Supplementary Materials

High open-circuit voltage in single-crystalline n-type SnS/MoO₃ photovoltaics

Issei Suzuki^{1,*}, Zexin Lin¹, Taichi Nogami¹, Sakiko Kawanishi¹, Binxiang Huang², Andreas Klein², Takahisa Omata¹

- 1. Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- 2. Department of Materials and Earth Science, Electronic Structure of Materials, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.

*Corresponding author E-mail address: issei.suzuki@tohoku.ac.jp

Supplementary Note.1

FIG. S1. XPS spectra of the surfaces of low- and high-conductivity MoO_3 thin films (red and blue lines, respectively), which were deposited onto glass substrates. The green line shows the difference. The spectra were aligned with the main peaks at 232.5 eV. Only the spectrum of the high-conductivity MoO_3 layer exhibited a shoulder band at a lower binding energy. This may be owing to the introduction of oxygen vacancies resulting in the partial reduction of Mo^{6+} to Mo^{5+} . The chemical shift of Mo^{6+} and Mo^{5+} is reported to be ~1 eV^[S1], which is consistent with the observed energy difference between the main and shoulder peaks (green line). Notably, the thin films were exposed to air prior to the XPS measurement; therefore, the spectra may be partially affected by surface contamination and/or possible reaction with air.

Supplementary Note.2 MoO₃ thickness dependence of the photovoltaic properties

The effects of MoO₃ thickness on the photovoltaic properties and device parameters are shown in Fig. S2, and those of the device with the highest *PCE* are summarized in Table S1. High V_{OC} values were obtained when the MoO₃ layer thickness was 3 and 6 nm, and V_{OC} decreased when the MoO₃ layer thickness was 1.5 and 12 nm (Fig. S2(a)). It is assumed that the 1.5-nm-thick MoO₃ layer is too thin to form an inadequate interface, and thus the V_{OC} becomes lower, considering that the band bending at the interface of n-type SnS with MoO₃ becomes complete when the MoO₃ layer is more than ~3 nm^[S1]. The devices with a 12-nm-thick MoO₃ layer exhibited a reverse saturation current (*J*₀), which was larger than those of devices fabricated with other MoO₃ layer thicknesses (Fig. S2(g)). This indicates a high recombination rate at the interface, suggesting that a thicker MoO₃ layer does not allow efficient carrier separation, resulting in a lower V_{OC} . Moreover, *J*_{sc} and FF exhibited no clear relationship with MoO₃ thickness (Fig. S2(b,c)). Thus, the MoO₃ layer thickness dependence of *PCE* (Fig. S2(a,d)).

FIG. S2. Photovoltaic performance of n-type SnS single crystal/MoO₃ junction solar cells as a function of MoO₃ thickness. The MoO₃ layer with a low conductivity ($\sigma_{MoO_3} = 1.7 \times 10^{-8} \text{ Scm}^{-1}$) was used. (a) V_{OC} , (b) J_{SC} , (c) *FF*, (d) *PCE*, (e) R_{sh} , (f) R_s , (g) J_0 , and (h) *n*. Dotted lines are only for eye guides.

MoO ₃ layer conductivity	MoO₃ layer thickness	PCE / %	V _{oc} / mV	J _{sc} / mA cm ⁻²	FF / %	$R_{ m sh}$ / $\Omega~ m cm^2$	<i>R</i> ₅/ Ω cm²	J ₀ / mA cm ⁻²	n
Low σ _{MoO3} (1.7×10 ⁻⁸ S cm ⁻¹)	1.5 nm	2.0	249	18.4	44.2	160	4.9	1.5×10 ⁻³	1.02
	3 nm	3.3	385	22.4	37.7	146	8.0	2.3×10⁻³	1.48
	6 nm	3.4	437	15.7	50.1	200	7.5	9.0×10 ⁻⁴	1.77
	12 nm	1.9	246	19.1	42.3	270	4.5	9.2×10⁻³	1.26

Table S1. Photovoltaic characteristics of representative solar cells with n-type SnS single crystal/MoO₃ junctions with different MoO₃ layer thicknesses and conductivities.

Supplementary Note.3 EQE spectra

FIG. S3. Bandgap of the absorber layer determined by the plot of $[hv(1-EQE)]^2$ against hv. The device is fabricated using 6-nm-thick MoO₃ thin films with a high σ_{MoO_3} .

FIG. S4. EQE spectra of the solar cells with n-type SnS single crystal/MoO₃ film junctions with different MoO₃ layer thicknesses and conductivities. The simulated spectrum is obtained by EQE using the e-ARC code.

REFERENCES

[S1] I. Suzuki, B. Huang, S. Kawanishi, T. Omata, A. Klein, Avoiding Fermi Level Pinning at the SnS Interface for High Open-Circuit Voltage, J. Phys. Chem. C. 126 (2022) 20570–20576.