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Abstract 

Low or no code machine learning platforms, whereof tools such as KNIME, DataRobot or WEKA are among the best-known, have 
facilitated the implementation of machine learning applications in industrial environments in recent years by transferring 
programming tasks to an assistance system instead of demanding users to provide the respective skills. Despite the high number 
of innovations, to the best of the authors’ knowledge, there is no comprehensive classification scheme to assess the autonomy of 
those tools. Hence, this paper demonstrates a maturity model that classifies the assistance level of existing digital machine learning 
tools with respect to the requirements of manufacturing environments. It is based on the levels of driving automation and 
concretized by the so-called CRISP-ML(Q) procedure model. The model allows researchers to rate newly developed tools against 
existing ones and aims to serve as a baseline for future research. To evaluate the added value to the research landscape, semi-
structured interviews with four ML experts were conducted. Finally, five commercial tools were categorized in the model to show 
its applicability. 
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1. Introduction 

The rapid growth of machine learning (ML) applications in various industries has led to a surge in demand for user-friendly, 

accessible tools that can simplify the implementation process. Low or no-code ML platforms, such as KNIME [2], DataRobot [3], 

and WEKA [4], have emerged as viable solutions that enable users without extensive programming skills to develop and deploy 

ML applications in industrial settings. These platforms have gained popularity for their ability to bridge the gap between domain 

experts and data scientists, ensuring more efficient collaboration [5]. 

Despite the widespread adoption of those tools, there is currently no comprehensive classification scheme to assess the autonomy 

levels of such platforms. In this paper, a maturity model is proposed that systematically classifies the assistance levels of existing 

digital ML tools, with a focus on their application in manufacturing environments. Drawing inspiration from the levels of driving 

automation (LDA) [1] and leveraging the well-established Cross-Industry Standard Process model for the development of machine 

learning applications with a quality assurance methodology (CRISP-ML(Q)) [6] framework, the model aims to serve as a baseline 

for evaluating new and existing tools in terms of their autonomy. By providing a robust maturity model for assessing the autonomy 

of low or no-code ML platforms, this paper seeks to facilitate informed decision-making for researchers and practitioners, promote 

the development of more advanced and autonomous ML tools for industrial applications, and enable more efficient collaboration 

between domain experts and data scientists. 

 

The remainder of this paper is structured as follows. Chapter 2 describes the existing research landscape with emphasis on digital 

assistance systems for autonomy in machine learning. In chapter 3, the methodology for the development is described and 

subsequently the maturity model itself is displayed. Thereupon, an evaluation with ML experts was conducted as well as existing 

commercial ML tools have been categorized through the newly developed model in chapter 4. Chapter 5 provides a summary and 

gives an outlook to future research. 

 

2. Related Works 

In this chapter, the literature landscape on autonomy in machine learning, with an emphasis on classifying autonomy levels of 

digital assistance systems for ML applications is discussed.  

Lee et al.'s [7] influential work investigated autonomic machine learning, aiming to reduce expert intervention, and suggested a 

classification of autonomy levels based on diverse factors within the ML process. Standardization in machine learning has mostly 

focused on software development, defining the computing environment necessary for the international standardization of high-

performance ML frameworks. Recent years have seen significant progress in autonomic ML platforms, self-directed learning, and 
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autonomic feature extraction. Additionally, there is growing interest in automating the determination of hyperparameters for ML 

algorithms [8, 9]. 

Commercial platforms such as Google Cloud AutoML [10] have surfaced, allowing developers with limited ML knowledge to 

create and deploy ML models using cloud-based environments. These platforms often employ various methods for determining 

hyperparameters, including grid searches, random searches, Powell's method, the Nelder-Mead method, tree-based Parzen 

estimation (HyperOpt), sequential model-based algorithm setting (Auto-Weka), and Gaussian process-based models [11]. 

Prominent tools in the ML landscape, such as Auto-sklearn [8], Auto-Weka [12] and TPOT [13], utilize techniques like Bayesian 

optimization, sequential model-based algorithm configuration (SMAC), and genetic programming for algorithm selection and 

hyperparameter tuning [11]. These developments have contributed to the creation of more autonomous ML systems. 

