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A Comparison of Thermodynamic Library to Original

Cello Library

Figure S1: Plots comparing the original Cello transfer functions and the calibrated thermo-
dynamic transfer functions.

S2



B Proofs and Derivations

B.1 Proof of Transfer Function under Crosstalk

We start out with the equation from the main text

E (X ∣ f1, . . . , fK) =
1

1 + Z0(p, f1, ..., fK)
Z1(p, f1, ..., fK)

What we did avoid before, we have to tackle now: the case, where we build the ratio of two

implicitly completed multinomial coefficients with two arbitrary decrements. We thus seek

to simplify
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For the second line to simplify, we need to take a look at a combination of both formulas

used before, i.e.
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The only thing that’s left to derive is an expression for the two-times-increment. For this,

we need to apply one of the formulas twice, i.e.

(
n − k + 2

m
) ≈

n − k + 1

n − k −m + 1
(
n − k + 1

m
) ≈

n − k + 1

n − k −m + 1

n − k

n − k −m
(
n − k

m
) ≈ (

n − k

n − k −m
)

2

(
n − k

m
)

and thus

(
c −∑

k−1
l=1 al
ak

)/(
c −∑

k−1
l=1 al + 2

ak
) ≈ (

c −∑
k
l=1 al

c −∑
k−1
l=1 al

)

2

This together then allows us to state
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and finally carry out the simplification of the expression for the expectation E (X ∣ f1, . . . , fK),

giving us
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Thus, we again obtain a formula for the NOT gate with imperfect competitivity and arbitrary

crosstalk from other TF’s:

E (X ∣ f1, . . . , fK) =
1

1 + 1
d
c
p exp (−β (εc,p − εp))
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It is now a rather simple step to derive the final expression for the (N-input) NOR gate.

B.2 Worst-Case Titration Effect

In this section, we investigate the maximal effect of titration on the circuit response. In

particular, we are interested in the limiting case, in which the concentration of non-cognate

binding sites is small but the statistical weight of binding to these sites is extremely large.

We will do so by looking at the original equation defined for counts of species members

(positive integers) and rewrite it to involve concentrations in the end.

First, we consider an expression first derived in (1 ) and again presented in (2 ). The

expression gives the fold-change φ (R) for the amount of (outgoing) product encoded in a

single gene that is repressed by a single (incoming) TF available in absolute count R and in

presence of an absolute amount of Nc non-cognate binding sites for the TF. For completeness,

we introduce the positive real system volume V ∈ R≥0 and demand the absolute count of

background binding sites N ≡ V c ∈ N0, where c was our concentration of background binding

sites. As a consequence, our TF concentration f from before then also relates to the count

R by R ≡ V f and a concentration s of non-cognate binding sites is also available, where

Nc ≡ V s.
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Then mentioned original expression is given by
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We are now interested to investigate the limiting case, in which there is maximal titration

to the host for a given amount of binding sites. Thus, we demand exp (−β∆εc) ≫ 1 and then

deduce
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Plugging this into (1) gives the fold-change for this limiting scenario, i.e.
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φ (R) ≈ (1 +
(R −Nc)
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which is equivalent to an effective reduction of the available TF concentration f by a

concentration of non-cognate binding sites s and thus a simple right-shift of the associated

gate’s transfer function.

C Genetic Gate Library Compatibility

The following figures detail the compatibility analysis of the used gate library from Cello.

Figure S2: Pair-wise compatibility of gates according to the proposed compatibility con-
straint. Each dot represents a compatible pair of gates. This matrix is used for determining
the compatibility of gates in the case of gates with only one input, i.e. NOT gates.
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Figure S3: Detailed visualization of compatible gate triples. Each matrix shows the com-
patible pairs of input gates for one target gate.
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