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ABSTRACT
Recent years have seen a great increase in the capacity and parallel

processing power of data centers and cloud services. To fully utilize

the said distributed systems, optimal load balancing for parallel

queuing architectures must be realized. Existing state-of-the-art

solutions fail to consider the effect of communication delays on the

behaviour of very large systems with many clients. In this work,

we consider a multi-agent load balancing system, with delayed

information, consisting of many clients (load balancers) and many

parallel queues. In order to obtain a tractable solution, wemodel this

system as a mean-field control problem with enlarged state-action

space in discrete time through exact discretization. Subsequently,

we apply policy gradient reinforcement learning algorithms to find

an optimal load balancing solution. Here, the discrete-time system

model incorporates a synchronization delay under which the queue

state information is synchronously broadcasted and updated at all

clients. We then provide theoretical performance guarantees for

our methodology in large systems. Finally, using experiments, we

prove that our approach is not only scalable but also shows good

performance when compared to the state-of-the-art power-of-d

variant of the Join-the-Shortest-Queue (JSQ) and other policies in

the presence of synchronization delays.
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Figure 1: Our system model consists of N clients and M par-
allel servers. Jobs arriving in a certain time interval ∆t are
assigned to the clients, which consequently assign them to
one of a few sampled servers based on some policy. Arrows
from each client indicate the d = 2 servers randomly sam-
pled by each client at the current epoch.
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1 INTRODUCTION
Load balancing in large queuing systems has been of great interest

in the field of parallel processing and has yielded many success-

ful distributed algorithms such as Join-the-Shortest-Queue (JSQ),

Shortest-Expected-Delay (SED) [34, 40, 41] and many others, see

also [39] for a recent review. JSQ and SED have been designed for

asynchronous systems with a central dispatcher (agent / client)

assigning jobs (packets) to M parallel servers (queues) under the

assumption that the dispatcher can obtain instantaneous, accurate

and synchronized information of the queue lengths at all times. In

practice, both instant information and centralized dispatching are

not realistic, especially if the number of queuesM ≫ 1 is large.

To remedy this scalability issue, the power-of-d versions JSQ(d)
and SED(d) of JSQ and SED [26] let the dispatcher sample only

d ≤ M out ofM servers randomly and then allocate the job to the

sampled server with shortest expected processing time. However,

JSQ(d) and SED(d) nonetheless assume instant and accurate infor-

mation of the state of those d servers, which remains unrealistic

due to both the distributed nature of the system and computational

overheads introducing latency. The problem is only exacerbated in

a multiple client scenario where all clients access simultaneously.

Hence, to model a more realistic system, it is of importance to take

communication delays ∆t into account. In [25], it was shown that

JSQ fails when ∆t > 0 mainly due to a phenomenon known as
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‘herd behaviour’: Multiple clients assigning jobs at the same time

would consider the same subset of servers with few jobs, and thus

all clients will end up assigning to the same servers. This eventually

leads to higher response times and, in the case of finite queues,

job drops. Though JSQ(d) ameliorates this issue somewhat since it

is highly unlikely for small d and large M that many clients will

randomly choose the same servers, the technique nonetheless re-

mains suboptimal under delayed information. Indeed, as ∆t → ∞,

a completely random allocation to one of the servers becomes opti-

mal [26]. However, when the delay ∆t lies between 0 and ∞, the

optimal policy must lie in-between, which will be the main focus

of this work.

In this paper, we shall consider a multi-agent system of N clients

and M servers with N ≫ M ≫ 1 and communication delay. For

scalability, each client samples d of the M servers uniformly at

random using the power-of-d method. The discretized system can

be understood as a delayed periodic or synchronously updating

system. Most importantly, as a result of delayed information, the

number of agents will make a difference as opposed to the delay-free

case, since each agent may see a different subset of information. In

order to scale to a great number of clients and servers, we will apply

mean-field theory, analogous to fluid limitsM → ∞, that is used to

tractably model and assess systems with many queues. Fluid limits

were used to study the performance of scheduling algorithms like

JSQ and JSQ(d) in terms of sojourn time and average queue length

[10, 26, 29]. However, models including delayed information still

remain an open problem [22], in particular in the presence of many

clients. One work with similar system model and synchronization

delays is given in [43], though they instead consider finitely many

servers with infinite buffer sizes where the multiple clients use

their local, asynchronous estimates of queue lengths to perform

scheduling. This idea of using local client memory has also been

proposed in [3, 38], however only for a single client.

More generally, the same tractability issue for large systems

has led to the increasing popularity of general (competitive) mean-

field games (MFG) [16, 19, 32] and their cooperative counterpart

of mean-field control (MFC) [2, 4, 5, 9, 11], wherein a system with

large numbers of interchangeable and indistinguishable agents is

converted into a system where one representative agent is interact-

ing with the distribution (mean-field) of other agents. Here, there

has been great recent focus on learning-based solution algorithms

for MFGs [1, 8, 14, 36] and MFC [7, 13, 28]. We will similarly apply

the enlarged state-action space technique for MFCs (see e.g. [13]),

its associated dynamic programming principle as well as reinforce-

ment learning in order to find optimal load balancing policies for

otherwise intractably large system. While reinforcement learning

(RL) [37], so-far has found great success e.g. in games [6, 27], ro-

botics [17] or communication and queuing networks [1, 23], in

the case of multiple agents, there still remain many challenges in

multi-agent reinforcement learning (MARL) such as intractabil-

ity for large numbers of agents [42]. RL itself has long since been

used in numerous works – though not in the context of mean-field

control – to find an optimal load balancing policy. For examples,

see [18, 20, 35, 41] and references therein. The combination with

mean-field control allows for tractable solution of very large load

balancing systems and shall be the subject of our studies. We will

similarly formulate a synchronous system model with delay by as-

suming N ≫ M → ∞, which will allow us to apply reinforcement

learning to the otherwise difficult to solve optimal load balancing

problem. Although our model shares similarities in concept to MFC,

it does not immediately fit into the framework of conventional MFC,

as we not only derive the discrete-time mean-field model starting

from an underlying continuous-time dynamic, but at the same time

take a double limit of infinitely many queues and agents. While,

existing MFC frameworks typically focus only on the limit of infin-

itely many agents without external dynamics of non-agent-bound

(queue) states.

