMIX support to a real CPU
would require extending the CPU’s instruction decoder
to make it aware of our smov instruction. smov re-
quires the same logic as the regular mov instruction, so
the existing implementation could be reused. Moreover,
we need to modify the MMU to perform the necessary
checks. Analogously to W⊕X, we check the flag in
the page table entry (PTE) belonging to the virtual ad-
dress, and either permit or deny memory access. Modern
MMUs are divided into three major components: logic
for memory protection and segmentation, the translation
lookaside buffer (TLB) which caches virtual to physical
address mappings, and page-walk logic in case of a cache
miss [49]. Our extension only modifies the first compo-
nent to implement the access policy based on the current
CPU instruction. Other components do not need to be
modified, as we are using an otherwise ignored bit in the

88 27th USENIX Security Symposium USENIX Association

PTEs. In Section 8 we discuss the feasibility of our pro-
posed modification.

5.2 Operating System Extension

Access restrictions to the isolated pages are enforced by
the hardware, without any involvement from the kernel.
However, the isolated pages need to be marked as such
in the PTEs, which are located in kernel memory. To
support this, we modified a recent version of the Linux
kernel. Specifically, we modified the default kernel for
the Ubuntu 16.04 LTS distribution which is 4.10 at the
time of writing. Similarly to W⊕X, we use page permis-
sions to represent this information. Processes can request
the kernel to mark a page as an isolated page by using
the existing mprotect system call, which is already
used to manage the existing memory access permis-
sions: PROT_READ, PROT_WRITE, and PROT_EXEC.
For IMIX, we add a dedicated PROT_IMIX boolean
flag. The implementation of mprotect sets permis-
sion bits in the PTE according to the supplied protection
modes. Note that once a page is marked as PROT_IMIX
the only way to remove this flag from a page is by un-
mapping it first which will also set the memory to zero.

5.3 Compiler Extension

To provide C/C++ support for IMIX, we modify the
LLVM compiler framework [40]. We chose LLVM over
GCC because the majority of memory-corruption de-
fenses leverage LLVM [16, 57, 66]. We modified the
most recent version of LLVM (version 5.0) and ported
our changes to LLVM 3.3 which is used by CPI [38].
Our modification mainly concerns the intermediate rep-
resentation (IR) to provide access to the smov instruc-
tion to mitigations like CPI [38], and the x86 backend to
emit the instruction. Further, we introduced an attribute
that can be used to protect a single variable by allocat-
ing it in an isolated page, e.g., to protect a cryptographic
secret. Next, we explain each modification in detail.

IR Extension. Run-time defenses are usually imple-
mented as LLVM optimization passes that interact with
and modify LLVM’s intermediate representation. In or-
der to allow those defenses to generate smov instruc-
tions, we extended the IR instructions set. The IR pro-
vides two memory accessors, specifically load and store,
which represent respectively a load instruction from the
memory to a temporary register, and a store instruction
from a temporary register to the memory. Hence, we
created two corresponding IMIX instructions: sload and
sstore, which defense developers can use as a drop-in re-
placement for their regular counterparts.

LLVM IR instructions are implemented as C++ classes
and therefore supports inheritance. We implemented our
IR instructions to as subclasses of their regular counter-
parts in order to reuse the existing translation functional-
ity from LLVM IR to machine code, called lowering in
LLVM parlance.
To allocate memory in the isolated pages, we imple-
mented an LLVM function that can be called from an
optimization pass, which allocates memory at page gran-
ularity using malloc and immediately sets the IMIX
permission using mprotect. A reference to the allo-
cated memory is returned so that IMIX IR instructions
can access the protected memory.

Attribute Support. Data-only attacks are hard to mit-
igate in practice. To give developers an efficient way to
protect sensitive data like cryptographic keys at source
code level, we added a IMIX attribute which can be used
to annotate C/C++ variables which should be allocated
in isolated pages. All instructions accessing those anno-
tated variables will use the IMIX IR instructions instead
of the regular ones. LLVM’s annotate attribute allows
arbitrary annotations to be defined, so we only needed to
provide the logic needed to process our attribute. We
implemented this as an LLVM optimization pass that re-
places regular variable allocations with indexed slots in
a IMIX protected safe region (one per compilation mod-
ule), and changes all accessors accordingly.

Modifications to x86 Back End. In the back end, we
added code needed to process sload and sstore instruc-
tions. In LLVM, the process of lowering IR instructions
to machine code is two-staged. First, the FastEmit mech-
anism is used. It consists of transformation rules explic-
itly coded in C++ that are too complex to be processed
using regular expressions. These are mainly platform-
specific optimizations and workarounds. The mechanism
can be used to either generate machine code directly, or
to assign a rule that should be applied in the next stage.
In the second stage, LLVM applies rule-based lower-
ing using pattern matching. The IR instruction and its
operands are matched against string patterns in LLVM’s
TableGen definitions, which define rules to lower the IR
to the platform-specific machine code. We modified both
stages of the lowering process, similarly to how load and
store are handled.

5.4 Case Study: CPI
To evaluate the impact of our lightweight memory
isolation technique to the performance, we ported Code-
Pointer Integrity (CPI) by Kuznetsov et al. [38] to use
IMIX. CPI uses a safe region in memory to guarantee
integrity of code pointers and prevent code-reuse attacks.

USENIX Association 27th USENIX Security Symposium 89

All code pointers, pointers to pointers, and so on, are
moved to the safe region, so that memory corruption
vulnerabilities cannot be exploited to overwrite them.
Return addresses are protected using a shadow stack.
In contrast to its x86-32 implementation that leverages
segmentation, CPI relies on hiding for x86-64 to protect
the safe region. CPI places the safe region at a random
address and stores this address in a segment, which
is selected using the segment register %gs. During
compilation, CPI’s optimization pass moves every code
pointer and additional metadata about bounds to the safe
region. In order to access the safe region, CPI provides
accessors that use mov instructions with a %gs segment
override, which access the safe region using %gs as the
base address and an offset. These accessors are provided
by a compiler runtime extension which is linked late in
compilation process. Evans et al. show that this CPI
implementation is vulnerable, since the location of the
safe region can be brute-forced [22].

We replaced data hiding with IMIX as the memory iso-
lation technique used to prevent unintended accesses to
CPI’s safe region (including the shadow stack). First, we
changed CPI’s memory allocation function to not only
allocate the safe region, but also set the IMIX protec-
tion flag. Second, we modified the compiler runtime,
which provides access to the safe region, to make use of
our smov instruction. Specifically, we changed the safe
region functions to access memory directly via smov
instructions instead of using register-offset addressing.
This increases security of CPI dramatically. Since IMIX
provides deterministic protection of the safe region, we
do not need to prevent spilling of the safe region base ad-
dress (stored in %gs), which IMIX makes CPI leakage
resilient. Thus, knowing or brute-forcing the memory lo-
cation brings no benefit any more, and prevents attacks
like “Missing the Point(er)” by Evans et al. [22].

6 Security Analysis

The main objective of IMIX is to provide in-process
memory isolation for data in order to make it accessi-
ble only by trusted code. Hence, the goal of an attacker
is to access the isolated data. As IMIX is a hardware ex-
tension, an attacker cannot directly bypass it, i.e., use a
regular memory access instruction to access the isolated
memory. Thus, the attacker relies on creating or reusing
trusted code, or manipulating the data flow to pass mali-
cious values to the trusted code, or access to the configu-
ration interface of IMIX.

Attacks on Trusted Code. As mentioned in our adver-
sary model, IMIX assumes mitigations preventing the

attacker from injecting new code [3], or reusing existing
code [7, 50, 52, 54]. This prevents attackers from inject-
ing smov instructions that are able to access the isolated
data, or reusing trusted code with unchecked arguments,
or exploiting unaligned instructions. This assumption is
fulfilled by existing mitigations: the strict enforcement of
W⊕X [44, 48] prevents the attacker from marking data
as code, or changing existing code. Mitigations, such as
Control-flow Integrity (CFI) [1, 45, 59] and Code-Pointer
Integrity (CPI) [38] prevent the attacker from reusing
trusted code.

Attacks on Data Flow. In general, attacks on the data
flow [12, 19, 23, 28, 29] are hard to prevent since it would
require the ability to distinguish between benign and ma-
licious input data, which generally depends on the con-
text. Therefore, the trusted code must either ensure that
its input data originates from isolated pages protected by
IMIX, or sanitize the data before using it. The former
can be ensured by using the smov instruction to access
the input data as IMIX’s design ensures that the smov
instruction cannot access unprotected memory. The lat-
ter heavily depends on the ability of the defense devel-
oper to correctly block inputs that would allow the at-
tacker to manipulate the data within the protected mem-
ory in a malicious way: IMIX merely provides a primi-
tive to isolate security critical data. Hence, if the devel-
oper fails to sanitize the input data in the trusted code, the
code is vulnerable to data-flow attacks independently of
whether it leverages IMIX or not. In practice, however,
sanitizing inputs correctly requires limited complexity,
e.g., in the case of a shadow stack [18] or CPI’s safe re-
gion [38].

Attacks on Configuration. A common way to bypass
mitigations is to disable them. For example, to bypass
W⊕X, real-world exploits leverage code-reuse attacks to
invoke a system call to mark a data buffer as code before
executing it.
There are two ways for an attacker to re-configure IMIX:
1) leveraging the interface of the operating system to
change memory permissions, or 2) manipulating page ta-
ble entries.
For the first case, we assume that the attacker is able
to manipulate the arguments of a benign system call to
change memory permissions (mprotect() on Linux).
Our design of IMIX’s operating system support prevents
the attacker from re-mapping protected memory to un-
protected memory. Further, before IMIX memory is un-
mapped, the kernel sets the memory to zero to avoid any
form of information disclosure attacks. Similarly, the
kernel initializes memory, which is re-mapped as IMIX
memory, with zeros to prevent the attacker from initializ-
ing memory with malicious values, mapping it as IMIX

90 27th USENIX Security Symposium USENIX Association

-10

0

10

20

30

40

50

60

70

80

90

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
 (

%
)

CP+Seg

CPI+IMIX

Figure 3: Performance overhead of CPI with segmentation-based memory hiding, and with IMIX.

memory, and then passing it to trusted code. Therefore,
the developer must be aware that the attacker is poten-
tially able to pass a pointer into a zero-filled page as an
input value to trusted code.
For the second case, we assume that the attacker is able
to exploit a memory-corruption vulnerability in the ker-
nel. While the focus of this paper is on how user-mode
defenses can leverage IMIX, our design allows kernel-
based defenses to leverage IMIX as well. Hence, to mit-
igate data-only attacks against the page table [19] exist-
ing defenses [17, 25] can leverage IMIX to ensure that
only trusted code can access the page tables.

7 Performance Evaluation

To evaluate the performance of our approach, we ported
the original implementation of CPI by Kuznetsov et
al. [38] to leverage IMIX to isolate the safe region
and applied it to the SPEC CPU2006 benchmark suite.
Specifically, we executed all C/C++ benchmarks with the
reference workload to measure the performance over-
heads. The SPEC CPU2006 benchmarking suite is com-
prised of CPU-intensive benchmarks that frequently ac-
cess memory, and hence, are well suited to evaluate
our instrumentation. We performed our evaluation us-
ing Ubuntu 14.04 LTS with Linux Kernel version 3.19.0
on an Intel Core i7-6700 CPU in 64-bit mode running at
3.40 GHz with dynamic voltage and frequency scaling
disabled, and 32 GB RAM.

Baseline. First, we measured the performance impact
of the original CPI implementation, which we obtained
from the project website [39]. Despite efforts, we were
unable to execute the CPI-instrumented version of perl-
bench and povray. Using the geometric mean of posi-
tive overheads, we measured a performance overhead of

4.24% (arithmetic mean of 9.05%, Kuznetsov et al. [38]
measured an average performance overhead of 8.4%).
We measured a maximum overhead of 61.49% (gcc),
while a maximum of 44.2% (for omnetpp) was reported
in the original paper.

CPI with IMIX. Next, we evaluated the performance
overhead of IMIX. As hardware emulation turned out to
be too slow for executing the SPEC CPU2006 bench-
marking tests, we instead evaluated IMIX by replac-
ing smov instructions with mov instructions that access
memory directly. We argue that this reflects the actual
costs for smov instructions, because the IMIX permis-
sion check is part of the paging permission check.

During our performance evaluation we made the inter-
esting observation that our IMIX instrumentation comes
with a higher overhead than the baseline. In total,
we measured a performance overhead of 14.70% for
IMIX, which is an increase of 1.94% in comparison
to segmentation-based CPI. In addition, we observed a
maximum overhead of 73.27%, compared to a maximum
of 61.49% for segmentation-based CPI.

We further investigated this counter-intuitive result.
First, we verified with the help of a custom micro-
benchmarks that the access time to a memory buffer
through a segment register is consistently faster than
just dereferencing a general purpose register. Interest-
ingly, it makes no difference whether the base address
of the segment is set to 0 or the base address of the
buffer. Second, we found that the faster access through
segment registers is, at least partially, related to the L2
hardware prefetcher: when we disable it, memory ac-
cesses through a general purpose register are faster than
segment-based accesses (difference in geometric mean is
0.47% in SPEC CPU2006).

USENIX Association 27th USENIX Security Symposium 91

Technique Policy-based Isolation Hardware Enforced Fast Interleaved Access Fails Safe

SFI 3 5 3 5

Segmentation only for x86-32 3 3 3

Memory Hiding 5 5 3 5

Paging / EPT only single-threaded applications 3 5 3

Intel MPK 3 3 3 3

Intel SGX 3 3 5 3

Intel MPX 3 3 3 5

Intel CET only for Shadow Stack 3 3 3

SMOV 3 3 3 3

Table 1: Comparison of memory-isolation techniques. Legend: Policy-based Isolation means that the memory protec-
tion itself cannot be bypassed with an arbitrary memory read-write primitive. Hardware Enforced is self-explanatory.
Fast Interleaved Access refers to the ability to alternately access protected and unprotected memory without additional
performance impact. Fails Safe means that regular (un-instrumented) memory instructions cannot access the protected
memory.

CPI with IMIX (Segment-based Addressing). Sim-
ilarly to a regular mov instruction, the IMIX instruc-
tion allows to access memory through a segment regis-
ter. Unsurprisingly, by adjusting our IMIX-based CPI
instrumentation to use segment register-based addressing
we achieve 0% overhead over CPI. We further compare
IMIX to other memory protection approaches, namely
Intel MPK and Intel MPX, in Section 9.

8 Discussion

On the Feasibility of Our ISA Extension. One of the
main values of any defense in the field of system security
is practicality. Therefore, it comes with no surprise that
existing research often sacrifices security in favor of per-
formance [45, 53, 67], and retrofit existing hardware fea-
tures [6, 16, 18, 41, 58, 63] instead of introducing more
suitable ones. The reason is that in practice it is unlikely
that hardware vendors are going to change their hardware
design and risk compatibility issues with legacy software
in order to strengthen the security and increase the per-
formance of a specific mitigation.
However, we argue that this does not apply to IMIX
for two reasons: 1) IMIX enables strong and ef-
ficient in-process isolation of data which is an in-
evitable requirement of many memory-corruption de-
fenses. 2) IMIX can be implemented by slightly mod-
ifying Intel’s proposal, Control-flow Enforcement Tech-
nology (CET) [33].
As we discussed in Section 2, memory-corruption de-
fenses often reduce the attack surface from potentially
the whole application’s memory to the memory that is
used by the defense itself. With IMIX we provide a
strong and efficient hardware primitive to enforce the

protection of this data which is mitigation-agnostic. By
providing a primitive, which is essential to memory-
corruption defenses, rather than implementing a specific
defense in hardware [33], vendors avoid the risk of a later
bypass [50].
We believe that IMIX can be adopted in real world with
comparatively low additional effort. With CET [33]
Intel provides a specialization of IMIX. Similar to
IMIX, CET requires modifications to the TLB, semantic
changes to the page table, and the introduction of new in-
structions. Contrary to IMIX, CET’s hardware extension
is tailored to isolate the shadow stack of a CFI implemen-
tation [45]. As expected, generalizing CET’s shadow
stack to support arbitrary memory accesses still allows
implementation of an isolated shadow stack [18].

9 Related Work

In the following, we discuss techniques that may be used
to protect memory against unintended access. Table 1
provides an overview of characteristics of these tech-
niques. We explain each of its aspects in detail, and com-
pare them to IMIX.

Software-based Memory Protection. Software-fault
isolation techniques (SFI) [51, 61] allow to create a sep-
arate protected memory region. SFI is implemented by
instrumenting every memory-access instruction such that
the address is masked before the respective instruction is
executed. This ensures that the instrumented instruction
can only access the designated memory segment, how-
ever, this instrumentation also has a significant perfor-
mance impact. Though SFI instruments every load/store

92 27th USENIX Security Symposium USENIX Association

instruction, invalid memory accesses cannot be detected,
but are instead masked to point to unprotected mem-
ory [37]. ISboxing [20] leverages instruction prefixes of
x86-64 to implicitly mask load and store operations. The
instruction prefix determines whether a memory-access
instruction uses a 32-bit (default case) or 64-bit address.
By ensuring that untrusted code can only use 32-bit ad-
dresses to access memory, protected data can be stored
in memory that can only be addressed with 64-bit ad-
dresses. Yet, this reduces the available address space sig-
nificantly, and allows linked libraries to access protected
memory.
Another way of protecting data against malicious modifi-
cations is to enforce data-flow integrity (DFI) [2, 10, 55].
DFI creates a data-flow graph by means of static anal-
ysis, which is enforced during run time by instrument-
ing memory-access instructions. However, the perfor-
mance overhead of DFI, which e.g. is on average 7% for
WIT [2], prevents it from being used to safeguard pro-
tection secrets of code-reuse mitigations, since it would
further increase the mitigation’s performance overhead.
IMIX can be used for both protecting sensitive data (like
DFI does) and enabling efficient protection of safe re-
gions for control-flow hijacking mitigations.

Retrofitting Existing Memory Protection. Segmen-
tation is a legacy memory-isolation feature on x86-
32 that allows to split the memory into isolated seg-
ments [61, 65]. For memory accesses, the current privi-
lege level is checked against the segment’s required priv-
ilege level directly in hardware. On x86-64 segmenta-
tion registers still exist but access control is no longer
enforced [37]. On the surface, re-enforcing legacy seg-
mentation seems to be an attractive solution, however,
IMIX is easier to implement from a hardware perspec-
tive: segmentation requires arithmetic operations, IMIX
only one check. Moreover, IMIX provides higher flex-
ibility: protected memory does not need to consist of
one contiguous memory region. As segmentation reg-
isters are rarely used by regular applications any more,
they are often used to store base addresses for memory
hiding [6, 38, 41]. Indeed, segmentation-based memory
hiding comes with no performance overhead, however,
unlike IMIX, it does not provide real in-process isolation
and is vulnerable to memory-disclosure attacks [22, 26].
Paging can also be used as well to provide in-process iso-
lation by removing read/write permissions from a page
when executing untrusted code [5]. However, regu-
larly switching between trusted and untrusted code is ex-
pensive because of 1) two added mprotect() system
calls, and 2) the following invalidation of TLB entries
for each of them [60]. Further, this technique is vulnera-
ble to race-condition attacks, i.e., the attacker can access
the protected data from a second thread that runs concur-

rently to the trusted code. IMIX avoids both disadvan-
tages.
A more recent feature introduced with Intel VT-x is Ex-
tended Page Tables (EPT) [32] to implement hardware-
assisted memory virtualization. EPT provide another
layer of indirection for memory accesses that is con-
trolled by the hypervisor but is otherwise conceptually
the same as regular paging. Additionally, VT-x intro-
duces an instruction, vmfunc, that enables fast switches
between EPT mappings. Hence, to isolate memory, the
hypervisor maintains two EPT mappings [16] (regular
and protected memory) and trusted code invokes the
vmfunc instruction instead of mprotect()). How-
ever, this approach suffers from the same disadvantages
as the previous approach which relies on regular paging.

Proposed Memory Isolation Mechanisms. There are
already several academic proposals for memory isola-
tion. HDFI [56] is a fine-grained data isolation mecha-
nism that uses MMU tagging for RISC-V. However, due
to the need of an additional tag table, HDFI needs two
accesses per memory operation. Thus, HDFI leverages
additional hardware units (like a cache) to lower the per-
formance impact. Still, HDFI relies on complex static
analysis for data-flow integrity which does not meet the
requirements for modern JIT-compiled code. IMIX sup-
ports JIT compilation by building on existing function-
ality like mprotect, furthermore, IMIX does not need
any additional static analysis.
CHERI [62] extends a RISC architecture with fine-
grained memory isolation using a set of ISA extensions.
For this, two compartments are introduced, however,
switching costs are comparably high (620 cycles over-
head). In addition, CHERI also relies on intensive static
analysis unsuitable for JIT code.
ILDI [13] is another data isolation approach, but
for ARM. It leverages existing ARM features
(Privileged Access Never, PAN) to create
a safe region for sensitive kernel memory, isolated from
potential kernel exploits. By explicitly granting Load
and Store Unprivileged (LSU) instructions
access to sensitive data, regular accesses (possibly
attacker controlled) are no longer allowed to access the
safe region. However, ILDI imposes a high performance
overhead on the kernel (35.3%). IMIX proposes a gen-
eral approach that can be leveraged by both kernel-space
and user-space mitigations.

Recent Hardware Extensions. Recent Intel CPUs im-
plement a variety of new memory-protection features.
In particular, Memory Protection Extensions (MPX) and
Memory Protection Keys (MPK) can be retrofitted to en-
able in-process memory isolation. Nevertheless, as we
discuss in the following, they are not viable alternatives

USENIX Association 27th USENIX Security Symposium 93

Name CPI+Seg (%) CPI+IMIX (%) CPI+MPK (%) CPI+MPX (%)

400.perlbench - - - -
401.bzip2 0.13 0.44 0.19 132.36
403.gcc 61.49 65.73 2856.48 -
429.mcf -2.08 -4.89 -2.41 203.71
433.milc -0.63 -0.47 -0.45 -6.36
444.namd -0.10 0.66 -0.09 -8.60
445.gobmk 2.55 2.52 32.41 -
447.dealII -2.57 -3.37 - -
450.soplex -3.83 -2.96 -0.74 2.88
453.povray - - - -
456.hmmer -2.17 -2.54 -1.35 15.43
458.sjeng 1.43 1.36 1.39 56.81
462.libquantum -2.32 -2.16 -2.62 106.41
464.h264ref 2.04 4.67 536.02 46.87
470.lbm -2.04 -1.99 -1.94 -9.82
471.omnetpp 42.95 56.62 1444.02 -
473.astar 0.67 0.20 0.70 -1.29
482.sphinx3 -0.99 -0.32 5.52 -0.68
483.xalancbmk 59.23 73.27 1385.67 -

GeoMean 4.24 3.99 12.43 36.86

Table 2: Comparison of memory isolation techniques. CPI+Seg uses memory hiding to protect the safe region, for the
remaining the respective technique is used. Note that entries marked with “-” crashed with CPI applied.

to IMIX as both come with disadvantages that render
them impractical.
The main goal of MPX [31] is to provide hardware-
assisted bounds checking to avoid buffer overflows.
Therefore, the developer specifies bounds using ded-
icated registers (each contains a lower and an upper
bound) that can be checked by newly introduced instruc-
tions. MPX can be retrofitted to enforce memory isola-
tion by defining one bound that divides the address space
in two segments: a regular, and a protected region. Then,
bounds checks are inserted for every memory access in-
struction that is not allowed to access protected mem-
ory [37]. This has two main disadvantages. First, MPX
does not fail safe, i.e., not instrumented instructions (by
a third-party library, for example) can still access the
safe region. Second, instructions that are allowed to ac-
cess protected memory can still access unprotected mem-
ory. Hence, an attacker might be able to redirect mem-
ory accesses of trusted code to attacker-controlled mem-
ory. To avoid such attacks, additional instrumentation
of the trusted code is required, which significantly in-
creases the performance overhead, as depicted in Table 2.
Protecting CPI’s safe region with MPX using the open-
source implementation by Koning et al. [37] results in a
total performance overhead of 36.86% with a maximum
of 203.71% for mcf, which cannot be considered prac-
tical, especially since we were not able to execute the
benchmarks that show the highest overheads across all
techniques. In comparison, IMIX is secure by default,

and enforces strict isolation between protected and un-
protected memory without additional overhead.
Intel’s MPK is a feature to be available in upcoming In-
tel x86-64 processors [27, 34], already available on other
architectures like IA-64 [30], and ARM32 (called mem-
ory domains) [4]. Since IMIX and MPK implement a
similar idea, we also evaluated MPK based on the ap-
proximation given by Koning et al. [37] using the setup
we describe in Section 7.
As shown in Table 2, using MPK to protect the CPI safe
region results in a total performance overhead of 12.43%
with a maximum of 2856.48% for gcc. We identified
the additional instrumentation to switch between trusted
and untrusted code to be the root cause of the additional
overhead. This emphasizes the conceptual differences of
MPK and IMIX. MPK enables many distinct domains
to be present. Reducing these to two possible domains
allows IMIX to be leveraged by mitigations like CPI or
CFI that rely on frequent domain switches. In contrast,
MPK is useful if the application changes domains infre-
quently, i.e., for temporal memory isolation, or to isolate
different threads.
Encryption can also be used to protect memory. For
instance, Intel Total Memory Encryption [35] (Secure
Memory Encryption for AMD [36]) allows to encrypt the
whole memory transparently, protecting it from physical
analysis like cold-boot attacks, but not local memory cor-
ruption attacks [37]. Another encryption feature, AES-
NI [35], reduces overhead associated with encryption

94 27th USENIX Security Symposium USENIX Association

dramatically, which can be used to encrypt and decrypt
safe regions as needed. Even with hardware encryption
support, solutions like CCFI still induce a performance
overhead of up to 52% [42], and keeping the encryp-
tion key safe requires relying on unused registers and en-
suring that this key is never spilled to memory [14, 37].
IMIX is not prone to register spilling, since it does not
rely on a secret to protect memory.
Trusted Execution Environments like Intel SGX [15] of-
fer strong security guarantees through hardware support,
but require intensive effort to decouple code to be run in
the enclave. SGX can also be used for memory protec-
tion, but only at high performance costs due to overheads
for entering and exiting the enclave.

10 Conclusion

Mitigations against memory-corruption attacks for mod-
ern x86-based computer systems rely on in-process pro-
tection of their code and data. Unfortunately, neither cur-
rent nor planned memory-isolation features of the x86
architecture meet these requirements. As a consequence,
many mitigations rely on information hiding via seg-
mentation, on expensive software-based isolation, or on
retrofitting memory-isolation features that require com-
promises in the design of the mitigation.
With IMIX we design a mitigation-agnostic in-process
memory-isolation feature for data that targets the x86 ar-
chitecture. It provides memory-corruption defenses with
a well-suited isolation primitive to protect their data.
IMIX extends the x86 ISA with an additional memory
permission that can be configured through the page table,
and a new instruction that can only access memory pages
which are isolated through IMIX. We implement a fully-
fledged proof of concept of IMIX that leverages Intel’s
Simulation and Analysis Engine to extend the x86 ISA,
and we extend the Linux kernel and the LLVM compiler
framework to provide interfaces to IMIX. Further, we
enhance Code-pointer Integrity (CPI), an effective de-
fense against code-reuse attacks, using IMIX to protect
CPI’s safe region.
Our evaluation shows that defenses, like CPI, greatly
benefit from IMIX in terms of security without addi-
tional performance overhead. We argue that the adop-
tion of IMIX is possible by adjusting the design of In-
tel’s Control-flow Enforcement Technology (CET). Fi-
nally, IMIX provides a solution that can serve as a build-
ing block for forthcoming defenses to tackle challenging
problems, such as data-oriented attacks.

Acknowledgments. This work was supported by the
German Science Foundation CRC 1119 CROSSING P3,
the German Federal Ministry of Education and Research

(BMBF) in the context of HWSec, and the Intel Collab-
orative Research Institute for Collaborative Autonomous
and Resilient Systems (ICRI-CARS).

11 Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity. In ACM SIGSAC Conference on Computer and Com-
munications Security, CCS, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Pre-
venting memory error exploits with WIT. In 29th IEEE Sympo-
sium on Security and Privacy, S&P, 2008.

[3] Aleph One. Smashing the stack for fun and profit. Phrack Mag-
azine, 49, 2000.

[4] ARM. ARM architecture reference manual. http:
//silver.arm.com/download/ARM_and_AMBA_
Architecture/AR150- DA- 70000- r0p0- 00bet9/
DDI0487A_h_armv8_arm.pdf, 2015.

[5] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny. You can run but you can’t read: Preventing disclo-
sure exploits in executable code. In ACM SIGSAC Conference on
Computer and Communications Security, CCS, 2014.

[6] M. Backes and S. Nürnberger. Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing. In
23rd USENIX Security Symposium, USENIX Sec, 2014.

[7] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking blind. In 35th IEEE Symposium on Secu-
rity and Privacy, S&P, 2014.

[8] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
and A.-R. Sadeghi. Leakage-resilient layout randomization for
mobile devices. In 23rd Annual Network and Distributed System
Security Symposium, NDSS, 2016.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow in-
tegrity. In 24th USENIX Security Symposium, USENIX Sec,
2015.

[10] M. Castro, M. Costa, and T. Harris. Securing software by enforc-
ing data-flow integrity. In 7th USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2006.

[11] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui,
and V. J. Reddi. Simulation and analysis engine for scale-out
workloads. In Proceedings of the 2016 International Conference
on Supercomputing, ICS ’16, pages 22:1–22:13, New York, NY,
USA, 2016. ACM.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In 14th USENIX Security
Symposium, USENIX Sec, 2005.

[13] Y. Cho, D. Kwon, and Y. Paek. Instruction-level data isolation
for the kernel on arm. In Design Automation Conference (DAC),
2017 54th ACM/EDAC/IEEE, pages 1–6. IEEE, 2017.

[14] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
M. Negro, M. Qunaibit, and A.-R. Sadeghi. Losing control: On
the effectiveness of control-flow integrity under stack attacks. In
ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS, 2015.

[15] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology
ePrint Archive, 2016:86, 2016.

[16] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.

USENIX Association 27th USENIX Security Symposium 95

Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical code
randomization resilient to memory disclosure. In 36th IEEE Sym-
posium on Security and Privacy, S&P, 2015.

[17] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete
control-flow integrity for commodity operating system kernels.
In 35th IEEE Symposium on Security and Privacy, S&P, 2014.

[18] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of
shadow stacks and stack canaries. In 10th ACM Symposium on In-
formation, Computer and Communications Security, ASIACCS,
2015.

[19] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi. Pt-rand: Prac-
tical mitigation of data-only attacks against page tables. 2017.

[20] L. Deng, Q. Zeng, and Y. Liu. Isboxing: An instruction substi-
tution based data sandboxing for x86 untrusted libraries. In IFIP
International Information Security Conference, pages 386–400.
Springer, 2015.

[21] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi.
Missing the point (er): On the effectiveness of code pointer in-
tegrity. In Security and Privacy (SP), 2015 IEEE Symposium on,
pages 781–796. IEEE, 2015.

[22] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi.
Missing the point(er): On the effectiveness of code pointer in-
tegrity. In 36th IEEE Symposium on Security and Privacy, S&P,
2015.

[23] T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi. Jitguard:
Hardening just-in-time compilers with sgx. In 24th ACM Con-
ference on Computer and Communications Security (CCS), Nov.
2017.

[24] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz.
Enabling client-side crash-resistance to overcome diversification
and information hiding. In NDSS, 2016.

[25] X. Ge, H. Vijayakumar, and T. Jaeger. SPROBES: Enforcing
kernel code integrity on the trustzone architecture. In Mobile Se-
curity Technologies, MoST, 2014.

[26] E. Göktaş, R. Gawlik, B. Kollenda, G. Portokalidis, C. Giuffrida,
and H. Bos. Undermining information hiding (and what to do
about it). In 25th USENIX Security Symposium (USENIX Security
16), pages 105–119. USENIX Association, 2016.

[27] D. Hansen. [rfc] x86: Memory protection keys. https://
lwn.net/Articles/643617/, 2015.

[28] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic
generation of data-oriented exploits. In 24th USENIX Security
Symposium, USENIX Sec, 2015.

[29] H. Hu, S. Shinde, A. Sendroiu, Z. L. Chua, P. Saxena, and
Z. Liang. Data-oriented programming: On the expressiveness
of non-control data attacks. In 37th IEEE Symposium on Security
and Privacy, S&P, 2016.

[30] Intel. Intel Itanium architecture developer’s manual: Vol.
2. https : / / www . intel . de / content / dam /
www/public/us/en/documents/manuals/itanium-
architecture- software- developer- rev- 2- 3-
vol-2-manual.pdf, 2010.

[31] Intel. Intel 64 and IA-32 architectures software developer’s
manual, combined volumes 3A, 3B, and 3C: System program-
ming guide. http://www.intel.com/content/
dam / www / public / us / en / documents / manuals /
64-ia-32-architectures-software-developer-
system-programming-manual-325384.pdf, 2013.

[32] Intel. Intel 64 and IA-32 architectures software developer’s man-
ual. ch 28, 2015.

[33] Intel. Control-flow Enforcement Technology Preview, 2017.

[34] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual. http : / / www - ssl.intel . com/
content/www/us/en/processors/architectures-
software-developer-manuals.html, 2017.

[35] Intel. Intel architecture memory encryption technologies
specification. https : / / software . intel . com /
sites/default/files/managed/a5/16/Multi-
Key-Total-Memory-Encryption-Spec.pdf, 2017.

[36] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption.
White paper, 2016.

[37] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopou-
los. No need to hide: Protecting safe regions on commodity
hardware. In Proceedings of the Twelfth European Conference
on Computer Systems, pages 437–452. ACM, 2017.

[38] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2014.

[39] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. CPI implementation. http://dslab.epfl.ch/
proj/cpi/levee-early-preview-0.2.tgz, 2014.

[40] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In IEEE/ACM
International Symposium on Code Generation and Optimization,
CGO, 2004.

[41] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. Aslr-
guard: Stopping address space leakage for code reuse attacks.
In ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2015.

[42] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières.
CCFI: cryptographically enforced control flow integrity. In ACM
SIGSAC Conference on Computer and Communications Security,
CCS, 2015.

[43] S. McCamant and G. Morrisett. Evaluating SFI for a CISC ar-
chitecture. In 15th USENIX Security Symposium, USENIX Sec,
2006.

[44] Microsoft. Data Execution Prevention (DEP). http://
support.microsoft.com/kb/875352/EN-US/, 2006.

[45] Microsoft. Control flow guard. http : / / msdn .
microsoft.com/en-us/library/Dn919635.aspx,
2015.

[46] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Soft-
Bound: Highly compatible and complete spatial memory safety
for C. In 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI, 2009.

[47] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS:
compiler enforced temporal safety for C. In International Sym-
posium on Memory Management, ISMM, 2010.

[48] OpenBSD. Openbsd 3.3, 2003.

[49] J. Power, M. D. Hill, and D. A. Wood. Supporting x86-64 address
translation for 100s of gpu lanes. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium
on, pages 568–578. IEEE, 2014.

[50] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications.

96 27th USENIX Security Symposium USENIX Association

In 36th IEEE Symposium on Security and Privacy, S&P, 2015.

[51] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen. Adapting software fault isolation to contem-
porary cpu architectures. In 18th USENIX Security Symposium,
USENIX Sec, 2010.

[52] H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM SIGSAC
Conference on Computer and Communications Security, CCS,
2007.

[53] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization.
In ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2004.

[54] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. Sadeghi. Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization. In 34th IEEE
Symposium on Security and Privacy, S&P, 2013.

[55] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee. Enforcing
kernel security invariants with data flow integrity. In NDSS, 2016.

[56] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek. Hdfi: hardware-assisted data-flow isolation. In Security
and Privacy (SP), 2016 IEEE Symposium on, pages 1–17. IEEE,
2016.

[57] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war
in memory. In 34th IEEE Symposium on Security and Privacy,
S&P, 2013.

[58] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwart-
ing memory disclosure attacks using destructive code reads. In
ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS, 2015.

[59] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlings-
son, L. Lozano, and G. Pike. Enforcing forward-edge control-
flow integrity in GCC & LLVM. In 23rd USENIX Security Sym-
posium, USENIX Sec, 2014.

[60] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. Didi: Mit-
igating the performance impact of tlb shootdowns using a shared
tlb directory. In Parallel Architectures and Compilation Tech-
niques (PACT), 2011 International Conference on, pages 340–
349. IEEE, 2011.

[61] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Effi-
cient software-based fault isolation. In ACM SIGOPS Operating
Systems Review, volume 27, pages 203–216. ACM, 1994.

[62] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie,
et al. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 20–37. IEEE, 2015.

[63] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow,
F. Monrose, and M. Polychronakis. No-execute-after-read: Pre-
venting code disclosure in commodity software. In 11th ACM
Symposium on Information, Computer and Communications Se-
curity, ASIACCS, 2016.

[64] Wind River. Simics full system simulator. https://www.
windriver.com/products/simics/, 2018.

[65] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In Security and Privacy,
2009 30th IEEE Symposium on, pages 79–93. IEEE, 2009.

[66] C. Zhang, W. Zou, T. Wang, Y. Chen, and T. Wei. Using type
analysis in compiler to mitigate integer-overflow-to-buffer- over-
flow threat. Journal of Computer Security, 19:1083–1107, 01
2011.

[67] M. Zhang and R. Sekar. Control flow integrity for COTS binaries.
In 22nd USENIX Security Symposium, USENIX Sec, 2013.

USENIX Association 27th USENIX Security Symposium 97

B
CURE: A Security Architecture with CUstomizable and
Resilient Enclaves
(USENIX Sec’21)

[13] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek,
A. Sadeghi, and Emmanuel Stapf. CURE: A Security Architecture with CUstomizable and
Resilient Enclaves. In 30th USENIX Security Symposium (USENIX Security 21), 2021. CORE
Rank A*. Chapter 3.