Considerable research has focused on distributed processing and parallel processing in machine learning to tackle the computational 

demands of these systems [14]. Platforms such as GraphLab [15], SystemML [16], SimSQL [17], and MLBase [18] have emerged, 

providing programming and runtime support for ML tasks. Furthermore, frameworks like Giraph [19], Apache Spark [20], and 

DryadLinq [21] have been developed to facilitate the execution of ML tasks, despite not being explicitly designed for this purpose.  

The development and adoption of digital assistance systems for ML applications have garnered attention due to their potential to 

broaden access to advanced ML techniques. Low or no-code ML platforms, including KNIME [2], DataRobot [3], RapidMiner 

[22], and WEKA [4], have been extensively examined for their ability to enable non-experts to develop and deploy ML applications 

across various industries. 

Incorporating human expertise and feedback into the ML process has led to significant advancements in human-in-the-loop ML 

and explainable AI (XAI), resulting in more transparent, interpretable, and user-friendly ML models. Automated machine learning 

(AutoML), an essential aspect of many low or no-code platforms, seeks to automate the process of selecting, configuring, and 

optimizing ML models, further advancing the development of autonomous digital assistance systems [7]. Indeed, low or no-code 

ML platforms have found success across diverse industries, such as manufacturing, healthcare, finance, and agriculture, showcasing 

the potential of digital assistance systems for ML to drive innovation and address real-world challenges.  

Likewise, several maturity levels have been developed over the past years. Exemplarily, Karmaker et al [23] developed a rating 

system for the level of autonomy of ML implementation solutions with seven levels. It starts with the mere programming of known 

languages such as Python or Java (termed no automation) and then successively includes additional steps, whereby ending on a 

stage where all tasks from use case formulation to result summary as well as recommendation are incorporated. In addition, the 

enterprise Zelros AI describe a model ranging from a basic approach with a minimum of functionalities to more advanced systems 

that include domain knowledge [24]. In the early levels, tasks are reduced to the cross-validation, as well as the testing of several 

machine learning algorithms and their parameters, respectively. In return, the fourth and thereby last level displays current state of 

research and development. 

 

In conclusion, the related works discussed here underscore the importance of classifying autonomy levels in digital assistance 

systems for ML applications. This section offers a comprehensive understanding of the current state of the art and the challenges 

in creating more autonomous ML systems. Yet, it was found that only few authors have already published similar levels of 

autonomy in the past and that those remain on a rather abstract level. Hence, this paper seeks to develop a maturity model that is 

in line with the existing ones but demonstrates advantages through its concretization. 

 

3. Development of the maturity model 

3.1. Foundations of the model 

Within this subchapter, the underlying methodology for the development of the maturity model is outlined. Whereas this subchapter 

aims to provide the theoretical foundations of the LDA and CRISP-ML(Q), their intersection with respect to the maturity model 

will be outlined in the subsequent subchapter. The LDA is a recognized basis for maturity models, from which others are derived 

(e.g. Industry 4.0 [25]). It can be assumed through the existing transfer to the Industry 4.0 context that the model is also suitable 

for ML applications. 

The LDA [1] is divided into six levels, ranging from no automation to full automation (a graphical overview can be taken from 

Figure 1). On level 0, a vehicle is controlled exclusively by the driver and no interactive system is used. This implies the absence 

of any assistance system. Level 1 displays a driver assisted vehicle, which can take over certain functions. Such examples might 

be cruise or distance control to the vehicle ahead. Level 2 of the LDA is defined as a partially automated vehicle behaviour. The 

goal is to be able to drive straight autonomously, having a lane assistance system and taking over complete behaviour in traffic 

jams. At level 3, a vehicle can conditionally control the drive. Respective examples include overtaking manoeuvres on a highway 

or intelligent speed control in relation to current traffic behaviour. This implies that a car can interact with its environment. 