To summarize our contributions, (i) we consider a model not

only with synchronous communication delay, but also under the

limit of both many clients and many servers, stepping towards

a general solution for the outstanding problem of scalable load

balancing under delayed information [43]; (ii) we formulate the

system as a mean-field control problem, introducing a decision

hierarchy to obtain a standard Markov decision process amenable

to standard solution techniques; (iii) we theoretically show the

well-motivatedness of our limiting model by proving that the lim-

iting system performance is reached with arbitrary precision in

sufficiently large systems; and (iv) we apply reinforcement learning

to solve the otherwise difficult-to-solve Markov decision process

with continuous, high-dimensional action space, at a complexity

independent of the number of clients N and serversM . We find that,

as the synchronization delay increases to an intermediate value, the

choice of the shortest queues or fully random assignment becomes

suboptimal and is outperformed by a learned policy. This policy can

either be learned offline for a given system with known parameters,

or applied online to learn optimal assignments in live systems. Our

claims are supported both theoretically and experimentally and ab-

lated for the case where our formal assumption N ≫ M is violated,

giving us a good solution for large-scale load balancing systems

with many clients and servers.

2 LOAD BALANCINGWITH DELAY
In this section, we will introduce the problem setting that will

motivate our formulation. An overview of the considered load

balancing system is given in Figure 1.

We consider N clients and M servers, where each server has

its own queue with limited buffer capacity. Jobs arrive randomly

according to a Markov modulated Poisson process – modelling e.g.

changing load factors throughout a day – with rate λtM and are

divided uniformly among clients, which will allocate the jobs to

servers for processing. In accordance with the power-of-d tech-

nique, clients shall randomly select d out ofM queues and – accord-

ing to some policy to be optimized – send their jobs to a selection of

these d queues, where d ≪ M . On the queuing side of our system

model, we haveM parallel and homogeneous servers in the system

with service rates α . The queues are finite with a maximum buffer

capacity B and the jobs in the queues are served in a first-in-first-

out (FIFO) manner. Each server sends back its queue filling status,

which is then used by the clients to make their decision for the

next incoming jobs. The number of jobs that are currently in each

queue together make up the state of the environment. Our goal is
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to minimize overall job drops under decentralized decision-making

by each client, e.g. like in edge computing scenarios.

We will assume that our system operates synchronously and

broadcasts updates of sampled queue states to dispatchers only

once every fixed time interval. Thus, in the following we will model

our system at discrete decision epochs {0,∆t , 2 · ∆t , . . .} for some

synchronization delay ∆t > 0, after each of which the clients will

sample d new queues and keep this selection of d queues for the

entire duration of that decision epoch. Not only will this allow

us to incorporate communication delays, but it will also lead to

significantly less sampling of server states by the clients, as each

client is only required to sample d servers in every decision epoch.

Another advantage of this approach is that the resulting discretized

Markov decision process will allow us to apply powerful and well-

established reinforcement learning algorithms, which to this date

have been extensively developed for discrete-time models.

2.1 Mathematical model
Notation. Let S be a discrete space equipped with the discrete topol-
ogy. Define by P(S) the space of (Borel) probability measures on S,
equipped with the l1-norm ∥µ−ν ∥1 =

∑
s ∈S |µ(s) − ν (s)|. To keep no-

tation simple, we denote the probability mass function of ν ∈ P(S) by
ν (·). In the following, we denote random variables of the finite system
with superscript N ,M , of the infinite-agent version with superscript
M and of the limiting mean-field system without superscript.

Formally, the N -agent M-queue system could be considered a

multi-agentMarkovDecision Process (MMDP) forN ,M ∈ N, i.e. the
cooperative and fully observable case. See e.g. [30] for a review of

possible multi-agent problem formulations. In principle, one could

even consider competitive or partially observed cases. However,

the resulting limiting mean-field systems will be significantly more

complex and thus remain outside of our scope. Instead, we will

in the following consider a decentralized control setting where

agents, due to the symmetry of our model, shall act depending on

the current distribution of queue states.

DefineZ B {0, . . . ,B} as the finite queue state space, i.e. each
server can contain at most B jobs in its queue. The agent state space

shall be denoted as X B {1, . . . ,M}d , i.e. a selection of d random

queues. Although we could disallow repeated queue selections,

it will make no difference in sufficiently large systems and adds

unnecessary notational complexity. Finally, each agent can choose

as an action its choice of one of d randomly sampled accessible

queues, i.e. the action space is defined as the d possible queue

choices U B {1, . . . ,d}. At any decision epoch t = 0, 1, . . ., the

states and actions of agents i = 1, . . . ,N , are random variables

denoted by xN ,M,i
t ≡ (xN ,M,i

t,1 , . . . ,xN ,M,i
t,d ) ∈ X and uN ,M,i

t ∈

U, and similarly the state of each queue j = 1, . . . ,M is denoted

by z
N ,M, j
t ∈ Z with z

N ,M, j
0

∼ ν0 ∈ P(Z) from some initial

distribution ν0. Additionally, λ
N ,M
t > 0 – the arrival rate parameter

– will be modulated as an independent discrete-time Markov chain

with state space Λ, i.e.

λN ,M
t+1

∼ Pλ(λ
N ,M
t ) (1)

for some arbitrary transition kernel Pλ .
Due to symmetry of the problem, for sufficiently many agents,

the information about each specific queue’s state becomes irrelevant

to the problem. Thus, we assume some common, shared policy of

the form πt : P(Z)×Zd ×Λ → P(U) for all agents, acting on the

current P(Z)-valued random empirical queue state distribution

HN ,M
t B

1

M

M∑
j=1

δzN ,M, j
t

(2)

with Dirac measure δ , the sampled queue states, and the current

arrival rate. In practice, wemay also drop dependence on the current

arrival rate and empirical distribution, or estimate e.g. the empirical

queue state distribution by sampling a subset of random queues,

though both will complicate the theoretical analysis of the limiting

MFC problem, as it would not be possible to formulate the limiting

system as a standard, fully-observed Markov decision process.