91

This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Cure: A Security Architecture with CUstomizable
and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf,

Technische Universität Darmstadt
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani

CURE: A Security Architecture with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf

Technische Universität Darmstadt, Germany
{raad.bahmani, ferdinand.brasser, ghada.dessouky, patrick.jauernig,}

{matthias.klimmek, ahmad.sadeghi, emmanuel.stapf}@trust.tu-darmstadt.de

Abstract
Security architectures providing Trusted Execution Envi-

ronments (TEEs) have been an appealing research subject
for a wide range of computer systems, from low-end embed-
ded devices to powerful cloud servers. The goal of these
architectures is to protect sensitive services in isolated ex-
ecution contexts, called enclaves. Unfortunately, existing
TEE solutions suffer from significant design shortcomings.
First, they follow a one-size-fits-all approach offering only
a single enclave type, however, different services need flexi-
ble enclaves that can adjust to their demands. Second, they
cannot efficiently support emerging applications (e.g., Ma-
chine Learning as a Service), which require secure channels
to peripherals (e.g., accelerators), or the computational power
of multiple cores. Third, their protection against cache side-
channel attacks is either an afterthought or impractical, i.e., no
fine-grained mapping between cache resources and individual
enclaves is provided.
In this work, we propose CURE, the first security architecture,
which tackles these design challenges by providing different
types of enclaves: (i) sub-space enclaves provide vertical iso-
lation at all execution privilege levels, (ii) user-space enclaves
provide isolated execution to unprivileged applications, and
(iii) self-contained enclaves allow isolated execution environ-
ments that span multiple privilege levels. Moreover, CURE
enables the exclusive assignment of system resources, e.g.,
peripherals, CPU cores, or cache resources to single enclaves.
CURE requires minimal hardware changes while significantly
improving the state of the art of hardware-assisted security ar-
chitectures. We implemented CURE on a RISC-V-based SoC
and thoroughly evaluated our prototype in terms of hardware
and performance overhead. CURE imposes a geometric mean
performance overhead of 15.33% on standard benchmarks.

1 Introduction

For decades, software attacks on modern computer systems
have been a persisting challenge leading to a continuous arms

race between attacks and defenses. The ongoing discovery
of exploitable bugs in the large code bases of commodity
operating systems have proven them unsuitable for reliable
protection of sensitive services [104, 105]. This motivated
various hardware-assisted security architectures integrating
hardware security primitives tightly into the System-on-Chip
(SoC). Capability-based systems, such as CHERI [100],
CODOMs [95], IMIX [30], or HDFI [82], offer fine-grained
protection through (in-process) sandboxing, however, they
cannot protect against privileged software adversaries (e.g.,
a malicious OS). In contrast, security architectures provid-
ing Trusted Execution Environments (TEE) enable isolated
containers, also called enclaves. Enclaves allow for a coarse-
grained but strong protection against adversaries in privileged
software layers. TEE architectures have been proposed for
a variety of computing platforms1, in particular for modern
high-performance computer systems, e.g., industry solutions
like Intel SGX [35], AMD SEV [38], ARM TrustZone [3],
or academic solutions such as Sanctum [22], Sanctuary [10],
Keystone [48], or Komodo [27] to name some.

In this paper, we focus on TEE architectures for modern
high-performance computer systems. We investigate the
shortcomings of existing TEE architectures and propose an en-
hanced and significantly more flexible TEE architecture with
a prototype implementation for the open RISC-V architecture.

Deficiencies of existing TEE architectures. So far, existing
TEE architectures have adopted a one-size-fits-all enclave
approach. They provide only one type of enclave requiring
applications and services to be adapted to these enclaves’ fea-
tures and limitations, e.g., Intel SGX restricts system calls
of its enclaves and thus, applications need to be modified
when being ported to SGX which produces additional costs.
Additional efforts like Microsoft’s Haven framework [5] or
Graphene [87] are needed to deploy unmodified applications
to SGX enclaves. Moreover, today, we are using diverse

1TEE architectures for resource-constrained embedded systems (e.g.,
Sancus [66], TyTAN [8], TrustLite [47] or TIMBER-V [98]) are not the
subject of this paper.

USENIX Association 30th USENIX Security Symposium 1073

services that process sensitive data, e.g., payment, biometric
authentication, smart contracts, speech processing, Machine
Learning as a Service (MLaaS), and many more. Each ser-
vice imposes a different set of requirements on the underlying
TEE architecture. One important requirement concerns the
ability to securely connect to devices. For example on mobile
devices, privacy-sensitive data is constantly collected over var-
ious sensors, e.g., audio [9], video [83], or biometric data [19].
On cloud servers, massive amounts of sensitive data are aggre-
gated and used to train proprietary machine learning models,
often outside of the CPU, offloaded to hardware accelera-
tors [84]. However, TEE architectures such as SGX [35],
SEV [38] and Sanctum [22], do not consider secure I/O at
all, solutions such as Keystone [48] would require additional
hardware to support DMA-capable peripherals, solutions like
Graviton [96] require hardware changes at the peripheral side.
TrustZone [3], Sanctuary [10] and Komodo [27] cannot bind
peripherals directly to individual enclaves.

Another important requirement imposed on TEE architec-
tures is an adequate and practical protection against side-
channel attacks, e.g., cache [11,50] or controlled side-channel
attacks [65, 92, 101]. Current TEE architectures either do not
include cache side-channel attacks in their threat model, like
SGX [35], or TrustZone [3], only provide impractical solu-
tions which heavily influence the OS, like Sanctum [22], or do
not consider controlled side-channel attacks, e.g., SEV [38].
We will elaborate on the related work and the problems of
existing TEE architectures in detail in Section 9.
This work. In this paper, we present a TEE architecture,
coined CURE, that tackles the problems of existing solutions
with a cost-effective and architecture-agnostic design.
CURE offers multiple types of enclaves: (i) sub-space
enclaves that isolate only parts of an execution context,
(ii) user-space enclaves, which are tightly integrated into
the operating system, and (iii) self-sustained enclaves,
which can span multiple CPU-cores and privilege levels.
Thus, CURE is the first TEE architecture offering a high
degree of freedom in adjusting enclave boundaries to fulfill
the individual functionality and security requirements of
modern sensitive services such as MLaaS. CURE can bind
peripherals, with and without DMA support, exclusively to
individual enclaves. Further, it provides side-channel pro-
tection via flexible and fine-grained cache resource allocation.

Challenges. Building a TEE architecture with the de-
scribed properties comes with a number of challenges.
(i) New hardware security primitives must be developed
that allow enclaves to adapt to different functionality
and security requirements. (ii) Even though the security
primitives should allow flexible enclaves, they must not
require invasive hardware modification, which would impede
cross-platform adoption. (iii) While the changes in hardware
should remain small, performance overhead for managing
enclaves in software must be minimized. (iv) Protections

against the emerging threat of microarchitectural attacks
in form of side-channel and transient-execution attacks
must be considered in the design for all types of enclaves.
Contributions. Our design of CURE and its implementation
on the RISC-V platform tackles all these challenges. To
summarize, our main contributions are as follows:

• We present CURE, our novel architecture-agnostic de-
sign for a flexible TEE architecture which can protect
unmodified sensitive services in multiple enclave types,
ranging from enclaves in user space, over sub-space en-
claves, to self-contained (multi-core) enclaves which
include privileged software levels and support enclave-
to-peripheral binding.

• We introduce novel hardware security primitives for the
CPU cores, system bus and shared cache, requiring min-
imal and non-invasive hardware modifications.

• We prototype CURE for the open RISC-V platform using
the open-source Rocket Chip generator [4].

• We evaluate CURE’s hardware and software components
in terms of added logic and lines of code, and CURE’s
performance overhead on an FPGA and cycle-accurate
simulator setup using micro- and macrobenchmarks.

2 System Assumptions

CURE targets a modern high-performance multi-core sys-
tem, with common performance optimizations like data and
instruction caches, a Translation Lookaside Buffer (TLB),
shared caches, branch predictors, respective instructions to
flush the core-exclusive resources, and a central system bus
that connects the CPU with the main memory (over a dedi-
cated memory controller) and various peripherals.
System bus and peripherals. The system bus connects the
CPU to a plethora of system peripherals over a fixed set of
hardwired peripheral controllers. The peripherals range from
storage, communication, and input devices to specialized com-
pute units, e.g., hardware accelerators [37]. The CPU interacts
with peripherals using parts of the internal peripheral memory
which are mapped to the address space of the CPU, called
Memory-Mapped I/O (MMIO). We assume that the CPU can
nullify the internal memory of a peripheral to sanitize its state.
Every access from the CPU to a peripheral is decoded in the
system bus and delegated to the corresponding peripheral.
The CPU acts as a parent on the system bus, whereas the
peripherals (and main memory) act as childs that respond to
requests from a parent. However, MMIO is not sufficient
for some peripherals where large amounts of data need to be
shared with the CPU since the CPU needs to copy the data
from the main memory to the peripheral memory. Therefore,
these peripherals are often connected to the system bus as par-
ents over Direct Memory Access (DMA) controllers, allowing
them to directly access the main memory. To cope with re-
source contention in these complex interconnects, system
buses also incorporate arbitration mechanisms to schedule the

1074 30th USENIX Security Symposium USENIX Association

App

Operating System

Hypervisor

PL3

Firmware

App App

Operating System

App

PL2

PL1

PL0

Figure 1: Software privilege levels (PL): user space, kernel
space & dedicated levels for hypervisor & firmware.

establishment of parent-child connections when multiple bus
requests occur simultaneously.
Software privilege levels. We assume the CPU supports the
privilege levels (PLs) as shown in Figure 1. In line with
modern processors (Intel [21], AMD [34] or ARM [55]), we
assume a separation between a user-space layer (PL3) and a
more privileged kernel-space layer (PL2), which is performed
by the MMU (configured by PL2 software) through virtual
address spaces. The CPU may support a distinct layer for
hypervisor software (PL1) to run virtualized OS in Virtual
Machines (VMs), where the separation to PL2 is performed
by a second level of hardware-assisted address translation [73].
Lastly, we assume a highly-privileged layer (PL0) which
contains firmware that performs specific tasks, e.g., hardware
emulation or power management.

We assume that the system performs secure boot on re-
set, whereas the first bootloader stored in CPU Ready-Only
Memory (ROM), verifies the firmware through a chain of
trust [53]. After verification, the firmware starts execution
from a predefined address in the firmware code and loads
the current firmware state from non-volatile memory (NVM)
where it is stored encrypted, integrity- and rollback-protected.
The cryptographic keys to decrypt and verify the firmware
state are passed by the bootloader which loads the firmware
into Random-access Memory (RAM). Rollback protection
can be achieved, e.g., by making use of non-volatile memory
with Replay Protected Memory Block (RPMB) partitions or
by using eFuses as secure monotonic counters [56]. When a
system shutdown is performed, the firmware stores its state
in the NVM, encrypted and integrity- and rollback-protected.

3 Adversary Model

Our adversary model adheres to the one commonly assumed
for TEE architectures, i.e., a strong software-only adversary
that can compromise all software components, including the
OS, except a small software/microcode Trusted Computing
Base (TCB) which configures the hardware security primi-
tives of the system, manages the enclaves and which is inher-
ently trusted [3, 10, 22, 27, 35, 48].

We assume that the goal of the adversary is to leak secret
information from the TCB or from a victim enclave. An
adversary with full control of the system software can inject
own code into the kernel (PL2) and even into the hypervisor

(PL1). This allows the adversary, with full access to the TCB
interface used for setting up enclaves, to spawn malicious
processes and even enclaves. Even though the adversary
cannot change the firmware code (which uses secure boot),
memory corruption vulnerabilities might still be present in the
code and be exploitable by the adversary [24]. In addition, we
assume that an adversary is able to compromise peripherals
from software to perform DMA attacks [63, 76].

We assume the underlying hardware to be correct and
trusted, and hence, exclude attacks that exploit hardware
flaws [40, 86]. We also do not assume physical access, and
thus, fault injection attacks [6], physical side-channel at-
tacks [46, 62] or the physical connection of malicious periph-
erals are out of scope. We do not consider Denial-of-Service
(DoS) attacks in which the adversary starves an enclave since
an adversary with control over the OS can shut down the
complete system trivially. As standard for TEE architectures,
CURE does not protect from software-exploitable vulnerabili-
ties in the enclave code but prevents their exploitation from
compromising the complete system.

4 Requirements Analysis

To provide customizable, practical and strongly-isolated en-
claves, CURE must fulfill a number of security and function-
ality requirements. We list them in the following section, and
show in Section 7 how CURE fulfills the security require-
ments. In Section 6 and Section 8, we demonstrate how the
functionality requirements are met.

4.1 Security Requirements (SR)
SR.1: Enclave protection. Enclave code must be integrity-
protected when at rest, and inaccessible for an adversary when
executed. All sensitive enclave data must remain confiden-
tial and integrity-protected at all times. An enclave must
be protected from adversaries on all software layers (PL3-
PL0), other potentially malicious enclaves, and DMA at-
tacks [63, 76].
SR.2: Hardware security primitives. The protection of the
enclaves must be enforced by secure hardware components
which can only be configured by the software TCB.
SR.3: Minimal software TCB. The TCB must be protected
from adversaries in all software layers (PL3-PL0) and mini-
mal in size to be formally verifiable, i.e., a few KLOCs [44].
SR.4: Side-channel attack resilience. Mitigations against
the most relevant software side-channel attacks must be avail-
able, namely, side-channel attacks on cache resources [31,
50, 70, 102], controlled side-channel attacks [65, 92, 101] and
transient-execution attacks [12, 14, 43, 45, 78, 89, 90, 93].

4.2 Functionality Requirements (FR)
FR.1: Dynamic enclave boundaries. The trust boundaries
of an enclave must be freely configurable such that enclaves

USENIX Association 30th USENIX Security Symposium 1075

1076 30th USENIX Security Symposium USENIX Association

5.2.1 Enclave Management

Before describing the different enclave types supported by
CURE, we give an overview on CURE’s enclave management.
Security monitor. All CURE enclaves are managed by the
software TCB, called Security Monitor (SM), as in other TEE
architectures [22, 48]. As indicated in Figure 2, the SM it-
self represents an enclave which is part of the firmware. As
described in Section 2, we assume a system that performs
a secure boot on reset, verifies the firmware (including the
SM) and then jumps to the entry point of the SM. Further,
we assume that the SM has already loaded its rollback pro-
tected state Ssm into the volatile main memory. The SM state
contains SKd, PKd, Certd, Cℎainp and a structure Dencl for
each enclave installed on the device.
Enclave installation. When an enclave is deployed to the
device, the SM first verifies the signature Sigencl using Certp
and Cℎainp. Then, the SM creates a new enclave meta-data
structure Dencl and stores Lencl, Sigencl and Certp in it. More-
over, the SM creates an enclave state structure Sencl which
is used to persistently store all sensitive enclave data. The
SM also creates an authenticated encryption key Kencl which
is used to protect the enclave state when it is stored to disk
or flash memory. Kencl and Sencl are also stored in Dencl.
Initially, Sencl only contains an authenticated encryption key
Kcom created by the SM, which is used by the enclave to en-
crypt and integrity protect data communicated to the untrusted
OS, and a monotonic counter. The enclave meta-data struc-
ture Dencl also contains a monotonic counter used to rollback
protect the enclave state.
Enclave setup & teardown. The setup of an enclave is al-
ways triggered by the corresponding host app. After the OS
loads the enclave binary and configuration file, it performs a
context switch to the SM. The SM identifies the enclave by
the label Lencl and begins the enclave setup by (1) configuring
the hardware security primitives (Section 5.3) such that one or
multiple continuous physical memory regions (according to
the configuration file) are exclusively assigned to the enclave
in order to isolate the enclave from the rest of the system soft-
ware. Since the binary and configuration file are loaded from
untrusted software, their integrity must always be verified
using Sigencl and Certp. Assigning physical memory regions
is inevitable when providing enclaves which are able to ex-
ecute privileged software (kernel-space enclave), since this
allows the enclave to control the MMU. Thus, virtual memory
cannot be used to effectively isolate the enclave. (2) After en-
clave verification, the SM configures the hardware primitives
to assign also the rest of the system resources, e.g., cache
or peripherals, to the enclave according to the configuration
file. All assigned resources are also noted in Dencl. Moreover,
the SM assigns an identifier to the enclave which is stored in
Dencl and which is unique for every enclave currently active
on the device. The SM can manage up to N (implementation
defined) enclaves in parallel. We provide more details on the

meaning of the enclave identifier in Section 5.3. (3) In the last
step, the enclave state Sencl is restored, i.e., loaded from disk
or flash memory, decrypted and verified using Kencl, and then
copied to the enclave memory such that it is accessible during
enclave runtime. The SM also checks that the monotonic
counter in Sencl matches the counter stored in Dencl.

The SM configures all interrupts to be routed to the SM
while an enclave is running. Thus, the SM fully controls the
context switches into and out of an enclave. While the SM
is executed, all interrupts on the CPU core executing the SM
are disabled. All other cores remain interrupt responsive. In
CURE, hardware-assisted hyperthreading is disabled during
enclave execution to prevent data leakage through resources
shared between the hardware threads. Alternatively, all hard-
ware threads of a CPU core could also be assigned to the
enclave if the enclave code benefits from parallelization. In
the reminder of the paper, we assume that hyperthreading is
disabled during enclave runtime.

After the setup is complete, the SM jumps to the entry
point of the enclave. During the enclave teardown, which
can be triggered by the host app or the enclave itself, the SM
securely stores the enclave state (using Kencl), while incre-
menting the monotonic counters in Sencl and Dencl, removes
all enclave data from the memory and caches and reconfigures
the hardware primitives.

Enclave execution. At run time, enclaves can access services
provided by the SM over its API, e.g., to dynamically increase
the enclave’s memory or to receive an integrity report which
the SM creates by signing Sigencl with SKd and by attaching
Certd. The integrity report is then send to the service provider
by the enclave. Subsequently, using Cℎaind, the service
provider can perform a remote attestation of the enclave. Only
if the attestation succeeds, the service provider provisions
sensitive data to the enclave. More complex remote attestation
schemes [61] could also be implemented.

Enclaves might use services of the untrusted OS which do
not require access to the plain sensitive enclave data, e.g., file
or network I/O. For those cases, an enclave can utilize Kcom,
which is part of Sencl, to protect its sensitive data. CURE also
allows multiple enclaves to share encrypted sensitive data
over the OS. However, the required key exchange is assumed
to be performed over the back ends of the service providers
and thus, out-of-scope for CURE.

Every enclave which includes a cryptographic library can
also create own keys (apart fromKcom) and store them in Sencl.
Thus, enclaves can also implement key rotation, revocation
or recovery schemes which is, however, the responsibility of
the service provider and thus, out-of-scope for CURE.

On every enclave setup/teardown and context switch in and
out of an enclave, the SM flushes all core-exclusive cache
resources, i.e., the data cache, the TLB and the BTB, thereby
preventing information leakage across execution contexts.

USENIX Association 30th USENIX Security Symposium 1077

5.2.2 User-space Enclaves

User-space enclaves (Encl1 in Figure 2) comprise a complete
user-space process.
OS integration. The key characteristic of a user-space en-
clave is its tight integration into the OS, i.e., it relies on the
OS for memory management, exception/interrupt handling
and other services provided through syscalls (e.g., file system
or network I/O). The OS schedules user-space enclaves like
normal user-spaces processes, only that the context switches
in and out of the enclave are intercepted by the SM. The
OS’s services are used by all user-space enclaves which pre-
vents code duplication. Moreover, user-space enclaves do not
contain management software, leading to smaller binaries.
Controlled side-channel defenses. In controlled side-
channel attacks, the adversary gains information about an
enclave’s execution state by observing usage of resources
managed by the OS, predominantly page tables [65, 92, 101].
CURE defends against these attacks by moving the page tables
of user-space enclaves into the enclave memory. More subtle
controlled side-channel attacks exploit the fact that the en-
clave’s interrupt handling is performed by the OS [91]. CURE
also mitigates these attacks by allowing each enclave to reg-
ister trap handlers to observe its own interrupt behavior, and
act accordingly if a suspicious behavior is detected [15, 79].
Limitations & usage scenarios. A user-space enclave cannot
run higher-privileged code, e.g., device drivers. Thus, all
sensitive data shared with a peripheral has to be processed
by drivers in the untrusted OS and thus, is unprotected if not
encrypted. Hence, user-space enclaves are unable to protect
sensitive services which interact with devices like sensors
or GPUs. Instead, user-space enclave are beneficial when
protecting short-living services that can rely on encrypted
data transmission, e.g., One Time Password (OTP) generators,
payment services, digital key services and many more.

5.2.3 Kernel-space Enclaves

Kernel-space enclaves can comprise only the kernel space
(Encl2), or the kernel and user space (Encl3).
Providing OS services. The key characteristic of a kernel-
space enclave is its capability to run code bare-metal on a
CPU core in the privileged (PL2) software layer or even in
the hypervisor level (PL1) if available. Thus, OS services,
e.g. memory management, can be implemented inside the
enclave in a runtime (RT) component (Figure 2). This results
in less resource sharing with the untrusted OS, and thus, it is
easier to protect against controlled side-channel attacks [91,
92, 101]. Moreover, by including device drivers into the
RT, a secure communication channel to peripherals can be
established. Furthermore, kernel-space enclaves provide more
computational power since CURE allows to run kernel-space
enclaves across multiple cores. In CURE, peripherals can
either be assigned exclusively to a single enclave, by the SM,
at enclave setup or shared between different enclaves and/or

the OS. The peripheral’s internal memory is flushed by the
SM when (re-)assigned to a new entity to prevent information
leakage [49, 72, 107].
Protecting virtual machines. CURE’s ability to include the
kernel space into the enclave allows the construction of en-
claves that encapsulate complete virtual machines (VMs).
VMs are not self-contained but rely on memory and periph-
eral management services provided by a hypervisor, which
makes the VM enclave vulnerable to controlled side-channel
attacks [38, 51]. CURE mitigates this by moving the VM
page tables into the enclave memory and including unmodi-
fied complete drivers into the enclave to avoid dependencies
on the untrusted hypervisor [16, 17]. As for other kernel-
space enclaves, peripherals are temporarily assigned to VM
enclaves by the SM. Again, before a peripheral is reassigned,
its internal memory is sanitized by the SM.
Limitations & usage scenarios. Sensitive services can be
ported to kernel-space enclaves without changing them. How-
ever, in contrast to user-space enclaves, an enclave RT needs
to be added which increases the binary size, adds development
overhead and increases the memory consumption. Moreover,
the CPU cores selected for the enclave first have to be freed
from pending processes, detached from the OS and the RT
booted on them. Nevertheless, kernel-space enclaves are
required when protecting services which heavily rely on pe-
ripheral communication, e.g., authentication services using
biometric sensors, ML services collecting input data over
sensors or offloading computations to accelerators, DRM ser-
vices or in general services which require secure I/O.

5.2.4 Sub-space Enclaves

In CURE, enclave trust boundaries can be freely defined which
allows to construct fine-grained enclaves that only include
parts of the software residing in a privilege level, therefore
called sub-space enclaves.
Shrinking the TCB. Sub-space enclaves are especially ap-
pealing when constructed in the highest privilege level (PL0)
of the system (Encl4 in Figure 2). In CURE, sub-space en-
claves are used to isolate the SM from the firmware code to
protect against exploitable memory corruption vulnerabilities
that might be present in the firmware code [24]. Moreover,
hardware countermeasures, described in Section 5.3, are used
to prevent the firmware code from accessing the SM data or
hardware primitives. Ultimately, this minimizes the software
TCB in CURE, as opposed to other TEE architectures that rely
on a software TCB containing all code in the highest privilege
level, i.e., EL3 (ARM) or the machine level (RISC-V), e.g.,
TrustZone [3], Sanctuary [10], Sanctum [22], Keystone [48].

5.3 Hardware Security Primitives

To provide CURE’s customizable enclaves, new security prim-
itives (SP) are needed in hardware. Our SPs augment the

1078 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 1079

1080 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 1081

1082 30th USENIX Security Symposium USENIX Association

Performing access control. The added registers hold mem-
ory ranges defined by a 32-bit base address (Addr) and a
32-bit mask (Mask), and are used by the control logic to per-
form access control on every memory transaction using the
eid and address signals. Access control is only performed
on channels with a parent-to-child direction (channels A and
C). At access violation, the transaction is redirected (with
all-zero data) to an unused, zero-initialized memory region.
Thus, all forbidden transactions write/read zeros to/from the
unused memory region. An adversary enclave might fill L1
with malicious data which could get flushed with SM priv-
ileges during enclave context switch. To prevent this, we
modify the core such that on every switch to the SM, the L1 is
flushed before the eid register is set. We connect the system
bus to the peripheral and interrupt bus. This allows the SM to
configure the added registers and control logic, and trigger an
interrupt upon access violation which is handled by the SM.
Memory arbiter. We add 15 registers to the memory arbiter,
one for each enclave (13), the SM and the firmware. Each
register defines the memory region assigned to each execu-
tion context. For the enclaves, the control logic verifies that
transactions only target the assigned region. For the SM, no
access control is performed. The OS is allowed to access all
regions except the ones specified in registers of the arbiter.
The firmware is allowed to access its own and the OS regions
which is why a static ID needs to be assigned to the firmware.
Peripheral arbiter. We add two registers per peripheral to the
arbiter of the peripheral bus. One covers the MMIO region of
the peripheral, and the other 32-bit register contains a bitmap
that defines read and write permissions for every enclave.
DMA port. We add a register at every port which connects
a DMA device. In CURE, a DMA device is exclusively as-
signed to a single enclave at one point in time. In our pro-
totype, a DMA device accesses the main memory but not
other peripherals. If specific use cases, e.g. PCI peer-to-
peer transactions [67], must be supported, additional registers
need to be added to specify multiple allowed memory regions.
Together with the peripheral arbiter, this fulfills FR.2.

6.2.3 L2 Cache Partitioning

For cache side-channel resilience, we implement way-based
flexible cache partitioning for the shared L2 (last-level)
cache [81] in our prototype. We leverage the eid-extended
TileLink memory transactions to detect when an enclave is-
sues a cache request.

Configurable partitioning. We implement two modes of
partitioning to allow enclaves to individually enable cache
side-channel resilience. The first mode CP-BASIC performs
rudimentary access control where each enclave is only permit-
ted to access (hit) its own cache lines, but is free to evict cache
lines from other ways. The second mode CP-STRICT provides
more stringent security guarantees by allocating exclusively
one or more ways (across all cache sets) to the pertinent en-

clave. Only these cache ways can be accessed by the enclave
to store or evict cache lines. This provides strict isolation
between the cache resources of the different enclaves, thus,
effectively blocking cache side-channel leakage, but reduces
the cache resources available for the enclave. Depending on
the enclave service requirements, the partitioning mode can
be configured by the SM independently for each enclave at
setup and during the enclave lifetime, thus, fulfilling FR.5.

Access control. We extend each cache entry metadata with
a 4-bit line-eid register encoding the owner enclave of the
cache line, as shown in in Figure 6. We extend the cache
lookup logic to generate a hit only when both tag as well as
eid match for CP-BASIC, as opposed to usual tag matching.

To support CP-STRICT, the cache ways directory is also
extended with a 1-bit register excl that identifies whether
each way is owned exclusively by an enclave, as well as a
4-bit eid register that identifies the owner enclave. The cache
controller logic is augmented with a register-based lookup
table that is indexed by the eid. It encodes with a single
mode bit whether the corresponding enclave has CP-STRICT
enabled and its allocated cache way indices. In CP-STRICT,
cache hits are only allowed in these cache ways.

Eviction and replacement. The L2 cache we use imple-
ments a pseudo-random replacement policy where any way
is selected pseudo-randomly for eviction. We modify this to
only select a way from the subset of ways allowed for each
enclave. For enclaves with CP-STRICT, only ways exclusively
allocated to it are used. For enclaves with CP-BASIC, all ways
(except ways allocated exclusively to other enclaves) are used.

Per-enclave cache allocation. Unallocated way indices
are maintained in a register vector. If an enclave with
CP-STRICT enabled requests to exclusively own cache ways,
the required ways are allocated if available and below the
allowed maximum per enclave.

An inherent drawback of this partitioning technique is how
the limited number of cache ways directly constrains the num-
ber of simultaneous enclaves that can have CP-STRICT en-
abled. However, this is only an implementation decision
for our particular prototype, where more sophisticated cache
designs [25, 74, 99] can be integrated into CURE.

7 Security Considerations

To protect from a strong software adversary, our instantiation
of CURE must fulfill the security requirements introduced
in Section 4.1. In the following section, we discuss how
our prototype meets the requirements SR.1, SR.2, and SR.4,
whereas we show the fulfillment of SR.3 in Section 8.

7.1 Hardware Security Primitives (SR.2)

The enclave protection is enforced by hardware SPs at the
system bus and L2 cache which are configured over MMIO.

USENIX Association 30th USENIX Security Symposium 1083

After the system is powered on and on every switch to the ma-
chine level, the CPU jumps to the trap vector whose address
is stored in the mtvec register. The trap vector is included
into the SM such that the boot process and context switches
are overlooked by the SM. The mtvec register is assigned to
the SM by coupling the access permission to the SM enclave
ID (stored in the eid register) which is also assigned to the
SM. The eid register is set by hardware during the context
switch into the machine level. During boot, the SM assigns
the SP MMIO regions exclusively to its own enclave ID.

7.2 Enclave Protection (SR.1)
At rest, the enclave binaries are stored unencrypted in memory.
However, during enclave setup, the SM verifies the binaries
using digital signatures. Moreover, the L1 is flushed during
setup/teardown to remove malicious or sensitive data from
the cache. The communication between enclaves and the OS
is controlled by the SM, so is the delegation of the shared
memory address. Hardware-assisted hyperthreading is dis-
abled during enclave execution. The enclave state, which is
loaded during the setup process, is persistently stored by the
SM using authenticated encryption, either in RAM as part of
the SM state or evicted to flash/disk, and additionally rollback
protected. During teardown, the SM removes all enclave data
from the memory.

The SPs in hardware perform access control on physical
addresses at the system bus. Thus, CURE protects from ad-
versaries in privileged software levels (PL2 - PL0) and from
off-core adversaries, e.g. peripherals performing DMA. The
enclave data cached in the L1 during run time is protected
by flushing it on all context switches. Data in the L2 cache
is protected by assigning cache lines exclusively to enclaves.
Since no enclave (except the SM), has elevated rights on the
system, CURE also protects from malicious enclaves.

7.3 Side-channel Attack Resilience (SR.4)
Cache side-channel attacks. Side-channel attacks which tar-
get data in core-exclusive cache resources, i.e., in the L1 [11],
the BTB [50] or the TLB [31], are prevented by the SM by
flushing the resources on all context switches. Side-channel
attacks targeting data in the shared L2 cache [36, 39, 102] are
prevented through strict way-based cache partitioning.
Controlled side-channel attacks. Side-channel attacks on
user-space enclaves which target page tables [65, 92, 101]
are prevented by including the page tables into the enclave
memory and by mapping all enclave code and data pages
before execution. The SM verifies the page tables and the
base address of the root page table stored in the satp register.
The hardware SPs prevent the page table walker (PTW) from
performing forbidden memory access during the page table
walk. Side-channel attacks exploiting interrupts [91] can be
mitigated using trap handlers (Section 5.2.2).

CURE provides cryptographic primitives in the user-space
enclaves to encrypt and integrity-protect data shared with
the OS. However, using OS services over syscalls always
comprises a remaining risk of leaking meta data informa-
tion [2, 77] or of receiving malicious return values from the
OS [13]. In user-space enclaves, these attacks must be mit-
igated on the application level inside the enclave, e.g., by
using data-oblivious algorithms [2, 68] or by verifying the
return values [13]. None of these attacks pose a threat to
kernel-space enclave since all resources are handled by the
enclave RT. However, on VM enclaves, the second level
page tables need to be protected, as with user-space enclaves.
Interrupt-based attacks can again be mitigated with custom
trap handlers. No additional countermeasures are needed to
protect the SM since the SM does not use a virtual address
space or OS services and handles its own interrupts.
Transient execution attacks. The discovered transient exe-
cution attacks either mistrain the branch predictor [14,43,45],
rely on information leakage [89] or malicious injections [90]
on the L1 cache, or rely on resources shared when using
hardware-assisted hyperthreading [12, 78, 90, 93, 94]. By
disabling hyperthreading during enclave execution (or alter-
natively assigning all threads to the enclave) and flushing
core-exclusive caches, CURE protects enclaves against the
known transient execution attacks.

8 Evaluation

In the following section, we systematically evaluate our CURE
prototype. First, we quantify the software and hardware mod-
ifications required to implement CURE. Next, we evaluate
the performance of CURE’s enclaves using microbenchmarks,
and the overall performance overhead of CURE using generic
RISC-V benchmark suites.

8.1 System Modifications

Component LOC
Linux Kernel 375 (modified)
Custom Kernel Module 200
Security Monitor 544
SM Crypto-Library 2586

Table 1: Lines of code required to implement CURE. SM
Crypto-Library refers to the crypto library (part of tomcrypt)
included in the Security Monitor.

Software changes and TCB. Our implementation of CURE
on RISC-V comprises of a slightly modified Linux LTS kernel
4.19, a custom kernel module, and our software TCB (SM).
In Table 1, the lines of code (LOC) are shown for each of
the components, which indicate that the software changes
required to implement CURE are minimal. Moreover, the
SM only consists of around 3KLOC of code, whereas most

1084 30th USENIX Security Symposium USENIX Association

(82.62%) of the SM code consists of cryptographic primi-
tives. Because of its minimal size, formal verification of the
SM is possible [44], thus, fulfilling SR.3. Note that since
CURE isolates the SM in an own sub-space enclave, CURE
can achieve a smaller TCB size than other RISC-V security ar-
chitectures [22, 48, 98] which include all code in the machine
level, i.e., the firmware code, in the TCB. In our implemen-
tation, the firmware code consists of 3286 LOCs. Thus, by
isolating the SM in a sub-space enclave, we managed to cut
the software TCB in half, where the actual management code
is even less (15.56%).

Protecting a sensitive service in a user-space enclave re-
quires to add a small custom library (10KB) to the service
binary. For the kernel-space enclaves, management code (the
enclave RT) must be added in addition. In our prototype, we
use the Linux LTS kernel 4.19 as the RT which increases the
size of the service binary by 3MB. Custom RTs can further
decrease this kernel-space enclave overhead. However, kernel-
space enclaves will always have an increased binary size and
memory consumption compared to user-space enclaves.
Hardware overhead. We evaluate the hardware overhead of
our changes by synthesizing the generated Verilog descrip-
tions using Xilinx Vivado tools targeting a Virtex UltraScale
FPGA device. Table 2 shows a breakdown of the individ-
ual area overhead of the different modifications required to
implement CURE. Overhead is represented in look-up ta-
bles (LUTs), the fundamental programmable logic blocks of
FPGA devices, and registers.

Configuration LUTs Registers
Overhead (+%) Overhead (+%)

Baseline 61,097 28,012
TileLink extension +211 (0.4%) +110 (0.4%)

Access control extensions

Main memory +5,276 (8.6%) +1,055 (3.8%)
1 MMIO peripheral +248 (0.4%) +107 (0.4%)
1 DMA device +112 (0.2%) +72 (0.3%)

On-demand cache partitioning

w/ L2 cache (baseline) +30,232 +11,549
w/ L2 cache partitioned +516 (1.7%∗) +214 (1.8%∗)

Table 2: Hardware overhead breakdown in LUTs and registers.
Baseline setup consists of 2 Rocket cores without L2 cache.
∗Overhead relative to the L2 cache (baseline).

We compare in Table 2 with a baseline configuration of 2
in-order Rocket cores (each with L1 cache). Extending the
TileLink protocol throughout the system bus incurs a minimal
overhead of 105 LUTs per core relative to the baseline (211
LUTs for 2 cores). This overhead includes propagating the
eid in tandem with memory access transactions through the
MMU of every core, and is thus replicated for every additional
core in the system.

In contrast, the rest of our modifications for performing ac-
cess control at the system bus, including enclave-to-peripheral

Measurement Normal
Process

User-Space
Enclave

Kernel-Space
Enclave

Setup: 0.741 23.918 413.726
Binary Verification - 21.824 218.975
Others 0.741 2.094 194.750

Teardown: 0.065 23.531 103.517
Memory Cleaning - 9.384 50.206
Others 0.065 14.147 53.311

Context switch to OS 0.008 0.025 53.308
Context switch from OS 0.078 0.084 194.747
Dynamic memory allocation 0.003 0.020 0.005
OS communication - 0.020 0.049

Table 3: CURE performance overhead compared to a normal
process on microbenchmarks in milliseconds.

binding, are independent of the number of cores. Incorpo-
rating logic to perform access control for every MMIO pe-
ripheral utilizes an additional 248 LUTs, and 112 LUTs per
DMA device. Each represent below 0.5% overhead relative
to a dual-core baseline SoC. Integrating an L2 cache into our
baseline setup utilizes an additional 30,232 LUTs. Applying
our on-demand way-based partitioning to this cache costs only
516 LUTs and 214 registers, which is 1.8% overhead relative
to the L2 cache logic utilization itself, and 0.5% relative to the
entire SoC. Our area overhead evaluation results demonstrate
that the hardware modifications required to achieve our fine-
grained and customized enclave protection in CURE indeed
incur minimal area overhead on both single- and multi-core
architectures, thus fulfilling FR.3.

8.2 Performance Evaluation
We evaluate the performance of CURE using our FPGA-based
setup coupled with cycle-accurate simulators. We conduct
our experiments using micro and macro benchmarks for user-
space and kernel-space enclaves, and compare them to un-
modified user-space processes. We conduct 10 runs for each
of the experiments.

8.2.1 Microbenchmarks

For microbenchmarks (Table 3), we measured important key
aspects individually: setting up and tearing down an enclave,
context switching with the OS, dynamic memory allocation,
and communication via shared memory. We implement an
application which performs the required tasks (without any
additional logic) and run it as a normal Linux process, a user-
space enclave and a kernel-space enclave (single core). The
enclave setup is triggered by a host app in Linux which is the
only purpose of the app. The enclave binary sizes therefore
mainly correspond to the overhead produced by the enclave
types, i.e., 10KB for the user-space enclave and around 3MB
for the kernel-space enclave.