However, the driver must be alert and intervene in case of urgent issues. The step up to level 4, which represents highly automated 

driving, requires no longer a driver. In certain situations, a vehicle system can solve problems automatically and is fully connected 

to the environment. The driver does not need to intervene or be attentive while driving. Exemplary functions at level 4 are 

autonomous parking or recognizing green and red phases of traffic light systems in cities. The fifth and last level of the LDA 

represents a vehicle that takes over all driving tasks and can recognize and cope with all road traffic problems without exception. 

 

However, the LDA remains on an abstract level whereby not providing specific criteria for the classification of a given tool on a 



  

 

concrete level. Consequently, the LDA is specified by the CRISP-ML(Q) [6].  

 

Moreover, this chapter also provides an introduction into the CRISP-ML(Q) procedure model following the descriptions of [6]. Its 

steps can simultaneously be seen in Figure 2. The CRISP-ML(Q) starts with Business and Data Understanding. Within this 

phase, business goals are defined with the help of business stakeholders and the translation of the use case into an ML goal is 

discussed. In addition, data specifications are captured and reviewed to finally assess the feasibility of the overall project. The 

following step 2 is defined as Data Engineering. It aims to ensure that a data set is available for the subsequent modeling phase. 

If not yet present, users are called to create a data set according to their needs. This phase is not a static application. Consequently, 

a repetition of this step can take place at a later point within the project. Data Engineering includes tasks such as feature selection, 

feature engineering and data augmentation, respectively. In addition, the data file format is specified, as some ML tools require 

specific variables and input types. The definition of standards helps to reduce the risk of errors in merging and detecting erroneous 

data. The choice of modeling techniques with respect to ML is related to the business objectives established in step 1. Step 3 of the 

CRISP-ML(Q) is termed Model Building. The requirements and constraints are used as inputs to perform the model selection. 

The goal of this phase is to develop several models that meet the requirements defined in the previous steps. Hence, model selection 

and model training are covered here. At the end of this phase, ensemble methods are applied to make a decision based on the 

aggregated decisions of the models. Techniques used are boosting, bagging, and mixture of experts. The subsequent phase Model 

Testing and Evaluation is defined as the fourth step of the CRISP-ML(Q) procedure. In this phase a final evaluation of the model 

Figure 1: Levels of driving automation, Source: [1] 
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Figure 2: CRISP-ML (Q) Process, Source: [6] 



 

 

is performed using a test and validation data set. Finally, the models used are decided with the help of ML experts. In case of not 

meeting the previously defined metrics, previous steps are repeated, or the project is cancelled. Deployment represents step 5 and 

marks the application under production environment. Among others, decisions are made for the hardware use. ML related options 

are for example the optimization of the target hardware in terms of a Central Processing Unit (CPU) and Graphics Process Unit 

(GPU) availability or the optimization of the target operating system. In addition, another challenge is distinguishing the production 

data with the training data. Previously made assumptions can therefore no longer apply. This leads to a degradation of the model. 

The sixth and last step of CRISP-ML(Q) is named Monitoring and Maintenance. Due to the long period for the application of 

the ML models, the entire life cycle has to be managed. In case of a missing model follow-up, this can lead to a minimization of 

performance and consequently to wrong predictions. The Monitoring process is used to monitor all input data. Based on the 

monitoring signals, models can be updated when input data change significantly or anomalies exceed a given threshold. 

3.2. Autonomy levels for digital ML tools 

Within this section, the development of the maturity model is presented in more detail. As previously described, it combines the 

LDA with the CRISP-ML(Q). Consequently, their intersection and its transmission to the context of ML is pointed out. For the 

sake of using the maturity model as a ranking, several criteria for each stage are defined, which will likewise be explained. It should 

be noted that the model is built incrementally in that sense that a system rated on a specific level automatically fulfils all criteria 

on the previous levels.  

Before elaborating on the model, it is essential to define the two terms autonomy and automation that are relevant for understanding 

the paper. A system can be described as autonomous when it solves complex tasks, makes decisions and reacts to unforeseen events 

on its own authority and without detailed programming [26]. In contrast, a system can be said to be automated when thoughtful, 

causal relationships are programmed into it – regardless of their scope and effort [27]. 