The dynamics for each agent i are thus given by

xN ,M,i
t ∼ ⊗dk=1

Unif({1, . . . ,M}), (3)

uN ,M,i
t ∼ πt

(
HN ,M
t , (z

N ,M,x it,1
t , . . . , z

N ,M,x it,d
t ), λN ,M

t

)
, (4)

i.e. at each decision epoch, the agents decide to which of their d
randomly sampled, accessible queues they decide to send their jobs

to. For simplicity of exposition, this choice of destination is deter-

ministic, though in our experiments we shall allow randomization

for each packet. As a result, starting with z
N ,M, j
0

∼ ν0 ∈ P(Z) for

each queue j and some initial queue state distribution ν0, for any

queue j, the next queue state z
N ,M, j
t+1

is obtained from the previous

state z
N ,M, j
t by simulating a Z-valued continuous-time Markov

chain for ∆t time units, beginning with z
N ,M, j
t and decrementing

or incrementing by 1 at departure rate α > 0 and arrival rate

λ
N ,M, j
t = MλN ,M

t ·
1

N

N∑
i=1

d∑
k=1

1xN ,M,i
t,k =j1uN ,M,i

t =k (5)

respectively, ignoring jumps above B or below 0. Any arrivals be-

yond B are counted in the average number of dropped packets

DN ,M
t =

1

M

M∑
j=1

D
N ,M, j
t (6)

per queue j during each decision epoch t , which will constitute our

objective through the discounted infinite-horizon objective

JN ,M (π ) = E

[
−

∞∑
t=0

γ tDN ,M
t

]
(7)

to be maximized with discount factor γ ∈ (0, 1).

Note that we can rewrite (5) as

λ
N ,M, j
t = MλN ,M

t

∫
X×U

d∑
k=1

1xk=j1u=k G
N ,M
t (dx , du) (8)

with the P(X×U)-valued empirical agent state-action distribution

GN ,M
t B

1

N

N∑
i=1

δxN ,M,i
t ,uN ,M,i

t
. (9)

Intuitively speaking, when N ≫ M ≫ 1, this empirical distribution

becomes deterministic and we need not track each queue state, but

only their distribution. Similarly, only the overall distribution of
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all agent choices will matter, leading to the prospective limiting

mean-field model derived in the sequel.

2.2 Infinite-agent limit
In the infinite-agent limit where N → ∞, we obtain a limiting con-

trol problem with random external states (queue states). Consider

the evolution of the P(Z)-valued empirical queue state distribution

HMt B
1

M

M∑
j=1

δzM, j
t

(10)

as N → ∞. Conditional on the queue states and arrival rate,

(xM,i
t ,uM,i

t )i=1, ...,N are i.i.d. Therefore, it will be sufficient to con-

sider only the statistics of a representative agent. By the law of

large numbers, we obtain the deterministic agent state distribution

µ̃t B ⊗dk=1
Unif({1, . . . ,M}) ∈ P(X) (11)

of agents by (3). The P(X ×U)-valued agent state distribution

GMt B GM
t (µ̃t ,ht ) (12)

thus depends on ht B πt (H
M
t , ·, λ

M
t ), where we define

GM
t (µ̃,h)(x ,u) B µ̃(x)h(u | (zM,x1

t , . . . , z
M,xd
t )). (13)

We observe that this state-action distribution is sufficient for

characterizing system behaviour: Conditional on fixed λMt and

{zM,1
t , . . . , zM,M

t }, the arrival rate in (5) becomes

λ
M, j
t = MλMt E

[ d∑
k=1

1xM,1
t,k =j

1uM,1
t =k

]
(14)

= MλMt

∫
X×U

d∑
k=1

1xk=j1u=k G
M
t (dx , du) (15)

by the law of large numbers, similar to (8). In other words, the

empirical agent state-action distribution GN ,M
t is replaced by the

limiting distribution GMt .

2.3 Infinite-queue limit
Finally, we derive the mean-field model in the limit as M → ∞,

i.e. formally N ≫ M ≫ 1. The random queue states are now

replaced by the queue state distribution denoted by νt ∈ P(Z).

Therefore, each agent state x it ∈ X is now also replaced by the

anonymous queue state z̄it ∈ Zd
instead of the actual queue index.

The queue state distribution deterministically induces the agent

state distribution

µt B ⊗dk=1
νt ∈ P(Zd ) (16)

by assigning thed-dimensional productmeasure µt (z̄) = Πd
k=1

νt (z̄k )

for any z̄ ≡ (z̄1, . . . , z̄d ) ∈ Zd
. For any decision ruleht = πt (νt , ·, λt ),

this agent state distribution induces a state-action distribution

Gt B µt ⊗ ht ∈ P(Zd ×U). (17)

Now consider the random amount of arriving packets P ∼

Pois(Mλt∆t) in a time slot ∆t . Since N ≫ M implies N ≫ P , the
probability of any single agent receiving more than one packet is

negligible. This implies that almost all packets’ destination queues

will be i.i.d. random variables. As a result, since packets arrive

with rate Mλt and i.i.d. destinations, for any z ∈ Z, packets will

equivalently arrive with rateMλ′t (z) in queues with state z ∈ Z by

Poisson thinning, where

λ′t (z) = λt

∫
Zd×U

1z̄u=z Gt (dz̄, du). (18)

By symmetry, these packets arrive uniformly at random in any

arbitrary specific fixed queue in state z. For any specific queue with
state z, the probability of assigning such a packet to that queue

is therefore
1

Mνt (z)
, which results in an equivalent queue packet

arrival rate of

λt (z) B
Mλ′t (z)

Mνt (z)
=

λ′t (z)

νt (z)
. (19)

The informal derivation until now will be motivated more rigor-

ously in Section 3 and numerically in Section 4.