For the enclave setup, our results show that most of the
time (91.3% for user-space, 52.1% for kernel-space enclaves)
is spent on binary verification. The Others measurement

USENIX Association 30th USENIX Security Symposium 1085

1086 30th USENIX Security Symposium USENIX Association

Benchmark Cycles # for 16/16 Cycles # for 1/16 Overhead
ways (baseline) ways (worst-case) (+%)

rv8.aes 29,754,631,670 32,175,733,155 8.1%
rv8.miniz 42,040,536,353 45,063,752,315 7.2%
rv8.norx 30,899,386,564 32,702,249,193 5.8%

rv8.primes 21,731,621,683 21,770,731,965 0.18%
rv8.qsort 24,355,792,115 25,280,228,818 3.8%

rv8.dhrystone 19,865,586,529 20,289,555,571 2.1%
rv8.bigint 65,512,466,917 71,487,944,568 9.1%
CoreMark 394,664,199 402,293,814 1.9%
GeoMean - - 3.09%

Table 5: Performance impact of L2 cache strict way-based par-
titioning for kernel-space enclaves on different benchmarks.

that the kernel-space enclave has a higher performance impact
on the OS than the user-space enclave. Based on these results,
we demonstrate that CURE also fulfills FR.4 and achieves a
moderate performance overhead.
L2 cache partitioning. We evaluate the performance impact
of partitioning the L2 cache (CP-STRICT mode) for kernel-
space enclaves and show our results in Table 5. For our
cycle-accurate experiments, we configure the core with 64KB
8-way set-associative L1 data and instructions caches and
2048KB 16-way set-associative shared L2 cache. The im-
pact of way-based cache partitioning on performance is very
application-dependent (besides the caches configuration and
caches and main memory access latencies), as demonstrated
by our experiments where the performance overhead ranges
from a little under 0.2%, as for the prime benchmark, to a
little over 9% for the bigint benchmark, for example. We
measure a geometric mean of 3.09%. We note that the over-
heads reported are performance hits where the baseline is a
best-case scenario where the only workload utilizing the cache
resources (all 16 ways of the L2 cache) is the kernel-space
enclave under test. Furthermore, we observe that performance
significantly improves once more than 1 way is allocated per
enclave, which is the likely scenario for enclaves that run
applications with larger working sets and can benefit more
from increased L2 cache resources.

9 Related Work

The existing works mostly related to CURE are TEE archi-
tectures which focus on modern high-performance computer
systems. In contrast to capability systems or memory tagging
extensions [30, 82, 88, 95, 100], TEE architectures protect
sensitive services in security contexts (enclaves) against priv-
ileged software adversaries. We do not further discuss TEE
architectures focusing on embedded systems [8, 47, 66, 98].

We compare CURE to other TEE architectures in Table 6.
All presented architectures provide a single type of enclave
which, on an abstract level, resemble either the user-space or
kernel-space enclaves provided by CURE.

Intel SGX [64] offers user-space enclaves on Intel proces-
sors. The untrusted OS provides memory management and

other OS services, e.g. exception handling, to the enclaves.
SGX does not protect against cache side-channel [11, 50] and
controlled side-channel attacks [91, 92, 101]. Many exten-
sions to SGX were proposed in order to mitigate side-channel
attacks [1, 2, 7, 15, 69, 79], however, these solutions are all
ad-hoc approaches that do not fix the underlying design short-
comings of SGX, but instead leverage costly data-oblivious
algorithms [1, 2, 7], or exploit not commonly available hard-
ware in an unintended way [15, 79].

Sanctum [22], which also provides user-space enclaves, ad-
dresses both, cache side-channels through page coloring, and
controlled side-channels by storing the enclave page tables in
the enclave memory, like CURE. However, page coloring is
not practical as it influences the whole OS memory layout and
cannot be efficiently changed at run time. CURE’s cache par-
titioning instead allows dynamic assignment of cache ways,
and also mechanisms to mitigate interrupt-based side-channel
attacks. Sanctum and SGX only provide user-space enclaves
which are inherently limited as they cannot provide secure
I/O, but only protect from simple DMA attacks.

Similar to SGX, AMD SEV [38], which isolates complete
VMs in the form of kernel-space enclaves, does not consider
any side-channel attacks. VM data in the CPU cache is pro-
tected by an access control mechanism relying on Address
Space Identifiers which, however, does not protect against
cache side-channel attacks. As the memory management and
I/O services are provided by the untrusted hypervisor, SEV
is also vulnerable to controlled side-channel attacks [65] and
cannot provide secure peripheral binding [51].

ARM TrustZone [3] separates the system into normal and
secure world, a single kernel-space enclave which does not
rely on the OS and thus, is protected from controlled side-
channel attacks. TrustZone does not provide cache side-
channels protection, only by using additional hardware [106].
Further, TrustZone’s major design shortcoming is provid-
ing only a single enclave, thus, sensitive services cannot be
strongly isolated with TrustZone, hence, access to TrustZone
is highly limited in practice by device vendors. Extensions
building upon TrustZone mostly tried to enable multi-enclave
support for TrustZone [10, 18, 33, 85] with workarounds that
either rely on ARM IP [10], block the hypervisor [18, 33], or
massively impact performance [85]. Since multiple enclaves
were not considered in the TrustZone design from the begin-
ning, even the proposed extensions cannot provide binding
peripherals directly and exclusively to single enclaves.

Keystone [48] provides kernel-space enclaves on RISC-
V. Moreover, Keystone uses a cache-way based partition-
ing against cache side-channel attacks, comparable to CURE.
However, Keystone provides a coarse-grained cache ways
assignment per CPU core, whereas CURE assigns cache ways
to enclaves with freely configurable boundaries. Thus, the
Keystone design is limited to a single enclave type which
prevents Keystone from isolating the firmware from the ac-
tual TCB and demands adapting the sensitive services to the

USENIX Association 30th USENIX Security Symposium 1087

Enclave Type

Name Extensions User-Space Kernel-Space Sub-Space
Dynamic Cache

Side-Channel Resilience
Controlled Side-

Channel Resilience
Enclave-to-Peripheral

Binding
SGX [64] [1, 2, 7, 15, 69, 79] ●∗ ○∗ ○∗ ◐∗ ◐∗ ○∗

Sanctum [22] - ●∗ ○∗ ○∗ ◐∗ ●∗ ○∗

SEV(-ES) [38] - ○∗ ●∗ ○∗ ○∗ ○∗ ○∗

TrustZone [3] [10, 18, 27, 32, 33, 57, 85, 106] ○∗ ●∗ ○∗ ◐∗ ●∗ ◐∗

Keystone [48] - ○∗ ●∗ ○∗ ●∗ ●∗ ○∗

CURE - ●∗ ●∗ ●∗ ●∗ ●∗ ●∗

Table 6: Comparison of major TEE architectures with respect to provided enclave types, dyn. cache-side channel and controlled-
side channel resilience, and enclave-to-peripheral binding, i.e., MMIO/DMA protection with exclusive enclave assignment.
● indicates full support, ◐ for support with limitations, ○ for no support, ∗ if resilience can only be achieved through extensions.

predefined enclave. Moreover, in contrast to CURE, Keystone
does not support enclave-to-peripheral binding.
10 Conclusion

We presented CURE, a novel TEE architecture which provides
strongly-isolated enclaves that can be adapted to the function-
ality and security requirements of the sensitive services which
they protect. CURE offers different types of enclaves, rang-
ing from sub-space enclaves, over user-space enclaves, to
self-sustained kernel-space enclaves which can execute priv-
ileged software. CURE’s protection mechanisms are based
on new hardware security primitives on the system bus, the
shared cache and the CPU. We instantiate CURE on a RISC-V
system. The evaluation of our prototype indicates minimal
hardware overhead for the security primitives and a moderate
overall performance overhead.

Acknowledgments

We thank our anonymous reviewers for their valuable and
constructive feedback. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.
Moreover, this project has received funding from Huawei
within the OpenS3 lab.

References
[1] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee. Obfuscuro:

A commodity obfuscation engine on intel sgx. In NDSS, 2019.
[2] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. Obliviate: A data

oblivious filesystem for intel sgx. In NDSS, 2018.
[3] ARM Limited. Security technology: building a secure system

using TrustZone technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2008.

[4] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, et al. The rocket
chip generator. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, 2016.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with haven. TOCS, 33(3):1–26, 2015.

[6] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic
curve cryptosystems. In CRYPTO, pages 131–146. Springer, 2000.

[7] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A. Sadeghi. Dr. sgx: automated and adjustable side-channel
protection for sgx using data location randomization. In ACSAC,
pages 788–800, 2019.

[8] F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl.
Tytan: tiny trust anchor for tiny devices. In DAC, pages 1–6. IEEE,
2015.

[9] F. Brasser, T. Frassetto, K. Riedhammer, A. Sadeghi, T. Schneider,
and C. Weinert. Voiceguard: Secure and private speech processing.
In Interspeech, pages 1303–1307, 2018.

[10] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. Sanctuary:
Arming trustzone with user-space enclaves. In NDSS, 2019.

[11] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi. Software grand exposure: Sgx cache attacks are practical.
In WOOT, 2017.

[12] C. Canella, D. Genkin, L. Giner, D. Gruss, et al. Fallout: Leaking
data on meltdown-resistant cpus. In CCS, pages 769–784, 2019.

[13] S. Checkoway and H. Shacham. Iago attacks: why the system call
api is a bad untrusted rpc interface. In ASPLOS, volume 13, pages
253–264, 2013.

[14] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution. In
EuroS&P, pages 142–157. IEEE, 2019.

[15] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged
side-channel attacks in shielded execution with déjá vu. In Asia CCS,
pages 7–18. ACM, 2017.

[16] H. D. Chirammal, P. Mukhedkar, and A. Vettathu. Mastering KVM
virtualization. Packt Publishing Ltd, 2016.

[17] D. Chisnall. The definitive guide to the xen hypervisor. Pearson
Education, 2008.

[18] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek. Hardware-
assisted on-demand hypervisor activation for efficient security critical
code execution on mobile devices. In USENIX ATC, pages 565–578,
2016.

[19] K. Choi, K. Toh, and H. Byun. Realtime training on mobile devices
for face recognition applications. Pattern recognition, 44(2):386–400,
2011.

[20] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. Seca:
security-enhanced communication architecture. In CASES, pages
78–89. ACM, 2005.

[21] Intel Corporation. Intel R© 64 and ia-32 architectures software
developer’s manual. https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-
3abcd.pdf, 2019.

[22] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security, 2016.

[23] P. Cotret, J. Crenne, G. Gogniat, and J. Diguet. Bus-based mpsoc secu-
rity through communication protection: A latency-efficient alternative.
In FCCM, pages 200–207. IEEE, 2012.

[24] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. Fie on firmware:
Finding vulnerabilities in embedded systems using symbolic execu-
tion. In USENIX Security, pages 463–478, 2013.

1088 30th USENIX Security Symposium USENIX Association

[25] G. Dessouky, T. Frassetto, and A. Sadeghi. Hybcache: Hybrid
side-channel-resilient caches for trusted execution environments. In
USENIX Security, 2020.

[26] EMBC. Coremark. https://www.eembc.org/coremark/, 2019.

[27] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo:
Using verification to disentangle secure-enclave hardware from soft-
ware. In SOSP, pages 287–305. ACM, 2017.

[28] RISC-V Foundation. The risc-v instruction set manual, volume ii:
Privileged architecture. https://riscv.org/specifications/
privileged-isa/, 2019.

[29] RISC-V Foundation. Risc-v proxy kernel and boot loader. https:
//github.com/riscv/riscv-pk, 2019.

[30] T. Frassetto, P. Jauernig, C. Liebchen, and A. Sadeghi. Imix: In-
process memory isolation extension. In USENIX Security, pages
83–97, 2018.

[31] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with {TLB} attacks.
In USENIX Security, pages 955–972, 2018.

[32] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger.
Trustshadow: Secure execution of unmodified applications with arm
trustzone. In MobiSys, pages 488–501. ACM, 2017.

[33] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vtz: Virtualiz-
ing arm trustzone. In USENIX Security), 2017.

[34] Advanced Micro Devices Inc. Amd64 architecture programmer’s
manual volume 2: System programming. https://www.amd.com/
system/files/TechDocs/24593.pdf, 2019.

[35] Intel. Intel Software Guard Extensions Programming Refer-
ence. https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf, 2014.

[36] G. Irazoqui, T. Eisenbarth, and B. Sunar. S $ a: A shared cache attack
that works across cores and defies vm sandboxing and its application
to aes. In S&P, pages 591–604. IEEE, 2015.

[37] N. P. Jouppi, C. Young, N. Patil, and D. Patterson. A domain-specific
architecture for deep neural networks. Commun. ACM, 61(9):50–59,
2018.

[38] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption.
https://developer.amd.com/wordpress/media/2013/12/
AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, 2016.

[39] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel. A high-
resolution side-channel attack on last-level cache. In DAC, page 72.
ACM, 2016.

[40] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. ACM
SIGARCH Computer Architecture News, 42(3):361–372, 2014.

[41] C. King. stress-ng. https://manpages.ubuntu.com/manpages/
artful/man1/stress-ng.1.html, 2019.

[42] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer.
Dawg: A defense against cache timing attacks in speculative execution
processors. In MICRO, pages 974–987. IEEE, 2018.

[43] V. Kiriansky and C. Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[44] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, et al. sel4: Formal
verification of an os kernel. In SOSP, pages 207–220. ACM, 2009.

[45] P. Kocher, J. Horn, A. Fogh, D. Genkin, et al. Spectre attacks:
Exploiting speculative execution. In S&P, pages 1–19. IEEE, 2019.

[46] P. C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO, pages 104–113. Springer,
1996.

[47] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan. Trustlite: A
security architecture for tiny embedded devices. In EuroSys, page 10.
ACM, 2014.

[48] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović.
Keystone: A framework for architecting tees. arXiv preprint
arXiv:1907.10119, 2019.

[49] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing webpages rendered on
your browser by exploiting gpu vulnerabilities. In S&P, pages 19–33.
IEEE, 2014.

[50] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside SGX enclaves with branch shadowing.
In USENIX Security, pages 557–574, 2017.

[51] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected
i/o operations in amd’s secure encrypted virtualization. In USENIX
Security, pages 1257–1272, 2019.

[52] LibTom. Libtomcrypt. https://www.libtom.net/
LibTomCrypt/, 2019.

[53] ARM Limited. Trusted board boot requirements client (tbbr-
client) armv8-a. https://static.docs.arm.com/den0006/
d/DEN0006D_Trusted_Board_Boot_Requirements.pdf?_ga=
2.193628069.980937939.1583698138-225494643.1545056698,
2018.

[54] ARM Limited. Amba R© axi and ace protocol specification. https:
//static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_
protocol_spec.pdf, 2019.

[55] Arm Limited. Arm R© architecture reference manual. https:
//static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.
pdf, 2019.

[56] ARM Limited. Arm platform security architecture trusted boot and
firmware update. https://pages.arm.com/rs/312-SAX-488/
images/DEN0072-PSA_TBFU_1.0-bet1.pdf, 2019.

[57] Linaro. Op-tee. https://www.op-tee.org/.

[58] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In HPCA, pages 406–418. IEEE, 2016.

[59] F. Liu and R. B. Lee. Random fill cache architecture. In MICRO,
pages 203–215. IEEE, 2014.

[60] F. Liu, H. Wu, K. Mai, and R. B. Lee. Newcache: Secure cache
architecture thwarting cache side-channel attacks. MICRO, 36(5):8–
16, 2016.

[61] John M. Intel software guard extensions remote attestation end-to-end
example. https://software.intel.com/en-us/articles/
intel- software- guard- extensions- remote- attestation-
end-to-end-example, 2018.

[62] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Re-
vealing the secrets of smart cards, volume 31. Springer Science &
Business Media, 2008.

[63] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. Watson. Thunderclap: Exploring
vulnerabilities in operating system iommu protection via dma from
untrustworthy peripherals. In NDSS, 2019.

[64] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP. ACM, 2013.

[65] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. Severed: Subvert-
ing amd’s virtual machine encryption. In EuroSec. ACM, 2018.

[66] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In USENIX Security, 2013.

USENIX Association 30th USENIX Security Symposium 1089

[67] NVIDIA. Developing a linux kernel module using gpudirect
rdma. https://docs.nvidia.com/cuda/gpudirect-rdma/
index.html, 2019.

[68] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learn-
ing on trusted processors. In USENIX Security, pages 619–636,
2016.

[69] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer.
Varys: Protecting sgx enclaves from practical side-channel attacks. In
USENIX ATC, 2018.

[70] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and counter-
measures: the case of AES. In RSA Conference, 2006.

[71] Orson P. ed25519. https://github.com/orlp/ed25519, 2019.

[72] R. D. Pietro, F. Lombardi, and A. Villani. Cuda leaks: a detailed hack
for cuda and a (partial) fix. TECS, 15(1):15, 2016.

[73] M. Portnoy. Virtualization essentials, volume 19. John Wiley & Sons,
2012.

[74] M. K. Qureshi. Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In MICRO, pages 775–787. IEEE,
2018.

[75] RV-8. Rv8-bench. https://github.com/rv8-io/rv8-bench,
2019.

[76] F. L. Sang, V. Nicomette, and Y. Deswarte. I/o attacks in intel pc-
based architectures and countermeasures. In SysSec Workshop, pages
19–26. IEEE, 2011.

[77] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the burst: Re-
mote identification of encrypted video streams. In USENIX Security,
pages 1357–1374, 2017.

[78] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. Zombieload: Cross-privilege-boundary
data sampling. In CCS, pages 753–768, 2019.

[79] M. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In NDSS, 2017.

[80] SiFive. Sifive tilelink specification. https://sifive.
cdn . prismic . io / sifive % 2F57f93ecf - 2c42 - 46f7 - 9818 -
bcdd7d39400a_tilelink-spec-1.7.1.pdf, 2018.

[81] SiFive. Sifive block inclusive cache. https://github.com/
sifive/block-inclusivecache-sifive, 2019.

[82] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek. Hdfi: Hardware-assisted data-flow isolation. In S&P, pages
1–17. IEEE, 2016.

[83] M. Sonka, V. Hlavac, and R. Boyle. Image processing, analysis, and
machine vision. Cengage Learning, 2014.

[84] D. Steinkraus, I. Buck, and P. Simard. Using gpus for machine
learning algorithms. In ICDAR, pages 1115–1120. IEEE, 2005.

[85] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. Trustice: Hardware-
assisted isolated computing environments on mobile devices. In DSN,
2015.

[86] A. Tang, S. Sethumadhavan, and S. Stolfo. Clkscrew: exposing the
perils of security-oblivious energy management. In USENIX Security,
pages 1057–1074, 2017.

[87] C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library os
for unmodified applications on sgx. In USENIX ATC, pages 645–658,
2017.

[88] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg. Erim: Secure, efficient in-process isolation
with protection keys (mpk). In USENIX Security, pages 1221–1238,
2019.

[89] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the intel sgx kingdom with tran-
sient out-of-order execution. In USENIX Security, pages 991–1008,
2018.

[90] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens. Lvi:
Hijacking transient execution through microarchitectural load value
injection. In S&P, 2020.

[91] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary cpu interrupt logic. In
CCS, pages 178–195. ACM, 2018.

[92] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In USENIX Security, pages 1041–1056,
2017.

[93] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. Ridl: Rogue in-flight data load.
S&P, 2019.

[94] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. SGAxe: How SGX fails in practice. https://
sgaxeattack.com/, 2020.

[95] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero.
Codoms: Protecting software with code-centric memory domains. In
ISCA, pages 469–480. IEEE, 2014.

[96] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution
environments on gpus. In USENIX OSDI 18, pages 681–696, 2018.

[97] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh.
Secdcp: Secure dynamic cache partitioning for efficient timing chan-
nel protection. In DAC, pages 1–6. ACM, 2016.

[98] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A. Sadeghi. Timber-v: Tag-isolated memory bringing fine-grained
enclaves to risc-v. In NDSS, 2019.

[99] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard. Scattercache: thwarting cache attacks via cache set
randomization. In USENIX Security, pages 675–692, 2019.

[100] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The
cheri capability model: Revisiting risc in an age of risk. In ISCA,
pages 457–468. IEEE, 2014.

[101] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In S&P, pages
640–656. IEEE, 2015.

[102] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In USENIX Security, 2014.

[103] Google Projekt Zero. Trust issues: Exploiting trustzone tees.
https://googleprojectzero.blogspot.com/2017/07/trust-
issues-exploiting-trustzone-tees.html, 2017.

[104] Google Projekt Zero. Cve-2018-17182. https://bugs.chromium.
org/p/project-zero/issues/detail?id=1664, 2018.

[105] Google Projekt Zero. Xnu: copy-on-write behavior bypass via
mount of user-owned filesystem image. https://developer.amd.
com/wordpress/media/2013/12/AMD_Memory_Encryption_
Whitepaper_v7-Public.pdf, 2018.

[106] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. Sectee: A software-
based approach to secure enclave architecture using tee. In CCS,
pages 1723–1740. ACM, 2019.

[107] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang, and R. Liu. Vulnerable
gpu memory management: towards recovering raw data from gpu.
Proceedings on Privacy Enhancing Technologies, 2017(2):57–73,
2017.

1090 30th USENIX Security Symposium USENIX Association

C
POSE: Practical Off-chain Smart Contract Execution
(NDSS’23)

[68] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler, Benjamin Schlosser,
Sebastian Faust, and Ahmad-Reza Sadeghi. POSE: Practical Off-chain Smart Contract
Execution. In 30th Annual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 24-27, 2023, 2023. CORE Rank A*. Section 4.1.

111

POSE: Practical Off-chain Smart Contract Execution

Tommaso Frassetto∗, Patrick Jauernig∗, David Koisser∗, David Kretzler†,
Benjamin Schlosser†, Sebastian Faust† and Ahmad-Reza Sadeghi∗

Technical University of Darmstadt, Germany
∗first.last@trust.tu-darmstadt.de
†first.last@tu-darmstadt.de

Abstract—Smart contracts enable users to execute payments
depending on complex program logic. Ethereum is the most
notable example of a blockchain that supports smart contracts
leveraged for countless applications including games, auctions
and financial products. Unfortunately, the traditional method of
running contract code on-chain is very expensive, for instance,
on the Ethereum platform, fees have dramatically increased,
rendering the system unsuitable for complex applications. A
prominent solution to address this problem is to execute code
off-chain and only use the blockchain as a trust anchor. While
there has been significant progress in developing off-chain systems
over the last years, current off-chain solutions suffer from various
drawbacks including costly blockchain interactions, lack of data
privacy, huge capital costs from locked collateral, or supporting
only a restricted set of applications.

In this paper, we present POSE—a practical off-chain pro-
tocol for smart contracts that addresses the aforementioned
shortcomings of existing solutions. POSE leverages a pool of
Trusted Execution Environments (TEEs) to execute the computa-
tion efficiently and to swiftly recover from accidental or malicious
failures. We show that POSE provides strong security guarantees
even if a large subset of parties is corrupted. We evaluate our
proof-of-concept implementation with respect to its efficiency and
effectiveness.

I. INTRODUCTION

More than a decade ago, Bitcoin [47] introduced the
idea of a decentralized cryptocurrency, marking the advent
of the blockchain era. Since then, blockchain technologies
have rapidly evolved and a plethora of innovations emerged
with the aim to replace centralized platform providers by
distributed systems. One particularly important application
of blockchains concerns so-called smart contracts, complex
transactions executing payments that depend on programs
deployed to the blockchain. The first and most popular
blockchain platform that supported complex smart contracts
is Ethereum [58]. However, Ethereum still falls short of the
decentralized “world computer” that was envisioned by the
community [51]. For example, contracts are replicated among
a large group of miners, thereby severely limiting scalability
and leading to high costs. As a result, most contracts used
in practice in the Ethereum ecosystem are very simple: 80%
of popular contracts consist of less than 211 instructions,
and almost half of the most active contracts are simple token

managers [49]. More recently proposed computing platforms
in permissionless decentralized settings (e.g., [1], [34]) suffer
from similar scalability limitations.

In recent years, numerous solutions have been proposed to
address these shortcomings of blockchains, one of the most
promising being so-called off-chain execution systems. These
protocols move the majority of transactions off-chain, thereby
minimizing the costly interactions with the blockchain. A
large body of work has explored various types of off-chain
solutions including most prominently state-channels [46], [26],
[22], Plasma [52], [37] and Rollups [48], [5], which are
actively investigated by the Ethereum research community.
Other schemes use execution agents that need to agree with
each other [60], [59], rely on incentive mechanisms [36],
[57], or leverage Trusted Execution Environments (TEEs) [20],
[25]. A core challenge that arises while designing off-chain
execution protocols is to handle the possibility of parties who
stop responding, either maliciously or accidentally. Without
countermeasures, this may cause the contract execution to
stop unexpectedly, which violates the liveness property. De-
spite major progress towards achieving liveness in a off-chain
setting, current solutions come with at least one of these
limitations: i participating parties need to lock large amounts
of collateral; ii costly blockchain interactions are required at
every step of the process or at regular intervals; and finally
iii the set of participants and the lifetime need to be known
beforehand, which limits the set of applications supported
by the system. Additionally, existing solutions often iv do
not support keeping the contract state confidential, which is
required, e.g., for eBay-style proxy auctions [9] and games
such as poker. We refer the reader to Table II for an overview
on related work and to Section X for a detailed discussion.

Addressing all of these limitations in one solution while
guaranteeing liveness is highly challenging. Currently, there
are two ways to address the risks of unresponsive parties. The
first approach is to require collateral, i.e., parties have to block
large amounts of money, which is used to disincentivize mali-
cious behavior and to compensate parties in case of premature
termination (cf. i). Since the amount of collateral depends
on the number of participants and the amount of money in
the contract, both must be fixed for the whole lifetime of the
contract. To ensure payout of the collateral, the lifetime of the
contract must be fixed as well (cf. iii). The second approach
is to store contract state on the blockchain to enable other
parties to resume execution. However, this is both expensive
and leads to long waiting times due to frequent synchronization
with the blockchain (cf. ii). Further, if the contract state
needs to be confidential, and hence, is not publicly verifiable,

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23118
www.ndss-symposium.org

verifying the correctness of the contract execution is harder
(cf. iv). Realizing a system tackling all these challenges in a
holistic way could pave the way towards the envisioned “world
computer”. We will further elaborate on the specific challenges
in Section III.

Our goals and contributions: We present POSE , a novel
off-chain execution framework for smart contracts in permis-
sionless blockchains that overcomes these challenges, while
achieving correctness and strong liveness guarantees. In POSE ,
each smart contract runs on its own subset of TEEs randomly
selected from all TEEs registered to the network. One of the
selected TEEs is responsible for the execution of a smart
contract.

However, as the system hosting the executing TEE may be
malicious (e.g., the TEE could simply be powered off during
contract execution), our protocol faces the challenge of dealing
with malicious operator tampering, withholding and replaying
messages to/from the TEE. Hence, the TEE sends state updates
to the other selected TEEs, such that they can replace the
executing TEE if required. This makes POSE the first off-
chain execution protocol with strong liveness guarantees. In
particular, liveness is guaranteed as long as at least one TEE in
the execution pool is responsive. Due to this liveness guarantee,
there is no inherent need for a large collateral in POSE (cf. i).
The state remains confidential, which allows POSE to have
private state (cf. iv). Furthermore, POSE allows participants
to change their stake in the contract at any time. Thus,
POSE supports contracts without an a-priori fixed lifetime and
enables the set of participants to be dynamic (cf. iii). Above
all, POSE executes smart contracts quickly and efficiently
without any blockchain interactions in the optimistic case (cf.
ii).

This enables the execution of highly complex smart con-
tracts and supports emerging applications to be run on the
blockchain, such as federated machine learning. Thus, POSE
improves the state of the art significantly in terms of security
guarantees and smart contract features. To summarize, we list
our main contributions below:

• We introduce POSE , a fast and efficient off-chain smart
contract execution protocol. It provides strong guarantees
without relying on blockchain interactions during opti-
mistic execution, and does not require large collaterals.
Moreover, it supports contracts with an arbitrary contract
lifetime and a dynamic set of users. An additional unique
feature of POSE is that it allows for confidential state
execution.

• We provide a security analysis in a strong adversarial
model. We consider an adversary which may deviate
arbitrarily from the protocol description. We show that
POSE achieves correctness and state privacy as well as
strong liveness guarantees under static corruption, even in
a network with a large share of corrupted parties.

• To illustrate the feasibility of our scheme, we implement
a prototype of POSE using ARM TrustZone as the TEE
and evaluated it on practical smart contracts, including
one that can merge models for federated machine learning
in 238ms per aggregation.

II. ADVERSARY MODEL

The goal of POSE is to allow a set of users to run a
complex smart contract on a number of TEE-enabled systems.
Note, that POSE is TEE-agnostic and can be instantiated on
any TEE architecture adhering to our assumptions, similar to,
e.g., FastKitten [25]. In order to model the behavior and the
capabilities of every participant of the system, we make the
following assumptions:

A1: We assume the TEE to protect the enclave program, in
line with other TEE-assisted blockchain proposals [63], [25],
[20], [17], [64], [43]. Specifically:
A1.1: We assume the TEE to provide integrity and confiden-
tiality guarantees. This means that the TEE ensures that the
enclave program runs correctly, is not leaking any data, and is
not tampering with other enclaves. While our proof of concept
is based on TrustZone, our design does not depend on any
specific TEE. In practice, the security of a TEE is not always
flawless, especially regarding information leaks. However,
plenty of mitigations exist for the respective commercial TEEs;
hence, we consider the problem of information leakage from
any specific TEE, as well as TEE-specific vulnerabilities in
security services, orthogonal to the scope of this paper. We dis-
cuss some mitigations to side-channel attacks to TrustZone, as
well as the possible grave consequences of a compromised or
leaking TEE for the executed smart contract, in Section VII-B.
A1.2: We further assume the adversaries to be unable to exploit
memory corruption vulnerabilities in the enclave program. This
could be ensured using a number of different approaches, e.g.,
by using memory-safe languages, by deploying a run-time
defense like CFI [11], or by proving the correctness of the
enclave program using formal methods. The existence of these
defenses can be proven through remote attestation (cf. A3).
A2: We assume the TEE to provide a good source of random-
ness to all its enclaves and to have access to a relative clock
according to the GlobalPlatform TEE specification [32].
A3: We assume the TEE to support secure remote attestation,
i.e., to be able to provide unforgeable cryptographic proof that
a specific program is running inside of a genuine, authentic
enclave. Further, we assume the attestation primitive to allow
differentiation of two enclaves running the same code under the
same data. Note that today’s industrial TEEs support remote
attestation [3], [6], [8], [35], [56].
A4: We assume the TEE operators, i.e., the persons or or-
ganizations owning the TEE-enabled machines, to have full
control over those machines, including root access and control
over the network. The operators can, for instance, provide
wrong data to an enclave, delay the transmission of mes-
sages to it, or drop messages completely. The operators can
also completely disconnect an enclave from the network or
(equivalently) power off the machine containing it. However,
as stated in A1.1, the operators cannot leak data from any
enclave or influence its computation in any way besides by
sending (potentially malicious) messages to it through the
official software interfaces.
A5: We assume static corruption by the adversary. More
precisely, a fixed fraction of all operators is corrupted while an
arbitrary number of users can be malicious (including the case
where they all are). We model each of the malicious parties as
byzantine adversaries, i.e., they can behave in arbitrary ways.
A6: We assume the blockchain used by the parties to satisfy

2

the following standard security properties: common prefix (ig-
noring the last γ blocks, honest miners have an identical chain
prefix), chain quality (blockchain of honest miner contains
significant fraction of blocks created by honest miners), and
chain growth (new blocks are added continuously). These
properties imply that valid transactions are included in one
of the next α blocks and that no valid blockchain fork of
length at least γ can grow with the same block creation rate
as the main chain. We deem protection against network attacks
(e.g., network partition attacks), which violate these standard
properties, orthogonal to our work.

III. DESIGN

POSE is a novel off-chain protocol for highly efficient
smart contract execution, while providing strong correctness,
privacy, and liveness guarantees. To achieve this, POSE lever-
ages the integrity and confidentiality guarantees of TEEs to
speed up contract execution and make significantly more
complex contracts practical1. This is in contrast to execut-
ing contracts on-chain, where computation and verification
is distributed over many parties during the mining process.
POSE supports contracts with arbitrary lifetime and number
of users, which includes complex applications like the well-
known CryptoKitties [2]. We elaborate more on interaction
between contracts in Appendix B. Our protocol involves users,
operators and a single on-chain smart contract. Users aim to
interact with smart contracts by providing inputs and obtaining
outputs in return. Operators own and manage the TEE-enabled
systems and contribute computing power to the POSE network
by creating protected execution units, called enclaves, using
their TEEs. These enclaves perform the actual state transitions
triggered by users. A simple on-chain smart contract, which
we call manager, is used to manage the off-chain enclave
execution units. In the optimistic case, when all parties behave
honestly, POSE requires only on-chain transactions for the
creation of a POSE contract as well as the locking and
unlocking of user funds. The smart contract execution itself
is done without any on-chain transactions.

A. Architecture Overview

Figure 1 illustrates the high-level working of POSE . Before
contract creation, there is already a set of enclaves that are
registered with the on-chain manager contract. The registration
process is explained in detail in Section V-E1. To create a
POSE contract, a user will initialize a contract creation with
the manager (Step 1), which includes a chosen enclave—out of
the registered set—to execute the off-chain contract creation.
In Step 2, the chosen creator enclave will setup the execution
pool for the given smart contract. In Figure 1, the pool size
is set to three; thus, the creator enclave will randomly select
three enclaves from the set of all enclaves registered in the
system (Step 3). In Step 4, the creator enclave will submit the
finalized contract information to the manager. This includes
the composition of the execution pool, i.e., a selected executor
enclave, which is responsible for executing the POSE contract,
as well as the watchdogs, ensuring availability. We elaborate
on this in-depth in Section V-E2. In Step 5, another user can

1We design POSE without depending on any specific TEE implementation.
In Section VII-B, we discuss the implications of using ARM TrustZone to
realize our scheme.

1. Contract
creation

initialization

 Manager

6. Execute call
& sync Pool

3. Setup
Operator

Pool

4. Contract
creation

finalization

2. Contract
creation
request

5. Call on Contract

Contract
User

Creator
Enclave

Watchdog
Enclave

Watchdog
Enclave

Executor
Enclave

Contract

Blockchain

Fig. 1. Exemplary overview how POSE contracts are created (in blue) and
executed (in green).

now call the new contract by directly contacting the execu-
tor. Finally, for Step 6, the executor will execute the user’s
contract call and distribute the resulting state to the watchdog
enclaves, which confirm the state update. See Section V-E3
for a detailed specification of the execution protocol. If one
of the enclaves stops participating (e.g., due to a crash), the
dependent parties can challenge the enclave on the blockchain
(see Section V-E4). The dependent party can either be the user
awaiting response from the executor or the executor waiting
for the watchdogs’ confirmation. For example, if the executor
stops executing the contract, the executor is challenged by the
user. A timely response constitutes a successful state transition
as requested by the user. Otherwise, if the current executor
does not respond, one of the watchdogs will fill in as the new
executor. This makes POSE highly available, as long as at least
one watchdog enclave is dependable; thus, avoiding the need
for collateral to incentivize correct behavior. Further, POSE
supports private state, as the state is only securely shared with
other enclaves.

B. Design Challenges

We encountered a number of challenges while designing
POSE . We briefly discuss them below.

Protection Against Malicious Operators. POSE ’s creator,
executor, and watchdogs are protected in isolated enclaves
running within the system, which is itself still under control of
a potentially malicious operator. Hence, operators can provide
arbitrary inputs, modify honest users’ messages, execute replay
attacks, and withhold incoming messages. Moreover, the sys-
tem and its TEE (i.e., enclaves) can be turned off completely
by its operator. In order to protect honest users from malicious
operators, we incorporate several security mechanisms. While
malicious inputs and modification of honest users’ messages
can easily be prevented using standard measures like a se-
cure signature scheme, preventing withholding of messages is
more challenging. One particular reason is that for unreceived
messages, an enclave cannot differentiate between unsent and
stalled messages by the operator. Hence, we incorporate an on-
chain challenge-response procedure, which provides evidence
about the execution request and the existence of a response to
the enclave.

3

Achieving Strong Liveness Guarantees. We enable de-
pendent parties to challenge unresponsive operators via the
blockchain. The challenged operators either provide valid
responses over the blockchain that dependent parties can use
to finalize the state transition, or they are dropped from the
execution pool. In case an executor operator has been dropped,
we use the execution pool to resume the execution; this
requires state updates to be distributed to all watchdogs. With
at least one honest operator in the execution pool, the pool will
produce a valid state transition. Our protocol tolerates a fixed
fraction of malicious operators as stated in our adversary model
(cf. Section II). By selecting the pool members randomly, we
guarantee with high probability that at least one enclave—
controlled by an honest operator—is part of the execution pool.
We show in Section VII-A that our protocol achieves strong
liveness guarantees.

Synchronization with the Blockchain. Some of the actions
taken by an enclave depend on blockchain data, e.g., de-
posits made by clients. Hence, it is crucial to ensure that
the blockchain data available to an enclave is consistent and
synchronized with the main chain. As an enclave does not
necessarily have direct access to the (blockchain) network, it
has to rely on the blockchain data provided by the operator.
However, the operator can tamper with the blockchain data
and, e.g., withhold blocks for a certain time. Thus, a major
challenge is designing a synchronization mechanism that (i)
imposes an upper bound on the time an enclave may lag behind
the main chain, (ii) prevents an operator from isolating an
enclave onto a fake side-chain, and (iii) ensures correctness and
completeness of the blockchain data provided to the enclave,
without (iv) requiring the enclave to validate or store the
entire blockchain. We present our synchronization mechanism
addressing these challenges in Section V-D.

Reducing Blockchain Interactions. Our system aims to min-
imize the necessary blockchain interactions to avoid expensive
on-chain computations. In the optimistic scenario, the only
on-chain transactions necessary are the contract creation and
the transfer of coins. The transfer transactions can also be
bundled to further reduce blockchain interactions. Note that the
virtualization paradigm known from state channels [26] can be
applied to our system. This enables parties to install virtual
smart contracts within existing smart contracts, and hence,
without any on-chain interactions at all. In the pessimistic
scenario, i.e., if operators fail to provide valid responses, they
have to be challenged, which requires additional blockchain
interactions.

Support of Private State. To support private state of ran-
domized contracts, careful design is required to avoid leakage.
While the confidentiality guarantees of TEEs prevent any
data leakage during contract execution, our protocol needs
to ensure that an adversary cannot learn any information
except the output of a successful execution. In particular, in a
system where the contract state is distributed between several
parties, we need to prevent the adversary from performing an
execution on one enclave, learning the result, and exploiting
this knowledge when rolling back to an old state with another
enclave. This is due to the fact that a re-execution may use
different randomness or different inputs resulting in a different
output. We prevent these attacks by outputting state updates
to the users only if all pool members are aware of the new

state. Moreover, by solving the challenge of synchronization
between enclaves and the blockchain, we prevent an adversary
from providing a fake chain to the enclave, in which honest
operators are kicked from the execution pool. Such a fake
chain would allow an attacker to perform a parallel execution.
While results of the parallel (fake) execution cannot affect the
real execution, they can prematurely leak private data, e.g. the
winner in a private auction.