 

The following six steps displayed in Figure 3 provides an overview over the maturity model based on the LDA. A more detailed 

description is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Six steps of the maturity model 

Subsequently, each of them is explained in depth and worked through. A summary of the maturity model with respect to the single 

phases of CRISP-ML(Q) is given in Table 1. A step displayed in brackets has been partly included. The single levels are explained 

in more detail in the following.  

 

 

Table 1: Summary of the maturity model with respect to respective criteria 

Level Title Included CRISP-ML(Q) steps Criteria for specification 

0 No automation - - 

1 Assisted system • (Model Building) 

• (Model Testing and Evaluation) 

1.1 Use of standardized libraries 

1.2 Application of Machine Learning Operations 

(MLOps) 

No automation Level 0 

Assisted system Level 1 

Partial automation Level 2 

Conditional automation Level 3 

High automation Level 4 

Full autonomy Level 5 

Implementation of ML models is performed completely manually 

Use of various standard libraries and application of MLOps principles 

Use of platforms with model selection and hyperparameter optimization  

Data preparation, model deployment and feature engineering 

Domain-specific feature engineering, learning from experience 

No assignment of input or output, understanding of entire ML projects 



  

 

Level Title Included CRISP-ML(Q) steps Criteria for specification 

2 Partial 

automation 
• (Data Engineering) 

• Model Building 

• Model Testing and Evaluation 

2.1 Possibility of integrating or uploading 

specific data types 

2.2 Automatic recognition of different data types 

2.3 Automatic selection of the appropriate model 

2.4 Automated splitting into training, testing and 

validation data sets 

2.5 Automated hyperparameter tuning and 

ensembling 

3 Conditional 

automation 

• Data Engineering 

• Model Building 

• Model Testing and Evaluation 

• Deployment 

• (Model Monitoring and 

Maintenance) 

3.1 Automated Feature Engineering 

3.2 Automated Feature Selection and Feature 

Extraction 

3.3 Techniques of data augmentation 

3.4 Creation of a graphical user interface 

3.5 Automated Deployment 

4 High automation 

• Data Engineering 

• Model Building 

• Model Testing and Evaluation 

• Deployment 

• Monitoring and Maintenance 

4.1 Automated domain-specific feature 

engineering 

4.2 Advanced hyperparameter optimization 

4.3 Automated addition of data 

5 Full autonomy 

• (Business and Data 

Understanding) 

• Data Engineering 

• Model Building 

• Model Testing and Evaluation 

• Deployment 

• Monitoring and Maintenance 

5.1 Automated domain knowledge 

5.2 Fully communicative interaction between 

user and software 

5.3 Automated opportunity to extend ML 

systems by using ML 

 

  

Just as in the LDA, level 0 of the maturity model defines a situation of no automation. The implementation and development of 

algorithms related to ML are programmed from scratch by software engineers and computer scientists. It represents the 

development of models on programming languages such as C++ or Java. Historically, implementing ML, without the use of 

standard libraries, required a high level of expertise in this area. Indeed, ML model development is an experimental and iterative 

process. Accordingly, no functions and steps from CRISP-ML(Q) are automated. All areas are programmed and processed 

manually. However, level 0 is outdated and with respect to level 1 nowadays inapplicable. 

 

Level 1 of the maturity model is referred to as an Assisted system for manual programming and model testing. This means, that 

the actual ML application is programmed by the user, who therefore requires a high level of expertise in software development and 

ML. Level 1 is subdivided into two criteria. One of the main features at this level is the use of standardized libraries (criterion 1.1) 

on high-level programming languages, such as Python. These libraries are indispensable today in the creation of ML algorithms. 