2.4 Exact discretization
The final step is to formulate a discrete-time optimal control prob-

lem from the delayed, synchronous system that allows for appli-

cation of standard optimal control techniques such as reinforce-

ment learning. To discretize the mean-field system exactly at times

{0,∆t , 2 · ∆t , . . .}, we generate the master equations for the evo-

lution of a single queue’s state over time between each of the dis-

cretization time points. The procedure is done analogously for the

pre-limit systems. Consider a queue in state z ∈ Z at the begin-

ning of a decision epoch t . Then, for any ht , we define a Z-valued

continuous-time Markov chain y through y(0) = z and formulate

its Kolmogorov forward equations

ÛPz = QzPz , Pz (0) = ez (20)

for the vector of queue state probabilities Pz (τ ) ∈ [0, 1]Z at times

τ ∈ [0,∆t] with

Pzz′(τ ) ≡ P(y(τ ) = z′), ∀z′ ∈ Z (21)

and the transposed transition rate matrix Qz B Q(νt , z) ∈ RZ×Z

where Q(ν , z) is defined by

Q(ν , z)i,i−1 = λt (ν , z) B
1

ν (z)
λt

∫
Zd×U

1z̄u=z (ν ⊗ ht )(dz̄, du)

(22)

in accordance with (16) - (19), Q(λ, z)i−1,i = α(z) for i = 1, . . . ,B,
Q(λ, z)i,i = −

∑
j Q(λ, z)j,i for i = 0, . . . ,B, and zero otherwise.

Here, ez denotes the z-unit vector.
Therefore, from the fraction νt (z) of queues in state z ∈ Z at

time t , we will deterministically have the resulting fraction

νz,z′ = νt (z)P
z
z′(∆t) (23)

of queues with state z ∈ Z in resulting state z′ ∈ Z at the end of

the decision epoch ∆t . In total, we therefore have

νt+1(z
′) =

∑
z∈Z

νz,z′ =
∑
z∈Z

νt (z)P
z
z′(∆t), ∀z′ ∈ Z. (24)

Computing the expected packet drops Dz
t per queue with state

z ∈ Z is done analogously by

ÛDz
t = λt (z)P

z
B , Dz

t (0) = 0 (25)
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Figure 2: A schematic overview of the application of the
upper-level mean-field control policy to the finite-client
finite-server system. The upper-level policy π̃ returns a
lower-level policy π for a given distribution of server states
HMt and current arrival rate λt . The lower-level policy is then
applied separately to each agent state x it to obtain an action
uit .

resulting in a per-queue average packet loss of

Dt =
∑
z∈Z

νt (z)D
z
t (∆t). (26)

For exact computation of the terms in (24) - (26), observe that

we have the linear matrix differential equation[
ÛPz
ÛDz
t

]
=

[
Qz

0

λt (νt , z) · eTB 0

]
︸                  ︷︷                  ︸

Q̄z≡Q̄(νt ,z)

·

[
Pz

Dz
t

]
(27)

where we define the extended rate matrices Q̄(νt , z) analogously
to Q(νt , z), and thus obtain exact discretization by[

Pz (∆t)
Dz
t (∆t)

]
= exp (Q̄∆t) ·

[
ez
0

]
(28)

where exp(·) denotes the matrix exponential.

2.5 Upper-level decision process
We can now obtain a Markov decision process (MDP) [31] with

state space P(Z) × Λ and action space H B {h : Zd → P(U)},

since we have states (λt ,νt ) and actions ht following dynamics

(λt+1,νt+1) ∼ Pλ(λt ) ⊗ δTν (νt ,λt ,ht ) (29)

ht = π̃t (νt , λt ) (30)

where the transition function Tν deterministically maps to νt+1

according to (24), and the actions are given by a deterministic

‘upper-level’ policy π̃ = {π̃t }t ≥0, where π̃t : P(Z)×Λ → H . Here,

the randomness of the system stems from the random packet arrival

rate λt . Finally, by (26), the objective becomes

J (π̃ ) = E

[
−

∞∑
t=0

γ tDt

]
. (31)

The application of π̃ to the N -agent,M-queue case is visualized

in Figure 2, i.e. each of the agents i = 1, . . . ,N first computes the

decision rule ht = π̃t (H
M
t , λt ) according to the upper-level policy,

and then samples its action uit ∼ ht (x
i
t ).

For the obtained MDPs, since the expected cost function and the

dynamics are continuous in the states and actions of the MFC MDP,

it is known that the typical dynamic programming principle (i.e.

Bellman equation) holds, and an optimal stationary deterministic

policy will exist.

Proposition 1 ([15], Theorem 4.2.3). There exists a stationary
deterministic optimal policy π̃ that maximizes J (π̃ ).

To find such a deterministic policy, an exact, closed-form solution

is difficult due to the complexity of the associated transition model

and continuous state and action spaces. Instead, we shall in the fol-

lowing employ well-established reinforcement learning techniques

by exploring over stochastic policies π̃t : P(Z) ×Λ → P(H), with

the random decision rules ht ∼ π̃t (νt , λt ) as actions of the MFC

MDP, to find the desired optimal stationary deterministic policy.

It should be noted that in this section we have presented a system

which has finite capacity queues with homogeneous servers, though

this model can be extended to heterogeneous servers and infinite

capacity queues, which we omit for space reasons.

3 THEORETICAL ANALYSIS
Although our formulated mean-field model is intuitively a good

approximation of the finite system, in this section we shall make

this connection rigorous. Note that our model does not immediately

fit into standard MFC frameworks introduced in [13, 28], since we

perform a double limit argument and continuous-to-discrete-time

modelling. To verify the mean-field model, we shall show that

performance in the finite system becomes arbitrarily close to the

performance in the MFC system as long as the system is sufficiently

large. Quantifying the error convergence rate more precisely is

left to future work. For the following theoretical analysis, we shall

consider the sequence of arrival rates (λ1, λ2, . . .) given a priori by

conditioning on them, i.e. non-random λN ,M
t = λMt = λt .