IV. DEFINITIONS & NOTATIONS

In the following, we introduce the cryptography primitives,
definition, and notations used in the POSE protocol.

Cryptographic Primitives. Our protocol utilizes a pub-
lic key encryption scheme (GenPK ,Enc,Dec), a signature
scheme (GenSig ,Sign,Verify), and a secure hash function
H(·). All messages sent within our protocol are signed by the
sending party. We denote a message m signed by party P as
(m;P). The verification algorithm Verify(m′) takes as input a
signed message m′ := (m;P) and outputs ok if the signature
of P on m is valid and bad otherwise. We identify parties by
their public keys and abuse notation by using P and P ’s public
key pkP interchangeably. This can be seen as a direct mapping
from the identity of a party to the corresponding public key.

TEE. We comprise the hardware and software compo-
nents required to create confidential and integrity-protected
execution environments under the term TEE. An operator can
instruct her TEE to create new enclaves, i.e., new execution
environments running a specified program. We follow the
approach of Pass et al. [50] to model the TEE functionality.
We briefly describe the operations provided by the ideal
functionality formally specified in [50, Fig. 1]. A TEE provides
a TEE .install(prog) operation which creates a new enclave
running the program prog . The operation returns an enclave
id eid . An enclave with id eid can be executed multiple times
using the TEE .resume(eid , inp) operation. It executes prog
of eid on input inp and updates the internal state. This means
in particular that the state is stored across invocations. The
resume operation returns the output out of the program. We
slightly deviate from Pass et al. [50] and include an attestation
mechanism provided by a TEE that generates an attestation
quote ρ over (eid , prog). ρ can be verified by using method
VerifyQuote(ρ). We consider only one instance E running the
POSE program per TEE. Therefore, we simplify the notation
and write E(inp) for TEE .resume(eid , inp).

Blockchain. We denote the blockchain by BC and the
average block time by τ . A block is considered final if it
has at least γ confirmation blocks. Throughout the protocol
description in Section V-E, enclaves consider only transactions
included in final blocks. Finally, we define that any smart
contact deployed to the blockchain is able to access the current
timestamp using the method BC.now and the hash of the most
recent 265 blocks [7] using the method BC.bh(i) where i is
the number of the accessed block. These features are available
on Ethereum.

V. THE POSE PROTOCOL

The POSE protocol considers four different roles: a man-
ager smart contract deployed to the blockchain, operators that
run TEEs, enclaves that are installed within TEEs, and users

4

that create and interact with POSE contracts. In the following,
we will shortly elaborate on the on-chain smart contract and
the program executed by the enclaves, explain the POSE
protocol, and finally explain further security mechanisms that
are omitted in the protocol description.

A. Manager

We utilize an on-chain smart contract in order to manage
the POSE system’s on-chain interactions. We call this smart
contract manager and denote it by M . On the one hand, M
keeps track of all registered POSE enclaves. This enables
the setup of an execution pool whenever an off-chain smart
contract instance is created. On the other hand, it serves as a
registry of all POSE contract instances. M stores parameters
about each contract to determine the instance’s status. We
denote the tuple describing a contract with identifier id as M id .
In particular, the manager stores the creator enclave (creator),
a hash of the program code (codeHash), the set of enclaves
forming the execution pool (pool), a total amount of locked
coins (balance), and a counter of withdrawals (payouts). We
set the field creator to ⊥ after the creation process has
been completed to identify that a contract is ready to be
executed. Moreover, for both executor and watchdog chal-
lenges, the contract allocates storage for a tuple containing the
challenge message (c1Msg resp. c2Msg), responses (c1Res
resp. c2Res), and the timestamp of the challenge submission
(c1Time resp. c2Time). A non-empty field c1Time resp.
c2Time signals that there is a running challenge.

Every POSE enclave maintains a local version of the man-
ager state extracted from the blockchain data it receives from
the operator when being executed. This enables all enclaves to
be aware of on-chain events, e.g., ongoing challenges.

B. POSE Program

All enclaves registered within the system run the POSE
program that enforces correct execution and creation of POSE
contracts. In practice, the POSE program’s source code will
be publicly available, e.g., in a public repository, so that
the community can audit it. Our protocol ensures that all
registered enclaves run this code using remote attestation
(cf. Section V-E1: Enclave registration). We present methods
required for the execution protocol in Program 1 and defer
methods for the contract creation to the full version of this
paper [31].

Whenever an enclave is invoked, it synchronizes itself with
the blockchain network and receives the relevant blockchain
data in a reliable way (cf. Section V-D). This way, the POSE
program has access to the current state of the manager. In order
to support arbitrary contracts, we define a common interface
in Section V-C that is used by the POSE program to invoke
contracts.

Enclaves running the POSE program only accept signed
messages as input. The public keys of pool members for signa-
ture verification are derived from the synchronized blockchain
data. According to our adversary model (cf. Section II),
the adversary cannot read or tamper messages originating
from honest users or the enclave itself. Further, the contracts
themselves keep track of already received execution requests
and do not perform state transitions for duplicated requests.

Program 1: POSE Program (execution) executed by
enclave T

Upon invocation with input blockchain data BC, store BC.
Upon receiving m := (execute, id , r,move;U), do:

1) If M id .pool [0] 6= T or T id
wait 6= ∅, return (bad).

2) Execute Cid .nextState(U,BC,move, H(m)).
3) Store T id

wait = M id .pool and hid = H(m), set
c = Enc(Cid .getState(all); key id) and return
(update, id , c, hid ;T).

Upon receiving m := (update, id , c, h;T ′), do:
1) If T ′ 6= M id .pool [0] or T /∈M id .pool , return (bad).
2) Define state = Dec(c; key id) and call

Cid .update(state, h).
3) Return (confirm, id , h;T).

Upon receiving {mi := (confirm, id , hi;Ti)}i, do:
1) If M id .pool [0] 6= T or T id

wait = ∅, return (bad).
2) Set T id

wait = T id
wait ∩M id .pool .

3) For each mi do:
• If hi 6= hid or Ti /∈ T id

wait , skip mi.
• Otherwise remove Ti from T id

wait .
4) If T id

wait 6= {T}, return (bad). Otherwise, set T id
wait = ∅,

state := Cid .getState(pub) and return
(ok, id , state, hid ;T).

(cf. Section V-C). This prevents replay attacks against both,
executive and watchdog enclaves.

C. POSE Contracts

Although our system supports the execution of arbitrary
smart contracts, the contracts need to implement a specific
interface (cf. Program 2). This allows any POSE enclave
to trigger the execution without knowing details about the
smart contract functionality. Upon an execution request from
some user, the POSE enclave provides the user’s identity
U , blockchain data BC, the description of the user’s request,
move , and the request hash, h, to the smart contract’s method
nextState . The smart contract first processes the relevant
blockchain data and marks the current length of the blockchain
as processed. This feature is mainly used to enable smart
contracts to deal with money, i.e., to detect on-chain deposits
and withdrawals. We elaborate on the processing of blockchain
data in Section V-D, and on the money mechanism of the
POSE system in Appendix E. Note that double spending
within a contract is prevented due to sequential processing
of any execution request, and double spending of on-chain
payouts is prevented by the mechanism explained in Ap-
pendix E. After the blockchain data is processed, nextState
executes the move requested by the user and updates the
state accordingly. Method update takes state new and hash
h (for preventing replay attacks) as input and sets new as the
contract state. This includes the length of the blockchain that
is marked as processed. Further, the smart contract provides
method getState . If called with flag = all , it returns the whole
smart contract state. Otherwise, if called with flag = pub,
it returns only the public state. In order to prevent replay
attacks, each smart contract maintains a list with the hashes of
already received execution requests, Rec. In case of duplicated
requests, i.e., h ∈ Rec, both the nextState method and the
update method, do not perform any state transition. Instead,
they interpret the request as a dummy move that has no effect
on the state. If executed successfully, the nextState method

5

Program 2: Interface of a contract C executed within
a POSE enclave

Function: nextState(U,BC,move, h)
Function: update(new, h)
Function: getState(flag)

adds the executed request to Rec, i.e., Rec = Rec ∪ {h}. As
Rec is part of the state, it is updated by the update method
as well. While it might seem counter intuitive to overwrite the
list of received requests, this feature is required to ensure that
all enclaves are aware of the same transition history; even if an
executor distributes a state update to just a subset of watchdogs
before getting kicked 2.

We consider the initial state of a smart contract to be
hard-coded into the smart contract description. If an enclave
creates a new smart contract instance, the initial state is
automatically initialized. A contract state additionally contains
a variable to store the highest block number of the already
processed blockchain data. This variable is used to detect
which transactions of received blockchain data have already
been handled.

D. Synchronization

As some of the actions taken by an enclave depend on
blockchain data, e.g., deposits to the contract, it is crucial
to ensure that the blockchain state available to a registered
enclave E is consistent and synchronized with the main chain.
In particular, blocks that are considered final by some party,
will eventually be considered final by all parties. We design a
synchronization mechanism that allows E to synchronize itself
without having to validate whole blocks. Note that E has access
to a relative time source according to our adversary model (see
Section II).

Upon initialization, E receives a chain of block headers
BCH of length γ + 1. Note that the first block p of BCH can
be considered final since it has γ confirmation blocks. First, E
checks that BCH is consistent in itself and sets its own clock
to be the one of the latest block’s timestamp. Second, E signs
block p as blockchain evidence that needs to be provided to
the manager. The registration mechanism (cf. Section V-E1)
uses this evidence to ensure that E has been initialized with
a valid sub-chain of the main-chain up to block p. Further,
the registration mechanism checks that p is at most τon

slack
blocks behind the current one; τon

slack needs to account for
the confirmation blocks and the fact that transactions are not
always mined immediately. Via this parameter, we can set an
upper bound to the time τoff

slack an enclave may lag behind;
τoff

slack additionally considers potential block variance and the
fact that miners have some margin to set timestamps. In the
following, we call τoff

slack slack 3. Clients that want a contract
execution to capture on-chain effects, e.g., deposits, wait until

2In practice, the state update removes at most the last element from the
request history; a fact that can be exploited to reduce the size of state updates.

3We can reduce the slack assuming an absolute source of time realized
via trusted NTP servers, cf. [20], by enabling the enclave to check if she
was invoked with the most recent block headers up to some variance of the
timestamps.

the enclave considers the corresponding block as final, even
when being at slack.

Once successfully initialized, E synchronizes itself with
the blockchain. Whenever a registered enclave is executed
throughout the protocol, it receives the sub-chain of block
headers BCH′ that have been mined since the last execution. E
checks that BCH′ is a valid successor of BCH where blocks in
BCH that have not been final may change. Further, E checks
that the latest block in BCH′ is at most τvariance behind
the own clock; τvariance captures the variance in the block
creation time and the fact that miners have some margin to
set timestamps. When receiving a block that is before the own
clock, the clock is adjusted.

Finally, we need to prevent an operator from isolating
its enclave by setting up a valid sidechain with manipulated
timestamps. To this end, we require the operators to period-
ically provide new blocks to E even if E does not need to
take any action. In particular, we require that the operator
provides at least L blocks within time τp where τp accounts for
potential block time variances. The system is secure as long
as the attacker cannot mine L blocks within time τp while the
honest miners can. Hence, the selection of τp and L has some
implications on the fraction of adversarial computing power
that can be tolerated by the system. Since 2018, an interval of
50 (100, 200, 300) blocks took at most 33 (28, 26, 25) seconds
per block [10], which might all be reasonable choices for L
and τp

L . As the average block time is around 13 seconds [4], the
adversary gets 2−3 times more time to mine the blocks of its
sidechain. This means that the system can tolerate adversarial
fractions from a third (when instantiated with L = 300 and
τp = 25 ·L) to a forth (when instantiated with 50 and 33 ·L).

While the above techniques allow an enclave to synchro-
nize itself, the enclave does not have access to the block data,
yet. Instead of requiring enclaves to validate whole blocks,
we require operators to filter the relevant transactions and
provide them to the enclave while enabling the enclaves to
check correctness and completeness of the received data itself.
For the latter, we introduce incrTxHash , a hash maintained
by the manager and all initialized enclaves that is based
on all relevant transactions. Whenever the manager receives
a relevant transaction tx, it updates incrTxHash , such that
incrTxHashi+1 is defined as

H(incrTxHashi || tx.data || tx.sender || tx.value)

where tx.data is the raw data of tx, tx.sender denotes the
creator of tx, and tx.value contains the amount of any deposits
or withdrawals. Whenever enclaves are invoked with new
blocks, operators additionally provide all relevant transactions.
This way, enclaves can re-compute the new incremental hash
and compare the result to the on-chain value of incrTxHash .
In order to verify that the on-chain incrTxHash is indeed part
of the main chain, operators additionally provide a Merkle
proof showing that incrTxHash is part of the state tree. The
proof can be validated using the state root, which is part of
the block headers provided to the enclaves. This way, enclaves
can ensure that operators have not omitted or manipulated any
relevant transactions.

6

E. Protocol Description

In this section, we dive into a detailed description of
our protocol. We present 1) enclave registration, 2) contract
creation, 3) contract execution, and 4) the challenge-response
parts of our protocol. The POSE program running inside the
operators’ enclaves is stated in Section V-B. For the sake of
exposition, we extracted the validation steps performed by the
manager on incoming messages into Program 3 in Appendix C.
Further, we elaborate in Appendix E on the coin flow within
the protocol.

1) Enclave Registration: Operator O controlling some TEE
unit can contribute to the POSE system by instructing his TEE
to create a new POSE enclave EO. The protected execution
environment EO needs to be initialized with the POSE program
presented in Section V-B. During the creation of EO, an
asymmetric key pair (pkO, skO) is generated. The secret key
skO is stored inside the enclave and hence is only accessible
by the POSE program running in EO. The public key pkO
is returned as output to the operator. Furthermore, operator O
uses the TEE to produce an attestation ρO stating that the
freshly generated enclave EO runs the POSE program and
controls the secret key corresponding to pkO.4

Finally, O sends the latest γ+1 block headers BCH together
with the relevant blockchain data to the enclave which validates
the consistency of the block headers and completeness of the
blockchain data (cf. Section V-D) and returns a blockchain
evidence ρBCO , i.e., a signed tuple containing the blockhash and
the number of the latest final block known to the enclave. After
operator O created a new POSE enclave EO, O can register EO
by sending m := (register, EO, ρO, ρBCO ;O) to manager M .
M verifies that ρO is a valid attestation and that ρBCO refers
to a block on the blockchain known to M that is not older
than τon

slack blocks. If the check holds and the signature of the
operator is valid, i.e., Verify(m) = ok, M adds EO (identified
by its public key pkO) to the set of registered enclaves, i.e.,
M.registered := M.registered∪{EO}. This procedure ensures
that all registered enclaves run the POSE program and that the
secret key skO remains private. Hence, re-attesting enclaves
during later protocol steps is not needed.

2) Contract Creation: The creation protocol is initiated by
a user U who wants to install a new smart contract, with
program code code, into the POSE system. We outline the
protocol in the following and provide a full explanation and
specification in the full version of this paper [31].

U picks an arbitrary registered enclave EC and sends
a creation initialization to M containing H(code) and EC .
The manager M allocates a new contract tuple with a fresh
identifier id . Next, U sends a creation request, containing code,
to EC which randomly selects n enclaves for the contract exe-
cution pool and samples a symmetric pool key. The generated
information is distributed in a confidential way to all pool
enclaves, which install a new smart contract with code code
and confirm the installation to EC . Finally, EC signs a creation

4An attestation mechanism can be designed based on a chain of trust, where
the TEEs manufacturer’s public key represents the root. This way a smart
contract knowing a list of public keys can verify an attestation quote without
further interaction. We omit further details about the practical implementation
and refer the reader to [50].

User: U Executer: E
(:= Mid .pool[0])

Watchdog: W
(∈ Mid .pool \ E)

On input (id,move)
r ∈R {0, 1}κ

m = (execute, id,
r,move;U)

Finalize current and pending
executions or challenges corresponding to id .

pre := TE(BC,m).

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

(confW)

After time δ2off , res = TE(BC, {confW }).
If res = (bad), res = WatchdogChallenge(pre).

res = (ok, id, state, h;TE)

In time δ1off after sending m:
If res has not been received, Verify(res) = bad or h 6= H(m),
execute res := ExecutiveChallenge(m).
If res = (bad) and Mid .pool 6= ∅, restart execution with same r.

Fig. 2. Detailed execution protocol.

confirmation, which is submitted to M that marks the contract
as created.

If the contract is not created within a certain time, U starts
a creation challenge. If any pool member does not respond to
EC timely, EC starts a pool challenge (cf. Section V-E4).

3) Contract Execution: The execution protocol is initiated
by a user U who wants to execute an existing smart contract,
identified by id , with input move . The protocol is specified in
Figure 2. Program 1 specifies the parts of the POSE program
that are relevant for the contract execution.

To trigger the execution, U sends an execution request
to operator E controlling the executor enclave EE , the first
enclave in the contract pool stored at M . EE executes the
request and securely propagates the new state to all other pool
members, called watchdogs. If any watchdog does not confirm
in time, it is challenged by E (cf. Challenge-Response).
Eventually, EE receives confirmations from all watchdogs or
the unresponsive watchdogs are kicked out of the pool. Either
way, EE outputs the new public state to U . We want to stress
that this way no party gets to know the result of an update
before all pool members agree on the update. If E does
not respond in time, it is challenged by U (cf. Challenge-
Response). If E does not respond to the challenge, it is kicked
from the pool by U . The next enclave in the pool, E ′E , takes
over as the new executor. At this point, the new executor might
be on a different state than the other pool members, since E ′E
might have received the previous state update but some other
pool members not, or vice versa.

Our system automatically ensures that all enclaves share
the same contract state after the next successful execution, in
which E ′E distributes its state to the other enclaves. Let us call
the previous incompletely distributed update update and the
new updated initiated by E ′E update ′. In case E ′E has received
update, update ′ is a successor of update, and hence, covers
both updates. This way, a watchdog that updates to update ′

7

essentially contains both executions, update and update ′. In
case E ′E has not received update but the other watchdogs
have, E ′E either propagates the update already known to the
watchdogs, i.e., update = update ′, or a concurrent one, i.e.,
update 6= update ′. For the former, the watchdogs interpret
the update as a dummy update without any effect as the
corresponding execution request is already within their list
of received request hashes (cf. Section V-C). For the latter,
the update of the watchdogs is overwritten by the one of the
executive enclave. As update has been incomplete, and hence,
produced no public output, it is safe to overwrite this update.
To produce a public output for update, all pool enclaves
including E ′E would have to confirm update .

Finally, U can just submit the previous execution request
with the same random nonce r to E ′E . In case the enclave has
already seen this request, it is interpreted as empty dummy
move which prevents a duplicated execution.

4) Challenge-Response: If any party does not receive a
timely response to its messages during the off-chain execution,
it challenges the receiver on-chain. Therefore, all operators
need to monitor the blockchain for any on-chain challenges.
We will elaborate on the timeouts (δ†?), where † ∈ {0, 1}
and ? ∈ {off , on}, which define the notion of timely in
Appendix D. In particular, we describe the relation between
δ1∗ and δ2∗ . The challenge-response procedure is executed in
all of the following cases.

(a) The creator enclave has not responded to the user within
time δ1off during the contract creation protocol.

(b) At least one pool enclave has not responded to the creator
enclave within time δ2off during the contract creation
protocol.

(c) The executor enclave has not responded to the user within
time δ1off during the contract execution protocol.

(d) At least one watchdog enclave has not responded to the
executor enclave within time δ2off during the contract
execution protocol.

Since (a) is conceptually identically to (c) and (b) to (d), we
present the executor challenge (c) and the watchdog challenge
(d) in Figure 3 and Figure 4. The specifications of (a) and (b)
are provided in the full version of this paper [31].

For the executor challenge as shown in Figure 3, suppose
user U has not received a result from the executor enclave EE
within time δ1off , then, U starts the challenge-response proto-
col. To this end, U sends the execution request to the manager
M who verifies the validity of the message (cf. Program 3).
If all checks hold, M stores the challenge message and then
starts timeout δ1on by storing the current timestamp. As soon
as the challenge message is recorded on-chain, the operator of
the executor enclave EE extracts the execution request from the
challenge and starts the execution. Performing the execution
request is identical to the standard execution as described in
Section V-E3. However, the operator prioritizes challenges
over off-chain execution requests to avoid getting kicked.
Additionally, if EE already performed the state update and
state propagation, the operator may use the already obtained
result as response. Either way, if the operator sends a response
message in time, the manager M checks the validity of the
message and whether or not it matches the stored challenge.
If all checks succeed, M stores the result and removes the

User: U Manager: M Executer: E
(:= Mid .pool[0])

m
m = (execute, id,
n,move;U)

If Validate(1,m;Mid) = bad, discard.
Set Mid .c1Msg = m, Mid .c1Time = BC.now and Mid .c1Res = ⊥.

(m)

Handle m like a message directly received by U
until receiving res = (ok, . . .) from TE ,

but priortize it above other pendinging executions.

res = (ok, id,
state, h;TE)

If Validate(2, res;Mid) = bad, discard.
Set Mid .c1Msg = ⊥, Mid .c1Time = ⊥ and Mid .c1Res = res .

(res)
(res)

If (res) has not been received
within time δ1on after sending m.

(finalize, 1, id)

If Validate(3;Mid) = bad, discard.
Remove Mid .pool[0] from Mid .pool and set Mid .c1Time := ⊥.

(bad)

Fig. 3. Detailed executor challenge protocol.

challenge message. This finalizes the challenge procedure. If
the operator does not send a valid response in time δ1on , user U
sends message finalize to M . This triggers the manager to
kick EE from the execution pool of this contract and assign the
next enclave in the list as the new executor enclave, if possible.
Then, if the pool is not empty, U restarts the execution. As M
only accepts a response if the operator executed the challenged
request correctly, the described procedure ensures that there
is either a consistent state transition or EE is kicked from
the execution pool, hence, ensuring liveness as long as there
remains one active operator.

Since the executor enclave EE is dependent on the confir-
mation message from all watchdog enclaves, it is necessary
to allow EE to challenge the watchdog enclaves as well (Fig-
ure 4). In this case, the executor enclave acts as the challenger
and all watchdog enclaves need to provide a confirmation
message as response. At the end of this challenge-response
protocol, all unresponsive watchdog enclaves are removed
from the execution pool. The executor enclave then contin-
ues performing the execution with all confirmations obtained
during this procedure. Again, M only accepts responses if the
watchdog executed the state update correctly, hence, ensuring
that a watchdog either performs the correct state update or is
kicked from the pool.

F. Security Remarks

To keep the protocol description compact, we omitted some
security features from the specification, which we explain in
this section.

Allowing unrestricted execution requests comes with the
problem that malicious users can send requests whose exe-
cution takes a disproportional amount of time, e.g., due to
infinite loops. If the execution time exceeded the boundaries
defined by the on-chain timeouts, malicious users could exploit

8

Executor: E Manager: M Watchdog: W
(∈ Mid .pool \ E)

(pre)
pre = (update,
id, c, h;TE)

If Validate(4, pre;Mid) = bad, discard.
Otherwise, set Mid .c2Msg := pre, Mid .c2Msg := BC.now , and Mid .c2Res := ⊥.

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

confW := (confirm,
id, h;TW)

If Validate(5, confW ;Mid) = bad, discard.
Otherwise, add confW to Mid .c2Res .

At time δ2on after sending pre.

(finalize, 2, id)

If Validate(6;Mid) = bad, discard.
Let Tok := {T ∈ Mid .pool : (· · · ;T) ∈ Mid .c2Res}.

Set Mid .pool := Tok ∪Mid .pool[0], and Mid .c2Time := ⊥.

res = TE(BC,Mid .c2Res)

(res)

Fig. 4. Detailed watchdog challenge protocol.

this behavior to kick honest operators from an execution
pool. This operator denial of service attack harms the liveness
property of the system. In order to mitigate the vulnerability,
we introduce an upper bound to the computation complexity
of a single contract execution. Once the bound is reached, the
executor enclave stops executing and reverts the state but still
provides a valid output. The timeouts in the system are set such
that an honest operator cannot be kicked from an execution
pool even if an execution takes the maximum amount of
computation. The same applies to update and creation requests,
where failed creations return a fail confirmation that can be
submitted to the manager instead of the creation confirmation.
A fail confirmation triggers the manager to mark the contract
as crashed. Note that the POSE system still supports the
execution of arbitrary complex smart contracts as the timeouts
and hence the upper bounds can be set arbitrarily high (cf.
Appendix D). Additionally, all contracts of an operator are
executed and challenged independently, and thus, contracts do
not block each other.

While we have assumed that all operators run only one
POSE enclave, multiple enclaves can be created in practice.
This enables the opportunity of a sybil attack, where a mali-
cious operator generates multiple POSE enclaves to increase
its share in the system and hence harm the liveness property.
This attack can be mitigated by forcing an operator to deposit
funds at each enclave registration and which will be paid back
to the operator only if she behaves honestly. We note that
this deposit is independent of any contract and its parties.
Now, such an attack is directly linked to financial loss. See
Section VI for more discussions about incentives and fees.

In order to enhance privacy, neither users nor operators
send inputs or respectively execution results in clear. Instead,
users encrypt inputs using hybrid encryption based on the
public key of the executor enclave. Additionally, users specify

a symmetric key in their execution request, which is used to
encrypt the result of the execution when sent back to the
user. This way, inputs and results are private and cannot be
eavesdropped by a malicious operator.

The term griefing denotes attacks where an adversary
forces an honest party to interact with the blockchain in order
to generate financial damage to this party. Especially when
blockchain transactions require high fees, such attacks pose
serious vulnerabilities. In regards to challenges within the
POSE protocol, we mitigate the attack surface for griefing
attacks by incorporating a mechanism in the manager that
fairly splits the fees for challenge and response between the
challenger and the challenged party. The same mechanism can
be used for the contract creation process.

An adversary executing a clogging attack sends many
transactions to the system to prevent honest users from issuing
transactions. In the context of POSE , an off-chain clogging
attack results in honest clients making an on-chain challenge
to ensure that their requests will be processed. Hence, a
successful clogging attack has to be performed on-chain. For
the on-chain challenge, our system inherits the vulnerabilities
of the underlying blockchain.

VI. EXTENSIONS

We simplified some protocol steps in order to make the
protocol description more compact and easier to understand.
We discuss the most important extensions and their benefits in
this section.

Contract & Operator Lifecycle. A mechanism that releases
enclaves from their execution duty can be integrated. This
allows operators to voluntarily withdraw their enclaves from an
execution pool. On the one hand, terminated contracts can be
closed, which releases all pool enclaves from their execution
duty. On the other hand, it enables to withdraw a single enclave
and exchanging it by a randomly chosen replacement enclave.
Additionally, a replacement strategy is also applicable to the
scenarios in which enclaves are kicked. The latter extension
reduces the chance of a contract crash, the event in which no
more operator remains. We stress that these extensions can
easily be achieved by adding the functionality to our POSE
program and the manager. In case a contract is idle for a long
time, an extension may be implemented that allows operators
to hibernate their respective enclave. The enclave state can
be stored on disk by encrypting it with a key that is kept
alive in the hibernating enclave; thus, only requiring minimal
overhead in memory. The POSE program ensures freshness by
synchronizing with the blockchain; thus, preventing rollback
attacks.

Incentives. Although POSE provides security not only against
rational but also byzantine adversaries, it is beneficial to
introduce incentives for operators to join the system and act
honestly. Moreover, operators can be compensated for on-chain
transactions. Such incentives can be achieved by introducing
execution fees paid by the users to the operators. We expect
these fees to be significantly lower than Ethereum transaction
fees since replication of computation is only required among a
small pool. Additionally, registration fees for operators can be
used to mitigate the risk for sybil attacks. By mitigating these

9

attacks and due to the random assignment of enclaves to con-
tract pools, operators can only actively enforce centralization
at high cost.

Efficiency Improvements. Instead of propagating each con-
tract invocation, a more fine-grained distinction based on the
action can be added. In particular, a simple state retrieval must
not be propagated. In order to improve the efficiency of the
manager, messages and responses are not stored persistently.
Instead, only their hashes are stored and the actual data is
propagated via events. Moreover, the total on-chain transac-
tions can be reduced by letting the executor enclave challenge
only the unresponsive watchdog enclaves.

VII. SECURITY ANALYSIS

In this section, we present security considerations of POSE
based on the adversary model stated in Section II.

A. Protocol Security

For the sake of brevity, we present the full security
analysis of our POSE protocol including formal theorems in
Appendix A. Here, we provide an intuition of our security
guarantees.

The POSE protocol satisfies correctness, ε-liveness and
state privacy.

(1) Intuitively, correctness means that an adversary cannot
influence the smart contract execution within an enclave such
that the result is invalid according to the contract logic. Our
creation protocol ensures that all enclaves of a pool store the
correct contract code. The TEE security guarantees and the
POSE code ensure that each enclave executes the stored code
correctly. Finally, the synchronization mechanism guarantees
that each enclave is up-to-date with the blockchain up to
some slack, τoff

slack . This ensures that on-chain transactions are
considered by the smart contract execution, at least after time
τoff

slack .
(2) The ε−liveness property states that every contract execu-
tion will eventually be processed with probability ε, unless
the contract crashes and prevents any further execution. Let n
be the number of enclaves in the system, m be the number
of malicious enclaves and s be the pool size, then it holds
that ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. We achieve these
high liveness guarantees by enabling the contract execution to
proceed even if only one operator out of a randomly selected
pool is honest. Our protocol ensures that honest operators
cannot be forced out of the pool.
(3) State privacy ensures that an adversary cannot obtain
additional information about a contract state besides what
she learns from the results of contract executions alone. The
integrity guarantees of the TEE protect the state of the contract
against the TEE’s operator during computation and at rest.
During transit, the state is hidden via encryption. Additionally,
our protocol ensures that each contract execution producing
an observable result is final. This ensures that the execution
cannot be reverted to a state in which a previously published
output contains private data that should not have been leaked.

B. Architectural Security

We further examine the architectural security of enclaves.
The case of a user or TEE operator going offline by turning
off their machine is covered in the protocol security (cf.
Section VII-A); here we focus on parties that follow the
protocol, trying to gain an unfair advantage in various ways.

The adversary might try to perform a memory corruption
attack on the client used by users to interact with the executor
(e.g., to send inputs). To mitigate this risk, the software should
be implemented in a memory-safe language, like Python or
Rust, and be open source so that it can be easily inspected.

A malicious TEE operator can also try mounting a
memory-corruption or a side-channel attack on its TEE. As
mentioned in A1.1, we assume that the TEE protects the con-
fidentiality of the enclave and prevents leakage. However, in
practice, cache-based side-channel attacks have been success-
fully demonstrated also on ARM processors [44]. While we
want to stress that our ARM TrustZone-based implementation
is a research prototype and the design is TEE-agnostic, the risk
of these attacks can be mitigated by making the TEE opt-out of
shared caches and flush private caches upon context switch, as
proposed in [19]. Alternatively, a more advanced TEE design
can be used [24], [19], [16]. Moreover, if the enclave code has
an exploitable memory-corruption vulnerability, it is possible
to mount a memory-corruption attack against it. One way to
mitigate this risk, and hence, realize our assumption A1.2, is
to use a memory-safe language for our smart contracts (in our
case, Lua), or to deploy a run-time mitigation (like CFI [11]).
Yet, in practice, an adversary might still be able to compromise
an enclave. In this case, only the contracts of this enclave are
affected. The consequences depend on the role of the enclave:
for an executor enclave, the adversary gets full control over
the contract; for a watchdog enclave, the adversary can only
break state privacy.

Finally, an adversary might build a malicious smart contract
with the goal of compromising secrets owned by other con-
tracts or blocking an enclave by entering into an infinite loop.
We mitigate against the first scenario by ensuring that only one
smart contract is executing at any given time in an enclave, so
that no foreign plain text secrets are present in memory at any
point during contract execution. In case of multiple enclaves
running on the same system, the TEE is isolating enclaves
from each other such that no contract can tamper with another
(cf. assumption A1.1). To handle infinite loops, we leverage a
Lua sandbox [14], which interrupts the execution of the Lua
code after a predetermined number of instructions has been
issued and disables access to unsafe functions and modules.

VIII. IMPLEMENTATION

In order to evaluate POSE , we implemented a prototype for
the manager and the enclaves, which uses TrustZone for the
enclaves themselves and Lua as the smart contract program-
ming language. We open source our prototype implementation
to foster future research in this area5. We describe each of
them in the following.

Manager. For the manager we use an Ethereum smart contract
written in Solidity, which we will refer to as manager in the

5https://github.com/AppliedCryptoGroup/PoseCode

10

following. Even if this implementation is based on Ethereum,
we note that our design can be realized on any blockchain
supporting rich smart contracts. The manager keeps a list
of all registered enclaves in the network as well as a list
of all deployed contracts, including their public information,
e.g., the address of the current executor. As mentioned in
the protocol described in Section V-E, the manager provides
functions to register an enclave, create a new POSE contract,
deposit or withdraw money, and functions to challenge the
current executor or any of the watchdogs. To synchronize all
participants, every time a challenge related function was called
it will throw an appropriate Solidity event.

Enclaves. The contract creator, executor, and watchdogs are
enclaves running in a TEE. As our protocol is TEE-agnostic
and all commercial TEEs exceed smart contracts’ on-chain re-
quirements on memory/computational-power capabilities sig-
nificantly, we chose to use ARM TrustZone [15] for our
prototype. TrustZone features a traditional programming model
(OS, and user-space applications with standard library), and
the Open Portable Trusted Execution Environment (OP-TEE)
OS [42] already supports a large fraction of standard function-
ality, and hence, does not force us to reimplement this for the
contract execution environment. TrustZone supports two exe-
cution modes: secure world and normal world. The system’s
memory can be freely distributed among these worlds. The
secure world is an trusted OS which is completely independent
from the normal OS, which in our case is Linux. Code running
in the secure world is called a Trusted App (TA). A TA may
only communicate with the normal world via shared memory
regions, which are explicitly allocated as such. We implement
the POSE enclaves as TAs. Computations in the secure world
have native performance; yet, switching between worlds has a
constant but negligible overhead (in our tests around 449µs).
TrustZone does not impose memory limits for secure world.
While we leverage the traditional TrustZone concept, recent
versions add support for a S-EL2 hypervisor to allow multiple
strongly isolated enclaves that allows POSE to scale better
on these platforms. Most basic cryptographic functions are
provided by the OP-TEE TA library, such as AES and TLS.
Note that TrustZone itself does not standardize a remote
attestation implementation itself, but industry [3], [6], [8] and
OP-TEE implementations exist6. Remote attestation can also
be used to prove a certain set of software defenses is active in
the enclave. In our prototype, we leveraged OP-TEE’s remote
attestation functionality to attest the enclave after setting up the
runtime. To leverage this feature, the POSE enclave requests
a signed attestation report from the attestation PTA (Pseudo
Trusted App), essentially a kernel module of the OP-TEE OS
in secure world. The keys for signing the attestation report
are derived using hardware device information and stored
persistently after generation (using Secure Storage, or ”Trusted
Storage”, as defined by GlobalPlatform’s TEE Internal Core
API specification).

To properly interact with the Ethereum-based manager, we
also adapted and deployed an Ethereum wallet for embedded
devices [13], enabling the enclaves to create ECDSA signa-
tures, Keccak hashes, handle encoding, and create transactions
to call the manager. For POSE contracts, we use the scripting
language Lua [53]. It is a well-established, fast, powerful, yet

6https://github.com/OP-TEE/optee os/pull/5025

simple language written in C. Lua as well as the enclave itself
allow arbitrary computation. We ported the Lua interpreter to
run inside the TA, by stripping out operations unsupported
by the TA, such as file access. After each execution step,
the enclave returns to the normal world while keeping the
contract’s Lua session alive. When the normal world receives
an input from a user, it invokes the TA with these inputs to
continue the Lua execution. To update the enclave runtime,
different approaches are possible in practice, e.g., the manager
could announce an update and all outdated enclaves would
shut themselves down after a timeout. Honest operators then
would incrementally trigger an enclave replacement during the
timeout period.

IX. EVALUATION

This section examines POSE regarding complexity and
performance. In the following, we will report absolute perfor-
mance numbers and discuss these in relation to Ethereum itself,
but also compare to existing works based on TEEs, namely
FastKitten and Bitcontracts. FastKitten has a highly similar set
of tested smart contracts, so a comparison can put our numbers
in perspective. For Bitcontracts, we reimplemented Quicksort
with the same experiment setup. Note, that the smart contracts
can still be implemented differently, and the performance and
the TEE differ.

Complexity. Running a POSE contract in the benign case,
i.e., if all involved enclaves respond, requires exactly two
blockchain interactions for the setup. Each user of a contract
also needs one blockchain interaction each time the user
deposits or withdraws money regarding the contract. However,
as POSE does not require a fixed collateral for the setup, the
money transactions do not inherently prevent the contract from
execution—except the specific contract demands it. Otherwise,
when either the executor or any watchdog fails to respond,
each challenge requires two blockchain interactions. The delay
incurred by our challenge protocol is dominated by the on-
chain transactions. This holds also for other off-chain solu-
tions, e.g., state-channels [46], [26], [22], Plasma [52], [37],
Rollups [48], [5] and FastKitten [25]. For instance, the time
it takes for an honest executor to kick a watchdog is 325s
on average. We discuss timeout parameters and the challenge
delay more thoroughly in Appendix D. In the worst-case, a
malicious operator does not respond to the off-chain messages
but to the challenges in every execution step, which would
effectively reduce POSE ’s execution speed beneath that of
the blockchain. However, such an attack requires continuous
blockchain interactions from the malicious party and hence en-
tails costs for every execution step (cf. Section IX “Manager”).

Test Setup. We deployed a test setup with our prototype
implementation for performance measurements. The test setup
consists of five devices. For the enclaves we deployed three
Raspberry Pi 3B+ with four cores running at 1.4GHz. These
are widely available and cheap devices that support ARM
TrustZone. As state updates are small (just the delta to the
previous state) and watchdogs receive and process the state
updates in parallel, we do not expect an increase of the pool
size to significantly influence the evaluation. Further, we used
ganache-cli (6.10.2) to emulate a Ethereum blockchain
in our local network, which runs the Solidity contract that

11

TABLE I. COST OF EXECUTING THE POSE MANAGER. THE USD
COSTS WERE ESTIMATED BASED ON THE PRICES (GAS TO GWEI AND ETH

TO USD) ON MAY. 8, 2022 [27], [21]. *FOR COMPARISON, THESE ARE
THE COSTS OF POPULAR OPERATIONS ON ETHEREUM.