In the area of data processing and ML implementation, scikit-learn [28], NumPy [29] and Pandas [30] are used. On the other hand, 

PyTorch and TensorFlow [31] are used in case of neural networks. In order to finally be able to visualize the results, Matplotlib 

[32] or seaborn [33], among others, are used to visualize the results. Criterion 1.2 includes the application of Machine Learning 

Operations (MLOps) [34]. This criterion shows an automation of certain manual development in the context of high-level 

programming languages and automation of certain functionalities. By integrating MLOps, development times are reduced as well 

as techniques such as testing or the deployment of large software systems are integrated, whereby increasing verifiability and 

reliability. With respect to CRISP-ML(Q), first automation steps take place in Model Building, to be able to implement several 

algorithms more efficiently. 

 

Level 2 is called Partial automation. From level 2 onwards, platforms including AutoML solutions for the end-user are 

considered. The first criterion (2.1) is defined by the possibility of integrating or uploading specific data types. This means that 

clearly structured data can be uploaded, such as in a tabular. This automates the insertion of data and eliminates the need for the 

integration by a data scientist writing code. Criterion 2.2 builds on the previous function and defines the automatic recognition of 

different data types. A distinction can be made between numeric data, categorical data or time series. This function facilitates the 

selection of target variables for the subsequent determination of the ML algorithm. Since input is mostly numerical, data can be 

passed unchanged in certain situations. Categorical data, on the other hand, are divided into a finite set of classes [35]. The 

automatic selection of the appropriate model is presented as criterion 2.3. The selection of the model can be a challenge for ML-

developments considering the No-Free-Lunch-Theorem [36]. Criterion 2.4 aims at automated splitting into training, testing and 

validation data sets. The automated splitting depends on the size of the data. If a certain threshold of data is exceeded, a standard 

division into training, test and validation data sets can be performed. In contrast, below the certain threshold different methods are 



 

 

used to achieve the split with a lower amount of data. These methods include, for example k-fold cross-validation and Monte Carlo 

cross-validation. Criterion 2.5 then encompasses automated hyperparameter tuning and ensembling. The selection of 

hyperparameters with respect to ML takes place before the training step and is an iterative process. 

 

Level 3 is referred to as Conditional automation. Its first specifying criterion 3.1 - Automated Feature Engineering - refers to the 

step Data Engineering displayed in the CRISP-ML(Q) process model. The automation of data preparation is dealt with in greater 

detail here. Criterion 3.2 is defined as Automated Feature Selection and Feature Extraction. Here, it is of relevance to consider 

only the necessary features from the data and to eliminate the unusable features for the development of the subsequent ML model. 

Criterion 3.3 includes techniques of data augmentation, which is used to create multiple data using already existing data. For 

example, mathematical transformations of the existing data can be used to ensure an expansion of the data sets achieved. The 

creation of a graphical user interface (GUI) is presented by criterion 3.4. The GUI serves as an interaction between humans and 

software and can easily be operated by any end user. It displays visualizations of end results with the help of dashboards, model 

explanations and metrices. Additionally, by using drag-and-drop techniques or functions on the user interface, various steps for 

ML development can be generated without explicitly programming ML algorithms. Additional supplements through interfaces to 

other programming languages or a direct implementation on the platform used are also possible. The last criterion of Level 3 is 

Automated Deployment (Criterion 3.5). This criterion contains the automated or simplified possibility to apply the already trained 

model under production environment. 

 

Level 4 of the maturity model is defined as a level with High automation. Automated domain-specific feature engineering 

(criterion 4.1) is presented as the first criterion of this stage. In practice, data is often collected and stored using various sensors. In 

the era of “Big Data”, data is defined with high data volume, frequency and challenges in terms of processing speed [37]. Data sets 

generated by the different sensors contain different amounts of information. The analysis and further processing are major 

challenges here. In addition to the demand for new software architectures and platforms, an explicit analysis of the data is also 

necessary to be able to pass it on to the model. Criterion 4.1 contains the automated function to analyze the data generated from a 

wide variety of sensors. This includes an examination of the data information and the decision, i.e., to merge data. A simple 

integration and aggregation of different data sources into one file can be used for the modelling process of ML. Thereby a deep 

basic understanding of data is required, since understanding the data often requires expert knowledge. The next criterion of this 

level is the advanced hyperparameter optimization (criterion 4.2). This includes a sophisticated function for automatic 

determination of the hyperparameters. The fulfilment of this criterion requires the ability of a system to remember past ML 

applications and to apply this experience to new problems, i.e., by making use of so-called meta-learning [38]. A system at this 

level should continuously learn from new data and retain knowledge from previously used data. The automated addition of data 

specifies criterion 4.3. The goal is to be able to automatically add new data based on the understanding of the data.  