Theorem 1. The performance of the N ,M system converges to the
performance of the mean-field system under any stationary determin-
istic policy π̂ as the system size becomes sufficiently large, i.e. for any
ε > 0 there exists N ′,M ′(N ′) ∈ N such that���J (π̂ ) − JN ,M (π̂ )

��� < ε

for all N > N ′,M > M ′(N ′).

Proof. We will analyze���J (π̂ ) − JN ,M (π̂ )
��� ≤ ���J (π̂ ) − JM (π̂ )

��� + ���JM (π̂ ) − JN ,M (π̂ )
���

≤

∞∑
t=0

γ t
(���E [

Dt − DM
t

] ��� + ���E [
DM
t − DN ,M

t

] ���)
where DM

t denotes the random loss of packets in the infinite-agent

finite-queue system.

For the first term, considerM → ∞ and observe that

E [Dt ] = E

[∫ (
exp (Q̄(νt , z)∆t) ·

[
ez
0

] )
B+1

νt (dz)

]
,

E
[
DM
t

]
= E


1

M

∑
j

(
exp (Q̄M, j∆t) ·

[
ezM, j

t
0

])
B+1


= E

[∫ (
exp (Q̄(HMt , z)∆t) ·

[
ez
0

] )
B+1

HMt (dz)

]
,
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with the rate matrices Q̄M, j
of the infinite-agent finite-queue sys-

tem, where the last equality follows since the rates in theM-queue

case for each queue j are indeed given by

λ
M, j
t = Mλt

∫
X×U

d∑
k=1

1xk=j∧u=k G
M
t (dx , du)

= λt

d∑
k=1

∑
x ∈X

∑
u ∈U

1xk=j∧u=k
1

Md−1

ht (u | zM,x1

t , . . . , z
M,xd
t )

= λt

d∑
k=1

∑
xk ∈{1, ...,M }

∑
x−k ∈{1, ...,M }d−1∑

u ∈U

1xk=j∧u=k
1

Md−1

ht (u | zM,x1

t , . . . , z
M,xd
t )

= λt

d∑
k=1

∑
xk ∈{1, ...,M }

∑
x−k ∈{1, ...,M }d−1

∑
u ∈U

∑
z̄k ∈Z∑

z̄−k ∈Zd−1

1xk=j∧u=k
1

Md−1

ht (u | (z̄k , z̄−k ))1∧d
i=1

zM,xi
t =z̄i

= λt

d∑
k=1

∑
z̄k ∈Z

∑
z̄−k ∈Zd−1

∑
u ∈U

1z̄k=zM, j
t ∧u=k

·

∑
x−k ∈{1, ...,M }d−1 1∧

i,k z
M,xi
t =z̄i

Md−1︸                                       ︷︷                                       ︸∏
i,k H

M
t (z̄i )

h(u | (z̄k , z̄−k ))

= λt

d∑
k=1

∑
z̄∈Zd

∑
u ∈U

1z̄k=zM, j
t ∧u=k

∏
i,k

HMt (z̄i )ht (u | z̄)

= λt
∑

z̄∈Zd

∑
u ∈U

1z̄u=zM, j
t

∏
i,u
HMt (z̄i )ht (u | z̄)

=

λt
∫
Zd×U

1z̄u=zM, j
t

(HMt ⊗ ht )(dz̄, du)

HMt (z
M, j
t )

= λt (H
M
t , z

M, j
t )

where the indices −k denote all dimensions other than k .

Therefore, as long as HMt
d
−→ νt (convergence in distribution),

we find E
[
Dt − DM

t
]
→ 0 by the continuous mapping theorem. In

particular, this holds true ifHMt
p
−→ νt , i.e. for any δ > 0 asM → ∞,

P
(HMt − νt

 > δ
)
→ 0.

We show this by induction: At t = 0 the statement holds by the

law of large numbers. Now assume that the statement holds for

t , then for t + 1 we first show that for any ε,δ > 0 there exists

M ′,δ ′ > 0 such that for allM > M ′
we have

P
(HMt+1

− νt+1

 > δ
��� HMt − νt

 ≤ δ ′
)
< ε .

Note that

P
(HMt+1

− νt+1

 > δ
��� HMt − νt

 ≤ δ ′
)

≤
∑
z∈Z

P
(���HMt+1

(z) − νt+1(z)
��� > δ

��� HMt − νt

 ≤ δ ′
)

≤
∑
z∈Z

P

(���HMt+1
(z) − E

[
HMt+1

(z)
��� HMt ] ��� > δ

2

���� HMt − νt

 ≤ δ ′
)

+
∑
z∈Z

P

(���E [
HMt+1

(z)
��� HMt ]

− νt+1(z)
��� > δ

2

���� HMt − νt

 ≤ δ ′
)

and we shall bound the former term as follows: Define

∆zM, j
t+1

|zM, j
t

f B f (z
M, j
t+1

) − E
[
f (z

M, j
t+1

)

��� f (zM, j
t )

]
and let f : Z → R, then we have

P

(���HMt+1
(f ) − E

[
HMt+1

(f )
��� HMt ] ��� > δ

2

���� HMt − νt

 ≤ δ ′
)

= P
©«
������ 1

M

M∑
j=1

∆zM, j
t+1

|zM, j
t

f

������ > δ

2

������ HMt − νt

 ≤ δ ′
ª®¬

≤
4

δ2
E

©«
1

M

M∑
j=1

(
∆zM, j

t+1
|zM, j
t

f
)ª®¬

2
������ HMt − νt

 ≤ δ ′


=
4

δ2M2

M∑
j=1

E

[(
∆zM, j

t+1
|zM, j
t

f
)

2

���� HMt − νt

 ≤ δ ′
]