Method Cost
Gas USD

registerEnclave 175 910 13.23
initCreation 198 436 14.91
finalizeCreation 79 545 5.98
deposit 37 255 2.80
withdraw 36 997 2.78

challengeExecutor 54 654 4.11
executorResponse 51 478 3.87
executorTimeout 53 327 4.01
challangeWatchdogsCreation 231 286 17.38
challengeWatchdog 131 362 9.87
watchdogResponse 36 257 2.72
watchdogTimeout 52 142 3.92

simple Ether transfer* 21 000 1.58
create CryptoKitty* 250 000 18.78

implements the manager. Finally, a fifth device emulates mul-
tiple users by simply sending out network requests to both the
manager and enclave operators, which are all connected via
Ethernet LAN.

Manager. As the POSE manager is implemented as an
Ethereum smart contract, interactions with it incur some costs
in the form of Gas. The costs of all implemented methods
of the Solidity contract are listed in Table I. The first five
methods are used for benign POSE contract execution. The
second part of the table shows methods that are required for
challenges, including the response and timeout methods to
resolve them. In terms of storage, each additionally registered
enclave will require 64 bytes and each contract 288 bytes +
(pool size × 32 bytes) of on-chain storage.

Contract Execution. To measure and demonstrate the effi-
ciency of POSE contract execution, we implemented three ap-
plications as Lua code in our test setup. All time measurements
are averaged over 100 runs. Regardless of the used contract,
setting up an executor or watchdog enclave with a Lua contract
takes 189ms. Creating an attestation report for the enclave
takes another 367ms with OP-TEE’s built-in remote attestation
using a one-line dummy contract. For our biggest contract,
Poker, the attestation takes 377ms, resulting in a total setup
time of 566ms. In contrast, FastKitten needs 2s for enclave
setup. Note that FastKitten needs an additional blockchain
interaction. Multiple contracts run by a single operator are
executed in parallel, including network communication. Thus,
the number of enclaves, contracts and transactions a single
operator can process depends on the operator’s hardware. As
modern servers CPUs feature 128 cores [23], and servers often
feature multiple CPUs, we do not expect parallel execution to
affect performance significantly. However, to prevent overload,
the number of pools an operator participates in can be limited.

Rock paper scissors. This is an implementation of the popular
game with two players. Unlike traditional smart contracts, we
can leverage POSE ’s private state to simply store each player’s
input, instead of having to use much more complex multi-
round commitments. The resulting smart contract is 27 lines of
code (LoC). Disregarding the delay caused by human players,

the execution time of one round with two user inputs is 32ms.
In comparison, FastKitten only needs 12ms, but is also running
on a much more powerful machine. In contrast, executing this
game on Ethereum would take around 5 minutes for each round
(20 confirmation blocks, 15s block time each).

Poker. We have also implemented Poker as a multi-party
contract running over multiple rounds. Note that in POSE ,
the poker game can be implemented as an ongoing cash game
table, i.e., players may join or leave the table at any time, as
contracts in POSE do not have to be finite. Each round consists
of three phases each requiring an input from all users. The
resulting smart contract is 209 lines of code (LoC). We execute
the contract with five players who have their deposit ready at
the start, with a total execution time of 199ms (vs. 45ms in
FastKitten, but again, on a more powerful machine). Playing
this game on Ethereum would take 5 minutes per player input.

Federated Machine Learning. For this application, users can
submit locally trained models, which will be aggregated to
a single model by the contract. Any user can then request
the new model from the contract. For our measurements,
each user trained a convolutional neural network consisting
of 431 080 individual weights on the MNIST handwritten
digits dataset [62]. For aggregation, the contract averages every
existing weight with the corresponding weight sent by the
user. The smart contract itself is only 5 LoCs, as we load
the existing weights separately. Each aggregation took 238ms,
which demonstrates the efficiency of POSE . Trying to execute
the same function on Ethereum, for each aggregation, storage
of the weights alone would exceed 1 billion gas (assuming 4
bytes float per weight) and the calculation over 3.4 million gas
(8 gas per weight).

Quicksort. We have also implemented Quicksort to sort a
hardcoded input array of 2048 random integers, as done in
Bitcontracts [59]. The resulting smart contract is 29 lines of
code (LoC). The total execution time of the contract is 20ms.
Compared to the 6ms in Bitcontracts, we use a less powerful
machine (Bitcontracts uses an AWS T2.micro instance with a
recent Intel processor at 3.3Ghz), while our performance mea-
surement also includes additional steps like context switches
and the setup of the enclave runtime. Executing this Quicksort
contract on Ethereum would cost around 6.5 million gas.

Watchdog State Updates. When an executor operator has
been dropped, a watchdog takes over execution. For this to
work, state changes are distributed to the watchdogs. Storing
the current state and restoring it on a watchdog takes 17ms
for the poker contract (averaged over 100 runs, corrected for
network latency), which also has the biggest state among the
ones we implemented.

Enclave Teardown. After an executor enclave is not expecting
further inputs and finished the smart contract execution, the
execution environment has to be cleaned up for the next smart
contract, i.e., cryptographic secrets and the smart contract in
the shared memory need to be zeroed. This takes 25ms.

X. RELATED WORK

Ethereum [58] is the most prominent decentralized cryp-
tocurrency with support for smart contract execution. However,
it is suffering from very high transaction costs and data used
by smart contracts is inherently public.

12

TABLE II. OVERVIEW OF RELATED WORK, n IS #TRANSACTIONS.

N
o

co
lla

te
ra

l

Pr
iv

at
e

st
at

e

B
lo

ck
ch

ai
n

in
te

ra
ct

io
ns

(o
pt

im
is

tic
al

ly
)

N
on

-fi
xe

d
lif

et
im

e
&

gr
ou

p

Ethereum [58] 3 7 O(n) 3
MPC [40], [41], [39] 7 3 O(1) 7
State Channels [46], [26], [22] 7 7 O(1) 7
VM-based [36], [60], [59] 7 7 O(n) 3

Ekiden [20] 7 3 O(n) 7
FastKitten [25] 7 3 O(1) 7

POSE 3 3 O(1) 3

Hawk [38] aims for improving the privacy by automatically
creating a cryptographic protocol from a high-level program in
order to allow computation on private data without disclosing
it. However, this complex cryptographic layer further decreases
performance of the system and increases costs. Similarly, ap-
proaches based on Multiparty Computation (MPC) [40], [41],
[39] distribute the computation between multiple parties such
that no party can access the cleartext data. These approaches
have substantial overhead in performance, communication and
collateral required.

One approach to alleviate the complexity limitation are
state channels [46], [26], [22], which enable parties to lock
some funds on the blockchain, execute complex contracts off-
chain, and finally commit the results of the contract to the
blockchain. This is efficient if all parties agree on the results;
otherwise, the dispute can be solved on-chain, which takes
longer and is more expensive.

Arbitrum [36] represents a smart contract as a virtual
machine (VM), which is executed privately by a number of
“managers”. After execution, if all managers agree on the
result of the computation, this result can be simply signed and
committed to the blockchain, without the need to perform the
computation on chain. In case managers disagree, a bisection
algorithm is used to compare subsets of the execution on chain
and find which is the first instruction on which the managers
disagree, then punish the malicious manager(s). Hence, as
long as at least one manager is honest, the correct result
is computed. While computationally efficient, this on-chain
protocol is still relatively expensive, so Arbitrum also includes
financial incentives to encourage the managers to behave. The
managers have full access to the VM’s data, so confidentiality
is broken if even one manager is malicious. Unlike Arbitrum,
POSE does not require multiple parties to execute the smart
contract: the watchdog enclaves just need to acknowledge the
new states, unless the executor enclave fails.

ACE [60] and Bitcontracts [59] are similar to Arbitrum, but
they allow the results of contract executions to be approved by
a configurable quorum of service providers, not necessarily all
of them. Unlike POSE , ACE does not support private state
and requires on-chain communication per contract invocation.
Although the transaction is computed off-chain, the invocation
and the result are registered on-chain. Further, Arbitrum and
ACE require changes to the blockchain infrastructure, hence,
they are harder to deploy in practice.

Ekiden [20] is also an off-chain execution system that lever-
ages TEE-enabled compute nodes to perform computation and
regular consensus nodes that interact with a blockchain. The
major drawback of Ekiden is that it requires every computation
step to retrieve its initial status from the blockchain, and it
only supports input from one client at a time. Moreover, the
atomic delivery of the output of each step requires to wait
for publication of the updated state before the output is made
available to the client. Hence, any highly interactive protocol
with multiple participants (e.g., a card game) would incur
significant delays between turns just to wait for the blockchain.
The paper evaluates on a fast blockchain, Tendermint, but
does not quantify its latency for interactive protocols on
mainstream blockchains like Ethereum. The Oasis Network
uses an updated version of Ekiden [30]; yet, this version still
requires to store state on the blockchain after each call.

FastKitten [25] also leverages TEEs to perform off-chain
computation. It assumes a rational attacker model, with fi-
nancial incentives to convince all participants to follow the
protocols. If they all do, the communication happens directly
between the TEE and them, thus dispensing with the high
latency due to blockchain roundtrips. However, FastKitten only
supports contracts with a predefined list of participants and a
limited lifespan. It also requires the TEE operator to deposit
as much as every participant combined as collateral. POSE
lifts those restrictions: it enables long-lived smart contracts
with an unknown set of participants and requires no collateral
from the TEE owners. Further, POSE achieves strong liveness
guarantees in the presence of byzantine adversaries, while
FastKitten assumes a rational adversary.

ROTE [45] is an approach to detect rollback attacks on
TEEs by storing a counter on other TEEs. This approach
is similar to the watchdog enclaves used in POSE to en-
sure that execution of a smart contract continues. However,
unlike POSE , ROTE can only detect rollback attacks, but
cannot prevent malicious operators from withholding the state.
SlimChain [61] primarily aims at reducing on-chain storage,
while still requiring blockchain interactions to store state
commitments. Further, the paper does not address storage
nodes crashing, which would lead to a liveness violation.
Pointproofs [33] proposes a new vector commitment scheme
to reduce the storage requirements on blockchain validators.
Although validators do not need to store all values of a
smart contract, once a transaction provides these values, the
execution is still performed on-chain. In contrast, POSE works
entirely off-chain in the optimistic case and ensures liveness.

Chainspace [12] proposes an entirely new distributed
ledger platform focusing on sharding combined with a di-
rected acyclic graph structure, while POSE extends established
blockchains (e.g., Ethereum). ResilientDB [54] proposes a
consensus protocol that clusters validators’ geo-location to
minimize network overheads. In contrast, POSE is a off-chain
execution protocol for smart contracts. Hyperledger Fabric Pri-
vate Chaincode [29] requires trust in handling the encryption
key by the client or an admin; thus, we deem it not applicable
to permissionless blockchains, targeted by POSE . Hyperledger
Private Data Objects [18], an alternative to Private Chaincode,
requires periodic blockchain interactions to store the state on-
chain. This slows execution on contract calls to the speed of
the blockchain, unlike POSE , which executes contracts entirely

13

off-chain in the optimistic case. Hyperledger Avalon [28]
can outsource workloads to TEE enclaves. However, these
workloads have to be self-contained, and thus, interactions by
participants still require on-chain transactions, while POSE can
run interactive contracts completely off-chain (e.g., Poker).

XI. CONCLUSION

Smart contracts have become an indispensable tool in
the era of blockchains; yet, current approaches suffer from
various shortcomings. In this paper, we introduce POSE , a
novel off-chain execution protocol that addresses all of these
shortcomings to enable much more versatile smart contracts.
We showed POSE ’s security and demonstrated its feasibility
with a prototype implementation.

ACKNOWLEDGEMENTS

This work was supported by the European Space Op-
erations Centre with the Networking/Partnering Initiative,
the German Federal Ministry of Education and Research
within Sanctuary (16KIS1417) and within the iBlockchain
project (16KIS0902), by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) SFB 1119 –
236615297 (CROSSING Project S7), by the European Union’s
Horizon 2020 Research and Innovation program under Grant
Agreement No. 952697 (ASSURED), by the BMBF and the
Hessian Ministry of Higher Education, Research, Science and
the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

REFERENCES

[1] Cardano. https://cardano.org/. (Accessed on 05/20/2021).
[2] Cryptokitties - collect and bread furrever friends! https://www.

cryptokitties.co/. Accessed 14-08-2022.
[3] Enhanced attestation (v3). https://docs.samsungknox.com/dev/knox-

attestation/about-attestation.htm. Accessed 20-04-2022.
[4] Etherscan - ethereum average block time chart. https://etherscan.io/

chart/blocktime. Accessed 20-09-2021.
[5] Optimistic rollups - ethhub. https://docs.ethhub.io/ethereum-roadmap/

layer-2-scaling/optimistic rollups/. (Accessed on 05/20/2021).
[6] Qualcomm® trusted execution environment (tee) v5.8 on qualcomm®

snapdragon™ 865 security target lite. https://www.tuv-nederland.nl/
assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf. Accessed
20-04-2022.

[7] Solidity documentation. https://docs.soliditylang.org/en/v0.8.7/. Ac-
cessed 20-09-2021.

[8] Upgrading android attestation: Remote provisioning. https:
//android-developers.googleblog.com/2022/03/upgrading-android-
attestation-remote.html. Accessed 20-04-2022.

[9] Proxy bid. https://en.wikipedia.org/w/index.php?title=Proxy
bid&oldid=968758683, July 2020.

[10] Google cloud bigquery: Block variance. https://console.cloud.
google.com/bigquery, 2021. Query: SELECT b.timestamp FROM
‘bigquery-public-data.ethereum blockchain.live blocks‘ AS b ORDER
BY b.timestamp; Accessed 20-09-2021.

[11] Martın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. CFI:
Principles, implementations, and applications. In Proc. ACM Confer-
ence and Computer and Communications Security (CCS), 2005.

[12] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
In 25th Annual Network and Distributed System Security Symposium,
(NDSS 2018), 2018.

[13] AnyLedger. Embedded Ethereum wallet library GitHub. https://github.
com/Anylsite/embedded-ethereum-wallet, 2020.

[14] APItools. sandbox.lua. https://github.com/APItools/sandbox.lua, 2017.
[15] ARM Limited. ARM Security Technology: Building a Secure System

using TrustZone Technology. http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone
security whitepaper.pdf, 2008.

[16] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
CURE: A security architecture with CUstomizable and Resilient En-
claves. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[17] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and
Ari Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1521–1538, 2019.

[18] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala.
Private data objects: an overview. CoRR, abs/1807.05686, 2018.

[19] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. SANCTUARY: ARMing TrustZone with user-
space enclaves. In NDSS, 2019.

[20] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden:
A platform for confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 185–200. IEEE, 2019.

[21] CoinMarketCap. Ethereum (ETH) price. https://coinmarketcap.com/
currencies/ethereum/, 2020.

[22] Jeff Coleman, Liam Horne, and Li Xuanji. Counterfactual: Generalized
state channels, Jun 2018. https://l4.ventures/papers/statechannels.pdf.

[23] Ampere Computing. Ampere Altra Max 64-Bit Multi-Core Processor
Features. https://amperecomputing.com/processors/ampere-altra/, 2022.

[24] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[25] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina
Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-Reza
Sadeghi. Fastkitten: practical smart contracts on bitcoin. In 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[26] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
state channel networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, 2018.

[27] Etherscan. Ethereum Average Gas Price Chart. https://etherscan.io/
chart/gasprice, 2020.

[28] Hyperledger Foundation. Hyperledger avalon. https://wiki.hyperledger.
org/display/avalon/Hyperledger+Avalon. Accessed 04-08-2022.

[29] Hyperledger Foundation. Hyperledger fabric private chaincode. https:
//github.com/hyperledger/fabric-private-chaincode. Accessed 04-08-
2022.

[30] Oasis Foundation. An implementation of ekiden on the oasis network.
https://oasisprotocol.org/papers. Accessed 04-08-2022.

[31] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler,
Benjamin Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. POSE:
Practical off-chain smart contract execution. CoRR, abs/2210.07110,
2022.

[32] GlobalPlatform. TEE Internal Core API Specification.
https://globalplatform.org/specs-library/tee-internal-core-api-
specification-v1-2/, 2019.

[33] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
Pointproofs: Aggregating proofs for multiple vector commitments. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 2007–2023, 2020.

[34] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY
technology overview series, consensus system. CoRR, abs/1805.04548,
2018.

[35] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel software guard extensions: Epid provisioning and
attestation services. White Paper, 1(1-10):119, 2016.

[36] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. Arbitrum: Scalable, private smart

14

contracts. In 27th USENIX Security Symposium (USENIX Security
2018). USENIX Association, 2018.

[37] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-
Sanchez, and Arthur Gervais. Commit-chains: Secure, scalable off-chain
payments. Cryptology ePrint Archive, Report 2018/642, 2018.

[38] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Security and Privacy (SP), 2016
IEEE Symposium on. IEEE, 2016.

[39] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation
with penalties. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[40] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin
to play decentralized poker. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015.

[41] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Va-
sudevan. Improvements to secure computation with penalties. In
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

[42] Linaro, Inc. OP-TEE Documentation. https://readthedocs.org/projects/
optee/downloads/pdf/latest/, 2020.

[43] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter Pietzuch, and
Emin Gün Sirer. Teechain: Reducing storage costs on the blockchain
with offline payment channels. In Proceedings of the 11th ACM
International Systems and Storage Conference, pages 125–125, 2018.

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In
25th USENIX Security Symposium (USENIX Security 16), 2016.

[45] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE:
Rollback protection for trusted execution. In 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[46] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
Sprites: Payment channels that go faster than lightning. CoRR,
abs/1702.05812, 2017.

[47] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, 2008.

[48] Offchain Labs, Inc. Arbitrum rollup: Off-chain contracts with on-chain
security. 2020.

[49] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang.
An exploratory study of smart contracts in the Ethereum blockchain
platform. Empirical Software Engineering, 2020.

[50] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for
attested execution secure processors. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2017.

[51] Travis Patron. What’s the big idea behind Ethereum’s world com-
puter. https://www.coindesk.com/whats-big-idea-behind-ethereums-
world-computer/, 2016.

[52] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. 2017.

[53] PUC-Rio. The programming language Lua. https://www.lua.org/, 2020.
[54] Sajjad Rahnama, Suyash Gupta, Thamir M Qadah, Jelle Hellings, and

Mohammad Sadoghi. Scalable, resilient, and configurable permissioned
blockchain fabric. Proceedings of the VLDB Endowment, 13(12), 2020.

[55] Andrey Sergeenkov. How to check your ethereum transac-
tion. https://www.coindesk.com/learn/how-to-check-your-ethereum-
transaction/. Accessed 24-08-2022.

[56] AMD SEV-SNP. Strengthening vm isolation with integrity protection
and more. White Paper, January, 2020.

[57] Jason Teutsch and Christian Reitwießner. A scalable verification
solution for blockchains. CoRR, abs/1908.04756, 2019.

[58] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 2014.

[59] Karl Wüst, Loris Diana, Kari Kostiainen, Ghassan Karame, Sinisa
Matetic, and Srdjan Capkun. Bitcontracts: Adding expressive smart
contracts to legacy cryptocurrencies. 2019.

[60] Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan
Capkun. ACE: asynchronous and concurrent execution of complex
smart contracts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[61] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: scaling
blockchain transactions through off-chain storage and parallel process-
ing. Proceedings of the VLDB Endowment, 14(11):2314–2326, 2021.

[62] Yann LeCun and Corinna Cortes and Christopher J.C. Burges. THE
MNIST DATABASE. http://yann.lecun.com/exdb/mnist/, 2020.

[63] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference on computer and
communications security, pages 270–282, 2016.

[64] Fan Zhang, Philip Daian, Iddo Bentov, and Ari Juels. Paralysis proofs:
Safe access-structure updates for cryptocurrencies and more. IACR
Cryptol. ePrint Arch., 2018:96, 2018.

APPENDIX

A. Protocol Security

We analyze the security of our protocol under the as-
sumption of an IND-CPA secure encryption scheme, an EU-
CMA secure signature scheme and a collision resistant hash
function in the following. We present definitions of correctness,
ε-liveness and state privacy.

1) Correctness: We define a state update as the evaluation
of a transition function f , which receives as inputs a user U ,
a user input move and a copy of the blockchain BC. The
correctness property states that each state update evaluates the
transition function as defined by the contract code with valid
inputs, i.e., U is the (potentially malicious) client triggering
the transition, move the input of U and BC a valid copy of
the blockchain that is at most τoff

slack behind the main chain.

Claim 1 (Correctness): POSE satisfies correctness.

We first note that according to our adversary model, a
corrupted operator may delete any message intended for her
enclave or generated from her enclave. However, the correct
execution of the POSE program inside the enclave cannot
be influenced. When an operator creates a POSE enclave,
the registration process ensures that the new enclave indeed
runs the POSE program. To this end, our protocol utilizes
the TEE attestation mechanism, which generates a verifiable
statement that the enclave is running a specific program. Upon
registration with the manager M , M checks the validity of
the attestation statement as well as the blockchain evidence,
the signed hash and number of the latest block known to
the enclave. M only registers the enclave in the system if
the new enclave is running the POSE program and is not
further behind than maximally τoff

slack . Finally, the TEE integrity
and confidentiality guarantees ensure that a malicious operator
cannot modify the enclave’s code, tamper with its state or
access its private data, in particular, its signature keys.

During the creation of a contract, the pool enclaves attest
the code of the installed contract to the creation enclave. The
creator checks that the code is consistent with the hash stored
in the manager before signing a creation confirmation. Hence,
it is not possible, without breaking the EU-CMA security of
the signature scheme or the collision resistance of the hash
function, to create a valid creation confirmation for a contract
with different code than specified by the creation request.

15

Next, contract state updates can only be triggered by
invoking the executor enclave with an execution request or
invoking a watchdog enclave with an update request. The
correctness of the latter is reduced to the correctness of the
former. To see this, we observe that any update request to
a watchdog enclave requires to be signed by the executor
enclave. Clearly, the executor enclave only signs updates
corresponding to its own executions. Therefore, an adversary
cannot forge incorrect update request without breaking the
unforgeability of the signature scheme. Also, the executor
enclave can only issue a new state update if all watchdogs
confirmed the previous one. Hence, it is not possible to tamper
with the order in which the update requests are provided
to a watchdog enclave. As stated before, the TEE integrity
guarantees ensure the correct execution of the program code
and hence the correct execution of the smart contract. It follows
that a state update can only be achieved by providing inputs to
the executor enclave. The executor enclave receives a signed
message containing the action move from user U and the
relevant blockchain data from its operator. In Section V-D,
we describe how our protocol achieves secure synchronization
between the executor enclave and the blockchain. In particular,
the synchronization mechanism ensures that the blockchain
data accepted by an enclave is correct and complete in regard
to a correct blockchain copy that is at most τoff

slack behind
the main chain. This guarantees that BC, represented by the
received blockchain data, is a synchronized copy of the current
blockchain. In order to protect inputs by honest users U , move
needs to be signed by U . This means an adversary cannot
tamper with the input without breaking the signature scheme.

Finally, we note that each POSE enclave maintains a list
of received messages. Since an honest user randomly selects a
fresh nonce for each execution request, replay attacks can be
detected and prevented by any executor enclave.

2) Liveness: The liveness property states that every con-
tract execution initiated by an honest user U will eventually be
processed with high probability. For a successful execution, a
valid execution response is given by the executor. Unsuccessful
execution can only happen in case of a contract crash. In
this event, the contract execution halts and neither honest nor
malicious users can perform successful contract executions
anymore. We emphasize that the pool size can be set such that
crashes happen only with negligible probability. In particular,
for ε-liveness, the probability of a crash is bounded by 1− ε.
Claim 2 (ε-Liveness): Let n be the total number of enclaves in
the system, m be the number of malicious operators’ enclaves
and s be the contract pool size. POSE satisfies ε-liveness for
ε = 1−Πs−1

i=0 (m−in−i) > 1− (mn)s.

Whenever user U sends an execution request to the execu-
tor enclave EE , U either directly receives a response or U chal-
lenges EE via the manager M . If EE does not respond within
some predefined timeout, it will be kicked out of the execution
pool and one of the watchdog enclaves takes over the executor
role. User U can now trigger the execution again by interacting
with the new executor enclave. During execution, the executor
enclave EE requires confirmations from all watchdog enclaves
in order to produce a valid result. However, watchdog enclaves
cannot stall the execution forever, as EE is able to challenge
them via the manager. All unresponsive watchdog enclaves will

be kicked out of the execution pool—the confirmations from
the remaining watchdogs suffice to create a result. We stress
that all timeouts are defined in Appendix D with great care to
ensure that honest operators have enough time to respond. For
example, the timeout for the executor challenge is sufficient to
allow the executor enclave to challenge the watchdog enclaves
twice; once for a currently running off-chain execution and
once for the challenged on-chain execution. Although POSE
guarantees that honest operators’ enclaves will never be kicked,
there is a small probability that an execution pool consists only
of malicious operators’ enclaves. If all enclaves are kicked
out of the execution pool, the contract execution crashes.
Let n be the number of total registered enclaves, m denote
the number of enclaves controlled by malicious operators,
and s the execution pool size. The probability of a crash
is equal to the probability that only malicious operators’
enclaves are within an execution pool. This is bounded by
ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. Hence, POSE achieves
ε-liveness.

Assuming a total of n = 100 registered enclaves and
m = 70 of them are controlled by malicious operators. Even
in this setting with a large share of malicious operators, POSE
achieves liveness with ε > 92% for a pool size of just 7. If
only half of the operators are malicious, i.e., m = 50, POSE
achieves liveness with ε > 99% for the same pool size of
7. For m = 10 malicious operators, a pool size of only 3
yields a liveness with ε > 99%. For the same scenario of
10% malicious operators and assuming 40 millions contracts
running in POSE , the pool size of 11 results in a probability of
more than 99% that there is no crash at all in the whole system.
See Fig. 5 for an illustration of the probability of no crashes
depending on the number of contracts for different pool sizes.

3) State Privacy: The state privacy property says that the
adversary cannot obtain additional information about a contract
state besides what she learns from the results of contract
executions alone.

Claim 3 (State Privacy): POSE satisfies state privacy.

The smart contract’s state is maintained by the enclaves
within the execution pool. According to our adversary model
(see Section II), the TEE provides confidentiality guarantees,
i.e., the execution of an enclave does not leak any data. Hence,
the smart contract’s state is hidden from the adversary, even
if the enclave’s operator is corrupted. The only point in time
when information about the contract’s state is revealed is at
the end of the execution protocol. However, the data provided
as a result contains only public state and hence does not reveal
anything about the private state. During the execution protocol,
the executor enclave propagates the new state to all watchdog
enclaves. However, the transferred data is encrypted using
an IND-CPA secure encryption scheme. The security of the
scheme guarantees that an adversary seeing the message cannot
extract information from it. While an enclave only publishes
outputs after successful executions, we need to show that each
produced output is final. In particular, a succeeding executor
must not be able to revert to a state in which a published output
should not have been produced. To this end, the state of the
executor enclave producing a particular output needs to be
replicated among all other enclaves before revealing the actual
output. This property is achieved by the state propagation

16

mechanism of POSE . An enclave only returns an output
if all enclaves in the pool confirm the corresponding state
update. The EU-CMA secure signature scheme guarantees
unforgeability of the confirmations. Hence, each confirmation
guarantees that the corresponding enclave has updated its state
correctly. Further, the correctness property of our protocol (cf.
Section A1) ensures an enclave is always executed with a
correct blockchain copy; thus, is always aware of the correct
pool composition. This means an output can only be returned
if the whole pool received the corresponding state update.

B. Supported Contracts

POSE supports contracts with a dynamic set of users of
arbitrary size and an unrestricted lifetime. The timeouts need to
be set reasonable with respect to the expected execution time of
the contracts to allow the execution of complex contracts and to
prevent denial of service attacks at the same time. Interaction
between POSE contracts can be realized by letting the TEE of
the calling contract instruct its operator to request an execution
of the second contract via the respective executive operator
and wait for the response. We deem the exact specification,
e.g., enforce an upper bound on (potentially recursive) external
calls to guarantee timely request termination, an engineering
effort. Calls from POSE contracts to on-chain contracts can be
supported similarly to our payout concept (Appendix E).

C. Further Protocol Blocks

To keep the specification of the POSE protocol in the main
body simple and compact, we have excluded the formal spec-
ification of the creation process and the validation algorithms.
In this section, we present the validation algorithms. For the
formal specification of the creation process, we refer the reader
to the full version of the paper [31].

All of the different messages sent to the manager through-
out the protocol need to be validated with several checks. In
order to keep the description compact, we did not include the
validation steps in the protocol figures but extracted them into
a validation algorithm specified in Program 3. The algorithm is
invoked with an counter specifying the checks that should be
performed, an optional message that should be checked and the
contract state tuple maintained by the manager. The validation
returns ok if all requirements are satisfied and M can continue
executing and bad if M should discard the received request.

D. Timeouts

Our protocol incorporates several timeouts δ∗off , which
define until when an honest user or operator expects a response
to a request, and δ∗on , which define until when the manager
expects a response to a challenge. These timeouts have to be
selected carefully s.t. each honest party has the chance to an-
swer each message and challenge before the respective timeout
expires. In this section, we elaborate on the requirements on
the timeouts. We neglect message transmission delays and also
assume that each challenge sent to the manager will directly
be received by all operators (already before it is included
into a final block)7. We recall the maximum blockchain delay
which is defined as δBC = α · τ (cf. II and IV). The off-chain

7We could also add twice the max. message delay to each off-chain timeout
and the blockchain confirmation time ∆ = τ · γ to each on-chain timeout.

Program 3: Algorithm Validate

The validation algorithm performs the following checks. If input
C = ⊥, the parsing of a message fails or any require is not
satisfied, the algorithm outputs bad. Otherwise, it outputs ok.
• On input (1,m;C), parse m to (execute, id , ·, ·;U). Require

that C.creator = ⊥, C.c1Time = ⊥ and Verify(m) = ok.
• On input (2, res;C), parse res to (ok, id , ·, h;T). Require that
C.creator = ⊥, H(C.c1Msg) = h,
C.c1Time + δ1on > BC.now , Verify(res) = ok and
C.pool [0] = T .

• On input (3;C), require that C 6= ⊥, C.creator = ⊥,
Cc1Msg 6= ⊥ and C.c1Time + δ1on ≤ BC.now .

• On input (4, pre;C), parse pre to (update, id , c, h;T).
Require that C.creator = ⊥, C.c2Time = ⊥, C.pool [0] = T
and Verify(pre) = ok.

• On input (5, conf ;C), parse conf to (confirm, id , h;Ti) and
C.c2Msg to (·, ·, ·, h′; ·). Require that C.creator = ⊥,
C.c2Time + δ2on > BC.now , Verify(conf) = ok, h = h′ and
T ∈ C.pool .

• On input (6;C), require that C.creator = ⊥, C.c2Time 6= ⊥
and C.c2Time + δ2on ≤ BC.now .

propagation timeout δ2off describes the time an execution or
creation operator maximally waits for a confirmation from the
(other) pool members. It needs to be larger than the maximal
update respectively installation time of a contract. Timeout
δ2on ≥ δ2off + δBC describes the maximal time after which M
expects a response to any watchdog challenge, either during
creation or execution. The off-chain execution timeout δ1off
describes the maximal time a user waits for a response to
an execution request. Note that there might be a running
execution and both running and new execution might require
a watchdog challenge. In case watchdogs are dropped in the
process of such a challenge, the executor needs to be able
to notify its enclave about the new pool constellation, and
hence, wait until the finalization of the challenge is within
a final block. This takes additional time ∆ = τ · γ (cf. IV).
Hence, δ1off needs to be high enough to enable the challenged
executor to perform two contract executions and run two
watchdog challenges each taking up to time δ2on + δBC + ∆.
We elaborate on maximal execution, update, and installation
times of contracts in Section V-F. Finally, δ1on ≥ δ1off + δBC
defines the maximal time after which M expects a response
to an execution challenge. As the creation is comparable to
the execution, we set the timeouts for off-chain creation and
creation-challenge accordingly. The timeouts are the upper
bound of the delay that can be enforced by malicious operators
by withholding messages. To decrease the delays in practice,
our implementation incorporates dynamic timeouts. Such a
timeout is initially set to match an optimistic scenario where
all operators answer directly. Only if the executor signals that
a watchdog is not responding, the timeout is increased. For
example, δ1on is initially set by the manager just high enough to
allow the executor to perform the execution offline and to send
one on-chain transaction. This on-chain transaction is either the
response or a watchdog challenge. In case the executor creates
a watchdog challenge, this triggers the manager to increase
the δ1on timeout for the executor. Similarly, the timeout δ1on is
increased by the manager if any watchdog is not responding
and the executor sends a transaction that kicks this watchdog.
The increased timeout allows the executor to provide the
kick transaction together with enough confirmation blocks to

17

its enclave to finalize the execution. This dynamic timeout
mechanism still allows the executor to respond in time even
if a watchdog is not responding, but at the same prevents
the executor to stall execution to the maximum although the
watchdogs have already responded. While the executor still
can create a watchdog challenge to increase the delay, this
attack is costly as the executor needs to pay for the on-
chain transaction. The value of the off-chain timeout δ1off
is handled similarly. The client only needs to account for
watchdog challenges in the previous execution if there is a
running on-chain challenge. If there are no running challenges,
a client can decrease δ1off to δBC plus two times the time for
the TEE to execute and update a contract. If the executor is
unresponsive, the client submits its executor challenge much
earlier. We give a concrete evaluation for the case of Ethereum,
as this is the platform on which our implementation works. Let
α = 20 be the number of blocks until a transaction is included
in the blockchain in the worst case, and αavg = 10 in the
average case. Further, we consider the block creation time to
be τ = 44s per block in the worst case and τavg = 15s in
the average case8. Finally, we assume that blocks are final,
when they are confirmed by γ = 15 successive blocks. Since
the network delay and the computation time of enclaves are at
most just a few seconds, which is insignificant compared to the
time it requires to post on-chain transactions, we neglect these
numbers for simplicity in the following example. In case the
executor (resp. a watchdog) is not responding, it is challenged
by the the client (resp. the executor). The creation of such a
challenge takes αavg ·τavg = 150s on average. In what follows,
due to the dynamic timeout mechanism, the on-chain timeout
for both, executor challenge (δ1on) and watchdog challenge
(δ2on), is initially set to α · τ = 880s. For on-chain timeouts,
we need to consider the worst-case parameters to allow honest
operators to respond timely in every situation. While a dis-
honest operator can delay up to the defined timeout, an honest
operator responds, and hence, finalizes the challenge in 150s
on average. In case the challenged operator gets kicked, the
(next) executor enclave needs to provide the kick transaction
together with enough confirmation blocks to its enclave to
finalize the execution. This takes (αavg + γ) · τavg = 375s
on average. For executor challenges, it can happen that the
executor submits a watchdog challenge during the timeout
period. In this case, which can happen at most twice, the
timeout is increased by 880s. If the challenged watchdog
does not reply, and consequently is kicked from the pool, the
timeout is increased by (α+ γ) · τ = 1 540s. Note, this worst
case is very costly to provoke, and in the general case, an
honest executor can finalize the kick of the watchdog in 375s.

E. Coin Flow

The POSE protocol supports the off-chain execution of
smart contracts that deal with coins, e.g., games with monetary
stakes. To this end, we provide means to send coins to and
receive coins from a contract. In this section, we explain the
mechanisms that enable the transfer of money and the intended
coin flow of POSE contracts. In order to deposit money to a

8For setting α and αavg , we consider a transaction to be included into the
blockchain after at most 20 resp. 10 blocks according to [55]. To determine
τ , we analyzed the Ethereum history via Google-BigQuery and identified that
since 2018 every interval of 20 blocks took at most 44s per block. For τavg , we
take the avg. parameter for Ethereum (cf. https://etherscan.io/chart/blocktime).

10K 100K 1M 10M 100M
number of contracts

90%

92%

94%

96%

98%

100%

pr
ob

ab
ilit

y
of

 n
o

cr
as

h

7 / 10%
8 / 10%
9 / 10%
20 / 50%
25 / 50%
30 / 50%
40 / 70%
50 / 70%
60 / 70%

Fig. 5. Cumulative probabilities of no contracts crashing w. large number of
POSE contracts for different pool sizes s and adversary shares m, “s/m”.

POSE contract, identified by id , a user U sends a message
(deposit, id , amount ;U) with amount coins to M . Upon
receiving a deposit message, M checks whether a contract
with identifier id exists and validates the signature, i.e.,
M id 6= ⊥ and Verify(deposit, id , amount ;U) = ok. If the
checks hold, M increases the contract balance M id .balance
by amount . As deposits are part of blockchain data that are
provided by the operator to an enclave (cf. V-D) and the
enclave forwards the data to the nextState function of the
contract Cid , U is ensure that Cid processes the deposit once
the corresponding block is final. However, it is upon to the ap-
plication logic to decide how deposits are processed. A contract
C can transfer coins to users by outputting withdrawals as part
of the public state. It is upon the application logic to decide
how and when coins are transferred to the users. For example,
a game can issue withdrawals once the winner has been
determined or leave the coins locked for another round unless a
user explicitly requests a withdrawal via a contract execution.
However, once a withdrawal has been issued, the coins are
irreversible transferred. Technically, contract C with identifier
id maintains a list of all unspent withdrawals {amount i, Ui}
and a counter payouts for the number of spent payouts. Each
public state returned by C contains a payout, a signed message
m := (withdraw, id , payouts, {amount i, Ui}; EE) where EE
is the executor enclave of the contract. This message can be
sent to M to spent all withdrawals within the payout. M
checks the validity of the payout, i.e., Verify(m) = ok, EE =
M id .pool [0], and payouts = M id .payouts . If the checks hold,
M transfers coins to the users according to the withdrawal list
{amount i, Ui}. Finally, M sets M id .payouts := payouts + 1
and M id .balance := M id .balance − sum , where sum is
the sum of all withdrawals. Once C processes a final block
with a payout transaction, it updates its list of unspent with-
drawals {amount i, Ui} accordingly and increments payouts
by 1.This mechanism ensures that a malicious user can neither
double spent withdrawals nor prevent an honest user from
withdrawing his coins—as long as the contract remains live.
Note that for each value of payouts , only one payout can be
submitted successfully, and a contract only issues a payout
for the next value of payouts once it has processed a final
block containing the current value of payouts . As the contract
removes already spent withdrawals from the list, double-
spending of any withdrawal is prevented. Although a payout
temporarily invalidates all other payouts for the same payouts ,
and hence, might invalidate same withdrawals, the unspent
withdrawals will be included in each payout of the incremented
payouts and spent with the next payout submission.