 

Level 5 represents the goal of full autonomy of all six steps of the CRISP-ML(Q) process model. The highest level of automation 

is achieved and, at the same time, requires the least or no manual effort. Thus, the use of ML implementation solutions would be 

possible without detailed knowledge of the functionalities of ML. Criterion 5.1 describes the goal of automated domain knowledge. 

This means that the first step of CRISP-ML(Q) can be solved autonomously in the last stage of the evaluation system. Thus, an 

automatic recognition of business problems with respect to the company goals is achieved. The quantification of the potential 

business value in relation to ML projects displays a challenging process and is still solved with the long-term experience of domain 

experts. In addition to the business stakeholders, domain experts and data scientists can also result, as well as critically analyze the 

achievement of business goals. With criterion 5.2, a fully communicative interaction between user and software is achieved. On 

the one hand, it means that no explicit specifications are necessary for the creation of an ML solution. On the other hand, however, 

a presentation of the prediction or the solution is necessary. Another advantage is the use of an ML application by non-technical 

users. In addition, ML experts can also use criterion 5.2 to formulate highly complex problems and issues using conversational 

interaction. The last criterion 5.3 describes the automated opportunity to extend ML systems by using ML. This approach requires 

further research in unsupervised learning or transfer learning. Criterion 5.3 is accompanied by numerous issues, as an ML problem 

requires a high number of parameters and data to achieve optimal performance. This notion for Level 5 points to a future scenario 

with the ideology towards fully automated ML application. The achievement of the last level requires an interdisciplinary research 

approach involving multiple disciplines of computer science and engineering sciences. Among them are the development of 

human-computer interactions, automated data generation with its processing, and advanced data science. 

4. Evaluation of the model 

For assessing the applicability and its contribution to the research landscape, two steps were taken. First, an evaluation in terms of 

applicability was conducted. For this, semi-structured expert interviews with n = 4 experts working in ML research and data science 

in industry were held. They were asked the following questions: 

 

1. How do you assess the logic and reasonableness of the criteria for the application of AutoML? 

2. In view of the CRISP-ML(Q) procedure model, have the functions been correctly assigned according to their degree of 

difficulty of automation? 

3. How do you evaluate the logic for deriving the evaluation system, in that sense that it was inspired through a classification 

scheme and specified with the help of CRISP-ML(Q)? 



  

 

4. How do you assess the applicability of the evaluation system to be used for the evaluation of existing platforms and thus to 

reflect the current state of the art as well as future fields of research?  

 

All experts describe the maturity model to be comprehensible and logical, thus appropriate as a guideline for assessing the 

autonomy of ML tools. The CRISP-ML(Q) was the right choice for deriving the model. For motivation and analogy, a maturity 

model on autonomy levels was entitled to be useful, but also clear differences need to be considered. As such, whereas the goals 

and ideas for driving autonomy have been clearly defined, the definition of full autonomy for ML implementation solutions is more 

complex. One expert highlighted the opportunity for additional examination of the single levels, e.g., by counter-questions. In 

detail, it could be checked how much additional programming tasks are necessary at a specific level to achieve the respective level. 

Additionally, one expert outlined that a further division of the categories and their in-depth concretization would be a possible 

future research direction. Despite the increasing development of corresponding platforms, the need for domain expertise to use 

given platforms was marked by two experts. In conclusion, the expert interviews revealed that the maturity model can be seen as 

useful for evaluating ML tools. Consequently, users might make a selection of a given platform regarding the application. 