≤
16 maxz f (z)2

δ2M
→ 0

asM → ∞ by conditional independence of (zM,1
t+1
, . . . , zM,M

t+1
) given

zMt = (zM,1
t , . . . , zM,M

t ), the Chebyshev inequality and tower prop-

erty. In particular, this holds for fz ≡ 1{z } , z ∈ Z. Therefore,∑
z∈Z

P

(���HMt+1
(z) − E

[
HMt+1

(z)
��� HMt ] ��� > δ

2

���� HMt − νt

 ≤ δ ′
)
→ 0

asM → ∞. For the latter term, note that analogously���E [
HMt+1

(f )
��� HMt ]

− νt+1(f )
���

≤

������ ∑z∈Z f (z)
∑
z′∈Z

(
HMt (z) − νt (z)

)
·

(
exp (Q̄(HMt , z

′)∆t) ·

[
ez′
0

] )
z

����
+

������ ∑z∈Z f (z)
∑
z′∈Z

νt (z) ·

(
exp (Q̄(HMt , z

′)∆t) ·

[
ez′
0

]
− exp (Q̄(νt , z′)∆t) ·

[
ez′
0

] )
z

����
and by boundedness (λt (ν , z) ≤ dλt ) and continuity in HMt ,νt , for

any ε > 0 there exists δ ′ > 0 such that

HMt − νt
 ≤ δ ′ implies��E [

HMt+1
(f )

�� HMt ]
− νt+1(f )

�� < ε . As a result, by the law of total

probability

P
(HMt+1

− νt+1

 > δ
)

= P
(HMt+1

− νt+1

 > δ
��� HMt − νt

 ≤ δ ′
)
· P

(HMt − νt

 ≤ δ ′
)

+ P
(HMt+1

− νt+1

 > δ
��� HMt − νt

 > δ ′
)
· P

(HMt − νt

 > δ ′
)

≤ P
(HMt+1

− νt+1

 > δ
��� HMt − νt

 ≤ δ ′
)
+ P

(HMt − νt

 > δ ′
)
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→ 0

since we can choose M ′,δ ′ according to the former analysis and

the induction assumption, completing the induction step. It then

follows at all times t by the continuous mapping theorem that

E
[
Dt − DM

t

]
→ 0.

For the second term, fixM and let N → ∞. We find that

E
[
DM
t

]
=

1

M

∑
j
E

[(
exp (Q̄M, j∆t) ·

[
ezM, j

t
0

])
B+1

]
,

E
[
DN ,M
t

]
=

1

M

∑
j
E

[(
exp (Q̄N ,M, j∆t) ·

[
ezN ,M, j

t
0

])
B+1

]
where Q̄N ,M, j

and Q̄M, j
are continuous functions of

λ
N ,M, j
t = λt

M

N

N∑
i=1

d∑
k=1

1x it,k=j
1u it=k ,

λ
M, j
t = λtM

∫
X×U

d∑
k=1

1xk=j∧u=k G
M
t (dx , du),

and as N → ∞, by the conditional law of large numbers [24, Theo-

rem 3.5]

λ
N ,M, j
t → λ

M, j
t

a.s. conditional on z
N ,M, j
t = z

M, j
t = z for any z ∈ Z. Therefore,

again by the continuous mapping theorem, for all j = 1, . . . ,M a.s.

E
[
exp (Q̄N ,M, j∆t)

��� zN ,M, j
t = z

]
→ E

[
exp (Q̄M, j∆t)

��� zM, j
t = z

]
.

At the same time, zN ,M
t

d
−→ zMt at all times t as N → ∞ via

induction: For t = 0 trivially L(zN ,M
t ) = ν0 = L(zMt ). For t + 1���P(zN ,M

t+1
= z) − P(zMt+1

= z)
���

≤
∑
z′∈Z

���P(zN ,M
t = z′) − P(zMt = z′)

��� · P(zN ,M
t+1

= z | zN ,M
t = z′)

+
∑
z′∈Z

P(zMt = z′)

·

���P(zN ,M
t+1

= z | zN ,M
t = z′) − P(zMt+1

= z | zMt = z′)
���

where the former tends to zero by induction assumption, while for

the latter we have���P(zN ,M
t+1

= z | zN ,M
t = z′) − P(zMt+1

= z | zMt = z′)
���

=

������ M∏j=1

E

[(
exp (Q̄N ,M, j∆t) ·

[
ez′j

0

] )
z j

���� zN ,M
t = z′

]
−

M∏
j=1

E

[(
exp (Q̄M, j∆t) ·

[
ez′j

0

] )
z j

���� zMt = z′
] ������ → 0

as N → ∞ again as Q̄N ,M, j → Q̄M, j
conditionally a.s. for each j.

By Slutzky’s theorem (on the conditional probability spaces given

z
N ,M, j
t = z

M, j
t = z), we have

E

[(
exp (Q̄N ,M, j∆t) ·

[
ezN ,M, j

t
0

])
B+1

����� zN ,M, j
t = z

]
→ E

[(
exp (Q̄M, j∆t) ·

[
ezM, j

t
0

])
B+1

����� zM, j
t = z

]
for any z ∈ Z, such that

E

[(
exp (Q̄N ,M, j∆t) ·

[
ezN ,M, j

t
0

])
B+1

]
=

∑
z∈Z

E

[(
exp (Q̄N ,M, j∆t) ·

[
ezN ,M, j

t
0

])
B+1

����� zN ,M, j
t = z

]
· P

(
z
N ,M, j
t = z

)
→

∑
z∈Z

E

[(
exp (Q̄M, j∆t) ·

[
ezM, j

t
0

])
B+1

����� zM, j
t = z

]
· P

(
z
M, j
t = z

)
= E

[(
exp (Q̄M, j∆t) ·

[
ezM, j

t
0

])
B+1

]
which shows that E

[
DN ,M
t

]
→ E

[
DM
t

]
at all times t .