18

D
OFFLINE MODEL GUARD: Secure and Private ML on
Mobile Devices
(DATE’20)

[17] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-
Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert. Offline Model
Guard: Secure and Private ML on Mobile Devices. In 2020 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020, pages 460–465.
IEEE, 2020. https://ieeexplore.ieee.org/document/9116560. CORE Rank A*. Section 4.2.

This paper can be found in the Versions of Record in the ACM Digital Library:

https://ieeexplore.ieee.org/document/9116560

DOI: 10.23919/DATE48585.2020.9116560

131

https://ieeexplore.ieee.org/document/9116560

OFFLINE MODEL GUARD:
Secure and Private ML on Mobile Devices

Sebastian P. Bayerl∗, Tommaso Frassetto†, Patrick Jauernig†, Korbinian Riedhammer∗, Ahmad-Reza Sadeghi†,
Thomas Schneider†, Emmanuel Stapf†, Christian Weinert†

∗Technische Hochschule Nürnberg, Germany, {sebastian.bayerl, korbinian.riedhammer}@th-nuernberg.de
†Technische Universität Darmstadt, Germany, {tommaso.frassetto, patrick.jauernig, ahmad.sadeghi,

emmanuel.stapf}@trust.tu-darmstadt.de, {schneider, weinert}@encrypto.cs.tu-darmstadt.de

Abstract—Performing machine learning tasks in mobile appli-
cations yields a challenging conflict of interest: highly sensitive
client information (e.g., speech data) should remain private while
also the intellectual property of service providers (e.g., model
parameters) must be protected. Cryptographic techniques offer
secure solutions for this, but have an unacceptable overhead and
moreover require frequent network interaction.

In this work, we design a practically efficient hardware-based
solution. Specifically, we build OFFLINE MODEL GUARD (OMG)
to enable privacy-preserving machine learning on the pre-
dominant mobile computing platform ARM—even in offline
scenarios. By leveraging a trusted execution environment for
strict hardware-enforced isolation from other system compo-
nents, OMG guarantees privacy of client data, secrecy of
provided models, and integrity of processing algorithms. Our
prototype implementation on an ARM HiKey 960 develop-
ment board performs privacy-preserving keyword recognition
using TensorFlow Lite for Microcontrollers in real time.

Index Terms—TEE, TrustZone, private ML, speech processing

I. INTRODUCTION

An increasing number of applications running on mobile
devices like smartphones and tablets relies on machine learn-
ing (ML) services to enhance the user experience, e.g., to give
an estimate on battery life based on user behavior, improve
image quality, or perform speech recognition.

Many of these ML services require frequent cloud inter-
action, resulting in severe privacy risks for billions of users due
to the highly sensitive nature of such remotely processed data.
Besides potentially confidential and intimate content, voice
recordings, for example, contain unique biometric informa-
tion that can be abused, e.g., for impersonation attacks and
distributing fake recordings.

Privacy breaches in this domain are not fiction: in 2018, a
customer requested his recording archive from Amazon, but
accidentally got access to 1,700 audio files from a stranger [1].
Furthermore, state authorities ordered Amazon to hand out
recordings as they might contain evidence of crime [2]. Media
reports also revealed that Apple, among others, sent voice
recordings to third party companies in order to improve their
service with manual transcriptions. The employees of those
companies got to listen to private discussions between doctors
and patients, business deals, criminal dealings, and sexual en-
counters [3]. Moreover, biometric data used for identification
was recently leaked at a large scale: the database of a UK

government contractor with more than a million fingerprints
and facial recognition information was publicly accessible [4].

When relying on online services for mobile ML applica-
tions, there are also usability issues to consider: high latency
and, therefore, a bad user experience occurs if the user has
an unreliable or low-bandwidth network connection, and high
roaming fees may apply if the user is abroad.

A trivial solution for all these issues is to process all sensi-
tive user data on the client’s device. Previously, this approach
was severely limited by the storage space constraints on mobile
devices and the storage space requirements of ML models used
in practice. Recently, though, Google lifted this limitation by
training a recurrent neural network (RNN) model for character-
level speech recognition and compressing it to only 80 MB,
while delivering the same accuracy as former cloud-based
production models with a size of multiple gigabytes [5], [6].

However, deploying such a model in unencrypted form is
often not in the interest of the service provider. A production-
level model constitutes intellectual property as the underlying
training data is usually hard to obtain and creating an ac-
curate while compact model requires extensive expertise [7].
Furthermore, if attackers have unrestricted model access, the
privacy of people represented in the training data is even
more threatened by, e.g., membership inference attacks [8]
and unintended memorization [9].

Cryptographic techniques like homomorphic encryp-
tion (HE) and secure multi-party computation (SMPC) provide
solutions for this conflict of interest: with HE, private inputs
can be securely processed under encryption by the client or the
service provider, whereas with SMPC, client and server can
jointly compute any function on private inputs in a provably
secure protocol. Unfortunately, the computational overhead
for HE when performing complex ML tasks is impractical
for the given mobile scenario, whereas the amount and the
frequency of required network communication is the bottle-
neck for SMPC protocols. Thus, we explore hardware-assisted
solutions to deliver secure and private ML on mobile devices
in offline scenarios while providing practical efficiency.

Our Contributions. In this work, we build OFFLINE
MODEL GUARD (OMG), a generic architecture that effi-
ciently protects machine learning tasks on mobile devices like
smartphones and tablets, and demonstrate its practicality using
offline keyword recognition as an example application.

460978-3-9819263-4-7/DATE20/ c©2020 EDAA

OMG leverages unprivileged (normal-world) user-space en-
claves on ARM platforms to execute ML tasks in a hardware-
protected environment that is two-way isolated from all other
system components to minimize the attack surface. Utiliz-
ing TrustZone functionality, OMG can securely access periph-
erals like the microphone to protect sensitive information di-
rectly from the source. As a result, OMG guarantees complete
privacy of client data, secrecy of the provided ML models, and
integrity of processing algorithms.

We provide a fully functional prototype implementation
of OMG on an ARM HiKey 960 development board for
offline keyword recognition based on TensorFlow Lite for
Microcontrollers [10]. As TrustZone on ARM does not provide
user-space enclaves, we leverage SANCTUARY [11] for our
implementation. Our performance evaluation demonstrates that
secure and private offline speech processing is possible in
real time even with strong protection guarantees. As we
developed our prototype with TensorFlow compatibility in
mind, our implementation can easily be extended to network
architectures used for other related tasks such as end-to-
end continuous speech recognition, speaker verification, and
emotion recognition.

II. RELATED WORK

In the following, we review existing works that preserve
privacy in machine learning. The goal there is usually to train
a model on the server side without allowing the server to
see training data in the clear, or to obliviously classify input
data without leaking the model (inference). Proposed solutions
either rely entirely on cryptography or build on TEEs.

For protecting only the IP of ML models there also exist
orthogonal works for model watermarking [12] and finger-
printing [13] that do not consider the privacy of client inputs.

A. Cryptography

The cryptographic techniques used for privacy-preserving
machine learning are homomorphic encryption (HE) and se-
cure multi-party computation (SMPC). Also, combinations of
these techniques are being studied. HE allows to perform
operations directly on encrypted data, but generally incurs a
high computational overhead. SMPC allows multiple parties
to jointly perform secure computations on shared data. This
works by obliviously evaluating a Boolean or arithmetic circuit
representation of the desired functionality, but results in a
high communication overhead and for some protocols requires
interaction for each layer of the circuit.

For cryptographic protocols it is possible to formally prove
security with respect to input privacy. However, many pro-
tocols and corresponding implementations assume that both
client and server honestly follow the protocol description.
This assumption is unrealistic in real-world scenarios since
mobile clients might run modified applications. Securing such
protocols against malicious parties comes at additional cost.

Privacy-preserving neural network inference via HE
and SMPC was studied in [14]–[16]. Thereafter, many frame-
works for privacy-preserving machine learning have been

developed, e.g., [17]–[22]. They allow at least for secure
deep/convolutional neural network inference and are usually
benchmarked with standard image classification tasks.

Using such cryptographic frameworks requires expert
knowledge and thus they are hardly accessible for ML ex-
perts. However, recently there are efforts to integrate cryp-
tographic protocols into standard ML tools: for TensorFlow
there are HE [23] and SMPC [24] implementations, and
for Intel’s ngraph compiler there exists HE support [25].

Unfortunately, the current performance results discourage
from actual deployment and scaling them to more involved
speech processing tasks seems unrealistic [26]. Addressing all
outlined disadvantages, with OMG we propose a computation-
and communication-efficient hardware-assisted design for se-
cure and private ML on mobile devices that enforces correct
execution of the algorithms and can easily be used by ML ex-
perts due to TensorFlow Lite compatibility.

B. Trusted Execution Environments (TEEs)

Compared to cryptographic techniques, trusted execution
environment (TEE) architectures provide several orders of
magnitude better performance for protecting ML services [27].
Most of the existing works rely on Intel SGX as the dedi-
cated TEE architecture to protect ML services.

Ohrimenko et al. [28] protect ML algorithms and models
in SGX enclaves. They consider a scenario where sensitive
data from multiple data providers is aggregated on a remote
server while SGX enclaves are used to protect the training
process. However, the enclaves might leak information to the
untrusted software on the server through data-dependent access
patterns, which can be exploited in controlled-channel at-
tacks [29], [30]. Therefore, the authors develop data-oblivious
variants of standard ML techniques, e.g., support vector ma-
chines, neural networks, and decision trees, which guarantee
that all memory accesses do not depend on secret data.

In Chiron [31], an ML-as-a-Service (MLaaS) scenario is
considered where sensitive data is collected from customers
and used for training without revealing the data to the MLaaS
provider. This is achieved by performing the training process
in a Ryoan [32] sandbox (based on SGX), which protects
sensitive customer data but still offers the service provider the
possibility to freely select, configure, and train the models.

Myelin [33] provides security guarantees similar to [28]
as it relies on data-oblivious deep learning algorithms: every
model owner compiles its deep learning model into a privacy-
preserving model graph, which is then trained on a remote
server (inside an SGX enclave) on sensitive data.

In [34], the authors introduce an alternative protection
mechanism against controlled-channel attacks that is more
efficient and suitable for real-time data processing. The authors
propose to add noise to memory traces by accessing dummy
data instead of enforcing data-oblivious memory accesses.

VoiceGuard [35] targets the use case of privacy-preserving
speech processing. For this, sensitive voice recordings are col-
lected from user devices, e.g., smart home devices like Ama-
zon Echo, Google Home, and Apple HomePod, and are sent

Design, Automation And Test in Europe (DATE 2020) 461

via secure channels to a service provider. The service provider
performs speech recognition using proprietary models pro-
vided by ML specialists in an SGX enclave, thereby protecting
the user data as well the proprietary models. The inference
results are then securely sent back to the user device. Very
recent work [36] also enables efficient private online speech
recognition but uses obfuscation techniques and the notion of
differential privacy, which significantly degrades accuracy.

In contrast, MLCapsule [37] considers an offline MLaaS
scenario where the trained model is used on the client side for
inference while being protected using an SGX enclave.

None of the previous works considers the challenge of
how user data can be securely collected on the user device.
Intel SGX, which is mostly used as the dedicated TEE archi-
tecture, is not able to provide a secure communication channel
from enclaves to system peripherals, e.g., the microphone or
camera [38]. Thus, sensitive user data is endangered as it
could be exfiltrated by malicious software running on the client
device. With OMG, we present the first TEE architecture that
provides protection for proprietary ML models and privacy-
sensitive user input at the same time. Furthermore, while In-
tel SGX is a TEE widely available in recent Intel CPUs, most
mobile devices like smartphones and tablets come with CPUs
based on the ARM platform. This prevents using the previ-
ously proposed SGX-based solutions for securing relevant use
cases on mobile devices, e.g., offline speech recognition. Thus,
in this work, we present OMG for ARM-based devices and as
an example application demonstrate privacy-preserving offline
keyword recognition in real time.

III. BACKGROUND

In the following, we introduce relevant details regarding
the ARM TrustZone TEE implementation and the SANCTU-
ARY security architecture [11] for user-space enclaves.

A. ARM TrustZone

Trusted execution environments (TEEs) combine memory
isolation techniques [39]–[41] and attestation [42] with iso-
lated execution to provide protected execution of security-
critical code. For mobile devices, the predominant computing
platform is ARM, which provides a TEE implementation
called ARM TrustZone [43]. A chip with TrustZone capabili-
ties simultaneously runs two security contexts (or “worlds”) as
virtual processors: a “normal world” and an isolated “secure
world” (cf. Fig. 1). While the normal world executes a
commodity OS (e.g., Android) and ordinary applications, the
secure world forms a TEE for running security-critical code
on a trusted OS.

A major assumption of TrustZone is that an attacker cannot
compromise code running in the secure world. Unfortunately,
the TrustZone design is flawed in this aspect: the isolation
between applications in the secure world is rather weak and
the attack surface is massively increased the more applications
run therein [44]. Thus, the secure world with its privileged
platform access is an attractive target for adversaries.

Fig. 1: ARM TrustZone architecture overview.

B. SANCTUARY
SANCTUARY [11] is a security architecture that circum-

vents the previously explained flaws of ARM TrustZone
without requiring hardware extensions, heavy modifications of
existing code bases, or major changes in the commodity OS. In
particular, it allows to run security-critical code in user-space
enclaves or so-called SANCTUARY Apps (SAs). SAs are exe-
cuted in a normal-world environment that is protected via strict
hardware-enforced two-way isolation from all other system
components to minimize the attack surface. This is achieved
by leveraging TrustZone’s address space controller (TZASC)
to exclusively bind memory to a (temporarily) dedicated CPU
core running an SA.

The life cycle when running an SA is as follows:
1) Setup: Memory for the SA instance is prepared by loading

the SANCTUARY library (SL), which is implemented us-
ing the Zircon microkernel [45], and the SA. The TZASC
is securely configured to isolate this memory region and
the least busy CPU core is shut down. Besides the isolated
memory, additional memory regions are shared with the
commodity OS and the secure world, which allows the SA
to access the secure world and (untrusted) OS services.

2) Boot: The memory is attested and the CPU core is booted
with the SL providing a basic execution environment.

3) Execution: The SA runs as a normal-world user process,
potentially using services provided by the commodity OS
or secure world code.

4) Teardown: The CPU core is shut down, data in the first
level cache (L1) is invalidated, the SA memory is cleaned
and unlocked, and finally the CPU core is handed back to
the commodity OS.

SANCTUARY provides code and data integrity as well as
data confidentiality, is secure against malicious SAs, and has
no negative impact on the user experience due to the wide
availability of multicore chips for mobile devices. Further-
more, side-channel attacks that extract secrets from caches can
be prevented easily since the L1 cache is core exclusive and the
shared second level cache (L2) can be excluded from SANC-
TUARY memory without severe performance impact [11].

SANCTUARY extends TrustZone to provide an arbitrary
number of user-space enclaves. Additionally, SANCTUARY
inherits many useful features from TrustZone like secure boot
or DMA attack protection. Moreover, TrustZone allows to
assign sensitive peripherals exclusively to the secure world.

462 Design, Automation And Test in Europe (DATE 2020)

An SA can use this feature by sending communication requests
to the secure world code. After checking the permission rights
of the SA, the secure world reads from the sensitive data and
directly stores it in the memory region shared with the SA.
Thus, performance overhead is only produced by the additional
world switches between the SA and the secure world.

IV. SECURITY MODEL AND ASSUMPTIONS

In this paper, we consider two parties collaborating to
perform ML tasks on sensitive data provided by one party
while protecting the intellectual property of the other party.

The user U provides input data to be processed. She is con-
cerned about the privacy of the content to be processed (i.e.,
her inputs as well as outputs) and biometric characteristics
potentially used throughout processing. Lastly, the user does
not want to be traceable across multiple sessions.

The vendor V (who might act as the service provider)
provides ML algorithms including corresponding models. The
models constitute the vendor’s intellectual property, hence the
user must not be able to reverse engineer, share, or break the
license check of these models.

Adversary Model. The adversary’s goal is to extract sen-
sitive information, i.e., the intellectual property of the vendor,
the input and output of the user, or data that allows the
adversary to identify or track the user. We assume that the
adversary is in control of the user’s device. The adversary has
full control over the software running in the normal world
of the user’s device, including privileged software like the
commodity OS. We assume that the adversary cannot perform
hardware attacks, e.g., a physical side channel to extract secret
keys. For the enclave we assume that all of SANCTUARY’s
defense mechanisms are in place, including hardware cache
partitioning (for a detailed discussion see [11]).

V. OMG DESIGN

OMG enables privacy-preserving and efficient offline exe-
cution of ML algorithms on untrusted ARM-based systems.
For the sake of simplicity, we explain our solution based on
the speech recognition scenario visualized in Fig. 2.

The vendor V’s private input consists of a ML model. The
user U’s private input consists of voice recordings. In this
example, the ML model is the vendor’s intellectual property
and any information about its architecture or trained weights
must never be disclosed. The only output is the transcription,
which is sent to the user.

OMG works in three phases: (I.) preparation, (II.) initial-
ization, and (III.) operation. In the preparation phase, the
enclave (containing the SL and SA) is loaded and attested
to user U and vendor V. Then, V provides the encrypted ML
model to the enclave. In the initialization phase, V sends the
decryption key for the ML model so that the enclave can
decrypt the model. Finally, in the operation phase, the enclave
is ready to perform offline speech recognition. U sends her
voice recordings to the enclave and receives respective textual
output (which can be further processed into an action, as with
virtual assistants). Next, we detail the individual phases:

Fig. 2: OMG overview. Once the encrypted model is stored
locally, steps in gray are optional until a model update.

I. Preparation Phase. First, the enclave needs to be run
on U’s device. The enclave contains the environment required
to apply the ML model to input data. The enclave code can be
open source, since it does not contain any vendor secrets (e.g.,
it may just consist of a TensorFlow environment), and can
be distributed by the device manufacturer via regular distri-
bution channels. To load the enclave, its code is first copied
to memory and locked to a dedicated SANCTUARY CPU
core so it cannot be changed anymore by the commod-
ity OS (cf. § III-B). Then, the enclave is attested (“mea-
sured”) by SANCTUARY, i.e., a cryptographic hash of the
initial memory content of the enclave is created and stored
securely. If the enclave code is manipulated before the creation
process, the measurement will produce a different result and
the manipulation will be detected.

SANCTUARY then assigns an unique asymmetric key pair
to this enclave, e.g., by using RSA [46] (the public key PK is
shown in Fig. 2). This key pair is derived from the platform
certificate issued by the device vendor, effectively creating
a certificate hierarchy similar to SSL certificates. To assure
to U that the correct enclave code has been loaded, an
attestation report is generated (i.e., the cryptographic hash of
the initial memory content is signed using the secret key SK
corresponding to PK) and sent to U using the secure output
functionality of SANCTUARY 1 . Such an attestation report
is also sent to V using a secure connection (e.g., via TLS)
directly from the enclave 2 .

Note that the attestation report includes the enclave’s public
key PK. V uses PK and a nonce n to derive a symmetric
encryption key KU used only for this respective enclave and
version of the model. V encrypts the ML model using KU

and securely provisions the model to the enclave 3 .
The enclave then stores the model locally in unprotected

storage 4 . As the model can be loaded from untrusted local
storage, after running the preparation phase once, steps 3
and 4 can be omitted until the vendor’s model is updated.

II. Initialization Phase. Thanks to never making the de-
crypted model directly accessible to U, the initialization phase
can be kept simple while providing strong guarantees to V.
V can actively manage the access of U to the model by
either sending or not sending the symmetric key KU . In case

Design, Automation And Test in Europe (DATE 2020) 463

of, e.g., an expired license, V can stop sending KU to the
enclave, making it fail to decrypt the locally stored model.
If V decides that U should be allowed to use the model, V
securely sends KU 5 to the enclave and the enclave decrypts
the model 6 . As the key KU depends on the nonce n, this
also prevents rollback attacks for U’s locally stored model.

III. Operation Phase. In the operation phase, the actual ML
task takes place. U can directly and securely provide voice
recordings to the enclave as SANCTUARY allows secure input
from peripherals like the microphone 7 by utilizing TrustZone
features as described in § III-B. The speech data is then
processed using the model, the output can be presented to
the user or made available to other applications 8 .

Once in the operation phase, the system can be queried
repetitively, thereby avoiding repeated preparation and initial-
ization costs as well as interaction with V. To do this, after a
query is processed, the SANCTUARY core can be reallocated
to the commodity OS while the memory is still locked such
that no device or core is able to access it. When receiving
a new query, a new SANCTUARY core is allocated and the
locked memory is mapped to it for performing the ML task.

VI. EVALUATION

We demonstrate the practicality of our approach by pro-
viding a fully functional prototype implementation of OMG
on an ARM HiKey 960 development board based on Ten-
sorFlow Lite for Microcontrollers [10] and evaluating our
prototype with an offline keyword recognition application.

The ARM HiKey 960 development board is equipped
with an ARMv8 octa-core SoC (4 cores @ 2.4 GHz,
4 cores @ 1.8 GHz) with 3 GB of RAM, which closely
resembles the specifications of today’s mobile devices. We use
such a development board instead of an off-the-shelf device
since most vendors restrict developer access to TrustZone,
which prevents us from setting up SANCTUARY (cf. § III-B).
As our offline keyword recognition application is just a proof
of concept, following [35], we do not focus on best accuracy,
but study whether accuracy and runtime are affected when
providing strong security guarantees.

The models are trained and evaluated on the Speech Com-
mand dataset [47] consisting of 105,000 WAVE audio files of
people saying 30 different words. The recordings were post-
processed to be a single word per file at a fixed 1 s duration.

We follow the TensorFlow Lite example recipe [10]:
Features are computed using a 256 bin fixed point FFT
across 30 ms windows (20 ms shift), averaging 6 neighboring
bins, resulting in 43 values per frame. The 49 frames for
each recording are concatenated, forming a fixed 49 × 43
compressed spectrogram (“fingerprint”) per utterance.

The network architecture resembles [48], but is simplified
to better match embedded requirements. The tiny_conv
architecture feeds the audio fingerprint to a 2D convolutional
layer (8 filters, 8×10, x and y stride of 2), followed by ReLU
activation and a regular layer that maps to the output labels.
During training, dropout is applied after the convolution layer.

TABLE I: Accuracy and runtime results for running the
keyword recognition with and without OMG protection.

Model Accuracy Runtime

TensorFlow Lite “micro” 75 % 379 ms
TensorFlow Lite “micro” (OMG) 75 % 387 ms

We trained a system for a 12-class problem: silence, un-
known, “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop”, “go”. The model is first trained using TensorFlow
and subsequently converted to a TensorFlow Lite and “micro”
model. The resulting compressed model is about 49 kB in size.

We evaluated the “micro” model on a subset of the pub-
lished test set comprising 10 examples for each class, exclud-
ing the two rejection classes “silence” and “unknown”, since
sensitivity for those would typically be tuned for production.

Inference was run on a 2.4 GHz core of the ARM de-
velopment board both with and without OMG protection.
Tab. I shows the overall accuracy for the 10 classes, and the
respective runtimes in milliseconds. The accuracy with and
without OMG protection is 75 %, confirming the correctness
of the setup. The runtimes are very close when executed with
and without OMG protection due to the fact that the hardware-
enforced two-way isolation provided by SANCTUARY adds
no additional overhead during execution. Since the overall
duration of the test set is 100 s, the real-time factor is 0.004x.

The runtime measurements do not include the overhead for
collecting the input data from the on-device microphone. As
described in § V, OMG uses the capabilities from SANC-
TUARY to securely connect to sensors. Thus, only the world
switch from an SA to the secure world to request the sensor
data and the switch back to the SA introduce some overhead.
As presented in [11], the switch from an SA to the secure
world takes around 0.3 ms. Therefore, even in the short-
running speech processing use case presented in this paper,
the performance overhead introduced by reading sensor data
via the secure world is negligible.

Our evaluation of a keyword recognition task using spectral
fingerprints and a basic CNN lays the groundwork to port
larger and recurrent architectures as well as to study training
tasks. Since our implementation has no inherent memory
limitations, it also allows to securely run more complex end-to-
end systems, such as the recently released TensorFlow-based
dictation model by Google [6], making it highly practical.

VII. ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 850990 PSOTI). It was supported by
the DFG (HWSec, project A.1 within the RTG 2050 “Pri-
vacy and Trust for Mobile Users”, and P3, S2, and E4
within CROSSING), by the BMBF and HMWK within CRISP,
and by the Intel Collaborative Research Institute for Collabo-
rative Autonomous & Resilient Systems (ICRI-CARS).

464 Design, Automation And Test in Europe (DATE 2020)

REFERENCES

[1] “Amazon Alexa User Receives 1,700 Audio Recordings of a Stranger
through ‘Human Error’,” https://www.washingtonpost.com/technology/
2018/12/20/amazon-alexa-user-receives-audio-recordings-stranger-thr
ough-human-error/, 2018.

[2] “Amazon Ordered to Give Alexa Evidence in Double Murder
Case,” https://www.independent.co.uk/life-style/gadgets-and-tech/news
/amazon-echo-alexa-evidence-murder-case-a8633551.html, 2018.

[3] “Apple contractors ’regularly hear confidential details’ on Siri record-
ings,” https://www.theguardian.com/technology/2019/jul/26/apple-contr
actors-regularly-hear-confidential-details-on-siri-recordings, 2019.

[4] “Major breach found in biometrics system used by banks, UK police
and defence firms,” https://www.theguardian.com/technology/2019/aug/
14/major-breach-found-in-biometrics-system-used-by-banks-uk-polic
e-and-defence-firms, 2019.

[5] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shang-
guan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S. Chang, K. Rao, and
A. Gruenstein, “Streaming End-to-end Speech Recognition for Mobile
Devices,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019.

[6] J. Schalkwyk, “An All-Neural On-Device Speech Recognizer,” https://
ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html, 2019.

[7] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse Engi-
neering of Neural Network Architectures Through Electromagnetic Side
Channel,” in USENIX Security. USENIX, 2019.

[8] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in IEEE S&P.
IEEE, 2017.

[9] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song, “The Secret
Sharer: Measuring Unintended Neural Network Memorization & Ex-
tracting Secrets,” CoRR, vol. abs/1802.08232, 2018.

[10] “TensorFlow Lite for Microcontrollers,” https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/lite/experimental/micro.

[11] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANCTU-
ARY: ARMing TrustZone with User-space Enclaves,” in NDSS. Internet
Society, 2019.

[12] B. D. Rouhani, H. Chen, and F. Koushanfar, “DeepSigns: An End-to-
End Watermarking Framework for Ownership Protection of Deep Neural
Networks,” in ASPLOS. ACM, 2019.

[13] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “DeepMarks:
A Secure Fingerprinting Framework for Digital Rights Management of
Deep Learning Models,” in International Conference on Multimedia
Retrieval (ICMR). ACM, 2019.

[14] C. Orlandi, A. Piva, and M. Barni, “Oblivious Neural Network Comput-
ing via Homomorphic Encryption,” EURASIP Journal on Information
Security, 2007.

[15] A.-R. Sadeghi and T. Schneider, “Generalized Universal Circuits for
Secure Evaluation of Private Functions with Application to Data Clas-
sification,” in International Conference on Information Security and
Cryptology (ICISC). Springer, 2008.

[16] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider,
“Privacy-Preserving ECG Classification With Branching Programs and
Neural Networks,” Trans. Information Forensics and Security (TIFS),
vol. 6, no. 2, 2011.

[17] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in ICML. JMLR, 2016.

[18] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in IEEE S&P. IEEE, 2017.

[19] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network
Predictions via MiniONN Transformations,” in CCS. ACM, 2017.

[20] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A Hybrid Secure Computation Frame-
work for Machine Learning Applications,” in ASIACCS. ACM, 2018.

[21] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” in
USENIX Security. USENIX, 2018.

[22] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: XNOR-based Oblivious Deep Neural Network
Inference,” in USENIX Security. USENIX, 2019.

[23] T. van Elsloo, G. Patrini, and H. Ivey-Law, “SEALion: A Frame-
work for Neural Network Inference on Encrypted Data,” CoRR, vol.
abs/1904.12840, 2019.

[24] M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, I. Livingstone,
J. Patriquin, and G. Uhma, “Private Machine Learning in TensorFlow
using Secure Computation,” CoRR, vol. abs/1810.08130, 2018.

[25] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph-
HE2: A High-Throughput Framework for Neural Network Inference
on Encrypted Data,” in Workshop on Encrypted Computing & Applied
Homomorphic Cryptography (WAHC), 2019, to appear.

[26] M. A. Pathak, B. Raj, S. Rane, and P. Smaragdis, “Privacy-Preserving
Speech Processing: Cryptographic and String-Matching Frameworks
Show Promise,” IEEE Signal Processing Magazine, vol. 30, no. 2, 2013.

[27] F. Tramèr and D. Boneh, “Slalom: Fast, Verifiable and Private Execution
of Neural Networks in Trusted Hardware,” in International Conference
on Learning Representations (ICLR). OpenReview.net, 2019.

[28] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learning
on Trusted Processors,” in USENIX Security. USENIX, 2016.

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in IEEE S&P. IEEE, 2015.

[30] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems,” in IEEE S&P.
IEEE, 2015.

[31] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chi-
ron: Privacy-preserving Machine Learning as a Service,” CoRR, vol.
abs/1803.05961, 2018.

[32] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data,” Transactions on
Computer Systems (TOCS), vol. 35, no. 4, 2018.

[33] N. Hynes, R. Cheng, and D. Song, “Efficient Deep Learning on Multi-
Source Private Data,” CoRR, vol. abs/1807.06689, 2018.

[34] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. Thu-
raisingham, “Securing Data Analytics on SGX with Randomization,” in
ESORICS. Springer, 2017.

[35] F. Brasser, T. Frassetto, K. Riedhammer, A.-R. Sadeghi, T. Schneider,
and C. Weinert, “VoiceGuard: Secure and Private Speech Processing,”
in INTERSPEECH. ISCA, 2018.

[36] S. Ahmed, A. R. Chowdhury, K. Fawaz, and P. Ramanathan, “Prεεch:
A System for Privacy-Preserving Speech Transcription,” CoRR, vol.
abs/1909.04198, 2019.

[37] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes,
and M. Fritz, “MLCapsule: Guarded Offline Deployment of Machine
Learning as a Service,” CoRR, vol. abs/1808.00590, 2018.

[38] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology
ePrint Archive, vol. 2016/086, 2016.

[39] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “IMIX: In-
Process Memory Isolation EXtension,” in USENIX Security. USENIX,
2018.

[40] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-
R. Sadeghi, “TIMBER-V: Tag-Isolated Memory Bringing Fine-grained
Enclaves to RISC-V,” in NDSS. Internet Society, 2019.

[41] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical Code Randomization
Resilient to Memory Disclosure,” in IEEE S&P. IEEE, 2015.

[42] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB Reduction and Attestation,” in IEEE S&P.
IEEE, 2010.

[43] “ARM Security Technology - Building a Secure System using
TrustZone Technology,” http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone security
whitepaper.pdf, 2009.

[44] “Trust Issues: Exploiting TrustZone TEEs,” https://googleprojectzero.bl
ogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html, 2017.

[45] “Zircon Microkernel,” https://fuchsia.googlesource.com/zircon.
[46] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, 1978.

[47] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” CoRR, vol. abs/1804.03209, 2018.

[48] T. Sainath and C. Parada, “Convolutional Neural Networks for Small-
Footprint Keyword Spotting,” in INTERSPEECH. ISCA, 2015.

Design, Automation And Test in Europe (DATE 2020) 465

E
DARWIN: Survival of the Fittest Fuzzing Mutators
(NDSS’23)

[97] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-Reza
Sadeghi. DARWIN: Survival of the Fittest Fuzzing Mutators. In 30th Annual Network and
Distributed System Security Symposium, NDSS 2023, San Diego, California, USA, February 24-27,
2023, 2023. CORE Rank A*. Chapter 5.

139

DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig∗, Domagoj Jakobovic‡, Stjepan Picek§, Emmanuel Stapf∗ and Ahmad-Reza Sadeghi†
∗Technical University of Darmstadt, Germany, {patrick.jauernig, emmanuel.stapf}@sanctuary.dev

†Technical University of Darmstadt, Germany, ahmad.sadeghi@trust.tu-darmstadt.de
‡University of Zagreb, Croatia, domagoj.jakobovic@fer.hr

§Radboud University and TU Delft, The Netherlands, picek.stjepan@gmail.com

Abstract—Fuzzing is an automated software testing technique
broadly adopted by the industry. A popular variant is mutation-
based fuzzing, which discovers a large number of bugs in
practice. While the research community has studied mutation-
based fuzzing for years now, the algorithms’ interactions within
the fuzzer are highly complex and can, together with the
randomness in every instance of a fuzzer, lead to unpredictable
effects. Most efforts to improve this fragile interaction focused
on optimizing seed scheduling. However, real-world results like
Google’s FuzzBench highlight that these approaches do not
consistently show improvements in practice. Another approach
to improve the fuzzing process algorithmically is optimizing
mutation scheduling. Unfortunately, existing mutation scheduling
approaches also failed to convince because of missing real-world
improvements or too many user-controlled parameters whose
configuration requires expert knowledge about the target pro-
gram. This leaves the challenging problem of cleverly processing
test cases and achieving a measurable improvement unsolved.
We present DARWIN, a novel mutation scheduler and the first
to show fuzzing improvements in a realistic scenario without the
need to introduce additional user-configurable parameters, open-
ing this approach to the broad fuzzing community. DARWIN
uses an Evolution Strategy to systematically optimize and adapt
the probability distribution of the mutation operators during
fuzzing. We implemented a prototype based on the popular
general-purpose fuzzer AFL. DARWIN significantly outperforms
the state-of-the-art mutation scheduler and the AFL baseline in
our own coverage experiment, in FuzzBench, and by finding 15
out of 21 bugs the fastest in the MAGMA benchmark. Finally,
DARWIN found 20 unique bugs (including one novel bug), 66%
more than AFL, in widely-used real-world applications.

I. INTRODUCTION

Vulnerabilities caused by programming errors are still a
major threat to today’s programs [47]. An important class
of programming errors is memory corruption vulnerabilities,
where unexpected, malformed inputs can lead to uncontrolled
behavior in the program, which can often be abused by
attackers. A modern, cost-efficient strategy to uncover these
programming errors is automated software testing using fuzz
testing (commonly known as fuzzing). Fuzzing automatically
generates inputs from testcases and feeds them to the program
under test while monitoring the program. If a programming er-
ror has been reached, the fuzzer notices that the program hangs
or crashes. Optionally, the observed control-flow changes can

serve as feedback for the next iteration, i.e., whether a new
path in the control flow (known as coverage) has been taken
due to the generated input. In recent years, fuzzers emerged as
an important topic in academic as well as industrial research
and are nowadays widely used for finding bugs in commercial
software [41], [28]. Projects like Google OSSFuzz [28] helped
to significantly increase the adoption rate by offering free com-
putation for fuzzing while still allowing security researchers,
who provide the fuzzers, to keep the bug bounty for discovered
vulnerabilities.

While fuzzers are responsible for discovering tremendous
amounts of bugs, even in operating system kernels [62], they
are still extensively researched, e.g., in the areas of making
targets available to fuzz testing [69], [20], improving fuzzers
using new algorithms [7], [11], [38], [39], [37], [51], and
leveraging new hardware features for performance or coverage
improvements [56], [13].

This paper focuses on the subject of algorithmic improve-
ments for mutational fuzzers, which leverage an existing set
of testcases (referred to as corpus) to constantly generate new
variants of these testcases by applying mutation operators
inspired by genetic mutations. Most notably, a significant
number of works focused on the effects of algorithmically
sampling a subset of optimal seeds from the corpus. The goals
of these works range from removing redundancy to creating
a minimal coverage-preserving corpus with small files [67],
[48], efficiently reaching specific locations in the control-flow
graph [7], [11], [70], or improving coverage in general [44].
While these approaches are designed to select from a large
number of possible testcases, in reality, testcases suitable for
fuzzing are often rare [29].

Aside from seed-selection algorithms, other approaches
have been proposed [37], [38], [51] that approximate which
byte positions in the testcase give the best results when being
mutated, but not which mutation operators to apply. Yet, this
problem is highly challenging, as it is required to be shown
whether 1) mutation selection is actually target-dependent, 2)
the selection distribution is static or dynamic, 3) introducing an
optimization algorithm reduces execution speed s.t. its better
mutation selection is outweighed.

The first approach to optimize the actual selection of muta-
tions (mutation scheduling) has been MOPT [39]. MOPT pro-
poses a variant of the Particle Swarm Optimization algorithm
(PSO) to learn a globally optimal mutation probability distri-
bution. However, MOPT’s PSO algorithm has both local and
global best probability distributions, making finding the best
solution, and therefore the algorithm itself, complex and more
expensive to use during fuzzing. Similar to other algorithmic

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23159
www.ndss-symposium.org

improvements to fuzzing, finding a practical trade-off between
complexity and algorithmic improvements is challenging. All
additional algorithms have direct implications on execution
speed, and hence, reduce coverage over time. Further, MOPT
introduces various user-configurable parameters that steer the
optimization process directly, so the user needs to solve another
complex problem instead to avoid non-optimal scheduling.
For a reasonable choice of parameters, the user either needs
expert knowledge of the target application or a preliminary
fuzzing campaign. Finally, MOPT fails to outperform AFL,
which is built on, in the popular FuzzBench fuzzer benchmark
by Google [27]. This makes designing and building a practical
mutation scheduler a challenging open problem.

This work. This paper focuses on one aspect of
the fuzzing process: finding (approx.) optimal mutation
scheduling strategies to improve fuzzing algorithmically.
Here, the challenging goal is to infer which mutation operator
is the optimal choice for the next fuzzing iteration. We address
this problem with DARWIN, a novel mutation-scheduling
algorithm to improve the general performance of mutational
fuzzers. DARWIN leverages an Evolution Strategy (ES), in a
setting similar to reinforcement learning, to approximate ideal
probability distribution for the mutation operator selection
to avoid wasting fuzzing iterations on suboptimal mutators.
The resulting probability distribution is not statically set
but learned during the fuzzing process and dynamically
adapted to the target program. DARWIN outperforms related
work significantly, not only in coverage but also in the
time to find bugs, without the user having to adjust any
target-specific parameters, which allows non-expert users to
leverage mutation scheduling.