 

Second, the proposed maturity model was applied to the six commercial tools KNIME [2], Google AutoML [10], Azure ML [39], 

WEKA [4], Data Robot [3] and Orange [40]. This application demonstrates the model's usefulness in categorizing digital ML 

platforms and guiding future development in the field. Table 2 displays a summary of the single ratings. It must be noted that the 

authors of this publication did not test the actual assistance systems but solely concentrated on the publicly available descriptions. 

Besides, as evident, only available information that is explicitly described can be considered for the classification. In return, non-

existing information needed to be identified by reading between the lines. As evident in Table 1, level 3 – Conditional autonomy 

– displays the current state of development. Indeed, most tools fall into this category. 

 

Table 2: Evaluation of existing commercial tools 

Criterion Short description KNIME 
Google 

AutoML 

Azure 

ML 
WEKA 

Data 

Robot 
Orange 

1.1 Use of standardized libraries ✓ ✓ ✓ ✓ ✓ ✓ 

1.2 Application of MLOps ✓ ✓ ✓ ✓ ✓ ✓ 

2.1 
Possibility of integrating or 

uploading specific data types 
✓ ✓ ✓ ✓ ✓ ✓ 

2.2 
Automatic recognition of different 

data types 
✓ ✓ ✓ ✓ ✓ ✓ 

2.3 
Automatic selection of an 

appropriate model 
✓ ✓ ✓ ✓ ✓  

2.4 
Automated splitting into training, 

testing and validation data sets 
✓ ✓ ✓ ✓ ✓ ✓ 

2.5 
Automated hyperparameter tuning 

and ensembling 
✓ ✓ ✓ ✓ ✓  

3.1 Automated Feature Engineering ✓ ✓ ✓ ✓ ✓  

3.2 
Automated Feature Selection and 

Feature Extraction 
✓ ✓ ✓ ✓ ✓  

3.3 Techniques of data augmentation ✓ ✓ ✓ ✓ ✓  

3.4 Inclusion of a GUI ✓ ✓ ✓ ✓ ✓ ✓ 

3.5 Automated Deployment ✓ ✓ ✓  ✓  

4.1 
Automated domain-specific feature 

engineering 
      

4.2 
Advanced hyperparameter 

optimization 
      

4.3 Automated addition of data       

5.1 Automated domain knowledge       

5.2 
Fully communicative interaction 

between user and software 
      

5.3 
Automated opportunity to extend 

ML 
      

Assigned 

Level 

 
3 3 3 2 3 1 

 



 

 

5. Conclusion and outlook 

The present publication describes a maturity model aiming to assess the autonomy level of existing digital ML tools that follow 

the goal to simplify the implementation process of ML applications by domain experts in manufacturing environments. It is based 

on the levels of driving automation and concretized by the CRISP-ML (Q) process. Inspired by the LDA, the model is divided into 

six steps ranging from no automation to full automation. Whereas level 0 is outdated and, level 5 remains a vision for the future. 

The conducted evaluation demonstrates that level 3 can be denoted as state of the art where most progress is performed on. The 

result of the paper aims at researchers investigating this field and who want to rate newly developed systems against the state of 

the art. Reliability in the context of the procedure is ensured on the one hand by the systematic derivation of the system based on 

a common classification scheme and a procedure model and on the other hand by the orientation towards existing and in literature 

published models. 

 

The maturity model leaves space for future extensions. As such, it can be elaborated by the human intervention. The intervention 

should consequently decrease with increasing level. A systematic integration into the described model could not be carried out. 

Furthermore, it might be necessary to carry out a further division or concretization of the single levels as well as conduct more 

interviews to underline the findings described above. Although the model was developed for the manufacturing industry, it might 

be transferable to other domains. Yet, an evaluation of a potential transfer was not tested as it was out of the scope of this paper. 

As described above, the experts surveyed deal with this topic in depth and can therefore provide profound answers. Nevertheless, 

the sample of four experts was small. More in-depth insights could therefore be gained by expanding the evaluation. Lastly, in next 

works a further evaluation through the quantitative testing of the platforms can be executed as an extension of the evaluation based 

on the tool descriptions. Hence, a proper testing of the platforms is necessary to underline the rating described in chapter 4. 
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