Now note that the terms Dt ,D
M
t ,D

N ,M
t are uniformly bounded

by the maximum expected average number of lost packets by drop-

ping all packets, given by the expectation of the Poisson-distributed

number of arriving packets λt · ∆t . Therefore, for any ε > 0 we can

choose T such that

∞∑
t=T

γ t
(���E [

Dt − DM
t

] ��� + ���E [
DM
t − DN ,M

t

] ���) < ε

3

.

Consequently chooseM sufficiently large such that���E [
Dt − DM

t

] ��� < ε

3T
, ∀t ∈ {0, 1, . . . ,T − 1}

and similarly choose N sufficiently large to obtain���E [
DM
t − DN ,M

t

] ��� < ε

3T
, ∀t ∈ {0, 1, . . . ,T − 1}

according to the prequel, such that

��J (π̂ ) − JN ,M (π̂ )
�� < ε . □

Therefore, our mean-field model is well-motivated for suffi-

ciently large systems, as we will also verify numerically.

4 EXPERIMENTS
In this section, we will begin by giving details on the experimen-

tal setup. Afterwards, we will demonstrate numerical results of

applying reinforcement learning to the MFC MDP problem.

We haveM homogeneous queues with exponential service rate

α and N clients with Markov modulated arrival rate λ. Beginning
with λ0 ∼ Unif({λh , λl }), at each decision epoch the arrival rate

switches between high, λh , and low, λl , levels, using the transition

law

P(λt+1 = λl | λt = λh ) = 0.2, (32)

P(λt+1 = λh | λt = λl ) = 0.5. (33)
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Table 1: System parameters used in the experiments.

Symbol Name Value

∆t Time step size 1 − 10

α Service rate 1

(λh , λl ) Arrival rates (0.9, 0.6)

N Number of clients 1000 − 1000000

M Number of queues 100 − 1000

d Number of accessible queues 2

n Monte Carlo simulations 100

B Queue buffer size 5

ν0 Queue starting state distribution [1, 0, 0, . . .]

D Drop penalty per job 1

T Training episode length 500

Te Evaluation episode length 50 − 500

Table 2: Hyperparameter configuration for PPO.

Symbol Name Value

γ Discount factor 0.99

λRL GAE lambda 1

β KL coefficient 0.2

ϵ Clip parameter 0.3

lr Learning rate 0.00005

Bb Training batch size 4000

Bm SGD Mini batch size 128

Tb Number of epochs 30

In general, the experiments could be conducted with more levels of

arrival rates and with different modulation rates estimated from a

real system, though in our work we will use two arbitrarily chosen

values to show the theoretical applicability of our methodology.

The values for the system parameters in all of our experiments are

given in Table 1.

In order to assess the performance of our MF policy, we compare

it to JSQ(d) and the random policy, RND. In JSQ(d), at every decision
epoch, d queues are selected out ofM and jobs are allocated to the

shortest one. In RND, we similarly select d queues randomly out

ofM and instead allocate the jobs to a random queue out of the d
queues, which will be equivalent to a completely random selection

out of M queues for sufficiently large N ≫ M . In our work, we

have used d = 2, since in [26] it has been shown that while moving

from d = 1 to d = 2 shows an exponential increase in performance

of JSQ(d), an additional increase to d = 3 does not add much in

terms of achieved performance.

In order to obtain our MF policy by solving the optimal control

problem, we apply proximal policy optimization (PPO) [33] using

the RLlib implementation [21], a well-known and robust policy

gradient reinforcement learning algorithm. The learning algorithm

hyperparameters used in our experiments can be found in Table 2.

In Figure 3, we observe the learning curve of the applied rein-

forcement learning algorithm for ∆t = 5 and find that the simple

parameterization of the lower-level policies is indeed successful

and leads to stable learning. For the demonstrated experiment, we

trained in parallel (offline) on 20 cores of a commodity server CPU

for approximately 35 hours, after which the optimal policy can be

applied in practice, to finite systems. Here, MF-JSQ(2) and MF-RND

refer to the corresponding JSQ and RND policies in the mean-field

model, i.e. each applies a fixed ht regardless of the current queue
state distribution νt . In the case of MF-JSQ given by

ht (u | z̄) =

{
0 if u < arg minu′ z̄u′

1

Nmin

else

(34)

where Nmin is the number of actions u that minimize the chosen

queue’s state z̄u . In the case of MF-RND, we similarly choose

ht (u | z̄) =
1

|U|
, ∀(z̄,u) ∈ Zd ×U (35)

As expected, indicated by the horizontal lines, the JSQ(2) and

random (RND) assignment policies in the mean-field case are both

suboptimal for the chosen delay time of ∆t = 5, and our reinforce-

ment learning approach is capable of finding better load balancing

policies after approximately 5 million simulated decision epochs.

Though we have tried Dirichlet-parameterized upper-level policies

to directly output simplex-valued actions in order to eliminate the

need for manual normalization, we found that performance was

significantly worse, hence motivating our approach.

Performance comparison on finite systems. We will now compare

the performance of the evaluated load balancing algorithms on

systems of finite size. For simulation of the finite-agent and finite-

queue system, we simulate the continuous-time Markov processes

exactly by sampling exponential waiting times for all events ac-

cording to the Gillespie algorithm [12]. For an easy comparison

between different ∆t , we set the episode lengthsTe for evaluation to

the integer nearest to
500

∆t . Pseudocode for simulating and applying

our MF policy in the finite system is given in Algorithm 1
1
.

1
https://github.com/AnamTahir7/mfc_large_queueing_systems.git
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Figure 3: Training curve for the MF policy for ∆t = 5 and
Te = 500 timesteps – i.e. the expected negative number of
packet drops per episode during training – together with
a comparison to the MF-JSQ(2) and MF-RND policies. The
horizontal lines indicate the estimated expected returns for
each policy. The red dotted line indicates the final achieved
return of the learned MF policy in the mean-field MDP.

https://github.com/AnamTahir7/mfc_large_queueing_systems.git
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Figure 4: Comparison of the estimated expected packet drops (lower is better) of MF policies over the number of queuesM in
the finite system for different values of ∆t , together with 95% confidence intervals depicted as shaded regions and error bars.
Here, we use total running times of approximately 500 time units, and N = M2 to fulfill N ≫ M . The red dotted line indicates
the equivalent achieved return of the learnedMF policy in the mean-field control MDP, i.e. the limiting model as N ≫ M → ∞.
It can be observed that as the system size N = M2 increases, the performance under theMF policy (green) becomes increasingly
close to the mean-field system performance (red), validating the accuracy of our mean-field formulation.