Challenges. Although we focus only on a specific phase
of the fuzzing process, namely the mutation selection in the
havoc phase, the problem of finding an optimal probability
distribution for mutation selection is highly challenging:
numerous mutation operators can be used, and their efficiency
varies depending on the target program, the current input, and
the state inherently implied by the current input. Furthermore,
the efficiency can vary depending on the non-deterministic
nature of each fuzzing run and the interplay between fuzzing
stages. Therefore, it is impossible to examine all possible
options exhaustively in the general case.

Contributions. Our DARWIN mutation scheduler and its
implementation based on AFL tackle all these challenges. To
summarize, our main contributions include:

• We present a novel mutation scheduling approach, DAR-
WIN; the first mutation scheduler that leverages a variant
of Evolution Strategy to optimize the probability distri-
bution of mutation operators. DARWIN dramatically im-
proves the efficiency of mutation selection while keeping
the execution speed constant. DARWIN can be applied
to any feedback-guided mutation-based fuzzer.

• We implemented a prototype of DARWIN by extend-
ing AFL with our mutation scheduling algorithm. By
modifying only three code lines in AFL to integrate
our DARWIN mutation scheduler, we show that DAR-
WIN’s design is easily adoptable by existing fuzzers. We
further highlight this by also integrating DARWIN in

EcoFuzz[67]. What is more, we do not introduce any
additional user-configurable parameters to avoid creating
adoption barriers.

• We thoroughly evaluate DARWIN against AFL as a base-
line and the most recent related work in this area, MOPT.
Our prototype significantly outperforms both fuzzers,
MOPT and AFL, in terms of code coverage reached in
the well-fuzzed GNU binutils suite. Next, DARWIN is
the first mutation scheduler to outperform its base fuzzer
in Google’s Fuzzbench. Further, we evaluate DARWIN
on MAGMA, where we show that DARWIN triggers 15
out of the 21 bugs found the fastest. Finally, DARWIN
finds 20 unique bugs (including one previously unreported
bug), 66% more than AFL, across various real-world
targets.

• We thoroughly analyze the root causes for DARWIN’s
efficiency by first comparing DARWIN to a static pre-
optimized mutation probability distribution, and further,
studying the mutation probability distribution over time,
and introducing a metric to measure a fuzzer’s effective-
ness in scheduling mutations. We show that DARWIN
needs fewer mutations than AFL to reach a coverage point
while achieving a higher execution speed than the state-
of-the-art MOPT fuzzer.

To foster future research in this area, we open-source our
fuzzer at https://github.com/TUDA-SSL/DARWIN.

II. BACKGROUND

This section presents the necessary background information
to understand the general concept of fuzzers, the workflow of
mutation-based fuzzers, and metaheuristic optimization.

A. Fuzzing

On a high level, fuzzers can be divided into mutational, i.e.,
mutating testcases, and generational, i.e., deriving structured
inputs, fuzzers. Mutational fuzzing requires a set (corpus) of
program inputs (seeds), which can, e.g., be obtained from
testcases or real inputs. These seeds are then mutated using
operations known from genetics, like inserting random errors
(bit flips), changing values to corner cases, or combining two
inputs to create a new input. As this way of input generation
does not follow any constraints on the input, the generated
inputs are more unlikely to pass, e.g., initial parser checks or
checksums [63]. The process of mutation can be influenced in
two ways: 1) the location in the input that gets mutated and 2)
the mutation that is applied, whereby the selection can either
be made randomly or guided by a heuristic. Such a heuristic
can be, e.g., success measured in an increase of coverage or a
certain state that should be reached (where the target has been
tainted to find a clear path to that state). For example, the
popular AFL fuzzer uses the coverage metric of basic-block
transitions as a heuristic [29].

B. Fuzzing Loop of Mutational Fuzzers

For mutational fuzzers, the so-called fuzzing loop, which
is the place in the code where the loaded seeds are mutated
before being used as inputs for the program under test, usually
can be divided into three stages, the deterministic, havoc, and
splicing stage [56], [7], [11], [39], [4]. While some aspects are

2

AFL-specific, most concepts presented are implemented in a
similar way for other fuzzers.

Deterministic stage. In the first stage, the deterministic
stage, a small set of mutations is applied to seeds in a prede-
fined order to create inputs for the target program, whereby the
seeds are drawn from a queue of initial seeds provided by the
user. AFL uses code coverage as a heuristic to decide whether
a mutated seed has been successful. If a seed increases the
code coverage, it is stored in the fuzzing queue. By reusing
successful seeds in the later iterations, the overall fuzzing
performance is improved. Measuring the code coverage is
achieved by instrumenting the binary of the program under
test such that the program is intercepted on every branch hit.
When an input leads to a crash of the program under test, the
user is notified since this indicates a bug in the program. The
first stage of the fuzzing loop with its deterministic mutation
scheme is slow and tends to contribute less to the overall
coverage [39]. Thus, AFL allows disabling the deterministic
stage entirely, which is especially beneficial for short fuzzing
runs [39] or to reduce noise in performance measurements of
the following stages.

Havoc stage. In the second stage of the fuzzing loop,
the non-deterministic havoc stage, randomly chosen mutations
are selected from a list of mutational operators [57], [52],
[29], [12]. In Table X, Appendix E, we list the mutations
used in AFL’s havoc stage. The selected mutations are applied
to the inputs received from the deterministic stage or to the
mutated seeds from the fuzzing queue. When the generated
program inputs achieve new coverage, they are again saved
in the fuzzing queue. The fuzzing loop then returns to the
deterministic stage and selects the next element from the
fuzzing queue for the next iteration. The havoc stage is the
most generic stage and widely adopted by AFL-based and
other mutational fuzzers [52], [12], [29], [21], which is also
why our novel mutation scheduler DARWIN targets the havoc
stage.

Splicing stage. The last stage of the fuzzing loop, the
splicing stage, is only activated when none of the inputs in
the fuzzing queue led to new coverage in the havoc stage.
In the splicing stage, a crossover mutation of two inputs is
performed, which is then fed back to the havoc stage, which
again applies a random mutation on the input before testing it
on the target program.

C. Metaheuristics

While in the previous section, we mentioned several ap-
proaches to fuzzing, we did not discuss how such approaches
can actually find good solutions. This is because there exist no
specialized algorithms developed for that particular problem.
Instead, we need to rely on more general solving procedures.
Metaheuristics represent an intuitive choice since they encom-
pass problem-independent techniques used in a broad range
of applications. For example, we can consider the problem of
finding a suitable mutation schedule in the havoc stage as an
optimization problem. Since there is no explicit cost function
for this optimization problem, it cannot readily be paired with
classical optimization algorithms requiring gradient informa-
tion. In that case, metaheuristic algorithms, which do not pose
any requirements on the optimization problem, have proven

to be the method of choice in many engineering applications.
Metaheuristic techniques are commonly used in domains like
the automotive industry [22], medicine [1], scheduling [9],
adversarial examples [59], and implementation attacks [65].

Metaheuristics, in their original definition, represent solu-
tion finding methods that orchestrate an interaction between
local improvement and higher-level strategies to create a
process capable of escaping from local optima and performing
a robust search in a solution space [26]. A common division of
metaheuristic optimization algorithms is into single solution-
based and population-based metaheuristics [60]. Population-
based metaheuristics work on a population of solutions (e.g.,
Evolutionary Algorithms (EA) and swarm algorithms like Par-
ticle Swarm Optimization (PSO)). A population in this context
denotes a set of individuals used during an optimization pro-
cess, whereby an individual is a data structure that corresponds
to an element in the search space (a candidate solution). In
contrast, single solution-based metaheuristics manipulate and
transform a single solution (or a smaller number of solutions)
during the search.

Evolutionary algorithms occupy a prominent place among
metaheuristic algorithms, as they have been successfully ap-
plied to a large number of difficult optimization problems [24],
[54]. We depict pseudocode for the generic evolutionary al-
gorithm in Algorithm 3, Appendix A. In each iteration, the
algorithm applies a selection mechanism that emulates natural
selection. Based on their respective quality, usually denoted
as fitness, better individuals survive, while worse ones are
eliminated. The population then undergoes variation, creating
new genetic material as new individuals in the population.
Finally, all the individuals are reevaluated, and the process
is repeated until a specific termination criterion is met. Since
no knowledge is presumed about the nature of the solutions
in the current population, the termination is usually based on
the number of iterations, allotted time, or finding a solution of
acceptable quality.

Metaheuristic optimization algorithms balance diversifica-
tion and intensification properties; diversification enables the
discovery of promising areas in the search space and escaping
from local optima. Intensification aims to exploit a promising
area by concentrating on the current best solution and finding
better neighboring solutions. The interplay of these properties
determines the effectiveness of metaheuristic methods when
applied to a specific optimization problem.

III. CHALLENGES

Designing a mutation scheduling algorithm comes with a
number of challenges, as mutation scheduling is a fragile part
in the fuzzing process. These challenges are:

C.1: Optimal Mutation Selection. Finding an optimal prob-
ability distribution for mutation selection is challenging, as
the optimal distribution might change per target. Further, the
probability distribution might depend on the state implied by
a part of the input (that is not mutated). Hence, a mutation
scheduler needs to show that this mutation selection indeed
needs to adapt dynamically and, if so, show that iterative
adaption outperforms random selection.
C.2: Integrating an Optimization Algorithm. Properly se-
lecting a candidate algorithm for mutation scheduling is itself

3

Bitflip

…

…

Overwrite Bytes

Instrumented
Target

Havoc Stage

Feedback

New Probability Distribution

1 2

3

8%

Se
le

ct
 M

ut
at

io
n

1%

0%

9%

DARWIN

Mutation Scheduler

4

Test Case

Fig. 1. High-level overview showing how DARWIN iteratively optimizes the probability distribution for mutation selection and how the selected mutations
are applied to the testcases.

highly challenging. However, integrating this algorithm into
the existing fuzzing process requires a 1) carefully designed
representation not only of the problem but also the solution to
avoid spending too much computation on encoding, 2) finding
a parameter fit for the respective algorithm that fine-tunes
exploration versus intensification.
C.3: Easy Adoption and Reproducibility. A complex ap-
proach with a large number of user-tweakable parameters
might achieve outstanding results. However, it will still not
be used in practice due to the difficulties in integrating the
approach into a fuzzer or because users fail to find good pa-
rameter values, and hence, they cannot achieve results similar
to the ones reported by the authors.
C.4: Performance Trade-off. Achieving an optimal trade-
off for the mutation selection scenario, which is our goal,
is complex. For instance, fuzzing approaches typically tune
the trade-off between performance and cleverness in seed
selection. Better seeds reach basic blocks guarded by complex
constraints, but optimizing seed selection with algorithms takes
additional time, and hence, decreases execution speed.

We designed DARWIN with these challenges in mind.
Next, we explain how we addressed these challenges through-
out the design, implementation, and evaluation of DARWIN.

IV. DARWIN DESIGN

DARWIN is a novel mutation scheduling algorithm
using an Evolution Strategy (ES) to find an optimal mutation
selection probability distribution to be applied during the
havoc stage. DARWIN is not only determining a static
probability distribution but keeps on adapting the distribution
throughout the fuzzing run based on coverage information.
Our approach, as depicted in Figure 1, comprises a well-
defined optimization module that does not need to expose
any parameters to the user of the fuzzer. In detail, a fuzzer
featuring DARWIN performs the following steps in the havoc
stage (each step is marked in Figure 1):

1) At the beginning of the havoc stage, the fuzzer selects
an input from the queue and randomly selects the next
mutation to apply. Initially, the probability distribution for
mutation selection is uniform.

2) After applying a mutation, the fuzzer decides whether it
should keep mutating this input or if the input should be
tested on the instrumented application.

3) After running the instrumented application with the se-
lected input, feedback is reported to assign a success score
to the test input and the DARWIN Mutation Scheduler.
The mutation scheduler learns based on the reported
feedback and optimizes the probability distribution using
DARWIN’s Evolution Strategy.

4) Finally, the updated probability distribution is applied
for the next iteration.

In the following, we explain the optimization process of
DARWIN’s Mutation Scheduler in more detail.

A. Metaheuristics and Mutation Scheduling

In the context of the complete fuzzing pipeline, we con-
centrate on improving the mutation scheduler, as illustrated in
Figure 1. The problem of finding a suitable mutation schedule
is considered here as an optimization problem, where the
candidate solution is a vector of relative mutation operator
probabilities. In a classical optimization scenario, a candidate
solution is refined through a series of iterations. In each
iteration, the candidate is evaluated, which is usually the
most time-consuming part of the optimization. Only after a
number of iterations, when a candidate of acceptable quality is
obtained, the solution is applied to the process being optimized.

In the case of fuzzing, however, the optimization is per-
formed concurrently with the process being optimized since
each candidate solution is used as it is being evaluated, and
the optimization is performed for each target independently.
Because of this, the optimization algorithm should be able to
provide a fast convergence, which means as large a perfor-
mance improvement with as few evaluations as possible.

4

8%

1%

0%

9%

Parent

5% 1% 0% 9%

8% 1% 2% 9%

8% 1% 5% 9%

8% 3% 0% 9%

Children
P
e
rt
u
rb
a
ti
o
n

Fitness

determines

next parent

Fig. 2. Example of an ES instantiation with one parent and four children
(µ = 1, λ = 4). Based on the fitness function, the parent for the next iteration
is determined.

As mentioned in Section II-C, metaheuristic techniques
balance between diversification and intensification, with con-
flicting goals to evade local optima and, at the same time,
enable convergence to better quality solutions. Population-
based metaheuristics, such as Genetic Algorithm (GA) [43] or
Particle Swarm Optimization (PSO) [55] are generally focused
on diversification and can locate an optimum with a greater
probability. However, as mentioned above, the optimum in
the fuzzing process is not fixed, and the algorithm should
adapt swiftly to the current target. Since they need to eval-
uate a population of candidate solutions in every step, these
approaches usually require a large number of evaluations, and
consequently, computation time, to reach a solution of accept-
able quality. Those methods may also include computationally
intense domain-dependent operators acting on multiple solu-
tions, such as the crossover operator in GAs, which is a process
where a new individual is created from two or more parent
solutions [16]. Since, in our case, fast convergence and ease
of use are the primary goals, population-based metaheuristics
do not present an appropriate choice.

Instead of population-based methods, algorithms that op-
erate on a single solution (or a small set of solutions) should
prove to be a better option. It is expected that single solution
algorithms will obtain better performance; since they primarily
focus on intensification, convergence is usually faster than in
the population-based methods [45].

In optimizing fuzzing mutation probabilities, where each
evaluation may take a considerable amount of time, this behav-
ior translates into a far smaller number of evaluations needed
to reach an acceptable solution quality. At the same time,
such algorithms still provide a means to escape local optima
with solution perturbations and random restarts. Examples of
these algorithms include Simulated Annealing (SA) [36], Tabu
Search (TS) [25], and Evolution Strategy (ES) [6].

B. Evolution Strategy as used in DARWIN

When considering domain-independent optimization meth-
ods, as is the case here, Evolution Strategy has proven to
be an efficient and versatile method found in a multitude
of applications [17], [23]. As such, we opted to use ES as
the method of choice, both for its simplicity and proven
track record as a multi-purpose optimization algorithm [6].

Additionally, ES is well-known to be robust [5], making it an
ideal choice when dealing with difficult optimization problems.

The intensification process in metaheuristics is commonly
performed with the use of a mutation operator. Mutation
operators use only one parent and create one child by applying
a randomized change to its genotype (i.e., the encoding of
an object) [16]. However, since we already use the term
“mutation” for changes in seeds performed by the fuzzer, we
will slightly bend the terminology and denote the mutation
operator used in ES as the perturbation operator. We depict
the process in Figure 2.

In its most common form, ES operates on a single so-
lution µ, called the parent. In each iteration, a randomized
perturbation operator is applied on the parent solution pro-
ducing a number of different modified solutions, commonly
called children. The number of children solutions is denoted
with λ, which is a parameter of the algorithm. After every
child solution is evaluated, the best among all the children
solutions and the current parent is chosen as the parent in the
next iteration. This allows DARWIN to adjust the mutation
schedule dynamically, addressing Challenge C.1. This type of
Evolution Strategy is denoted as (µ+λ)−ES. If the parent is
disregarded, such selection method is denoted as (µ, λ)−ES.
The process is repeated until a designated termination criterion
is met, commonly based on elapsed time or a number of
evaluations. We provide the ES pseudocode in Algorithm 1.

Algorithm 1 Evolution Strategy
1: initialize the parent solution
2: repeat
3: create λ child solutions using perturbation on the parent
4: select the best solution
5: set the best solution as the parent
6: until TerminationCriterion

When using a single starting parent solution, the algorithm
will mainly concentrate on its relative vicinity in the search
space. While it is possible for the perturbation operator to move
the search to a more distant area, this occurs with a lower
probability. To allow the fuzzer to discover more promising
areas in the search space (e.g., more efficient mutation oper-
ator combinations), DARWIN uses an extended form of the
algorithm that starts not with one but several different starting
parent solutions. In this case, the search is conducted in paral-
lel, independently for each parent, addressing Challenge C.4.
The number of parent solutions in this algorithm variant is
denoted with µ. The modified algorithm can be represented
with the following pseudocode:

Algorithm 2 Multi-parent Evolution Strategy
1: initialize µ parent solutions
2: repeat
3: for all parent solutions do
4: create λ child solutions using perturbation on the parent
5: select the best solution
6: set the best solution as the parent
7: end for
8: until TerminationCriterion

Using algorithm parameters µ and λ, we can balance
between the diversification and intensification segments of the

5

search. In our experiments, we have used the value of 4 for
the parameter λ, which is a common choice in diverse ES
applications, see, e.g., [33], [35], [42]. With this parameter
value, the parent for the next iteration is selected among five
solutions in total (the parent and four child solutions). If
multiple parents are used, we set the parameter µ to the value
of 5. Note that we experimented with several values for µ, and
the main difference from the performance perspective is in the
speed of convergence, realizing in slightly worse coverage in
our preliminary experiments (cf. Section VI-B).

Let us consider more why taking a small λ size (but larger
than 1) makes sense. First, if we consider an extreme case
where λ equals 1, we effectively reach a local search algorithm.
While such an algorithm could work for this problem, it would
face issues with a high probability of getting stuck in local
optima. The second extreme for λ would represent a large
population size (e.g., order of magnitude 100). Then, we face
two issues:

• Due to the large population size, we must conduct more
evaluations 1, which will be a problem as fitness evalua-
tion is computationally expensive.

• When having a large population size, it is also common to
use the crossover operator to foster search space exploita-
tion, which increases the computational complexity of the
algorithm but also makes tuning more difficult. Indeed, by
adding crossover, we must tune the algorithm for different
crossover operators and the probability of the crossover
action.

Finally, unlike in a classical optimization scenario, here, the
algorithm’s efficiency is not measured based just on the final,
best solution the algorithm has found. Since the optimization
is performed concurrently with the fuzzing, every candidate
solution that appears during the algorithm run contributes to
the overall fuzzing efficiency. For that reason, and because
the optimization is performed per-target basis, it is important
to provide a fast convergence, which can be acquired with a
smaller population size.

C. Solution Encoding and Perturbation

The ES algorithm can be used with any form of solution
encoding, as long as a suitable perturbation operator (or opera-
tors) is defined. In the case of optimizing the fuzzing mutation
schedule, we used two solution encodings and corresponding
perturbation operators.

First, we investigated an encoding that uses a real-valued
vector to represent relative probabilities of mutation operators;
this representation is equal to the one used in MOPT [39].
The size of the vector is equal to the number of mutation
operators since each element of the vector represents the
relative probability that a certain mutation operator (given in
Table X) will be selected. In each invocation, the values in
the vector are used to determine the next mutation operator.
Initial values of vector elements are generated uniformly at
random in the range [0, 1]. As the perturbation operator, we use
a simple Gaussian perturbation with zero mean and standard

1Alternatively, we would need to reach good solutions in only a few
generations, which is highly unlikely for a problem of such difficulty and
the lack of structure in the genotype.

deviation of 0.25; the obtained random value is added to a
single randomly selected element in the vector (Figure 8(a),
Appendix A). The value of 0.25 is selected after tuning,
where we followed common reasoning for ES: the operator
needs to be able to do significant changes (thus, we do not
select a very small standard deviation), but it also should not
behave like a random search (which would happen with a large
standard deviation value). The values are always kept greater
than zero but are allowed to exceed 1 (to allow the algorithm
to emphasize an operator if needed).

The second encoding uses a binary vector (with values
assuming only 0 and 1), where each element in the vec-
tor corresponds to a mutation operator. This simplifies the
mutation operator choice so that only a subset of operators,
whose corresponding values in the vector are 1, are used
for mutation selection; among the elements of this subset, a
random mutation is selected by the fuzzer. As the perturbation
operator, a simple one-bit flip is used; each time a solution
needs to be modified, a randomly selected bit in the vector is
inverted (Figure 8(b), Appendix A).

We decided on the binary encoding for the solution encod-
ing since a preliminary evaluation showed a geometric mean
coverage increase of around 3%. What is more, with the binary
encoding, we do not need to tune the standard deviation value
for the perturbation operator (as we needed for the real-valued
representation). This design decision addresses Challenge C.2.

D. Objective Function

The algorithms described above can be used with any
conceivable performance measure related to the process being
optimized. In this case, the primary criterion used for the
evaluation of individual solutions is the number of unique
paths encountered in the instrumented application. Unique
paths encode all different ways to reach every possible basic
block. While keeping track of all of them is tough (and leads
to state explosion), counting new unique paths per iteration
is simple and efficient. Hence, we decided to leverage the
number of new unique paths as a feedback signal, especially
since most fuzzers already provide this number. The solution
with the highest number of paths will get selected as the next
parent. Thus, our goal is the maximization of the following
expression, which is in the evolutionary computation field
commonly denoted as the fitness function:

fitness = # Unique Paths (1)

This performance measure follows previous work [39], but
the proposed optimization method can be used to optimize a
different criterion if necessary. An alternative approach to a
single criterion would be to use a multi-objective optimization
algorithm, but this choice is justified only when conflicting
objectives need to be optimized concurrently, which is not the
case here. Furthermore, using simpler fitness functions has the
advantage of better interpretability, i.e., it is clear why a certain
solution is better than some other one.

By combining our simple algorithm design (small popula-
tion, no need for the user to tweak the parameters), support
for various solution’s encodings, and fitness function, we
address Challenge C.3. We emphasize that Evolution Strategy

6

is commonly used in the (µ+λ) form, where standard values
are 1 (note that here we talk about the number of parents in a
single search, and not the total number of parents due to the
parallel execution of ES) and 4, see, e.g., [6], [31]. Thus, while
one could experiment with other values and then consider µ
and λ as parameters that need to be tuned, our investigation
shows this is unnecessary. Consequently, we do not consider
µ and λ as user parameters, nor would the change of those
values result in significant performance differences.

V. IMPLEMENTATION

We implemented a prototype of DARWIN in C as an
extension to AFL 2.54b [29], a popular generic fuzzer that is
leveraged by many research works as a foundation [39], [7],
[4], [56]. DARWIN consists of about 320 lines of code. AFL
is easily extendable and does not contain other algorithmic
improvements itself, unlike projects like AFL++ [21] that try
to incorporate all state-of-the-art improvements for best results
in practice. For our DARWIN mutation scheduling algorithm,
we added an interface to AFL to report feedback in the form of
newly discovered paths from the instrumented application to
the mutation scheduler. The interface exposes three functions:
initialization, selecting a mutation, and reporting feedback
to DARWIN. This enables a modular design for different
mutation scheduling algorithms.

To derive the random numbers needed for our Evolution
Strategy, we leverage the RomuDuoJr random number gen-
erator (RNG) [46] to balance out the higher reliance on the
random number generation of DARWIN’s ES algorithm. In
Appendix B, we show that the speed difference is negligible
compared to the standard RNG.

VI. EVALUATION

We analyze DARWIN regarding a variety of aspects. First,
we evaluate DARWIN’s general ability to explore programs as
an approximation for the fuzzer’s efficiency in Section VI-A.
Second, we evaluate the fuzzers in terms of execution speed
in Section VI-C to ensure our efficiency improvement can be
attributed to the novel mutation scheduling algorithm and that
the algorithm does not have grave consequences on execution
speed. Finally, we evaluate DARWIN’s ability to find crashes
using the LAVA-M [14] (Appendix D) and MAGMA [32]
(Section VI-D) benchmarks, to show that the aforementioned
aspects lead to finding more bugs faster.

Setup. Our evaluation setup across all experiments consists
of four workstations with an AMD EPYC 7402P 24-Core
processor and 256GB of RAM (to perform the evaluation in
parallel while keeping memory accesses independent). The
target applications, fuzzers, and seeds are all stored on a
ramdisk to reduce the influence of disk I/O. Each evaluation
run is executed sequentially on a dedicated machine to reduce
the influence of, e.g., memory bandwidth.

We evaluate DARWIN against the most-related work,
MOPT, and AFL 2.54b as a baseline (as both DARWIN and
MOPT extend AFL). We ported MOPT to AFL 2.54b (by
diffing AFL 2.52b and AFL 2.54b) to ensure that MOPT got
the same bug fixes that DARWIN and AFL have.

TABLE I. INVOCATION OF BENCHMARK TOOLS AND FILE FORMATS
USED AS SEEDS.

Benchmark Invocation Format
bsdtar -xf @@ /dev/null TAR
cxxfilt -t ELF
djpeg @@ JPEG
jhead @@ JPEG
objcopy –dump-section text=/dev/null @@ /dev/null ELF
objdump -d @@ ELF
readelf -a @@ ELF
size @@ ELF
strip -o /dev/null @@ ELF
tcpdump -nr @@ PCAP

Evaluation of fuzzers is, as with most research topics
in security, not standardized, leading to fluctuating results
reported in papers and varying results in practice. This is
mainly due to two aspects: 1) evaluating related work with
non-optimal parameters and 2) missing statistical analysis of
the results. For the former, we disable the deterministic stage
of DARWIN and AFL for all experiments completely while
using the corresponding Pacemaker mode (with the parameter
“-L 0”) to achieve the same effect and focus on the havoc stage
for MOPT. Note that this is crucial for a fair comparison [66].
For the latter, we integrated the approaches proposed by Klees
et al. [34] to the best of our knowledge and investigated
broadly used fuzzing benchmarks to reason about DARWIN’s
performance.

A. Evaluating Coverage

In the first step, we use code coverage as a proxy metric for
a fuzzer’s success. While code coverage is a well-established
quality measure in related work [39], [67], [7], [4], it merely
approximates the fuzzer’s capabilities in finding bugs, as a
fuzzer needs to cover a line of code to find a bug in it.

In all experiments, we leverage six applications, which
process an executable ELF file without modifying it, from the
well-fuzzed GNU binutils suite 2 in version 2.34 [4], [67],
[39], [37]. We further include jhead 3.06.0.1, bsdtar (from
libarchive) 3.6.0, tcpdump 4.99.1, and djpeg 2.1.2, as they
are also commonly used [67], [4], [39], [37]. For increased
reproducibility, we also kept the number of seed files low.
Otherwise, as each seed is selected randomly by default,
the variance for each run increases. The seeds used for the
binutils targets always remain the same: one uninformed,
empty test case and one minimal correct test case. We used
the standard testcases bundled with AFL, except for binutils,
where we used a minimal C program (smaller than the one
bundled) described in Appendix C.

We evaluate the performance of the selected fuzzers over
three independent runs, reporting the mean and 25%/75%
quartiles. Each experiment runs for 24 hours. We present
the mean coverage for each benchmark but also the standard
deviation over time. Further, we additionally conduct the
non-parametric Mann-Whitney U test to evaluate whether
there are statistically significant differences among results, as
suggested by Arcuri et al. [2] and Klees et al. [34].

2https://www.gnu.org/software/binutils/

7

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a) DARWIN

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b) MOPT

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(c) AFL

Fig. 3. Mutation history for cxxfilt.

0 200 400 600 800 1000 1200 1400
Time [m]

0

500

1000

1500

2000

2500

3000

3500

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(a) bsdtar

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

3500

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(b) cxxfilt

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(c) djpeg

0 200 400 600 800 1000 1200 1400
Time [m]

100

150

200

250

300

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(d) jhead

0 200 400 600 800 1000 1200 1400
Time [m]

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(e) objcopy

0 200 400 600 800 1000 1200 1400
Time [m]

0

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(f) objdump

Fig. 4. The coverage results on the various benchmarks for AFL, MOPT, DARWIN, and the statically optimized variant AFL-S. Shaded areas represent the
respective 25%/75% quartiles.

The results of our coverage evaluation for DARWIN,
MOPT, and AFL are depicted in Table II. In Figure 4 and Fig-
ure 6, we show the respective graphs for coverage over time.

First of all, we can observe that MOPT is constantly
performing worse than DARWIN, as well as AFL (except in
one experiment). For djpeg, jhead, objcopy, objdump,

8

TABLE II. MEAN COVERAGE RESULTS MEASURED IN UNIQUE PATHS AND EDGES FOR WELL-FUZZED TARGETS OVER TEN RUNS. AFL-S IS AFL WITH
OPTIMIZED, STATIC PROBABILITY DISTRIBUTION. GEOMETRIC MEAN IMPROVEMENT (“GEOMEAN”) OF DARWIN OVER MOPT AND AFL, RESPECTIVELY.
P-VALUES FOR THE MANN-WHITNEY U TEST FOR DARWIN ON THE NUMBER OF UNIQUE PATHS FOUND IN 24H. P-VALUES FOR THE MANN-WHITNEY U
TEST FOR DARWIN ON THE NUMBER OF UNIQUE PATHS FOUND IN 24H. NOTE THAT EXPERIMENTS WITH A SIMILAR RESULT ACROSS SAMPLES (ITALIC)

LEAD TO A HIGH P-VALUE NATURALLY; ALL REMAINING EXPERIMENTS ARE STATISTICALLY SIGNIFICANT WITH p < 0.05.

DARWIN MOPT AFL AFL-S
Benchmark unique paths edges unique paths edges p-value unique paths edges p-value unique paths edges p-value
bsdtar 3147.20 5369.70 2347.50 4832.0 9.13e-05 3246.50 5302.60 0.093 1801.30 4970.90 9.08e-05
cxxfilt 3334.18 2327.27 3343.00 2333.09 0.0001 3594.91 2425.36 1.95e-04 3395.50 2500.30 0.647
djpeg 2964.60 3191.00 1807.80 2765.90 9.13e-05 2866.00 3148.80 0.163 1978.50 2851.80 9.13e-05
jhead 285.40 340.00 265.4 339.00 2.17e-04 283.90 340.00 0.520 164.30 336.00 8.88e-05
objcopy 5760.82 7912.36 4562.00 7606.00 4.08e-05 5453.09 7881.27 4.05e-04 5038.20 7507.90 6.20e-05
objdump 6018.91 7269.82 5028.82 7003.73 4.06e-05 5895.91 7141.55 0.028 4947.90 7044.00 6.20e-05
readelf 29715.64 13012.36 26686.73 12273.00 4.08e-05 29439.27 12032.18 0.162 29519.90 13019.20 0.805
size 3020.91 4030.91 2206.82 3773.45 4.07e-05 2726.91 3809.55 5.32e-05 2861.50 3941.00 8.24e-04
strip 5732.55 7703.55 4497.36 7470.82 4.08e-05 5519.36 7756.45 0.001 5047.60 7354.30 6.20e-05
tcpdump 9361.20 13834.10 4723.60 11618.70 9.13e-05 9354.10 13317.2 1.0 4255.70 11952.10 9.13e-05
geomean +29.40% +6.77% +1.60% +1.73% +32.35% +4.38%

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a) DARWIN

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b) MOPT

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(c) AFL

Fig. 5. Mutation history for size.

size, and tcpdump, DARWIN clearly reaches the highest
number of paths and edges, and also has the steepest in-
crease in unique paths found over time for the first hour of
fuzzing. For objcopy and strip, we saw that DARWIN
the probability for mutation 0 (flip single bit) and 14 (overwrite
bytes with a randomly selected chunk) tremendously, whereas
DARWIN reduces probability of mutation 4 (randomly sub-
tract from byte) for objdump and 5 (randomly add to byte)
for size. Besides looking only at the paths covered, we
can also consider the time to the same coverage as a figure
of merit. For example, for size, DARWIN reaches AFL’s
maximum coverage approximately 800 minutes earlier, similar
for objcopy and objdump where DARWIN reaches the
same point approx. 700 minutes earlier.

The cxxfilt benchmark shows such a different behavior
than other benchmarks that it warrants further discussion. This
is the only case where AFL is a clear winner, and both
mutation-scheduling-based fuzzers reach a similar coverage.
While we noticed that AFL is achieving new coverage with
the splicing stage around 50% more often than DARWIN,
MOPT found four times as many coverage-triggering inputs
using splicing. As such, we can exclude splicing being one
reason for this effect.

Hence, we looked at the mutations scheduled within a
timespan of 1h, as shown in Figure 3. There we can see that
DARWIN as well as MOPT put more and more emphasis on
mutators 8 and 10 after around 40 minutes. This is also the very
same moment where AFL starts to outperform both fuzzers.
As cxxfilt is aiming at demangling overloaded functions

(and the similarly behaving bsdtar is unpacking archives),
it seems like mutation schedulers only add little benefit to
fuzzing targets that are heavily relying on parsing. Yet, their
performance impact (as we explore later) reduces the raw
execution speed of the fuzzer, resulting in inferior coverage
results.

Looking at size Figure 5, a target where DARWIN
significantly outperforms AFL and MOPT, DARWIN avoids
scheduling mutators 0, 5, 11, while mutator 0 has a large share
in MOPT.

While analyzing the mutation histories, we noticed that
MOPT schedules only 8 of the 15 mutations across all of
our benchmarks. Most likely, this is an implementation bug
as there is no visible calibration effect (in comparison to, e.g.,
the first 10 minutes of DARWIN, where DARWIN converges
quickly afterward). This is also one possible factor for the
diverse results MOPT shows in our experiments.

In conclusion, DARWIN shows a geometric mean im-
provement in edge coverage of 6.77% over MOPT, and 1.73%
over AFL, hence, this addresses Challenge C.1. While this
might seem insignificant at first, coverage measurements are
only an approximation of a fuzzer’s efficiency in finding bugs,
as we show later.

FuzzBench. FuzzBench [40] is a fuzzing benchmark suite de-
veloped by Google. The benchmark comprises various widely-
fuzzed real-world targets, e.g., from OSS-Fuzz [28]. We con-
ducted a local FuzzBench coverage experiment over ten runs,
where each run took six hours. All Fuzzbench experiments

9

0 200 400 600 800 1000 1200 1400
Time [m]

0

5000

10000

15000

20000

25000

30000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(a) readelf

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(b) size

0 200 400 600 800 1000 1200 1400
Time [m]

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(c) strip

0 200 400 600 800 1000 1200 1400
Time [m]

0

2000

4000

6000

8000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(d) tcpdump

Fig. 6. The coverage results on various benchmarks for AFL, MOPT, DARWIN, and the statically optimized variant AFL-S. Shaded areas represent the
respective 25%/75% quartiles.

TABLE III. MEDIAN RELATIVE CODE-COVERAGES ON EACH
BENCHMARK AFTER 10 RUNS WITH 6H EACH. MEDIAN RELATIVE

PERFORMANCE OF EACH FUZZER TO THE ENCOUNTERED EXPERIMENT
MAXIMUM.

DARWIN AFL MOPT
FuzzerMedian 97.11 96.89 86.70
FuzzerMean 96.34 95.46 83.64
bloaty fuzz target 96.40 94.95 89.62
curl curl fuzzer http 98.35 97.25 92.19
freetype2-2017 94.80 93.68 78.74
harfbuzz-1.3.2 98.95 97.70 86.48
libjpeg-turbo-07-2017 88.81 88.72 69.20
libpng-1.2.56 99.72 98.79 94.05
libxml2-v2.9.2 93.34 96.89 61.79
libxslt xpath 97.11 92.21 83.69
mbedtls fuzz dtlsclient 98.94 97.63 95.26
openssl x509 99.87 99.88 99.73
openthread-2019-12-23 88.74 88.84 86.70
php php-fuzz-parser 96.78 98.94 94.64
proj4-2017-08-14 94.95 93.40 28.57
re2-2014-12-09 98.45 98.34 83.51
sqlite3 ossfuzz 92.44 86.38 78.14
systemd fuzz-link-parser 99.92 99.84 97.97
vorbis-2017-12-11 97.01 96.77 84.87
woff2-2016-05-06 97.78 95.75 91.88
zlib zlib uncompress fuzzer 98.12 97.71 92.14

were conducted on a workstation with an Intel Xeon Silver
4110 CPU with 2.10GHz and 128GB RAM.

Experiments are depicted in Table III. DARWIN outper-
forms both AFL and MOPT in the avg. normalized score and
avg. rank. Specifically, DARWIN reaches the highest median
relative code coverage in 15 out of 19 experiments, is even with
AFL in two (DARWIN has in openssl_x509 0.00001%
and in openthread-2019-12-23 -0.11% less coverage).

In the remaining two experiments, AFL slightly
outperforms DARWIN: libxml2-v2.9.2 (3.80%)
and php_php-fuzz-parser (2.23%) are both parsers, as
such, coverage mainly comes from well-structured testcases.
As DARWIN does not improve testcase generation itself,
e.g., using grammars, both fuzzers generate testcases of
similar (bad) quality and hence, largely fail to cover a big
part of the targets. AFL’s faster execution speed allows it to
generate more testcases per second, which is the cause for
the differences.

MOPT is last in every experiment, with openssl_x509
being the experiment closest to DARWIN and AFL. Thus,
DARWIN is the first mutation scheduler to show coverage
improvements over AFL in FuzzBench.

Static Optimization vs. Adaptive Optimization. For the
mutation scheduling problem at hand, it is not clear if the
perfect mutation probability distribution changes over time
with the same target application. Hence, we used DARWIN
to fuzz the targets from Section VI-A for 24h, but this time,
storing the ”best so far” parent in the current set of parents after
24h. As shown in Table II, DARWIN outperforms the static
variant (referred to as AFL-S) by 4.38% geometric mean in the
number of covered edges (and 32.35% in paths). Especially in
the non-binutils experiments, DARWIN shows the importance
of adaptive optimization throughout the fuzzing process.

In binutils, the static variant is much closer to the adap-
tive variant,as a lot of library code is shared between the
individual applications, and the inputs are always executables.
This also reflects in the resulting probability distributions, i.e.,
readelf, size, and cxxfilt share the same distribution,

10

and strip, objcopy, and objdump share the same distri-
bution. Both groups have 7 disabled mutations and commonly
disable mutations 3, 5, and 8 (cf. Appendix B). From our
investigations, the mutations left are enough to overcome the
initial parsing steps and then concentrate on common library
code, which is also what we expect the probability distribution
to converge to in later phases in the adaptive variant.

In all experiments, DARWIN outperformed AFL-S also
after 200 minutes. In the six experiments where AFL-S even-
tually reached the same (average) coverage DARWIN reached
after 200 minutes, it took AFL-S 285 more minutes on average.
Further, in four experiments, AFL-S never even reached that
mark.

B. Parameter Selection

Even though the parameters for µ and λ are widely
consistent throughout literature [6], [31], we also evaluated
neighboring configurations, as shown in Table IV. Our 24h
experiments over ten runs show that within the large body
of coverage evaluation targets, the initial configuration still
outperforms them.

Orthogonality to Advanced Fuzzing Methods. To high-
light DARWIN’s benefit in more recent fuzzers, we extend
EcoFuzz [67] with our mutation scheduler. EcoFuzz optimizes
AFL’s power schedule process to reduce AFL’s focus on high-
frequency paths. Within the fuzzer, we added four invoca-
tions to the DARWIN interface at the appropriate places in
the code. We conducted a FuzzBench coverage experiment
with 10 runs, 6h each. The full results are depicted in Ta-
ble V. EcoFuzz-DARWIN outperforms its baseline in all but
four experiments. While libjpeg-turbo-07-2017 and
systemd_fuzz-link-parser are quite close, the other
two experiments show a larger difference. The DARWIN
variant cannot outperform its baseline in libxml2-v2.9.2
and openthread-2019-12-23 openssl_x509, simi-
lar as in the previous coverage experiment. Based on our
investigation, this is also caused by the strongly structured
input (openthread is an implementation of the OpenThread
networking protocol), where the baseline fuzzer profits from
higher execution speeds.

C. Execution Speed versus Efficiency

Challenge C.4 underlines the difficulty of optimizing prob-
ability distribution without spending too much time on a
learning algorithm. This is important as an optimal distribution
does not lead to a measurable improvement if the optimal
selection can be found via brute force in less time. As such, we
measure the effectiveness of the mutation scheduler in finding
a good mutation probability distribution. Further, we analyze
and compare the execution speed of DARWIN’s ES, MOPT’s
PSO, and AFL’s random sampling with a uniform probability
distribution.

Scheduling Effectiveness. While it is rather simple to mea-
sure the effects of an algorithmic change in fuzzing via
coverage or crash analysis, the resulting numbers are hard to
attribute to the algorithmic change itself due to the fuzzers
complexity. Hence, we derived a metric to directly capture the
impact of mutation scheduling, namely the average number of
mutations needed to go from one coverage point to another.

Here, we get 1981.90 mutations for AFL, 1484.81 for MOPT,
and 1491.32 for DARWIN. This clearly shows the advantage
of mutation scheduling. MOPT and DARWIN achieve very
similar results, where we attribute the difference to noise. The
remaining question is whether both fuzzers also achieve the
same execution speed, as the mutation schedulers’ efficiency
depends on both factors.

Performance Measurements. Table VI presents the observed
execution speed over ten runs. Notably, AFL has the most
executions, which makes sense considering that both DAR-
WIN and MOPT add an optimization algorithm on top of
AFL’s random sampling; yet, the DARWIN’s execution speed
is relatively close to random selection. However, the numbers
demonstrate that DARWIN is 48.26% (geometric mean) faster
than MOPT while outperforming both other fuzzers in terms
of coverage. This makes DARWIN solve Challenge C.4 and
also highlights that the representation encoding for ES does
not induce a major performance overhead.

This underlines that (1) DARWIN’s mutation scheduler
improves efficiency compared to uniform random sampling
and (2) that DARWIN’s mutation scheduler achieves this with
less computational overhead than MOPT, addressing Chal-
lenge C.2 In conclusion, DARWIN has the same scheduling
effectiveness but is much faster than MOPT, resulting in better
efficiency.

D. MAGMA - Time-to-Bug Evaluation

MAGMA [32] is a recently published fuzzer benchmark
that emphasizes the capability to uncover bugs, in particular,
the time needed to reach a bug within a target. For this, the
authors forward-port real-world bugs into current versions of
tools used in practice, namely libpng, libtiff, libxml2,
openssl (which we could not get to run with the cur-
rent version of MAGMA on GitHub at the time of writing,
php, poppler, and sqlite3. Further, MAGMA provides a
framework around these tools to detect when a fuzzer reaches
and triggers such a forward-ported bug. Hence, MAGMA’s
attempt to measure the time to reach a bug gives a much clearer
picture of a fuzzer’s efficiency in practice, as code coverage is
merely a proxy metric to measure a fuzzer’s success. We set up
five hours fuzzing campaigns for each target for the MAGMA
benchmark and repeated each experiment three times.

The results are depicted in Figure 7. Out of 21 bugs found
in total, DARWIN can find 15 of them the fastest. MOPT is in
4 cases the fastest, but only because in two of them DARWIN
could not trigger the bug (where MOPT is expected to take
more than two days to find the bug on average). Finally, AFL
can only find 12 bugs, further emphasizing that DARWIN
increases the efficiency of the mutation selection.

E. Crashes

This final experiment explores DARWIN’s ability to find
crashes in well-fuzzed targets, which is commonly done to
evaluate fuzzers [67], [39], [58], [52]. Note that our experiment
differs from the setup MOPT paper to increase statistical
meaningfulness. In the MOPT paper, the authors use 100
seed files per target. This, however, makes interpretation of
the resulting data highly challenging, as the outcome heavily
depends on which seed has been scheduled (also makes finding

11

TABLE IV. COVERAGE RESULTS MEASURED IN UNIQUE PATHS AND EDGES FOR WELL-FUZZED TARGETS IN BINUTILS OVER 10 RUNS, 24H EACH.

DARWIN (µ:5 λ:4) µ:5 λ:3 µ:5 λ:5 µ:6 λ:4 µ:4 λ:4
Benchmark unique paths edges unique paths edges unique paths edges unique paths edges unique paths edges
cxxfilt 3334.18 2327.27 3375.10 2365.70 3233.50 2301.00 3251.70 2323.00 3224.80 2294.10
objcopy 5760.82 7912.36 5567.10 7866.10 5564.70 7835.60 5584.20 7821.60 5565.10 7813.90
objdump 6018.91 7269.82 5832.80 7239.20 5820.00 7256.00 5774.30 7221.60 5880.90 7244.40
readelf 29715.64 13012.36 29821.00 12990.70 29101.90 12813.30 29409.20 12928.80 29551.10 12934.20
size 3020.91 4030.91 2984.20 3979.70 2999.60 3990.60 2975.20 4022.80 2925.60 4018.80
strip 5732.55 7703.55 5533.70 7667.60 5608.8 7716.20 5542.80 7693.30 5549.30 7696.90

TABLE V. MEDIAN RELATIVE CODE COVERAGE ON EACH
BENCHMARK AFTER 10 RUNS WITH 6H EACH. MEDIAN RELATIVE

PERFORMANCE OF EACH FUZZER TO THE ENCOUNTERED EXPERIMENT
MAXIMUM.

EcoFuzz-DARWIN EcoFuzz
FuzzerMedian 97.31 95.43
FuzzerMean 94.47 94.29
bloaty fuzz target 95.86 91.39
curl curl fuzzer http 97.31 95.89
freetype2-2017 95.92 95.79
harfbuzz-1.3.2 97.36 94.12
libjpeg-turbo-07-2017 84.67 86.47
libpng-1.2.56 97.83 96.51
libxml2-v2.9.2 78.84 93.66
libxslt xpath 94.03 93.97
mbedtls fuzz dtlsclient 99.23 96.71
openssl x509 99.67 99.62
openthread-2019-12-23 80.11 98.45
php php-fuzz-parser 99.62 99.49
proj4-2017-08-14 90.53 84.77
re2-2014-12-09 98.83 98.50
sqlite3 ossfuzz 95.78 83.01
systemd fuzz-link-parser 97.96 98.90
vorbis-2017-12-11 96.09 95.43
woff2-2016-05-06 97.60 93.60
zlib zlib uncompress fuzzer 97.70 95.24

TABLE VI. AVERAGED EXECUTIONS PER SECOND REACHED WITH
THE RESPECTIVE MUTATION SCHEDULING APPROACH.

Benchmark havoc afl mopt
bsdtar 2631.86 2385 1185.87
cxxfilt 2060.07 3766.8 2888.56
djpeg 2830.72 2609.9 1097.79
jhead 5097.98 5484.94 1679.58
objcopy 2019.37 2086.37 1867.22
objdump 1908.94 1932.47 1887.44
readelf 2439.79 2715.96 2389.04
size 2082.11 2147.08 1945.45
strip 2005.56 2159.54 1876.9
tcpdump 5042.22 5232.37 1554.85
geomean -7.6% +48.26%

novel bugs much more likely). Additionally, the experiment
was running only once. Here, We conducted a 24h experiment
with 10 runs (and same seeds as in previous experiments) to
also evaluate the stability in finding bugs. We use the same
benchmarks as used in Section VI-A already.

The resulting crashes are shown in Table VII. Then, we
minimized the test cases using afl-tmin and verified them with
afl-collect [53]. Then we first removed test cases with the
same MD5 hash, and the Address Sanitizer output refers to the
same line. Finally, we manually verified that they differ and
lead to a crash, which we refer to as ”triaged” in Table VII. In
total, we found 20 unique bugs with DARWIN, and 26 unique
bugs with the DARWIN-enhanced version of EcoFuzz. In
contrast, the baselines, AFL and EcoFuzz, only found 12 resp.
1 unique bug(s). Also, the stability of their findings (i.e., the
mean over all runs) is way below the DARWIN-based fuzzers.

21.5.2021 summary_expected_ttb_heat.svg

file:///C:/Users/Patri/out_fixed_2/data/summary_expected_ttb_heat.svg 1/1

Fig. 7. The expected time to reach a bug in the MAGMA benchmark
over three runs. Y axis shows the individual bugs. Lower time is better, grey
indicates that a fuzzer has not found this bug.

DARWIN also found a completely novel bug in
objcopy (working up to binutils 2.39, introduced more
than 24 years ago), which is leading to a memory leak.
copy_relocations_in_section in objcopy.c is not
freeing a buffer (relpp) in every possible case. This bug is
very hard to trigger, as the function is only called at high
stack depths. The testcase leading to the bug was found through
splicing based on a relatively early testcase and a testcase from
the middle of the experiment. We responsibly disclosed the
triaged bug to the respective developers, who acknowledged
and fixed the bug 3.

VII. RELATED WORK

Fuzzing is an active research domain but is also widely
used in practice. It has been improved in various areas, e.g.,
grammar-based fuzzing that also might use mutations [3],
dedicated mutations, or program transformations for common
roadblocks [4], [63], [49], or fuzzers for hard-to-fuzz software,
e.g., due to hardware dependencies [69], [20]. We consider
these works orthogonal to ours. Next, we restrict ourselves
to the areas of mutation scheduling but also seed-selection

3https://sourceware.org/bugzilla/show bug.cgi?id=29233

12

TABLE VII. CRASHES ENCOUNTERED IN A 24H CAMPAIGN OVER 10 RUNS. ALL BUGS ARE TRIAGED CRASHES. ”MAX” REFERS TO THE MAXIMUM
ENCOUNTERED BUGS WITHIN A RUN. ”UNIQ” REFERS TO THE NUMBER OF UNIQUE CRASHES OVER ALL 10 RUNS.

DARWIN AFL AFL-S MOPT EcoFuzz-D EcoFuzz
Benchmark mean max uniq mean max uniq mean max uniq mean max uniq mean max uniq mean max uniq
bsdtar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
djpeg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tcpdump 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
jhead 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
readelf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strip 0.25 3 3 0.09 1 1 0.3 2 3 0 0 0 0 0 0 0 0 0
size 0.92 2 11 0.45 1 5 0.7 1 7 0.17 1 2 0.3 1 3 0.1 1 1
filt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
objdump 0.25 1 3 0.09 1 3 0.1 1 1 0 0 0 0.2 1 2 0 0 0
objcopy 0.25 1 3 0.18 1 3 0.1 1 1 0 0 0 2.1 17 21 0 0 0
Total 7 20 4 12 5 12 1 2 18 26 1 1

algorithms, as the underlying approaches are often similar.
Finally, we compare DARWIN to the presented works.

A. Mutation Strategies

Mutation strategies try to optimize either what mutations
should be applied (which we refer to as mutation scheduling)
or where in the input those mutations should be applied
(which we refer to as location optimization).

Mutation Scheduling. In 2018, two works proposed to
leverage machine learning approaches to improve mutation
scheduling. Böttinger et al. used deep Q-learning (a type of
reinforcement learning) to find policies that can next generate
new higher reward inputs [10]. Drozd and Wagner optimized
mutation operators using reinforcement learning to achieve
deeper coverage across several varied benchmarks [15]. De-
spite leveraging complex algorithms, both of those works do
not manage to show significant improvements in vulnerability
discovery, underlining that the algorithms are too complex
to address Challenges C.1 and C.4. Lyu et al. considered
a different approach for optimizing mutation scheduling and
proposed a mutation scheduling scheme called MOPT [39].
MOPT was the first work to propose using heuristic techniques
for optimizing general mutation scheduling. More precisely,
MOPT uses a custom variant of Particle Swarm Optimization
(PSO) to approximate the best selection probability distribution
for mutation operators. We note that for PSO, there is no
guarantee to converge to the global optimum (only to the
best particle in the swarm) [61], [18]. At the same time,
there are proofs of convergence for evolution strategy [31].
Further, MOPT proposes to deactivate the deterministic fuzzing
stage either temporarily or permanently to make PSO converge
faster.

As this work is closest in the objective and applied tech-
niques to ours, we discuss the main differences between MOPT
and DARWIN in more detail . From MOPT’s design perspec-
tive, the authors do not show how several parameters need to be
tuned to reach a good performance under which condition. In
particular, it is not evaluated how many solutions (swarms) are
needed in practice and how difficult it is to tune them, or how
sensitive those parameters are. Hence, MOPT does not solve
Challenge C.3. Since the MOPT algorithm has both local and
global positions for particles, the algorithm requires additional
measures to find the best solutions, increasing the complexity
of the algorithm. This leads to a performance reduction in
the havoc stage, as we explore in Section VI-C. Thus, MOPT
cannot address Challenge C.4. A change of solution encoding,

as proposed in Section IV-C, requires changes in MOPT ’s
algorithm. Finally, what the authors call a swarm is actually
a solution in a swarm. What the authors denote as multiple
swarms is one swarm.

In contrast, DARWIN has no parameters to tune from the
fuzzer side. ES has only two parameters, µ and λ, which are
intuitive to select during fuzzer development time and have a
clear role in the evolution process. DARWIN does not require
any additional communication between modules to run the
evolution process. DARWIN uses a simple fitness function
where the goal is the maximization of the code coverage.
DARWIN supports various solution representations without
requiring changes in the DARWIN algorithm. We develop
DARWIN not only to be well-performing for the specific
application at hand but also to conform to standards from the
EA community regarding the design choices and performance
evaluation.

From the performance perspective, MOPT’s PSO integra-
tion is computationally intense (i.e., already reducing cov-
erage significantly over time due to decreased speed), and
the evaluation does not explore whether a simpler algorithm
or even a static distribution might already be enough. The
evaluation results are also produced by a varying amount of
seed files, but not a typical setup with one empty and one small
seed suitable for the application. Further, MOPT’s mutation
scheduling algorithm is not evaluated separately from the other
stages of the fuzzer but always with the deterministic stage
running at least once.

Our evaluation shows that these two aspects distorted the
comparison with the default random mutation selection by
microbenchmarking the mutation selection using our proposed
average-mutations to a new coverage metric. Besides, the
huge size of seeds might lead to a distortion in coverage
measurements since a fuzzer might be stuck for a while given
a bad randomly chosen seed. While we consider MOPT’s
pacemaker mode as orthogonal, we still show that with a
permanently disabled deterministic stage, AFL discovers
significantly more unique paths than MOPT, which is in line
with the results reported in Google’s FuzzBench [27]. In
contrast, DARWIN’s selection algorithm is much simpler,
has, thanks to its more lightweight Evolution Strategy and
solution representation, a lower impact on execution speed,
brings a measurable improvement over the standard uniform
mutation selection, and even outperforms MOPT significantly
in terms of coverage and crashes found.

13

Location Optimization. In contrast to mutation scheduling
approaches, some works aim to find the right locations in the
inputs to mutate. One example is FairFuzz which applies a
deterministic combination of mutations to explore which bytes
in the test case reach rare branches when mutated [37]. These
bytes now form a mask used in the havoc stage to (partially)
limit mutation operators to these bytes. A similar approach has
been proposed by Rajpal et al. [51], where neural networks are
used to infer (un-)promising bytes in inputs generated by past
mutations. Promising bytes are then preferred during mutation.
Another work, Steelix [38], leverages static analysis to extract
information about comparisons in the target program, which is
then used to mutate responsible bytes in the input efficiently.
Analogous to FairFuzz, the information generated by the static
analysis is used to create a mask. If a mutated input does not
generate new coverage, but a byte in the mask is closer to
what the comparison expects, this byte is further mutated. All
of these approaches above focus on where to apply mutations,
whereas DARWIN optimizes general mutation selection. Fur-
ther, many of the mentioned ideas can be combined with our
approach.

B. Seed-selection Algorithms

Seed-selection algorithms aim to distill and select a subset
of seeds to optimize for a specific branch to pass or improve
coverage in general by preferring more promising seeds or
minimizing seeds to improve execution speed. MoonShine uses
system call traces of real-world programs to distill them into
a minimal test case that still achieves 86% of the pre-distilled
coverage [48]. These minimal tests can then be used to 1)
trigger basic blocks that require a certain order of system calls
and 2) improve the fuzzing speed.

A similar idea is used by FasterFuzzing, which employs
a Generative Adversarial Network trained with an initial seed
corpus to generate new, better seeds [44]. EcoFuzz [67] pro-
poses a seed scheduling algorithm to fine-tune exploration and
exploitation. After a short fuzzing period, EcoFuzz switches to
the exploration phase, where the remaining seeds are fuzzed
to estimate their reward probability. Then, EcoFuzz switches
to the exploitation phase to fuzz these seeds that have the
highest reward probability. If a new path has been discovered,
EcoFuzz switches back to the exploration phase. This increases
coverage while reducing the number of test case generations.
AFLFast identifies that fuzzers are often stuck with high-
frequency paths [8]. To balance this, AFLFast leverages a
Markov model to identify and prefer low-frequency paths as
a heuristic. Similarly, VUzzer uses an evolutionary algorithm
approach to leverage control-flow features and find hard-to-
reach paths while also avoiding inputs that reach basic blocks
containing error-handling code [52]. NeuFuzz, instead, does
not try to balance low- and high-frequency paths but uses
a neural network to prefer paths that are prone to contain
vulnerabilities [64]. Angora follows a more general strategy by
preferring inputs that lead to unexplored branches, effectively
also balancing high- and low-frequency path exploration [12].
AFLSmart uses a structural representation of seed to perform
semantically correct mutations and increases time spent on
mutating promising seeds that pass the input parsing [50].
AFLGo [7] enables directed fuzzing close to chosen target
locations by prioritizing seeds that reach paths close to the
target [7]. Seed-scheduling and -distilling algorithms optimize

an early stage in the fuzzing process. Hence, it is challenging
for these techniques to steer the mutation phase unless the
havoc stage is specifically aware of, e.g., the phases defined
in EcoFuzz. This might lead to counterproductive mutations
being applied to optimized seeds, canceling out the desired
effect. In contrast, DARWIN optimizes a late stage in the
fuzzing process and thus, can learn a favorable probability
distribution to keep the properties of promising inputs.

C. Algorithmic Improvements vs. Optimizing Execution Speed

Many works recently focused on the raw speed of input
generation and mutation with big coverage improvements [56],
[19], [4], [30]. While DARWIN offers fewer coverage im-
provements as reported by these fuzzers, DARWIN’s mutation
scheduling is orthogonal to performance increases achieved
through, e.g., fast snapshotting. Hence, DARWIN can fur-
ther increase coverage, and more importantly—as we show
in Appendix D and Section VI-D—improve the bug triggering
capabilities of these fuzzers.

VIII. CONCLUSION

We presented DARWIN, a novel mutation scheduling
algorithm that uses an Evolution Strategy to optimize the
mutation selection probability distribution based on the in-
strumented application’s feedback. DARWIN tackles all of
our identified challenges in building a mutation scheduler:
Challenge C.1 by integrating Evolutionary Strategy as a mu-
tation scheduler, significantly outperforming the state-of-the-
art mutation scheduler MOPT [39], while also being the first
mutation scheduler to show a significant increase in edge
coverage of 1.73% over AFL respectively, bugs uncovered
in both, LAVA-M and MAGMA, and decrease in time to
find bugs over AFL and MOPT; Challenge C.2 by choosing
reasonable encoding and parameters; Challenge C.3 by intro-
ducing no user-facing parameters that need to be tuned per
target; and Challenge C.4 by maintaining a high execution
speed compared to the AFL baseline, in contrast to related
work, which is far slower. Further, DARWIN found 20 unique
bugs in widely-used real-world applications, outperforming
both AFL and MOPT. DARWIN was the only fuzzer able
to also uncover a new bug that is still working on the most
recent version of the target. While our experiments show that
unique path coverage for fitness provides good feedback for
ES, other heuristics could be used. For example, it would be
interesting to include the number of crashes and consider the
Pareto fronts of the solutions. Further, future research could
study the efficiency of multi-objective algorithms for mutation
scheduling that combine several of the previous suggestions,
e.g., also include the frequency of the path to focus more on
low-frequency paths or the block hit count to promote stronger
intensification.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry
of Education and Research in the StartUpSecure funding pro-
gram ”Sanctuary” (16KIS1417), the German Federal Ministry
of Education and Research and the Hessian State Ministry for
Higher Education, Research and the Arts within ATHENE, and
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 952697).

14

REFERENCES

[1] Mohamed Abouhawwash, Kalyanmoy Deb, and Adam Alessio. Ex-
ploration of multi-objective optimization with genetic algorithms for
pet image reconstruction. Journal of Nuclear Medicine, 61(supplement
1):572–572, 2020.

[2] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing
for deep bugs with grammars. In NDSS, 2019.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. Redqueen: Fuzzing with input-to-state correspon-
dence. In NDSS, volume 19, pages 1–15, 2019.

[5] H.-G. Beyer and B. Sendhoff. Evolution strategies for robust opti-
mization. In 2006 IEEE International Conference on Evolutionary
Computation, pages 1346–1353, 2006.

[6] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution Strategies – A
Comprehensive Introduction, volume 1. Kluwer Academic Publishers,
USA, May 2002.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2329–2344, 2017.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[9] Jürgen Branke, Su Nguyen, Christoph W. Pickardt, and Mengjie Zhang.
Automated design of production scheduling heuristics: A review. IEEE
Transactions on Evolutionary Computation, 20(1):110–124, 2016.

[10] K. Böttinger, P. Godefroid, and R. Singh. Deep reinforcement fuzzing.
In 2018 IEEE Security and Privacy Workshops (SPW), pages 116–122,
2018.

[11] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
Xiuheng Wu, and Yang Liu. Hawkeye: Towards a desired directed grey-
box fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2095–2108, 2018.

[12] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy, 2018.

[13] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen,
Xinyu Xing, Long Lu, and Bing Mao. Ptrix: Efficient hardware-
assisted fuzzing for cots binary. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, pages 633–
645, 2019.

[14] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea
Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava:
Large-scale automated vulnerability addition. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 110–121. IEEE, 2016.

[15] William Drozd and Michael D. Wagner. Fuzzergym: A competitive
framework for fuzzing and learning. CoRR, abs/1807.07490, 2018.

[16] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer-Verlag, Berlin Heidelberg New York, USA, 2003.

[17] Michael Emmerich, Ofer M Shir, and Hao Wang. Evolution Strategies,
chapter 4, pages 1–31. Springer International Publishing, 2018.

[18] Andries P. Engelbrecht. Fundamentals of Computational Swarm Intel-
ligence. Wiley, 2005.

[19] Brandon Falk. Vectorized emulation: Hardware accelerated taint track-
ing at 2 trillion instructions per second. https://gamozolabs.github.io/
fuzzing/2018/10/14/vectorized emulation.html. Accessed: 2022-04-26.

[20] Bo Feng, Alejandro Mera, and Long Lu. P 2 im: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In Proceedings of the 29th USENIX Security Symposium, 2020.

[21] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
Afl++: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

[22] Abhinav Gaur, A.K.M. Khaled Talukder, Kalyanmoy Deb, Santosh
Tiwari, Simon Xu, and Don Jones. Unconventional optimization for
achieving well-informed design solutions for the automobile industry.
Engineering Optimization, 52(9):1542–1560, 2020.

[23] Morteza Gholamipoor, Parviz Ghadimi, Mohammad H. Alavidoost,
and Mohammad A. Feizi Chekab. Application of evolution strategy
algorithm for optimization of a single-layer sound absorber. Cogent
Engineering, 1(1):945820, 2014.

[24] Abhiroop Ghosh, Erik Goodman, Kalyanmoy Deb, Ronald Averill, and
Alejandro Diaz. A large-scale bi-objective optimization of solid rocket
motors using innovization. In 2020 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8, 2020.

[25] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic
Publishers, USA, 1997.

[26] Fred W. Glover and Gary A. Kochenberger, editors. Handbook of Meta-
heuristics, volume 114 of International Series in Operations Research
& Management Science. Springer, 1 edition, January 2003.

[27] Google. Fuzzbench: 2020-09-28 report. https://www.fuzzbench.com/
reports/2022-04-19/index.html. Accessed: 2022-04-26.

[28] Google. Oss-fuzz. https://google.github.io/oss-fuzz/. Accessed: 2022-
04-26.

[29] Google. american fuzzy loop (afl). https://github.com/google/AFL,
2020.

[30] Rahul Gopinath and Andreas Zeller. Building fast fuzzers. arXiv
preprint arXiv:1911.07707, 2019.

[31] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution Strate-
gies, pages 871–898. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

[32] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 4(3):1–29, 2020.

[33] Xiaolin Hu, Carlos A Coello Coello, and Zhangcan Huang. A new
multi-objective evolutionary algorithm: Neighbourhood exploring evo-
lution strategy. Engineering Optimization, 37(4):351–379, 2005.

[34] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018.

[35] Walter Krawec, Stjepan Picek, and Domagoj Jakobovic. Evolutionary
algorithms for the design of quantum protocols. In Paul Kaufmann and
Pedro A. Castillo, editors, Applications of Evolutionary Computation,
pages 220–236, Cham, 2019. Springer International Publishing.

[36] P. J. M. Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory
and Applications. Kluwer Academic Publishers, USA, 1987.

[37] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 475–485, 2018.

[38] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing.
In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 627–637, 2017.

[39] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. MOPT: Optimized mutation scheduling
for fuzzers. In 28th USENIX Security Symposium (USENIX Security
19), pages 1949–1966, 2019.

[40] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery,
and Abhishek Arya. Fuzzbench: an open fuzzer benchmarking platform
and service. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1393–1403, 2021.

[41] Microsoft. Microsoft announces new project onefuzz frame-
work, an open source developer tool to find and fix bugs at
scale. https://www.microsoft.com/security/blog/2020/09/15/microsoft-
onefuzz-framework-open-source-developer-tool-fix-bugs/. Accessed:
2022-04-26.

[42] Julian F. Miller. Cartesian Genetic Programming, pages 17–34.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[43] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, USA, 1998.

[44] Nicole Nichols, Mark Raugas, Robert Jasper, and Nathan Hilliard.
Faster fuzzing: Reinitialization with deep neural models. arXiv preprint
arXiv:1711.02807, 2017.

15

[45] Beatrice Ombuki-Berman and Franklin Hanshar. Using Genetic Al-
gorithms for Multi-depot Vehicle Routing, volume 161, pages 77–99.
Springer Berlin Heidelberg, 09 2008.

[46] Mark A Overton. Romu: Fast nonlinear pseudo-random number
generators providing high quality. arXiv preprint arXiv:2002.11331,
2020.

[47] Inc. OWASP Foundation. Owasp top ten 2017. https:
//owasp.org/www-project-top-ten/2017/A9 2017-Using Components
with Known Vulnerabilities. Accessed: 2022-04-26.

[48] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Opti-
mizing OS fuzzer seed selection with trace distillation. In 27th USENIX
Security Symposium (USENIX Security 18), pages 729–743, 2018.

[49] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 697–710. IEEE, 2018.

[50] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexan-
dru Razvan Caciulescu, and Abhik Roychoudhury. Smart greybox
fuzzing. IEEE Transactions on Software Engineering, 2019.

[51] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are
equal: Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596,
2017.

[52] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[53] rc0r. afl-utils. https://gitlab.com/rc0r/afl-utils/-/tree/master/afl utils.
Accessed: 2022-04-26.

[54] Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante,
and Carlos A. Coello Coello. Cooperative co-evolutionary genetic
programming for high dimensional problems. In Thomas Bäck, Mike
Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich,
and Heike Trautmann, editors, Parallel Problem Solving from Nature –
PPSN XVI, pages 48–62, Cham, 2020. Springer International Publish-
ing.

[55] Claude Sammut and Geoffrey I. Webb, editors. Particle Swarm
Optimization. Springer US, Boston, MA, 2010.

[56] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for OS kernels. In 26th USENIX Security Symposium (USENIX Security
17), pages 167–182, 2017.

[57] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssani-
tizer. In 2016 IEEE Cybersecurity Development (SecDev), pages 157–
157. IEEE, 2016.

[58] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective sym-
bolic execution. In NDSS, volume 16, pages 1–16, 2016.

[59] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One
pixel attack for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation, 23(5):828–841, 2019.

[60] El-Ghazali Talbi. Metaheuristics: From Design to Implementation.
Wiley Publishing, 2009.

[61] Frans Van Den Bergh and A. P. Engelbrecht. An Analysis of Particle
Swarm Optimizers. PhD thesis, ZAF, 2002. AAI0804353.

[62] Dmitry Vyukov. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller. Accessed: 2022-04-26.

[63] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In Security and privacy (SP), 2010 IEEE symposium
on, pages 497–512. IEEE, 2010.

[64] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz:
Efficient fuzzing with deep neural network. IEEE Access, 7:36340–
36352, 2019.

[65] Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher, and Stjepan
Picek. A fast characterization method for semi-invasive fault injection
attacks. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA
2020, pages 146–170, Cham, 2020. Springer International Publishing.

[66] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming
Cui, Lingming Zhang, and Yuqun Zhang. One fuzzing strategy to rule

them all. In Proceedings of the International Conference on Software
Engineering, 2022.

[67] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu,
and Xu Zhou. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing
as a Variant of the Adversarial Multi-Armed Bandit. In 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[68] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A practical concolic execution engine tailored for hybrid
fuzzing. In 27th USENIX Security Symposium (USENIX Security 18),
pages 745–761, 2018.

[69] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. FIRM-AFL: high-throughput greybox fuzzing
of iot firmware via augmented process emulation. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1099–1114, 2019.

[70] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang,
and Kai Chen. Fuzzguard: Filtering out unreachable inputs in directed
grey-box fuzzing through deep learning. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 2255–2269. USENIX Association,
August 2020.

APPENDIX

A. Evolutionary Algorithms

The pseudocode for evolutionary algorithms is given in
Algorithm 3, while in Figures 8(a) and 8(b), we present
mutations working on floating-point and binary encoding,
respectively.

Algorithm 3 Pseudocode for EA.
t← 0
P (0)← CreateInitialPopulation
repeat
t← t+ 1
P ′(t)← SelectionMechanism (P (t− 1))
P (t)← V ariationOperators(P ′(t))

until TerminationCriterion
Return OptimalSolutionSet(P)

0.11 0.27 0.34 0.180.06 0.27

0.11 0.27 0.34 0.181.12 0.27

(a) Depiction of perturbation for real-valued
vector. The sum of all values does not need
to be equal to 1 and every gene must have a
non-negative value.

0 1 1 01 1

0 0 1 01 1

(b) Depiction of perturbation for binary
vector.

Fig. 8. Perturbation operators for various solution encodings. The gene
depicted in the blue color is mutated.

B. Experiments on Encoding & RNG

We depict the evaluation results for different encodings and
RNGs in Table VIII

16

TABLE VIII. AVERAGED EXECUTIONS PER SECOND REACHED WITH
THE RESPECTIVE VARIATION OF DARWIN. POSITIVE PERCENTAGES THAT
DARWIN WAS THIS MUCH FASTER THAN THE FUZZER IN THE COLUMN.

DARWIN D-Std. RNG D-Real Valued
Benchmark execs/s execs/s execs/s
cxxfilt 2210.41 2151.47 1860.02
objcopy 2610.73 2630.80 2678.77
objdump 1687.52 2161.75 2225.95
readelf 3405.55 2711.17 2815.48
size 3140.08 2733.33 2910.92
strip 2686.19 2492.25 2665.44
geomean +3.62 % +2.42%

C. Seed Used for Binutils

We build a minimal ELF seed testcase for binutils to
achieve adequate execution speed. Its code is depicted in List-
ing 1.

1 e x t e r n ”C” v o id s t a r t () {
2 asm (”mov $60 , %r a x \n\ t
3 xor %r d i , %r d i \n\ t
4 s y s c a l l ”) ;
5 }

Listing 1. Source code for binutils seed, calling sys_exit.

D. LAVA-M - Finding Known Bugs

LAVA-M [14] is a synthetic set of bugs inserted into
the GNU coreutils suite. These hard-to-reach bugs are in-
jected automatically into the real-world binaries who, uniq,
md5sum, and base64. While LAVA-M has questionable
implications on real-world performance, it is commonly used
to evaluate fuzzers in research [4], [52], [49], [12], [64],
[39]. As LAVA-M is heavily focusing on comparisons, LAVA-
M favors approaches that concentrate on improving mutation
operators themselves [4]. Hence, we keep this for the sake of
completeness here in the abstract. While the benchmark pro-
vides one initial test case per target, we added an uninformed,
empty test case for each target to be consistent with our other
experiments. Each target is fuzzed for five hours, as commonly
done for the LAVA-M benchmark in fuzzing papers [39], [4],
[52]. Table IX depicts the results for DARWIN, MOPT, and
AFL over three runs. Notably, DARWIN is the only fuzzer in
our evaluation that finds bugs across all targets and consistently
finds the highest number of bugs in each target. For uniq
and who, which are the only targets where all fuzzers found
bugs, we further analyze in which fuzzing loop stage the
bugs were found. In the case of uniq, DARWIN finds 50%
of the bugs using the havoc stage, while MOPT and AFL
exclusively found all bugs using splicing. For who, the havoc
stage attributes for one-third of the bugs found by DARWIN,
whereas on AFL, the havoc stage accounts for 20% of the
bugs. On MOPT, the havoc stage is never successful in finding
a bug, possibly because some mutators are never scheduled.
By comparing the maximum numbers found per fuzzer, we
can conclude that DARWIN found more bugs than just the
overlap between all fuzzers. Finally, DARWIN’s approach for
mutation scheduling is orthogonal to, e.g., improvements in
overcoming branch checks [12], [68], [4], and can be used to
optimize the scheduling of the respective mutation operators
to achieve a synergetic effect.

TABLE IX. CRASHES FOUND IN LAVA-M, AVERAGE CRASHES OVER
THREE RUNS AS WELL AS THE HIGHEST NUMBER OF CRASHES

ENCOUNTERED WITHIN AN INDIVIDUAL RUN.

DARWIN MOPT AFL
Benchmark Avg. Max. Avg. Max. Avg. Max.
base64 1 2 0 0 0.33 1
md5sum 0.33 1 0.33 0 0 0
uniq 3.67 4 0.33 1 0.33 1
who 3 3 2 2 2.67 3
Total 8 10 2.67 3 2.33 1

E. Mutations in the AFL Havoc Stage

Table X lists all mutations defined in the AFL havoc stage.

ID Description
0 Flip single bit
1 Set byte to interesting value
2 Set word to interesting value
3 Set dword to interesting value
4 Randomly subtract from byte
5 Randomly add to byte
6 Randomly subtract from word
7 Randomly add to word
8 Randomly subtract from dword
9 Randomly add to dword

10 Set a random byte to a random value
11 Delete Bytes
12 Delete Bytes
13 Clone bytes (75%) or insert a block of constant bytes (25%)
14 Overwrite bytes with a randomly selected chunk (75%) or

fixed bytes (25%)
15 Overwrite bytes with an extra
16 Insert an extra

TABLE X. MUTATIONS DEFINED IN THE AFL HAVOC STAGE,
DESCRIPTIONS TAKEN FROM THE AFL SOURCE CODE [29]. EXTRA

REFERS TO TARGET-SPECIFIC DICTIONARY ENTRIES. 11 AND 12 TRIGGER
THE SAME MUTATION TO INCREASE SELECTION PROBABILITY BASED ON

PRACTICAL EXPERIENCE.

17

	Declaration
	Abstract
	Zusammenfassung
	Contents

	1 Introduction
	1.1 Attack Surface Reduction
	1.2 Attack Surface Analysis
	1.3 Dissertation Outline

	2 Secure In-Process Compartments
	2.1 Our Contributions
	2.2 Related Work

	3 Flexible Enclaves for Application-driven Security
	3.1 Our Contributions
	3.2 Related Work

	4 Enclaves as Security Primitives in Protocols
	4.1 Efficient Off-Chain Smart Contracts
	4.2 Private and Secure Offline Machine Learning
	4.3 Related Work

	5 Attack Surface Analysis with Fuzzing
	5.1 Our Contributions
	5.2 Related Work

	6 Conclusion & Outlook
	6.1 Conclusion
	6.2 Outlook

	7 List of Own Publications
	7.1 Peer-Reviewed Publications
	7.2 Invited Publications & Technical Reports
	7.3 Magazine Articles & Books
	7.4 Posters

	 Bibliography
	List of Figures

	 Lists
	 Appendices
	A IMIX: In-Process Memory Isolation EXtension
	B CURE: A Security Architecture with CUstomizable and Resilient Enclaves
	C POSE: Practical Off-chain Smart Contract Execution
	D OFFLINE MODEL GUARD: Secure and Private ML on Mobile Devices
	E DARWIN: Survival of the Fittest Fuzzing Mutators