Algorithm 1 Application of MFC policy in finite system

1: Input: System parameters from Table 1

2: Input: Markovian upper-level policy π̃ = {π̃t }t ≥0

3: Initialize λ0 ∼ Unif({λh , λl }).
4: for j = 1, . . . ,M do
5: Initialize queue states z

j
0
∼ ν0.

6: end for
7: for t = 0, 1, . . . ,Te do
8: Compute empirical distribution HMt =

1

M
∑M
j=1

δz jt
.

9: Sample decision rule ht ∼ π̃t (H
M
t , λt ).

10: for i = 1, . . . ,N do
11: Sample agent state x it ∼ ⊗dk=1

Unif({1, . . . ,M}).

12: Compute anonymous state z̄it = (z
x it,1
t , . . . , z

x it,d
t ).

13: Sample agent action uit ∼ ht (z̄
i
t ).

14: end for
15: for j = 1, . . . ,M do
16: Simulate continuous-time Markov chain y j with jump

rates λ
j
t ,α and y j (0) = z

j
t for ∆t time units.

17: Count number of dropped packets.

18: Set queue state z
j
t+1
= y j (∆t).

19: end for
20: Sample λt+1 ∼ P(λt+1 | λt ).
21: end for
22: return Number of dropped packets.

In Figure 4, we show that the performance of the final learned

MF policies over a wide range of delays ∆t and system sizes (N ,M).

It can be seen that the overall achievable performance of our MF

policy increases up to the performance achieved in the MFC MDP

(red dotted line) as the system size (N ,M) becomes sufficiently

large (N ≫ M ≫ 1). Hence, our findings empirically validate the

fact that our mean-field approximations are indeed accurate for

sufficiently large system sizes.

The returns for the policies at each ∆t , for the case where all
experiments are run for approximately equal overall time instead of

an equal number of decision epochs, are given in Figure 5. Here, we

have trained a separate MF policy for each of the ∆t and compared

to JSQ(2) and RND. It can be seen that – as expected due to fewer

updates – the overall achievable performance in the systemworsens

as the synchronization delay ∆t of the system increases. It can be

seen that MF achieves better performance than JSQ(2) starting from

∆t > 2, while it outperforms RND in all cases. This stems from the

fact that reinforcement learning only finds approximately optimal

solutions. Nonetheless, at an intermediate level of synchronization

delay beginning with ∆t = 3, our learning-based methodology

appears to be able to find a better policy than the optimal policies

for ∆t → 0 (JSQ(2)) and ∆t → ∞ (RND). Even for small ∆t = 1,

our MF policy has comparable performance to the optimal JSQ(2)

policy, as long as N ,M are sufficiently large. As ∆t keeps increasing,
MF and RND are therefore expected to perform equally good in

sufficiently large systems as long as we indeed have N ≫ M .
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Figure 5: Comparison of the estimated expected packet
drops of MF, JSQ(2), RND policies together with 95% confi-
dence intervals for different configurations ofM andN = M2.
We keep the total running time of each setting approxi-
mately equal to 500 time units to compare the effect of ∆t . It
can be observed that as ∆t rises, the achievable performance
by choosing emptier queues degrades.
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Figure 6: Comparison of the estimated expected packet
drops of MF, JSQ(2), RND policies together with 95% confi-
dence intervals for the same setting as in Figure 5, equal to-
tal running time, for the case when M = 1000, N = M

2
and

tN = M . As ∆t increases, the performance of our MF policy
performs better than the other policies, even when N 4 M .

Finally, we perform experiments for N 4 M , i.e. we violate the

formal approximation assumption used to obtain our mean-field

system. Even though the assumptions made in our approxima-

tion are violated, our policy nonetheless obtains good comparative

performance. As shown in Figure 6, we find that the qualitative per-

formance differences remain the same for around 1000 agents and

queues. It can also be observed that the random policy no longer

obtains approximately equal performance over ∆t , which is caused

by the fact that the queues are increasingly sampled unequally

often by an agent, and resampling resolves the resulting increased

focus on a subset of queues.

5 DISCUSSION
In this work, we have proposed a mean-field-control-style formula-

tion, with enlarged state-action space, for large-scale distributed

queuing systems with synchronization delays. We have achieved

this by formulating the finite-agent finite-queue system and con-

sidering N → ∞,M → ∞.

Firstly, we provide theoretical performance guarantees which

show that the performance in the N ,M system becomes arbitrarily

close to the performance in the MFC system as long as N ,M are

large enough. Then, assuming a synchronous system with exact

discretization of the underlying processes, we end up with an ex-

actly discretized discrete-time Markov decision process on which

we have applied reinforcement learning algorithms. As a result,

we find that our learned solution can outperform the delay-free-

optimal JSQ(d) policy as well as the infinite-delay-optimal random

policy in the regime of intermediate delays ∆t , even if N 4 M as

long as the system size N ,M is sufficiently large.

An interesting future direction could be further extensions to

the model such as non-exponential inter-arrival and service times,

partial observability as well as explicitly modelling the case where

N is not significantly larger thanM . To allow for better scaling of the

reinforcement learning algorithm to very large queue sizes, it may

be of interest to apply further limiting, real-valued approximations

of the queue states as B ≫ 1. One straightforward extension would

be to used heterogenous service rates. Finally, an implementation

of the developed methods in a real world system may be of interest.

We hope that our work inspires further work at the intersection of

mean-field control theory and distributed queuing systems.
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